

Politecnico di Milano

School of Industrial and Information Engineering

Master of Science in Management Engineering

RESOLUTION OF A MULTI-PROJECT SCHEDULING PROBLEM WITH

RESOURCE AVAILABILITY AND ELIGIBILITY CONSTRAINTS THROUGH

OPTIMIZATION TECHNIQUES

Christianne Bezerra Sepulveda

Personal Code 10494909

Id Number 831485

Supervisor

Professor Francesca Valeria Fumero

Academic Year: 2015/2016

ABSTRACT

This work was motivated by the request of an important Brazilian bank, which recognized the

importance of improving the allocation of the programmers in its software factory projects. The

allocation problem aims to optimize the allocation of project activities to the factory

programmers. The activities require a specific skill to be performed, have a predefined duration

and are interconnected with other project activities by a strong relationship of precedence. The

programmers have a set of skills and a schedule that describes their availability. A mixed integer

linear programming model to represent this situation was developed by the author. It is also

capable of allocating activities to the programmers based on their technical prowess and time

availability. The Mixed Linear Integer Programming model was solved using the CPLEX

software, and a solution for a reduced version of the real problem was found. Due to the

problem’s highly complex nature, it can be classified as an NP-hard type, the exact solution to

the full real problem could not be found since the software’s computational limits were

exceeded. Thus, to provide a solution for the complete real problem, a constructive heuristic

method based on list scheduling was developed. The model presented a better solution than the

one implemented by the bank in terms of the weighted sum of the project completion times.

With effective use of these models, the company is able to make well-grounded decisions with

respect to its capacity and resource planning.

Keywords: Resource Allocation. Scheduling. Operations Research. Mixed Integer Linear

Programming. Constructive Heuristic.

SOMMARIO

Questo lavoro è stato motivato dalla necessità di un’importante banca brasiliana di ottimizzare

l'assegnazione ai programmatori delle attività necessarie alla realizzazione di diversi progetti

della sua fabbrica di software. Ogni attività richiede una competenza specifica da utilizzare,

una durata predefinita ed è interconnessa con le altre attività del progetto di cui fa parte da un

forte rapporto di precedenza. I programmatori hanno un insieme di competenze e un orario di

lavoro che determinano la loro disponibilità. È stato sviluppato un modello di programmazione

lineare intera mista per rappresentare questa situazione. Tale modello è anche in grado di

assegnare le attività ai programmatori in base alla loro abilità e al tempo tecnico richiesto a

seconda della loro disponibilità. Il modello di programmazione lineare intera mista è stato

risolto utilizzando il software CPLEX, ed è stata trovata una soluzione ad una versione ridotta

del vero problema. A causa della sua natura altamente complessa, la soluzione esatta del

problema completo può essere classificata come di tipo NP-hard e non è stato possibile trovarla

a causa dei limiti di calcolo dei software. A tal punto, per fornire una soluzione al problema

reale, è stato sviluppato un metodo euristico-costruttivo basato sulla lista di pianificazione.

Valutando la somma ponderata delle date di conclusione dei progetti, si è constatato che il

modello sviluppato costituisce una soluzione migliore rispetto a quella già esistente nella banca.

L’uso adeguato di tali modelli permetterà alla banca di prendere importanti decisioni riguardanti

la capacità produttiva e la distribuzione adeguata di funzionari.

Parole Chiave: Allocazione delle Risorse. Pianificazione. Ricerche Operativa.

Programmazione Lineare Intera Mista. Euristica Costruttiva.

LIST OF FIGURES

Figure 1 Participation of the Financial Sector in the Country's Total IT Spending 9

Figure 2 Quantity of Bank Operations per Service Channel.. 11

Figure 3 Investments and Expenditures in Technology by Brazilian Banks 12

Figure 4 Bar Chart to PERT Chart conversion .. 20

Figure 5 PERT Duration Calculation for a Single Activity ... 21

Figure 6 CHDSP for machine environments ... 28

Figure 7 CHDSP for processing restrictions and constraints ... 28

Figure 8 CHDSP for objective functions ... 28

Figure 9 Scheduling Algorithms Classification ... 54

Figure 10 Flow Chart for the heuristic algorithm .. 59

LIST OF TABLES

Table 1 Gantt Chart for Project X ... 15

Table 2 Table of activities ... 15

Table 3 Map of Skills .. 16

Table 4 Programmer Schedules .. 16

Table 5 Quantity of restrictions for each set of restrictions .. 38

Table 6 Example Problem Project A Gantt Chart ... 39

Table 7 Example Problem Project B Gantt Chart ... 39

Table 8 Description of Activities of the Example Problem .. 39

Table 9 Map of Skills of the Example Problem .. 40

Table 10 Programmers’ Schedule of the Example Problem ... 40

Table 11 Description of the Programmers’ Lack of Availability of the Example Problem ... 40

Table 12 Relation between the Events and the Programmers of the Example Problem 41

Table 13 Projects’ Priority .. 41

Table 14 Xijk values for the preliminary test .. 45

Table 15 Ci values for the preliminary test ... 45

Table 16 CPl values for the preliminary test ... 46

Table 17 Result of Preliminary Test ... 46

Table 18 Gantt Chart of 2 Real Projects ... 47

Table 19 Map of Skills for 8 programmers and 7 skills .. 48

Table 20 Schedules of 6 programmers for the first working days of December 49

Table 21 Importance of the projects ... 50

Table 22 Comparison of the resolution times for the MILP when varying the inputs 52

Table 23 Main Priority Rules .. 55

Table 24 Heuristic Method Step by Step (1) ... 61

Table 25 Heuristic Method Step by Step (2) ... 61

Table 26 Heuristic Method Step by Step (3) ... 62

Table 27 Heuristic Method Step by Step (4) ... 62

Table 28 Heuristic Method Step by Step (5) ... 62

Table 29 Heuristic Method Step by Step (6) ... 63

Table 30 Heuristic Method Step by Step (7) ... 63

Table 31 Comparison between MILP and Heuristic Method ... 64

Table 32 Comparison between the results of the heuristic and the real problem 67

Table 33 Comparison between the heuristic and the real problem objective functions.......... 67

Table 34 Other heuristic success factors ... 68

Table 35 Programmers Occupation Rate after Heuristic Result ... 69

Table 36 Programmers Occupation Rate – Second Allocation ... 70

Table 37 Success Factors – Reduced Number of Resources .. 71

SUMMARY

1. INTRODUCTION ... 9

1.1 Context ... 10

1.2 Problem Definition .. 14

1.3 Objective .. 17

1.4 Relevance of the work ... 17

1.5 Outline of the work .. 18

2. LITERATURE REVIEW ... 19

2.1 Project Management Scheduling Techniques (PMST) .. 19

2.1.1 Gantt Chart, Milestone Chart and Line of Balance .. 19

2.1.2 Networking Scheduling Techniques ... 21

2.1.3 Heuristics for Scheduling ... 22

2.1.4 Application of PMST in the Software Factory ... 23

2.2 Scheduling Problems ... 24

2.2.1 Machine Environment .. 24

2.2.2 Processing Characteristics and Constraints .. 25

2.2.3 Optimal Criteria .. 26

2.2.4 Complexity Hierarchy in Scheduling Problems ... 27

2.2.5 Single Stage Multi Machine Problems ... 28

2.3 Related works .. 31

3. MILP MODEL .. 34

3.1 The Mathematical Formulation ... 34

3.2 Example ... 38

3.2.1 Data ... 38

3.2.2 Model .. 41

3.2.3 Results .. 44

4. RESOLUTION METHODS AND NUMERICAL EEXPERIMENTS 47

4.1 Data Collection .. 47

4.2 MILP Model Resolution .. 51

4.3 Constructive Heuristic ... 52

4.3.1 Literature Review ... 52

4.3.2 Heuristic Algorithm .. 55

4.3.3 Example .. 60

5. DISCUSSION OF RESULTS ... 66

5.1 Sensibility Analysis of the Resource Constraints .. 68

6. CONCLUSIONS ... 72

REFERENCES ... 74

APPENDIX A .. 77

APPENDIX B .. 81

9

1. INTRODUCTION

The Brazilian banking industry has undergone significant changes since the late 1960s, and

even more so since the early 1990s. These changes involve innovations in products,

management and governance practices, market strategies, pricing rules for services and

operations (spreads), asset and liability management, mergers and acquisitions and the entry of

foreign banks.

In this process, two transformations stand out. First, is the transformation of banking in

providing services and facilities to customers, such as online payment accounts and debit

transactions. The other is the specialization and the strengthening of financial intermediation

activity between lenders and borrowers in the short-term credit segment.

In the 2014 Bank Technology Survey held by the Brazilian Federation of Banks (FEBRABAN,

2014), it was found that Brazilian banks invested R$ 21.5 billion in information technology.

According to the president of FEBRAN, Murilo Portugal, "Developments in the banking market

would not have been possible without IT, making banks accessible for millions of people in

remote locations and at any time of day."

Figure 1 shows the participation of the financial sector as a percentage of the country's total IT

spending. The financial services industry is the largest investor in information technology

among industries globally. In Brazil, the total IT spending in 2014 was USD 59 billion, of which

the financial institutions accounted for approximately 18%. This percentage of investment is

similar to that seen in major emerging and developed countries.

Figure 1 Participation of the Financial Sector in the Country's Total IT Spending

(% Of Total IT Spending - 2014)

Source: FEBRABAN Bank Technology Survey 2014

The president of FEBRABAN also pointed out that IT improves agility, security and has

contributed greatly to increase banking services, with the number of people with access to these

10

services jumping from 50 million in 2012 to 108 million in 2014. This increase allowed for a

significant growth in the popular access to bank services and credit.

In an environment where technological advancement is crucial in enabling internal and external

processes to function in the most secure and agile way, the optimization of the IT development

process is mandatory in order to improve the cost effectiveness.

This present work describes the development and the results of a project aimed for optimizing

the allocation of programmers in the software factory of an international bank, which has

operations in the Americas, Europe and Asia, providing services in a wide range of business

segments. The bank has preferred to remain unidentified for competitive reasons.

With the intent to provide an overview for this work, the following sections present the context,

the problem definition, the objectives, and the relevance for the company.

1.1 Context

Brazilian banks are at the country’s technological forefront with the launch of solutions,

innovative products and services since the mid-1960s, when the first computers arrived in the

financial sector. Since then, financial institutions have gone through an intense automation

process and digital transformation, which included the deployment of real-time processing

systems, ATM network expansion and the development of online and mobile banking, currently

used on a large scale.

The launch of the first internet banking platforms occurred in the second half of the 1990s. Prior

to that, the main relationship channels between banks and customers were the agencies, ATMs

and via telephone.

Mobile banking, which has attracted significant investments from banks so as to ensure comfort

and safety to the customer, has evolved into an important gateway to the financial inclusion of

millions of Brazilians. According to Gustavo Fosse, FEBRABAN’s sector director of banking

technology and automation, the use of mobile banking has grown exponentially since 2010,

when only 780,000 accounts (less than 1% of total current accounts) were enabled to use this

feature. In the first half of 2015, the share of mobile banking among the service channels, which

had reached 11% in 2014, rose to 21% of total operations, being placed second among consumer

preference. It is an important milestone that reflects not only the advancement of a new channel,

11

but also the beginning of a new relationship between consumers and their banks. Figure 2

shows the amount of bank operations per service channel in 2014 and 2015.

Figure 2 Quantity of Bank Operations per Service Channel

Source: FEBRABAN Bank Technology Survey 2015

A survey provided by the IBGE (Brazilian Institute of Geography and Statistics) presented a

demonstration of the potential of the digital medium as a financial inclusion mechanism:

According to the survey, internet access via mobile phone in Brazilian households exceeded,

for the first time, access via personal computer. From 2013 to 2014 the percentage of

households that accessed the internet via microcomputer fell from 88.4% to 76.7%, while the

proportion of households that accessed the mobile internet has grown from 53.6% to 80.4%.

The customer base has grown and become much more demanding; the internal and external

demands of the institutions have also become far more complex and diverse, requiring

increasingly well prepared frameworks. Achieving competitive advantage requires investment

in technological updating and constant development of innovative processes, resulting in new

or improved products and services for the banking customer. Banks are now preparing for new

technological challenges, strengthening its pioneering search for innovations that result in

improved convenience and customer experience. Given such a scenario, it is easy to understand

the importance of software factories inside the Brazilian financial institutions.

12

Figure 3 Investments and Expenditures in Technology by Brazilian Banks

(R$ Billions)

Source: FEBRABAN Bank Technology Survey 2014

As Figure 3 shows, investments in software are growing at higher rates than in hardware or

telecom, indicating that banks are increasingly more concerned with customer service,

consumer experience and efficiency. The total expenses are stabilizing, highlighting the banks’

concern for efficiency measures. The growth in hardware investments between 2013 and 2014

occurred in some banks due to an increase in capacity and the modernization of data storage –

if we expunge these exceptional investments, software would account for 42% of total expenses

and investments. Application development with internal resources was the type of expenditure

that grew the most (47% p.a.) over the last five years, showing that banks are increasingly more

concerned with creating skills and differentiated offerings inside their business.

The expression “software factory” was used for the first time in the 60s, but only in the 90s did

it become more widespread. The term expresses the idea of applying industrial concepts to the

software development environment, pursuing an increase in productivity and quality as well as

cost and time reduction.

13

According to FERNANDES & TEIXEIRA (2004), the basic attributes of a software factory

are:

 A defined and standardized process;

 Controlled interaction with the client;

 Standard service requests;

 Estimates of cost and time;

 Strict control of resources involved in each factory demand;

 Control and storage of items of software libraries;

 Control of the status and implementation of all demands;

 Generated products according to the standards set by the organization;

 Trained and qualified staff in organizational and production processes;

 Quality control of the product;

 Customer service processes;

 Defined metrics and control of service level agreements defined with the customer ∎

MEDEIROS et al. (2004) provide the description of a hypothetical functional team that would

be required for a software factory as well as their activities:

 Business Manager: market research and sales services;

 Project Manager: risk management and managing activities under development, scaling

and allocating resources, customer interaction and business manager;

 Systems Analyst: survey requirements analysis, architecture definition and

documentation system to be developed;

 Quality Assurance Analyst: review of the generated artefacts, control of possible

changes, definition and validation of quality and accuracy of the process used;

 Software Engineer: system implementation according to the specifications and

documentation, following the defined developing process;

 Test Engineer: development, validation and implementation of software testing in order

to ensure the quality and accuracy of the software produced;

 Team Leader: coordination and tasks assignment within a specific group, reporting

periodically the progress of the activities to the project. ∎

The software factory of the problem in question is one focused on construction and maintenance

of software used in different areas of the bank. It supports development systems divisions in

14

the creation and maintenance of programs that make up the systems that support the bank's

operations.

The internal software factory model implemented by the bank was a pioneer in financial

institutions in Brazil. According to the bank’s systems superintendent in 2010, "This model

allowed for a better understanding of the operation and allowed a more seamless transition from

the traditional model, where the roles of analysis and programming were confusing, to a

collaborative model where competence centres can be observed. As a result, we have teams that

are better trained, more productive, and more assertive when it comes to deadlines and the costs

negotiated”.

1.2 Problem Definition

The software factory considered in this work faces a resource allocation problem in the projects

planned for the next project cycles (approximately 30 projects/cycle).

Each project has its own timeline and set of skills needed for each of its phases. These aspects

are summarized in a Gantt Chart for each project. In the Gantt Chart, each row represents one

activity of the project and each column is the day number with respect to the first day of the

project.

In Table 1, a reduced and simplified version of Gantt Chart for project X can be observed, the

first input of the problem being considered. The Gantt Chart shows that activity A1 needs to be

performed in the 1st, 2nd and 3rd day of the project. Activity A3, on the other hand, needs to be

performed during the course of the entire project, while skill A7 needs to be performed in the

1st and 2nd, and from day 9th to day 12th of project X and so on and so forth.

The link between the activities that belong to the same project are also fixed. The Gantt chart

must be followed once the project has started. Accordingly, the completion time of each activity

is related to the completion time of the other activities in the same project. For example, the

completion time of A1 needs to be 9 days before than the completion time of activity A3.

Once one of the activities of the project is allocated, the allocation for all the others is already

known and has to be followed.

15

Table 1 Gantt Chart for Project X

 Days of the Project

 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

A
ct

iv
it

ie
s

A1

A2

A3

A4

A5

A6

A7

A8

Table 2 presents the skill needed to perform each of the activities.

Table 2 Table of activities

Activity Skill needed

A1 S1

A2 S2

A3 S3

A4 S4

A5 S5

A6 S6

A7 S7

A8 S8

The software factory has approximately 2000 programmers, each with different skills. This is

summarized in a Map of Skills. Each row of the Map of Skills is the representation of a

programmer and each column is the representation of a skill. The shaded cells indicate that the

programmer has the skill, whereas the blank cells indicate that they do not possess the skill in

question.

In Table 3, it is possible to observe a reduced and simplified version of the Map of Skills. The

names of the programmers and their abilities are kept unidentified due to competitive reasons.

This is the second input of our problem. The Map of Skills says that programmer 1 possesses

skills S1 and S9, programmer 2 has skills S4, S5 and S6, while programmer 8 is capable of

performing skills S4 and S9 and so forth.

16

Table 3 Map of Skills

 Skills

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S9 S10 S11

P
ro

g
ra

m
m

er
s

P1

P2

P3

P4

P5

P6

P7

P8

Each programmer has their own schedule and working hours. This is summarized in a Schedule.

In Table 4, a simplified and reduced version of the Programmer Schedules is shown, the third

input of our problem. Each row represents a programmer and each column represents a fixed

day in the calendar. Table 4 gives the schedule for the twelve first working days of the month.

Shaded cells indicate that the programmer is not available, blank cells show that they are free.

From the Schedule, it can be observed that programmer 1 has a lack of availability from day 4

to day 7, meaning that they have a day off for some reason, or that they have another project

already scheduled, training etc. Consequently, the programmer cannot work on a new activity

that day.

Table 4 Programmer Schedules

 Days

 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

g
ra

m
m

er

P1

P2

P3

P4

P5

P6

P7

P8

Each project has a different priority level and technical features, which must be adhered to. The

project can only be initiated when all the resources are allocated with the required times and

skills. If there are no employees available with the requisite skills and time needed for the

project, then it must be delayed. The programmers can perform a set of activities, but only the

ones that they possess the skill to be able to perform. The expected solution is the allocation of

the activity to a skilled programmer on an available day.

17

The restriction that links the activity completion times in the same project is the technique used

to uphold the Gantt chart of the project.

The completion time of each project is equal to the completion time of the last activity needed

to complete the project. In other words, the duration of a project starts when the first activity

needed to complete the project and ends when the final activity needed to complete the project

ends. Thus, the project’s time of completion is the time at which the final activity is finished.

Once the completion time of the project is calculated, the objective of the model is to minimize

the completion time of the projects weighted by their importance.

1.3 Objective

This works strives to assist the software factory in making its decisional processes more robust,

systematic and formal. The best allocation is the one that minimizes the total weighted

completion time of the projects.

In order to achieve the full objective, the resolution process should not only generate the proper

allocation of the project activities to programmers, but also achieve better results than the

current ones.

The data set provided by the company is going to be applied in the method developed in this

work, and its outcomes are going to be compared with the actual results. This comparison aims

to check if the model fulfils its purpose.

1.4 Relevance of the work

In a market as competitive as the financial sector, operational efficiency can result in cost

reduction and an increase in the availability of programmers, providing a competitive edge and

creating value for the bank. With an optimized allocation of its resources, the software factory

can improve their service level, reduce the project delays and reduce costs.

Once the software factory is operating within the best allocation scenario, it can receive other

requests for the improvement or development of software in departments that are not currently

prioritized in that bank sector. The financial benefits of the increase of the potential internal

clients are difficult to measure, but the reduction of mechanical and repetitive activities can

improve employee motivation, availability to perform intellectual activities, the operational

time of routine activities as well as reducing operational errors.

18

1.5 Outline of the work

The rest of this report is organized as follows.

Chapter 2 presents a literature review about project management scheduling techniques and

scheduling problems. A significant range of definitions useful for the full understanding of the

project is presented. A brief review of similar works of scheduling is also discussed.

Chapter 3 presents a mixed integer linear programming (MILP) model developed to represent

the problem of the software factory. First, the complete model is introduced and presented,

including indexes, variables, constants, parameters, objective function and constraints. An

explanation is provided for each of the model constraints. After the description of the model, a

small example is presented, with a subsequent application of the MILP model and finally the

preliminary results are discussed.

Chapter 4 begins with the presentation of the data collected. The following sub section shows

the results of the MILP model for the complete and partial sets of the real problem data.

Subsequently, constructive heuristic theory is briefly presented and a possible heuristic for the

problem resolution is proposed. The suggested heuristic is applied to the same reduced problem

of the MILP example. The chapter ends with a comparison between the results of the MILP

model and the heuristic model in order to validate it.

Chapter 5 compares the solution found by the proposed heuristic and the current solution used

by the company. Some improvement suggestions for the model are presented and other success

factors for a good allocation solution in addition to the weighted completion time.

The final chapter contains the conclusion, highlighting the importance of this work for the

company and for academic literature. Some suggestions for future studies are provided.

19

2. LITERATURE REVIEW

In this chapter a literature review is presented about project management scheduling techniques

and scheduling problems. A significant range of definitions useful for the full comprehension

of the work is presented. A brief review of similar works of scheduling is also discussed.

2.1 Project Management Scheduling Techniques (PMST)

According to KERZNER (2009), management is continually seeking new and better control

techniques to cope with the complexities, masses of data, and tight deadlines that are

characteristic of highly competitive industries. Managers also seek better methods for

presenting technical and cost data to customers. Scheduling techniques help achieve these goals.

The most common techniques are:

 Gantt or bar charts

 Milestone charts

 Line of balance

 Networks

o Program Evaluation and Review Technique (PERT)

o Arrow Diagram Method (ADM) – also called the Critical Path Method (CPM)

o Precedence Diagram Method (PDM)

o Graphical Evaluation and Review Technique (GERT)

 Heuristic for Scheduling

2.1.1 Gantt Chart, Milestone Chart and Line of Balance

The Gantt Chart is probably the most popular form of scheduling. It is the usual horizontal

bar chart, with the horizontal axis representing the time and the vertical axis the various

machines. A color and/or pattern code may be used to indicate a characteristic or an attribute

of the corresponding job, (PINEDO, 2008). Figure 4 (A) presents a small Gantt Chart with three

activities and their precedence order.

The Milestone Chart tool shows milestones against a time scale in order to highlight key

project events and to draw stakeholder attention to them. A milestone is defined as a point in

time or event whose importance lies in it being the climactic point for many converging

activities. It helps to strengthen the emphasis on goal orientation while reducing focus on

20

activity orientation, (RUSS & DRANGAN 2016). Figure 4 (B) shows a milestone chart with

seven milestones.

The Line of Balance (LOB) is a method of showing the repetitive work that may exist in a

project as a single line on a graph. Unlike a Bar Chart, which shows the duration of a particular

activity, a LOB Chart shows the rate at which the work that makes up all of the activities has

to be undertaken to stay on schedule, the relationship of one trade or process to the subsequent

trade or process is defined by the space between the lines (PAI; VERGUESE & RAI, 2013).

Gantt and milestone charts can be used to develop the PERT network, as shown in Figure 4.

The Gantt chart in Figure 4 (A) can be converted to the milestone chart in Figure 4 (B) by

defining the milestones of each one of the events. By then determining the relationship between

the events on different bars in the milestone chart, we can construct the PERT chart in Figure

4 (C).

Figure 4 Bar Chart to PERT Chart conversion

Source: KERZNER (2009)

21

2.1.2 Networking Scheduling Techniques

Network models can be used as an aid in scheduling large complex projects that consist of many

activities. If the duration of each activity is known with certainty, then the Critical Path

Method (CPM) can be used to determine the length of time required to complete a project.

CPM can also be used to determine how long each activity in the project can be delayed without

delaying the completion time of the project. This amount of time is called Total Float. Free

Float is the amount of time that an activity can be delayed without delaying the early start date

of any posterior activity, (WINSTON, 2004).

If, however, the duration of the activities is not known with certainty, the Program Evaluation

and Review Technique (PERT) can be used to estimate the probability that the project will be

completed by a given deadline (WINSTON, 2004).

To apply CPM and PERT, we need a list of the activities that make up the project. The project

is considered to be completed when all activities have been completed. For each activity, there

is a set of activities (called predecessors of the activity) that must be completed before the

activity begins. A project network is used to represent the precedence relationship between

activities, (WINSTON, 2004). Figure 5 presents the PERT duration calculation for a single

activity.

Figure 5 PERT Duration Calculation for a Single Activity

Source: KERZNER (2009)

The Graphical Evaluation and Review Technique (GERT) allows for a probabilistic

treatment of both network logic and activity duration estimates (i.e., some activities may not be

22

performed at all, while some may be performed only in part, and others may be performed more

than once), (PMBOK GUIDE, 2000).

The Precedence Diagram Method (PDM) is a method of constructing a project network

diagram that uses boxes or rectangles (nodes) to represent the activities, connecting them with

arrows that indicate the dependencies, (PMBOK GUIDE, 2000).

Advantages of network scheduling techniques include, (KERZNER, 2009):

 They form the basis for all planning and predicting and help management decide how

to use its resources to achieve time and cost goals.

 They provide visibility and enable management to control “one-of-a-kind” programs.

 They help management evaluate alternatives by answering questions such as how time

delays will influence project completion, where slack exists between elements, and what

elements are crucial to meet the completion date.

 They provide a basis for obtaining facts for decision-making.

 They utilize a so-called time network analysis as the basic method to determine

manpower, material, and capital requirements, as well as to provide a means for

checking progress.

 They provide the basic structure for reporting information.

 They reveal interdependencies of activities.

 They facilitate “what if” exercises.

 They identify the longest path or critical paths.

 They aid in scheduling risk analysis

2.1.3 Heuristics for Scheduling

Traditionally, the resource-constrained project-scheduling problem is tackled using the

following methods (WEI; LIU & TSAI, 2002):

 Visual Inspection: arrange the resource utilization sequence by visually inspecting the

project network so as to provide limited resources to the activities in the critical path.

The main objective is to complete the project as soon as possible. This method is only

suitable for small and non-complicated projects requiring few resources.

 Graphical Method: this method provides limited resources to the activities in the

critical path. Here, two rules must be followed:

23

o Limited sources should be first assigned to the activity with less total float when

several activities are undertaken at the same time;

o Resources should be first assigned to the activity with less duration if the total

floats of activities are identical.

 Heuristic method: this method is suitable for large and complex projects. It seeks the

near-optimal project schedule. One possibility is to use a scheduling list, as the resources

become available, activities are released using such criteria as:

o The activity with the longest duration first (LAF);

o The activity with the shortest duration first (SJF);

o First come first serve (FCFS);

o The activity with the latest finish time first (LFT)

o The activity with the smallest earliest completion time first (MEF)

o The activity with the minimum slack time first (MSF)

o The activity with the largest resource over activity time ratio first (ROT)

2.1.4 Application of PMST in the Software Factory

The software factory problem has some characteristics that do not allow the direct application

of project management scheduling techniques to the software factory problem. These are:

 The CPM method is not ideal in this case because it seeks to find the project’s critical

activities. Here, however, all of the projects are deemed critical since none of them

can be delayed without risking a delay in the entire project. There is a fixed

relationship of precedence between the activities as established in the Gantt Chart.

Consequently, the total float for all of the activities is zero.

 The Gantt chart of the projects is already given, and the due date for these projects

is as soon as possible.

 The main objective of the problem is to not only provide the best allocation of the

activities of a project, but also the best allocation for all the projects. Inside one

project, all activities have the same priority, because one can only start an activity

when it is possible for all the others to start as well.

According to PINEDO (2008), one of the most common types of problems in project planning

in the construction industry is 𝑃∞|𝑝𝑟𝑒𝑐|𝐶𝑚𝑎𝑥. This problem denotes a scheduling problem with

𝑛 jobs subject to precedence constraints and an unlimited number of machines (or resources)

24

working in parallel. The total time of the entire project must be minimized. Considering the

PINEDO (2008) approximation of the project planning problems to parallel machines, it is

therefore reasonable to review classic scheduling problems.

2.2 Scheduling Problems

As stated by POTTS; CHEN & WOEGINGER (1998), the machine scheduling problems can

be described as follows: There are 𝑚 machines that are used to process 𝑛 jobs. A schedule

specifies, for each machine 𝑖 = 1 … . 𝑚 and each job 𝑗 = 1 … 𝑛, one or more time intervals

throughout which processing is performed on 𝑗 by 𝑖 . A schedule is feasible if there is:

 No overlapping of time intervals corresponding to the same job (so that a job cannot be

processed by two machines at once);

 No overlapping of time intervals corresponding to the same machine (so that a machine

cannot process two jobs at the same time);

 And if it satisfies various requirements relating to the specific problem type.

The machine environment, the job characteristics and an optimality criterion specify the

problem type, (POTTS; CHEN & WOEGINGER, 1998).

2.2.1 Machine Environment

In a single stage production system, each job requires one operation. Single stage systems

involve either a single machine (1), or 𝑚 machines operating in parallel. In the case of parallel

machines, each machine has the same function. Three cases deserve special attention, as per

POTTS; CHEN & WOEGINGER (1998):

 Identical parallel machines (𝑃𝑚) in which each processing time is independent of the

machine performing the job. There are 𝑚 identical machines in parallel;

 Uniform parallel machines (𝑄𝑚) in which the machines operate at different speeds

but are otherwise identical. There are 𝑚 machines in parallel with different speeds;

 Unrelated parallel machines (𝑅𝑚) in which the processing time of a job depends on

the machine assignment. There are 𝑚 different machines in parallel.

In a multi-stage production system, the jobs require operations at different stages. There are

three main types of multi-stage systems. All such systems that we consider comprise 𝑠 stages,

each having a different function (POTTS; CHEN & WOEGINGER, 1998).

25

 In a flow shop (𝐹𝑚) with 𝑠 stages, the processing of each job goes through the stages

1 … 𝑠 in that order. There are 𝑚 machines in series;

 In an open shop (𝑂𝑚), the processing of each job also goes once through each stage,

but the routing (that species the sequence of stages through which a job must pass) can

differ between jobs and forms part of the decision process. There are 𝑚 machines.

 In a job shop (𝐽𝑚), each job has a prescribed routing through the stages, and the routing

may differ from job to job.

2.2.2 Processing Characteristics and Constraints

The processing requirements of each job 𝑗 are given (POTTS; CHEN & WOEGINGER, 1998):

 For a single machine and identical parallel machines, 𝑝𝑗 is the processing time;

 For uniform parallel machines, the processing time on machine 𝑖 may be expressed

as
𝑝𝑗

𝑠𝑖
⁄ , where 𝑠𝑖 is the speed of machine 𝑖;

 For unrelated parallel machines, a flow shop and an open shop, 𝑝𝑖𝑗 is the processing

time on machine/stage 𝑖;

 And for a job shop, 𝑝𝑖𝑗 denotes the processing time of the 𝑖th operation (which is not

necessarily performed at stage 𝑖).

We assume that all 𝑝𝑖 and 𝑝𝑖𝑗 are non-negative integers.

According to POTTS; CHEN & WOEGINGER (1998) and PINEDO (2008), in addition to its

processing requirements, a job is characterized by the following characteristics:

 Availability for processing - each job 𝑗 may be restricted by its release date 𝑟𝑗 that

determines when it becomes available for processing, and/or by its integer deadline

date 𝑑𝑗 that specifies the time by which it must be completed;

 Precedence Constraints (𝑝𝑟𝑒𝑐) - If job 𝑗 has precedence over job 𝑘, then 𝑘 cannot start

its processing until 𝑗 is completed;

 Whether interruptions in the processing of its operations are allowed - Some

scheduling models allow pre-emption (𝑝𝑟𝑚𝑝), the processing of any operation may be

interrupted and resumed at a later time on the same or on a different machine;

 Machine availability constraints (𝑏𝑟𝑘𝑑𝑤𝑛) imply that a machine may not be

continuously available. The periods that a machine is not available are assumed to be

26

fixed (e.g., due to shifts or scheduled maintenance). Also referred to as machine

breakdowns;

 Machine eligibility restrictions (𝑀𝑗) means that not all 𝑚 machines are capable of

processing job 𝑗;

 Other processing restrictions and constraints are sequence dependent setup times (𝑠𝑗𝑘),

job families (𝑓𝑚𝑙𝑠), batch processing (𝑏𝑎𝑡𝑐ℎ(𝑏)), permutation (𝑝𝑟𝑚𝑢), blocking

(𝑏𝑙𝑜𝑐𝑘), no-wait (𝑛𝑤𝑡) and recirculation. (𝑟𝑐𝑟𝑐).

2.2.3 Optimal Criteria

For each job 𝑗, an integer 𝑑𝑢𝑒 𝑑𝑎𝑡𝑒 𝑑𝑗 and a positive integer 𝑤𝑒𝑖𝑔ℎ𝑡 𝑤𝑗 may be specified and

some statistics can be computed, (POTTS; CHEN & WOEGINGER, 1998) and (PINEDO,

2008):

 The 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝐶𝑗

 The 𝑓𝑙𝑜𝑤 𝑡𝑖𝑚𝑒 𝐹𝑗 = 𝐶𝑗 − 𝑟𝑗

 The 𝑙𝑎𝑡𝑒𝑛𝑒𝑠𝑠 𝐿𝑗 = 𝐶𝑗 − 𝑑𝑗

 The 𝑒𝑎𝑟𝑙𝑖𝑛𝑒𝑠𝑠 𝐸𝑗 = max {𝑑𝑗 − 𝐶𝑗 , 0}

 The 𝑡𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠 𝑇𝑗 = max {𝐶𝑗 − 𝑑𝑗 , 0}

 And the 𝑢𝑛𝑖𝑡 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑈𝑗 = 1 𝑖𝑓 𝐶𝑗 > 𝑑𝑗 , 𝑈𝑗 = 0 otherwise.

Moreover, if 𝑓𝑗 is a regular objective function, i.e., a non-decreasing cost function, then the cost

of job 𝑗 is defined 𝑓𝑗 = 𝑓𝑗(𝐶𝑗).

As presented by POTTS; CHEN & WOEGINGER (1998) and PINEDO (2008), some

commonly used optimality criteria involve the minimization of:

 The maximum completion time, or makespan, 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝐶𝑗. It is equivalent to the

completion time of the last job to leave the system. A minimum makespan usually

implies a good utilization of the machine(s);

 The maximum lateness 𝐿𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝐿𝑗. It measures the worst violation of the due

dates;

 The maximum cost 𝑓𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝑓𝑗;

 The maximum earliness 𝐸𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑗𝐸𝑗;

27

 The total (weighted) completion time ∑ (𝑤𝑗)𝐶𝑗𝑗 ;

 The total (weighted) flow time ∑ (𝑤𝑗)𝐹𝑗𝑗 ;

 The total (weighted) earliness ∑ (𝑤𝑗)𝐸𝑗𝑗 ;

 The total (weighted) tardiness ∑ (𝑤𝑗)𝑇𝑗𝑗 ;

 The (weighted) number of late jobs ∑ (𝑤𝑗)𝑈𝑗𝑗 ;

 The total cost ∑ 𝑓𝑗𝑗 , where each maximization and each summation is taken over all jobs

𝑗.

Also, in some situations more than one of these criteria must be considered.

The allocation problem of the software factory can be classified as a

𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗, 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑙𝐶𝑙 problem following PINEDO (2008) notation. This delineates a

scheduling problem of parallel identical machines subject to precedence constraints, machine

eligibility restrictions and machine availability constraints with the objective function of the

minimization of the total weighted completion time of the projects.

A set of programmers with the same skill can be approximated to parallel identical machines

from the point of view of an activity that needs a specific skill to be performed. Each activity

is going to have a set of parallel programmers to be allocated.

2.2.4 Complexity Hierarchy in Scheduling Problems

A significant amount of research in deterministic scheduling has been devoted to finding

efficient, so-called polynomial time algorithms for scheduling problems. However, many

scheduling problems do not have a polynomial time algorithm. These problems are called NP-

hard problems (PINEDO, 2008).

In complexity terminology, 𝑃𝑚|| ∑ 𝑤𝑗𝐶𝑗 reduces 𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗, 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑗𝐶𝑗, indicating

that the first is only a special case of the second. According to PINEDO (2008), a problem

𝑃𝑚|| ∑ 𝑤𝑗𝐶𝑗 is NP-hard, which implies that 𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗, 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑙𝐶𝑙, the formulation of

the software factory problem, is also NP-hard.

The Complexity Hierarchies of Deterministic Scheduling problems (CHDSP) is presented in

the next figures. As Figure 7 shows, the addition of precedence constraints (𝑝𝑟𝑒𝑐) and machine

eligibility restrictions (𝑀𝑗) affects the complexity of the model, making it more complex. The

28

box with “zero” show that the scheduling does not have that restriction. Figure 6 and Figure 8

show the CHDSP for machine environments and for the objective function, respectively.

Figure 6 CHDSP for machine environments

Source: PINEDO (2008)

Figure 7 CHDSP for processing restrictions and constraints

Source: PINEDO (2008)

Figure 8 CHDSP for objective functions

Source: PINEDO (2008)

2.2.5 Single Stage Multi Machine Problems

The model that most closely resembles the problem of the allocation of programmers is the

Single Stage Multi Machine Problem. A classical formulation for the minimization of total

earliness and tardiness for the Single Stage Multi Machine Problem is presented in ARENALES

et al (2015).

29

Parameters

The integer and non-negative parameters:

𝑝𝑖𝑘 Processing time of job 𝑖 in machine 𝑘

𝑠𝑖𝑗𝑘 Set up time of machine 𝑘 to processes job 𝑖 immediately after job 𝑗

𝑑𝑖 Due date of job 𝑖

𝑀 A large number

Variables

𝑋𝑖𝑗𝑘 1 if job 𝑖 precedes immediately job 𝑗 on machine 𝑘, 0 otherwise

𝐶𝑖𝑘 Completion time of job 𝑖 on machine 𝑘

𝐸𝑗 = max{𝑑𝑗 − 𝐶𝑗 , 0} = Earliness of job 𝑖

 𝑇𝑗 = max{𝐶𝑗 − 𝑑𝑗 , 0} = Tardiness of job 𝑖

Model

In the following formulation:

min ∑(𝑇𝑖 + 𝐸𝑖

𝑛

𝑖=1

) (2.1)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 ,

𝑛

𝑖=0

𝑚

𝑘=1

 𝑗 = 1, … , 𝑛 (2.2)

∑ 𝑋0𝑗𝑘 ≤ 1,

𝑛

𝑗=1

 𝑘 = 1, … , 𝑚 (2.3)

30

∑ 𝑋𝑖ℎ𝑘

𝑛

𝑖=0
𝑖≠ℎ

− ∑ 𝑋ℎ𝑗𝑘

𝑛

𝑗=0
𝑗≠ℎ

= 0, ℎ = 1, … , 𝑛 𝑘 = 1, … , 𝑚 (2.4)

𝐶𝑗 ≥ 𝐶𝑖 + ∑ 𝑋𝑖𝑗𝑘(𝑝𝑖𝑘 + 𝑠𝑖𝑗𝑘)

𝑚

𝑘=1

+ 𝐻

∙ (∑ 𝑋𝑖𝑗𝑘

𝑚

𝑘=1

− 1),

𝑖 = 0, … , 𝑛, 𝑗 = 1, … , 𝑛 (2.5)

𝑇𝑗 ≥ 𝐶𝑗 − 𝑑𝑗 , 𝑖 = 1, … , 𝑛 (2.6)

𝐸𝑗 ≥ 𝑑𝑗 − 𝐶𝑗 , 𝑖 = 1, … , 𝑛 (2.7)

𝑋 ∈ 𝐵𝑚(𝑛+1)(𝑛+1), 𝑇 ∈ 𝑅+
𝑛, 𝐸 ∈ 𝑅+

𝑛 (2.8)

The objective function (2.1) minimizes the total sum of the tardiness and earliness of the jobs.

The set of constraints (2.2) imposes that each job 𝑗 has only one predecessor job in only one

machine. The set of constraints (2.3) ensures that each machine 𝑘, if allocated, has only one job

processing sequence. The set of constraints (2.4) ensures that each job 𝑗 has only one job

immediately before, except job 0, which is the beginning and the end of the processing

sequence. If 𝑋𝑖𝑗𝑘 = 1, the set of constraints (2.5) implies that

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑖𝑘 + 𝑠𝑖𝑗𝑘

In other words, it means that if the job 𝑗 succeeds the job 𝑖 in the machine 𝑘 schedule, then the

completion time of job 𝑗, 𝐶𝑗, is after or equal to the completion time of job 𝑖, 𝐶𝑖, plus the duration

of job 𝑖, 𝑝𝑖𝑘 and the set-up time 𝑠𝑖𝑗𝑘. If 𝑋𝑖𝑗𝑘 = 0, the set of constraints (2.5) does not apply:

𝐶𝑗 − 𝐶𝑖 ≥ −𝑀

The set of constraints (2.6) defines the tardiness of each job. The set of constraints (2.7) defines

the earliness of each job. The constraint (2.8) indicates the type of each decision variable.

31

The above formulation will be the basis for that of the problem being considered. The

subsequent section presents a short description of some related works before the next chapter

where the new formulation is presented.

2.3 Related works

GOMES; NEVES & SOUZA (2014) addresses the problem of project scheduling with resource

and precedence constraints (RCPSPRP). Two conflicting objectives are considered in the

problem: the makespan minimization and the minimization of the total weighted start time of

the activities. The precedence constraints have the same definition presented in PINEDO

(2008), an activity cannot start while its precedent activities have not yet been finished. To

solve the problem, five heuristic algorithms were implemented: Multi Objective GRASP

(MOG), Multi Objective Variable Neighbourhood Search (MOVNS), MOG using VNS as local

search, denominated GMOVNS; MOVNS with intensification procedure denominated

MOVNS_I; and Pareto Iterated Local Search (PILS). The authors addressed a similar problem

in terms of the characteristic of the projects, with resource and precedence constraints, despite

the differing statement of the precedence constraint in the software factory problem.

The objective of the makespan minimization is not addressed in the software factory problem,

and the second objective of the minimization of the total weighted start time of the activities

looks similar to the minimization of the total weighted completion time at first sight. In

GOMES; NEVES & SOUZA (2014), however, the weight factor does not represent the

importance of the activity (as is the case in this present work), but an issue that is widely

discussed in project management: if it is worth making a large investment to start performing

the activities as soon as possible. The objective function is given by 𝑛 ∑
𝑤𝑖

𝑠𝑖

𝑛
𝑖=1 , where 𝑛 is the

number of activities, 𝑠𝑖 the start time of execution and 𝑤𝑖 is the cost of executing the activity.

GOMES; NEVES & SOUZA (2014) address the allocation of only one project, and not a list

of projects as the software factory problem.

YAMASHITA (2003) addresses a resource availability cost problem RACP, where the

objective is to find the best cost allocation of resources, so that the makespan does not exceed

a certain delivery date for the project and the precedence relationships between activities are

upheld. The resources are unlimited with a cost of availability given by a non-decreasing

function. YAMASHITA (2003) considers situations where there is uncertainty regarding the

32

duration of the activities and where the processing times of the activities are fixed. The method

used to find the solution for the problem was the meta heuristic Scatter Search.

LEE (1996) presented an extensive study of single and parallel machine scheduling problems

with an availability constraint, with respect to various performance measures. There are two

cases considered: resumable and nonresumable cases. In the resumable case, pre-emption is

allowed. If an operation cannot be finished before the machine’s period of unavailability, then

it can continue after the machine is available again. The nonresumable case describes the case

where pre-emption is not allowed. The disrupted operation has to totally restart rather than

continue.

The MA; CHU & ZUO (2010) paper summarizes the many results involving deterministic

scheduling problems with availability constraints motivated by preventive maintenance. The

machine may become unavailable due to a breakdown or preventive maintenance during the

scheduling period. When unavailability constraints are due to preventive maintenance, two

cases are possible. One is the case where maintenance periods are fixed in advance, deemed a

deterministic case. The other is that maintenance periods are also decision variables, i.e.,

scheduling processing of jobs and maintenance of a machine simultaneously. When

unavailability is due to machine breakdowns, it is a stochastic case, i.e., the breakdowns and

repair processes are random. It is also possible that a machine is unavailable at the beginning

of the scheduling period because it continues to process uncompleted jobs scheduled during the

previous scheduling period. This case can be classified as a deterministic one. Sometimes, an

unavailability interval is referred to as a hole. This paper only deals with the deterministic case.

The software factory programmers’ availability constraint is a deterministic case, the dates and

durations of their lack of availability are already known and fixed as an input data.

LI (2006) considers uniform parallel machine scheduling problems with unit-length jobs where

every job is only allowed to be processed on a specified subset of machines. Let {𝐽1, 𝐽2, … , 𝐽𝑛}

be a given set of jobs and {𝑀1, 𝑀2, … , 𝑀𝑚M1, M2, …, Mm} be a given set of machines, where

m ⩽ n. For each j = 1, 2, …, n, let 𝑀𝑗⊆{𝑀1, 𝑀2, … , 𝑀𝑚} be the set of machines that is capable

of processing job 𝐽𝑗. In the software factory problem, the resource eligibility restrictions are due

to the fact that programmers are only able to perform activities for which they have the

necessary skill.

33

BROWNING & YASSINE (2010) address the case of a portfolio of concurrent projects with

identical starting times. Each project consists of an activity network that draws from common

pools of multiple types of resources which are typically not large enough for all the activities

to work concurrently. The goal is to prioritize activities so as to optimize an objective function

such as minimizing the delay for each project or the overall portfolio. Such is the basic resource-

constrained multi-project scheduling problem (RCMPSP). According to BROWNING &

YASSINE (2010), both the RCPSP and the RCMPSP are strongly NP-hard, meaning that there

are no known algorithms for finding optimal solutions in polynomial time. The method

proposed by the author for the resolution was a comprehensive analysis of 20 priority rules on

12,320 test problems.

All the searched works about project scheduling strived to find a solution via a heuristic method.

The present work will present a MILP scheduling formulation for the project scheduling

problem, a resource-constrained multi-project scheduling with precedence relations, resource

availability constraints and resource eligibility restrictions. The present works also presents a

developed heuristic method for allocation.

34

3. MILP MODEL

This chapter presents the mixed integer linear programming (MILP) model developed to

represent the problem of the software factory. First, the complete model is introduced and

presented, including indexes, variables, constants, parameters, the objective function and

constraints. An explanation is provided for each of the model constraints. After the description

of the model, a small example is presented, with a subsequent application of the MILP model

and finally the preliminary results are discussed.

3.1 The Mathematical Formulation

The allocation problem of the software factory’s programmers can be defined as a

𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗 , 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑙𝐶𝑙 problem, following the PINEDO (2008) notation. This problem

denotes a scheduling problem with 𝑛 jobs to a limited number of machines (or resources) in

parallel. The problem is subject to precedence constraints, machine availability constraints and

machine eligibility restrictions. The objective function seeks to minimize the total weighted

completion time of all the projects.

The definition of the software factory problem as a 𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗 , 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑙𝐶𝑙 scheduling

problem derives from a few considerations:

 The programmers of the software factory are to be represented by the machines of the

problem;

 The activities of the projects are the jobs to be processed;

 The lack of availability and the events together are called events;

 The programmers have eligibility restrictions according to their skills;

 The precedence constraints of the activities are not denoted solely by “one or more jobs

have to be completed before another job is allowed to start its processing”. The

precedence constraints of the software factory are denoted by one activity must

start/finish an exact number of days before/after another activity in the same project;

 The programmers’ lack of availability are the machine availability constraints;

 The completion time considered in the objective function is the one of the projects, not

the activities. The completion time of a project is the completion time of the last activity

to be completed within the project;

35

 In the classic formulation of the problem, 𝑃𝑚|𝑝𝑟𝑒𝑐, 𝑀𝑗 , 𝑏𝑟𝑘𝑑𝑤𝑛| ∑ 𝑤𝑙𝐶𝑙, the activities

do not belong to a project, as the model perceives them as being independent. The

concept of considering the activities of being part of a project is an addition to the

problem made by the author;

 The activities are nonresumable and pre-emption is not allowed. In other words, it

cannot be interrupted by a lack of availability or by another activity.

The mathematical formulation of the software factory problem is presented below:

Definitions

𝒫 Set of all projects;

𝒜𝑙 Set of all activities belonging to project 𝑙;

𝒜 Set of all activities 𝒜 = ⋃𝑙∈𝒫𝒜𝑙 ;

ℬ𝑘 Set of all lack of availability of programmer 𝑘;

ℬ Set of all lack of availability ℬ = ⋃𝑘∈ℳℬ𝑘 ;

ℰ Set of all events ℰ = 𝒜⋃ℬ;

ℳ Set of all programmers available;

ℳ𝑖 Set of programmers capable of performing the event 𝑖. In case event 𝑖 is a lack of

availability, the programmer is capable of performing only its own lack of availability.

Parameters

𝐻 A large number;

𝑝𝑖 Duration of event 𝑖 ;

𝜔𝑙 Weight of importance of project 𝑙;

Π Set of ordered pairs of activities, (𝑖, 𝑗) that are associated through “project-dependent”

precedence constraints in such a way that if both are in the same project, then the completion

time of activity 𝑖 must precede the completion time of event 𝑗;

36

𝑝𝑟𝑒𝑐𝑖𝑗 Number of days the completion time of event 𝑖 must precede the completion time of

event 𝑗, (𝑖, 𝑗) ∈ Π ;

𝐶𝑏𝑖 Completion time of the lack of availability 𝑖 ∈ ℬ.

Variables

𝑋𝑖𝑗𝑘 1 if event 𝑖 immediately precedes event 𝑗 for programmer 𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗 , 0

otherwise;

𝐶𝑖 Completion time of event 𝑖;

𝐶𝑃𝑙 Completion time of project 𝑙.

Model

min ∑ 𝜔𝑙 ∙ 𝐶𝑃𝑙

𝑙∈𝒫

 (3.1)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

∑ ∑ 𝑋𝑖𝑗𝑘 = 1 ,

𝑖 ∈ℰ𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗

 ∀ 𝑗 ∈ ℰ, 𝑗 ≠ 0 (3.2)

∑ 𝑋0𝑗𝑘 ≤ 1,
𝑗∈ℰ
𝑗≠0

 ∀ 𝑘 ∈ ℳ𝑗 (3.3)

∑ 𝑋𝑖ℎ𝑘

𝑖 ∈ℰ
𝑖≠ℎ

− ∑ 𝑋ℎ𝑗𝑘

𝑗∈ℰ
𝑗≠ℎ

= 0,
∀ ℎ ∈ ℰ, ℎ ≠ 0

∀ 𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗 ∩ ℳℎ

(3.4)

37

𝐶𝑗 ≥ 𝐶𝑖 + ∑ 𝑋𝑖𝑗𝑘 ∙ 𝑝𝑗

𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗

+ 𝐻

∙ (∑ 𝑋𝑖𝑗𝑘

𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗

− 1)

∀ 𝑖, 𝑗 ∈ ℰ

𝑗 ≠ 0

(3.5)

𝐶𝑗 = 𝐶𝑖 + 𝑝𝑟𝑒𝑐𝑖𝑗, (𝑖, 𝑗) ∈ Π (3.6)

𝐶𝑖 = 𝐶𝑏𝑖, ∀ 𝑖 ∈ ℬ (3.7)

𝐶𝑃𝑙 ≥ 𝐶𝑖,

∀ 𝑖 ∈ 𝒜𝑙

 ∀ 𝑙 ∈ 𝒫

(3.8)

𝑋𝑖𝑗𝑘 ∈ {1,0}

∀ 𝑖, 𝑗 ∈ ℰ

 ∀ 𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗

(3.9)

𝐶𝑖 ∈ ℝ+ ∀ 𝑖 ∈ ℰ (3.10)

𝐶𝑃𝑙 ∈ ℝ+ ∀ 𝑙 ∈ 𝒫 (3.11)

The objective function (3.1) minimizes the sum of the completion time of each project weighted

by the importance of the project. The global optimum for all the projects is the objective. The

set of constraints (3.2) imposes that each event 𝑗 has only one preceding event and it is allocated

to only one programmer 𝑘. The set of constraints (3.3) ensures that each programmer 𝑘, if

allocated, has only one event sequence. The set of constraints (3.4) ensures that each event has

only one event immediately before, except event 0, which is the beginning and the end of a

sequence of events. Event 0 is a fictional event that marks the beginning and the end of the

performing order of each programmer. Every programmer, if allocated to some activity, will

start and finish the performing order with event 0. If 𝑋𝑖𝑗𝑘 = 1, the set of constraints (3.5) implies

that

38

𝐶𝑗 ≥ 𝐶𝑖 + 𝑝𝑗

In other words, it means that if event 𝑗 succeeds event 𝑖 in the schedule of programmer 𝑘, the

completion time of event 𝑗, 𝐶𝑗, is after or equal to the completion time of event 𝑖, 𝐶𝑖, plus the

duration of event 𝑗, 𝑝𝑗. If 𝑋𝑖𝑗𝑘 = 0, the set of constraints (3.5) does not apply:

𝐶𝑗 − 𝐶𝑖 ≥ −𝐻

The set of constraints (3.6) defines that if activity 𝑖 and 𝑗 are in the same project, then there is

a time relationship between their completion times that must be ensured. The set of constraints

(3.7) determines that if activity 𝑖 is a lack of availability, then the completion time of 𝑖, 𝐶𝑖, is

known, and it is equal to 𝐶𝑏𝑖. The set of constraints (3.8) ensures that the completion time of

project 𝑙 is after or equal to the completion time of every activity 𝑖 that composes this project.

The constraints (3.9), (3.10) and (3.11) indicate the type of each decision variable.

Table 5 presents the maximum quantity of restrictions for each set of restrictions.

Table 5 Quantity of restrictions for each set of restrictions

Set of

restrictions

Quantity of

restrictions

(3.2) |ℰ|2 ∙ |ℳ|
(3.3) |ℳ|
(3.4) |ℰ|2 ∙ |ℳ|
(3.5) |ℰ|2 ∙ |ℳ|
(3.6) |Π|
(3.7) |ℬ|
(3.8) |𝒜|

The total quantity of restrictions of the problem is |ℬ| + |𝒜| + |Π| + |ℳ| + 3 ∙ |ℰ|2 ∙ |ℳ|

3.2 Example

This section presents a pilot problem with the possibility of understanding how the model is

making programming decisions for allocation, as well as what is the general behaviour of the

variables. Finally, the validity of the model for the pilot problem is discussed.

3.2.1 Data

The pilot problem has two projects, A and B, each one composed of 3 activities. There are three

possible skills demanded to execute these activities. Four programmers are available to perform

39

the project’s activities. Each one of the programmers has their own schedule and the lack of

availability for each programmer is given.

Table 6 and Table 7 show the Gantt chart for projects A and B. As previously discussed, a

project can have its starting time delayed, but once the project has started, it cannot be belated.

The duration of the activities is fixed, as is the duration of the project. The project’s duration is

given by the difference between the first day of the first activity to start and the last day of the

last activity to finish. The colored cells indicate that the activity should be done that specific

day. If activity A1 starts on December 3rd, A2 must start December 4th and A3 must begin on

December 5th, the first, second and third day of the project, respectively.

Table 6 Example Problem Project A Gantt Chart

Days of the Project

1st 2nd 3rd 4th 5th

A1 A1

A2 A2

A3 A3

Table 7 Example Problem Project B Gantt Chart

Days of the Project

1st 2nd 3rd 4th 5th

A4 A4

A5 A5

A6 A6

Table 8 provides a description of each activity to be allocated. The characteristics of an activity

are the project they belong, the skill they demand and their duration in days.

Table 8 Description of Activities of the Example Problem

Activity Project Skill demanded Duration

A1 A S1 2

A2 A S2 3

A3 A S3 3

A4 B S1 3

A5 B S2 2

A6 B S3 3

40

Table 9 shows the Map of Skills of each one of the four programmers available. The shaded

spaces indicate that programmer P has the skill S. For example, programmer P1 possesses the

skills S2 e S3.

Table 9 Map of Skills of the Example Problem

 S1 S2 S3

P1

P2

P3

P4

Table 10 shows the Programmers’ Schedule for the first 10 days of the current month. The

following days of the month are assumed to be free. The coloured spaces are the lack of

availability of the programmers, denoted by B#.

Table 10 Programmers’ Schedule of the Example Problem

 1 2 3 4 5 6 7 8 9 10

P1 B1

P2 B2

P3 B3

P4 B4 B5

Table 11 shows the characteristics of the lack of availability for each programmer. The lack of

availability and the activities are called events.

Table 11 Description of the Programmers’ Lack of Availability of the Example Problem

Lack of Availability Programmer Duration in Days Completion Time

B1 P1 2 5

B2 P2 2 3

B3 P3 1 6

B4 P4 2 4

B5 P4 1 8

Table 12 shows the relation between the activities and the programmers. The colored spaces

indicate that programmer P is capable of performing activity A, because they possess the skill

required for that activity. Table 12 is a result of the information contained in Table 8 and Table

41

9. Activity 0 is a fictional activity that starts and ends the performing list of each active

programmer.

Table 12 Relation between the Events and the Programmers of the Example Problem

 A0 A1 A2 A3 A4 A5 A6 B1 B2 B3 B4 B5

P1

P2

P3

P4

Table 13 shows the priority scale between project A and project B. The higher the value of the

priority, the higher the priority of the project.

Table 13 Projects’ Priority

Project Priority

A 1

B 2

3.2.2 Model

The following section presents the model for the example problem, presented in the previous

section.

Sets

𝒫 Set of all Projects:

Projects 0, A and B

𝒜𝑙 Set of all activities belonging to Project 𝑙:

𝒜0: A0

𝒜𝐴: A1, A2 and A3

𝒜𝐵: A4, A5 and A6

𝒜 Set of all activities 𝒜 = ⋃𝑙∈𝒫𝒜𝑙 :

Activities A0, A1, A2, A3, A4, A5 and A6

42

ℬ𝑘 Set of all lacks of availability for programmer 𝑘:

ℬ1: B1

ℬ2: B2

ℬ3: B3

ℬ4: B4 and B5

ℬ Set of all lacks of availability ℬ = ⋃𝑘∈ℳℬ𝑘 :

Lack of availabilities B1, B2, B3, B4 and B5.

ℰ Set of all events ℰ = 𝒜⋃ℬ:

Events: A0, A1, A2, A3, A4, A5, A6, B1, B2, B3, B4 and B5.

ℳ Set of all programmers available:

Programmers: P1, P2, P3 and P4.

ℳ𝑖 Set of programmers capable of performing event 𝑖:

ℳ𝐴0: P1, P2, P3 and P4

ℳ 𝐴1: P2 and P3

ℳ 𝐴2: P1, P3 and P4

ℳ𝐴3: P1 and P3

ℳ 𝐴4: P2 and P3

ℳ𝐴5: P1, P3 and P4

ℳ𝐴6: P1 and P3

ℳ𝐵1: P1

ℳ𝐵2: P2

43

ℳ𝐵3: P3

ℳ𝐵4: P4

ℳ𝐵5: P4

Parameters

𝐻 A large number

𝑝𝑖 Duration of event 𝑖

𝑝𝐴0 𝑝𝐴1 𝑝𝐴2 𝑝𝐴3 𝑝𝐴4 𝑝𝐴5 𝑝𝐴6 𝑝𝐵1 𝑝𝐵2 𝑝𝐵3 𝑝𝐵4 𝑝𝐵5

0 2 3 3 3 2 3 2 2 1 2 1

𝜔𝑙 Weight of importance of project 𝑙

𝜔𝐴 1

𝜔𝐵 2

Π The set of ordered pairs of activities, (𝑖, 𝑗) that are associated through “project-

dependent” precedence constraints in such a way that if both are in the same project, then the

completion time of activity 𝑖 must precede the completion time of event 𝑗

(A1, A3)

(A2, A3)

(A5, A4)

(A6, A4)

𝑝𝑟𝑒𝑐𝑖𝑗 The number of days the completion time of event 𝑖 must precede the completion time

of event 𝑗, (𝑖, 𝑗) ∈ Π

𝑝𝑟𝑒𝑐𝐴1,𝐴3 3

𝑝𝑟𝑒𝑐𝐴2,𝐴3 1

𝑝𝑟𝑒𝑐𝐴5,𝐴4 3

𝑝𝑟𝑒𝑐𝐴6,𝐴4 1

𝑐𝑏𝑖 The completion time of the lack of availability 𝑖 ∈ ℬ

44

𝑐𝑏𝐵1 5

𝑐𝑏𝐵2 3

𝑐𝑏𝐵3 6

𝑐𝑏𝐵4 4

𝑐𝑏𝐵5 8

Variables

𝑋𝑖𝑗𝑘 1 if event 𝑖 precedes event 𝑗 for programmer 𝑘 ∈ ℳ𝑖 ∩ ℳ𝑗 , 0 otherwise

𝐶𝑖 Completion time of job 𝑖

𝐶𝑃𝑙 Completion time of project 𝑙

3.2.3 Results

The preliminary test with the suggested formulation was developed in the IBM ILOG CPLEX

Optimization Studio 12.6.0.0 software. The code and the data input used are in Appendix A.

Table 14 shows the final values for the decision variable 𝑋𝑖𝑗𝑘. It gives the performing sequence

for each one of the programmers.

45

Table 14 𝑋𝑖𝑗𝑘 values for the preliminary test

Event 𝒊 Event 𝒋 Programmer 𝒌 Value

A0 B1 P1 1

A2 A0 P1 1

B1 A2 P1 1

A0 B2 P2 1

A4 A0 P2 1

B2 A4 P2 1

A0 A5 P3 1

A1 A0 P3 1

A5 B3 P3 1

B3 A1 P3 1

A0 B4 P4 1

A3 A0 P4 1

A6 B5 P4 1

B4 A6 P4 1

B5 A3 P4 1

All other possible combinations of 𝑖, 𝑗, 𝑘 0

Table 15 shows the completion time for each one of the activities for the preliminary test.

Table 15 𝐶𝑖 values for the preliminary test

Event 𝒊 Value

A0 0

A1 8

A2 10

A3 11

A4 8

A5 5

A6 7

B1 5

B2 3

B3 6

B4 4

B5 8

46

Table 16 presents the completion times for project A and project B. The completion time of

the project is given by the longest completion time among its activities. The value found by the

objective function is 27, given by: (𝑤𝐴 ∙ 𝐶𝑃𝐴 + 𝑤𝐵 ∙ 𝐶𝑃𝐵) , (1 ∙ 11 + 2 ∙ 8)

Table 16 𝐶𝑃𝑙 values for the preliminary test

Project Value

A 11

B 8

The allocation of the programmers in all activities is showed in Table 17. The allocation was

done correctly, all the restrictions were respected, the precedence relationship between

activities of the same project was maintained, the lack of availabilities were allocated in the

correct places and no event is done in parallel for the same programmer. Once the model was

validated with a small test, in the next section, it is going to be tested with the real allocation

problem.

Table 17 Result of Preliminary Test

 First 11 days of the current month

 1 2 3 4 5 6 7 8 9 10 11

P
ro

g
ra

m
m

er
s

P1 B1 A2

P2 B2 A4

P3 A5 B3 A1

P4 B4 A6 B5 A3

47

4. RESOLUTION METHODS AND NUMERICAL EEXPERIMENTS

This chapter begins with the presentation of the data collected. The following sub section shows

the results of the MILP model for the complete and partial sets of the real problem data.

Subsequently, constructive heuristic theory is briefly presented and a possible heuristic for the

problem resolution is proposed. The suggested heuristic is applied to the same small problem

of the MILP example. The chapter ends with a comparison between the results of the MILP

model and the heuristic model in order to validate it.

4.1 Data Collection

The general manager of the bank’s software factory supplied the data set used in one cycle of

projects, that was allocated in the first week of December, 2015. This data set includes:

 The Gantt chart of 32 projects and the description of 423 activities –Table 18 shows

the simplified Gantt Chart for two real projects. The skill name needed was changed for

a reference identification (ID) number in order to keep the confidentiality of the data.

The Gantt chart shows all the activities that are part of the project, their duration, the ID

of the needed skill and the precedence relationship between them. For example, activity

#3 needs 8 hours/day for 9 days with a programmer with skill 89, starting on the same

day of activity #1 and it needs to finish two days early.

Table 18 Gantt Chart of 2 Real Projects

ID Project ID Skill Activity Duration ID Activity D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

#P01 133 11 #1 8 8 8 8 8 8 8 8 8 8 8

#P01 41 11 #2 8 8 8 8 8 8 8 8 8 8 8

#P01 89 9 #3 8 8 8 8 8 8 8 8 8 0 0

#P01 181 11 #6 8 8 8 8 8 8 8 8 8 8 8

#P01 40 9 #7 8 8 8 8 8 8 8 8 8 0 0

#P01 54 11 #8 8 8 8 8 8 8 8 8 8 8 8

#P01 31 9 #9 8 8 8 8 8 8 8 8 8 0 0

#P01 86 9 #10 8 8 8 8 8 8 8 8 8 0 0

#P01 35 9 #11 8 8 8 8 8 8 8 8 8 0 0

#P01 165 9 #12 8 8 8 8 8 8 8 8 8 0 0

#P01 129 9 #13 8 8 8 8 8 8 8 8 8 0 0

#P01 127 9 #14 8 8 8 8 8 8 8 8 8 0 0

#P01 93 9 #15 8 8 8 8 8 8 8 8 8 0 0

#P01 80 9 #16 8 8 8 8 8 8 8 8 8 0 0

48

ID Project ID Skill Activity Duration ID Activity D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

#P02 27 11 #17 8 8 8 8 8 8 8 8 8 8 8

#P02 174 11 #18 8 8 8 8 8 8 8 8 8 8 8

#P02 86 9 #19 8 8 8 8 8 8 8 8 8 0 0

#P02 161 11 #20 8 8 8 8 8 8 8 8 8 8 8

#P02 62 9 #21 8 8 8 8 8 8 8 8 8 0 0

#P02 65 11 #22 8 8 8 8 8 8 8 8 8 8 8

#P02 116 9 #23 8 8 8 8 8 8 8 8 8 0 0

#P02 44 9 #24 8 8 8 8 8 8 8 8 8 0 0

#P02 14 9 #25 8 8 8 8 8 8 8 8 8 0 0

#P02 172 9 #26 8 8 8 8 8 8 8 8 8 0 0

Source: Bank’s Software Factory

 The Map of Skills of 1916 programmers – Table 19 shows the map of skills of all the

1916 available programmers. The real identification of the programmers was changed

for a reference ID number in order to keep their identity secret and the data confidential.

The skills ID numbers are the same as that of the Gantt chart. There are 183 skills

mapped. Zero (0) means that the programmer does not have the skill; one (1) means the

programmer possesses the skill.

Table 19 Map of Skills for 8 programmers and 7 skills

 Skills

P
ro

g
ra

m
m

er
s

ID 1 2 3 4 5 6 7

1 0 0 0 0 1 0 0

2 0 0 0 0 0 0 1

3 0 0 0 0 0 0 0

4 0 1 1 0 0 0 0

5 0 1 1 0 0 0 0

6 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0

Source: Bank’s Software Factory

 The Schedule for the next two months (December/2015 and January/2016) for the 1916

programmers. The timetable contains 40 working days. Table 20 shows the schedules

of 6 programmers for the first 8 working days of December. Zero (0) means the

programmer is free to be allocated in a new project that day; one (1) means the

programmer has a lack of availability that day, they may be busy with another project

of the previous cycle of projects, or with internal training etc. According to the software

49

factory general manager, it is reasonable to suppose that all the programmers are free

from February/2015 onwards.

Table 20 Schedules of 6 programmers for the first working days of December

ID 02/12/2015 03/12/2015 04/12/2015 07/12/2015 08/12/2015 09/12/2015 10/12/2015 11/12/2015

1 1 0 1 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 1 1 0 0

4 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0
Source: Bank’s Software Factory

 The importance list of the projects with an importance number is assigned to each

project, as Table 21 shows. The importance is assigned a number from 1 to 10, with 10

being the most important and 1 the least important. The importance of each project is

decided in a monthly meeting for the prioritization of projects. In this meeting, each

business area presents their reasons for demanding the project and why it should be

prioritized. Projects that are not deemed as being of a high priority can be delayed to the

next allocation cycle. On the other hand, projects with a really high priority can be

immediately allocated, and do not need to wait until the allocation of the current cycle.

50

Table 21 Importance of the projects

Project Importance

#P01 7

#P02 10

#P03 2

#P04 1

#P05 6

#P06 6

#P07 6

#P08 8

#P09 4

#P10 8

#P11 3

#P12 7

#P13 3

#P14 1

#P15 4

#P16 3

#P17 9

#P18 5

#P19 5

#P20 6

#P21 7

#P22 2

#P23 8

#P24 6

#P25 7

#P26 3

#P27 1

#P28 5

#P29 8

#P30 8

#P31 7

#P32 10

 The allocation plan carried out by the company to be compared with the results of this

work. The allocation plan has the day each one of the activities started and finished and

the programmer who performed it.

It is not possible to show the total data as this would be in violation of the confidentiality

agreement.

51

4.2 MILP Model Resolution

Initially, an exact solution for the problem was tried to be found using the proposed mixed

integer linear programming model as expressed in Chapter 3. The exact solution ensures that

the global optimum was reached.

The IBM ILOG CPLEX Optimization Studio 12.6.0.0 software was used in order to find the

exact solution for the problem. The choice for the CPLEX software was made because it is a

free software for the academic environment, with a rather simple language and that the company

could easily buy for a reasonable price and replicate the model later. Furthermore, it is a

software commonly used in literature, see KRIVONOZHKO; FØRSUND & LYCHEV, (2014),

and QUADT & KUHN (2009), as an example.

The code for the implemented model can be seen in Appendix A. One of the main advantages

of this software is the fact that the model module is separated from the data module, making it

easy to change the dataset that is being used. The data module was imported to the IBM ILOG

CPLEX software via a connection with an EXCEL spreadsheet that contained it, as the real data

was too numerous to input in the IBM ILOG CPLEX’s own data module.

The model was set to run on a computer with 16 GB of RAM, running on a Windows 64-bit.

After about 1 minute and 39 seconds of pre-processing, the software indicated that all the

computer's RAM had been consumed, and thus the execution ended without results. The IBM

ILGO CPLEX returned an error message “not enough memory”.

The specifications of the company's computers are equal to or lower than the one used. To better

understand the limitations of the problem, additional tests were performed by varying the size

of the problem analysed. The results obtained are shown in Table 22.

52

Table 22 Comparison of the resolution times for the MILP when varying the inputs

 Problem 1 2 3 4 5 Real
D

im
en

si
o
n

s

Programmers 4 110 110 648 1155 1916

Projects 2 3 3 32 10 32

Activities 6 41 41 423 132 423

Lacks of

Availability
5 0 40 174 322 576

Events 11 41 81 455 454 999

𝒙𝒊𝒋𝒌 484 184910 721710 1,34E+08 2,38E+08 1,91E+09

M
IL

P
 CPU Time 1,69 s 8,25 s 26,13 s - - -

Objective

Function
27 213 213 - - -

- Exceeds the processing capacity

The software finds an exact solution for problem 1, the preliminary test, and for problems 2 and

3, reduced versions of the real problem. Problems 4 and 5 are also a reduced version of the real

problem, however they both exceed the software’s memory, even though their size is

significantly smaller than that of the real one.

This comparison makes it evident that it is not possible to find the exact solution for the real

problem, hence a method for an approximated solution is required. As discussed in section

2.2.4, the software factory problem is a NP-hard problem.

The NP-hardness of an optimization problem suggests that it is not always possible to find an

optimal solution quickly. Therefore, instead of searching for an optimal solution with enormous

computational effort, an heuristic algorithm to generate approximate solutions that are close to

the optimum with considerably less investment in computational resources is a good choice.

The path chosen by this work is to develop a constructive heuristic based on the list scheduling

method in order to generate the approximate solution.

4.3 Constructive Heuristic

4.3.1 Literature Review

In contrast to exact methods, which guarantee an optimum solution for the problem, heuristic

methods only attempt to yield a good, but not necessarily optimum solution. In addition to the

53

need to find good solutions for difficult problems in a reasonable amount of time, there are

other reasons for using heuristic methods, among which MARTÍ & REINELT (2011)

highlights:

 No method for solving the problem to optimality is known.

 Although there is an exact method to solve the problem, it cannot be used with the

available hardware.

 The heuristic method is more flexible than the exact method, allowing, for example,

the incorporation of conditions that are difficult to model.

 The heuristic method is used as part of a global procedure that guarantees to find the

optimum solution of a problem.

The software factory problem resolution through a heuristic method is mainly due to the second

reason. The exact method to solve the problem was developed in the previous section of this

work, but the available hardware to process it is not able to find the solution without exceeding

its computational capacity. In order to solve the problem by using the exact method, hardware

with a lot more processing power is required.

According to SHAKHLEVICH (2005), there are three major types of scheduling algorithms,

as illustrated by Figure 9:

 Exact algorithms can find optimal solutions;

 Approximation algorithms produce solutions that are guaranteed to be within a fixed

percentage of the actual optimum. Approximation algorithms are fast (have polynomial

running time);

 Heuristic algorithms produce solutions, which are not guaranteed to be close to the

optimum. The performance of heuristics is often evaluated empirically.

54

Figure 9 Scheduling Algorithms Classification

Source: SHAKHLEVICH (2005)

The scheduling heuristic algorithms are classified in two types: Construction Heuristics and

Improvement Heuristics.

Improvement heuristics start with a feasible schedule and try to find a better similar schedule.

Each step of the procedure carries out a movement from one solution to another one with a

better value. The method terminates when, for a solution, there is no other accessible solution

that improves it (MARTÍ & REINELT, 2011).

Constructive heuristics involve building a solution to the problem literally step by step from

scratch. Usually they are deterministic methods and tend to be based on the best choice in each

iteration. These methods have been widely used in classic combinatorial optimization. (MARTÍ

& REINELT, 2011).

Dispatching (or Priority) Rules are the most common constructive heuristics for scheduling

problems due to their easy implementation and low requirements in computational power.

Although they perform very well in certain cases, it is not possible to point a rule that can be

applied to all scheduling problems and perform satisfactorily (XHAFA & ABRAHAM, 2008).

According to BROWNING & YASSINE (2010), priority rule (PR) heuristics are crucial for

several reasons:

 More elaborated techniques, like meta-heuristics, improved performance comes at a

greater computational expense, meaning that PRs are necessary for very large problems;

55

 PRs are a component of other (local search-based and sampling) heuristics and “are

indispensable” for constructing initial solutions for meta-heuristics;

 PRs are used extensively by commercial project scheduling software due to their speed

and simplicity;

 And perhaps the most important argument for PRs is that they are very important in

practice.

Table 23 delineates the main priority rules, with the primarily pursued objective function. In the

first column, there are the rule acronyms, in the second there are the rule names, in the third

there are the methods used and, finally, in the fourth column the objective of the indicated rule.

The first rule, for example, follows an increasing processing time (𝑝𝑗), the objective is to

minimize the total completion time.

Table 23 Main Priority Rules

Source: PANWALKAR & ISKANDER (1977)

4.3.2 Heuristic Algorithm

The development of a heuristic algorithm in order to find an approximated solution for the

software factory problem was necessary due to the computational difficulties faced when

finding an optimal solution with the MILP model.

The heuristic resolution proposed in this section is based on priority rules heuristics. First the

projects are ordered according to the priority rules. The algorithm can provide a number of

different solutions by changing the order of allocation of the projects, using the list scheduling

heuristic method. The order of the allocation can be given by multiple criterions:

56

 Importance order (with biggest weighed WI);

 Weighted shortest processing time first WSPT;

 Increasing number of activities order;

 Decreasing number of activities order;

 Increasing duration of the project order

 Decreasing duration of the project order

 A coefficient of rareness of the skills demanded by the project

 And a lot of combinations of the criterions above.

Two priority rules are going to be applied in this work: Weighted Shortest Processing Time

first (WSPT) and With Biggest Weight (WI). This choice was based on the suggestion of

PANWALKAR & ISKANDER (1977) for problems with objective function min ∑ 𝑤𝑗𝐶𝑗 ,

minimizing the total weighted completion time of the projects.

Once the projects are sorted, the activities that belong to this project also have to be sorted. The

priority rule applied to order the activities within a project is the increasing order of

programmers capable of performing this activity. The higher the difficulty in finding a resource

to perform the activity, the higher the priority of this activity. This rule was developed after

some empirical tests with the current data. The motivation for this rule was the frequency with

which activities that demands rare skills were considered impossible or were delayed because

all the programmers capable of performing them were already allocated to another activity.

The sorted programmers are a problem input. They are listed in an increasing order of their

bank identification number. The longer the programmer has been working for the bank, the

smaller their identification number. The priority rule is to allocate activities to more the

experienced programmers first.

The algorithm tries to find a capable programmer available in the searched day for each one of

the activities. If it is not possible, the algorithm searches in the next working day. The

precedence rules and priority rules must be respected.

The proposed algorithm is given by the follow steps:

57

Step 1 Order the projects according to the selected priority rule. Select the first project of

the list

Step 2 Select only the programmers that are capable of performing the activities of the

selected project

Step 3 Order the activities of the project in order to prioritize the allocation of the

activities with least amount of programmers needed to perform it. The main idea

is that the smaller the number of programmers required that are capable of

performing the activity, the sooner it should be allocated, so that the chance that

an activity ends with no possible programmer is reduced. Select the activity with

least amount of programmers needed.

Step 4 Start searching for the first feasible day for the first activity according to the Gantt

chart. The algorithm looks for a programmer capable of performing the activity,

who is also free on the first feasible day and free for the duration of the selected

activity.

If the algorithm does not find a programmer for the selected activity in the first

day, it starts to look for a programmer available on the following day and

successively for the subsequent days until it finds an available programmer that

meets the necessary criteria.

When the algorithm finds a programmer for the first analyzed activity, it starts to

look for a programmer for the second activity on the day it should be allocated by

following the precedence order established in the problem’s Gantt chart. The

algorithm does the same for all others activities.

If the algorithm does not find a programmer for an activity, it returns to the

allocation of the first activity and tries to allocate it for the next day.

The allocation algorithm is repeated until all the activities of the selected project

are allocated in the proper days, following the Gantt chart of their project

58

Step 5 Update the programmers’ schedule once all activities of the project are allocated.

Step 6 Select the next project in the list and return to step 2. Repeats the algorithm until

all the projects are allocated.

Figure 10 is a flow chart depicting a visual representation of the algorithm.

59

Figure 10 Flow Chart for the heuristic algorithm

Source: Author

60

The proposed algorithm was developed in the free software GNU Octave, under the terms of

the GNU General Public License. The entire code for the algorithm is presented in Appendix

B. GNU Octave is a software featuring a high-level programming language, primarily intended

for numerical computations. Octave is of great use for solving linear and nonlinear problems

numerically, and for performing other numerical experiments using a language that is mostly

compatible with MATLAB.

4.3.3 Example

The heuristic method suggested is applied to Problem 1, previously described in section 3.2.1,

in order to clarify the steps. The dispatched order used is the importance order.

Step 1 The first project to be allocated is Project B, the one with the higher importance between

the two projects of the problem.

Step 2 All the programmers of the problem are capable of performing at least one of the

activities of project B, so all the programmers are contained in the set of possible programmers.

Step 3 Project B has three activities, A4, A5 and A6. Activities A4 and A6 have two

programmers capable of performing each one of them. Activity A5 has three programmers

capable of performing it. The priority order for the allocation of the activities in Project B is

A4, A6 and, lastly, A5.

Step 4 The first activity to be allocated is A4. A4 starts on the 3rd day of project B according to

the Gantt Chart, so the first feasible day it can be allocated is day 3. The programmers capable

of performing A4 are P2 and P3. On day 3, P2 is not available, but A4 can be allocated to P3.

The second activity to be allocated is A6. A6 can be performed by programmers P1 and P4.

Once A4 was allocated on day 3, A6 must necessarily start on day 2, according to the Gantt

chart. Neither P1 nor P4 are available between day 2 and day 4, so it is not possible to allocate

A6 on day 2. The allocation of activity A4 must, consequently, be revisited.

61

Table 24 Heuristic Method Step by Step (1)

 1 2 3 4 5 6 7 8 9 10

P1 B1

P2 B2

P3 A4 B3

P4 B4 B5

 A6

In the next two days, day 4 and day 5, A4 can be allocated, but A6 cannot. On the next day, day

6, A4 can be allocated to P2. A6 can then be allocated to P4 on day 5. Once A4 and A6 are

allocated, it is time to allocate A5. A5 has to be allocated 2 days before A4, so it must be

allocated on day 4. Programmers P1, P3 and P4 can perform activity A4. Programmer P1 is not

available on day 4 and day 5, so P3 should be checked. Programmer P3 is available between

days 4 and 5.

Step 5 As all the activities of Project B are properly allocated, the schedule of the programmers

can be updated.

Table 25 Heuristic Method Step by Step (2)

 1 2 3 4 5 6 7 8 9 10

P1 B1

P2 B2 A4

P3 A5 B3

P4 B4 A6 B5

Step 6 The next project of the list is Project A and it has three activities: A1, A2 and A3. All

the programmers possess the skill to perform at least one of the activities in project A, so all

programmers are in the set of possible programmers. Activities A1 and A3 can be carried out

by two possible programmers and activity A2 can be done by three possible programmers. The

allocation priority order of Project A activities is A1, A3 and A2. Activity A1 starts on the first

day of Project A, thus the first day to be analyzed is day 1. The possible programmers for

activity A1 are P2 and P3. Programmer P2 is not available, thus the first attempt to allocate A1

is to P3 on day 1. Once A1 is allocated on day 1, A3 must be allocated on day 3, to remain in

accordance with the Gantt Chart. The possible programmers for A3, P1 and P4, are not available

between day 3 and day 5.

62

Table 26 Heuristic Method Step by Step (3)

 1 2 3 4 5 6 7 8 9 10

P1 B1

P2 B2 A4

P3 A1 A5 B3

P4 B4 A6 B5

 A3

Hence, the allocation of activity A1 must be shifted. On the next day, day 2, it is possible to

allocate A1, but it is not yet possible allocate A3. On day 3, neither P2 nor P3 are available to

perform activity A1. On day 4, P2 can perform A1 and P1 can perform A3. Activity A2 has to

be performed during days 5, 6 and 7, and programmers P1, P3 and P4 are not available on those

days.

Table 27 Heuristic Method Step by Step (4)

 1 2 3 4 5 6 7 8 9 10 11

P1 B1 A3

P2 B2 A1 A4

P3 A5 B3

P4 B4 A6 B5

 A2

In the next couple of days, day 5 and day 6, P2 and P3 cannot perform A1. The next feasible

day for Al is day 7 for programmer P3. Activity A3 can be performed by P1. Activity A2 has

to be performed between days 8 and 10, but P1, P3 and P4 are not available.

Table 28 Heuristic Method Step by Step (5)

 1 2 3 4 5 6 7 8 9 10 11

P1 B1 A3

P2 B2 A4

P3 A5 B3 A1

P4 B4 A6 B5

 A2

63

Activity A1 can be allocated on the next day, day 8, to programmer P3. Activity A3 can be

performed by programmer P1 on day 10. Activity A2 can be performed by programmer P4 on

day 9.

Table 29 Heuristic Method Step by Step (6)

 1 2 3 4 5 6 7 8 9 10 11 12

P1 B1 A3

P2 B2 A4

P3 A5 B3 A1

P4 B4 A6 B5 A2

All of the activities of project A are allocated, the schedule of the programmers can then be

updated. All the projects of the problem are already allocated, thus the heuristic is finished.

Table 30 Heuristic Method Step by Step (7)

 1 2 3 4 5 6 7 8 9 10 11 12

P1 B1 A3

P2 B2 A4

P3 A5 B3 A1

P4 B4 A6 B5 A2

Problem 1 solved via the heuristic returned an objective function value of 28, a value only 3.7%

higher than the optimal result of the linear programming. The heuristic method cannot guarantee

the optimal result of the final solution, but it can find a good feasible solution with a reasonable

computational cost. The final solution of Problem 1 helps to validate the heuristic. The

comparison between the linear programming and the heuristic methods for problems 2 and 3 is

showed in Table 31.

64

Table 31 Comparison between MILP and Heuristic Method

 Problem 1 2 3 4 5 Real
D

im
en

si
o
n

s

Programmers 4 110 110 648 1155 1916

Projects 2 3 3 32 10 32

Activities 6 41 41 423 132 423

Lacks of

Availability
5 0 40 174 322 576

Events 11 41 81 455 454 999

𝒙𝒊𝒋𝒌 484 184910 721710 1,34E+08 2,38E+08 1,91E+09

M
IL

P
 CPU Time 1,69 s 8,25 s 26,13 s - - -

Objective

Function
27 213 213 - - -

H
eu

ri
st

ic
s CPU Time 3,78 s 19,37 s 21,48 s 1m32s 24,28 s 28,59 s

Objective

Function
28 213 213 8424 826 1925

- Exceeds the processing capacity

The difference between Problem 2 and Problem 3 is the inclusion of the lack of availabilities

of the 110 selected programmers. This addition resulted in a 217% increase in the CPU Time

for the MILP resolution and a 10.7 % increase in the CPU Time for the Heuristic. The heuristic

was capable of finding the optimal solution in both problems.

For problems 4, 5 and the real one, the dimension of the quantity of variables 𝒙𝒊𝒋𝒌 is

significantly larger than in the previous problem. The CPLEX software is not capable of

creating and processing all of these variables.

The particularly high CPU time for the heuristic in Problem 4 can be explained by the

coefficient between the quantity of programmers and activities. The coefficient for Problem 4

is 1.53 programmer/activity, while the coefficient for Problem 5 and the Real Problem is,

respectively, 9.09 and 4.54 programmer/activity. This means that the heuristic algorithm has a

smaller quantity of options for the allocation of activities and has to search more days in order

to find a proper allocation for all activities.

A good heuristic algorithm, according to MARTÍ & REINELT (2011), should find a solution

with reasonable computational effort. The heuristic presented a good result in terms of CPU

65

time. In the next chapter, the comparison between the heuristic result for the real problem and

the result of the bank model is going to be explored.

66

5. DISCUSSION OF RESULTS

In this chapter a comparison between the solution found by the proposed heuristic and the

current solution used by the company is presented. Some improvement suggestions for the

model are presented and other success factors for a good allocation solution in addition to the

weighted completion time.

Some additional data about the projects and the results of the allocation is shown in Table 32.

In the first three columns, the data inputs for the project are presented: project ID, importance

and duration. In the next three, the data obtained from the heuristic is presented: the completion

and starting times for each project, and the weight factor assigned to the project that will be

used in the objective function. The heuristic was developed with priority rules WI and WSPT,

with both of them presenting the same result. In the final three columns, the real allocation data

is presented: the completion and starting times for each project, and the weight factor assigned

to the project that will be used in the objective function.

67

Table 32 Comparison between the results of the heuristic and the real problem

Project Data Heuristic Real

Project
Importance

(𝝎𝒍)
Duration

Completion

time (𝑪𝑷𝒍)

Start

time

𝝎𝒍

∙ 𝑪𝑷𝒍

Completion

time (𝑪𝑷𝒍)

Start

time

𝝎𝒍

∙ 𝑪𝑷𝒍

#P01 7 11 11 0 77 11 0 77

#P02 10 11 11 0 110 11 0 110

#P03 2 13 13 0 26 20 7 40

#P04 1 21 21 0 21 22 1 22

#P05 6 13 25 12 150 16 3 96

#P06 6 15 15 0 90 23 8 138

#P07 6 13 13 0 78 13 0 78

#P08 8 9 9 0 72 9 0 72

#P09 4 7 7 0 28 - - -

#P10 8 9 9 0 72 9 0 72

#P11 3 19 19 0 57 20 1 60

#P12 7 13 13 0 91 13 0 91

#P13 3 11 21 10 63 22 11 66

#P14 1 5 5 0 5 5 0 5

#P15 4 5 5 0 20 5 0 20

#P16 3 7 7 0 21 7 0 21

#P17 9 7 7 0 63 7 0 63

#P18 5 5 5 0 25 5 0 25

#P19 5 5 5 0 25 5 0 25

#P20 6 5 5 0 30 5 0 30

#P21 7 11 11 0 77 24 13 168

#P22 2 9 9 0 18 9 0 18

#P23 8 19 29 10 232 31 12 248

#P24 6 9 9 0 54 9 0 54

#P25 7 7 7 0 49 7 0 49

#P26 3 13 13 0 39 13 0 39

#P27 1 2 9 7 9* - - -

#P28 5 1 1 0 5 1 0 5

#P29 8 7 7 0 56 7 0 56

#P30 8 9 9 0 72 9 0 72

#P31 7 20 20 0 140 21 1 147

#P32 10 5 5 0 50 5 0 50

* Adapted project allocation

The result obtained by the heuristic method is 4.6% better than the current schedule and

allocation plan of the software factory, as shown in Table 33.

Table 33 Comparison between the heuristic and the real problem objective functions

Weighted Completion Time Heuristic Real

∑ 𝝎𝒍 ∙ 𝑪𝑷𝒍 1925 2017

68

The solution used by the bank was generated by a VBA Excel tool. The method used by the

tool is a greedy algorithm that searches for the local optimum for each one of the projects. The

tool was not able to find a feasible allocation for projects #P09 and #P27. Its CPU Time was

3m34s. Six times the CPU time of the heuristics. The heuristic method identified that project

#P27 has one activity with no feasible allocation. Two activities that should be done in parallel

need a specific skill that only one programmer has. The heuristic identified the activity as

impossible, removed it and allocated all the others activities of the project normally. The idea

of the allocation for the adapted project (without the impossible activity) is to give a better idea

of the general allocation. A suggestion to solve the impossibility of the activity is to review the

Gantt Chart and check if it is really mandatory for the two conflicting activities to be done in

parallel. If that is not really the case, then the activity is not impossible anymore. If that is, in

fact, the case, the software factory should consider the possibility of hiring outside services in

order to perform the impossible activity.

Other factors used to measure the success of the heuristic are the quantity of projects not

allocated, the mean starting time and the completion time of the project portfolio. Table 34

shows the value of these success factors, and it can be observed that for every case the heuristic

method provides the better solution.

Table 34 Other heuristic success factors

Success Factors Heuristic Real

Quantity of Impossible Projects 1 2

Mean Time to Start a Project 1,2 1,9

Completion Time of the Project Cycle 29 31

Other priority rules can be tested in the model in order to check if a better solution is possible

to be found with the proposed heuristic.

5.1 Sensibility Analysis of the Resource Constraints

Some modifications in the model can also be tested, such as an improved order of the

programmers. Two different methods for ordering the programmers can be proposed:

 Rarity skill index – the programmers with rare skills are the last to be allocated, in order

to keep them available for any uncommon activities. An effort to identify what the top

rare skills are could also help pointing out the skills that can be covered in training.

69

 Availability rate – the programmers with more idle time are allocated first. Table 35

shows the programmers occupation rate after the heuristic allocation. The occupation

rate is given by dividing the number of days the programmer was occupied in the cycle

by the completion time of the project cycle, in this case 29 days. 1130 programmers

were not allocated to any activity in the cycle, while only 1% of the programmers had

more than 69% of their days occupied. Sorting the programmers by their availability

rate could improve resource levelling, and also improve the diversification of

programmers.

Table 35 Programmers Occupation Rate after Heuristic Result

Occupied

days

Occupation

rate

Number of

programmers

Percentage of

programmers

0 0% 1130 58,98%

1 3% 272 14,20%

2 7% 160 8,35%

3 10% 13 0,68%

4 14% 19 0,99%

5 17% 13 0,68%

6 21% 4 0,21%

7 24% 40 2,09%

8 28% 9 0,47%

9 31% 40 2,09%

10 34% 28 1,46%

11 38% 48 2,51%

12 41% 20 1,04%

13 45% 38 1,98%

14 48% 1 0,05%

15 52% 7 0,37%

16 55% 8 0,42%

17 59% 14 0,73%

18 62% 13 0,68%

19 66% 17 0,89%

20 69% 7 0,37%

21 72% 7 0,37%

22 76% 2 0,10%

24 83% 2 0,10%

26 90% 2 0,10%

27 93% 1 0,05%

28 97% 1 0,05%

After the result of the first heuristic allocation, one of the outputs is the new schedule of the

programmers. One possible way for sorting the programmers in order to improve the

availability rate is to sort them by occupation rate after a first heuristic allocation. The idle

70

programmers in the first allocation result are going to be searched first in the algorithm and the

programmers with high occupation rate will be the last. After the programmers are sorted, the

heuristic method is applied again.

The second allocation by heuristic method presented an occupation rate that was more balanced

among the pogrammers. The completion time of the project cycle is also 29 days. As Table 36

shows, after the second allocation only 907 programmers were completely idle, 19.7% less than

after the first allocation. Since the processing time of the heuristic is considered short (30

seconds, approximately), carrying out the heuristic twice does not incur a great cost if a more

balanced occupation is considered as an interesting secondary objective. In terms of the

objective function, the result was only slightly better, from 1925 to 1918, an improvement of

less than 1%.

Table 36 Programmers Occupation Rate – Second Allocation

Occupied

days

Occupation

rate

Number of

programmers

Percentage of

programmers

0 0% 907 47,34%

1 3% 348 18,16%

2 7% 349 18,22%

3 10% 16 0,84%

4 14% 3 0,16%

5 17% 37 1,93%

7 24% 32 1,67%

9 31% 53 2,77%

10 34% 1 0,05%

11 38% 45 2,35%

12 41% 5 0,26%

13 45% 30 1,57%

14 48% 10 0,52%

15 52% 6 0,31%

16 55% 5 0,26%

17 59% 18 0,94%

18 62% 14 0,73%

19 66% 17 0,89%

20 69% 6 0,31%

21 72% 4 0,21%

22 76% 5 0,26%

24 83% 2 0,10%

26 90% 3 0,16%

The possibility of reducing the number of programmers available for the project cycle should

be carefully analysed. Problem 4 presented some interesting results for the sensibility analyses

of resource constraints. This problem is a small version of the real problem, where only

71

programmers with a unique range of skills were kept; in other words, there were not two

programmers with the same group of skills. The choice for removing only programmers with a

duplicate group of skills was a way of removing some programmers, but also keeping all the

skills present in the programmers’ skill range.

The results of the success factors for Problem 4 are shown in Table 37. The projects take longer

to start and the completion time of the portfolio is significantly higher than in the original

problem. The removal of 1268 duplicate programmers considerably worsened the allocation

scenario. This result is particularly interesting once it is observed in Table 35 that 1130

programmers are completely idle after the heuristic allocation of the complete problem. It is

suggested that the bank does a comprehensive study of the skill profiles of its programmers in

order to find what are the more valuable profiles for projects and what are those that have a

higher probability of being idle. This study could help the human resources department to

provide training for those programmers that have a high probability of being idle and also to

help direct possible layoffs as a cost cutting measure.

Table 37 Success Factors – Reduced Number of Resources

Success Factors Heuristic Problem 4

Weighted Completion Time 8424

Quantity of Impossible Projects 1

Mean Time to Start a Project 39,1

Completion Time of the Project Cycle 139

72

6. CONCLUSIONS

This work developed a MILP model and a heuristic method in order to address a real allocation

problem of the software factory of an important Brazilian bank. In view of the results presented

in the previous chapters, this work was able to successfully create a valid model to represent

the problem of the company and, through this model, find a solution to the problem that satisfies

the boundary conditions proposed. This model, which differs in its specific characteristics to

those found in other models from literature, can be considered a valuable solution for practical

problems.

The method developed was capable of finding a better solution than the one currently found in

the software factor of an important Brazilian bank. The reduction in 4,6% in the weighted

completion time of the projects, driven mainly by an improvement in resource allocation, will

help the software factory improve its internal service level agreement (SLA) with the

departments in the bank. At the same time, this improved allocation can reduce the cycle time

of projects and decrease the line of non-prioritized projects.

In addition to the contributions to the company, this work contributes to the literature on the

development of a mixed integer linear programming scheduling and a constructive heuristic for

resource-constrained multi-project scheduling with precedence relations, resource availability

constraints and resource eligibility restrictions.

In order delve deeper into the topic of the study conducted in this project, it would be interesting

to collect other examples of problems characterized by resource-constrained multi-project

scheduling with precedence relations, resource availability constraints and resource eligibility

restrictions problems.

Another variation of this study could be to relax the precedence constraints and add in the model

the possibility of resumable cases. This implies that if the activity cannot be finished before the

lack of availability of the programmers, it can continue to be performed after the programmer

is available again. It is reasonable to assume that a programmer can have a free day or a training

day in the middle of the activity and can continue to perform it after their free day or once the

training is complete.

Regarding the heuristic improvements, a very interesting continuation of the model would be

to test different list scheduling possibilities not only for the projects, but also for the

73

programmers and activities. Combining the different methods for sorting programmers,

activities and projects could conceivably lead to a better solution than the one developed in this

work.

74

REFERENCES

ARENALES, M.; ARMENTANO, V.; MORABITO, R.; YANESSE,H. Pesquisa

Operacional: Para Cursos de Engenharia. 2ª ed. Elsevier, 2015.

BROWNING, T. R.; YASSINE, A. Resource-constrained multi-project scheduling: Priority

rule performance revisited. International Journal of Production Economics, 2010. v. 2.

FEBRABAN Bank Technology Survey, 23º ed. São Paulo: 2014.

FEBRABAN Bank Technology Survey, 24º ed. São Paulo: 2015.

FERNANDES, A. A.; TEIXEIRA D. S. Fábrica de Software: Implantação e Gestão de

Operações. São Paulo: Atlas, 2004.

GOMES, H. C.; NEVES, F. A.; SOUZA, M. J. F. Multi-objective metaheuristic algorithms

for the resource-constrained project scheduling problem with precedence relations.

Computers & Operations Research, 2014. v. 44.

KERZNER, H. Project management: A Systems Approach to Planning, Scheduling, and

Controlling. 10º ed. New Jersey: John Wiley & Sons, 2009.

KRIVONOZHKO, V..; FØRSUND, F.; LYCHEV, A. Measurement of returns to scale using

non-radial DEA models. European Journal of Operational Research, Elsevier, 2014. V. 232

LEE, C.-Y. Machine scheduling with an availability constraint, Journal of Global

Optimization, 1996. V. 9

LI, C. L. Scheduling unit-length jobs with machine eligibility restrictions. European Journal

of Operational Research. 2006. v. 174.

MA, Y.; CHU, C.; ZUO, C. A survey of scheduling with deterministic machine availability

constraints. Computers & Industrial Engineering. Elsevier, 2010. v. 58.

MARTÍ, R.; REINELT, G. The Linear Ordering Problem, Exact and Heuristic Methods in

Combinatorial Optimization. Berlin: Heidelberg , 2011

MEDEIROS, V. N.; ANDRADE C.A.R.; ALMEIDA, E. S.; ALCUQUERQUE, J.; MEIRA S.

Construindo uma fábrica de Software: da Concepção às Lições Aprendidas. Anais da XXX

75

Conferencia Latinoamericana de Informatica (CLEI2004), Arequipa Peru.. Available on:

http://clei.org/clei2004/HTML/PDFS/123.PDF

MULLER, F. M.; DIAS, O. B. ARAÚJO, O. C.B. Algoritmo para o problema de

sequenciamento em máquinas paralelas não-relacionadas. Revista Produção, 2002. v.12.

PAI, S. K.; VERGUESE, P; RAI, S. Application of Line of Balance Scheduling Technique

(LOBST) for a Real estate sector; International Journal of Science, Engineering and

Technology Research (IJSETR), 2013. v. 2.

PANWALKAR S.S.; ISKANDER W. A Survey of Scheduling Rules; Operations Research,

1977

PINEDO, M. L. Scheduling: Theory, Algorithms, and Systems. 3º ed.; Springer, 2008.

POTTS C.; CHEN, B.; WOEGINGER G. A Review of Machine Scheduling: Complexity,

Algorithms and Approximability - Handbook of Combinatorial Optimization. Kluwer, 1998.

PMBOK GUIDE. A Guide to the Project Management Body of Knowledge. Project

Management Institute, 2000.

QUADT, D.; H. KUHN. Capacitated lot-sizing with extensions: a review. 4OR - Quarterly

Journal of Operations Research, 2009. v. 6

RUSS J. M., DRAGAN Z. M. Project Management ToolBox: Tools and Techniques for the

Practicing Project Manager. 2º ed. New Jersey: John Wiley & Sons, 2016.

SHAKHLEVICH, N. Scheduling: Models and Algorithms, School of Computing, University

of Leeds. 2005

WEI, C. C.; LIU. P. H.; TSAI, Y. C. Resource-constrained project management using

enhanced theory of constraint. International Journal of Project Management. Elsevier, 2002.

v. 20.

WINSTON, L. W. Operations Research: Applications and Algorithms. 4º ed. Thomson

Learning, 2004.

XHAFA, F.; ABRAHAM, A. Metaheuristics for Scheduling in Industrial and

Manufacturing Applications. Springer. 2008

http://clei.org/clei2004/HTML/PDFS/123.PDF

76

YAMASHITA, D. S. Scatter search para programação de projetos com custo de

disponibilidade de recursos sob incerteza. Tese (doutorado) - Universidade Estadual de

Campinas, Faculdade de Engenharia Elétrica e de Computação. 2003.

77

APPENDIX A

The code in OPL 12.6.0.0 Model for the mixed integer linear programming

/***

 * OPL 12.6.0.0 Model

 * Author: Christianne_Sepulveda

 * Creation Date: 29/08/2016 at 08:04:36

 ***/

 int n_job = ...; // number of events

 int n_recur = ...; // number of programmers

 int H = ...;// a large number

 int n_proj = ...;// number of projects

 //************************** sets**//

 range recur = 1..n_recur; // set of programmers

 range job = 0..n_job; // set of events

 range proj = 1..n_proj;//set of projects

 //************************** Parameters******************************//

 float t_process [job] = ...; // duration time of the event

 float job_recur [recur][job] = ...; //set of programmers capable of performing the event

 float import [proj] = ...; // importance of the project

 float preced [job][job] = ...; // Precedence relationship between activities of a same Project

 float e_block [job] = ...; // set of lack of availability

 float c_block [job] = ...; // completion time of the lack of availability

 float job_proj[proj][job]=...;// set of activities belonging to Project

//************************** Variables *********************//

 dvar int x[job][job][recur] in 0..1;// 1 if event I (indicated by the first “job” in this line of

code) precedes event j (represented by the second “job” in this line of code) for programmer k

(recur), 0 otherwise

 dvar int+ c[job];// completion time of activity job

 dvar int c_proj[proj];// completion time of Project proj

 //*************** Objective function*********************************//

// Minimize the weighted sum of the completion time for each project

minimize sum(l in proj)import[l]*c_proj[l];

 //************************** Restrictions **************************//

 subject to {

 //Restriction (1) Each event j has only one preceding activity, except activity 0//

 restriction1:

78

 forall (j in job: j!=0){

 sum (i in job, k in recur: job_recur[k][j]!=0 && job_recur[k][i]!=0) x[i][j][k]==1;}

 //Restriction (2) Each programmer k, if allocated in any event, has only one processing

sequence//

 restriction2:

 forall (k in recur){

 sum (j in job: j!=0 && job_recur[k][j]!=0) x[0][j][k]<=1; }

 //Restriction (3) Each activity j has only one immediate successor activity, except activity 0,

that sets the beginning and the end of all processing sequences for programmer k

 restriction3:

 forall (h in job, k in recur:h!=0 && job_recur[k][h]!=0){

 sum(i in job: i!=h && job_recur[k][i]!=0)x[i][h][k] - sum(j in job: j!=h &&

job_recur[k][j]!=0)x[h][j][k] == 0;

 }

 //Restriction (4) The completion time of event j is higher or equal to the completion time of

event i, plus the duration of activity j, when event i precedes event j in the same programmer

sequence k. (xijk=1)

 restriction4:

 forall (i in job, j in job: j!=0){

 c[j]>=c[i] + sum(k in recur: job_recur[k][j]!=0)x[i][j][k]*t_process[j] + H*(sum(k in recur:

job_recur[k][j]!=0)x[i][j][k]-1);

 }

 //Restriction (5) The completion time of a event i precedes the completion time of event j in a

given number of days if i and j belong to the same project

 restriction5:

 forall (i in job, j in job: preced[i][j]!=0){

 c[i]==c[j]+preced[i][j];

 }

 //Restriction (6) The completion time of a event is already given if it is a lack of availability

 restriction6:

 forall (i in job: e_block[i]!=0){

 c[i]==c_block[i];

 }

79

//restriction (7) The completion time of the Project is equal to the completion time of the last

activity to finish that belongs to the project

restriction7:

forall (l in proj, i in job: job_proj[l][i]!=0){

c_proj[l]>=c[i];

}

}

The input data for the preliminary test OPL 12.6.0.0 Model.

/***

 * OPL 12.6.0.0 Data

 * Author: Christianne_Sepulveda

 * Creation Date: 29/08/2016 at 08:04:36

 ***/

n_job =11; // Number of activities

n_recur = 4; // Number of programmers

n_proj = 2;// Number of projects

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

t_process = [0, 2, 3, 3, 3, 2, 3, 2, 2, 1, 2, 1]; // Duration of the events

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

job_recur = [[1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0], // P1

 [1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0], // P2

 [1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0], // P3

 [1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1]]; // P4

 //A,B// Projects

import = [1,2]; // Importance of the projects

H = 10000; // Large Number

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

preced = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A0

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A1

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A2

 [0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A3

 [0, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0], // A4

80

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A5

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // A6

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // B1

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // B2

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // B3

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], // B4

 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]; // B5

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

e_block = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1];

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

c_block = [0, 0, 0, 0, 0, 0, 0, 5, 3, 6, 4, 8];

 //A0,A1,A2,A3,A4,A5,A6,B1,B2,B3,B4,B5// Events

job_proj = [[0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], // Proj A

 [0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0]]; //Proj B

81

APPENDIX B

The present section presents the code developed in the MATLAB language, using the OCTAVE

software for the constructive heuristic proposed. All the lines starting with “%” are comments

explaining and clarifying parts of the code.

%% Clean the work area

close all

clear all

clc

t0 = time();

%% #0 Step: Control Parameters

% These parameters indicate whether one of the main steps is executed or

% not

flag_read_data = 1;

flag_process = 1;

flag_pos_proc = 1;

%% #1 Step: Reading Data

if flag_read_data

 file1 = 'programmers_agenda.xls';

 file2 = 'ativity_duration.xlsx';

 file3 = 'programmers_activities.xlsx';

 file4 = 'importance.xlsx';

 file5 = 'project_ativity.xlsx';

 [ag_func, txt1, raw1]=xlsread(file1);

 [d_atv, txt2, raw2]=xlsread(file2);

 [func_atv, txt3, raw3]=xlsread(file3);

82

 [imp, txt4, raw4]=xlsread(file4);

 [proj_atv, txt5, raw5]=xlsread(file5);

 % Sort data according to the list scheduling

 [Simp, impID] = sort(imp(:,2));

 imp = imp(impID,:);

 impAux = imp(:,3);

 proj_atv = proj_atv(impID,:);

 imp(impAux==0,:) = [];

 proj_atv(impAux==0,:) = [];

 impID(impAux==0) = [];

 % Clean data not useful

 ag_func(:,1) = [];

 func_atv(:,1) = [];

 % Gives 1 to free days and 0 to lack of availability

 ag_func(ag_func==1)=2;

 ag_func(ag_func==0)=1;

 ag_func(ag_func==2)=0;

 % Create the schedule for the following days (from the third month onwards)

 ag_func = [ag_func ones(length(ag_func(:,1)),100)];

 % Back up the original schedule

 org_ag_func = ag_func;

 % Starts the matrix for impossible activities

 impossible{length(proj_atv(:,1)),3} = [];

 for i=1:length(impossible(:,1))

 impossible{i,1} = 0;

 end

83

 % Starts the matrix for the activities schedule

 for i=1:length(d_atv(:,1))

 ag_atv(i,:) = [ones(1,d_atv(i)) zeros(1,length(ag_func(1,:))-d_atv(i))];

 end

 % Save the data that has been processed up to this point

save('dados.mat','proj_atv','ag_atv','impossible','ag_func','org_ag_func','func_atv','d_atv','imp','

impID');

end

% Shows the current time after the first step

t1 = time;

%% #2 Step: Data processing

if flag_process

 load('dados.mat');

% for all projects i

 for i=1:length(proj_atv(:,1))

 ret_atv = 1; %indicates if all activities were correctly read

 while ret_atv

 ret_atv = 0;

 aux_ag_func = ag_func;

 atv_per_proj = find(proj_atv(i,:)==1); % Selects only the activities of Project i

 r_func_atv = func_atv(:,atv_per_proj); %Selects only the programmers capable of

performing at least one of the activities of Project i

 sum_r_func_atv = sum(r_func_atv); %Sum of how many programmers are capable of

performing each activity

 [S_sum_r_func_atv, ID_sum_r_func_atv] = sort(sum_r_func_atv); %Sort the activities

by the quantity of programmers capable of performing them

 S_r_func_atv = r_func_atv(:,ID_sum_r_func_atv);

 S_atv_per_proj = atv_per_proj(:,ID_sum_r_func_atv);

84

 r_ag_atv = ag_atv(S_atv_per_proj,:); %Selects only the schedule of the selected

programmers

 max_days_per_proj = max(d_atv(S_atv_per_proj)); %Determines the duration of the

Project (the duration of the last activity to end minus the first day of the Project)

 shift_days = 0; %Starts the parameters that delays the Project to the next day

 aux_shift_proj = shift_days; % flag to determine if the initial day of the Project must be

delayed

 proj_in = 1; %flag to determine if all the activities of Project i are allocated

 while proj_in

 aux_ag_func = ag_func; %back up the schedule before the allocation of the activities

of Project i

 term_proj = 1; %flag that determines if a Project is finished or not, it is used to modify

the value of the flag proj_in

 atv_in = find(r_ag_atv(:,1)==1);

 atv_in(impossible{i,2}) = []; % Do not try to allocate activities already declared

impossible

 r_d_atv = d_atv(S_atv_per_proj); %determines the duration of the activities of the

project

% r_d_atv(impossible{i,2}) = []; %Removes the impossible activities

 for k=1:length(atv_in) % for all k in the activities of the project

 if find(impossible{i,2}==k) % checks if the activity is possible

 continue

 end

 func_atv_k = find(S_r_func_atv(:,atv_in(k))==1); % Selects only the

programmers capable of performing activity k

 for w=1:length(func_atv_k) % for all programmer w capable of performing

activity k

 if

sum(aux_ag_func(func_atv_k(w),1+shift_days:r_d_atv(k)+shift_days))==r_d_atv(k)

%Verifies if programmer w has all the days of the duration of activity k free

aux_ag_func(func_atv_k(w),1+shift_days:r_d_atv(k)+shift_days)=zeros(1,length(r_d_atv(k)))

; %If programmer w is available for activity k, update the programmer’s schedule

 break

85

 end

 if w==length(func_atv_k) %Verifies if no programmer was allocated to activity

k

 shift_days = shift_days+1; %If the activity was not correctly allocated in the

searched day, the algorithm tries to find an allocation for the following day

 if shift_days+max_days_per_proj>length(aux_ag_func(1,:)) %If all the days

in the schedule were already tried and it is still not possible to find a allocation for activity k, it

is declared impossible

 impossible{i,1} = 1; % Determines that the Project i is impossible with the

current Gantt chart and available resources

 impossible{i,2} = [impossible{i,2}; k]; % Identifies the ID of the

impossible activity

 impossible{i,3} = [impossible{i,3}; S_atv_per_proj(k)]; %Identifies the

global ID of the impossible activity

 ret_atv = 1; % Assumes the project does not have a solution with the

original data

 end

 break

 end

 end

 if shift_days ~=aux_shift_proj %Verifies if there was a change in the searched day

 aux_shift_proj = shift_days; %

 term_proj = 0; %Indicates that it was not possible to allocate the Project i or that

there was a change in the searched day

 break

 end

 end

 if term_proj %Verifies if Project i is finished

 ag_func = aux_ag_func; %If positive, update the original schedule of the

programmers

 proj_in = 0; %Indicates that the current Project is already allocated and it is

possible to start the algorithm for the Project i + 1

86

 proj_days(i,:) = [shift_days+max_days_per_proj;shift_days;max_days_per_proj];

%Stores the completion time of the Project i, the start day of the Project and the duration of the

project

 elseif impossible{i,1}==1 %Verifies if the project has an impossible activity

 proj_in = 0; %In case there is an impossible activity, this indicates that Project i

has to be allocated without the impossible activity

 impossible{i,1} = 0; % after the removal of the impossible activity, the Project is

deemed feasible again

 end

 end

 end

 end

 % Indicates if there was any impossible activity in Project i

 for i=1:length(impossible(:,1))

 if isempty(impossible{i,2})==0

 impossible{i,1} = 1;

 end

 end

%save the results after data processing

 save('results.mat','org_ag_func','ag_func','impossible','proj_atv','imp','proj_days','impID');

end

% Gives the current time after data processing

t2 = time();

%% #3 Step: Final adjustments after processing

if flag_pos_proc

 load('results.mat')

 mod_ag_func = -(ag_func - org_ag_func);

87

% arr_mod_ag_func = [];

%

% for i=1:length(mod_ag_func(:,1))

% for j=1:40

% arr_mod_ag_func = [arr_mod_ag_func; i j mod_ag_func(i,j)];

% end

% end

 count_ag_func = sum(mod_ag_func')';

% Calculates the objective function

 obj_func = sum(imp(:,1).*proj_days(:,1));

save('pos.mat','org_ag_func','ag_func','impossible','proj_atv','mod_ag_func','count_ag_func','i

mp','proj_days','obj_func','impID')

end

% Gives the current time after the final adjustments

t3 = time();

