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La statistica

Sai ched’è la statistica? È ’na cosa
che serve pe’ fa’ un conto in generale
de la gente che nasce, che sta male,
che more, che va in carcere e che sposa.

Ma pe’ me la statistica curiosa
è dove c’entra la percentuale,
pe’ via che, lì, la media è sempre eguale
puro co’ la persona bisognosa.

Me spiego: da li conti che se fanno
seconno le statistiche d’adesso
risurta che te tocca un pollo all’ anno:

e, se nun entra ne le spese tue,
t’entra ne la statistica lo stesso
perché c’è un antro che ne magna due.

Trilussa

Ai miei nonni.
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Introduction

The present work concerns the analysis of data deriving from the application on the brain of
Near Infrared Spectroscopy (NIRS).

Our study is based on the results obtained by Bonomini et. al (2015) who adopt a statistical
method on NIRS data for the detection of neural activation.

This thesis differs from the previous work, because we use a functional statistical method to
approach the same problem. In fact, we are interested in clustering NIRS functional data in activated
and in not-activated areas of the brain and in confirming if these results are in according with the
previous statistical study.

This work is composed by the following parts.

Chapter 1 is an introduction to Near Infrared Spectroscopy (NIRS) with a brief description of its
techniques in Section 1.1. In Sections 1.2, 1.3, 1.4, 1.5 is exposed a review of the present
literature. Section 1.6 describes briefly softwares for NIRS data analysis.

Chapter 2 provides a description of dataset: characteristics and gathering of data.

Chapter 3 describes methods to acquire functional data. We propose two different basis to represent
the data: the Fourier basis in Section 3.2 and the Bspline basis in Section 3.3.

Chapter 4 reports procedure to obtain a functional K-means clustering (Section 4.1). Section
4.2 explain how to get the best number of clusters to fit the data. The results of K-means
algorithm for the concentrations of O2Hb and HHb are provided in Section 4.3, while those
of tHb(total hemoglobin concentration) and StO2 (tissue oxygen saturation) are in Section
4.4.

In Chapter 5 we analyze the K-means algorithm applied to the function median of the data.
Sections 5.2 and 5.3 are used to introduce the concept of band depth and modified band
depth which are essential to define the functional median, developed in Section 5.4. Results
of K-means algorithm, using the functional median of the data, are reported in Section 5.5.

Chapter 6 is about covariance-based cluster algorithm. Section 6.2 proposes the definition of
covariance operators for functional data. In Section 6.4 we discuss the max-swap algorithm to
cluster data. Two different variations of the algorithm are proposed to estimate the covariance
of data: the covariance operators of the groups (Section 6.3) and the Shrinkage estimator of
covariance (Section 6.5). In Section 6.6 are shown the results of these analysis.

This work was conducted in collaboration with the Physics Department of the Politecnico of
Milan.

xiii





Chapter 1

Introduction to NIRS

This thesis is a continuation of the article of Bonomini et al. (2015) using a novel statistical
approach: functional statistics.

In this first chapter we want to summarize the history and the most useful informations about
Near Infrared Spectroscopy. A large part of the following informations are obtained from Bonomini
et al. (2015).

1.1 An optical method with several applications

Near Infrared Spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region
of the electromagnetic spectrum (i.e radiations with wavelengths from 650 nm to 950 nm) to inspect
the composition of materials.

The discovery of near-infrared energy is ascribed to William Herschel in 19 th century and
the first industrial application began in the 1950s in agriculture, food science and animal feeds.
At the beginning it was used in a few context because it was an expensive technology and there
were difficulties in handling and evaluating results. In 1990s with the electronics and computer
development NIRS became a more influential tool for scientific research. Nowadays, NIRS has
many new applications in pharmaceutical, combustion products and cosmetics.

Recently, NIRS has began to be employed also in medical diagnostic and medicine research, with
application in ergonomics, neonatal research and childhood brain development analysis, urology,
neurology and functional neuroimaging.

The use of NIRS with the purpose of functional neuroimaging is best known as functional
Near-Infrared Spectroscopy (fNIRS). The functional activation of human cerebral cortex can be
explored by fNIRS and thanks to this the human functional brain mapping research has gained a
new dimension. These studies are feasible because NIRS allows to monitor changes in oxygenated
hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb) caused by neural activity.

fNIRS has become a complementary and alternative technique to functional Magnetic Reso-
nance Imaging (fMRI), with the advantages of higher temporal resolution, excellent sensitivity to
hemoglobin (fMRI can only monitor concentration changes in HHb), fewer motion artefacts and a
cheaper and more portable technology.

The basic and main characteristics of NIRS are summarized as follows:

1. Human tissues are relatively transparent to light in the NIR spectral windows (650 : 900 nm);

1



2 CHAPTER 1. INTRODUCTION TO NIRS

2. NIR light is either absorbed by pigments compounds (chromophores) or scattered in tissues;

3. NIR light is able to penetrate human tissues, since the dominant factor in its tissue transport
is scattering, which is typically about 100 times more probable than absorption;

4. The relatively high attenuation of NIR light in tissue is due to the main chromophore hemoglobin
located in small vessels (< 1 mm in diameter) of the microcirculation, such as capillary, ar-
teriolar and venular beds. NIR is weakly sensitive to blood vessels > 1 mm because they
completely absorb the light. Given the fact that arterial blood volume fraction is approxi-
mately 30% in human brains, the NIR technique offers the possibility to obtain information
mainly concerning oxygenation changes occurring within the venous compartment. The ab-
sorption spectrum of hemoglobin depends on its level of oxygenation. Another important
aspect of NIR is that it is a non-invasive technique of analysis because it can be performed in
natural environments without the need for restrain or sedation.

During the experiment, the patient wears a helmet with a variable number of sources and
detectors. Photons emitted in the NIR range by sources penetrate in the head, being absorbed,
transmitted or reflected depending on the optical proprieties of the medium they pass through.
Reflected photons are then absorbed by detectors, placed some centimeters apart from the emission
point. Highly sensitive detectors are required, since the intensity of the reflected light is very low.

Adequat depth of NIR light penetration (almost one half of the source-detector distance) can be
achieved using a source-detector distance around 3 cm. The selection of the optimal source-detector
distance depends on NIR light intensity and wavelength, as well as the age of the patient and the
head region measured.

While the spatial resolution is moderate and it degrades rapidly with increasing depth in the
brain, the temporal resolution of hemoglobin detection with NIRS is not acquisition limited and
can be up to milliseconds, much faster then the hemodynamic response itself.

NIRS permits a quantitative monitoring of important physiological parameters as oxygenated
hemoglobin (O2Hb) and deoxygenated hemoglobin (HHb). From these two quantities is possible
to evaluate another two important quantities:{

tHb = O2Hb+HHb

StO2 = 100 · O2Hb
O2Hb+HHb

where tHb is the total hemoglobin concentration and StO2 is the tissue oxygen saturation.

Three different NIRS techniques are used, each based on a specific type of light.
The first one that is also the simplest and the cheapest is “continuous wave” (CW) fNIRS. This

NIRS system uses light sources which emit light at a constant frequency and amplitude, continuously
in time. Absorption changes are determined by measuring the attenuation of incident light. The
main drawback of this technology is that it does not have any knowledge of photon path-length and
so changes in concentration are relative to an unknown path-length.

A more complex and more precise system is “time domain” (TD) fNIRS. In this type of spec-
troscopy photons are emitted through pulses with a temporal width of some tens of picoseconds.
The photon paths can be obtained evaluating delay between emission and detection, thus it is
possible to reconstruct the depth reached by photons and to determine the absolute absorption
coefficients of the crossed media. In this way the absolute concentration values of O2Hb and HHb
can be retrieved.
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Figure 1.1: The emission/detection of NIR waves for the three types of NIRS systems.

This method is more expansive and technically complex than CW fNIRS, because it requires
high-speed source and detectors. Nevertheless it provides the most information, as well as a good
spatial resolution . It also enables the correction of the noise of the superficial layers.

The datasets we use are obtained with this technique.
The last NIRS system is ”frequency domain” (FD) . In frequency domain systems, NIR laser

sources provide an amplitude modulated sinusoid at frequencies near one hundred megahertz (100
MHz). Changes in the back-scattered signal’s amplitude and phase provide information on changes
in the concentration of hemoglobin and provide direct measurement of absorption coefficients obvi-
ating the need for information about photon path-length. Because of the need for modulated lasers
as well as phasic measurements, frequency domain systems are more technically complex than con-
tinuous wave systems. However, these systems are capable of providing absolute concentrations of
O2Hb and HHb.

The behavior of the three NIRS systems in time is shown in Figure 1.1.

1.2 The State of the Art

As explained before, using NIRS to measure hemoglobin concentration has a lot of advantages,
anyway, NIRS techniques presents also some disadvantages as a modest spatial resolution (1-3 cm),
a limited penetration depth and the presence of noises.

fNIRS data are usually corrupted by three different noise: physiological noise (such as interfer-
ences provoked by heartbeat, breathing, blood pressure), instrument noise (such as shot noise, with
a Poisson distribution, and measurement noise, which is assumed to be a Gaussian white noise)
and experiment errors (motion artefacts, potential sensitivity to hair absorption, interferences from
external sources). Thus it is advantageous to pre-process data, in order to remove some interferences
and to improve the spatial sensitivity of registered measurements. After subtracting noise, data are
usually analyzed to detect active areas of the brain.

The following subsections are a brief summary about preprocessing data and active channel
detection.

1.3 Systemic interference correction

Are called systemic physiological interference the noises caused by heart beat, respiration, blood
pressure variation and other slow variation. Systemic physiological interference can arise from at
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two spatial sources: in the superficial layers (such as skull and scalp) and inside brain, due to factors
such as heart activity, respiration and spontaneous low frequency oscillations.

In empirical studies of brain function using NIRS, the amount of global interference varies from
subject to subject and from time to time. In some cases, the amount of interference is small, other
times the amount of interference is too large for the evoked brain activity to be detected without
signal processing.

The contribution of this interference in NIRS signal is amplified because the light is both in-
troduced and collected at the surface of the scalp. This back-reflection geometry makes NIRS very
sensitive to the superficial layers of the head which contain no brain signal but exhibit strong sys-
temic fluctuations. For this reason systemic interference from superficial layers often results as the
dominating noise component.

Several methods have been explored for the removal of global interference and improvement of
evoked brain activity measurements.

One of the most common technique is low-pass filtering (e.g. Franceshini and Boas (2004)).
This approach suits perfectly the suppression of high frequency interferences, such as heart beat,
but it does not remove noise from respiration and other low frequency phenomena. If the noise has
the same frequency of the hemodynamic response, a frequency based filtering is also inappropriate,
because it may misrepresent the information on cerebral activity.

Other methods for reduction of systemic physiological interference include wavelet filtering (e.g.
Lina et al. (2010)) and Principal Component Analysis (e.g. Franceschini et al. (2006)).

Another way to isolate low frequency noise in superficial layer is “multi-distance” approach. This
approach is based on the photon transport theory. Photons propagating through a highly scattering
tissue travel along a zig-zig path before they are detected. The collective photon propagation follows
a roughly banana-shaped patter when reflection geometry is used.

With an appropriate source and detector placement, we can use the signal from close source-
detector (S-D1 in Figure 1.2) to detect superficial hemodynamic changes and signal from the most
distant source-detector (S-D2 in Figure 1.2) to detect hemodynamical changes in both superficial
and deep layer. In this way the superficial layer signals acquired from S-D1 are used to estimate
systemic interference in S-D2. This approach is applied in Gagnon et al. (2012) and Saager and
Berger (2005).

Several algorithms have been developed to perform the regression of the small separation mea-
surements. These include linear minimum mean square estimation (LMMSE) (Saager and Berger
(2005), (2008); Gregg et al. (2010); Saager et al. (2011)), adaptive filtering (Zhang et al. (2007))
and state-space modeling with Kalman filter estimation (Gagnon et al. (2011)).

The most critical point in multi-distance approach is the difficulty in determining photons path
length in each head layer.A partial pathlength of each layer can be predicted computationally by
Monte Carlo simulation (Unemaya and Yamada (2009)).

As said in the previous section, we use TD fNIRS also because data obtained with this technology
have a systemic noise much lower than CW fNIRS. With TD fNIRS is possible to estimate the
superficial hemodynamics and to distinguish between photons from deep and shallow layers.

1.4 Motion artifacts correction

Due to its many attractive qualities, fNIR is an ideal candidate for monitoring cortical function
in the brain while subjects are engaged in various real life or experimental tasks. However, another
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Figure 1.2: Multi-distance source-detector approach. Superficial layer interference acquired from
S-D1 are used to estimate systemic interference in S-D2 (Zhang et al. (2007)).

important limitation of optical data in these applications is the artifact caused by motion of the
head, better called motion artifacts (MA). Head movement can cause the NIR detectors to shift and
lose contact with the skin, exposing them to either ambient light or to light emitted directly from the
NIR sources or reflected from the skin, rather than being reflected from tissue in regions of interest.
These effects cause sudden increases in the NIR data. Another consequence of head movement is
that can cause the blood to move toward (or away from) the area that is being monitored, increasing
(or decreasing) the amount of oxygen, hence result in an increase (or decrease) in the measured data.
Since the dynamics of this type of motion artifact are slow, they can easily be confused with the
actual hemodynamic response due to brain activation. The motion artifacts in NIR studies are a
serious problem for real life applications where head immobility is undesirable or untenable. Hence,
cleaning the NIR data from motion artifacts is an important and necessary task in order to deploy
NIRS as a brain monitoring technology in its full potential to many real life application areas.

Several different methods were suggested to solve this problem. These methods can be catego-
rized as follows: (i) methods based on the temporal characteristics of the signal, (ii) methods based
on the spatial characteristics of the signal and (iii) measuring noise independently and subtracting
it from the signal.

The first category includes methods such as: Wiener filtering (Izzetoglu et al. (2005)), wavelet
minimum description length (Wavelet-MDL) detrending (Jang et al. (2009)) and a correlation-
based signal improvement (CBSI) method (Cui et al. (2010)). A Wiener filter does not need an
external input signal because the filter coefficients are only estimated based on the statistics of the
measured signal. This requires two calibration measurements before the actual measurement: one
measurement without MA and other with MA. The disadvantage is that the only types of MA
eliminated are those present in the calibration measurement. Additionally, in animals or neonates,
it is difficult to avoid MA during the calibration measurement.

Algorithms in the second category, for example, eigenvector based algorithms, usually assume
that signal due to noise is broadly spatially distributed compared to signal due to neural activity.
However, with eigenvector based methods one often needs to make subjective decisions about the
number of components to keep, and they are difficult to apply to real-time processing.

In the third category, noise is measured independently by additional hardware. For example,
head motion can be measured using an accelerometer, or noise can be measured using a channel
with a very short distance between the emitter and detector so that the infrared light does not pass
through the brain tissue. The resultant signal must be noise, which can be subtracted from the
signal.



6 CHAPTER 1. INTRODUCTION TO NIRS

Figure 1.3: Motion Artefact corrected trough different techniques (Cooper et al. (2012)).

Figure 1.3 shows how motion artifact can be corrected trough different techniques.

1.5 Statistical Inference for brain activation detection

In the early ages of fNIRS studies, brain signal detection was usually attempted through visual
inspection (Murata et al. (2002)) or simple thresholding with some preprocessing steps. For in-
stance, Benaron et al. (2000) control if the hemoglobine concentration increase: if signal exceed 2
standard deviation from mean, the activation was assumed. However, such heuristic approaches are
prone to error, especially when the noise and interference levels increase, so more rigorous statistical
analyses were required. Hence, various statistical analysis methods have been proposed to detect
activation.

Hoshi et al. (2003) proposed t-test for the difference between the mean of two groups: the
hemoglobin concentration during task period and the hemoglobin concentration during rest period.
In these analysis one hypothesis test was implemented for each channel and P-values were adjusted
with Bonferroni correction.

Also one-way or multi-way ANOVA analysis was proposed to compare different groups concen-
trations. This approach take average values during the task period as data to avoid any assumption
of the exact shape or timing of the time course of changes in O2Hb and HHb in response to stimuli.
This is the limit of this type of analysis because it does not use the time course of data, which is
quite important in fNIRS data.

Many researchers are interested in understanding the fNIRS time course. Then the Generalized
Linear Model (GLM), that was used in fMRI analysis because of the similarities of the two technolo-
gies, was proposed for fNIRS. GLM assumes that data can be represented as a linear combination
of some predictors plus an error term. Schroeter et al. (2004) were the first to apply the GLM to
analyze fNIRS data, then numerous authors have employed GLM to study fNIRS data.

Bonomini et al. (2015) use as predictors convolutions between a boxcar function and the hemo-
dynamic response function (HRF). These convolutions represent a sort of temporal evolution of
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the “ideal” hemoglobin concentration in an active channel. These convolutions represent a sort of
temporal evolution of the “ideal” hemoglobin concentration in an active channel. In fact neuronal
activity consumes oxygen carried by hemoglobin, provoking an increase of the blood flux. This
blood flux variation is called hemodynamic response and it reaches a peak after 4-5 s, then it de-
creases to the initial level. Figure 1.4 shows the hemodynamic response function, that describes
this phenomenon. The authors through a linear regression model and a K-means method estimated
the hemodynamic activation in fNIRS data sets.

Figure 1.4: The hemodynamic response function.

Pourshoghi et al. (2016) proposed the application of functional data analysis (FDA) (for more
details, see chapter 3) on fNIRS signals for the development a method of pain perception. The
FDA was applied on the collected fNIRS data to convert discrete samples into continuous curves.
This method allows to represent the curves as a linear combination of basis functions. Pourshoghiet
al. (2016) utilized bases coefficients as features that represent the shape of the signals and used
them to train a Support Vector Machine (SVM) to classify, using hierarchical algorithm, the signals
based on the level of induced pain.

In our analysis we also use FDA applied to fNIRS but with a different application. Our aim is
to classify active channels using a functional k means evaluating the distance between functional
data. In this work we utilized L2 and H1 distance (for more details see Section 4.1 ).

1.6 Softwares to process functional optical data

Over past decades, with the development of NIRS also methods to process functional optical
data were needed.

The first public domain software package for fNIRS data analysis was HomER1 (acronym for
Hemodynamic Evoked Response). The software provides a graphical user interface and MATLAB2

scripts for both the preprocessing and the standard statistics on fNIRS data. HomER has been

1http://www.nmr.mgh.harvard.edu/PMI/, distributed by Massachusetts General Hospital.
2MATLAB and Statistics Toolbox Release 2015, The MathWorks, Inc., Natick, Massachusetts, USA.
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upgraded and the new release HomER2 more easily supports group analyses and re-configuration
of the processing stream, and it integrates users algorithms into the processing stream.

Another free software is Functional Optical Signal Analysis (fOSA3), which offers MATLAB
based functions for a basic analysis of fNIRS data, incorporating several filters for signal denoising
and providing also the Statistical Parametric Mapping (SPM) methodology for statistical analysis
based on the GLM approach.

More focused on the development of SPM routines is the non-commercial MATLAB-based soft-
ware NIRS-SPM4. A novelty introduced by this program is represented by a voxel based alignment
between interpolated maps instead of an inter-subjects realignment of optodes, in order to facilitate
the group analysis.

Another software is NIRS analysis package (NAP5) which allows noise removal and GLM anal-
ysis, as well as anatomical registration of the measurements. fNIRSOFT 6 is a stand-alone software
to process, analyse and visualize fNIRS signals through a graphical user interface and/or scripting
distributed by BIOPAC Systems, Inc.

Finally POTATo 7 (Platform for Optical Topography Analysis Tools) is a software package for
fNIRS signal processing and analysis, developed by Hitachi, Ltd.

To perform our functional statistical analysis on fNIRS we use R8 software.

3Koh P. H., Glaser D. E., Flandin G., Butterworth B., Maki A., Delpy D., Elwell C. E. (2007) Functional Optical
Signal Analysis (fOSA): A Software Tool for NIRS Data Processing Incorporating Statistical Parametric Mapping
(SPM). Journal of Biomedical Optics, vol. 12, 6: 064010.

4http://bisp.kaist.ac.kr/NIRS-SPM.html
5T. Fekete, D. Rubin, J. M. Carlson, and L. R. Mujica-Parodi, "The NIRS Analysis Package: noise reduction and

statistical inference," PLoS One, vol. 6, p. e24322, 2011.
6http://www.biopac.com/fNIR-Software-Professional-Edition
7http://www.hitachi.co.jp/products/ot/analyze/kaiseki_en.html
8R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical

Computing, Vienna, Austria. URL https://www.R-project.org/



Chapter 2

The datasets

We will use two types of data: in vivo data and synthetic data.
In vivo data are collected through a real fNIRS experiment on volunteers, while Synthetic data

gathering derive from simulations.
Both dataset register the concentration in superficial and lower layer of the brain of O2Hb and

HHb in 30 fixed positions, called channels, in a healthy adult during a motor task. For the sake of
simplicity, we call as UP and DOWN the data registered respectively from the superficial and lower
layer of the brain.

The hemoglobin measurements are recorded with a TD fNIRS system. The disposition of the
channels on the brain is reported in the Figure below.

Figure 2.1: Disposition of the channels on the brain

Hemoglobin concentrations of in vivo and virtual subjects are registered during a right hand grip
experiment. During the experiment subjects alternate periods of rest and task and, after an initial
resting period of 50s, 10 trials are performed. Each trial has the following structure: 10s of rest;
20s of right hand gripping (task); 10s of rest. At the end of the last trial subjects have a resting

9
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period of 40 s.
The experiment lasts 490 s but for our study we have considered only the 10 trials period (400s).
The fNIRS system registers the concentration of O2Hb and HHb on each second. The complete

dataset is composed by 30 vectors of length 400s for O2Hb and HHb measures.

Figure 2.2: Structure of the experiment

2.1 In vivo data

We have O2Hb and HHb measures from 12 right-handed healthy volunteers. Data were acquired
by a multi-channel dual-wavelength TD fNIRS medical device developed by the Physics Department
of the Politecnico di Milano (Contini et al. (2009)).

Subjects are 7 males and 5 females, of age 32.2±10 years.
During task periods they squeezed a soft ball in the right hand at a rate of 2 Hz, guided by a

metronome. Instructions about the movement and rest periods were given by presenting a picture
on a screen, which always had a fixation cross in the center.

Hemodynamic parameters were estimated by the Physics Department of the Politecnico di Mi-
lano trough the following steps:

1. calculating the baseline optical proprieties and the absorption changes in the upper and lower
layer;

2. gathering the hemoglobin concentrations from the absorption coefficients.

About the physic experiment it is interesting to understand how to estimate the photon path
length in the superficial layers and deep layers.

The simplest way to estimate the photon path length, usually, consists in using the formula
l = vt, where v is the speed of light in tissue and t is a characteristics time, set to 500 · 10−12 s for
“early” photons (the ones that pass through superficial layers), set to 1500 ·10−12 s for photons from
deep layers (they are called “late”ß photons). The risk of this method consists in overestimating the
path in deep regions and underestimating hemoglobin concentration.

In our work we do not use this method to estimate the photon path length because the Physics
Department of Politecnico di Milano developed a more precise one (Zucchelli et al. (2013)).

In this work the photon propagation model is refined trough a more precise computation of the
path length travelled by photons within each layer the tissue is composed of. The non-idealities of
the fNIRS system set-up and the heterogeneous structure of the human head are also considered.
This method leads to a reduction of photon path in deep regions, and to an increase in estimated
hemoglobin concentration. In this way we find higher hemoglobin amplitudes and a more precise
hemoglobin estimation. The signals are more corrupted by noise because this method is more
sensitive to few photons.
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All the statistical analysis will be conducted separately and independently on each subject.
Subjects are identified trough a number. They are 0173, 0176, 0179, 0182, 0185, 0188, 0191,

0197, 0200, 0203, 0206, 0209.
Some subjects present several channels with very high noise. These channels could create some

problems in activation detection.
During the 40s trials, activated channels should have an increase in O2Hb and a decrease in

HHb .

2.2 Synthetic data

Simulated data mimic real multichannel fNIRS measurements on a healthy adult during the
right hand grip experiment before described. The procedure to create synthetic data is developed
by Physics Department of Politecnico di Milano. It consits in the following steps.

Defining the geometry of the head
The head is modelled as a bilayered medium, where the upper layer is 1 cm thick, and the lower
layer is ideally a semi-infinite medium. To a first approximation in fact this geometry can be used
to simulate fNIRS measurements on the head of an adult, where an extra-cerebral layer (composed
by scalp, skull and cerebrospinal fluid) overlays the intra-cerebral one (gray and white matter).

Specification of the hemodynamic parameters and the HRF
Hemoglobin concentrations are calculated for both layers of the head. They are simulated by
considering reference values of 12 µM for the O2Hb and 7 µM for the HHb in the superficial layer,
and reference values of 30 µM for the O2Hb and 20 µM for the HHb in the lower layer.

The experiment considers an ideal situation where a neuronal activation is generated by a
motor task, and no physiological oscillations occur in the superficial layer. The O2Hb and HHb
concentrations in the upper layer are simulated to be constant at reference values during the whole
experiment, while the concentrations in the lower layer are perturbed in some channels so as to
mimic a hemodynamic response in correspondence to the task periods.

This superimposed response profile is calculated as a convolution of a boxcar function,representing
the task and the rest alternation, with the Hemodynamic Response Function (HRF) evoked by a
single stimulus. By following the method proposed by Scarpa et al. (2013) the HRF is modelled as
a linear combination of two different gamma-variant time-dependent functions Γn:

HRF (t) = α · (Γn(t, τ1, ρ1) + β · Γn(t, τ2, ρ2))

with

Γn(t, τj , ρj) =
1

ρ!τj

( t− ρj
τj

)p
e
−
t−ρj
τj δ(t− ρj)

δ(t− ρj) =

{
1 t− ρj ≥ 0

0 otherwise

where alpha tunes the amplitude, τj and ρj tune the response width and the onset time respectively.
Variability in amplitude of about 5% is considered among the different trials to account for possible
differences in the execution of the task and/ or in the functional response.

The peak of the HRF for the O2Hb is chosen to be around 1.555 ± 0.075 µM ; the HRF for
the HHb is inverted and with a maximum set at -1/3 with respect to the O2Hb response. The
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Figure 2.3: Folded data for the superficial layer.

Figure 2.4: Folded data for the deep layer.

free parameters are chosen so as to create a HRF similar to the one expected for the motor task of
interest (α = 1282, β = 0.17, τ1 = 1, τ2 = 1, ρ1 = −0.5, ρ2 = 3.5).

To simulate an actual neuronal activation localized around the central positions of the hemi-
sphere contralateral to the movement, channels considered as activated are: channel 16 (with an
intensity of 25% HRF), 17 (100% HRF), 18 (50% HRF), 21 (50% HRF), 28 (25% HRF), 29 (50%
HRF).

Obtaining the absorption coefficients
The absorption coefficients at two wavelength (690 and 820 nm) for both layers are computed
from these hemoglobin concentration changes by exploiting the Lambert Beer law and the a priori
knowledge of the specific absorption of O2Hb and HHb.

Generate distributions of photon time-of-flight
A forward model for photon diffusion in a bilayered geometry is used to generate synthetic time-
resolved reflectance curves for each channel by using as input parameters the optical proprieties and
the source detector distance (fixed at 3 cm). A count rate of 5·105 ph/s is considered, the integration
time is at 1 s, and Poisson noise is added to the simulated curves to mimic real measurements.

After this procedure, as for in vivo data, hemodynamic parameters are obtained estimating
the baseline proprieties and the absorption changes in the upper and deep layer and calculating
the hemodynamic parameters from the absorption coefficients, following the method proposed by
Zucchelli et al. (2013). The resulting hemoglobin concentrations for synthetic data are reported in
Figures 2.3 and 2.4



Chapter 3

Functional data

In order to analyze these data, we decided to adopt a functional approach.
The basic philosophy of functional data analysis is to think about observed data functions as

single entities, rather than as a sequence of individual observations. The term functional in reference
to observed data refers to the intrinsic structure of the data rather than to their explicit form.

Functional data are usually observed and recorded discretely as n pairs (tj ; yj) where yj is a
snapshot of the function at time tj . Time is the continuum over which functional data are recorded,
we refer to tj as such. We call x the functional form of the observations and we assume the existence
of a function x giving rise to the observed data.We want to declare that the underlying function x
is smooth, so that a pair of adjacent data values yj and yj+1 are necessarily linked together to some
extent and unlikely to be too different from each other.

By smooth, we usually mean that function x possesses one or more derivatives. We will usually
want to use the discrete data yj , j = 1, ...., n to estimate the function x and at the same time a
certain number of its derivatives.

The actual observed data, however, may not be at all smooth due to the presence of measurement
errors.

Smoothness, in the sense of possessing a certain number of derivates, is a propriety of the function
x, and may not be at all obvious in the raw data vector y = (y1, ...., yn) owning the presence of the
measurement error. We express this in notation as

yj = x(tj) + εj

where the noise εj contributes a roughness to the raw data. One of the tasks in representing the
raw data as functions may be to attempt to filter out this noise as efficiently as possible.

3.1 Representing functions by basis functions

To represent functions by basis function we choose the H1(R) functional space defined as:

H1(R) = {f : R −→ R | f ∈ L2(R), f ′ ∈ L2(R)}

A basis function system is a set of known functions φk that are mathematically independent of each
other and that have the property that we can approximate arbitrarily well any function by taking
a weighted sum or linear combination of a sufficiently large number K of these functions.

13
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Basis function procedures represent a function x by a linear expansion

x(t) =
K∑
k=1

ckφk(t)

in terms of K known basis function φk.
We can express the previous formula in matrix notation as

x(t) = c′φ = φ′c.

The dimension of the expansion is therefore K.
An exact interpolation is achieved when K = n in the sense that we can choose the coefficients

ck to yield x(tj) = yj ∀j. Therefore the degree to which the data yj are smoothed is determined
by the number K of basis functions. Consequently, we do not view a basis system as defined by a
fixed number K of parameters, but rather we see K itself as a parameter that we choose according
to the characteristics of the data.

The choice of basis is particularly important also for a derivative estimate

Dx̂(t) =

K∑
k=1

ĉkDφk(t) = ĉ′Dφ.

The notation Dx̂(t) is used to represent the derivative of the function x̂ and Dφk(t) is used to
represent the derivative of φk. This notation produces cleaner formulas than dx/dt.

Bases that work well for functions estimation may give poor derivative estimates.
In our work we used B-spline basis and Fourier basis.

3.2 Fourier basis

Fourier basis expansion is provided by the Fourier series:

x̂(t) = c0 + c1sin(ωt) + c2cos(ωt) + c3sin(2ωt) + c4cos(2ωt) + ....

defined by the basis φ0(t) = 1, φ2r−1(t) = sin(rωt) and φ2r(t) = cos(rωt) . This basis is periodic
and the parameter ω determines the period 2π/ω.

Called n the number of values of x(t) that we need, the Fast Fourier Transform (FTT) makes it
possible to find all the coefficients extremely efficiently when n is a power of 2 and the arguments
are equally spaced, in this case we can find both the coefficients ck and all n smooth values at x(tj)
in O(n logn) operations.

Derivate estimation in a Fourier basis is simple since

Dsin(rωt) = rωcos(rωt)

Dcos(rωt) = −rωsin(rωt)

This implies that the Fourier expansion of Dx has coefficients

(0, c1,−ωc2, 2ωc3,−2ωc4, ...)

and the D2x has coefficients
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(0,−ω2c1,−ω2c2,−4ω2c3,−4ω2c4, ...)

A Fourier series is especially useful for describing the periodic data. Fourier series generally yield
expansions which are uniformly smooth. But they are inappropriate for data known or suspected
to reflect discontinuities in the function itself or in low order derivatives.

We used Fourier basis thinking that our data is periodic. We did not set a period because R1

is able to choose the best period that fits the data. We chose the number of basis for each channel
through the generalized cross-validation (GCV) criterion. We run a R code varying n in a range of
values from 6 to 30 and set the number of basis equal to value that minimizes the GCV.

In the Figure 3.1 are shown the data functions obtained through the Fourier basis for O2Hb
Down measurements, in the plot each function represents a different channel. Plots for HHb Down
data, O2Hb Up Data and HHb Up data are given respectively in Figures 3.3, 3.5 and 3.7.

Figures 3.2, 3.4, 3.6 and 3.8 are the first derivatives of the previous functional data.

Figure 3.1: Fourier data functions for O2Hb Down measurements

3.3 B-spline basis

Spline functions are the most common choice of approximation system for non-periodic func-
tional data or parameters.

Splines are polynomial segments joined end to end. Splines combine the fast computation of
polynomials with substantially greater flexibility. Moreover, basis system have been developed for
spline functions that require an amount of computation that is proportional to n (O(n)).

1R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/.
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Figure 3.2: Fourier data first derivative functions for O2Hb Down measurements

The first step in defining a spline is to divide the interval over which a function is to be ap-
proximated into L subintervals separated by values τl , l = 1, ..., L− 1 that are called breakpoints or
knots.

Over each interval, a spline is a polynomial of specified order m. The order of a polynomial is
the number of constants required to define it, and is one more than its degree.

Adjacent polynomials join smoothly at the breakpoint, so the function values are constrained
to be equal at their junction. Moreover, derivatives up to order m− 2 must also match up at these
junctions.

In our work we used equally spaced knots and cubic splines in order to have two continuous
derivatives.

Figure 3.9 on page 20 is an example of Bspline basis for the 30th channel, the spline is cubic
with 24 interior knots, shown as vertical dashed lines.

As did for Fourier basis, we chose the number of basis through the GCV criterion. The number
of knots depends on n and is equal to:

nknots = nbasis− norder + 2

In the Figure 3.10 on page 20 are shown the data functions obtained through the Bspline basis
for O2Hb Down measurements, in the plot each function represents a different channel; in the same
way we drew the plots 3.12 for HHb Down data, 3.14 for O2Hb Up Data and 3.16 for HHb Up
data.

Figures 3.11, 3.13, 3.15 and 3.17 are the first derivatives of the previous functional data.
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Figure 3.3: Fourier data functions for HHb Down measurements

Figure 3.4: Fourier data first derivative functions for HHb Down measurements
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Figure 3.5: Fourier data functions for O2Hb Up measurements

Figure 3.6: Fourier data first derivative functions for O2Hb Up measurements
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Figure 3.7: Fourier data functions for HHb Up measurements

Figure 3.8: Fourier data first derivative functions for HHb Up measurements
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Figure 3.9: B spline basis for the 30th channel. n = 28, m = 4, knots =26

Figure 3.10: B spline data functions for O2Hb Down measurements
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Figure 3.11: B spline data first derivative functions for O2Hb Down measurements

Figure 3.12: B spline data functions for HHb Down measurements
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Figure 3.13: B spline data first derivative functions for HHb Down measurements

Figure 3.14: B spline data functions for O2Hb Up measurements
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Figure 3.15: B spline data first derivative functions for O2Hb Up measurements

Figure 3.16: B spline data functions for HHb Up measurements
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Figure 3.17: B spline data first derivative functions for HHb Up measurements



Chapter 4

K-means algorithm

The main objective of our studies is the detection of neural activation in the brain. For this
reason we are interested in clustering channels in activated and in not-activated.

A main point is that we do not have a certain way to classify channels between activated and
not-activated but we can assess our results by comparison with Bonomini et al. (2015). In the
following schedule are summarized activeted channels resulting from Bonomini et al. (2015).

O2Hb HHb

Down data 16-17-18-21-28-29 16-17-18-21-28-29
Up data ∅ ∅

Table 4.1: Activated channels resulting in Bonomini et al. (2015) for Down and Up data.

In our work will be called activated channels the channels that are gathered with those in
according to the previous schedule.

In this chapter we propose the use of a functional data analysis technique to perform a cluster-
ing of smoothed hemoglobin concentrations. We ran the K-means algorithm for O2Hb and HHb
concentrations for both UP and DOWN data. Moreover, to confirm these results, we propose the
same kind of analysis on two new data: the total hemoglobin concentration (tHb) and the tissue
oxygen saturation (StO2). These new data are given by:{

tHb = O2Hb+HHb

StO2 = 100 · O2Hb
tHb

Figure 4.1 is an example of an acquiring procedure for tHb data. The tHb and StO2 data are
obtained through the functional data of O2Hb and HHb evaluated for t = 1, ..., 400 for UP and
DOWN data. The plots 4.2 4.3 show the functional tHb for DOWN and UP data. Figures 4.4
4.5 are the tissue oxygen saturation respectively for DOWN and UP data.

25
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Figure 4.1: Example of tHb measurements for channel 17

4.1 Functional classification

We analyze the 30 channels according to a functional K-means clustering procedure.
Fi(t) : T → R is the functional data for i = 1, .., 30 channels where T = (0, 400) represents the

time domain. To develop the clustering procedure we assume that Fi(t) ∈ H1(T,R) and we take
for guaranteed the following distance to evaluate the distance between functions:

d1{Fi(t), Fj(t)} =
√∫

T {Fi(t)− Fj(t)}2dt+
∫
T {DFi(t)−DFj(t)}2dt

d2{Fi(t), Fj(t)} =
√∫

T {Fi(t)− Fj(t)}2dt

In the previous formula DFi(t) is the first derivative of the functional data of the channel i.
The distance d1 is the natural distance in the space H1(T,R), instead the distance d2 is the

natural distance in L2(T,R). To compare the differences between the final channel clustering we
ran the k means algorithm using both distance defined.

The functional K-means clustering algorithm is an iterative procedure, alternating a step of
clustering assignment, where each curve is assigned to a cluster, and a step of centroid calculation
where the centroid functional for each cluster is defined.

K-means algorithm is a clustering partitioning method : the algorithm divides the dataset into k
clusters, where the integer k needs to be specified by the user. Typically, the user runs the algorithm
for a range of k values. For each k, the algorithm carries out the clustering and also yields a quality
index, which allows the user to select a value of k.

For a fixed number of cluster k, the algorithm select random between the curves in the dataset
a set of initial centroids {φ(0)

1 (t), .., φ
(0)
k (t)}. After the initializing, the algorithm iteratively repeats

two basic steps. At a generic iteration m > 0 the two steps are performed as follow:
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Figure 4.2: tHb data functions Down Data

Step 1 (clustering assignment step) : each curve is assigned to the cluster whose centroid at the
(m − 1)th iteration is the nearest according to the distance d. This means that the choice of the
mth cluster assignment of the ith channel, i = 1, .., 30 is

Cmi = argmin
l=1,..,k

d{Fi(t), φm−1
l (t)}

Step 2 (centroid calculation step) : the identification of centroids {φ(m)
1 (t), .., φ

(m)
k (t)} is per-

formed by solving the optimization problem

φ
(m)
l (t) = argmin

φ∈Ωd

∑
i:Cmi =l

d{Fi(t), φ(t)}2

where C(m)
i is the cluster assignment of the ith channel at the current iteration, d is a distance and

Ωd is the Hilbert space where the chosen distance d is natural.

The algorithm is stopped when the same cluster assignment is obtained at two subsequent
iterations.

Using this stop criterion, the convergence of the algorithm is ensured in 8-10 iterations.

4.2 Silhouette method

The K-means algorithm, obviously, depends on the number of the clusters k. In this section we
want to explain the silhouette method. The silhouette method through the silhouette value help us
to select the best number of clusters for K-means.
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Figure 4.3: tHb data functions Up Data

This part is intended to be an explanation of the silhouette method.
As said before, the K-means is a partitioning method. We ran K-means for k = 2, 3, 4, 5, 6.
For each channel i we denote by C̃ the cluster which i belongs and compute

a(i) =
1

C̃ − 1

∑
j∈C̃
j 6=i

d{F i,F j}

|C̃| is the cardinality of the cluster C̃ and d is one of the distance defined before.
a(i) is the average dissimilarity of i to all other objects of C̃.

Now consider any cluster C different from C̃ and compute

d(i, C) =
1

|C|
∑
j∈C

d{F i,F j}

d(i, C) is the average dissimilarity of the channel i to all the objects of C.
After computing d(i, C) for all clusters C 6= C̃ we take the smallest of those:

b(i) = min
C 6=C̃

d(i, C)

The silhouette value s(i) of the object i is defined as:

s(i) =
b(i)− a(i)

max{a(i), b(i)}

s(i) lies between -1 and 1 and can be interpreted as follows:
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Figure 4.4: StO2 data functions Down Data

s(i) ≈ 1⇒ channel i is well classified
s(i) ≈ 0⇒ channel i lies intermediate between two clusters
s(i) ≈ 1⇒ channel i is badly classified

For instance, Figure 4.9 shows the silhouette plot for the clustering of HHb Down data using
two clusters. In the plot each line is representative of a channel and the colour line reveal the cluster
which they belong. The meaning of Figures 4.12, 4.15, 4.18, 4.21, 4.24, 4.27 and 4.30 are the
same of previous one.

The silhouette of cluster C̃ is a plot of all its s(i), ranked in a decreasing order. The entire
silhouette plot shows the silhouettes of all clusters below each other, so the quality of clusters can
be compared.

The average silhouette width, or silhouette value, is the mean of all silhouette width. The best
k number of clusters for the dataset is that with the higher silhouette value.

In the Figure 4.8 the dots are the silhouette value derived from the K-means algorithm for
different number of clusters k. In this case and in all others that we studied we chose k = 2 because
is the highest silhouette value.

In the same way it is possible to explain the plots 4.11, 4.14, 4.17, 4.20, 4.23, 4.26 and 4.29.

4.3 Results

The aim of this analysis is to detect what areas of the brain are activated.
We perform a K-means clustering algorithm for both Up and Down data for the O2Hb and

HHb measurements, using the two different distances described before and functional data obtained
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Figure 4.5: StO2 data functions Up Data

through the Fourier and Bspline basis.
The final silhouette plots obtained by clustering the 30 channels according to a K-means proce-

dure using the distance d2, Bspline basis and setting k = 2, 3, 4, 5, 6 are shown in the Figure ( 4.11,
4.14, 4.17, 4.20, 4.23, 4.26 and 4.29). As it is evident from the plots, the best grouping structure
is obtained setting k = 2. We repeat the same analysis using the d1 distance and Fourier basis but
the results are similar to the previous one, therefore we decide to continue our study using the d2

distance and Bspline basis.
The final classification that is obtained choosing k = 2 is shown in the Figures 4.10 4.13, 4.16,

4.19, 4.22, 4.25, 4.28 and 4.31. In the plots each channel is coloured according to the cluster to
which it belongs to. The marked lines are the medoids functions, one for each cluster.

Figures 4.6 4.7 show p-values resulting from Bonomini et al. (2015).
Reminding that our work is based on Bonomini et al. (2015), where we found activated channels

only for down data and that these are 16-17-18-21-28-29, the most interesting thing that we can
notice analyzing our clusters is that channels 16-17-18-19-21-28-29 are gather together both for Up
and Down data.

Anyway, in the same cluster we found other channels 2-3-20-27 that registered low p-values in
study Bonomini et al. (2015), therefore we could conclude that this cluster assignment is coherent
with the previous study. In the Figures are shown the p-values of study Bonomini et al. (2015) for
each channel for O2Hb and HHb for DOWN and UP data.

We found the same cluster assignment for both Down and Up data but, as we can see from
the plot, the clustering assignment for Up data seems to be artificial because the distance between
medoid functions is small.

We investigate this issue in the next chapter computing the functional median for each cluster
in the ten subintervals.
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O2Hb HHb

Down data 2-3-15-16-17-18-20-21-27-28-29 2-7-10-15-16-17-18-21-23-26-28-29

Table 4.2: Activated channels resulting in our study for Down data.

Figure 4.6: P-values of channels resulting from Bonomini et al. (2015) in Down O2Hb (left) and
HHb (right) data.

Figure 4.7: P-values of channels resulting from Bonomini et al. (2015) in Up O2Hb(left) and
HHb(right) data.
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Figure 4.8: Silhouette Average plot of HHb Down data obtained through Bspline basis and L2

distance

Figure 4.9: Silhouette plot for 2 clusters of HHb Down data obtained through Bspline basis and L2

distance

Figure 4.10: Cluster plot for 2 clusters of HHb Down data obtained through Bspline basis and L2

distance
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Figure 4.11: Silhouette Average plot of HHb Down data obtained through Fourier basis and L2

distance

Figure 4.12: Silhouette plot for 2 clusters of HHb Down data obtained through Fourier basis and
L2 distance

Figure 4.13: Cluster Plot for 2 cluster of HHb Down data obtained through Fourier basis and L2

distance
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Figure 4.14: Silhouette Average plot for HHb Up data obtained through Bspline basis and L2

distance

Figure 4.15: Silhouette plot for 2 clusters of HHb Up data obtained through Bspline basis and L2

distance

Figure 4.16: Cluster plot for 2 clusters of HHb Up data obtained through Bspline basis and L2

distance
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Figure 4.17: Silhouette Average plot for HHb Up data obtained through Fourier basis and L2

distance

Figure 4.18: Silhouette plot for 2 clusters of HHb Up data obtained through Fourier basis and L2

distance

Figure 4.19: Cluster Plot for 2 clusters of HHb Up data obtained through Fourier basis and L2

distance
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Figure 4.20: Silhouette Average plot for O2Hb Down data obtained through Bspline basis and L2

distance

Figure 4.21: Silhouette plot for 2 clusters of O2Hb Down data obtained through Bspline basis and
L2 distance

Figure 4.22: Cluster plot for 2 clusters of O2Hb Down data obtained through Bspline basis and L2

distance



4.3. RESULTS 37

Figure 4.23: Silhouette Average plot for O2Hb Down data obtained through Fourier basis and L2

distance

Figure 4.24: Silhouette plot for 2 clusters of O2Hb Down data obtained through Fourier basis and
L2 distance

Figure 4.25: Cluster plot for 2 clusters of O2Hb Down data obtained through Fourier basis and L2

distance
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Figure 4.26: Silhouette Average plot for O2Hb Up data obtained through Bspline basis and L2

distance

Figure 4.27: Silhouette plot for 2 clusters of O2Hb Up data obtained through Bspline basis and L2

distance

4.4 Clustering analysis on tHb and StO2 data

With the purpose of discussing the analysis on total hemoglobin concentration (tHb) and on
the tissue oxygen saturation (StO2), we develop these clustering analysis to confirm results of the
previous K-means analysis on the concentration of O2Hb and HHb.

As written before, these data are obtained from the functional data of O2Hb and HHb through
the Bspline basis. Since we found that the best cluster classification is obtained for k = 2, we ran
the K-means algorithm imposing the number of clusters equals to two. Moreover, the silhouette
value s(2) ' 0.3 confirms the goodness of our analysis for two clusters.

The final classification confirms the clusters composition obtained in the previous analysis but
what is evident is that for Down data there is a clear separation between the two clusters. In Up
data, as explained, this difference is not so accentuated because the O2Hb and HHb measurements
are flat.

In any case, these lasts clustering analysis help us to confirm the results of k means on O2Hb
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Figure 4.28: Cluster plot for 2 clusters of O2Hb Up data obtained through Bspline basis and L2

distance

Figure 4.29: Silhouette Average for O2Hb Up data obtained through Fourier basis and L2 distance

and HHb concentrations.
At last we can conclude that these results are coherent with the previous one. The clustering

results are shown in the table 4.3.
The plots for the final clustering assignment for tHb and StO2 for DOWN and UP data are in

the Figure 4.32, 4.33, 4.34 and 4.35
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Figure 4.30: Silhouette plot for 2 clusters of O2Hb Up data obtained through Fourier basis and L2

distance

DOWN UP

tHb data 3-15-16-17-18-20-21-28-29 3-10-15-16-17-18-21-22-28-29
StO2 data 3-15-16-17-18-20-21-28-29 3-10-15-16-17-18-21-22-28-29

Table 4.3: Activated channels resulting in our study for tHb and StO2 data for datasets DOWN
and UP.

Figure 4.31: Cluster plot for 2 clusters of O2Hb Up data obtained through Fourier basis and L2

distance



4.4. CLUSTERING ANALYSIS ON THB AND STO2 DATA 41

Figure 4.32: Cluster plot for 2 clusters of TOT Down data obtained through Bspline basis and L2

distance

Figure 4.33: Cluster plot for 2 clusters of TOT Up data obtained through Bspline basis and L2

distance

Figure 4.34: Cluster plot for 2 clusters of SAT Down data obtained through Bspline basis and L2

distance
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Figure 4.35: Cluster plot for 2 clusters of SAT Up data obtained through Bspline basis and L2

distance



Chapter 5

Functional Median

In this chapter we want to analyze and discuss the previous results using a new method: the
functional median.

In order to explain what functional median is, we need to introduce the concept of depth for the
functional data.

5.1 Introduction to Depth Measures for functional data

The statistical analysis of functional data is a growing need in many research areas. In particular,
a robust methodology is important to study curves, which are the output of many experiments in
applied statistics.

As a starting point, we need a new definition of depth for functional observations based on the
graphic representation of curves. Given a collection of functions, a depth measure establishes the
“centrality” of an observation and provides a natural center-outward ordering of the sample curves.
Robust statistics, such as the median function or a trimmed mean function, can be defined from
this definition.

This new depth is also suitable for complex observations such as microarray data, images, and
those arising in market and financial studies. Simulation results show that the corresponding depth
based trimmed mean presents better performance than other possible location estimators proposed
in the literature. Data depth can be also used to detect outliers.

A fundamental task in functional data analysis is to provide an ordering within a sample curves
that allows the definition of order statistics, such as ranks and L-statistics. A natural tool to analyze
these functional data aspects is the idea of statistical depth.

Given a distribution of probability F in Rd, a statistical depth assigns to each point x a real
nonnegative bounded value D(x, F ).

Several depth definitions for multivariate data have been proposed and analyzed by Mahalanobis
(1936), Tukey (1975), Oja (1983), Liu (1990), Singh (1991), Fraiman and Meloche (1999), Vardi
and Zhang (2000), Koshevoy and Mosler (1997) and Zuo (2003), among others. Liu (1990) and Zuo
and Serfling (2000a) introduced and studied key proprieties a depth should satisfy.

Data depth can widely applied. For example, Liu and Singh (1993) presented a nonparametric
multivariate rank test using quality depth index. Yeh and Singh (1997) studied confidence sets
based on Tukey’s depth. Also, Liu, Parelius and Singh (1999) offered depth tools for multivariate
analysis; for instance, they defined trimmed regions, central regions and contours, and constructed
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a scale curve to visualize dispersion. In addition, Rousseeuw and Hubert (1999) introduced the
idea of regression depth and Li and Liu (2004) designed a graphic tool and a test to check if two
multivariate samples come from the same population.

Direct generalization of the multivariate depths to functional data often leads to either depths
that are computationally intractable or depths that do not take into account some natural proprieties
of the functions, such as shape. Vardi and Zhang (2000) proposed the L1-depth for multivariate data,
which is computationally feasible in high dimensions and therefore can be extended to functional
data. This depth was also analyzed by Serfling (2004) in the context of spatial rank functions, and it
is also closely related and motivated by the geometric quantiles for multivariate data introduced by
Chaudhuri (1996), who indicated that the geometric quantiles, in particular the median, could be
extended to Hilbert and Banach spaces. Fraiman and Muniz (2001) defined and studied a concept
of depth for functional observations based on the integrals of univariate depth.

Lopez-Pintado and Romo (2006) proposed a new notion of depth for functional data. That
is based on the graphic representation of the functions and makes use of the bands defined by
their graphs on the plane. This definition has also the advantage of being computationally feasible,
which is essential for analyzing high-dimensional data. Some asymptotic results, such as the uniform
convergence of the sample depth and the deepest point are established. Most of these proprieties
are extended to functions. With this definition is possible to generalize the concept of multivariate
L-estimates, in particular trimmed means, to a functional context. Robust methods are even more
relevant in a functional setting then in multivariate problems because outliers can affect functional
statistics in more ways, and they can be more difficult to detect. For instance, a curve could be an
“outlier” without having any unusual large value but it could be a decreasing curve in a set of of
increasing functions or a very irregular curve within a set of smooth curves.

The Lopez-Pintado and Romo definition of functional depth is that we use to define the func-
tional median in our work.

5.2 Band depth for functional data

In our work we discuss, without loss of generality, only the empirical aspects of band depth, for
the theoretical aspects see Lopez-Pintado and Romo (2006).

The definition of band depth that we use follows a graph-based approach.
Let C(I) be the set of continuous functions defined on the compact interval I ∈ R. Let

x1(t), ...., xn(t) be a collection of observations belonging to C(I). The graph of a function x is
the subset of R2 given by

G(x) = {(t, x(t)) : t ∈ I}.

The band in R2 defined by the curves xi1 , ...., xik is

B(xi1 , xi2 , ...., xik) =

{
(t, y) : t ∈ min

r=1,...,k
xir(t) ≤ y ≤ max

r=1,...,k
xir(t)

}
=

{
(t, y) : t ∈ y = αt min

r=1,...,k
xir(t) + (1− αt) max

r=1,...,k
xir(t), for some αt ∈ [0,1]

}
Figure 5.1 shows the band defined by three curves that is the region in the plane enclosed by

all of them.
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For any function x in C(I),

BDj
n(x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

1{G(x) ⊂ B(xi1 , xi2 , ...., xik)}, j ≥ 2 (5.1)

express the proportion of bands B(xi1 , xi2 , ..., xij ) given by j different curves xi1(t), xi2 , ..., xin(t)
containing the graph of x and 1{A} is one if A is true and zero, otherwise.

Figure 5.1: Band defined by three curves

Given the sample x1, ..., xn, the band depth of x is

BDn,J(x) =
J∑
j=2

BDj
n(x) J ≥ 2. (5.2)

Hence, the band depth is the sum up to J (with J ≥ 2) of indexes defined as in (5.1). The
parameter J is a parameter that indicates the maximum number of curves used to construct a band.
Lopez-Pintado and Romo (2006) show that the order induced by BDn,J(x) in the sample is very
stable with respect to growing J . Therefore, it is convenient, for computational reason, to use small
values of J (e.g., J = 2 or 3). On the other hand, when the sample curves are very irregular there
might be too many crossovers and it is very unlikely for a curve to be in a band delimited only by
two curves. Usually, the band depth are considered with J = 2 ( BDn,2(x) ).

5.3 Modified band depth for functional data

Instead of considering the indicator function as in (5.1), Lopez-Pintado and Romo (2006) pro-
posed a more flexible definition of depth, called modified band depth (MBD).

The indicator function in definition is replaced by the Lebesgue measure of the set where the
function is inside the corresponding band. For any function x in x1, ..., xn and for 2 ≤ j ≤ n, let

Aj(x) = Ai1,...,ij (x) = A(x;xi1 , xi2 , ..., xij )

=

{
t ∈ I : min

r=i1,...,ij
xr(t) ≤ x(t) ≤ max

r=i1,...,ij
xr(t)

}
be the set in the interval I where the function x is in the band determined by the observation
xi1 , xi2 , ..., xij . If λ is the Lebesgue measure on I, λr(Aj(x)) = λ(Aj(x))/λ(I) gives the “proportion
of time” that x is in the band. Now,
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MDBj
n(x) =

(
n

j

)−1 ∑
1≤i1<i2<...<ij≤n

λr(A(x;xi1 , xi2 , ..., xij )), 2 ≤ j ≤ n (5.3)

is more flexible version of BDj
n(x): if x is always inside the band, the value λr(Aj(x)) is one as in

the previous notion of depth.
For functions x1, ..., xn, the modified band depth of one of these curves x is

MDBn,J(x) =
J∑
j=2

MDBj
n(x). (5.4)

The band depth (BD) is less adaptive (or more restrictive) than its modified version (MBD)
because, if the curves are very irregular, it is very unlikely for a curve to belong to a band. This
provides many ties in depth. On the other hand, it depends strongly on the curves shape. Another
important difference between both definitions is their behavior for curves leaving the sample center
only for a short interval, i.e., remaining in the interior of the sample most of the time but taking
extreme values in short intervals: for these curves the MDB can still be large whereas the band
depth (BD) takes small values.

5.4 Functional median

Using the previous definition of band depth (BD) and modified band depth (MBD), it is possible
to define the functional median.

The sample median of a functional dataset m̂n is the element of the functional dataset fulfilling
the maximum depths, given a certain definition of depth.

For instance, for DB:

m̂n = argmax
x∈{x1,...,xn}

DB(x)

while for MBD:
m̂n = argmax

x∈{x1,...,xn}
MDB(x)

In our work we use the R1 package roahd2 to compute the functional median of the concentration
of O2Hb and HHb data. The function median_fdata( fData, type = ’MBD’, ... ) of
the package roahd allows to compute the functional median using both definition of depth. In this
thesis we decided to use the modified band depth because it is the default method.

Roahd (RObust Analysis of High dimensional Data) is a package meant to gather recently
proposed statistical methods to deal with the robust analysis of functional data. The package
contains an implementation of quantitative methods, based on functional depths and indexes, on
top of which are built some graphical methods useful to carry out an explorative analysis of a
functional dataset. In order to allow the processing of high-dimensional data, the package support

1R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/

2Nicholas Tarabelloni, Ana Arribas-Gil, Francesca Ieva, Anna Maria Paganoni and Juan Romo (2016). roahd:
Robust Analysis of High Dimensional Data. R package version 1.1. https://CRAN.R-project.org/package=roahd



5.5. CLUSTERING THROUGH FUNCTIONAL MEDIAN 47

Figure 5.2: Example of functional median for O2Hb data. The functional median is the dotted line.

univariate and multivariate data and functions have special consideration for the computational
efficiency.

The Figure 5.2 is an example of how median_fdata( ... ) works. The examples refers
to O2Hb concentration for Down data and the dotted line represents the functional median.

5.5 Clustering through functional median

As explained in Chapter 2, the signal analyzed represents the concentration of each channel for
O2Hb or HHb during a trial of length of 400s. This trial can be split in 10 sub-trials each of length
of 40s for which we want to estimate the functional median of each channel. Thus, we obtain a new
functional data composed by the 30 median functions.

At this stage of the analysis, using the K-means algorithm, we are interested in clustering the
30 functional medians in order to observe if we discover the same cluster assignment found for
the entirely signal concentration of O2Hb and HHb. This interest came form the fact that the
functional median is a robust method to summarize and estimate the informations of a functional
data.

Figures 5.3- 5.6 represent the results of functional median clustering for O2Hb and HHb for Up
and Down data.
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Figure 5.3: Clustering obtained for functional median of O2Hb Down Data.

In conclusion, we find that channels 16, 17, 18, 21, 28, 29 are gathered together as resulting
from the k-mean applied to the entirely signal and from the previous study conducted by Bonomini
et al. (2016)

The K-means algorithm applied to functional medians is able to classify channels taking advan-
tage of the differences in signal’s amplitude but not in covariance structure of data.

For this reason, in the following chapter we propose a covariance-based clustering algorithm.
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Figure 5.4: Clustering obtained for functional median of HHb Down Data.
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Figure 5.5: Clustering obtained for functional median of O2Hb Up Data.
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Figure 5.6: Clustering obtained for functional median of HHb Up Data.





Chapter 6

Covariance-based Clustering

In this chapter we introduce and apply a new algorithm to perform clustering of multivariate
and functional data. In Chapter 4 we have already seen K-means algorithm that aggregates data
depending on similarities in location. Our focus now goes to reach the clustering entirely on the basis
of differences in covariance structures. The algorithm proposed relies on a proper quantification of
distance between the estimated covariance operators of the groups and it subdivides the data in
two groups maximizing the distance between the induced covariances.

6.1 Introduction

In literature there are not so much work about covariance based clustering, however this way
to gather data is not less trivial since it gives a proper quantification of differential correlation or
distance between covariances of data. In fact, it might happen to analyze groups of data that are
scarcely distinguishable in terms of location, while showing differences in their variability.

Examples can be found in biostatistics where, for instance, the dichotomy between physiological
and pathological features often shows an interesting change in pattern of variability. This is also
of great interest in genomics, where instead of focusing on gene expression levels, one could be
interested in finding different correlation structures among subsets of data. This is the core task in
the analysis of the differential co-expression of genes, namely the differential correlation structure
among expression levels in different subsets of experimental conditions. Watson (2006) proposed
a method to identify groups of genes that are correlated in a first group of microarrays and are
not in a second one. Mitra et al. (2016), provided a more complex modeling strategy that is able
to specify the differential dependence structure by using Bayesian graphical models. Moreover,
Cai and Zhang (2016) presented, within a supervised framework, a way to estimate the differential
correlation matrices of data belonging to two differentially expressed groups. Ieva et al. (2016),
instead analyzed the problem from a different point of view, and focused on differences between
global covariance structures of data belonging to two unknown groups, which are also identified.
In particular, Ieva et al. (2016) centered their work on the specific case of a set of observations
from two populations whose probability distributions have the same mean but differ in terms of
covariances. This method can be applied both to the traditional case of random vectors and also
to functional data as will be done in our work.
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6.2 Covariance Operators for Functional Data

In this section we want to define the concept of covariance operator for functional data and its
most important proprieties (for more details see Bosq (2000)).

Let X be a stochastic process tacking values in L2(I), with I ⊂ R a compact interval, having
mean function E [X ] = µ and such that E

∥∥X∥∥2
< ∞, where we denote by

∥∥ · ∥∥ the L2(I) norm
induced by the scalar product 〈·, ·〉. Without loss of generality we can assume µ = 0 and define the
following covariance operator C ∈ L(L2(I);L2(I)):

〈y,Cx〉 = E [〈x,X〉 〈y, χ〉] , ∀x, y ∈ L2(I).

C is a compact, self-adjoint, positive semidefinite linear operator between L2(I) and L2(I).
Therefor it can be decomposed into:

C =

∞∑
k=1

λkek ⊗ ek,

where ⊗ indicates an outer product in L2(I), {ek}∞k=1 is the sequence of orthonormal eigen-
functions, forming a basis of L2(I) and {λk}∞k=1 is the sequence of eigenvalues. We assume that
eigenvalues are sorted in decreasing order, so that:

λ1 ≥ λ2 ≥ ... ≥ 0.

By expressing X with respect to the eigenfunctions basis, X =
∑∞

k=1 ξkek, it holds

λk = 〈ek,C ek〉 = E
[
ξ2
k

]
,

thus, the covariance operator is nuclear, meaning that

E
∥∥X∥∥2

=
∞∑
k=1

λk =
∞∑
k=1

∥∥λk∥∥ <∞.
C is also a Hilbert-Schmidt operator (see Bosq (2000)), since it holds:

∞∑
k=1

λk <∞.

We equip the space of Hilbert-Schmidt operators with the Hilbert-Schmidt norm, defined as∥∥U∥∥2

S
=
∑∞

k=1 λ
2
k, where {λk}

∞
k=1 are the eigenvalues of U . This is induced by the following scalar

product:

〈U ,V〉S =
√
Tr(U − V)(U − V)∗, (6.1)

where Tr(·) denotes the trace operator, and U∗ s the Hilbertian adjoint of U , i.e.,

〈U(x), y〉 = 〈x,U∗(y)〉 ∀x, y ∈ L2(I).

The space of Hilbert-Schmidt operators on L2(I), endowed with the scalar product (6.1) and
the associated norm, becomes a separable Hilbert space itself. Within this theoretic framework, a
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natural definition of dissimilarity between Hilbert-Schmidt operators (among which are covariance
operators) may be the Hilbert-Schmidt distance:

d(U ,V) =
∥∥U − V∥∥2

S
=
∞∑
k=1

η2
k,

where {ηk}∞k=1 is the sequence of eigenvalues of U − V.

6.3 Covariance-based Clustering

In this subsection we face the problem of classifying observations belonging to two different
populations. Let X and Y be stochastic process on L2(I) generated by the laws PX and PY . We
suppose to have a set of N data composed by an equal number of observations deriving from two
families. Let call D the data set, D = {X1, . . . , XK , Y1, . . . , YK} with K = N/2 and where {X}Ki=1,
{Y}Ki=1 are i.i.d and follow respectively PX and PY .

We introduce the following quantities:

µ1 = E [Xi] , C1 = E [Xi ⊗Xi] , ∀i = 1, . . . ,K,

µ2 = E [Yj ] , C1 = E [Yj ⊗ Yj ] , ∀j = 1, . . . ,K.

Let us consider the vector of indexes of units constituting the two populations in D :

I(0) =
( I

(0)
1︷ ︸︸ ︷

1, 2, · · · ,K,
I
(0)
2︷ ︸︸ ︷

K + 1, · · · , N
)
,

which is unique, provided we do not distinguish among permutations of sub-intervals I(0)
1 and

I
(0)
2 . In the following we shall consider recombinations of these indexes into two subsets:

I(i) =
(
I

(i)
1 ; I

(i)
1

)
, i ∈ {1, · · · , NC} ,

where I(i) denotes the i-th combination out of NC =
(
N
K

)
, however enumerated.

We denote with µ̂(i)
1 , µ̂

(i)
2 and Ĉ

(i)
1 , Ĉ

(i)
2 the sample estimators of means and covariance operators

induced by the dataset subdivision. We point out that, when i = 0, we recover the estimators of
µ1, µ2 and C1, C2 and for this reason we rename the latter quantities as µ0

1, µ0
2 and C 0

1 , C 0
2 .

An important hypothesis is that observations drawn from families PX and PY constituting the
dataset D may be distinguish on the basis of their covariances, but not of their means. It means
that µ0

1 = µ0
2 and C 0

1 6= C 0
2 , and therefore

∥∥µ(0)
1 − µ

(0)
2

∥∥ = 0 and d(C 0
1 ,C

0
2 )� 0.

As consequence of this assumption we conveniently center data and assume they have zero
means.

In order to illustrate this clustering method, let us consider a situation where the original data
set has been split according to a vector of indexes I(i) =

[
I

(i)
1 ; I

(i)
2

]
. For the sake of simplicity,

let us encode this through the binary variables wj,g = 1(Xj ∈ I
(i)
g ), j = 1, · · · ,K, g = 1, 2 and
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vj,g = 1(Yj ∈ I
(i)
g ), j = 1, · · · ,K, g = 1, 2. In other words, such variables express the fact that

observation j from the original population X or Y belongs to the first (I
(i)
1 ) or second (I

(i)
2 ) group

into which data are split. According to the setting previously introduced, it is :

K =
2∑
g=1

K∑
j=1

wj,g, K =
2∑
g=1

K∑
j=1

vj,g,

K =
K∑
j=1

wj,1 +
K∑
j=1

vj,1, K =
K∑
j=1

wj,2 +
K∑
j=1

vj,2.

Then, we can re-write the sample covariances Ĉ (i)
1 and Ĉ

(i)
2 as:

Ĉ
(i)
1 =

∑K
j=1wj,1Xj ⊗Xj +

∑K
k=1 vk,1Yk ⊗ Yk

K
,

Ĉ
(i)
2 =

∑K
j=1wj,2Xj ⊗Xj +

∑K
k=1 vk,2Yk ⊗ Yk

K
.

(6.2)

The difference Ĉ
(i)
1 − Ĉ

(i)
2 is:

Ĉ
(i)
1 − Ĉ

(i)
2 =

1

K

K∑
j=1

(wj,1 − wj,2)Xj ⊗Xj +
1

K

K∑
k=1

(vk,1 − vk,2)Yk ⊗ Yk,

using the definition of distance between covariance operators, we can write:

K2
∥∥Ĉ(i)

1 − Ĉ
(i)
2

∥∥2

S
=

∥∥∥∥∥
K∑
j=1

(wj,1 − wj,2)Xj ⊗Xj

∥∥∥∥∥
2

S

+

∥∥∥∥∥
K∑
k=1

(vk,1 − vk,2)Yk ⊗ Yk

∥∥∥∥∥
2

S

+ 2
K∑
j=1

K∑
k=1

(wj,1 − wj,2)(vk,1 − vk,2) 〈Xj , Yk〉2

=

K∑
k=1

∥∥Xj ⊗Xj

∥∥2

S
+ 2

∑
j<k

(wj,1 − wj,2)(wk,1 − wk,2) 〈Xj , Xk〉2

+
K∑
k=1

∥∥Yj ⊗ Yj∥∥2

S
+ 2

∑
j<k

(vj,1 − vj,2)(vk,1 − vk,2) 〈Yj , Yk〉2

+ 2
K∑
j=1

K∑
k=1

(wj,1 − wj,2)(vk,1 − vk,2) 〈Xj , Yk〉2

Let us now call δXj,k = (wj,1 − wj,2)(wk,1 − wk,2), δYj,k = (vj,1 − vj,2)(vk,1 − vk,2) and δXYj,k =

(wj,1 − wj,2)(vk,1 − vk,2). Now, it is δXj,k = +1 if observations Xj and Xk are assigned to the same
group, while on the contrary it is δXj,k = −1. The same applies for δYj,k with Yj and Yk. Finally,
δXYj,k = +1 if Xj and Yk are assigned to different groups, otherwise δXYj,k = −1. From this brief
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analysis, it is clear that distance between covariances operator increases when two observations of
populations X or Y are both assigned to the same group, or when two observations of the opposite
populations X and Y are assigned to different groups.

Using the expressions (6.2) for the sample covariances Ĉ(i)
1 and Ĉ(i)

2 and computing their expected
values, we obtain:

E
[
Ĉ(i)

1

]
= C(i)

1 =

∑K
j=1wj,1

K
C1

∑K
j=1 vj,1

K
C2,

E
[
Ĉ(i)

2

]
= C(i)

2 =

∑K
j=1wj,2

K
C1

∑K
j=1 vj,3

K
C2,

now, denoting by N1,2 =
∑
j = 1Kwj,2 and considering the relations among the variables wj,g

and vj,g we get:

d(C(i)
1 , C(i)

2 ) =
∥∥∥E [Ĉ(i)

1 −
[
Ĉ(i)

2

]] ∥∥∥2

S
=
(

1− 2
N1,2

K

)2∥∥C1 − C2

∥∥2

S
, (6.3)

noting that the maximum distance between covariances is obtained when the groupings coincide
with the original but unknown indexing of the dataset.

Then, a natural way to find the true indexing can be the recombination of data in two groups
maximising the distance function. It is equivalent to solve the optimization problem:

[I∗1 ; I∗2 ] = arg max
i∈RC

{
d
(
C(i)

1 , C(i)
3

)}
, RC =

{
1, . . . , NC

}
.

Due to the symmetry of the optimization problem we have two optimal solutions that are
(I∗1 , I

∗
2 ) = (I0

1 , I
0
2 ) or (I∗1 , I

∗
2 ) = (I0

2 , I
0
1 ).

Practically, only approximate estimates of C(i)
1 and C(i)

2 are available, thus we must recast the
previous problem into :[

Î1
∗
; Î2
∗]

= arg max
i∈RC

{
d
(
Ĉ(i)

1 , Ĉ(i)
2

)}
, RC =

{
1, . . . , NC

}
. (6.4)

In general Î1
∗
and Î2

∗
may differ from I0

1 and I0
2 , since they are determined estimating the

covariance operators.

6.4 Max-Swap Algorithm

In order to solve the problem (6.4), it would be necessary to test each NC (NC =
(
N
K

)
) recombi-

nations of indexes to find Î1
∗
and Î2

∗
. Of course, the number of tests to be performed undergoes a

combinatorially-fast growth, as N increase. In consequence of that, the naive approach of perform-
ing an exhaustive search in the set of recombinations is not feasible.

To solve this problem Ieva et. al (2016) proposed a greedy algorithm, calledMax-Swap algorithm,
with the aim to reduce the complexity of solving the problem (6.4).

The main idea is to interpret d(Ĉ(i)
1 , Ĉ(i)

2 ) as an objective function of i, and, starting from an
initial guess (I0(1), I0(2)), to iteratively increase it by allowing exchanges of units between two
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groups, such that each group discards and receives an equal number of units. Ieva et al. (2016)
suggested to choose the swapping units in such a way that the distance of estimated covariance
operators at the next step is strictly higher than the previous one and, heuristically, the highest
possible. Convergence is reached when no further swap can increase that distance.

An important aspect of this algorithm is that ensures that convergence always happens, at least
to a local maximum of d(Ĉ(i)

1 , Ĉ(i)
2 ) (for the proof see Ieva et al. (2016)).

6.5 Shrinkage estimation of covariance

Ieva et al. (2016) proposed in their work an alternative estimator to use in Max-Swap algorithm
for the covariance operators: the shrinkage estimator. It is better conditioned and in some circum-
stances achieves lower MSE then the sample covariance. Below we see how to obtain shrinkage
estimator.

Let us consider a generic family of functional data X ∼ PX , such that E [X ] = 0, E
∥∥X∥∥2

<∞.
Called C its covariance, we want to estimate it with Ĉ such that:

MSES(Ĉ) := E
∥∥Ĉ − C∥∥2

S
.

This method is interested in solving the follow estimation problem:

Ĉ∗ = argmin
Ĉ

MSES(Ĉ) = argmin
Ĉ

E
∥∥Ĉ − C∥∥2

S
(6.5)

where the minimum is sought among all possible estimators Ĉ of C. We point out that inMSES
is used the distance defined in (6.3).

Remember that we are working on a functional dataset, let us indicate by Xi the i-th (out of
N) sample realization of process X , i.e:

Xi = (Xi(tj))
P
j=1, Ih = [t1, . . . , tP ] ,

where we have imagined that the grid Ih to be regularly spaced, i.e, tj+1−tj = h for ∀j = 1, . . . , P−1
for tj+1 − tj = h for ∀j = 1, . . . , P − 1.

It is clear that, within this habit, covariance estimators of C are discrete, matrix-type approxi-
mations obtained starting from pointwise observations Xi. For instance, standard sample covariance
estimator for zero-mean data is:

S =
1

N

N∑
i=1

XiX
T
i .

If we denote the true discrete covariance structure related to each Xi by C the discrete version of
the problem (6.5) is:

C∗ = argmin
Ĉ

E
∥∥Ĉ−C

∥∥2

F
(6.6)

where the minimum is sought inside the set of symmetric and positively defined matrix-type esti-
mators of dimension P . We point out that the subscript F in (6.6) indicates the Frobenius norm,
that is the finite-dimensional counterpart of the Hilbert-Schmidt norm for operators.
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When the sample size N is low compared to the number of features P , sample covariance may
loose in accuracy, meaning that the actual estimate might be quite distant from the true covariance
C. A typical remedy to the poor performances of sample covariance, often used in the setting of
Large P - Small N problems, is to replace it with a biased, shrinkage estimator. Shrinkage estimation
has been explicitly applied to the context of large covariance matrices in Ledoit and Wolf (2003),
(2004) and Schafer and Strimmer (2005), turning out in a sufficiently lightweight procedure. In
those works, authors started from problem (6.6) and built an estimator that is asymptotically more
accurate and better conditioned than sample covariance. Ledoit and Wolf (2004), considered the
class of linear shrinkage estimators of the form:

Ĉ = µγI + (1− γ)S,

where I is P×P identity matrix and γ ∈ [0, 1] , µ ∈ R+ and S is the sample covariance estimator.
Obviously, the class contains the sample covariance estimator itself. Then (6.6) is solved with respect
to the optimal values of µ and γ:

(µ∗, γ∗) = arg min
µ,γ

E
∥∥C− µγI− (1− γ)S

∥∥2

F

P
. (6.7)

If we introduce the quantities:

α2 =

∥∥C− µI∥∥2

F

P
, β2 =

E
∥∥S−C

∥∥2

F

P
δ2 =

E
∥∥S− µI∥∥2

F

P
,

and note that these are subjected to α2 + β2 = δ2, it is possible to perform the explicit mini-
mization (6.7) problem. The expressions of µ∗ and γ∗ are:

µ∗ =
〈C, I〉F
P

=
Tr(C)

P
, γ∗ =

β2

δ2

where we have used µ = µ∗ in the computation of δ. The desired shrinkage estimators becomes:

S∗ = µ∗
β2

δ2
I +

α2

δ2
S

S∗ depends on the unknown exact covariance matrix C, even though only through four scalar
functions. In Ledoit and Wolf, 2004 authors solved this problem by proposing the following estima-
tors for α, β, δ and µ∗:

µ̂∗ =
Tr(S)

P
, δ̂2 =

∥∥S− µ∗I∥∥2

F

P
,

β̂2 = min

(
δ̂2;

1

N2

N∑
k=1

∥∥XkX
T
k − S

∥∥2

F

P

)
,

and α̂2 = δ̂2 − β̂2.
Then, the actual shrinkage estimator is:

Ŝ∗ = µ̂∗
β̂2

δ̂2
I +

α̂2

δ̂2
S



60 CHAPTER 6. COVARIANCE-BASED CLUSTERING

In Ledoit and Wolf, 2004 authors showed how estimates Ŝ∗ are consistent. It converges to the
exact values in quadratic mean, under the general asymptotic limits of P and N , i.e.,when both P
and N are allowed to go to infinity but there exists a c ∈ R independent on N such that P

N < c

(see Ledoit and Wolf, 2004). Moreover, estimator Ŝ∗ is an asymptotically optimal linear shrinkage
estimator for covariance matrix C with respect to quadratic loss.

6.6 Results of Covariance-based Clustering

In this section we apply the covariance-based clustering to the concentrations of O2Hb and HHb
for both Up and Down data.

We decide to employ the clustering algorithm not to all entirely measuring concentration ofO2Hb
and HHb for each channel but to functional median of each channel for the reasons explained in
the Subsection 5.5. Thus, the functional data consists of 30 sampling, each one for a channel, along
40s of functional median of O2Hb and HHb concentration of hemoglobin. Our clustering purpose
is to recognize which channels have a widely fluctuations about their mean. Remembering that the
aim of our work is to detect activated and non activated areas of the brain, we suppose that this
activation is reflected in difference in covariance operators more than in difference in the mean level
of O2Hb and HHb concentration.

To apply the algorithm the set of N = 30 signals is subdivided into two groups of K = 15 and
the sampling rate is 1s so that P = 40.

We run the Max-Swap clustering algorithm on these data to perform clustering, both using S
and Ŝ∗ estimators, finding equal partitions of initial data. The results are shown in Figures 6.1 -
6.8 and highlight how the algorithm is able to answer to our request, in fact, we can clearly detect
two clusters of functions that are well distinguishable in terms of their different variability. We can
interpreter these two clusters as activated and non activated channels. We point out that these
results are in agreement with those obtained by Bonomini et al. (2015).

In the plots below we can also notice how the results of the clustering algorithm are similar
using the Shrinkage estimator and the sample covariance.
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Figure 6.1: Deoxygenated hemoglobin’s concentration data Down. In the top left panel are repre-
sented the preprocessed data on which the clustering using Shrinkage estimator is carried out. In
the top right panel is shown the output. In the bottom panel are represented the clustering obtained
on the entirely data
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Figure 6.2: Deoxygenated hemoglobin’s concentration data Down. In the top left panel are rep-
resented the preprocessed data on which the clustering using Covariance estimator is carried out.
In the top right panel is shown the output. In the bottom panel are represented the clustering
obtained on the entirely data
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Figure 6.3: Oxygenated hemoglobin’s concentration data Down. In the top left panel are represented
the preprocessed data on which the clustering using Shrinkage estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data
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Figure 6.4: Oxygenated hemoglobin’s concentration data Down. In the top left panel are represented
the preprocessed data on which the clustering using Covariance estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data
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Figure 6.5: Deoxygenated hemoglobin’s concentration data Up. In the top left panel are represented
the preprocessed data on which the clustering using Shrinkage estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data



66 CHAPTER 6. COVARIANCE-BASED CLUSTERING

Figure 6.6: Deoxygenated hemoglobin’s concentration data Up. In the top left panel are represented
the preprocessed data on which the clustering using Covariance estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data
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Figure 6.7: Oxygenated hemoglobin’s concentration data Up. In the top left panel are represented
the preprocessed data on which the clustering using Shrinkage estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data
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Figure 6.8: Oxygenated hemoglobin’s concentration data Up. In the top left panel are represented
the preprocessed data on which the clustering using Covariance estimator is carried out. In the top
right panel is shown the output. In the bottom panel are represented the clustering obtained on
the entirely data
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Conclusions

The present work describes and faces the problem of fNIRS data analysis. Our study is based
on the one conducted by Bonomini et al. (2015), where the authors want to classify the cerebral
areas of the brain, called channels, in activated and not-activated ones.

The main purpose of this thesis is to repeat this classification using a functional statistical
approach.

We decide to use a functional statistical approach to the problem because data derived by
time series are conformed to be performed as a functional data. In our case, we consider the
concentrations of hemoglobin for a lapse of time of 400s. The basic philosophy of functional data
analysis is to think about observed data functions as single entities, rather than as a sequence of
individual observations. In order to obtain functional data we are interested in smoothing data. To
represent functional data we introduce two basis function: Fourier basis and Bspline basis. Fourier
basis is especially useful to describe periodic data. In our study, in fact, we can see data as ten
realization of the same event. Bspline basis is a polynomial basis that is used for its fast computation
and for its great flexibility.

Once we obtain functional data we concentrate the analysis on clustering methods.
The first method that we adopt is a functional K-means algorithm. Assuming that Fi(t) : T → R

is the functional data for the channel i, where T = (0, 400) represents the time domain, in order
to evaluate the distance between functions, we introduce two distances: the L2(T,R) and H1(T,R)
distance. Our study is based on the analysis of K-means using both distances and the two different
basis expansion seen before.

K-means is a partitioning method, for this reason we need at first a preliminary analysis to
discover which is the best number of clusters to fit the data. One of the most common method to
detect the best number of partitioning, is silhouette method. Using this last method we set the
number of clusters equal to two.

As the fact that we get similar results for the two different distances and for the two different
basis, for the remaining analysis we fix the distance L2(T,R) and the Bspline basis.

The K-means algorithm is also used to classify two interesting quantities from a medical view-
point: the tHb (total hemoglobin concentration) and the StO2 (tissue oxygen saturation). In all
cases we recover that the activated channel discovered in Bonomini et al. (2015) are gathered
together. We find the same cluster assignment for both Down and Up data but the clustering
assignment for Up data seems to be artificial because the distance between medoids is small.

We investigate this issue computing the functional median for each cluster in the ten subintervals
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of the experiment.
It is interesting to study clusters assignment applied to functional median because it represents a

robust method to summarize and estimate the informations of a functional data. Using the K-means
algorithm applied to the functional median of each channel we discover that activated channels for
Bonomini et al. (2015) are still in the same cluster.

In the last part of our work we propose a covariance-based clustering for the functional median
of data. This way of clustering is needed because the K-means algorithm classify channels taking
advantage of the difference in signal’s amplitude while now we want to investigate the differences
in covariance structures of the data.

To solve this problem Ieva et. al (2016) proposed a greedy algorithm, called Max-Swap algo-
rithm. This algorithm allows to divide data in two groups maximising the distance between the
estimated covariance operators of the groups. We discuss the Max-swap algorithm using the sam-
ple covariance estimator and the shrinkage estimator. The last one it is better conditioned and in
some circumstances achieves lower MSE then the sample covariance. Anyway, using the max-swap
algorithm for our data the clusters assignment of channels is the same for both estimators.

We obtain that activated channels resulting from the K-mens algorithm are clustered in the
same group.

Finally, we can conclude that, also using clustering method for functional data, we recover the
same activated channels resulting from Bonomini et al. (2015).
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