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Abstract

Le condizioni dei mercati finanziari dopo la crisi economica e l’introduzione di
nuovi standard internazionali nell’accounting hanno portato alla luce la necessità
di considerare il rischio di credito e più genericamente il rischio di controparte nella
valutazione dei derivati finanziari.

Se prima della crisi infatti veniva considerato nullo il rischio di default di una
banca, a seguito del 2008 e in particolare a seguito della crisi dei debiti sovrani, si
è percepito come questo potesse essere il driver di un rischio finanziario sistemico.

Gli istituti finanziari dunque non sono più solamente interessati a creare delle
strategie di copertura contro un eventuale rischio di default della controparte, ma
hanno la necessità di coprire anche il rischio derivante da cambiamenti nella proprià
qualità di credito.

La scarsità di tecniche di trading indirizzate alla copertura dell’Own Credit
Risk è il motivo alla base del seguente lavoro. Questa tesi infatti nasce da una col-
laborazione tra il Politecnico di Milano e Banca IMI, volta alla ricerca di tecniche
di reinforcement learning che permettano al Credit Treasury Desk di automatiz-
zare il processo di copertura. La presente tesi vuole quindi formalizzare il problema
dell’hedging del Debt Value Adjustment. In particolare nella prima parte si anal-
izza la questione dal punto di vista finanziario, analizzando i derivati utilizzati per
la copertura e i modelli utilizzati per il pricing di questi ultimi. Nella seconda
parte invece il problema viene formalizzato sotto una prospettiva basata sul re-
inforcement learning, e dunque più in generale basata sulle teorie del controllo.
L’implementazione degli algoritmi per la rappresentazione dell’environment sono
stati svolti utilizzando linguaggio C++ e sono parte integrante del seguente lavoro.
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Chapter 1

Introduction

Market conditions after the economic crisis and the introduction of IFRS 13 Fair
Value Measurement have brought to light the need to consider credit risk properly
in the fair value of derivative contracts.

Questions and issues are likely to be raised in the future since new istituions
are continuing to apply IFRS. In addition, various groups as the International
Valuation Standards Council, are developing guidance in respect of credit and
debit valuation adjustments. Until now, there is no specific guidance on processes
used to calculate CVA and DVA, which creates challenges in evaluation.

After major bank defaults during the financial crisis, it was clear the need to
take into account the counterparty credit risk into the valuation method. Thus,
most market partecipants began to apply a CVA adjustment on their derivative
assets. However, number of reasons have cited from financial institutions for not
incorporating a DVA in their derivative liability position. First of all, observe
a gain in profit or loss as their own creditworthiness deteriorates was considered
counterintuitive and secondly there could have been an increase in systemic risk
from hedging the DVA.

Anyway, IFRS 13 established that own credit risk must be contemplated into
the fair value measurement of a derivative liability under the approach of an exit
price. 1 The transfer notion is essential for measuring fair value, bacause it ”cap-
ture market partecipants” expectations about uncertainty, but also the liquidity,
and other associated factors.

IFRS 13 requires that techniques used for the valutation are built in such a way
that they minimise the use of unobservable inputs and maximise the use of relevant

1”Entry price represents the perspective of buy-side: what a company would pay to acquire
an asset or pay to settle a liability. Fair value was previously viewed as entry price. It is now
synonym with an exit price (sell-side). Exit price reflects the standpoint of sell-side: what a
company would receive if it were to sell the asset in the marketplace or paid if it were to transfer
the liability.”
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observable inputs. This concept reflects the need that the fair value is a market-
based measurement. Therefore, if available market-observable credit spreads are
used to measure the fair value of an OTC derivative under IFRS 13.

1.1 Motivation and objectives

Machine learning and disciplines that are close to it have seen a great raise in
interest. From the use of artificial neural networks in pattern recognition, to more
recent methods such as Bayesian probability methods and reinforcement learning,
machine learning techniques have been explored in a large number of applications,
and finance is surely one of the fields where these techniques are applied.

In the quest for a trading algorithm, artificial intelligence methods have been
emplyoed to construct systems that are better than traders in timing trade entry
and exit opportunities. During last years, different attempts have been made in
order to create consistently profitable system and ideas came from different fields
ranging from fundamental analysis to machine learning. Only few of them were
actually successful and the most promising could not be used to trade on market
because of practical disadvateges. For example they led to large draw-down in
profits and the trading strategy was characterized by excessive switching (long to
short or viceversa) that implied huge transaction costs.

Since CVA and DVA are used for the valuation of an Over The Counter deriva-
tive, techniques in order to hedge them are now essentials. And if on the one hand
there is an extensive literature on reinforcement learning techniques applied to
financial problem as algorithmic trading, on the other hand there is no literature
regarding the use of these techniques for hedging purposes.

Reinforcement Learning (RL) has essentially its roots in control theory, and
as specified before it falls under the discipline of Machine Learning. The aim of
Reinforcement Learning is to make a system learn a how to behave. The milestones
of RL application are:

• The definition of the state space. The elements of the state space will be the
variable on which the agent will take an action.

• The definition of a set of possible actions from each state.

• The definition of the impact that some actions can have on the systmes. In
our specific case, the impact that our trading can influence the market.

• The choice of an algorithm that can learn an optimal policy, considering
computational costs.
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• The evaluation of the policy given by the previous point, by valuating its
out-of-sample performance.

Despite the fact that Reinforcement Learning technique have been widely ap-
plied in different situations to solve also very complex problems, a practical ap-
plication, like the one that is discussed on this thesis, requires a long process of
experimentation that cannot be fully covered in a period of 6 months.

The present work, that is the result of an intese cooperation with BANCA IMI,
therefore does not aim to cover all the elements of a RL Application, but it aims
to set the basis of a project that will last years, formalizing essentially the whole
problem that must be solved, and fixing the first bullet points of the list provided
above. The coding part of the present work has been developed in C++.

Whereas actually the final aim of the whole project is to exploit reinforcement
learning techniques for the DVA hedging.

1.2 Outline of Contents

The present work is structured as follows:

• In Chapter 2 will be introduced the concept of Counterparty Risk, consider-
ing how it is related with other financial risks. It will be also introduced the
concept of credit exposure and expected exposure.

• In Chapter 3 some finance tools that will be used during the problem for-
malization are introduced. In particular the differences between real-world
and risk-neutral probabilities are highlighted. Then the chapter deals with
credit derivatives in particular focusing on the structure of Credit Default
Swaps on single names, Contigent Credit Default Swaps and Credit Default
Swap on Indices.

• In Chapter 4 the definition of Poisson Process is given, highlighting its main
properties. Then the derivation of a deterministic intensity based model for
single names is done. This model will be used many times during the present
work, for different aims. At the end of the chapter is briefly and qualitatively
described the Curve Mapping method for deriving credit spreads for those
counterparties that are not traded on the market.

• In Chapter 5 the Counterparty Risk will be defined in quantitative terms,
thus defining and discussing the Credit Value Adjustment and the Debt
Value Adjustment. In particular it will be given a general definition of the
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two quantities also highlighting some hypothesis that can be taken in order to
simplify their computation but also the description of their main properties.

• In Chapter 6 is introduced and formalized the core-problem of this thesis.
In the first section is highlighted the concept of DVA hedging, and which
instruments can be used for hedging purposes, but also what critical issues
they bear. Then the variables involved in the hedging strategy and the
hedging strategy itself are formalized. As last also a proper formalization of
the objective is given.

• In Chapter 7 the mathemtical presentation of Sequential Decision Problem
in provided. In particular some definitions are given in a rigorouw way in
order to properly fix the basis of the mathematical framework in which the
problem will be solved. In the second part of the chapter the same problem
will be discussed under the Reinforcement Learning Perspective, focusing
on Markov Decision Process, and deriving milestones results of the control
theory as the Bellman Equation.

• In Chapter 8 some implementative aspects are outlined in order to give a
semplified version of the problem for a first implementation. In particular
some hypothesis are taken with respect to the general problem discussed
in chapter 3, and the objectives are specified in view of the definitions in
chapter 7.

• In Chapter 9 is described the algorithm called as ’Simulator’. The simulator
is necessary to describe the environment in which the agent moves. The im-
plementation of the simulator is a core-part of the present work, and it was
done in C++. The implementation of the simulator requires a deep com-
prehension of the whole problem, because it merges notions of finance, and
notions of reinforcement learning; Thus also the ability to switch perspective,
from finance to RL or viceversa, was necessary.

• In Chapter 10 will be discussed two Reinforcement Algorithms respectively
for the policy valuation and policy improvement. This chapter does not
aim to discuss RL techniques that will actually be applied on this project,
bacause this is not the objective of the present work; but for completeness,
I think that they should be in this thesis too.

• In Chapter 11 I have done a summary of the present work, outlining the
objectives reached, but also which aspects should be revised in order to
have more performing algorithm in the ”Learning Phase” of the project.
In particular I gave an idea about how this project will develop, and hpw

4



different techniques will be used in the light of the first results that we will
obtain.
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Chapter 2

Counterparty Risk

In this chapter, a broad overview of the counterparty risk will be provided. In
particular in the first section the counterparty risk will be defined qualitatively
underlining also how it is related with other financial risks. In the second section
the counterparty risk will be further analyzed introducing the concept of credit
exposure and expected exposure. These two quantities will be useful to define the
credit value adjustment and the debt value adjustment.

2.1 Definition and Relations with other Finan-

cial Risks

Definition: Counterparty credit risk (or counterparty risk) is the risk that the
counterpart (thus the entity that has entered with me into a financial contract)
will not be able to fulfill its side of the contractual agreement because it defaults.

Counterparty risk is typically defined as arising from Over The Counter deriva-
tives. Over The Counter (OTC) derivatives are usually more exotic, i.e. non-
standards. They are traded between two parties and usually they are not protected
by any government insurance programme. In other words, each party takes the
counterparty risk deriving from the contract with the other party. Some parties
in the market may have a deteriorated credit quality and are not even able to
post collateral for reducing counterparty risk. Thus a general increase of interest
around the counterparty risk raised as the Over The Counter derivatives market
grew. Moreover, if before the financial crises banks and more in general institu-
tions did not consider the counterparty risk with high quality (e.g., Triple A) rated
institutions, after it, it was obvious how these entities were representing the most
counterparty risk. Finally, also the regulatory pressure gave a boost to this interest.
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This risk is obviously related to the financial risk’s components:

• Market Risk. The Market risk is simply the risk deriving from the move-
ment of market prices. Thus, it can be caused by some changes in underlying
variables as stock prices, foreign exchange rates, credit spreads, interest rates
or commodity prices, but it can be caused also by strong changes in mar-
ket volatility. It has been widely studied, and it has driven the evolution
of some mathematical models for assessing the risk. The Market risk can
be trivially eliminated trough an offsetting contract, thus with a so called
“back-to-back” position, and therefore assuming an opposite position in re-
gards to the original opening position. But, if the offsetting contract is done
with another counterpart, then a counterparty risk will arise. Indeed, the
position is no longer neutral, considering that the two counterparties differ,
and one of the two may fail. In conclusion, Market risk contributes to the
counterparty risk.

• Credit Risk. The Credit risk is the risk that a debtor will not repay the
debt or in general fulfill an obligation. Thus, it is strictly linked with the
counterparty risk to default. So, it is important to study the probability
to default during the lifetime of the contract. Under the Credit risk falls
also the risk migration risk. Therefore a deterioration in credit quality, that
will be reflected in a mark-to-market loss, must be taken into account. So
as expected understanding the term structure of the counterparty’s default
probability is essential for analyzing the counterparty risk.

• Liquidity Risk. It can happen that a transaction cannot be executed for
example because of the size of the position. But it can also happen to be not
able to fulfill collateral requirements. All these fall under the concept of Liq-
uidity risk. Therefore, reducing counterparty risk through collateralization
or central clearing, is reflected in a liquidity risk growth.

• Operation Risk. The operation risk includes risks resulting from break-
downs in internal procedures, people and systems. The operation risk, there-
fore, is caused by human error, model risk (think about inaccurate models),
failed processes, legal risk and fraud. Mechanism as the collateralization to
mitigate counterparty risk give rise to operational risks.

Thus the counterparty risk is just a combination of market risk, which reflects
the exposure, and credit risk, which reflects the counterparty credit quality. It is
quite hard to assess in quantitative terms the counterparty risk, but the Credit
Value Adjustment (that will be introduced later) puts a precise value on it and
potentially allows it to be traded and also hedged (but as noticed before mitigating
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counterparty risk creates other financial risks).

Remark: : traditional credit risk is different from the counterparty risk, be-
cause:

• The value of the contract in the future is not deterministic but stochastic in
most cases.

• The counterparty risk is undertaken by both the two parties, so it is bilateral
and can be positive or negative.

The counterparty risk is reducible in different ways. Collateral agreements are
commonly exploited at this aim. Usually they are bilateral agreement, thus they
reduce the risk of both the two parties. As observed before, the collateral is able
also to eliminate this risk, but at the same time it creates other risks as liquidity
risk, but it also increases operational costs. The hedging of counterparty risk is a
viable option, in particular after credit derivatives market grew. However hedging
can be expensive. In general, the mitigation of counterparty risk is a double-
edge sword, because it is not said, that it will completely eliminate it, and it can
potentially allow financial markets to reach a dangerous size.

2.2 The Exposure and The Expected Exposure

In order to define properly the Credit Value Adjustment and the Debt Value
Adjustment the definition of credit exposure must be given.

An institution may liquidate the contract and stop paying any future cash flow,
if the counterparty has defaulted. Thus, the two counterparts must evaluate the
net amount owing between them (also considering posted collateral).

The definition of credit exposure depends on whether the value of the contract
is positive or negative. In particular:

• Negative Value As the value of the contract is negative for the institution,
it is in debt with the counterpart, and therefore it is obliged to settle the
amount. Therefore, the institution position is not changed, and neither losses
nor gains are recorded from the counterparty’s default.

• Positive Value In this case if the counterparty defaults, the institution will
have a claim on the positive value of the contract, because the counterpart
will not be able to fulfill the future payments. Just as bondholders, the
institution expect to receive a fraction of the claim. Since it is unknown it
is not considered in the definition of exposure.
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Therefore, we define the exposure simply as:

Exposure = max(contract value, 0)

Thus, summing up, a counterparty’s default, is reflected in an Exposure, which
actual impact is a loss equal to :

Rc ∗ Exposure

where Rc is the counterparty recovery rate.
As noticed also before, the counterparty risk is bilateral, thus it characterizes

both two parties. Therefore, to be precise, we must take into account the losses
derived by both two defaults.

The institution default will lead to a loss to all the counterparties it is in debt
with. Therefore we must define also a negative exposure. The definition of negative
exposure depends on whether the value of the contract is positive or negative. In
particular by simmetry it must be that:

NegativeExposure = min(contract value, 0)

Therefore a negative exposure is reflected in a gain. This gain arises from the
symmetry effect: where one party loss the other must gain. It seems to be also
counterintuitive define a gain with the own default. This will be discussed deeper
introducing the concept of Debt Value Adjustment.

As specified by the two formulas above, the valuation of the contracts at the
default time is needed. This procedure is not easy, because it is essential to be in
agreement with the counterpart.

In order to deeply understand the asymmetric risk profile that arises from the
counterparty risk a comparison can be useful. Indeed, the fact that the institution
loses if the value is positive and does not gain if the value is negative can be seen
as short option position. Thus:

• As the exposure is comparable with a short option position, the volatility
plays a key role.

• Compute the exposure can be hard, exactly as options pricing can be com-
plex.

By symmetry, an institution has long optionality from its own default.

Observe that for risk management purposes, and in particular for the compu-
tation of the credit value adjustment and its symmetric part it is more important
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to define the exposure that there might be in the future, than the current expo-
sure. If on the one hand the current exposure is certain, on the other hand the
future exposure is stochastic, since for example it is influenced by future market
movements that are obviously unknown. Valuating the future exposure therefore
can be very complex, in particular if long periods are involved.

It is important to define the expected exposure and the expected negative
exposure, also in order to give a proper definition of Credit Value Adjustment and
Debt Value Adjustment. The expected exposure (EE) at a given future time is just
the average of all exposures value. In line with the previous remarks negative values
will give a zero contribution and will influence the exposure only through their
probability, and only positive value will rise the expected exposure. By symmetry,
the expected negative exposure at a given future time is just the average of all
exposures value. In line with the previous remarks positive values will give a zero
contribution and will influence the exposure only through their probability, and
only negative value will rise the expected negative exposure.
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Chapter 3

Default Probability and Credit
Default Swap

In this chapter is discussed the concept of default probability, highlighting the dif-
ferences between real-world probabilities and risk-neutral probabilities, and which
one will be used for our purposes. Then it is introduced the concept of credit
derivative and how the Credit Default Swap works.

3.1 Real-World Probability and Risk-Neutral Prob-

ability

As always in finance there is a huge difference between real-world parameter and
the risk-neutral one: think for example to the real world rate of return for studying
the asset evolution and the risk neutral rate of return used in the black schools
framework. In particular:

• The real-world parameters should reflect the true value of a financial
quantity.

• The risk-neutral parameters are directly derived from market prices,
therefore they reflect the market perception of a financial quantity.

For our purpose in particular it is fundamental to understand the differences
between risk-neutral default probability and the real- world default probability,
indeed default probability is a key aspect for assessing and valuating the counter-
party risk.
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It is easy to understand how the two probabilities can be also significantly
different through an example.

⇓
Example: Consider a Zero Coupon Bond, that has a nominal value of 100e.

Suppose that the Zero Coupon Bond was issued by a corporate having 3 % of
probability to default. Supposing the absence of interest rates and recovery, then
the price of the Zero Coupon should be 97 e. However, no one would invest, since
there is the possibility to lose everything. Therefore we can suppose that in order
to consider the uncertainty of the return there will be a default risk premium, and
therefore a reduction in the bond price (suppose 3 e of reduction). Moreover,
the investor can also worried about the liquidity of the bond, because it is not
sure that he will be able to sell it in the future. Thus, another reduction (let’s
say of 1 is applied). Adding the default risk premium and the liquidity premium,
the price of the Bond on the market would be 93 e, which would correspond to
a default probability equal to 7%, that is not the actual default probability but
rather constructed risk-neutral probability to make the numbers balance.

Summing up, we can say that the risk-neutral probability to default is derived
from the market, and does not represent the actual (real-world) probability to
default. Thus, real-world and risk-neutral default probabilities are not in conflict,
but they just represent two different things.

It is also quite natural to understand how real world probabilities are in line
with risk management purposes, while risk neutral probabilities should be used
for hedging purposes. Thus, since the aim of this thesis is hedging the Debt Value
Adjustment, risk-neutral probabilities will be used. Thus, also models to derive
them from market prices are necessary.

In general the Risk-netrual probabilities are derived from credit spreads ob-
served in the market. Different financial instruments bear with them different
spreads. A common way to assess the credit spread is trough the premiums of
single-name (referencing a single component such as corporate) Credit Default
Swaps.

3.2 Credit Default Swap

In recent years there has been an exponential growth of the credit derivatives
market. After the financial crisis, it was even more fundamental to transfer credit
risk efficiently, therefore ad-hoc financial products were developed for investors.
A credit derivative, is an agreement between two parties that is created in order
to shift the credit risk, and its value is linked with the credit performance of a
name or more names. Therefore we can breakdown them into single-name credit
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derivatives (referencing a single component such as corporate) and portfolio credit
derivatives (referencing lot of components). Since credit derivatives are designed
to shift credit risks, it is natural that they represents an opportunity for the trad-
ing, the hedging and the diversification of the counterparty risk.

The Credit Default Swap (CDS) was invented by Blythe Masters from JP
Morgan in 1994. It is a financial swap agreement where the protection seller will
compensate the buyer (usually the creditor of the reference loan) in the event of a
loan default (by the debtor) or another credit event. In other words the seller of
the CDS insures the buyer against a default event. The contract provides for the
following cash flows:

• At the issue time, the protection buyer can enter at par. So no cash flows
are provided.

• The buyer of the CDS makes a series of payments (the CDS spread) to the
seller. Usually the buyer pays the CDS spread on a semester basis.

• The seller pays to the buyer a quantity of cash equal to the loss given default
(of the reference loan) if the loan defaults.

If the CDS is issued at par, then the Net Present Value of the contract at the
issue time, must be 0. So the following must hold:

s
N∑
i=1

(ti − ti−1)E0[D(t0, ti) 1{τ>ti}]− (1− π)
N∑
i=1

e(0, ti, ti−1) = 0

where:

• s is the spread paid by the buyer to the seller.

• 1− π is the loss given default of the reference loan.

• τ is the time to default of the reference loan.

• e(t1, t2, t3) = Et1 [D(t1, t3) (1{τ>t2} − 1{τ>t3})] and it is the value of a unitary
cash in t1 if the default occurs between t2 and t3.

Therefore, solving the above equation with respect to the spread s, we obtain
the spread/premium that the buyer must pay, if the CDS is issued at par.

Remark: sometimes it can happen that the CDS spread is fixed in advance.
Indeed, the standard is that a credit default swap built on investment-grade refer-
ence (thus with a credit quality superior than BBB) is traded with a fixed premium
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of 100 basis points, whereas a credit default swap built on reference with lower
credit quality (and thus higher spread) is traded with a fixed premium of 500 basis
points. In this case the CDS is also governed by an upfront, so that the NPV,
considering the upfront, is equal to 0.

3.3 Contingent Credit Default Swap

As observed before the CDS built on a single-name provides protection to its buyer
on a fixed notional amount. Thus, the notional amount is chosen by the buyer in
order to cover its credit exposures arising from instruments such as bonds. For
example, if an investor have invested 10 billion e on a corporate bond, then to
hedge its position he will buy a CDS built on the same name with a 10 billion
e notional. However, a characterizing aspect of the counterparty risk is that the
actual loss at the credit event time is not known.

A Contingent Credit Default Swap is built to to overcome this problem. Indeed
it works like a standard Credit Default Swap but at the same time the Notional
Amount of protection is linked to another transaction. This transaction can be
any cash flow linked to any financial product of any asset class. Therefore, a
contingent credit default swap provides the perfect hedge against the counterparty
risk arising from a derivative, just linking its notional amount with transactions
provided by the same derivative. If on the one hand they represent a perfect hedge,
on the other hand they are tailor-made products, therefore they are not flexible
as standard CDSs. Although it has been discussed how contingent credit default
swaps are able to eliminate counterparty risk, they are not popular in the financial
sector.

The unpopularity of the CCDS arises from:

• Documentation: The contract of a CCDS is a an embedded termsheet
since it must contains also information regarding the transaction to which is
linked the national amount.

• Privacy: The counterparty of the CCDS will have also information regard-
ing the investor’s trades that have been hedged trough the CCDS.

• No recognition of netting: No recognition of netting: usually the CCDS
is linked to a single transaction, not to a netting set, which would be useful.
This because of the complexity that would arise in designing a CCDS covering
different trades related to a netting set.

• No recognition of collateral: The CCDS does not account a potential
collateralization of the credit exposure.
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• Credit Quality of the CCDS provider:The CCDS seller, must have a
high credit quality, possibly not correlated with the counterpart to which
the notional amount is linked. So that, the investor must not incur in a
double default. (the default of the original counterpart, and the default of
the CCDS provider). For our purposes in particular, in order to hedge a large
component of the DVA with such an entity, we should be very confident with
the entity’s ability to combat a high default rate situation.

Therefore, we will not use this tailor-made products four our hedging purposes,
but in each case it was worth mentioning them.

3.4 CDS on Indices

In this section Credit Default Swap on indices will be introduced, and it will be
also used in our DVA hedging strategy.

A Credit Default Swap in index can be seen as a convex combination on single-
name Credit Default swaps, where each CDS has the same weight. Thus, also the
spread in CDS on index, can be approximated just doing an average of the CDS
premium within the index. Quite known credit indices are:

• iTraxx Europe index. It is also known as “The Main” is composed by
125 equally weighted European corporate investment-grade reference Entities
(thus having a credit quality superior to BBB).

• DJ CDX NA IG. It composed by 125 equally weighted North American
corporate investment-grade reference Entities (thus having a credit quality
superior to BBB).

These two indices are the most common credit indices and therefore also the
more liquid, but there are also other indices containing names on the same sector
(e.g. the senior financial) or for example names operating in the same geographical
region.

A typical technical feature of credit indices is the roll, which happen every 6
months. The roll consists of 3 operations:

• Changing names within the index: The aim of this operation is to
keep an homogenous credit quality from series to series, replacing defaulted
names and removing from the index other names because of credit events
or migration events (thus rating downgrades), and therefore maintaining the
same level of premium in the CDS on index.

17



• An adjustment of the maturity: In general the CDS on indices have
a maturity of 5, 7 or 10 years. When the new series is issued the initial
maturities are 5.25, 7.25 and 10.25 years. Hence, after 6 months they will
be 4.75, 6,75 and 9.75, so another new series will be issued resetting the
maturities to the original value.

• Fix the index premium: As already noticed standard CDS are not issued
at par but it is with a fixed premium of 100 basis points or 500 basis points
depending on the references’ credit quality, and therefore the CDS is governed
by an upfront. Hence, in the period before a roll, the premium is fixed at
a level of 100 basis points or 500 basis points. Anyway, in general the fixed
premium does not change from series to series also in order to reflect what
mentioned in the 1st point, and therefore in order to maintain stable the
credit quality of the index.
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Chapter 4

The Poisson Process and the
Jarrow & Turnbull Model

In this chapter is defined the Poisson Process and the Jarrow and Turnbull is in-
troduced providing therefore a method to obtain risk-neautral default probabilities
from CDS prices.

4.1 The Poisson Process

It is useful to recall the concept of Homogeneous Poisson Process and of Memory-
less Random Variables:

Definition (Homogeneous Poisson Process): Let (τi)i≥1 be a sequence
of random variables independent and identically distributed, such that τi ∼ ε(λ).
Define Tn =

∑N
i=1 τi. Then the process (Nt, t ≥ 0) defined as:

Nt =
∑
n≥1

1{t≥Tn}

is said to be a Homogeneous Poisson Process with intensity λ.

These random variables Tn =
∑N

i=1 τi are called jump − times and represent
the times at which some repeating phenomenon that we will call jump occurs.

The Homogeneous Poisson Process is therefore a counting process, so it counts
the number of random times Tn, and therefore of jumps, that occured between 0
and t. It is obvious that:

(Tn ≤ t) = (N(t) ≥ n)

In order to further analyze the properties of the Poisson Process, it is useful to
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introduce the concept of Memoryless Property for a random variable.

Definition (Memoryless Random Variables): a random variable X pos-
sesses the memoryless property if P(X > 0) = 1 (i.e. X is a positive random
variable), and for every x ≥ 0 and t ≥ 0,

P(X > t+ x) = P(X > x)P(X > t) (4.1)

Observe that if X is an exponential random variable with intensity λ > 0,
then: P(X > x) = e−λx for x ≥ 0. X therefore satisfies the above equation for all
x ≥ 0, t ≥ 0, so X is memoryless. Conversely, it is easy to prove that an arbitrary
random variable X is memoryless only if it is exponential.

The memoryless property of exponential random variables is useful to find the
distribution of the first jump in a Poisson Process after an arbitrary given time
t > 0. In particular it can be shown that the first jump after t > 0 is indipendent of
all jumps occured before (and also including) t. To be more precise, the following
theorem holds.

Theorem 1. Consider an Homogeneous Poisson Process with intensity λ and a
given t > 0. Denote with W the random variable representing the time-interval
from t until the first jump after t. Then W is a nonnegative random variable with
the distribution function 1 − e−λ,w for w ≥ 0. Moreover W is independent of all
the jump-times before time t.

The theorem can be easily proved. Here, I give just an idea about the indipen-
dence:

Proof. As regards the indipendence the basic idea behind the proof is to note that
W conditional on the time of the last jump-time ϑ before t is just the remaining
time until the next jump.

Considering now that the jump-times were defined as Tn =
∑N

i=1 τi and there-
fore as a sum of random variables independent and identically distributed, such
that τi ∼ ε(λ), then the interval time starting at ϑ is exponential and thus mem-
oryless. Then W is indipendent of ϑ ≤ t and of all earlier jump-times.

Notice also that:

• for any interval of size t, λ t is the expected number of arrivals in that interval.

• if we consider a time interval ∆ t sufficiently small then the probability to
have a jump in (t, t+ ∆ t) is λ∆ t.
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For our aims, we consider the time to default τ of a single name, as the first
jump of a poisson process. Thus, we need to compute the survival probability
P (0, T ), that is equal to P (NT = 0). In order to do this, divide the interval [0, T ]
in N intervals of size ∆ t = T/N . Now, using the two properties above, it holds:

P (0, T ) =
N∏
i=1

(1− λ(ti) ∆ t) = e
∑N

i=1 ln(1−λ(ti) ∆ t)

now considering λ(t) sufficiently regular in t, and applying the first order taylor
expansion, it holds:

e
∑N

i=1 ln(1−λ(ti) ∆ t) = e−
∑N

i=1,λ(ti) ∆ t

Therefore:

P (0, T ) = e−
∑N

i=1,λ(ti) ∆ t

Computing the limit ∆ t→ 0, we get:

P (0, T ) = e−
∫ T
0 λ(s) ds (4.2)

Remark: Since we have considered an Homogeneous Poisson Process, λ(t) is
actually constant, so sufficiently regular.

4.2 Jarrow and Turnbull Model

The Jarrow and Turnbull Model provides a method to obtain risk-neautral de-
fault probabilities from CDS prices. The assumptions underlying the Jarrow and
Turnbull model are the following:

• It considers a CDS with a spread that is paid continuously.

• λ(t) is constant in t.

With these hypothesis, a relation between the spread in CDS and the intesity
λ is obtained. Indeed, as the NPV is 0, it must be that:

s

∫ T

0

dtB0(0, t+ dt) = (1− π)

∫ T

0

e(0, t, t+ dt)

where: B0(0, t+ dt) = E0[D(0, tt + dt) 1{τ>t+dt}].
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Considering that:

e(0, t, t+ dt) = E0[D(0, t+ dt) (1{τ>t} − 1{τ>t+dt})]

and supposing that rates are indipendent of the default:

E0[D(0, t+dt) (1{τ>t}−1{τ>t+dt})] = B(0, t+dt) (P (0, T )−P (0, T+dt)) = B(0, t+dt) e−λ (t+dt) (eλ dt−1)

⇒ e(0, t, t+ dt) = B(0, t+ dt) e−λ (t+dt) (eλ dt − 1)

and just applying the first order Taylor expansion series of eλ dt, we get:

B(0, t+ dt) e−λ (t+dt) (eλ dt − 1) = B(0, t+ dt) e−λ (t+dt) λ dt

thus:

e(0, t, t+ dt) = B(0, t+ dt) e−λ (t+dt) λ dt

where:

• B(t0, t1) = Et0 [D(t0, t1)] is the expected value of the stochastic discount, so
it is the price of a default free zero coupon bond (it is also called ”initial
discount”).

Thus, we get:

s

∫ T

0

dtB0(0, t+ dt) = (1− π)λ

∫ T

0

B(0, t, t+ dt)P (0, t+ dt) dt

⇒ s

∫ T

0

dtB0(0, t+ dt) = (1− π)λ

∫ T

0

B0(0, t+ dt) dt

thus it holds:

s = (1− π)λ

The equation above, put in relation a market quantity (the spread), with λ
which is strictly related to the default.

Observe that we will use this model to obtain risk-neutral probabiilities that
must be computed for the DVA hedging.
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4.3 Curve Mapping

In the previous section we analyzed the Jarrow and Turnbull model for the quan-
tification of risk-neutral default probabilities from the credit spread in CDSs. At
the same time, for assessing the counterparty risk, and in particular in order to
price the Credit Value Adjustment and the Debt Value Adjustment, and there-
fore also the strategies to hedge them, is important to obtain credit spreads for
non-observable names. Thus, in this section, it will be given an idea about how
deriving credit spreads for those counterparties which credit spread is not traded
in the market.

The regulation defined by Basel III says: “Whenever such a CDS spread is
not available, the bank must use a proxy spread that is appropriate based on the
rating, industry and region of the counterparty.”

The technique used to obtain a general curve based on observable credit spreads
is called creditcurvemapping. The idea behind this method is to consider credit
instruments referencing names in the same class, then use some relevant pillars, so
some relevant maturities, and from these points obtain an entire curve, that in a
certain way will also characterize names whose spread is not traded in the market.

The given class can be broad, for example we can derive a single curve that
describe all names with the same rating, or can be more granular, for example we
can derive a single curve that describe all names with the same rating, operating
in the same sector and in the same geographical region. Obviously in the first
case, there will be more data to fit but counterparties are maybe breakdown too
broadly, while in second case the calibration is harder since there are less data.
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Chapter 5

CVA and DVA

Previously we have analyzed the concepts of credit exposure and default proba-
bilities, also providing a model to obtain risk-neutral default probabilities from
credit spreads. In this section the two quantities will be combined for defining
the counterparty risk in quantitative terms, thus we will define the Credit Value
Adjustment.

5.1 The Credit Value Adjustment

The Credit Value Adjustment (CVA) is an adjustment to the fair value price of
derivative instruments in order to consider Counterparty Credit Risk (CCR). Thus,
CVA can easily be viewed as the price of the counterparty credit risk. This quantity
obviously depends on the market risk factors that can influence derivatives’ values
(exposure) as well as on counterparty credit spreads.

The size of the credit risk depends on the exposure’s size that you have with
your counterparty, e.g., a corporate. If the derivative position with a corporate is
in the money (so the derivative’s value is positive) then it means that, given current
market expectations of future market conditions, the future cashflows is likely to
be valuable to you. But you could potentially lose the value of the derivative, if
the counterparty were to default.

Suppose now that the derivative’s value became negative to you and so you
are out of the money on this contract, because the current markets rates and
expectations of future market rates changed. Now, the counterparty defaulting
would not be a true concern, indeed the credit risk is very little as you are not
expected to receive money from the derivative. Obviously, as there is always the
possibility that market factors change (in a such a way that the derivative becomes
in the money again), there is always a credit risk until the contract’s maturity.

The CVA can be computed as:
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CVA(t) = Et[LGDC 1{τC≤T} 1{τC<τI}D(t, τC) (V0(τC))+]. (5.1)

where:

• LGDC : is the counterparty Loss Given Default, so the share of an asset that
is lost if the counterparty defaults. In particular the loss given default can
be also written as 1− π, where π is the recovery rate, so the proportion of a
bad debt that can be recovered. It can be very arduous to model/estimate
the recovery rate and therefore the loss given default.

• τC : is the random variable representing the counterparty time to default.
Usually a Poisson process is used to describe the default time of a company.
The default time can be viewed as the first jump of a Poisson process. A
Poisson process can be classified in different ways, based on the nature of
the intensity function.

• τI : is the random variable representing the investor time to default. So, for
our purposes, it will represent the Intesa San Paolo time to default.

• T: is the maturity of the contract.

• D(t, .): is the risk free discount, used to discount future cash flows at a
risk-free rate. In the formula, it is evaluated in τC .

• (V0(τC))+: is the positive part of the derivative’s value evaluated at the
counterparty time to default. So the contribution given to the CVA by a
negative exposure at a given time is equal to zero.

Observe also that:

• The indicator function 1{τC≤T} incorporates only the counterparty time to
default occuring before the contract’s maturity. Indeed for the bank it does
not matter if the counterparty will default after the conclusion of the con-
tract.

• The indicator function 1{τC<τI} incorporates only the counterparty time to
default occuring before the bank time to default. Indeed for the bank it does
not matter if the counterparty will default after itself.

Pricing the CVA and therefore assessing the counterparty risk in quantitative
terms in not easy. In particular the difficulty arises from the bilateral nature of the
Counterparty risk. If it is unilateral it is much easier. How the situation can get
worse, from the computational point of view, with a bilateral risk, can be easily
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understood through an example.

Example: First, consider a bond. In this case to assess the risk we have to
consider default in the discounting procedure and add the default payments. This
is quite trivial.

If we consider another simple derivative but bilateral the quantification is really
more difficult. For example, consider a swap, then to assess the counterparty risk,
it must be taken into account that not all payments are at risks, because there is a
partial cancellation with my own payments. Thus, the counterparty risk in a swap
is much smaller thanks to this phenomena, but at the same time to determine
which cash flows are at risks we need take into account lot of factors as forward
rates or volatilities.

In order to greatly facilitate the initial exposition of the credit value adjustment
and to easily explain the key feuatures of the CVA, we consider the following three
assumptions:

• The institution itself cannot default. This assumption is equivalent to
set τi = inf and therefore (as it will be clearer later) to set the Debt Value
Adjustment to 0.

• The Risk-free valuation can be performed,and therefore we suppose to
be able to calculate the value of the contract ignoring the counterparty risk.

• The independence between the credit exposure and default prob-
ability.

After have computed the CVA, and considering DV A = 0, we can write:

V (t) = VRiskFree(t)− CV A(t)

where VRiskFree(t) is the value of the derivative at time t, under the default-
risk free assumption. Whereas V (t) is the value of the derivative without this last
assumption.

If on the one hand we have simply highlighted that the CVA is a negative
correction to the contract value, on the other one this formula highlight also that
the risk-free valuation and the computation of the CVA are two completely different
problems.

Therefore, contracts and the related counterparty risk may then be priced
separately. Thus, the CVA can be traded separately from the originating contract.
This is also why in credit institutions one desk is responsible for risk-free valuation
and one for assessing the counterparty risk.
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Considering the formula (5.1) and the assumption τi =∞, it holds that:

CV A(t) = Et[LGDC 1{τC≤T}D(t, τC) (V0(τC))+]

therefore considering that the probability to default is indipendent of the in-
terest rates, we obtain:

Et[LGDC 1{τC≤T}D(t, τC) (V0(τC))+] = LGDC

∫ T

t

B(t, s)EE(s) dPD(s)

where:

• EE(s) is the expected exposure at time s.

• PD(s) is the probability to default at time s.

• B(t, s) = Et[D(t, s)] is the expected value of the stochastic discount, so
it is the price of a default free zero coupon bond (it is also called ”initial
discount”).

thus, we have:

CV A(t) = LGDC

∫ T

t

B(t, s)EE(s) dPD(s)

and supposing to know the PD in a finite number of interval [ti−1; ti), we get:

LGDC

∫ T

t

B(t, s)EE(s) dPD(s) ≈ LGDC

m∑
i=1

B(t, ti)EE(ti)PD(ti−1, ti)

⇓

CV A(t) ≈ LGDC

m∑
i=1

B(t, ti)EE(ti)PD(ti−1, ti)

that is surely easier to compute with respect to (5.1).

Remark: An increase in the credit spread is obviously reflected in a CVA
increase, but the effect is not linear since probabilities are always lower than 1.

Remark: An increase in the recovery has a net impact on the CVA of the sec-
ond order. Indeed, increasing the recovery will increase also the default probability

28



as it can be noticed thanks to the relation obtained with the Jarrow and Turnbull
model, but at the same time it reduces the resulting loss. The net impact will be
negative on the CVA, because the risk-neutral probabilities increase sub-linearly,
while the effect on the resulting loss is linear.

5.2 The Debt Value Adjustment

In the previous section the Credit Value adjustment was introduced, and in order to
simplify the exposition the assumption that the institution itself could not default
was taken. But as already said in the introduction the international accountancy
standards let the institutions consider also their own default for valuation purposes.

Therefore, we can consider also the negative exposure that was defined in chap-
ter two, and therefore we can consider this component for assessing the counter-
party risk, generating the Debt Value Adjustment (DVA), which is a very contro-
versial component.

CVA was considered by banks for assessing the counterparty risk arising from
a contract with a corporate and therefore this charge fueled the tendency to have
contract with high credit quality counterparty. Moving the perspective to the cor-
porate point of view the CVA was not considered, indeed it was deemed impossible
before the financial crisis that a bank could fail. After the financial crisis there is
no more the concept of a default-free counterparty, and the Debt Value Adjust-
ment arises from taking into account a bilateral Credit Value Adjustment.

Thus, defining the Bilateral Credit Value Adjustment (BCVA), the definition
of the DVA comes by itself. The definition of BCVA is just as the definition of
CVA taking into account that the institution itself can default. For a simpler ex-
position, we assume that the two defaults are independent.

Thus, we define the BCVA as:

BCV A(t) ≈ LGDC

m∑
i=1

B(t, ti)EE(ti)PDc(ti−1, ti) [1− PDI(0, ti − 1)]

+ LGDI

m∑
i=1

B(t, ti)ENE(ti)PDI(ti−1, ti) [1− PDc(0, ti − 1)]

(5.2)

where the approximation (≈) is due the discretization of the time. (the precise
definition would involve an integral from t to T, as we have done before) and
where:
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• EE(ti) is the expected exposure at time ti.

• ENE(ti) is the expected negative exposure at time ti.

• 1−PDI(0, ti−1) is the probability that the institution itself has not defaulted
before ti−1

• 1−PDc(0, ti− 1) is the probability that the counterparty has not defaulted
before ti−1.

• PDc(ti−1, ti) is the probability that the counterparty defaults in the interval
[ti−1, ti).

• PDI(ti−1, ti) is the probability that the institution itself defaults in the in-
terval [ti−1, ti).

As we can notice the 1st part of the bilateral credit value adjustment is just
the CVA introduced in the previous section. The second term is symmetric to the
first, and gives a negative contribution to the BCVA since the Negative Expected
Exposure is negative. A negative term is reflected in a gain, indeed if the institu-
tion itself defaults it will not pay all its negative exposure but just a fraction (the
recovery) of it.

The Debt Value Adjustment is a controversial topic, indeed it is counterin-
tuitive to have a gain at our own default. In particular using the Debt Value
Adjustment implies that:

• A risk derivative can be evaluated more than a risk-free one. Indeed a great
DVA corresponds to a great negative contributes to the BCVA, that can be
negative if the 1st term reflecting the unilateral CVA is not that great. Thus,
a negative BCVA is reflected in a greater value for the risk-derivative with
respect to the same derivative but without considering the counterparty risk.

• Since everything is symmetric, if the all the parties agree for the calculation
of the Bilateral Credit Value Adjustment, then the total amount of counter-
party risk traded in the market is zero.

Now the general definition of Debt Value Adjustment will be given, obtaining
something which is symmetric to the formula (5.1) for the CVA.

Debt Value Adjustment (DVA), similarly, is defined as the difference between
the value of the derivative assuming the investor (the bank) is default-risk free
and the value taking into account default risk of the investor. Changes in a bank’s
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own credit risk that is reflected in changes in its credit spread therefore result in
changes in the DVA component.

As for CVA, DVAs depend also on changes in all key factors that influence the
expected exposures and not only to changes in the own creditworthiness (thus in
credit spreads or probabilities of default).

The DVA can be computed as:

DVA(t) = Et[LGDI 1{τI≤T} 1{τI<τC}D(t, τI) (V0(τI))
−] (5.3)

observe that now:

• The risk-free discount function is evaluated in τI .

• V0(τI))
− is the negative part of the derivative’s value evaluated at the investor

time to default. So, as discussed so far, the contribution given to the DVA
by a positive exposure at a given time is equal to zero.

• The indicator function 1{τI≤T} incorporates only the investor/bank time to
default occuring before the contract’s maturity. This is coherent with the
DVA definition.

• The indicator function 1{τI<τC} incorporates only the investor/bank time
to default occuring before the counterparty time to default. Thus, it is
symmetric with what was appearing in the CVA formula.

Consider the counterparty and the investor/bank to be default-risk free. Let
VRiskFree(t) be the value of the derivative at time t, under the default-risk free
assumption. Then the value of the derivative without this last assumption V (t),
can be obtained using the CVA and DVA, indeed it holds that:

V (t) = VRiskFree(t)− CVA(t) + DVA(t)

Therefore as noticed before the fair value price of the derivative instrument is
adjusted in order to consider the counterparty credit risk (as a negative adjust-
ment), and the bank own credit risk (as a positive adjustment).

Observe also that these two adjustments are going to 0 as the maturity of the
contract is approaching, and they are exactly 0 at maturity.
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Chapter 6

Problem Formalitazion

Hedge the DVA usually requires very complex hedging strategies. The goal of
this project is to apply Reinforcement Learning techniques for the DVA hedging,
transferring therefore the issue from the trader to an algorithm.

6.1 DVA Hedging

In order to hedge the CVA an institution should buy CDS built on the counterparty
name, or shorting the counterparty bonds, therefore in general the institution have
to short the counterparty credit. Thus hedging the CVA is theoretically simple.
For DVA things are more complex.

In this first section we highlight the concept of DVA hedging, and which in-
struments can be used to hedge, but also what critical issues they bear.

As a preliminary case we consider the one-sided (unilateral) DVA, i.e. the case
where the counterparty default-risk is negligible. Thus, in this particular case, we
set:

τC ≡ ∞⇒ 1{τC≤T} ≡ 0

Thus, also the Credit Value Adjustment is 0, and the formula for computing
the DVA in this setting is:

DVA(t) = Et[LGDI 1{τI≤T}D(t, τI) (V0(τI))
−] (6.1)

Remark: The DVA adjustment as already remarked is going to 0 as the ma-
turity of the contract is approaching. And is exactly 0 at maturity. In addition to
mitigating the risk, an hedging strategy for the DVA must also soften this reduc-
tion.

In equation (3.1), is easy to see how the DVA variability depends on:
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• credit risk component: changes in the own creditworthiness, reflected by
Et[1{τI≤T}].

• market risk component: changes in the negative exposure, reflected by Et[(V0(τI))
−].

remark: The two components above are not indipendent. Indeed, the nega-
tive exposure is evaluated in τI .

The second component, is easily manageble, building hedging portfolios with
non-linear payoff instruments. Whereas, to hedge the first component is very
arduous.

Indeed, to completely cover the credit risk component, and therefore to be
protected by changes in the own creditworthiness, I should sell protection on my
own name through a Credit Default Swap. This is obviously not possible, since no
one would believe in my promise to pay them in case of my own default.

Alternative hedging instruments are:

• selling protection through CDS on correlated entities. A particularly liquid
hedge is the CDS 5y iTraxx Senior Financial on-the-run series, made-up by
30 financial entities from the Markit iTraxx Europe index referencing senior
debt. The drawback of this hedge, is that it implies to pay a protection
as a member of the index defaults. Moreover this obligation is also what
generates correlation with the CDS on our own name and therefore with our
default probability. This ”technique” maybe is the most common one, and
is relatively successfull. It is obvious that the hedging will not be complete
since no other CDS will be 100% correlated to the CDS on my own name.

• Buying bonds (or stocks) on our own name. This would be a buy-back
operation, that cannot be done so easily or without constraints. Indeed,
the buy back operation is usually done by institution when they have had
a strong performance and are therefore cash rich. But typically a bank
having an increase in its DVA is in the opposite situation, as they must
have an increasing credit spread. Moreover, buy-back operations are also
management tools to give signals to investors and therefore they cannot be
done easily and quickly.

• Buying Government securities of the Italian Treasury, that are obviously
correlated with the Intesa San Paolo credit risk. In particular the BTP
future is very liquid. Also options on the BTP future are available.

• Buying futures and options on the Eurostoxx Banks(SX7E). In this particular
case there is correlation as the corporate equity value should decrease as the
default probability increase.
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objective: The objective of the project is to apply reinforcemente learning
techniques for:

• Finding out what is the optimal hedging allocation given the financial in-
struments to use.

• Generating reallocation signals, as the market prices move.

remark: The hedging strategy should maximize a profit, but at the same time
it should minimize a risk measure, and the use of financial resources.

It necessary therefore to investigate how the hedging instruments influence the
regulatory capital. Following the Basel III Framework, there are two different
approaches for the CVA and the DVA:

• Banks are permitted to hedge their CVAs by entering into certain defined
credit default swaps. To be precise, banks may enter into single name CDS,
single name contingent CDS, other equivalent hedging instruments which
reference the counterparty directly and index CDS. Other categories of coun-
terparty risk hedges must not be incorporated within the CVA calculation
and must be considered as any other instrument in the bank’s inventory for
regulatory capital purposes.

• The DVA exposure does not fall within the regulatory perimeter, therefore
all hedging instruments must be treated as any other instrument for the
calculation of the regulatory capital as if they were not used for hedging
purposes.

Other constraints that could be considered are the transaction costs that should
be kept lows taking under control the rebalancing frequency, and the hedging
istruments’ size standard.

6.2 Formalization of the variables involved in the

hedging strategy

Variables involved in the definition of a DVA hedging strategy for Banca IMI are:
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DVA(t) DVA in t

πI(t, T ) Spread in the Intesa San Paolo CDS in t with maturity T ; The
CDS is listed on a daily basis for more or less 10 maturities Tj
called pillar.

sI(t, T ) Spread characterizing Intesa San Paolo bond prices in t with ma-
turity T

h(t) Spread in the CDS 5y iTraxx Senior Financial on-the-run series;
The index is made-up by 30 financial entities from the Markit
iTraxx Europe index referencing senior debt, and Intesa San Paolo
is in the current series (S25) representing the 3.33% of the index.

sBTP(t, T ) Spread in the ”Buoni del Tesoro Pluriennali” (BTP) in t with
maturity T ; for T = 10 the BTP future, is particularly liquid.

b(t) Price in t of the index capitalization-based Eurostoxx Banks
(SX7E); Intesa San Paolo is an index member, with a weight equal
to the 9.17% of the index’s notional.

Some technical aspects for the hedging instruments must be introduced, so that
they can be properly managed during the implementation:

• iTraxx FinSen: each CDSindex series has a fixed maturity. When a new
series is generated it has a time to maturity of 5 years and 3 months, and it
is ”on-the-run” for 6 months. For example the series S26 is generated the 20
September 2016 with maturity 20 December 2021 and will be ”on-the-run”
until the 20 March 2017. Each year is characterized by 2 ”index roll date”:
20 September and 20 March. The new series can be slightly different from
the previous one.

• BTP/Bund Future: Bund and BTP Futures are outlined by a liquidity con-
centrated on 4 maturities, typically on the eighth day of March, June, Septm-
ber and December (”futures roll dates”). The closest of these 4 dates (”front
contract”), is the one with more liquidity.

• SX7E index: The index cannot be traded directly; thus we will use fu-
tures on this index. As for the BTP futures,they are outlined by a liquidity
concentrated on 4 maturities, typically on the third friday of March, June,
Septmber and December (”futures roll dates”). The closest of these 4 dates
(”front contract”), is the one with more liquidity.

The Intesa San Paolo CDS has the same roll dates as the Itraxx FinSen. When
a new series is generated it has a time to maturity of 5 years and 3 months, and
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it is ”on-the-run” for 6 months. Notice that, this convention have been used since
December 2015; previously a new series was generated every 3 months.

Other relevant quantities that can be relevant are the DVA’s sensitivities with
respect to the own CDS pillar, i.e.:

0.0001 · ∂DVA(t)

∂πI(t, Tj)
(6.2)

DVA depends also on changes in all underlying factors xk(t) that influence
the negative exposures and not only on changes in the own creditworthiness. A
tipical example are interest rates in one or more currencies. The DVA has tipically
non-trivial cross-gamma:

∂2DVA(t)

∂xk(t) ∂πI(t, Tj)
(6.3)

making the rebalancing very frequent.

6.3 Formalization of the hedging strategy

In this section the hedging strategy will be defined. Suppose that the hedging
portfolio is composed by K securities, and in these K securities there are also those
that underlie the variables defined above. The securities have a price processX and
a dividend process Y . The hedging strategy is represented by a K+1-dimensional
process ψt.

The components ψkt for k = 2, . . . , K represent the amount of the security k
defining the hedging portfolio at time t, while ψ0 represents the cash in the bank
account, and ψ1 represents the cash in the collateral account. We will denote with
C the set of instruments that implies a variation margin exchange. The strategy
is linked to a gain process:

G(t, T, ψ) =

∫ T

t

ψu dXu +

∫ T

t

ψu dYu (6.4)

=
K∑
k=0

(∫ T

t

ψku dX
k
u +

∫ T

t

ψku dY
k
u

)
In order to complete the problem formalitazion, we need to define the price

process X and the dividend process Y for each security.
For k > 1 the processes can be obtained from the hedging instruments’ typical

features and from market prices. In particular for some instruments the price is
obtained from a market quotation Qk

t (for example the spread in CDS) through
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an evaluation function Xk
t (Qk

t ). Since this is just the ”kick-off” of a huge project,
we began by using the 3 securities mentioned above, so we must define their price
process and dividend process.

6.3.1 iTraxx FinSen: Price and Dividend Process

As mentioned before the CDS 5y iTraxx Senior Financial on-the-run series, is
made-up by 30 financial entities from the Markit iTraxx Europe index referencing
senior debt. In order to price the CDS from the spread (that is what actually we
find on the market), some assumptions regarding the default intensity λi associated
to the index are needed. In particular following the Jarrow and Turnbull model
discussed above, we can suppose λi to be constant and set it to:

λi =
Qi

60%
(6.5)

where 60% is the market-standard loss given default, and i is an index denoting
the estimation day. Thus we can compute the survival probability on the interval
[0,T], using the formula (4.2) introduced in section (4),obtaining:

Si(t) = e−λi (T−ti) (6.6)

remark: the index has a 1% fixed coupon, and the difference with the spread
is regulated by upfront.

Let Tij be the quarterly payment dates of the index fixed coupon after the
time ti, with j = 2, . . . , J . For the counterparty receiving the spread (so for the
protection seller), the approximate price is computed as discussed in chapter 3 for
pricing a CDS. We obtain:

XI = 0.01 [B(ti, Ti0)Si(Ti0) y(Ti0, ti) +
J∑
j=1

B(ti, Tij)Si(Tij) y(Tij, Ti(j−1))]

− 0.6
J∑
j=0

B(ti, Tij) (Si(Ti(j−1))− Si(Tij))

(6.7)

where y(t1, t2) is the fraction of year using the convention Act/360 between t1
and t2. The dividend process is:

Yi = 0.01 y(T(i−1)(−1), T(i−1)0) for ti = T(i−1)0

otherwise the dividend process is 0.
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6.3.2 BTP and Bund Futures: Price and Dividend Process

For the BTP and Bund futures, the price process X(Q) is exactly what we can
find on the market. Thus Xi(Qi) = Qi. Moreover, the dividend process is trivial
(so equal to 0), for both of the two instruments.

6.3.3 SX7E: Price and Dividend Process

Also for the future on this index the price process X(Q) coincides with what we
can find on the market. Thus Xi(Qi) = Qi. Moreover, the dividend process also
for this future is equal to 0.

6.3.4 Collateral Account: Value and Dividend Process

The collateral account value denoted with ψ1
t can be computed as the sum of the

collateralised hedging instruments’ present values:

dψ1
t =

∑
k∈C

dXk
t

where C is the set of instruments that implies a variation margin exchange (so
the set of collateralised instruments). The dividend process can be easily described
by the following ordinary differential equation:

dY 1
t = r1

t dt

where r1
t is the collateral rate of return, that can be approximate with the risk

free rate r∗.

6.3.5 Bank Account: Value and Dividend Process

The bank account value can be obtained using the autofinancing property of the
strategy. Indeed, it holds that:

ψT XT = ψtXt +G(t, T, ψ)

Since there is a Debt Value Adjustment we cannot assume that the dividend
process of the bank account is drifted by the risk free rate, it would be nonsense.
It must therefore grow at a rate r0

t consistent with the Intesa San Paolo Unsecured
financing rate. Moreover since the collateral account is interchangeable with the
bank account, then only the net cash position between ψ0 and ψ1 is actually
remunerated in the bank account dividend process. Thus what we will actually
indicate sometimes with ψ0 with an abuse of notation will not be the bank account,
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but the net position on which the dividend is actually computed.In particular during
the implementation r0 is set as follows:

r0
i = r∗ + π1y

i

where i is an index to denote the estimation day, and π1y
i is the 1y-spread in

the Intesa San Paolo CDS, and the correspondent dividend process is given by:

dY 0
t = r0

t dt

To clarify the dynamic of the cash account an example can be useful.
Example: Suppose that at the time ti the agent buys a CDS index contract

paying the upfront Xi. This amount is taken from the bank account:

ψ0
i − ψ0

i−1 = −Xi(∗)
At the same time the agent will receive a collateral equal to Xi, thus:

ψ1
i − ψ1

i−1 = −Xi(∗)
Therefore there is no amount to be remunerated at trade time, since the net

position between the two is 0. Thanks to the autofinancing relation at time ti+1

the bank account must remunarate the variation recorded in the collateral account,
thus the following variation:

ψ1
i+1 − ψ1

i = Xi+1 −X1
i

6.4 Formalization of the Objectives

The gain process can lay the base for what will represent the value function for
our problem, so what the reinforcement learning algorithm aims to optimize. At
the same time the trader must also be compensated for a gain obtained in shorter
horizon, for example on a daily basis. Indeed, even if the trader is operating con-
tinually, there is a natural and relevant discretization of time: the one represented
by the closing time of the market during working days.

Thus, we define:

Gi(ψ) =

∫ ti

ti−1

ψu dXu +

∫ ti

ti−1

ψu dYu (6.8)

=
K∑
k=0

(∫ ti

ti−1

ψku dX
k
u +

∫ ti

ti−1

ψku dY
k
u

)
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Where the bar denotes that it is a quantity obtained on a daily interval, while
the index i is introduced for indexing days. Therefore Gi(ψ) is the daily gain
obtained thanks to the hedging strategy, and therefore thanks to the hedging
portfolio.

So, denoting with DV Ai the value of DV A after the closing time of the market,
then the total P&L (Profit and Loss) is:

Ui = DV Ai −DV Ai−1 +Gi(ψ)

Remark: Notice that the total P&L does not include also the gain/loss com-
ing from the derivative generating the DVA. Indeed, as observed in chapter 5 the
CVA desk is separate from other desks. So the CVA desk is responsible only for
the quantity defined above.

Remark: Observe also that as the Debt Value Adjustment at the end of the
period will be 0, thus DVA(T)=0 and at the end of the hedging strategy the total
P&L over the whole period will be equal to the total gain process minus the staring
CVA.

The Profit and Loss is also the quantity used in order to compute Risk Measures
as the Daily value at Risk (daily V aR). These risk measures obviously define
constraints on the whole position in terms of market risk. These risk measures
lead to the quantification of a capital that the bank must hold in order to be able
to face losses in a given time horizon. The capital can be either computed on
merely economic consideration obtaining the economic capital eK, or computed
following the Basilea Regulation obtaining the regulatory capital rK.

As already mentioned the DVA exposure does not fall within the regulatory
perimeter, therefore all hedging instruments must be treated as any other instru-
ment for the calculation of the regulatory capital as if they were not used for
hedging purposes, whereas the DVA exposure fall within the economic capital
perimeter, thus all hedging instruments must be treated considering their hedging
purposes.

Suppose that both eK(t) and rK(t) can be computed starting from the sensi-
tivity of the whole position with respect to market risk. Since investors are asking
for a return on this capital, the remuneration can be seen as a cost for the hedging
strategy. Thus we define the cost of the economic capital:

eKV A(t) = c

∫ T

t

DeK(t, s) eK(s) ds

and the cost of the regulatory capital:
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rKV A(t) = c

∫ T

t

DrK(t, s) rK(s) ds

Where we assume that both the economic and regulatory capital are remu-
nerated at a fixed rated c and DeK(t, s) and DrK(t, s) are appropriate discount
functions. For example, we could define:

DeK(t, T ) = DrK(t, T ) = e−c (T−t)

coherently, with the interpretation of the KVA as an expected value. Oth-
erwise the discount factor can be modeled giving more importance to the future
capital than to the present capital for the decision-making process of the algorithm.

So now we can define in general the objectives of the trader, that will be also
the objectives of the learning agent. They are the following:

• Optimize market risk in view of the mean-variance P&L.

• The trader has an asymmetric preference with respect to Ui: it is particularly
adverse to negative Ui and relatively tolerant to higher earnings.

• In the mean time the trader should try to minimize the cost of capital eKVA
and the regulatory capital rKVA. (which obviously creates a direct constraint
to the size of the hedging strategy).
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Chapter 7

Sequential Decision Problem

Sequential decision models are just the mathematical representations of real prob-
lems where the decisions are taken in several stages, and during each stage a
certain cost or reward must be paid or received. Each decision will also influence
the circumstances at which next decisions will be taken. Thus, for example if the
objective is to maximize the total reward, one must balance is desire to maximize
the reward of the present decision against the desire to avoid future circumstances
where low rewards are inevitable. In the financial sector is easy to find out a se-
quential decision problems, indeed all problems of portfolio management fall under
this framework. The asset manager must balance his desire to achieve an imme-
diate return, against his desire to avoid investments where a low long-run yield is
probable.

In this chapter the concept of sequential decision problems is introduced. In
the first section are given the main definitions also in a rigorous way that are useful
to understand an optimal control problem. In the second section, the mathemat-
ical accuracy is sidelined to analyze the problem from the reinforcement learning
perspective, thus from a more practical point of view.

7.1 Finite Horizon Optimal Control

First of all let’s formalize the control problem.

• I denotes the state space. Its elements are the states that the system can
reach during its evolution at discrete time moments.

• A is the space of control actions. Indeed the agent or controller, will take an
action from A at each time step to modify the evolution of the system.

• S is the set of all possible values of the noise.
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Hypothesis:

• Let (I,I), (A, A) and (S,A) be measurable spaces.

• Let ϑn be a sequence of i.i.d. random variables, with values in S, defined on
a probability space (Ω, F , P).

• Let F : I × A× S −→ I be a measurable function.

• Let r : I −→ [0,∞] and q : I × A −→ [0, 1] be measurable functions.

In particular:

• r is the final cost/reward function, and r(x) represents the cost/reward in-
curred when the final state of the system is x.

• q is the running cost/reward function, and q(x, α) is the cost/reward incurred
when the system is in state x and the agent select the action α inside the set
A.

• ϑn are random variables representing the noise acting on the system.

• The function F represents how the system evolves. Thus if the system at a
given time is in the state x, the controller selects the action α, and in the
subsequent time step the noise acting on the system takes the value s, then
the next state will be: F (x, α, s).

Definition: A sequence (αn)n≥0 of random variables with values in A is called
control.

Defintion: The sequence (Xn)n≥0 defined by:

Xn+1 = F (Xn, αn, ϑn) X0 = x

is called the trajectory starting at x and corresponding to the control (αn). Obvi-
ously (Xn)n≥0 is a sequence of random variables with values in I, and Xn represents
the state at time n of the system and it depends on the values taken by the control
variables and by the noise variables.

A particular interesting case is when the choice of control a time n action
depends on the sequence of states up to time n.

Definition: An admissible strategy is a sequence α = (αn)n≥0 of measurable
functions:

α0 : I −→ A

α1 : I × I −→ A
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α2 : I × I × I −→ A

....

....

αn : I × ....× I︸ ︷︷ ︸
n+1

−→ A

We will denote with Aad the set of all admissible strategies.

Definition: The trajectory and the control associated to the strategy (αn)n≥0 ∈
Aad and to the starting point x are the random variable sequences (Xn)n≥0 and
(αn), defined by the equations:

X0 = x
αn = αn(X0, X1, X2, ..., Xn)
Xn+1 = F (Xn, αn, ϑn+1)

(7.1)

It is obvious that both Xn and αn depends on α and on x.
Definition: Given a time horizon N , a starting point x and an admissible

strategy α, then we define the payoff on the time horizon as:

J(x, α) = E[
N−1∑
n=0

q(Xn, αn) + r(XN)]

where Xn and αn are computed as specified in the previous definition.
Definition: Suppose that J is a gain, then we say that a strategy α̂ is optimal

if:

J(x, α̂) ≥ J(x, α) ∀α ∈ Aad

If J is a cost, then a strategy α̂ is optimal if:

J(x, α̂) ≤ J(x, α) ∀α ∈ Aad

⇓

The optimal control problem consists in understanding if there exists an opti-
mal strategy, and in case of positive answer in assessing its properties and charac-
terization.

Definition: Suppose that J is a gain, then we define the value function as:

V0(x) = sup
α∈Aad

J(x, α)
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whereas if J is a cost, the value function is defined as:

V0(x) = inf
α∈Aad

J(x, α)

where V0 can be either finite or ∞. In particular, given a starting point x it
holds that:

α̂ is optimal ⇔ V0(x) = J(x, α̂)

Remark: It can be also considered another kind of payoff J of the following
nature:

J(x, α) = E[
N−1∑
n=0

γn q(Xn, αn) + γN r(XN)]

where γ > 0 is a given number, called discount factor. In general we have
also that γ < 1 in order to consider very frequent situations where gains and costs
delayed in time are reduced by a constant rate.

7.2 Reinforcement Learning Perspective

Surely the feeling that we learn since we were born from the environment is one of
the first that comes thinking about the nature of learning. When a child plays does
not have a teacher, but he does have a direct interaction with its environment. This
interactions produce a set of information and a cause-effect knowledge that will
lead to know what to do in order to achieve objectives. Learning from connections
is the concept underlying all theories regarding intelligence, also from the philo-
sophical point of view: just think about the parsdestruens and the parscostruens
discussed so far by the Father of Empiricism Francesco Bacone.

In the previous section, the optimal control problem was introduced in a very
rigorous way. This was a necessary step in order to deeply understand the same
problem from the reinforcement learning point of view. The reinforcement learning
methods do not aim to assess if there exist an optimal strategy from the mathe-
matical point of view, but these methods specify how the agent changes its policy
as a result of its experience, and so they need data to be fed and they take account
only about the realizations of the random variables introduced in previous section,
regardless for example of how are distributed the noises, and if they are actually
indipendent; thus, they exploit the data for those that are.
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Since under this perspective we are not concerned about all technical aspects
introduced before, we change also the notation making it more friendly for the
reader.

More specifically, the agent and the environment interact over a discrete se-
quence of time steps: t = 0, 1, 2, 3, .... For each time step the agent can observe
the state st of the environment, st ∈ S where S is the set of all possible states.
Depending on what it observes, the agent will select an action at that must belong
to A(st), where A(st) is the set of actions that the agent can take at time t if it
is in st. One step later, as a consequence also of its action, the agent receives a
reward. At each time step, the agent observing its state will implement a proba-
bility distribution over the possible actions it can take. This mapping is exactly
what we have called so far as strategy, that under the reinforcement learning per-
spective will be called policy. We denote the mapping as πt, where πt(s, a) is the
probability that at = a if st = s.

Roughly speaking, actions are decisions that we want to learn how to make,
while the states is what is observable and important for the agent in order to learn
how to take proper actions.

The goal is to maximize the total reward it receives over the long run. To
be precise the objective is to maximize the expected return, where if the rewards
received after time step t are rt+1, rt+2, ......, rT , then we want to maximize the
expectation of:

Rt = rt+1 + rt+2 + ......+ rT

or equivalently of:

Rt = rt+1 + γ rt+2 + ......+ γN−1 rT

if there is the discount factor γ.

Following this notation we will discuss the notion of Markov Property, that will
lead to the definition of Markov Decision Process. This is essential, because the
problem that we want to solve can be formalized as a Markov Decision Process.

7.3 Markov Property

As discussed so far in the previous section the agent makes its decision on the basis
of the environment’s state. At the same time we must know what is the proper
information that the agent need to know in order to undertake an appropriate
policy, and also what kind of information we should not expect it to provide.
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Roughly speaking, we say that a state signal has the MarkovProperty when it
contains all the relevant information needed by the agent to undertake its action.

Example: Consider the current position, the velocity and acceleration of a
ball. These three information summerize everything that is important to under-
stand the sequence of positions that the ball will cover. It doesn’t matter how
these three came about. Lot of information are actually lost, but in the state
there is all I need for understading the future.

This property sometimes is called as ”indipendence of path”, because knowing
the current signal, the history is not taken into account.

We can also formalize this property very easily. In general when the Markov
Property does not hold, in order to properly understand the dynamic we need to
specify the complete probability distribution, i.e.:

P(st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, ...r1, s0, a0)

for all s′,r and all possible values of the past events: st, at, rt, ..., r1, s0, a0, thus
it is very arduous. But if the Markov Property holds, then:

P(st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, ...r1, s0, a0) = P(st+1 = s′, rt+1 = r|st, at)

because the environment’s response in t + 1 does not depends on actions and
states before time t, if we already know the state and action at time t. Since it is
true the relation above it holds that:

Result: The best policy for choosing actions as a function of Markov state,
coincides with the best policy for choosing actions as a function of the complete
history.

It is obvious how the Markov Property is foundamental also from the computa-
tional point of view. Thanks to it indeed, we must not keep in memory the whole
history, but we just need to know the current state in order to take an action. The
reduction of the computation is essentially why, it is even better to approximate
a state signal which is Non-Markov, with something that is Markovian.

7.4 Markov Decision Problem: MDP

If the Markov Property holds, then the reinforcement learning task is called a
Markov DecisionProcess or simply MDP. In particular, if the space of action
A, and the space of states S are finite, then we talk about finiteMDP . The
dynamics of a finite MDP can be easily described, through these two definitions:
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Definition: We define the transition probabilities as:

Pas s′ = P(st+1 = s′|st, at)

thus they represents the probability for each s′ ∈ S to be the next state, given any
at and st.

Definition: Given any next state s′, and any current state s and action a, we
define the expected value of the next reward as:

Ra
s s′ = E[rt+1|st = s, at = a, st+1 = s′]

As already introduced in the first section in order to evaluate how much is good
to be in a given state s under a given policy π, the valuation function V π(s) is
used. In particular, it holds that:

V π(s) = Eπ[Rt|st = s] = Eπ[
∞∑
k=0

γk rt+k+1|st = s]

where Eπ[ ] is the expected value supposing that the agent follows the policy
π.

Another quantity that can be defined is the action-value function for policy π,
which is denoted with Qπ and defined as:

Qπ(s, a) = Eπ[Rt|st = s, at = a] = Eπ[
∞∑
k=0

γk rt+k+1|st = s, at = a]

Thus, it represents the expected return starting from s, taking tha action a,
and thereafter following the policy π.

Remark: Observing how Qπ and V π are defined, it is obvious how they can
be easily estimated using Montecarlo Methods.

Moreover, also for the implementation of any algorithm, it is important the
following relation, also known as Bellman Equation:

V π(s) =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′ + γ V π(s′)]

indeed:

V π(s) = Eπ[Rt|st = s] = Eπ[
∞∑
k=0

γk rt+k+1|st = s] = Eπ[rt+1+γ
∞∑
k=0

γk rt+k+2|st = s]

but:

Eπ[rt+1+γ
∞∑
k=0

γk rt+k+2|st = s] =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′+γ Eπ[

∞∑
k=0

γk rt+k+2|st+1 = s′]]
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and:

∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′+γ Eπ[

∞∑
k=0

γk rt+k+2|st+1 = s′]] =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′+γ V

π(s′)]

Therefore taking the left-hand side of the first equation and the right hand side
of the last one, we get:

V π(s) =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′ + γ V π(s′)]

that is exactly the Bellman equation.
The Bellman equation expresses a mathematical relation between the value of

a state, and the values of the next states.

Remark: The structure of the Bellman Equation suggests how fixed point
methods can be used for the computation of V π. In this case if γ < 1, then the
convergence of a fixed point method can be easily proved using the contraction
theorem.

As already remarked solving the reinforcement learning task is equivalent to
find out a policy that gives an high total reward over the long run. Since we are
considering a finite MDP an optimal policy exists. Thus, we can find at least
one policy π∗, such that: V π∗(s) ≥ V π ∀s and ∀π. Thus, we can define the
optimal-state value function V ∗ as:

V ∗(s) = max
π

V π(s) ∀s

similarly we define:

Q∗(s, a) = max
π

Qπ(s, a) ∀s ∈ S and ∀a ∈ A

Since by the definition this function gives the expected return under the hy-
photesis that the agent is in state s, it takes an action a and thereafter it follows
an optimal policy, we can write it in terms of V ∗, indeed:

Q∗(s, a) = E[rt+1 + γ V ∗(st+1)|st = s, at = a]

and from this formula it is also obvious how the policy that gives Q∗ is the
same that gives V ∗.
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Another result that is worth to mention is the Bellman equation for V ∗, also
known as Bellman optimality equation. It holds that:

V ∗(s) = max
a

∑
s′

Pas s′ [Ra
s s′ + γ V π(s′)]

Indeed:

V ∗(s) = max
a
Qπ∗(s, a) = max

a
Eπ∗ [Rt|st = s, at = a] = max

a
Eπ∗ [

∞∑
k=0

γk rt+k+1|st = s, at = a]

but:

max
a

Eπ∗ [
∞∑
k=0

γk rt+k+1|st = s, at = a] = max
a

Eπ∗ [rt+1+γ
∞∑
k=0

γk rt+k+2|st = s, at = a]

and:

max
a

Eπ∗ [rt+1+γ
∞∑
k=0

γk rt+k+2|st = s, at = a] = max
a

E[rt+1+γ V ∗(st+1)|st = s, at = a]

and:

max
a

E[rt+1 + γ V ∗(st+1)|st = s, at = a] = max
a

∑
s′

Pas s′ [Ra
s s′ + γ V ∗(s′)]

Therefore taking the left-hand side of the first equation and the right hand side of
the last one, we get:

V ∗(s) = max
a

∑
s′

Pas s′ [Ra
s s′ + γ V ∗(s′)]

that is exactly the equation mentioned above.
Similarly it holds that:

Q∗(s, a) =
∑
s′

Pas s′ [Ra
s s′ + γmax

a′
V ∗(s′)]

Remark: For a finite MDP, the Bellman optimality equation has a unique
solution indipendent of policy.
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Chapter 8

Simplified Version Of The
Problem For A First
Implementation

In order to simplify the problem for the first implementation, we have considered
the DVA generated by the liability represented by a single cash flow N that the
bank must pay at time T.

In this way, we focused on which is the best hedging strategy to adopt against
the own credit spread risk, without considering the complexity introduced by the
contingent nature of the exposures.

As regard the value of T three different alternatives can be considered:

• 5y maturity rolling each 6 months. So the maturity of the liability would
coincide exactly with the maturity of the CDS itraxx 5y.

• 5y “constant maturity”. The DVA has each day maturity of 5 years from
the reference date.

• The expiry date is fixed, and therefore will not roll or be “updated”.

The first alternative was implemented because more in line with the problem
that the bank want to analyze.

It must be noticed also that the close-out amount of the cash flow is its value
discounted at default time:

V0(τI) = N D(τI , T )

Thus the DVA can be computed as:
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DV A(t) = N LGDI Et[1{τI≤T}D(t, τI)D(τI , T )]

⇓

DV A(t) = N LGDI B(t, T ) (1− S(T )) (8.1)

where S(T ) is the survival probability evaluated in T.

Remark: The discount factors are computed as:

B(t, T ) = e−r
∗ (T−t)

This approximation is very useful because it excludes the interest rate as a
possible risk factor. For the first implementation it is set to 0.

Remark: In order to obtain the survival probability to compute the DVA, it
was used the Jarrow and Turnbull model, exactly as it was done for the compu-
tation of the CDS Itraxx upfront, but starting from the CDS 5y spread on Intesa
San Paolo. Thus, after have obtained the intensity rate λi(T ) from the spread, we
get:

Si(T ) = e−λi(T ) (T−t)

For the hedging strategies the 3 instruments mentioned in the previous section
are used. Thus:

• 5y iTraxx Financial Senior (FinSen) CDS index.

• Purchase of 10y BTP futures and simultaneous sale of 10y Bund Futures,
i.e. BTP Spread Trade.

• Futures on the Eurostoxx Banks SX7E.

8.1 Objectives of the strategy

Also in this simplified version the first two objecives are in line with the objectives
outlined in the section (6.4). Thus, we want to optimize market risk in view of
the Mean-Variance P&L on the fixed horizon, considering that on the total daily
P&L denoted as Ui, there is an asymmetric preference.
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Remark: It is important to remember that the DVA is computed on a rolling
expiry. Thus, we need to fix a time horizon on which we want to do the Mean-
Variance analysis.

Observe that our ultimate objective therefore does not consist in developing
a investment strategy which aim is to maximize the expected total P&L over a
given time horizon.

This reflects the interest of the investor in minimizing also some form of risk
of the policy. Typical performance criteria that are considered to this purpose in-
volves the variance of the cumulative reward. Thus, if J is the cumulative expected
reward, and V the variance of the cumulative reward, then the performance can
be:

• Maximize J such that V ≤ c

• Minimize V such that J ≥ c

• Maximize the Sharpe Ratio: J/
√
V

• Maximize J − c
√
V

Remark: Observe that the problem of maximizing a return under a risk mea-
sure has been widely studied. In particular in 1952 Harry Markowitz studied the
problem of maximizing the return supposing to be under a determined value of
Variance, and therefore under a determined risk-profile. In this way a curve called
efficient frontier is obtained, and it represents the maximum expected return that
I can get under a specified profile allocating the instruments in the portfolio in a
proper way (optimal way actually). Observe that if on the one hand the Markowitz
problem has an objective that is close to our objective, on the other hand the ini-
tial framework is completely different. Indeed in the Markowitz problem the idea
is to maximize the return of a linear portfolio, thus composed essentially by stocks
and eventually by a risk-free asset. Our portfolio is really more complex, and there
is also and uncontrollable variable, the DVA, to take into account in the reward.

Surely the performance measure that is most used in practice is the Sharp
Ratio. However, in the first implementation we will not consider the measures
above, but we will follow the following procedure:

• A utility function f(u) is introduced to consider the asymmetric preference.
In particular the function must be concave for positive values of Ui (so for
profits), and must be convex for negative values of Ui (so for losses).

• Then what we will actually maximize is not the sum of Ui but the sum of
f(Ui).
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As function f , the Kahneman and Tverky curve can be used, but considering
a great slope for losses. Since the slope of the curve is quite great, even a little loss
is very penalized. This framework aims also to keep the variance low. Indeed if
little losses lead to a great penalization the agent will be more prudent, reducing
therefore the variance of its actions and as consequence the variance of the rewards.

For simplicity we substituted the third objective, which was based on KVA
measures with a constraint on the position’ sign of the instruments inside the
hedging portfolio. In particular we imposed that the positions on the hedging
instruments have a sign that is in the direction of mitigating the own credit risk.
In particular the portfolio must be:

• Short on the CDS FinSen. Since I cannot be short on the CDS on my own
name, I need to be short on CDS built on names positively correlated with
it.

• Long on BTP Futures. Thus, short on BTP Spread. Indeed if be Long on
this instruments,

• long on the SX7E index futures.

Indeed if the DVA increases in one time step, the contribution given by it to
the total daily gain Ui is positive. But if the DVA increases then it means that
there has been an increase in the own credit spread. An increase in the own credit
spread is reflected also in:

• An increase in the spread in the CDS FinSen, because they are positively
correlated. Thus the CDS FinSec Upfront increases too and so if the portfolio
position is negative on this instrument, the contribution given to the total
daily gain is negative and therefore opposite to the contribution given by the
variation of DVA.

• An increase in the spread of the BTP bonds underlying the futures. And
therefore also an increase in the BTP/BUND spread. So, I need to be short
of spread, if we want to go in the opposite direction of the DVA.

• A decrease in the value of futures SX7E, and therefore to go in the opposite
direction of the DVA we need to be long on these instruments.

8.1.1 Value Function

For the value function we consider a time horizon of 3 months, that in the code is
approximate with 100 days.
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8.1.2 Rebalancing frequency

In the first implementation, a single daily rebalancing is assumed, even if at the
end of the project the aim is to generate also intraday signals. In other words, the
time is discretized in business days ti. The interval time between business days
is not constant, and for convention we have considered the market condition at
close-time. Similarly discretized quantities ψki , X

k
i , Y

k
i are considered.

Thus, under this framework the gain process between ti−1 and ti is:

Gi =
K∑
k=0

(ψki−1[(Xk
i −Xk

i−1) + (Y k
i − Y k

i−1)])
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Chapter 9

The Simulator

In this section, the algorithm called as ‘simulator’ is described.
In reinforcement learning problems, the simulator is necessary to describe the

environment in which the agent moves. As discussed before reinforcement learning
is the art of learning from interaction with an environment, so defining the envi-
ronment is a crucial aspect. As before, we will call the learner and decision-maker
the agent, while the thing it interact with, is called the environment.

The idea is that the agent continually interact with the environment. Broadly
we can say that the agent selects an action, the environment responds to this
action presenting a new situation to the agent. Thus the agent is the controller,
the environment is the controlled system, and the action is the control signal. The
environment also gives rise to rewards, that the agent want to maximize over the
time.

To a very high-level, we formalize it, considering a discrete sequence of time
steps: t = 0, 1, 2, 3.... At each time step, the agent has a full representation of the
environment’s state st ∈ S , where S is a set of possible state, and considering this
state, it will take a decision; thus it will select an action at ∈ A(st), where A(st)
is the set of action available in state St. One time step later the agent receives a
reward rt+1 and it will be also in a new state.
Thus, as introduced before, the simulator aims to describe the environment, there-
fore it is an algorithm that given the state and given the action, it will move the
agent to another state compensating it with a reward.

Let’s analyze the simulator in our specific case, by delineating the features that
appear also in the C++ code. In our specific case the trader is the agent, that have
to take a decision regarding the positions on its hedging portfolio, in particular
as already discussed in the previous section the trader wants to maximize a value
function over a time horizon of 3 months. Therefore given a starting time, the
simulator will move the agent from state to state for 3 months, compensating him

59



Figure 9.1: Interaction between the agent and the environment

with a reward after every transaction; this simulation over the 3 months will be
called from now on: episode. Obviously we will run a great number of episodes,
starting from a different time step and therefore also a different state, in order to
properly train the agent.

First of all, we introduced a discrete sequence of time steps, where each time
step represents a trading day. Indeed, as mentioned previously intraday trading
is not considered in the first phase of the project. For each time step inside the
dataset we can find:

• The reference date.

• The price of the future on SX7E index, considering all the technicalities
involved to manage the roll.

• The price of the future on BTP and BUND, considering all the technicalities
involved to manage the roll.

• The CDS 5y iTraxx Senior Financial upfront, obtained through the J&T
model, and the correspondent dividend.

• The 1y spread in Intesa CDS, useful to define the interest rate on the bank
account.

• The DVA.

9.1 The State

In order to take a proper action the agent must know its current state, that should
contain all the observable information that can provide help to the agent in order
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to take its action. It is therefore of primary importance to find out which processes
must be considered so that the trader can capture the expectations of the market
on the hedging instruments.

Remark: The state signal that will be introduced is actually markovian. At
the same time it does not fully represent the environment. This state is just a first
trial to see if the algorithm just having this description of the environment is able
to learn. It is obvious that a development of the state must be done, for example
considering the sensitivies discussed on the formalization of the problem, which
actually are essential for hedging problems.

9.1.1 Process for the BTP/BUND future

As regard the future on the BTP/BUND the price process X defined in (6.3.2) is
sufficient in order to capture the variation that the trader need to know in order to
fully understand the expectations of the market on it, because it does not provide
any dividend or coupon. So the process V that we will consider in the state is
exactly X.

9.1.2 Process for the SX7E Future

Since it is a future, the same reasoning used for BTP/BUND futures can be used.
Thus also for SX7E future the process V ≡ X.

9.1.3 Process for the CDS itraxx

As regard the CDS itraxx, the situation is more delicate. Indeed the process X
is not sufficient to describe completely what the agent needs to know in order to
undertake an appropriate decision.

If I would consider only the process X, then the day before the dividend pay-
ment, the price of the CDS would be given by the following formula:

Xi(Q) = 0.01 [B(ti, Ti0)Si(Ti0) y(Ti0, ti) +
J∑
j=1

B(ti, Tij)Si(Tij) y(Tij, Ti(j−1))]

− 0.6
J∑
j=0

B(ti, Tij) (Si(Ti(j−1))− Si(Tij))

(9.1)

where all the terms in the formula were specified in the section (6.3.1).
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The day after, when the dividend is paid, then the upfront (or price) is given
by:

Xi(Q) =0.01 [
J∑
j=1

B(ti, Tij)Si(Tij) y(Tij, Ti(j−1))]− 0.6
J∑
j=0

B(ti, Tij) (Si(Ti(j−1))− Si(Tij))

(9.2)

Where therefore the contribute given by the first term does not appear any-
more, because it was the contribute given by the paid coupon. So the agent looking
only at X would see a decrease on the value of the contract, without considering
that it would have also received the premium spread.

So an approach that can be considered is to take into account also the con-
tribute given by dividend in the day that it is paid. Thus, the process V regarding
the CDS itraxx can be simply the sum of X and Y, where X is defined as above
and Y is:

Yi = 0.01 y(T(i−1)(−1), T(i−1)0) for ti = T(i−1)0

So, considering the process X + Y the day before the payment of the dividend
we just would have exactly what is in formula (9.2), and the day that the dividend
is paid the contribute given by the first term in the formula is absorbed by Y , so
as aimed I will only capture the net variation of the price, without changing the
datum because of the dividend.

But what will happen the day after the dividend payment? Simply there will
be a drawdown of the price due to the fact that a portion of the price was ab-
sorbed by the dividend. This drawdown therefore is because of the nature of the
contract and not on the some changes in the market perception of the contract.
This situation must be avoided, because the agent is not able to understand the
contract nature, and thus its action must be influenced only by true changes in
the market perception of the contract.

The two situations above can be easily described through an example.

Example: Suppose that the value of the CDS itraxx is 100 e. And that the
market does not change during this period. Thus, since the perception of the
market over this contract is the same, our agent should not see any jump in the
process considered for its decision, even if the dividend of 1 e is paid. But a jump
is actually recorded, with the two processes previously discussed, indeed:
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Process Before dividend Dividend day After dividend
X 100 99 99

X+Y 100 99+1=100 99

Roughly speaking, the agent must not see any jump because of the dividends.
Jumps can happen only if the market perception on the contract is changed. There-
fore what can be considered as process for managing the CDS itraxx is the process
given by:

Vi = Xi +
i∑

j=0

Yi

In partular:

• j=0 is the index representing the issuing date of the CDS. Thus when the
CDS ”was born”.

• the process Vi consider therefore all the dividend paid before i (including
i). Thus, it is like considering the value of the contract in the case that no
dividends are paid.

In this way, the agent is actually able to capture the market perception on the
contract without being hampered by the nature of the contract itself. Following
the previous example in this case we would get:

Process Before dividend Dividend day After dividend
V 100 99+1=100 99+1

that is actually what we want.
Remark: In this way in the state we lose the information of the dividend.

But this is not a true problem. Indeed it is coherent with the reward, where we
do not consider ”owning cash” to be better than ”owning a financial instrument”
with the same value.

9.2 Information inside the state

The state in this particular problem is composed by:

• Prices:

– The prices of the future on SX7E index on a given window.
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– The spreads on BTP-BUND future on a given window.

– The values of the process V for the CDS Itraxx introduced in the pre-
vious section on a given window.

– The spreads on CDS 1y Intesa San Paolo on a given window.

• Variation on the Allocation:

– The difference between the number of futures on SX7E owned in t and
in t− 1. These differences are inside the state on a given window.

– The difference between ”the number of spread” owned in t and in t−1.
These differences are inside the state on a given window.

– The difference between the number of futures on CDS 5y iTraxx Senior
Financial owned in t and in t− 1. These differences are inside the state
on a given window.

– The difference between the bank account in t and in t − 1. These
differences are inside the state on a given window.

• Total Allocation of the 3 hedging instruments and of the bank account in
the last day.

Remark: It must be observed that inside the state there are prices on a given
window, thus also in preceding days with respect to today. This because the agent
in order to take a proper action will consider the evolution of the prices in the
preceding days, and not just the last level of prices.

9.3 The action

It is not the purpose of the simulator to choose which type of action the agent
have to undertake. At the same time the simulator will use these actions, in order
to move the agent from the current state to the following one, and to compute the
reward. In order to define the set A(st) of action available in state St, we need to
understand:

• How the hedging instruments are tradeable. It is important to understand
therefore number of underlying that there are in a future contract. In general
the value of the single contract is indeed the number of underlying multiplied
by the price of the underlying.
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Figure 9.2: Representation of the State Vector

• What is the magnitude of the Debt Value Adjustment that we want to hedge.
Indeed, we need to buy/sell amounts of the 3 instruments in such a way that
the Gain given by the portfolio is comparable in terms of magnitude to the
daily DVA variation.

• What is the amount that I have to buy/sell for each hedging instrument, so
that as said before the total daily gain is comparable to the daily variation
of the DVA, but also so that the contribute from each single instrument is
comparable in terms of magnitude with the contribute given by the others.

All these information are useful to describe A(st), and therefore to understand
which is the space of action that the agent can cover given a particular state.
This is also done in order to have a reduction of the space of action, thus the
algorithm will not explore actions that a priori we know are not coherent with the
formalization of the problem. It is obvious how the reduction will increase the
efficiency of the algorithm.

The problem above can be solved following this procedure:

• Fix the Nominal Value on which is calculated the Debt Value Adjustment.
This corresponds in fixing the N in the formula (8.1).
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• Looking at the medium absolute daily variation of an instrument, I determine
how much of that instrument I should take to hedge the DVA not considering
the presence also of the other instruments. Thus what I will define is a “cap”
on how much of each instruments I can buy. It will be the reinforcement
learning algorithm, to understand how much of each instrument I should
actually buy/sell, considering the presence of the others.

In our particular case:

• We considered a nominal value for the Debt Value Adjustment equal to 400
Milions e.

• The CDS itraxx can be sold on a single basis. Applying the method described
above, we obtain that to hedge 400 millions eof DVA, up 700 millions of CDS
itraxx are needed. This corresponds in having a single CDS with a nominal
value up to 700 millions e. Since the magnitude of the nominal is so high,
we rescaled the CDS nominal of 1 million. Thus, if the agent buys 3 CDS
itraxx, actually it is buying 3 millions CDS with nominal 1e, or 1 CDS with
a nominal value of 3 millions e. So the agent will act as if the CDS itraxx
contract contains 1 million of CDS.

• The SX7E Future contracts actually contains 50 underlying instruments. Ap-
plying the method described above we get that up to 11500 future contracts
on SX7E are needed. Thus actually they are 11500× 50 single futures.

• The BTP/BUND Future contracts actually contain 1000 underlying instru-
ments. We get that up to 2100 of them are needed. Thus actually they are
2100× 1000 single futures.

Remark: Having defined in this way the space of actions A, and the set of the
states S, we can notice that even if they are actually continous, it is easy to consider
them as discrete and in particular finite space. For example as regard actions we
can consider the case where the agent can buy/sell a quantity of instruments
∈ N, then considering that its actions are bounded thanks to what we have just
outlined, we can conclude that A is actually finite. This is important because
we can actually model our problem as a finite Markov Decision Process in first
approximation.

9.4 How the simulator works

As already remarked before it is not the purpose of the simulator to choose which
type of action the agent have to undertake. Thus, to understand how the simulator
works the policy of the agent is considered to be fixed a priori.
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The simulator act as follows:

• The simulator chooses the starting date randomly. This date will be the
starting point of the episode.

• Given the date by the previous point, the agent observes the associated state,
and implement an action following the fixed policy. During the 1st day the
net position between bank account and collateral account is zero, thus the
process on which I will pay dividend at a rate equal to the 1y Intesa San
Paolo Spread is 0.

• The prices have evolved thus there is a daily gain. And a correspondent
change is recorded in the collateral account and in the net position on which
dividend will be paid.

• Since the day changed and the prices have evolved, the agent will observe a
different state. It will implement an action following the fixed police.

• The prices evolves again, and there is a daily gain because of their variations
but also because of the dividend process computed on the net position of the
previous day. And so on.

Remark: At the end of the 3 months a total reward on the episode is given.
Remark: In the reward is also considered the Debt Value Adjustment in line

with the problem formalization.
Remark: Also in the simulator, in line with the assumptions, the risk free

rate is set to 0. Thus, the dividend process on the collateral account is 0. And as
written above the dividend paid on the net position between collateral and bank
account is drifted just by the 1y Spread on Intesa San Paolo, and not by the risk
free rate.
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Chapter 10

Reinforcement Learning
Algorithms

In this chapter will be discussed two Reinforcement Algorithm respectively for the
policy valuation and policy improvement. This chapter does not aim to discuss
RL techniques that will actually be applied on this project, bacause this is not
the objective of the present work, and in particular further considerations must
be done before passing to the ”learning phase”; but for completeness, I think that
they should be in this thesis too.

Remark: If the underlying system is a finite Markov Decision Process, the
two methods that will be discussed can be actually used.

10.1 Dynamic Programming

Dynamic Programming stands for a collection of tools that can be used in order
to compute the optimal policies.

The main characteristic of this algorithms is that they compute optimal poli-
cies given a perfect model of the environment. So for example the environment
should be a Markov Decision Process. Where I want to underline that for Markov
Decision Process is intended a process which state signal is markovian, but also
the state signal assumed to describe the environment actually can completely de-
scribe it without losing any information. Thus, in order to apply these techniques
to our problem we must be confident that our state signal can fully represent
the environment, otherwise the agent will not learn properly. They are not very
used in reinforcement learning because they are very expensive from the compu-
tational point of view, and as noticed before the perfect knowledge of the model
is an assumption that is really hard to satisfy. Anyway they are important from
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a theoretical point of view, and they put also the basis for methods applicable to
continous problem, or methods where the knowledge of a perfect model for the
environment is not necessary.

The main idea underlying Dynamic Programming, is the use of the value func-
tions in order to find good policies, in particular it exploits the Bellman Equations
derived in chapter 7.

10.1.1 Iterative Policy Evaluation

The objective of this algorithm is to evaluate the value function V π introduced in
chapter 7, given a policy π. From chapter 7 we know that:

V π(s) =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′ + γ V π(s′)]

for all s ∈ S where we have already specified what each term represents. The
idea is to exploit fixed point methods. Thus, suppose to choose V0 arbitrarily,
then we can create a sequence of approximatin function Vk, through the recursive
formula:

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pas s′ [Ra
s s′ + γ Vk(s

′)] ∀s ∈ S

It is obvious how Vk = V π is a fixed point for the recursive formula, thanks to
the Bellman Equation. Moreover it can be shown that the sequence Vk converge
to V π under the same hypothesis that ensure the existence of V π.

Thus, the algorithm to use for an iterative policy evalutation is quite natural.
1) Take a policy π to evaluate.
2) Initialize V(s)=0, ∀s ∈ S.
3) Apply the recursive formula above, obtaining a new V (s)∀s ∈ S.
4) Repeat the point 3), with the new V (s), until a convergence criteria is not
satisfied.

Remark: The convergence criteria can be for example:

max
s∈S
|Vk+1 − Vk| < ε

where therefore we stop when the difference between 2 consecutive approximation
of V π is very small.

10.1.2 Policy Improvement

Hypothesis: In this chapter we consider determistic policies. Thus given a state
s, the agent knows which action adopt. This obviously does not imply to know
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also the following state.

If the valuation of a given deterministic policy is done, then it also easier to
find another policy that is better than this one. For a given state s, we should
inquire if we should change the policy to deterministically take an action a 6= π(s).
In order to have an answer to this question, we have just to consider the formula
in chapter 7.

Qπ(s, a) =
∑
s′

Pas s′ [Ra
s s′ + γ V π(s′)]

Indeed, a way to answer to that formula is to select a in the state s at the
beginning of the episode, and thereafter follow the existing policy. It is then
obvious that if it is better to select a in s and thereafter follow the policy π, then
it is better to select a everytime the agent in s, defining therefore a new policy
π′. The result just mentioned can be easily proved. Thanks to this observation is
quite natural to introduce the following algorithm which consider also the iterative
policy evaluation considered in the previous section:
1) Initialize V (s) and π(s)∀s ∈ S.
2) Do the policy evaluation as outlined in the previous section.
3) Do the policy Improvement. Thus, for each s ∈ S :

• Set a variable b(s) = π(s)

• Update π(s) = argmaxa
∑

s′ Pas s′ [Ra
s s′ + γ V π(s′)]

• if there is an s ∈ S such that b(s) 6= π(s), then the policy is actually
improved, thus we need to go back, and repeat from point 2). If such an s
does not exist, then the policy is not changed, thus it cannot be improved
anymore, therefore it is optimal.

Remark: The policy iteration involves policy evaluation each step. But policy
evaluation is itself iterative and can requires lot of iterations before occuring to
convergence. Thus, it can be be improved, but also extended considering also
non-deterministic policies.
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Chapter 11

Conclusions

As outlined in the first chapter the main objective of the present work was to for-
malize the problem and to implement the simulator in order to represent the envi-
ronment. Regarding the formalization we are satisfied, since we have been actually
able to define all features, considering also the problem from the Reinforcement
Learning perspective, and to collect all financial data that were necessary. The
simulator has already been tested by the CVA desk of Banca IMI, and it works as
we expected.

It is obvious how in the current version of the simulator optimal result cannot
be obtained; indeed we are not considering quantities as sensitivities that could be
even crucial to determine a good hedging policy. In general we can say that the
agent will never learn without informative features, and if these features are not
expressed properly Learning can also fail.

Thus the project will proceed in the following way:

• Some reinforcement learning algorithms will be implemented in a basic ver-
sion in order to understand if the agent can actually learn with the current
representation of the environment.

• If the results from the previous point are satisfactory then the idea is to
extend the basic version implemented to the original one presented in chapter
6.

• If the results from the algorithms are not satisfactory then two different ways
can be followed:

– Enrich the current state considering also sensitivities and other features
that can be essential for the agent to learn.
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– The features that we have considered until now, are features that were
provided by experts (i.e. they were domain features). It would be
also interesting besides considering the enrichment of these features to
synthesize some of them through DeepLearning algorithms. Indeed,
one of the key points of deep learning is replacing handcrafted features
with feature learning algorithms, that as the name suggests are able to
synthesize features from which the agent will learn.

Thus, with regard to the objectives of this thesis I can say that they were fully
achieved, at the same time there is a lot of work to do and challenges to face in
order to complete the whole project.
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