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A B S T R A C T

The aim of this thesis is to develop a model which can predict a
mobile trajectory profile of the rover under loose soil condition. The
study also encapsulates a traversal run in a sloped terrain without
the skid characteristics.
The geometry and features are defined to model the rover as known
as Moonraker: the lunar rover of the team HAKUTO, competing for
the Google Lunar XPRIZE.
After a brief introduction of the working environment, a chapter is de-
dicated to the modeling of the forces generated from the interaction
between wheels with soil, depending on the slip ratio and the slip
angle. The used model is the one proposed by G. Ishigami [6, 7, 8, 9],
based on the work of M. G. Bekker [1, 2] and J. Y. Wong [3] and modi-
fied, according to what proposed by M. Sutoh [11, 12, 13], to explicitly
consider the grouser effect. The model is verified through One-Wheel
tests.
The equations of motion are retrieved and the numerical simulation
with iterative loop is described.
The desired state is reached imposing arbitrary inputs to the wheels.
Two input strategies are discussed: torque input and velocity input.
The resulting motion is compared with tests on both controlled (sand-
box) and uncontrolled environment. The former is mainly used to ve-
rify the precision of the model, and the latter to prove the sensibility
to the ground properties.
The independence of the model from the traveling velocity is verified,
employing the same tests used for the main goal of the thesis.
The aim of the thesis is reached defining the strategy for the compen-
sation of the side slip on a slope terrain. A tuning procedure is perfor-
med to correct the model errors and fit the desired system performan-
ces. The initial attitude of the rover is studied in order to compensate
the drifting angle with a proper orientation. A "slope-attitude" corre-
lation is defined interpolating the found solutions. The validity of the
obtained solution is tested and verified.
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S O M M A R I O

Lo scopo di questa tesi è realizzare un modello che sia in grado di
predire la traiettoria di un rover che si muove su terreno sabbioso.
Lo studio comprende inoltre un possibile approccio per la correzione
dello slittamento laterale, presente durante l’attraversamento di un
pendio.
La geometria e le caratteristiche del sistema in analisi sono definite al
fine di descrivere il robot noto come Moonraker: il rover lunare del
team HAKUTO, il quale compete per il Google Lunar XPRIZE.
Dopo una breve introduzione sull’argomento trattato, un capitolo è
dedicato all’analisi e descrizione del modello di forze generate dalla
interazione tra le ruote e il suolo, in relazione alla variazione di ra-
teo di slittamento e angolo di slittamento (rispettivamente slip ratio e
slip angle in inglese). Il modello che viene utilizzato è quello proposto
da G. Ishigami [6, 7, 8, 9], il quale si basa sul lavoro di M. G. Bek-
ker [1, 2] e J. Y. Wong [3]. A questo viene aggiunto il contributo di
forze dovuto alle sporgenze presenti sulle ruote (in inglese grousers),
secondo quanto proposto da M. Sutoh [11, 12, 13]. Il modello risul-
tante viene quindi verificato, comparandolo con quanto ottenuto da
test eseguiti su una ruota dotata di sensori di forza e momento.
Avendo illustrato il sistema studiato con le opportune approssimazi-
oni, sono presentate le equazioni del moto e la simulazione numerica,
necessarie per l’elaborazione della traiettoria.
Il raggiungimento dello stato desiderato per la simulazione è garan-
tito da un input agente sulle ruote: in primis viene descritto come si
possa usare il momento generato dai motori per controllare la dina-
mica delle ruote, e in seguito viene illustrato come imporre diretta-
mente la velocità di rotazione sia più congeniale al problema.
Il moto risultante dalle simulazioni è confrontato con quanto ottenuto
in test svolti in un ambiente controllato (sandbox) e naturale. Lo scopo
dei primi è quello di permettere un confronto, ben conoscendo le vari-
abili presenti. I test svolti nel secondo ambiente servono ad evidenzi-
are come la conoscenza di questi parametri sia fondamentale per una
buona simulazione. Attraverso gli stessi test usati per gli obiettivi
principali della tesi, è accennato uno studio atto a dimostrare come
la velocità di manovra non influenzi il percorso, non modificando le
forze presenti.
Lo scopo della tesi è raggiunto con il confronto del modello proposto
con quanto ottenuto durante questi test. A questo segue una proposta
di regolazione dei parametri al fine di minimizzare l’errore di simula-
zione. Avendo il modello ottimizzato, è possibile studiare un oppor-
tuno angolo con cui affrontare il pendio, il quale garantisca un moto
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orizzontale. Iterando questo procedimento per tutte le pendenze in
esame, è possibile definire una curva che relazioni l’inclinazione del
suolo con l’orientazione da assumere al fine di attraversare il per-
corso. La soluzione proposta viene quindi verificata con ulteriori test,
per dimostrarne l’efficacia.
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1
I N T R O D U C T I O N

The Earth is the cradle of
humanity, but mankind
cannot stay in the cradle
forever.

Konstantin Tsiolkovsky

1.1 historical background

Since the beginning of the modern rocketry, thanks to the work of
Konstantin Tsiolkovsky, the humankind started to look at the celestial
bodies with the eager to conquer them, knowing that the technology
was ready to push them that far.
The Soviet Union managed in the October 1957 to send the first ar-
tificial satellite on orbit around the Earth, the Sputnik 1: this event
signed the beginning of a new era in the space exploration. United
States and Soviet Union, willing to prove the country supremacy and
power, invested a great amount of money in this field, granting a tre-
mendous advancing in the related technology. During January 1959,
The Soviet Union firstly succeeds in performing a Moon fly-by with
the Luna 1 mission. Other missions followed, culminating with the
Luna 3, that managed to send for the first time images of the dark
side of the Moon. Another record was reached by the Soviet Union
when on the 12th of April, 1961, Yuri Gagarin became the first man
to reach the space on the Vostok 1. In the following eight years, sixty-
nine American and U.S.S.R. missions gave us a better understanding
of the Moon, Venus and Mars. It was on the 16th July, 1969, that we
made a giant leap: Neil A. Armstrong is the first man to walk on the
Moon surface, during the mission Apollo 11.
The first Moon Rover was landed by the Soviet Union the following
year. During the mission Luna 17, the Lunokhod 1 started its mission
that lasted 322 days, traveling a distance of 10540 meters and sending
to the ground station thousands of images and various ground analy-
sis.
Many other lunar mission were successfully carried on until 1976,

when the main interest became the realization of space stations and
the exploration of other celestial bodies, leaving the Moon settlements
missions unrealized.
Japan became the third country to orbit around our satellite in the
1990.
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2 introduction

Figure 1: Lunokhod 1

In the 2000s, other countries managed to reach the Moon. Of great
interest is the Indian satellite Chandrayaan-1 that, in 2008, discovered
great evidence of water in the Moon soil. In 2013, China became the
third country to land a rover on the Moon during the Chang’e 3 mis-
sion.
The following year, another important step has been made. To honor
the death of Manfred Fuchs (OHB Systems founder), the first com-
mercial mission to the Moon took place.

1.2 google lunar xprize

On September 2007, XPRIZE Foundation, along with Google inc., an-
nounced the Google Lunar XPrize.
What is the Google Lunar XPRIZE?

The $30M Google Lunar XPRIZE (GLXP) is an unprece-
dented competition to challenge and inspire engineers, en-
trepreneurs and innovators from around the world to de-
velop low-cost methods of robotic space exploration. To
win the Google Lunar XPRIZE, a privately funded team
must be the first to:

• successfully place a spacecraft on the Moon’s surface

• travel 500 meters
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Figure 2: Google Lunar XPrize logo

• transmit high-definition video and images back to
Earth

The first team that successfully completes this mission will
be awarded the $20 million Grand Prize. The second team
to successfully complete the mission will be awarded $5

million. To win either of these prizes, teams must prove
that 90% of their mission costs were funded by private
sources. Teams have until the end of 2016 to announce a
verified launch contract to remain in the competition and
complete their mission by the end of 2017.[33]

The aim of this competition is to revolutionize the idea that outer
space is not a dream but affordable travel to anyone. The advance-
ment is not achievable without the emergence of the private ventures
by developing cutting technologies while reducing the expenses. As
shown above, manned and unmanned robotic vehicle are an essen-
tial component in the exploration of any celestial body. Those low
budget rovers are surely fundamental in the upcoming lunar bases
project that are again being considered for the next two decades.
The Moon has been selected for this challenge for being the closest
neighbor and so granting a perfect environment for testing and deve-
loping new technologies, useful for future space exploration. It also
has a lot of elements that are rare on Earth (China is willing to mine
the Moon in order to retrieve the Helium-3) and the presence of water
makes it of great interests for many researches.
The competition expects the team to finish the mission by the end of
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December 2017. The team still competing for the prizes are counting
at 16 (over 34). Three of them (SpaceIL, Moon Express and Synergy
Moon) have secured a verified launch contract (with SpaceX, Roc-
ket Lab and Interorbital Systems respectively). The others have time
until the end of 2016 to ensure one. Team HAKUTO is partnered with
an American team, Astrobotic, and its rover will fly on Astrobotic’s
lander Griffin. To make the challenge more interesting for the com-
petitors, other achievements grant smaller amount of money: those
are all connected to technology improvements such as traveling far
distances, finding evidence of ice or recording images and videos
of the landing site of one of the Apollo Program landing sites or
any man-made item. Remarkable is the additional million is granted
to teams that make significantly promote ethnic diversity in STEM
(Science, Technology, Engineering and Mathematics) fields, underli-
ning the main purpose of the challenge.
On January 2015, 5 teams were awarded with prizes ranging from
500.000 dollars to 1.75 million dollars (HAKUTO, Part-Time Scien-
tists, Team Indus, Moon Express and Astrobotic respectively).

1.3 hakuto

Figure 3: HAKUTO PFM3 Moonraker

Team HAKUTO, whos leader is Takeshi Hakamada, is the only ja-
panese GLXP team. The team is under the operation of ispace inc.,
a Tokyo-based space company created to provide space-related mar-
keting, media opportunities and engineering services. The team is
partnered with the Space Robotics Lab (SRL), led by Professor Yos-
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hida in the Department of Aerospace and Mechanical Engineering at
Tohoku University, Sendai.
XPRIZE Foundation announced the Terrestrial Milestone Prize (TMP)
in October of 2013: a cash prizes of $250 thousand USD to $1 million
USD to five eligible teams in mobility, landing and imaging catego-
ries in order to speed up the development. In January 2015, HAKUTO
was awarded $500 thousand USD for a successful testing campaign
including radiation, thermal vacuum [17], vibration and field testing.

1.3.1 Moonraker

The design concept for the Moonraker (Figure 3) was to keep it as
light as possible, in order to satisfly the strict constrains of the mis-
sion, while not sacrificing mobility performance over lunar regolith,
especially on steep slopes of 20° or more that may be encountered
in the predicted path. The design led to a total weight of 8 kg. Ac-
tuation points were kept minimal, reducing mass and failure modes.
The key design features are large relative wheel size and 4 cameras,
to have a 360° coverage. There’s a TOF laser ragefinder in the front
of the rover for detecting obstacles that the cameras might fail to. A
4 wheel configuration has been preferred over the 6 one because ena-
bles to have the wheel diameter doubled, occupying the same volume
(enhancing the slip control performances). The slippage reduction is
also enhanced by the presence of grousers. The wheels were therefore
designed to be 20 cm in diameter with 2.25 cm grousers. Laboratory
experiments indicate that a slip ratio of under 0.1 should be expected
with these wheels on slopes of up to 10°. According to the design
philosophy, no steering mechanism is present. Two kind of maneu-
vering are considered: spot turn, rotating the left and right wheels
with the same velocity of opposite direction, and skid steering, where
the wheels rotate in the same direction, with different velocities. The
traveled distance is measured as average of the wheels rotation, as
measured by the motors encoders.

1.3.2 Tetris

The Space Robotics Lab has also developed a small, 2 kg child rover,
called Tetris, that, together with Moonraker, composes a dual rover
system. Tetris will be tethered to Moonraker, which will serve as an
anchor for exploration into pits and down steep cliffs.
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1.4 purpose and approach

Because of the loose soil, locomotion on the Moon is a challenging
mission by itself. The loose soil causes a certain slippage on the wheel,
that leads to an erroneous evaluation of the position, if not properly
considered.
The purpose of this thesis is to provide a tool to predict the dynamics
of a rover, with determined features, operating on flat or inclined
terrain, in presence of loose soil.
To do that it is necessary to develop:

• an analytical model for the wheel-soil interaction

• a model of the rover dynamics on loose soil

Develop an analytical model for the wheel-soil interaction

The first purpose of this work is to analyze and model the inte-
raction between rigid wheels and loose soil. The discipline that stu-
dies this field is called Terramechanics. For planet exploration, being
able to predict correctly the dynamics of the rover is crucial: if models
for rigid ground are applied, an erroneous evaluation of distances is
obtained, being the slippage not considered. The slip is due to a diffe-
rence between the wheel velocity and the vehicle velocity. This can be
dangerous for two reasons, linked to two aspect of the slip. The longi-
tudinal slip causes problems in the evaluation of the precise traveled
distance. For long distances this can lead to a misevaluation of the
position. If too high, the longitudinal slip can also make the wheel
dig and correspondingly get stuck in the sand. The side slip (or skid)
is related to the later movement experienced in the slopes. Due to the
presence of cliffs and caves, not being able to predict and control the
side slip can result in the failure of the mission.
Terramechanics models are being studied since the ’60s by Mieczysław
G. Bekker that is considered the father of this discipline and had a sig-
nificant role in the design of the rovers used in the Apollo 15, Apollo
16, Apollo 17 missions. Jo Y. Wong greatly contributed in the study
of the stress generation beneath the wheels. Those models aim to de-
termine the shape and intensity of those stresses. Doing this, it is
possible to evaluate the reaction forces and torques acting on each
wheel.
The obtained results are verified through tests operated on a single
wheel, having a force/torques sensor (F/T sensor) mounted.

Model of the rover dynamics on loose soil

The second purpose is to model the rover dynamics, moving on
loose soil. Having the geometry of the rover fixed, the equations of
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motion are retrieved and, using a Simulink
® model, the dynamics is

simulated. The input to be given are the desired states of the wheel.
Given that, the forces are evaluated through the above described force
model, and the rover state computed. The simulated trajectories are
then compared with the results of tests performed in a sandbox, using
the Moonraker itself.





2
W H E E L - S O I L M O D E L

In this chapter, the wheel-soil contact model is developed. As introdu-
ced above, the basis of this work is given by Bekker in [1, 2] and Wong
in [3, 29]. A wide use of the Tohoku Uiversity research heritage has
also been used. In particular the publications of G. Ishigami [6, 7, 8, 9]
and M. Sutoh [11, 12, 13] are a solid background and guidelines for
this thesis.
The key parameters are the relationship between pressure-sinkage and
the slip ratio, that are used as input for the whole model. To be no-
ticed that the velocity is not a variable and it has no effect on the
resultant forces. This is verified through experiments for the com-
monly used velocity for rovers, that are up to 5 cm/s. The equation
describing the pressure-sinkage relationship is the one proposed by
Bekker-Reece. The equation approximates the stresses generated by
a flat plate penetrating into the soil, and that is used to evaluate the
three-axis forces and two torques generated on the wheel, later des-
cribed in detail.

2.1 wheel reference frame

For this thesis, a right-handed reference frame, centered in the central
axis of the wheel, is considered. The y axis is orthogonal to the wheel
lateral surface, the z axis is orthogonal to the ground and the x axis
is consequently pointing forward the moving direction. The reference
frame rotates with the wheel if steerings occours, but it doesn’t rotate
with the wheel rotation.

2.2 wheel sinkage

One of the most intuitive differences between solid ground and loose
soil, is that the wheels sinks in the terrain. The sinkage of the wheels
is of primary importance to understand the phenomenon, since it
creates the contact area between wheel and soil, that will determine
the forces generated.
This sinkage is addressed to two summed effects.

h = hst + hdyn (1)

The static sinkage (hst) is due to the normal load on the wheel, the
dynamic sinkage (hdyn) is due to the wheel rotation.

9
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Static sinkage

Figure 4: Static sinkage

In his work, Bekker considered a rectangular flat plate acting on
homogeneous soil. The static stress generated is modeled as in (2).

p(h) =
(kc
b

+ kφ

)
hn (2)

In this equation various parameters are introduced. First of all, the
static pressure (related to the sinkage h) is defined as p. b is the smal-
ler width of the plate, kc and kφ are respectively the cohesive and
frictional moduli of deformation (or pressure-sinkage moduli) and n
is the deformation sinkage exponent. kc, kφ and n are experimentally
obtained in the so called penetration test, from the relation pressure-
sinkage of two different plates. This procedure is described in [6].
Equation (2) is modified by Reece as in (3).

p(h) = (ck ′c + ρbk
′
φ)
(h
b

)n
(3)

The parameter c is defined as the cohesion stress of soil and ρ is the
wight density of the terrain.
The parameters k ′c and k ′φ have the same meaning in (2) and in (3),
but in the first, their dimension changes depending on the value of n,
while in the second those are dimensionless. To be noted that, if n is
equal to 1, (2) and (3) are the same, considering kc = ck ′c and kφ =
ρk ′φ. Equation (3) is the one used in this thesis.
An important parameter is defined as the static angle θs, that is the
angle between the vertical with respect to the ground and the contact
point of the wheel with the soil, measured in the center of the wheel.
Using a geometrical approach, a simple equation correlating the wheel
angle θ and the sinkage is obtained as in (4).

h(θ) = r(cosθ− cosθs) (4)
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The parameter r is the wheel radius.
Substituting (4) into (3), the static pressure results linked to the wheel
angle as shown in (5).

p(θ) = (ck ′c + ρbk
′
φ)
(r(cosθ− cosθs)

b

)n
(5)

The vertical load of the wheel W is defined as the integral of the
pressure on the whole contact area of the wheel with the soil. This
results in the (6).

W =

∫θs
−θs

p(θ)brcosθdθ (6)

The load W, the radius r and the wheel width b are known data.
Equation (6) can be numerically solved to find the contact angle θs.
Knowing this, the static sinkage is obtained with an easy utilization
of (4) as shown in (7).

hs(θ) = r(cos0− cosθs) = r(1− cosθs) (7)

Dynamic sinkage

Figure 5: Wheel contact angles

The dynamic sinkage is a phenomenon that depends on a high
number of parameters, depending simultaneously on the ground cha-
racteristics, wheels geometry, slip ratio simultaneously. For this rea-
son an analytical formulation is hard to obtain. On the other hand,
a numerical solution is proposed. It has already been said that the
the sinkage highly influences the force generation, including the ver-
tical reaction force as will be shown later: the higher the sinkage, the
higher the forces. It is possible to evaluate the correct total sinkage,
finding the value of h that satisfies Fz(h) = W (Fz represents the ver-
tical reaction force), using an iterative procedure. Once the value of h
is obtained, using (1), hdyn is estimated.
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Figure 6: Wheel reference

2.3 wheel contact angle

Another effect of the wheel rotation is the variation of the contact an-
gle from the previously evaluated static angle θs. Two new angles are
introduced: the entry angle θf and the exit angle θr (where f stands
for front and r for rear). The entry angle θf is defined as the angle
between the vertical and the first contact point between the soil and
the wheel. The exit angle θr is similarly defined as the angle between
the vertical and the last contact point between the soil and the wheel.
Those angles can be evaluated using the sinkage previously obtained.
Using a geometry correlation, the θf is evaluated in (8).

θf = cos
−1
(
1−

h

r

)
(8)

The exit angle θr is influenced by the rotation of the wheel and soil
parameters. This is expressed with the term κ, that is the ratio bet-
ween the soil height in the front and in the back of the wheel. If κ
is equal to 1, it means that the sinkage is equal before and after the
wheel, if higher than 1 that the soil height is higher behind the wheel
and viceversa. Equation (9) describes the exit angle θr .

θr = cos
−1
(
1−

κh

r

)
(9)

2.4 slip ratio

As previously introduced, when traveling on loose soil, it is common
to experience some slippage. That mechanism is measured through
the slip ratio s, and is defined as the ratio between the wheel angular
velocity and the longitudinal velocity as expressed in (10).

s =

rω−vx
rω if |rω| > |vx|

rω−vx
vx

if |rω| < |vx|
(10)
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ω is the angular velocity of the wheel, and vx is the longitudinal
velocity.
From this equations, it can be seen that the slip ratio s has values
ranging between -1 and 1. The zero value represents the condition in
which the velocity of the wheel is the same of the traveling velocity,
and no slip occours. The first equation of the system is used when
accelerating and the second one is for breaking.
The lateral component of the slip ratio is measured with the slip angle
β, that is defined as the angle formed by the lateral component of the
traveling velocity vy and the longitudinal one vx, as shown in (11).

β = tan−1
(vy
vx

)
(11)

2.5 stress model

When a wheel travels on loose soil, the ground deformation generates
stresses beneath the wheel, that can be modeled as normal stress σ
and shear stress τ. Those stresses are responsible for the forces and
torques acting on the wheel.

2.5.1 Normal stress

Figure 7: Normal stress

The normal stress σ is modeled based on what previously obtained
with the Reece equation (3), according to what proposed in [6].

σ(θ) =

(ck ′c + ρbk
′
φ)
(
r
b

)n
[cosθ− cosθf]

n (θm 6 θ < θf)

(ck ′c + ρbk
′
φ)
(
r
b

)n[
cos
(
θf −

θ−θr
θm−θr

(θf − θm)
)
− cosθf

]n
(θr < θ 6 θm)

(12)
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θm is the angle in which the normal stress is maximum. This point
is used in the model to shape better the normal stress, changing the
describing equation in that point. θm is experimentally obtained and
described in (13).

θm = (a0 + a1s)θf (13)

a0 and a1 are experimental parameters that are linked to the wheel-
soil interaction. They usually assume values respectively of ao ≈ 0.4
and 0 6 a1 6 0.3.

2.5.2 Shear stress

Figure 8: Shear stress

The model used is the one proposed by Janosi and Hanamoto
[14]. The equation used correlates the stress with the deformation
as shown in (14).

τ = τmax
(
1− exp−j/κ

)
τmax = c+ σ tanφ

(14)
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τmax is the maximum value that the shear stress can reach, j is a
parameter related to the soil deformation and κ is the shear deforma-
tion modulus. This constant is not to be confused with the previously
defined sinkage ratio. The shear deformation modulus will now on
only be found as κx and κy.
c is the cohesion stress and φ is the internal friction angle of the soil.

Longitudinal shear stress

Since in this thesis both the longitudinal dynamic and the lateral
one are analyzed, a distinction for the shear stress is highligthed, in-
tuitively using the subscript x when referring to the longitudinal dy-
namics and y for the lateral dynamics. According to (14), the (15), for
the longitudinal stress τx, is obtained.

τx(θ) = (c+ σ(θ) tanφ)
(
1− e−jx(θ)/κx

)
(15)

As previously anticipated, the soil deformation j and the shear defor-
mation modulus κ are expressed in term of longitudinal dynamics.
The soil deformation in the x direction jx is evaluated integrating in
the time the relative velocity wheel-soil as expressed in (16), (17).

vjx(θ) = r ω− vxcos θ

= r ω
(
1− (1− s)cos θ

) (16)

jx =

∫t
0

vjx(θ)dt

=

∫θf
θ

r ω
(
1− (1− s)cos θ

) 1
ω
dθ

= r
(
θf − θ− (1− s)(sin θf − sin θ)

)
(17)

Equation (17) is consequently used in the evaluation of τx (15).

Lateral shear stress

Using an approach analog to what used for τx, the lateral shear
stress τy is obtained in (18).

τy(θ) = (c+ σ(θ) tanφ)
(
1− e−jy(θ)/κy

)
(18)

To express jy, it has to be considered that the relative lateral velocity
vjy does not have any component due to the wheel rotation. Using
the relation v cos θ = vx and (10), (19) is obtained.

jy =

∫t
0

vjy(θ)dt

=

∫θf
θ

v sinβ
1

ω
dθ

= r (θf − θ)(1− s)tanβ

(19)

Substituting (19) in (18), also τy is defined.
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Figure 9: Wheel forces

2.6 drawbar pull

The drawbar pull Fx is the force acting in the longitudinal direction,
generated by the wheel deforming the soil beneath. The drawbar pull
is evaluated integrating the longitudinal stresses σ(θ) and τx(θ) on
the contact area of the wheel, delimitated by the angles θf and θr as
shown in (20).

Fx = r b

∫θf
θr

(
τx(θ)cos θ− σ(θ)sin θ

)
dθ (20)

2.7 side force

The side force Fy is generated whenever the wheel is not aligned with
the movement direction or a lateral velocity is present. This force is
due to two effects: the shear stress acting beneath the wheel and the
soil acting on the lateral surface of the wheel itself. Therefore the side
force Fy is represented as in (21).

Fy = Fu + Fs sinβ (21)

Fu represents the lateral force generated by the lateral shear stress τy.
Fs is the force generated by the action on the side of the wheel, that
is called bulldozing force, called after the name of the phenomenon
that generates it. The meaning of the sine is explained later on in this
section.
Fu is evaluated similarly to what done with the previous forces. The
lateral shear stress τy is integrated on the contact area as shown in
(22)

Fu = r b

∫θf
θr

τy(θ)dθ (22)

The lateral force is also due to the bulldozing phenomena. The model
used to describe this phenomenon is the one proposed by Hegedus.
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In this thesis only the mathematics needed for the model is presented.
For a detailed analysis, [6] presents a wider review of the phenome-
non.
Fs is evaluated as the integral of the bulldozing resistance Rb(h), to
be consistent with the usual force formulation. It is expressed in (23).

Fs =

∫θf
θr

Rb(h)dx

=

∫θf
θr

Rb(r− h(θ)cos θ)dθ

(23)

the equation (24) for Rb(h), is the one used in the model. It is not the
general form, but it is already specialized for the wheel case.

Rb(h) =
(
cotXc+ tan (Xc+φ)

)(
hc+

1

2
ρh2

(
cotXc+

cot2 Xc

cotφ

))
(24)

ρ is the soil density and Xc is the destructive angle, a geometrical
parameter obtained through experiments. Its value is related to the
friction angle φ as shown in (25).

Xc = 45° −
φ

2
(25)

To be noted that the direction of the bulldozing force Fs is parallel to
the motion of the wheel. If a steering angle β is present, the effect of
the force will not be aligned with the later force Fu. For this reason,
the components of Fs are to be summed to both the longitudinal and
lateral forces as shown in (26).

Fx = Foldx − Fscosβ

Fy = Fu + Fssinβ
(26)

Foldx is the longitudinal force evaluated in (20).

2.8 vertical force

The vertical force Fz is generated, just like the longitudinal force, by
the longitudinal shear stress and mainly by the normal stress, as
shown in (27).

Fz = rb

∫θf
θr

(
τx(θ)sin θ+ σ(θ)cos θ

)
dθ (27)

As mentioned in Section 2.2, the computation of the vertical force is
used to find the correct sinkage. It can be clearly seen in (27), consi-
dering that all the terms are related to the sinkage itself.
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2.9 resistance torque

Having all the previous evaluated forces applied in the center of the
wheel, also the torques must be considered. The so called resistance
torque acts around the y axis and is originated by the longitudinal
shear stress τx. For this reason it can be found in the literature as
Tx. In this thesis it has been chosen, instead, to use Ty, considering it
easier and more instinctive, referring to the axis around which it acts.
The resistance torque Ty is expressed in (28).

Ty = r2b

∫θf
θr

τx(θ)dθ (28)

2.10 self aligning torque

The self aligning torque Tz takes its name by the effect it has on pneu-
matic vehicles, that have been studied widely in the terramechanics.
As already mentioned, the lateral force can be generated by a slip
angle β different from zero. Due to their deformation capability, the
zero moment point of the wheel is in the rear half of the wheel. Due
to that, the torque Tz generated acts to reduce the angle β, realigning
the wheel with the motion direction. In the case of the rigid wheel,
as it is in this case, the zero moment point is in the front half of the
wheel, therefore generating a torque that tends to increase the slip
angle β.
Taking into consideration the definition θm, it is assumed that the
force is applied in that point. Knowing that, the moment arm and the
torque are evaluated in (29).

tr = r sin θm

Tz = tr × Ty
= rsinθm × Ty

(29)

2.11 grousers

2.11.1 Forces evaluation

In the model since now proposed, the forces generated by the wheel
are evaluated considering flat surfaces and cylindrical wheels. Howe-
ver it is of common knowledge that the grousers are of wide use in
space exploration rovers, as many of the operating rovers do. Sutoh
[11] conducted a detailed analysis on this subject and it is incorpora-
ted in the model presented in this work.
The grousers are used to enhance the grip and mobility on loose soil
and rough terrain. The main result is to significantly increase the dra-
wbar pull and vertical force and modify the slip ratio. The increased
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Figure 10: Grouser effect

drawbar pull also increases the resisting moment. The force and mo-
ment components due to the grousers are respectively called Fxg and
Tyg. The model presented is referred specifically to the Moonraker
case, where the grousers are flat and radially positioned.
The effect of the grousers is studied as a blade moving through the
soil. The general equation for the pressure σb(z) generated by the
blade is modeled as in (30), where z is the depth of the blade in the
soil.

σb(z) = ρb g zNρ + qNq + cNc (30)

ρb is the soil bulk density, g is the gravitational constant and q is the
surcharge pressure vertically acting on the soil surface. When consi-
dering the wheel case, the surcharge pressure is the normal stress σ.
Nρ, Nq and Nc are expressed as in the system (31).

Nρ =
1

2

cotα+ cotXc
cosα+ sinα cot(Xc +φ)

Nq = 2Nρ

Nc =
1+ cotXc cot(Xc +φ)

cosα+ sinα cot(Xc +φ)

(31)

α is the angle between the grouser and the tangential of the wheel
surface. Xc is equal to 45° - φ.
For the specific case of the grousers radially applied (α = 90°), the (30)
becomes as in (32).

σg = s
(
ρ g zNφ + qNφ + 2 c

√
Nφ
)

Nφ = tan2(Xc +φ)
(32)

To be noted that in the wheel case, Xc does not have a fixed value,
but it has to be evaluated for each time step as the angle between the
slip line and the tangential to the grouser tip. The slip ratio s is used
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to take into consideration also the case when there is some slippage.
Integrating the pressure σg on the grouser surface, the force acting at
a general angle θ is obtained as in (33).

fg(θ) = b

∫hg
0

σg(z)dz

= s b
(1
2
ρ gh2gNφ + q(θ)hgNφ + 2 chg

√
Nφ

) (33)

The effect of the grousers is not continuous, nor constant in time. Kno-
wing that the computational effort that this model requires is signifi-
cant and since the dynamics of the single grouser is not considered
of big interest, it is computed the average contribute of each force ge-
nerated, of the whole set of grousers, for a single rotation.
Before doing this, two geometrical parameters are introduced. α is
defined as the angle between the entry and exit angles, for the non-
grousered wheel (34).

α = θf − θr (34)

β is defined as the angle between two grousers (35).

β =
2 π

N
(35)

N is the number of grousers.
It is now possible to evaluate the force generated, that is divided
according to the reference frame, in its vertical longitudinal compo-
nents, and the torque generated. It is assumed a triangular shaped
pressure, and so the force is applied at two third of the grouser length
of distance from the wheel surface.
The result is shown in the system (36).

If β > α

Fxg =
N

2π

∫θf
θr

fg(θ) cos θ dθ

Fyg =
N

2π

∫θf
θr

fg(θ) sin θ dθ

Fxg =
(
r+

2

3
hg
) N
2π

∫θf
θr

fg(θ) dθ

If β < α

Fxg =
N

2π

∫θm+β/2

θm−β/2
fg(θ) cos θ dθ

Fyg =
N

2π

∫θm+β/2

θm−β/2
fg(θ) sin θ dθ

Fxg =
(
r+

2

3
hg
) N
2π

∫θm+β/2

θm−β/2
fg(θ) dθ

(36)
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The contributes evaluated are to be summed to the forces already eva-
luated in (26) and (28).

2.11.2 Slip ratio modification

The presence of the grousers changes the diameter and shape of the
wheel, making it not possible to be implemented with the previous
computation. In the case under analysis, the number of grousers is
high enough, in order not to have the wheel touching the ground
if considered on rigid terrain (the procedure to verify this is now
presented). Thanks to this, it is possible to define an ideal traveling
distance, considering the shape of the wheel as a N faced polygon.
The distance between two grousers tip lt is geometrically derived as
in (37).

lt = (r+ hg) sin
π

N
(37)

lu is the distance between the touching wheel and the touching grou-
ser, in the case in which few grousers are present, and so also the
wheel itself touches the hard terrain.

lu =

√(r+ hg
2

)2
− r2 (38)

If lt is smalled than lu, the polygon approximation con be applied,
and the virtual perimeter dd measured as (39).

dd = Nlt (39)

In the other case, (40) must be used, where also the wheel rotation
term is present.

dd = 2N lu + 2 (π− θf0N) (40)

θf0 is the grouser contact angle.
Considering d the real traveling distance, the slip ratio s can now be
evaluated as in (41).

s = 1−
d

dd
(41)
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2.12 slope case

2.12.1 Reference frames

Figure 11: Reference frames

In this thesis, three reference frames are considered:

• Inertial reference frame (xi,yi,zi): fixed reference frame, having
the x axis aligned with the transversal direction of the slope,
the z axis in the absolute vertical direction and the y axis ac-
cordingly to a right handed reference frame. Used as absolute
reference.

• Horizon reference frame(xh,yh,zh): reference frame obtained ro-
tating the x inertial axis of α (slope inclination), in order to have
the y axis aligned to the steepest direction and the z axis nor-
mal to the inclined surface. Reference frame used to compute
the dynamics.

• Body reference frame(xb,yb,zb): reference frame fixed to the
principal axis of inertia of the rover. The same used in the Section
2.1 for the wheel. Used to compute the forces of the wheel-soil
model.

2.12.2 Wheel model in a sloped terrain

In the case of a terrain, inclined of an angle α, the model can still be
applied with few corrections.
The angle Φ represents the angle between xb and the xi-yi plane,
around the yb axis. Φ can be evaluated as in (42).

Φ = αsinγ (42)

γ is the angle between xb and xh.
The wheel sinkage h is corrected as in (43), and attention must be put
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to the normal load W, that has a component along yh and one on zh
as in (44).

hslope = h cosΦ (43)

Wslope =W cosα (44)

Starting from this two modified parameters, the model can be used
as in the flat terrain case.

2.13 numerical simulation

In this section, it is summarized the procedure to compute the inte-
raction between the loose soil and the wheel. In the flowchart (Figure
12) presented in this section, it is suggested how to proceed with the
numerical implementation of the model. For what concerns the soil
parameters, there was not the possibility to perform a campaign of
tests in order to obtain new results. For this reason, the values obtai-
ned by Ishigami [6] are taken as reference and reported in Table 1.
Those parameters are selected over others, because his works has

Parameter Symbol Value

Cohesion stress c 0.0 kPa

Friction angle φ 38.0°

Soil destructive angle Xc 26.0°

Cohesive modulus k ′c 0.0

Frictional modulus k ′φ 120.54

Sinkage exponent n 1.703

Maximum stress angle modulus a0 0.4

Maximum stress angle modulus a1 0.15

Soil density ρ 1490.0 kg
m3

Table 1: Soil parameters

been conducted in the same laboratory and with the same instrumen-
tation used for this thesis. The soil parameters refers to the Toyura
Sand, a common sand used for terramechanics testing. The size and
shape of this sand can be easily controlled during the production,
therefore creating a well known sand. More details on the tests con-
ditions are reported in a following chapter.
The procedure is summarized as follows:
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1. Set the soil parameters (c,n,kc,kφ,φ,ρ,κ), the wheel parameters
(r,b) and the normal load W (those fixed for the whole simula-
tion)

2. Evaluate the slip ratio s and the slip angle β

3. Determine the sinkage h with an iterative procedure, increasing
the dynamic sinkage until the vertical load W is balanced by the
vertical force Fz

4. Calculate the contact angles θf and θr

5. Evaluate the normal stress σ, the shear stress τx and τy

6. Calculate the resulting forces Fx, Fy, Ty,Tz

2.14 results

The proposed model is firstly analysed in its more general form, the-
refore without using (36), and then comparing it with how it is mo-
dified by the presence of those. The model sensibility to slip angle β
and slip ratio s is highlighted.
In Figure 13, the value of the drawbar pull Fx is plotted for different

values of β. The higher the value of the slip angle, the higher the in-
tensity of the force. It is also clear how the slip ratio affects the force.
The slippage induces the soil to deform more, and thus increases the
stress generated. Some considerations can be done on the value of the
drawbar pull when the slip ratio is null: in this condition the soil un-
derneath the wheel cannot generate a stress that results in a positive
tractive force. The value of that force, for null slip ratio, can be either
null or negative.
Figure 14 shows the lateral force Fy, varying the slip ratio, and the

slip angle. Its value is proportional to the slip angle β, and this ex-
plains the curve for null β.
Figure 15 and 16 show the strong relation of those torques respecti-

vely with the drawbar pull and the lateral force.
The grousers produce a force tangential to the wheel surface as shown
in Figure 17. The grousers act only between the entry angle θf and
the exit angle θr. As for the wheel model, if there is no slippage, no
force is generated.
The grouser effect on the drawbar pull is shown in Figure 18. Ac-

cording to the model, the higher the number of grousers, the higher
the intensity of the drawbar pull. The force intensity asymptotically
reaches a value for increasing number of grousers.
When the grousers are considered, the wheel contact surface decrea-

ses. This reduction does not affect the drawbar pull, due to the grou-
ser contribution (Figure 19), but it causes the lateral force to decrease
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soil parameters: c,n,kc,kφ,φ, ρ,κ
wheel parameters: r,b

normal load: W
slip ratio: s

slip angle: β
static sinkage: hs

initialization
dynamic

sinkage: hdyn

increase
dynamic

sinkage: hdyn

Fz = W?

Angles evaluation
θf, θr

Stresses evaluation
σ, τx, τy

Forces and torques evaluation
Fx, Fy,Fz, Ty,Tz

no

yes

Figure 12: Numerical simulation flowchart
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Figure 13: Fx vaying β (no grousers model)
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Figure 14: Fy vaying β (no grousers model)

as shown in Figure 20.
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Figure 15: Tx vaying β (no grousers model)
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Figure 16: Tz vaying β (no grousers model)

2.15 one-wheel test

One-wheel testing is performed to compare the results of the Wheel-
soil model with the values obtained from testing. The setup of this
test is a wheel, with varying vertical load, one motor inside the wheel
and one motor that pulls it. Tt is possible to impose a fixed slip ratio
regulating the velocity induced by the two motors. Knowing that the
vertical load and the slip ratio are the only two variables needed by
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Figure 17: Force generated by one grouser in one rotation
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Figure 18: Drawbar pull for increasing number of grousers

the model, it is possible to verify every condition.
The test is performed inside a sandbox, which is 1.6 m in length, 0.3

m in width, and 0.2 m deep, filled with Toyura sand. Toyura sand
has well known and controllable characteristics. The grain is almost
homogeneous and the soil cohesion is almost zero. A wheel similar to
the one mounted on the Moonraker is used for testing, since a replica
is not provided. The wheel radius r is 125 mm, and the wheel width
b is 100 mm. 12 grousers are fixed on the wheel surface at intervals
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Figure 20: Lateral force comparison

of 30°, which are 25 mm in length, 5 mm in thickness, and 100 mm in
width. The wheel-driving motor, embedded in the wheel, grants an
arbitrary value of angular velocity.
A vertical structure holds the wheel in position. On it are mounted
a steering mechanism, that forces the wheel to keep a determined
slope angle β and a six-axis force/torque sensor located between the
steering part and the wheel. The wheel-pully system ensures the lon-
gitudinal movement and the desired slip ratio.
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Figure 21: One-Wheel test setup

Several tests are performed in this environment: an average value for
the drawbar pull and lateral forces are researched for slip ratio’s va-
lue varying from 0 to 0.8, at interval of 0.2. This analysis is performed
for β equal to 0° and 30° and different traveling velocities.
Figure 22 shows the raw data gathered from the F/T sensor for the
drawbar pull.
The periodic effect that is evident in the picture, is due to the grou-
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Figure 22: Drawbar pull measurement

sers acting on the soil at regular time interval.
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2.15.1 Velocity dependancy

As already mentioned, the velocity of the rover is not a parameter
of the wheel-soil model. Figure 23 and (24) show the experimental
results. In the first it is shown the raw data obtained from the F/T
sensor. Performing a time average and evaluating the standard devia-
tion, it is possible to prove that there is not a proportionality with the
velocity of the rover. This test also shows the increasing disturbance
introduced for high velocity tests. Further tests are performed and
the results shown in the following chapters.
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Figure 23: Drawbar pull rough data from F/T sensor for different velocities

2.15.2 Results

Figure 25 shows the comparison of the two models (without and with
the grousers explicitly considered) with the results from the tests. The
model that consider the grousers better estimates the shape of the
force, underestimating it for high slip ratios.
The underestimation is more evident in the lateral force Fy, as shown
in Figure 26. If the shape is well estimated, a systematic one Newton
appears as offset from the test results.
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Figure 24: Drawbar pull analysed data at different velocities
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D Y N A M I C M O D E L & N U M E R I C A L S I M U L AT I O N

In this chapter is firstly described how the Moonraker is modeled,
and successively it is shown how this model is used, along with the
wheel-soil model, to simulate the dynamic behaviour of the rover.

3.1 dynamic model

Moonraker has a pretty simple structure, without any flexible part,
nor damping mechanism. It also does not have a steering mechanism.
The only moving part is the arm on which the wheels are jointed. Ho-
wever, in this thesis, that degree of freedom is not considered, being
its purpose is to ensure more mobility on rough terrain. As already
said, one of the hypothesis for the framework is to have an homoge-
neous terrain.
According to what previously said, it is decided to model the rover
as five concentrated masses, rigidly connected. Four masses describe
the four wheels and a central mass is for the rest of the body. The
forces resulting from the wheel-soil analysis act in the center of the
wheel. Since the typical velocities for a rover are in the magnitude
of few centimeters per second, the aerodynamic effects are neglected.
The effect of the acceleration around the yb axis is also considered
negligible.
Being on flat surfaces (that can be with or without a slope) and ha-
ving only small velocities and acceleration, the considered variables
for the system are:

• xi direction movement

• yi direction momevent

• γ rotation around zh axis

• θ1 rotation of the front left wheel

• θ2 rotation of the rear left wheel

• θ3 rotation of the rear right wheel

• θ4 rotation of the front right wheel

The subscript "i" is used to identify the different parts of the rover. It
has values from 0 to 4, being 0 referred to the main body and from
1 to 4 to the wheels, numbered according to what described in the
previously.

35
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To obtain a precise physical description, with accurate values of mas-
ses and inertias, the CAD model, shown in Figure 27 and 28, is rea-
lized. Table 2 summarizes the used values. The four wheels are con-
sidered to be identical and the rover perfectly symmetrical along the
longitudinal axis. The inertias reported are considered to be along
the principal axis of inertia, that are aligned with the body reference
frame.

Exploiting the hypothesis of rigidness, in Table 3 are listed the dis-

Figure 27: Moonraker EM: isometric view

Mass [kg] Ix [kg m2] Iy [kg m2] Iz [kg m2]

Main Body 5.24 0.138 0.142 0.230

Wheel 0.422 0.00100 0.00154 0.00100

Table 2: Physical rover properties

tances of the center of mass of the five elements with respect to the
origin of the body reference frame. The wheels are numbered from

Figure 28: Moonraker EM upper and bottom view
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the front-left in counterclockwise order (front-left is the wheel 1, rear-
left is the wheel 2, rear-right is the wheel 3, front-right is the wheel
4).

The five bodies move along the xh and yh direction and rotate

x [m] y [m] z [m]

Main Body 0 0 0

Wheel 1 0.19 0.24 -0.06

Wheel 2 -0.17 0.24 -0.06

Wheel 3 -0.17 -0.24 -0.06

Wheel 4 0.19 -0.24 -0.06

Table 3: Center of mass position

around zh axis, for a total of fifteen variables, Adding the four wheels
rotation θ, a total of nineteen variables are used to describe the dyna-
mics.
An important effect of the rigidness hypothesis is the possibility to
easily reduce the number of variables. The terms that refer to the
main body are indicated by the subscript "0". The wheels variables
are numbered accordingly to the wheel number (e.g. x0, x1, x2). Not
having a steering mechanism, all the rotations are equal, allowing the
use of a single rotation angle γ. For what concerns the displacement
variables, it is useful to link them to the central body displacement.
Equations (45), (46) and (47) show how displacement, velocity and
acceleration are defined.

xi = x0 +A x̃i i=1,2,3,4 (45)

ẋi = ẋ0 +A(ω× x̃i) (46)

ẍi = ẍ0 +A(ω̇× x̃i) +A
(
ω× (ω× x̃i)

)
(47)

xi is a 3x1 vector, containing the scalar component xi, yi, zi.
A is the rotation matrix, described by the angle γ.
ω is the angular rotation vector [0 0 γ̇]T .
x̃i is the constant vector, having as elements the x distance, y distance
and z distance described in the Table 3 (e.g. x̃1 = [0.19 0.24 − 0.06]T ).
To obtain the equations of motion, the Principle of Virtual Work (PVW)
is computed and solved. The resulting solution in matrix form is re-
ported in (48).

Mẍ = F (48)

x = [x0 y0 γ θ1 θ2 θ3 θ4]
T (49)
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M =



mtot 0 Mxγ 0 0 0 0

0 mtot Myγ 0 0 0 0

Mxγ Myγ Mγγ 0 0 0 0

0 0 0 Iw1 0 0 0

0 0 0 0 Iw2 0 0

0 0 0 0 0 Iw3 0

0 0 0 0 0 0 Iw4


Mxγ =mwheel((−cos(γ)y1 − sin(γ)x1) + (−cos(γ)y2 − sin(γ)x2)+

(−cos(γ)y3 − sin(γ)x3) + (−cos(γ)y4 − sin(γ)x4))

(50)

Myγ =mwheel((−sin(γ)y1 + cos(γ)x1) + (−sin(γ)y2 + cos(γ)x2)+

(−sin(γ)y3 + cos(γ)x3) + (−sin(γ)y4 + cos(γ)x4))

(51)

Mγγ = I0z+4 Iwz+(mwheel((x
2
1+y

2
1)+(x22+y

2
2)+(x23+y3)

2)+(x24+y
2
4)))

(52)

F =



Fx

Fy

Fγ

τ1 − Tw1

τ2 − Tw2

τ3 − Tw3

τ4 − Tw4


Fx = Fx1 + Fx2 + Fx3 + Fx4 +mwheel(cos(γ)x1 − sin(γ)y1

+ cos(γ)x2 − sin(γ)y2 + cos(γ)x3 − sin(γ)y3

+ cos(γ)x4 − sin(γ)y4)γ̇
2

(53)

Fy = Fy1 + Fy2 + Fy3 + Fy4 +mwheel(cos(γ)y1 + sin(γ)x1

+ cos(γ)y2 + sin(γ)x2 + cos(γ)y3 + sin(γ)x3

+ cos(γ)y4 + sin(γ)x4)γ̇
2 − sin(α)mtot g

(54)

Fγ = ((−cos(γ)y1 + sin(γ)x1)Fx1 + (sin(γ)y1 + cos(γ)x1)Fy1)

+ ((−cos(γ)y2 + sin(γ)x2)Fx2 + (sin(γ)y2 + cos(γ)x2)Fy2)

+ ((−cos(γ)y3 + sin(γ)x3)Fx3 + (sin(γ)y3 + cos(γ)x3)Fy3)

+ ((−cos(γ)y4 + sin(γ)x4)Fx4 + (sin(γ)y4 + cos(γ)x4)Fy4)

+ Tz1 + Tz2 + Tz3 + Tz4

(55)
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The considered system has seven variables, but the wheel’s rotations
are fully decoupled from the rest of the system.
τi are the torques given by each wheel motor. It might look bizarre,
but it has an explanation in the structure of this model. The link be-
tween the wheel rotation and the main body is implicit in the forces
acting on the main body itself. The wheel rotation determine a certain
slip ratio. Due to that, forces and torques are generated on the wheel
and transmitted to the rest of the structure. As expected, it is not pre-
sent an elastic element, nor a viscous one. A velocity non-linear term,
and a gravitational term are recovered.

3.2 numerical simulation

Through the usage of Matlab
® and Simulink

® is created an environ-
ment that simulates the motion of the rover. It is composed by three
major blocks:

• Motor controller: it controls the torque given by the wheels mo-
tors to grant a certain wheels velocity. Two approaches are stu-
died in this thesis and later presented in this chapter

• Dynamics: it has as input the forces and torques generated by
the wheel-soil interaction and eventually the torque granted by
the wheels motors. The output is the dynamic variables of the
system

• Wheel-soil: it traduces the wheels velocity, rover velocity and
physical properties into the forces acting in the system.

3.2.1 Simulation objectives

Being this work part of a bigger project, one of the imposed require-
ment is to create a tool that predicts the behaviour of the rover on
loose soil, keeping fixed input conditions. The reason for that can
be found in the operational modes of the rover and in the used soft-
ware. The rover is programmed to perform short distances following
a straight line, and keeping a specific velocity, or to perform a spot
turn of a certain angle. Matlab

® has the limit of being computati-
onal demanding, making it impossible to be used on the on-board
computer. Moreover, the only input of the on-board software is the
wheel velocity. The purpose of this tool is to find the proper angular
velocity for each wheel, that can be used in a real case scenario.
For this reasons there is not a true control design, but more properly
a research for the optimal initial attitude and input for the motor con-
troller.
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3.2.2 Torque input & Velocity input

Torque input

Figure 29: Torque input strategy scheme

Two input approaches are discussed. The so called torque input is
firstly implemented. It is based on a PD control (described in (56))
that observes the state and compares it with a desired one. In this
thesis, the desired state is described by a specific velocity in the lon-
gitudinal direction, that is exactly what would be expected on rigid
terrain.

τi = kp∆v+ kd∆a (56)

The difference between the actual and the desired velocity is defined
as ∆v and the difference between the actual and the desired accelera-
tion is defined as ∆a.
The parameters kp and kd are experimentally tuned.
This produces a value of the four torques varying in time that ensu-
res the desired state. For the reasons explained above, this is not what
can be used in a real environment. The wheel velocity must be avera-
ged over the simulation time, and that becomes the usable input for
the on-board software.

Velocity input

Figure 30: Velocity control strategy scheme

A different approach is proposed, that is closer to the actual needs
of for the real tests. Having in mind that the final goal is to predict
the trajectory, and a motor controller is already present in the rover, it
is easier to impose the wheels velocity to the simulation. For practical
applications, it is also the only possible solution. In our system, it is
not possible to monitor and control the input current in the motor by
now. A steady velocity input is therefore the more reasonable choice
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also for the simulation. Knowing that the velocity of the wheel is not
the velocity at which the rover will travel, it is proposed a way to
determine the desired velocity to impose to the rover.
Starting from the definition of the slip ratio and fixing the desired
velocity vdes and a reference slip ratio sref, the only variable results
the wheel velocity. The reference slip ratio sref is assumed to be 0.2. It
is experimentally demonstrated that this is a common value at which
the rover slip ratio converges in steady state. The used equation is the
(57).

ωi =
vdes

(1− (sref − s)) ∗ cos(γ) ∗ r
(57)

Particular attention must be put to the fact that using this approach,
the dynamics of the wheels is no more handled by the tool, but it
is granted by the on-board computer. The elements of (48) are here
redefined.

x = [x0 y0 γ]
T (58)

M =

mtot 0 Mxγ

0 mtot Myγ

Mxγ Myγ Mγγ



F =

FxFy
Fγ


3.2.3 Simulation procedure

In this section it is explained how to perform a simulation with this
tool. As before, the values for the soil parameters and dimensions of
the wheels used in the simulations are left to a dedicated chapter that
follows.

1. The fixed parameters are set. The slope of the terrain α, geome-
try of the rover xi, masses mi and inertias Iix, Iiy, Iiz, desired
velocity: vdes

2. Set the soil parameters (c,n,kc,kφ,φ,ρ,κ), the wheel parameters
(r,b) and the normal load W.

3. Set the initial state to be used in the first iteration.

4. The wheel-soil model evaluates the slip ratio s and gives as out-
put the forces and torques acting on the system.

5. The dynamic model recives the forces and evaluated the state
in the following time step. The obtained equations of motion is
solved using Simulink

®.
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6. Enter the obtained state at point 4. and iterate.

The flowchart (31) summarize the solving process.

terrain slope: α
rover geometry xi

body properties mi, Iix, Iiy, Iiz
desired velocity: vdes

soil parameters: c,n,kc, kφ,φ, ρ,κ
wheel parameters: r,b

normal load: W
slip ratio: s

slip angle: β
static sinkage: hs

set the initial
state conditions

x0,ẋ0

Wheel-soil model

Dynamic model

xk,ẋk

s, W

F, T

updated state

Figure 31: Numerical simulation flowchart

3.2.4 Numerical simulation optimization

The described motion can be highly dynamic, requiring for really
small integration steps. Having to evaluate the forces for each wheel,
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for every time step, this computation can be highly time consuming.
With the described standard procedure, it can take up to 24 hours for
a single second of simulation on a personal computer.
Being the reaction forces evaluated in a deterministic way, having few
input variable, to dramatically increase the computational speed, it is
generated a set of 3-dimensional matrices, where all the possible com-
bination of input are considered, and the resulting forces are saved.
Doing this, the code simply selects the right variables for the time
step and retrieves the forces from the presaved matrix. The variables
used for each matrix are the slip ratio s and the slip angle β. The
slope α is kept as parameter for each simulation. It is not selected as
variable, since the value of α is constant during each simulation, and
few values are used in this thesis (the considered slopes are 0°, 5°,
10°, 15°, and 20°). A region of interest for those 2 variables is defined
(from -1 to 1 for the slip ratio and −90° to 90° for β). A certain level
of accuracy must be selected, defining how many points within the
range of interest are to be evaluated. The accuracy can be highly in-
creased performing an n-dimensional interpolation within the points
of the matrix. The used Matlab

® function is interpn.
Depending on the point density, the production of the matrices can
take hours to compute. One second of simulation takes minutes to
compute, once the desired force matrix is available. The suggested
procedure is summed thereafter and the corresponding flowchart in
32.
Firstly the force matrix is created:

1. Set the soil parameters (c,n,kc,kφ,φ,ρ,κ,α), the wheel parame-
ters (r,b) and the normal load W

2. A vector containing all the desired values of slip ratio s and the
slip angle β is defined

3. Select a combination of values of slip ratio s and slip angle β

4. Determine the sinkage h with an iterative procedure, increasing
the dynamic sinkage until the vertical load W is balanced by the
vertical force Fz

5. Calculate the contact angles θf and θr

6. Evaluate the normal stress σ, the shear stress τx and τy

7. Calculate the resulting forces Fx, Fy, Ty,Tz

8. Save the results in the corresponding matrix location and return
to 3.

The simulation is performed as:

1. The fixed parameters are set. The geometry of the rover xi, mas-
ses mi and inertias Iix, Iiy, Iiz, desired velocity: vdes
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2. The proper force matrix is loaded.

3. Set the initial state to be used in the first iteration.

4. Evaluate the slip ratio s and the slip angle β. Select the corre-
sponding forces and torques from the force matrix.

5. The dynamic model receives the forces and evaluated the state
in the following time step. The obtained equations of motion is
solved using Simulink

®.

6. Enter the obtained state at point 4. and iterate.

3.3 simulations

The main interest of this thesis is to analyze the traverse motion of
the rover. The simulations performed are aimed to better predict and
eventually correct the motion in this kind of operations. The variables
for the simulations are the slope of the terrain, the angle γ, that is
defined as the angle between the xh axis and xb, initial state and
desired velocity (as explained before it has little effect). Figure 33 and
34 show an example of the simulated motion in the case of γ equal to
zero and 10° sloped terrain.
The resulting motion is linear, having a slip angle β determined by

the slope of the terrain. This peculiarity is due to the force balance.
The motion starts as horizontal, but along yh acts a component of
the gravity, making the rover accelerate in the same direction. The
change of velocity determines an increasing value of β, that results
in and increase of lateral force, until an equilibrium, that keeps the
lateral velocity constant, is reached. Thanks to this, it is possible to
simulate short distances to know the behaviour of longer distances.
This equilibrium condition is verified also through the other outputs
of the model. Figure 35 is shown as example for the initial transient
and effectiveness of the wheel velocity determination. The initial slip
ratio equal to one identifies the moment in which the rover is still,
and the wheel start rotating.
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terrain slope: α
rover geometry xi

body properties mi, Iix, Iiy, Iiz
desired velocity: vdes

soil parameters: c,n,kc, kφ,φ, ρ,κ
wheel parameters: r,b

normal load: W
slip ratio: s

slip angle: β
static sinkage: hs

set the initial
state conditions

x0,ẋ0

Forces and torques
selection from matrix

Dynamic model

xk,ẋk

Load the
Force matrix

s, W

F, T

updated state

Figure 32: Optimized numerical simulation flowchart
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Figure 33: Example of motion on sloped terrain
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Figure 34: Example of motion on sloped terrain
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Figure 35: Slip ratio transient





4
R E S U LT S

In this chapter, the built model is used to verify the goals of this the-
sis. The simulated dynamics is compared with test performed with
the Moonraker in a controlled environment and in a natural environ-
ment. Successively it is proposed a method to compensate the lateral
slip for operations on loose soil.

4.1 testing

In this thesis work, three tests are performed:

• One-wheel testing, already discussed in Section (2.15), is
performed to compare the results of the Wheel-soil model
with the values arising from testing. The setup of this test
is a wheel, with varying vertical load, one motor inside
the wheel and one motor that pulls the wheel. Regulating
the velocity induced by the two motors, it is possible to
impose a fixed slip ratio. Knowing that the vertical load
and the slip ratio are the only two variables needed by the
model, it is possible to verify every condition.

• Sandbox testing is performed to verify the performance
of the tool, predicting the behaviour of the rover moving
on loose soil. Tests are performed for different slopes. The
setup consist in a rectangular box filled with Toyura sand
and the Moonraker PFM2 traversing it.

• A field test is also shown to demonstrate the sensibility of
the model to the terrain characteristics. Moonraker PFM2

is moved on a beach and the mobility on an inhomoge-
neous terrain is compared with the results on controlled
environment terrain.

4.1.1 Sandbox

Figure 36 shows the environment of this test.
The sandbox is a 2.0 m in length, 1.0 m in width, 0.08 m deep tiltable
vessel, filled with Toyura sand.
The rover used in this tests is the Moonraker PFM2: it weights about
7 kilograms, the wheels are 9 centimeters in radius and 8 centimeters

49
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Figure 36: Sandbox test setup

in width. 15 grousers are fixed to the wheel, being 2 centimeters long
and 8 centimeters in width.
The test data are acquired through the use of four motion capture ca-
meras (Stereo Labeling Camera developed by CyVerse Corp.). Those
cameras can track the position of specific reflectors mounted on the
rover. Computing the derivative of the position in time, also the velo-
city can be retrieved.
In this environment, the traversing capabilities are tested. According
to how the horizon reference frame is defined, different initial rota-
tion angle γ are tested, on flat surface, 5° slope, 10° slope and 20°
slope, at different velocities. The results are then compared to simu-
lated one, to verity the precision of the model. It is important to un-
derline that minor differences and error can be due to setup errors:
dealing with small angles, even few degree of error in the placement
the rover in position, can lead to significant errors in the results.

4.1.2 Model tuning

In an ideal condition, where the proposed model perfectly describes
the reality, it could be used to simulate the rover trajectory.
To verify the accuracy of the model, a test campaign is performed in
the sandbox for 10° and 20° slope angles.
The first test is performed with the initial angle γ equal to zero. If the
side slip is absent, this configuration should lead the rover to traver-
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sing the slope. In Figure 37 and 38 are shown the comparison between
the trajectory recorded by the optic trackers and the simulation.
The model highly overestimates the side slip. This difference is intro-
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Figure 37: Comparison of the model for 20° slope
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Figure 38: Comparison of the model for 10° slope

duced by errors in the Wheel-soil model and in the dynamics mode
(as shown in Figure 26), the lateral force is underestimated)l.
An essential part in the creation of a model that has to be used in real
test is the tuning. The optimal tuning of a multi-parameter model
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Figure 39: Model sensitivity to parameter a0

would require a dedicated study, that is not of interest for this thesis.
This model is based on many empirical variables, related to different
aspects of the system. The mismatch in the results can be due to a
erroneous evaluation of one or more of those parameters. Being the
goal of this thesis to properly simulate the behaviour of a specific
kind of vehicle, the model sensibility to the parameter is thereafter
verified. The chosen values interval, to verify the sensitivity, is taken
considering the commonly used values for the Toyura sand, found
the in the literature. It is stressed that in this procedure, it is no more
relevant to use the correct values of the single parameters, being more
interested in the global results.
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Figure 40: Model sensitivity to parameter a0
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Figure 41: Model sensitivity to parameter a0
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Figure 42: Model sensitivity to parameter a1
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Figure 43: Model sensitivity to parameter a0



4.1 testing 55

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Slip ratio [-]

F
y
[N

]

 

 

c = 0

0.4

0.8

1.2

Figure 44: Model sensitivity to parameter c
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Figure 45: Model sensitivity to parameter a0
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Figure 46: Model sensitivity to parameter κ

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

10

12

slip ratio

F
x
[N

]

 

 

kφ = 100

700

1300

1900
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Figure 48: Model sensitivity to parameter kφ
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Figure 50: Model sensitivity to parameter n
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Figure 52: Model sensitivity to parameter φ

The value of the cohesion, c, is changed from 0 to 0.4 kPa. It is
stressed that this doesn’t have a physical meaning, but it is just used
to properly fit the model with the reality. Figure 53 and 54 show that
changing a single parameter is enough to better fit the results obtai-
ned from the F/T sensor.
The model is again verified in Figure 55 and 56. Being the model still
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Figure 53: Tuning of the wheel-soil model

far from being acceptable, the error is now addressed to the dynamic
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Figure 54: Tuning of the wheel-soil model

model. Using a similar strategy to what adopted for the wheel-soil
model, the weight of the rover is chosen to be the appropriate para-
meter to be changed. It is therefore lowered of 20%. Figure 57 and 58

show the effect of this change.
The simulation error is evaluated as ratio between the difference in
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Figure 55: Effect of the force tuning on the dynamics

the side slip and the traveled distance. Table (4) sums the simulation
error at each tuning step.
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Figure 56: Effect of the force tuning on the dynamics
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Figure 57: Tuning of the dynamic model

For this example of tuning, the focus is given on the 20° slope case,
obtaining a final error of less than one percent. Using the same tuned
model, the other case under study sees its error more than halved,
being its final value around six percent.
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Figure 58: Tuning of the dynamic model

10°slope 20°slope

Base model 14.76% 25.91%

Force tune 9.32% 8.82%

Dynamic tune 6.17% 0.49%

Table 4: Simulation errors

4.1.3 Velocity correlation

As previously demonstrated through the results of the one-wheel
tests, also using the sandbox it is possible to demonstrate that the
velocity does not affects the motion. In Figure 59 and 60 two tests
are compared. The two run are performed imposing a velocity to the
rover of respectively with around 3 cm/s and 10 cm/s. Especially in
the second image it is evident the unrelevance of the velocity on the
trajectory. More tests are being performed, to have a wider data sets
to analyze.

4.2 field test

The mobility of the Moonraker is tested at the Sendai beach on un-
controlled sand.
While the main achievements of the field test were correlated to the

communication system, there was also the occasion to perform mo-
bility tests. The equipment used for this test are the ground control
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Figure 60: Velocity dependance

used to send the commands to the rover and a Leica Viva TS15: a total
station used that, thanks to a prism mounted on the rover, can track
and record its movements (Figure 61). The goal of this test is to show
the importance of a correct evaluation of the soil parameters. Using
a correct model, with the wrong parameters, leads to a complete mis-
leading result as shown in Figure 62. For this reason lunar regolith
replica is used to prepare the model for the Lunar mission and usu-
ally the model based approach, like the one presented in this thesis,
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Figure 61: Sendai beach field test

is used in couples with sensor based approach, that computes real
time the inputs, based on the odometry data.
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Figure 62: Results comparison with the field test

4.3 side slip compensation

To traverse a slope without slipping, various strategies can be adop-
ted that can usually be divided in discrete control or continuous con-
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Figure 63: Ideal result

trol. The first considers only spot turns and straight movements. The
second uses different types of steering maneuvering. Nagaoka et al.
[15] verified that performing spot turns and consequently moving in
straight lines, is energetically more efficient than steering. Moreover,
this strategy fits the mobility features of Moonraker.
The proposed strategy consist in knowing a priori the correct attitude
to assume to traverse horizontally the slope, avoiding the skidding. It
is possible analyzing a "slope-attitude" correlation. Having a constant
slope, through an iterative procedure, it is possible to define the ini-
tial angle γ0 that causes the rover to move along the xh axis.
The first step for this procedure is performing a simulation with the
rover facing the arrival point. In the code this is traduced with the
angle γ0 equal to zero. As previously shown this will produce a li-
near motion, characterized by a constant slip angle β. The value of β
is used in the second iteration as initial guess for γ0. In the following
iterations it is possible to adjust the attitude angle, using the desired
convergence method, and checking to the value of the lateral velocity
in the horizon reference frame vyh, until the desired precision is rea-
ched.
This technique is used for the two cases under analysis. To make ea-
sier the testing and the usable the result, the solving angle is stopped
at the closest integer number, that result to be 15° and 7° respectively
for the 20° and 10° slope angle. Figure 64 and 65 present the found
solution. In the first case the dynamic is well simulated and the result
is close to the aimed one, and the track of the wheels is shown in
Figure 63. The 10° case presents a higher error, that can be related to
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the lower simulation precision obtained in the tuning. The solution
errors are summed in Table (5), where are reported in the first line
the errors relative to the difference between the simulation and the
test, and in the second line the error of the test with respect to the
zero skidding. In this case, as for the tuning procedure, the effect of
the focus on the 20° slope case is evident.

Performing this analysis for different values of the slope angle α,
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Figure 64: Side slip compensation
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Figure 65: Side slip compensation
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10°slope 20°slope

Simulation error 9.27% 0.04%

Solution error 9.09% 1.07%

Table 5: Solution errors

it is possible to create a mapping of the initial attitude to assume to
correctly traverse. The solutions are computed for sloped equal to 0°,
5°, 10°, 15° and 20°. The obtained results are interpolated, and the
curve is plotted in Figure 66.
The flowchart (67) summarize the procedure to evaluate the correct
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Figure 66: Slope-attitude correlation

initial attitude.
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Figure 67: Numerical simulation flowchart



5
C O N C L U S I O N S

By the end of 2017, team HAKUTO will send a rover to the Moon, in
the attempt to win the Google Lunar XPRIZE. The competing teams
are asked to land a rover on the Moon and perform some operations
that includes the maneuvering. One of the aspects that makes it trou-
blesome, is the sandy and sloped nature of the Lunar terrain. Due to
the loose soil, a certain slippage is present and, if not considered, can
lead failures or loss of the mission. The slippage affects the motion
both on the longitudinal direction and in the lateral direction. On the
longitudinal, it causes a mismatch of the traveled distance and could
cause the rover to dig and get stuck in the soil. The lateral slip (or
skid) causes, when moving on an inclined terrain, an undesired late-
ral velocity. To deal with the second, an approach based on the on
board sensors is used along with a model that simulates the descri-
bed dynamics. This kind of model is analyzed in this thesis.
Firstly the mathematics, used to characterize the interaction between
the soil and the wheels, is described. Two proposed models are com-
pared to the results obtained through tests performed on a single
wheel, having a force/torque sensor mounted on it.
A Simulink

® model is used to simulate the dynamic behaviour of
the rover. Being the force model computational demanding, a possi-
ble method to overcome this problem is proposed. The possibility of
having as input the torque applied to the wheels or the wheel velocity
itself is discussed. The later is preferred because it better represent
the test setup, being the wheel velocity the input variable used in the
tests. A test campaign is performed to compare the obtained simula-
tor with the ground truth, focusing on slope of 10° and 20°. This tests
are also used to demonstrate the uncorrelation of the wheel velocity
with the resulting forces and trajectory. Being the aim of the thesis to
properly simulate the motion of a specific type of rover, a tuning is
computed, varying only one parameter in the force model and one
parameter in the dynamic model, and focusing on the 20° slope case.
Not being the optimal solution, good results are obtained on the stu-
died case, less accurate for the other considered case.
Having the tuned model, an approach to compensate the side slip is
described: the proper angle with respect to the traverse direction is
evaluated through an iterative procedure. The proposed solution is
tested and its accuracy evaluated.
This thesis is the first part of an ongoing research to deal with this
aspect of the mission. Further tests are being performed on both the
force determination and dynamic simulation, along with spot turn si-
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mulations are also being developed. Particular attention must be put
in the extremely precise placement of the rover for the tests in the
sandbox. Minor imprecisions in the initial attitude lead to important
errors of the results. In this thesis is shown the importance of a precise
determination of the soil parameters, that can dramatically affect the
movements. The study of a proper way to tune the multi-parameters
model is also mandatory.
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