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A B S T R A C T

The study of new techniques for pricing options and more in
general derivative contracts, is gathering increasing attention
on both the Financial community and the Applied Statistic com-
munity. It is interesting and enterprising to research new mod-
els capable of describe financial market behaviours.
This thesis addresses the question of how financial curve and
derivative contract price predictions can be improved using ma-
chine learning techniques. The focus is on the modelling of
discount and interest-rate curves leveraging on Vasicek model,
with swaption prices as unique feedback.
In this work we will focus on performances obtained by of-
fline and online models, in addition we will evaluate the per-
formances with respect to the currently used analytical models.
Along the model development, there will be several arguments
that consist of reliable analyses about the analytical model. In
particular we will focus on relationships between peculiar val-
ues that constitute curves and relative contract prices. These
analyses are an additional knowledge base that is usually miss-
ing, this is due to either contract practitioners and composers
know only how to use them better or their financial mathemat-
ical details.
Previous research has focused on using time series, or Machine
Learning techniques directly applied to predict contract vari-
ables that define instrument state. Our diversity relies on the
ability of predicting curves that define several contracts.
Besides the achieved results, there is an accurate analysis of our
approach limitations and future work suggestions.

xv



S O M M A R I O

Lo studio di nuove tecnice di prezzamento delle opzioni e più
in generale di contratti derivati, sta ricevendo notevole consid-
erazione sia nella comunità di Finanza che in quella della Sta-
tistica Applicata. Risulta infatti particolarmente interessante e
intraprendente la ricerca di nuovi modelli in grado di descri-
vere i comportamenti futuri dei mercati finanziari.
Questa tesi si occupa di rispondere alla domanda di come miglio-
rare la predizione di curve finanziarie e in particolare prezzi
di contratti che ne derivano, andando a utilizzare tecniche di
Machine Learning. In particolare ci concentreremo sul model-
lizzare l’andamento delle curve di sconto e dei tassi di inter-
esse tramite un modello Vasicek, avendo come unico riscontro
il prezzaggio di contratti swaption definiti a partire da tali vari-
abili.
In questo lavoro ci concentreremo sulle prestazioni ottenute
da modelli offline e online, infine valuteremo le prestazioni
ottenute rispetto ai modelli analitici che vengono utilizzati at-
tualmente. Durante la costruzione di tali modelli, saranno pre-
sentate varie argomentazioni che consistono in analisi robuste
circa i modelli analitici utilizzati. In particolare ci focalizzeremo
sui legami di dipendenza tra valori caratteristici componenti
le curve e i prezzi dei relativi contratti. Queste analisi costitu-
iscono una base di conoscenza aggiuntiva che spesso viene a
mancare, in quanto gli utilizzatori dei contratti come anche chi
li definisce, conosce solo o le proprietà che ne consentono un
utilizzo migliore, o i dettagli matematico finanziari.
I precedenti lavori di ricerca consideravano o l’utilizzo di se-
rie temporali, o l’utilizzo di tecniche di Machine Learning per
predirre direttamente variabili caratterizzanti lo stato di partico-
lari contratti. La nostra diversità risiede nell’abilità di predirre
curve presenti nella definizione di svariati tipi di contratti.
Oltre i risultati conseguiti, è presente una analisi dettagliata
delle limitazioni e degli scenari futuri suggeriti.

xvi



1
I N T R O D U C T I O N

It takes you 500,000 microseconds just to click a mouse. But if you’re
a Wall Street algorithm and you’re five microseconds behind, you’re

a loser.
Kevin Slavin (July 2011)

I have always been interested in the financial markets. In partic-
ular I have always asked myself how it works, and how it can
change our everyday life.
From what I have learnt about finance, this complex world
was completely revolutionized with the introduction of Modern
Portfolio Theory (MPT) five decades ago. MPT was pioneered by
Harry Markowitz (Markowitz, March 1952). MPT is a math-
ematical framework for assembling a portfolio of assets such
that the expected return is maximized for a given level of risk,
defined as variance. The year 1952 can be considered as the
advent for development of increasingly sophisticated financial
instruments.
This growth catches on thanks to deregulation. Deregulation states
that market economy should be supervised by supply and de-
mand, without any government intervention. This phenomenon
takes place for the first time in the 1980s with the deregulations
of U.S. airlines and AT&T.

The increases in complexity, required significant investments
in automation. Nowadays the number of financial transactions,
as well as the speed at which they are handled, would not be
possible without the support of computers.
A big field that is strictly related to this topic is the High Fre-
quency Trading (HFT). In this world computers take less than a
microsecond to evaluate a single transaction; losing just a mi-
crosecond, would lead to the loss of hundreds of millions of
dollars in a year (M. Malvaldi, 2014).
For this reason today cash movements require significant devel-
opment of models for predicting and pricing, that are subjected
to restrictive time and accuracy constraints.
This field incorporates us to one of the aspect that most fasci-
nates me, that is the conjunction between financial and IT do-
mains. As a lot of IT people, I continuously wonder myself
about the old but still present competition between humans
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and algorithms, thus, reliability versus speed. Since the intro-
duction of computers, we have wondered what their limitations
and potentialities would be. Now we are dealing with comput-
ers that learn from their own errors. The effects carried by this
auto-learning approach, would be dramatic. In particular, the
insights gained and the efforts spent over the last years in both
the financial and the artificial intelligence fields, have substan-
tially contributed to the increase of efficiency in modern world
economies and the business operating in them.

As I mentioned there are lots of benefits for such a progress,
however, there are also some drawbacks.
During the Global Financial Crisis (GFC) of 2008-2011, there
were a lot of cases of problems occurred due to computers and
HFT. A clamorous episode known as flash crash, happened on
the May 6, 2010, when several concurrent algorithms stumbled
upon each other causing loss of almost 10% of Dow Jones value
(M. Malvaldi, 2014).
The last recession as well as all other financial catastrophes, al-
ways involves low and medium classes. I am half Brazilian and
in this country the gap between different class of people is very
high and marked. In particular, financial recessions caused the
widening of this gap to the detriment of the middle and lower
classes. This is what likely ignites my interest.

This thesis is about swaps, a particular kind of derivative.
Derivatives are a category of contracts that occupy the biggest
slice of the current financial market, and are also the main ac-
tors in the GFC. With the growth of the market in financial
derivatives, the pricing of instruments for hedging positions
on underlying risky assets and optimal portfolio diversification
have become major activities in international investment insti-
tutions (McNelis, 2005).

1.1 research domains

1.1.1 Finance: swap and swaption

A swap is a contract between two parties agreeing to exchange
payments on regular future dates for a defined period of time,
in which one stream of future interest payments is exchanged
for another based on a specified principal amount (Chisholm,
2004).
The first swap contracts were negotiated in the early 1980s be-
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tween IBM and World Bank (Hull, 2011). Since then the market
has seen phenomenal growth of the number of contracts. Swaps
now occupy a central position in the market of derivatives. As
mentioned, they are derivatives, this means that their value is
derived from another asset called underlying, in the specific case
an interest rate.
The most common type of Interest Rate Swap (IRS) is a fixed-
floating deal in which the payment made by one party is based
on a fixed interest rate, and the return payment is based on a
variable or floating leg. Leg is a technical term that denotes the
cash flows exchanged in a swap.
Swap are usually used by corporations, by investing institu-
tions and by banks with the purpose of mitigating and transfer
risk between parties that wants to reduce it, to those who want
to increase it. In the financial domain this operation is referred
as hedging.

swap characteristics . The most common type of interest
rate swap is the fixed/floating swap, often referred to as
"plain vanilla deal " (Chisholm, 2004). The characteristics
of a vanilla IRS contract are:

• The nominal amount of the swap is used to calculate
the interests. This amount is notional, that is to say it
is never exchanged;

• One party agrees to pay a fixed rate of interest ap-
plied to the notional principal on regular future dates,
this rate is called strike price;

• The other party agrees to make a return payment
on regular future dates based on a variable rate of
interest applied to the same notional principal. The
referred index can be LIBOR, EURIBOR etc.;

• The frequencies between consecutive payments either
for the fixed or the floating leg are specified by the
tenor τ. It denotes how long takes between consecu-
tive payments.

swap example Let us suppose that two parties Charlie and
Sandy contract a vanilla IRS between themselves. For ex-
ample, assume that Charlie owns a €1,000,000 investment
that pays him EURIBOR + 1% every month. As EURIBOR
goes up and down, the payment Charlie receives changes.
Now assume that Sandy owns a €1,000,000 investment
that pays her 1.5% every month. The payment she receives
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never changes. Charlie decides that that he would rather
lock in a constant payment and Sandy decides that she
would rather take a chance on receiving higher payments.
So Charlie and Sandy agree to enter into an interest rate
swap contract.
Under the terms of their contract, Charlie agrees to pay
Sandy EURIBOR + 1% per month on a €1,000,000 prin-
cipal amount (called the "notional principal" or "notional
amount"). Sandy agrees to pay Charlie 1.5% per month on
the €1,000,000 notional amount.

The terminology for swaps always refers to the fixed leg, so
the holder of a receiver swap will receive the fixed leg and pay
the floating one (Bjork, 2003). Conversely, for a payer swap the
payments go in the reverse direction. Now that I have described
what a swap is, I can go further and describe the swaption, that
has the leading role of this project.
Swap options, or swaptions, are options on interest rate swap
and are the most popular type of interest rate option. They give
the holder, the right to enter in a certain interest rate swap at
a certain time in the future, at the swaption expiry time (Hull,
2011).

swaption varieties . According to the rights given to the
swaption holder, we can distinguish among a few vari-
eties of contracts .

• Bermudan swaption, in which the owner is allowed
to enter the swap on multiple specified dates;

• European swaption, in which the owner is allowed
to enter the swap only on the expiration date;

• American swaption, in which the owner is allowed to
enter the swap on any day that falls within a range
of two dates; (Robert Kolb, 2002)

We are not interested in all these kinds of options, but only on
the European ones. This kind of option is the standard in the
marketplace, and is the one involved in our case study. All the
described instruments are analytically defined in the second
chapter of this document.

1.2 research objective

The framework in which we are operating is called Calibration.
It consists of find the optimal parameters for a dynamic model,
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that describes the behaviour of financial curves that are nec-
essary to define the swaption leg values, thus the contracts’
prices.
Currently, this problem is approached as an iterative minimiza-
tion task over the differences between real contract prices and
the ones derived by the so far estimated parameters according
to analytical model (Black’s formula).
The research presented in this thesis aims to overcome current
gaps. The principal problems involved in this task are those
of determining the right prices through complex mathematical
models and formulas that require high computational time. A
second obstacle is given by the presence of attractive local opti-
mal results for the dynamic model.
The hidden assumption behind the use of ML techniques is that
by following data-driven optimization, is expected to have ad-
vantages in terms of complexity, produced outcomes and adap-
tation to changing environments. In fact they are suitable to
recognize trends in data. That are the reasons why introduc-
tion of ML techniques should be appropriate in the face of its
advantages and the presented problems.
As we will be discussed and motivated in the next chapters,
the approach followed in this project is based on Supervised
Learning (SL) (e.g. Multi-Layer-Perceptron (MLP)). As a brief in-
troduction, I only highlight that according to the current state of
the art, neural networks are particularly well-suited to the type
of data found in financial markets, such as high dimensional
data sets of noisy data with apparent non-linear relationship
between the variables (McNelis, 2005).

1.2.1 Calibration

As was described in the previous chapter, we are dealing with
an iterative minimization problem. It consists in fit the behaviour
described by the European swaption prices with an arbitrar-
ily pre-established model. The parametric model only predicts
curves that are necessary to compute the contract prices.
Within the project, only one problem may derive from erro-
neous prediction, errors may lead to wrong investments over
swaptions and creation of non optimal portfolios. By reasoning
more in detail on how these prices are computed, we compre-
hend that the biggest controlled assets involved are the pre-
dicted curves, in fact with those we can price several other fi-
nancial instruments. More qualitative speaking, knowing those
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curves allows us to get a good prediction over the future state
of several financial contracts that depend on them. We are defi-
nitely not restricted to swaptions as a single instrument.
This means that the spectrum of application of the provided
algorithm are wide-ranging and takes a leading role in the fi-
nancial domain.
Currently, contract prices are computed by exploiting the Black’s
formula that takes as input the implied Black’s volatility for
computing the prices besides the the mentioned curves. So far
we are not interested in the mathematical aspects, we have just
to know that the second parameter, thus the implied volatility is
not provided by the market, in fact it only gives the instrument
prices and the curves. Anyway, volatilities are usually preferred
by traders since they give a quick idea of the instrument state
and behaviour. Output parameters, thus the ones of the model
used to describe curves, are derived with a gradient descent
approach over a loss function that is defined over the predicted
and the real prices. Predictions are made with the Black’s for-
mula upon the estimated curves and the given implied volatili-
ties.
The mathematical details behind the prices computation and
the minimization algorithm is described in detail during the
next chapter.

1.3 research contribution

The classical approach to the calibration problem, that I will call
Hard Calibration (HC), is capable of pricing all the instruments
and it was used to make our database. However bank, cannot
exploit HC due to the time constraints. They instead leverage on
a weighted calibration that selects only a subset of instruments.
I will call this approach Soft Calibration (SC). The SC drawbacks
are:

• It is able to consider only a limited subset of the swaption
prices and totally overlooks the leftovers. In particular the
looked subset is composed of only 7 instruments from a
total of w 200;

• The compromised version produces results that are cur-
rently not evaluated with respect to the ones given by the
optimal method.

The provided model counteracts both the phenomenons. It
follows a data-driven approach where the data are derived di-



1.3 research contribution 7

rectly from the complete calibration version, this means that
avoids the local optimal problem that inflicts the compromised
method. It also reduce the computational time required from
the optimal calibration by exploiting machine learning tech-
niques. Finally for what concerns the scalability limitation, the
data-driven model learn how to best price all the available in-
struments together. The fourth chapter of this thesis contains a
detailed version of the obtained results.

1.3.1 Computer Science techniques

From a computer-science point of view there are several differ-
ent fields involved during the project, they are not only strictly
related to the data-driven algorithm:

• Object Oriented Programming (OOP) was used to create
the original dataset from which the machine learning task
starts. It was also necessary for the comprehension of state
of the art code, and to the development of the function-
alities required for the dataset writing. Moreover, it was
necessary in the evaluation phase for the developed ma-
chine learning model. This task was done by exploiting
a domain-based function that was in a hidden tier of the
object-oriented software architecture.

• Data analysis and visualization: was necessary for the first
interaction with data. It allows me to study data distribu-
tions and shapes, and analyse features correlations. These
tasks was fundamental for reducing the original features
space and also to get in touch with data.
These skills were necessary also in a second phase in or-
der to make outlier identification and to get a quick qual-
itative feedback on the prediction made by the developed
model.

• Machine Learning::

– Dimensionality reduction: dimensionality reduction
or dimension reduction is the process of reducing
the number of random variables under consideration,
via obtaining a set of principles variables. It can be
divided into feature selection and feature extraction.
It can also be divided into supervised and unsuper-
vised dimensionality reduction.
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This technique as a leading role also in the finan-
cial domain. Often large amounts of data are summa-
rized with averages, medians, or trimmed means. For
instance, the Dow-Jones Industrial Average is just an
average of industrial share prices (McNelis, 2005).
The techniques covered by this field were massively
used for a preprocessing of the initial dataset, in or-
der to lead it in a structured reduced version and to
give us an empirical vision of feature importances
and correlations. All the experimental details about
these phases are addressed by the fourth chapter of
this document.

– Supervised Learning: there are two types of prob-
lems known as supervised and unsupervised learn-
ing. It is called “supervised” when there is the pres-
ence of the outcome variable to guide the learning
process. In the "unsupervised learning" case, we ob-
serve only the features and have no measurements of
the outcome. Our task is rather to describe how the
data are organized (T. Hastie, 2009).
As it will be widely described in the next chapters
our project is a classical example of multi target su-
pervised learning problem.

– Deep learning: (also known as deep structured learn-
ing, hierarchical learning or deep machine learning)
is a branch of machine learning based on a set of
algorithms that attempt to model high level abstrac-
tions in data by using a deep graph with multiple
processing layers, composed of multiple linear and
non-linear transformations. This structure grew out
of the cognitive and brain science disciplines for ap-
proximating how information is processed and be-
comes insight.
This framework usually involves Artificial Neural Net-
works (ANN) for forecasting. "Forecasting simply means
understanding which variables lead or help to pre-
dict other variables, when many variables interact in
volatile markets" (McNelis, 2005).
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1.4 document presentation

During the next chapters I will present the problem from the
financial and the machine learning perspective, by explaining
the set of instruments involved. Only in a second phase there
will be the description of the experiments, the developed mod-
els and their results.
I will now give a division by chapters in order to facilitate the
reader. In the first chapter we have just got an introduction to
the problem from a high-level description. In the next chapter
is defined all the maths behind the financial contracts and the
minimization problem. In the third chapter, I will formally in-
troduce all the techniques necessary in the development of the
data-driven algorithm; here there will be an investigation of the
current state-of-the-art solutions for this specific problem. The
main contribute of this document, is the fourth chapter, it dis-
cusses all the steps taken in building the final algorithm. It also
describes the obtained results from a financial perspective.

The project is made in collaboration with IMI Bank. This im-
plies that all experiments are made on real scenarios and not
on simulations.
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S WA P T I O N : A T H E O R E T I C A L V I E W

Non perdere tempo con la finanza, anche facendoci un corso di
dottorato ci sarebbero cose che non capiresti.

A. Prampolini (12/05/16)

This chapter is set to provide a sufficient financial knowledge
necessary to reach the research objectives outlined in the intro-
duction. It follows a bottom-up direction, from the simplest el-
ement to the coarse-grained object.
As a first step I define what is a derivative, that is the most
popular contract in the document and in the market.
With the word derivatives, we refer to contracts that are com-
pletely defined in terms of an underlying asset, which makes it
natural to call them derivative or contingent claim (Bjork, 2003) .

Definition 2.1. Derivative is any instruments whose price de-
pends on, or is derived from, the price of another asset called
underlying (Hull, 2011) .

2.1 swap

In this section we will define the simplest of all interest rate
derivatives, the Interest Rate Swap (IRS). This is a contract in
which you exchange a payment at a fixed rate of interest, known
as swap rate, for a payment stream at a floating rate, in our case
denoted with a forward rate curve (FWD). In the European mar-
ketplace the standard forward curve is the Euribor Curve (EUR).
These derivatives are rarely treated directly between parties, un-
less they are financial institutions. The Figure 2.1 specifies the
surrounding context in which we are operating. There are ba-
sically three actors involved in swaps: the bank, the Street and
the Corporate. Figure 2.1 shows two different swap instances:
A and B. Swap A is exchanged between the bank and the Cor-
porate and contains a gain for the bank. Swap B is exchanged
between the bank and the street and it is evened out.

A more formal representation of a swap model is provided
in Figure 2.2.

A swap is completely specified by the following elements:

11



12 swaption : a theoretical view

Figure 2.1: Context in which our project takes place. It represents
exactly the environment in which these contracts are ap-
plied.

Figure 2.2: Abstract representation of swap contract.
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• nominal value:N, thus the amount to be deposited at Texp;

• strike price: K, that defines the interest rate paid by the
fixed leg;

• float rate: FWD, that is indexed by a market defined curve
for example: EURIBOR, LIBOR. It defines the interest rate
paid by the floating leg;

• tenor: τ, that defines the elementary period for the legs
payment. In particular specifies the interval between the
payments;

• expiry date: Texp, that specifies when the contract will
start;

• maturity date: Tmat, that defines when the contract will
end.

We assume to have a number of equally spaced dates T0, .., Tn
and payments happen at time T1, ...Tn. Equal reset dates, thus
payment dates, on both sides are assumed in the rest of what
follows without loss of generality, this is often not true in the
reality.
If we swap a fixed rate for a floating one, and by denoting with
τ the time interval between consecutive dates, then, at time Ti
we will receive the amount:

N τ FWD(Ti−1, Ti) (2.1)

that defines the floating leg. The term FWD(Ti−1, Ti) is the For-
ward rate, it will be published only at time Ti−1 for the interval
(Ti−1, Ti) . This lack of knowledge of the Forward rate at time
t < Ti−1 , is the reason for the name floating leg.
At time Ti you will pay the amount:

N τ K (2.2)

that is usually known as fixed leg.
The net cash flow at time Ti is thus given by the difference of
the two legs:

N τ [FWD(Ti−1, Ti) −K] (2.3)
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2.1.1 Actualization with Discount Curves

Since our interest is to evaluate the swap value, we need a fur-
ther function to actualize at time t < Ti ( today ) the cash flows
that will be paid at time Ti+1. This will allow us to compute the
value of the entire leg.
Such a task is accomplished thanks to the discount rate curve,
in the European market place, that is the main case dealt by
this project, we will treat with OIS discounting curve (OIS). The
discount curve indicates the expected value of the amount re-
quired at time t, to have at time T the cash flow equal to 1.
If we have the short rate rdsct(u) for the infinitesimal interval
[u, u+ du], we can define the long rate curve as:

DSCT(t, T) = e−
∫T
t r

dsct(u)du (2.4)

This definition is derived in the proof below.

short-long discount rates relation.

DSCT(rdsct(t)dt+ 1) (2.5)
DSCT(rdsct(t)dt+ 1)(rdsct(t+ dt)dt+ 1); (2.6)
DSCT(1+ rdsctdt)2; (2.7)

DSCT(1+
rdsctT

n
)n; (2.8)

DSCT(T) = e
∫T
t r

dsct(u)duDSCT(t); (2.9)

DSCT(t) = DSCT(T)e−
∫T
t r

dsct(u)du. (2.10)

In the first step we consider t = t+ dt. From (2.6) to (2.7) we
assume rdsct constant in dt. From (2.7) to (2.8) we consider dt =
T
n . Finally from(2.8) to (2.9) we move n to infinite limn→∞. �

Now that we have built a framework to actualize future val-
ues, the only missing element specified in the contract is the
rate to be paid for the derived floating leg.

2.1.2 Floating leg rates: FRA and forwarding

In our simplified context, we will see the floating rate as com-
posed by multiple Forward Rate Agreement (FRA) instances.
FRA is another type of contract with an abstract representation
depicted in Figure 2.3.
It has a single payment: a fixed rate K for a float rate L(t, Tfix, Tpay)
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Figure 2.3: Forward Rate Agreement contract schema.

with respect to a nominal value, in this caseN. The floating pay-
ment occurs at Tpay = Tfix + τ. When we consider the FRA as a
contract per se, τ is usually referred as year fraction, only in this
overlapping situation it coincides with the swap tenor.
In our case we can consider the FWD curve with an opposite role
with respect to the discount function, in fact its aim is to deter-
mine the forward rate to be paid as an interest. More formally,
we should consider the fixed rate equilibria Keq such that the
FRA value seen today, thus at time t for the FRA at (Tfix, Tpay),
is zero. The FRA value is computed by following the same ap-
proach seen for the swap contract and subtracting the leg value
at the same date. This specific Keq is known as FWD forward
rate, and it will be denoted as L(t, Tfix, Tpay).
Now it should be clear why is called forward, the reason is that
it is defined today for a contract specified for (Tfix, Tpay). Keq
has also the property that the unknown flaw FWD(Tfix, Tpay)

seen at t is equal to the known index L(t, Tfix, Tpay).
L(t, Tfix, tpay) is than fixed at time t, it refers to a deposit that
will start only in the future at time Tfix and will terminate at
time Tpay.
Given the forward rate defined above, we compute the swap
price for each i only with L(t, Ti−1, Ti).
As I have already mentioned above, float rate is a stochastic
quantity, it is not granted on the contract in fact it is not known
at t = 0, that is why it is called float leg. As before, we have to
determine a fair value for this rate.
A useful way to express the index L(t, Tfix, Tpay) exploits the
pseudo-discount curves FWD(t, T). We will use two different non-
linearly dependent indices to refer to the forward rate, that are
the L(t, Tfix, Tpay) index and the pseudo-discount curve FWD(t, T).
Thanks to the introduction of pseudo-discount we can get a suit-
able definition of L(t, Tfix, Tpay).
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FWD(t, T) is called "pseudo" since it can be seen as a discount
curve, but conversely from the DSCT that is given day by day,
it contains also risk factors, so it is not given explicitly as a dis-
count curve form but just as an input required for calculate the
float rate index L(t, Tfix, Tpay), as shown below.
Further more, since the pseudo-discount curve contains risk fac-
tors, it will be necessary the introduction of an expected value
operator over a probability defined over this risk, such a proba-
bility is known as: risk neutral.
In the demonstration below, the left-hand side denotes the amount
to be paid at time t in order to have the nominal N at time
Tfixing. The right-hand side, that contains the unknown index
L(t, Tfix, Tpay), is the actualization of the nominal plus the inter-
est rate to be paid on it.

Forward rate and pseudo-discount factors.

N DSCT(t, Tfix) = N DSCT(t, Tpay)(1+ τ L(t, Tfix, Tpay))

DSCT(t, Tfix)

DSCT(t, Tpay)
= 1+ τ L(t, Tfix, Tpay)

DSCT(t, Tfix)

DSCT(t, Tpay)
− 1 = τ L(t, Tfix, Tpay)

L(t, Tfix, Tpay) =
1

τ
(
DSCT(t, Tfix)

DSCT(t, Tpay)
− 1)

�

In the European market place, we will deal only with EURI-
BOR curves, with tenor equal to six-months, such a curve it will
be denoted as EUR6M(Tfix, Tpay) and defines the interest rate
for the index Leur(t, Tfix, Tpay) with tenor τ equal to six months.
The point is that, from the EURIBOR we get a pseudo-discount
curve EUR(Tfix, Tpay).
Actually there is a tiny difference between what the market
gives us and the FWD, in fact the market give us only the
expected value over the risk neutral probability, I leave to the
reader this financial topic, so the following relationship holds:

FWD(t = 0, Tpay) = Eriskneutral[L(t, Tfix, Tpay)] (2.11)

2.1.3 Swap Price

We now have all the elements to calculate the swap value, that
it will be denoted as Net Present ValueIRS, and then we will
finally move to the swaptions.
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Definition 2.2 (Swap price).

NPVIRS = NPVfix leg −NPVfloat leg (2.12)

NPVfix leg = N

n∑
i=1

K τi DSCT(t, Ti) (2.13)

NPVfloat leg = N

m∑
j=1

L(t, Tj−1, Tj) τj DSCT(t, Tj) (2.14)

The equation (2.12) defines the IRS net present value. The two
equations below formally define the two legs, since in general
the legs may be defined on different dates of exchange, I use
two distinct time horizon indices.

The previous definition is enough for what concerns the swap
price, but since we deal with swap at the money (ATM), we re-
strict to swap whose strike price K leads to a NPV equal to
zero:

Definition 2.3 (Swap at the money).

NPVIRS(Keq) = 0 (2.15)
NPVfix leg = NPVfloat leg (2.16)

NPVIRS(K 6= Keq) = (K−Keq)

n∑
i=1

NτiDSCT(t, Ti)(2.17)

I will close this section with just a brief explanation of the re-
lationship between the described curves, thus OIS and EUR6M.
These functions are linked by a shift that can be derived given
their definition in terms of short rates. As already mentioned
short rates are stochastic quantities that is why we will use ex-
pected value operator:

Definition 2.4 (Shift structure).

POIS(t, T) = E[e−
∫T
t r

OIS(u)du] (2.18)

PEUR6M(t, T) = E[e−
∫T
t r

EUR6M(u)du] (2.19)

= E[e−
∫T
t (r

OIS(u)+ϕ(u))du] (2.20)
= POIS(t, T)Φ(t, T) (2.21)

(2.22)

The variable P is used to denote in a common way, long term
rates.
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So we have define a new quantity, that will be called curve-
shift:

Φ(t, T) =
PEUR6M(t, T)

POIS(t, T)
(2.23)

The existence of this relation will be extremely useful during
the dataset analysis phase since explains a correlation between
the curves.

2.2 vasicek pricing model

Now that we have described all the elements specified in the
swap contract, we will describe how the short rate behaviour is
modelled using stochastic dynamic equations.
One of the first model devised to capture the short rate be-
haviours, was proposed by (Vasicek, 1977).

2.2.1 Model definition

In his model the short rate r(t) has to satisfy the following
stochastic differential equation:

dr(t) = k(θ− r(t))dt+ σdW(t) (2.24)

where k, θ, σ are positive constants (Hull, 2011) . The term k is
the mean reversion velocity, θ is the mean interest rate level or
long term mean, σ is the volatility andW(t) the Wiener process.
The main characteristic of this model is the exhibition of the
mean reversion phenomenon. For instance, let us consider the
case in which the current interest rate r is lower than the long
term value θ so we have (θ > r), the drift will be positive and
the rate will increase on average.
Conversely, when (θ < r), the drift will be negative and the
rate will decrease on average. The role of the coefficient k is to
control the velocity of movements towards the long term mean
θ of the rate r(t).

2.2.2 Wiener Process

For what concerns the Wiener process, I will briefly explain it
since it is a mileston in finance. Wiener (1931) did the math-
ematician work for Brownian Motion. Brownian motion was
a model built to describe the random movements of particles
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in a fluid. It is also used to describe random movements that
have similar behaviours as financial curves. Besides the Vasicek
model, it appears in the definition of the Block-Scholes option
pricing model, that is a de-facto standard in the financial do-
main for pricing options.

Definition 2.5 (Wiener process). A Wiener Process W(t) with
t > 0 is a real valued, continuous, stochastic process with the
following properties:

• W(0) = 0;

• W has continuous paths with probability 1;

• W has Gaussian independent increments.
Thus, if r < s 6 t < u then W(t)−W(u) and W(s)−W(r)

are independent stochastic variables.

• For s < t the stochastic variableW(s)−W(t) ∼ N(0,
√
t− s)

(Bjork, 2003)

2.3 swaption

Now we have all the elements required to move to the main
contract involved in this project, the swaption. As for the swap,
I firstly make an example and then I will formally define its
details.

2.3.1 Swaption Contract

Definition 2.6 (swaption). A Texp : (Tmat − Texp) payer swaption
with swaption strike price K, is a contract which at the exercise
date Texp gives the holder the right but not the obligation to
enter into a Texp (Tmat − Texp) swap with the fixed strike price
K and swap tenor δ (Bjork, 2003).

This contract is totally defined by two times variables:

• Texp: that is the time at which the holder may decide to
exercise its right to enter in the underlying swap contract,
thus the expiry;

• Tmat: that is the expiration date of the contract and corre-
sponds, without loss of generality, with the last payment
date of both the legs.
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Over these quantities is possible to define a tenor for the swap-
tion, that is equal to the difference of the two dates. It defines
the option duration and it will be denoted as δ.
If a swaption gives the holder the right to pay fixed and receive
floating, is called put option on the fixed-rate bond with strike
price equal to the principal. Conversely, if a swaption gives the
holder the right to pay floater and receive fixed, it is called call
option.

2.3.2 Swaption price

As shown in Figure 2.4 there are different possible scenarios
for the Keq value at time Texp. This will introduce the expected
value operator in the calculation of the swaption payment. We
must not forget that Keq is directly derived starting from the
forward rate.

NPV
option
Texp

= ((Keq −K)
+DVO1(Texp) (2.25)

NPV
option
t = Et[((Keq −K)

+DVO1(Texp)] (2.26)

where DVO1 is the sum of discount factors over the summed
payment dates:

DVO1(Texp) =

n=Texp∑
i=1

τ DSCT(Ti−1, Ti) (2.27)

. The meaning of the positive part is that, if the return is nega-
tive the swaption holder will never exercise it.

Figure 2.4: Swaption stochasticity over the strike value.
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2.4 black formula

I will now introduce a new framework known as Black-76, that
is an option pricing model. The name comes from the fact that
it was first presented in a paper by Fischer Black in 1976.
This formula involves two main variables that are swaption price
and implied black volatility. These will be analytically defined
in the formula definition. In particular we refer to a shifted
version that introduces an additional variable known as: log-
normal shift.
From now on we will use the Black’s formula as a mask for the
evaluation of the swaption prices. Thanks to this model we can
refer to prices as direct numbers, or as implied volatilities plus
log-normal shifts. Thus, Blacks’ formula defines a non linear
relationship between volatilities and prices.
Even if the implied volatilities are an input of Black-76 to com-
pute the swaption prices, usually the market provides the prices.
The implied Black volatility σBlack shapes the stochasticity over
the strike Keq; for this reason volatilities are usually preferred
by traders, and in general by users, since they transmit more
information regarding the instruments’ status. First I define the
formula inputs, and then I will move to its analytical details.

Black-76(K, Texp, Tmat, σt,T , FWD(t, T), DSCT(t, T)), lnshift)

where:

• K, is the strike price defined on the contract;

• Texp,Tmat, are the described dates that are defined on the
contract;

• σt,T , is a constant known as implied black volatility;

• the accrual factor and the PAR swap rate that are de-
rived starting from the FWD(t, T) and DSCT(t, T) curves
as shown in the following intermediate paragraph;

• lnShift is the log normal shift and it is a necessary input
for compute the contract value.

As anticipated I present now some easy steps in order to define
useful quantities that will be exploited later by the Black-76.
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It is easy to see that the arbitrage free value, at t < Texp, of the
floating payment is given by (Bjork, 2003):

Tmat−1∑
i=Texp

[FWD(Ti−1, Ti) − FWD(Ti, Ti+1)] (2.28)

= FWD(Texp, Texp+1) − FWD(Tmat−1, Tmat) (2.29)

The discount does not appear in the formula since all the
terms are discounted at the same time t today.
The total value at time t of the fixed leg equals (Bjork, 2003):

Tmat−1∑
i=Texp

DSCT(t, Ti) τ K = K τ

Tmat−1∑
i=Texp

DSCT(t, Ti) (2.30)

Given these results we can reformulate the swap net present
value as:

NPVswaption(K, Texp, Tmat) = FWD(Texp, Texp+1)−

−FWD(Tmat−1, Tmat) −K τ DSCT(t, Ti) (2.31)

Definition 2.7 (PAR swap rate). (Bjork, 2003) I can now define
the par swap rate or forward swap rate as:

R
Tmat−1

Texp
(t) =

FWD(Texp, Texp+1) − FWD(Tmat−1, Tmat)∑Tmat−1

i=Texp
τ DSCT(t, Ti)

(2.32)

From the previous definition, we derive another variable that
refers to the PAR denominator.

Definition 2.8 (Accrual Factor). For each pair n,u, with n < u,
the process Sun(t) is defined by:

Sun =

u∑
i=n

τ DSCT(t, Ti) (2.33)

Sun is referred to as the accrual factor or as the present value of
a basis point. It should be noticed from this definition, that it
coincides with the DVO1 variable that was introduced in the
first attempt of definition of the swaption price.

Definition 2.9 (Black-76 formula). Black’s formula for Swaptions.
The Black-76 formula for a Texp : (Tmat − Texp) payer swaption
with strike price K, is defined as :

NPV
swaption
Texp,Tmat

= STmat
Texp

(t)[(RTmat
Texp

(t) + lnShift) N(d1) −

−(K+ lnShift) N(d2)]

(2.34)
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where,

d1 =
1

σTexp,Tmat

√
Texp − t

[ln(
RTmat
Texp

(t)

K
)+

1

2
σ2Texp,Tmat

(Texp− t)]

(2.35)

d2 = d1 − σTexp,Tmat

√
Texp − t (2.36)

and N(.) is the cumulative distribution function of a standard
gaussian (Bjork, 2003) .

The constant σTexp,Tmat
is known as the Black volatility. Given

a market price for the swaption, the Black volatility implied by
the Black formula is referred to as the implied Black volatility.

2.5 calibration

2.5.1 Calibration method

To conclude this part, I combine together all the theoretically
defined variables in order to explain the task that will be sub-
stituted by the machine learning algorithm, thus the Calibration.
We denote the bootstrapped curvesDSCTboot(t, .), FWDboot(t, .),
as the discount and forward curves calculated at time t, that is
equal to the date of interest. The name of these curves is de-
rived by the bootstrap phase. It consists of the curves computa-
tion starting from the more fine granular variables.
Calibration aim is to find the Vasicek’s optimal parameters, the
ones that give us the best curves DSCTpredicted, FWDpredicted,
where best means the closest approximation to the bootstrapped
ones. I will define below the error metric.
Before introducing it, I need to make a clarification. We use a
shifted version of the Vasicek model, this means that the pre-
dicted curves will be corrected with a time dependent shifting
phase. The shift aims to completely overlap the market curves
at least for t = TreferenceDate. In this way, the only error will
regard the future predictions.
It is important to remark that this time-dependent shift has
nothing to do with the log-normal shift, since as already de-
fined, this one is a required input in the Black’s formula for
computing the instruments prices.
Given the predicted curves, and imposing that the swap is at
the money, we can derive the strike price Keq.
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We have now computed Keq and the predicted curves, so we
can derive the swaption price and we will look to minimize the
difference with respect to the market one.
In practice we will never work on a single swaption prediction,
but we will have a set of instruments to deal with. For this
reason with the calibration phase, we focus our attention to a
specific set of instruments.
The error E can be analytically defined as below:

E =

m∑
texp=1

n∑
tmat=1

vega(texp, tmat)‖NPVrealtexp,tmat
−

NPV
predicted
texp,tmat

(k, σ)‖ (2.37)

In the equation above, the term NPVreal is the one approxi-
mated by leveraging on the Black model, NPVpredicted is the
one approximated by our model. The sum is made over all the
swaptions, that are identified by the couple (texp, tmat). The
full set of instruments is usually represented as a matrix. This
holds for all the informations: prices, log-normal shifts, implied
volatilities. Given the error E the problem that we are trying to
solve is:

min
k∈R,σ∈R+

E(k, σ) (2.38)

where k and θ are the discussed Vasicek parameters. I will not
provide you all the matrices, in Figure 2.1 is displayed the gen-
eral scheme to refer to when we will speak about matrix of
instruments, independently from the underlying variable.

Tmat1 Tmat2 ...

Texp1 swaption(texp1,tmat1)

Texp2

Texp3

Texp4

Texp5

... swaption(Texp−m,Tmat−n)

Table 2.1: Contracts displayed in a matrix way. Rows are the instru-
ment expiry dates and columns swaption maturity dates.

Currently this minimization is made by Levenberg–Marquardt
algorithm (LMA) over the absolute error of swaption price; in



2.5 calibration 25

particular the sum is weighted on vega, that is the measure-
ment of an option’s sensitivity to changes in the volatility of
the underlying asset.
Our goal is to replace this minimization over the swaptions
prices, with a Machine Learning algorithm that predict the opti-
mal parameters given the bootstrapped curves and the implied
Black’s volatilities.
LMA is used to solve non linear least square minimization prob-
lems and least square fitting, it can be seen as an interpolation
between the gradient descent approach and the Newton algo-
rithm (Marquardt, 1963).
It acts more like a gradient-descent method when the param-
eters are far from their optimal value, and acts more like the
Gauss-Newton method when the parameters are close to their
optimal value.
It is a iterative procedure that requires an initial guess to start
the minimization. In case of a single minimum the algorithm
will converge to it independently from the guess, in cases of
multiple minima, the algorithm will converge to the global one
only if the initial guess is already close to the final solution.
So we need to run the LMA exponential times with different
initialization in order to find global minima.
An alternative may be to use another method such simulated
annealing that grants global minima, the problem is that such
an algorithm cannot be run before each pricing operation since
takes long time to run.

Finally, I present a flow chart of the current calibration to
quickly resume all the phases and variables in one shot.

2.5.2 Calibration: Feedback function

The bank has provided us two own feedback functions in or-
der to evaluate our results: eval() and eval(). Their followed
approach consists of evaluating the predicted results by replac-
ing the contract market prices. I will denote each input market
price as pi, and its respective predicted price with pij = gij(k, σ).
This last price depends from (k, σ). The first feedback function
is defined starting from the term:

εij(k, σ) = ‖pij − gij(k, σ)‖ (2.39)
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Figure 2.5: Calibration Flow-chart.

It reduces the set of feedbacks related to each single contract to
a scalar value by exploiting a norm. This norm was introduced
to evaluate the full vector of feedbacks and lead us to the first
feedback function provided to us:

eval(k, σ) = 2

√√√√ m∑
i=1

n∑
j=1

εij(k, σ)2w
2
ij (2.40)

where wi are the respective elements in the weight matrix (Sec-
tion 2.5.1).
This function has a potential flaw: it does not account the fact
that the underlying Hard Calibration HC from which our model
learn from has an intrinsic error that cannot be removed. This
error should not be treated as a penalty since it cannot be
deleted. Starting from this argumentation the bank has offered
us the second feedback metric: eval(). This takes as additional
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input the couple of parameters obtained with the hard calibra-
tion (k∗, σ∗). It is defined as:

eval(k, σ, k∗, σ∗) = 2

√√√√ m∑
i=1

n∑
j=1

ε̄ij(k, σ, k∗, σ∗)2w2ij (2.41)

ε̄ij(k, σ, k∗, σ∗) = [εij(k, σ) − εij(k∗, σ∗)]+ (2.42)

I will use both these feedback metrics in order to have a better
evaluation of our final regression model.





3
M A C H I N E L E A R N I N G A N D C A L I B R AT I O N

Machine Learning is not magic, we have to derive new information
and not to invent it.

M. Restelli (07/04/16)

This chapter starts from the formalized calibration problem,
it then defines a new version based on the data. Besides defin-
ing this new model, this chapter also formally describes all the
techniques used to handle the encountered problems. Finally it
presents the current state of the art for machine learning mod-
els and environments.

3.1 a new world : machine learning

Let’s make a step back before introducing the Machine Learn-
ing (ML) world. Since computers introduction, we have won-
dered what would be computers limitations, and if they would
be adapt to learn. If we would be able to set them to learn, thus
to acquire knowledge automatically and independently with
their own experience, the effects would be huge.
The data driven model, as its name says, is about learning from
data. In a typical scenario, we have an outcome measurement,
usually quantitative (such as model parameters), that we wish
to predict based on a set of features (such as curves and matrix
cells). We have a training set of data, in which we observe the
outcome and feature measurements for a set of objects ( such
as calibrations ). Using this data, often called experience E, we
build a prediction algorithm, usually known as learner whose
goal is to predict outcomes of previously unseen objects.
This prediction is based on historical information. In particular
we could give more importance on recent data and less to the
old. By doing so, we can easily capture trends, this is not pos-
sible with the analytical model. In order to keep update this
property, we have to consider future training of the learner ac-
cording to trend changes.
Another useful perspective of machine learning is that it searches
in a very huge space of possible hypothesis to best fits the hid-
den relationship in the data. Clearly this search is made ac-
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cording to the structure in the training set. Many of the algo-
rithms search the best fit within a hypothesis space defined by
an underlying data representation (e.g. linear functions, deci-
sion trees). Different representations are necessary in order to
learn several kinds of target functions.
As already mentioned we have a large dataset known as train set
which is used to tune the parameters of an adaptive model. The
result of running the developed algorithm once ready, might
be expressed as a new function g(x) where x is a general input
vector (Bishop, 2006). For the moment just denote the generated
vector of prediction as r, thus r = g(x) and let us try to build-up
a solid structure of how ML works.
The way along which the function g(.) is computed, is totally
and only dependent from the training phase, thus the learning
is only based on the training data. That is the reason why train
phase is affected more by train dataset then the used algorithm.
To be clearer I have to introduce here an additional phase that
is used to defined model hyper-parameters, thus the validation
phase. We consider as model hyper-parameters all the variables
that define its structure (e.g. layer in an MLP). This phase comes
next to the train stage and applies the last modification to the
model.
Once the model will be defined in all its parameters, it will be
used to work with new input. This phase is known as test phase,
and it usually done over a set of records known as test set.
One of the most important ability is to correctly behave with
unseen input, thus those there are not in the train set. This
property is called generalization and we will return on it later
since it is the hottest topic to look on in this framework.
For most practical applications, the original input variables are
typically preprocessed to transform them into some new space
of variables where, it is hoped, the pattern recognition problem
will be easier to solve (Bishop, 2006). This phase will massively
used in our project as it will be described in Chapter 4.
Now that we have taken a glance on the most important phases,
thus preprocessing, training and testing, we can move to see
some dichotomies in machine learning. These introduce a spe-
cific terminology that will be widely used from here on.
There are applications in which the training records consist of
input vector coupled with their target vector t, in this case we
will deal with Supervised Learning problems (Bishop, 2006).
The relation between these variables can be expressed by the
target function f(x), thus the function that the ML model will
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try to approximate.
Conversely, the opposite situation occurs when we have no
measurements of any outcome but just features, this is called
Unsupervised Learning (UL) (Bishop, 2006). Here the tasks in-
volve to understand how data are organized, if there are hidden
connections or structures.
There is an additional field that can be seen as an interpola-
tion between these two, it is known as Semi-supervised Learn-
ing (SSL) and is characterized by the fact that in the train set
co-occur supervised and unsupervised records. This environ-
ment is suitable for financial applications since banks usually
have only small dataset of labelled data to its disposal (Sven
Sandow, 2007).
Finally there is a third big sphere in ML, that is Reinforcement
Learning (RL). RL aim is to learn a policy, thus understand
which action have to be taken according to the different situ-
ations with the objective of maximize the expected future re-
ward (Bishop, 2006). The main difference with respect to SL is
the absence of a set of labelled samples, in fact labels have to
be discovered during the learning.

3.2 supervised learning

It is called "supervised" due to the presence of the target vector
in the train set that heads the learning phase. This is exactly the
context in which we are, in particular our target vector will be
the couple of Vasicek model parameters.
Within this context is used a suitable algebraic representation
of the dataset. Let a dataset D consists of n records over d fea-
tures. Thus, a n × d matrix. Each record li= (li1, ...lid) can be
seen as a vector within the d-dimensional vector space, that is
spanned by the d orthonormal basis vectors: e1,e2,...,ed , where
ei is a zero d-dimensional vector with a single one that corre-
sponds to the i-th attribute. Recall that the standard basis is
an orthonormal basis for the data space, that is, the basis vec-
tors are pairwise orthogonal, eTi ej = 0 for all i, j, and have unit
length ‖ei = 1‖ (Mohammed J. ZakiI, 2014). In particular when
we deal with supervised learning problems, the matrix D can
be seen as divided by columns in input and target matrices that
are respectively represented by X and Y. This means that each
record l=(Xl1,...,Xld1 ,Yl1,...,Yld2) can be seen as a vector within
the d1 input dimensional space and the d2 target dimensional
space.
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3.2.1 Learning with a teacher, a density estimation problem

The SL case is metaphorically known as "learning with a teacher".
The interpretation of this appellation is that a student presents
an answer r for each input vector x in the training set, and the
teacher that is the supervisor, evaluate the student’s answer (T.
Hastie, 2009). Final grade is computed with a Loss Function (LF)
that conversely from the student case, it is not maximized but
minimized. The idea, as the name "loss" says, is that it does not
define a grade but how many mistakes the student has done.
The most common example of LF for quantitative variables is:

L(Y, R) = (Y − R)2 = (f(X) − g(X))2 (3.1)

Now we will look to this minimization problem from a different
prospective. If we consider the input X as a real valued random
vector, and the target Y as a real valued random variable, with
joint probability P(X, Y), then we can review the SL problem as
a density estimation problem. Thus instead of approximating
the real function f(.), we want to discover the joint probability
P(X, Y) or more intuitively causal relationship between input
and outcome, thus conditional probabilities over P(Y|X).
This heads us to a new criteria to choose f(.):

EPE(f) =

∫
E[(Y − f(X))2] (3.2)

=

∫
[y− f(x)]2P(dx, dy) (3.3)

the Expected Prediction Error (EPE).
By factoring the joint density with respect to X, we rewrite the
EPE as:

EPE(f) = EXEY|X([X− f(x)]2|X) (3.4)

and we see that is suffices to minimize EPE point by point as:

f(x) = argmincEY|X([Y − c]
2|X = x) (3.5)

that has the following solution:

f(x) = E(Y|X = x). (3.6)

The conditional expectation is known as regression function. Thus
the best prediction of Y at any point X is given by its conditional
mean, where the word best refers to the average squared error.
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From this statistic introduction we can resume that our goal is
to find an approximation g(.) of the function f(.) that underlies
the predictive relationship from input to output variables.
Let us suppose that the generative model behind our data is:

Y = f(X) + ε (3.7)

where the random error ε has E[ε] = 0 and is independent
from X. In this case the effect given by the expected conditional
value over P(Y|X) leads us to: f(x) = E(Y|X = x) since the condi-
tional probability over the error is zero thanks to independence
assumption over the error ε.
The ε variable collects all the measurements errors, perturba-
tion and noise that may occur in the data. It is reasonable to
think that it does not depend on the specific value of the input.
Anyway, this assumption can be easily removed to the depen-
dent case. Since is not the case of this project, I will not focus
on this extension.
As I have previously introduced, SL attempts to approximate
the function f(.) by example through a teacher. In particular we
try to use the information in training set to learn the function
f(.) hoping to learn a valid approximation for all the possible
values of the input x.
Many of the approximation we will encounter are specified by
a set of parameters, that I denote with θ, and totally define the
learnt approximate function g(.).
What we will do, is find a set of parameters θ∗ that minimizes
the residual sum of squares:

RSS(θ) =

N∑
i=1

(yi − gθ(xi))
2 (3.8)

where N is the number of records present in the training set.

3.2.2 Qualitative and Quantitative Targets

There might be distinguished two main types: quantitative and
qualitative variables, this distinction will define another dichotomy
in machine learning.
A first class of problems involves qualitative output. Usually
they define classes and so it does not make sense to introduce
distance relation between values, thus there is not a metric no-
tion, in this case we will speak about categorical variables. There
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might be also sub-case where holds an order relationship be-
tween elements, in this case we will speak about ordinal vari-
ables.
For example, if our aim is to predict a temperature in: hot-
normal-cold, we are in the ordinal case; instead when we have
to predict an image colour there is no sense to think on an or-
der between target values.
A second class of problems involves quantitative measurements,
where measurements are bigger than others, and close in val-
ues means close in nature.
This distinction in the target types conducts to a naming con-
vention of two main tasks in supervised learning: regression
for quantitative target variables and classification for qualitative
ones.
It is always possible to pass from numerical to qualitative rep-
resentation. This can be achieved by representing categorical
variables with numerical codes thus by coding them. It is often
preferred a one-shot codification, except when the translation
is made by an expert that is able to handle with induced rela-
tions.
The one shot case is technically known as dummy variables, if
we have a qualitative variable with K possible values, we will
represent it with a vector of K binary variables or bits, and only
one per time can be set to one. Also the reverse is possible, in
particular we might need to translate numerical targets to cate-
gorical, this task is made with discretization.
This possibilities are explained since some algorithms may work
only with numerical values and others only with qualitative.

Our problem can finally be defined as a supervised regres-
sion task.

3.2.3 Online and offline learning

I will now briefly introduce another dichotomy in machine
learning. Algorithms can in fact be distinguished in online and
offline.
At a first glance the distinction is based on the availability of
data, in reality it depends on how the algorithm uses them.
We are dealing with an online algorithm when data are used se-
quentially one per time, as in a stream, thus the training phase
is not made in a single step on the whole block of records, but
each new record contributes in the learning by updating the
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current best predictor. This means that the model continues to
evolve, updates are not made just once.
The opposite is the batch or offline learning technique in which
the learning is made on the entire training dataset at once.
Generally speaking, online approach is used when is not com-
putationally feasible, or is too expensive, to train over the entire
dataset. It is also used when there are time dependent patterns
within the data, as it might be in stock price prediction.
In our project we will introduce both these approaches and we
will end with some considerations on their results.

3.3 parametric and non parametric models

To be more specific according to the evaluations and comments
that will be described in the following chapters, I must mention
two different families within the machine learning algorithms:
parametric and non parametric models.
As I have already mentioned, machine learning algorithms try
to best approximate the underlying function f(.) with g(.).
Qualitatively speaking, the target function is unknown, so a
machine learning scientist has to consider and make different
assumptions regarding the function shape and the learning pro-
cess.
Assumptions usually help in simplifying the learning process,
even if they may limit the research area. Algorithms that make
assumptions on the function form are called parametric algo-
rithms.

A learning model that summarizes data with a set of parameters of
fixed size (independent of the number of training examples) is called

a parametric model. No matter how much data you throw at a
parametric model, it won’t change its mind about how many

parameters it needs.
(Stuart Russel, 2009).

The learning task involves two phases:

• select a specific parametric function;

• learn the function parameters that best fit the dataset;

The advantages in using this class of models range from the
simplicity either in their use or in the comprehension of the re-
sults, to the high speed of the learning process and last but not
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least, in general, they do not required as much training data
even if they the fit to the data is not perfect.
Limitations instead range from the most obvious constraint of
the function form, to the low unlikely in fitting complex data
structures.

Let us now focus on non parametric models.

Non-parametric methods are good when you have a lot of data and
no prior knowledge, and when you don’t want to worry too much

about choosing just the right features.
(Stuart Russel, 2009).

This class of algorithms seek to best fit the training records in
approximating the function f(.). This observation will be fun-
damental to discern the empirical results, in particular we will
state that non parametric model are free to overfit the data. As such,
they are able to fit a large number of map target functions.
The advantages of such models are the flexibility on fitting dif-
ferent mapping functions, the power and the performance. Lim-
itations are the need of more data with respect to the parametric
case, and the higher time required to train them.

3.4 overfitting and generalization

The ability to correctly classify unseen examples that differ
from the ones already seen during the training phase is known
as generalization (Bishop, 2006). Often, the variability described
by the training examples is only a tiny subset of all possible
input vectors. For this reason generalization is an usual central
goal in pattern recognition.
This property is achieved when the model does not learn all the
details present in the training set, thus it does not mirror all the
data with their noise, but only approximates the real function
f(.).
There are also cases in which the dataset does not contain any
noise, and cover a wide manifold of the input space. In such
a case, our goal is not to generalize but to mirror, technically
speaking this goes under the name overfitting.
In our context we are dealing with dataset without noise, for
this reason we are not worried about overfitting.
Usually this apparently "bad" property is avoided by introduc-
ing some countermeasures known as regularization. Those try
to force generalization by avoiding directly manipulation of
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model parameters but by controlling the learning phase in or-
der to avoid mirroring. Qualitatively speaking this is usually
translated in avoid to have too complex models or model that
are too unstable. The most known techniques are Lasso and
Ridge Regression. I leave to the reader the task to deepen these
aspects since they will not use in this project.

3.5 dimensionality reduction

All machine learning algorithms are affected by negative ef-
fect of irrelevant attributes. As expected this occurs frequently
when dealing with high-dimensional data, in which only a sub-
set of the features contains useful features. For this reason in
the preprocessing phase it is important to check whether the
dimensionality can be reduced while preserving the essential
properties of the original features space (Ian H. Witten, 2005).
The best way to perform this step would be manually, based on
a deep understanding of the learning problem and on the fea-
tures meaning and definition. Clearly, this cannot be perform
according to the assumption of high-dimensional dataset. For
this reason were developed automatic methods.
As all machine learning algorithms also these may work in a su-
pervised or in an unsupervised manner, both aim in removing
unsuitable attributes, thus, they improve the machine learning
algorithms performances and speed up them.
As a second effect, they help the comprehension of underlying
problems by let the attention focus only on the most relevant
variables. This as the direct consequence of facilitate the pat-
terns and results visualization.
Robert Collins appeared to believe that model accuracy and
feature relevance are two sides of the same coin, when they
stated that feature selection "can improve classification perfor-
mance by discarding irrelevant or redundant features" (Collins
RT, 2005).
I will now present the most known dimensionality reduction
techniques focusing more on the ones used during the project
development.

3.5.1 Principal Component Analysis

Principal Components Analysis (PCA) is an unsupervised learn-
ing technique that looks for a q-dimensional basis of the orig-
inal dataset matrix that best captures the dataset information
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that is described by the variance in the data (Joliffe, 2014).
The direction with the largest projected variance is called first
principal component, the second largest second principal compo-
nent and so on. PCA converts the original possibly correlated
variables into linearly uncorrelated principal components, that
define an orthogonal basis set.
This technique can be run under a parametric way either by
specifying a threshold on the number of future dimensions of
the reduced matrix, or on the desired captured variance per-
centage. Finally, PCA replaces the d original variables with a
smaller number, q, of derived variables which are linear combi-
nation of the original variables. In this sense it can be seen as a
dimensionality reduction technique.
I will now make some considerations regarding practical imple-
mentations based on their computational cost. Based on a alge-
braic theory, it can be guess that this technique has a high com-
putational cost, since it is necessary to compute an orthonor-
mal transformation. In particular by referring to a n×d dimen-
sional matrix l. We can assume without loss of generality that
is centred, thus column means has been subtracted and are now
equal to zero.
We want to find a q× d orthonormal transformation matrix P so
that PX has a d× d diagonalizable covariance matrix1 (thus all
its distinct components are pairwise uncorrelated). Calculating
P matrix means solving a Singular Values Decomposition (SVD)
problem:

C = VLVT (3.9)

where V is a matrix of eigenvectors (each column is an eigen-
vector) and L is a diagonal matrix of eigenvalues.
Assuming that P were unitary yields:

var(PX) = E[PX(PX)T ] (3.10)
E[PXXTPT ] (3.11)
Pvar[X]P−1 (3.12)

This transformation is possible only if var(X) were diagonalis-
able by P. The good part is that thanks to the variance defini-
tion, var(X) is guaranteed to be a non-negative definite matrix
and thus is guaranteed to be diagonalisable by some unit ma-
trix.

1 The covariance matrix is given by C = XTX
n−1 . It is symmetric and so it can be

diagonalized.
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When we are dealing with high dimensional space, the com-
putation of this transformation is too expensive for this reason
were developed iterative computation that does not require the
calculation of its covariance matrix known as power iteration.

3.5.2 Curve Fitting

We can use the regression definition defined in Section 3.2.1
for dimensionality reduction purposes. In particular by fitting
a curve data with a specific parametric function h(x,w) where
w is the set of parameters that defines the curve approximation
and x is the input vector space (Bishop, 2006), we can exploit
the function h(.) parameters to reduce the original dimensional
space.
Parameter values will be defined during the training phase by
fitting the parametric function to the train data. Once more we
can easily seen as a minimization problem over a properly de-
fined error objective function. As mentioned, one of the most used
error function is the Mean Squared Error (MSE) between the pre-
diction h(xn,w) and the corresponding target values tn, so that
we minimize:

E(w) =
1

2

n∑
i=1

(h(xi,w) − ti)
2 (3.13)

where the factor 1
2 has is introduced for a mathematical conve-

nience that we will not see during this project.
After the use of this algorithm the original data will be substi-
tuted by the vector of parameters w. In this sense this method
can be seen as a dimensionality reduction technique.

3.5.3 Supervised feature selection

As I have already mentioned, the feature extraction task can be
accomplished in both supervised and unsupervised approaches.
The previous described techniques such as: PCA and curve fit-
ting are both unsupervised since they do not care on the data
targets.
We will now focus on the supervised features selection algo-
rithms. In many pattern recognition problems, identifying the
most characterizing features, is critical to minimize the regres-
sion error. We are trying to select a subset of features that "op-
timally" characterize the target. The "optimal characterization
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condition" often means "minimum regression error". The au-
thors also indicated that: if a regressor is not specified, "mini-
mal error usually requires the maximal statistical dependency"
and the task becomes "selecting the features with the highest
relevance to the target class" (Huang, 2015).
As in the supervised learning case, there are a bunch of tech-
niques to accomplish this. In our project we will use two differ-
ent approaches. The first one, that is also the simplest is based
on a threshold, the second one follows an iterative pattern. In
particular, in the first case we are dealing with an estimator that
basically fits the data and assigns to each feature a score. This
specifies the feature importance in predicting the target vari-
ables. Given the list of scores associated with all the features
we will select only the ones whose score is above the scores av-
erage.
One of the most common used metrics is the coefficient of deter-
mination, denoted as R2, it is a key output in regression analy-
ses and indicates the proportion of variance in the dependent
variable that is predictable from the independent ones. Where,
given the real and the predicted lists of samples, respectively, Y
and Y∗, if ȳ is the mean of the observed data:

ȳ =
1

n

n∑
1

yi (3.14)

we can measure the variability of data using two variables:

SSres =

n∑
i=1

(Y[i] − Y∗[i]) (3.15)

SSreg =

n∑
i=1

(Y[i] − ȳ) (3.16)

starting from the we define:

R2 = (1−
SSres

SSreg
) (3.17)

where n is the number of samples.
The second used approach is the Iterative Features Selection
(IFS) approach (Castelletti A., 2011). Given an external estimator
that assigns weights to features (e.g., the coefficients of a linear
model), the goal of IFS is to select features by recursively con-
sider bigger sets of features. Given the targets to be explained
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and the set of candidate features, the IFS algorithm first glob-
ally ranks the features according to a statistical measure of sig-
nificance, e.g. the R2 score. To account for feature redundancy,
only the most significant features are then added to the set of se-
lected features, which will be used to fit the estimator to explain
the targets. The algorithm proceeds by repeating the ranking
process using as new output feature the residuals of the model
built at the previous iteration. The algorithm iterates these oper-
ations until the best features returned by the ranking algorithm
are already in the select set, or, the accuracy of the model built
upon the selected features does not significantly improve (e.g,
the feature scores are too small).
This approach is also used in reinforcement learning problem,
since it strongly simplifies the learning of good control policies
and can highlight interesting properties of the systems under
control. In our case we will use this specific approach in order
to understand which features are more relevant in describing
the target parameters.

3.6 data-based model as a black box

Before seeing in the details all the empirical steps I present a
first glance on the main steps according to the explained ma-
chine learning instruments.
I will start by defining the developed model as a black-box for
specifying its input and output variables.
The algorithm gets as input the following elements:

• Swapprices, matrix of swaption prices;

• Swapvolatilities, matrix of swaption volatilities;

• lnShif, matrix of logNormal shifts;

• Pfwd, bootstrapped forward curves;

• Pdsct, bootstrapped discount curves.

It then provides as outcome the Vasicek model parameters:

• k, mean reversion speed;

• σ, volatility.

It is important to remark that the original data have a too high
dimensional space, for this reason these quantities are filtered
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and reduced during the learning process according to the so far
presented methodologies.
It is also useful to underline that all the defined inputs have to
be coherent each other, thus they all are generated at the same
reference date.
Originally these quantities consists of: full matrices of ' 230

elements, one per each instrument, where the rows denote the
swaptions expiry dates and the columns specify maturity dates.
The curves are described by time-series defined as list of cou-
ples (date,value), their lengths differ according to the currencies
and are established by the market.

3.7 state of the art

In the past years many efforts were spent in the research of data-
driven models for pricing derivatives. I will now speak about
analytical models referring to traditional closed-form pricing for-
mulas, and to statistical model referring to data-driven method
for pricing.
Initially many efforts were spent in using time series models
for predicting instruments behaviour. The first main benchmark
was carried out with the introduction of statistical models, such
as ANN for hedging derivatives (James Hutchinson, 1994). This
research opened an alternative framework for pricing deriva-
tive assets. Although not a substitute for the traditional pricing
formulas, statistical models may be more accurate and com-
putationally more efficient when the underlying asset’s price
dynamics are unknown or cannot be captured by analytical
models, or when the pricing equation associated with the no-
arbitrage condition cannot be solved analytically according to
external constraints, such as the timing one (James Hutchinson,
1994).
The gap left by this research is given by the period of analysis.
In fact, the research was performed before the Global Finan-
cial Crisis GFC, that introduced additional cases in the data that
were not be taken in account by the presented study. Moreover,
as I will discuss, there are some additional drawbacks given by
the use of ANN.
After this first step, several works have focused in pricing op-
tions. Many attempts were made on pricing options, both sta-
tistical and analytical models were be taken into account. What
we can conclude is that: ANN models significantly improve the
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prediction accuracy of option pricing compared with no-arbitrage
analytical and time-series option pricing models (Hyejin Park,
2012; James Hutchinson, 1994). However, statistical models such
as a ANNs has some drawbacks. They provide only a point fore-
cast of option pricing, which is less useful to traders than, the
distribution prediction of option prices from the point of view
of a practitioner (James Hutchinson, 1994).
According to the describe issues, two solution have been pro-
posed: introduction of Gaussian Process (GP) and forecasting of
useful correlated variables, such as volatilities instead of prices.
For the first path the main results were achieved with the in-
troduction of GP models that not only recommends a solution
for overcoming overfitting problems using a variety of mixed
kernels for learning, as a byproduct they can also provide a
predictive distribution of option prices (Hyejin Park, 2012;Hye-
jin Park, 2014).
The second approach (J. Beleza Sousa, 2012) refers to the use
of GP to calibrate dynamic models, e.g the Vasicek. During this
research the calibration task was carried out on zero coupon
bond, that are a different type of contract. This research has
as main advantage the fact that needs only zero coupon bond
prices and all the other parameter are obtained in the risk neu-
tral measure. Its drawback, as it is for all the GP strategies, is
that its applicability is restricted to Gaussian models only, or
models that can be transformed into Gaussian as it is for the
log-normal distribution that occur for zero coupon bond prices.
What we can conclude is that GP are pretty-fine although they
are restricted to Gaussian-like models, and non-parametric mod-
els such as ANN have some drawback since they were used to
predict only prices.
By taking in consideration also the efforts spent with the time-
series approach, we can state that there is a long and persistent
research interest in the option pricing prediction problem. This
was expected given the competitive environment of the indus-
tries involved and the delicacy of decisions that have to be faced
by decision makers.
There are still some unanswered questions so far:

• no prior research was be conducted specifically on multi-
currency swaptions, even if the available literature for op-
tion pricing is extensive. The questions that may arise is:
is the previous work generalizable even to our swaptions
case?
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• during our project a lot of work was developed in the
direction of finding features correlations. This is an inter-
esting area, since a lot of practitioners have an intrinsic
knowledge and an own idea about the underlying feature
correlation but with no empirical feedbacks. In the litera-
ture there was not an work that points out these aspects;

• previous works usually predict prices or volatilities, or
their manifold and probability space. The point is that an
analysis of the conjunction of the two variables was never
made. In our project we are predicting the most fine gran-
ular variable, thus the curves. We use the swaption prices
just as a feedback for the prediction, but our range of ap-
plication is so wide that we can predict prices, volatilities
of all the contracts that depend on the predicted curves.



4
P R A C T I C A L A N A LY S I S

Niente è difficile, si tratta solo di entrarci in confidenza.
M. Pirotta (September 2016)

In this chapter I will describe all the phases occurred dur-
ing the development of the final algorithm. I will start from
the dataset generation until the production of the algorithms
and their results. During the phases description I will massively
comment all the considerations that I have taken during the de-
velopment of the final algorithm.

4.1 dataset construction

As I have mentioned in Chapter 1.3, the currently used soft-
algorithm, thus the one that has a low cost from a time per-
spective, has as main limitation the capability of pricing only a
small number of instruments. For this reason in developing the
machine learning algorithm we have worked towards this lack
by learning on the full set of instruments and not on a small
subset of them. This practically means that the dataset contains
records that refer to an instruments selection matrix (Chapter
2.5.1) of only ones.
The dataset composition is realized by calling the hard-calibration
for each reference date, thus the one most complex from a time
point of view, that is also the only capable of best pricing all
the set of instruments. Clearly it cannot be used in practice for
trading purposes due to the high computational time required
to solve the problem, and it has to be settled out on a grid archi-
tecture, otherwise there would not be any reason to carry out
this research. Here it should be clear the second gain leaded by
our algorithm, thus the lower computational time.
Given the grid computing1 definition it should be clearer why
the hard-calibration cannot be used before each pricing pre-
diction. I resume here the advantages leaded by the dataset
creation phase. We have information referred to all the instru-
ments, in this way the developed algorithms that learn from

1 we intend a collection of computer that all works to achieve a common goal.
In particular this action may be done in a distributed system, thus, involving
computers that are physically on different locations.

45
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Currencies abundance

currency # artificial samples # original samples

EURO 17598 2298

USD 191032 3172

GBP 16953 2837

NZD 13125 2187

CAD 13272 2212

Table 4.1: Dataset composition by currency. In the first columns
there are the currency names, in the second the number
of perturbed data and in the last the number of original
data.

currency first date last date

EURO 2013-06-28 2016-09-12

USD 2013-06-28 2016-09-12

GBP 2013-06-28 2016-06-08

NZD 2013-06-28 2016-06-08

CAD 2013-06-28 2016-06-08

Table 4.2: Samples interval ranges divided by currency.

them will best price all the swaption contracts. In particular
this operation will be made by respecting the time constraints
imposed by the soft-calibration model.
This task was realized by exploiting the calibrateMarketRates-
forAI() functionality that was offered by the bank. The func-
tion parameters required by the calibration method are: the
reference date and the currency. Starting from them the cited
function derives the required bootstrapped curves that are used
for computing the target parameters. This function follows the
same approach of the soft-calibration with only multiple initial-
izations in order to avoid local-optimal results.
The main currencies that we have handled during these pre-
liminary phase are: EURO, US Dollar (USD),British Pound (GBP),
New Zealand Dollar (NZD), Canadian Dollar (CAD).
As accurately described at the last part of this chapter, original
data were augmented by exploiting on a perturbation approach
based on a static schema. In the table table 4.1 is represented
the dataset composition from the currencies perspective.
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Figure 4.1: Sampling frequency for single currency EURO. In the
x−axis there are the dates from June 2013 until September
2016 and in the y−axis the number of sample per day.

4.2 data exploration

To simplify the presentation, I will preliminary focus on the
EURO currency since it is the one with most data and the one
more relevant for the bank.

4.2.1 Data abundance and samples analysis

During these analyses I will rely only on the original data.
As observable in Figure 4.1 the data were recorded starting
from August 2013 until September 2016. We have roughly 500

records for the year 2013, 900 records for years 2014 and 2015

and 700 records for 2016. This means that on average we have
80 records per months and 4 records per day. Not all the days
were suitable for recording, e.g. data are not available on holi-
days, that is the cause for mathematical mismatch in the num-
bers.
In regards of data augmentation, perturbation were applied to
each of the main features. The volatility matrix was perturbed
with a 1% parallel shift (both positive and negative). The in-
terest rate curve was perturbed in two different ways. First it
was subdivided into three time buckets: from present time to
5 years, from 5 years to 15 years and from 15 years until the
end of the series. Then shifts with an absolute value of 10 ba-
sis points were applied to each of these buckets. The results
was an augmented dataset consisting of both original and per-
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reference date string that specifies the calibration date

currency string that specifies the record currency

swaption tenors list of swaption tenors as interval

swaption expiries list of swaption expiries as interval

swaption rows number of expiries

swaption columns number of tenors

discount dates list of dates for the discount curves

forward dates list of dates for the forward curves

discount values list of values of the discount curve ordered by dates

forward values list of values of the forward curve ordered by dates

Table 4.3: dataset original feature names and descriptions.

turbed records. The lack of this perturbation procedure is the
absence of an additional new information, in fact the described
perturbation does not add new cases to learn from but just re-
produce a noisy version of the original records.
For what concern the other currencies, we have analogous re-
sults for USD, CAD, GBP and as expected little less samples for
NZD and Japanese Yen (JPY).
I present in Table 4.2 the first and the last samples’ dates, in or-
der to give a quick comprehension of the years under analysis
.

4.2.2 Features exploration

Let us focus on interest and discount curves. In the EURO sce-
nario we have the OIS curve as discount and the Euribor curve
with tenor six-months (EUR6M) as interest rate. As discussed in
Chapter 2.4, they have a key role in pricing the instruments. In
this section I will present a summary of the curve trends for the
EURO scenario.
They consist in a time series of sixty points ordered by date, as a
transformation we have converted this absolute date into delta-
days. Delta-days are integer values that indicate how many
days occur from the first point in the series until a specific one.
By looking on Figures 4.2, 4.3 two considerations can be car-
ried out. The first one is the high similarity between discount
and forward curves shape, this will be really important and in
particular have to be reminded during the reduction and the su-
pervised regression analyses. The second aspect is the strange



4.2 data exploration 49

Figure 4.2: Discount curves plot over delta days for teh single cur-
rency dataset EURO.

Figure 4.3: Forward curves plot over delta days for the single cur-
rency dataset EURO.

interweaving occurred only for the forward curves between the
five thousand and six thousand delta-days. This phenomenon
is highlighted in the Figure 4.4. We have deeply investigate this
issues and no errors have been found, probably is caused by
the generation model.

In regards to the log-normal shift variable, is a matrix which
has the same shape of the matrix of weights (Section 2.5.1) for
the instruments selection and its domain has two distinct values
and it is shared to all the instrument available at the same ref-
erence date. This is just a convention adopted by our client and
it is not formally defined in the financial literature. I present in
Figure 4.5 a plot of its behaviour on the reference dates.
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Figure 4.4: Forward interweaving in single currency dataset EURO.

Figure 4.5: Reduced to scalar log-normal shift for single currency
dataset EURO.

The last couple of features to be examined are the two-dimensional
arrays of prices and volatilities. For the EURO dataset they are
14× 17 matrices of float values. In order to get a quick feed-
back about matrix volatilities and prices variability I present in
Figures 4.6, 4.7 the heatmaps of the correlations over the list of
matrices for prices and volatilities over all the records. In this
representation the repeated small squares within the heatmaps
4.8 corresponds to the single matrix of prices or volatilities re-
ferred to a single calibration date. The main feedback that can
be derived from the single calibration volatility correlation ma-
trix is that the correlation decreases with the increase of time
distance of tenors or expiries, this can be translated into an un-
certainty on long-time horizon. This phenomena can be seen by
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Figure 4.6: Prices correlation heatmap for dataset EURO. It represents
the correlation between all the possible couples of prices
expiry-maturity. The first row describes the correlation of
the first expiry with respect to all the maturities.

focusing on the last fourth tenors at which the correlation be-
come negative. This uncertainty causes high and constant val-
ues for the volatilities and a high variability on prices, these
explain both the negative correlations for prices and zero corre-
lations for volatilities. What can be further deduced given the
just described results is an expected primal-dual relation be-
tween prices and volatilities. When volatilities are constant and
high prices have much variation, conversely when volatilities
are low they vary a lot causing prices variation within the same
range of values.

4.3 dimensionality reduction

Given the high dimensional space, that consists of the previous
describe features and the low amount of original data that we
have, we decided to apply two strategies before any learning
task: reducing the dimensional space, augmenting the number
of records. I will now present the procedures involved in the
construction of the reduced features space.
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Figure 4.7: Volatilities correlation heatmap for dataset EURO. It rep-
resents the correlation between all the possible couples
of volatilities expiry-maturity. The first row describes the
correlation of the first expiry with respect to all the matu-
rities.

Figure 4.8: Volatilities correlation heatmap frame. It refers to the con-
tracts identified by the first expiry with respect to all the
tenors. In particular it computed by referring on the first
calibration date.
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Figure 4.9: Price eigenvector composition of first pca component for
single currency dataset EURO.

4.3.1 Features construction

Recall that the dataset contains the following features: forward
curves, discount curves, matrices of prices, matrices of volatil-
ities, reference date and log-normal shift. This space of fea-
tures was too high, and was not uniform in particular there are
curves with different dimensions. For these reasons we have
built up a new reduced and uniform space of features starting
from the original one.

matrix of prices and volatilities : pca . As already
mentioned, each record contains these matrix referred to its re-
spective day. In order to reduce it with the minimum loss of
information, we have exploit the PCA procedure. In particular
the objective was to explain 99% of the variance with a new
lower dimensional space. This procedure was called over the
m× k matrix, where m are the number of samples and k the
number of cells of the single matrix. In this way was possible
to analyse all the correlations between all the samples’ matri-
ces contained in the dataset. In regards to prices the 99% of
variance is represented by four new features. What it can be
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Figure 4.10: Price eigenvector correlation heatmap of first pca com-
ponent for single currency dataset EURO.

noticed from Figures 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16,
is that as expected the component are orthogonal. Moreover, it
can be noticed what was pointed out in the previous chapter,
thus, the first component collects the most variable part that
is given by the temporary most far instruments,thus the one
with highest maturities. The same holds for all the other com-
ponents respecting the orthogonality property. In this way, as
observable in Figures 4.15, 4.16 of the eigenvector composition,
the last component captures the variance implied by the clos-
est contracts. The same behaviour can be noticed by referring
to the matrices of volatilities and leveraging on the duality rela-
tionship between the two variables. In this second case the same
amount of variance is described by six components. I will refer
just to the first Figures 4.17, 4.18 and to the last Figures 4.19,
4.20 in order to let you able to see the same behaviour and the
duality relationship. In particular you should notice the com-
ponent composition, in fact the first component is described
by the instruments which expiries are at most two months, as
opposite to the last component that is described by temporally
distant instruments.
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Figure 4.11: Price eigenvector composition of second pca component
for single currency dataset EURO.

Figure 4.12: Price eigenvector correlation heatmap of second pca
component for single currency dataset EURO.
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Figure 4.13: Price eigenvector composition of third pca component
for single currency dataset EURO.

Figure 4.14: Price eigenvector correlation heatmap of third pca com-
ponent for single currency dataset EURO.
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Figure 4.15: Price eigenvector composition of fourth pca component
for dataset EURO.

Figure 4.16: Price eigenvector correlation heatmap of fourth pca com-
ponent for dataset EURO.
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Figure 4.17: Volatility eigenvector correlation heatmap of first pca
component for dataset EURO.

Figure 4.18: Volatility eigenvector correlation heatmap of first pca
component for single currency dataset EURO.
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Figure 4.19: Volatility eigenvector correlation heatmap of sixth pca
component for single currency dataset EURO.

Figure 4.20: Volatility eigenvector correlation heatmap of sixth pca
component for single currency dataset EURO.
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log-normal shift : reduction to scalar . A brief com-
ment should be open here for the other matrix attribute, thus
the log-normal shift. As discussed in the previous section and
shown in Figure 4.5, by convention it has a value shared by all
matrix elements, and a domain of only two possible values. For
this reason we have reduced it to a scalar value, which values is
the same of the matrix elements. With this last shortcut we have
reduced the number of features without loss of information.
By concluding I want to highlight that after the PCA reduc-
tion, our dataset is composed by this new list of features: PCA
prices (4 components), PCA volatilities (6 components), log-
normal shift(1 component), reference date, discount and for-
ward curves ( 120 components )

interest rates and discount curves : nelson-siegel .
The last couple of features that we have reduced are the inter-
est rates and the discount curves. Concerning the interest rates
curves, we have exploited a parsimonious model called Nelson
Siegel(Charles R. Nelson, October 1987). Given the apparently
correlation assumption discussed in the previous section, and
the similarity in their shapes we have adopted this model also
for the discount curves, even if it was not originally developed
for discount curves. I will now formally present the model, and
then I will show the results given by the model fitting over the
curves. The Nelson-Siegel model is a sum of exponential terms:

y(t) = a+b× (
1− expφ(t)

φ(t)
)+ c× (

1− expφ(t)

φ(t)
− exp−φ(t)) (4.1)

where,

φ(t) = 1+
1

d
(4.2)

And a,b,c and d are the parameter to be learnt.
Given this model, we have fit it over each curve in the dataset.
After the curve-fitting process, all the original curves were sub-
stituted by the four Nelson-Siegel parameters. I present in Fig-
ures 4.21, 4.22 two examples of fitting, one per type of curve.
After the described transformation, the new reduced dataset

consists of the following features: PCA prices ( 4 components ),
PCA volatilities ( 6 components ), log-normal shift ( 1 compo-
nents ), discount curves ( 4 components ) and forward curves (
4 components ).
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Figure 4.21: Nelson-Siegel fit for discount curve for a record within
the single currency dataset EURO.

In order to let you be more confident with the reduced dataset,
I conclude the feature construction section by presenting in
Figure 4.23 a heatmap of the reduced parameters correlations.
What can be observed in Figure 4.23 is that as expected, the
discount and forward curve parameters are highly correlated.
In particular, this holds for the first three Nelson-Siegel param-
eters, that appear to be the most important in the model defi-
nition. What is reasonable to expect starting from this consider-
ation is that, during the supervised analysis not all the curves
parameters will be selected at the same time. Another interest-
ing aspect that I want to point out, is that the log-normal shift
is correlated with both the curves and with the principal eigen-
vector fo the pca prices matrix. This could be derived from the
fact that the curves with the log-normal shift are all the input
necessary to compute the contract price. Finally, something sim-
ilar can be noticed also for the second principal eigenvector of
the pca volatilities matrix even if in this case there is less corre-
lation.
Given these results over the features construction, I will now
move to the features selection phase. In particular we will see
two approaches one iterative and one based on a threshold.

4.3.2 Features selection

Also in this case we are dealing with an estimator that basically
fits the data and assigns to each feature a score. This speci-
fies the feature importance in predicting the target variables
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Figure 4.22: Nelson-Siegel fit for interest rate curve for a record
within the single currency dataset EURO.

depicted in Figures 4.26, 4.27. Also in this case we restrict our
models to the ones able to perform a multivariate fit in order to
exploit the correlation between the targets as displayed in Fig-
ure 4.25. Given the list of scores associated with all the features
we will select only the ones whose score is above the average.
The results are displayed in Figure 4.24, where the y-axis is
the dependent from the regressor method used in the supervi-
sion. In this example the selected features are the second and
fourth NS parameter of the forward curve and the first for the
discount curve. Moreover, there were selected the first and the
third PCA component for the price matrix and finally the third
PCA component for the volatility one.
The second algorithm that we have used is IFS. Even in this
case we have made the fitting phase in a multivariate approach
since we are dealing with two targets and we want to exploit
their correlation. The results are described in Table 4.4 and Ta-
ble 4.5; they are ordered by iteration. During the first iteration
the first feature selected was the fourth component of the pca
volatility matrix. In the second iteration the selected feature is
the first principal component of the pca matrix of volatilities.
Another main aspect that can be noticed from both iterations
is the relation implied by the Black’s formula, in fact no prices
and volatilities are selected in the same time since they explain
the same concept. Further more, we can notice that in the first
iteration they are far in the ranking, the same holds with re-
spect to the log-normal shift as can be observed in the second
iteration, see Table 4.5.
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Figure 4.23: Heatmap of the correlation of the reduced features for
single currency dataset EURO.

These aspects can be also easily noticed in Figure 4.23. Here we
observe an high correlation between the target parameters, also
their correlations with respect to the input parameters are simi-
lar. In particular, they have a low and positive correlation with
the PCA component of the volatility matrix. They also have ei-
ther a positive or an inverse correlation with the NS parameters
of the discount and forward curves.

4.4 additional features exploration

Even if now we are more confident on the features, I want to
point out an important aspect from a different perspective. So
far we have not look on the parameters behaviour according to
the presence or absence of trends. In particular this aspect has
a key role in deciding which approach to apply between offline
and online learning.
What we have done was a plot of the reduced features with
respect to records calibration dates, I will not provide here all
the feature plots, but I will display the most interesting one.
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First Iteration

Rank Index Score Feature Name

#0 15 0.271339 4th component
PCA-volatilities

#1 14 0.195478 3rd component
PCA-volatilities

#2 12 0.193172 1st component
PCA-volatilities

#3 17 0.165025 6th component
PCA-volatilities

#4 5 0.033712 1st discount NS

#5 1 0.021080 1st forward NS

#.. ... ... ...

#18 11 0.002112 4th component
PCA-prices

Table 4.4: First iteration of IFS algorithm over the single currency
dataset EURO.

Second Iteration

Rank Index Score Feature Name

#0 12 0.215391 1nd component
PCA-volatilities

#1 14 0.210749 3rd component
PCA-volatilities

#2 15 0.202462 4ht component
PCA-volatilities

#3 17 0.175555 6th component
PCA-volatilities

#4 5 0.027314 1st discount NS

#5 13 0.019949 2nd component
PCA-volatilities

#.. ... ... ...

#18 18 0.002581 log-normal
shift

Table 4.5: Second iteration of IFS algorithm over the dataset EURO.
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Figure 4.24: Feature scores wrt the average, for dataset single cur-
rency dataset EURO. In this case the selected features are:
second and fourth NS parameter for the forward curve;
the second for the discount curve; the third component
for both the pca matrix of volatilities and prices.

Figure 4.25: Scatter of the target parameters for single currency
dataset EURO. On the x-axis there is the volatility pa-
rameter, on the y-axis the MRSpeed.
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Figure 4.26: Vasicek MRSpeed plot ordered by calibration dates for
single currency dataset EURO.

Figure 4.27: Vasicek volatility plot ordered by calibration dates for
single currency dataset EURO.
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4.4.1 Curves: discount and forward

From Figure 4.28 and Figure 4.29 we can notice that the pro-
cess is not stationary, at least in our window of available data,
we cannot ensure this for future or past data. Moreover, we
have a further concrete proof of the intuition made in the pre-
vious section about the high correlation of the discount and
forward curves. The main aspect that we have to notice is that
the process is not stationary, from this assumption, neither a
time series approach nor an offline approach are suitable for
our specific problem. Moreover, we should think in using the
already seen samples for predicting the trends behaviour, thus
the future Nelson-Siegel parameter values for both the discount
and forward curves.

4.4.2 Matrices: prices and volatilities

In regards to the pca matrices of prices and volatilities, I take
advantage of this section for proving the previously discussed
duality relationship between these variables. In order to do this,
I will once more take advantage of the plots of the variables
with respect to time. In particular, in Figures 4.30, 4.32, 4.31,
4.33 you should notice that the volatilities are stationary con-
versely the prices vary a lot. This occurs since by definition,
volatilities denote the price variations. As a consequence when
volatilities are high and constant, prices vary a lot, conversely
when volatilities are small. There is no interest in analysing the
variability of volatilities since it should be small, if it is not may
mean that something strange or unseen it is happening on the
market. The plotted couple of principal components express
the duality relation among these parameters. They are a fur-
ther confirmation of the results obtained during the analysis of
the heatmap of the reduced features correlation for what con-
cerns the pca parameters of both volatility and price matrices.
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Figure 4.28: First NS parameter for discount curve plotted over cali-
bration dates for single currency dataset EURO.

Figure 4.29: First NS parameter for forward curve plotted over cali-
bration dates for single currency dataset EURO.
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Figure 4.30: First PCA price parameter curve over calibration dates
for single currency dataset EURO.

Figure 4.31: First PCA volatility parameter curve over calibration
dates for single currency dataset EURO.
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Figure 4.32: Second PCA price parameter curve over calibration
dates for single currency dataset EURO.

Figure 4.33: Second PCA volatility parameter curve over calibration
dates for single currency dataset EURO.
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Figure 4.34: Schema of all the features construction techniques start-
ing from the original ones.

4.5 online learner

Given the previously considered argumentations, we have de-
cided to adopt an online approach. In particular with the objec-
tive of get more feedback possible on data, we have used both
the original and the artificially generate samples. The online
algorithm structure consists of: a batch training phase and an
online test phase. Before entering in the details regarding each
step, we have to define the used learner. This model is fully
defined with an estimator used to fit the data and an estima-
tor used to perform Supervised Features Selection (SFS). Our
experiments were computed by using a Decision Tree Regres-
sor as model to fit the data. It is important to state that this
developed learner requires as input the already Nelson−Siegel
fitted dataset, that is the reason why this phase does not occur
during the training stage; the final features space construction
is displayed in Figure 4.34. Moreover, according to the theory
presented in Section 3.1 we will speak about: train, validation
and test datasets. They are disjoint portion of data that define
the knowledge respectively used by: train, validation and test
stages. It is important to remark that during our experiments
we used outliers cleaned data.

training : This first stage follows a batch approach, thus, it
works on the whole dataset to perform learning. In particular
here is only computed the fitting procedure over the training
set of data, no predictions are made.
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Set name number of record computational time [s]

Train 1186 18.5659

Validation 891 184.1214

Test 890 270.8483

Table 4.6: In the first column is shown the dataset division between
train-validation-test sets. In the last the computational
time required expressed in seconds. All the information
refer for the single currency dataset EURO.

validation : This middle stage is implemented according
to the online pattern. Its objective is to tune the model hyper-
parameters (e.g. the number of layers of a MLP).

test : This final part follows an online approach. The idea
is that each new sample contributes in updating the model pa-
rameters.

In our specific case, according to empirical results, we have
noticed that there is no needed of a validation phase, no further
contributions are given from it. In particular, we have verified
that in this problem it is not necessary to constrain the decision
tree but we can let it to over fit when needed. Given these argu-
mentations, the validation phase to which I will refer to in the
following experiments, is an intermediate light online stage.

4.5.1 Original data only

In this first version of our online model, we have exploited
only the original records of the single currency dataset EURO.
The original dataset was divided into: train, validation and
test as specified in the Table 4.6. The dataset division is time-
dependent. In particular all the data in the train set precede the
records in the validation set, the same holds between valida-
tion and test sets. According to the general results presented in
Section 4.3.2, the selected features are:

• second parameter ois NS fitted;

• sixth component pca matrix of prices;

• third component pca matrix of volatilities;
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metric MRSpeed Volatility

Train phase

RMSE 1.0156 e−7 7.6225 e−9

RMSE [/range] 1.2703 e−6 1.2570 e−6

R2 1. 1.

Validation phase

RMSE 0.0074 00003

RMSE [/range] 0.0258 0.0765

R2 0.7704 0.7687

Test phase

RMSE 0.0025 0.0002

RMSE[/range] 0.0774 0.1044

R2 0.6187 0.7053

Table 4.7: In the first column is shown the adopted error metric. In
the second the errors referring to the MRSpeed variable.
In the last the errors referring to the volatility variable. All
the information refer for the single currency dataset EURO.

The results are displayed in the Table 4.7. In particular the no-
tation [/range] means that the error was divided by its range
of values in order to have a more useful information. We may
get a similar result by computing the relative error, but in this
case there may occur divisions by zero. What we can state by
looking on the errors is that the chosen model structure seems
to be appropriate. During the train phase the model fully over-
fits the data as can stated by the R2 metric that is equal to one
for both the targets. The error is still low in both the validation
and the test phases, this can be observed by focusing on the
percentage error that was roughly equals to 2.58% for the MR-
Speed and 7.65% for the Volatility during the validation phase.
The same holds in the test phase, where the target errors are
respectively 7.74% and 10.44%. In order to get a more suitable
idea on the behaviour of our model, we have computed some
plots that show the tracking capability. Firstly we can observe
in Figure 4.35 the selected features behaviour during the train
phase. The first observation we can make is that the process
is not stationary and there are some trends. In order to get a
clear vision I plot in Figure 4.36 the targets behaviour. From
this window of observation it seems that the targets follow the
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Figure 4.35: Online learner: selected features curves in train stage for
single currency dataset EURO.

same behaviour, we may think in substitute the couple of tar-
gets by a single one in order to exploit univariate models. The
point is that, as we will seen during the test phase analysis,
this is not always true. As an empirical proof of the obtained
results, we may notice how the curve peaks of the selected fea-
tures closely reproduce the target curve shapes, in particular
this aspect can be noticed by focusing on the third component
of the pca volatility matrix. Given this results for the train stage,
we can move to the images that represent the behaviour of the
parameters during the test stage. I will start by presenting the
just displayed figures in the train stage for the test phase. In
Figure 4.37 we can observe the selected features behaviour for
the test stage. What we can notice is that, differently from the
train phase, here the features are more stationary and in par-
ticular for the sixth component of the pca matrix of prices, its
curve has a lower amplitude with respect to the train window
of observation. By looking on the Figure 4.38 that shows the tar-
gets behaviour, we can notice how, in particular starting from
the points that corresponds to the end of June 2016, the two tar-
gets assume different behaviours and in general they are less
overlapped than the train case. As last step, I will comment
the tracking capability and the implied relative error results for
both the target parameters. Starting from the volatility, in Fig-
ure 4.39 we can notice how our model predicts its values. In
particular we can notice its ability in reproducing the original



4.5 online learner 75

Figure 4.36: Online learner: targets behaviour in train stage for single
currency dataset EURO.

curve shape starting from the first unseen sample until the last,
this means that either the train and validation stages and the on-
line updates, contribute in helping it catching the manifold. The
volatility relative error is displayed in Figure 4.40 from which
we can observe that it is almost always stationary on the zero
value with some exceptions within a range of 10%. The same
results hold for the second target parameters, thus the mean re-
version speed, as it is displayed in Figures 4.41, 4.42. There are
no big differences with respect to the volatility, the only one is
given by the presence of a set of points that are totally mispre-
dicted by our model, they can be seen easily since they are out
of the manifold with a MRSpeed value equal to zero. Given this
observation we can state that their contribution in the error out-
comes is bigger than the contribution given by other test points.
The MRSpeed relative error is within a range of 3% on average.
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Figure 4.37: Online learner: features behaviour in test stage for single
currency dataset EURO.

Figure 4.38: Online learner: targets curves in test stage for single cur-
rency dataset EURO.
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Figure 4.39: Online learner: Volatility prediction during test stage for
single currency dataset EURO.

Figure 4.40: Online learner: Volatility relative error during test stage
for single currency dataset EURO.
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Figure 4.41: Online learner: MRSpeed prediction during test stage
for single currency dataset EURO.

Figure 4.42: Online learner: MRSpeed relative error during test stage
for single currency dataset EURO.
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Set name computational time [s]

Train 43.6210

Validation 1118.1204

Test 1635.9449

Table 4.8: In the first column is shown the considered phase between
train-validation-test sets. In the second the computational
time required expressed in seconds. All the information
refer for the single currency dataset EURO.

After these results we have wondered if there would be some
improvements in using also the perturbed data. For this second
experiment, we have follow the same approach taken by the
previous model; the only difference is that now for each pre-
dicted point in the test and validation phases we use as knowl-
edge base to fit on, the full set of previous records, here both
original and artificially generated are considered. In this sec-
ond experiment, the obtained results are similar to the previous
ones.

4.5.2 Artificial contribute

In this second version there is no a clear division of the dataset,
in fact starting from the three sets described in Table 4.6 for
each point in the validation and in the test datasets, the model
is fitted on a mix of previous original and artificially generated
record. This implies that each point as an own learning set. The
computational time required by each stage is changed drasti-
cally and is represented in Table 4.8. Even in this case, we have
used a Decision Tree Regressor as underlying model. The se-
lected features are in agreement with the theory presented in
Section 4.3.2, now they are:

• first parameter ois NS fitted;

• second parameter ois NS fitted;

• sixth component pca matrix of prices;

• third component pca matrix of volatilities;

• fourth component pca matrix of prices;

The performances are displayed in the Table 4.9. What we can
state by looking on the obtained results is that: the new data
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metric MRSpeed Volatility

Train phase

RMSE 1.1506 e−7 1.0663 e−8

RMSE [/range] 1.3068 e−6 1.4976 e−6

R2 1. 1.

Validation phase

RMSE 0.0159 0.0004

RMSE [/range] 0.0550 0.0901

R2 −0.0433 0.6792

Test phase

RMSE 0.0021 0.0002

RMSE[/range] 0.0823 0.1222

R2 0.5692 0.5945

Table 4.9: In the first column is shown the adopted error metric. In
the second the errors referring to the MRSpeed variable.
In the last the errors referring to the volatility variable.

do not introduce further cases to learn from, so we can con-
clude that they just augment the computational time without
any gain in terms of results. We analyse once more the capabil-
ity of the model in tracking trends, I will no display the plots
neither for the train nor for the validation set since there is not
a single significant figure. From Figures 4.43, 4.44 we observe
that there are additional selected features, this may occur given
the augmented variability in particular in the matrix of volatil-
ities and prices. The targets follow exactly the behaviour seen
for the original records; also the results are approximately the
same except for the computational time. For both the target
parameters we can notice with Figures 4.47, 4.48, and Figure
4.45, 4.46, that in general we reach the same results of the pre-
vious case. There are still mispredictions in data that increase
the error values, no advantages were leaded with respect to the
previous scenario. As a conclusion, we can state that augment-
ing the number of samples lead a real benefit only if the new
data contain new information. In our case this does not occur,
for this reason we have discarded a dataset of 17598 perturbed
records.
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Figure 4.43: Online model with artificial data: features behaviour in
test stage for single currency dataset EURO.

Figure 4.44: Online model with artificial data: targets curves in test
stage for single currency dataset EURO.
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Figure 4.45: Online model with artificial data: Volatility prediction
during test stage for single currency dataset EURO.

Figure 4.46: Online model with artificial data: Volatility relative error
during test stage for single currency dataset EURO.
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Figure 4.47: Online model with artificial data: MRSpeed prediction
during test stage for single currency dataset EURO.

Figure 4.48: Online model with artificial data: MRSpeed relative er-
ror during test stage for single currency dataset EURO.
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Figure 4.49: Feedback function of online model developed on origi-
nal data only, for single currency dataset EURO. In the
figure evalTilde denotes eval.

4.5.3 Evaluation and matrices generalization

To summarize the previous results and by looking at Tables 4.7
and 4.9, we have stated that both developed models achieve
good performances. In particular by focusing on the R2 metric
we can say that both the online approaches are able to describe
a good portion of the variance information. By referring to the
computational times shown in Tables 4.6 and 4.8, we have dis-
carded the second version since it takes too long without any
improvement on the performances. With these numbers, we
were not able to get a concrete and real feedback about our pre-
dictions, to do this we need to leverage on a domain-feedback
function. In our experiment we have used the one described
in Section 2.5.2. As first trial we have compared our model
with the hard-calibration; this comparison was made by using
a weighting matrix of ones (Chapter 2.5.1). What we expect to
see is that: the errors of our model and the hard calibration are
close to each other. For the moment we do not take into account
the range of numbers taken by these metrics. We have just to
focus on the eval() function and check if it is close to zero, and
if the eval() curve peaks of the HC and our ML model refer
to the same calibration instances. The results are depicted in
Figure 4.49, in this plot there were removed two mispredictions
that were out of the manifold and do not allow to see properly
the error curves. What we can see is that in general the perfor-
mances obtained by our model are close to the ones obtained
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with the analytical one. The same conclusion can be derived
by focusing on the eval() function that is always behind 0.5
and in general close to zero. Given this positive result, we have
wondered if there is an advantage in learning on the weight se-
lection unitary matrix, in particular we have wondered if there
are some generalization relations over sparse matrices. To check
this property we should compare the eval() curves obtained by
the analytical model computed over the sparse matrix and the
one obtained by our model referred to the unitary matrix. If
the two curves would be similar we could state that this prop-
erty holds. Since this check requires the development of a new
dataset computed over the sparse matrix, we did a first exper-
iment to get a first proof of validity. From the previous results
we know that our model is capable of learning the optimal pa-
rameter referred to an unitary matrix with an optimal error
eval∗MLunitary. What we can do with the available data, is get the
feedback obtained over the sparse matrix evalMLsparse by the same
parameters, and check if these curve have similar shape. Clearly,
from the feedback function definition (Section 2.5.2), we may
consider the introduction of rescaling transformations since er-
rors do not have any normalization according to the weights.
The results are displayed in Figure 4.50, here a multiplicative
rescaling factor of 0.5 was applied to the error that refers to the
unitary matrix. What he can conclude from this first analysis
is that the curves have similar shapes, so there might be gen-
eralization opportunities that have to be checked as discussed
at the beginning of this paragraph. Given these argumentations
we have deepened our understanding behind this phenomenon.
In particular we have performed the analyses by following a sta-
tistical approach. For the already discussed algorithms, thus:

• Hard Calibration applied to the unitary case, that I will
denote as HCu;

• Hard Calibration applied to the sparse case, that I will
denote as HCs;

• Soft Calibration applied to the unitary case, that I will
denote as SCu2.

We have perform an evaluation based on the eval() function,
by using both the sparse and the unitary weight selection ma-
trix. As indicators we have computed the sample mean with a

2 In this case we have learnt over a dataset computed with HCu, thus, the
hard calibration over an unitary weight selection matrix.
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Figure 4.50: In the figure _sparse and _ones refer to the weight ma-
trix used in the feedback. It can be or sparse or unitary.

eval() selection matrix: unitary sparse

HCu 1.4477± 0.0156 0.6517± 0.0077
HCs 5.7973± 0.7676 0.0049± 7.82 e−7

SCu 1.4505± 0.0154 0.6423± 0.0075

Table 4.10: In the first column there are the feedback errors obtained
by using an unitary selection matrix. In the second the
ones referring to a sparse selection matrix.

confidence interval of 95%. The results are displayed in Table
4.10. Given these outcomes, what we can state is that: the in-
troduced data-driven approach reaches performances that are
similar to the ones obtained by the analytical model. In partic-
ular its error is below 1% with respect to the one obtained by
the analytical model from which it learns from. As expected
this relation holds for both the selection matrices used during
the feedback computation. This means that our model behaves
as the one from which it learns from independently from the
weight configurations. By referring to HCs we can state that
it minimizes a different objective, in fact its error with respect
the sparse feedback is smaller than the one achieved by HCu,
conversely for the unitary feedback the opposite is true. In par-
ticular the error achieved by HCs with respect to the eval()
function is 5.7973, with respect to the sparse weight selection
matrix is 0.0049.
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Set name number of record computational time [s]

Train 2076 0.9127

Test 891 0.0994

Table 4.11: In the first column is shown the dataset division between
train-test sets. In the last the computational time required
expressed in seconds.

4.6 batch learner

In order to provide a complete analysis we have decided to
investigate also the batch approach. What we want to show
with these analyses is that: a batch approach is not appropriate
for our problem and that perturbed data do not add significant
information with respect to the original ones.

4.6.1 Time dependent predictions

In this first scenario we test the batch model capability of fol-
lowing trends, in particular we expect to have low performances
since a batch model does not distinguish old and recent sam-
ples. This first test as in the online case, was performed with
a Decision Tree Regressor (DTR) and by considering only origi-
nal records. We have cleaned them from outliers and they were
divided according to their reference date, the percent in the
train was the 70% and in the test the other 30% of original
data. Given this scenario, the dataset composition is the one
described in Table 4.11, what we can state from this first infor-
mation is that the batch model requires lower computational
time than the online one. By moving to the analysis of its per-
formances, in general we expect to have much bigger error val-
ues. They are displayed in the Table 4.12. What we observe is
that there is an high overfitting phenomena during the train
phase, in particular the R2 scores are equal to one for both the
targets. The same is not true during the test phase, we can get
a first feedback of the incapacity of following trends from the
R2 scores that is negative for both variables. As in the online
case, I provide some useful pictures in order to get a full com-
prehension on the results. For the train stage, we can observe
the overfitting phenomena in the scatter depicted in Figure 4.51,
we can notice that the manifold of the predicted points is com-
pletely overlapped to the one of original samples. This occurs
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metric MRSpeed Volatility

Train phase

RMSE 8.0372 e−8 1.1764 e−8

RMSE[/range] 2.7768 e−7 1.6772 e−6

R2 1. 1.

Test phase

RMSE 0.0074 0.0006

RMSE[/range] 0.0253 0.0894

R2 −2.2564 −1.5879

Table 4.12: In the first column is shown the adopted error metric. In
the second and in the third the errors by parameters.

due to the overfitting capability that characterizes non paramet-
ric models. For the test phase this does not occur with the same
results, as it is depicted in Figure 4.52. In particular we can
observe the disadvantages leaded by the usage of a batch ap-
proach by focusing on the three points out of the manifold, all
of them seem to be mispredicted. This cannot be guaranteed
since with scatter plots we can understand just the general be-
haviour with analyses on manifolds and not results on each sin-
gle predicted record. From this first analysis we can just state
that the manifolds of old and recent samples are different and
a batch approach is not the appropriate choice in this scenario.
In order to investigate more this issue I move to the plots of the
test error with respect to each predicted sample and each single
target as displayed in Figures 4.53, 4.54. Here we can notice two
main aspects, the first one is the fact that the error is not always
close to zero, in particular it seems to be negative for the first
half of records and positive for the second one. Moreover, there
is a set of points, those corresponding to the days between 11th
and 16th of November 2015, that are totally mispredicted since
their values are out of the manifold range. From these two ob-
servations we can confirm the expected incapacity of following
trends by batch model. From this conclusion we moved to a
further test. We have took advantage of batch models to get
an empirical view on the artificially generated samples with
respect to the original records.



4.6 batch learner 89

Figure 4.51: Scatter plot for the manifolds described by the original
train data and their predictions for the single currency
dataset EURO.

Figure 4.52: Scatter plot for the manifolds described by the original
test data and their predictions for the single currency
dataset EURO.
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Figure 4.53: MRSpeed plot for original test data for the single cur-
rency dataset EURO.

Figure 4.54: Volatility plot for original test data for the single cur-
rency dataset EURO.
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metric MRSpeed Volatility

Train phase

RMSE 1.2986 e−7 1.5730 e−8

RMSE[/range] 1.3390 e−7 1.9491 e−6

R2 1. 1.

Test phase

RMSE 0.0138 0.0005

RMSE[/range] 0.0142 0.0653

R2 −0.2958 0.6088

Table 4.13: In the first column is shown the adopted error metric. In
the second and in the third the errors by parameters.

4.6.2 Using perturbed data to predict original

We have decided to use the information contained in the per-
turbed data to make inference on the original ones. This task
was accomplished by using the perturbed records during the
learning phase, and the original records during the test phase.
Even in this case we have performed our analysis over the sin-
gle currency EURO, and by using as an underlying model a
Decision Tree Regressor. I present in Table 4.14 the dataset
shapes and in Table 4.13 the results obtained by following this
approach. As in the previous case we can notice the overfitting
phenomena during the training phase by observing the R2 val-
ues that are still equal to one.
In the test stage we expect to have an high overfitting since
we are learning from the perturbed data that are a noisy and
augmented version of the original data, here the test set. Even
if the outcomes are better than the previous experiment per-
formed with the batch model, they cannot be translated into
overfitting. As before, I will start by analysing the manifolds
and secondly the target curves. The scatter plots are displayed
in Figure 4.55 for the train phase and in Figure 4.56 for the test
phase. By analysing them we can notice that the perturbed data
define exactly the same manifolds of the original ones for a big
portion of them but not for the whole set of points. In particu-
lar, there is a subset of non artificial points whose perturbation
is projected on a different manifold with respect to the target
parameters. This may occur due to the perturbation phase.
In order to better analyse if the overfitting is present in the test
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Figure 4.55: Scatter plot for the manifolds described by the per-
turbed train data and their predictions for the single
currency dataset EURO.

Set name number of record computational time [s]

Train 17420 5.4332

Test 2967 0.6997

Table 4.14: In the first column is shown the dataset division between
train-test sets. In the last the computational time required
expressed in seconds.

dataset, I will move to the target curve plots. What we expect
is to see an almost zero error for all the samples except for this
subset of points whose projection does not reflect the original
data manifold. In regards to target plots, with Figures 4.57, 4.58

we can notice that there is the expected portion of mispredicted
point, but among all the points, the majority of them have a zero
error that evidence the overfitting phenomena. This can be no-
ticed by analysing both the plots. They contain a single point
that may be considered as an outlier, a group of points that are
mispredicted and may correspond to the ones with different
manifold and the rest of them are overfitted.
To conclude the analysis for the EURO scenario, we can state
that the perturbed data, even if they have a small subset of
different points, they do not contain enough significant infor-
mation. This was not an ideal case, but thanks to visualization
techniques we were able to highlight the presence of an hidden
overfitting phenomena.
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Figure 4.56: Scatter plot for the manifolds described by the original
test data and their predictions for the single currency
dataset EURO.

4.7 data augmentation and multi-currencies

The only problem that we still did not handle, that also did not
let us end our experiments here, is that we were dealing with
a not enough big amount of data. The perturbation approach,
as proved with the previous experiments, did not lead us the
expected improvements. For this reason we had to consider a
different way to enlarge our basis of knowledge. We have then
decided to move to a multi-currencies dataset in order to have
more significant performance measures and at the same time
learn on more real cases. In order to exploit the information
contained in the dataset of all the currencies we had to bring
the data in a common features space.
At first glance, the format mismatches are related on curves and
matrix features. Given the NS reduction discussed in Section
4.3.1 the transformed curves are already in an uniform format,
each curve will be substituted by the four Nelson-Siegel pa-
rameters independently from the currency. The same does not
hold for the matrix features, thus: prices and volatilities. The
first strategy would be to try to directly apply PCA by fixing
as a parameter the number of future features. This would be
not correct, in particular we should remind the principal com-
ponent definition (Section 4.3.1). The point is that having the
same number of eigenvectors does not imply referring to the
same state space, in general different eigenvectors may define
different directions. The solution that we have adopted consists
of using a common sub-matrix between all the currencies. The
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Figure 4.57: MRSpeed plot for original test data for the single cur-
rency dataset EURO.

Set name number of records computational time[s]

Train 10270 103.5854

Validation 4401 7326.3118

Table 4.15: In the first column is shown the dataset division between
train-validation-test sets. All the records are originally
generated.

sub-matrix is computed by considering cells that refer to the
same couple of tenor and expiry dates. After these data trans-
formation phase, we have a set of cross-currencies records that
have an uniform reduced features space. In our experiment we
have considered the following currencies: NZD, GBP, EURO, CAD,
USD, Swiss Franc (CHF) and Norwegian Krone (NOK). In partic-
ular in computing the cross-currencies dataset we have consid-
ered data referring only to original calibration since as already
discussed, adding the perturbed samples would mean just in-
creasing the computational time without any gain in terms of
performances. The used dataset division is described by Table
4.15; the computational time values displayed are computed
with a different and with higher performances machine. The
model is composed of only a batch train phase and an online
test phase and leverages on a Decision Tree Regressor. As for
the EURO case we have tried to use a validation stage but for the
same disadvantages discussed for the single currency model
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Figure 4.58: Volatility plot for original test data for the single cur-
rency dataset EURO.

(Section 4.5) this phase was omitted.
Here the amount of data is consistently bigger and the online
phase has an high computational cost. In this way the portion
of dataset that would define the validation set was part of the
train set, thus was learnt in a batch mode. Finally, IFS was used
as supervised feature selection algorithm. The features selected
by this approach are:

• first component pca matrix of prices;

• second component pca matrix of prices;

• third component pca matrix of prices;

• fourth component pca matrix of prices;

In figure 4.59 we can see their behaviour during the test phase.
From this image is difficult to make proper considerations since
there is a lot of overlap between their curves. The only aspect
that we can see is that: both the first and the fourth pca com-
ponent seem to behave as the targets parameters of Figure 4.60.
From this last image we may see that the two variables are
highly correlated in fact their curves have similar shapes.

I present in Table 4.16 the results obtained with the online
approach. What we can observe is that as in the single currency
case, the model fully overfits the data during the train stage. In
regards of the test, the errors are low, in particular the percent-
age Root Mean Squared Error (RMSE) is: 8.35% for the mean
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Figure 4.59: Online model cross-currencies features behaviour in test
stage. The selected features are the first, the second, the
third and the fourth principal component of the PCA
matrix of prices.

reversion speed, and 2.97% for the volatility. These results can
be also displayed with: the plots of the targets relative error,
and their values with respect to the original ones. With this im-
ages we are able to evaluate the model tracking capability. In
particular with Figures 4.61, 4.62 we can notice that our model
predictions are almost fully overlapped with respect to the orig-
inal values, this is in agreement with the performances of Table
4.16. In particular, the only mispredicted point is one of the out-
liers discovered in the previous analysis for the single currency
dataset. The same results holds for the volatility parameter as
can be observed in Figures 4.63, 4.64. In both the cases the RMSE
is close to zero for all the points within the parameters mani-
fold, thus our model is tracking their trends.
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Figure 4.60: Online model cross-currencies targets curves in test
stage. It is important to notice that they are plotted on
different y-axis.

metric MRSpeed Volatility

Train phase

RMSE 8.1829 e−7 8.896 e−8

RMSE [/range] 7.7486 e−7 3.1369 e−6

R2 1. 1.

Test phase

RMSE 0.0236 0.0008

RMSE [/range] 0.0835 0.0297

R2 0.5914 0.9519

Table 4.16: In the first column is shown the adopted error metric. In
the second the errors referring to the MRSpeed variable.
In the last the errors referring to the volatility variable.
All the information refer to the cross-currencies dataset
with only original data.
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Figure 4.61: Online cross-currencies model Volatility prediction dur-
ing test stage.

Figure 4.62: Online cross-currencies model Volatility relative error
during test stage.
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Figure 4.63: Online cross-currenceis model MRSpeed prediction dur-
ing test stage.

Figure 4.64: Online cross-currencies model MRSpeed relative error
during test stage.
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4.7.1 Evaluation and matrices generalization

As we have discussed for the single currency scenario (Sec-
tion 4.5.3), from the previous results, we can state that from
a machine-learning point of view our model have good perfor-
mances. The point is that with these values we can only make
some general considerations, we are not sure about the real con-
tribute given by our model. In order to have a proper feedback
we have used the feedback function provided by the bank (Sec-
tion 2.5.2).
In this way we can understand how well our model predicts. In
Table 4.17 we can see that our model error is close to the analyt-
ical one. In considering the eval() value of our model we have
to remind that it takes in consideration only the cases in which
it predicts worst than the analytical one. The contribute given
by the other cases are a zero term in the error and not a neg-
ative one, thus, the better predictions do not compensate the
mis-prediction. The same behaviour is displayed in Figure 4.65,
what we can notice is that the main contribute in the feedback
error is given by the bias of the analytical model from which
we learn from.
As for the single currency case (4.5.3), we have evaluated the
generalization property over different weight selection matrices.
Here the computational costs associated to the development of
a cross-currencies dataset referring to a sparse matrix are much
higher that for the single currency case, given that this implies
the computation of a single currency dataset that refers to the
sparse weight selection matrix for each single currency that ap-
pears in the cross-currencies dataset. The only test that we can
make is the one already discussed, that compares the errors ob-
tained by our model with respect to the unitary matrix and the
one over the sparse matrix. The results are displayed in Figure
4.66, as before a rescaling factor of 0.5 was applied to the error
computer over the unitary weight selection matrix. As before,
we can make the same positive conclusion, more work has to
be spent to check this generalization property over different se-
lection matrices.
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eval() eval()

HC 0.8211 0.0

ML 0.8346 0.1201

Table 4.17: Feedback function mean errors for Hard Calibration and
data-driven calibration.

Figure 4.65: Feedback function results for cross-currencies online
model.

Figure 4.66: Feedback function comparison over different selection
matrices, as a first proof of generalization capability for
cross-currencies data. In the figure _sparse and _ones
denote the weight selection matrix used for the feedback.
It can be either sparse or unitary.
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C O N C L U S I O N S

Non devi odiare il sole solo perché tu non puoi vederlo.
F.

This final chapter provides an overview of the possible future
works regarding Swaption pricing and interest rate and dis-
count curves prediction. Then, possible future developments of
the pricing framework are suggested, including the extension
to cross contracts models. Finally, the current limitations of the
proposed approach are discussed along with the conclusions of
the overall work presented in this thesis.

5.0.1 Summary of Results

The results presented during the previous chapters can be re-
sumed in several summary conclusions.

dataset. The evidence presented in the previous chapters
offers a support to the fact that the performed perturbation
was not a good solution, instead the choice of move to a cross-
currencies approach proved to be appropriate.

analytical model . The analyses performed over the ana-
lytical model outcomes, provide an additional feedback. Now,
we have a clear vision about the curve variable relationships
and contributions in pricing contracts. Further more, we know
which are the variable that mostly contribute in determining
Vasicek parameters. Thus, the use of data analysis and visual-
ization techniques show structural and functional relationships
behind the analytical formulas.

learner approaches . In regards to the considered learn-
ing approaches, we have proved that online learning has sev-
eral benefits with respect to follow an offline learning approach.
Even if the online approach takes longer in training, it is ca-
pable of following trends that is not possible with an offline
model.
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5.0.2 Future Research

I will start by highlighting some issues and limitations in our
approach; starting from them I will propose some solution strate-
gies that can be followed as future work.

online improvements . Starting from the proof that on-
line learning has several benefits, we would like to strengthen
its ability of following trends. To do this, we suggest to in-
troduce a samples space derived from the previously handled
data. This new space will be the starting point to derive a set
of possible future samples that may follow in the current trend.
With this addition, we expect to have better prediction regard-
ing future points. What it should be evaluated is the trade-off
given by the increasing of model complexity with respect to the
new obtained performance.

contract restriction. Given the good results obtained
with this uncommon learning schema of feedbacks given by
real prices, we can improve it by moving to an extended space
of contracts. In particular it could be evaluated the possibility of
considering also swaption not At The Money (ATM). This exten-
sion may augment the number of features since it may require
more information concerning the contract state; what should
be discussed is the trade-off given by the new information with
respect to the augmented dimensional space.

fixed selection matrix . The last research that we sug-
gest, is the usage of machine-learning techniques with the ob-
jective of develop algorithms that starting from the proposed
regressor are able to define optimal portfolios. In this way we
expect to augment the number of real applications. As a first
version we may restrict only to swaptions, in this case all the
results obtained over the generalization property over differ-
ent selection matrices hold. More in general, we should enlarge
also to different contracts that refer to the same discount and
forward curves, that as discussed during the introduction, are
the most important assets involved.
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