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Abstract

This thesis presents a numerical method for designing an aircraft minimiz-

ing drag with a fixed level of static longitudinal stability. The method uses

a genetic algorithm to reconfigure the aircraft through the minimization of

a performance index consisting of trimmed drag evaluated at two flight con-

ditions. Using this technique, tailless aircrafts are synthesized for minimum

drag with acceptable stability margin. The method shows how low drag can

be achieved by carefully choosing wing sweep, taper, and twist.

Keywords: Optimization, Tailless Aircraft, Mesh Generator, Genetic

Algorithm, Drag Coefficient, Static Stability,Static Equilibrium





Nomenclature

Roman Symbols

CD Drag coefficient [-]

CL Specified lift coefficient [-]

Cl Local lift coefficient [-]

A0(u), An(u), Bn(u) Functions of surface coefficients [-]

Ci
0, Ci

n, Si
n Coefficients of Wing sections representation [-]

cm
0 , cm

n , sm
n Coefficients of Wing sections representation [-]

dW i, dsm Difference functions [-]

R(u, v) Remainder function [-]

sm(v) Derivative boundary conditions representation [-]

W i (v) Parametrically rapresentation of wing sections [-]

X̃(u, v) Approximate function of wing surface [-]

ξcg normalized center of gravity position [-]

ξn Normalized neutral point position [-]

a Smoothing parameter [-]

b Section span [m]

CL,α Lift coefficient derivative with respec to angle of attack[-

]

CL Lift coefficient [-]

CMP Profile pitching moment coefficient [-]

iii
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CMW Wash-out induced pitching moment coefficient [-]

cmac Mean aerodynamic chord [m]

CMorigin,α Moment coefficient derivative with respec to angle of

attack [-]

cre f Refernce chord [m]

croot Root chord [m]

di Actual value of the ith constraint [-]

do Constrained value of the ith constraint [-]

Kp Penalty weighting [-]

M N. of Fourier functions composing the series [-]

m Specified static stability margin [-]

MCG Center of gravity moment [-]

PFi Penalty functions [-]

sr, st Boundary conditions parameters [-]

u, v Parameters which define a coordinate system on the

surface [-]

V∞ Flow velocity [m/s]

Xcg Center of gravity position [m]

Xn Neutral point position [m]

X Solution of Partial Differential Equation [-]

Greek Symbols

δi Flap deflection angle [deg]

γ Twist angle [deg]

Λ Quarter chord sweep [deg]

λ Taper ratio [-]

ω Smoothing parameter [-]



v

ρ Air density [kg/m2]

σ Stability margin [-]

S Total wing surface [deg]

Ω Finite region of (u,v) parameters plane where the

PDE are solved [-]

Abbreviations

AR Aspect Ratio

BREP Boundary Representation

CS Control Section

FBEI First Best Individual

GA Genetic Algorithm

GBO Gradient Based Optimizator

LD Lift Distribution

LTDR Lift-to-Drag Ratio

MCS Mesh Convengerce Study

MEG Mesh Generator

OT Optimization Tool

PDE Partial Differential Equation

RG Radar Graph
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Chapter 1

Introduction

In the last years the interest for tailless and blended-wing-body aircrafts has

grown a lot, seeing in these innovative configurations a way to improve the

performance and mainly to reduce the fuel consumpion. Many books and

articles speak about flying wing as the aircrafts of the future, most likely this

will not happen, but for sure there are certain applications for which the flying

wing principle is especially suited whilst for others it is not appropriate.[1]

A tailless aircraft (often tail-less) has no tail assembly and no other horizontal

surface besides its main wing. The aerodynamic control and stabilization

functions in both pitch and roll are incorporated into the main wing.

Theoretical advantages of the tailless configuration include low parasitic drag,

low structures weight, manufacture simplification due to the lower number of

part that compose these type of aircraft.

In the light of these characteristics it could be possible to say that tailless

aircraft configuration is well suited to be used as a high efficient and light air-

craft, such as any sailplane, glider or ultralight aircraft. The low aerodynamic

drag is able to produce high lift-to-drag ratios, which is the main aspect when

dealing with cross country races or simply long touristic sail flight.

Low weight, manufacture simplicity and easy on-ground handling, due to

smaller size if compared to traditional aircraft, contribute to performance im-

provement and costs reduction.

Unfortunately there are also some consistent drawbacks in using such a con-

figuration. Tailless plains suffer of trimming and control problems: difficult

stable trimming, performances reduction due to stability requirements and

difficulty in counteract adverse yaw.

It is probably for these and other reasons that in the history of flight there are

1
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a few examples of successful tailless glider, such as: Horten flying wings [2],

the SB-13 Arcus and the SWIFT ultra light foot-launchable sailplane. [3]

Horten brothers have been the pioneers of flying wings design, the Hortens

designed some of the most advanced aircraft of the 1940s, including the world’s

first jet-powered flying wing, the Horten Ho 229. They made a lot of work

and studies about performances improvement of tailless sailplane, in particular

their work regarding this ambit of research culminated with the Ho IV, a high

aspect ration sailplane used in competitions. This aircraft had a lot of advance

features for that period but its performance, in term of LTDR for example,

was not so excellent and was comparable with other traditional sailplanes of

the period. This highlights the difficulties in designing a good flying wing

using at the best its theoretically advantages on traditional aircraft.

More recent studies like the SB-13 Arcus confirm the complexity of the argu-

ment.

The above mentioned intrinsic drawbacks of tailless configuration have nega-

tive rebounds on design process and aggravate the development flow. In fact

variables and parameters are numerous and their influence on aircraft’s final

features is highly non-linear and unintuitive.

In literature are present several articles speaking about aerodynamic shape

optimization, mostly they are focused on wing optimization of traditional air-

crafts, in general they analyze the problem considering already existent aircraft

and using the optimization to increment the performance of the baseline wing

and not to design an optimized one. Indeed they consider small changes with

respect to baseline geometry taking in to account in this way the possibil-

ity to use gradient based optimizer. In particular in [4] the geometry of the

baseline is changed only in the thickness, considering [5] the optimization is

performed modifying the root and tip airfoil geometry, without considering

ailerons deflection, fundamental in “real life” to trim the aircraft.

The study which is closer with the intentions of this thesis work is [6], in

particular it goes further and includes in the optimization also a Stability

Augmentation System. The weakness of this study is the fact that uses a 2D

geometry to estimate the aerodynamic coefficients and it considers only simple

trapezoidal wing.

Considering what was said above, the main goal of this thesis project is to

develop an optimization tool able to manage automatically the flying wings

design issues, optimizing the design variables in order to achieve the desired

features and respect the constraints.
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This tool will be used to design/optimize two configurations having different

features and imposed constraints, in order to validate the new design proce-

dure.

About aerodynamic simulation, a 3D panel method, COMPA, has been used.

This code has been used to simulate the complete aircraft’s aerodynamics in

steady incompressible inviscid flow. It was developed at Politecnico di Milano

by Dr. Giovanni Droandi. COMPA needs a pre-processor that generates

the geometry, whose aerodynamic is simulated. The code used to represent

the geometry has been developed in the ambit of this thesis project, it needs

peculiar features such as versatility and robustness, that require pretty much

effort to be achieved. For this reason its development has taken a big part of

this thesis work.

The third main part, that constitutes the OT, is the optimizer. For practicality

and easiness of use the entire work has been developed in Matlab, so the choice

of the optimizer has been made between algorithms already implemented in

Matlab platform: fmincon and Matlab Genetic Algorithm.

The choice has been made considering different factors, the most important

of them has been the absence of information about solutions space, which

could be constituted of several local minima, that became “dangerous” if not

recognized.

When all the components were “ready” and available, the issue was to put

them all together in the OT and to make it work well in such a way that

it receives as inputs a 3D geometry to be optimized and some constraints to

respect and comes out with the best compromise, which is complied with the

designer requirements.

Outline of the Thesis Work

Chapter 2 : Pre-Processor Development. The chapter presents the the-

oretical principles which are used to develop the pre-processor. [7] It

presents also the features of the pre-processor, in particular the depen-

dency from boundary conditions. The procedure to include the flap in

the wing mesh is analyzed and discussed regarding two different tech-

niques. In the last part of the chapter the operation of the code is

presented.

Chapter 3 : Aerodynamic Solver. A brief description of the aerodynamic

solver is presented focusing the attention only on the features that are
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important for this thesis work, the input and output principles and pro-

cedures and the reference system used.

Chapter 4 : Target Aerodynamic Characteristics. This chapter presents

and discusses the aerodynamic characteristics involved in the optimiza-

tion procedure, in particular a general description of drag composition,

a brief analysis of static longitudinal stability and a more detailed dis-

cussion on flying wing trimming.

Chapter 5 : Optimization Procedure. The chapter describes in detail

how the optimization cycle has been implemented and developed. In par-

ticular the choice of the optimization algorithm is discussed considering

the pros and cons of the two alternative : gradient based algorithm

or genetic algorithm. Variables are presented distinguishing between

real optimization variables and parameters used to fix a certain baseline

geometry. Constraints are discussed considering how they are imple-

mented. In this chapter is also explained the procedure used to find the

correct mesh thickness to obtain accurate results limiting the computa-

tional effort. At the end of the chapter is analyzed the operation of the

optimization code, taking into account the program initialization, how

the objective function is evaluated during an optimization cycle and how

the optimization is stopped using a certain termination criteria.

Chapter 6 : Validation. This chapter discusses how the entire optimiza-

tion tool is validated. The validation is made comparing the numerical

results obtained from OT with theoretical results. In particular, a drag

minimization on a rectangular wing is performed, considering as vari-

ables only the twist angles of some airfoil sections and constrained to

have a certain CL. The resulting span wise Cl distribution is compared

with an elliptical one having the same wing CL. Through an analyzsis

of the results is possible to prove the efficacy of the code.

Chapter 7 : Application Studies. In this chapter two examples of “com-

plete”optimizations are presented. All the variables presented in chapter

5 are considered and all the constraints are active. This chapter ana-

lyzes the optimization procedure from the point of view of the objective

function component trends, during the iterations and looking at the final

geometry compared with the initial one.

Chapter 8 : Conclusions and Future Developments. All the results and

limitations are summarized in this chapter, some future developments are
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prescribed in order to complete and improve the OT developed in this

thesis work.



Chapter 2

Pre-Processor Development

The “mesh generator” used in the optimizing cycle has been entirely developed

in the thesis project. This choice was driven by the peculiar features needed

to make it compatible with an automatic optimizing process, and to ensure

the possibility to represent a lot of types of wing shape, in order to do not

limit the admissible solutions space.

The code must be able to reduce a complex geometry, like the one of a wing, in

a number of parameters (possibly a small number), which are able to uniquely

determine a certain geometry.

In order to achieve good estimation of aerodynamic coefficients, the mesh

maker must be able to distribute the mesh in particular ways. These mesh

patterns guarantee good results with the lowest possible computational effort,

reducing also the simulation time.

A method is presented for generating a parametric surface given two-dimensional

section data. It is an extension of a method for the efficient parametrization

of complex three-dimensional shapes called the PDE method. The method

views surface generation as a boundary-value problem and produces surfaces

as solutions of elliptic partial differential equations.

2.1 Outline of the PDE Method

Unlike conventional systems, the method is based upon a view of surface gen-

eration as a boundary value problem in which each surface patch is defined by

data defined along the character lines which form the patch boundaries. Ad-

jacent surface patches share common boundary conditions and thus continue

to meet exactly throughout any changes to the overall geometry that may oc-

6
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cur during the design process.This is in contrast to conventional conventional

Boundary Representation (BREP) systems which typically use surface patches

generated from polynomial spline functions, and tend to require ‘trimming’ at

the boundaries where adjacent patches meet. Also, far fewer surface patches

are usually required using the PDE method than a spline-based approach.

Past work has concentrated upon solutions to the following equation,

(
∂2

∂u2 + a2 ∂2

∂v2

)2

X = 0 (2.1)

This equation is solved over some finite region Ω of the (u, v) parameter’s

plane, subject to boundary conditions on the solution which usually specify

how X and its normal derivative ∂X/∂n vary along ∂Ω.

The three components of the function X (x (u, v) , y (u, v) , z (u, v))are the Eu-

clidean coordinate functions of points on the surface, given parametrically in

terms of the two parameters (u, v) which define a coordinate system on the

surface. Note that in the simplest cases (3.1) is solved independently for the

x, y and z coordinates.

The boundary conditions on X which we shall refer to as function boundary

conditions, determine the shape of the curves bounding the surface patch in

physical space, or, more specifically, their parametrization in terms of (u, v).

The boundary conditions on ∂X/∂n, which we shall refer to as derivative bound-

ary conditions, basically determine the direction in physical space in which the

surface moves away from a boundary and how ‘fast’ it does so.

The partial differential operator in (3.1) represents a smoothing process in

which the value of the function at any point on the surface is, in a sense, an

average of the surrounding values. In this way a surface is obtained as a smooth

transition between the boundary conditions imposed on the function and its

first derivative. The parameter a controls the relative rates of smoothing

between the (u, v) parameter directions.

2.2 Interpolating Wing Sections

Consider the problem of generating a smooth wing-surface that passes through

2N two-dimensional wing sections which are specified. Suppose for the mo-

ment that each wing section W i (v) is given parametrically as a vector-valued

function of a periodic coordinate v that runs around the wing,
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W i (v) =
(

W i
x (v) , W i

y (v) , W i
z (v)

)
(2.2)

where the sections i = 1, 2N correspond to the ends of the wing, and W i
z is

the specified span-station of the ith section. In what follows below we will

assume that the x coordinate is approximately aligned with the wing chord

and the y coordinate is aligned with the wing thickness. In previous work: the

order of the partial differential equation was kept as low as possible consistent

with the requirements of surface control and continuity at patch boundaries.

Here, for reasons that will become clear below, we will consider solutions of

the equation

(
∂2

∂u2 + a2 ∂2

∂v2

)(N+1)

X = 0 (2.3)

Now consider the solution X(u, v) of Eq. (3.3) over the (u, v) region Ω :
[0, 1] × [0, 2π], subject to periodic boundary conditions in the u direction.

Topologically, the surface is like a closed ‘band’ with the u = 0 and u = 1
isoparametric lines corresponding to the wing-sections W1 (v) and W2N (v),

respectively, which will form the boundary curves for the surface patch. If

we assume for the moment that the boundary conditions for Eq. 2.3 take the

form

X (0, v) = W1 (v) ,
X (1, v) = W2N (v) ,

(2.4)

Xu (0, v) = s0 (v) ,
Xu (1, v) = s1 (v) ,

(2.5)

where W1 (v) and W2N (v) are of the form Eq. 2.2, and the derivative functions

s0 (v) and s1 (v) are specified, then, by using the method of separation of

variables, the solution to Eq. 2.3 may be written in closed-form thus

X(u, v) = A0(u) +
M

∑
n=1
{An(u) cos(nv) + Bn(u)sin(nv)} (2.6)

where, depending on the boundary conditions, M may be infinite. The ‘coef-

ficient’ functions An(u) and Bn(u) are of the form
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A0(u) = a00 + a01u + a02u2 + · · ·+ a0(2N+1)u
2N+1 (2.7)

An(u) = an(2N+2)u
2N+1eanu + an(2N+1)u

2N+1e−anu + an(2N)u
2Neanu

+an(2N−1)u
2Ne−anu + · · ·+ an2eanu + an1e−anu (2.8)

Bn(u) = bn(2N+2)u
2N+1eanu + bn(2N+1)u

2N+1e−anu + bn(2N)u
2Neanu

+bn(2N−1)u
2Ne−anu + · · ·+ bn2eanu + bn1e−anu (2.9)

and an(2N+2), bn(2N+2) etc. are constant vectors. Now, since the wing-sections

are periodic in the variable u , we can express them as Fourier series thus

W i(v) = Ci
0 +

M

∑
n=1

{
Ci

n cos(nv) + Si
nsin(nv)

}
i = 1, . . . , 2N (2.10)

where theCi
n, Si

n are the Fourier coefficients. We will ignore for the moment the

fact that the Fourier sum in 2.10 may be infinite, and consider first the case

where each wing-section is expressible as a finite Fourier series. Now suppose

that the derivative boundary conditions can be expressed in a similar form to

Eq. 2.10, i.e.

sm(v) = cm
0 +

M

∑
n=1
{cm

n cos(nv) + sm
n sin(nv)} m = 0, . . . , 1 (2.11)

We wish to find a PDE surface of the form given by Eq. 2.6, that interpo-

lates the given wing-sections and which also satisfies the derivative boundary

conditions 2.4 and 2.5. Now, the number of Fourier terms in the derivative

boundary conditions Eq. 2.11 and wing sections Eq. 2.10, and the number

of coefficients in the separable solution given in Eqs. 2.8 and 2.9, is such

that associated with each frequency term in Eq. 2.6 (cos(nv) say) there are

2N + 2 Fourier coefficients in Eq. 2.8 to find, and2N + 2 conditions on those

coefficients obtained from the Fourier expansions 2.10 and 2.11 of the speci-

fied wing-sections and boundary conditions. Thus one may form a system of

algebraic equations for each Fourier frequency which is of the form
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Ag = h (2.12)

where g is a vector whose components are the coefficients aij or bij of Eqs. 2.7,

2.8, or 2.9, h is a vector whose components are derived from the corresponding

Fourier coefficient of the specified 2N wing-sections and 2 derivative boundary-

conditions, and A is a (2N + 2)x(2N + 2) matrix whose entries are obtained

from the condition that the surface interpolate the wing-sections at specified

values of u and satisfies the boundary conditions. In forming this system

of equations one must decide how the interpolating wing surface should be

parametrized in the u direction, i.e. decide at what value of u each span-station

W i
z: lies. Obviously, the end sections lie at u = 0, 1, while the intervening

sections lie at intermediate values, of u.

Although rather involved, Eq. 2.12 may be solved using an algebraic manipu-

lator, or else it may be solved numerically. The solution of this set of equations

may be used in conjunction with Eq. 2.6 to yield an analytic expression for a

surface that interpolates the given wing-sections, assuming that they can be

represented by finite Fourier series. All well and good. But, for an arbitrary

selection of wing sections, even assuming that they can be expressed in terms

of functions in closed-form, it is by no means inevitable that they can be ex-

pressed as finite Fourier series. However, the procedure outlined above can be

modified in the following way to cover this more general situation.

Assume that the wing-sections and the derivative boundary conditions can be

written thus,

W i(v) = Ci
0 +

M

∑
n=1

{
Ci

n cos(nv) + Si
nsin(nv)

}
+ Ri

w(v) i = 1, . . . , 2N (2.13)

sm(v) = cm
0 +

M

∑
n=1
{cm

n cos(nv) + sm
n sin(nv)}+ Rm

s (v) m = 0, . . . , 1 (2.14)

i.e. as the sum of a. finite Fourier Series to M terms plus ‘remainder’ functions

Ri
w(v) or Rm

s (v) which contain the higher-order Fourier modes.

The basic idea is to choose a value for M in Eqs. 2.13 and 2.14, approximate the

wing-sections and boundary conditions by a finite Fourier series representation,

ignoring the remainder functions, and use the procedure described above to
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generate a wing-surface X̃(u, v) that interpolates these ‘approximate’ sections

and satisfies the ‘approximate’ boundary conditions. Then define the following

(2N + 2) ‘difference’ functions

dW i(v) = W i(v)− X̃(ui, v) f or i = 1, . . . , 2N (2.15)

dsm(v) = sm(v)− X̃u(m, v) f or m = 0, . . . , 1 (2.16)

Next, to obtain a wing-surface X(u, v) that interpolates is defined the actual

wing-sections, the following function

R(u, v) = r(2N+2)(v)u2N+1exp(ωu) + r(2N+1)(v)u2N+1exp(−ωu) +

+rn(2N)(v)u2Nexp(ωu) + r(2N−1)(v)u2Nexp(−ωu)

+ · · ·+ r2(v)exp(ωu) + rn1(v)exp(ωu) (2.17)

which is required to satisfy the conditions

dW i(v) = R(ui, v) f or i = 1, . . . , 2N (2.18)

dsm(v) = Ru(m, v) f or m = 0, . . . , 1 (2.19)

of which there are sufficient to determine the (2N + 2) functions r1(v), . . . , r(2N+2)(v)

in Eq. 2.17.

Finally X(u, v) is given by

X(u, v) = X̃(u, v) + R(u, v) (2.20)

This procedure can be viewed as a means of generating an approximate so-

lution 2.20 to Eq. 2.3 that exactly satisfies the boundary conditions and

interpolates the specified wing-sections (to within machine accuracy).

The choice of M will obviously affect how good an approximation 2.20 is to

the actual solution of Eq. 2.3. Depending on the variation in the shape of

the wing-sections to be interpolated, the choice of a can have an important

influence on the smoothness of the interpolating surface.
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2.3 Meshing Features and Procedures

2.3.1 Smoothing Parameters and Boundary Conditions

The implementation of the MEG has been done rigorously following the proce-

dure and the formulas explained before.The method is robust and versatile but

is very important to correctly tune the parameters, in order to obtain smooth

shapes without spur fluctuations. It is also important to correctly manage the

boundary conditions which are able to consistently modify the regions near by

the tip and root of the wing.

The derivative boundary conditions are taken to be :

s0(v) = c0
0 + ∑M

n=1
{

c0
n cos(nv) + s0

nsin(nv)
}

s1(v) = c1
0 + ∑M

n=1
{

c1
n cos(nv) + s1

nsin(nv)
} (2.21)

in which :

c0
0 = −sr · C0

0 c0
n = −sr · C0

n s0
n = −sr · S0

n

c1
0 = −st · C2N

0 c1
n = −st · C2N

n s1
n = −st · S2N

n

where the magnitudes of parameters sr and st control the“speed of the surface”

when it departs from boundary curves and their sign determines the direction

of departure.

In fact the wing shape is created interpolating a certain number of airfoils

distributed along the half wingspan, in particular the right half wing. In this

way the result is an half wing in which the boundaries are the root and the

tip airfoil.

Once the space coordinates of the points that constitute the right half wing is

generated, using a simple mirroring operation the full wing shape is created.

Below some Figures will be shown, they illustrate the boundary conditions

influence.

All the images are generated considering surfaces with the same geometrical

parameters but with different boundary conditions.

From the Figures 2.1, 2.2, 2.3 is possible to notice how the parameter st is

more effective in surface modification.

As said in Section 2.2 , the BC are used to ensure the smoothness between

different surface patches. In this thesis work only single patch surfaces has
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Figure 2.1: Boundary conditions influence having sr = 0, st = 0.

Figure 2.2: Boundary conditions influence having sr = 10, st = 0 for the figure on the left
andsr = −10, st = 0 for the figure on the right.

been used, so there is no need to impose particular BD. They were put all to

zero, which means that the surface departs from boundary airfoils (root and

tip) in perpendicular directions and with zero velocity.

Here is used the same wing surface used above for boundaries conditions com-

parisons.

The Figure 2.4 shows how with a lower smoothing parameter a the surface is

plenty of spur fluctuations.

The smoothing parameters (a, ω) were chosen using a trial and error procedure

in order to mitigate spur fluctuations. In general the parameters (a, ω) are

specific for each type of geometry, in theory there is a set of parameters for

every new surface, in practice they remain constant for a family of similar

wing shape without degrade the results.
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Figure 2.3: Boundary conditions influence having sr = 0, st = 2 for the figure on the left
andsr = 0, st = −2 for the figure on the right.

(b)

(a)

Figure 2.4: Smoothing parameters a = 0.01, w = 0.5 for surface (a) a = 0.1, w = 0.5 for
surface (b).

Refer to Table 2.1 for the numeric values of BC and smoothing parameters.

sr st a w
0 0 0.1 0.5

Table 2.1: Settings parameters.

2.3.2 Mesh Distribution

In order to achieve the best simulation results with the minimum number of

grid points it has been necessary to correctly manage the mesh, thickening it

where the surface curvature is high. The mesh has to be thickening also at the

wing tip, in fact this region is where the vorticity generate the induced drag,



15 2.3 Meshing Features and Procedures

which is important to properly assess. Refer to Figure 2.5.

The sections used to interpolate the wing shape are generated using a code

that knowing the four digits of a NACA airfoil give as output a collection of

points coordinates (x, y). This points can be distributed along the profile in

many different ways. In particular using an half-cosine distribution centered

in the leading edge, it is possible to considerably reduce the number of points

to well represent the profile.
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Figure 2.5: NACA 0011 airfoil generated using a cosine distributions of points and cosine
distribution of panels in wingspan direction.

The distribution of the panels 1 in the chord direction is given by the distribu-

tion of the points that constitute the sections to be interpolated. The mapping

between x, z coordinates (real space) and v coordinate is determined simply

by the relation that exist between reference sections coordinates and v values.

For example if the values of v are considered all equidistant and x, z coordi-

nates of the airfoil points are half-cosine distributed considering the curvilinear

abscissa, a constant increment in v correspond to half-cosine increment in real

space.

In wingspan direction it is a bit more complex. In fact the mapping between

y coordinate (real space) and u coordinate is determined by the solution of

PDE. One can think at u like a time coordinate and y like a space coordinate

1the panel is the plain surface that has like vertices four mesh points
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which follows a law of motion that is the solution of the PDE used to generate

the surface. The problem has been solved using an iterative process, given the

desired y distribution, it returns the correct u values.

Some other issues needed to be addressed during the development of the code:

it was necessary to create a routine that check the distance between consecutive

wing sections, if there are two sections whose distance to each other is under

a certain tolerance, the routine deletes one of them. It is necessary because

during aerodynamic simulation, if two points are too close, the solution diverge

and assumes not feasible values. The panels distribution in y direction is

influenced by the presence of the ailerons, it has to be thickening near the

gaps between wing and ailerons, in order to have good simulation results.

2.3.3 Flap Insertion

For sure the main issue related with the MEG has been the necessity to insert

in the wing some movable surfaces. They have to be separated from the rest

of the wing in order to simulate the losses generated by the gaps between the

wing and the flaps, they have to be rotated without intersect the fixed surface

and without get too close to it. The panels distribution in chord and wingspan

direction has to be adapted to consider the presence of the flaps.

Initially a big work has been made trying to embed the flaps in the wing

without any gap between the two surfaces. It was made to simplify the flaps

insertion without affect too much the simulation realism. Refer to Figure 2.6.

Figure 2.6: Example of flaps insertion without gap, figure on the left shows a flap completely
attached to the wing, instead figure on the right shows a flap with lateral gaps. These are
two solutions that have been tried.

Difficulties were encountered because trailing edge modifications where the
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flaps have to be placed, lead to non desired changes in other parts of the

surface. This happens due to the intrinsic features of PDE method, which is

a sort of interpolation, for this reason a small change in a confined part can

produce modifications in all the domain.

Looking at image (c) of Figure 2.7 , the regions where the surface is irregular,

show the differences between the two wings. It is possible to notice that big

differences are present near by the trailing edge due to the ailerons deflection,

but also near by the leading edge the surfaces are changed. This is caused by

interpolation issues mentioned above.

In order to avoid aforementioned interpolation problems, the wing is in prin-

ciple generated without any aileron, then a trimming procedure separates the

parts adding the leading edge at the flap. It has a cylindrical shape trimmed

in order to generate a smooth connection between upper and lower flap sur-

face. At this point the panels distribution along the chord of the flap is re-

interpolated in order to achieve the best fit for the new configuration. Now is

possible to rotate the flap, the rotation axis considered for each movable part

is the line that connect the centers of flap boundary sections leading edges.

Refer to Figure 2.8.

A very important aspect of the code that generates the aileron, is the capability

of re-distribute the panels dimensions independently. This is made in order

to reduce spurius oscillations of the aerodynamic solution near by the regions

where the flap is closest to the fixed wing.

In Figure 2.9 is easy to notice how the code has been able to redistribute the

mesh panels in order to adjust the mesh at different aileron configurations.

2.3.4 Code Operation

As seen in Chapter 2, briefly speaking the code works interpolating a certain

number of airfoils in order to obtain a loop surface having like control sec-

tions the airfoils interpolated. In fact the surface passes perfectly through the

control sections trying to obtain a smooth shape between two consecutive CS.

The code operation is simple and it starts passing to it the coordinate of the

CS. The sections can be oriented in the space as you want, translated and

rotated along all the three coordinate axes, the sequence used by the code to

interpolate the sections must be provided by the operator. The sequence is

given entering the x, y, z coordinates of each airfoil in three different matrices,
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Figure 2.7: (a) Wing with zero flap angle δ = 0° (b) Wing with flap deflected δ = 20°(c)
Comparison between the wing with δ = 0° and δ = 20°.
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Figure 2.8: Examples of wing with a single flap, the image on the right shows the flap alone.

Figure 2.9: Examples of different aileron configurations.

each airfoil coordinates constitute a row of the matrix. In this way the code

starts the interpolation from the first row and continuing down till the last.

The procedure described above is used when you need to generate a wing with

any kind of geometry, for what regards this thesis work the wings used in the

simulations are trapezoidal wings. They are composed only by one patch or

assembled by a certain number of trapezoidal surfaces. This means that the

control sections needed for one trapezoidal surface are only two.

Anyway the code is made for reading as input a matrix with all the sections

together, it does not matter if the wing is composed by one or more patches.

For what concern the ailerons, they are inserted using the dimension and the

position of each one supplied to the code by vectors. There is a vector that

contain the y coordinates of starting points of each flap (s), another one that

contain the length of the flap (l) in y direction and the last one that contain

the deflection angles δ. Refer to Figure 2.10.

The chord dimension of the flaps is supplied in another vector considering a

certain percentage of the total wing chord. So if the chord of the wing vary
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Figure 2.10: Scheme of flap dimensions.

along the wingspan, the chord of the flaps vary proportionally to it.

Other two important dimensions can be set, They are the gap between ailerons

leading edge and the wing fixed part (gap2) and the gaps between the flap

and the fixed wing in wingspan direction (gap1). Refer to Figure 2.11.

Figure 2.11: Scheme of mutual position between flap and fixed wing part.

The user must also choose the number of mesh panels in chord direction for

fixed wing and ailerons separately, and the number of mesh panels in wingspan

direction no matter of the number and dimension of the ailerons. The code

distributes the panels in the best way to fit with the wing configuration.



Chapter 3

Aerodynamic Solver

3.1 Introduction

COMPA is a boundary elements (panels) numeric code used to simulate the

aerodynamic of wings and other bodies in steady incompressible flow ([8], [9],

[10]). The code admit the possibility to consider a certain number of BODIES

each one composed by BLOCKS.

The global aerodynamic coefficients are computed summing the effects of the

BLOCKS that compose a BODY.

3.2 Numerical Scheme

3.2.1 Virtual Singularity for Lift BODIES

About lift BODIES (wings) are used vortices and sources together, vorticies

are distributed on external surface instead sources are placed on “middle sur-

face” (is the surface placed between upper and lower part of the wing). The

vortices are placed on the panels to generate a ring along all the perimeter

(a Vortex Lattice that enclose all the body’s external surface). The influ-

ence formulas used are that proposed by Muck but with appropriate vectors

operations instead of using trigonometric functions.

The trailing edge panels pair vorticies are not closed in a ring but the trailing

edge part of the panel perimeter is without vorticies (like a stirrup) in order

to impose the Kutta condition. The semi-infinit longitudinal vorticies that

complete the stirrup are placed along asymptotic velocity direction.

21
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3.3 Code Organization

The code read a “mesh file” that contain the geometry of the bodies (file-

name.msh) and starts to compute the necessary geometric parameters (areas,

panels perpendicular directions, placing points) for each panel. The influence

coefficients are calculated end organized in a matrix formed by three square

sub-matrices, each one of that contain the influence coefficients along one of

the coordinates directions.

The code need the angle of attack and the yaw angle in order to add at the

solution the effect of the wake. The system matrix is obtained multiplying

the influence matrices and the panels perpendicular vectors summing, at this

point, the effect of the wake.

When the system is solved, each sub-matrix gives the velocities in the coor-

dinate directions. Composing the three velocities is possible to recover the

velocity of the flow over the body and at the same time also the pressures and

the forces.

The linear system is solved using the conjugated gradients technique.

3.4 Input and Output

The code reads the geometry from the mesh file, produce the influence matrices

and then read from filename.inp the attitude and the options that have to be

used in the computation. The outputs are different files, the most relevant

for this thesis work are the filename.txt that contains the force and moment

coefficients and the file that contains the distribution of pressure and velocity

on each body that compose the tested geometry.

As said before using the file filename.inp is possible to impose some options,

one of them is the “symmetry” that allows the user, if the simulated geometry

have a plane of symmetry, to pass at the code only half geometry. Reducing

considerably the computational effort.

From COMPA output file (filename.txt) the aerodynamic coefficients are ex-

tracts using the MATLAB “importdata function”.

3.5 Reference System

COMPA, in order to interpret the mesh points and to calculate the aerody-

namic coefficients, uses a its own reference system. The moment coefficients
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are calculated in the origin of the system.

Figure 3.1: Reference system used by COMPA.

COMPA used a reference system centered in the leading edge of the wing, with

the x axis that points to trailing edge, y axis that points in wingspan direction

with the positive part that lays on right wing and the z axis, obtained using

the right hand rule, with the positive direction that points towards the upper

part of the wing, refer Figure 3.2.



Chapter 4

Target Aerodynamic

Characteristics

4.1 Drag

In this section an overview of the aerodynamic drag will be presented . The

performance estimation, which is of major importance for the optimization,

will largely depend on the correct calculation of the drag. As an introduction,

some attention will be spend on how all drag components are defined in further

discussions. As there are a lot of different ways in which drag is subdivided,

it is important to create an insight on how they are used in this document.

4.1.1 Overview

In an aircraft drag polar it is customary to distinguish two different types

of drag, a lift independent part also referred to as zero lift drag and a lift

dependent part. However it is mostly unclear what they are composed of and

how they are influenced. Lets start with a breakdown of the overall drag:

D = CDqS = CDpqS + CDiqS,

⇓

CD =
D
qS

= CDp + CDi

pC2
L + k

C2
L

πA

CD0 + k
C2

L
πA

(4.1)

24
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The profile drag is the total drag of the wing minus the induced drag. This

drag can be subdivided into airfoil friction drag and pressure drag. Friction

drag is the component of the forces tangential to the airfoil surface, acting

in the direction of the flow. This component only exist if the aerodynamic

calculations on the airfoil incorporate viscous effects. The pressure drag is the

component of the forces normal to the surface, in the direction of the flow. A

part of this drag is constant and will be added to CD0 , while the other part

varies with the lift and is incorporated in the second term of Eq. 4.22.

This second term is often referred to as “induced drag”, it would be better

to refer to it as the lift dependent drag. The Oswald factor, e, combines the

induced drag factor, k, and the profile drag factor, p:

e =
1

k + pπA
(4.2)

For what concern the OT implemented in this thesis work, the drag considered

is the sum of induced plus pressure profile drag. It means that during the

optimization the objective function take care about of the drag due to lift

distribution over the span wise direction CDi and also the drag due to the

shape of the wing and its angle of attack CD0 (Ex. cross section area)

4.2 Static Longitudinal Stability

The way of treating stability for a flying wing is no different from large air-

craft. The focus of this section will be on the pitch stability, as this is critical

for tailless aircraft configuration. Sweep, which is required for trimming the

aircraft as will be explained later in this section, will also increase the direc-

tional stability. Dynamic stability is hard to determine as the values for the

stability derivatives are badly estimated using 3D panel method. A better

way to approach this problem is to optimize the design and determine these

values in a wind tunnel or with advanced CFD methods and then make small

changes to the design to ensure dynamic stability

The static longitudinal stability is determined by the stability margin. This

stability margin is defined by the difference between the aircraft neutral point

and the location of the center of gravity. For a tailless aircraft this simplifies to

the location of the wing aerodynamic center with respect to the aircraft center

of gravity. Eq. 4.24 provides a mathematical description of this stability

margin.
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σ =
(Xn − Xcg)

cre f
= ξn − ξcg (4.3)

Xcg is the center of gravity position along x axis. Xn is the position of wing

neutral point and cre f is the mean aerodynamic chord. ξn, ξcg are the chord

normalized center of gravity and neutral point positions.

In this equation the location of the center of gravity, Xcg , is determined by

the location of the components inside the aircraft. When the stability margin

is positive (σ > 0), the aircraft will be stable. The aircraft is neutrally stable

when the location of the center of gravity is the same as the neutral point,

which explains its name. A negative value results in an unstable aircraft. The

reference chord length is taken equal to the wing mean aerodynamic chord,

and can be calculated with,

cmac =
2

Sre f

ˆ b/2

0
c2(y)dy (4.4)

, in which c(y) represents the chord length at spanwise location y.

The only remaining value to be determined in Eq. 4.24 is the location of the

neutral point. The neutral point stick fixed, is in essence the same as the

aerodynamic center of a complete aircraft. The definition of this neutral point

is the following:

The longitudinal location, when taken as the reference point1 through which

the aerodynamic forces act, in which the pitching moment of the complete

aircraft is independent of the angle of attack.

For a tailless aircraft configuration the determination of the neutral point

location is the same problem as determining the aerodynamic center of the

wing (when the fuselage influence is assumed to be small).

Assuming that the aerodynamic center is located in the plane of the wing,

then one can write the pitching moment around the wing origin (leading edge

of the wing root airfoil) as:

CMorigin = CMacw − (CL · cos(α) + CD · sin(α)) · xac

cre f
(4.5)

1Remember that the real point through which the aerodynamic forces act, is the point
were there is no aerodynamic moment. This point is known as the center of pressure which
changes location with the angle of attack
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Rewriting Eq. 4.26 by ignoring the drag effects and assuming small angles of

attack gives:

CMorigin = CMacw − CL ·
xac

cre f
(4.6)

Differentiating this equation with respect to the angle of attack results in,

CMorigin,α = 0− CL,α ·
xac

cre f
(4.7)

, which can then be written as

ξn = −
CMorigin,α

CL,α
(4.8)

, in which cre f is equal to cmac.

4.3 Trimming a Tailless Aircraft

First one must understand the principles behind trimming a tailless aircraft.

In a normal configuration the decalage angle of the horizontal tail is used to

balance the moments, however a tailless aircraft is, by definition, lacking a

horizontal tail surface. To trim this kind of aircraft one must make a distinc-

tion between swept and unswept wings. A zero sweep tailless aircraft, further

referred to as flying plank, can not use the lift distribution, and thus not the

twist, to change the moment coefficient around the aerodynamic center. It

thus requires that the moment coefficient of airfoils is correctly chosen. To

obtain a stable aircraft (σ > 0, center of gravity in front of the wing aero-

dynamic center) it is necessary to use airfoils with a slightly positive moment

coefficient, around its aerodynamic center. Positive moment coefficient airfoils

are in general less efficient than the others, so in order to achieve the best

performance swept wing is needed.

CMW + CMP + ∑
(

dCMW

dδ
+

dCMP

dδ

)
i
· δi − CL · σ = 0 (4.9)

If a flying wing aircraft is swept then the deflection of the elevator changes

in general both the profile moment MP and the wash-out2 induced pitching

2Negative twist angle
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Figure 4.1: Forces and pitching moments acting on a tailless aircraft.

moment MW , refer to Figure 4.1 and Eq. 4.30. Depending on the flap ar-

rangement on the wing it may be possible that both moments have the same

pressure effect or, that they are weakening each other. There are even config-

urations possible where there is no changes of balance with elevator deflection

at all.

Figure 4.2: The possible arrangements of elevators on a sweptback flying wing. “+” means
a flap deflection down, “-” a deflection up.

Fundamentally, there are three possible arrangements of elevators.

a) Outboard Elevators

Usually, on sweptback flying wings the designers prefer to put the elevators

as far out as possible, refer to Figure 4.2 a) Thus they get the largest avail-

able distance to the cg, so an upward deflection increase the wash-out. This

produces an additional positive moment MW . Also, the profile moment MP
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is increased in the area of the elevators. Both moments have, thus, the same

pressure sign and reinforce each other.

The wash-out induced pitching moment MW increases approximately linearly

with the sweep angles. This means, that for wings with a large sweep angle

only small deflections of the elevator are needed. Hence the (still unavoidable)

constriction of the flight polar becomes less and less severe with increasing

sweep angle when comparing it with the flying plank.

The effectivity of the elevator, however, is not influenced much by an increase

of the sweep angle. this stems from the fact that there are two different

influences which largely cancel each other out : on the one hand for large

sweep angle the elevator has also a large lever-arm and therefore a high turning

moment. On the other hand, however, a wing with high sweep also has a large

moment of inertia and therefore turns more slowly. Hence the pilot has more

or less the same elevator control with a flying plank as with a highly swept

flying wing.

b) Inboard Elevators

On a sweptback wing with high aspect ratio the elevators can also be arranged

in the wing center, ref to Figure 4.2 b) By deflecting them downward the wash-

out moment MW of the wing is increased. The augmentation is proportional

to the sweep angle. However, the profile moment MP is diminished by that

deflection. This is opposite to case a). Hence, the two pitching moments

partially cancel each other out.

It depends upon the values of the sweep angle and the aspect ratio which one

of these two moments outweights the other. If both the sweepback and the

aspect ratio are very large then a down movement of the elevators rotates the

aircraft nose up. This is corresponding to a canard-type airplane. In that case

the sum of MP + MW is positive (tail-heavy). If, in contrast, the sweepback

and/or the aspect ratio is small then that sum can become negative. Then a

downward elevator movement rotates the nose down.

c) Combination System

In Figure 4.2 c) the combination of the two system a) and b) is shown. It unites

their advantages and avoids their disadvantages. It can be used if sweep angle

and the aspect ratio are not too small.

In this system two control surfaces are used on either side. Each of them can

stretch over one third of the half-span. The wing sweep should be so large that
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the inner elevator “down” produces a tail-heavy moment. The control stick is

then connected with the elevators in such a way that at “pull-up” the outer

control surface rotates upward and the inner one down.

A primary advantage of this arrangement is that the wash-out (due to the

flap deflections) is well-balanced over the wing. Furthermore the deflection

angles needed are smaller than in case a) or b). Hence the angular differences

between individual control surfaces are minimal.

Furthermore, this system is also quite favorable with respect to the influence

on the laminar bucket : in the central wing area highest Cl values occur.

There, at higher angles of attack the laminar bucket is shifted toward greater

Cl values which is advantageous. In the middle part of each half-wing the

profile is not altered. Hence, no deterioration occurs. Only in the outer parts

of the wing is the laminar bucket shifted in the “wrong” direction. Because of

the smaller deflection angles needed the situation is by no means as critical as

with the other two variants a) and b).

The only disadvantage of this version - which really is very serious - is the

increased construction requirement. Instead of only two control surfaces for

a single control aircraft there are now four such surfaces needed. Therefore,

this combination system is rarely used. In those cases where the augmented

building requirement can be tolerated these additional inner surfaces are better

utilized as (pitch moment free) landing flaps.
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Optimization Procedure

5.1 Optimization Algorithm

The objective function and some of the constraints applied to the optimization

are non-linear and thus require a nonlinear optimization algorithm. Several

algorithms are available to tackle these problems. However for this research the

two algorithms of interest are the sequential quadratic programming algorithm,

and the genetic algorithm. They are state of the art algorithms when dealing

with complex optimization problems.

5.1.1 Algorithm Selection

The selection is based on their capabilities and limitations in handling the

objective function and its constraints. An overview of both algorithms is

presented to create a base for the selection process.

Sequential Quadratic Programming Algorithm

� Can get stuck in local minima;

� Able to handle strong nonlinear objective functions;

� Efficient use of objective function evaluations;

� Can handle all types of constraints (nonlinear, equality, inequality, bounds).

Genetic Algorithm

� Unlikely to get stuck in local minima, when the settings for the algorithm

are correct;

31
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� Able to handle strong nonlinear objective functions;

� Inefficient use of objective function evaluations;

� Can handle all types of constraints (nonlinear, equality, inequality, bounds).

From this overview it is clear that the differences are in the efficiency of the

algorithm and the capability to handle local minima.

For a sequential quadratic program, the necessary and sufficient condition for

a nonlinear minimization problem, is that the objective function and the con-

straints are convex. Determining the convexity of the objective function is

impossible, as the objective function for performance optimizations, is depen-

dent on many variables and the calculation of the aerodynamic forces is based

on a numerical approach. The linear constraints are always convex but the

nonlinear constraints are also dependent on the aerodynamic calculations im-

posing the same problem as for the objective function. The conclusion of this

is that the use of sequential quadratic programming is not guaranteed to find

a global minimum. So the genetic algorithm is used to find a global optimum.

5.2 Variables and Constraints

One of the first steps in setting up an optimization tool is to determine the

variables. For the problem at hand two sets of variables are needed, geometric

variables which define the wing geometry and variables that define the flow

around the aircraft, like there are the velocity and the altitude. In this work

the flow variables are all synthesized in the lift coefficient CLthat contain the

indication of the altitude in the air density ρ and the flow velocity V∞. After

the definition of the variables it is important to recognize and define the linear

and non-linear constraints.

5.2.1 Variables and Parameters

As already mentioned, there are two sets of parameters. The first set, the ge-

ometric parameters one, is used to unambiguously define the wing geometry.

The assumption is made that the wing is symmetric with respect to the air-

craft longitudinal plane, and the parameters thus define one side of the wing

while the other side is mirrored. For simplicity in this thesis work the wings

used for the simulations are constituted by a certain number of trapezoidal

surfaces each one with its own geometric parameters, obviously the root and
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tip sections of each surface have to be consistent with the dimensions of the

nearby surfaces. The parameters to define a trapezoidal wing are:

� Section span, b;

� Quarter chord sweep, Λ;

� Taper ratio, λ;

� twist angle, γ;

� Surface , S.

Up until this point one parameter has not been discussed, namely the airfoil.

At each wing section an airfoil has to be defined, however defining multiple

airfoil options for each section causes discontinues jumps in the objective do-

main. These discontinues jumps in the domain will cause problems for the

optimizer.

The only flow parameter, the lift coefficient, requires no further explanation,

this is a single value defining the flight conditions. The geometric parameters

and variables can be seen in Figure 5.1, 5.2 in which an example is presented of

a wing with three sections (two surfaces). Most of the variables, to define the

geometry for this example, will be vectors with two elements. All geometric

variables require an upper and a lower bound and an initial value to start the

optimization. The vectors of the bounds for the sweep and taper must have

the same length as for the variables themselves such that different bounds

can be applied to them for every section. The sum of all section spans will

then be limited by these bounds. This is to enable the user to specify a total

structural wing span. The “structural wing span” is intended to be the length

of an hypothetical spar of the wing and not the distance between the root and

the tip sections.

The initial values of the variables need to be provided. It is obvious that

these initial values are contained within the specified bounds and that they

preferably also meet the non-linear constraints. A good initial guess is not

necessary but will most likely shorten the time it takes to find the optimum.

The dihedral is not considered as a variable, as it mainly influences the lateral

stability and not so much the range performance. This was the reason to only

consider wings without dihedral. The airfoils have to be defined at all sec-

tions. The variables defined this far have been continuous variables, meaning

that they can have any value within the constraints. The airfoils, however, are
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Figure 5.1: Configuration parameters.

implemented as discrete variables, which means that different options must be

specified which all have to be evaluated separately. Having a lot of different

airfoil combinations will increase the calculation time dramatically. The user

has to provide all airfoil combinations that he/she wants to evaluate. Every

airfoil combination then requires a separate optimization of the continuous

variables. The best airfoil combination is selected at the end of all optimiza-

tions. This however is probably not the fastest way of optimizing and thus

requires further investigation.

The panel method COMPA has been then submitted to an optimization al-

gorithm that would be used to established the best wing shape for long range

flight. The variables for the optimization would consist out of 3 geometric

variables for each surface and 1 flow variable.

The 3 geometric variables are:

� the twist, γ;

� quarter chord sweep angle, Λ;

� the taper ratio,λ.

There are also “trimming variables” that consists in :

� αi ith flight condition angle of attack;

� δ
j
i jthflap deflection angle of ith flight condition.

Apart from these variables several constant parameters are required. The

most important ones are the total surface of the wing S, the wing span b
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Figure 5.2: Configuration design variables.

and the stability margin m. The drag coefficient is taken as the objective for

the optimizations presented in this thesis. The domain of the optimization

variables was limited by linear and non-linear constraints. These constraints

served the purpose to limit the search domain such that a valid design could

be obtained.

5.2.2 Constraints

To limit the search field of the optimizer and to ensure a feasible design it

is important to apply different kinds of constraints. A large distinction must

be made between linear and non-linear constraints. In the wing optimization

these two types of constraints will be used. The only linear constraints are in-

equality constraints. Is defined also a lower and upper bound for the variables.

This type of constraints and the boundaries are embedded in the GA tool. The

non-linear constraints serve the main purpose of providing a feasible design

and ensuring the quality of the aerodynamic calculation. The non-linear con-

straints are enforced by appending penalty functions to the performance terms

of the objective function, in order to reduce the computational effort needed

when using the non-linear constraints GA’s option.

All of the penalty functions implemented have the following form :

PFi = Kp (di − do)
2
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Where PFi is the penalty function, do is the constrained value of the ith con-

straint, di is the actual value of the ith constraint, and Kpis the penalty weight-

ing. This type of PF are chosen because are very simple and effective. Using

Kp is possible to tune the PF adapting it to different type of constraints.

Penalty functions are used to enforce three types of constraints:

1. Static stability grater than a specified static margin σ ≥ m;

2. Trim at specified flight conditions, MCG = 0;

3. Specified flight conditions, CL = CL.

5.3 Optimization Problem Formulation

All of aerodynamic shape optimization problems presented in this Thesis work,

can be simplified to fall under the following model problem.

minimize CD + PFi

with respect to these constraints γi, λi, Λi, δ
j
i , αi

subject to these constraints CL = 0.2− 1.0
γ0 = 0°
S = const
b = const
m = 0.05 · cmac

MCG = 0

and to these boundaries γi,L ≤ γi ≤ γi,U

λi,L ≤ λi ≤ λi,U

Λi,L ≤ Λi ≤ Λi,U

δ
j
i,L ≤ δ

j
i ≤ δ

j
i,U

αL ≤ α ≤ αU

This model problem is then modified for each optimization, varying the number

of variables and the values of the boundaries.
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5.4 Calculation of Characteristics Points Positions

5.4.1 Calculation of Center of Gravity Position

The location of the center of gravity, Xcg, is determined using a simple model

which assume a constant weight per unit surface area for the lifting surfaces

and fixed weight for the payload.

5.4.2 Calculation of Neutral Point Position

As seen in Section 4.2 the calculation of Neutral point position involve the

computation of two derivatives, they are generated using only two function

evaluations for each derivative.

∂CMn(α)

∂α
=

CMn(α + ∆α)− CMn(α)

∆α

∂CMcg(α)

∂α
=

CMcg(α + ∆α)− CMcg(α)

∆α

This is possible because COMPA produces the aerodynamic coefficients using

potential flow and so the dependency from angle of attack is linear. This imply

that the moment coefficients derivatives are constant for the rage of angle of

attack considered.

5.5 Mesh Convergence Study

Producing a “good mesh” is important to obtain good results. This, however,

requires a lot of time and experience. Doing this automatically is rather dif-

ficult and does not ensure good meshes. The advantage of the mesh used by

COMPA, is the fact that it is a surface mesh, meaning that only the surface

of the wing needs to be meshed.

As said in the Chapter 2 the mesh generator can change the number of panels

in chord and span direction in an easily.

This feature of MEG is used to perform a mesh convergence study to determine

the number of panels in chord and span directions needed to obtain stable and

precise results from the aerodynamic solver.

The convergence study is performed consider that what is important for the

optimization is the drag coefficient, so the MCS has the aim of stabilize the

CD values during mesh refining.
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This is performed implementing a cycle where, the mesh density is changed

for every iteration and, using the angle of attack α as variable, the CL is

held constant, performing in this way a CD which is dependent only by mesh

thikness and not by CL variation.

This consequently ensure that not only the CD is well estimated but also CL ,

due to the fact that exist a mathematical relation between the two coefficients.

Figure 5.3: Flow chart of the mesh convergence study procedure.

It has been carried out a convergence study for each baseline geometry used

in the simulations. This is because every geometry has its particular needs for

what concern mesh density.

The MCS results are presented in Sections 6.4, 7.1.3, 7.2.3, 7.3.3 for what

concern section 6.4 a complete description of the results is presented using

graphs and numbers. In Section 7.2.3, 7.3.3, only a table with five values is

reported.

The values reported in the table 7.3 7.6 are obtained from a sampling of the

surface that represent the trend of aerodynamic coefficients changing Nchord

and Nwingspan . The samplings are made following the steepest descent direc-

tion.
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5.6 Program Set-Up

In this section are reported some technical aspects concerning OT and in par-

ticular are discussed the termination criteria which are fundamentals in order

to catch the optimal solution without wasting time in usefulness iterations.

The working flow chart in Figure 5.4 shows the links between the main parts of

the OT, it looks like very simple and “linear”, but what the flow chart doesn’t

show is the complicated and many times unintuitive tuning of the parameters

which is behind each OT part.

Figure 5.4: Flow chart of the working procedure.

5.6.1 Program Initialization

The program initialization serves the purpose to provide the information needed

by the program to start the optimization. Several inputs are required to define

some constant design values and to define the boundaries and initial values

of the optimization variables. An overview of these parameters can be found

below.

Fixed Parameters

The fixed parameters are used to define some specific wing details, that are

constant during the optimization.
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� General parameters

– Lift coefficient;

– Stability margin [%];

– Numbers of mesh panels in chord and span direction.

� Wing geometric parameters

– Total Surface [m2];

– Total structural wing span [m];

– NACA airfoil for each control section [NACA four digits];

– Flaps distribution along wing-span;

– Flaps chord [% of wing chord];

– Variable boundaries.

What is very important to set with care, are the boundaries of the trimming

variables
(

α1, α2, δ
j
1, δ

j
2

)
, in fact the aerodynamic solver used COMPA is linear

inviscid, so do not consider flow separation. This imply that if the ailerons

deflection overtake a certain value, COMPA is not able to catch the correct

phenomena and so comes out with inaccurate aerodynamic coefficients. This

problem occur also with angle of attack, if it is too close to wing stall region,

the non-linearities degrade the quality of results.

To have an idea of the boundaries, is possible to use the (CL, α) diagrams

concerning the NACA airfoils used. From these graphs the boundaries are

extract considering the region where the airfoil features are linear. Refer to

Figure 5.5 for an example.

5.6.2 Evaluating the Objective Function

Once the optimization is initialized, the iterative loop of looking for the best

wing can be entered. The first step in this loop is to build up the first gener-

ation that respect the imposed linear constraints. In fact, using as optimizer

a GA, it needs a certain number of individuals in order to start optimization

loop. Then at each individual of first generation is applied a certain score,

this scores are calculated evaluating for each individuals the objective function. It

comprehends the real index of merit that is the Drag coefficient CD and the penalty

functions that ensure the constraints respect.

Consider the facts that : optimization is single objective, it has to be per-

formed considering trimmed horizontal leveled flight and which the drag is
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Figure 5.5: Angle of attack boundary.

evaluated at two flight conditions corresponding to high speed glide CL = 0.2
and low speed thermaling flight condition CL = 1.

Taking into account what said above, the objective function is composed eval-

uating each individuals at the two flight conditions,the drag is calculated con-

sider trimmed flight together with the penalty functions effects, refer to Figure

5.6. The trimming is ensured consider as variables the angles of attack αi and

the flaps deflection angles δi
j for the two flight conditions.

When the objective function is evaluated, as seen above, for each individual of

first generation, a vector of scores is available. Using this scores the GA choose

the best one and starts to build up the new generation. This procedure continues

until termination criteria are not involved.

5.6.3 Checking Termination Criteria

Once the optimization is running, it must know when it is close enough to the

optimum to stop. This is done by the termination criteria. There are two types

of termination criteria, the once that limit the number of iterations or function

evaluations and the ones that put constraints on the variation of certain values.

The limitations on the number of iterations and function evaluations are set

such that they are almost never the termination criteria. This is because they

can stop the optimization before the actual optimum is found. However they

become active in case the optimization is taking to long or a optimum is hard

to find. The other criteria take into account the variation of the objective

function, the variation of the variables and the tolerance on the non-linear

constraint violation. Ones these criteria are met the optimization will break

out of the iterative loop and assume that the obtained result is the optimum.
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Figure 5.6: Flow chart of the objective function evaluation .
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Validation

6.1 Introduction

An important aspect in the optimization tool development is for sure the val-

idation. A way to validate a numerical procedure is to choose a minimization

problem that has theoretical solution and compare theoretical results with

numerical ones. From the comparison, it is possible to evaluate if the OT

is capable of reproducing theoretical results and so judge if the optimization

problem is well-set and if all the parts which compose the OT work correctly.

It is also possible to get sensibility informations. The validation could also

be a way to understand the optimization procedure weaknesses and manage

them in order to improve the quality of the results.

6.2 Problem Definition

In order to validate the optimization cycle is possible to take as theoretical

result the fact that to minimize the induced drag of a wing, the optimal span

wise Cl distribution is elliptic.

This fact is true, consider total produced lift and wingspan fixed during the

optimization procedure.

The ways to manage the Cl distribution are mostly two : modify the chord

of wing sections in different span positions or change the geometric twist of

the sections, whereas aerodynamic twist changes lift by using different airfoil

sections along the span. The best way to approximate an elliptic distribution

using the methods explained above, would be to discretize the wing in an

infinite number of sections. This is obviously impossible, so the number of

43
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sections used in the simulation is 5 for every half wing. This number has been

chosen in order to achieve a good compromise between nice results in terms

of discretization and computational effort.

The problem of keep constant the total lift produced, could be solved consider

a wing with fixed surface and imposing as optimization constraint a certain

CL. In order to have a wing with fixed surface the “geometric twist method”

has been used. The “geometric twist method” is referred to the way with the

Cl distribution is modified.

In this way the constraints are observed and the optimizer can work with a well

posed problem using as optimization variables the twist angles of the sections.

Summarizing, the goal of this optimization case is to perform lift-constrained

drag minimization of a rectangular wing using OT implemented in this thesis

work.

6.3 Baseline Geometry

Rectangular wing without flaps and with symmetric airfoils NACA 0011, refer

to Figure 6.1.

AR = b2

S = 8

About the geometry a very important aspect is the mesh distribution. In

fact the choice of the proper number of elements along wingspan and chord

direction is the key to obtain good and stable results.

The control sections used in the optimization are equally spaced along the

wingspan.

6.4 Mesh Convergence Results

The upper image in Figure 6.2 quickly put out the region where CD became

less sensitive to mesh variation. The lower image is the contour representation

of the upper one, the arrows visible on the contour, represents the gradient

of the surface. Where the gradient is practically null, it is possible to assume

that the aerodynamic solution is not affected by mesh distribution. On z
axis is put the percentage error calculated considering as reference value the

coefficient computed with the maximum number of mesh elements. In fact in

general more dense is the mesh more accurate are the aerodynamic coefficients

computed with it.
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Figure 6.1: Baseline geometry.

As it is possible to see from the images of Figure 6.2 there is a region where

the variation of aerodynamic coefficients due to variation of panel distribution

is minimum, the number of panels in that region is the correct choice to have

the best results with the minimum computational effort.

Point N. Mesh Size Nchord Nwingspan CD CL α[°]

M1 1500 100 15 0.0042 0.25 3.22

M2 6500 100 65 0.0044 0.25 2.99

M3 300 20 15 0.0056 0.25 3.21

M4 1300 20 65 0.0057 0.25 3.03

M5 2700 90 30 0.0043 0.25 3.12

Table 6.1: Mesh convergence study results.

In the table are reported some significant points of the domain that show the

trend of coefficients varying the mesh thickness.
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Figure 6.2: Graphics representation of mesh convergence study.

The number of panels and the mesh size are referred to a semi-wing.

Below are reported the numbers of panels in chord and span direction used in

this simulation. They correspond to point M5

Nchord = 90

Nwingspan = 30

From the data reported in Table 6.1 and also in Figure 6.2 is clear how the

CD variation is bigger in Nchord direction. In fact using less than half panels
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respect to point M2 but having almost the same Nchord the two CD are very

close to each other.

6.5 Optimization Problem Formulation

The aerodynamic shape optimization seeks to minimize the drag coefficient by

varying the shape design variables subject to lift constraints CL = 0.2, 1.0.

The shape design variables are the twist angles of 5 control sections equi-spaced

between root and tip including tip section and the angle of attack.

Initial population is chosen randomly by genetic algorithm procedure with an

imposed number of individuals of 60.

The complete optimization problem is described in Table 6.2.

Function/variable Description Quantity

minimize CD + PFi Drag coefficient + Penalty function

with respect to α Angle of attack 1

γi Twist angles 5

Total design variables 5

subject to these constraints C1
L = 0.2 Lift coefficient 1stsimulation 1

C2
L = 1 Lift coefficient 2ndsimulation 1

γ0 = 0° Root section’s twist angle 1

S = const Surface 1

b = const Structural wingspan 1

Total constraints 4

and with these boundaries −7 ≤ γ1,2,3,4 ≤ 0 Twist angles /

0 ≤ α ≤ 18 Angle of attack /

with this starting point γi
1, γi

2, γi
3, γi

4,γ
i
5 Twist angle initial population 60×5

αi Angle of attack initial population 60

γi
1, γi

2, γi
3, γi

4, γi
5 + αi Individual

Total initial individuals 60

Table 6.2: Schematic descripion of the optimization problem.

The constraints on CL are imposed using a penalty function. In particular the

P.F. used have the formula and shape shown below.
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PFi = Kp (di − do)
2

PF1 PF2

Kp 100000 100000

do 0.2 1

C
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Figure 6.3: Penalty function used to impose CL = 0.2, 1 .

6.6 Results and Comments

As seen above the tests have been performed imposing CL 0.2 and 1.0. This

is because the aim of the test was to validate the OT for the “real work

conditions”. In fact the purpose of the tool is to optimize a flying wing for a

range of flight conditions, so here are taken the boundaries of flight envelop to

be sure that the OT work well in all conditions.
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Figure 6.4: Objective function and drag coefficient trend during optimization with CL = 0.2.

Looking at the red graphs of Figures 6.4 and 6.5 is possible to notice how

for both the tests the CD trend during optimization looks like opposite to

the correct direction, it grows up instead of decreasing. The explanation is

that the optimization is bounded to obtain a certain CL, so if the starting

individual has a CL smaller than the target one the CD has to increase. What
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Figure 6.5: Objective function and drag coefficient trend during optimization with CL = 1.

is important to notice is that after a certain number of generations the CD

value is kept constant.

What is meaningful to observe in order to understand if the optimization has

worked or not is the objective function trend. Blue graphs of Figures 6.4 and

6.5 show that in both the tests the objective function decrease monotonically,

starting from a huge value, drop down quickly and stabilizing for the rest of the

generations. The starting huge values are due to penalty function presence,

which penalize the individuals that not respect the constraints.

The flat part of the graphs represents a typical behavior of GA, in fact it

works producing one or more drops in the fitness function. When the stable

part comprehends a big number of generations it means that the GA is stuck

in a global minimum.

Figures 6.6 and 6.7 show a detailed comparison of the first best individual

and the optimized one. In these Figures, the FBEI features are shown in red

and the optimized wing features are shown in blue. At the optimum, the

lift coefficient target is met. The lift distribution of the optimized wing is

much closer to the elliptical distribution than that of the FBEI, indicating an

induced drag that is close to the theoretical minimum for a planar wake. This

is achieved by fine-tuning the twist distribution.

The optimized twist distribution of the first test is significantly different from

that of the baseline, as is possible to see in Figure 6.6 and Table 6.3, the

optimizer redistributed the twist in order to fill up the lack of lift in the middle

part of FBEI. For what concern the second test, the baseline and optimized

twist distributions are very similar to each other, what is pretty different is

the angle of attack that in FBEI is too small.
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Figure 6.6: Comparison between Cl distribution of first generation best individual (on the
left) and the last generation best individual (on the right) with CL = 0.2.

γroot → γtip

First best individual

γ 0° -0.0315° -0.4480° -1.9904° -2.0915° -2.2928°

Y/c 0 0.8 1.6 2.4 3.2 4.0

CL 0.1631

CD 0.0027

α 2.92°

Last best individual

γ 0° -0.0512° -0.1731° -0.4940° -0.6109° -2.9463°

Y/c 0 0.8 1.6 2.4 3.2 4.0

CL 0.2000

CD 0.0031

α 2.74°

Table 6.3: Results of the test with CL = 0.2.

6.7 Effect of the Number of Control Section

The cost of computing a generation with a GA is nearly independent of the

number of design variables, it is dependent by the number of items that com-
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Figure 6.7: Comparison between Cl distribution of first generation best individual (on the
left) and the last generation best individual (on the right) with CL = 1.0.

γroot → γtip

First best individual

γ 0° -0.827° -1.2226° -1.7805° -3.7308° -4.4896°

Y/c 0 0.8 1.6 2.4 3.2 4

CL 0.2702

CD 0.0053

α 5.8217°

Last best individual

γ 0° -0.532° -1.0507° -1.7175° -3.3991° -3.8947°

Y/c 0 0.8 1.6 2.4 3.2 4

CL 1.0019

CD 0.0380

α 14.4404°

Table 6.4: Results of the test with CL = 1.

pose the generation. The problem is that the number of items is driven by the

number of design variables following a certain proportionality. For example in

this thesis work a proportionality of 10 is used, it means that for each design

variable must be added 10 individuals.
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Can be interesting to determine the trade-off between the number of design

variables and the optimal drag coefficient, and to examine the effect on the

computational cost of the optimization. Thus, in this section the effect of

reducing the number of design variables is analyzed.

Optimization problems of this section are performed using the M5 mesh grid

with variations in the number of control sections. Figure 6.8 shows the result-

ing optimized designs for different numbers of airfoil control sections.

Number of generation
0 20 40 60 80 100

lo
g(

C
D

 +
 P

.F
.)

10 -2

10 0

10 2

10 4

5 variables

1 variable

3 variables

Figure 6.8: Objective functions trends during optimization.

The number of variables indicated in the figure include only the number of

control sections used in the optimizations, the angle of attack is excluded.

The number of control section is always referred to an half-wing.

The Figure 6.8, shows that decreasing the number of variables, the optimized

objective function became bigger. This could be caused by the fact that less

control sections means reducing in a certain way the discretization of the wing

in spanwise direction, and so reduce the OT capability of carfully follow the

elliptical Cl distribution.

Reducing the number of variables has a negligible effect on number of itera-

tions, this is not true if we look at computational time. In fact remembering

what said about the relation1 between number of variables and number of

items in a generation, it is possible to affirm that with three variables the

computational time is reduced and the optimality of the result is not so com-

promised.

1The relation used in this Thesis work is 10 individuals for one variable.
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From this study it is possible to conclude that an adequate optimized design

can be achieved with a smaller number of design variables.

6.8 Conclusion

The results shown above tell us that the optimization problem is well-set

and the OT is able to find global minima respect to some constraints. Also

the penalty functions set-up seem to be pretty well suited for this type of

optimization, in fact the objective functions trends during optimization are

thrilling descents that take the CL value to perfectly match the constrained

one.

Obviously this results are indicative and do not give the sureness that the OT

works perfectly in any other condition. The validation test says that with the

correct set-up OT is able to catch the exact solution compared with theoretical

results.



Chapter 7

Application Studies

In this chapter the results obtained with the OT will be discussed and ana-

lyzed. Firstly a preliminary study has been performed, this consist in a series

of optimizations each one with a parameter or a variable fixed at a certain

value. This allows to plot different graphs which help to becoming familiar

with the solutions space. Then two different optimizations were performed to

investigate different parameters set-up, in order to understand how the pa-

rameters affect the performances of the wing. The first of these optimizations

were used to establish the best possible wing assuming to have a simple trape-

zoidal wing. For the second optimization the baseline wing is composed by

two trapezoidal parts in order to see how much could be gained increasing the

number of optimization degrees of freedom.

The initial populations are built up in order to respect the variables bound-

aries but are completely independent from non linear constraints. The initial

populations could not comply the constraints, in fact non linear constraints

are imposed using PF.

7.1 Preliminary Studies

7.1.1 Problem Description

In this section the results of many optimizations are presented together using

different graphs. This has the purpose of inspect how the solution space is

composed and have an idea of the performance sensibility to variables changes.

This help to better understand how to tune the various OT parameters and

became familiar with its features.

54
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7.1.2 Baseline Geometry

Simple trapezoidal wing with flap and with symmetric airfoils refer to Figure

7.1

Wing Parameters :

� Symmetric airfoils NACA 0012;

� One flaps for half-wing;

� Flaps position and length (Referring to Figure 2.10 for the symbols);

– s = (55) [% of b];

– l = (35) [% of b].

� Flaps chord 20 [% of wing local chord].

The control sections used in the optimization are the root and tip section.

7.1.3 Mesh Convergence Study

Aerodynamic shape optimization is a computational intensive endeavor, where

the majority of the computational effort is spent in the flow solution. In

particular computational effort is high when the aerodynamic mesh is dense

and decreases if the size of the mesh is reduced.

Mesh Size C.T. [s]

2800 13

5500 65

Table 7.1: Computational time comparation. The time is referred to a single aerodynamic
simulation.

In this section there are graphs composed by results of many simulations which

need very much time to be computed. Is also important to say that what is

substantial in this graphs are the trends of the variable and not the exact

values.

This consideration is used to reduce the computational time needed to produce

the results of this section just using a coarser mesh with respect to the one

used in sec 7.2, 7.3.
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X

Y Y

Z

Figure 7.1: Baseline geometry.

Obviously this procedure can be consider valid if the coarser mesh produces

results that probably are not exact from magnitude point of view, but they

have to show the same trends of results obtained with a finer mesh.

This fact has been verified conducting a grid convergence study of the opti-

mized design.

The variation in drag coefficient between the baseline and optimized meshes is

nearly constant for each grid level refer to Figure 7.2, which gives confidence

that the optimizations performed with the coarser meshes produce results

having the same trends of those produced with a finer mesh .

In this case the MCS is performed considering a fixed ratio between Nchord and

Nwingspan, this is the reason why the plot is a 2D figure and are reported only

the total number of elements that compose the mesh. This ratio is fixed to be
Nchord

Nwingspan
= 1.4 .

In the figure 7.2 are reported the results for a single point optimization with
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Figure 7.2: Mesh convergence graph for both the baseline and optimized geometry meshes.

an imposed CL of 1.

7.1.4 Optimization Problem Formulation

The results presented in this section are obtained performing many different

optimizations, these aerodynamic shape optimization seeks to minimize the

drag coefficient by varying the shape design variables, the optimization is

subjected to several constraints, the most important are :

� Lift coefficient CL = 0.2, 1.0;

� Stati margin m = m

� Trim MCG = 0.

The shape design variables are twist angle of root and tip section, taper ratio,

sweep angle and the trimming variables : angle of attack and flap deflection.

In the different optimizations one parameter at a time is kept fixed, the wing

is optimized and the results saved. Then the value of the fixed parameter is

changed and another optimization is performed, the procedure is repeated for

each variable you want to analyze.

Initial population has been chosen using a code that use random proceses to

generate the individuals, This help to increment the convergence velocity.
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The complete optimization problem is described in Table 7.2. The Quantities

reported in the table are referred to only half-wing.

Function/variable Description Quantity

minimize CD + PFi

Drag coefficient

+

Penalty functions

with respect to γ1 Twist angle 1

λ Sweep angles 1

Λ Taper ratio 1

δ Flaps deflection 1

α Angle of attack 1

Total design variables 5

subject to these constraints CL = 0, 2− 1 Lift coefficient 1

γ0 = 0° Root section’s twist angle 1

S = const Surface 1

b = const Structural wingspan 1

m = 0.05 · cmac Static margin 1

MCG = 0 Static equilibrium 1

Total constraints 6

and with these boundaries −7 ≤ γ1 ≤ 0 Twist angles /

0 ≤ λ ≤ 40 Sweep angle /

1 ≤ Λ ≤ 8 Taper ratio /

−10 ≤ δ
j
i ≤ 10 Flaps deflections /

0 ≤ α ≤ 18 Angle of attack /

with this starting point
γi

1,2, λi
1,2, Λi

1,2, (δ1,2
1 )i ,

, (δ1,2
2 )i , αi

1, αi
2

Individuals 70

Table 7.2: Schematic descripion of the optimization problem.

7.1.5 Results and Comments

The results presented have the intent to show the most relevant trends for each

variable used as parameter in the different optimizations, plus the results about

static margin which is an important parameter to define the wing features.

In order avoid confusion, here it is declared the sign convention used for twist

angle and flap deflection.

� Twist angle is positive when the airfoil trailing edge is moved down;
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� Flap deflection angle is positive when the aileron trailing adge is moved

up.
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Figure 7.3: Optimal values for lift-to-drag ratio, sweep angle and flap deflection angle as a
function of static margin.

Referring to Figure 7.3, the top graph show the LTDR trends as function of the

static margin, for what concern the flight condition with CL = 1, it decrease

incrementing the static margin. This behaviour is understandable considering

that, an increase of the static margin imply a growth of the sweep angle and

so an AR reduction that increase the induced drag reducing the LTDR. About

flight condition with CL = 0.2, it is more difficult to interpret, the LTDR is

more or less constant, tend to increase slightly, increasing the sweep angle.

A possible explanation could be formulated considering that with low CL the

relative importance of the induced drag on total CD is less relevant, so the
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reduction of frontal section area due to the sweep angle increase, produce a

pressure drag reduction which is bigger with respect the induced drag increase.

This imply a slightly increment of the LTDR.

For what concern the sweep angle the two flight conditions have practically the

same trend, the reason is that the neutral point and center of gravity positions

are function only of the wing geometry and not of the flight condition.

The flap deflection increase if the static margin increase, in fact the neutral

point position move back towards wing trailing edge requiring a bigger trim

torque and so a bigger deflection.

15 20 25 30 35 40 45

E

20

25

30

35

40

45

CL1
CL0,2

sweep angle [°]
15 20 25 30 35 40 45

fla
p 

de
fle

ct
io

n 
[°]

-10

0

10

20

30

CL = 1.0

CL = 0.2

CL = 1.0

CL = 0.2

LT
D

R

Figure 7.4: Optimal values for lift-to-drag ratio and flap deflection angle as a function of
sweep angle

Referring to Figure 7.4, the LTDR behaviour has the same motivations ex-

plained before, in fact the static margin and sweep angle are proportional to

each other.

The sweep angle starts from the value of 12° because with a less angle the

wing is unstable with a negative static margin. It is clear also looking at the

second graph of Figure 7.3

Also the flap deflection trend is very similar to which of Figure 7.3.

The graphs shown in Figures 7.5 and 7.6 are obtained considering a static

margin of 7%.
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Figure 7.5: Optimal values for lift-to-drag ratio and flap deflection angle as a function of
taper.

The first thing to notice looking at Figure 7.5, is that the taper has a smaller

influence on the LTDR with respect to sweep angle. About the flight condition

with CL = 1 the LTDR tends to slightly decrease. This is understandable

considering that increasing the taper with a fixed static margin, the tip chord

tends to decrease and so proportionally also the flap chord decrease. In fact

the falp is placed at wing tip, the decreasing of flap dimension imply a bigger

deflection angle to ensure the same trimming torque. The bigger deflection

increase the pressure drag.

Looking at the top graph of Figure 7.6, is clearly visible as increasing the

twist angle from negative values to positive ones the LTDR decrease. This

behaviour is a direct result of the lift distribution in spanwise direction, in

fact the induced drag is linked to tip vortices which are generated by the

pressure difference between upper and lower surface of the wing. This pressure

difference is also the one that generate the lift, so less lift near the tip mean

weaker vortices and so less induced drag. Indeed with negative values of twist

angle the lift near the tip is decreased and so the LTDR is increased.

The flap deflection trend is a direct effect of the fact that, having a negative

twist angle the trailing edge goes up like during flap deflection. Vice versa

when the twist angle is positive the trailing edge goes down, so with negative
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Figure 7.6: Optimal values for lift-to-drag ratio and flap deflection angle as a function of
twist angle.

twist angles the flap deflection decrease because some of rotation angle is

already performed by the entire airfoil.

7.2 Optimization of Single Part Wing

7.2.1 Problem Description

The goal of this optimization case is to perform constrained drag minimization

of a trapezoidal wing, considering horizontal trimmed flight conditions and

using the OT implemented in this thesis work.

7.2.2 Baseline Geometry

Single part trapezoidal wing with flaps and with symmetric airfoils refer to

Figure 7.7

Wing Parameters :

� Symmetric airfoils NACA 0012;

� Two flaps for half-wing;
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� Flaps position and length (Referring to figure 2.10 for the symbols);

– s = (10, 55) [% of b];

– l = (35, 35) [% of b].

� Flaps chord 20 [% of wing local chord].

Figure 7.7: Baseline geometry.

The control sections used in the optimization are the root and tip sections.

7.2.3 Mesh Convergence Results

The number of panels and the mesh size are referred to an half-wing.

Looking at the table is easy to notice how mesh M4 could be a good com-

promise between results accuracy and computational effort restraint. This
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Mesh Mesh size Nchord Nwingspan CD CL CM α

M1 400 20 20 0.028 0.500 -0.565 6.25

M2 1280 40 32 0.027 0.500 -0.577 5.86

M3 2700 60 45 0.021 0.500 -0.579 5.79

M4 4560 80 57 0.013 0.500 -0.581 5.77

M5 7000 100 70 0.011 0.500 -0.581 5.73

Table 7.3: Mesh convergence study results.

because the differences in mesh sizes between M3, M4 and M4, M5 is very

similar but the differences in CD values are instead relevant.

∆Size [% of M4] ∆CD [% of M4]

M3,M4 41 61

M4,M5 53 15

Table 7.4: Meshes comparison.

A slow asymptotic stabilization starts from M4 ensuring small variations in

CD values. For this reason M4 has been chosen.

Below are reported the numbers of panels in chord and span direction used in

this optimization.

Nchord = 80

Nwingspan = 57

7.2.4 Optimization Problem Formulation

The aerodynamic shape optimization seeks to minimize the drag coefficient

by varying the shape design variables, the optimization is subjected to several

constraints, the most important are :

� Lift coefficient CL = 0.2, 1.0;

� Stati margin m = m

� Trim MCG = 0.

The shape design variables are twist angle of root and tip section, taper ratio,

sweep angle and the trimming variables : angle of attack and flaps deflections.

Initial population has been chosen in order to have all the individuals identical

to each other and as far as possible to the credible optimized solution. This is

due to the necessity to highlight the good performance of the OT.
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The complete optimization problem is described in Table 7.5. The quantities

reported in the table are referred to only half-wing.

Function/variable Description Quantity

minimize CD + PFi

Drag coefficient

+

Penalty functions

with respect to γ1 Twist angle 1

λ Sweep angles 1

Λ Taper ratio 1

δ
j
i Flaps deflections 2

αi Angle of attack 2

Total design variables 7

subject to these constraints CL = 0.2− 1 Lift coefficient 2

γ0 = 0° Root section’s twist angle 1

S = const Surface 1

b = const Structural wingspan 1

m = 0.05 · cmac Static margin 1

MCG = 0 Static equilibrium 1

Total constraints 7

and with these boundaries −7 ≤ γ1 ≤ 0 Twist angles /

0 ≤ λ ≤ 40 Sweep angle /

1 ≤ Λ ≤ 9 Taper ratio /

−15 ≤ δ
j
i ≤ 15 Flaps deflections /

0 ≤ α ≤ 18 Angle of attack /

with this starting point
γi

1,2, λi
1,2, Λi

1,2, (δ1,2
1 )i ,

, (δ1,2
2 )i , αi

1, αi
2

Individuals 70

Table 7.5: Schematic descripion of the optimization problem.

7.2.5 Results and Comments

After 75 generation and 5250 objective function evaluations, the optimization

was terminated. The reason for the termination was the magnitude of the

variation of fitness function between two sequential generations, which had

decreased below 10−6 .

The top graph in Figure 7.8 shows how the optimizer has been worked reducing

the objective function.

All the terms present in the legend of the top graph are explained below :
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Figure 7.8: Objective function and drag coefficients trend during optimization

� PF1 is the sum of penalty functions calculated at the two flight conditions

(CL = 0.2, 1) concerning the static margin constraint;

� PF2 is the sum of penalty functions calculated at the two flight conditions

(CL = 0.2, 1) concerning the imposed Lift coefficient;
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� PF3 is the sum of penalty functions calculated at the two flight conditions

(CL = 0.2, 1) concerning the static equilibrium constraint;

� CDtot is the sum of the CD at CL = 0.2 an of CD at CL = 1.

The second and third graph show the trends of CD values during the opti-

mization. The second one is referred to CD evaluated at CL = 1 and the third

one is referred to CD evaluated at CL = 0, 2. The trends are very different,

in particular looking at the case with CL = 1 it looks like in contrast with a

minimization procedure. In fact it decreases suddenly in the initial iterations

but then it increases stabilizing at a certain value. This behavior is caused

by the constraints, they “guide” the solution in certain directions which not

always match with CD minimization requirement.

X

Y

C

Initial population optimized

sweep 0.1° ⇒ 17.0°

taper 1.0 ⇒ 7.0

twist -0.1° ⇒ -3.0°

100 80 60 40 20 0 20 40 60 80 100
100

80

60

40

20

0

20

40

60

80

100

E
q

u
ili

b
ri

u
m

 c
o
n
st

ra
in

t
S

ta
ti

c 
m

a
rg

in
 c

o
n
st

ra
in

t

Lift coefficient constraint Drag minimization

First best individual

Optimized individual

Figure 7.9: Comparison between the initial and the resultingwing geometry after the opti-
mization.

From Figure 7.9 it is clear that the optimizer has tried to get the highest pos-

sible aspect ratio. This has been accomplished by reducing a lot the tip chord

and consequently increasing the root chord dimension that became bigger with

respect the initial individual. This procedure is needed in order to maintain

the total surface S constant. This has increased the taper ratio from 1 to 7,

with the most likely result of reducing the induced drag.
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Also the increase of twist angle absolute value has the aim of reducing the

induced drag, in fact increasing the washout the lift near the tips is reduced,

reducing at the same time the intensity of tip vortices which cause the induced

drag.

The radar graph is very important to understand how better is the optimized

individual with respect to the individuals of first generation. It gives a“global”

idea of optimization goodness considering that it takes care about all the

optimization aspects : function of merit and constraints violation.

In fact on the axes are reported the percentages of how much a constraint is

respected and how much the CD is close to ideal CDmin obtained using the

theoretical formula CDmin = CD0 +
C2

L
πARe where e is the span efficiency factor

that for elliptical distribution is equal to 1. CD0 is taken from airfoil polar

knowing the CL at which the optimization has been performed.

In this particular case the RG show very well that the constraints are perfectly

followed and the CD is quite good. It is also very easy to notice the global

improvement obtained by OT, comparing the areas of the the two graphs.

7.3 Optimization of a Wing Composed by Two Trape-

zoidal Parts

7.3.1 Problem Description

The goal of this optimization case is to perform constrained drag minimization

of a wing composed by two trapezoidal parts, considering horizontal trimmed

flight and using the OT implemented in this thesis work.

7.3.2 Baseline Geometry

Wing composed by two trapezoidal parts with flaps and with symmetric airfoils

refer to Figure 7.10.

Wing Parameters :

� Symmetric airfoils NACA 0012;

� The two patches have the same length;

� Two flaps for half-wing;
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� Flaps position and length (Referring to figure 2.10 for the symbols);

– s = (10, 55) [% of b where b is total structural wing-span];

– l = (35, 35) [% of b].

� Flaps chord 20 [% of wing local chord];

Figure 7.10: Baseline geometry.

The control sections used in the optimization are the root and tip sections of

each part.

7.3.3 Mesh Convergence Results

The number of panels and the mesh size are referred to an half-wing.

Following the same considerations made for the previous optimizations, M3

has been chosen.
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Mesh Mesh size Nchord Nwingspan CD CL CM α

M1 550 25 22 0.030 0.500 -0.566 6.20

M2 1548 43 36 0.022 0.500 -0.578 5.82

M3 3250 65 50 0.012 0.500 -0.582 5.78

M4 4950 90 55 0.011 0.500 -0.591 5.74

M5 8580 110 78 0.010 0.500 -0.591 5.70

Table 7.6: Mesh convergence study results.

Below are reported the numbers of panels in chord and span direction used in

this optimization.

Nchord = 65

Nwingspan = 50

7.3.4 Optimization Problem Formulation

The aerodynamic shape optimization seeks to minimize the drag coefficient

by varying the shape design variables, the optimization is subjected to several

constraints, the most important are :

� Lift coefficient CL = 0.2, 1.0;

� Stati margin m = m

� Trim MCG = 0.

.

The shape design variables are twist angle, taper ratio, sweep angle for each

part and the trimming variables : angle of attack and flaps deflections.

Initial population has been chosen in order to have all the individuals identical

to each other and as far as possible to the credible optimize solution.

The complete optimization problem is described in Table 7.7. The quantities

reported in the table are referred to only half-wing.

7.3.5 Results and Comments

After 143 generation and 14300 objective function evaluations, the optimiza-

tion was terminated. The reason for the termination was the magnitude of

the variation of fitness function between two sequential generations, which had

decreased below 10−6 .
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Function/variable Description Quantity

minimize CD + PFi

Drag coefficient

+

Penalty functions

with respect to these constraints γ1,2 Twist angle 2

λi Sweep angles 2

Λi Taper ratio 2

δ
j
i Flaps deflections 2

αi Angle of attack 2

Total design variables 10

subject to these constraints CL = 0.2− 1 Lift coefficient 2

γ0 = 0° Root section’s twist angle 1

S = const Surface 1

b = const Structural wingspan 1

m = 0.05 · cmac Static margin 1

MCG = 0 Static equilibrium 1

Total constraints 2

and to these boundaries −7 ≤ γ1,2 ≤ 0 Twist angles /

0 ≤ λ1,2 ≤ 40° Sweep angle /

1 ≤ Λ1,2 ≤ 9 Taper ratio /

−15 ≤ δ
j
i ≤ 15 Flaps deflections /

0 ≤ α ≤ 18 Angle of attack /

with this starting point
γi

1,2, λi
1,2, Λi

1,2, (δ1,2
1 )i ,

, (δ1,2
2 )i , αi

1, αi
2

Individuals 100

Table 7.7: Schematic descripion of the optimization problem.

� PF1, PF2, PF3, CDtot have the same meaning as in Section 7.2.

The top graph in Figure 7.11 shows very well the monotonic reduction of

the objective function that indicate a good behaviour of the OT. The graphs

concerning the CD trends show an increase, but as already said for the results

of the previous optimization, this is not always bad but means that in order to

accomplish the constraints the OT has to modify the wing geometry in such

a way that the drag is increased.

From Figure 7.12 what is very intersting to note is that, “tip part” is very

tapered and has a bigger sweep angle with respect the “root part”. The fact

that the sweep angle increase towards the wing tip is very important because

means that the OT is able to counteract the sweep effect. In the following

Section a deeper discussion will be made.
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Figure 7.11: Objective function and drag coefficient trend during optimization.

The twist angle became more negative towards the tip, this indicate an in-

creasing washout that helps the taper to reduce the induced drag.

The RG shows very well how the constraints are perfectly satisfied and the

CD is better with respect single part wing.
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X

Y

C

Initial population optimized
root part tip part root part tip part

sweep 0.1° 0.1° ⇒ 9.0° 26.0°

taper 1.0 1.0 ⇒ 1.2 4.7

twist -0.1° -0.1° ⇒ -2.5° -3.5°
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Figure 7.12: Comparison between the initial and the resultingwing geometry after the opti-
mization.

7.4 Analysis of Optimization Results

In this Section the results of Application Studies are compared in order to

discuss some intresting aspects that help to understand the OT characteristics.

7.4.1 Sweep Effect

When looking at the wing-span lift coefficient distrubution for wings with

different sweep angles Λ, one observes a local decrease of the lift for positive

Λ values at the bend, i.e. in the “wing centre”. Some times this is called “lift

valley”. The larger the sweep angle is the more the local lift is reduced near

the wing centre and the more extended to both sides is the reagion of lift loss.

In the Figure 7.13, two lift distributions are compared. The right one is about

the optimized single part wing, the left one is about the optimized double parts

wing. The two lift distributions have been obtained considering a trimmed

flight condition with an imposing CL of 1.

What is interesting to notice is the different shape of lift distributions near the
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Figure 7.13: Comparison of lift distributions

wing center. The LD on the left has a very smooth shape near the wing root

and approach the root horizontally like the elliptical shape. Instead the LD on

the right shows a “lift valley” near the root, this peculiarity compromises the

optimality of LD distancing it from elliptical shape and increasing the drag

coefficient.

This difference in the two LDs is caused by the different sweep angle at the

wing center. In fact for the single part wing this angle is 17° instead for the

other is 10°; obviously this value is about the “root part”, because for what

concern the “tip part”, the sweep angle is 26°. This configuration allows the

two parts wing geometry to have the same static margin as the single one,

avoiding at the same time the loss of lift near the wing center. Ensuring a

more efficient LD and so a smaller CD. Obviously this improvement can be

larger increasing the number of parts and varying their length in order to have

more degree of freedom and perfectly aproximate the elliptical LD.

The LDs in the Figure are not perfectly smooth, these irregularity are due

to the presence of ailerons which alter the wing shape and ensure the trim.

Despite these irregularity the LDs are not so different from elliptical one,

confirming the OT goodness.

7.4.2 Performances Comparison

An interesting analysis could be made comparing the two optimized wing,

using the LTDR and Power Index →C3/2
L

CD
trends function of CL. With the

number 1 is denoted the wing composed by a single trapezoidal part, the wing

denoted with the 2 is the double parts trapezoidal wing.
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Figure 7.14: Performance comparison

Looking at the Figure 7.14 it is clear that the more “efficient” Cl distribution

of wing 2 have an impact on performance. In particular, considering that we

are speaking about sailplane, the very important parameter is the Power Index

which is an index of merit about sink velocity. Indeed where
C3/2

L
CD

is high the

sink velocity is low.

Another important thing to notice is about how LTDR is distributed along

the different flight conditions. In particular considering which the two wings

have been optimized with the aim of find the best compromise between drag

coefficients at two flight conditions : CL = 0.2 and CL = 1, their LTDR should

be high and uniform with all the lift coefficients between 0.2 and 1. In fact

looking at the graph above, CL
CD

has almost the same value at the two flight

conditions, and it is a pretty high value considering the maximum achived

along all the range of flight conditions. This fact highlights that the code is

able to optimize a flying wing for a certain range of flight conditions.

Considering what said above about sink velocity, it is easy to understand

the Figure 7.15 in which the sink velocity is plotted againts horizontal one.

Obviously wing 2 that has the better LTDR with respect to wing 1, will have

also a lower sink velocity.

The differences between the two velocities are more significant where the Vh

is low and so the CL is high, and they have the tendency to overlap at lower

CL. In the same way this aspect is clearly visible in the graph of Power Index
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Figure 7.15: Hodograph for glide performance at a given altitude

and LTDR. This is probably caused another time by the differences in Cl

distributions. In fact at high CL the induced drag is a relevant part of the

total one and it is mainly caused by Cl distribution, explaining in this way the

differences between the performance of the two wings. Instead its importance

decreases at high CL uniforming the performance.
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Conclusions

8.1 Concluding Remarks

In this Thesis the implementation of an Optimization Tool (OT) to design and

optimized tailles aircrafts has been presented. Probably the most time con-

suming and challenging part of the work has been the mesh generator (MEG)

implementation. In fact it must be able to generate numerous different ge-

ometries with the minimum possible number of variables, it has to be robust,

avoiding as much as possible spurius fluctuations and has to be compatible

with the aerodynamic solver. All these requirements have driven MEG im-

plementation, first of all the choice to use the Partial Differentila Equation

(PDE) method which is pretty complicated to implement but it is very power-

ful. This method is not very applied in technical papers and documentation,

so the bibliography is poor and this has complicated the implementation and

tuning.

The MEG tuning has been performed in order to fit it to work with the aerody-

namic solver COMPA. Once the two codes have been ready to work together,

the optimizer has been chosen. The genetic algorithm (GA) has been selected

because the solution space was unknown and probably it would have con-

tained a certain number of local minima which could have impeded a gradient

based optimizer. This is a good choice from what regards the possibility to

find the global minimum, but is very expensive from a computational point of

view. This reduces the computational effort but increases the complexity in

the fine tuning of the algorithm. In fact it has been used the GA implemented

in Matlab, but many parameters have been changed, in order to adapt the

optimizer to this particular problem. This tuning, together with the MEG

implementation, has represented the critical aspect of the entire work.

77



Conclusions 78

In order to validate and test the OT, some simulations have been performed

and presented. First of all there was the necessity to understand if all the

components would have worked well together and if the optimization problem

was well-set in term of predefined constraints and objective function. This

has been accomplished validating the OT, comparing theoretical results with

numerical ones. The validation has produced good results, highlighting the

goodness of the OT.

This has been the starting point for an “optimization campaign”, in order

to collect as many results as possible and become familiar with the solution

space, with the aim of understand the sensibility of the problem with respect

to number and nature of variables and parameters.

Other two optimizations have been performed, for which an etire Thesis sec-

tion has been dedicated for each one of them, in order to analize deeply the

results. The results speak about performance improvements and observance

of constraints. In particular an interesting comparison between the results of

the two optimizations has been performed. It highlights some peculiarities re-

garding the relation between sweep angle and spanwise Cl disribution. In this

case the optimizer has been able to modify the sweep angle of the “two part

wing”, in order to avoid a lift decrease near the wing root and so improving

the performances.

Obviously there are some criticalities, firstly the computational effort needed,

secondly a quite complicated tuning of GA parameters. In fact the aerody-

namic solver COMPA has to invert matrices that are proportional to mesh

dimesion, so considering an optimization performed with a mesh at conver-

gence and so with many panels, the matrix inversion has became computa-

tional expensive. For this particular problem there are not so many solutions

because if results must be as accurate as possible, the mesh has to be at con-

vergence, and in general it is composed by a big number of panels. The GA

tuning is not an easy task to solve, and together with computational effort they

present the biggest issues which have slowed down the OT implementation.

8.2 Future Developments

A summary of the Future Developments will be presented, taking into consid-

eration some points on which future work an analysis might expand.

Optimization Tool:
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� Include the use of a Viscid Aerodynamic Solver to comprehend viscid

effect in the computation of Aerodynamic coefficients.

� Improve the set up of GA, modifying the crossover function, Elite count,

etc

� Improve the way to build up the GA first generation, in order to reduce

the Computational Time.

� Try to replace GA with a gradient-based optimizer.

� Include a Stability Augmentation System to extend the optimization

domain

� Include a better estimation of structural weight and inertia features.
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