
Politecnico di Milano

Scuola di Ingegneria Industriale e dell’Informazione
Dipartimento di Meccanica

Corso di Laurea Magistrale in Ingegneria Meccanica

CFD modeling of cold-flow in the
Darmstadt optical engine under

steady-state and full-cycle conditions

Relatore: Prof. Tommaso Lucchini

Correlatore: Ing. Augusto Della Torre

Tesi di Laurea di:

Simona Belà Matr. 819354

Anno Accademico 2015-2016

Contents

1 Computational Fluid Dynamics 3
1.1 Introduction to CFD . 3
1.2 CFD applied to internal combustion engines 4
1.3 Governing equations . 7
1.4 Turbulence models . 11
1.5 Discretization process . 15

1.5.1 Equation discretization . 18

2 OpenFOAM and Lib-ICE 21
2.1 Mesh management . 23

2.1.1 Polyhedral vertex-based motion solver 24
2.2 Cold-flow simulation solver . 28

3 Case of study and implementation 31
3.1 TU-Darmstadt optical engine . 31
3.2 engineDynamicSetUp . 33

3.2.1 Geometry . 35
3.2.2 Settings . 44

3.3 runMultiCycleCase . 51

4 Mesh generation 55
4.1 Background grid . 55
4.2 Customized mesh generation procedure 59

4.2.1 snappyHexMesh . 60

5 Steady-state simulation 67
5.1 Experimental validation on the standard engine configuration 67

5.1.1 k-ε turbulence model . 72
5.1.2 k-ω SST turbulence model . 74
5.1.3 Improved numerical schemes 76

5.2 Engine configurations comparison . 77

II

6 Full-cycle simulation 85
6.1 Simulation settings . 85
6.2 Results . 87

6.2.1 Tumble motion . 88
6.2.2 Cylinder pressure trend . 109

III

List of Figures

1.1 Organised gas motion: Swirl, Tumble, Squish. 5
1.2 Tumble motion imposed by different intake ducts configurations. . . . 6
1.3 Flow bench for the Tumble measurement. 6
1.4 Energy cascade. 13
1.5 The discretization process. 16
1.6 Control volume. 17
1.7 Gradient evaluation in case of non-orthogonality. 20

2.1 Overview of OpenFOAM structure. 21
2.2 Applications directory. 22
2.3 Lib-ICE structure. 22
2.4 Specific utilities for full-cycle case set-up. 23
2.5 Multiple meshes are required to cover the entire engine cycle. 23
2.6 Decomposition of a polyhedral cell into tetrahedra. 25
2.7 Examples of non-orthogonal mesh in 2D (a) and 3D (b). 26
2.8 Examples of skew mesh in 2D (a) and 3D (b). 27
2.9 Strategy for full-cycle ICEs simulations: case to case interpolation. . . 27
2.10 Identification of the closest (cyan) and neighbouring (green) cells in

the source mesh for a cell in the target mesh (red). 28
2.11 PIMPLE algorithm. 30

3.1 Engine CAD description. 32
3.2 TU-Darmstadt optical engine. 33
3.3 Division of the surface in patches, necessary for the definition of the

domain motion. 34
3.4 TU Darmstadt engine, STL file provided. 36
3.5 TU Darmstadt engine - slice, xy plane at z = 0 (symmetry plane).

Errors highlighted. 36
3.6 TU Darmstadt engine - slice, xy plane at z = 0.02. Errors highlighted. 37
3.7 Geometry problems evaluated by the MeshMixer inspector tool. . . . 38
3.8 Zoom on the cylinder head: poor smoothness. 39
3.9 MeshMixer select tool: in orange the selected geometry triangles. . . 39

IV

3.10 Valve bottoms patches: triangles with opposite surface orientation. . 40
3.11 MeshMixer select tool: attempt to select the wrong oriented triangles. 41
3.12 External components (full color) added to the given surface (trans-

parent). 42
3.13 Spark-plug modified to ensure geometrical symmetry. 43
3.14 Template STL geometry. 43
3.15 Case structure. 44
3.16 Structure of the init folder. 45
3.17 engineControlDict. 48
3.18 Structure of the baseMesh folder. 49
3.19 Final structure of the case. 51
3.20 Case structure for the cold-flow simulation. 52
3.21 Unsteady pressure conditions imposed at the boundaries through the

files p_exh1.t and p_man2.t. 53
3.22 engineControlDict -final part. 54

4.1 Flow grid alignment effects on a laminar jet. 56
4.2 Multiple oriented blocks composing the structured background grid. . 57
4.3 Multiple oriented blocks composing the structured background grid -

slice in correspondence of the symmetry plane. 57
4.4 Background grid: perfect matching between current stl geometry and

mesh. 58
4.5 Piston and crevice patches in the background grid. 59
4.6 Refined grid on the cylinder-head and valve region. 61
4.7 Mesh at the TDC. 62
4.8 Zoom on the piston and liner patches and the already extruded crevices. 63
4.9 Oriented grid in the intake duct. 64
4.10 Oriented grid in the exhaust duct. 64
4.11 In-cylinder mesh. 65
4.12 Mesh at CA 450, mid-intake phase - valve plane slice. 66

5.1 Darmstadt engine, standard configuration at CA 450 - cut on the
symmetry plane. 67

5.2 MRV measurements performed on the standard engine configuration
- intake flow in the vicinity of the intake valve [11]. 68

5.3 Mesh of the standard engine configuration. 69
5.4 Mesh of the standard engine configuration - zoom on the in-cylinder

cells. 70
5.5 Velocity flow field entering the combustion chamber - k-ε model. . . . 73
5.6 Zoom on the difference in the flow field once in the combustion cham-

ber: the flow undergoes a higher deceleration in the numerical result
(on the right). 73

V

5.7 Velocity flow field entering the combustion chamber - k-ω SST model. 74
5.8 Zoom on the difference in the flow field once in the combustion cham-

ber: the flow undergoes a strong deceleration in the numerical result
(on the right). 74

5.9 Velocity flow field entering the combustion chamber - k-ε model with
scalable wall functions. 75

5.10 Velocity flow field entering the combustion chamber - k-ε model, im-
proved numerical schemes. 76

5.11 Velocity flow field entering the combustion chamber - improvements
highlighted. 77

5.12 Zoom on the final part of the intake duct of the standard (left) and
current (right) configuration. 78

5.13 Comparison of the mesh of the two configurations. 79
5.14 Comparison of the velocity flow fields entering the combustion cham-

ber mesh in the two configurations. 80
5.15 Comparison of the velocity flow fields entering the combustion cham-

ber mesh in the two configurations - differences highlighted. 81
5.16 Velocity difference close to the intake valve - zoom. 82
5.17 Velocity difference close to the cylinder walls on the exhaust side -

zoom. 82
5.18 Tumble ratio for different port configurations, figure taken from [8]. . 83
5.19 Comparison between the engine configurations and the port types

analysed in figure (5.18). 84

6.1 Measurement lines located at different distances from the cylinder head. 88
6.2 Comparison between experimental (left) and computed (right) veloc-

ity field on the symmetry plane at CA 450. 89
6.3 Velocity x-component profiles at CA 450, extracted along horizontal

lines at different distances from the cylinder head. 90
6.4 Velocity y-component profiles at CA 450, extracted along horizontal

lines at different distances from the cylinder head. 91
6.5 Comparison between experimental (left) and computed (right) ve-

locity field on the symmetry plane at CA 450 - zone with biggest
differences highlighted. 92

6.6 Velocity x- and y-components profiles at CA 450, extracted along
horizontal line at Y = −40 mm. 92

6.7 Comparison between experimental (left) and computed (right) veloc-
ity field on the symmetry plane at CA 450, taken from [16]. 93

6.8 Velocity x-component profiles at CA 450 - standard configuration. . . 94
6.9 Velocity y-component profiles at CA 450 - standard configuration. . . 95

VI

6.10 Velocity x-component profiles at CA 450 - experimental data of both
configurations. 96

6.11 Velocity y-component profiles at CA 450 - experimental data of both
configurations. 97

6.12 Computed velocity flow field on the valve plane in the standard and
current engine configurations. 98

6.13 Computed velocity flow field on the valve plane in the standard and
current engine configurations - counter-vortex highlighted. 98

6.14 Computed velocity field on the symmetry plane at CA 540. 99
6.15 Comparison between experimental (left) and computed (right) veloc-

ity field on the symmetry plane at CA 540, taken from [16]. 100
6.16 Computed velocity x-component profiles at CA 540, for both standard

and current configurations. 101
6.17 Computed velocity y-component profiles at CA 540, for both standard

and current configurations. 102
6.18 Velocity field on the symmetry plane at CA 450 (upper row) and

540 (lower row). First column: numerical results on the current con-
figuration; second and third columns: measurements and numerical
results respectively on the standard configuration. 103

6.19 Computed velocity field on the symmetry plane at CA 630. 105
6.20 Comparison between experimental (left) and computed (right) veloc-

ity field on the symmetry plane at CA 630, taken from [16]. 106
6.21 Velocity x-component profiles at CA 630, for both standard and cur-

rent configurations. 107
6.22 Velocity y-component profiles at CA 630, for both standard and cur-

rent configurations. 108
6.23 Comparison between computed and experimental cylinder pressure

trend in the current configuration - zoom on the CA-range of interest. 109
6.24 Comparison between computed and experimental cylinder pressure

trend in the current configuration - full pressure profile. 110

VII

List of Tables

5.1 Flow parameters during the MRV measurements. 68
5.2 Applied numerical schemes for the divergence terms. 70
5.3 Applied numerical schemes for the other terms. 70
5.4 Solver and tolerance for pressure equation. 71
5.5 Solver and tolerance for U|k|epsilon|omega equations. 71
5.6 Boundary conditions assigned to the inlet and piston patches. 72
5.7 Boundary conditions assigned to the other patches. 72
5.8 Modified numerical schemes for the divergence terms. 76

6.1 Numerical schemes for the divergence terms. 86
6.2 Numerical schemes for the other terms. 86
6.3 Pressure condition assigned to the inlet and outlet patches. 87
6.4 Velocity boundary conditions. 87

VIII

Abstract

Details of the in-cylinder flow motions play a key role in determining the engine
performance. Flow motions within the engine cylinder have a great influence on
the fuel-air mixing, on the start and development of the combustion process, on
the pollutant production and on heat transfer. The prediction of in-cylinder flow
motion characteristics in function of the engine design parameters is thus of central
importance. In the last decades the use of CFD (Computational Fluid Dynamics)
has allowed to analyse the evolution of the in-cylinder flow motions and to perform
parametric studies without the relative experimental costs.

In the present work two types of cold-flow simulations have been performed using
OpenFOAM, an open-source CFD software, and Lib-ICE, a code based on Open-
FOAM technology focused on internal combustion engine simulations developed by
ICE Group of Politecnico di Milano. The first simulation analyses the mid-intake
phase in steady-state condition, the second one instead is a full-cycle simulation. In
both simulations a comparison between the two configurations of the TU-Darmstadt
optical engine has been performed, in order to determine their capability to gener-
ate (and concerning the full-cycle simulation to maintain) a high Tumble motion.
The achieved results have been validated with the available experimental data. The
full-cycle simulation has been perform on one engine configuration only, then the
results have been compared with those of a previous work carried out by the ICE
Group on the other configuration.

Keywords: CFD, OpenFOAM, Lib-ICE, cold-flow, steady-state, full-cycle, Tum-
ble, engine

IX

Sommario

I dettagli relativi alle condizioni di moto del fluido nel cilindro giocano un ruolo
fondamentale nella determinazione delle prestazioni del motore. I moti della car-
ica controllano infatti il miscelamento del combustibile con l’ossidante, l’avvio e lo
sviluppo del processo di combustione, la formazione di inquinanti e lo scambio ter-
mico. Risulta quindi essenziale poterne prevedere le caratteristiche in funzione dei
parametri di progetto del motore. Negli ultimi decenni l’uso della CFD (Computa-
tional Fluid Dynamics) ha permesso di indagare l’evoluzione dei moti della carica
all’interno del cilindro e condurre analisi parametriche senza i relativi costi speri-
mentali.

In questo lavoro sono stati effettuati due tipi di simulazioni cold-flow tramite
OpenFOAM, un codice open-source per analisi CFD, e Lib-ICE, una libreria basata
su OpenFOAM e creata dall’ICE Group del Politecnico di Milano specificamente
per le simulazioni inerenti ai motori a combustione interna. La prima simulazione
studia la fase di metà aspirazione in condizioni stazionarie, la seconda simulazione
invece copre l’intero ciclo motore. In entrambe le simulazioni sono state confrontate
le due configurazioni del motore ottico di TU-Darmstadt, al fine di determinare
quale delle due sia in grado di generare (e nel caso della simulazione dell’intero ciclo
motore sostenere) un moto vorticoso di Tumble più intenso. I risultati ottenuti sono
validati tramite confronto con i dati sperimentali ove disponibili. La simulazione
coprente l’intero ciclo motore è stata svolta su una sola delle due configurazioni, i
risultati sono poi stati confrontati con i risultati di un lavoro precedente dell’ICE
Group svolto sull’altra configurazione del motore.

Parole chiave: CFD, OpenFOAM, Lib-ICE, cold-flow, stazionario, ciclo completo,
Tumble, motore

X

Introduction

Nowadays the internal combustion engine technology is of central importance in
everyday life. Due to rising environmental trouble however, it is seen by the global
community as one of the greater sources of pollutant emissions in the urban areas:
the focus on pollutant production leads to a great deal of effort of the R&D field into
the improvement of after-treatment techniques and combustion process itself, with
the aim of a pollutant reduction (alongside with performances improvement) [4].

To achieve the awaited combustion process efficiency, great attention has to be
paid to the charge motions into the cylinder. These organised gas motions have a
great influence on the fuel-air mixing, on the start and development of the combus-
tion process, on the pollutant production and on the thermal efficiency [3, 8].

For this reason, the design of the intake and exhaust ports together with the
design of the combustion chamber itself and the piston crown, is studied specifically
to enhance structured gas motions inside the cylinder [7]. Gas motion optimiza-
tion studies by means of experimental test would lead to prohibitive costs, since a
great number of prototypes would be required. In the last decades, a new powerful
technique has been developed to analyse systems involving fluid flows: Computa-
tional Fluid Dynamics (CFD). This technique allows to perform parametric studies
without the necessity of expensive experimental tests and provides a great level of
results detail. These and much more advantages make CFD-analyses suitable for
performance optimization.

In spark-ignition engines, both fuel-air mixing and combustion processes are
driven by the complex flow features originating during the intake stroke and also
residual gas distribution might affect combustion at partial load. For this reason it
is necessary to model the gas exchange during the entire engine cycle, including the
exhaust phase. The generation of high quality grids covering the full engine cycle is
thus required and new fully automatic approaches are now available [16–18].

In the present work, a steady-state and a full-cycle CFD simulations are per-
formed on the geometrical model of the TU-Darmstadt optical engine. It is a four-
valve, pent-roof combustion chamber with flat piston, whose intake ducts are de-
signed to generated a high Tumble motion. The TU-Darmstadt engine has quartz
glass cylinder and piston allowing optical access of in-cylinder flow motions: exper-
imental data of the flow fields are available.

1

Introduction

Previous analyses were performed on the standard configuration of the optical
engine. The current configuration is slightly modified: changes concern intake ducts
orientation and valve dimensions. This work has two objectives. The first one is
to verify the ability of OpenFOAM, an open-source CFD software, to predict the
flow field, comparing the results with the experimental data. The second one is to
analyse the capability of the current engine configuration to generate the Tumble
motion, comparing the numerical results in the two engine configurations.

The first chapter is concerned with the fundamentals of Computational Fluid
Dynamics (CFD): a brief introduction to this new powerful technique is followed by
the fundamentals of fluid flows, turbulence models and discretization process.

In the second chapter a scheme of the structure of OpenFOAM is provided, to-
gether with the one of the Lib-ICE, a code based on OpenFOAM technology focused
on internal combustion engines developed by ICE Group of Politecnico di Milano.
Then the mesh management and the cold-flow simulation solver are explained.

The third chapter is concerned with the actual application of the full-cycle sim-
ulation to the engine under study. First the analysed engine is described in detail,
then the automatic procedure for the generation of the full-cycle set of meshes and
the following cold-flow simulation is explained in detail. Particular attention has
been paid to the geometry requirements and the setting of the different steps of the
case set-up.

In the fourth chapter the mesh generation is described in detail, from the choice
of the grid type and resolution to the difficulties encountered to achieve a high
quality grid. The achieved full-cycle set of meshes is thus shown.

The fifth chapter regards the gas-exchange simulation under steady-state condi-
tion, carried out in correspondence of the mid-intake phase. This type of simulation
has been performed first on the standard configuration, where steady-state exper-
imental data on the valve-plane were available for a validation [11]. Two types of
sensitivity analysis have been carried out: turbulence model and numerical schemes.
Then the same simulation has been performed on the current engine configuration,
to allow a meaningful comparison between the capabilities of the two configurations
of generating the Tumble motion.

Finally, in the sixth chapter the full-cycle cold-flow simulation is reported. The
predicted flow field has been compared with experimental data available in corre-
spondence of the mid-intake phase, verifying the validity of the employed methodol-
ogy and the grid quality. Then the achieved results have been compared with results
coming from a previous work on the standard configuration [16], in order to perform
not only a numerical comparison but above all a motoring comparison between the
two engine configurations and their capabilities to generate the Tumble motion.

2

Chapter 1

Computational Fluid Dynamics

1.1 Introduction to CFD
Computational Fluid Dynamics (CFD) is part of the CAE (Computer-Aided En-
gineering). CFD is the analysis of systems involving fluid flow, heat transfer and
associated phenomena such as chemical reactions by means of computer-based sim-
ulation [27]. This technique is very powerful and spans a wide range of industrial
and non-industrial application areas, such as: aerodynamics of aircraft and vehicles,
flows and combustion in internal combustion engines (ICE), flows inside turboma-
chinery, wind loading on buildings and so on.

From the 1960s onwards the aerospace industry has integrated CFD techniques
into the design, R&D and manufacture of aircraft and jet engines. Only more
recently this approach has been applied to the design of ICE, gas turbines and
furnaces. Since the 1990s, the availability of high-performance computing hardware
and the introduction of user-friendly interfaces have led to the spread of CFD across
the wider industrial community.

This huge diffusion of CFD in the industrial field can be explained considering
the several advantages of this technique over experimental-based approach to fluid
systems design:

• reduction of lead times and above all costs of new designs

• possibility to analyse complex and large systems where experiments are diffi-
cult, when not impossible, to perform

• ability to study systems under hazardous conditions at (and beyond) their
normal performance limits

• great level of results’ detail

3

Chapter 1. Computational Fluid Dynamics

• ability to cheaply perform parametric studies, making it suitable for perfor-
mance optimization

CFD codes are based on the numerical solution of partial differential equations
(PDE) describing the fluid behaviour (conservation of mass, momentum and en-
ergy). In addition to these equations, other conservation equations may be added
to the code according to the analysed system requirements (as the species mass
conservation).

As the system to be studied may be really complex, for the physical process
involved and/or for the geometry, a mathematical modeling is required before a
numerical solution strategy. This modeling step is the reason why CFD could never
fully substitute experiments, which are necessary to validate the CFD code itself.

1.2 CFD applied to internal combustion engines
As already mentioned, the analysed system may be extremely complex: internal
combustion engines (ICE) are one of the most complicated area to which CFD is
applied nowadays.

There are many difficulties, starting from the geometry. The optimization of the
performance of an ICE goes through the shape of its intake and exhaust port, the
piston crown, the combustion chamber itself and many other systems according to
the engine considered (spark-plug, spray-injector and so on). Not to mention the
movement of the piston and its tuning with the valve motion. Therefore, the CAD
description of the actual geometry must be as accurate as possible, and at the same
time must fulfill the strict requirements of the CFD software (see chapter 3.2.1).
The greater difficulty however is represented by the different interacting physical
and chemical processes taking place inside an engine:

• non-stationary turbulent flows, pressure waves

• injection, atomization and evaporation of liquid fluid, mixing of gaseous fuel
and fresh air

• ignition and combustion

• pollutants formation and handling

In the present work the attention is focused on the in-cylinder flow motion.
Organised gas motions are shown in figure (1.1).

4

Chapter 1. Computational Fluid Dynamics

Figure 1.1: Organised gas motion: Swirl, Tumble, Squish.

These organised gas motions have a great influence on the fuel-air mixing, on the
start and development of the combustion process, on the pollutant production and
on the thermal efficiency. For this reason, their prediction is of central interest [3,13].
Among the organised gas motions shown in figure (1.1), the Tumble motion is the
one analysed in this work.
Tumble is a structured rotational flow on a cylinder axial plane, generated during
the intake stroke process, but maintained and increased by the following compression
stroke. This motion was designed for the four-valve, pent-roof combustion chambers
(for which swirl is not exploitable because of the symmetry of the cylinder head).
The air flow, interacting with the cylinder walls and the piston head, undertakes a
"tumble" which reverses its movement direction and organizes the flow in a struc-
tured vortex on an axial plane. Then the vortex size is decreased by the piston, as
it moves towards top dead center (TDC): the angular momentum of the vortex is
conserved and, since its radius is decreased, its angular velocity must increase. It is
used in direct-injection engines to enhance fuel-air mixing and in port fuel injection
SI engines to generate turbulence which increase the turbulent flame speed [8]. An
explanation of Tumble motion is shown in figure (1.2).

5

Chapter 1. Computational Fluid Dynamics

Figure 1.2: Tumble motion imposed by different intake ducts configurations.

The Tumble motion is measured, for each valve lift, under steady-state condition.
The flow bench is shown in figure (1.3).

Figure 1.3: Flow bench for the Tumble measurement.

6

Chapter 1. Computational Fluid Dynamics

A kinematic measure of the Tumble motion, the Tumble ratio RT , can thus be
defined:

RT =
ωTD

vis
(1.2.1)

where ωT represents the paddle wheel rotation speed, D is the cylinder bore and
vis represents the velocity due to an ideal iso-entropic expansion under the pressure
difference across the valve. The numerator represents the characteristic velocity of
the Tumble motion, while the denominator is a velocity representing the axial flow
motion.

Due to the complexity of the processes taking place inside an engine, simplified
models of the underlying physics are required, from the turbulence model to the
chemical one. Modeling is a tricky phase: when some aspects are neglected, results
might be not accurate and reliable. Nevertheless, making some assumptions is es-
sential to reduce the complexity to a manageable level whilst preserving the main
aspects of the problem, leading to acceptable computational costs.

In ICE problems, models span from turbulence to ignition, from atomization
to chemical reactions. In the following, governing equations and later on their
discretization and numerical solution strategy are approached.

1.3 Governing equations
As previously mentioned, each CFD code is based on the conservation equations
of fluid-dynamics representing the ground for any thermo-fluid-dynamical problem.
These equations can completely determine the behaviour of the fluid system without
the need of any additional dynamic law:

• conservation of mass: continuity equation

• conservation of momentum (Newton law): momentum equation

• conservation of energy (first principle of thermodynamics): energy equation

In 3D, this is a 5-equations system, since momentum is a vectorial quantity. Ad-
ditional information are necessary as closure of the system: in order to determine
the state of the fluid, equations of state are used. Under the assumption of ther-
modynamic equilibrium (acceptable even at large fluid velocity if strong shockwaves
do not occur), these equations provide the link between the four thermodynamic
variables (ρ, p, e, T).

This set of conservation equations, when applied to viscous flow is known as the
Navier-Stokes equations, when applied to an inviscid one is known as the Euler
equations.

7

Chapter 1. Computational Fluid Dynamics

The central concept of each conservation equation is flux: the variation of the
total amount of a quantity inside a given domain is equal to the balance between
the amount of the quantity entering and leaving the considered domain, plus the
contribution from eventual sources generating that quantity.
From this definition, it is possible to write a conservation equation.
For a generic scalar quantity φ:

∂

∂t

∫
Ω

φdΩ = −
∮
S

−→
F · d

−→
S +

∫
Ω

QvdΩ +

∮
Ω

−→
Qs · d

−→
S (1.3.1)

where:

• Ω is the controlled volume domain

• S is the surface defining the volume domain

•
−→
F is the flux

• Qv and Qs are volume and surface sources respectively

Eq. (1.3.1) is the integral conservation form for a generic scalar quantity.
Applying the Gauss’ theorem to the surface integrals, the conservation law in integral
form can be written as:

∂

∂t

∫
Ω

φdΩ +

∫
Ω

−→
∇ ·
−→
F dΩ =

∫
Ω

QvdΩ +

∫
Ω

−→
∇ ·
−→
QsdΩ (1.3.2)

Since this conservation equation is valid for any arbitrary volume Ω, it must be
valid in any point of the flow:

∂φ

∂t
+
−→
∇ ·
−→
F = Qv +

−→
∇ ·
−→
Qs (1.3.3)

which is the differential conservation form for a generic scalar quantity.
Starting from Eq.(1.3.3), it is possible to observe that fluxes appear only under space
derivative term, i.e. under the divergence operator.
Fluxes can be generated from two contributions:

• convective contribution: the amount of the conserved quantity φ carried away
or transported by the fluid flow

−→
F c = φ

−→
U . The convective flux is proportional

to the velocity of the flow and has directional properties. It appears as a first
order partial derivative term and represents a non linear term as the velocity
field depends on the transported variables.

• diffusive contribution: the amount of the conserved quantity φ carried away
or transported by the presence of its gradient

−→
F d = −kρ

−→
∇φ. The diffusive

flux appears as a second order partial derivative term, i.e. under the Laplace
operator.

8

Chapter 1. Computational Fluid Dynamics

Writing the two types of flux separately (
−→
F =

−→
F c +

−→
F d = φ

−→
U − kρ

−→
∇φ), the

differential conservation form becomes:

∂φ

∂t
+
−→
∇ · φ

−→
U =

−→
∇ ·

(
kρ
−→
∇φ
)

+Qv +
−→
∇ ·
−→
Qs (1.3.4)

where the above mentioned divergence and Laplace operators appear. It is important
to pay attention to these operators, since they require different numerical approach
(see section 1.5.1).

If the conserved property is a vector
−→
φ = (φx, φy, φz), the flux becomes a tensor

(¯̄F notation), as well as the surface source term (stress tensor), whereas the volume
source terms are a vector:

∂

∂t

∫
Ω

−→
φ dΩ = −

∮
S

¯̄F · d
−→
S +

∫
Ω

−→
Qv · dΩ +

∮
S

¯̄Qs · d
−→
S (1.3.5)

applying the Gauss’ theorem:

∂

∂t

∫
Ω

−→
φ dΩ = −

∫
Ω

−→
∇ · ¯̄FdΩ +

∫
Ω

−→
Qv · dΩ +

∫
Ω

−→
∇ · ¯̄QsdΩ (1.3.6)

Eq. (1.3.6) is the integral formulation of a vector conservation law.
Proceeding as for the scalar conservation case:

∂

∂t

−→
φ +
−→
∇ ·

(
¯̄F − ¯̄Qs

)
=
−→
Qv (1.3.7)

Eq. (1.3.7) is the differential formulation of a vector conservation law.
From these general formulations, the conservation equations of fluid-dynamics

can be easily derived [21,27].

Continuity equation: this conservation is referred to a scalar property φ = ρ

∂

∂t

∫
Ω

ρdΩ +

∮
S

ρ
−→
U · d

−→
S = 0 (1.3.8)

∂ρ

∂t
+
−→
∇ ·

(
ρ
−→
U
)

= 0 (1.3.9)

Eq. (1.3.9) is the continuity equation written in conservative form (the space
derivatives are grouped under the divergence term).

Momentum equation: this conservation is referred to a vectorial property φ =

ρ
−→
U . It is common practice to highlight the contributions due to the surface forces

(pressure and viscous forces, i.e. stresses) as separate terms in this conservation law
and to include the effects of volume forces (gravity, applied forces) as source terms.

9

Chapter 1. Computational Fluid Dynamics

The former type is the expression of the fluid deformability and, since it depends
on the position and orientation of the surface it acts on, it must be represented by
a tensor.
Assuming that the fluid is Newtonian:

¯̄σ = −p ¯̄I + ¯̄τ (1.3.10)

where −p ¯̄I represents the isotropic pressure component (being ¯̄I the identity tensor)
and ¯̄τ is the viscous shear stress tensor, which represents the internal friction force
of fluid layers against each other. Newton’s constitutive law suggests the following
linear model:

¯̄τ = µ

[(
∂Uj
∂xi

+
∂Ui
∂xj

)
− 2

3

(−→
∇ ·
−→
U
)
δij

]
(1.3.11)

Inside the control volume the internal forces cancel out(therefore they are not rep-
resented by volume integrals).
Starting from these observations, the integral equation of momentum conservation
equation will be:

∂

∂t

∫
Ω

ρ
−→
U dΩ +

∮
S

(
ρ
−→
U ⊗

−→
U
)
· d
−→
S =

∫
Ω

ρ
−→
fedΩ +

∮
S

¯̄σ · d
−→
S (1.3.12)

where ⊗ represents the tensor product. Applying the Gauss’ theorem:

∂

∂t

∫
Ω

ρ
−→
U dΩ +

∫
Ω

−→
∇ ·

(
ρ
−→
U ⊗

−→
U
)
dΩ =

∫
Ω

ρ
−→
fedΩ +

∫
Ω

−→
∇ · ¯̄σdΩ (1.3.13)

Leading to the the differential form:

∂
(
ρ
−→
U
)

∂t
+
−→
∇ ·

(
ρ
−→
U ⊗

−→
U + p ¯̄I − ¯̄τ

)
= ρ
−→
fe (1.3.14)

Notice that ¯̄τ depends on the gradient of velocity (1.3.11), thus resulting in a diffu-
sion flux (Laplace operator, here not written explicitly) for the momentum.

Energy equation: this conservation is referred to a scalar quantity φ = ρE, where
E = e+ 1

2

−→
U 2 is the total energy (sum of fluid internal energy and its kinetic energy)

per unit mass.
The energy equation is derived from the first law of thermodynamics, stating that
the rate of change of energy of the fluid is equal to the rate of heat addition to the
fluid plus the rate of work done on the fluid. According to the previous perspective:

• the volume source terms are the work of the volume forces fe and the heat
sources:

Qv = ρ
−→
fe ·
−→
U + qH (1.3.15)

10

Chapter 1. Computational Fluid Dynamics

• the surface sources Qs result from the work done on the fluid by the pressure
and the internal shear stress acting on the control volume surface:

−→
Qs = ¯̄σ ·

−→
U = −p

−→
U + ¯̄τ ·

−→
U (1.3.16)

• flux can be easily separated in its type:

– convective:
−→
F c = ρE

−→
U

– diffusive:
−→
F d = −k

−→
∇T , representing the thermal conductivity of the

fluid

All these contributions lead to the energy conservation equation, which in integral
form becomes:

∂

∂t

∫
Ω

ρEdΩ+

∮
S

ρE
−→
U ·d
−→
S =

∮
S

k
−→
∇Td

−→
S +

∫
Ω

(
ρ
−→
fe ·
−→
U + qH

)
dΩ+

∮
S

(
¯̄σ ·
−→
U
)
·d
−→
S

(1.3.17)
while in differential form is written as:

∂ρE

∂t
+
−→
∇ ·

(
ρE
−→
U
)

=
−→
∇ ·

(
k
−→
∇T

)
+
−→
∇ ·

(
¯̄σ ·
−→
U
)

+ ρ
−→
fe ·
−→
U + qH (1.3.18)

Expressing the stress tensor in its components:

∂ρE

∂t
+
−→
∇ ·

(
ρE
−→
U − k

−→
∇T + p ¯̄I ·

−→
U − ¯̄τ ·

−→
U
)

= ρ
−→
fe ·
−→
U + qH (1.3.19)

For compressible flows it is useful to express the conservation equation (1.3.19) with
respect to enthalpy (H = h+ 1

2

−→
U 2, h = e+ p

ρ
) instead of total energy:

∂ρH

∂t
+
−→
∇ ·

(
ρH
−→
U − k

−→
∇T − ¯̄τ ·

−→
U
)

=
∂p

∂t
+ ρ
−→
fe ·
−→
U + qH (1.3.20)

In the present case of study, no further conservation equations are required. When
the physical problem is more complex, e.g. when it includes the spray evolution
and the combustion process, the code must solved also species mass conservation
equation.

1.4 Turbulence models
"Nearly all macroscopic flows encountered in the natural world and in engineering
practice are turbulent. [..] Turbulence involves fluctuations that are unpredictable

11

Chapter 1. Computational Fluid Dynamics

in detail, and it has not been conquered by deterministic or statistical analysis.
However, useful predictions about it are still possible and these may arise from
physical intuition, dimensional arguments, direct numerical simulations, or empirical
models and computational schemes." [15] The most common definition of turbulence
is a flow regime characterized by chaotic property changes. In particular Reynolds
[22] discovered that turbulent features begin to appear at particular values of a
nondimensional number, called Reynolds number, defined as:

Re =
UL

ν
(1.4.1)

where U and L are typical velocity and length scale of the flow, while ν is the
kinematic viscosity of the fluid.

One of the most widely accepted concept in turbulence theory is the energy
cascade, concept firstly introduced by Richardson in 1922 [24]. The main idea of this
view is that turbulence can be considered as a superposition of eddies of different
sizes. An eddy eludes a precise definition, but it is conceived to be a turbulent
motion, localized within a region of size l, that is at least moderately coherent over
this region. The region occupied by a large eddy can also contain smaller eddies.
Due to their high Reynolds numbers, the largest eddies have a big chance to become
unstable and break up into smaller eddies. In this way turbulent kinetic energy
is transferred to smaller eddies. The energy cascade continues until the Reynolds
number is sufficiently small that the eddy motion is stable and molecular viscosity
is effective in dissipating the kinetic energy. Figure (1.4) shows a visual description
of the energy cascade concept.

12

Chapter 1. Computational Fluid Dynamics

Figure 1.4: Energy cascade.

Specifically in ICEs, gas motion within the engine cylinder has a great influence
on the fuel-air mixing and thus on the initial development of the combustion process.
Nowadays the design of the intake and exhaust ducts, the piston crown and the valve
timing are specifically studied in order to enhance organized large-scale motions
(the largest eddies of the energy cascade concept), which are the effective source of
turbulence motions inside the cylinder.

These large-scale gas motions are useful for both spark ignition and compression
ignition engines. In the former type, swirl and/or tumble (structured large-scale mo-
tion induced during the intake stroke and increased during the compression one) are
useful to enhance mixing between air, fuel and residual gases, to generate turbulence
which increases the flame propagation speed and finally to achieve stratified mix-
ture distribution. In the latter type, squish (structured large-scale motion induced
during the compression and expansion strokes) is useful to promote fuel evaporation
and mixing with air as well as to increase mixing between air and burned gases
during the expansion stroke (allowing a better soot oxidation). These organized
gas motions break down in smaller and smaller eddies, supplying them the kinetic
energy required by turbulence.

For this reason, a correct modelling of large-scale vortex and of the consequent

13

Chapter 1. Computational Fluid Dynamics

turbulence is fundamental in a CFD analysis of ICEs: numerical methods to capture
turbulence effects are of central importance. Such methods can be grouped into three
categories:

• Direct numerical simulation (DNS): all the turbulent scales, from the largest
to the smallest are computed. In order to solve even the smallest turbulent ve-
locity fluctuations, the spatial grid has to be extremely fine and the time steps
small enough to resolve the fastest fluctuations. These requirements lead to
excessive computational costs for the greatest part of industrial computations.

• Large eddy simulation (LES): this method involves space filtering of Navier-
Stokes equations. Mean flow and large eddies are computed, while the small
scale vortexes are modelled. The effects of unresolved eddies are included
by means of a sub-grid scale model. Computational costs are still nearly
prohibitive.

• Reynolds-averaged Navier-Stokes (RANS) equations: this method involves
time averaging of Navier-Stokes equations: attention is focused on the mean
flow and the turbulence effects on mean flow properties. Due to interactions
between turbulent fluctuations, extra terms (which are new unknowns) appear
in the time-averaged (or Reynolds-averaged) equations so that the effects of
instantaneous fluctuations are not completely discarded. In particular, in the
momentum equation appears a second order tensor -the Reynolds stress tensor-
which according to Boussinesq is proportional to mean rates of deformation:

¯̄r = −ρ−→u ⊗−→u (1.4.2)

being −→u the velocity fluctuation. Using the suffix notation:

rij = −ρuiuj = µt

(
∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρkδij (1.4.3)

where µt is the turbulent viscosity and k = 1
2

(
u2 + v2 + w2

)
is the turbulent

kinetic energy. µt must be determined and this is the reason why turbulence
models are required: in order to estimate the new unknowns generated by the
averaging of Navier-Stokes equations, closure equations are necessary.

In figure (1.4) there is also a visual description of the scale application of these
methods.
Concerning the specific application field of ICEs, RANS solvers are commonly used.
Nevertheless, LES solvers find application in the analysis of the so called cyclic vari-
ability [26], which could not result using a time averaging procedure, while DNS can
be applied in spray modelling [6].

14

Chapter 1. Computational Fluid Dynamics

In the present case, RANS solver is used. As previously described, it is necessary
to develop turbulence models to predict the Reynolds stresses and close the system of
mean flow equations. Different turbulence models are currently used in CFD codes
(mixing length model, one equation models like Spalart-Allmaras, two equations
models like k-ε and k-ω or even seven equations models). At present, the widely
used and validated is the k-εmodel, thanks to its robustness and reasonable accuracy
for a wide range of turbulent flows. The unknown introduced by the time-averaging,
the turbulent or eddy viscosity, can be expressed as follows:

µt = ρCµ
k2

ε
(1.4.4)

where Cµ is a dimensionless constant, k is the turbulent kinetic energy and ε the
rate of dissipation of turbulent kinetic energy. The transport equations for k and ε
are:

∂ρk

∂t
+
−→
∇ ·

(
ρk
−→
U
)

=
−→
∇ ·

(
µt
σk

−→
∇k
)

+ ¯̄r :
−→
∇
−→
U − ρε (1.4.5)

∂ρε

∂t
+
−→
∇ ·

(
ρε
−→
U
)

=
−→
∇ ·

(
µt
σε

−→
∇ε
)

+ C1ε
ε

k
¯̄r :
−→
∇
−→
U − C2ερ

ε2

k
(1.4.6)

In both equations, the first term on the left side represents the rate of change of
the variable (k or ε) and the second the transport of the variable by convection,
while on the right side the terms represent in order the transport of the variable by
diffusion, the rate of production and finally the rate of destruction of the variable.
The ε-equation results problematic in the near-wall region since the term ε2

k
is sin-

gular at the wall.
Another two-equations model, more accurate in the calculation of the near wall

region, is the k-ω. In this model one equation is based on the specific dissipation
rate ω = ε

k
, which can be considered a turbulent frequency. The transport equation

for ω is written in similar form of the ε equation:

∂ρω

∂t
+
−→
∇ ·

(
ρω
−→
U
)

=
−→
∇ ·

(
µt
ρσω

−→
∇ω
)

+ C1ω
ω

k
¯̄r :
−→
∇
−→
U − C2ωρω

2 (1.4.7)

In the nineties, Menter proposed a modified version of the k-ω model, the k-ω SST,
combination of the original two-equations models, with a blending factor making
the model equivalent to the k-ω model close to the walls and to the k-ε model far
from the walls.

Both the k-ε and the k-ω SST models are tested in the present work.

1.5 Discretization process
The aforementioned system of non-linear partial differential equations cannot be
analytically solved. Discretization techniques allow to transform the partial dif-

15

Chapter 1. Computational Fluid Dynamics

ferential equations into discrete algebraic equations numerically manageable. The
major discretization methods are:

• Finite difference method (FDM)

• Finite element method (FEM)

• Finite volume method (FVM)

The most well-established CFD codes (both commercial like CFX/ANSYS, FLU-
ENT and STAR-CD and open-source like OpenFOAM) uses the FVM technique for
its great versatility and flexibility.
In figure (1.5) the various stages of the discretization process are illustrated [19].

Figure 1.5: The discretization process.

Specifically, the FVM converts the partial differential equations representing con-
servation laws over differential volumes into discrete algebraic equations over finite
volumes (or elements or cells).

16

Chapter 1. Computational Fluid Dynamics

The first step is the discretization of the computational domain into non-overlapping
sub-domains: a grid or mesh of cells (control volumes) as the one shown in figure
(1.6). The variables of interest are evaluated at the centroids of the control volumes,
not at their boundary faces and this characteristic allows to implement boundary
conditions without problems.

Figure 1.6: Control volume.

The centroid of the cell −→xP is defined as:∫
V

(−→x −−→xP) dV = 0 (1.5.1)

It is assumed that the property φ varies linearly within each cell:

φ(−→x) = φP + (−→x −−→xP) ·
(−→
∇φ
)
P

+O
(

(−→x −−→xP)
2
)

(1.5.2)

Similarly, the center of the face xf is defined as:∫
S

(−→x −−→xf) dS = 0 (1.5.3)

and linear variation of φ is assumed within each internal face:

φ(−→x) = φf + (−→x −−→xf) ·
(−→
∇φ
)
f

+O
(

(−→x −−→xf)
2
)

(1.5.4)

Then, the partial differential equations are discretized into algebraic equations by
integrating them over each discrete element and finally iteratively solved.
Since the flux entering a given volume is identical to that leaving the adjacent volume
across the common face, the FVM is intrinsically conservative, making it perfectly
suitable for CFD problems.

17

Chapter 1. Computational Fluid Dynamics

1.5.1 Equation discretization

The equation discretization step is performed by integrating the differential equa-
tion over a control volume and then approximating the variation of the variable
between mesh elements through imposed interpolation schemes. As the number of
grid elements increases, the solution of the discretized equations approaches the ex-
act solution of the corresponding differential ones, since as the control volumes get
closer, changes in the variable between neighboring cells become small and thus the
interpolation choice less influential.
More in detail, the problem is how to discretize each term of a generic transport
equation. Starting from a generic transport equation in integral form with respect
to a generic control volume (CV):∫

CV

∂ρφ

∂t
dV +

∫
CV

−→
∇ ·

(
ρφ
−→
U
)
dV =

∫
CV

−→
∇ ·

(
Γ
−→
∇φ
)
dV +

∫
CV

SφdV (1.5.5)

It is easy to highlight the various term: the rate of change and the convective terms
on the left side, the diffusive (Γ is the diffusion coefficient) and the source term on
the right side. Applying the Gauss theorem for the convective and diffusion terms:

∂

∂t

∫
CV

ρφdV +

∫
S

(
ρφ
−→
U
)
· −→n dS =

∫
S

(
Γ
−→
∇φ
)
· −→n dS +

∫
CV

SφdV (1.5.6)

with −→n outward normal vector.

Volume integral: the simplest approximation is to replace the volume integral
by the mean value of the integrand (approximated by the cell center value) and the
CV volume. This discretization is applied for example to the source term.

∫
CV

φdV =

∫
CV

φPdV +

∫
CV

(−→x −−→xP) dV
−→
∇φ+

∫
CV

O
(

(−→x −−→xP)
2
)
dV
−→
∇
−→
∇φ

= φPVP +O| (∆x) |2 (1.5.7)

The midpoint rule leads to an accuracy of the second order.

Surface integral: if convective and diffusive terms are present, the evaluation of
surface integrals is necessary. The value of the integrand over the surface is required:
the cell-face values are approximated in term of cell centroid values. A double ap-
proximation is necessary: the approximation of the integral using a finite number
of face values (one, the face-center value, using the midpoint rule or three, the face
center and the face vertexes, using the Simpson’s rule, etc.) and the approximation

18

Chapter 1. Computational Fluid Dynamics

of the established face point(s) using interpolation schemes starting from the prop-
erty value at the cell centroid.
As before, the midpoint rule leads to:∫

S

φdS = ... = φf +O| (∆x) |2 (1.5.8)

However, the global accuracy depends not only on the midpoint rule, but also on
the value of φf which must be obtain by interpolation.

Convection term: the convection term (or divergence term) is firstly transformed
in a surface integrale using Gauss theorem:∫

CV

−→
∇ ·

(
ρφ
−→
U
)
dV =

∫
S

(
ρφ
−→
U
)
· −→n dS (1.5.9)

Then, using the midpoint rule:∫
S

(
ρφ
−→
U
)
· −→n dS =

∑
f

−→
S ·
(
ρφ
−→
U
)
f

=
∑
f

−→
S ·
(
ρ
−→
U
)
f
φf

=
∑
f

(SρUn)f φf

=
∑
f

Fφf (1.5.10)

The most used interpolation schemes are the upwind scheme, which approximates
φf with the value of the neighboring cells on the basis of the flow direction (first
order accuracy) or the linear or central difference interpolation, where φf is in-
terpolated between the two nearest cell centroids (second order accuracy). The first
scheme is less accurate but conditionally stable, while the second is more accurate
but unstable: in case of sharp gradient stability is preferred to accuracy.
Other methods like QUICK or polynomial approximations have higher accuracy.

Gradient term: the gradient term, after the application of the Gauss theorem,
needs a linear (or higher) interpolation, otherwise it cancels out.

Diffusive term: the diffusion term (or laplacian term) is first transformed in a
surface integrale using Gauss theorem:∫

CV

−→
∇ ·

(
Γ
−→
∇φ
)
dV =

∫
S

(
Γ
−→
∇φ
)
· −→n dS (1.5.11)

19

Chapter 1. Computational Fluid Dynamics

Then, as for the convection term:∫
S

(
Γ
−→
∇φ
)
· −→n dS =

∑
f

−→
S ·
(

Γφ
−→
∇φ
)
f

=
∑
f

(Γφ)f

(−→
S ·
−→
∇φ
)
f

(1.5.12)

where the term
−→
S ·
−→
∇φ is evaluated as:(−→
S ·
−→
∇φ
)
f

= |
−→
S |φP − φN

|
−→
d |

+
−→
k ·
(−→
∇φ
)
f

(1.5.13)

where φP and φN are the values of the property at the adiacent cell centroids and−→
k is the correction that must be applied to evaluate the gradient in case of a non
orthogonal mesh (see figure (2.7)).

Figure 1.7: Gradient evaluation in case of non-orthogonality.

Time discretization: in case of time-varying problems an integration over time
is also needed. Together with a domain discretization, a time discretizazion is re-
quired: the time domain is divided into time steps ∆t. The time discretization
methods can be divided into explicit and implicit. The former type is always sta-
ble (thus the time step can be larger), but computationally more expensive, while
the latter type is only conditionally stable: in order to have stability the time step
cannot be larger than a maximum value, which depends on the Courant number
Co = u

∆x/∆t
, where u is the magnitude of the velocity and ∆x the grid dimen-

sion. To ensure stability, the condition Co < 1 must be respected. Among the
implicit methods, the most used are Euler (accuracy of the first order) and Crank-
Nicolson (second order).

20

Chapter 2

OpenFOAM and Lib-ICE

OpenFOAM (Open Source Field Operation and Manipulation) is first and foremost
a C++ library, used primarily to create executables, known as applications. The
applications fall into two categories: solvers, that are each designed to solve a spe-
cific problem in continuum mechanichs; and utilities, that are designed to perform
tasks that involve data manipulation [20]. The great potentiality of this tool is not
restricted to its free-access: new solvers and utilities can be created by its users and
compiled in addition to standard ones.

OpenFOAM is supplied with pre- and post-processing environments. The in-
terface to pre- and post-processing are themselves OpenFOAM utilities, thereby
ensuring consistent data handling across all environments. The overall structure of
OpenFOAM is shown in figure (2.1), while in figure (2.2) the structure of applica-
tions directory is explained.

Figure 2.1: Overview of OpenFOAM structure.

21

Chapter 2. OpenFOAM and Lib-ICE

Figure 2.2: Applications directory.

As previously introduced, the strength of OpenFOAM is multiple: its free-access
allow and enhance cooperation among the growing community of users (academic
but also commercial), making the spreading of ideas and new models easier; its open
structure make it possible to implement personal libraries.

Thanks to this possibility, the ICE Group of Politecnico di Milano has developed
the Lib-ICE: a code based on OpenFOAM technology focused on internal combus-
tion engine simulations (figure 2.3).

Figure 2.3: Lib-ICE structure.

Lib-ICE can handle automatic mesh generation for full-cycle simulations, fuel-
air mixing modelling in GDI (gasoline direct injection) engines, diesel combustion,

22

Chapter 2. OpenFOAM and Lib-ICE

lagrangian spray modelling, after treatment modelling and much more.
In particular, specific utilities for in-cylinder full-cycle simulations are present,

making it possible to easily run in parallel an entire engine cycle (figure (2.4)).

Figure 2.4: Specific utilities for full-cycle case set-up.

2.1 Mesh management
In a full-cycle simulation, a unique mesh cannot cover the entire cycle of 720 crank-
angle degrees: to cover the whole cycle, multiple meshes are required (figure 2.5).

Figure 2.5: Multiple meshes are required to cover the entire engine cycle.

23

Chapter 2. OpenFOAM and Lib-ICE

ICEs are particularly complex in their motion: piston and valves move simulta-
neously along different axes with different motion equations. Generally the compu-
tational grid is divided in different regions according to the geometrical domain and
the motion strategy.

Boundary motion can be considered as given: in ICEs simulations, it is pre-
scribed by piston and valve motion. The critical step is represented by the internal
points motion: it must accommodate the computational domain changes (boundary
motion) while preserving the validity (both topological and geometrical) and quality
of the mesh. A grid is thus moved until quality requirements are satisfied, then a
new grid must be generated. This procedure is repeated until the entire engine cycle
is covered. The number of required meshes to cover the full cycle generally increases
with the complexity of the geometrical domain.
There are two type of mesh motion strategy:

• Automatic mesh motion: it is based on pure deformation. The topology
of the mesh does not change, connectivity remains the same. The internal
points motion is determined by a vertex-based motion solver. This strategy is
very powerful, fully automatic and it is not subject to limitations on the mesh
complexity.

• Topological changes: it is based on the change of the number or connectivity
of points, faces or cells in the mesh during the simulation. Dynamic mesh
layering, sliding interface and attach/detach boundary belong to this motion
strategy. Most of the mesh points remains unchanged, the topology is changed,
e.g., by the addition/removal of cell layers (dynamic mesh layering).

2.1.1 Polyhedral vertex-based motion solver

In a full-cycle ICEs simulation, the automatic mesh motion is the most convenient
choice. Practically it is performed using the polyhedral vertex-based motion solver.
The internal points displacement is calculated by solving a motion equation having
as boundary condition the prescribed boundary motion. Laplace equation is chosen
as mesh motion equation and it is solved for the point velocity field

−→
Up and the

diffusivity γ, which can be uniform or variable:

−→
∇ ·

(
γ
−→
∇
−→
Up

)
= 0 (2.1.1)

The new position of each internal point is then calculated as:

−→x new = −→x old +
−→
Up∆t (2.1.2)

being −→x new and −→x old the points position after and before the mesh motion respec-
tively, and ∆t the time step.

24

Chapter 2. OpenFOAM and Lib-ICE

As already said, mesh validity and quality must be preserved during the internal
points motion. In order to avoid degenerated control volumes, the Laplace operator
is discretized on a finite element decomposition of the polyhedral mesh: each poly-
hedral cell is split into tetrahedra by splitting its faces into triangles and introducing
a point in the cell centroid (figure 2.6). Consistency in tetrahedral connectivity is
obtained by using identical face decomposition for both cells sharing an internal
face [14].

Figure 2.6: Decomposition of a polyhedral cell into tetrahedra.

The diffusivity field γ controls the mesh quality during the points motion. It is
possible to set a uniform diffusivity or a variable one. Uniform diffusivity generally
maintains mesh validity but leads to a poor mesh quality. The way to diminish
local distortion is by increasing local diffusivity in the motion operator. Among the
diffusion laws, in CFD codes are available the following formulations:

• inverse point distance diffusivity: a number of boundary patches are se-
lected by the user and the diffusion field is a function of cell centroid distance
d to the nearest selected bounudary:

γ =
1

dα
(2.1.3)

• inverse volume diffusivity: the diffusion field is a function of the cell volume
V :

γ =
1

V α
(2.1.4)

In both formulations, α > 0.
In the present case of study, both inverse point distance and inverse volume diffu-
sivity have been applied for each mesh motion, finally choosing the method leading
to larger mesh validity.

25

Chapter 2. OpenFOAM and Lib-ICE

Mesh quality indexes

It was highlighted that mesh quality is taken into account as crucial requirement
during mesh motion. A good mesh quality indeed, together with a fine grid size, in-
fluences the computed solution: numerical methods accuracy is particularly affected
by two quality indexes: skewness and non-orthogonality.

Non-orthogonality: it is an index of the alignment between the vectorial dis-
tance between the centroids of two neighbouring cells and the vector normal to the
face. It is defined as the angle between these two vectors, and it should not overcome
70◦ (severe non-orthogonality). Non-orthogonality higher than 90◦ is not acceptable
as it leads to degenerated cells. A representation of non-orthogonal mesh is shown
in figure (2.7). Non-orthogonality affects the discretization accuracy of the diffusion

(a) (b)

Figure 2.7: Examples of non-orthogonal mesh in 2D (a) and 3D (b).

term in transport equations.

Skewness: it is an index of the distortion of the grid. It is calculated as the
distance between the face center and the face intersection point of the vector con-
necting the centroids of the neighbouring cells, normalized by the distance between
the centroids of the neighbouring cells. A representation of skew mesh is shown in
figure (2.8).

skewness =
|
−→
d i|
|
−→
C i|

(2.1.5)

Recommended maximum values are 20 for boundary skewness and 4 (but admissible
till 10) for internal skewness.

Interpolation

Once the set of meshes has been generated, it is possible to run the simulation itself.
The simulation is performed on the the first mesh up to its validity, then the com-
puted field conditions (pressure, temperature, velocity, etc.) must be interpolated

26

Chapter 2. OpenFOAM and Lib-ICE

(a) (b)

Figure 2.8: Examples of skew mesh in 2D (a) and 3D (b).

(mapped) on the next mesh, where the simulation continues. This procedure is
schematically shown in figure (2.9). The starting mesh is the so called source mesh,
while the next one is the target mesh.

Figure 2.9: Strategy for full-cycle ICEs simulations: case to case interpolation.

27

Chapter 2. OpenFOAM and Lib-ICE

The chosen interpolation method is a second-order inverse distance weighting:
for each cell centroid on the target mesh, the closest cell centroid in the source mesh
is identified (figure (2.10)).

Figure 2.10: Identification of the closest (cyan) and neighbouring (green) cells in the source
mesh for a cell in the target mesh (red).

As shown in figure (2.10), also the neighbouring cells must be taken into account:
the field value for each cell centroid of the target mesh is computed as a function of
the field values on the corresponding cell centroid and its neighbouring cells in the
source mesh:

φ(x) =
1∑
αi

∑
αiφi αi =

1

|x− ci|
(2.1.6)

where x represents the cell centroid on the target mesh, φi the value of the field
on the source mesh and αi (the weights) are evaluated using the distance between
x and the cell centroids of the neighbouring cells in the source mesh ci. If the
distance between target and source cell centroids is lower than a defined tolerance,
no interpolation is performed: the field value in the target cell is set equal to the
one in the corresponding cell centroid in the source mesh.

2.2 Cold-flow simulation solver
In the present work, a full-cycle cold-flow simulation is performed. OpenFOAM pro-
vides different types of transient solvers for turbulent compressible flows (rhoCentral-
Foam, rhoPimpleFoam,sonicFoam), some of them include also optional mesh motion
and mesh topology changes, like rhoPimpleDyMFoam. Lib-ICE however provides a
specific utility to run full-cycle gas exchange simulations (runMultiCycleCase)
perfectly coupled with the utility used to generate automatically the whole set of
meshes (engineDynamicSetUp), as will be explained in the next chapter. To-
gether with specific utilities, specific solvers are implemented, divided into the cat-
egories: coldFlow, combustion, compressible, Diesel, multiphase and sparkIgnition.

28

Chapter 2. OpenFOAM and Lib-ICE

Among the coldFlow solvers, the simpleColdSpeciesEngineDyMFoam solver
has been applied for this work.

The solver employs a PIMPLE algorithm, a coupling of SIMPLE and PISO
algorithms. Actually it is nothing but a PISO with two addiction: outer correction
loops (i.e. multiple cycling over the same time step using the last iteration final value
as initial guess for the next iteration) and under-relaxation of the variables between
consequent outer iterations (SIMPLE). The final result is a higher stability than
the one achievable with a PISO algorithm, even with larger time step. In full-cycle
simulations the possibility to use larger time step is crucial, as the simulation lasts
720 crank-angle degrees (CA). In figure (2.11) an outline of PIMPLE algorithm is
shown.

29

Chapter 2. OpenFOAM and Lib-ICE

Figure 2.11: PIMPLE algorithm.

simpleColdSpeciesEngineDyMFoam is a solver for compressible flows: be-
fore the pimple-loop, density equation is solved, inside the pimple loop also the
energy equation (in the present case in its enthalpy formulation) is solved and com-
pressibility effects are taken into account in the pressure and velocity equations.

In addition, it includes the mesh motion: if the mesh is changed it applies proper
corrections and if the mesh is moving it continuously update the mesh flux.

Finally it automatically writes outputs useful for post-processing analyses.

30

Chapter 3

Case of study and implementation

In this chapter, the implementation of the above explained simulation strategy on
the case of study is deeply described. After a focus on the case of study - TU-
Darmstadt engine -, settings of the mesh generation by means of the utility en-
gineDynamicSetUp are reported, together with the problems occurred during the
meshing step. The last part of this chapter concerns the settings of the cold-flow
simulation, performed by means of the utility runMultiCycleCase.

3.1 TU-Darmstadt optical engine
The simulation is performed on a geometrical model of the TU-Darmstadt optical
engine: a single-cylinder spark-ignition (SI) engine fully optically accessible. It is a
square, four-valve, pent-roof engine with the following geometric parameters:

• conrod length: 148 [mm]

• bore: 86 [mm]

• stroke: 86 [mm]

• clearance: 2,6 [mm]

• revolutions per minute: 800 [rpm]

Figure (3.1) shows a CAD description with the experimental points of interest (pro-
vided by TU-Darmstadt).

31

Chapter 3. Case of study and implementation

Figure 3.1: Engine CAD description.

As shown in figure (3.1), the CAD model includes also a crevice height: com-
bustion chamber crevices in spark-ignition engines are identified as the largest con-
tributors to the engine-out hydrocarbon emissions. Their modelling has thus great
influence in the prediction of thermal efficiency and pollutants production. In the
present work crevices have been included in the mesh generation in order to achieve
a grid suitable for both the cold-flow and combustion process simulations. In the
cold-flow simulation reported in this work, the crevices modelling has allowed to
assess their effect on the engine compression ratio.

The optical access is provided by a 55mm height quartz-glass liner (20 mm
thickness), an 8 mm window extension into the pent-roof, and a Bowditch-piston
with flat quartz-glass piston-crown window (75 mm diameter). Additionally, optical
access is granted into the straight piping of the intake manifold by a DN50 fused-
silica cylinder [11]. The TU-Darmstadt optical engine is shown in figure (3.2).

32

Chapter 3. Case of study and implementation

Figure 3.2: TU-Darmstadt optical engine.

At TU Darmstadt particle image velocimetry (PIV) measurements were per-
formed at crank-angle degree (CA) 270 bTDC (before top-dead-center), correspond-
ing to a mid-intake phase (exhaust valves closed, intake valve lift around 9 mm).
Further experimental measurements performed at the same CA in steady-state con-
ditions are available for the standard configuration (different intake ducts orienta-
tion, slightly bigger intake valves diameter). In this work a steady-state simulation
has been performed on both the standard and the current engine configuration in
order to achieve a meaningful experimental validation together with a performance
comparison between the engine configurations.

Then a full-cycle simulation has been performed and the results has been com-
pared to those of previous simulations referring to the standard engine configuration
in correspondence of 450 (450 = 270 bTDC), 540 and 630 CA (that is mid-intake,
intake in correspondence of BDC and mid-compression).

Both simulations have been performed on the same grid, whose generation pro-
cedure is deeply described in the following section.

3.2 engineDynamicSetUp
Generating high quality meshes is essential for CFD computations, the meshing step
is thus of central importance.

The full-cycle set of meshes has been generated with a fully automatic utility
implemented in the Lib-ICE library, engineDynamicSetUp. It is an application

33

Chapter 3. Case of study and implementation

for the dynamic creation and management of a complete set of meshes able to cover
the entire engine cycle. The tool automatically creates the grids, prepares the case
folders and manages the dictionaries for the full cycle simulation [9].
engineDynamicSetUp works in loop:

• generation of the stl file at the desired crank-angle degree (CA): createEngineSTL
utility

• generation of the mesh: snappyHexMesh utility

• generation of the case folder and set-up of the dictionaries

• movement of the mesh till satisfies quality parameters: moveEngineDynam-
icMesh utility

In order to work properly, this utility requires two initial step:

• pre-processing of the input geometry: the CAD geometry in stl format must
by divided in proper multiple surfaces (patches), necessary for the definition
of the domain motion (figure (3.3)).

Figure 3.3: Division of the surface in patches, necessary for the definition of the domain
motion.

34

Chapter 3. Case of study and implementation

To achieve a correct geometry motion, the input stl geometry must be posi-
tioned at the top-dead center (TDC) with all the valves at the minimum lift
below which are considered closed (minLift).

• set-up of all the dictionaries required in the different case folders, from those
concerning the mesh generation, to those for the mesh motion till the ones
required for the following full-cycle simulation.

engineDynamicSetup entrusts snappyHexMesh, a mesh generation utility sup-
plied with OpenFOAM, with the single-mesh generation. This utility generates
3-dimensional meshes containing hexahedra (hex) and split-hexahedra (split-hex)
automatically from triangulated surface geometries, or tri-surfaces, in Stereolithog-
raphy (STL) or Wavefront Object (OBJ) format. The mesh approximately conforms
to the surface by iteratively refining a starting mesh and morphing the resulting split-
hex mesh to the surface. The specification of mesh refinement level is very flexible
and the surface handling is robust with a pre-specified final mesh quality [20].
snappyHexMesh requires high quality input geometry to allow a correct meshing.

3.2.1 Geometry

TU Darmstadt provided us CAD file generated using NX9, in prt, stl, stp formats.
This geometry file had many features avoiding its use as tri-surfaces in the meshing
tool and overall as computational domain for a CFD simulation. In figure (3.4) a
representation of the original geometry.

35

Chapter 3. Case of study and implementation

Figure 3.4: TU Darmstadt engine, STL file provided.

Thanks to figures (3.5) and (3.6), representing slices of the original geometry at
difference planes, it is possible to notice the existing problems.

Figure 3.5: TU Darmstadt engine - slice, xy plane at z = 0 (symmetry plane). Errors
highlighted.

36

Chapter 3. Case of study and implementation

Figure 3.6: TU Darmstadt engine - slice, xy plane at z = 0.02. Errors highlighted.

From the first slice, shown in figure (3.5), it is possible to observe that the
input geometry model is not suitable for CFD simulations. First of all there is an
unknown surface inside the intake duct, highlighted by a red circle. This surface
represents probably a measuring instrument (the location suggests the DN50 fused-
silica cylinder of the experimental set-up), however it would strongly affect the flow
field. Highlighted by red arrows through flanges are present in both the intake and
exhaust ducts. These surfaces represent an undesired obstacle to the fluid motion.

A similar problem arises in the cylinder- and in the valve-regions, as shown in
figure (3.6). The intake and exhaust valves are physically closed and this feature
represents a problem for two utilities during the meshing step:

• the geometry does not enclose a unique volume. The snappyHexMesh utility
requires an internal point in order to identify the volume to mesh: with more
than one volume this means that only one sub-volume can be discretized (at
least in OpenFOAM version preceding the last one -3.0.x).

• the valves motion would lead to distorted stl geometries. createEngineSTL
utility moves the template stl geometry according to the prescribed motion

37

Chapter 3. Case of study and implementation

of valves and piston. The surfaces connected to these moving parts, move
consequently: being the valves closed, they are connected to their seat on the
cylinder head. The valve seats would thus follow the valve motion, while they
are fixed components. For this reason the engineDynamicSetUp application
requires a template stl file with all the valves open.

Analogous problem arises in the cylinder because of an attempt to design the
combustion chamber crevices: the piston surface closes the geometry, thus the
crevice height would not be part of the volume to discretize.

The first attempt to solve these problems has been made using MeshMixer. This
software has a inspector tool able to identify the problems of the analysed geometry.
Just to give to the reader a qualitative idea of the geometry quality, figure (3.7)
shows the errors identified using the least strict control scale (thus neglecting a
large number of other problems).

Figure 3.7: Geometry problems evaluated by the MeshMixer inspector tool.

The identified errors are mainly located in correspondence of the above men-
tioned improper internal surfaces.

In order to perform a correct CFD simulation using the assigned geometry, the
improper internal surfaces inside the ducts have been removed. Furthermore, the
intake ducts have been cut in correspondence of P_MAN2 (see figure (3.1)), since
experimental data are available in this section.

Through MeshMixer, it was possible to singularly identify the geometry triangles
using the select tool: in this way the geometry has been divided in a set of surfaces
(the patches required by the meshing tool).

Paying attention to the surface triangulation, a first remark is that the geometry
surface was not enough smooth, as it can be observed in figure (3.8). A poor
smoothness can represent a problem for the utility snappyHexMesh.

38

Chapter 3. Case of study and implementation

Figure 3.8: Zoom on the cylinder head: poor smoothness.

The select procedure of MeshMixer is shown in figure (3.9).

Figure 3.9: MeshMixer select tool: in orange the selected geometry triangles.

In this figure the exhaust ducts have been omitted to enable the examination
of the contact between valve and its seat. The aim was to identify the triangles
defining the valve components (specifically the bottom and side of the valve) and

39

Chapter 3. Case of study and implementation

regroup them into two patches, separated from the patch defined by the triangles
of the valve seat. This procedure encountered unexpected difficulties due to the
irregular triangulation and to the negligible dimensions of some triangles to select.

Once separated these components, it was necessary to move the valves till the
minimum lift. The valve motion uses the valve bottom as reference patch to move
(other valve components move consequently). The motion however was not success-
ful, due to the wrong orientation of the bottom surface normal, as shown in figure
(3.10).

Figure 3.10: Valve bottoms patches: triangles with opposite surface orientation.
The triangles of the bottom valves had opposite surface orientation (identified by
pink and grey colors): the motion solver was not able to identify an univocal surface
orientation and thus a correct motion direction.
MeshMixer allows to invert the surface normal orientation, however selecting the
wrong oriented triangles was a difficult task due to the triangles overlapping, as
shown in figure (3.11).

40

Chapter 3. Case of study and implementation

Figure 3.11: MeshMixer select tool: attempt to select the wrong oriented triangles.

Solving the valve closure issue led to a new problem: removing the contact
between the valve and its seat, the surface of the whole geometry was open. In order
to assure a closed surface, new external components (designed using the FreeCAD
software) have been added to the given surface. Figure (3.12) shows the added
component.

41

Chapter 3. Case of study and implementation

Figure 3.12: External components (full color) added to the given surface (transparent).

Finally, as the geometrical domain is symmetrical, the simulations have been
performed on half geometry. However it was necessary to modify the spark-plug in
order to ensure the exact geometrical symmetry (otherwise studying half geometry
would not have been consistent). In figure (3.13), the original spark-plug and the
spark-plug modified to ensure geometrical symmetry.

The modified geometry surface used as template file for the mesh generation is
shown in figure (3.14).

42

Chapter 3. Case of study and implementation

(a) Original spark-plug.

(b) Modified spark-plug.

Figure 3.13: Spark-plug modified to ensure geometrical symmetry.

Figure 3.14: Template STL geometry.

43

Chapter 3. Case of study and implementation

3.2.2 Settings

The second requirement of engineDynamicSetUp is the set-up of all the dictionar-
ies required in the different case folders, from those concerning the mesh generation,
to those for the mesh motion till the ones requires for the following full-cycle simu-
lations [10]. Figure 3.15 shows the structure of the case.

Figure 3.15: Case structure.

init folder: is the template directory that will be automatically copied to gener-
ate all the case folders required by the simulation. For this reason the set-up of the
files in this folder should be done only once, before running the application.
As a "template" case, it has in turn three subfolders (figure (3.16)):

44

Chapter 3. Case of study and implementation

Figure 3.16: Structure of the init folder.

• 0: it concerns initial and boundary conditions (fields). Specifically there are
settings for chemical species (O2, CO2, H2O, N2, etc), thermodynamic quanti-
ties (p, T, U), turbulent quantities (k, epsilon, etc), wall film (filmFuel, hHfilm,
Tfilm, etc) and a particular file, cellMotionU containing the motion boundary
conditions for each patch. It has to be noticed that this file does not contain
the right value of the boundary velocity for piston and valve patches: these
values will be automatically calculated and updated by the solver according
to the piston displacement and the valve lift profiles. In this dictionary are
just specified the boundary condition types: fixed value for the patches that
will not be moved and for those that will be moved with prescribed motion
(piston and valveTop/Side/Bottom), zero gradient for the patches whose mo-
tion is calculated as a consequence of the prescribed boundary motion (liner
and valveStem).

• constant: it concerns physical properties and geometry informations. Here
are stored thermodynamic-chemistry-physical properties (chemistryProperties,
combustionProperties, environmentalProperties, RASProperties, thermophys-
icalProperties, transportProperties, turbulenceProperties, etc), geometry in-
formations in the engineGeometry dictionary, valve lift profiles in exhaust-
ValveLift.txt and intakeValveLift.txt and finally the dictionary dynamicMesh-
Dict, which handles the mesh motion method, in its version inversePD and
inverseVolume: during the mesh motion step, both the inverse point distance
and inverse volume methods (explained in section 2.1.1) are tested.

• system: it concerns simulation control parameters and numerics. Specifically,
in addition to the traditional run-time, numerical schemes and solution settings
of the simulation (controlDict, fvSchemes, fvSolution), there are dictionaries
for the fields control (mapFieldsDict, setFieldsDict) and the dictionary for the
parallel decomposition (decomposeParDict): for a full-cycle simulation, the

45

Chapter 3. Case of study and implementation

possibility to run it in parallel is crucial.

constant folder: it concerns geometry information. In this folder are located
again engineGeometry dictionary and valve lift profiles. The engineGeometry is the
same stored in init/constant folder: here geometric parameters like bore, stroke,
clearance, etc are reported together with information necessary for the following
motion: the chosen mesh motion strategy, the coordinate system relative to the
patches to move (used to identify the translation axis), the minimum lift below
which valves are considered closed, quality parameters for the motion stage and
finally some post-processing information data.

For what concerns the valve lift profiles, the files located in this folder (exhaust-
ValveLift and intakeValveLift) differ from those located in the init/constant folder
(exhaustValveLift.txt and intakeValveLift.txt): these files are used to impose the
valve movement at the stl template geometry (which is at TDC with each valve at
the minimum lift), therefore the values contained in these files are shifted by the
value of the minimum lift.

In addition to those files, here is stored also the injectorProperties dictionary, in
case of a direct injection spark-ignition engine.

system folder: as it is the global system folder, here (among other typical dictionar-
ies like decomposeParDict, changeDictionaryDict, controDict, etc.) is located the
dictionary responsible for the actual management of the engineDynamicSetUp
application and later of the runMultiCycleCase application: engineControlDict.
As each -ControlDict, it contains settings like start- and end-time of the simula-
tion (here expressed in crank-angle degrees), post-processing data and solver name
(of the following cold-flow simulation). However this dictionary includes additional
statements specific for a full-cycle simulation: information about the valve timing,
that is exhaust valve opening (EVO), exhaust valve closing (EVC), intake valve
opening (IVO) and intake valve closing (IVC), each in crank-angle degrees. These
information are necessary to automatically identify the engine phase. Each phase
requires specific setting during the mesh generation.

Moreover it is possible to specify how the single-mesh generation will be handled:
it is possible to customize the mesh generation by writing a script containing all
the desired steps of the generation, instead of using the standard one. The fore-
mentioned script must be specified under the statement createMeshScript.

Finally a list of startTimes, endTimes, deltaT and writeIntervals ends the dictio-
nary. At the beginning these statements contains only the values already specified as
start- and end-time, deltaT (time step for the mesh motion) and writeInterval (inter-
val by which record the simulation results). However, during the mesh generation,
these fields will be updated with the end-time of the mesh validity, corresponding to
the start-time of the next one. The updated dictionary will be used for the follow-
ing cold-flow simulation (after the user-choice of deltaT and writeInterval, as will be

46

Chapter 3. Case of study and implementation

explained in section 3.3). Since the engineControlDict dictionary will be updated
during the generation of the full-cycle set of mesh, it is necessary to copy it in a
backup file before running the engineDynamicSetUp application.
Figure 3.17 shows the engineControlDict statements.

47

Chapter 3. Case of study and implementation

Figure 3.17: engineControlDict.

baseMesh folder: it is used for the mesh generation. As shown in figure (3.18),
it has in turn three subfolders:

48

Chapter 3. Case of study and implementation

Figure 3.18: Structure of the baseMesh folder.

• stl: at the beginning this folder is empty. Here will be stored the stl files
generated by the utility createEngineSTL. This utility creates, starting from
the template stl file, new stl geometry at the last-valid (corresponding to the
starting new) crank-angle. These files are required by the mesh generator
(snappyHexMesh) to make the meshes at different crank-angles.

• constant: as for the other constant folders, it concerns geometry information.
There is the triSurface subfolder, where all the stl files required during the
mesh generation are stored (e.g. template.stl which is the template geometry
file used by createEngineSTL utility, geometry.stl which is the geometry file
used by snappyHexMesh, boxIn.stl and boxEx.stl used to define cell zones,
etc.).

If the OpenFOAM version used to generate the mesh is older than the last one
(-3.0.x), it is required also the polyMesh subfolder, where the blockMeshDict
dictionary, used to generate the background grid with blockMesh, is stored.
Once the mesh is generated, in this folder will be stored the files defining
the grid (points, faces, owner, neighbour, boundary, pointZones, faceZones).
On the contrary, by using the last OpenFOAM version, the blockMeshDict
dictionary is stored in the system folder: the polyMesh subfolder will be auto-
matically generated after the mesh generation, its initialisation is not required.

• system: in this folder are located all the dictionaries which rule the stl cre-
ation and the mesh generation and manipulation.
The generation of the required stl geometry files is controlled by the cre-
ateEngineSTLDict. Here the user must specify the name of the template stl
file (located in constant/triSurface) and the list of crank-angles at which stl
geometry files are required. This list can be imposed by the user a priori or

49

Chapter 3. Case of study and implementation

calculated run-time by the engineDynamicSetUp application. In the for-
mer case, the prescribed list must be written in the dictionary itself. In the
latter case, the application automatically creates a file (moveOutput.txt) con-
taining the last valid crank-angle position of the moved mesh (coincident with
the starting position of the next mesh): this file will be used to specify the
required crank-angle.
Concerning the mesh generation, the snappyHexMesh utility is ruled by the
snappyHexMeshDict dictionary. During a full-cycle simulation, the engine
phase changes: each phase has different mesh requirements. For this reason it
is necessary to have a different dictionary for each phase and for the layer inser-
tion: snappyDict_compression_layer, snappyDict_compression_snap, snap-
pyDict_exhaust_layer, snappyDict_exhaust_snap, snappyDict_intake_layer,
snappyDict_intake_snap, snappyDict_overlap_layer, snappyDict_overlap_snap.
These dictionaries are collected in the snappyDict subfolder. The application
will recognize the current engine phase and use the correct dictionary for the
snappyHexMesh utility.
Finally the mesh can be manipulated by the utilities createPatch, topoSet,
createBaffles and extrudeMesh. The topoSetDict governing the topoSet utility
allows to create the set of cells required for further manipulation (createBaf-
fles, extrudeMesh) and for post-processing analyses. The createBaffles utility,
ruled by the createBafflesDict, is used to close the valves by adding set of cells
in correspondence of the gap due to the minLift. Similarly to the snappy-
HexMeshDict, also the createBafflesDict must change according to the engine
phase. Finally the extrudeMesh utility is used to generate the combustion
chamber crevices, whose height increases with the piston moving towards the
TDC.

The application automatically creates a case folder for each mesh generated,
where the init folder is copied together with the polyMesh subfolder defining the
mesh itself. At the end of the generation of the set of mesh, the case structure
appears as in figure (3.19).

50

Chapter 3. Case of study and implementation

Figure 3.19: Final structure of the case.

3.3 runMultiCycleCase
The full-cycle gas exchange simulation has been performed with another fully au-
tomatic utility implemented in the Lib-ICE library, runMultiCycleCase. It is
an application for the management of a full-cycle cold-flow simulation, perfectly
coupled with engineDynamicSetUp application.

Once the full-cycle set of meshes has been generated and the mesh case is com-
plete (figure (3.19)), the runMultiCycleCase takes it as input case. To work
properly it requires only 2 additional steps:

• the addition of the dataTime folder

• the proper setting of deltaT and writeIntervals statements in engineControl-
Dict

Figure 3.20 shows the structure of the case.

51

Chapter 3. Case of study and implementation

Figure 3.20: Case structure for the cold-flow simulation.

In the dataTime folder are stored the input files for the simulation, contain-
ing boundary conditions for the flow field: p_exh1.t and p_man2.t files. These
files consist in two column text with crank angles (first column) and correspond-
ing pressure values (second column) at the inlet (p_man2) and outlet (p_exh1) of
the engine. In order to have a correct interpolation on the entire time domain (an
entire engine cycle), data must be specified from CA 0 to 720, including both. In
the present work the boundary conditions are the experimental data provided by
TU-Darmstadt. Figure (3.21) shows the unsteady pressure conditions imposed at
inlet and outlet ports.

52

Chapter 3. Case of study and implementation

 90000

 92000

 94000

 96000

 98000

 100000

 102000

 104000

 0 100 200 300 400 500 600 700

P
re

s
s
u
re

 [
P

a
]

Crank angle [deg]

Unsteady boundary conditions

outlet
inlet

Figure 3.21: Unsteady pressure conditions imposed at the boundaries through the files
p_exh1.t and p_man2.t.

Concerning the engineControlDict, as previously explained the startTimes and
endTimes fields are updated according to the mesh generation and motion, while
the deltaT and writeIntervals fields must be filled in by the user:

• deltaT : here are listed the simulation time-steps for each case. The choice of
the time-step should be a compromise between high stability and manageable
computation costs. Lower time step values are required at initial time and at
the beginning of a new engine phase to increase stability. Moreover these values
must be sub-multiples of the corresponding case duration. In the present work,
the time-step values go from a minimum of 0.01 to a maximum of 0.0625.

• writeIntervals : here are listed the write-intervals for each case. These values
represent the CA interval after which write results. A standard approach is to
have from two to four records for each case. The interval must be a multiple
of the time-step of the case and a sub-multiple of the case duration.

Figure (3.22) shows the final part of engineControlDict setted for the gas ex-
change simulation.

53

Chapter 3. Case of study and implementation

F
ig
ur
e
3.
22

:
en

gi
ne

C
on

tr
ol
D
ic
t
-fi
na

lp
ar
t.

54

Chapter 4

Mesh generation

In this chapter the mesh generation for the case under analysis is described. In
the first section the choice of grid type is explained, together with the consequent
background grid generation strategy. In the second part of the chapter the cus-
tomized single-mesh generation procedure is explained, focusing on its main step,
the generation of the body-fitted mesh.

4.1 Background grid
The background grid is a requirement of snappyHexMesh: it is a mesh of hexahedral
cells that fills the entire region within by the external boundary, defining the extent
of the computational domain and a base level mesh density.

Taking into account the previous work [5] of the ICE Group of Politecnico di
Milano, it has been chosen to generate a flow-oriented grid instead of a fully cartesian
one: in a cartesian grid the cell edges have the same directions of the cartesian
coordinate system, while in a flow oriented grid the cell edges directions comply
with the body directions. In a cartesian mesh numerical diffusivity spreads the
entering flow over the grid, smoothing the velocity field gradients, while using a
flow-oriented grid the effects of the artificial diffusivity are reduced.

This conclusion comes from different sensitivity analysis on flow-grid alignment.
It is possible to define a flow grid alignment index (FGA) describing how the flow
is aligned with the mesh:

FGA =

∑
f

(
ρSUN arctan

(
UN
UT

))
π
2

∑
f (ρSUN)

0.5 ≤ FGA ≤ 1 (4.1.1)

where FGA = 1 identifies a perfectly flow oriented grid and FGA = 0.5 identifies a
grid having an angle of 45◦ between the flow direction and the face normal. FGA
does not represent a grid quality index, but a quality index for the CFD simulation.

55

Chapter 4. Mesh generation

The results of the sensitivity analysis on flow-grid alignment applied to a laminar
jet are shown in figure (4.1).

Figure 4.1: Flow grid alignment effects on a laminar jet.

Same conclusion has been obtained by the ICE Group during the sensitivity
analysis on flow-grid alignment applied to a gas exchange simulation on the standard
configuration of the Darmstadt engine.

Starting from these considerations it has been chosen to generate a flow-oriented
grid for the present work. The generation of a flow-oriented grid requires greater
effort than the cartesian one: the background grid generated by blockMesh must be
block-structured, while for a cartesian grid a unique block is sufficient. Figures (4.2)
and (4.3) show the multiple blocks composing the structured background grid.

56

Chapter 4. Mesh generation

Figure 4.2: Multiple oriented blocks composing the structured background grid.

Figure 4.3: Multiple oriented blocks composing the structured background grid - slice in
correspondence of the symmetry plane.

In order to handle the moving geometry, the background grid has to move in
compliance with it: in the baseMesh folder (see section 3.2.2) has been added
the subfolder blockMeshGeneration, where python scripts able to dynamically
manage the background grid are stored.

First of all the python script modifyDicts.py reads the geometry file geometry.stl
stored in baseMesh/trisurface. This file is the temporary copy of the stl file gener-
ated by createEngineSTL, updated at each new stl -and thus mesh- generation.
According to the current piston displacement, this script changes:

57

Chapter 4. Mesh generation

• the python script controlPanel.py, containing reference values necessary to gov-
ern the background grid generation. This script is read by the blockMesh.py
script which actually generate the blockMeshDict ruling the blockMesh utility.
In particular modifyDicts.py modifies the values of stroke and nZ, two state-
ments ruling the height of the cylinder block and the number of its cells in
the vertical direction respectively. As shown in figure (4.4), the height of the
cylinder block is equal to the stroke of the current geometry.

Figure 4.4: Background grid: perfect matching between current stl geometry and mesh.

The number of cells in vertical direction changes with the stroke, in order to
guarantee a constant grid resolution.

• the extrudeMeshDict dictionary, located in baseMesh/system. This dictionary
rules the extrudeMesh utility, responsible for the combustion chamber crevices
extrusion. In particular modifyDicts.py modifies the value of thickness, ruling
the height of the crevices according to the piston position.

The dynamical generation of the blockMeshDict has two objectives: maintaining
a constant mesh resolution and easily handling the crevice extrusion. Being the
cylinder block perfectly coincident with the cylinder of the geometry, it is possible
to re-define inside the blockMeshDict the patch piston in order to introduce the patch
crevice: an annulus as thick as the combustion chamber crevices (0,5 mm). In figure
(4.8) it is possible to observe the external annulus representing the crevice patch.
This patch will be then extruded according to extrudeMeshDict, thus generating the
crevices.

58

Chapter 4. Mesh generation

Figure 4.5: Piston and crevice patches in the background grid.

The grid size varies in function of the geometry regions:

• 4 mm mesh size in the ducts region

• 1 mm mesh size in the cylinder and valve region

snappyHexMesh utility applies further refinement in the cylinder and valve regions.
The choice of the grid size has been made taking into account similar analyses

[5], with finer resolution in the cylinder-valve region in order to allow an eventual
combustion process analysis (in keeping with [25]).

4.2 Customized mesh generation procedure
The single-mesh generation has been handled using a script, CreateMesh.sh, stored in
the baseMesh folder. First it runs the python scriptsmodifyDicts.py and blockMesh.py,
thus generating the proper blockMeshDict. Then it executes the actual mesh gener-
ation:

• background grid generation: blockMesh utility

• selection of one-half of the whole grid domain (thus exploiting the geomet-
rical symmetry to reduce computational costs): topoSet, subsetMesh and
createPatch utilities

59

Chapter 4. Mesh generation

• selection of the proper snappyHexMeshDict according to the the current engine
phase

• decomposition of the computational domain and generation of the body-fitted
mesh (parallel running 1): decomposePar and snappyHexMesh utilities

• addition of the boundary layer (according to the current engine phase): snap-
pyHexMesh utility

• reconstruction of the the domain: reconstructParMesh utility

• generation of the baffles closing the valve (according to the current engine
phase): topoSet, createPatch and createBaffles utilities

• extrusion of the combustion chamber crevices: extrudeMesh, topoSet and
createPatch utilities

The main step of the procedure consists in the generation of the body-fitted
mesh by means of snappyHexMesh.

4.2.1 snappyHexMesh

Particular attention has been paid to the definition of the different versions of the
snappyHexMeshDict. It was necessary to rely on the functionalities of snappy-
HexMesh to overcome the poor quality of the geometry. In particular, when the
valves are close to the minimum lift, the gap between valve and valve seat is so
small that introducing cells in-between is critical. For this reason, it has been used
the OpenFOAM release -3.0.x for the generation of the body-fitted mesh. Indeed in
this OpenFOAM version new meshing functionalities have been implemented, as the
ability to detect and refine regions with close features automatically, e.g. gaps [20].
Thus a high surface refinement level has been applied to valve patches (to the valve
diagonal and the valve seat in particular), together with the above mentioned gap
refinement. In figure (4.6) it is possible to observe the high refinement applied in
the valve region.

1the domain has been divided in 16 sub-domains. The mesh-generation simulation as well as
the following cold-flow simulation have been run in parallel on the CINECA GALILEO platform.

60

Chapter 4. Mesh generation

Figure 4.6: Refined grid on the cylinder-head and valve region.

Moreover this figure shows the further refinement regions applied, in correspon-
dence on the intake and exhaust valve region (including the final parts of the ducts)
and of the cylinder region.

As already explained, each engine phase has its peculiarities, with consequent
grid requirements and complications. Except for the intake and exhaust ducts, the
geometrical domain changes: the internal grid must accommodate the boundary
motion still preserving the mesh quality.

For each phase is thus necessary to focus on the meshQualityControl settings.
The critical meshing phase occurs when the piston approaches the TDC, that is dur-
ing the overlap and the compression phases. In this phases the in-cylinder volume is
minimum and it is difficult to maintain a certain mesh resolution without incurring
in degenerated cells. The grid must be fine in order to ensure reliable results, above
all during the compression phase: if the grid must be suitable for the combustion
process analysis, a small grid size is an essential requirement for a correct predic-
tion of the ignition and the following combustion evolution [23, 25]. However it is
a difficult task to maintain a proper number of cell in the vertical direction with-
out generating improper cells. In correspondence of the contact between liner and
cylinder-head the vertical available space is so narrow that the non-orthogonality
and the minimum volume of the cells are quality parameters difficult to fulfill. For
this reason the snappyHexMeshDict differs in these quality settings according to the
engine phase: the non-orthogonality (maxNonOrtho) varies within 50 and 60 and
the minimum volume (minVol) within 1e-16 and 1e-15. Too strict quality require-
ments lead to the impossibility to generate the body-fitted mesh, while too weak
requirements lead to degenerated cells (wrong oriented, non-orthogonal, skew, etc.).
Figure (4.7) shows the grid at the top-dead center.

61

Chapter 4. Mesh generation

Figure 4.7: Mesh at the TDC.

The mesh generation during the overlap phase is the most complex: the piston
is in correspondence of TDC and furthermore the valves are open with a lift almost
at the minimum value. In this phase the two main problems of the meshing phase
(piston at TDC and small gap between valve and its seat) coexist.

The awarded validity interval of the mesh during the following motion step re-
veals the encountered difficulties during the mesh generation: during the overlap
phase and at the beginning of a new phase (that is when the valve lift is close to the
minLift), the CA-interval where the mesh preserves its validity decreases remark-
ably, up to the minimum range of 0.1 CA. During most of the other phases instead
the mesh preserves its validity up to the maximum interval imposed, that is 10 CA.

Finally, once generated the body-fitted mesh, it is possible to add the boundary
layers. Even the layering phase is handled by snappyHexMeshDict, however the
quality parameters must be softened in order to achieve the layer generation. The
layer addition in fact involves shrinking the existing mesh from the boundary and
inserting layers of cells, procedure affecting the mesh quality.

For this reason the generation of the mesh is governed by two versions of snap-
pyHexMeshDict per engine phase: snappyHexMeshDict_snap and snappyHexMesh-
Dict_layer (see section 3.2.2).

The differences of the snappyHexMeshDict_layer with respect to the snappy-
HexMeshDict_snap version consist in softened validation criteria, in particular the
maximum allowed value concerning the non-orthogonality check is 70 and the min-
imum tet quality check is disabled.

The differences between the four snappyHexMeshDict_layer (one per engine
phase) instead, concern the patches on which the layers are to be applied. Specifi-
cally, during the intake phase layers must be applied on the intake walls, the intake

62

Chapter 4. Mesh generation

valve components and on the cylinder-head (as the exhaust-side is closed), analo-
gously during the exhaust phase layers must be applied on the exhaust walls, the
exhaust valve components and on the cylinder-head. During the overlap phase both
the intake and exhaust side are involved, therefore layers must be applied on the
intake and exhaust walls, the intake and exhaust valve components and on the
cylinder-head. On the contrary during the compression phase both the intake and
exhaust are closed and the layers must be applied only on the cylinder-head.

It has to be remarked that no layers are applied on the liner. Usually layers are
required on this patch, however in the present case their addition is not necessary:
in the background grid the blocks are defined so that an external annulus covers the
entire cylinder stroke. This annulus is required for the crevices extrusion, but at the
same time represents a sort of layer. A further layers addition is thus not necessary.
Figure (4.8) gives a visual explanation of this concept.

Figure 4.8: Zoom on the piston and liner patches and the already extruded crevices.

Figures (4.9) and (4.10) show the oriented grid in the intake and exhaust ducts
respectively. These zones are the less complicated since they are not affected by mo-
tion: particular attention must be paid only during the background grid generation
in order to achieve a good flow-grid alignment.

63

Chapter 4. Mesh generation

Figure 4.9: Oriented grid in the intake duct.

Figure 4.10: Oriented grid in the exhaust duct.

Figure (4.11) shows the achieved in-cylinder mesh and part of the extruded
crevices. Further region refinements have been applied in the cylinder region and
around the spark-plug (to make it suitable for both cold-flow and combustion process
simulations).

64

Chapter 4. Mesh generation

Figure 4.11: In-cylinder mesh.

Finally figure (4.12) shows the internal mesh in correspondence of the valve plane.
This specific mesh is at CA 450, mid-intake phase.

65

Chapter 4. Mesh generation

Figure 4.12: Mesh at CA 450, mid-intake phase - valve plane slice.

66

Chapter 5

Steady-state simulation

In this chapter the performed steady-state simulations are analysed. The first part of
the chapter involves the standard engine configuration. Using the available magnetic
resonance velocimetry (MRV) measurements as validation, two types of sensitivity
analysis have been performed: turbulence model and numerical schemes. In the
second part of the chapter the same type of steady-state simulation is carried out
on the current engine configuration, to compare the Tumble motion generation in
the two engine configurations.

5.1 Experimental validation on the standard engine
configuration

This section involves the standard engine configuration, shown in figure (5.1).

Figure 5.1: Darmstadt engine, standard configuration at CA 450 - cut on the symmetry
plane.

67

Chapter 5. Steady-state simulation

The validation has been performed in steady-state condition at CA 450, when
the intake valve is at its maximum lift (mid-intake). This choice derives from the
availability of magnetic resonance velocimetry (MRV) measurements performed at
these conditions on the standard configuration [11], shown in figure (5.2).

Figure 5.2: MRV measurements performed on the standard engine configuration - intake
flow in the vicinity of the intake valve [11].

The flow parameters during the MRV measurements are reported in table (5.1).

Fluid De-ionized water
Temperature 50 ◦C

Volumetric flow rate 66L/min

Table 5.1: Flow parameters during the MRV measurements.

It has to be noticed that the working fluid used in the experiments is de-ionized
water. In order to perform a simulation consistent with the experimental conditions,
the solver used for the simulation is the steady-state incompressible solver simple-
Foam, available in the official OpenFOAM distribution. This solver employs the
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm, whose
iterative procedure can be summed up as follows:

• set the boundary conditions

68

Chapter 5. Steady-state simulation

• solve the discretized momentum equation to compute the intermediate velocity
field

• compute the mass fluxes at the cells faces

• solve the pressure equation and apply under-relaxation

• correct the mass fluxes at the cells faces

• correct the velocities on the basis of the new pressure field

• update the boundary conditions

• repeat till convergence

Unlike the PIMPLE algorithm employed for the full-cycle simulation (explained in
section 3.3), the SIMPLE algorithm is not based on a temporal loop and it does not
solve density and energy equations.

The mesh has been generated using the same settings employed for the current
configuration in the full-cycle set of meshes. A further subSet has been applied in
order to remove the exhaust ducts from the computational domain, as the exhaust
valves are closed and the relative ducts are thus not involved in the simulation.
Figures (5.3) and (5.4) show the mesh of the standard configuration.

Figure 5.3: Mesh of the standard engine configuration.

69

Chapter 5. Steady-state simulation

Figure 5.4: Mesh of the standard engine configuration - zoom on the in-cylinder cells.

A sensitivity analysis of turbulence models has been carried out: maintaining
the same numerical setting and boundary conditions, two turbulence models have
been tested, k-ε and k-ω SST.

Tables (5.2) and (5.3) report the numerical schemes listed in the fvSchemes
dictionary.

div(phi,U) bounded Gauss upwind
div(phi,k) bounded Gauss upwind
div(phi,epsilon) bounded Gauss upwind
div(phi,omega) bounded Gauss upwind
div((nuEff*dev2(T(grad(U))))) Gauss linear

Table 5.2: Applied numerical schemes for the divergence terms.

ddtSchemes steadyState
gradSchemes default: Gauss linear

grad(U): cellLimited Gauss linear 1.0
laplacianSchemes Gauss linear limited 0.5
interpolationSchemes linear
snGradSchemes limited 0.5

Table 5.3: Applied numerical schemes for the other terms.

The equation solvers and tolerance contained in the fvSolution dictionary are
listed in tables (5.4) and (5.5).

70

Chapter 5. Steady-state simulation

solver GAMG
tolerance 1e-7
relTol 0.01
smoother GaussSeidel
nPreSweeps 0
nPostSweeps 2
cacheAgglomeration on
agglomerator faceAreaPair
nCellsInCoarsestLevel 10
mergeLevels 1

Table 5.4: Solver and tolerance for pressure
equation.

solver PBiCG
preconditioner DILU
tolerance 1e-6
relTol 0.001
nSweeps 2

Table 5.5: Solver and tolerance for
U|k|epsilon|omega equations.

71

Chapter 5. Steady-state simulation

For what concerns the boundary conditions, it has to be remarked that the piston
patch is defined as outlet patch in the steady simulations. Table (5.6) reports the
boundary conditions assigned to the inlet and piston patches and table (5.7) lists
the boundary condition assigned to the other patches.

field inlet piston
nut calculated calculated
k turbulentIntensityKineticEnergyInlet inletOutlet
epsilon turbulentMixingLengthDissipationRateInlet inletOutlet
omega turbulentMixingLengthFrequencyInlet inletOutlet
p zeroGradient fixedValue
U flowRateInletVelocity pressureInletOutletVelocity

Table 5.6: Boundary conditions assigned to the inlet and piston patches.

field other patches
nut nutkWallFunction
k kqRWallFunction
epsilon epsilonWallFunction
omega omegaWallFunction
p zeroGradient
U fixedValue

Table 5.7: Boundary conditions assigned to the other patches.

The assigned inlet flow rate is volumetric and equal to 5.5e-4 [m3/s] (that is half
of 66L/min since the simulation is performed on half the engine).

In the following, the results achieved with the two turbulence models are pre-
sented and compared.

5.1.1 k-ε turbulence model

The first turbulence model tested is the k-ε model. Figure (5.5) shows the velocity
flow field entering the combustion chamber in the standard configuration.

72

Chapter 5. Steady-state simulation

Figure 5.5: Velocity flow field entering the combustion chamber - k-ε model.

Comparing figure (5.5)1 with the experimental results shown in figure (5.2), it is
possible to verify the reliability of this turbulence model. Both the values and the
evolution of the velocity field are consistent with the MRV measurement, even if in
the numerical result the flow undergoes a higher deceleration once in the combustion
chamber, as shown in figure (5.6).

Figure 5.6: Zoom on the difference in the flow field once in the combustion chamber: the
flow undergoes a higher deceleration in the numerical result (on the right).

This effect however is probably caused by the chosen numerical schemes, which
aim at a high stability more than a high accuracy. The achieved result is in line
with the literature: the k-ε model is widely used in internal combustion engine
simulations [12].

1the image resolution depends on the resolution of the sampling (that is 1 mm), not on the grid
resolution.

73

Chapter 5. Steady-state simulation

5.1.2 k-ω SST turbulence model

The second turbulence model tested is the k-ω SST model. Figure (5.7) shows the
velocity flow field entering the combustion chamber in the standard configuration.

Figure 5.7: Velocity flow field entering the combustion chamber - k-ω SST model.

Even if this model should combine the strengths of the k-ε (away from wall) and
k-ω (near walls) models, its prediction of the entering flow field is not satisfactory.
As shown in figure (5.8), in this case the flow undergoes a strong deceleration once
in the combustion chamber: a Tumble motion generation would not be possible with
the calculated velocity field.

Figure 5.8: Zoom on the difference in the flow field once in the combustion chamber: the
flow undergoes a strong deceleration in the numerical result (on the right).

Comparing the achieved results with the experimental measurements, k-ε model

74

Chapter 5. Steady-state simulation

proves to be better than the k-ω SST in the prediction of the incoming flow, as
already stated by [1] in a similar analysis.

The achieved values of the nondimensional distance from wall y+ = y
δν

(where
δν is the viscous length-scale) however are lower than the suggested threshold for
the k-ε model (y+ ≥ 11.225 [2]). The maximum values on the involved patches
are around 5 (value still accepted), but the mean values are around 0.5. For this
reason a further simulation has been performed, applying to the k-ε model the
scalableWallFunction. The purpose of scalable wall functions is to force the usage
of the log-law in conjunction with the standard wall functions approach. This is
achieved by introducing a limiter in the y+ calculations:

y+∼
= MAX(y+, y+

lim) (5.1.1)

where y+
lim = 11.225, value of the transition to the log-law layer [2]. This wall

function virtually displaces the mesh to a y+ ∼ 11.225, irrespective of the level of
refinement, thereby avoiding the erroneous modelling of the laminar sub-layer and
buffer region. The result achieved using the scalable wall functions is shown in figure
(5.9).

Figure 5.9: Velocity flow field entering the combustion chamber - k-ε model with scalable
wall functions.

It can be noticed that using the scalable wall functions the flow entering the
combustion chamber undergoes a deceleration higher than the one achieved in the
standard k-ε model and lower than the one resulting from the k-ω SST. The best
agreement with the experimental data (figure 5.2) is achieved by the standard k-ε
model (figure 5.5). The velocity magnitude justifies the low y+ evaluated with the
standard k-ε model and in this analysis the shear stress at the wall does not play
an important role.

75

Chapter 5. Steady-state simulation

5.1.3 Improved numerical schemes

Once established that the k-ε model is the most suitable for this type of simulation,
a further sensitivity analysis has been carried out. The aim was to verify the effect
of the numerical schemes on the observed deceleration of the flow field inside the
combustion chamber.

For this reason a further simulation has been performed using the k-ε turbulence
model and the same settings employed for the previous simulations, except for the
numerical schemes for the divergence terms. The modified schemes tested in this
simulation are listed in table (5.8).

div(phi,U) Gauss linearUpwindV grad(U)
div(phi,k) Gauss limitedLinear 1.0
div(phi,epsilon) Gauss limitedLinear 1.0
div(phi,omega) Gauss limitedLinear 1.0
div((nuEff*dev2(T(grad(U))))) Gauss linear

Table 5.8: Modified numerical schemes for the divergence terms.

As explained in section (1.5.1), the linear interpolation has an accuracy of the
second order, while the upwind scheme used in the previous settings has an accu-
racy of the first order (but a higher stability). The linearUpwind interpolation is a
combination of these schemes having higher accuracy still preserving stability.

Figure (5.10) shows the velocity flow field entering the combustion chamber
achieved with the improved numerical schemes.

Figure 5.10: Velocity flow field entering the combustion chamber - k-ε model, improved
numerical schemes.

76

Chapter 5. Steady-state simulation

As highlighted in figure (5.11), in this case the velocity value is correctly pre-
dicted not only on the valve curtain but also inside the cylinder: the incoming flow
does not undergo the previous observed deceleration (white oval). Moreover the
artificial diffusivity is reduced, leading to a lower spread of the flow over the grid in
correspondence of the cylinder walls on the exhaust side (white rectangle).

Figure 5.11: Velocity flow field entering the combustion chamber - improvements high-
lighted.

Considering the satisfactory results achieved in the steady-state simulation, the
same type of settings (k-ε model, improved numerical schemes) have been employed
in the full-cycle simulation.

5.2 Engine configurations comparison
In this section the two engine configurations are compared: a steady-state simulation
with the optimal setting (section 5.1.3) has been performed on the current engine
configuration to allow a consistent comparison. As it is possible to observe from
figure (5.12), the two configurations differ mainly in the orientation of the final
part of the intake duct. In addition the intake valve diameters are slightly reduced
(from 33 mm to 31 mm) in the current configuration and even the cylinder-head has
been changed on the intake side. Differences in the in-coming velocity field are thus
expected.

77

Chapter 5. Steady-state simulation

Figure 5.12: Zoom on the final part of the intake duct of the standard (left) and current
(right) configuration.

The mesh of the current configuration is taken from the full-cycle set of meshes
(at CA 450), generated as explained in chapter (4). As specified in the first part of
this chapter, the mesh of the standard configuration has been generated with the
same settings (same background mesh and same settings for the body-fitted mesh).
The in-cylinder mesh of the two configurations is shown in figure (5.13)

It can be noticed that the grids are perfectly comparable: the results will not be
affected by the mesh, the expected differences in the flow field will be a consequence
of the geometry only.

78

Chapter 5. Steady-state simulation

(a) Mesh of the current engine configuration.

(b) Mesh of the standard engine configuration.

Figure 5.13: Comparison of the mesh of the two configurations.

79

Chapter 5. Steady-state simulation

In figure (5.14) are shown the velocity flow fields entering the combustion cham-
ber in the standard and in the current configurations respectively.

(a) Velocity flow fields entering the combustion chamber - standard engine con-
figuration.

(b) Velocity flow fields entering the combustion chamber - current engine config-
uration.

Figure 5.14: Comparison of the velocity flow fields entering the combustion chamber mesh
in the two configurations.

Analysing this figure it is possible to notice two main differences in the velocity
flow field, highlighted in figure (5.15).

80

Chapter 5. Steady-state simulation

Figure 5.15: Comparison of the velocity flow fields entering the combustion chamber mesh
in the two configurations - differences highlighted.

The first difference involves the velocities close to the intake valve, highlighted
by the white circle in figure (5.15) and zoomed in in figure (5.16).

81

Chapter 5. Steady-state simulation

Figure 5.16: Velocity difference close to the intake valve - zoom.

In figure (5.16) the range of velocity values have been re-scaled to better appreci-
ate the difference in the two configuration. In the current configuration the velocity
reaches slightly higher values thanks to the smaller valve diameter.

The second difference involves the flow field evolution inside the cylinder, high-
lighted by the white rectangle in figure (5.15) and zoomed in in figure (5.16).

Figure 5.17: Velocity difference close to the cylinder walls on the exhaust side - zoom.

In the current configuration the flow is not driven towards the cylinder walls on
the exhaust side as much as in the standard configuration. This difference derives

82

Chapter 5. Steady-state simulation

from the orientation of the final part of the intake duct: in the current configuration
the duct ends more uprightly, leading to a direct vortex less oriented towards the
cylinder walls.

Finally it can be observe from figure (5.15) that in the current configuration the
velocity of the flow pouring out of the left side of the intake valve is higher. This
flow will generate a counter-vortex more intense that will soften the direct Tumble
motion.

Considering these differences it can be deduced that the standard configuration
generates a higher Tumble motion than the current one.

In figure (5.18), taken from [8], a quantitative study of the effects of the intake
port orientation on the Tumble generation is shown.

Figure 5.18: Tumble ratio for different port configurations, figure taken from [8].

As shown in figure (5.18), the port configurations generating higher Tumble
motion (higher Tumble ratio) are the ports d, e and f, which are similar to the port
configuration of the standard engine (see figure (5.19)). On the contrary, ports a and
b, which are comparable to the port configuration of the current engine, generate a
lower Tumble motion (lower Tumble ratio).

83

Chapter 5. Steady-state simulation

Figure 5.19: Comparison between the engine configurations and the port types analysed
in figure (5.18).

84

Chapter 6

Full-cycle simulation

In this chapter the full-cycle simulation is analysed. This simulation is run automat-
ically by the application runMultiCycleCase, which is perfectly coupled with the
engineDynamicSetUp application responsible for the full-cycle mesh generation.

In the first part the simulation settings are reported. In the second part the
evolution of the Tumble motion is analysed and compared to the one in the standard
configuration. Finally the cylinder pressure trend is taken into account.

6.1 Simulation settings
runMultiCycleCase application runs the gas exchange simulation with the set-
tings predefined in the engineControlDict dictionary (initial case, start- and end-
times, time step and write intervals). Similarly to engineDynamicSetup, run-
MultiCycleCase works in loop and in every mesh-case the steps are:

• execution of the cold flow simulation: simpleColdSpeciesEngineDYM-
Foam solver

• reconstruction of the domain in parallel configuration: reconstructParEngine
utility

• case to case interpolation of the field conditions: engineMapFields utility

• decomposition of the domain in parallel configuration: decomposeParEngine
utility

As explained in section (2.2), simpleColdSpeciesEngineDYMFoam is a stan-
dard solver for cold-flow simulations, able to handle the mesh motion.

In each case the numerical settings, the physical properties and the boundary
and initial conditions are defined. These settings have to be specified only once in

85

Chapter 6. Full-cycle simulation

the init folder before running the engineDynamicSetup application: this folder
is then automatically copied in each case folder (see sections 3.2.2 and 3.3).

The numerical settings are defined in fvSchemes and fvSolution dictionaries
stored in the system folder (present in each case). The numerical schemes listed in
fvSchemes are similar to the ones employed in the steady-state simulation (section
5.1.3). In this case the solver is transient and compressible, therefore more terms
are required. Tables (6.1) and (6.2) list the numerical schemes for the divergence
terms and for the other terms respectively.

div(phi,U) Gauss linearUpwindV grad(U)
div(phiU,p) Gauss limitedLinear 1.0
div(phi,Yi_h) Gauss limitedLinear 1.0
div(phid,p) Gauss limitedLinear 1.0
div(phi,k) Gauss upwind
div(phi,epsilon) Gauss upwind
div((muEff*dev2(T(grad(U))))) Gauss linear
div(U) Gauss linear
div(meshPhi,p) Gauss linear
div(mesh,p) Gauss linear

Table 6.1: Numerical schemes for the divergence terms.

ddtSchemes Euler
gradSchemes cellLimited Gauss linear 1.0
laplacianSchemes default: Gauss linear limited 1.0

laplacian(DkEff,k): Gauss linear limited 0.5
laplacian(DepsilonEff,epsilon): Gauss linear limited 0.5

interpolationSchemes linear
snGradSchemes limited 1.0

Table 6.2: Numerical schemes for the other terms.

86

Chapter 6. Full-cycle simulation

The main equation solvers (listed in fvSolution) applied are:

• GAMG for pressure and cellMotionU

• PCG for density

• PBiCG for velocity, enthalpy, turbulence quantity

For what concerns the boundary and initial conditions, particular attention has
to be paid to pressure and velocity fields. A time-varying pressure is assigned to the
inlet and outlet patches, as shown in table (6.3).

patch type timeDataFileName
inlet engineTimeVaryingTotalPressure $FOAM_CASE/../dataTime/p_man2.t
outlet engineTimeVaryingTotalPressure $FOAM_CASE/../dataTime/p_exh1.t

Table 6.3: Pressure condition assigned to the inlet and outlet patches.

The velocity dictionary must be coherent with the moving boundaries, as shown
in table (6.4).

patch type
inlet|outlet pressureInletOutletVelocity
piston movingWallVelocity
valve-Side|Bottom|Top movingWallVelocity
others fixedValue

Table 6.4: Velocity boundary conditions.

where the valve statement includes both the intake and exhaust valve.

6.2 Results
In this section the achieved results are analysed. In particular great attention has
been paid to the Tumble motion generation and evolution. A comparison with
the experimental data have been performed at CA 450, where the experimental
data provided by TU Darmstadt are available. Then, the current and standard
configurations have been compared in terms of Tumble generation at different CA,
using the results achieved by ICE Group on the standard configuration during a
previous work. Finally some considerations on the in-cylinder pressure trend are
reported.

87

Chapter 6. Full-cycle simulation

6.2.1 Tumble motion

In this section three important phases of the Tumble motion generation and evo-
lution are analysed. As already explained in section (1.2), the Tumble motion is
generated during the intake phase but maintained and increased by the following
compression stroke. For this reason the analysis have been performed at CA 450
(mid-intake), 540 (intake phase, piston at BDC) and 630 (mid-compression).

For each CA, two types of visual comparisons are carried out on the symmetry
plane:

• overall velocity flow field inside the combustion chamber. In this case the
analysis is not performed on the entire combustion chamber, but where exper-
imental data are available (optical window described in section 3.1)

• x and y velocity components along four different measurement lines located at
different distances from the cylinder head, shown in figure (6.1). In this case
the analysis covers the entire bore (86 mm) if the comparison involves only
computed results

Figure 6.1: Measurement lines located at different distances from the cylinder head.

CA 450, mid-intake

The comparison between experimental and computed velocity flow field at CA 450
is shown in figure (6.2).

88

Chapter 6. Full-cycle simulation

Figure 6.2: Comparison between experimental (left) and computed (right) velocity field on
the symmetry plane at CA 450.

The incoming flow interacts with the cylinder liner moving towards the piston,
generating the Tumble vortex. It can be observed that the velocity magnitude is
well predicted, but the peak is more shifted towards the exhaust side. On the left
side of the cylinder (−30 < x < −10 mm), the counter-vortex is overestimated: in
the computed result the region where the y-component of the velocity in downward
direction exceeds the absolute value of Uy = 10 is wider, as it possible to observe in
the following graphics. On the other hand, on the bottom-right side of the cylinder
(x > 0, −50 < y < −30 mm) the direct vortex begins to rise: in the experimental
field it can be observed that the flow begins to rotate, moving horizontally towards
left instead of downwards. This rotation, which takes place for −50 < y < −30 and
0 < x < 30 mm in the experimental field, is reduced in the computed field, where
an horizontal velocity begins to appear only at y ∼ −50 mm.

In order to obtain a quantitative analysis of the phenomena qualitatively ob-
served in figure (6.2), the velocity components extracted along horizontal lines at
different distances from the cylinder head are shown in figures (6.3) and (6.4).

89

Chapter 6. Full-cycle simulation

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=0 [mm]

experimental
computed

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimental
computed

-15

-10

-5

 0

 5

 10

 15

 20

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimental
computed

-10

-5

 0

 5

 10

-40 -20 0 20 40

U
x
 [
m

/s
]

x mm

Y=-30 [mm]

experimental
computed

Figure 6.3: Velocity x-component profiles at CA 450, extracted along horizontal lines at
different distances from the cylinder head.

90

Chapter 6. Full-cycle simulation

-20

-15

-10

-5

 0

 5

 10

 15

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=0 [mm]

experimental
computed

-30

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimental
computed

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimental
computed

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-30 [mm]

experimental
computed

Figure 6.4: Velocity y-component profiles at CA 450, extracted along horizontal lines at
different distances from the cylinder head.

It is possible to observe that there is a quite good agreement between the exper-
imental and computed velocity components.

At Y = 0 and Y = −10 mm the trend of both the x- and y-component is in line
with the experimental one. The velocity peak more shifted to the right is testified
by higher values of the computed curve in the right part of the cylinder (x > 0). It
has to be noticed that only the x-component of the velocity is responsible for the
translation of the velocity peak, while the y-component finds a good quantitative
agreement with the corresponding experimental data.

Moving towards the piston the difference increases, still maintaining a sufficient
agreement. At Y = −20 mm the x-component of the computed velocity shows
complete agreement with the experimental one. For x > 0 instead the computed
field is driven toward the liner more than the experimental one, which begins to
be affected by the rotation taking place close to the piston. Similar behaviour
is observable at Y = −30 mm. The y-component of the velocity exhibits bigger
differences, in particular at Y = −30 mm: for −30 < x < −10 mm the trend of the
computed and experimental curves is opposite, testifying the higher intensity of the

91

Chapter 6. Full-cycle simulation

counter vortex still present at Y = −30 mm in the computed results.
A remarkable difference between experimental and computed velocity fields ap-

pears at Y = −40 mm, as highlighted in figure (6.5).

Figure 6.5: Comparison between experimental (left) and computed (right) velocity field on
the symmetry plane at CA 450 - zone with biggest differences highlighted.

For this reason the velocity components extracted along Y = −40, shown in
figure (6.6), are further analysed at this CA.

-15

-10

-5

 0

 5

 10

 15

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-40 [mm]

experimental
computed

-20

-15

-10

-5

 0

 5

 10

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-40 [mm]

experimental
computed

Figure 6.6: Velocity x- and y-components profiles at CA 450, extracted along horizontal
line at Y = −40 mm.

The x-component of the computed velocity is in good agreement with the ex-
perimental one in the intake side of the cylinder (x < 0), but it has an opposite
trend in the exhaust side: in the experimental field the Tumble vortex begins to rise

92

Chapter 6. Full-cycle simulation

leading the flow to rotate toward left, while in the computed field this effect is still
not present.

The y-component presents differences along the entire bore. For −40 < x < −15
mm the trend of computed and experimental curves is opposite: the computed flow
moves towards the piston with higher velocity, while the experimental flow begins to
rotate toward the center. On the right, the experimental flow is already developed
in a vortex slightly moving upwards, leading to a null/positive y-component on the
cylinder axis (x = 0). The computed flow instead begins to move towards left only
at y = −50 mm: at this sampling line it is still moving downwards, the y-component
is fully negative.

A further comparison has been performed between standard and current config-
urations. Considering the comparison carried out in steady-state conditions, similar
result is expected: a higher Tumble motion generated in the standard engine con-
figuration.

The results on the standard configuration are taken from the previous work done
by the ICE Group [5,16]. The reported results are achieved on a flow-oriented grid
with a resolution similar to the one employed in the present work. For the standard
configuration, experimental data were available at CA 450, 540 and 630. Figure
(6.7) shows the comparison between experimental data and computed results on the
standard configuration.

30 20 10 0 10 20 30

50

40

30

20

10

 0

10

30 20 10 0 10 20 30

50

40

30

20

10

 0

10

5

10

15

20

25

Figure 6.7: Comparison between experimental (left) and computed (right) velocity field on
the symmetry plane at CA 450, taken from [16].

Even in this case the computed velocity peak is shifted to the right. The counter-
vortex on the left (−30 < x < −10 mm) instead is underestimated in the computed

93

Chapter 6. Full-cycle simulation

field of [16]. Comparing figures (6.7) and (6.2) the difference in the Tumble gener-
ation is remarkable, starkly higher in the standard engine configuration, in keeping
with the analysis performed in steady-state condition. In figures (6.8) and (6.9) are
shown the experimental and computed velocity components extracted along horizon-
tal lines at different distances from the cylinder head in the standard configuration.

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=0 [mm]

experimentalStandard
computedStandard

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

-40 -20 0 20 40
U

x
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimentalStandard
computedStandard

-15

-10

-5

 0

 5

 10

 15

 20

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimentalStandard
computedStandard

-15

-10

-5

 0

 5

 10

 15

 20

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-30 [mm]

experimentalStandard
computedStandard

Figure 6.8: Velocity x-component profiles at CA 450 - standard configuration.

94

Chapter 6. Full-cycle simulation

-20

-15

-10

-5

 0

 5

 10

 15

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=0 [mm]

experimentalStandard
computedStandard

-30

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimentalStandard
computedStandard

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimentalStandard
computedStandard

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-30 [mm]

experimentalStandard
computedStandard

Figure 6.9: Velocity y-component profiles at CA 450 - standard configuration.

First it can be observed that the deviation of the computed curves from the
experimental ones in the analysis performed on the standard configuration [16] is
comparable with the corresponding deviation in the analysis carried out on the
current one. The achieved agreement between measurements and numerical results
can thus be regarded as good, in line with [16]. For this reason it can be assumed
that in the following comparisons, involving the computed results only, the geometry
is mainly responsible for the differences between the curves.

A second remark involves the differences between the two experimental curves,
one representing the experimental data of the current configuration and one repre-
senting the experimental data of the standard one, compared in figures (6.10) and
(6.11).

95

Chapter 6. Full-cycle simulation

-15

-10

-5

 0

 5

 10

 15

 20

 25

 30

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=0 [mm]

experimentalCurrent
experimentalStandard

-20

-15

-10

-5

 0

 5

 10

 15

 20

 25

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimentalCurrent
experimentalStandard

-15

-10

-5

 0

 5

 10

 15

 20

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimentalCurrent
experimentalStandard

-15

-10

-5

 0

 5

 10

 15

 20

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-30 [mm]

experimentalCurrent
experimentalStandard

Figure 6.10: Velocity x-component profiles at CA 450 - experimental data of both config-
urations.

96

Chapter 6. Full-cycle simulation

-20

-15

-10

-5

 0

 5

 10

 15

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=0 [mm]

experimentalCurrent
experimentalStandard

-30

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-10 [mm]

experimentalCurrent
experimentalStandard

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-20 [mm]

experimentalCurrent
experimentalStandard

-25

-20

-15

-10

-5

 0

 5

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-30 [mm]

experimentalCurrent
experimentalStandard

Figure 6.11: Velocity y-component profiles at CA 450 - experimental data of both config-
urations.

As expected, there is a remarkable deviation of the red curve from the black
one, especially at Y = −30 mm: at this distance the Tumble vortex begins to rise,
thus the different capability to generate the structured motion stands out. The
x-component of the velocity in the standard configuration is negative along the
entire bore, while in the current configuration it is still positive: in the standard
configuration the flow has rotated towards left (Ux < 0) generating the Tumble
vortex. The trend of the y-component leads to the same conclusion: in the standard
configuration the y-component reaches positive values in the central part of the
cylinder (x ∼ 0) because the flow has already undergone the "tumble" and it begins
to move upwards, while in the current configuration the y-component is still negative
along the entire bore.

97

Chapter 6. Full-cycle simulation

Figure (6.12) shows the computed velocity flow field on the valve plane, in the
standard (result taken from [16]) and current configurations .

(a) Standard configuration, figure taken from [16]. (b) Current configuration.

Figure 6.12: Computed velocity flow field on the valve plane in the standard and current
engine configurations.

This figure further confirms what already observed: as highlighted in figure
(6.13), the intensity of the counter-vortex is remarkably higher in the current engine
configuration and the direct vortex is not as driven toward the cylinder liner on the
exhaust side as in the standard configuration.

(a) Standard configuration, figure taken from [16]. (b) Current configuration.

Figure 6.13: Computed velocity flow field on the valve plane in the standard and current
engine configurations - counter-vortex highlighted.

98

Chapter 6. Full-cycle simulation

CA 540, intake at BDC

At CA 540 the experimental data on the current configuration are not available. A
comparison between current and standard configurations is thus performed. Figure
(6.14) shows the computed velocity flow field in the current configuration.

Figure 6.14: Computed velocity field on the symmetry plane at CA 540.

It can be observed that the Tumble motion does not follow the expected evolu-
tion. The circular vortex begins to appear in the bottom part of the cylinder, near
the piston, shifted on the left (−25 < x < −15, −50 < y < −60 mm). However it
should be already more defined and centred on the cylinder axis. Figure (6.15) shows
the experimental and computed velocity flow field in the standard configuration.

99

Chapter 6. Full-cycle simulation

30 20 10 0 10 20 30

60

50

40

30

20

10

 0

10

30 20 10 0 10 20 30

60

50

40

30

20

10

 0

10

1

2

3

4

5

6

7

8

9

Figure 6.15: Comparison between experimental (left) and computed (right) velocity field
on the symmetry plane at CA 540, taken from [16].

Once again it appears clearly that in the standard engine configuration the Tum-
ble motion is more enhanced. In the current configuration the Tumble vortex evo-
lution appears reduced and delayed: responsible for this effect could be the combi-
nation of a weaker direct vortex and, above all, a more intense counter-vortex with
respect to the standard configuration, as highlighted in the results at CA 450.

The computed velocity components extracted along horizontal lines at different
distances from the cylinder head are shown in figures (6.16) and (6.17), allowing a
better quantitative comprehension of the observed phenomena.

100

Chapter 6. Full-cycle simulation

-6

-4

-2

 0

 2

 4

 6

 8

 10

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=0 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-10 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-20 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-30 [mm]

current
standard

Figure 6.16: Computed velocity x-component profiles at CA 540, for both standard and
current configurations.

101

Chapter 6. Full-cycle simulation

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=0 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-10 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

 10

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-20 [mm]

current
standard

-15

-10

-5

 0

 5

 10

 15

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-30 [mm]

current
standard

Figure 6.17: Computed velocity y-component profiles at CA 540, for both standard and
current configurations.

Concerning the x-component it can be observed that at each distance from the
cylinder head the curves have the same sign in the intake side of the cylinder (x < 0):
this means that both the simulations predict a vortex moving towards right (Ux > 0),
rotating around the negative z-axis. The velocity values however are higher in the
standard configuration, since the vortex is more developed. In the exhaust side of
the cylinder (x > 0), close to the cylinder head (Y = 0 and Y = −10 mm) the
trends are comparable but in the current configuration the flow is more headed to
the cylinder liner while in the standard one is already undergoing the tumble motion,
thus reaching negative values. This trend is increased at Y = −20 and Y = −30mm,
due to the proximity of the vortex center located along the cylinder-axis (x = 0) at
−60 < y < −45 mm.

Analysing the y-component, it can be observed that close to the cylinder head
(Y = 0 mm) the trends are comparable, while increasing the distance from the
cylinder head (Y = −10, Y = −20 and Y = −30 mm) the y-components have
opposite signs for x < 0: in the standard configuration the flow is moving upwards
(Uy > 0), while in the current one the vortex is still not strong enough, thus at

102

Chapter 6. Full-cycle simulation

the sampling positions the flow is already moving downwards (Uy < 0). For x > 0
the differences are not as sharp as in the other side of the cylinder: in both the
configurations the flow is going downwards, the piston will then force the flow to
invert direction (in the intake side).

Figure (6.18) compares the evolution of Tumble motion from CA 450 (first row)
to CA 540 (second row) in the two configurations, using the measurements on the
standard configuration as a reference.

Figure 6.18: Velocity field on the symmetry plane at CA 450 (upper row) and 540 (lower
row). First column: numerical results on the current configuration; second
and third columns: measurements and numerical results respectively on the
standard configuration.

As highlighted in figure (6.18), the different evolution of the Tumble vortex at
CA 540 seems related to the intensity of the counter-vortex at CA 450. Using the
measurements on the standard configuration (central column) as a reference, it can
be observed that at CA 450 the counter-vortex is too intense in the current configu-
ration (first column), due to the different geometry and to a further overestimation
in the numerical results. On the other hand, the counter-vortex is underestimated
in the numerical results on the standard configuration (third column). As a conse-
quence, at CA 540 the Tumble vortex is remarkably delayed in the current simulation
with respect to the measurements on the standard one. In the measurements the
Tumble vortex is easy to distinguish, its center is along the cylinder-axis (x = 0)
but still close to the piston (y = −60 mm). In the current configuration instead

103

Chapter 6. Full-cycle simulation

the vortex is not fully developed and its center is shifted to the left (x = −20 mm).
In the numerical results on the standard configuration on the contrary, the direct
vortex has not been obstructed by the counter-vortex and this leads to an overes-
timation of the Tumble evolution: the vortex center is along the cylinder-axis, but
already far from the piston (y = −50 mm) and the velocity magnitude is higher.

Figure (6.18) shows thus the great influence of the counter-vortex in the Tumble
generation and evolution, its effect must be taken into account during the design of
the intake port.

CA 630, mid-compression

At CA 630 the experimental data on the current configuration are not available.
Similarly to the analysis at CA 540, a comparison between current and standard
configurations is thus performed.

At CA 630 the valves are closed and the piston is moving upwards, increasing
the Tumble motion. In the current configuration the Tumble motion is still not
completely developed, its center is moving upwards and towards the right side of
the cylinder, as shown in figure (6.19).

104

Chapter 6. Full-cycle simulation

Figure 6.19: Computed velocity field on the symmetry plane at CA 630.

At mid-compression however, the Tumble center should be already on the top-
right of the cylinder, as testified by the experimental data and the numerical results
related to the standard engine configuration shown in figure (6.20).

105

Chapter 6. Full-cycle simulation

30 20 10 0 10 20 30

50

40

30

20

10

 0

10

30 20 10 0 10 20 30

50

40

30

20

10

 0

10

1

2

3

4

5

6

7

Figure 6.20: Comparison between experimental (left) and computed (right) velocity field
on the symmetry plane at CA 630, taken from [16].

The computed velocity field of [16] correctly predicts the position of the vortex
center, but slightly overestimates the velocity magnitude. The reason may lie on
the underestimation of the counter-vortex, as highlighted above.

The computed velocity components extracted along horizontal lines at different
distances from the cylinder head are shown in figures (6.21) and (6.22).

106

Chapter 6. Full-cycle simulation

-6

-4

-2

 0

 2

 4

 6

 8

 10

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=0 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-10 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-20 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
x
 [
m

/s
]

x [mm]

Y=-30 [mm]

current
standard

Figure 6.21: Velocity x-component profiles at CA 630, for both standard and current con-
figurations.

107

Chapter 6. Full-cycle simulation

-6

-4

-2

 0

 2

 4

 6

 8

 10

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=0 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-10 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-20 [mm]

current
standard

-8

-6

-4

-2

 0

 2

 4

 6

 8

-40 -20 0 20 40

U
y
 [
m

/s
]

x [mm]

Y=-30 [mm]

current
standard

Figure 6.22: Velocity y-component profiles at CA 630, for both standard and current con-
figurations.

The velocity components trends are not as dissimilar as at CA 540. The Tumble
vortex is now clearly identifiable also in the current simulation, even if it is still not
fully developed.

Close to the cylinder head (Y = 0 and Y = −10 mm) the trends are similar in the
two configurations, higher differences take place on the exhaust part of the cylinder
(x > 0). In the current configuration the vortex center is at x = 10, y = −25
mm, still not at the top-right of the combustion chamber as in the standard one
(20 < x < 30, y = −15 mm). Moreover the radius of rotation in the current
configuration is much bigger than in the standard one, the flow does not undergo
a clear circular rotation. For x > 10 mm the slope of the y-component curve
representing the current configuration is thus not as high as the one representing
the standard configuration, where the circular vortex in fully developed.

At higher distance from the cylinder head instead (Y = −20 and Y = −30
mm), the sign of the x-component of the velocity is opposite in the two cases. In
the current configuration the vortex center is located between these two sampling
lines, thus these samplings catch the upper part of the vortex, moving towards right

108

Chapter 6. Full-cycle simulation

(Ux > 0). On the contrary, in the standard configuration the vortex center is located
at y = −15 mm, thus these samplings catch the lower part of the vortex, moving
towards left (Ux < 0). Concerning the y-component the differences decrease except
for x > 20 mm: here in the standard configuration the flow is moving downwards
with higher velocity with respect to the current configuration, because the vortex
center is at 20 < x < 30 mm and the rotational radius is of the order of 5-10 mm.

6.2.2 Cylinder pressure trend

An important check for the validity of the numerical setup, the geometry discretiza-
tion and the imposed boundary conditions is represented by the cylinder pressure
trend in the CA-range where the computed velocity flow field has been analysed.
Figure (6.23) shows the computed and the experimental in-cylinder pressure in the
first part of the engine cycle.

 50000

 100000

 150000

 200000

 150 200 250 300 350 400 450 500 550 600

C
y
lin

d
e

r
P

re
s
s
u

re
 [

P
a

]

Crank angle [deg]

Cylinder Pressure

Calculated
Experimental

Figure 6.23: Comparison between computed and experimental cylinder pressure trend in
the current configuration - zoom on the CA-range of interest.

As it possible to observe, the computed and the experimental cylinder pressure

109

Chapter 6. Full-cycle simulation

trends are in good agreement. The computed flow field in this CA range is thus not
affected by numerical issues.

During the compression phase however, the computed cylinder pressure profile
differs remarkably from the experimental one, as shown in figure (6.24).

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 100 200 300 400 500 600 700 800 900

C
y
lin

d
e

r
P

re
s
s
u

re
 [

P
a

]

Crank angle [deg]

Cylinder Pressure

Calculated
Experimental

Figure 6.24: Comparison between computed and experimental cylinder pressure trend in
the current configuration - full pressure profile.

The pressure peak is correctly located, but the peak value is much lower in the
computed results, with a resulting compression ratio decreased of about 2 unity. This
decrement of the pressure peak is due to the combustion chamber crevice modeling:
the compression ratio is strongly affected by the addition of the crevices1. Their
presence has thus to be taken into account not only for their great influence on the
thermal efficiency and the pollutants production, but also for their effect on the
compression ratio. Their design can thus be optimized in order to adjust the com-
pression ratio and the engine-out hydrocarbon emissions. In the present case, their
effect on the cylinder pressure during the compression phase leads to uncertainty in

1previous simulation performed on the current engine configuration without modeling the com-
bustion chamber crevices had computed the correct pressure peak.

110

Chapter 6. Full-cycle simulation

the prediction of the flow field in the final part of the engine cycle. Moreover with
the achieved pressure peak a combustion process would not be correctly analysed.

111

Conclusions

In this work the gas-exchange in the two configurations of the TU-Darmstadt optical
engine has been analysed by means of CFD modeling. Two types of simulations were
addressed: the steady-state simulation of the mid-intake phase and the full-cycle
simulation.

The aim of the steady-state simulation was first the experimental validation on
the standard engine configuration. Two types of sensitivity analysis have been per-
formed: turbulence model and numerical schemes. Comparing the results achieved
using the k-ε and the k-ω SST models, the best agreement with the experimental
data has been obtained with the k-ε model, proving its reliability in the analysis of
complex geometry. Concerning the sensitivity analysis of the numerical schemes, it
has been proved that in steady-state condition improving the accuracy leads to best
agreement with experimental data, without compromising stability.

Then a comparison between the two engine configurations has been carried out.
The standard configuration has demonstrated a better capability to generate a struc-
tured Tumble motion with respect to the current one. This result was expected: the
orientation of the intake ports in the standard configuration drives the incoming
flow toward the liner on the exhaust side of the combustion chamber, while in the
current configuration the intake duct ends more uprightly.

Performing the full-cycle simulation required a greater effort. This type of sim-
ulation has great potentiality for the investigation of the complex flow and thermal
phenomena taking place in internal combustion engines. A good prediction of the
flow motion, the fuel-air mixing and the overall in-cylinder conditions is necessary
to correctly predict and optimize the combustion process and the pollutant produc-
tion. The optimization of the automatic methodology allowing to perform this type
of simulation is thus of central importance and interest. For this reason the entire
procedure, from the generation of the full-cycle set of meshes to the implementation
of the settings required by the applications, has been described and explained in
detail.

The full-cycle simulation has been performed on the current engine configuration
only. The quality of the computational grid and the applied settings have been
validated by comparing the numerical results with the experimental data available at
mid-intake (CA 450). The achieved agreement can be regarded as good: it results in

112

Conclusions

line with the agreement achieved in previous work on the standard configuration. It
is remarkable however, the overestimation of the counter-vortex: this overestimation
leads to a delayed and reduced evolution of the Tumble motion in the following
engine phase. This problem can be overcome by improving the flow-grid alignment
in the intake valve region and further reducing the grid resolution.

Further comparisons have been carried out between the results achieved on the
current configuration in the present work and the results taken from a previous work
of the ICE Group of Politecnico di Milano on the standard configuration. The Tum-
ble motion has been analysed at CA 450 (mid-intake), 540 (intake, piston at BDC)
and 630 (mid-compression), allowing to observe the Tumble generation and evolu-
tion. Thanks to the experimental data at CA 450 available for both configurations,
it has been possible to verify that the difference in the numerical results was due
mainly to the different geometry. The further comparisons on the following engine
phase were thus meaningful from a motoring point of view. The full-cycle analysis
has confirmed the result of the steady-state simulation: the standard configuration
generates a higher Tumble motion with respect to the current one.

The full cycle simulation allows to analyse also the cylinder pressure. If the ve-
locity field is of central importance for a good fuel-air mixing and to achieve a high
turbulence level inside the combustion chamber, also the achieved pressure during
the compression phase plays an important role in the optimization of the combustion
process. In the present work, the peak of in-cylinder pressure has not been correctly
predicted: it is consistently lower than the experimental peak. For this reason a
following combustion process simulation would not be possible, as well as a correct
prediction of the flow field during the final part of the compression phase. The cause
of this wrong prediction of the pressure peak lies in the combustion crevice mod-
eling, which has increased the in-cylinder volume leading to a remarkable decrease
of the compression ratio. The encountered problem however demonstrates that the
design of the combustion chamber crevice has to be taken into account not only for
the thermal efficiency and the pollutant production, but also for the control of the
compression ratio.

Further analyses may be carried out in future works under full-cycle conditions.
First of all a combustion process simulation taking as input the in-cylinder condi-
tions achieved by the cold-flow simulation. Another interesting analysis would be
the investigation of the effect of the imposed symmetry condition, which allows to
perform the simulation on half the engine. The geometrical symmetry of the domain
does not ensure a symmetric evolution of the in-cylinder flow field. The imposed
symmetry condition allows to strongly reduce the computational costs still preserv-
ing a reasonable good phenomena prediction, but studying the entire domain could
lead to different results especially on the symmetry plane, due to the interaction
between the two incoming flows.

113

Acronyms

BDC Bottom Dead Center.

bTDC before Top Dead Center.

CA Crank-Angle Degree.

CAD Computer-Aided Design.

CAE Computer-Aided Engineering.

CFD Computational Fluid Dynamics.

CV Control Volume.

DNS Direct Numerical Simulation.

EVC Exhaust Valve Closing.

EVO Exhaust Valve Opening.

FDM Finite Difference Method.

FEM Finite Element Method.

FGA Flow Grid Alignment index.

FVM Finite Volume Method.

GDI Gasoline Direct Injection.

ICE Internal Combustion Engine.

IVC Intake Valve Closing.

IVO Intake Valve Opening.

115

Acronyms

LES Large Eddy Simulation.

MRV Magnetic Resonance Velocimetry measurement.

OBJ Wavefront Object format.

OpenFOAM Open Source Field Operation and Manipulation.

PDE Partial Differential Equation.

PISO Pressure Implicit with Splitting of Operators Algorithm.

PIV Particle Image Velocimetry measurement.

R&D Research and Development.

RANS Reynolds-averaged Navier–Stokes Equations.

SI Spark-Ignition.

SIMPLE Semi-Implicit Method for Pressure Linked Equations Algorithm.

STL Stereolithography format.

TDC Top Dead Center.

116

Bibliography

[1] F. G. L. Amorim, J. H. M. Ribeiro, M. G. J. Vaz, R. M. Valle, Sensitivity Analysis
of the Air Flow inside a Single Cylinder Engine for Different Turbulence Models
Using CFD, Advanced Materials Research, Vol. 1016: 624-629, 2014.

[2] ANSYS FLUENT website, Theory Guide

[3] C. Arcoumanis, S. Godwin, J. Kim, Effect of Tumble Strength on Combustion
and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,
SAE Technical Paper, 981044, 1998.

[4] C. Berggren, T. Magnusson, Reducing automotive emissions - The potentials
of combustion engine technologies and the power of policy, Energy Policy, Vol.
41:636-643, 2012.

[5] A. Della Torre, T. Lucchini, G. D’Errico, G. Montenegro, M. Fiocco, A. Magh-
bouli, Full-cycle simulation of the Darmstadt engine, Third Darmstadt engine
workshop, 2015.

[6] P. Domingo, L. Vervisch, J. Reveillon, DNS analysis of partially premixed com-
bustion in spray and gaseous turbulent flame-based stabilized in hot air, Com-
bustion and Flame, Vol. 140(3):172-195, 2005.

[7] S. Falfari, F. Brusiani, G. Bianchi, Assessment of the Influence of Intake Duct
Geometrical Parameters on the Tumble Motion Generation in a Small Gasoline
Engine, SAE Technical Paper, 2012-32-0095, 2012.

[8] G. Ferrari, Motori a combustione interna, Il Capitello, Torino, 4a edizione, 2008.

[9] M. Fiocco, T. Lucchini, Guidelines to the engineDynamicSetUp application

[10] M. Fiocco, T. Lucchini, Guidelines to case setup for a gas exchange simulation
of IC engine geometries

[11] D. Freudenhammer, E. Baum, B. Peterson, B. Böhm, B. Jung, S. Grundmann,
Volumetric intake flow measurements of an IC engine using magnetic resonance
velocimetry, Experiments in Fluids, 55:1724, 2014.

117

Bibliography

[12] A. D. Gosman, State of the Art of Multi-Dimensional Modeling of Engine Re-
acting Flows, Oil & Gas Science and Technology, Vol. 54-2: 149-159, 1999.

[13] R.F. Huang, C.W. Huang, S.B. Chang, H.S. Yang, T.W. Lin, W.Y. Hsu, Topo-
logical flow evolutions in cylinder of a motored engine during intake and com-
pression strokes, Journal of Fluids and Structures, Vol. 20(1):105-127, 2005.

[14] H. Jasak, Z. Tukovic, Automatic mesh motion for the unstructured finite volume
method, Transactions of FAMENA, XXX-2, 2006.

[15] P. K. Kundu,I. M. Cohen, D. R. Dowling, Fluid Mechanics, Academic Press,
6th edition, 2015

[16] T. Lucchini, A. Della Torre, G. D’Errico, G. Montenegro et al., Automatic
mesh generation for CFD simulations of direct-injection engines, SAE Technical
Paper, 2015-01-0376, 2015.

[17] T. Lucchini, G. D’Errico, H. Jasak, Z. Tukovic, Automatic mesh motion with
topological changes for engine simulation, SAE Technical Paper, 2007-01-0170,
2007.

[18] T. Lucchini, M. Fiocco, R. Torelli, G. D’Errico, Automatic mesh generation for
full-cycle CFD modeling of IC engines: application to the TTC test case, SAE
Technical Paper, 2014-01-1131, 2014.

[19] F. Moukalled, L. Mangani, M. Darwish, The Finite volume method in compu-
tational fluid dynamics -an advanced introduction with OpenFOAM and Matlab
Springer, 2016.

[20] OpenFOAM website, User Guide

[21] S.B. Pope, Turbulent Flows, Cambridge University Press, 2000.

[22] O. Reynolds, An experimental investigation of the circumstances which deter-
mine whether the motion of water shall be direct or sinuous, and of the law of
resistance in parallel channels, Phil. Trans. R. Soc., 174:935-982, 1883.

[23] S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, D. Vey-
nante, Towards large eddy simulation of combustion in spark ignition engines,
Proceedings of the Combustion Institute, 31 3059-3066 , 2007.

[24] L. F. Richardson, Weather prediction by numerical process, Cambridge Univer-
sity Press, 1922.

118

Bibliography

[25] O. Vermorel, S. Richard, O. Colin, C. Angelberger et al., Multi-Cycle LES
Simulations of Flow and Combustion in a PFI SI 4-Valve Production Engine,
SAE Technical Paper, 2007-01-0151, 2007.

[26] O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, D. Veynante,
Towards the understanding of cyclic variability in a spark ignited engine using
multi-cycle LES, Combustion and Flame, Vol. 156(8):1525-1541, 2009.

[27] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dy-
namics: the finite volume method, Pearson Education, 2nd edition, 2007.

119

