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Abstract

In this thesis, a Model Predictive Control architecture for an autonomous
electric vehicle has been designed and developed together with the dynamic
simulation used for its validation. The system has been realized first using a
single-track model and then simulating a real vehicle, i.e., a “Polaris Ranger
XP 900” via a 3D physics simulation. The work of this thesis starts from
an MPC controller already developed in an other thesis in Simulink which
was validated under ideal conditions. We developed also a localization
system necessary to test our system in a simulation environment. The
development of the software architecture has been done using the well-
known and widely used framework for robotics ROS (Robot Operating
System). Taking advantage of the flexibility of the ROS framework, we
integrated ROAMFREE (Robust Odometry Applying Multisensor Fusion
to Reduce Estimation Errors) in our architecture, which is a library for
multisensor fusion and pose estimation. To verify and analyze the system
behavior in control conditions, we have developed two simulators: one
representing an ideal and simplified situation, exploiting the mathematical
description of the single-track model, and one using Gazebo, a simulator
that allows to model complex scenarios. The contribution of this thesis can
be divided in four parts: the first one regards the general architecture, the
second one is relative to the vehicle modeling, the third one is dedicated
to the vehicle localization and the fourth one concerns the MPC controller.
The overall design of the control architecture has been validated through
an extensive experimental activity performed within the two simulation
environments.
Keywords: Unmanned vehicles, Model Predictive Control, single-track,
ROAMFREE, Gazebo, odeint, CPLEX.
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Sommario

In questa tesi, è stata progettata e sviluppata l’architettura di controllo
di un veicolo autonomo implementando un controllore predittivo basato
su modello MPC (Model Predictive Control) insieme alla simulazione
dinamica utilizzata per la sua validazione. Il sistema è stato validato
infatti prima utilizzando un modello single-track, poi con la simulazione di
un veicolo reale, ovvero un “Polaris Ranger XP 900”.

Il lavoro di questa tesi parte da un controllore MPC precedentemente
sviluppato in un’altra tesi tramite l’utilizzo di un linguaggio di program-
mazione a più alto livello, MATLAB. E’ stato quindi necessario convertirlo
ripensando all’architettura in modo da ottimizzare le sue performance ed
aumentarne la sua modularità. E’ stato poi implementato un sistema di
localizzazione necessario per poter testare il sistema in un ambiente di
simulazione.

Lo sviluppo dell’architettura è stato effettuato usando un framework
per la robotica noto e ampiamente utilizzato, i.e., ROS (Robot Operating
Systems), caratterizzato da un’elevata modularità, implementata con lo
stile architetturale publish-subscribe, e dalla disponibilità di diversi moduli
già sviluppati e testati. Ciò ha permesso di sviluppare un’architettura
flessibile appropriata per un prototipo, che può essere sottoposto a svari-
ate modifiche durante il suo sviluppo, rimanendo comunque un sistema
sufficientemente robusto e attuabile per un utilizzo a lungo termine.

ROS semplifica l’integrazione di più moduli sviluppati separatamente.
In particolare, uno dei principali moduli che è stato integrato nell’architettura
è ROAMFREE (Robust Odometry Applying Multisensor Fusion to Reduce
Estimation Error), che è una libreria utilizzata per fare una fusione dei
dati provenienti da diversi sensori con lo scopo di stimare la posizione
di un robot. Oltre all’integrazione di questa libreria, è stato aggiunto
un modulo proposto all’interno di un’altra tesi, chiamato fastPredictor,
che partendo dalla posizione stimata da ROAMFREE integra le infor-
mazioni di odometria per ottenere una stima più veloce e ridurne i ritardi
di computazione.
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Nel campo dei veicolo autonomi, il ruolo della simulazione risulta essere
fondamentale. Prima di poter utilizzare il sistema su di un veicolo reale, è
richiesta la verifica e analisi dello stesso. A riguardo, abbiamo simulato
il funzionamento della nostra architettura su Gazebo, un simulatore che
permette di modellizzare scenari complessi utilizzando anche modelli di
robot preesistenti. Inoltre, Gazebo offre la possibilità di simulare diversi
sensori e di interfacciarsi facilmente con ROS. Il risultato è un ambiente di
simulazione che può sostituire completamente il veicolo reale e che permette
di effettuare esperimenti complessi.

Il contenuto di questa tesi può essere diviso in quattro parti: la prima
riguarda l’architettura generale, la seconda è relativa alla modellizzazione
del veicolo, la terza è dedicata alla localizzazione e la quarta è inerente
al controllore MPC. Prima di tutto forniamo una descrizione generale
dell’architettura sviluppata, spiegandone la suddivisione e come avviene
la comunicazione tra i vari componenti del sistema. Successivamente,
analizziamo dettagliatamente la modellizzazione del veicolo e i vari step di
simulazione dello stesso. Inoltre, nella stessa sezione, vengono descritti i
sensori utilizzati ai fini della localizzazione. In seguito, viene illustrato il
modulo riguardante la stima della posizione del veicolo, specificandone il
funzionamento e come viene migliorato. Si fornisce successivamente una
breve descrizione del MPC preso come riferimento per il nostro lavoro e la
relativa implementazione in ROS. Nell’ultima parte della tesi è possibile
trovare i risultati sperimentali ottenuti durante i test effettuati.

Parole chiave: Veicoli autonomi, Model Predictive Control, single-track,
ROAMFREE, Gazebo, odeint, CPLEX.
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Introduction

The purpose of this thesis is to design and develop a software architecture
of a self-driving electric vehicle.

A driverless car is an automobile that has an autopilot system allowing
it to safely move from one place to another without help from a human
driver. Ideally, the only role of a human in such a vehicle would be
indicating the destination. The implementation of driverless cars could
theoretically lead to many improvements in transportation. There are,
however, many obstacles to successfully implementing the concept as a
common and effective method of transportation. This is especially true
in situations in which a car on autopilot would need to safely navigate
alongside normal cars directed by human drivers. To be useful, a driverless
car must be able to navigate to a given destination based on passenger-
provided instructions, avoid environmental obstacles, and safely avoid other
vehicles. There are many potential advantages to using a driverless car
instead of a traditional human-controlled vehicle. A driverless car would
not be subject to human error, one of the most common causes of car
accidents. There would be little need for driver’s licenses, highway patrols,
extensive traffic laws, and even stop signs or street lights. Such vehicles
would not be affected by erratic human drivers and would, therefore, be
able to drive very close together. This could lead to a situation in which
high road density would not have a detrimental effect on speed, so many
cars could travel close together while maintaining a high average speed.

The great improvement in control strategies and electronic equipment,
which are becoming more and more efficient, powerful and economical,
is one of the main reasons of the growing interest of various automotive
brands in autonomous vehicles, which are no longer a dream, but can be
reality in the near future. Another important development that has allowed
the growth of this sector is the considerable progress in data elaboration
and sensors, such as camera, radar, LIDAR, which are necessary for the
autonomous perception.

In this thesis, the Model Predictive Control architecture of an au-
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2 Introduction

tonomous electric vehicle has been designed and developed together with
the dynamic simulation used for its validation. The system has been real-
ized at first using a single-track model and then simulating a real vehicle,
i.e., a “Polaris Ranger XP 900”.

This technique exploits a model of the process under investigation
to obtain the control output, through the minimization of an objective
function under some operational restrictions. Model Predictive Control
has been employed since the last years of the 70’s, mainly to control
the processes in chemical plants and oil refineries. However, due to its
prediction properties, MPC is very suitable for autonomous vehicle control
applications. In fact, it calculates future changes of the state variables and
related quantities, basing on the current measurements and the current
dynamic state and these changes are used to compute the optimal control
sequence.

The work of this thesis starts from an MPC controller already developed
in an other thesis with a high-level programming language, MATLAB. It
has therefore been necessary to convert it reorganizing the original archi-
tecture in order to optimize its performance and to improve its modularity.
Moreover we developed a localization system needed to test our system in
a simulation environment.

Our goal has been to develop a flexible software architecture to make
a vehicle reach autonomously a target point avoiding obstacles. In order
to achieve a high level of modularity, the development of the software
architecture has been done using a well-known and widely used framework
for robotics: ROS (Robot Operating System). It is characterized by a
high modularity, implemented with a publish-subscribe pattern, and the
availability of several off-the-shelf modules. This allowed us to develop
a flexible architecture suitable for a prototype, which could undergo var-
ious modification during its development, while remaining a sufficiently
robust and viable system for long-term use. Moreover, ROS simplify the
integration of modules developed separately.

Since for autonomous driving the localization is crucial, among the
modules we are interested in integrating we have ROAMFREE (Robust
Odometry Applying Multisensor Fusion to Reduce Estimation Errors),
which is a library for multisensor fusion and pose estimation. We use
this library to implement a localization system and we couple it with a
module developed within an other thesis that integrates odometry data
to achieve a faster local estimate based on the absolute one provided by
ROAMFREE.

Working with an autonomous vehicle, the role of the simulator is fun-
damental. Before using the system on a real vehicle, it is required to verify



Introduction 3

and analyze its behavior. Thus, we have developed two simulators: one
representing an ideal and simplified situation, exploiting the mathematical
description of the single-track model, and one using Gazebo, a simulator
that allows to model complex scenarios. It offers preexisting robot models
with multiple sensors and provides a native and simple integration with
ROS. The result is a simulation environment that can substitute completely
the real vehicle and it can be used to test and validate the system and to
perform complex experiments.

The contents of this thesis can be divided in four parts: the first one
regarding the general architecture, the second one relative to the vehicle
modeling, the third one dedicated to the vehicle localization and the fourth
one concerning the MPC controller. First of all we provide an overview
of the whole architecture describing how it is composed and how the
communication among them is handled. Then, we analyze the vehicle
modeling and the simulation steps. Moreover, in the same section, the
sensors used to localize the vehicle are described. Afterwards, the pose
estimation module is illustrated, specifying how it works and how the
estimation is improved. Lastly, we provide a short description of the
reference MPC and our relative implementation in ROS.

In the last part of the thesis it is possible to find the experimental
results obtained during the tests we carried out.

Outline

In order to help the reader to better understand how to read this work
here we suggest how to proceed. For every chapter it is provided an initial
relative background of the covered topic. For those who already have the
relative knowledge it is possible to skip the first section of the chapter.

The structure of this thesis is the following:

• Chapter 1: some examples of driverless vehicles proposed in literature,
with a special focus on the DARPA Challenge, are described. More-
over an overview of the main software architectures in unmanned
vehicles is proposed.

• Chapter 2: an overview of the software architecture is described,
followed by a brief description of each module developed or integrated.

• Chapter 3: the reference vehicle and sensors are described. Further-
more there is a detailed description of the simulators.

• Chapter 4: the localization module is illustrated describing the
ROAMFREE library configuration and its improvement.
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• Chapter 5: the application of the Model Predictive Control technique
for the reference vehicle control is described.

• Chapter 6: parameter estimation and experimental results are pre-
sented and analyzed.

• Chapter 7: all the work done within this thesis is briefly summarized
and some possible future extensions and improvements are presented.



Chapter 1

Driverless cars state of the art

1.1 Unmanned vehicles
From the very beginning of vehicles history, vehicular automation was
one of the most pursued goals; nowadays numerous automatic system are
included in aircraft, boats, industrial machinery and agricultural vehicles.
However, fully autonomous ground vehicles able to navigate on rough
terrain or complex and dynamic environments as city streets remain an
ambitious goal. This kind of vehicles could improve everyday life, for
instance reducing the risk of accidents, or they could be used to explore
difficult to reached places such as mines or planets.

Unmanned ground vehicles (UGV) come in very different sizes and
shapes depending on the task they have been designed to accomplish.
Generally, they can be divided in two categories, those built on a custom
platform and those based on a modified vehicle. In the latter category, over
the years, various vehicles were used as base, like military vehicles, trucks,
fuel-powered or electric automobiles, four-wheelers, and buses. Even if the
world of UGV is quite diverse, they share some common characteristics:

• they are equipped with sensors to perceive the environment;

• it is possible to remotely control the vehicle;

• they are able to perform some autonomous tasks.

When designing an autonomous vehicle some common problems have
to be faced, namely how to control the actuators of the vehicle, how to
fuse the information from the sensors to determinate its position and how
to drive autonomously. Various approaches have been adopted in order to
build and manage an UGV; in the following we present a section about

5
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autonomous cars that belong to the unmanned vehicle category while
maintaining they primary goal, i.e., transporting people.

1.2 Self-driving cars
For more than a century the automotive industry has contributed towards
innovation and economic growth. In the last decade the momentum of
innovation is phenomenal and the world is now at the cusp of greatest
technological revolution: “self-driving” vehicles. The main focus is to keep
the human being out of the vehicle control loop and to relieve him/her
from the task of driving. The main components of self driving vehicles
are sensors (to acquire information about vehicle surrounding), computers
(to process sensor information and send warning/control signals) and
actuators (responsible for lateral and longitudinal control). The basic
responsibility of self driving cars include lateral and longitudinal control
of vehicle along with vehicle to vehicle (V2V) and vehicle to infrastructure
(V2I) communication. [55]

In 2013 the U.S. Department of Transportation’s National Highway
Traffic Safety Administration (NHTSA) announced a new policy concerning
vehicle automation where it has been proposed a formal classification of
the existing systems. NHTSA defines vehicle automation as having five
levels [75]:

• Level 0 - No-Automation: The driver is in complete and sole
control of the primary vehicle controls – brake, steering, throttle,
and motive power – at all times;

• Level 1 - Function-specific Automation: Automation at this
level involves one or more specific control functions. Examples include
electronic stability control or pre-charged brakes, where the vehicle
automatically assists with braking to enable the driver to regain
control of the vehicle or stop faster than possible by acting alone;

• Level 2 - Combined Function Automation: This level involves
automation of at least two primary control functions designed to
work in unison to relieve the driver of control of those functions. An
example of combined functions enabling a Level 2 system is adaptive
cruise control in combination with lane centering;

• Level 3 - Limited Self-Driving Automation: Vehicles at this
level of automation enable the driver to cede full control of all safety-
critical functions under certain traffic or environmental conditions.
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The driver is expected to be available for occasional control, but with
sufficiently comfortable transition time;

• Level 4 - Full Self-Driving Automation: The vehicle is designed
to perform all safety-critical driving functions and monitor roadway
conditions for an entire trip. The driver provides destination or
navigation input, but is not expected to be available for control at
any time during the trip. This includes both occupied and unoccupied
vehicles.

Among the Full Self-Driving cars (Level 4) benefits we can list [2]:

• Fewer accidents: humans can get distracted easily, computers do
not. Moreover, reaction time is larger for humans. Also we all know
driving drunk is dangerous. Drowsy driving is just as risky or even
more;

• No more parking worries: most cars are parked 95% of the time.
Self-driving cars would eliminate the need for much of that parking.
Best of all, you would get back all that time you now spend looking
for parking;

• Less traffic congestion: autonomous cars by communicating with
each other and with customized infrastructures would be able to
manage the traffic by themselves. Moreover if you could use an app
to get a car to come pick you up anytime, you might not feel the
need to buy your own;

• Lower emissions: an estimated 30% – 60% of the cars driving around
a downtown area are circling for parking. That’s good evidence that
self-driving cars, which would not be cruising for a place to park,
would lower emissions. If they also replace a good chunk of car
ownership, that should further reduce emissions. Chances are that
self-driving cars will also be electric, which will lower emissions even
more;

• Savings: With self-driving cars, we are likely to save in several ways.
Less car ownership certainly means savings: you will not have to
spend on the car itself, repairs, or insurance. If your taxi or Uber
comes without a driver, the ride will be cheaper. And another
benefit of not having to park is that you do not have to pay to park.
Plus, when fewer people own cars, they will not be as desirable to
steal. And because driverless cars will be integrated and tracked in
a network, it will be more challenging to steal them;
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• Reduced stress: even driving enthusiasts get stressed by driving in
bad traffic. Add the stress of finding parking, and it gets serious. In
fact, it seems that stress from driving is even worse than we think.
It can lead to adverse health effects and can even make you feel less
satisfied with your job and with your life;

• Transportation for those who can not drive: self-driving cars will
be a boon to the elderly, allowing them mobility and freedom far
beyond what they enjoy now. They will also be great for people who
can not drive because of other physical issues;

• Police and road signs reduction: autonomous cars will receive neces-
sary communication via an electronic way;

• Higher velocity limits: due to a lower reaction time of an unmanned
vehicle.

Despite the benefits brought by the use of autonomous cars, there are
some technological and legal challenges that need to be overcome:

• Software reliability: depending totally from the software, self-driving
cars must guarantee an high reliability rate to avoid malfunctions
that can lead to accidents;

• Security: cyber-attacks on autonomous vehicles would put human
lives at immediate risk in a way most other hacks do not [61];

• Radio spectrum need: to let the communication among the vehicles
be possible [41];

• Sensitivity to different weather conditions: the navigation system of
an autonomous car shall adapt to different meteo situations, above
all in case of snow or rain because in these particular conditions
sensors are not fully reliable;

• Need of creating (and maintaining) maps for self-driving cars [1];

• Road infrastructures may need changes to work properly with au-
tonomous cars, e.g. traffic lights shall be able to communicate with
cars;

• Privacy loss: car localization will always be tracked and other info
will be shared with the other vehicles and with road infrastructures;
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• New laws and government acts to rule responsibility in case of acci-
dents;

• Instinctive human resistance to handing over control to a robot,
especially given fears of cyber-hacking [31].

1.3 Existing projects
In this section we describe some existing projects from the very first
unmanned vehicles to the modern self-driving cars. A specific subsection
is dedicated to the DARPA Grand Challenge, a prize competition for
American autonomous vehicles [18].

1.3.1 First unmanned vehicles
In the following we present the first unmanned vehicles projects; the first
ones are more oriented to robots, while more recent ones are about real
self-driving cars.

Shakey [45] (SRI International, United States, 1966-1972, Figure 1.1a)
is considered the first mobile robot capable of autonomous behavior. It was
a wheeled platform equipped with steerable TV camera, ultrasonic range
finder, and touch sensors. An SDS-940 mainframe computer performed
navigation and exploration tasks, a RF link connected the robot to it.
While the robot autonomous capabilities were simple, it established the
functional baselines for mobile robots of its era.

Stanford Cart [42] [43] (Stanford University AI Lab, United States,
1973-1981, Figure 1.1b) was a remotely controlled TV-equipped mobile
robot. A computer program drove the Cart through cluttered spaces,
gaining its knowledge of the world entirely from images broadcast by an
on-board TV system. It used a sophisticated stereo vision system, where
the single TV camera was moved to each of nine different positions on the
top of its simple mobility base.

DARPA Autonomous Land Vehicle [71] [42] (DARPA’s Strategic
Computing, United States, 1985-1988, Figure 1.1c) was built on a Standard
Manufacturing eight-wheel hydrostatically-driven all-terrain vehicle capable
of speeds of up to 45 mph on the highway and up to 18 mph on rough
terrain. The sensor suite consisted of a color video camera and a laser
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(a) (b)

(c) (d)

Figure 1.1: Some of the first prototypes of unmanned vehicles: Shakey (a),
Stanford Cart (b), DARPA ALV (c) and Ground Surveillance
Robot (d).
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(a) (b)

Figure 1.2: Two prototypes of autonomous car: VaMP (a) and ARGO (b).

scanner. Video and range data processing modules produced road-edge
information that was used to generate a model of the scene ahead.

Ground Surveillance Robot [52] [26] (Naval Ocean Systems Center,
United States, 1985-1986, Figure 1.1d) project explored the development
of a modular, flexible distributed architecture for the integration and
control of complex robotic systems, using a fully actuated 7-ton M-114
armored personnel carrier as the host vehicle. With an array of fixed
and steerable ultrasonic sensors and a distributed blackboard architec-
ture implemented on multiple PCs, the vehicle successfully demonstrated
autonomous following of both a lead vehicle and a walking human.

VaMP [59] [20] [60] (Bundeswehr University of Munich, Germany,
1993-1995, Figure 1.2a) is considered the first truly autonomous car, it was
able to drive in heavy traffic for long distances without human intervention,
using computer vision to recognize rapidly moving obstacles such as other
cars, and automatically avoid and pass them. It was a 500 SEL Mercedes
modified such that it was possible to control steering wheel, throttle, and
brakes through computer commands, and equipped with four cameras. In
1995, the vehicle was experimented on a long-distance test from Munich
(Germany) to Odense (Denmark), and it was able to cover more than 1600
km, 95% of which with no human intervention.

ARGO [35] (University of Parma, Italy, 1998, Figure 1.2b) was a
Lancia Thema passenger car equipped with a stereoscopic vision system
consisting of two synchronized cameras able to acquire pairs of gray level
images, which allowed to extract road and environmental information for
the automatic driving of the vehicle. The ARGO vehicle had autonomous
steering capabilities and human-triggered lane change maneuvers could be
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performed automatically. In June 1998, the vehicle was able to carry out
a 2000 km journey on the Italian highways [3], 94% of the total trip was
performed autonomously.

1.3.2 DARPA Grand Challenge
The DARPA Grand Challenge is a prize competition for American au-
tonomous vehicles, funded by the Defense Advanced Research Projects
Agency, the most prominent research organization of the US. Congress has
authorized DARPA to award cash prizes to further DARPA’s mission to
sponsor revolutionary, high-payoff research that bridges the gap between
fundamental discoveries and military use. The initial DARPA Grand
Challenge was created to spur the development of technologies needed to
create the first fully autonomous ground vehicles capable of completing
a substantial off-road course within a limited time. The third event, the
DARPA Urban Challenge extended the initial Challenge to autonomous
operation in a mock urban environment.

In the following paragraphs we list the most noteworthy projects that
participated in the 2005 and 2007 editions.

Stanley [9] (Stanford University, United States, 2005, Figure 1.3a)
is an autonomous car that participated and won the second edition of
the DARPA Grand Challenge in 2005. Stanley is based on a diesel-
powered Volkswagen Touareg R5 with a custom interface that enables
direct electronic actuation of both throttle and brakes. A DC motor
attached to the steering column provides electronic steering control. It is
equipped with five SICK laser range finders, a color camera for long-range
road perception, two RADAR sensors, and a GPS positioning system. It
was able to complete the 212 Km off-road course of the 2005 DARPA
Grand Challenge in 6 hours and 54 minutes.

Sandstorm [6] (Carnegie Mellon University, United States, 2004-2005,
Figure 1.3b) is an autonomous vehicle that participated at both editions
of the DARPA Grand Challenge, the first in 2004, the second in 2005.
Sandstorm is based on a heavily modified 1986 M998 HMMWV with
drive-by-wire modifications control acceleration, braking and shifting. The
sensors used in 2004 included three fixed LIDAR laser-ranging units, one
steerable LIDAR, a radar unit, a pair of cameras for stereo vision, and a
GPS. In 2005, three additional fixed LIDAR were added, while the stereo
cameras were removed. In 2004, Sandstorm obtained the best result but
covered only 11.9 Km, in 2005, finished the race in 7 hours and 5 minutes,
placing second.
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(a) (b)

(c) (d)

Figure 1.3: The four best participants of the DARPA Grand Challenge 2005
edition: Stanley(a), Sandstorm(b), H1ghlander(c) and Kat-5 (d).

H1ghlander [6] (Carnegie Mellon University, United States, 2004-2005,
Figure 1.3c) Created by Red Team, the same as the previous one, it is a
heavily modified 1999 HUMMER H1. It competed in the 2005 DARPA
Grand Challenge. The sensors used by H1ghlander include LIDAR laser-
ranging units, one steerable LIDAR (in the globe on top), GPS and an
inertial navigation system. H1ghlander completed the race in 7 hours and
14 minutes, placing 3rd out of the five vehicles to complete the 132 mile
(212 km) course. It was preceded, in second place, by Sandstorm, its sister
vehicle with which shares the software and the sensors.

Kat-5 [58] (GrayMatter, Inc., United States, 2005, Figure 1.3d) is an
autonomous car developed by a team comprising employees from The Gray
Insurance Company and students from Tulane University. It participated to
the 2005 DARPA Grand Challenge and finished with a time of 7 hours and
30 minutes, only 37 minutes behind Stanley. Kat-5 is a 2005 Ford Escape
Hybrid modified with the sensors and actuators needed for autonomous
operation. It uses oscillating LIDARs and information from the INS/GPS
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unit to create a picture of the surrounding environment and drive-by-wire
systems to control the vehicle.

Boss [68] (Carnegie Mellon University, United States, 2007, Figure 1.4a)
is a heavily modified Chevrolet Tahoe. Boss is equipped with more than
a dozen lasers, cameras and radars to perceive the world. It completed
the 2007 edition race of the DARPA Urban Challenge in 4 hours and 10
minutes winning it with an average of approximately 23 km/h throughout
the course.

Junior [69] (Stanford University, United States, 2007, Figure 1.4b) is a
modified 2006 Volkswagen Passat Wagon equipped with five different laser
measurement systems, a multi-radar assembly, and a multi-signal inertial
navigation system; specifically Junior uses the Applanix POS LV 420
Navigation system for state estimation (location, orientation, velocities).
The POS LV 420 system comes with three GPS antennae, mounted on the
roof of the vehicle, a high quality Inertial Measurement Unit, mounted in
the trunk over the rear axle, and an external wheel encoder, attached to
the left rear wheel. For external sensing, Junior features a Velodyne HD
LIDAR laser range finder. Additional range sensing is achieved through
two IBEO Alasca XT sensors, mounted on the front bumper of the vehicle.
Junior also uses an omni-directional Ladybug camera, manufactured by
PointGray. It participated to the 2007 DARPA Urban Challenge and
finished with a time of 74 hours and 29 minutes, placing second.

Odin [22] (Virginia Tech University, United States, 2007, Figure 1.4c)
is a modified 2005 Hybrid Ford Escape. The largest portion of Odin’s
detection coverage is provided by a coordinated pair of IBEO Alasca
XT Fusion laser range finders. This system comprises two four-plane,
multireturn range finders and a single external control unit (ECU) that
covers a 260-deg field of view. A single IBEO Alasca A0 unit with a field
of view of 150 deg is used to detect approaching vehicles behind Odin
and navigate in reverse. For short-range road and obstacle detection, two
additional SICK LMS 291 laser range finders are angled downward on
the front corners of the roof rack. Two side-mounted SICK LMS 291
single-plane range finders are used to cover the side blind spots of the
vehicle and ensure 360-deg coverage. In combination, the cameras cover a
90-deg horizontal field of view in front of Odin. It was able to complete
the 96 kilometers urban area course in 4 hours and 36 minutes, placing
third.

Talos [40] (MIT, United States, 2007, Figure 1.4d) is a modified



1.3. Existing projects 15

(a) (b)

(c) (d)

Figure 1.4: The four best participants of the DARPA Urban Challenge 2007
edition: Boss(a), Junior(b), Odin(c) and Talos (d).

Land Rover LR3. It perceives the state of the environment using LIDAR
range finders together with vision sensors and its own motion through the
combination of GPS and an IMU. The LIDAR suite includes “push-broom”
sensors for analyzing the neighboring terrain along with a complementary
360 degree system for obstacle detection and tracking. Additionally, these
scanners were augmented with vertically-oriented LIDARs that the vehicle
used to fuse the push-broom data into a 3D mesh used to identify drivable
terrain. Talos completed the race in approximately 6 hours, placing 4th.

1.3.3 Modern self-driving cars
After 40 years of research, the technology is close to leave the prototype
stage. Late in 2007, six autonomous vehicles successfully completed a 90
kilometer test course of simulated urban traffic. In 2012, Vislab, Italy
has tested their solar powered autonomous car for 13000 Km from Milan,
Italy to Shanghai, China [15]. This journey completed successfully in
three months and acquired few Terabytes of data for further analysis and
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processing.
Toyota has recently presented Toyota Lexus model to help drivers

observe and respond to the vehicles surroundings. Fujitsu Japan has
revealed ROPITS (Robot for Personal Intelligent Transportation System)
[65] with GPS, Laser and Gyroscope along with full navigation support.
The passengers are required to enter the destination and vehicle will drive
them autonomously and safely. For the first time ever, a joystick replacing
steering wheels, which can be operated in case of any emergency, has also
showcased. This could be a boon for the elderly persons. Infiniti Q50 of
Nissan [32] (today, drive by wire; tomorrow drive by robot) uses sensor to
get steering wheel angle, low speed maneuvers or high speed stability, lane
departure system with windshield mounted camera [55].

In the following we present some of the self-driving cars that are still
in development phase in order to make the reader understand the state of
the art technologies in this area:

AnnieWAY [67] (Figure 1.5a) was developed in Germany at the
Karlsruhe Institute of Technology (KIT) since 2007. AnnieWAY is equipped
with several modifications over a VW Passat base vehicle; electronically
controllable actuators for acceleration, brakes, transmission and steering
have been added, each of which can be enabled individually. A CAN
gateway allows sending requests to these actuators and receiving selected
signals like wheel speeds and status information. It additionally implements
a low-level safety disengagement of autonomous functions in case the
driver needs to interfere. Several complementary sensors are available for
cognition: a high definition laser scanner (Velodyne HDL64-E) delivers
several all around 3D point clouds per second and multiple cameras can
be mounted in different configurations on a roof rack. A third source of
environmental information is the vehicle stock radar, which can be used
to supplement the communication-based information about other vehicles.
Self localization of the ego-vehicle is realized by a combined inertial- and
satellite-based navigation system (OXTS RT 3003), which can optionally
be augmented by reference stations (differential GPS). Additionally, it
is equipped with a vehicle to vehicle communication system based on
the wireless 802.11p standard that allows communication till a 800m
distance. AnnieWAY participated in the 2007 DARPA Urban Challenge
without reaching the end because of a software problem while in 2011
participated and won the Grand Cooperative Driving Challenge (GCDC),
a competition that has the aim to deliver the most effective cooperative
vehicle-infrastructure system in predetermined traffic scenario. This car
has been developed within the KITTY project, a collaboration between
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Figure 1.5: Some models of modern self-driving cars: AnnieWAY(a),
DEEVA(b), Toyota Prius Google Car (c) and the Google Car
model customized by Google.

Karlsruhe Institute of Technology and Toyota Technological Institute at
Chicago.

DEEVA [25] (Figure 1.5b) has been developed in Italy at the Artificial
Vision and Intelligent Systems Laboratory (VisLab) since 2015. It is
equipped with fully integrated sensors (more than 20 cameras, 4 lasers,
GPS, IMU); the vehicle is able to cover a very detailed 360◦view of the
surroundings. The use of a technology based on artificial vision allows
to achieve two main objectives, therefore making it possible to consider
this concept car as very close to a final product: low cost and high
integration level. DEEVA is heavily based on the VisLab’s 3DV stereo-
vision technology, which VisLab also provides to third parties to power
their sensing systems and robots. This vehicle follows and improves
the BRAiVE vehicle project: presented by VisLab in 2009 at the IEEE
Intelligent Vehicles Symp in Xi’An (China), in July 2013 BRAiVE drove
in a totally autonomous mode -with no driver- in an urban environment
together with real traffic completing the first auto-driving test of the kind
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(a) (b)

(c)

Figure 1.6: The two Tesla models, model S and model X, and a representation
of the Advanced Sensor Coverage of every Tesla model.

in the world.

Google car [30] is a project developed in the United States at Google.
Inc. since 2009. This project is probably the most known worldwide among
the ones regarding self-driving cars. The project team has equipped a
number of different types of cars with the same self-driving equipment,
including the Toyota Prius (Figure 1.5c), Audi TT, and Lexus RX450h;
Google has also developed its own custom vehicle (Figure 1.5d), which is
assembled by Roush Enterprises. The equipment mounted is composed by
the following sensors: a Velodyne HDL-64E scanning LIDAR, 3 RADAR
in front of the car, a radar on the back bumper, a camera next to the
rear-view mirror, an encoder mounted on the rear wheels, a GPS and
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an IMU. Google cars have self-driven more than 2 million miles and are
currently out on the streets of Mountain View, Austin, Kirkland and Metro
Phoenix.

TESLA Autopilot [70] All Tesla vehicles have the hardware needed
for full self-driving capability at a safety level substantially greater than
that of a human driver, according to Tesla. Eight surround cameras provide
360 degrees of visibility around the car at up to 250 meters of range. Twelve
updated ultrasonic sensors complement this vision, allowing for detection
of both hard and soft objects. A forward-facing radar with enhanced
processing provides additional data about the world on a redundant wave-
length that is able to see through heavy rain, fog, dust and even the car
ahead. A quite interesting point is made by Tesla’s Over-the-Air updates
that is considered one of the best example yet of the Internet of Things.

Looking at the prototypes listed above it is possible to note that in
the origins mobile robots were simple prototype (i.e., Shakey, Standford
Cart) or products resulting from substantial investments (i.e., DARPA
Autonomous Land Vehicle, Vamp). While today big competitions, like the
DARPA Grand Challenge that offers a prize in millions of dollars, still
exist, also low cost prototype with complex functionalities are developed.

It is possible to see a trend in the sensors used; originally, vision sensors
were preferred and used extensively, today, most of the prototypes relies
on GPS, laser scanner and IMU to determinate their position.

1.3.4 Software architectures
While all autonomous vehicles aim at the same goals, they adopt

different kind of architectures. In the following we list three relevant
examples of software architectures from the 2007 DARPA Urban Challenge.

Annieway [53] Annieway’s software architecture consists mainly of
four modules. As shown in Figure 1.7 the first one is the perception module.
It analyses all the sensor data, classifies all seen objects and maps the
environment. This data, coming from the sensors, is sent to the planner
where it is integrated in a global high-level scene description. Based on
this description the planner analyses the current situation and chooses
an appropriate behavior. This behavior is then executed and generates
a trajectory which is passed to the next module, the low-level-collision-
avoidance. Since the trajectory is generated based on abstract information,
it has to be checked for drivability by taking into account the overall
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Figure 1.7: Annieway’s software architecture.

environment. If there is some probability that the car will hit an obstacle,
the collision avoidance module plans an alternative trajectory. At the last
stage the control module drives the car according to the trajectory.

Boss [10] The software system that controls Boss, the Carnegie Mellon
University vehicle, is divided into four primary subsystems: Perception,
Mission Planning, Behavioral Executive, and Motion Planning. Their
dominant communication paths are shown in Figure 1.8, and they use a
message-passing protocol according to the anonymous publish-subscribe
[63] pattern. The Perception subsystem processes sensor data from the
vehicle and produces a collection of semantically-rich data elements such
as the current pose of the robot, the geometry of the road network, and
the location and nature of various obstacles such as roadblocks and other
vehicles. The Mission Planning subsystem computes the fastest route to
reach the next checkpoint from any point in the road network; it publishes
a Value Function that maps each waypoint in the road network to the
estimated time to reach the next checkpoint. The Behavioral Executive
follows the Value Function from the robot’s current position, generating a
sequence of incremental Motion Goals for the Motion Planning subsystem to
execute. The Motion Planning subsystem is responsible for the safe, timely
execution of the incremental goals issued by the Behavioral Executive; it
publishes its progress on the current goal, used by the Behavioral Executive
to cue the selection and publication of subsequent or alternate goals as
appropriate.

Junior [77] Junior’s software architecture is designed as a data driven
pipeline in which individual modules process information asynchronously;
each module communicates with other modules via an anonymous publish/-
subscribe message passing protocol as for Boss. The software is roughly
organized into five groups of modules (shown in Figure 1.9):

• Sensor interfaces manage communication with the vehicle and
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Figure 1.8: Boss’ software architecture.

individual sensors, and make resulting sensor data available to the
rest of the software modules;

• Perception modules segment the environment data into moving
vehicles and static obstacles. They also provide precise localization
of the vehicle relative to the digital map of the environment;

• Navigation modules determine the behavior of the vehicle. The
navigation group consists of a number of motion planners, plus a
hierarchical finite state machine for invoking different robot behaviors
and preventing deadlocks;

• Drive-by-wire interface controls the vehicle by passing back com-
mands through the drive-by-wire interface. This module enables
software control of throttle, brake, steering, gear shifting, turn sig-
nals, and emergency brake;

• Global services are a number of system level modules provide
logging, time stamping, message passing support, and watchdog
functions to keep the software running reliably.

As we can see, in literature there exists different kind of architectures,
less or more complex, that share a common base and cyclical schema
represented by a first part of perception of the environment, followed by a
planning phase and then a stage where the robot carries out the actions
previously planned.
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Figure 1.9: Junior’s software architecture.

Taking the cue from these examples we decided to implement our own
architecture based on the Sense-Plan-Act paradigm. In the next chapter
we present a general overview of the designed architecture, while in the
following chapters we focus the attention specifically on each module.



Chapter 2

Software architecture

This chapter describes the software architecture designed and developed
within this thesis from an high level prospective; in the following, we provide
a chapter for each main component: simulation (Chapter 3), localization
(Chapter 4) and Model Predictive Control (Chapter 5). The aim of this
chapter is to give a general overview of the architecture and how the
communication between all its components is implemented.

2.1 Relevant background
Writing software for robotics purposes is challenging because different
types of robot can have extremely diverse hardware, making code reuse
hardly possible. Moreover, the modules developed must implement a deep
stack starting from driver-level software up to high-level functionalities,
like autonomous driving, reasoning or localization. In order to resolve
these issues, during the years, various frameworks have been developed
often aiming at a very specific purpose. This caused a fragmentation in
the robotic software systems used in industry and academia. ROS is an
attempt to create a general framework that promotes modularity and code
reuse, and it became the de facto standard for robot software.

The Robot Operating System (ROS), developed by the Stanford Artifi-
cial Intelligence Laboratory and by Willow Garage, is a flexible framework
for writing robot software. It is a collection of tools, libraries and conven-
tions that aim to simplify the task of creating complex and robust robot
behaviors across a wide variety of robotic platforms.

Creating truly robust, general-purpose robot software is hard. From
the robot’s perspective, problems that seem trivial to humans often vary
wildly between instances of tasks and environments. Dealing with these

23
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variations is so hard that no single individual, laboratory, or institution
can hope to do it on its own. As a result, ROS was built from the ground
up to encourage collaborative robotics software development. For example,
one laboratory might have experts in mapping indoor environments, and
could contribute a world-class system for producing maps. Another group
might have experts at using maps to navigate, and yet another group might
have discovered a computer vision approach that works well for recognizing
small objects in clutter. ROS was designed specifically for groups like these
to collaborate and build upon each other’s work. [4]

ROS was designed to be as distributed and modular as possible, so that
you can pick and choose which parts are useful for you and which parts
you’d rather implement yourself. The distributed nature of ROS also fosters
a large community of user-contributed packages that add a lot of value on
top of the core ROS system. At last count there were over 3,000 packages
in the ROS ecosystem, and that is only the ROS packages that people
have taken the time to announce to the public. These packages range
in fidelity, covering everything from proof-of-concept implementations of
new algorithms to industrial-quality drivers and capabilities. The ROS
user community builds on top of a common infrastructure to provide an
integration point that offers access to hardware drivers, generic robot
capabilities, development tools, useful external libraries, and more.

Over the past several years, ROS has grown to include a large com-
munity of users worldwide. Historically, the majority of the users were in
research labs, but increasingly we are seeing adoption in the commercial
sector, particularly in industrial and service robotics. The ROS community
is very active. According to our metrics, at the time of writing, the ROS
community has over 1,500 participants on the ROS-users mailing list, more
than 3,300 users on the collaborative documentation wiki, and some 5,700
users on the community-driven ROS Answers Q&A website. The wiki has
more than 22,000 wiki pages and over 30 wiki page edits per day. The Q&A
website has 13,000 questions asked to date, with a 70% percent answer
rate. [78] Figure 2.1 shows how the ROS vibrant community is spread all
over the world.

A typical ROS system consists of a number of processes, called nodes,
potentially on a number of different hosts, connected at runtime in a
peer-to-peer topology. Each node is an independent unit that performs
computation, usually associated with a specific functionality or hardware
component. Nodes are organized in packages, which are directories that
contain an XML file describing the package and stating any dependency. In
order to increase the flexibility and portability of the system, it is possible
to implement nodes using four different languages: C++, Python, Octave
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Figure 2.1: The costantly growing ROS vibrant community.

and LISP. Modules implemented with different languages can coexist in
the same system, therefore it possible to use different tools for specific
needs, e.g., fast prototyping and implementation of simpler node using
Python with core functionalities implemented with C++. This is possible
because the specification of ROS is at the messaging layer.

Messages defined with a simple, language-neutral Interface Definition
Language (IDL) allow the communication between nodes. The IDL uses
short text files to describe fields of each message, and allows composition
of messages. Code generators for each supported language then generate
native implementations, which are automatically serialized and deserialized
by ROS as messages are sent and received. The ROS-based codebase
contains hundreds of types of messages, which transport data ranging from
sensor feeds to objects and maps, moreover it is possible to define custom
messages for any specific need.

A node sends a message by publishing it to a given topic, which is
identified by its name. A node that is interested in a certain kind of data
subscribes to the appropriate topic. Multiple concurrent node can publish
or subscribe on a single topic, and each node can interact with multiple
topic. In general, publishers and subscribers are not aware of each other
existence.

In order to complement the asynchronous communication system real-
ized by the topic-based publish-subscribe model (Figure 2.2), ROS provides
a synchronous system, called services. Each service is defined by a string
name and a pair of strictly typed messages: one for the request and one
for the response. Unlike topics, only one node can advertise a service of
any particular name.

The peer-to-peer topology requires some sort of lookup mechanism to
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Figure 2.2: The Publisher/Subscriber protocol.

allow processes to find each other at runtime. The master has this role,
it enables individual ROS nodes to locate each other. Once these nodes
have located each other, they communicate using peer-to-peer channels.
Moreover, the master provides a parameter server, which is a shared,
multi-variate dictionary that is accessible via network APIs. Nodes use
this server to store and retrieve parameters at runtime. Figure 2.3 shows
the performed steps to set up the communication.

Figure 2.3: Set up of the ROS communications.

Along with the meta-operating system, the ROS environment provides
various tools. These tools perform various tasks: for example navigate the
source code tree, get and set configuration parameters, visualize the peer-
to-peer connection topology, run collection of nodes, monitor the behavior
of topics, graphically plot message data and more. Some of these tools
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Figure 2.4: A typical rviz window.

have simple functionalities, e.g., showing all the messages published on a
topic, while others are more complex. For example, rviz [27] (Figure 2.4) is
a complete visualization tool that shows in real time, in a 3D environment,
data streamed on the topics. Another example is rosbag, which records
and plays back to ROS topics.

2.2 Architectural overview
In order to develop a flexible and modular architecture and to take ad-
vantage of some existing simulators, we decided to use ROS, which is up
to now considered the standard de-facto for robot applications. Different
reasons led us to this choice: first of all the possibility to design and
develop different independent modules to handle all the single parts of the
architecture. This allows us to test and debug separately all the system
functionalities and to add on demand the modules we need. In addition,
the open source logic adopted by ROS allows the developers to share their
works in a official repository. This appeared to be useful for our work since
we reused some of them. Another reason that drove our choice was the
integration with simulators. Since simulation is one of the main phases of
a robot development, we needed a system able to easily interfacing with
one of them.

The software architecture can be divided into three main parts: the
vehicle (Chapter 3), the localization (Chapter 4) and the Model Predictive
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Figure 2.5: General software architecture.

Control (Chapter 5). More specifically this division can be seen as what
has to run in the vehicle and the vehicle itself. Therefore the first part,
localization and MPC modules, is independent from the second one, vehicle
simulator, since it works regardless of the associated platform. Regarding
the vehicle simulation it is possible to define three simulation profiles:

• ideal simulation: the vehicle is described as a single-track model
(Section 3.3.1) and a ROS node has been developed to simulate its
behavior based on odeint. Localization is provided by the simulation
itself;

• Gazebo simulation: the ideal simulator is substituted by Gazebo
(Section 3.3.2) and the localization is performed using the position
provided by the simulator itself;

• Gazebo simulation with ROAMFREE: the simulation is per-
formed by Gazebo while the localization is estimated by ROAMFREE
library (Section 4.1).

In Figure 2.5 it is possible to see an high level representation of the control
architecture with the three profiles. We decided to put the localization
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Figure 2.6: Sense-Plan-Act paradigm.

module performed with ROAMFREE in the left half of the schema since
this module is independent from the vehicle and it has to run close to the
MPC.

2.2.1 Main modules
In order to describe the main modules of the architecture, we followed the
hierarchical paradigm Sense-Plan-Act (Figure 2.6) [62].

1. Sense - the robot needs the ability to sense important things about
its environment, like the presence of obstacles or navigation aids;

2. Plan - the robot needs to take the sensed data and figure out how
to respond appropriately to it, based on a preexisting strategy;

3. Act - finally, the robot must actually act to carry out the actions
that the plan calls for.

The core part of the sense module consists in the localization node
(Chapter 4), which is based on ROAMFREE. This framework provides
pose tracking combining the information coming from an arbitrary number
of sensors. In the current configuration the localization module estimates
the robot poses exploiting a GPS, a magnetometer and an Inertial Mea-
surement Unit, which includes both a gyroscope and an accelerometer.
Since ROAMFREE provides vehicle position and orientation and since for
the planning module we needed also information about the sideslip angle
of the vehicle, to complete the perception part we implemented a sideslip
angle estimator (Section 5.5).

The planning part of the architecture is represented by the MPC node
(Chapter 5). As its name suggests, this node implements a Model Predictive
Control. The goal to reach is given through a configuration file which is
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read when the node is launched. It cyclically reads the current position of
the vehicle and elaborates the commands to be sent to the actuators.

The act section can be represented by the simulators. For the ideal one
it is the integration of the differential equations that describe the single-
track model (Section 3.3.1) which represent the vehicle. About Gazebo it
is the plugin developed to control the gas pedal and steer (Section 3.4.4).

2.2.2 ROS topics and messages
For the development of the architecture, even though ROS provides different
types of messages, it has been necessary to create several custom messages
to satisfy our needs. Here we provide a list of them specifying the contest
in which they are used:

• vehicle_state: it includes information about the position of the
vehicle, i.e., the Cartesian coordinates, the sideslip angle, the yaw
angle and its rate (Section 3.3.1);

• mpc_velocity: it includes the output of the MPC controller, i.e.,
the value of the velocity over x-axis and the value of the velocity
over y-axis (Section 5.2);

• speed_steer: it includes the values of the desired velocity and
steering angle to be assigned to the vehicle (Section 5.3);

• pointP: this message includes the vehicle current state plus the
Cartesian coordinates of the vehicles plus the Cartesian coordinates
of the relative linearization (Section 5.3).

The values used in these messages are described as float64, that is the
ROS representation of the C++ double [56]. Furthermore, regarding the
message types offered by ROS we used the std_msgs::Float64 to send
single information about the yaw angle, the yaw rate and the sideslip angle.
In Figure 2.7 it is possible to see in detail the composition of the custom
messages.

The ROS topics used within the project, shown in Figure 2.8, are the
following:

• /vehicle_state: it is used to publish the current state of the vehicle;

• /mpc_vel: this topic is used by the node MPC to publish its own
output;



2.2. Architectural overview 31

Figure 2.7: Custom messages.

Figure 2.8: Topics structure.
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• /target_speed_steer: on this topic the node Feedback delineariza-
tion publishes the resulting velocity and steering angle;

• /estimated_beta: on this topic it is possible to read the value of
the estimated sideslip angle;

• /yaw_angle: topic on which it is possible to read information about
the yaw angle of the vehicle;

• /yaw_rate: topic on which it is possible to read information about
the yaw rate of the vehicle, i.e., the angular velocity with respect to
the z-axis;

• /pointP: on this topic it is published the result of the feedback
linearization.

While integrating Gazebo, it has been necessary to change the topic
structure to take advantage of the preexisting simulator API. In fact there
were already some topics on which to publish messages to control the
vehicle:

• /polaris/gas_pedal: topic used to send command for the gas
pedal;

• /polaris/brake_pedal: topic used to control the brake pedal;

• /polaris/hand_wheel: topic used to set the value of the hand
wheel of the vehicle.
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Thesis reference robot
platform

In this chapter we present the reference vehicle, the used sensors and their
simulations. For our work we decided to adopt as vehicle the “Polaris
Ranger XP 900” (Figure 3.1) [54]. Our choice was driven by the fact this
platform has been recently used in the DARPA Robotics Challenge in 2015
[19] where one of the 8 tasks to be performed by the humanoid robots was
to drive a Polaris Ranger XP 900 EPS” to a specified location. Thanks to
this, a model of this vehicle was already implemented in the repository of
the chosen simulation environment and we could take advantage of it.

In the relevant background we describe some works related to the
same vehicle category and we give an overview of the main robotics
simulation environments with a special focus on the chosen one. Among
the implemented simulation profiles, we used also a mathematical model
described by differential equations. The integration of these equations,
needed to simulate the vehicle behavior, requires the usage of a library
able to solve ordinary differential equations. For this reason we describe
the used library and afterwards how it has been implemented.

3.1 Relevant background

3.1.1 Related works
Some similar projects on automated road shuttles, like golf cars and mini-
buses, have already been developed. This type of vehicle typically operates
at lower speeds in pedestrian environments and serves as a form of public
transit.

33
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Figure 3.1: Polaris Ranger XP 900 EPS.

Auro

The startup Auro says its self-driving golf cart (Figure 3.2a) will lead to
autonomous shuttles for theme parks, vacation resorts, and retirement
communities. The current prototypes are golf carts modified with laser
scanners, radar, cameras, GPS, computers, and other components needed
to actuate the golf cart actuators. Auro Robotics company is focused on
the more modest goal of ferrying people on autonomous vehicle around
the private grounds of universities, retirement communities, and resorts.
Auro’s vehicles require a detailed 3-D map of the environment where they
operate, and collecting that data for a private campus and keeping it
up-to-date is easier. Such environments are also less physically complex,
have lower speed limits, and present fewer complicated traffic situations
[66].

USAD

The Urban Shuttles Autonomously Driven (USAD) project (IRAlab, Univ.
Milano - Bicocca in cooperation with Politecnico di Milano) aims at the
development of vehicles capable to drive autonomously in a urban setting
[76]. The specific aspects of the robotic research involved, w.r.t. extra-
urban autonomous driving, is the need to localize the vehicle, despite the
absence of the GPS signal and/or its not-good-enough accuracy, which
implies a research focus on the perception side of the navigation. The
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(a) (b)

(c)

Figure 3.2: Some examples of self-driving projects involving golf cars: Auro(a),
USAD(b), SMART(c).
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vehicle is equipped with a GPS, two high-definition cameras to detect road
markings, two single plane laser scanners installed in the front edges of
the vehicle, and a third laser scanner in a central position with less field of
view but able to detect four planes (Figure 3.2b).

SMART

The Singapore-MIT Alliance for Research and Technology (SMART) de-
signed a fleet of autonomous golf cars (Figure 3.2c) which were demon-
strated in public trials in Singapore’s Chinese and Japanese Gardens, for
the purpose of raising public awareness and gaining user acceptance of
autonomous vehicles. The golf cars were designed to be robust, reliable,
and safe, while operating under prolonged periods of time. The overall
system design foresees that any member of the public has to not only be
able to easily use the system, but also not to have the option to use the
system in an unintended manner.

A Yamaha YDREX3 electric golf car was used as vehicle base platform
and retrofitted by the SMART team to incorporate necessary actuation,
sensing, computing, and power systems along with various additional
features to enhance passengers’ comfort and safety. Two non-contact
magnetic encoders are mounted to the rear axle of the golf car, one on each
side of the drive shaft. A MicroStrain 3DM-GX3-25 Inertial Measurement
Unit (IMU) is rigidly mounted to the chassis above the center of the rear
axle to provide attitude and heading of the vehicle. The encoder and the
IMU readings are combined to provide vehicle’s odometry information in 6
degrees-of-freedom. Environmental sensing is achieved through several 2D
LIDARs and a webcam. One SICK LMS 151 LIDAR is mounted facing
downward in the front of the vehicle roof, where the data returned is fused
with odometry readings to achieve localization as described in [23]. A
second SICK LMS 151 is mounted horizontally in the lower front of the
vehicle for obstacle detection. Two SICK TiM551 LIDARs are mounted
at the rear corners of the golf car to provide all around obstacle detection
[51].

3.1.2 Physical simulation of vehicles
A robotics simulator is used to create embedded robotics applications
without depending physically on the actual machine, thus saving cost and
time.

When working with an autonomous vehicle, the role of the simulator is
fundamental. The robot characteristics, the typical operating environment
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and the complexity of the system architecture make it challenging to
develop and test all the software components directly on the real platform.
Therefore, a simulation that mimics the robot and the environment is
necessary.

Simulators are commonly used in various areas of science and engineer-
ing, robotics is no exception. Each step of the development of a robot may
benefit from the use of a simulator. Even before building the real robot
it is possible to use the simulator to create a prototype and verify the
feasibility of the project. After that, it can be used to assist the design and
development of the robot. Lastly, when doing experiments with the real
robots, these can be validated by similar ones in the simulation. Among
well-known simulation benefits we can list [44]:

• Reduce costs involved in robot production;

• Diagnose source code that controls a particular resource or a mix of
resources;

• Simulate various alternatives without involving physical costs;

• Robot or components can be tested before implementation;

• Simulation can be done in stages, beneficial for complex projects;

• Demonstration of a system to determine if is viable or not;

• Compatibility with a wide range of programming languages;

• Shorter delivery times.

There are various types of simulators available. Some of them are
specific for robotic applications, focusing on simplicity and fast prototyp-
ing or flexibility. Moreover, there are simulators designed for a specific
category of robots, e.g., humanoids, manipulators or mobile robots. On
the other side, there are software for simulating vehicles that focus on a
precise physical simulation and on the interaction of the multiple vehicle
subsystems. In the following we provide a list of most common simulators
with a brief description for each of them:

Gazebo [34] is an open source simulator. It was originally integrated
with ROS, but now it is an independent project [73]. Gazebo can simulate,
with relatively good accuracy and efficiency, populations of robots in
complex indoor and outdoor environments. It offers various models for
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sensors and a rich choice of physics engines, i.e., ODE, Bullet, Simbody,
and DART.

Webots [39] (Figure 3.3a) is a development environment used to model,
program and simulate mobile robots. The simulator has various built-in
models of robots, sensors and actuators. The robot behavior can be tested
in physically realistic worlds, simulated using the Open Dynamic Engine.
Moreover, it offers an integrated IDE to develop controllers, which can be
then directly transferred to commercially available real robots.

V-Rep [49] [64] (Figure 3.3b) is a general purpose robot simulator
with integrated development environment. It is based on a distributed
control architecture; each object can be individually controlled via scripts,
remote APIs or ROS nodes. This makes V-REP versatile and ideal for
multi-robot applications. It can be used for fast algorithm development,
fast prototyping and verification.

OpenHRP3 [29] (Figure 3.3c) is an integrated software platform for
robot simulations and software developments. It allows the users to inspect
an original robot model and control program by dynamics simulation. In
addition, OpenHRP3 provides various software components and libraries
that can be used for robotics related software developments.

MORSE [57] (Figure 3.3d) is a generic simulator for academic robotics.
It focuses on realistic 3D simulation of small to large environments, indoor
or outdoor, with one to tenths of autonomous robots. It comes with a
set of standard sensors (e.g., cameras, laser scanner, GPS), actuators and
robotic bases. MORSE bases the rendering on the Blender Game Engine.
The MORSE OpenGL-based Engine supports shaders, advanced lightnings,
and it uses the Bullet library for physics simulation.

Dymola [28] (Figure 3.3e) is a commercial modeling and simulation en-
vironment based on the open Modelica modeling language. It offers unique
multi-engineering capabilities, which means that it is possible to simulate
the dynamic behavior and complex interactions between systems of many
engineering fields, such as mechanical, electrical, thermodynamic, hydraulic,
pneumatic and control systems. It lacks built-in sensors simulation and
3D visualization.

20-Sim [12] (Figure 3.3f) is a modeling and simulation program for
mechatronic systems. Models are created graphically, similar to an engi-
neering scheme, and they can be used to simulate and analyze the behavior
of multi-domain dynamic systems and create control systems.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Some examples of simulators for robotic applications: Webots(a),
V-Rep(b), OpenHRP3(c), MORSE(d), Dymola(e) and 20-Sim(f).
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Figure 3.4: Main window of Gazebo.

For our work, we chose to adopt Gazebo. It has a native integration
with ROS, which simplifies the interaction with our robot architecture.
Moreover it is now considered the de facto standard in ROS robot simu-
lation. Simulators like Dymola are currently not suitable for our needs;
while they have a precise physical simulation, they lack sensor models,
which are fundamental to create a complete robot simulation.

3.1.3 Gazebo
Robot simulation is an essential tool in every roboticist toolbox. A well-
designed simulator makes it possible to rapidly test algorithms, design
robots, and perform regression testing using realistic scenarios. Gazebo
(Figure 3.4) offers the ability to accurately and efficiently simulate popula-
tions of robots in complex indoor and outdoor environments. It sports a
robust physics engine, high-quality graphics, and convenient programmatic
and graphical interfaces [24].

Its main features are:

• Dynamics Simulation: By default Gazebo is compiled with sup-
port for ODE as physics engine, but it also has access to other
high-performance physics engines including Bullet, Simbody, and
DART;

• Advanced 3D Graphics: Using OGRE, Gazebo provides realistic
rendering of environments including high-quality lighting, shadows,
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and textures. OGRE (Object-Oriented Graphics Rendering Engine)
is a scene-oriented, flexible 3D engine written in C++ designed to
make it easier and more intuitive for developers to produce applica-
tions utilizing hardware-accelerated 3D graphics;

• Sensors and Noise: Gazebo offers the possibility to generate sensor
data, optionally with noise, from laser range finders, 2D/3D cameras,
Kinect style sensors, contact sensors, force-torque sensors, and more;

• Plugins: Robot-independent Gazebo plugins for sensors, motors and
dynamic reconfigurable components are available within the plugin
package. It is also possible to develop custom plugins for robot,
sensor, and environmental control. Plugins provide direct access to
Gazebo’s API;

• Robot Models: Many robots are provided including PR2, Pioneer2
DX, iRobot Create, and TurtleBot. It is possible to build your own
using SDF and to contribute your model to Gazebo’s online-database
to benefits you and every other user of Gazebo;

• TCP/IP Transport: It allows to run simulations on remote servers,
and interface to Gazebo through socket-based message passing using
Google Protobufs;

• Cloud Simulation: There is the possibility to use CloudSim, a
framework for modeling and simulation of cloud computing infras-
tructures and services, to run Gazebo on Amazon, Softlayer, or your
own OpenStack instance;

• Command Line Tools: Extensive command line tools facilitate
simulation introspection and control.

While similar to game engines, Gazebo offers physics simulation at a
much higher degree of fidelity, a suite of sensors, and interfaces for both
users and programs. Typical uses of Gazebo include:

• testing robotics algorithms;

• designing robots;

• performing regression testing with realistic scenarios.
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Figure 3.5: The Gazebo element hierarchy.

Recent Gazebo models are described using a new format called the
Simulation Description Format (SDF) that was created for use in Gazebo
to solve the shortcomings of the old URDF format. SDF is a complete
description for everything from the world level down to the robot level.
It is scalable, and makes it easy to add and modify elements. The SDF
format is itself described using XML, which facilitates a simple upgrade
tool to migrate old versions to new versions. It is also self-descriptive [74].

The main element of an SDF file is the world element, which encapsu-
lates an entire world description: models, scene, physics, joints and plugins.
The model element is the one used to define a complete robot. The descrip-
tion of a model is given by the definition of a set of links, i.e., a collection of
Collision and Visual objects. Collision Objects is a geometry that defines
a colliding surface, while Visual Objects is a geometry that defines visual
representation such as meshes. Gazebo offers the possibility to modify the
main elements, i.e., World, Model and Sensor, taking advantage of plugins.
A plugin is a C++ library that is loaded by Gazebo at runtime. It has
access to the relative Gazebo’s API, which allows a plugin to perform a
wide variety of tasks including moving objects, adding/removing objects,
and accessing sensor data. In Figure 3.5 is shown the Gazebo element
hierarchy.

As of Gazebo 1.9 and ROS Hydro, Gazebo no longer has any direct
ROS dependencies and is now installed as an Ubuntu stand-alone package.
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Figure 3.6: Overview of the gazebo_ros_pkgs interface.

Historically using Gazebo with ROS required a specific version of Gazebo
to be built with the legacy ’simulator_gazebo’ stack. To achieve ROS
integration with stand-alone Gazebo, a new set of ROS packages named
gazebo_ros_pkgs has been created to provide wrappers around the
stand-alone Gazebo. They provide the necessary interfaces to simulate a
robot in Gazebo using ROS messages, services and dynamic reconfigure.
An overview of the gazebo_ros_pkgs interface is shown in the diagram
in Figure 3.6 [73].

3.1.4 ODEINT
Odeint is a modern C++ library for solving Ordinary Differential Equations
numerically. It is developed in a generic way using Template Metaprogram-
ming [5] which leads to extraordinary high flexibility at top performance.
The numerical algorithms are implemented independently of the underly-
ing arithmetics. This results in an incredible applicability of the library,
especially in non-standard environments. For example, odeint supports
matrix types, arbitrary precision arithmetics and it can be easily run on
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CUDA GPUs.
Odeint consists of four parts:

• Integrate functions

• Steppers

• Algebras and operations

• Utilities

The integrate functions are responsible to perform the iteration of the ODE.
They do the step size control and they might make use of dense output.
The integrate functions come along with an observer concept which lets
you observe your solution during the iteration. The steppers are the main
building blocks of odeint. Several steppers for different purposes exists,
like:

• the classical Runge-kutta steppers

• symplectic steppers for Hamiltonian systems

• implicit methods

• stiff solvers

Algebras and operations build an abstraction layer which lets you change
the way odeint performs basic numerical manipulations like addition,
multiplication, etc. In the utility part it is possible to find functionality
like resizing and copying of state types.

A stepper in odeint performs one single step. Several different stepper
types exist in odeint. The simplest one is described by the Stepper concept.
It has only one method do_step which performs the step. An example is
the classical Runge-Kutta stepper of fourth order:

runge_kutta4< state_type > rk4;
rk4.do_step( system, x, t, dt );

Most of the stepper have a set of template parameters which tune their
behavior. In the Runge-Kutta 4 example above you have explicitly to state
the state type. This type is also used to store intermediate values. For
the same stepper a lot of other parameters exist which are called with
some default values. For example, you can explicitly state the value type
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that gives the numerical values used during computations, the derivative
type, the time type, the algebra and the operations. Furthermore, a policy
parameter for resizing exists. In most cases the default parameters are a
good choice. For exotic applications like using Boost.Units or for exotic
algebras you need to specify them explicitly. The documentation of odeint
shows some examples [47].

The first parameter of the do_step method specifies the ODE. It is
expected that the system is either a function or functor and must be a
callable object with the signature:

system( x , dxdt , t )

Another concept is the ErrorStepper. Its basic usage is very similar to
the Stepper concept:

runge_kutta54_ck< state_type > rk54;
rk54.do_step( system , x , t , dt , xerr );

the main difference is that it estimates the error made during one step and
stores this error in xerr.

Another concept is the ControlledStepper, which tries to perform one
step. A stepper which models the ControlledStepper concept has usually
some error bounds which must be fulfilled. If try_step is called the stepper
will perform one step with a given step size dt and checks the error made
during this step. If the error is within the desired tolerances it accepts
the step and possibly increases the step size for the next evaluation. In
case the error bounds are reached the step is rejected and the step size is
decreased.

The fourth stepper concept is the DenseOutputStepper. A dense
output stepper has two basic method do_step and calc_state. The first
one performs one step. The state of the ODE is managed internally and
usually this step is made adaptive, hence it is performed by a controlled
stepper. The second function calculates intermediate values of the solution.
Usually, the precision of the intermediate values are of the same order as
the solution.

The integrate functions are responsible for integrating the ODE with
a specified stepper. Hence, they do the work of calling the do_step or
try_step methods for you. This is especially useful if your are using a
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controlled stepper or a dense output stepper, since in this case you need
some logic of calling the stepping method.

Odeint defines four different integrate methods:

• integrate_const: performs the integration with a constant step size

• integrate_adaptive: performs adaptive integration of the ODE

• integrate_times: expects a range of times where you want to obtain
the solution

• integrate_n_steps: integrates exactly n steps

For all these methods it is possible to call an observer at each step size.

3.2 Reference sensors
When dealing with autonomous vehicles, positioning sensors play a big
role. It is possible to divide them in two main categories; sensors that
provide absolute measurements, like GPSs, and sensors that provide relative
measurements, like Inertial Measurement Units.

Within our project we make use of both categories. Specifically, we use
a GPS, an IMU and a magnetometer for the localization of the vehicle.

In the following we provide a description of the reference sensors and
how they have been simulated. An entire chapter is dedicated to the vehicle
localization (Chapter 4).

3.2.1 Global Positioning System
In order to have an absolute position useful for localization, the vehicle is
equipped with a GPS: the model is a Garmin 18 LVC (Figure 3.7).

It reaches an accuracy in the order of meters, typically less than 15
(95% of cases). The sensor can be connected to the computer using an
USB 2.0 cable.

The Garmin 18 LVC provides the information using the NMEA standard
at a 1 Hz rate. In this standard, each message is an ASCII string with a
specific format. Each sentence starting character is a dollar sign, all the
data fields are comma-separated and a newline terminates the message.
The NMEA standard includes various messages with a fixed number of
fields, the first one is a code to identify them. Messages coming from a
GPS, like in our case, have the GP prefix, the following is an example of a
fix message:
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Figure 3.7: GPS Garmin 18 LVC.

$GPRMC,220516,A,5133.82,N,00042.24,W,173.8,231.8,130694,
004.2,W,*70

• UTC of position fix (220516)

• Data status, A = Valid position, V = NAV receiver warning (A)

• Latitude with its direction (N for North, S for South) (5133.82,N)

• Longitude with its direction (E for East, W for West) (00042.24,W)

• Speed over ground in knots (173.8)

• Course Made Good (231.8)

• UT date of position fix (130694)

• Magnetic variation degrees and its direction (E for East, W for West)
(004.2,W)

• Checksum used for parity checking data (*70)

3.2.2 Inertial Measurement Unit and magnetometer
The vehicle is equipped with an Xsens MTi (Figure 3.8), which is a minia-
ture Inertial Measurement Unit (IMU) with integrated 3D magnetometers
(i.e., 3D compass). The IMU is composed by accelerometers and gyroscopes,
and it can calculate roll, pitch and yaw in real time, as well as outputting
calibrated 3D linear acceleration and rate of turn. The magnetometer
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Figure 3.8: IMU Xsens MTi.

provides 3D earth-magnetic field data. The sensor provides measurements
up to a 50 Hz frequency.

All calibrated sensor readings (accelerations, rate of turn, earth mag-
netic field) are in the right handed coordinate system as defined in Fig-
ure 3.8. This coordinate system is body-fixed to the device. The Earth-fixed
coordinate system used as a reference to calculate the orientation is defined
as a right handed coordinate system with:

• x positive when pointing to the local magnetic North.

• y according to right handed coordinates (West).

• z positive when pointing up.

The MTi can be directly connected with the computer using an USB
2.0 cable. The specification associated with measurements are listed in
Table 3.1.

3.3 Thesis vehicle simulators
In this section we describe how the vehicle has been simulated in this
thesis. Following the typical procedure, the simulation process went from
an ideal situation, described in the following first section, to a realistic
simulation using Gazebo, described in the following section.
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rate of turn acceleration magnetic field
unit [deg/s] [m/s2] [mGauss]
Dimension 3 axes 3 axes 3 axes
Full Scale [units] +/-300 +/-50 +/-750
Linearity [% of FS] 0.1 0.2 0.2
Bias stability [units 1σ] 1 0.02 0.1
Scale factor stability [% 1σ] - 0.03 0.5
Noise density [units/

√
Hz] 0.0513 0.002 0.5 (1σ)

Allignment error [deg] 0.1 0.1 0.1
Bandwidth [Hz] 40 30 10
A/D resolution [bits] 16 16 16

Table 3.1: Calibrated data performance specification.

3.3.1 ODE based simulator
The first step necessary for the simulation is the realization of a model
which describes the vehicle and its properties. The vehicle studied in this
work has a rear-wheel drive layout with the steering working on the front
wheels, so it would be best depicted by a car-like or four wheels model, but
this would be computationally too expensive. For this reason a single-track
or bicycle model has been adopted. In literature there are several examples
of linear single-track models, but these neither include a description of the
drive-train, nor they allow the representation of the vehicle behavior at
larger steering angles or with higher lateral accelerations [8]. For these
reasons a nonlinear single-track model has been adopted to describe the
dynamics of the vehicle, which has already been proved successful in several
texts of vehicle dynamics, and which is reported in Figure 5.9.

With reference to that figure the main parameters of the single-track
model simulated in this work are:

• ψ: yaw angle;

• ψ̇: yaw-rate, which is the angular velocity around the vertical axis;

• v: velocity of the vehicle;

• β: slip angle of the vehicle, which is the angle between the longitudinal
axis and the velocity;

• δ: steering angle;

• αf and αr: front and rear tire slip angles;
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Figure 3.9: Single-track model.

• Ff and Fr: front and rear side forces;

• lf and lr: distances between the front and rear axle and the center
of gravity;

• Cf and Cr: front and rear cornering stiffness;

• m: total mass of the vehicle;

• Izz: moment of inertia.

Based on the previous definitions, the single-track model is described
by the following equations:



ψ̈ = lrCrαr − lfCfαf
Izz

β̇ = −Cfαf + Crαr
vm

− ψ̇

αf = β + lf ψ̇

v
− δ

αr = β − lrψ̇

v

(3.1)
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These are nonlinear equations because the velocity v is the system
input, together with the steering angle, and it appears at the denominator
of some fractions. To complete the system described by Equations 3.1 two
equations are necessary to describe the position of the center of gravity
of the vehicle relative to a space-fixed frame of reference. Replacing the
variables αf and αr with their expressions and changing ψ̈ as the first
derivative of a new variable r, which is obviously the first derivative of ψ,
it is possible to come to the final system of first-order ordinary differential
equations:



ψ̇ = r

ṙ = lrCr − lfCf
Izz

β −
l2fCf − l2rCr

vIzz
r + lfCf

Izz
δ

β̇ = −Cf + Cr
vm

β + lrCr − lfCf − v2m

v2m
r + Cf

vm
δ

ẋ = v cos(β + ψ)
ẏ = v sin(β + ψ)

(3.2)

The next step has been the implementation of this system of equations
in a ROS node in order to realize the simulator. After analyzing different
options for solving ordinary differential equations (ODE) we decided to
adopt odeint C++ library. Since the dynamic of the vehicle can change
rapidly, a stepper which changes the step size over time has been adopted.
Thus, we decided to use the stepper runge_kutta_dopri5. Having a
dynamic step size, differently from the constant one, makes it possible to
find the step size which best fits the integration for every step.

The creation of a simulator led us to implement a ZOH (Zero-order
hold) model for the actuators; indeed the values that control the simulation
are provided at discrete time, i.e., desired velocity and steering angle. A
buffer has been added to the node to hold these inputs; in this way the
simulator can run continuously using the latest actuator set points.

The simulator node runs at 50hz and the integration is performed for
0.02s each time. After every cycle, the updated state of the simulator is
published using a custom message on the topic /vehicle_state.
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Figure 3.10: Polaris model in Gazebo.

3.3.2 Gazebo
The simulation with Gazebo required the creation of a vehicle model. Since
the chosen vehicle was used for the DARPA challenge, it was possible to
find the relative files to create the model in Gazebo (Figure 3.10). The
SDF file that describes the DARPA Polaris has been modified in order to
add GPS, IMU and magnetometer sensors.

First of all it was necessary to add a link for each sensor: we put the
GPS and the magnetometer on the roof of the car while the IMU on the
CoG (center of gravity) of the vehicle. Then, to connect the sensors to the
Polaris, two joint elements have been added: both of them have been linked
to the chassis. As last step we added the description of the plugin used to
simulate the sensors. A detailed description of these steps is provided in
the following section.

The next step was to connect Gazebo with ROS in order to retrieve
information about the vehicle and the sensors and to send the command
to control the Polaris. Again, as for the SDF file, a plugin, named drc-
sim_gazebo_ros_plugin developed within the DARPA challenge, was
available. By default it already provided the following topics:

• /hand_wheel/cmd

• /hand_wheel/state
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• /hand_brake/cmd

• /hand_brake/state

• /gas_pedal/cmd

• /gas_pedal/state

• /brake_pedal/cmd

• /brake_pedal/state

• /key/cmd

• /key/state

For each of them cmd represents the topic to be used to send commands
to the relative element, while the state topic is used to publish information
about it. Topics relative to the handbrake and the key accept as values
only 0 and 1: for the handbrake 0 means that it is off, while for the key
that the car is off, while for both, the value 1 has the opposite meaning.
Topics for the gas and brake pedals accept values from 0 to 1: the value
represents the pressing percentage of the pedal. Values exceeding the
lower or upper bound are limited to the relative extreme. The hand wheel
topic accepts values from -3.14 to 3.14 and it represents the steering angle.
Again, for exceeding values the hand wheel is set to the relative limit. In
the following section it is possible to find how the hand wheel and gas
pedal are managed.

In the initial condition, the vehicle is turned on, the handwheel steering
angle and the gas pedal pressing percentage are set to 0 with the hand-brake
on.

3.4 Sensors and actuators
Managing sensors and actuators became necessary as soon as the simulation
reached the Gazebo phase. Here we provide a description of how sensors
are simulated and how their measurements are handled. Figure 3.11 shows
the vehicle equipped with the sensors and their coordinate frames.
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(a) (b)

Figure 3.11: Polaris vehicle, sensors and coordinate frames.

3.4.1 Global Positioning System
In order to retrieve information about an absolute position to feed the
localization module (described in Chapter 4), a plugin in Gazebo has been
implemented: hector_gazebo_plugin. This plugin, already present
in the ROS repository, simulates a GNSS (Global Navigation Satellite
System) receiver. As previously explained, it has to be attached to the car
modifying the relative SDF file. It publishes ROS messages of type sen-
sor_msgs/NavSatFix with the robot’s position and altitude in WGS84
(World Geodetic System 1984) coordinates on the topic specified in the
SDF file which is /fix.

3.4.2 Inertial Measurement Unit
As for the GPS, in order to simulate an IMU is required a plugin. The
hector_gazebo_plugin plugin used for the GPS provides different sim-
ulated sensors, including an Inertial Measurement Unit. The simulated
sensor is affected by Gaussian noise and low-frequency random drift. The
data is sent through ROS using a sensor_msgs/Imu message, which
stores IMU measurements (in body coordinates) and estimated orientation
relative to the world frame.

It is possible to modify the characteristics of the sensor through the
SDF file. There are several XML tags to define its own parameters, the
most relevant for the scope of the simulation are:

• <updateRate>: update rate of the sensors in hertz;
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• <topicName>: name of the sensors output topic;

• <gaussianNoise>: value used as standard deviation of Gaussian
noise for acceleration and angular rate measurements.

To match the characteristics of the Xsens we set the update rate to
50hz and the topic used for publishing messages to /imu_hector.

3.4.3 Magnetometer
As for the previous sensors, it was possible to take advantage of the
hector_gazebo_plugin plugin to simulate a magnetometer. The plugin
simulates a 3-axis magnetometer and provides the simulated data through
ROS using a geometry_msgs/Vector3Stamped message, which stores
the magnetic field vector in body coordinates.

Through the SDF file we set the update rate of the sensors to 50Hz
and the topic used for publishing messages to /mag. The plugin allows
also to specify the values for the sensor noise.

3.4.4 Ackermann Odometry
Odometry information was not natively provided by Gazebo, so to re-
trieve its values it was necessary to modify the plugin used to control
the vehicle. To do so a new ROS publisher was implemented within the
drcsim_gazebo_ros_plugin plugin. Following the name convention
used for publishing information about the vehicle, the publisher was set to
publish on topic /gazebo/odometry.

Since ROS did not provide a message type for the Ackermann odometry,
the type created in ROAMFREE package (Section 4.1), named Single-
TrackAckermannOdometryStamped, has been used. It includes a
header to specify time and frame, and two floats, one for the speed and one
for the steer. The value of the steer was retrieved using a method provided
by the plugin, DRCVehiclePlugin::GetHandWheelState(). Here it has
been necessary to convert this value since it is bounded between -3.14 and
3.14 radians while for physical limit of the car it goes from -0.65 to 0.65
radians (from -37 to 37 degrees). Thus, a simple linear relation has been
used to calculate the desired value. In order to get the speed information
we used the one coming from the chassis link. The only way to get this
value was to retrieve the information of the velocities of the chassis of the
vehicle toward the x-axis and y-axis and then to calculate the resulting
vector. After obtaining all the values, the message is published at the same
publishing rate of all the other publishers, which is 50hz.
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3.4.5 Velocity and steering angle control
It has been also necessary to make changes for managing the velocity and
the steering angle of the vehicle. In order to do so we have taken advantage
of the topics that Gazebo provides by default, which are:

• /gas_pedal/cmd;

• /hand_wheel/cmd.

Concerning the steer it was sufficient to convert the command sent within
the interval [-3.14, 3.14], for the reason specified in the previous section.
This conversion is performed in the plugin when the callback that handles
the steering topic is called. Regarding the velocity, the plugin did not
provide a direct velocity controller, in fact it was only possible to control the
gas pedal, which handles the amount of torque to be provided depending
on its pressure percentage. So, we implemented a simple proportional
control system to manage the pedal in order to reach the target velocity:

gas_pedal_percentage = K · e

where the error function has been defined as the difference between
the target velocity, which is the velocity sent to the topic, and the current
velocity, while the constant K has been set to 0.5 after having tested
different values.

The gas_pedal_percentage value is then used to set the pressing per-
centage of the gas pedal; results bigger than 1 are handled as 1.
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Localization

Given the aim of this work, great attention has been given to the localization
system. Although Gazebo provides information about the position, we use
measurements coming from the sensors to feed ROAMFREE library to
estimate an absolute position. This is fundamental since the next step,
that is beyond the scope of this thesis, is to test the architecture on a
real vehicle where the info provided by Gazebo are not present anymore.
The maximum speed rate of ROAMFREE is limited and the estimation
introduces a delay caused by the time necessary for the pose calculation;
so, since for autonomous driving the localization is crucial, we integrated
a new node, called fastPredictor, which takes the last pose published by
ROAMFREE and integrates the odometer measurements in order to obtain
a more precise position at a higher frequency. In Figure 4.1 it is possible
to see the general architecture of the localization package.

4.1 Relevant background
Pose tracking is one of the most important issue in autonomous mobile
robotics, because the performance of high-level control systems and naviga-
tion modules are related to the localization accuracy. Usually, in order to
estimate the position of the robot, multiple sensors are used, which need
to be calibrated and their measurements combined in one single estimate.

ROAMFREE (Robust Odometry Applying Multisensor Fusion to Re-
duce Estimation Errors) [17] is a framework developed by Politecnico di
Milano that offers:

• a library of sensor families handled directly by the framework;

• an on-line tracking module based on Gauss-Newton minimization;

57
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Figure 4.1: Localization architecture.

• an off-line calibration suite which allows to estimate unknown sensor
parameters.

The framework is designed to fuse measurements coming from an
arbitrary number of sensors. In order to maintain a general approach, it
abstracts from the nature of the information sources, and it works with
logical sensors, which are characterized only by the type of measurements
provided. Therefore, the association between physical and logical sensors
is not unique, since a single device can correspond to multiple logical
sensors (e.g., IMU) or multiple physical sensors can cooperate to obtain
a single measurement (e.g., stereo cameras). ROAMFREE divides the
sensors in categories according to the type of measurements they provide:
absolute position and/or velocity, angular and linear speed, acceleration
and vector field (e.g., magnetic field, gravitational acceleration). For each
of these categories an error model exists, which relates the state estimate
with the measurement data, taking into account all the common sources
of distortion, bias and noise. Moreover, it is possible to define a set of
predefined calibration parameters using specific values or by letting the
framework estimate them with an off-line formulation of the tracking
problem.

ROAMFREE uses three reference frames: W , the fixed world frame,
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Figure 4.2: Reference frames and coordinate transformations in ROAMFREE.

O, the moving reference frame placed at the odometric center of the robot,
and the i-th sensor frame, Si, whose origin and orientation are defined with
respect to O. The tracking module estimates the position and orientation
of O with respect to W , i.e., ΓWO (Figure 4.2).

The tracking problem is formulated as a maximum likelihood opti-
mization on a hyper-graph in which the nodes represent poses and sensor
parameters and hyper-edges correspond to measurement constraints. An
error function is associated to each edge in order to measure how well the
values of the nodes connected to edge fit the sensor observations. The goal
is to find a configuration for the poses and sensor parameters that minimizes
the negative loglikelihood of the graph given all the measurements.

Let ei(xi, η) be the error function associated to the i-th edge in the
hyper-graph, where xi is a vector containing the variables appearing in
any of the connected nodes and η is a zero-mean Gaussian noise. Thus
ei(xi, η) is a random vector and its expected value is computed as ei(xi) =
ei(xi, η)|η=0. Since ei can involve non-linear dependencies, the covariance
of the error is computed through linearization.

∑
ei

= Ji
∑
η J

T
i |η=0 (4.1)

where ∑
η is the covariance matrix of η and Ji is the Jacobian of ei with

respect to η. The optimization problem is define as follows:

P : argmin
x

N∑
i=1

ei(xi)TΩeiei(xi) (4.2)

where Ωei = ∑−1
ei

is the i-th edge information matrix and N is the total
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number of edges. If a reasonable initial guess for x is known, a numerical
solution of the problem can be found by means of the Gauss-Newton
algorithm.

In order to build the graph it is necessary to define a master sensor, with
a high frequency, and for which it is possible to predict ΓWO (t+∆t) given the
last pose estimate available, Γ̆WO (t), and its measurement z(t). Each time a
new reading for this sensor is available, we instantiate a new node ΓWO (t+∆t)
using the last pose estimate available, ΓWO (t), and z(t) to compute an initial
guess for it. z(t) is also employed to initialize an odometry edge between
poses at time t and t+ ∆t. Each time a new measurements is available,
their corresponding edge is inserted into the graph between the two nodes
with the nearest timestamp. The graph optimization approach can be
used to solve both the on-line position tracking problem, in which sensor
parameters are known and the requirements are related to pose precision
and robustness, and the off-line calibration problem, in which the goal is
to determine the sensor parameters directly form data.

A general framework for graph optimization, called g2o, solves the
optimization problem, and it is reported to solve graph problems with
thousands of nodes in fractions of a second. Anyhow, for real time online
tracking, it is necessary to define a finite time window and discard the older
poses to avoid an excessive increase in computational load. Conversely,
during off-line calibration, a set of the parameter nodes is chosen for esti-
mation and the graph containing all available measurements is considered.
The ROAMFREE library provides a simple interface that allows adapting
the environment to the specific needs of each robot. It is possible to
add logical sensors, choose the master, define the time window and the
execution frequency, and more. Moreover, a ROS wrapper is available that
subscribes to the sensors topics and periodically broadcasts the estimated
position using tf.

4.2 ROAMFREE setup and configuration

In this section we provide the description of the localization process. The
first part describes the configuration of the ROAMFREE library, while the
second describes how it works. The last part includes the description of
the fastPredictor node.
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4.2.1 Configuration
The configuration process can be split in different steps. First of all we
have the definition of the vehicle initial position and orientation. This may
be not be strictly needed if there is a sensor that provides an absolute
position, otherwise it is possible to set it through the initial_pose.yaml
file. This position represents the origin of the global coordinate frame.

The second step is the definition of the sensors specifications through
the config.yaml file. For each of them we specify the following elements:

• type: defines the type of the sensor;

• is_master : defines if the sensors is the master for the pose estimation;

• frame_id: the coordinate frame of the sensor;

• topic: ROS topic in which the sensor publishes its measurements;

• topic_type: defines the type of the message used by the sensor to
publish its own measurement;

• static_type: optional element to specify the static covariance. When
is set to true the covariance matrix needs to be specified.

It is also possible to specify some additional parameters for every sensor,
for instance it is possible to set the IMU bias relative to the accelerometer
and the gyroscope.

The coordinate frames definition is necessary because ROAMFREE
needs to know where the sensors are displaced in order to estimate the
robot pose. The structure of the reference frames on the vehicle (shown in
Figure 4.3) is the following:

• /world: is the global coordinate frame. Its origin corresponds to
the initial position of the vehicle;

• /roamfree: is the frame corresponding to the position estimated by
ROAMFREE. The positive x-axis points in the direction of movement
of the vehicle, the y-axis points to its left and the z-axis points up.

• /base_link: is the frame corresponding to the position predicted by
the fastPredictor node. It has the same convention of the roamfree
frame;

• /imu_link: is the frame of the IMU. Since we decided to set the
roamfree frame in the same position of the imu_link, there is no
need to define a roto-traslation between these two frames;
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Figure 4.3: Hierarchy of the coordinate frames.

• /gps_link: is the frame of the GPS. Since the GPS is displaced
on the top of the vehicle, there is a static translation between the
roamfree and gps_link frames (x=0.0m, y=0.0m, z=1.54m). There
is no rotation because the coordinate frame of the GPS is the same
as the roamfree one;

• /mag_link: is the frame of the magnetometer. As the GPS, it
is displaced on the top of the vehicle, so there is a static transla-
tion between the roamfree and mag_link frames (x=0.3m, y=0.0m,
z=1.54m). Also in this case there is no rotation because the co-
ordinate frame of the magnetometer is the same as the roamfree
one;

The final step is given by the definition of the frequency at which
ROAMFREE has to estimate the vehicle position and the size of the
window used for the estimate. The choice of this last element requires
a trade-off: a larger value means that more measurements are used to
estimate the position, thus it is possible to obtain an higher accuracy, but
this also implies a larger computational time, so the system may not reach
the desired frequency. Due to this situation, after several tests, we decided
to use a window length of 2 seconds and an estimation frequency of 10Hz.

4.2.2 GPS message conversion
Since the information coming from the GPS is given in geodetic coordi-
nates and ROAMFREE works with ENU coordinates (i.e., East, North
and Up), we had to integrate another node, nmea_to_enu, to read
these messages and to convert the data from the first coordinate system
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Figure 4.4: Geodetic (yellow), ECEF (blue) and ENU (green) coordinates.

to the latter. Then the result of the conversion is published as geome-
try_msgs/PoseWithCovarianceStamped message on the topic /enu.

The conversion from the geodetic to ENU coordinates is composed by
two steps, first a conversion from geodetic to the Earth-centered earth-fixed
(ECEF coordinate system), then from ECEF to ENU. Geodetic coordinates
(latitude ϕ, longitude λ, height h) can be converted into ECEF coordinates
using the following formula:

X = (N(ϕ) + h)cosϕcosλ
Y = (N(ϕ) + h)cosϕsinλ
Z = (N(ϕ)(1− e2) + h)sinϕ

Where:

N(ϕ) = a√
1− e2sin2ϕ

e2 = f(2− f)

being a the major equatorial radius, and f is the flattening, both values are
chosen by reference to the WGS84 datum, which is the standard reference
ellipsoid used to model Earth by the Global Positioning System.

To transform from ECEF coordinates to the local coordinates a local
reference point is necessary. In our node it is defined using geodetic
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coordinates via ROS parameters, this is the best solution because it can be
set on the field using the coordinates from the GPS. Given the reference
point in ECEF coordinate as Xr, Yr, Zr and the GPS as Xp, Yp, Zp then
the vector pointing from the reference point to the GPS in the ENU frame
is:


x
y
z

 =


−sinλr cosλr 0

−sinϕrcosλr −sinϕrsinλr cosϕr
cosϕrcosλr cosϕrsinλr sinϕr



Xp −Xr

Yp − Yr
Zp − Zr



4.2.3 Estimation
The estimation process starts when the node roamros is launched. First
of all it loads all the sensors configurations reading the relative parameters
in the config.yaml file. Then it subscribes to sensor topics: /enu to read
GPS measurement in ENU coordinates and /imu_hector to read the
accelerometer and gyroscope measurements. After receiving the initial
position, it starts collecting sensor measurements. As soon as it has enough
information it estimates the vehicle position and broadcasts it periodically
using tf.

The master sensor is the one used to build the hyper-graph as described
in Section 4.1 since it provides enough information to predict the next pose.
The default configuration of ROAMFREE predicts the next pose every
time it receives a measurement from the master sensor and corrects the
estimation integrating the measurements coming from other sensors. In
our configuration we decided to adopt the IMU as master. Since the IMU
publishing rate was to high compared to the GPS one, ROAMFREE did
not have enough measurements coming from the other sensor to correct the
estimation in time. To solve this problem we implemented a IMU handler
to manage the IMU measurements. Since ROAMFREE is set to publish
poses at 10Hz and the IMU runs at 50Hz, the handler reads and integrates
5 measurements so as to allow ROAMFREE to meet the publishing rate
and furthermore to estimate a better position since it can integrate GPS
measurements which have a 5Hz frequency.

4.2.4 Fast predictor
Localization plays a big role in autonomous vehicle, so it is very impor-
tant to have an accurate and fast localization system. We could consider
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Figure 4.5: The class diagram of the fastPredictor node.

ROAMFREE accurate enough, but we need to face the delay introduced by
the time required to compute the position. As first solution we considered
the opportunity to increase the frequency of roamros, but it would have
driven to a less accurate estimation and an higher computational load.
Therefore we decided to implement a node, called fastPredictor, devel-
oped originally within another thesis [38], that predicts a relative position
starting from the absolute position given by roamros and integrating the
odometry of the vehicle. Figure 4.5 shows its class diagram.

The node subscribes to the topic /polaris/odometry to retrieve
information about the speed and the steer of the vehicle. Furthermore,
it implements a listener to receive the position broadcast by roamros. In
order to use the node it is necessary to specify a few parameters: the
coordinate frame of the absolute position, which is /roamfree, as stated
previously, at which frequency this position is published, 10Hz in our case,
and the frequency of the odometry, which is 50Hz. In Figure 4.6 is shown
the relative ROS communication flow. The ratio between these two values
represents the number of odometry measurement to store, since in the
worst case the system needs at most fo/fr + 1 measurements to compute
the relative position before roamros estimates a new pose, where fo is the
odometry frequency while fr is the roamros frequency.

In order to perform the integration of the odometry, it is necessary to
define the differential equations that describe the kinematic of the vehicle.
In our case, which is a four-wheel model with an Ackermann steer, the
required equation are represented by the following ones:
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Figure 4.6: The fastPredictor ROS communication flow.


ẋ = v(t)

ϑ̇z = v(t)
L

tan(ϕ(t))
(4.3)

Where v(t) is the speed, ϕ(t) is the steering angle and L is the wheelbase
of the vehicle. The integration is performed using the odeint library. The
starting time of the integration is set to the timestamp of the newest pose
estimated by roamros, while the ending time is the current time plus a
dt: this step forward in the future provides a prediction of the future
position of the vehicle and grants the lowest possible delay. Velocity and
steer values used in this prediction are computed by means of a linear
extrapolation between the last two available values. Then the result is
published as a transformation from the coordinate frame /roamfree to
/base_link using tf.
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Model Predictive Control

This chapter provides a description of the MPC package developed within
this thesis. Before going into detail about the implementation of the con-
troller, an overview of Model Predictive Control is provided. Additionally
it is explained how to integrate and use CPLEX, an optimization software
package useful to solve optimization problem. In Figure 5.1 an high level
representation of the structure of the developed package is shown. In the
following a detailed description for each node that composes the package
is provided.

5.1 Relevant background
Model Predictive Control (MPC) is a control framework which uses a
model of the process under control to obtain a suitable control signal, by
minimizing an objective function under operational restrictions [13]. A
dynamic model is required to predict the effect of future control actions to
the output.

The basic concept of MPC is that of transforming the classic control
problem into a mathematical optimization problem, so that it is possible to
simply insert constraints and limitations of the real system. In particular,
the dynamic model of the system is used to predict, on a finite horizon,
how the state variables will evolve starting from their values at current
time and as a function of the future values of the control actions. In
this way the prediction can be used in a cost function that has to be
minimized so that the state adequately follows a specified target. The
result is the optimal input sequence which allows to get the minimum of
the cost function. MPC techniques have been largely discussed in the last
few decades, as for example in [36] and in [13].

67
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Figure 5.1: MPC package.

Human beings can easily drive a vehicle due to the brain ability of
predicting obstacles and road direction; this should characterize also the
controller in a self-driving car. For this reason, Model Predictive Control
is very suitable in autonomous vehicle applications.

This kind of control has had a significant success in the industrial
area starting from the 80’s, when it started to be applied mainly in the
petrochemical sector; the key of this was the simplicity of the algorithm.
The increasing potential of digital computers has helped the spread and
development of MPC in different sectors, such as indeed autonomous
vehicles.

The main features which characterize this control logic are:

• formalization of the control problem as an optimization problem in
which is possible to include several aims, that sometimes are even
contrasting;

• explicit inclusion in the control problem of constraints on the state
variables and the inputs;

• possibility of designing the regulator starting from empirical models
of the process gotten from simple plant tests, such as step or ramp
response.

The MPC technique can be applied on both linear and nonlinear
systems, and in the latter case it is called NMPC. For linear systems
the optimization problem leads to a linear quadratic problem, i.e., the
problem of optimizing a quadratic function, with a massive reduction
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in the computational time for optimization compared to the nonlinear
situation. Indeed, the computational burden has been a critical aspect of
the Model Predictive Control framework, especially in the past when the
hardware was not as powerful as it is today. The optimization and the
variable estimate processes are responsible for the biggest computational
costs; the choice of using a linear MPC through the application of the
feedback linearization shown in Section 5.3 guarantees a reduction of the
first contribution, beside a simplification of the formulation.

The application of Model Predictive Control has raised recently in
quantity and quality not only thanks to the increase in hardware calculus
power, but also through the use of new optimization algorithms, which
are more powerful and reliable, and in particular through the development
of the theory that has led to new methods which guarantee fundamental
properties such as stability and robustness.

Model Predictive Control of linear systems

Consider a linear discrete time system, in state-space representation:

x(t+ 1) = Ax(t) +Bu(t), (5.1)
in which the state x ∈ X is assumed measurable and u ∈ U is the vector
of control variables. X and U contain the origin as an interior point. The
aim of the controller at time t is to establish the optimal control sequence
u(t), u(t+ 1), ..., u(t+N − 1), where N is a positive integer quantity called
prediction horizon. The controller determines the optimal control sequence
which minimizes the quadratic cost function on a finite horizon, that can
be generically written as:

J(x(t), u(·), t) =
N−1∑
k=0

(‖x(t+ k)‖2
Q + ‖u(t+ k)‖2

R) + ‖x(t+N)‖2
S, (5.2)

where Q is symmetric and positive semi-definite matrix and R and S are
diagonal positive definite matrices, with proper dimensions.

The MPC optimization problem consists in finding at any time t the
optimal control sequence:

u(t), u(t+ 1), ..., u(t+N + 1), (5.3)
which minimizes the cost function 5.2 subject to the constraints

x(t+ k) ∈ X, u(t+ k) ∈ U, x(t+N) ∈ Xf . (5.4)
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MPC as a quadratic program

The optimization problem can be cast as a suitable quadratic program,
starting from the Lagrange formula for discrete-time systems:

x(t+ k) = Akx(t) +
k−1∑
i=0

(Ak−i−1Bu(t+ i)), k > 0, (5.5)

where the first contribution represents the free motion, while the second
is the forced motion. It is therefore possible to write the evolution of the
system state within the finite prediction horizon as:

X(t) = Ax(t) + BU(t), (5.6)
where:

X(t) =



x(t)
x(t+ 1)
x(t+ 2)

...
x(t+N − 1)
x(t+N)


, U(t) =



u(t)
u(t+ 1)
u(t+ 2)

...
u(t+N − 2)
u(t+N − 1)


, A =



I
A
A2

...
AN−1

AN



B =



0 0 0 · · · 0 0
B 0 0 · · · 0 0
AB B 0 · · · 0 0
... ... ... . . . ... ...

AN−2B AN−3B AN−4B · · · B 0
AN−1B AN−2B AN−3B · · · AB B


(5.7)

It is necessary now to write also the cost function as a product of proper
matrices and in particular the minimum of the objective function 5.2 is
equal to the minimum of the following one:

J(x(t), u, t) = XT (t)QX(t) + UT (t)RU(t), (5.8)
where Q and R are:

Q =



Q 0 · · · 0 0
0 Q · · · 0 0
... ... . . . ... ...
0 0 · · · Q 0
0 0 · · · 0 S

 , R =



R 0 · · · 0 0
0 R · · · 0 0
... ... . . . ... ...
0 0 · · · R 0
0 0 · · · 0 R

 . (5.9)
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Expanding the functional 5.8 following the expression 5.6:

J(x(t), u, t) = (Ax(t) + BU(t))TQ(Ax(t) + BU(t)) + UT (t)RU(t)
= xT (t)ATQAx(t) + 2xT (t)ATQBU(t) + UT (t)(BTQB + R)U(t).

(5.10)

The resulting optimization problem can be solved using quadratic program-
ming solvers, such as QUADPROG [72] and CPLEX [16].

The Receding Horizon (RH) control principle

The optimization of the control problem over a finite horizon window leads
to the definition of the optimal control input vector Uo(t), which contains
the N control actions, i.e., the current value at time t and the future
values.

The Receding Horizon or moving horizon principle consists of the fact
that at each time t the optimization problem is solved on a finite horizon
[t, t+N ] and just the first action uo(t) of the input vector Uo(t) is applied
to the system. At the next sampling time t+ 1 the optimization and all
the operation is repeated within the temporal window [t+ 1, t+N + 1].
This explanation is also shown in Figure 5.2.

The new control sequence obtained at time t+ 1 is generally different
from the previous one, since the moving horizon shifts towards and the
controller predict the future values and establish the control inputs starting
from the new value of the state x(t+ 1).

CPLEX

IBM R© ILOG R© CPLEX R© Optimization Studio is an analytical decision
support toolkit for rapid development and deployment of optimization
models using mathematical and constraint programming. It combines an
integrated development environment (IDE) with the powerful Optimiza-
tion Programming Language (OPL) and high-performance ILOG CPLEX
optimizer solvers. [48]

The use of CPLEX to solve an optimization problem requires several
steps. First of all it is necessary to build the environment: an instance of
IloEnv object is created, it represents the container of the problem.

After creating the environment it is possible to create the optimization
model. The definition of a model is performed using a IloModel object
that needs to be linked with its environment passing the IloEnv object as
argument to the constructor.
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Figure 5.2: Receding Horizon principle [7].

After an IloModel has been instantiated, it is populated with the
executables that define the optimization problem. The most important
classes are:

• IloNumVar: representing modeling variables;

• IloRange: defining constraints of the form l ≤ expr ≤ u, where expr
is a linear expression;

• IloObjective: representing an objective function.

It is possible to create objects of the previous classes for each variable,
constraint and objective function of the optimization problem. Then to
add the objects to the model it is sufficient to call, for each object, the
following element:

model.add(object);

Modeling variables are constructed as objects of class IloNumVar, by
defining variables of type IloNumVar. There are several constructors for
doing this; the most flexible form is:
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IloNumVar x1(env, l, u, type);

This definition creates the modeling variable x1 with lower bound l and
upper bound u. The choice about the type can be done among ILOFLOAT for
continuous variables, ILOINT for integer variables and ILOBOOL for Boolean
variables. For each variable in the optimization model a corresponding
object of class IloNumVar must be created.

After all the modeling variables have been constructed, they can be
used to build expressions, which in turn are used to define objects of class
IloObjective and IloRange.

After the optimization problem has been created in an IloModel object,
the next step is to create the IloCplex object for solving the problem by
creating an instance of the class IloCplex. It is possible to add directly
to the IloCplex object the model object or to add the environment object
and then to extract the model. Then the object cplex is ready to solve
the optimization problem defined by the model. To solve the model it is
sufficient to call:

cplex.solve();

This method returns an IloBool value, where IloTrue indicates that
CPLEX successfully found a feasible (yet not necessarily optimal) solu-
tion, while IloFalse indicates that no solution was found. More precise
information about the outcome of the last call to the method solve can be
obtained by calling:

cplex.getStatus();

The returned value tells what CPLEX found out about the model: whether
it found the optimal solution or only a feasible solution, whether it proved
the model to be unbounded or infeasible, or whether nothing at all has been
proved at this point. Even more detailed information about the termination
of the solve call is available through the method getCplexStatus.

5.2 MPC
Here it is described the application of this technique for our control problem.
Since we dealt with an optimization problem, we followed the standard
form [37] in order to describe the regulation problem. In the following we
give an overview of the controller which has been developed within the
thesis of M. Spaliviero [11]. First of all we consider the objective function
then we move on to the evaluation of the constraints which bound the
function. Lastly, we explain the implementation process with its relative
toolkit.
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Cost function

The regulation problem consists in reaching a target position with null
velocity and free orientation without violating vehicle limits and constraints,
starting from a generic initial position. In order to achieve this result it is
necessary to minimize a certain cost function. This is the approach that
has been followed: the controller itself generates a reference position x̃(t)
that is forced to get close to the final target xgoal though the objective
function:

J =
t+N−1∑
k=t

(‖x(k)− x̃(t)‖2
Q + ‖δu(k)‖2

R) + γ‖x̃(t)− xgoal‖2, (5.11)

in which xgoal is a vector that contains the x-y coordinates of the destination
point. Through this function we force the x-y position to get close to
the point x̃(t) and at the same time the reference to approach to the
target position xgoal. Also the reference point is an optimization variable,
as the value of δu(k) for k = t, ..., t + N − 1, so the minimization of
the function must return the following control action, here expressed in
vectorial notation:

Θ =



δu(t)
δu(t+ 1)

...
δu(t+N − 1)

x̃(t)

 =
[
δU(t)
x̃(t)

]
. (5.12)

In order to obtain these optimal control action through a quadratic pro-
gramming algorithm, it is necessary to write the optimization problem
(and therefore the objective function) as a quadratic one:

min
Θ(t)

J(Θ, t) = min
Θ(t)

1
2Θ(t)TH(t)Θ(t) + fT (t)Θ(t) + cost, (5.13)

where H and f are respectively the Hessian and the linear term in a
quadratic optimization problem, while the constant term is independent of
the optimization variable Θ and so it is not involved in the minimization
process.

Zero terminal constraint

In order to guarantee feasible trajectories and stability in the regulation
problem, it has been chosen to allow the final velocity of the vehicle in both
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Cartesian direction to be null, hence imposing a zero terminal constraint
of the type:

u(t+N) = uAPP (t+N − 1) = 0, (5.14)

where uAPP (t) is the actual velocity of the vehicle at time t. This hypothesis
is also important since it allows the system to possibly stop within a certain
distance. In fact in this way it is guarantee that at each cycle of the
controller the system can possibly be at rest at the end of the horizon
prediction Tp. Besides, it has also been inserted a terminal constraint on
the position consistently, i.e.:

x(t+N) = x̃(t). (5.15)

Acceleration, velocity and position constraints

In order to delimit the operational field of the vehicle and to take account
of the saturation of the actuators it is necessary to limit the possible values
of position, velocity and acceleration. This can be done as follows:

−xmax 6 xx,y(k) 6 xmax, k = t, t+ 1, . . . , t+N − 1, t+N,

−umax 6 uAPPx,y (k) 6 umax, k = t, t+ 1, . . . , t+N − 1,
−amax 6 ax,y(k) 6 amax, k = t, t+ 1, . . . , t+N − 1.

(5.16)

While for position and velocity it is possible to easily add their relative
constraints since they are part of the state vector, for the acceleration it
has been necessary to define this variable as the ratio between the variation
of velocity δux,y(k) and the time interval τ(k):

ax,y(k) = δux,y(k)
τ(k) , k = t, t+ 1, . . . , t+N + 1. (5.17)

It is also necessary to enforce another constraint of the velocity for guar-
anteeing consistency between the feedback linearized model (Section 5.3)
and the nonlinear system variables. To guarantee that the longitudinal
speed is positive, the following constraint is added:

v(k) = uAPPx (k)cos(β + ψ) + uAPPy (k)sin(β + ψ) ≥ 0 . (5.18)
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Figure 5.3: ∆δmax as function of the velocity v.

Steering angle constraints

In order to approximate the real behavior of a vehicle and its limitations, it
is important to introduce in the controller also a constraint on the steering
angle δ:

{
δ(t+ k) 6 δmax

−δ(t+ k) 6 δmax .
(5.19)

It is also necessary to impose a constraint on the variation of the steering
angle ∆δ(k) = δ(k)− δ(k− 1). In particular we want to limit it, so that it
is lower than a certain value ∆δmax. This prevents the swerves from being
too abrupt, following the real dynamics of the vehicle.

The value of ∆δmax has to be function of the velocity of the vehicle. In
fact it is a common experience that the danger of a steering maneuver is
function of the velocity. The analytical expression of this behavior is:

∆δmax = 0.05 + 0.05
1 + e0.4v , (5.20)

which is shown in Figure 5.3.
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Figure 5.4: Approximation of an obstacle with a regular polytope.

Obstacle avoidance constraints

One of the task of the controller is to avoid obstacles, generating
trajectories which guarantee no collisions during the path. Since the
collision detection goes beyond the scope of this thesis, we implemented
an obstacle avoidance using static obstacles. The representation of an
obstacle is performed using a 2-dimensional polytope. In particular the
considered geometric figure is:

• bounded: there is a circle with a finite radius that contains it;

• convex: it is also a set of points in the 2-dimensional space R2. The
polytope can be represented by a system of linear inequalities:

a11x1 + a12x2 ≤ b1

a21x1 + a22x2 ≤ b2
...

am1x1 + am2x2 ≤ bm

(5.21)

• regular: which is the most symmetrical and simple kind of polytope.

In this way we approximate the obstacle with a regular polytope, which is
circumscribed by a circumference of radius r as shown in Figure 5.4.

The implementation of the obstacle avoidance requires to verify if the
predicted trajectory is inside or outside the polytope. In order to perform
the verification, the distances between the edges of the polytope which
circumscribes the obstacle and the predicted positions are calculated.

Every edge of the polytope, considering its extensions on both the sides,
divides the x-y plane into two half planes. The sign of the distances ρ
conveys in which part of the plane the vehicle is with respect to the edges:
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Figure 5.5: Distances between the vehicle and the polytope edges.

if it is positive the vehicle is in the half which does not contain the center
of the polytope, if it is negative the vehicle is in the half with the center.
Figure 5.5 shows this consideration.

If the trajectory is outside the polytope at least one difference for each
predicted point will be positive. Thus, a constraint for each predicted point
is created stating that the relative maximum distance has to be positive:

−→ρ max(N+1)x1 = D̃(N+1)x2(Pveh − Pobs)2x(N+1) −
−→1 (N+1)x1 ≥ 0, (5.22)

where Pveh is the vector of the predicted positions, Pobs is a vector with the
same dimension of Pveh which contains the origin of the obstacle, and D̃ is
the matrix that represents, for each predicted position, the furthest edge.

In this way the obstacle avoidance has been implemented just as an
additional constraint on the optimization and thanks to this choice the
computational burden of the Model Predictive Control does not increase
significantly. This guarantees that, if the vehicle does not change actions
with respect to ones predicted at the previous instant, then obstacle
avoidance is guaranteed.

5.3 Feedback linearization
Since the model that describes the vehicle is a nonlinear model, we decided
to use a technique, known as feedback linearization [33], to linearize the
input-output relation of the nonlinear system.
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Figure 5.6: Block diagram explaining how the feedback linearization works.

This approach leads to an exact linearization through a change of
variables and a state feedback that removes the nonlinearities of the system
under control, as represented in Figure 5.6.

The feedback linearization technique allows to represent, from an
external point of view, the relationship between input and output as
a chain of integrals. Therefore the system becomes linear just to external
effects, while it does not change internally, and this is the reason why the
linearization is exact and not approximated.

The linearization process goes through the definition of a point P at
distance p from the center of mass of the vehicle along the longitudinal
direction (Figure 5.7), whose coordinates are:

xp = x+ p · cos(ϕ+ β),
yp = y + p · sin(ϕ+ β),

(5.23)

where x and y are the Cartesian coordinates of the vehicle while ϕ and β
are respectively the yaw and sideslip angle.

Differentiating Equation 5.23 with respect to time, we can obtain:

ẋp = ẋ− psin(β+ψ)(β̇+ ψ̇) = vcos(β+ψ)− psin(β+ψ)(β̇+ ψ̇), (5.24)

ẏp = ẏ+ pcos(β+ψ)(β̇+ ψ̇) = vsin(β+ψ) + psin(β+ψ)(β̇+ ψ̇). (5.25)

More specifically, Equations 5.24 and 5.25 describe the dynamics of
point P . The inputs to the feedback-linearized model are defined as the
velocity of point P with respect to the x-axis and y-axis, respectively
defined as:

vPx = vcos(β + ψ)− psin(β + ψ)(β̇ + ψ̇), (5.26)
vPy = vsin(β + ψ) + pcos(β + ψ)(β̇ + ψ̇). (5.27)



80 Chapter 5. Model Predictive Control

Figure 5.7: Representation of the point P under control.

The feedback-linearized model is then:

ẋp = vPx ,

ẏp = vPy .
(5.28)

Now it is possible to show that, given vPx and vPy , there exist output
values for the final model (i.e., values of δ and v) such that the dynamics
of point P actually corresponds with Equations 5.28. To do so, first
Equation 5.26 is multiplied by cos(β+ψ) and Equation 5.27 by sin(β+ψ)
and then, the two equations are added up together. We obtain that:

v = vpx · cos(β + ψ) + vpy · sin(β + ψ) (5.29)
i.e., the velocity of the center of mass.

Also, we multiply Equation 5.26 by sin(β + ψ) and Equation 5.27 by
cos(β + ψ) and we subtract them, we obtain that:

p(β̇ + ψ̇) = vpy · cos(β + ψ)− vpx · sin(β + ψ). (5.30)

Furthermore, recalling System 3.1 and denoting β̇+ ψ̇ = ω, we obtain that:
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Figure 5.8: Feedback linearization applied to the single-track model.

ω = 1
vm

[
−(Cf + Cr)β + ψ

v
(Crlr − Cf lf ) + Cfδ

]
. (5.31)

Therefore, also δ can be retrieved from ω (i.e., from the linear system
inputs vpx and vpy) and the system variable as follows:

δ = vm

Cf

[
w + Cr + Cf

vm
β − Crlr − Cf lf

v2m
ψ̇

]
. (5.32)

Since velocity appears at the denominator of two of these formulas, it
has been necessary to elaborate another formulation to be used when the
velocity is near to a null value. The chosen equation to complete the
alternative formulation of the model is:

δ = Cf + Cr
Cf

β. (5.33)

Figure 5.8 shows how the feedback linearization is applied to the single-
track model.

For this first step on linearization, i.e, the point P definition, we
developed a node, called pointP, that subscribes to three topics:

• /estimated_beta: topic on which the node beta_estimator pub-
lishes the estimated sideslip angle (described in Section 5.5);

• /vehicle_state: topic on which simulators or ROAMFREE pub-
lish the current state of the vehicle which includes its Cartesian
coordinates and orientation;

• /yaw_angle: topic on which it is possible to read information about
the yaw angle of the vehicle with respect to z-axis;
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and it publishes the resulting point P coordinates to feed the MPC on
topic /pointP.

The second step is to evaluate the MPC output, i.e., the velocity on
x-axis and y-axis, to produce the resulting velocity vector and steer angle
to control the vehicle, considering also yaw and sideslip angles. To achieve
this task, we have developed a new node, called feedback_linearization,
which reads on three topics; /estimated_beta and /vehicle_state,
described above, and on:

/mpcVel: topic on which MPC controller publishes its own output.

The resulting values, calculated by means of the Equations 5.29 and
5.32, are then published on a custom message, velocity_steer, on the
topic /vehicle/set_velocity_steer.

5.4 MPC implementation
In order to implement this controller we developed a ROS node, called
MPC. Since almost every operation is performed among matrices, we
decided to take advantage of the Eigen C++ library, which is a template
library for linear algebra [21], which provides a data type to store matrices
and implements several operations, such as product, division, and transpose.
Furthermore the library performs its own loop unrolling [50] which allows
to achieve better performance.

In order to work properly the controller needs to know the vehicle
parameters. Thus, we created a configuration file, called vehicle.yaml,
which contains the vehicle data. It also contains information about the
obstacle, i.e., the x−y coordinates of its center, the number of the polytope
sides which describe the obstacle and the radius length of the circumference
which circumscribes it. Furthermore it includes the Cartesian coordinates
of the goal and the value of the N intervals of the prediction horizon.
Therefore, when the node is launched it reads this file, loads all the values
and then starts the execution.

In order to make the code more flexible and readable, we created two
objects to store the values included in the configuration file, one for the
parameters regarding the controller and one for the parameters regarding
the vehicle. The first is called mpc_parameters and contains the following
elements:

• _A_MAX: maximum acceleration [m/s2];

• _V_MAX: maximum velocity [m/s];
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• _X_MAX: maximum x allowed [m];

• _Y_MAX: maximum y allowed [m];

• _DELTA_MAX: maximum steering angle allowed [deg];

• _X_GOAL: x coordinate of the goal [m];

• _Y_GOAL: y coordinate of the goal [m];

• _N: number of intervals of the prediction horizon;

• _Q_VAL: value characterizing the weights matrix on the state;

• _R_VAL: value characterizing the weights matrix on control;

• _GAMMA: weight to push x̃ toward the goal;

• _LAMBA: slack variable that allows to violate the obstacle con-
straint;

while the second is called vehicle_parameters and contains the following
elements:

• _M: mass of the vehicle [kg];

• _IZZ: moment of inertia on z-axis [kg ·m2];

• _LF: distance between the vehicle CoG and the front axle [m];

• _LR: distance between the vehicle CoG and the rear axle [m];

• _CF: front cornering stiffness [N/rad];

• _CR: rear cornering stiffness [N/rad];

• _P: distance between the CoG and the point P [m] (Section 5.3).

The MPC node subscribes to three topics, /estimated_beta to read
the last value of the sideslip angle (Section 5.5), /yaw_rate to read the
last value of the yaw rate and to /pointP to read the state of the vehicle
and its relative linearization. It runs continuously and at every iteration it
calculates the values of velocity to be applied to the vehicle. The execution
of this node can be divided in four phases:

1. create the objective function and the constraints matrices for the
optimization problem;
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2. execute the optimization;

3. get the output of the optimization, elaborate the resulting velocities
and perform the prediction to calculate the future N positions;

4. send the velocities on topic /mpc_vel.

Optimization

To perform the optimization problem we decided to adopt CPLEX.
Therefore, we developed a C++ class, called CPLEXsolver, in order to
implement this library. To take advantage of all the provided functionalities,
it is necessary to create a CPLEXsolver object and to set the problem:
this is done by specifying all the required parameters to set up the solver,
i.e., the number of variables within the objective function, the number of
equality and inequality constraints and the type of solver to be used for the
optimization. After the initialization, it is possible to specify through the
setProblem method the objective function and the constraints matrices.

The objective function has to be specified using two elements: the
hessian, which represents the quadratic part of the problem, and the
gradient, which represents the linear part. Regarding the constraints it
is necessary to specify distinctly the equality and inequality constraints
since they are handled differently: for the equality constraints we use the
IloRange method provided by CPLEX which allows to specify both lower
and upper bounds, while for the inequality constraints we use the setUB
method, which specifies only the upper bound.

After setting up the problem it is possible to call the solveProblem
method to launch the execution. To retrieve the output, CPLEX provides
two functionalities: one to get the resulting matrix and one to get the
optimizer status. The optimizer status is useful to interpret the output,
the main values are the following:

• optimal solution: the resulting matrix contains the optimal values
for the problem;

• feasible solution: the resulting matrix contains a feasible solution
which is not optimal;

• unfeasible solution: the resulting matrix contains an unfeasible solu-
tion for the problem.
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Figure 5.9: The sideslip angle β in the single-track model.

5.5 Sideslip angle estimation
In vehicle dynamics, the sideslip angle (shown in Figure 5.9 as β) is
the angle between a rolling wheel’s actual direction of travel and the
direction towards which it is pointing. In a real life scenario, to have a
direct measurement of vehicle sideslip angle, a complex and extremely
expensive equipment is required, which cannot be considered a suitable
solution. Therefore, in order to obtain this crucial variable we implemented
a sideslip angle observer, originally developed in another thesis [11], which
combines the available measurements with a static or dynamic model to
estimate the unknown quantity.

The basic idea of the estimation process is that of linearizing the
relationship between positions and accelerations in a unicycle model of the
vehicle through the feedback linearization so that, from an external point
of view, it is possible to represent the system as a chain of integrators.
This methodology is represented in Figure 5.10.

The kinematic model of a unicycle model for the single-track is:


ẋ = v · cos(ψ + β)
ẏ = v · sin(ψ + β)
ψ̇ + β̇ = w

(5.34)
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Figure 5.10: Methodology for sideslip angle estimation through feedback lin-
earization.

while the feedback linearization is:


ϑ̇ = ax · cos(ψ + β) + ay · sin(ψ + β)

w = ay · cos(ψ + β)− ax · sin(ψ + β)
v

(5.35)

where x and y are the Cartesian coordinates of the vehicle, the term ψ
and β are the yaw angle and the sideslip angle, v is the driving velocity
and ω the steering velocity.

In order to perform the integral calculus we took advantage again of
ODEINT [46], a C++ library for numerically solving ordinary differential
equation [5]. With this library it is possible to set the initial time and
end time of the integration and, furthermore, to select which kind of
stepper to use. In order to have a dynamic step size we decided to use a
runge_kutta_dopri5 stepper, which dynamically changes the size of the
integration.

The estimation is performed every time the position of the vehicle is
available and the time of the integration is set to the difference between
the timestamps of the last two poses. The final result of the estimation is
the sum of yaw and sideslip angles of the vehicle; in order to calculate the
sideslip angle the node subtracts from the estimated angle the actual yaw
angle of the vehicle read on topic /yaw_angle.



Chapter 6

Experimental results

In this chapter we provide the results obtained from the experiments done
both with ODE and Gazebo simulations. In the first section we present
the tests performed to estimate the real parameters of the vehicle used in
Gazebo in order to feed the MPC and to tune the ODE simulation. Then
we present the localization experiments done driving the vehicle manually,
both with and without sensors noise. As first test for the architecture
we provide the results obtained following a single point trajectory with
and without an obstacle, with three different simulation profiles: ODE
based, Gazebo and Gazebo integrated with ROAMFREE. The last section
contains the results achieved using a multi-point trajectory.

6.1 Parameters estimation
In order to use the MPC with the reference vehicle it has been necessary
to configure the controller with the real parameters; this is requested also
when dealing with a real vehicle. Some of these parameters were already
available in the configuration file of the Polaris Gazebo model, while for
others an estimation has been performed. In this section we present the
procedure we followed for the estimates.

6.1.1 Sideslip angle
The sideslip angle estimate described in Section 5.5 has been proved suitable
for the ODE based simulator. Figure 6.1 shows a comparison between
the angle estimated by the observer, represented by the blue line, and the
one calculated with the single-track equations, represented by the red line.
It is possible to notice how the two angles are almost overlaid for all the
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Figure 6.1: Observer and single-track sideslip angle comparison.

Figure 6.2: Observer and real sideslip angle comparison.

simulation long. Tests performed with both values turned out to have the
same behavior.

Despite the previous result, the observer has not guaranteed the desired
behavior with the Gazebo simulator. Although the values of the angles are
quite similar, as shown in Figure 6.2, the presence of slower actuators led
to an undesired behavior of the feedback linearization causing difficulties
in steering variations. The blue line represents the estimated sideslip angle,
while the red one the actual sideslip angle.

To deal with this situation we decided to calculate the sideslip angle in
a different manner, i.e., taking advantage of the information provided by
Gazebo about the velocities over x-axis and y-axis exploiting the following
relation:

β = ψ − arctanvy
vx
, (6.1)

where ψ is the yaw angle of the vehicle.
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Figure 6.3: Single-track model.

6.1.2 Cornering stiffness
Cornering stiffness is the ratio of cornering force over slip angle. Since the
usage of our MPC necessitates the identification of the cornering stiffness
of the Polaris vehicle and there was no information about this parameter
we needed to calculate them. This was accomplished, as detailed below,
following the method illustrated in [14].

Empirical tyre curves are generated from data of a quasi-steady state
ramp steer manoeuvre. In this manoeuvre, the front steer angle is slowly
(0.5 deg/s) increased so that the vehicle can be assumed to be in a steady
state condition (ṙ = v̇y = 0). Under this assumption, the lateral accelera-
tion ay can be approximated as in:

assy = rvx (6.2)

where vx represents the vehicle’s longitudinal velocity and r the yaw rate.
Applying this steady state approximation to the single-track model

(Figure. 6.3) leads to the expressions below for the front and rear tyre
lateral forces:

Fy,f = mb

(a+ b)cosδvxr = mb

(a+ b)cosδa
ss
y (6.3)

Fy,r = ma

a+ b
vxr = ma

a+ b
assy (6.4)

where m is the vehicle mass, a the distance from the vehicle CoG to the
front axle, b the distance from the vehicle CoG to the rear axle, Fy,f the
front tyre lateral force, Fy,r the rear tyre lateral force, vy the lateral velocity
and δ is the front tyre steer angle.

By using Equations 6.3 and 6.4 to calculate the tyre lateral forces and
the relations in Equations 6.5 and 6.6 to calculate the tyre slip angles, it
is possible to generate experimental tyre curves like the ones given by the
scatter plots in Figure 6.4a and 6.4b.
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(a) (b)

Figure 6.4: Empirical tyre curves: (a) front and (b) rear.

Front cornering stiffness Cα,f 57000 (N/rad)
Rear cornering stiffness Cα,r 91700 (N/rad)

Table 6.1: Tyre parameter estimates.

αf = arctan
vy + ar

vx
− δ, (6.5)

αr = arctan
vy − br
vx

. (6.6)

By means of the relation in Equation 6.7, from these curves it is possible
to calculate the value of the cornering stiffness shown in Table 6.1 for the
vehicle in the Gazebo simulation.

Fy = Cαα (6.7)

6.2 Localization
In this section we present the results obtained testing the localization
module using at the beginning the ROAMFREE library alone and then
coupling it with the fastPredictor node. The considered scenarios take
into account, at first, ideal sensors and then sensors affected by noise in
order to better simulate a real life situation. The tests were performed
driving the vehicle manually following an eight-shape trajectory.
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Figure 6.5: Trajectory comparison among ideal position, GPS and ROAM-
FREE.

Figure 6.6: Trajectory comparison among ideal position, GPS and ROAM-
FREE with fastPredictor.
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(a) (b)

Figure 6.7: Localization delay and its compensation on x (a) and y (b) coordi-
nates.

In Figure 6.5 and 6.6 are shown the results obtained with ideal sensors.
The blue line represents the followed path, the orange crosses represent
the GPS measurements and the yellow line represents the estimated pose.
It is possible to notice how the pose estimated by ROAMFREE matches
with a certain degree of precision the real one highlighting the accuracy
of this library in ideal situations. In the second image it is presented
the estimation calculated coupling ROAMFREE with the fastPredictor
node; also in this case the estimated pose is highly accurate. This is
not surprising since the fastPredictor node just takes in input the pose
estimated by ROAMFREE and integrates the odometry measurements to
obtain an higher frequency estimation. The advantage of this configuration
is represented by the delay compensation since the ROAMFREE estimated
pose presents a delay due to the computational time. The compensation is
performed integrating in the future the odometry measurements starting
from the last ROAMFREE estimated pose. Figure 6.7a and 6.7b show
how this delay is compensated by the fastPredictor. The blue line
represents the followed path, the orange line represents the pose estimated
by ROAMFREE, while the yellow one represents the pose estimated by
the fastPredictor.

In Figure 6.8a and 6.8b two similar scenarios are shown but using
sensors affected by Gaussian noise; GPS is affected by Gaussian noise
with a standard deviation of 0.1m for each axis in the first case and 0.3m
for each axis in the second case, while IMU accelerometer is affected by
Gaussian noise with a standard deviation of 0.1m/s2 for each axis. It is
possible to observe how the noise affects the estimation and how bigger
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(a) (b)

Figure 6.8: Trajectory comparison among ideal position, GPS and ROAM-
FREE with fastPredictor.

noises lead to a worse estimation.
ROAMFREE, together with the position, estimates the orientation too,

so we thought it was opportune to make a comparison between the actual
orientation and the estimated one. In Figure 6.9, the blue line represents
the real yaw angle of the vehicle, while the orange line represents the yaw
angle estimated by ROAMFREE. It is possible to notice how the estimation
is accurate, with a small delay (< 250ms) due the computational time.
This delay is conform to the one resulting from the position estimation.
Coupling to ROAMFREE the fastPredictor allows to compensate this
delay.

6.3 Regulation problem
In this section we describe the results obtained through a single-point
trajectory. For each test the target position we want the vehicle to reach
is goal = [30, 30]T with null initial velocity and starting position in [0, 0]T .
In the first part we provide the ODE simulation experiment, while, in the
second one, we focus on the experiments performed with Gazebo. In both
cases we present different scenarios, with and without an obstacle. The
obstacle, with radius of 2.5 meters, has been placed in [15, 12.5]T .

6.3.1 ODE based simulator
The first scenario we want to analyze is the one performed with the ODE
simulator. In Figure 6.10 the trajectories followed by the vehicle are shown;
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Figure 6.9: Yaw comparison between ideal and ROAMFREE trajectories.

Figure 6.10: Trajectory of the vehicle with and without obstacle.
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Figure 6.11: Trajectory of the vehicle with and without obstacle in Gazebo.

the dashed line represents the path that the car would follow if no obstacle
was placed, while the solid line represents the actual path adopted to avoid
the obstacle. The initial position is indicated by a black asterisk while the
goal is marked with a red cross. It is therefore possible to observe how big
is the contribution of the obstacle avoidance constraint in the definition of
the trajectory. In fact due to the obstacle, the vehicle changes its original
path since the very beginning of its trajectory.

6.3.2 Gazebo
In this section we present the results with a single-point trajectory using
Gazebo. As previously stated, we analyze two different situations, one
with the presence of an obstacle and one without.

The experiments were performed using different setups: in the first one
the localization is performed by Gazebo, in the second one by ROAMFREE,
while, in the third one with the integration of the fastPredictor node. In
the last two scenarios we made the same tests using both ideal and noisy
sensors.

In Figure 6.11 the trajectories obtained using the ideal localization are
shown. The dashed line represents the path followed without the obstacle,
while the solid one represents the path followed in presence of the obstacle.
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In Figure 6.12a and 6.12b the trajectories obtained using ROAMFREE
are shown. In this case we decided to compare the results when using ideal
and noisy sensors, in order to better simulate a real life situation; GPS
is affected by Gaussian noise with a standard deviation of 0.1m for each
axis in the first test and 0.3m in the second case, while IMU accelerometer
is affected by Gaussian noise with a standard deviation of 0.1m/s2 for
each axis. The blue line represents the ideal situation, the yellow line
represents the noisy one, while the red crosses represents the noisy GPS
measurements. It is possible to notice how different estimates take to
different trajectories. In particular the noise leads to a worse path since
the MPC takes as input the position estimated, so for different inputs the
final trajectories turn out to be distinct. In the second image it is possible
to notice how a worse GPS signal affects both the estimate and the final
path; also in this case, the MPC is still able to find a sequence of actions
to reach the final point.

In Figure 6.13 is presented a similar scenario, i.e., the comparison
between the trajectories with and without noise, but with the presence
of an obstacle. In Figure 6.13a the dotted line represents the followed
path using ideal sensors, while the other lines represent five different tests
performed using the same level of noise. The aim of this comparison is to
show how the MPC is influenced by noise starting from the same initial
conditions; in all cases the MPC is able to drive the vehicle to the final goal.
In Figure 6.13b we show, just for a single test, the GPS measurements
compared with the followed path.

Lastly, Figure 6.14 compares all three localization methods in a noisy
scenario. The blue line represents the trajectory followed using Gazebo
localization, the orange line represents the path followed using ROAMFREE
and the dotted lines the ones with the fastPredictor node. It is possible
to notice how the dotted lines generally represent a compromise between
the ideal localization and the ROAMFREE one. This result is obtained
thanks to the higher frequency of the fastPredictor and its better accuracy.

6.4 Trajectory
The structure of the original MPC was not thought to implement a path
follower: it would have been necessary to modify the MPC itself, in
particular its cost function and the constraints that bound the controller
to reach a goal with null final velocity and free orientation, but this goes
beyond the scope of this thesis.

In this section we present the results obtained through a waypoint
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(a) (b)

Figure 6.12: Trajectories of the vehicle with ROAMFREE with and without
noise: GPS std <0.1, 0.1, 0.1> (a), GPS std <0.3, 0.3, 0.3>
(b).

(a) (b)

Figure 6.13: Trajectories of the vehicle with ROAMFREE with and without
noise (with obstacle): comparison of various tests(a) and GPS
noisy signal of one the tests (b).
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Figure 6.14: Trajectories comparison among the ideal situation in Gazebo,
ROAMFREE affected by noise and ROAMFREE with fastPre-
dictor affected by noise.

changing trajectory, i.e., using a sequence of long-range goals. This has
been made possible adding a rule to the MPC node, so as to update the
goal as soon as the vehicle reaches a distance that is less than 2 meters
far from the current goal. In the following we present the results obtained
with both ODE and Gazebo simulators.

In these scenarios we want the vehicle to follow a waypoint trajectory
composed by these points: goal1 = [10, 0]T , goal2 = [30, 10]T , goal3 =
[40, 10]T , goal4 = [60, 0]T , goal5 = [70, 0]T , goal6 = [90, 10]T , goal7 =
[100, 10]T , goal8 = [120, 0]T with the initial position of the vehicle set to
[0, 0]T and null velocity.

6.4.1 ODE based simulator
In this first part we present the results obtained with ODE simulator.
Figure 6.15 shows the trajectory followed by the vehicle. The initial point
is indicated by a black asterisk while the goals that are to be reached are
marked with red circles.
From the figure it is possible to notice how the trajectory does not cross
exactly the goals, because the next goal is updated when the current goal
is almost reached as stated above.
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Figure 6.15: A waypoint trajectory followed by the ODE simulator.

Figure 6.16: Velocity trend.

Figure 6.17: Steering angle trend.

In Figure 6.16 and 6.17 velocity and steering angle trends are shown.
From the first image it is possible to notice how the velocity trend changes
in the updating-goal and in the reaching-goal phases: the more it gets close
to the goal the more the velocity decreases, because of the zero terminal
constraint. In the second image it is possible to observe the steering angle
trend, which never exceeds its bounds (±0.65rad), delimited by the red
lines.
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Figure 6.18: Trajectories comparison in Gazebo.

6.4.2 Gazebo
In this section we present the results about the trajectory obtained using
Gazebo simulator. Three kind of experiments have been performed, the
main difference among them is given by the localization method used. At
the beginning we used the localization offered by Gazebo, then the one
provided by ROAMFREE and lastly the one coupling ROAMFREE and
the fastPredictor. In the last two cases the position is estimated using
noisy sensors, since we thought they can represent a more realistic scenario.
GPS is affected by Gaussian noise with a standard deviation of 0.1m for
each axis, IMU accelerometer is affected by Gaussian noise with a standard
deviation of 0.1m/s2 for each axis.

In Figure 6.18 we show the obtained results. The initial point is
indicated by a black asterisk while the goals that are to be reached are
marked with red circles. The blue line represents the trajectory followed
using the ideal localization provided by Gazebo, the orange line represents
the trajectory followed using ROAMFREE localization and the yellow line
the one obtained using the fastPredictor.

As previously described, also in this case not every goal is crossed due
to the goal-updating rule. The reference trajectory is given by the blue line
since it represents the ideal scenario. Observing the orange line it is possible
to notice how the trajectory is influenced by the estimated position, since
the sensors suffer from a certain noise. In fact even though ROAMFREE
is able to estimate a reasonable position, the obtained trajectory is hardly
affected, although the vehicle is still able to reach the final goals. The
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Figure 6.19: Ideal trajectories comparison.

yellow line represents a compromise between the previous ones: it is not
as good as the ideal trajectory, but there is a notable improvement with
respect to the one generated using only ROAMFREE. This is because the
pose estimation is performed at a much higher frequency and because the
odometry integration allows the controller to work with a more precise
position.

6.4.3 Ideal comparison
In this section we want to compare the two ideal simulation, i.e., the
one performed with ODE and the one performed with Gazebo using its
own localization method. The aim of this comparison is to highlight the
differences in the behavior of the controller switching from the single-track
model to the real one. To make this experiment we took advantage of the
same trajectory we already used previously.

In Figure 6.19 the blue line represents the ODE trajectory, while the
orange line the Gazebo one. It is possible to notice how the first path
appears to be less smooth compared to the second one; this is because
in the first case the steering variation happens instantaneously, while in
the latter the steering variation requires more time, due to a real vehicle
dynamic. This leads also to a reduced accuracy in the final path.





Chapter 7

Conclusions and future work

The result of this work is a flexible and modular Model Predictive Control
architecture developed with ROS that includes localization and static
obstacle avoidance. All the modules have been developed and tested
independently. First of all, the proposed system has been tested with
a single-track simulator; the performance is satisfactory and the vehicle
reaches its target position without violating the considered constraints.
After that, we have used a more accurate model to describe the vehicle
using a simulated Polaris Ranger XP 900 within the Gazebo environment.
This allowed us to test the localization module and the controller behavior
in a more realistic situation. This architecture has proven effective during
the experiments, obtaining good results in both localization and single-
point trajectory generation although some limitations are clear from the
actuator dynamics.

7.1 Future work
One of the first functionalities that could be added to the architecture is
the obstacle detection. Since the implemented Model Predictive Control
handles obstacles as polytopes, in order to add this feature it would be
necessary to equip the vehicle with at least a laser scanner and to develop
a new module able to detect objects and to model them as polytopes to
be sent to the MPC node.

The next step could be to modify the controller to add the path
following functionality; in order to do so it would be necessary to modify
the cost function and the MPC constraints. For instance the zero terminal
constraint should be modified and substituted with constraints regarding
velocity and orientation that the vehicle should assume for each point.
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It is also possible to improve the system behavior working on the
localization module. Being inspired by other well-known unmanned vehicle
projects, the vehicle could be equipped with more sensors, such as one
or more laser scanners and cameras. Moreover the vehicle odometry
measurements could be added to this module. All this additions could
allow the system to compensate in a more efficient manner the lack of GPS
measurements.

Once added all the previously specified functionalities, the architecture
would be ready to be implemented on a real vehicle. In order to do so, the
vehicle should be equipped with an actuation system able to control the
handwheel and the gas/brake pedals. Furthermore it would be necessary
to implement a new module to handle the communication between the
controller and the actuators.
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