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Abstract- In this thesis work, we develop a methodology to tackle the problem of sensor validation 
in Energy Production Plants. The sensor validation problem is this: given a vector of sensor readings, 
decide whether one or more sensors have failed and are therefore producing bad data13. The 
proposed methodology involves i) performing the wavelet transform of a measured signal, ii) 
creating the associated scalogram and iii) comparing this scalogram with scalograms obtained from 
historical data collected when the sensor was healthy. The proposed method provided the 
performances in terms of false and missed alarm rates. The proposed method for sensor validation 
has been compared with the traditional Auto Associative Kernel Regression (AAKR) method. In 
particular, the proposed method is superior in the detection of sensor freezing. 

1. INTRODUCTION 

For the safe and productive operation of a nuclear power plant, sensors malfunctions must be 
promptly detected to avoid lost power production, lost revenues and accident events which may 
pose harm to the personnel, public and environment. On the other hand, with the hundreds of 
measurements made in a nuclear power plant, the cost of sensor maintenance has become 
significant. With regards the nuclear industry, sensor maintenance occurs during refuelling of the 
reactor and issues of sensor failure are not observed prior to this. This procedure is time consuming 
and has a large economic impact.  In this respect, continuous and effective monitoring of sensors 
functioning, for the timely detection and identification of faulty sensors, and reconstruction of the 
incorrect signals before their use in the operation, control and protection of the plant can be quite 
beneficial1. On-line calibration monitoring evaluates the performance of instrument channels by 
assessing their mutual consistency and possibly their consistency with other plant measurements.  
 
Experience at several nuclear power plants has shown this overall approach to be very effective in 
identifying faulty instrument channels. Traditional on-line calibration monitoring techniques include 
Auto Associative Kernel Regression (AAKR) and Principal Component Analysis (PCA). AAKR is an 
empirical model that estimates the values of some measurable variables in normal conditions and 
triggers the fault alarm when the reconstruction deviates from the measured signal9. While, PCA is a 
multivariate technique that analyses a data table in which observations are described by several 
inter-correlated quantitative dependent variables. Its goal is to extract the important information 
from the table, to represent it as a set of new orthogonal variables called principal components, and 
to display the pattern of similarity of the observations and of the variables as points in maps14.  
 
Issues still remain about the scalability of on-line calibration monitoring techniques. The technique 
we consider falls into the group known as Memory based techniques. Memory-based techniques2 
rely on a database of previously observed measurement data points to which the current state is to 
be compared to. Two main concerns arise from the prospect of large scale applications. Firstly, the 
amount of fast access memory needed to store all the training data points would be extremely large, 
of the order of a million individual data values for a case involving around one thousand data points 
for one thousand instrument channels. Secondly, even if the fast access memory were sufficient, the 
complexity of evaluating a kernel function in such a highly dimensional space and on so many 
individual data points at each iteration would make the on-line monitoring unworkable in practice. A 
possible solution is proposed in Ref.1 to implement task decomposition, i.e. the reduction of the 
total on-line calibration monitoring task to a set of smaller sub-tasks of manageable size. In 
particular, a solution based on a multiple objective genetic algorithm search has been proposed. The 
main advantage of the proposed approach lies in the ease of implementation of the task 
decomposition objectives of interest. Furthermore, the objectives of accuracy, size, coverage, 
redundancy and diversity are the drivers and biases of the proposed genetic search strategy. 
However, limitations exist implementing this approach. This is not a general method and the signal 
grouping is specific for the considered nuclear power plant. Problems, also, arise from spillover. 
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Spillover is the detection of abnormal conditions on signals different from those which are actually 
impacted by the abnormal behaviour15. 
 
The present work investigates the use of continuous wavelet transform (CWT) for fault detection. A 
CWT is performed on the corresponding sensor signal and a scalogram image is extracted. Following 
this, a pixel comparison is performed between the extracted scalogram and scalograms which 
represent normal operation of the sensor. The comparison is simply the matrix measuring difference 
between the two images. Following this, an alarm sounds if the difference between the images is 
above a certain threshold and details of threshold optimisation are provided in this thesis work. 
 
 The practical industrial benefit of the technique is a visual representation of fault detection. In 
addition to this, advantages include the simplicity of the approach and the limited parameters 
required. In an effort to simplify the developed model, it was decided to consider a single sensor 
only monitoring the temperature of a component. This means that no grouping method was needed 
and the proposed method does not fall victim to spillover.  For further insight into these areas 
consider Reference 5. 
 
The proposed methodology is applied to a real industrial case study concerning the identification of 
anomalous operational transients in a rotating machine of an energy production plant (whose 
detailed characteristics cannot be reported, due to confidentiality reasons) has been considered. 

The remainder of the paper is organised into six chapters. Section II illustrates the problem 
statement. This section highlights the issue associated with sensor validation, the kind of available 
data used and a general description of the methodology. Section III discusses the simulated sensor 
abnormalities and provides an in depth discussion of the methodology. Section IV presents the case 
study and the method performance. In addition, the results are compared to the industrially 
recognised Auto Associative Kernel Regression (AAKR) model. Section V provides considerations 
which include limitations of the model and areas for further research. Finally, Section VI concludes 
the paper with some acknowledgements. 
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2. MAINTENANCE PRACTICE IN NUCLEAR POWER PLANTS 

Transmission of accurate and reliable measurements is central to safe, efficient, and economic 
operation of nuclear power plants (NPPs).  Current instrument channel maintenance practice in the 
United States utilizes periodic assessment. Typically, sensor inspection occurs during refueling 
outages (about every two years). Periodic sensor calibration involves (1) isolating the sensor from 
the system, (2) applying an artificial load and recording the result, and (3) comparing this “As Found” 
result with the recorded “As Left” condition from the previous recalibration to evaluate the drift at 
several input values in the range of the sensor.  If the sensor output is found to have drifted from the 
previous condition, then the sensor is adjusted to meet the prescribed “As Left” tolerances. As an 
example, Coolant temperature in light water reactors (LWRs) is measured using resistance 
temperature detectors (RTDs) and thermocouples. The calibration of the RTD is performed after 
each refuelling outage. The procedure involves isolating and manually reading from all RTD whilst 
the plant is maintained at a constant and uniform temperature (known as isothermal plateau). This 
results in a period of plant activity of 8 hours.  If a deviation from the accepted level exist following 
inspection of all the RTD’s, the replacement and recalibration can lead to an additional 36 hours of 
plant activity. The current approach to sensor fault detection in operating light water reactors is 
expensive and time consuming, resulting in longer outages, increased maintenance cost, and 
additional radiation exposure to maintenance personnel, and it can be counterproductive, 
introducing errors in previously fault free sensors.  

Previous reviews of sensor recalibration logs suggest that more than 90 percent of nuclear plant 
transmitters do not exceed their calibration acceptance criteria over a single fuel cycle.  The current 
recalibration practice adds a significant amount of unnecessary maintenance during already busy 
refueling and maintenance outages.  Additionally, calibration activities create problems that would 
not otherwise occur, such as inadvertent damage to transmitters caused by pressure surges during 
calibration, air/gas entrapped in the transmitter or its sensing line during the calibration, improper 
restoration of transmitters after calibration leaving isolation or equalizing valves in the wrong 
position (e.g., closed instead of open or vice versa), valve wear resulting in packing leaks, and valve 
seat leakage.  In addition to performing significant unnecessary maintenance actions, the current 
sensor calibration practice involves only periodic assessment of the calibration status.  This means 
that a sensor could potentially operate out of calibration for periods up to the recalibration interval.  
These issues are further exacerbated in advanced reactor designs (Generation III+, Generation IV, 
and near-term and advanced SMRs), where new sensor types (such as ultrasonic thermometers), 
coupled with higher operating temperatures and radiation levels, will require the ability to monitor 
sensor performance.  When combined with an extended refueling cycle (from ~1.5 years presently 
to ~4–6 years as advanced reactors come on line), the ability to extend recalibration intervals by 
monitoring the calibration performance online becomes increasingly important. 

Due to these drawbacks, performance monitoring of NPP instrumentation has been an active area of 
research since the mid1980s (Deckert et al. 1983; Oh and No 1990; Ray and Luck 1991; 
Ikonomopoulos and van der Hagen 1997). Online calibration monitoring has become a prevalent 
area of research and can enhance reactor safety through timely detection of drift in sensors 
deployed in safety-critical systems.  In addition, it can reduce the maintenance burden by focusing 
sensor recalibration efforts on only those sensors that need to be recalibrated, avoiding wasted 
efforts and potential damage to sensors for which recalibration is not necessary.  The movement 
from analog to digital I&C within the nuclear power industry further supports online calibration 
monitoring through enhanced functionality.  As a consequence, it is anticipated that online 
recalibration monitoring within the nuclear power industry will become more widespread. The 
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advantages of such a monitoring technique are the elimination of the 8 hour isothermal plateau 
which results in saving of $750 K per cycle. Current online monitoring work at Sizewell Nuclear 
power plant suggest the calibration period can be extended to 8 years. This enables management to 
achieve the goal of 20 day outage and a 75% reduction in workload. 

3. PROBLEM STATEMENT 

For this thesis work, we aim to develop a fault detection method which involves the comparison 
between images. We are presented with an input signal ࢞(࢚). ࢞(࢚) is the present time-frequency 
signal from the observed sensor and is of length ݈. Therefore, ࢞(࢚) = ݐ)ݔ} − ݈ + 1), … . ,  The . {(ݐ)ݔ
input data ࢞(࢚) was not limited to normal signals and abnormalities were introduced to test the 
methods performance.  However, no data was available which represented abnormal operation. It 
was decided to simulate the four most common sensor abnormalities using the normal signals. The 
simulated abnormalities were  

1. Freeze (Fig.1) - At malfunctioning time t ∗, the abnormal signal value remains fixed s(t >
t) = s(t ∗). 

2. Noise (Fig.2) - A Gaussian noise has been added to the healthy signal for a specific time. 
3. Quantisation (Fig.3) - The malfunctioned signal can assume a set of ௤ܰ௨௔௡௧ prefixed values 

,௤௨௔௡௧(1)ݏ ,௤௨௔௡௧(2)ݏ … , )௤௨௔௡௧ݏ ௤ܰ௨௔௡௧). Then, the abnormal signal value is approximated 
to the closest ݏ௤௨௔௡௧. 

4. Spike (Fig.4) - offset of random intensity is applied to the signal for randomly selected. 
 
 

 

       Fig.1 Freeze              Fig.2 Noise 
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  Fig.3 Quantisation                Fig.4 Spike 

The considered sensor has been in use for a substantial period of time. Therefore, in addition to the 
current signal value, we have obtained a large backlog of frequency-time profiles of healthy sensor 
operation.  We denote this backlog of normal signals as ࡶࢅ(࢚) where ࡶ = 1,2, … . . , ܰ.  

Similarly, ࡶࢅ(࢚) is of length ݈ and ܰis the number of normal signals available. Ideally, we want to 
maximise the number of normal signals. The larger the normal set is the better performance of the 
fault detection method. Following this, a comparison is made between the on-line time window ࢞(࢚) 
and the entire set of normal signals ࡶࢅ(࢚) . The result is compared with an optimised threshold ࡼ for 
fault detection.  

4. THE METHOD 

The condition monitoring method devised in this paper provides an alternative to traditional 
condition monitoring techniques.  The methodology proposed in this work is based on the following 
steps: 

1.  The underlying principle of the model is to perform a continuous wavelet transform 
(CWT) on a newly obtained signal.  

2. Following the CWT, the signal is converted into an image, known as a scalogram. The 
scalogram is then converted to a greyscale image.  

3. The greyscale image is compared through a percentage pixel difference technique with 
other greyscale images which represent normal operation of the component.  

4. The percentage difference between pixels is summed up and compared to a given 
threshold for fault detection. 

Fig. 10 provides a visual representation of the developed method. 

 

Fig. 10 Schematic of the CWT method 
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4.1. Continuous Wavelet Transform 

A wavelet function (or wavelet, for short), is a function ψ ∈  Lଶ(ℝ) with zero average 
(i.e.׬ ψ

 
ℝ

  =  0), normalized (i.e.∥ ψ ∥ =  1), and centered in the neighborhood of t =  0 (Mallat, 
1999). Scaling ψ by a positive quantity s, and translating it by u ∈  ℝ, we define a family of time-
frequency atoms, ψ୳,ୱ , as 

ψ୳,ୱ(t): =
ଵ

√௦
ψ ቀ

୲ି୳

ୱ
ቁ , u ∈  ℝ, s > 0   Eqn. (1) 

Given f ∈  Lଶ(ℝ), the continuous wavelet transform (CWT) of ݂ at time ݑ and scale ݏ is defined 
as 

,ݑ)݂ܹ (ݏ ≔< ݂, ψ୳,ୱ ≥ ׬ ାஶ(ݐ)݂
ିஶ ψ∗

୳,ୱ(ݐ)݀ݐ  Eqn. (2) 

and it provides the frequency component (or details) of ݂ corresponding to the scale s and time 
location t. The revolution of wavelet theory comes precisely from this fact: the two parameters 
(time u and scale s) of the CWT in (2) make possible the study of a signal in both domains (time 
and frequency) simultaneously, with a resolution that depends on the scale of interest. 
According to these considerations, the CWT provides a time-frequency decomposition of ݂ in 
the so called time-frequency plane. This method is more accurate and efficient than other 
techniques such as the windowed Fourier transform (WFT). The scalogram of  ݂ is defined by the 
function 

(ݏ)ܵ ≔ ห|ܹ݂(ݏ, ห|(ݑ = ׬ ) ,ݏ)݂ܹ| ( ݑ݀ ଶ|(ݑ
ାஶ

ିஶ

భ
మ  Eqn. (3) 

representing the energy of W f at a scale s. Obviously, S(s) ≥ 0 for all scale s, and if S(s) > 0 we will say 
that the signal ݂ has details at scale s. Thus, the scalogram allows the detection of the most 
representative scales (or frequencies) of a signal, that is, the scales that contribute the most to the 
total energy of the signal. 

 If we are only interested in a given time interval ሾݐ଴,  ଵሿ, we can define the corresponding windowedݐ
scalogram by  

ܵሾ௧బ,௧భሿ(ݏ) ≔ ห|ܹ݂(ݏ, ห|(ݑ
ሾ௧బ,௧భሿ

= ቀ׬ ,ݏ)݂ܹ| ଶ௧భ|(ݑ
௧బ

ቁ ݑ݀ 
భ
మ  Eqn. (4) 

 

Subsection 1: Continuous Wavelet Transform 

Presently, continuous wavelet transformation is one of the most popular forms of time-frequency 
transformation. Mathematically speaking, a wavelet series is a representation of a square-
integrable (real- or complex-valued)function by a certain orthonormal series generated by a wavelet5. 
A base wavelet and wave (or component time-frequency signal in the case of this work) are required 
to perform the continuous wavelet transform. The base wavelet chosen for the analysis was the 

Morlet wavelet given by ψ(ݐ) =  ݁
௜ଶగ௙೚௧݁

ି൬ഀ೟మ

ഁమ ൰  . Fig.6 provides a visual representation of the Morlet 
wavelet. The CWT of a signal (ݐ)ݔ can be expressed using inner product notation by Eqn.1. 

ܹܥ    ௫ܶ
ૐ(߬, (ݏ =< ,ݔ ψs,τ > =

ଵ

√௦
׬ )∗ψ(ݐ)ݔ

߬−ݐ

ݏ
)  Eqn.1   ݐ݀
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ܹܥ ௫ܶ
ૐ(߬,  is the coefficients of the wavelet transform for a given s and τ. As seen from the (ݏ

above equation, the transformed signal ܹܥ ௫ܶ
ૐ(߬,  is a function of two variables,  and s. s (ݏ

represents the scaling parameter, which determines the time and frequency resolutions of the 
scaled base wavelet ψ(

௧ିఛ

௦
). More generally, the values of s are inversely proportional to the 

frequency6. While the symbol ߬ is the shifting parameter, which translates the scaled wavelet along 
the time axis. The symbol ψ∗(: ) denotes the complex conjugation of the base wavelet ψ(ݐ).  As an 
example, the scaled version of the Morlet wavelet is expressed as 

   ψ ቀ
୲ିத

ୱ
ቁ = e 

୧ଶ஠୤బ(೟షഓ
ೞ

)݁
ିఈ

(೟షഓ)మ

ೞమഁమ      Eqn.2  
To implement the CWT, the wavelet coefficients are obtained directly from Eqn.1. The wavelet is 
placed at the beginning of the signal, and set s=1 (i.e. the original base wavelet). The wavelet 
function at s=1 is multiplied by the signals x(t), integrated over all times and then multiplied by 1/√ݏ. 
The wavelet is shifted to t=τ, and the transform value (also known as the wavelet coefficient) is 
obtained at t=τ and s=1. The procedure is repeated until the wavelet reaches the end of the signal. 
Following this, the scale s is increased by one and the procedure is repeated for all s values. Each 
computation for a given s fills a row of wavelet coefficients of the time-scale plane (Fig.5). Matlab, by 
default, sets the number of scales to 797 and this is what was considered in this work. However, an 
investigation into reducing the number of considered scales is provided in the CASE STUDY section. 
For further information about wavelet transformation consult Reference 6. 

 

Fig.5 Illustration of wavelet transform 

 

Fig.6 Morlet wavelet 
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Subsection 2: Scalogram and Greyscale 

The normal signals were divided into smaller 500 time instances signals. This meant the result, 
following the wavelet transform, was a 797 x 500 element matrix with each element a wavelet 
coefficient for a given scale s and shifting parameter τ. However, as previously stated, the fault 
detection method developed is a comparison of pixels from an image not matrices. In signal 
processing, a scalogram is a visual method of displaying a wavelet transform. There are 3 axes: x 
representing time, y representing scale, and z representing coefficient value. The z axis is often 
shown by varying the colour of brightness. As an example, Fig. 8 is the scalogram representation of 
the normal signal in Fig. 7 following a wavelet transform using the Morlet wavelet as the base 
wavelet. From the scalogram, we see that on the y-axis the scales were varied between 1 and 797. 
While the x-axis is the signal length of 500 time instances. The z-axis is a colour representation of the 
differing values of the wavelet coefficients. The colour map ranges from dark blue to yellow. The 
dark blue (minimum value) was given by a wavelet coefficient of 0.0013 which was the lowest 
recorded matrix element and corresponds to the most similar reconstruction between the base 
wavelet and the signal. While, yellow (maximum value) given by a value of 38.1775 was the most 
dissimilar reconstruction between the base wavelet and the reconstruction. The colour 
representation of the wavelet coefficients between these extremes was given by a linear 
interpolation.  As a point to note, we notice that the normal signal is quite noisy to begin with and, 
therefore, the signals frequency is high. This means that high scales (i.e. lower frequencies) would 
provide large coefficient values while low scales (i.e. high frequencies) would result in coefficient 
values approaching 0 and would be a close approximation to the actual signal. This observation is 
clear from the scalogram of the normal signal as the dark blue values tend to accumulate at the 
lower scale values. 

  

  Fig. 7 normal signal       Fig. 8 Scaologram of normal signal 

The developed methodology requires a large amount of normal signals to train the model. All of the 
normal signals, denoted Training Set, were converted to scaolgrams and subsequently greyscale 
images. In photography and computing7, a greyscale digital image is an image in which the value of 
each pixel is a single sample, that is, it carries only intensity information. Images of this sort, also 
known as black-and-white, are composed exclusively of shades of grey, varying from black at the 
weakest intensity to white at the strongest. The limits of the greyscale images were set to 0 (black) 
and 1 (white). These limits were fixed among all the greyscale images. The advantage of converting 
to a greyscale image is that it allows for a direct comparison between other greyscale images. Fig. 9 
is the greyscale image of the normal signal in Fig. 7. 
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       Fig. 9 greyscale of normal signal 

Once a new signal from the sensor becomes available, denoted Test signal, the same procedure is 
performed. The Test signal undergoes a wavelet transform, then is converted to a scalogram and 
finally a greyscale image. The difference was computed between this Test greyscale image and all of 
the Training Set greyscale images. However, instead of a pixel to pixel difference, the relative 
difference was calculated. Once the greyscale images had been created, instead of just a difference 
being performed, the image pixel difference was divided by the original Training Set pixel value and 
multiplied by a factor of 100 to convert to a percentage difference between pixels. This method was 
repeated for all the pixels in an image and created a new greyscale image. These new greyscale 
images were named difference images and were contained within a cell array. Then, the pixels of 
each of the difference greyscale images were summed up and the minimum total percentage 
difference pixel value among the difference images (denoted MIN_TEST) was used for comparison to 
a previously determined Threshold. The threshold was an integer number with was achieved 
through a ROC analysis using normal and faulty signals. The Threshold was optimised such that if 
MIN_TEST was less than the Threshold the model classified the original signal as normal. Obviously, 
if MIN_TEST was greater than the Threshold the method determined the signal as abnormal. Fig. 10 
provides a visual representation of the developed method. Fig. 11 displays the results of the CWT. 
The model correctly classified that the first 6 signals were normal while the remaining 4 were 
abnormal. 
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Fig. 10 Schematic of the CWT method 

 

Fig. 11 Plot of fault detection model 

 

IV. CASE STUDY 

Subsection 1: Simulated Abnormalities  

 

 

       Fig.1 Freeze              Fig.2 Noise 
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  Fig.3 Quantisation                Fig.4 Spike 

Subsection 2: Threshold Selection 

As previously stated, the six temperature signals represented normal operation of the component. It 
was decided to divide each signal into 8 time windows, each containing 500 time instances. The 
divided signals were placed into a cell, denoted Normal Set. Obviously, the Normal Set contained a 
total of 48 signals, each 500 time instances in length. Taking advantage of a matlab function which 
randomly permutes cell elements, The 48 signals of the Normal Set were randomly separated to 
three cells named Training, Validation and Test Set. The Training Set contained 33 signals, the 
Validation Set contained 7 signals and the Test Set contained the remaining 8 signals. In addition to 
the 7 normal signals, the Validation Set contained 5 simulated abnormal signals: 1 freeze, 1 spike, 1 
noise, 1 high level quantisation and 1 low level quantisation. Therefore, the Validation set contained 
12 signals each with 500 data points. The first 7 elements contained normal signals and the last 5 
simulated abnormalities.  

As previously stated, the developed procedure involves the comparison of the summation of pixels 
from a difference greyscale image with a defined threshold. Once the three sets had been created, 
the next challenge was to determine an appropriate threshold for fault detection. The threshold was 
set such values lower than the threshold were interpreted as normal operation while values greater 
than the threshold represented abnormal behaviour.  

The Training and Validation Sets were used for threshold optimisation. The 40 normal signals 
contained among the Training and Validation set were randomly distributed among the two sets at 
each iteration. The Test Set was neglected here but would be reintroduced to determine the 
methods performance. As the signals which represented normal and abnormal operation in the 
Validation Set were known, it was decided to optimise the threshold with a ROC analysis. A ROC 
analysis involves recording the number of false alarms (i.e. detections of faulty behaviour when no 
fault has occurred) and missed alarms (i.e. detection of normal behaviour when a fault has occurred) 
for a given threshold and repeating the process for different threshold values8. A graph of false 
alarms vs missed alarms for different threshold values is plotted and through statistical analysis an 
optimal threshold is chosen.  
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  Fig.13 CWT ROC curve    Fig.14 CWT distance vs Threshold 

Summing the percentage difference pixels of an image resulted in a value of the order of 106. 
Therefore, it was decided to vary the threshold between 1x106 and 11x106 in steps of 106. The 
number of missed and false alarms were recorded after each iteration. The program calculated the 
number of missed and false alarms at each threshold value for a fixed Validation and Training Set. 
Following another execution of the program, the normal signals of the Validation and Training Sets 
were randomly divided among the two sets. However, the position of the normal and abnormal 
signals in the Validation set remained the same so a ROC analysis could be performed. Having 
executed the program 10 times, the mean number of false and missed alarms at each threshold 
value was calculated. Fig.13 shows the obtained ROC curve. This curve is characteristic of a ROC 
curve with the sharp decline at lower values followed by a plateau. 

The optimal threshold is the threshold which corresponds to zero missed alarms and zero false 
alarms. (0, 0) represents the ideal value. Therefore, it was decided to calculate the distance between 
each point on the ROC curve and the ideal value using Eqn.3: 

   ݀ = ඥ(xଵ − xଶ)ଶ + (yଵ −  ଶ)ଶ     Eqn.3ݕ

Fig.14 shows the results of the analysis. It is clear from the graph that a value of 8x106 represented 
the best comprise between false and missing alarms and was chosen as the threshold value.  

 

Subsection 3: CWT and AAKR method performance 

Having determined the optimal threshold, the performance of the method could be calculated. The 
performance was defined as the number of false and missing alarms given the optimal threshold 
using new, ‘unseen’ data. Here the Test Set was reintroduced which contained signals which had not 
been used to optimise the model. The Test Set was made up of the 8 normal signals along with 20 
simulated abnormal signals i.e. 5 spike, 5 freeze, 5 noise and 5 quantised signals. These 28 signals 
were compared with the 40 normal signal which had been used to optimise the model. The 
developed CWT method was implemented and the results are as follows: 

CWT 
normal 
/8 freeze /5 spike /5  quants /5 noise /5 

Performance 1    0    0    1   0    
Table 1. Performance of the CWT model 
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It is evident from the above data that the method performs very well in identifying normal signals. 
Similarly, the method shows very promising results for the detection of a sensor under freezing, 
spike and noise. However, the method was unable to 1/5 of the quantised signals. The only 
incorrectly identified abnormality came from a very highly quantised signal (Fig. 16). Fig. 15 is the 
scalogram of the normal signal that the quantised signal was created from. It is difficult to notice 
differences in the scalograms. However, the numerical values of the coefficients differ. In fact, the 
MIN TEST of the missed alarm was 7.935x106 which is within one standard deviation of the threshold 
of 8x106. Further investigation into the reason for the false alarm is discussed in the conclusion and 
it emphasises a limitation of the model.  

 
Fig.15 normal signal used to simulate abnormalities   Fig.16 highly quantised signal 

Having achieved these results, a comparison was made to an industrially recognised model. Typically 
monitoring the condition of a component is based on an empirical model that estimates the values 
of some measurable variables (signals) in normal conditions and triggers the fault alarm when the 
reconstruction deviates from the measured signal9. The model considered in this work for 
reconstructing the component behaviour in normal conditions is the Auto Associative Kernel 
Regression (AAKR) method10 whose basic idea is to reconstruct the signal values in case of normal 
conditions given a current signal measurement vector as a weighted sum of historical observations. 
Thus, the application of the AAKR method requires the availability of a set of historical 
measurements. Having achieved the signal reconstruction, a residual is obtained between the 
observed signal and the reconstruction. If the residual is above the optimised upper limit or below 
the optimised lower limit, the model interprets an abnormal behaviour. Fig.17 shows a typical 
scheme of condition monitoring of a component using AAKR. Fig. 18 and Fig.19 shows an AAKR 
analysis of a normal and abnormal signal, respectively with the upper and lower limits. Reference 3 
provides a complete description of the method. 

 

Fig.17 Schematic of AAKR condition monitoring  
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         Fig.18 AAKR results from a normal signal         Fig.19 AAKR results from an abnormal signal 

The AAKR used the same temperature signals (i.e. six signals with 4000 time instances) which had 
been used for the CWT method. However, the signal lengths had been reduced to maximise the 
AAKR efficiency. A 120 x 200 matrix was created and denoted normalsignals. The division of the 
signals were as follow: values 1-20 of the six signals made up the first row of the matrix. Following 
this, inputs 21-40 made up the second row and so on until the matrix had been filled. Each of the 
200 rows became a vector, of length 120, and placed into a cell. The 200 vectors were randomly 
divided amongst three sets: Training, Validation and Test Set. The Training Set contained 140 signals, 
the Validation consisted of 30 signals and the Test Set consisted of 30 signals.  

Similar to the CWT method, the AAKR procedure requires the optimisation of a threshold. However, 
in this case, the threshold is the upper and lower limits. Again, the Training Set and Validation Set 
were used to optimise the limits while the Test Set was used later for performance evaluation. Along 
with the 30 normal signals in the validation set, 5 abnormal signals were added. These simulated 
abnormalities were 1 freeze, 1 spike, 1 noise, 1 highly quantised and 1 low level quantised signal. In 
total, the Validation Set contained 35 signals of which the position of the normal and abnormal 
signals was known. This meant that a second ROC analysis could be performed. After a trial was 
performed, it was decided to vary the upper and lower limits between a value of 6 and 12 in steps of 
0.1 to limit the computational time. Fig.20 and Fig.21 display the results of this optimisation process. 
The optimal threshold was chosen using the already described distance formula and was found to be 
9.  

 

          Fig.20 AAKR ROC curve   Fig.21 AAKR distance vs Threshold 

0 0.5 1 1.5 2 2.5 3

mean false alarms /20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
ROC curve AAKR

6 7 8 9 10 11 12

Threshold

0.5

1

1.5

2

2.5

3

3.5

4

4.5
distance vs Threshold



16 
 

Using the value of 9 as the upper and lower limits, the methods performance could be determined. 
The Test Set was reintroduced and, again, 20 abnormal signals were added to the Test Set i.e. 5 
freeze, 5 spike, 5 quantised and 5 noise. An AAKR analysis of the 50 signals was performed and the 
results are shown in Table 3. 

AAKR normal /30 freeze /5 spike /5  quants /5 noise /5 
Performance 0    4    0    0    0    

Table 3. Performance of AAKR model 

The devised method performed better in the determination of frozen sensor signals than the 
industrially recognised AAKR method. While, the other performance indicators, both normal and 
abnormal signals, were on par with the AAKR method. However, a major downside to the 
percentage difference method is the large computational time.  

Subsection 4: Alternative Approach 

In an effort to rectify this, the same procedure was followed. However, during the comparison 
between the greyscale images, a direct pixel to pixel difference was performed. In addition to this, 
an investigation into the nature of the simulated abnormalities was conducted. As previously stated 
the abnormalities were simulated from a normal signal (i.e. signal 3 time window 500-1000) and a 
total of 797 scales were chosen to create the scalogram image. Both frozen and spiked signal 
scalogarms (Fig.22 and Fig.23, respectively) resulted in differences from the normal signal scalogram 
(Fig.15) over a larger number of scales which would allow a pixel to pixel model to detect a sharp 
difference between what it considered normal signal and the simulated abnormality. However, a 
signal that is quantised or has noise added (Fig.24 and Fig.25, respectively) varies slightly from the 
normal signal throughout the signal length. This means that when the wavelet transform is 
performed on these signals the larger scales (i.e. lower frequencies) would reproduce results that 
were analogous to that of the normal signal resulting in similar images at higher scales which the 
pixel to pixel model would interpret as a normal signal and thus a large number of missed alarms 
would result.  However, the differences in the images could be identified with an investigation into 
then lower scales (i.e. higher frequencies).  

 Fig.22 Example of frozen scalogram  Fig.23 Example of spiked scalogram 
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 Fig.24 Example of highly quantised signal  Fig.25 Example of signal with noise 

Therefore, it was decided to filter the number of considered scales and concentrate on the lower 
scales. Through observation, it was clear that the images varied substantially for the first 300 scales 
and with larger scale values were indistinguishable. Therefore, the model was set to focus on scale 
values from 1-300 which would reduce the computational load and, thus, the computation time. Fig. 
26 and Fig.27 are scalograms of Fig. 24 and Fig. 25 respectively with scales from 1-300. 

The same CWT method was performed except the number of considered scales had been reduced. 
As before, the threshold was optimised for the lower scaled images. A value of 2700 was found to be 
the optimal threshold. Following this, an evaluation of the methods performance was conducted 
with new, ‘unseen’ data. The results are as follows: 

CWT (scales 1-300) normal /8 freeze /5 spike /5  quants /5 noise /5 
Performance 1    2    0    1    0    

Table 3. Performance of CWT model considering scales 1-300 

The filtered pixel to pixel method performance for normal signal detection was on par with the 
percentage difference method. It was also the same in the determination of quantised, noisy and 
spiked signals. But, the drawback is that 40% frozen signals were determined as normal which would 
cause safety concerns being applied at an industrial scale. While the overall pixel to pixel method 
performance was not as good as the percentage difference method, the computational time is 
significantly less. Therefore, a trade off exists between the two methods. The chosen method would 
depend on the work that needs to be done. If performance is desired, the percentage difference 
method is optimal. However, as a first tentative step, the pixel to pixel method would be better.  

                    

            Fig. 26 Normal signal with 300 scales         Fig.27 highly quantised signal with 300 scales 
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V. CONCLUSIONS 

In this article we have devised an alternative condition monitoring model using continuous wavelet 
transform (CWT). A case study which used real industrial temperature measurements and simulated 
abnormalities has been considered. The devised CWT model provided satisfactory performance in 
both false and missed alarm detection. The performance results are comparable to the traditional 
AAKR method. The devised method performed better in the determination of frozen sensor signals 
than the AAKR method. While, the other performance indicators, both normal and abnormal signals, 
were on par with the AAKR method. However, the main drawbacks of the approach are:  

(1) No shifting window. The normal signals were arbitrarily split into 500 time instant signals. 
Following this, the model was trained to identify these signals as normal operation. Now consider, a 
signal of length 500 being created from two consecutive normal signals which would itself be a 
normal signal of the component. However, having performed the wavelet transform and fault 
detection technique, the model would conclude that the signal is abnormal. Fig. 28 gives a visual 
representation of the limitation. This limitation can be overcome by introducing a shifting time 
window across the normal signals with the result being a larger collection of normal signals. 

(2) The developed method suffers from a lack of training data which represent normal operation. As 
previously mentioned a total of 33 signals of length 500 were used to train the model. This limitation 
can be seen as a consequence of the fixed time window. Furthermore, this limitation is evident in 
the method performance results. The method recognised one normal signal as abnormal. Upon 
further investigation into this incorrect determination, it was found that the MIN_TEST value was 
8.1725 x 106 which is just above the threshold and Fig. 29 displays the Training signal which was used 
to determine the MIN_TEST value. Notice that the two signals are of the same type however they 
have been offset by a factor of 7. Therefore, it was decided to repeat the calculation with a normal 
signal of that type but reduced offset. Fig. 30 displays all the normal signals of that type. Signal 3 
(which was the TEST signal) and Signal 4 were used to perform the CWT and the MIN_TEST value was 
7600000 below the Threshold. So this problem stems from the lack of normal signals to train the 
model as signal 4 was not contained in the 33 Training signals. Further investigation with a larger 
training set would be required and would reproduce greater method performance. 

 

Fig.28 The bottom normal signal is created from the end of the top normal signal and the beginning of the 
middle normal signal. The CWT concludes that this signal is abnormal. 
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Fig. 29 Training and Test signal for MIN_TEST                                Fig. 30 The 6 normal signals from 1001-1500 

(3) The high computational time required for its application, which is owing to the computation of 
the percentage differences between the current Test set greyscale image and all the Training data 
greyscale images. However, as addressed in the Case Study, an alternative method is proposed 
which involves the calculation of the pixel by pixel difference. Unfortunately, the proposed method 
results in reduced method performance. 

Overall, the results achieved using the percentage difference wavelet transform are very promising 
and would be an ideal starting point for future investigation. Other possible future works would 
involve the extension of the method to more simulated abnormalities and possible incorporation of 
a real signal abnormality. Furthermore, the Morlet wavelet remained the mother wavelet 
throughout the analysis, it would be interesting to vary the mother wavelet and perform a similar 
analysis. Finally, as an extension of the performed work, the CWT could be used in the classification 
of the different abnormalities present.  
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