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Abstract

RECOMMENDER systems always relied on personalization and context has only
been used to improve personalization performance. However algorithms that
decouple the context exploitation from personalization were not fully explored.

This thesis presents Context-Driven Recommender Systems, a new family of recom-
mendation algorithms that personalize on user’s intent and situation, exploring their
applicability in five application domains. This work shows that leveraging contextual
information in these domains helps in addressing the challenges that they pose to tradi-
tional recommendation approaches and improves the performance. This new paradigm
improves serendipity and can “pop” the filter bubble, can provide recommendation to
unregistered or unlogged users, does not suffer from cold start problem and respects
the privacy of users.
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CHAPTER1
Introduction

1.1 From context-aware to context-driven recommender systems

The recommender systems community has always tried to use additional information
(or evidence) beyond information about users and items [2]. Context is an example of
evidence successfully exploited in many recommendation tasks.

We define context as the combination of what is going on around the user in the
moment of the interaction with the system (situation) and on what she is trying to
accomplish (intent). Contextual variables are the signals from which context can be
inferred.

This thesis describes a new conceptualization of recommender systems: context-
driven recommender systems [97]. Context-driven recommender systems (CDRS) have
their roots in context-aware recommender systems, but they decouple the context ex-
ploitation from personalization. Rather than personalize, i.e. tailor recommendation to
the individual, context-driven algorithms aim to contextualize, i.e. to customize (or per-
sonalize) on the user intent and situation. In the context-driven paradigm the subject of
the personalization changes: instead of personalizing on the user, it personalizes on the
context. In this way, the user is split into a collection of different dynamics, each one
reflecting her different intents and situations. By the mean of this break-down, context-
driven algorithms are able to model a more fine-grained similarity: the similarity which
arises from comparing contexts, not simply users or items.

In recent years we have seen that information retrieval (IR) and recommender sys-
tems came closer each other. In the IR community, relevance has long been acknowl-
edged as situational, e.g., dynamic, multidimensional, and dependent on user goals
and situation [26], but this concept has not really been explored by the recommender
system community.

Context-driven recommender systems differ from context-aware recommender sys-

1
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Chapter 1. Introduction

tems for their focus on context rather than preferences. While context-aware recom-
mender systems are tailored to the user preferences, relegating the context as a side
information, context-driven recommender systems use the context as their main source
of information, and past user preferences may or even may not be taken in considera-
tion. When context-driven recommender systems make use of user preferences, these
preferences are not considered a property of the user, but a property of the context in
which they appear. In other words context-driven recommender systems personalize on
intents and situations, instead of personalizing on users. Context-driven recommender
systems (CDRS) try to elicit the goal of the user: usually the goal cannot be accom-
plished in a single atomic step, but it requires several steps to be performed. Under this
consideration, two peculiarities of CDRS arise: (i) they are a decision support system,
because they help the user to accomplish a task and (ii) current interactions of the user
with the system (i.e. session), preferences in similar contexts, and other contextual
signals are the key pieces of information to elicit the user goal.

CDRS use the contextual state of the user instead of the user profile as their main
input source. The rationale is that context is relative to the condition of the user and
may lead to several goals. As the user makes decisions, the user goal becomes clearer
and clearer from the system’s point of view. Two users that share the same context (or
conditions) and make the same decisions are considered as equal from a context-driven
point of view.

The research community has just started to tackle the context-driven nature of human
tastes: [100, 58, 97]. Recent works [17, 84, 58] have designed algorithms mainly
focused on the current context of the user: this is partly due to the exploration of new
application domains that (i) exhibit a strong contextual item consumption process and
(ii) need to provide recommendations to unregistered or non logged users (cold start
users). In the second case, the only information that can be exploited is the session,
i.e. the current interactions of the user with the system (e.g. search query, pages visited
and items browsed). In many application domains user tastes are not static, but they
drift with time and more generally with the context while the latter can change between
sessions and even within the same session.

Several factors make context-driven recommendation feasible: a huge amount of
contextual data is generated by smartphones and Internet of Things devices and then
stored on the cloud, and big data technologies make the computational power to process
it finally available. Moreover, privacy concerns are growing and the storage of personal
information is becoming more and more difficult. So algorithms that do not make use
of this information can be compliant with the new privacy regulations.

The availability of such amount of data regarding the context paves the way for a
revolution of recommender systems: the shift from the static nature of the personal-
ization, where user preferences are carved into the stones of their profile, reinforcing
the filter bubble effect [103] and thus not allowing for the discovery of new items and
interests, to the contextualization, where the user taste is drifting according to the goal
to be accomplished.

Many application domains call for recommendations that are actually driven by the
context, thus relaxing the constraint that personalization involves recommendation for
specific individuals. In the context-driven paradigm each user is not (only) identified
by her id, but by her contextual states, thus dissociating users from their historical

2



i
i

“thesis” — 2016/12/6 — 8:08 — page 3 — #11 i
i

i
i

i
i

1.1. From context-aware to context-driven recommender systems

behavior. In this way, users have more room to develop and are not tied to their past
actions. Context-driven recommender systems implicitly assume that people have more
in common with other people in the same situation, or with the same goals, than they
do with past versions of themselves.

In the linear TV domain, for example, the user may switch channel multiple times
or even the person controlling the TV can change very frequently. In this domain the
tastes are driven by the channel and the hour of the day, rather than the intrinsic quality
of the aired program. In the music domain, for example, the taste is driven by the task
the user is performing (e.g. working or jogging), the mood, the device used, and the
trend of the last played songs [56]. In the E-tourism domain the driving factors for the
particular choice of the hotel or restaurant are the weather, the people that are with the
user and the time. In the flight booking domain the period of the year or the occurrence
of particular events are crucial for users’ booking intentions.

Together, these new resources and new insights make now the right moment to
launch consolidated effort towards context-driven recommendation.

This thesis does not claim that personalization is not important or not useful, but
presents a new point of view that is still compatible with it. In order to understand and
overcome the limits of personalization, the factors that gave birth to it should be con-
sidered. Personalized products are nothing new. Before the industrial revolution and
modern mass production1, most of the more expensive products were commissioned
and tradesmen took great care to take their customers’ needs into consideration. With
the rise of the digital era and recommender systems, companies have started to add per-
sonalization in their content delivery. Since the start of the Netflix Prize, the research in
recommender systems and on personalization has been energized. However the Netflix
Prize heavily biased the conception of recommender systems from the very beginning.
First of all user and item ids were the only information available (or at least the one
Netflix provided for the Prize). Besides Netflix, many marketing studies tell us that
users are more happy with recommendations “tailored for them” 2. Moreover adding
personalization enables companies to deliver a diversified set of items to each user,
thus increasing the coverage of the item catalog. Since the introduction of context-
aware recommender systems, context was plugged in the personalized recommender
with success [10, 112, 101, 100, 13, 27, 58]. However this thesis claims that context
can be usefully exploited by moving one step forward from personalization. Although
many companies have already understood the potential of context and are employing
context-aware recommenders, they did not move away from personalization3.

Modeling user needs as a static and as an invariant property of an individual does
not give room to her tastes to develop, by constantly keeping her in a “filter bubble” on
which the individual has no control [103]. Although at first glance this can be seen as
opposed to the personalization, in fact it is its natural evolution and extension, allowing
a finer grain control by considering not only the individual, but also the factors that
led that individual to interact with the system. In this way, rather than considering an
individual as a single entity, a context-driven algorithm models her as dynamic and

1http://yfsmagazine.com/2015/05/20/have%2Dit%2Dyour%2Dway%2Dthe%2Drise%2Dof%
2Donline%2Dpersonalization%2Dtrends/

2https://www.linkedin.com/pulse/personalization%2Dpillar%2Dmobile%2Duser%
2Dexperience%2Dalon%2Deven

3http://www.retailtouchpoints.com/features/special%2Dreports/retailers%2Dseek%
2Dinnovation%2Din%2Dpersonalization

3

http://yfsmagazine.com/2015/05/20/have%2Dit%2Dyour%2Dway%2Dthe%2Drise%2Dof%2Donline%2Dpersonalization%2Dtrends/
http://yfsmagazine.com/2015/05/20/have%2Dit%2Dyour%2Dway%2Dthe%2Drise%2Dof%2Donline%2Dpersonalization%2Dtrends/
https://www.linkedin.com/pulse/personalization%2Dpillar%2Dmobile%2Duser%2Dexperience%2Dalon%2Deven
https://www.linkedin.com/pulse/personalization%2Dpillar%2Dmobile%2Duser%2Dexperience%2Dalon%2Deven
http://www.retailtouchpoints.com/features/special%2Dreports/retailers%2Dseek%2Dinnovation%2Din%2Dpersonalization
http://www.retailtouchpoints.com/features/special%2Dreports/retailers%2Dseek%2Dinnovation%2Din%2Dpersonalization
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Chapter 1. Introduction

multifaceted, with preferences and patterns that vary according to the circumstances.
This new conceptualization tries to overcome the limits of some assumptions im-

plicitly made by recommender systems, i.e. the Immutable Preference paradigm (ImP).
From the very beginning, recommender systems assumed that users goals, needs and
tastes do not evolve. ImP also assumes that the item catalog is static, without account-
ing for trendiness, seasonality and dynamicity of items. Currently some tweaks are
used in order to account for these issues, like applying a decay to give more importance
to recent preferences or they adjust weights to account seasonality or trends. Some
underlying challenges of recommender systems are driven to the extreme with this new
conceptualization: the sparsity problem is even more evident, since context-driven use
a context state as target. Moreover the cold-start problem is becoming a continous cold-
start problem due to the dynamicity of users and items. Context-driven recommender
systems reject the assumption of ImP in their algorithmic fabric, rather than as an af-
terthought. A context-driven algorithm borrows some key features from collaborative,
content, and context-aware (and session-aware) algorithms. It is collaborative in the
sense that collaboration happens among contextual states instead of users. It is content-
based, since the content of the item can be plugged in as another contextual variable to
refine the system’s understanding of the user context. It is context-aware, since it does
make use of contextual variables.

Context-driven paradigm is the common theoretical ground for many disparate strands
in the recommender systems community. Besides context-aware recommender sys-
tems, other research branches can be framed as context-driven problems such as session-
based recommender systems, which model context as a series of user interactions car-
ried out within a session. Stream based recommendation and content based recommen-
dation share many features with context-driven recommendation, such as the ability to
tackle cold start and sparse user interactions. By exploring the commonalities between
a range of application domains and by discussing the potential of existing algorithms
and the challenges that still remains open, we aim to encourage the development of this
new breed of algorithms, specifically suited for context-driven recommendation.

Research community has welcomed the context-driven paradigm. The reference
work for this new conceptualization is [97].

1.2 Modeling context in new application domains

This research was carried out with the objective of finding the best way to exploit the
contextual information in recommender systems. The research question that drives this
thesis can be phrased as:

Given an application domain and the challenges that it poses to recommender
systems, which is the best way to leverage the context to overcome the limits of

state-of-the-art recommendation algorithms?

The five domains examined in this thesis were chosen for their contextual potential,
i.e. the potential usefulness of the context in improving recommendation algorithm.
Figure 1.1 depicts the challenges of the investigated application domains where ImP
assumption fails to hold. For example, the ephemeral catalog property breaks the as-
sumption on the steadiness of the item catalog in the linear TV and Job domains. New

4
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E-Tourism Music Linear TV Job Mobile App

Taste development

Ephemeral Catalog

Seasonality

Task, intent

Bounded Capacity

Life-cycle

Figure 1.1: Application domains with challenges for context-driven recommendation

TV shows or jobs are added to the catalog very frequently as well as TV programs will
not be aired anymore or jobs that are published for a long time loose their effectiveness.
The same holds for seasonality in TV and E-tourism domains: many TV shows or ho-
tels or flights are very much dependent on the season. For example very few people go
to ski facilities when there is no snow to ski on, or go to the sea in the winter season.
For TV, many programs are aired in a particular season of every year.

The taste development is another natural human condition that breaks the ImP as-
sumption. Human tastes naturally evolve and recommenders should be able to cope
with it. The same person before or after graduating, can look for different kinds of
jobs (e.g. a part time job during studies and a well payed full time job that meets her
aspirations after obtaining a degree). The same holds for music or TV: the same user
may change consumption patterns over time and situation.

The availability of items is another issue that was not present in the very first ap-
plication domain in which recommender systems were applied, i.e. digital movies.
However there are different domains where items cannot be consumed an unlimited
number of times: this is the case of E-tourism, where hotels or flights have a maximum
capacity that limits their availability, or jobs, where each job request can be met only
by a limited number of individuals.

The life-cycle property is relative to the item consumption curve in time: many
items are very popular for a limited time, decreasing their appeal after this period. This
property holds in the music domain, where the very popular songs start to fade out after
being on the top of the charts for some time. The same happens for TV, where the first
episode of a new show or series is very popular. This is also true for the app domain:
many apps, especially games, are installed and uninstalled very frequently to give room
to newer and fresher apps.

Finally, the intent or task makes preferences to change or to be inconsistent with
themselves according to situation, thus breaking the concept on which ImP builds upon,
i.e. preferences depend on user and item. There are domains where the task or the intent
of the user is far more important than her past preferences. In the music domain, for
example, the user might want to work out, so she might enjoy music that gives strength.
Or the user might want to work, so she might enjoy relaxing and concentrating music.
The task is even more important in the app usage prediction: if the user’s intent is to
look for a restaurant to have dinner, she may open a totally different set of apps with
respect to the set of apps used for reading news.

This thesis investigates some of these challenges on these domains and shows that

5
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each domain has some underlying preference model. In the early recommender sys-
tems years, the research focused on the user and item, so models have been developed
to embody the preference model in the user and item variables because they were the
only information available. But what if the underlying preference model does not de-
pend much on the user and the item, but instead on some contextual variables that we
previously did not take into account? Let us make an example: suppose that a user,
Bob, a single businessman, has to travel for work to San Francisco when most of the
hotels are fully booked. So he starts browsing the available hotels and clicks on some
of them. Let us also suppose that another user, Alice, is looking to visit San Francisco
for vacation with her family and clicks on the same hotels clicked by Bob, because of
the limited availability. In this case any non-context aware recommender system, either
collaborative or content-based, would recommend the same things to Bob and Alice.
This can be good for the purpose of the trip to San Francisco, but the similarity between
the two users has to expire somehow after that. There is an underlying reason that led
the two users to click on the same hotels: they were the only available ones. Any
recommender system that only exploits user and item ids cannot capture this concept.
Furthermore it will model the two users as very close to each other when they are quite
different in reality. In fact, the reasons that led the two users to click on the same hotels
were basically depending on the intent, e.g. travel to San Francisco, and situation, e.g.
most hotels were fully booked.

A context-driven recommender system, instead, should be able to the capture user’s
intent and situation because it is designed to do so. Besides the user and item ids, there
are a lot of contextual signals that they can exploit: first of all the availability should be
taken into account. Second, the intent should be inferred by looking at the session of
browsed hotels. Third, their similarity is only relative to the contextual situation “trip
to San Francisco” and will not hold anymore after this situation. Moreover such an
algorithm will be able to suggest the same items to other users after having inferred
their intent and understood that the situation is similar.

In this example the underlying preference model cannot be really captured by look-
ing at the user and item, but instead by looking at other contextual signals. In the hotel
booking domain, for example, the preference model can be summarized with the fol-
lowing sentence “a user is looking for a hotel that has good reviews, is close to the
destination, is available, meets the user’s financial requirements and is appropriate for
the people the user is traveling with”.

Thesis Structure Chapter 2 presents the main related work on context-aware and context-
driven recommender systems. Other domain-specific works are discussed in the other
chapters. Chapter 3 explores the challenges that context poses to the Music domain and
to the playlist recommendation setting in particular. Chapter 4 shows the peculiarities
of the domain of job recommendation and presents our approach to The 2016 Rec-
Sys Challenge as well as a context-driven sampling methodology. Chapter 5 deeply
explores the benefits of context in the Linear TV program recommendation domain.
Chapters 6 and 7 present problems having a strong dependency on context and where
the user has a marginal role. In particular, Chapter 6 investigates on how to use con-
text in the TV audience prediction problem while Chapter 7 presents a follow-up work
to [33] showing that taking into account context improves the accuracy also in the E-

6
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Tourism domain. Chapter 8 presents some preliminary work in the field of mobile app
recommendation with a focus on the use of context. Finally, Chapter 9 draws some
conclusions from the work presented in this thesis.

7
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CHAPTER2
State Of The Art

The context-driven paradigm is very novel and literature lacks of prior work on recom-
mender systems only exploiting context without making use of personalization. In this
chapter we present the main points relative to the way context is used in context-aware
recommender systems which can be seen as the direct progenitor of context-driven
recommender systems. In the next chapters we will present the related works on a per-
domain basis, describing the state of the art of the examined domains more in detail.

Dourish in [47] defines two views on context: representational and interactional. In
the first view context is seen as a representation problem, in which context is identifiable
by a predefined set of observable attributes. This view makes the following assump-
tions: (i) context is a form of information and, so, is something that can be known; (ii)
context is delineable, so we can, for some set of applications, define what counts as the
context of the activities the main application supports; (iii) context is stable, so the el-
ements of a context representation do not vary from instance to instance in a particular
application; (iv) context and activities are separable, so that an activity happens within
a context. The interactional view, instead, argues that (i) context is a relational property
between objects or activities, so something may be or may not be contextually relevant
to the particular activity; (ii) the scope of contextual features is defined dynamically;
(iii) context is an occasioned property relative to each occasion of activity or action;
(iv) context arises from the activity. In other words this view assumes a bidirectional
relationship between context and activities. This distinction reflects the essential dif-
ference between the positivist and the phenomenological positions. From a positivist
perspective (representational view), context is a stable feature of the world, indepen-
dent of the actions of individuals. From a phenomenological perspective (interactional
view), contextuality comes about only when it is mutually recognized by the parties to
some interaction, drawing on their everyday, cultural, common-sense understandings

9
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Chapter 2. State Of The Art
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Figure 2.1: Prefiltering, postfiltering and contextual modeling for context-aware recommender systems

of the nature of the social world.
We could argue that our context definition builds on the interactional view and in-

corporates the representational view. It incorporates the representational view because
we are clearly defining what context is: the combination of situation and intent, but
this definition is not static nor delineable. We agree with the assumptions of the inter-
actional view, but simply stating that every information that can be used to understand
the situation and the intent of a user in a particular application setting is valuable to
represent the context.

The exploitation of context for improving the quality of recommendation has begun
with context-aware recommender system. The most comprehensive categorization of
such algorithms has been described by Adomavivius and Tuzhilin in [2]. Context-aware
recommender systems fall into three types: contextual pre-filtering, where context
drives data selection; contextual post-filtering, where context is used to filter recom-
mendations once they have been computed using a traditional approach; and contextual
modeling, where context is integrated directly into the model. Figure 2.1 presents the
three approaches. The input data is represented as a tuple U×I×C×R containing user
(U), item (I), context (C) and rating (R). The pre-filtering approach filters the data
using one or more contextual variables. Then the data is fed to a classical recommender
system. 2D stands for two-dimensional, since it uses only user and item information. In
the post-filtering approach the data is fed to a 2D recommender ignoring the contextual
variables and then the recommendation list is refined using the contextual variables.
Contextual modeling, instead, makes use of the whole data to train a multi-dimensional
recommender.

Pre and Post filtering approaches can leverage traditional recommendation algo-
rithms while modifying either the input or the output of such algorithms. Contextual
modeling, instead, requires new models that take into account the contextual variables
during the learning phase. An example of contextual pre-filtering is the so-called user
micro-profile, in which a single user is represented by a hierarchy of possibly overlap-
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ping contextual profiles [10]. As for the post-filtering approach, there are two possible
choices: (i) removing recommendations that are irrelevant to the context and (ii) adjust-
ing the ranking of the recommendation list. An example of post-filtering in the music
domain is described in [56]. The choice to use pre or post filtering approaches is not
trivial: in their experimental evaluation, Panniello et al. [101] found that the choice
of a pre-filtering or post-filtering strategy depends on the particular recommendation
problem.

Another approach on modeling context is the user or item splitting. This approach
creates fictitious users (items) by splitting them according to the different contexts in
which they interacted (they have been interacted within). For the item splitting ap-
proach, the assumption is that the nature of an item, from the user’s point of view, may
change in different contextual conditions (values of contextual variables) [12]. For ex-
ample the same restaurant can be considered as two different restaurants if it is summer
time or winter time, or if the weather is sunny or rainy. For the user splitting approach,
it may be useful to consider one user as multiple users, if he or she demonstrates sig-
nificantly different preferences in different contexts [10]. There are also approaches
that split both the users and the items according to the context. An example of this
approach is simply an application of item splitting followed by user splitting on the
resulting output [144].

One of the most successful methods for integrating the contextual information into
the model is the tensor factorization. Tensor factorization extends the matrix factor-
ization into a higher dimensional matrix (i.e. a tensor) having contextual variables as
additional dimensions. In this way, instead of creating two latent matrices, contain-
ing the user and the item latent factors, tensor factorization creates a latent matrix for
each dimension, i.e. one for the user, one for the items and one for each contextual
variable. The authors of [60] describe a method for applying the candecomp/parafac
tensor factorization to implicit feedback datasets. Another notable example of contex-
tual modeling are the Factorization Machines (FM) [112]. It has been proven that FMs
have similar properties to tensor factorization. Conceptually, FMs horizontally stack
the one-hot-encoding of user, item and contextual features for each user item interac-
tion in a single training example and learn latent representations for both each feature
and for the product of any pair of features (second level interactions). We point to
Section 4.3.2 for an in depth analysis of this algorithm.

The idea of recommending to contextual states instead of users is not new. Some
signals of this trend can be even traced back in the definition of Bayesian Personalized
Ranking, one of the most used Collaborative Filtering methods. In [110] the authors
change the domain of the predicted rating function, from r̂ : U × I in the original
definition [111], i.e. the predicted rating depends on the user and the item, to r̂ : C × I
in the improved version [110], i.e. the predicted rating depends on a context C (in
which also the user can be included) and on an item I . However the implications of
such formulation were not deeply explored by the recommender system community.

More recently, the best paper at ACM RecSys 2015 [84] propose a recommendation
algorithm for points of interest that is able to tackle extreme cold-start situations by
exploiting context. This can be considered an example of context-driven algorithm.

Session-based algorithms deserve a separate dissertation. These techniques still be-
long to the contextual-modeling category of context-aware recommender systems, but
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Chapter 2. State Of The Art

they exploit the sequence of items the user interacted with as contextual variable. By
using the session to infer the user intent and situation, an algorithm can learn relation-
ships and patterns that cannot be exploited by traditional recommendation techniques.
Turrin et al. [126] use recurrent sessions as implicit playlists in the music domain. Re-
current Neural Networks are successfully used to model sessions in the webshop and
user generated content domains [58, 59].

The first conceptualization of context-driven algorithms was published in RecSys
2016 and constitutes the reference work that attempts to unify the different and frag-
mented research paths that use context as primary source of information for recommen-
dation into a single theoretical formulation [97].

We point to the next chapters for an in depth background on the way context is used
in a particular application domain.
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CHAPTER3
Music

In this chapter we address the challenges – task, intent, taste development and item life-
cycle – that break the ImP assumption in the music domain, described in Figure 1.1.
Music listening behaviour is very much dependent on the task the user is performing:
if the user is running, she may want to listen to energetic music. If the user, instead,
wants to focus, she might enjoy chill-out or classical music. Taste development make
the users’ tastes drift with time, thus making the user modeling very difficult. Moreover
the item life-cycle causes the songs to have a trendiness factor, making them particu-
larly appealing for some limited time, fading out afterwards. The particular problem
addressed is the playlist recommendation that perfectly fits in this scenario and presents
great opportunities to context-driven algorithms. A context-driven algorithm assumes
that a user is a collection of music tastes that vary according to the context. The chal-
lenge for such an algorithm is two-fold: first it has to distinguish between meaningful
listening patterns and noise and, second, it has to understand which is the current taste
of the user in order to perform the recommendations. We overcome the aforementioned
challenges by modeling the user on the fly in the recommendation phase, by looking
at the current listening session. In this way the past behaviour of the user does not
influence the recommendation, giving users the possibility to actually “pop” the fil-
ter bubble. A particular attention has been posed on the scalability of the algorithm,
since in the music domain the item set is very large with respect to other domains (e.g.
movies). Moreover the number of interactions of the user with the system is also much
higher because an active user can listen to dozens of songs per day. Our contribution
in this field is two-fold: we create the largest music dataset that is publicly available
today - 30Music dataset [127]- and we propose an innovative context-driven approach
- namely the Implicit Playlist Recommender (IPR) [126].

The main innovative aspects of the 30Music dataset with respect to the existing
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Chapter 3. Music

public datasets are:

• play events are organized into listening sessions, that constitute our only contex-
tual information;

• the dataset contains user-generated playlists;

• the dataset contains both implicit play events and explicit user ratings, i.e., pre-
ferred tracks (positive feedback);

• whenever a user plays a track from a playlist, the play event is tagged.

The main innovations introduced by IPR are:

• considering recurrent listening sessions as playlists

• no user profile modeling, so to focus attention on the current listening session,
emphasizing the importance of user intent and task

• the scalability of the algorithm makes it suitable for large scale setting

3.1 Problem Definition

Music recommender systems propose interesting music to a specific user. Differently
from many other popular recommendation domains - such as video - items in the music
domain are very short (few minutes) and are not consumed atomically, but usually as a
bundle of songs.

It is important noting that recommending a group of songs has very little to share
with recommending the top-N relevant songs to a user. In accordance with the definition
proposed by Cunningham et. al [41], we focus on music playlist recommendations.
A playlist is a group of songs relevant in a certain context, where the strict listening
order does not necessarily matter. The user context strongly affects the music playlist
consumption. Unfortunately, contextual information is usually missing and difficult to
measure.

We overcome such limitation by using the user current listening session as a proxy
to the user context (in particular to his intent). In fact, regardless of the user global
preferences (e.g., preferred music genres), whether he starts listening to a certain kind
of songs, he is indirectly expressing a strong, temporary preference. Consequently,
the next song to suggest to such user has to be somehow aligned (e.g., similar genre,
same theme, etc.) with the tracks listened in the current session. User listening ses-
sions indeed form a rich and reliable set of implicit playlists that can be exploited to
recommend new tracks relevant to the current listening session. The main steps of this
solution consist of (i) identifying the user listening sessions from the atomic play events
to create the implicit playlists and (ii) matching the user’s current listening session to
find the relevant implicit playlists, in accordance to a defined similarity metric (see
Section 3.3).

As described in Section 3.4, we processed all the collected play events of 45K users
during one year (31M events) on a 4.5M-item catalog, defining 2.7M sessions. There-
fore, for each recommendation, the current session of the target user has to be compared
with all the extracted implicit playlists. The best matching playlists are aggregated in
order to identify the tracks to recommend.
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3.2. Background

3.2 Background

Music recommender systems are typically implemented to suggest to users either (i)
top-n recommendations, i.e., a limited set of tracks, albums, or artists [116] that are
believed to be appealing for them [77] or (ii) an ordered list of tracks or artist (i.e.,
playlist recommendations) [7, 24].

In this chapter we focus on presenting to a user a sequence of tracks, referred to as
playlist . An updated list of solutions can be found in Bonnin and Jannach’s survey [25].
Among the top performing algorithms, they mention Same Artist Greatest Hits (SAGH)
and Collocated Artist Greatest Hits (CAGH), which we have used as baselines (see
Section 3.4.2).

Ragno et al. [106] started from the consideration that the more frequently two tracks
are played one after the other, the more similar they are. They proposed to use “editorial
playlists” to build a graph where every node is a track and every weighted edge repre-
sents the similarity ratio among a couple of nodes: the recommendation is generated
through a Random Walk in this graph.

A more recent work is presented by Dzuba and Bugaychenko [49]: they mined the
user listening behavior to identify frequent patterns and build playlists, further opti-
mized with respect to track diversity. Hariri et al. [56] tried a similar approach focusing
on the next-artist recommendation problem: they build a graph and used a Markov
Chain model to recommend the next artist. A completely different approach is de-
scribed in [7], where playlists are generated throughout a 4-step Case-Based Reasoning
problem. Finally, Chedrawy et al. [31] used Collaborative Filtering to build playlists.

3.3 Implicit playlist recommender (IPR)

The proposed approach extracts recurrent listening patterns from the user sessions and
use them to generate recommendations. These listening patterns will be referred to
as implicit playlists. Given a user, we can identify two types of listening behaviors:
“explore” and “exploit”. The former occurs when the user is searching for new songs,
the latter when a user is listening to music already known and appreciated. We discard
the exploratory behavior as we assume it adds noise to the system and it is not useful
in understanding the user preferences. The following steps have been implemented to
keep only the sequences of tracks that the user likes and to generate recommendations:

1. For each user, we extract all his listening sessions and compute the shrunk Jaccard
similarity j as in (3.1).

2. We maintain only the user sessions if there exists at least another session with
a Jaccard similarity over the threshold j_th ∈ [0, 1]. These sessions form the
implicit playlists of a user.

3. Using all the implicit playlists, we build a track-playlist binary matrix - denoted
by P - where each element (m,n) is 1 iff track m belongs to the playlist n. The
training makes an intense use of Apache Spark mapping functions such as join
and groupByKey.

4. Given a user listening session, we define the vector pu of size equals to the total
number of tracks, where the m-th element is 1 iff the user played the track m
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Figure 3.1: Music datasets comparison

in this session. In order to give more importance to the most recently listened
tracks, the values of pu were discounted exponentially in time with a factor w.
Finally, we multiply pu by P to obtain a relevance score for each implicit playlist.
The final recommendation list is generated by aggregating the implicit playlists
by decreasing relevance score.

The shrunk Jaccard similarity is computed as follows:

j(S1, S2, j_sh) =
|S1 ∩ S2|

|S1 ∪ S2|+ j_sh
(3.1)

where S1 and S2 are the sets of the tracks of two sessions and j_sh is the shrinkage
factor used to filter out sessions that are too short.

3.4 Experiment Setup

Several challenges in the music domain have been only partially explored due to the
scarcity of data available to researchers for experiments. For instance, tasks such as user
modeling and playlist recommendation require information about listening events (e.g.,
user, track, time, duration), explicit information about user preferences (e.g., loved
tracks, playlists), and user listening sessions. The work done in creating this dataset
has been published in RecSys 2015 as a poster paper [127].

3.4.1 Dataset

Related datasets

There exist a number of publicly-available music datasets, used in several music exper-
iments. Figure 3.1 compares our crawled dataset – 30Music dataset – with the existing
publicly available datasets.
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3.4. Experiment Setup

Most datasets provide content information (e.g., metadata, tags, acoustic features),
but only a few report some user-system interactions (e.g., ratings, play events) useful to
profile users and to experiment with personalization tasks.

The Million Song Dataset (MSD) [18] is a public collection well-known for its size.
It contains audio features (e.g., pitches, timbre, loudness, as provided by the Echo Nest
Analyze API1) and textual metadata (e.g., Musicbrainz2 tags, Echo Nest tags, Last.fm
tags) about 1M songs (related to 44K artists).

Celma [29] has published two music datasets collected through the Last.fm API:
1K-user and 360K-user. The smaller one - 1K-user dataset - contains the listening
habits (20M play events) of less than 1K users. The bigger one - the 360K-user dataset
- collects the information about 360K users, but it does not have any listening data
other than the number of times a user has listened to an artist. Data are provided as
downloaded from the Last.fm API.

Yahoo! Labs have released several music datasets3. For instance, the R1 and the R2
datasets provide ratings on artists and songs, respectively, but not user play events.

Some datasets have been extracted from microblogs, such as the Million Musical
Tweets Dataset [57].

Finally, The Art of the Mix Playlist dataset4, consists of 29K user-contributed playlists,
containing 218K distinct songs for 60K distinct artists. However, there are no user lis-
tening events.

Dataset creation

The 30Music dataset has been obtained via the Last.fm public API5. Last.fm provides
free APIs to track details of user listening sessions. In the case a user has connected
his supported player to his Last.fm account, the player “scrobbles” the user listening
activity, i.e., it transfers the play event to Last.fm that records such user interaction.

It is worth noting that only listening events are recorded, while pause/skip events are
not scrobbled from the user player to Last.fm, as well as any playlist or explicit prefer-
ence defined or expressed in the player. The main way for a user to create a playlist in
Last.fm is not trough the player with the scrobble plugin, but through the Last.fm web-
site; similarly, the user can express explicit preferences (‘love’) about tracks directly in
the website. As a consequence, explicit ratings and playlists stored in Last.fm are not
biased by external systems (e.g., the recommendations proposed in the player). Unfor-
tunately, Last.fm policy is to scrobble only tracks played for at least half their duration
(or for at least 4 minutes), although many listening events lasting less than 5 seconds
have been found in the collected data. To build the 30Music dataset, we started from a
list of 2M Last.fm usernames from the Chris Meller dataset6.

Given the list of users, we retrieved their playlists (User.getPlaylists) to-
gether with the single tracks composing the playlists (Playlist.fetch). Starting
from users with at least one playlist (about 90K users), we retrieved (User.getRecentTracks)
the user listening events over a 1-year time window (from Mon, 20 Jan 2014 09:24:19).

1
http://the.echonest.com/

2
https://musicbrainz.org/

3
http://webscope.sandbox.yahoo.com/catalog.php

4
http://labrosa.ee.columbia.edu/projects/musicsim/aotm.html

5
http://www.last.fm/api

6
https://opendata.socrata.com/Business/Two-Million-LastFM-User-Profiles/5vvd-truf
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Figure 3.2: Cumulative play events distributions for tracks and artists

The raw playlists and user listening events have been enriched with additional informa-
tion about users (User.getInfo) and tracks (Track.getInfo).

Furthermore, the data downloaded with the Last.fm API has been processed using
Python scripts exploiting some Apache Spark functions for a distributed processing
of the massive amount of data. In order to keep only complete and reliable data, we
discarded users with some missing data (e.g., if the track scrobbled by the user has the
wrong metadata and it is not recognized by Last.fm, the whole user is discarded). In
this way, we kept only half of the users, those who have complete information.

Finally, we defined a new entity, the user play session, as an ordered list of play
events that are assumed to be consequently listened by the user with no interruptions.
We define a play event to be part of a session if it occurs no later than 800 seconds after
the previous user play event. We determined this threshold by assuming a gaussian dis-
tribution of the playtimes frequencies and computing the 99,7% percentile (see Figure
3.6).

30Music format The 30Music dataset is released in accordance with the Idomaar data
format [115], a multigraph representation oriented to recommender system evaluation
that explicitly represents entities (i.e., nodes) and relations (i.e., edges).

Entities model any object that can be recommended. The dataset is formed by 45K
users, 5.6M tracks, 50K playlists, 600K artists, 200K albums, and 280K tags.

Relations model links between two (or more) entities. We defined 31M user play
events, 2.7M user play sessions, and 4.1M user love preferences.

Dataset analysis

The dataset contains 31,351,954 play events organized into 2,764,474 sessions (an av-
erage of 11 play events per session). The dataset also contains 1,692,924 explicit rat-
ings (loved tracks), with an average of 33 ratings per user, and 279,351 user-created
playlists. The number of events without track duration is 1,277,893 (4.08%).

Figure 3.2a plots the empirical cumulative event distributions as a function of the
number of tracks (in percentage). Tracks in the horizontal axis are ordered according
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Figure 3.3: Power-law distribution of the number of play events per user and track

to their popularity, most popular to the left. The figure plots the same distribution for
two subsets of the play events: play events of “loved” tracks (i.e., tracks for which
the user expressed an explicit preference) and play events of playlist tracks (i.e., tracks
played from a playlist). We observe that play events present a moderate long-tail dis-
tribution. The 20% most popular tracks collect 80% of the play events. This long tail
effect is mitigated when analyzing preferred tracks (i.e., loved tracks and tracks in the
playlists). We observe that the same percentage of play events (80%) involves twice
the tracks (40%) when considering tracks in the playlists. We can deduce that users
have preferences spanning many different tracks, but their listening behaviour is biased
toward the most popular tracks.

A similar analysis has been performed for artists (see Figure 3.2b). Differently from
the previous plot, play events present a strong long-tail distribution: the 20% most
popular artists collect more than 95% of the play events. This long tail effect is strongly
mitigated when analyzing preferred tracks. We observe that the same percentage of
play events (95%) involves 50% of the artists when considering tracks in the playlists.
We can deduce that users have preferences spanning many different artists, but their
listening behaviour is strongly biased toward the most popular ones.

Figure 3.3 depicts the distribution of the number of ratings per user (3.3a) and per
track (3.3b). Both distributions exhibit clear power law characteristics with a short
head of “popular” tracks and very active users, and a very large set of tracks and users
associated with very few events.

Figures 3.4a and 3.4b plot the empirical cumulative explicit rating distribution as
a function of the (percentage) number of tracks and artists, respectively. Entities in
the horizontal axis are sorted according to their popularity, most popular to the left.
Since only 14.73% of the tracks and 19.93% of the artists have received at least one
explicit preference, the two plots are limited to the 20% most popular tracks and artists,
respectively. We observe that the distribution of the explicit ratings within tracks does
not exhibit a strong long-tail behaviour. 5% of the most popular tracks collect 75%
of the explicit ratings. On the other hand, the number of explicit ratings is strongly
skewed toward a few very popular artists. 5% of the of most popular artists collect
more than 90% of the explicit ratings. These results confirm our previous intuitions
over users’ listening behaviour. Users tend to love (and to listen to) a few very popular
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Figure 3.4: Empirical cumulative explicit rating distribution for tracks and artists
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Figure 3.5: Probability distribution of the playlist lengths and cumulative distribution of the number of
events per session

artists. However, their preference spans across several tracks of these very popular
artists. Still, they tend to provide explicit rating for few of the tracks they have listened
to. This can be due to the mechanism adopted by Last.fm to collect explicit feedbacks,
which forces users to access to the Last.fm online service and to provide their “love” to
a track there. This imposes a heavy burden over users, but on the other hand it enhances
the strength of each explicit rating, because it is a clear expression of the willingness of
the specific user to provide that feedback.

Figure 3.5a plots the percentage of occurrences of playlists as a function of their
length. A relatively high number of playlists have only one track. This behavior can
be explained as if the user wants to “save” the track for later and can be a proxy of a
positive preference of that user for that track. We can also observe that many playlists
have length of 200, due to the hard limit posed by Last.fm on playlists’ length.

Figure 3.5b refers to play events in sessions and shows that 70% of the sessions have
50 tracks or less. Note that the small discontinuity for the sessions with a length of 200
events corresponds to users who fully listened to playlists of maximum length.
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Figure 3.6: Density and cumulative distributions of playtimes and durations of tracks

Figure 3.6 shows the empirical probability density function and the empirical cumu-
lative distribution of the playtime of an event and of the duration of the played song. In
Figure 3.6a we can observe a very high value in the frequencies below 5 seconds: these
are related to the so called “skipped” songs. Average playtime and average duration
coincide: this validates the methodology implemented for generating sessions.

The dataset is made available to the research community 7. We expect it will fos-
ter the exploration of the several challenges still open in the settings of online music
applications.

3.4.2 Compared Methods

In this section we describe SAGH and CAGH, two algorithms proposed in the litera-
ture in the playlist recommendation setting [25] that we used as baselines. Both algo-
rithms suggest popular tracks and, despite of the basic model behind, they proved to
outperform more complex solutions such as Collaborative Filtering, Markov models,
K-nearest-neighbors, and frequent pattern mining.

Same Artist - Greatest Hits (SAGH) This approach [85] considers only tracks of artists
that the user has already listened to during the current listening session. The rank of the
tracks is then based on their popularity. Thus, when a recommendation is requested,
the algorithm searches for the top popular tracks of every listened artist in the current
session. The success of this simple algorithm [25] proves the role of artist-awareness
and popularity in driving music preferences.

The core of the algorithm consists in computing the top popular tracks (greatest hits)
per artist. Using Apache Spark, we sum the play events for each song (reduceByKey)
and we keep only sessions played more than once (filter). Finally, for each artist, we sort
the songs in decreasing play event count in order to obtain the artist-track occurrences
map.

Collocated Artists - Greatest Hits (CAGH) This algorithm is an extension of SAGH [25].
Instead of only considering artists just listened in the user session, it also includes the

7http://recsys.deib.polimi.it/?page_id=54
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Chapter 3. Music

greatest hits of the most “similar” artists. As a measure of artist similarity, we simply
apply cosine similarity on the session-artist matrix, as typically used in collaborative
filtering.

3.4.3 Evaluation Methodology

We compared the proposed IPR algorithm to the two baseline solutions (CAGH and
SAGH) in terms of quality and computing times. We used the user listening sessions
available in the 30Music dataset as input (Section 3.4), splitting them into two groups
- training and test sets, in accordance to standard evaluation techniques for recommen-
dation evaluation (e.g., [35]). We divided sessions on a time basis: sessions started
before 21 Oct 2015 (9 months data) were included in the training set, the more recent
ones (3 months data) in the test set. The training set has been used to bootstrap the
recommendation model, either CAGH, SAGH, or IPR. The test set has been used to
compute the recommendation quality. For each session Si in the test set, we created
the known session Sik and the hidden session Sih. The Sik set is composed by the first
s play events of Si and it is available to the recommendation algorithm to make all the
required inference (e.g., to identify the user session). The Sih set is composed by all
play events after the S-th event. In our experiments we used s - referred to as session
length - equals to either 1, 2, 5, 10 or 20. All sessions with a number of play events
lower than the required one were excluded from the related test.

For each session, we generate a recommendation list composed by N tracks, ex-
perimenting with N = 1, 5, 10, 25. Smaller values of N evaluate the capability of the
algorithm to catch the immediate needs of the user, while larger ones better reflect the
long-term ones (still within a single user session). The quality has been computed in
terms of recall, as the percentage of recommended tracks that appear in the Sih set. The
algorithm recall is obtained by averaging the recalls of all sessions. We chose the recall
since our objective is to retrieve all the tracks that the users actually listened to.

During evaluation it is important to consider that users may listen the same track
several times within a session. To evaluate the impact of repetitions on the recommen-
dation quality, we experimented both with and without repetitions in the test set only.
No filtering over repetitions was performed for the training set, leaving the algorithms
free to exploit all the information during their training stages.

3.4.4 Settings

Given the problem size, the computation is particularly demanding and has been imple-
mented using the Apache Spark8 Python APIs (PySpark) for a scalable and distributed
processing.

In order to manage the massive amount of data, we used Idomaar9 as the evaluator
framework, whose core evaluation functionalities (dataset splitting into training, test,
and ground-truth sets and quality evaluation) are implemented with distributed and scal-
able technologies such as Apache Kafka and Apache Spark. The main component of
Idomaar is the “orchestrator”, which is designed to manage the incoming streams of
data and messages (e.g., user-item interactions/signals, requests for recommendations,

8
https://spark.apache.org/

9http://rf.crowdrec.eu/
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Figure 3.7: Recall of the tested methods with repetitions in the test set at different cutoffs of the recom-
mendation list.

etc.), distribute them to the “computing environment” where the recommendation mod-
els are bootstrapped and the recommendation requests are served; finally, the output of
the computing environment is sent to the “evaluator” where they are evaluated both in
terms of quality and response time.

The experiments have been performed on an Amazon Elastic Compute Cloud (EC2)
cluster composed by 9 nodes. Amazon Elastic Compute Cloud is a cloud comput-
ing platform which allows users to create, launch, and terminate virtual machines as
needed, paying by the hour for active ones. This platform allows to create 3 different
types of instances: on-demand instances paid by hour without commitment, reserved
instances with one-time payment, and spot instances ran only if the spot price is be-
low the bid specified by bidder. Each node was a r3.2xlarge instance equipped with 8
virtual CPUs, 61 GB RAM, and 160 GB SSD, running Apache Spark 1.4.0. One of
the nodes was elected to cluster master and was provisioned as on-demand instance,
the others worked as cluster slaves and were provisioned as spot instances. Practically,
there were 8 nodes dedicated to computation and 1 to orchestrating the process, for a
total of 72 virtual CPUs, 540GB RAM, and 1.4TB SSD.

We tuned the algorithms’ hyper-parameters on an independent 10% subset of the
users in the dataset. In the end, we configured SAGH and CAGH so that the number
of greatest hits per author was equal to 100 and 50, respectively. In addition the author
similarity threshold used by CAGH was set to 0.4. As for the IPR, we configured
j_sh = 5, j_th = 0.1, and w = 0.7.

3.5 Results

Figure 3.7 shows the performance of each algorithm for session lengths 1 and 10, i.e.,
recommendations are provided to users when they have listened to only 1 and 10 tracks
respectively. Repeated tracks were not removed from the test sessions in these experi-
ments. The performance of SAGH and CAGH are almost equal, with a small advantage
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Figure 3.8: Recall of the tested methods without repetitions in the test set at different cutoffs of the
recommendation list.

for CAGH for large N values. IPR always significantly outperforms the baselines for
N ≥ 5, with differences ranging from 20% to 70%. With lower values of N , the base-
lines still provide better results for small user session lengths (s). Figure 3.8 shows the
performance of the algorithms when repeated tracks are filtered out from the test set.
In this case our algorithm has a smaller increment on the performance. This is due to
the fact that our algorithm saves the sessions as implicit playlists also with the repeated
tracks, although they are not considered in the similarity function. Hence removing
repeated tracks lowers the performance because IPR recommends them in any case.
In the extreme case the user session is composed by one track, the baselines clearly
outperform IPR. However, when more information is available (i.e., s > 1), IPR is the
clear winner for recommendation lists containing at least 5 songs.

IPR suffers from extreme session cold-start situations, i.e., when only few informa-
tion is available about the context. In these conditions, IPR does not have the necessary
support to correctly infer the implicit playlist for the user. Popularity-based algorithms
- like SAGH and CAGH - are not affected by this issue and have better performance.
However, as the user interacts with the system and provides additional feedback – so
that the system can understand its current taste –, the “trivial” popularity criterion fails.
In such condition the more sophisticated criterion at the ground of IPR clearly better
matches user tastes and provides higher quality recommendations.

Moreover, IPR has been proven to be superior to the baselines for longer recom-
mendation lists. This shows that IPR is able to provide higher quality recommendation
with a lower number of recommendation requests with respect to baselines. We believe
this is due to the intrinsic capability of IPR to capture track co-consumption patterns,
which are highlighted only in longer recommendation lists. SAGH and CAGH are still
too biased by popularity for being able to capture such patterns effectively.
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3.6. Discussion

3.5.1 Computing time

We extracted the computing times in training and generation of the recommendation
lists for each tested algorithm by analyzing the execution logs of Apache Spark. No
significant differences in computing times were noticed among the different experi-
mental conditions.

SAGH and CAGH run respectively in about 24 and 35 minutes. Their execution
times where mainly dominated by the stage in which artists’ popularity is counted
along sessions. The additional overhead of CAGH with respect to SAGH is due to
the quadratic nature of the artist-artist similarity computation.

Surprisingly, IPR generated recommendations in 18 minutes, with a 1.3x and 2x
improvement with respect to SAGH and CAGH. We believe these improvements, espe-
cially against CAGH, are due to the intrinsic flexibility of IPR, which is able to generate
a model through a single pass over the input data and with no need of external metadata,
such as artist identifiers.

Finally, it is important to point out that configurations of the tuning parameters,
especially the similarity thresholds for CAGH and IPR, may lead to significantly dif-
ferent computing times and response qualities. Algorithm configurations were chosen
according to the best speed/quality trade-off we found during the hyper-parameter tun-
ing phase.

3.6 Discussion

In this chapter we developed IPR, a new context-driven playlist recommendation al-
gorithm, and compared it against two of the best state-of-the-art recommendation al-
gorithms. All algorithms have been efficiently implemented in the Apache Spark pro-
gramming framework. IPR outperforms the state-of-the-art baselines with longer user
sessions. This can be explained by the fact that IPR better recognizes longer and re-
current patterns in user listening behavior. In addition, we improved the running times
with respect to the baselines, making it feasible to be deployed in larger production
environments.

This chapter confirms that the contextual variable of the session is very important
to infer the task and the intent of the user in her listening activity. Our context-driven
algorithm is able to address the challenges that break the ImP assumption. The life-
cycle of items is handled because as new songs are released and listened, it can update
its implicit playlists with new data related to fresh songs. The taste development is not
a problem for IPR as it does not build any user profile. Finally the task or intent of the
user can be inferred by looking at the current listening session, thus recommending the
best playlist according to user current listening taste.

The power of our algorithm lies in its flexibility and its capability to instantaneously
adapt to the user context, making it feasible to “continue on the same mood” of the
user. This creates a new way to listen and discover music, extending the principle of a
“seed” song, to a sequence of “seeds” songs, the most recent being the most important.
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CHAPTER4
Jobs

In the job recommendation domain personalization is crucial. In this domain the “right”
item (job) has to be matched to the “right” user. A good match between a user and
an item is found when the user’s skills or ambitions match the job posting descrip-
tion. Nonetheless we will show that context, in this domain, cannot be neglected. The
bounded capacity and the ephemeral catalog challenges depicted in Figure 1.1 cause old
job postings not to be available anymore. In addition to that, user taste evolves, thus
making old interactions not to be representative of the actual user needs in terms of jobs.
We show that, for example, prioritizing recent preferences and interaction patterns im-
proves the accuracy of recommendations. This confirms that relaxing the assumptions
of the ImP paradigm allows recommender systems to take into account the trendiness
of an item and the intent of a user, since more recent preferences are a proxy for the
user’s current interest in jobs. Finally we show that by leveraging the feedback of the
user in different contexts we are able to improve the performance of Bayesian Person-
alized Ranking [111], a traditional context-blind collaborative filtering method and its
context-aware variant, Bayesian Personalized Ranking with Factorization Machines.

4.1 Problem Definition

The job recommendation domain presents some unique challenges for recommender
systems. First of all, it makes sense to recommend already seen items, since users can
browse them many times. Second, jobs have a trendiness and freshness window: it is
very likely that old job postings are not available anymore [3]. Third, it is key to this
domain to match the appropriate job to the appropriate user as this is not only a matter
of personal taste. Each job posting requires a particular set of skills that have to be
matched by the user personal skills [15]. Recommending job offerings is really differ-
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ent from recommending movies or e-commerce goods, mainly because it is unlikely
that a user will watch a movie or buy the very same product again. On job recommen-
dation instead it is very likely that when a user views a job posting once, he will return
to that same offering to compare it with other ones, or to apply for an interview.

Recommender systems exploit user interactions in order to generate predictions of
user preferences. Today’s recommenders are not dependent on users explicitly rating
items, but rather are able to exploit implicit feedback. The number of types of implicit
feedback, here referred to as channels, that can be collected from users is large, and
growing. These feedback channels provide positive-only feedback, meaning that they
capture preference, but not dispreference. They include view, click, like or follow but
also replies, bookmarks, follows, saves, shares, purchases, flags, mentions. The poten-
tial posed by these channels raises the question of whether additional forms of feedback
add additional value, and, if so, how this value can best be exploited to improve rec-
ommender systems. Each feedback channel can be interpreted as a different contextual
signal of the user’s intent, since she may interact with the items in different ways.

In this chapter we tackle the job recommendation problem by two different sides:
the first is our approach to The 2016 RecSys Challenge sponsored by XING. XING1

is a professional social network and a job discovery platform mainly operating in the
German area. Our approach uses all the positive feedback in a unique model, without
distinguishing between different types of feedback. Although this approach may seem
simplistic, we rather focused on the ensemble of various recommendation techniques,
which granted our team the fourth place in The 2016 RecSys Challenge (first academic
team). In this approach we heavily used time to grasp the current preferences of the
user.

The other approach, instead, focuses on improving a single Collaborative Filtering
technique, the Bayesian Personalized Ranking, in order to take into account different
levels of feedback. We focus on Factorization Machines (FMs) [108], a state-of-the-
art factorization method shown to achieve performance on par or beyond that of other
models. We choose FMs because they are well suited for the integration of auxiliary
data in terms of additional features, and, for this reason, allow us to compare differ-
ent methods of integrating multi-feedback channels. We combine FMs with Bayesian
Personalized Ranking (BPR) [111], a pairwise learning-to-rank method. We use BPR
because it allows us to learn preferences from unary (positive-only) feedback. We con-
sider channels to constitute different levels of feedback, with higher levels reflecting a
higher user commitment, and thereby a stronger preference signal, than lower levels.
Briefly, the benefit of leveraging channels in BPR is the advantage offered by a better-
informed sampling of positive and negative items. BPR learns its model by iteratively
optimizing over these pairs. It has been shown that the performance and convergence
of the BPR optimization model is largely dependent on how well the pairs of positive
and negative items are sampled [111, 110]. Sampling the “right" items results to a
faster convergence of the BPR model and makes a contribution to the overall perfor-
mance [110]. In this section, we move multi-channel feedback to a FM framework to
make a direct comparison between exploiting multiple feedback channels directly or
via sampling possible.

This approach addresses the following research questions (RQs):

1https://www.xing.com
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• RQ0: As a sanity check, does a recommender that combines multiple channels of
feedback improve its performance over a recommender that uses a single channel
only?

• RQ1: Does channel-based, level-informed sampling allow for better exploitation
of multiple feedback channels than conventional integration of feedback?

• RQ2: What are the advantages of channel-based level-informed sample (i.e., per-
formance, coverage, time)?

• RQ3: How can we best use levels to inform sampling?

4.2 Background

In this section we provide an overview of Factorization Machines(FMs) and Bayesian
Personalized Ranking (BPR) to be able to explain pairwise-FM, the model that we use
in Section 4.3.2. We also refer to pairwise-FM as BPR-FM, since it uses the BPR
optimization criterion.

Factorization Machines

Factorization Machines are general factorization models that are capable of modeling
different factorization approaches by feature engineering [109]. In addition to their
superiority with respect to performance and accuracy, FMs offer an advantage be-
cause they allow easy integration of additional information in the form of auxiliary
features. Factorization Machines have been successfully applied in context-aware rec-
ommendation [112], Cross-Domain collaborative filtering [82] and Social Recommen-
dations [78].

The standard FMs are designed for data with explicit feedback. Each user-item
interaction is modeled by a feature vector x and the corresponding feedback (rating)
is specified by a real value y. The standard FMs model with two-way interactions is
specified as:

f(x) = w0 +
n∑
j=1

wjxj +
n∑
j=1

n∑
j′=j+1

wj,j′xjxj′ (4.1)

where n is the number of features, k is the dimensionality of factorization, wj are first
order interaction parameters and wj,j′ are second order factorized interaction parame-
ters and are defined as wj,j′ = 〈vj.vj′〉 where vj = (vj,1, . . . , vj,k) is k-dimensional
factorized vector for feature j.

Model parameters are learned by optimizing a point-wise objective function, which
is defined over training data S. The objective function is typically a square loss over
training samples plus a regularization term to prevent over-fitting.

In recommendation scenarios involving unary positive feedback (instead of e.g., rat-
ings), the target values y are not available in terms of real value numbers and a point-
wise loss function is not suitable. Pairwise models on the other hand, learn to correctly
rank any pair of items for each user. Previous work has reported that pairwise loss func-
tions are better choices for datasets with unary feedback [111, 93, 118]. In this work,
we use a pair-wise loss function for FMs based on the BPR model. Before describing
such loss function, we give an overview of BPR in the next subsection.
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Bayesian Personalized Ranking

Bayesian Personalized Ranking (BPR) [111] is a state-of-the-art learning-to-rank method
for learning from data with unary feedback. The basic idea of BPR is that for any
user u the items with observed positive feedback are preferred over items without any
feedback from u. With that assumption, BPR creates training data by forming tuples
(u, i, j), where i is an item with positive feedback from u and j is a negative item (an
item without any feedback from u).

BPR learns the model parameters Θ by maximizing the likelihood function p(i �u
j) for all training triples (i �u j is read as i is preferred over j by user u). The likelihood
function p(i �u j) is defined as:

p(i �u j) = σ(ŷuij(Θ)) (4.2)

where σ is the logistic sigmoid function and ŷuij is a real-valued utility function that
captures the relationship between user u, item i and item j, given model parameters
Θ. In standard BPR, ŷuij is defined as the subtraction of individual user-item utility
function:

ŷuij(Θ) = ŷui(Θ)− ŷuj(Θ) (4.3)

The utility of user-item pairs ŷui(Θ) can be defined by different models such as
Matrix Factorization or Nearest Neighbor models [111].

Rendle et al. [111] showed that the maximum likelihood problem in BPR can be
reduced to an optimization problem with the following pair-wise objective function:

L(Θ, S) =
∑

(u,j,j)∈DS

lnσ(ŷuij)− λΘ||Θ||2 (4.4)

where λΘ are the regularization parameters and DS is the set of tuples (u, i, j). The
BPR optimization problem is solved by Stochastic Gradient Descent (SGD).

Due to the large number of possibilities to create the tuples, the negative items j are
typically sampled from the items set. The choice of sampling method in BPR is crucial
on the convergence of SGD algorithm. In [111], it has been suggested that the user-
item pairs (u, i) are sampled from S uniformly (with replacement) and the negative
items j are uniformly drawn from I\I+

u . However, in a later study, Rendle et al. [110]
proposed a dynamic non-uniform sampling method for negative items where the prob-
ability of sampling a negative item is dependent on the current model parameters. They
showed that for datasets with tailed item popularity distribution dynamic sampling has
a significant influence on the convergence of SGD.

Pairwise Factorization Machines

Using the BPR optimization criteria, which we described earlier, we can adapt FMs for
data with unary feedback. A straightforward approach would be to consider the FMs
model in (4.1) as the utility of individual user-item pairs, i.e., ŷui. However, FMs are
feature-blind, i.e., for a given feature vector, FMs do not know which features corre-
spond to user, item or auxiliary information. On the other hand, in the BPR algorithm,
for a given user-item pair the user should be known to the algorithm in order to sample
an appropriate negative item. We therefore introduce a finer-grained representation of
FMs where the algorithm is aware of the features.
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Let us assume that xu,i,z is a feature-aware representation of an input feature vector
in FMs such that u corresponds to the user, i corresponds to the item and z corresponds
to the set of auxiliary features in x. The utility of individual interactions xu,i,z can be
calculated using equation (4.1). In this case the feature vector xu,i,z can be represented
with the sparse form xu,i,z = {(u, 1), (i, 1), {(z, xz)|z ∈ z}} where xz is the value of
feature z and can be either binary or real depending on the type of feature. By replacing
xu,i,z in equation (4.1), and expanding wj,j′ , the individual utility function f(xu,i,z) can
be written as:

f(xu,i,z) = w0 + wu + wi +
∑
z∈z

wzxz +
k∑

f=1

vu,fvi,f

+
∑
z∈z

xz

k∑
f=1

vu,fvz,f +
∑
z∈z

xz

k∑
f=1

vi,fvz,f

(4.5)

Due to the presence of auxiliary feature z, we adapt the definition of likelihood and
loss functions in BPR to take into account the auxiliary features. Hence, we define a
more general likelihood function for BPR as:

p(i �u,z j|Θ) = σ(gz(u, i, j|Θ)) (4.6)

where i �u,z j indicates that item i is preferred over j by user u with the presence
of auxiliary features z. Here gz(u, i, j|Θ) is the utility of pairs of feature vectors in
FMs. Similar to (4.3), gz can be defined by subtracting the utility functions f(xu,i,z)
and f(xu,j,z). Thus, by using the definition (4.5), gz can be written as:

gz(u, i, j|Θ) = wi − wj +
k∑

f=1

vu,f (vi,f − vj,f )

+
∑
z∈z

xz

k∑
f=1

vz,f (vi,f − vj,f )

(4.7)

Note that the above scoring function is very similar to the Matrix Factorization (MF)
scoring function. However, it has an additional term (second line) that takes into ac-
count the auxiliary features to score a user-item interaction. The BPR-FM model with-
out auxiliary features would be equal to BPR with MF scoring function. So it is obvious
that BPR-FM is a generalization of BPR-MF.

The objective function L(Θ, S) can be adapted by replacing ŷuij with gz in equation
(4.4). The optimal parameters are found by minimizing this function, i.e., ΘOPT =
argminΘL(Θ, S). This optimization problem can be solved by Stochastic Gradient De-
scent.

4.2.1 Related work

Our work shares the goal of using FM on implicit feedback with a few recent studies.
Nguyen et al.[93] proposed Gaussian FM, where interaction between feature vectors is
modeled with Gaussian kernels. They also proposed a pairwise ranking model where
the Gaussian FM model can be used for data with implicit feedback. Qiang et al. [105]
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proposed RankFM model that uses an ordinal regression model with FM kernel for
micro-blog ranking.

Our proposal is related to other work that strives to improve BPR sampling meth-
ods. Gantner et al. [53] proposed a non-uniform sampler for negative items where the
probability of sampling negative items are given in advance. Rendle et al. [110] pro-
posed a more advanced sampling method where the probability of sampling negative
items are adapted dynamically. Most closely related, is the study done by Lerche et
al. [74], which proposed BPR with graded relevance. In this method, sampling is par-
tially done using graded feedback. The authors define weights for grading feedback and
feedback with higher weights is preferred to feedback with lower weights. However,
their method relies on hand-chosen ratios and the choices of weights depends on some
content or temporal information. Our method differs from [74] in the sense that it uses
multiple channels simultaneously and does not rely on real-valued grades for implicit
feedback.

In more recent work, Pan et al. [99] used an extension of BPR, namely BPR with
confidence [131], for learning from heterogeneous implicit feedback. Their method
exploits heterogeneous feedback by modeling feedback confidence. However, the con-
fidence scores should be given a priori and their method is only tested with explicit
movie-ratings.

4.3 Multi-Stack Ensemble and Multi-Channel Sampling

In this section we present two approaches we used in the job recommendation domain.
Our first approach, described in Subsection 4.3.1 consists of an ensemble of many dif-
ferent recommendation algorithms. Ensemble theory states that the more the algorithms
are diverse and can learn different relations in the data, the better is the performance
of the ensemble [104, 114]. Our second approach, presented in Subsection 4.3.2, pro-
pose a different context-driven technique in order to improve the sampling of Bayesian
Personalized Ranking algorithm in a multi-channel feedback setting.

4.3.1 Multi-Stack Ensemble

Figure 4.1 presents an outlook of the layers of our ensemble solution. Algorithms
are represented by solid-line rectangles, while ensembles by dashed-line rectangles.
The arrows shows the ensemble flow. We used collaborative filtering (CF) algorithms,
content-based algorithms, past interactions, past impressions and the baseline. Two en-
sembling methods were used: linear ensemble and evaluation score ensemble. At the
lowest level, we create an ensemble of algorithms exploiting the same technique: for ex-
ample we merged all the collaborative algorithms and all the content based algorithms,
eventually combining them in a single ensemble (CF+CB). For the final submission we
created an ensemble merging the past interactions, past impressions, CF+CB and the
baseline, thus combining very different techniques and empowering our final ensemble.

Algorithms

Collaborative Filtering We created a total of 6 collaborative filtering models: 4 User
Based Collaborative Filtering (UBCF), and 2 Item Based Collaborative Filtering (IBCF).All
of the methods consider every positive interaction as an implicit rating (signal) of the
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Past
Interactions Ens CF
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Impressions
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IBCF	
ImpImp

CBJUIS CBIS

Baseline

Ens
CF+CB

Ens CB

Final
Ensemble

Figure 4.1: Ensemble Stack.

user’s interest in a particular job. However we converted this implicit signal to an ex-
plicit rating as detailed below:

rui =

{
0 if user u did not interact with item i

log
(

total # of interactions
# of interactions with job i

)
otherwise

(4.8)

In this way the model does not consider every interaction as equally important. The
importance of any interaction is higher if the job is less popular. This is inspired by
the inverse document frequency (IDF) principle: an interaction with a very common
job does has a lower information content with respect to an interaction with a not-so-
popular job. We also tried different rating functions (even the binary one), but this was
the one which lead to the best performing algorithms. The IDF term is part of a well
established technique for normalizing the weight of words in a document, known as
term frequency - inverse document frequency (TF-IDF). The term frequency is propor-
tional to the number of times a word appear in a document. We used this principle in
the design of many of the algorithms composing our ensemble.

User Based Collaborative Filtering Once the rating function is established, we can cal-
culate the user-based similarity. In order to reduce the computational effort and to
remove some noise from the datasets, we compute the similarity only between users
that have at least a number of rated items above a fixed threshold z. We define the set
Uz as the set of all users with at least z ratings. Given two users u and w in Uz we
compute the user similarity as:

sim_user(u,w) =

∑
i ruirwi√∑

i r
2
ui

√∑
i r

2
wi + β

(4.9)

where the summations over i are calculated over the set of all jobs that belong to the
samples (impressions or interaction) on which we were computing the similarity. The
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Table 4.1: User-Based and Item-based Collaborative Filtering model parameters.

Name Similarity Target z β K

UBCF IntInt Interaction Interaction 6 7 500
UBCF IntImp Interaction Impression 6 7 500
UBCF ImpInt Impression Interaction 15 9 500
UBCF ImpImp Impression Impression 15 9 500
IBCF IntInt Interaction Interaction 15 7 500
IBCF ImpImp Impression Impression 10 7 500

shrinkage factor β is used in order to give more importance to users that have a high
number of co-rated items.

Having both impressions and interactions data we are able to create two different
similarity measures between users, one interaction-based and one impression-based.
The final recommendation for user u and item i is then calculated as the weighted
average of the ratings given to item i of the top-K similar users to user u.

With two similarity measures (Int/Imp) and two different options for creating the
user profile (Int/Imp), we are able to obtain four sufficiently different predictions for
each user that could be mixed together to obtain a better recommendation. Table 4.1
reports the best parameters for each model.

Item Based Collaborative Filtering As for the user-based approach, we define the set
Iz the set of items having at least z ratings. The similarity between two items i and j
in Iz is calculated as:

sim_item(i, j) =

∑
u∈U ruiruj√∑

u∈U r
2
ui

√∑
u∈U r

2
uj + β

(4.10)

where β is the shrinkage factor. The predicted rating for an user u over an item i can
then be estimated as the average of the ratings given by user u over the top-K similar
items to i weighted by their similarity.

Differently from the user-based approach, the cross combinations IntImp and ImpInt
did not yielded good results, so we kept only the IntInt and the ImpImp variants. Table
4.1 reports the best parameters of the used models.

Content Based Algorithms We have implemented two different content based algorithms,
exploiting the similarity of the concepts of the items (CBIS) and the similarity of the
concepts of users and items (CBJUIS).

Concept-Based Item Similarity An item is described by a vector in a vector space
model composed by its concepts present in the titles and tags of the job posting. We
decided not to use other parameters like career level or region because in our analysis
we could not find any strong correlation between the user’s feature and the job’s feature
the user interacted with, for example we found top managers interacting with intern-
ships. We think this behaviour may be due to the fact that top managers are managers
of small start-ups or they want to see how other companies hire people. Each element
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of the vector represents the importance of the feature that we calculated as the IDF [4],
thus:

wci =

{
0 if item i does not have concept c

log
(

|CI |
# of items having concept c

)
otherwise

(4.11)

The similarity between two items i and j is then simply defined as the shrunk cosine
similarity between the two items vector:

sim_item(i, j) =

∑
c∈C wciwcj√∑

c∈C w
2
ci

√∑
c∈C w

2
cj + β

(4.12)

where β is the shrinkage factor. Differently from the CF, for the prediction we used the
non weighted average of the similarities of the top 30 similar items to the target item.
We set the parameter β to 9.

Concept-Based Joint User-Item Similarity We use the concept-based vector space model
to represent both users and items in terms of their concepts. A user (document), will be
represented by a vector UF of concepts that appeared in the jobs they interacted with
in the past. Each element of the vector corresponds to the weight (or importance) of
that specific concept for the current user. To calculate these vectors we used TF-IDF
normalized weights, calculated as :

UF(c, u) = TFU(c, u) · IDFU(c) (4.13)

TFU(c, u) =

∑
i buic∑
i bui

(4.14)

IDFU(c) = log(
# users ∈ B

# users ∈ B having concept c
) (4.15)

where buic is 1 if the user u interacted with item i having concept c and 0 otherwise and
bui is 1 if the user u interacted with item i and 0 otherwise.

A similar formula was used for the item-feature vector representation. In this case
the item represents the document, and the feature represents the term. The difference is
that the term-frequency part is binary.

IF(c, i) = TFI(c, i) · IDFI(c) (4.16)

TFI(c, i) =

{
1 if item i has concept c
0 otherwise

(4.17)

IDFI(c) = log(
|I|

# of items having concept c
) (4.18)

Once we have built the vectors for both users and items, we can proceed with calcu-
lating the similarity between each pair of user-item. In order to calculate the similarity
between user u and item i we used the cosine between the angles formed by their vec-
tors UFu and IFi. Once the similarities for each user-item pair are computed, we sort
these similarities for each user u in decreasing order and recommend the first 30 items.
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Past Interactions Differently from other domains, for job recommendation it makes
sense to recommend already seen items, since users are likely to re-interact with past
items for example to review the job description. In order to take into account this in-
formation, we processed the past interaction with a filtering and an ordering step. We
filtered out all the items whose latest interaction did not happened during the last 2
weeks of activity of each users. We also tried different time windows, however the last
two weeks provided the best trade-off between performance and the lowest number of
items, leaving more “space” for the other algorithms in the ensemble. Moreover we also
did not take into account the “remove” interactions, since they do not constitute neither
a positive nor a negative feedback. This is in line with the bounded capacity, ephemeral
catalog and taste development challenges depicted in Figure 1.1, which make recent
preferences the most representative for the user. We then sorted all the items per de-
scending interaction count, following the principle that the more times an item had been
interacted with the more interesting it is for the user, since he had continuously got back
to that job posting, thus adapting to the trendiness of the jobs.

Past Impressions Impressions, i.e. the output of the XING recommender, cannot be ig-
nored, since they heavily bias the available choices of each user. This simple algorithm
takes the last week of each user for which the data is available. Again, this confirms
our hypothesis regarding the preference shift, so the last recommendations are the most
useful for the user. We noticed that simply reordering these items in the list of rec-
ommendation led to very different results with a difference up to 50k points. We tried
many reordering methods, but the best performing one was to sort the items for each
user using the Concept based joint user-item similarity (See Section 4.3.1).

Baseline This algorithm was provided by XING and slightly tweaked by us. For each
item we compute a score, giving points for each item feature matching a user feature
(like region, discipline, industry). This algorithm lead to poor results, it was used
mainly to fill those recommendations that our algorithms were not able to provide.

Ensembling methods

We chose to create an ensemble of the previous algorithms using a multi-stack ensemble
technique [120], where we created a hierarchy of hybrid models in order to exploit the
best out of each single learner we had. Each ensemble in the stack uses a voting-based
method combined with a reduce function in order to build the hybrid recommendation,
as detailed below:

saui = fE(rankaui,ΘE) (4.19)

sEui =
∑
a∈E

saui (4.20)

rankEui = sort(sEui) (4.21)

where a ∈ E is an algorithm in the ensemble E, saui is the score assigned to item
i of user u for algorithm a by the scoring function fE dependent on the parameters of
the ensemble ΘE . sEui is the final score for each item i of the user u for the ensemble
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Table 4.2: Parameters and public leaderboard scores la for each algorithm and ensemble.

Ens. Algorithm Ens.
wa da laName Type

CF

UBCF IntInt Eval .0339 NA 108k
UBCF IntImp Eval .0322 NA 103k
UBCF ImpInt Eval .0238 NA 91k
UBCF ImpImp Eval .0408 NA 156k
IBCF ImpImp Eval .0314 NA 121k
IBCF IntInt Eval .0300 NA 95k

CB CBJUIS Lin 1 .001 128k
CBIS Lin 1 .0015 102k

CF+ Ens CF Lin 2 .001 180k
CB Ens CB Lin 2 .0015 140k

Final

Ens CF+CB Lin 3.98 .001 250k
P. Interactions Lin 4 .001 230k
P. Impressions Lin 4 .001 400k
Baseline Lin .1 .0001 46k
Final 622k

E. rankEui is the final rank of each item i for the user u calculated by the sort function
that sorts the items in descending sEui order and takes the top 30 items. If an algorithm
provides less than 30 recommendations, the remaining part of the list is filled with
lower priority algorithms.

Our idea is that if an item is recommended by more than one different technique it
has higher probability to be a good recommendation.

Hereafter, we will describe the different voting techniques that we implemented in
order to assign a score to each element of the algorithms inside the stack. Table 4.2
reports the name of the algorithm produced by the ensemble together with the used
parameters.

Linear Ensemble In the linear ensemble we used two per-algorithm parameters: the
weight wa of the algorithm a and the decay da of algorithm a. The score saui is calcu-
lated as:

saui = wa − rankaui · da (4.22)

We used integers for wa in order to establish a priority over the algorithms, while da
has a very low value (in the order of magnitude of 10−3), so that it does not change the
ordering between algorithms with the same wa. da is then used as an interleaving factor
that allows to interleave the recommendations of algorithms with the same priority
(same weightwa). We set da proportionally to the public leaderboard score of algorithm
a. This ensemble method is used for Ens Cont, Ens CF+CB and for the Final Ensemble.

Evaluation Score Ensemble The Evaluation Score ensemble assigns to each item in the
recommendation list a score that reflects the maximum score that can be obtained us-
ing the provided evaluation metric by recommending a relevant item in that particular
position.

saui = wa · e(rankaui) (4.23)
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where e(rankaui) is defined as:

e(rankaui) =



37.83, rankaui ∈ [1, 2]

27.83, rankaui ∈ [3, 4]

22.83, rankaui ∈ [5, 6]

21.17, rankaui ∈ [7, 20]

20.67, rankaui ∈ [21, N ]

(4.24)

For determining the weights wa we defined the score density ratio as the ratio be-
tween the leaderboard score and the total number of recommended items:

wa =
la
na

(4.25)

where na is the number of items recommended by algorithm a and la is the public
leaderboard score for algorithm a. We use this ensemble method for the Ens CF.

4.3.2 Multi-Channel BPR-FM

In this subsection, we first introduce the way channel information can be embedded
into the BPR-FM model and then we propose a multi-channel sampling method for
BPR-FM.

Multiple Channels as Auxilliary Features

The most straightforward way to exploit multiple types of positive feedback in BPR-
FM is to use the types (channels or contexts) of the feedback as auxiliary features in
the FM model. The basic assumption here is that the type of feedback contains some
information that reflects the commitment level or preference of the user for the item.
With the BPR-FM model, the type of feedback can be considered as an additional
discrete feature. Figure 4.2 illustrates the matrix of a pairwise FM with three positive
(white background) and three negative (red background) samples. In this example,
items are playlists and the types of feedback are ‘click’, ‘share’ and ‘like’. The three
types of feedback are considered as discrete features. For each positive example, an
artificial negative example is created in such a way that the user and auxiliary features
(in this case ‘feedback channel’) are the same as the positive example and the item is a
sampled item from I\I+

u (note that here x+
1 is an example of xu,i,z and x−1 is an example

xu,j,z according to the BPR-FM model).
The advantage of such representation is that the types of feedback are not scored

explicitly and the strength of the feedback can be learned by the algorithm. The negative
examples can be sampled similarly to the standard sampling method of BPR or by the
multi-channel sampler that we introduce in the next section.

Channel-informed Level-based Sampling

This section presents our approach, which improves BPR-FM by using level-based
sampling exploiting multiple feedback channels. In [80], we introduced the idea of
multi-channel sampling for BPR. Here, we provide a fully developed version of the ini-
tial idea by integrating multi-channel sampling to BPR into FM, decoupling the sam-
pling model for positive and negative items, and carrying out extensive testing.
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Figure 4.2: Embedding feedback channels in Pairwise Factorization Machines.

Assume that p(u, i, j) is the probability distribution from which tuples (u, i, j) are
sampled. This distribution can be expanded as:

p(u, i, j) = p(u, i)︸ ︷︷ ︸
positive pair

sampler

. p(j|u)︸ ︷︷ ︸
negative item

sampler

(4.26)

The two components in the above probability distribution are positive pair sampler,
by which user-item pair (u, i) is sampled, and the negative item sampler, by which j is
sampled.

In standard BPR, (u, i) is selected by uniform sampling from the training set2 S,
and j is sampled uniformly from I\I+

u . Thus, the probability distribution of the two
samplers in the standard BPR can be denoted by 1

|S| for positive pairs and 1
|I\I+u |

for
negative items.

For multi-channel positive feedback we introduce the notion of a feedback level that
reflects the importance of a feedback channel. The notion of level is also used to define
an ordinal scale for different feedback channels. The higher the level of a feedback
is, the higher is the user’s interest or commitment level to the item. For example, in
a music recommendation framework, a user ‘like’ should have a higher level than a
‘click’, assuming that a ‘like’ is an stronger indication of interest than a ‘click’. Figure
4.3 illustrates the standard versus the multi-channel sampling for the BPR-FM model.
The arrows show the preferences. The assumption of multi-channel sampling is that an
item at a higher feedback level is preferred to an item a a lower feedback level.

Our multi-channel level-based sampler differs from the standard BPR sampling
method in two ways: First, the multi-channel method samples additional relations com-
pared to the standard BPR sampling. In fact, the positive and negative items in tuples
(u, i, j) can also read as a ‘preferred’ and a ‘less preferred’ item. Second, the proba-
bility of sampling positive and negative item pairs depends on the level in which they
occur.

2Note that the user-item pairs can also be selected by iterating over training data but it has been shown that sampling with
replacement (bootstrapping) is more efficient than iteration [111].
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Figure 4.3: Standard (A) versus multi-channel sampling (B) for the BPR-FM model. The arrows indicate
preferences.

Our multi-channel sampler utilizes feedback channels to over- or under-sample cer-
tain feedback types to better learn the user’s preference model. Thus, the probability of
sampling positive and negative item pairs also depends on the level where they appear.

We denote L = (L1, . . . , Lp) as the ordered set of levels in a dataset such that
Li � Li+1, that is, feedback in Li are stronger signals of interest compared to the
feedback in Li+1. For example, in Figure 4.3 there are four levels: three positive and
one unobserved. We also denote L+ as the set of positive levels (since the feedback
level can be also negative, such as dislike). Let L and N denote the level of the positive
and negative item in tuple (u, i, j). The multi-feedback sampler samples tuples (u, i, j)
from the following set:

DMF = {(u, i, j)|i ∈ IL,u ∧ j ∈ IN,u ∧ L ∈ L+ ∧ L � N} (4.27)

such that IL,u represents the set of items in levels L that user u interacted with and IN,u
represents the set of items that can be sampled in level N as negative item.

As already stated, in the multi-channel feedback sampling method the probability of
sampling the tuples depends on the levels. We can therefore assume that the tuples are
sampled from a joint probability distribution p(u, i, j, L,N), which can be expanded
as:

p(u, i, j, L,N) = p(u, i, L).p(j,N |u, L) (4.28)

In the above equation, the positive pair sampler and the negative item sampler are
both joint probability distributions with positive or negative levels. We now define
different distributions for positive and negative samplers.

Positive Pair Sampler In Multi-channel sampling, the positive feedback sampler can be
further expanded as:

p(u, i, L) = p(u, i|L)p(L) (4.29)

where p(L) is the probability of sampling a positive level. We define p(L) as following:

p(L) =
wL|SL|∑

Q∈L+ wQ|SQ|
(4.30)
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where |SL| is the number of feedback signals in level L and WL is a weight associated
to a level that should reflect the importance of the level. The weight parameters can
be either static values or can be dynamic values depending on model parameters. In
our preliminary experiments we found that dynamic weights typically cause the model
to be overfitted. We found that the reciprocal rank of the levels are good candidates
for the weights of the levels. Given a level, the positive user-item pair is then sampled
uniformly from that level. To summarize, the positive pair sampler first samples a level
according to (4.30) and then a user-item pair is sampled uniformly from the sampled
level. With the above sampling method, the positive feedback from higher levels has
higher chance to be sampled. This chance is determined by the size and weight of
levels.

Negative Item Sampler Similar to (4.29), the negative item sampler can also be expanded
to finer-grain distributions:

p(j,N |u, L) = p(j|u,N)p(N |u, L) (4.31)

where the first probability distribution is used to sample a negative item given a negative
level, and the second distribution is used to sample a negative level given the user and
the positive level.

In [80], using only the unobserved level as the negative level typically results in a
better model. We therefore assume that N is always the unobserved level and thus we
can simplify the negative sampler as p(j|u). We propose three different distributions
for the negative item sampler:

Uniform-Item: Here the negative item is sampled uniformly from the negative level
and by considering the unobserved level as negative level, p(j|u) can be defined in a
similar way as sampling negative item in the standard BPR:

p(j|u) =
1

|I\I+
u |

(4.32)

Uniform-Feedback: With this sampling method, first a feedback (a (u′, j) pair) is
sampled from the set of all positive feedback that are provided by other users and then
u′ is discarded and j is considered as the negative item. This is equal to popularity over-
sampling since the popular items have higher chance to be sampled. Here p(j|u, L) can
be defined as:

p(j|u) =
|(u′, j′) ∈ S : u′ 6= u ∧ j′ = j|

|S|
(4.33)

Multi-Channel: With this method both the popularity of an item and the level of
its feedback are taken into account for sampling it as a negative item. Here a (u′, j)
pair is sampled from the joint distribution p(u′, j, L′), similar to (4.29), and then u′ is
discarded. The probability distribution of this sampler can be defined as:

p(j|u) =

{
p(u′, j, L′|u) j ∈ I\I+

u

0 otherwise
(4.34)

The intuition behind this sampler is that the popular and more important items, if
not rated by the target user, are better candidates as negative items. Rendle et al. [110]
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1: procedure LEARN BPR-FM(S, ppos, pneg)
2: initialize Θ
3: repeat
4: sample xu,i,z from S according to ppos
5: sample j according to pneg and create xu,j,z

6: let gz(u, i, j|Θ) = f(xu,i,z|Θ)− f(xu,j,z|Θ)
7: update Θ according to BPR update rule [111]
8: until convergence
9: return Θ

10: end procedure

Figure 4.4: Learning BPR-FM with Stochastic Gradient Descent and adapted samplers.

showed that SGD typically converges faster if the the model is less certain about the
correct order of the sampled items. By considering the more important (higher level
and more popular) items as negative, the uncertainty of BPR for finding the true rank
between the pairs can increase and thus the model can converge faster.

All the above probability distributions can be pre-computed in advance and thus the
sampling can be done in O(1). Therefore the computational complexity of the multi-
channel method is the same as the standard BPR model. Figure 4.4 lists the BPR-FM
learning algorithm with adapted positive pair and negative item samplers. ppos refers to
the positive pair sampler which can be (4.29) or can be a uniform distribution. pneg is
negative item sampler and can be either (4.32), (4.33), (4.34) or other possible sampling
methods.

4.4 Experiment Setup

We carried out our experiments using the XING dataset, used for The 2016 RecSys
Challenge hosted by XING. In the first experiment we used the evaluation provided by
XING, while in the second we used traditional metrics, such as Mean Reciprocal Rank.

4.4.1 XING Dataset

XING is a professional social network and a job discovery platform. The XING dataset
has been used for The 2016 RecSys Challenge3. In this dataset, the items are job post-
ings and user positive feedback is collected through three different channels: click,
bookmark and apply.

The dataset provided is a subset of the interactions of the XING users in a time span
of 12 weeks. The (hidden) test set is relative to the positive interactions (click, book-
mark, reply) of the test users during the week immediately following the training set.
The task is to compute 30 recommendations for each test user among the recommend-
able (active) items.
The data provided for the challenge consisted of:
U : 1.5M records of users and their features.
I: 1.3M records on items and their features.
A: 10.1M records on users and the job offerings that the XING recommender system
showed the user during the training set period, grouped by week. Xing does not ensure

32016.recsyschallenge.com
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4.4. Experiment Setup

that these were actually seen by the user.
B: 8.8M records on users and their interactions with job offerings over the training pe-
riod. For each user-job pair also the type of interaction (click, bookmark, reply to offer,
hide from view) and their timestamps were present.
C = CU ∪ CI : The set of the concepts (∼100k) relative either to the users (CU ) or to the
items (CI). Some of the records in set U and I have missing features.

Both U and I share some features, such as the the industry id, the discipline id, the
region id, and the career level. The users have also the feature relative to the concepts
of their career, while the items have the same concepts extracted from the title and the
description of the job posting.

4.4.2 Experiment 1: The 2016 RecSys Challenge

Evaluation methodology

The test set consists of 150k users that were all present in U , but not all of them were
also present in A or in B or in both: 107.4K of them were in both A and B, 25.2K of
them were in A and not in B, 2.7K of them were in B and not in A, and 14.7k users
were the cold start users, i.e. they did not have any interaction or impression. Among
the 1.3M job offerings, only about 300k were recommendable (active) during the test
period.
The task of the challenge is to provide, for each user, an ordered list of at most 30 rec-
ommended items. The evaluation metric for the challenge combines different metrics
like precision at k, recall and user success.

The evaluation metric for the challenge combines different metrics like precision at
k (p@k), recall and user success:

pu@k =
reclistu@k ∩ groundTruthu

k
(4.35)

recallu =
reclistu ∩ groundTruthu
|groundTruthu|

(4.36)

userSuccessu =

{
1 if reclistu ∩ groundTruthu 6= ∅
0 otherwise

(4.37)

where reclist@ku is the recommendation list for user u of length k (with no subscript it
is the entire recommendation list), groundTruthu are the items in the test set for user u,
pu@k is the precision at k for user u, recallu is the recall for user u, and userSuccessu
measures if there is at least an item in both reclistu and groundTruthu.
The score for user u is then calculated as follows:

su = 20(pu@2 + pu@4 + recallu + userSuccessu)
+ 10(pu@6 + pu@20)

(4.38)

and the final score is the sum of the scores for all test users.
We point to [1] for more details about the dataset, the evaluation and the general

challenge organization.
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Chapter 4. Jobs

4.4.3 Experiment 2: Multi-Channel BPR

Evaluation Methodology

The performance of recommendation are measured with different ranking metrics in-
cluding Precision, Recall, MRR (Mean Reciprocal Rank) and NDCG (Normalized Dis-
counted Cumulative Gain). Due to high correlation between the above metrics we only
report the results based on MRR and Recall with a cutoff of 10. To calculate the metrics
we used an evaluation technique known as one-plus-random [35, 16].

All the experiments have been done with four-fold cross-validation in order to limit
problems like overfitting and to give an insight on how the model will generalize. The
ground truth is compliant with XING needs, so we use any positive feedback. In order
to reduce data sparsity and the size of dataset, we filtered out all the users and jobs that
overall have less than 20 feedback in all channels.

The experiments are implemented within an open source toolkit [81]. The number
of latent factors (parameter k) is set to 10. The latent factors are initialized by a normal
distribution with a mean of 0 and standard deviation of 0.1. The SGD algorithm is used
with the following hyper-parameters. Learning-rate: 0.05, regularization parameter:
0.002. As mentioned, the XING (RecSys Challenge 2016) dataset is publicly available,
making it possible to replicate the experiments exactly.

4.5 Results

4.5.1 Experiment 1: The 2016 RecSys Challenge

Table 4.2 shows the public leaderboard score for every single algorithm and ensemble
of our method. The ordering of past impressions and interactions already provides good
results, therefore from every other algorithm we excluded the items that were present
either in the past interaction or in the past impressions for each user. In this way the
recommendations would have been different in each of our methods, thus giving more
diverse information to the ensembling algorithm. This is the reason for the relatively
low performance of collaborative and content algorithms: they do not contain the items
that the user is more likely to interact with. Without any filtering their scores are much
higher.

We can observe that any ensembling method is effectively exploiting the differences
in the algorithms, always delivering better performance. Taking Ens CF as an example,
it scores 180k compared to the best performance of the best CF algorithm, i.e. 156k.
The Eval ensembling method was used only in the Ens CF: this can be explained by the
fact that CF algorithms’ confidence in recommendations degrades quickly and a linear
ensemble is not able to weight them in the proper way. The linear ensembling, instead,
has been proven the best for the other ensembles: by controlling the weight and the
decay it basically produces an interleaving with priority: a higher weighted algorithm
is recommended before a lower priority one, while maintaining its internal ordering.
Two equally weighted algorithms, instead, are interleaved proportionally to their decay
ratio: this is the case of the Final Ensemble, where interactions and impressions have
the same decay and weight, so the final ensemble will interleave an item from the past
impressions and an item from the past interactions. Of course, if an item is present
in more than one algorithm contributing to the ensemble, this is pushed higher in the
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4.5. Results

Table 4.3: Performance of single-channel versus multi-channel training methods.

Channels MRR@10 Recall@10
Single Channel: Reply 0.0386 0.0162
Single Channel: Bookmark 0.0233 0.0159
Single Channel: Click 0.2647 0.1608
Combined: Oracle experiment 0.2835 0.1690
Combined: Standard BPR 0.2471 0.1501
Combined: BPR+channels 0.2582 0.1519
Combined: MCF-sampling 0.3034 0.2010

recommendation list.

4.5.2 Experiment 2: Multi-Feedback BPR

Exploiting Multiple Channels

We first carry out experiments to confirm that multiple channels of feedback do indeed
improve the performance of a recommender (RQ0). This sanity check is necessary to
have explicit evidence that multiple channels contain different information, and that
adding additional channels does not duplicate information. Table 4.3 reports experi-
mental results on the XING data. The “Single Channel" rows are standard FMs trained
with the feedback from one channel only, the “Combined" rows report on approaches
exploiting all channels.

First, we discuss Combined: Oracle Experiment, which represents an upper bound
on any late fusion approach that we could develop. The oracle chooses the best channel
for each prediction and uses that channel. The results show that the oracle improves
over all of the individual channels. This provides an answer to our RQ0: We now can
be assured that additional channels have the potential to provide additional information.

Next, we investigate what happens when we use all feedback information avail-
able, but do not differentiate between channels. All feedback information is considered
equally important. We do this by conflating all channels to a single “generic interac-
tion” and using BPR-FM. Combined: Standard BPR, which employs BPR-FM. This
method does not outperform our oracle experiment, which motivates us to continue
investigation of approaches which do not conflate levels.

The most straightforward way of exploiting levels is to add channel information as
different categories of auxiliary information in the BPR-FM model (see Section 4.3.2
and Figure 4.2). This approach is labeled Combined: BPR+channels in Table 4.3.
It shows that adding channel information as auxiliary features outperforms Standard
BPR. However, ultimately, this use of channel information is disappointing since it
does not outperform the oracle experiment, meaning that it would be possible to train a
late fusion approach that could outperform it in a given application scenario.

Finally, we turn to approaches that differentiate levels using sampling. We focus
here on Multi-Channel-Full sampling, which is labeled here as Combined: MCF-
sampling, and is investigated later in more detail. This method differentiates levels for
both positive and negative sampling. We see that this method beats both the Oracle
(representing the best possible late fusion approach) and Standard BPR (representing
the best possible approach that does not differentiate levels). This experiment allows
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Chapter 4. Jobs

us to answer RQ1 positively: level-informed sampling does indeed allow for better ex-
ploitation of multiple feedback channels. This fact clearly demonstrates the advantages
of context-driven sampling methods, i.e. Combined: MCF-sampling, over context-
aware methods, i.e. BPR+channels, confirming that the simple addition of the context
in personalized methods has room for improvements.

Using Channels for Sampling

Next, we turn to methods that exploit channels using channel-based level-informed
sampling.

There are two approaches to choose positive samples: uniform and multi-channel
(Eq. (4.30)), and four approaches to choose negative samples: Uniform-Item (Eq. (4.32)),
Uniform-Feedback (Eq. (4.33)), Popularity-Oversampling (Eq. (4.33)) and Dynamic-
Oversampling ([110]). These sampling options creates eight different combinations for
sampling. The MRR@10 achieved by these approaches is illustrated in the top plot of
Fig. 4.5.

Training time is shown in the second plot of Fig. 4.5. It is reported in epoch time,
which is the average time of one iteration on the training data. The time complexity of
the Multi-Channel samplers is in the same range as uniform samplers. The higher time
cost of Dynamic-Oversampling methods can be attributed to the fact that each update
has an additional complexity of O(k).

Coverage is shown in the third plot of Fig. 4.5. It is reported the total percentage
of items that is recommended to all users. Here the approaches involving Dynamic-
Oversampling and Uniform-Item sampling fall short.

We see that the Multi-Channel positive sampler always outperforms the Uniform-
Feedback positive sampler with any negative sampler either in MRR@10 and in cov-
erage, achieving the lowest epoch time. As for the negative sampler, the results of
Uniform-Feedback and Multi-Channel are very close, but the former achieves more
item coverage.

To summarize, we have found that channel-based, i.e. context-driven, level-informed
sampling provides advantages in time complexity and in coverage, improving predic-
tion performance, which we turn to next.

Multi-channel Samplers

We turn to detailed experiments on channel-based, level-informed sampling methods
for the considered dataset. The following sampling strategies were chosen as most
interesting and informative: Multi-Channel-Full: In this case the positive user-item
pairs and negative items are both sampled informed by level. The positive pair and the
negative item is sampled according to Eq. (4.29) and Eq. (4.34).

Multi-Channel-Uni: With this sampling method the positive user-item pairs are
sampled with the multi-channel method, i.e., Eq. (4.29), but the negative items are
sampled uniformly according to the sampling distribution (4.32). With this method the
channel information is only exploited for sampling the positive pairs.

Standard BPR: This case is the same as the standard BPR sampling method. The
positive pairs are sampled uniformly from dataset and the negative items are sampled
uniformly from the items set.
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Figure 4.5: Comparison of different sampling method for the BPR-FM model (300 iterations).
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Figure 4.6: Comparison of different sampling method for the BPR-FM model.

Popularity-Oversampling: With this method the popular items are oversampled as
negative according to Eq. (4.33). The positive pair sampler is the same as the standard
BPR.

Dynamic-Oversampling: This is the sampling method that has been introduced in
[110]. The probability of an item to be sampled as negative is dynamically updated
during the training phase according to the current model parameters. Positive user-item
pairs are sampled uniformly the same way as the standard BPR.

The BPR-FM model is trained using the SGD learning method with 300 iterations
and after every 10 iterations the model is evaluated. Figure 4.6 shows the performance
of the five sampling methods after an increasing number of iterations. Each point in the
curve is the average MRR@10 of the four-fold cross validation experiment. The error
bars are the standard deviations of the four folds. The five sampling methods are also
compared with the most-popular baseline.

Consideration of the graphs in Figure 4.6 shows that the channel-based approach
outperforms standard BPR. This observation confirms again our answer to RQ1 given
in Section 4.5.2. Exploiting levels during sampling improves over conventional forms
of integrating feedback. Specifically, the improvement over BPR is improvement over
a sampling method that does not exploit channels, and so, contexts.

4.6 Discussion

As for the first experiment, XING claims that its algorithm can score much better on
the same data of the challenge. However, the evaluation introduces a bias that underes-
timates the proposed algorithms. The introduced bias is relative to the impressions: of
course it is very likely that a user clicks on items that are recommended by the XING
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4.6. Discussion

recommender, as this is the main way for users to interact with the system. This fact
imposes a bias on the ground truth, because it is very likely to be a subset of XING rec-
ommendations: we believe that evaluating the algorithms proposed by different teams
in an online setting would improve the reported performances, since the users are pre-
sented with the actual recommendations. The way in which the evaluation has been
carried out, instead, promotes the algorithms that learn which are the best items among
the ones recommended by the XING platform. Thus any comparison with the XING
recommender is penalized. As reported in Table 4.2, the algorithms recommending
only the last 2 weeks of interactions and the last week of recommendation have very
high scores, confirming that using recent preferences to infer the user intent and situa-
tion has a significant impact on the recommendation performance.

The second experiment uses BPR as a learning-to-rank approach within a Factor-
ization Machine Framework in order to fully explore the contribution that multiple
channels of user feedback can make to recommendations. We show that multiple feed-
back channels are useful, and that context-driven, level-based sampling outperforms the
more straightforward, but relatively naive, approaches of late fusion or of integrating
channel information as auxiliary features, i.e. context-aware techniques. Multi-channel
samplers are shown to consistently outperform standard BPR sampling. Our future
work will explore further models such as list-wise learning-to-rank methods for use
with multi-channel positive feedback. In this experiment, we assume that the order of
the levels are known in advance. Further work can be done on also ‘learning’ the right
order of the levels.

In this chapter we showed that in a highly personalization and skill driven domain,
i.e. job recommendation, the exploitation of context leads to achieve better perfor-
mance. In the work of The 2016 RecSys Challenge, described in Section 4.3.1, we
demonstrated that time plays a fundamental role in defining the short term preferences
of job seekers. From these short term preferences the concepts of interest of the user
can be derived by the concepts of the items the user has interacted with, thus making the
algorithm infer the intent of the user. For the second experiment we conducted an ex-
tensive research on how a context-driven level-informed sampling can outperform well
established personalization-only and context-aware methods. This chapter confirms
that context is not marginal even in domains that do not clearly exhibit contextual be-
haviors. We showed that hybridization of personalization and context-driven algorithms
is not only possible, but can significantly improve the performance of state-of-the-art
recommendation algorithms.
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CHAPTER5
Linear TV Program Recommendation

Linear TV is a domain that poses hard challenges to the recommendation algorithms,
depicted in Figure 1.1. First of all new programs are frequently added to the catalog
and it is rare that an already aired program will come back in the future. This makes
it impossible to adopt a collaborative approach, since they require the presence of past
feedback. Moreover, this domain presents other challenges to the recommender sys-
tems community: the TV consumption process is seasonal with different periods: year,
season, month, week and day. Each item has a life-cycle: it is consumed very much
at the beginning, with the interest of the viewers declining with time. Moreover users’
tastes usually change with time because they develop. All these challenges can be ad-
dressed by targeting the recommendations to the context, instead of to the user and the
item. Context in this domain has a great potential: the company of the user, the time
of the day, the day of the week, the channel and the set of programs aired in a specific
moment are contextual variables that, intuitively, can affect the recommendation. We
found out that the time and channel contextual variables are enough to provide high
quality recommendations. This chapter tackles the Linear TV program recommenda-
tion problem by heavily leveraging contextual information and describes the work [36]
and [125].

5.1 Problem Definition

Television is one of the most popular media in our era, and with the advent of digital
TV and the growing offer of satellite services there are at any time of the day hundreds
of available TV programs to be watched by the users on hundreds of different channels.
On one hand the user is satisfied by this abundance since the vast choice of programs
supports her tastes, but on the other hand she suffers an information overload problem.
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Chapter 5. Linear TV Program Recommendation

This information overload makes the user prone to a tedious channel surfing in order to
find what he/she really likes, inevitably leading to annoyance.

In the past the solution was represented by channel guides on paper that used to be
consulted on a daily basis. Nowadays, these paper supports are fallen into disuse due to
the proliferation of channels and shows and the advent of smart TVs and smart devices.
The show schedule information has been embedded into the television software itself
through the so-called electronic program guide (EPG). However, the low quality of the
EPG in terms of content and its often crude user interface brings to a poor user expe-
rience and, as a natural consequence, to ineffectiveness. The answer to this problem
consists in providing the user with a short list of recommended programs, representing
the subset of the on-air ones that most correspond to her preferences.

While recommender systems have seen tremendous achievements in the field of
Video on Demand (VoD), limited effort has been conducted to build an effective rec-
ommender system for linear TV. Compared to conventional recommender systems, rec-
ommending TV programs is more challenging for several aspects, introduced in Figure
1.1:

• Ephemeral catalog. In traditional domains, such as VoD, the available content
is updated at a relatively slow rate (e.g., on a daily-basis a few movies are added
to/removed from the catalog). Conversely, since TV programs are scheduled at
specific times, each item is available only at specific time intervals, leading to
a catalog of items that constantly changes over time. This accentuates the new-
item problem, as many upcoming TV programs have never been watched in the
past. Therefore, a TV recommender system cannot rely purely on Collaborative
Filtering (CF) techniques to recommended these programs.

• Time-constrained catalog. In contrast to VoD which provides users with the abil-
ity to select and view content at their convenience, in traditional linear TV pro-
grams are broadcast according to a preset schedule, and recommendations should
consider only programs transmitted at the moment of the recommendation, or
within few minutes [96]. We refer to these programs as live programs.

• Seasonality. Many TV programs exhibit seasonality effects: some programs are
aired only a specific day per week (e.g. TV series), others are aired every day at a
certain time slot (e.g. news). Others are aired in a particular moment of the year
(e.g. World Cup, special events).

• Strong context-aware consumption patterns. TV viewers have a number of
preferred TV channels (e.g., the first 9 channels on the remote control) and they
prefer to watch TV during specific time periods (e.g., prime time) [61]. In linear
TV recommender systems, context can be more important than items. If there
is an interesting-enough program for the user in her preferred channels and time
slots, the user will watch it, regardless of the fact that a more interesting program
could be scheduled on a different channel or at a different time slot.

• A user cannot watch different TV channels simultaneously. Unlike traditional
recommender systems, where items are always available and a user can consume
more items at the same time, in linear TV a users cannot watch more than one
program at the same time and many of the not-watched programs will not be aired
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5.1. Problem Definition

again in the near-future. Therefore, when analyzing historical viewing habits, a
recommender system should consider that some TV programs which are mutually
exclusive because they can be scheduled simultaneously [96].

• Users might watch the same TV program multiple times, either the same iden-
tical program (e.g., an interesting movie the user likes to watch again) or different
“episodes” of the same TV series.

• The user feedback is usually implicit, provided in the form of watched/not
watched shows.

Note that the first issue makes it impossible to adopt traditional collaborative filtering
(CF) recommendation techniques. Indeed, they are not able to recommend new items
since such items cannot be compared with the other ones in terms of the feedback
provided by the users in the past [28].

Moreover, a fundamental aspect to be considered in TV program recommendation
is the context [45], i.e. the situation that the user is experiencing when watching tele-
vision. The most important contextual signals for the TV domain are the time and the
social setting in which the user is accessing the content, and her current interest topic.
So, for instance, when alone during daytime the user might prefer different shows with
respect to those liked with friends in the evening.

Although this domain presents also the taste development property, this was not
taken into account due to the short time span of the dataset. The life-cycle property,
instead, can be associated with the time dependency of the TV program: a program is
very much viewed in the beginning (e.g. prime time) and its viewers decrease with time
(as night approaches).

5.1.1 Notation

We denote by C the set of TV channels, by A the attributes of a TV program (genre
and sub-genre), by I the set of TV programs and by X additional contextual variables
related to the view event. Additionally, we denote by F the set of all possible features
as the union of channels, attributes, contextual variables and program ids:

F = C ∪ A ∪ X ∪ I

We define the television rating tensor rufs(t) as the total number of minutes user u
spent watching programs with feature f in time slot s during day t.

For instance, let us assume that on day t user u watches 20 minutes of the TV
program “Mickey Mouse” (feature f1) of genre “Children” (feature f2), sub-genre
“Cartoon” (feature f3) on “Disney Channel” (feature f4) with his family (feature f5)
spanning slots s1 (e.g., Sunday, 2.00PM–3.00PM) and s2 (e.g., the same day, 3.00PM–
4.00PM). This event increments by 20 minutes the 10 elements of the user-preference
tensor corresponding to the five features f1 . . . f5, two slots s1 and s2 and program
i1. More formally, for each f ∈ {f1, f2, f3, f4, f5} and s ∈ {s1, s2} we have that
rufs(t)← rufs(t) + 20.

Elements of rufs(t) can be easily computed from the raw data (by joining EPG
and tuning events) and can be used to estimate how much a user prefers to watch TV
programs of specific genres, on specific channels, or during specific time slots. The
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user-preference tensor resembles the user-item-context tensor of traditional context-
aware recommender systems [2].

Note that although time is a contextual variable, due to its peculiarity and for sim-
plicity of notation, we represent it as separate from other contextual variables.

5.2 Background

Recommendation of TV programs has attracted some interest in the recent literature.
The existing proposals can be divided on the basis of their aim: recommending to build
a personalized video recorder (PVR), or recommending to build a personalized EPG in
linear television.

A personalized video recorder is a system generating recommendations about TV
content that will be stored into an internal hard disk, for a possible future viewing by
the user. The work of Engelbert et al. [50] characterizes TV programs with attributes
extracted from an EPG, containing information about channel, title, subtitle, genre, ac-
tors, year and description. Recommendations of programs to be recorded are generated
on the basis of an initial user profile and an adaptive user profile, both sets of TV pro-
grams classified as liked or disliked. The initial user profile is manually filled by the
users, while the adaptive one is built using implicit and explicit feedback collected after
the user has watched the programs. Once defined the users’ profiles, the attributes of
new programs (taken from the EPG) are compared against those of the programs in the
user’s profile with the help of a bayesian classifier. Another personalized video recorder
is defined by Kurapati et al. [72]; they too propose algorithms for PVRs coupling ex-
plicit and implicit feedback, in this case relying on neural networks to combine them.
Srinivas et al. in [147] present an algorithm for PVRs which produces recommenda-
tions on the basis of both implicit (using both Bayesian classifier and Decision Trees)
and explicit user information, combined together by means of neural networks. The
problem analyzed in this work is related to ours but is not the same, because in PVRs
the recommendations do not have to be provided at specific time instants.

One of the first paper on the personalized EPG direction is [44]. A number of other
works focus on the concept of personalized EPG. Cotter and al. in [121, 32] present
a personalized EPG where the selected TV shows are based on a hybrid recommender
system that mixes collaborative and content-based recommendations. Users manually
input their preferences about channels, genres, and viewing times. This information
is combined with the user’s viewing activity by means of case-based reasoning and
collaborative filtering techniques. Ardissono et al. in [6] present a personalized EPG
where recommendations are generated locally on the client side using a hybrid approach
on the basis of three information sources: (i) user’s implicit preferences represented in
terms of program categories and channels (content attributes are downloaded from the
satellite stream), (ii) user classes, and (iii) user viewing activity.

Other papers present recommender systems based on hybrid collaborative and con-
tent based approaches [5]. The work in [62] describes a TV recommender systems
which combines together content-based and collaborative filtering by means of Neural
Networks. The system also uses information on the users, such as demographic infor-
mation, interests, and moods. Martinez et al. in [14] exploit a hybrid approach to solve
new-item, cold-start, sparsity, and overspecialization problems. The methods mix to-
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gether in the same interface the outcome of content-based (computed using the cosine
similarity among item feature vectors) and collaborative filtering (using Singular Value
Decomposition to reduce the size of item’s neighborhood).

Fewer papers present TV recommender systems based on social networks [55].
Chang et al. in [30] suggest that TV user preferences can be learned from past view-
ing experience and from friendship connections in social networks. Some works focus
their attention on implicit and explicit rating elicitation. Überall et al. in [128] present a
recommender system for DVB (Digital Video Broadcasting) based on both the viewing
behavior and explicit user preferences on preferred genres, sub-genres, and TV pro-
grams. The work in [72] presents a TV recommender system based on a multi-agent
approach which combines implicit and explicit user preferences. Implicit preferences
are processed with a Bayesian classifier to compute the likelihood that the user will like
or dislike a TV program. A decision tree is later used to compute program recommen-
dation scores.

Few works focus their attention on the time evolution of TV recommender systems.
Cremonesi et al. in [38] highlight that different CF algorithms have different behav-
iors according to the state of the recommender system (measured in terms of statistical
properties of the user-rating-matrix): during the cold start of the recommender system
item-based methods outperform matrix-factorization methods. The work in [96] high-
lights the problem of when recommending TV shows. The paper suggests the adoption
of a push mechanism, i.e., it is not the user who requests a recommendation, but it is
the system that, on the basis of a profit model, triggers recommendations at the right
time.

Chang et al. [30] provide guidelines to create a TV program recommender, identi-
fying the main needed modules and performance requirements. However, the proposed
framework is interesting, but just sketched; among the full-fledged proposals, just a few
rely on contextual information.

Some non-contextual linear TV recommenders have appeared in the literature, and
many of them rely on hybrid (collaborative and content-based) systems. Barragans-
Martinez et al. [14] exploit a hybrid approach to solve new item, cold-start, sparsity
and overspecialization problems; their method uses both implicit and explicit feedback,
and mixes together the outcome of content-based filtering, computed using the cosine
similarity between item feature vectors, and collaborative filtering, exploiting singu-
lar value decomposition. Ali et al. [5] develop TiVo, a television-viewing service for
the US market incorporating a recommender system which exploits an item-item form
of collaborative filtering mixed with bayesian content-based filtering; the system en-
visages client and server components, and relies on both implicit feedback and explicit
ratings. Another hybrid approach is that of Cotter et al. [32], who present a personalized
EPG; users manually input their preferences about channels and genres, and this infor-
mation is combined with the user’s viewing activity by means of case-based reasoning
and collaborative filtering techniques. Überall et al. [128], on the contrary, propose a
fully content-based technique, exploiting both the viewing behavior and explicit user
preferences on preferred genres, subgenres and TV programs.

Context is taken into account by Ardissono et al. [6], who develop a content-based
system able to generate a personalized program guide. In order to model the user, the
system employs several information sources: users’ explicit preferences, estimates on
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program_id time channel minutes
p1 daytime Ch-1 20
p2 night Ch-2 10
p3 daytime Ch-1 30
p4 night Ch-1 20

Figure 5.1: Log of Example 5.3.1

( daytime night

Ch-1 50 20
Ch-2 0 10

)

Figure 5.2: Projection of the tensor of Example 5.3.1 for user u

viewing preferences using program categories and channels, viewing preferences of
stereotypical viewers classes, socio-demographic information, and users’ viewing be-
havior. Different modules of the system manage the different kinds of information, and
the results are then combined; the context is considered by the module that estimates
user preferences on the basis of the user viewing behavior, since those preferences
depend on day and time. Another contextual system is that of Hsu et al. [62]. They
propose a hybrid system that combines the collaborative and content-based components
by means of a neural network; the contextual information employed by the system is
the user’s mood, considered as a strong influencing factor in program selection.

All the described approaches to linear TV recommendations, both the contextual
and the non-contextual ones, exploit some form of explicit feedback which must be
provided by the users, like, for instance, user ratings. On the contrary, the system we
propose relies only on the availability of implicit feedback in terms of history of the
past program views, which is the most realistic situation. Moreover, our algorithms
exploit contextual information in a more general way with respect to what is done in
[6] and [62]. In fact, [6] and [62] deal only with specific kinds of context information,
while we devise a framework that can accommodate every type of context dimension,
like the kind of people present during the program view or the fact that it is a weekday
or the weekend.

5.3 Discrete and Smoothed Contextual Recommender

This section describes two different TV program recommendation algorithms: the Dis-
crete and the Smoothed Contextual Recommender. The first is simply recommending
the programs aired in the most frequent contexts. The second is an extension of the first
algorithm, but aggregates the information in contexts which are close to each other.

5.3.1 Discrete Contextual Recommender

Example 5.3.1. Consider a set of context dimensions including only the time slot and
a set of TV program attributes constituted only by the channel. The possible values for
the time context dimension are daytime and night, while those for the channel are Ch-1
and Ch-2. Figure 5.1 shows a possible log of syntonizations for user u.

In this example the tensor T has three dimensions: user, time slot and channel.
Figure 5.2 shows the projection of the tensor on time and channel for user u.
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5.3. Discrete and Smoothed Contextual Recommender

Once the tensor model above has been built, it can be used at runtime to generate
the recommendations. The user u requests recommendations in a given time instant t
when in context F1 = f1, . . . ,Fm = fm. Let It be the set of programs on air at time
instant t. The system extracts from the tensor the appropriate score rufs for each item
i ∈ It ⊂ F , as follows:

r̂ufs =
∑
t

rufs(t) (5.1)

If N recommendations are required, the system retrieves the N programs with the
highest values of r̂ufs.

Example 5.3.2. Consider the situation described in Example 5.3.1, suppose that the
system generates recommendation lists of length 1 and the user u has requested rec-
ommendations at instant t in the context time=night. Suppose that at instant t Ch-1
is showing program p5 while Ch-2 is showing program p6, therefore It = {p5, p6}.
According to the tensor in Figure 5.2, the score for p5 computed using Equation (5.1)
is 20 while the score for p6 is 10. Therefore, the system recommends program p5 to u.

5.3.2 Smoothed Contextual Recommender

In order to better model time, we defined time-slots in a week on a per-hour basis, thus
resulting in 24 ∗ 7 = 168 finer grain time slots. Moreover we modeled the contex-
tual feature “time” in a smooth way by considering the effect of slots that are close
temporarily: e.g. the hour before or after. Since the familiar context in the previous
algorithm was not improving the performance for all the users, we decided to remove
it from the contextual variables considered.

Our algorithm extends the baselines (i) by introducing the smoothed time context
and (ii) by incorporating in the model all the features (i.e., genre and sub-genre).

The discrete definition of time context described in the previous section might create
unrealistic discontinuities between adjacent time slots. For instance, according to (5.1),
a user might like “Cartoons” on “Disney Channel” from 10AM to 11AM but have no
interest for “Cartoons” on “Disney Channel” from 11AM to 12AM. This might occur
if the viewing history of the user contains many events in the first time slot (10AM–
11AM) and fewer events in the second time slot (11AM–12AM).

In order to mitigate this effect, we introduce a smoothing function which aggregates
the user preferences in each time slot with the preferences in the neighbor time slots.

We first define a distance function which measures the distance between time slots:

d(s1, s2) =

[
days(s1, s2) +

mins(s1, s2)

L

]
σ(s1, s2) (5.2)

where

• days(s1, s2) is the difference in days between s1 and s2 (e.g., the distance between
Tuesday and Thursday is 2, as well as between Tuesday and Sunday)

• mins(s1, s2) is the difference in minutes between the time of day of s1 and s2 (e.g.,
the distance between 00:05 and 00:15 is 10, as well as between 00:05 and 23:55)

• σ(s1, s2) is 1 if s1 and s2 are both weekends or both weekdays, 0 otherwise.
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Chapter 5. Linear TV Program Recommendation

Given a time slot s, we define its neighbor set N (s) as N (s) = {s′|d(s, s′) ≤ D},
whereD is the maximum aggregation distance. In our experiment we have usedD = 6.
In this way, for instance, the time slot ’Monday 20:00’ is in the same neighborhood as
’Friday 20:00’ and ’Monday 16:00’, but not with ’Friday 16:00’.

Given a time slot s, we can aggregate its neighbors N (s) in several ways. We
explored two main functions: (i) by score and (ii) by rank.

Score aggregation The score-aggregated user-preference tensor aufs is computed by
smoothly merging the user preferences of time slots in N (s) by means of a weighted
average:

aufs =

∑
t,s′∈N (s) rufs′ · β(s, s′)∑

t,s′∈N (s) β(s, s′)
(5.3)

where β is a weighting function that depends on the distance. In our experiments we
have defined β(s, s′) as

β(s, s′) =
1

d(s, s′) + 0.1
.

Rank aggregation The aggregated user profile for time slot s is generated as follows.
We sort the time slots s′ ∈ N (s) in increasing order of distance from s and we label
them with their rank distance k(s′), starting with k(s) = 0 for slot s, the closest to
itself. Time slots s1 and s2 with the same distance from s have the same rank value
k(s1) = k(s2).

We now define the rank-aggregated user-preference tensor aufs as

aufs = max
s′∈N (s)

[
δufs′ · e−αk(s′)

]
(5.4)

where u is the user, f is the feature, s′ is the slot, δufs′ is 1 if
∑

t rufs′(t) > 0 and
0 otherwise, while α is a smoothing constant. This aggregation function assigns the
highest score (i.e., 1) to all the features related to TV programs watched by the user
during time slot s. Other features, related to programs watched during more distant
slots, have a lower score, which decays exponentially to 0 with increasing rank distance
from s.

In our experiments we have set α ≈ 0.07 so that the score of a feature is 50% of the
maximum score when k = 10.

Recommendations Let us assume that a TV program i is scheduled in a time window
that spans a set of time slots defined as Si, and it is characterized by a set of features
– among which the channel – defined as Fi. The preferences r̂ui of user u on live TV
program i can be estimated as

r̂ui =
∑

s∈Si,f∈Fi

aufs · wf
wf · |Si|

(5.5)

where |Si| is the number of slots spanned by program i andwf is the weight assigned
to feature f . In our experiments, we spanned multiple combinations of feature weights,
confirming that the best results can be obtained when the channel feature is weighted
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5.4. Experiment Setup

Figure 5.3: System architecture

higher than the other ones (e.g., genre). We have have set wf = 1 for the features
describing TV channel (i.e., f ∈ C).

5.4 Experiment Setup

The architecture we propose for our recommender system is shown in Figure 5.3. The
user interacts with a smart TV, and is allowed to request the generation of recommen-
dations; recommendations can be generated also when the TV is turned on. The request
is forwarded to the recommendation engine, that exploits the log of the past user’s syn-
tonizations, along with the context of the user and the EPG, in order to determine the
list of the top-N programs to be recommended among those currently on air. Note that
some kinds of contextual information may be automatically determined by the system,
like the time, but others might need to be manually declared by the user, like the people
with whom she is watching TV or her current mood.

5.4.1 Dataset

The TV dataset used in this chapter has been collected by an independent media agency
during a period of 6 months in 2013, for a total of 21 million viewing events and 56,101
EPG entries either over-the-air (digital terrestrial broadcasting) or satellite, free or pay-
TV. We define a viewing event as the event of synthonization of a user to some channel,
with its start and end time. The data is related to all the italian TV programs, spanning
24 hours per day. Our dataset has complete information on 217 channels, including
the ones that have a lag version, e.g. Cartoon Network and Cartoon Network +1. The
volume of data and its completeness make the challenge more difficult in comparison
to other linear TV works, which usually consider only the prime time slot and the top
channels.

The EPG entries describe 21,194 distinct programs (1,754 of which are TV series),
classified into 7 genre categories and 117 sub-genre categories. Repeated shows as TV
series or daily news are counted only once. The catalog of programs is very dynamic:
on average there are 82 new programs each day (about 0.3% of the total number of
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Table 5.1: Characteristics of TV dataset

users 13,664
households 5,666
programs 21,194
channels 217
EPG entries 56,101
Time span 6 months
genres 7
subgenres 114
view events 21 millions

Table 5.2: Demographic distributions of the users

males 41 %
females 47 %
children 12 %
0-19 17 %
20-34 15 %
35-64 45 %
65+ 23 %
mono component families 9 %
multi component families 91 %
users with children 33 %
users without children 67 %

programs). The available metadata for the programs are title, genre, and sub-genre,
while for the tuning events are channel, start time, end time. The available data for the
viewing events are channel, start time, and end time. All entries in the dataset (viewing
events and EPG) have a one-minute resolution. A complete overview of the dataset is
presented in Table 5.1 The dataset is available for download1. Demographic distribution
of the users is reported in Table 5.2.

Figure 5.4 shows the distribution of audience in the top-8 Italian TV channels, on
the y-axis, during the hours of the day, on the x-axis. Values report the ratio of total
watching minutes in the dataset for a specific hour of day and a specific channel. The
darker the color, the higher is the number of viewers. As we can see from the plot, the
distribution is heavily skewed towards a limited number of channels and prime time
slots.

Figure 5.5 shows the distribution of the total audience during the hours of the day.
The TV viewers peak in the prime time slot. Another smaller peak is around lunch
time, from 12 to 14.

Figure 5.6 reports the maximum audience share value reached by each program,
reported on the x-axis. Programs are sorted by decreasing maximum share value. As
we can see, only less than 1% programs in the dataset reached a share value of 20%,
but many programs have a low maximum share value.

1http://recsys.deib.polimi.it/tv-audience-dataset
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Figure 5.4: Heatmap showing the distribution of audience in the main italian TV channels
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Figure 5.6: Program popularity of the dataset

5.4.2 Experiment 1: Discrete Contextual Recommender

We used a subset of the dataset described in Section 5.4.1 containing 7,921 users and
119 channels. The log of program views spans from December 3rd, 2013 to March
1st, 2014, and contains 10,313,499 entries. We deemed the syntonizations shorter than
three minutes as not relevant, retaining 6,525,541 log entries. Each log row specifies
the identifier of the user and that of the program she watched, along with the start time,
the end time and the people with whom the user watched the program. The latter three
pieces of information were used to determine the values of the four context dimensions
that we chose: channel, day of the week, time slot and familiar context, where with
familiar context we mean just the people with whom the user was watching TV. More
precisely, start and end time were employed to derive the day of the week and the
time slot, where the available values for the time slot are shown in Table 5.3. We
identified five possible relevant values for the familiar context, summarized in Table
5.4, depending on the age of the people; people older than 15 years were considered
adults. The log was split in a training set, including the syntonizations between March
3rd, 2013 and February 15th, 2014 (5,438,977 entries), and a test set, containing the
remaining ones (1,086,564 entries). The former was used to build the model, while the
latter to assess the quality of the recommendations.

We executed our algorithm, from now on dubbed CxtOrd, using different combi-
nations of context dimensions and program attributes, with the aim of evaluating their
usefulness in the generation of the recommendations. In particular, we tested the non-
contextual alternatives which build the user preference tensor R exploiting the sole
channel and the sole genre. Then, we tried to enrich the tensor with the various context
dimensions.

Our algorithm was compared also with a naive non-contextual and non-personalized
methodology, dubbed TopPop, recommending to each user, in each context, the list of
programs broadcast on the N channels that were globally the most seen.
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Table 5.3: Time slots

Start time End time Description
02:00:00 07:00:00 Graveyard slot
07:00:00 09:00:00 Early morning
09:00:00 12:00:00 Morning
12:00:00 15:00:00 Daytime
15:00:00 18:00:00 Early fringe
18:00:00 20:30:00 Prime access
20:30:00 22:30:00 Prime time
22:30:00 02:00:00 Late fringe

Table 5.4: Familiar contexts

Familiar Context
Mixed: adults + children

Group of adults
Group of children

Adult alone
Child alone

Finally, we considered another less trivial, non-contextual and non-personalized
competitor, named ShortestTimeSinceStart, always compiling the recommendation list
with the programs started since the shortest time.

We had performed some trials also using traditional collaborative filtering. However,
as explained in the introduction of the chapter, the dynamism of the item catalog makes
such techniques ill-suited for TV program recommendation, and indeed the obtained
results were extremely poor. Therefore, we do not show collaborative filtering results
in the following sections.

All the experiments were repeated three times, considering three different composi-
tions of the test set:

• The whole test set (7,921 users, 1,086,564 program views).

• Subset obtained excluding the users who have shown to be not very active, having
watched only 7 channels or less (5,824 users, 959,141 program views).

• Subset obtained including only the very active users, having watched 28 channels
or more (201 users, 51,525 program views).

The performance of our recommendation algorithm was evaluated using Recall@N,
describing the number of test items which have been included in a recommendation list
of length N computed in the instant in which the viewing of the test items started and
in the context in which they have been watched.

More formally, let v be a program view in the test set, vt the start time of the view,
vu the user that watched the program, vi the program watched and vc the context in
which the view took place. TopN(u, c, t) is the set of top-N items for the user u in
context c among those on air at time instant t, determined with the recommendation
methodology to be evaluated. Recall@N is computed as follows:

Recall@N =
|v ∈ Test Set : vi ∈ TopN(vu, vc, vt)|

|v ∈ Test Set|
(5.6)
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We executed experiments for N=1, N=3 and N=5.

5.4.3 Experiment 2: Smoothed Contextual Recommender

Two main factors affect the preferences of a TV user: channel and time. Indeed, the
user preferences strongly depends on the temporal context (i.e., day of week and time
of day). For instance, during dinner the user might be accustomed to watch news-
casts, while after dinner she wants to relax and will likely opt for a movie or a reality
show. It is worth noting that each user has his own habits, so, as an example, a user
might eat dinner at 7PM and another one at 9PM. Furthermore, TV users are strongly
affiliated with channels. The typical user switches the TV on and surfs over a very
limited number of channels to select the program to watch. In many cases, the choice
is restricted to the single channel the user is used to watch. Sometimes, the TV is
simply switched on a default channel routinely, regardless the program currently live.
As a consequence, we assume that only a minor role is played by the characteristics
(e.g., genre and sub-genre) of the broadcast TV program. This assumption motivates
the following three baseline algorithms, which are based solely on contextual parame-
ters (channel and time slot) and correspond to the Discrete Contextual Recommender
(CxtOrd) discussed in Section 5.3.1.

Top channel This baseline algorithm recommends the TV programs that are scheduled
during slot s on the most popular channels. Recommendations are the same for each
user. The popularity of a channel is defined in terms of the total number of watching
minutes accumulated by that channel. For each channel feature c ∈ C we compute the
popularity rc of channel c as

r̂c =
∑
s,u,t

rucs(t) (5.7)

The algorithm recommends first all the TV program scheduled during slot s on the
most popular channel. If more recommendations are needed, the algorithm recom-
mends all the TV programs scheduled on the second most popular channel during the
same slot s, and so on. Partial ordering of TV programs within a channel is based on
their schedule.

Top channel per user This baseline algorithm is a refined version of the previous one.
The algorithm recommends the TV programs that are scheduled during slot s on the
most popular channels, where channel popularity is computed on a per-user basis.

The popularity of a channel is defined in terms of the total number of watching
minutes accumulated by user u on channel c. For each user u and for each channel
feature c ∈ C we compute the popularity ruc as

r̂uc =
∑
s,t

rucs(t) (5.8)

Top channel per user and slot This baseline algorithm is a further refinement of the previ-
ous ones. The algorithm recommends the TV programs that are scheduled during slot s
on the most popular channels, where channel popularity is computed on a per-user and
per-slot basis.
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The popularity of a channel is defined in terms of the total number of watching
minutes accumulated by user u on channel c during time slot s. For each user u, time
slot s and channel feature c ∈ C we compute the popularity rucs as

r̂ucs =
∑
t

rucs(t) (5.9)

We used the full dataset described in Section 5.4.1. The dataset is partitioned into
two subsets along the time dimension: training and test. The training set spans the first
five months of the dataset. The test set spans the last month.

The test set is partitioned into disjoint intervals with one-hour duration. For each
user u and for each interval in which the user has watched any TV program, we extract
the list of TV programs scheduled in that interval. For each program i in the list, we
estimate the relevance r̂ui according to the recommender algorithm. The list is sorted on
the basis of rui and the top-N most relevant elements are presented to the user. Finally,
we verify if the TV programs watched by the user in the time frame are in the list of
recommended programs and we compute average rank and recall.

Both recall and average rank have been computed by weighting the TV programs on
the basis of the number of minutes the user watched the program in the time interval.

The results compare three versions of our algorithm (denoted as CxtBlend) and three
versions of the baseline approach (denoted as topCh).

• topCh: baseline algorithm (5.7)

• topCh_u: baseline algorithm (5.8)

• topCh_us: baseline algorithm, (5.9)

• CxtBlend: algorithm proposed (5.4) where genre and sub-genre weights are set
to 0.

• CxtBlend_g: the same algorithm as CxtBlend, where genre weights are set to 0.1
and sub-genre weights are set to 0.

• CxtBlend_gg: the same algorithm as CxtBlend, where both genre and sub-genre
weights are set to 0.1.

5.5 Results

5.5.1 Experiment 1: Discrete Contextual Recommender

In this subsection we present in a tabular form the results obtained with the experi-
mented methodologies. Tables 5.5, 5.6 and 5.7 show, respectively, Recall@1, Recall@3
and Recall@5. The tables are divided in two parts: the upper one shows the baselines
while the lower one shows our proposed algorithm variants.

In the following the results reported in the tables are analyzed in detail, starting with
the whole test set and then considering the subsets.
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Table 5.5: Recall@1

Algorithm All ≥ 8 chan. ≥ 28 chan.
TopPop 19.26% 17.65% 10.28%
ShortestTimeSinceStart 3.46% 15.89% 7.34%
CxtOrd – Channel 33.04% 22.93% 10.92%
CxtOrd – Genre 13.91% 12.87% 5.85%
CxtOrd – Channel, Genre 31.57% 13.96% 6.56%
CxtOrd – Fam. Cont., Channel 33.95% 31.92% 19.33%
CxtOrd – Fam. Cont., Genre 8.56% 7.94% 3.22%
CxtOrd – Fam. Cont., Channel, Genre 33.20% 22.94% 13.96%
CxtOrd – Day, Time, Channel 39.23% 37.02% 22.36%
CxtOrd – Day, Time, Genre 18.11% 16.75% 1.44%
CxtOrd – Day, Time, Channel, Genre 32.83% 30.84% 19.16%
CxtOrd – Fam. Cont., Day, Time, Channel 39.11% 36.34% 21.77%
CxtOrd – Fam. Cont., Day, Time, Genre 17.38% 15.96% 7.58%
CxtOrd – Fam. Cont., Day, Time, Channel, Genre 33.29% 31.31% 18.88%

Table 5.6: Recall@3

Algorithm All ≥ 8 chan. ≥ 28 chan.
TopPop 45.19% 43.17% 24.98%
ShortestTimeSinceStart 11.33% 33.03% 17.77%
CxtOrd – Channel 63.12% 41.22% 23.38%
CxtOrd – Genre 30.83% 28.78% 13.93%
CxtOrd – Channel, Genre 60.29% 35.51% 19.06%
CxtOrd – Fam. Cont., Channel 63.94% 61.38% 38.93%
CxtOrd – Fam. Cont., Genre 20.72% 19.41% 8.53%
CxtOrd – Fam. Cont., Channel, Genre 49.47% 46.44% 29.86%
CxtOrd – Day, Time, Channel 67.05% 64.59% 42.11%
CxtOrd – Day, Time, Genre 37.94% 35.72% 7.33%
CxtOrd – Day, Time, Channel, Genre 60.98% 58.20% 37.88%
CxtOrd – Fam. Cont., Day, Time, Channel 66.94% 62.12% 40.70%
CxtOrd – Fam. Cont., Day, Time, Genre 36.66% 34.42% 17.47%
CxtOrd – Fam. Cont., Day, Time, Channel, Genre 62.00% 59.26% 38.14%

Table 5.7: Recall@5

Algorithm All ≥ 8 chan. ≥ 28 chan.
TopPop 59.93% 57.81% 31.14%
ShortestTimeSinceStart 18.07% 45.27% 25.51%
CxtOrd – Channel 77.38% 51.19% 30.64%
CxtOrd – Genre 42.07% 39.17% 19.83%
CxtOrd – Channel, Genre 65.18% 48.53% 27.72%
CxtOrd – Fam. Cont., Channel 77.93% 74.09% 51.23%
CxtOrd – Fam. Cont., Genre 73.89% 30.14% 14.09%
CxtOrd – Fam. Cont., Channel, Genre 63.17% 60.26% 39.81%
CxtOrd – Day, Time, Channel 78.58% 76.56% 52.65%
CxtOrd – Day, Time, Genre 49.82% 47.14% 15.45%
CxtOrd – Day, Time, Channel, Genre 75.31% 72.96% 48.90%
CxtOrd – Fam. Cont., Day, Time, Channel 78.67% 72.30% 51.00%
CxtOrd – Fam. Cont., Day, Time, Genre 48.26% 45.59% 24.32%
CxtOrd – Fam. Cont., Day, Time, Channel, Genre 76.29% 74.03% 49.67%
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5.5. Results

Full Test Set A first aspect which can be noticed from the results is that the differences
between context-driven and baseline methodologies are larger when recommending
few items. This happens because many users watch just a limited number of channels,
and therefore even simple strategies are able to identify the proper program in lists
containing several items.

We immediately note that the non-personalized methods TopPop and ShortestTimeSinceS-
tart show very poor performance, while the personalized model based on the channel
obtains very high recall. This suggests that the users’ preferences are more important
than the time elapsed since the program started to determine the right suggestion. Note
also that the results for the personalized model relying on the genre are not good. The
usage of the genre seems to confuse the system instead of helping; in fact, adding the
genre to the model based on the channel adds noise instead of improvement.

We observe that the models with the channel behave better than those envisaging
the genre, that again seems to confuse the system. The addition of the familiar context
brings some improvements, but these are really small: the recall increase is less than
1% with respect to the model based only on the channel. A significant gain, on the
other hand, is provided by the usage of date and time. The best-performing model – the
one including day, time and channel – improves the non-contextual alternative based
on the channel of 6.19% for Recall@1, 3.93% for Recall@3 and 1.20% for Recall@5;
as explained above, the shorter the recommendation list, the larger the recall increment.
The addition of the familiar context to the model envisaging day, time and channel does
not provide significant improvements, with the exception of Recall@5.

The fact that the best model is the one envisaging day, time and channel, together
with the good performance shown by the non-contextual model with only the channel,
suggests that the habit factor is very important in the choices of TV viewers: many
users watch very often the same channels in the same time slots.

Test Sets Obtained Excluding the Less Active Users In this case we note that the differences
between the methodologies are wide also for Recall@3 and Recall@5: this happens
because the users in these test sets are used to watch many channels, and so it may be
difficult to capture their more dynamic behaviour. Moreover, the negative results of the
models including the genre of the program are confirmed also in this case.

In general, for each model tested in the experiments, the recall value decreases with
respect to that measured with the same models on the whole test set, again because
these users have seen several channels and so the recommendation is more difficult. An
exception is represented by the non-personalized methodology ShortestTimeSinceStart,
for which the recall obtained for the active users is greater than that achieved on the full
test set. This is an interesting result, and seems to suggest that the active users are more
resolved in the choice of TV programs: they know what they want to watch and change
the channel when they know it is starting. The other users, on the contrary, seem to
proceed in a more random way among the few channels they are used to taking into
account.

The two subsets of active users confirm that the context-driven strategies show better
performance than the baselines. The best model is again that envisaging day, time and
channel, and the increment with respect to the recommendations generated considering
only the channel is even larger than that registered with the full test set. For instance,
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Chapter 5. Linear TV Program Recommendation

Table 5.8: Comparison between algorithms. Bolded baselines (topChxx) are the best among baselines
for the considered metric. Bolded non-baselines (CxtBlendxx) are statistically better than the best
baseline for that metric.

recall avgRank
Algorithm @1 @5 @10 @50
CxtBlend 0.283 0.734 0.852 5.819
CxtBlend_g 0.290 0.734 0.859 6.518
CxtBlend_gg 0.290 0.733 0.858 6.607
topCh 0.125 0.423 0.639 11.942
topCh_u 0.232 0.612 0.797 7.512
topCh_us 0.282 0.658 0.759 12.587

in the test set containing only the users having seen at least 28 channels, the increments
are 11.44% for Recall@1, 18.73% for Recall@3 and 22.01% for Recall@5.

Differently from what we observed in the experiments with the full test set, in this
case the familiar context introduces a significant increment in the quality of recommen-
dations. For instance, when the test set containing only the users having seen at least 28
channels is taken into account, the increments with respect to the model envisaging only
the channel are 8.41% for Recall@1, 15.55% for Recall@3 and 20.54% for Recall@5.
However, the contribution of the familiar context is canceled when the familiar context
is considered in addition to day and time. This means that the effect of the users’ habits
remains stronger than the impact of the familiar context, also for the active users.

Summary of the Evaluation

The described experiments showed that our methodology can provide accurate rec-
ommendations to TV users relying exclusively on implicit feedback. In addition, the
experiments proved that in the considered scenario the context is decisive in the recom-
mendation process. In more detail, the day and time context dimensions showed to be
relevant for all the users, while the familiar context proved not be very significant.

5.5.2 Experiment 2: Smoothed Contextual Recommender

Table 5.8 presents an overview of the experimental results. We omitted the results of
the score aggregation algorithm (described by Equation 5.3) because they are much
worse than all the others (both ContextBlend and TopCh). The best baselines are those
recommending the most popular channels on a per user-basis. Including the time slot
in the baseline slightly increases the accuracy of recommendations. All three versions
of our algorithm outperform the baselines for all of the metrics, with the exception of
Recall@1. We also observe that the inclusion of genre and sub-genre does not increase
the accuracy of recommendations, as noted in the previous subsection.

Figure 5.7 presents Recall@10 for the same algorithms. The recall is plotted as a
function of the test week (there are four weeks in the test set). The accuracy of all the
algorithms decreases as the week is more distant from the end of the training period
(week 1 is the week immediately following the training period, week 4 is the most
distant in time from the training period). This can be explained by a slight preference
drift of users which make the prediction harder.
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Figure 5.7: Performance decrement in terms of Recall@10 as the weeks are more distant from the
training period.

Table 5.9: Recall@10 for ContextBlend and TopCh (baseline) for different demographic categories of
users.

CxtBlend CxtBlend_g CxtBlend_gg TopCh TopCh_u TopCh_us
Male 0.853 0.850 0.849 0.628 0.787 0.751

Female 0.873 0.870 0.870 0.662 0.809 0.778
Children (no gender) 0.836 0.826 0.824 0.517 0.767 0.652

0-19 years old 0.825 0.816 0.814 0.515 0.758 0.640
20-34 years old 0.816 0.808 0.805 0.571 0.755 0.656
35-64 years old 0.833 0.829 0.829 0.621 0.765 0.728

65+ years old 0.917 0.916 0.916 0.703 0.856 0.844
Mono-component family 0.916 0.914 0.913 0.649 0.855 0.837
Multi-component family 0.864 0.862 0.861 0.651 0.800 0.770

User with children 0.801 0.795 0.794 0.577 0.741 0.657
User without children 0.880 0.877 0.877 0.656 0.813 0.788

Table 5.9 presents a drill-down of the Recall@10 for different demographic cate-
gories. With respect to age, older users have a more regular viewing pattern and obtain
the best recall. Families with several components are more difficult to predict. Surpris-
ingly, female watch volume is slightly easier to predict than male one.

The lower absolute recall values with respect to the results in Section 5.3.1 are due
to the different time slot definition: the coarser is the slot, the higher is the recall.

5.6 Discussion

We presented a new family of algorithms for the context-driven recommendation of TV
programs in linear TV services. Users are modeled by taking into account the specific
consumption patterns typical in the settings of TV, strongly influenced by time context
and channel preferences. The drawbacks of representing time context as a discrete
variable have been mitigated by introducing the notion of context distance; thus, the
user model is built by aggregating nearby contextual profiles. Empirical experiments
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over a large-scale linear TV dataset compare the proposed family of algorithms with a
set of baseline approaches (based on channel preferences) and demonstrate a significant
improvement in recommendation quality when context is considered.

This research shows that even a simple context-driven algorithm, i.e. the algorithm
that recommends the aired program of past weeks on the most popular channels of the
user is much more effective than traditional approaches. This is because this simple
baseline takes into account seasonality effects and is not affected by the ephemeral
catalog issue.

This chapter highlights that habits drive the Linear TV consumption. Intuitively,
personalization leverages the user’s habits and should produce high quality recommen-
dations. However in the Linear TV domain the habits are not involving items but con-
texts: users are affiliated to channels and time-slots, not to programs themselves. The
proposed method is, however, not a pure context-driven algorithm because it exploits
past user preferences. The novelty of our approach lies in the paradigm shift that re-
places items (i.e. programs) with contexts (i.e. channel and time of day). Only in the
recommendation phase the contexts are actually converted to items. We hope that these
results will foster research in this branch of recommendation algorithms.
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CHAPTER6
Linear TV Audience Prediction

This chapter tackles the TV audience prediction problem, describing the work pre-
sented in [98]. The challenges and peculiarities of this domain have been already intro-
duced in Chapter 5. Predicting accurate information about TV audiences is important
for broadcasters, advertisers and advertising agencies. Television networks sell time
to advertisers at a price that depends on the projected television audience [134]. As
an example, the average cost for a 30 seconds TV commercial in the U.S. ranges be-
tween $100 thousand and $2.4 million, depending on the expected audience of the TV
program [42]. According to recent data presented in [66, 92], worldwide television
advertising expenditure was $178 billion in 2014 ($78 billion in the U.S. alone) and is
expected to reach $236 billion in 2020.

The size of television audience is measured either in terms of television ratings (per-
centage of households tuned to a specific TV station) or rating points (one ratings point
represents 1% of viewers). Rating points are the currency for the TV commercials. As
an example, in the U.S. the average value of one rating point is $780 million per year
and can be as high as $70 thousand per minute [94].

Television advertising time is purchased some time in advance, with advertisers
planning to achieve a target number of ratings points during their commercials [68, 73].

Hence, accurate ratings forecasts are vital to both advertisers and TV networks, with
a difference of just one rating point resulting in a substantial gain or loss for either a
broadcaster or an advertiser [88, 51].

Context in this setting is the driving force for the prediction: TV ratings for each
channels, which are by themselves contextual variables, have a strong seasonal compo-
nent that traditional collaborative approaches are not able to model correctly.
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Figure 6.1: Data aggregation and alternative models

6.1 Problem Definition

There are two possible approaches to the problem of predicting television ratings, dif-
fering on the granularity of the data used by the models [88].

• Algorithms in the first family build a model to estimate future viewing habits from
measurements, which are later aggregated into television ratings (Figure 6.1.a).
Examples are collaborative-filtering algorithms for the watch–next problem [61].

• Algorithms in the second family aggregate measured viewing habits into historical
television ratings which are later used to build a model (Figure 6.1.b). Recent
works show that data aggregation simplifies non linearity and improves accuracy
of predictions [88].

The size of television audience is described in terms of television ratings. Television
ratings can be measured either with rating points (percentage of households tuned to a
specific TV station) or with viewing time (average number of minutes a household is
tuned to a specific TV station). It is always possible to convert rating points in viewing
time, and viceversa, by knowing the number of households in the sample.

Throughout the rest of the chapter we will use the term ratings with the meaning
of television ratings, measured in terms of average viewing time per user and channel
(the viewing time is an implicit measurement of the user interest in a specific program).

Rating forecasts are based on historical measurements of TV viewing habits. Mea-
surements rely on TV meters installed in a representative sample of households by
independent media companies (e.g., Nielsen, Auditel, AGF, BARB) As an example,
in 2014 Nielsen was using a sample of more than 5,000 households, containing over
13,000 people, to be representative of 116.3 million TV homes in the U.S. [94]. Re-
cently, some works suggested the usage of social networks as an alternative way to
measure television ratings [37][129].

In this Chapter we address the problem of predicting TV ratings based on users’
viewing habits and on some characteristic of the TV programs. The raw input data,
described in Section 5.4.1, to the system are:
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1. the EPG (Electronic Programming Guide) containing program-id, genre, sub-
genre, start-time, end-time, and TV channel for all the scheduled programs;

2. the set of viewing events containing house-id, start-time, end-time and TV channel
for all the viewing events (e.g., whenever a user watched a TV channel).

In order to have a data structure easier to manage, we pre-process and simplify the
raw data. We divide the time span of a day into time slots of equal duration L.

The main goal is, given user u and time slot s, to estimate the number of minutes
r̂us (e.g. the rating of the user) for all the programs in time slot s. We use the same
notation introduced in 5.1.1.

6.2 Background

A number of papers address the watch–next problem, which aims to provide recom-
mendations for the next program to watch following the currently watched program.
They are covered in Subsection 5.2. However, there is a lack of recent research works
on the problem of predicting television ratings, mainly because most of the datasets
are proprietary. The few papers in the literature describe algorithms that use static re-
gression models, with covariates based on attributes of programs and time of viewing
events [88, 87]. These algorithms give static predictions as the forecasts do not depend
on the prediction horizons chosen, but only on covariates [43, 42]. What is missing
from previous work is the development of models reflecting the lead-in effect, i.e., the
fact that television programs inherit viewers from the immediately preceding programs
scheduled on the same TV channel [124].

Moreover, the results are usually validated only on 5 or fewer TV channels and, in
most cases, only on prime-time programs (e.g., between 20:30 and 22:30).

However, modern TV environment scenarios have hundreds of TV channels. As an
example, a recent study by Nielsen shows that the typical household in the U.S. has
almost 200 channels to choose from [94].

Meyer and Hyndman [88] investigate the effect of aggregation in relation to the ac-
curacy of television rating forecasts. Models are fitted using neural networks, decision
trees and regression. They show that data aggregation helps to simplify non linearities
in the TV watching behaviour by averaging its fluctuations.

Danaher et al.[43] describe a two-steps logistic model: the first step models the de-
cision to switch the TV on (viewer availability), and the second step models channel se-
lection (program choice). The model is validated against a Bayesian averaging model,
focusing on the 5 most popular TV channels during prime time (8:30PM–10:30PM).

Nikolopoulos et al. [95] show that multiple regression models outperform the item-
based nearest neighbors approach when forecasting TV ratings for 12 sport events (test
set) based on the ratings of 34 similar events (training set).

Kelton et al. [69] and Reddy et al. [107] design models for the optimal scheduling
of TV programs in order to increase future TV ratings.

Patelis et al. [87] describe a first attempt to use dynamic models to predict TV rat-
ings: ratings are predicted finding weeks that have the same type of competitiveness
with the one to forecast, while a time series approach is used to model total viewership.

The focus of this study is on the development of models able to handle thousands
of TV programs and hundreds of TV channels, and reflecting the fact that observations
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close together in time are more closely related than observations further apart (lead-in).
We describe and compare different time-series dynamic models for the prediction

of television ratings. The predictions are based on historical viewing habits, past and
future schedules of TV programs, attributes of programs, and time–related contextual
information, such as hour and day. We use exogenous variables to capture the intrinsic
appeal of new TV programs from observed characteristics of past TV programs with
similar attributes.

Our dynamic models are compared with three state-of-the art approaches, (i) context-
aware collaborative-filtering with fuzzy seasonal context described in [61]; (ii) static re-
gression models with program-based covariates (e.g., genre, sub-genre) and time-based
covariates (e.g., day of week, hour of day) described in [43]; and (iii) nested logistic
model described in [42].

6.3 Dynamic Models

When dealing with time series analysis, the theory of stationary stochastic processes
becomes a powerful tool to analyze and predict the main dynamics of a signal. In our
case, the TV ratings that we observe can be seen as a realization of a stochastic process
R(t) assumed to be sum of three components [132]

R(t) = Z(t) + T (t) + S(t), (6.1)

where Z(t) is a Stationary Stochastic Process (SSP), T (t) denotes a trend (e.g. T (t) =
αt+ β would be a linear trend) and S(t) describes a nonrandom cyclic influence like a
seasonal component. The additive structure is appropriate (rather than the multiplica-
tive one) because the seasonal variation does not vary with the level of the series [91].

The innovative feature of this representation is that Z(t) can be a function of its past
values, e.g. Z(t− 1), Z(t− 2), etc.

In order to predict R(t), one first needs to provide the mathematical description of
the three components. In particular, the identification process is divided into two steps:
the identification and removal of T (t) and S(t), representing the deterministic parts of
the process, and the identification of the model structure of the stochastic part of the
process, namely Z(t).

Trend and seasonality removal

The trend identification T̂ (t), by assuming a linear trend, can be performed by mini-
mizing via least squares the sum of residuals

min
α,β

N∑
i=1

[r(t)− (αt+ β)]2 . (6.2)

where r(t) are the observed ratings in R(t) and N is the total number of observations.
In the de-trended series RZS(t) = R(t) − T̂ (t), the seasonal component S(t) can be
estimated as

Ŝ(t) =
1

(N/τ)− 1

(N/τ)−1∑
j=1

r(t+ jτ) (6.3)
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6.3. Dynamic Models

where τ is the period of the seasonality, and (N/τ)− 1 is the total number of observa-
tions in a single period.
The period τ can be easily detected by analyzing the Fourier transform of the signal (in
our case, a peak at a frequency corresponding to 7 days would be a weekly seasonality).

Once the seasonal part is removed with

RZ(t) = RZS(t)− Ŝ(t) = R(t)− T̂ (t)− Ŝ(t) (6.4)

an estimation of Z(t) can be obtained from the data RZ(t), as explained in the next
section. Elements rZ(t) of RZ(t) are the television ratings once trend and seasonality
have been removed.

AR model identification

In this chapter, Auto-Regressive (AR) models are selected for the estimator of Z(t)
as they are simple and linear in the parameters. In what follows, we will also show
that such a model class is flexible enough to capture the main TV rating dynamics.
Formally, an AR model is defined as

rZ(t) = ϕ(t)′θ + ξ(t) (6.5)

where θ = [ϑ1 ϑ2 . . . ϑnϑ ]′ is a vector of unknown parameters, ϕ = [rZ(t −
1) . . . rZ(t− nϑ)]′ is the regressor with past data and nϑ is the model order. In simple
words, an AR model is a linear regression over the past samples of the time series at
hand, after removing trend and seasonality.

The Minimum Description Length (MDL) criterion can be used to estimate the model
order. It relies on the “modeling by shortest data description” principle [113] and gives
consistent estimates of the order of AR models, assuming that the number of samples is
much larger than the number of estimated model parameters (which is always the case
in this application). The MDL formula reads as follows:

MDL(nϑ) = (log nϑ)
nϑ
N

+ log

(
1

N

∑
t

ε(t)2

)
(6.6)

where ε(t) = rZ(t) − ϕ(t)′θ̂ is the error between the measured value and the model
output. An alternative method is cross-validation. For this, we need to divide the time
series in two parts, and use only the first one to identify the parameters while the second
one assesses the model quality to establish the correct model order.

Once the model order is determined, the model parameters can be estimated accord-
ing to the prediction error method [79]. Following such an approach, the best model
using N data (parameterized by θ̂N ) is the one minimizing the output prediction error,
that is

θ̂N = arg min
θ

1

N

N∑
t=1

[rZ(t)− ϕ(t)′θ]
2
. (6.7)

The resulting nθth order AR model can be rewritten as a first-order, nθ-dimensional
vector autoregression model:
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
rZ(t)

rZ(t− 1)

. . .

rZ(t− nθ − 1)

 =


ϑ1 . . . ϑnθ

1 0 0

. . . . . . . . .

0 1 0



rZ(t− 1)

rZ(t− 1)

. . .

rZ(t− nθ)

+


ξ(t)

0

. . .

0


or, in matrix notation,

RZ(t) = ARZ(t− 1) + E(t)

with obvious definitions for A and E(t). Finally, the K-step predictor of the stochastic
component Z is

R̂Z(t+K|t) = AKRZ(t),

whereas the total predicted TV rating reads

R̂(t+K|t) = R̂Z(t+K|t) + T̂ (t+K) + Ŝ(t+K). (6.8)

where K is the number of steps in the future (in our case, days) for the prediction of
TV ratings.

ARX model identification

When some exogenous variables act on the dynamics of the process, the analysis of
the time series alone is not able to describe the underlying data generation mechanism
nor to accurately forecast future values of the time series. This is the case when we
want to include information about which kind of program is broadcast (genre and sub-
genre) or whether the considered period is of vacation or not. Exogenous inputs in our
auto-regressive model are equivalent to side information in collaborative-filtering.

Exogenous inputs can be easily embedded into AR models by considering their
ARX extension (where ARX stands for Auto-Regressive models with eXougenous in-
puts). Formally, an ARX model is defined as

rZ(t) = ϕ(t)′θ + ξ(t) (6.9)

where θ = [ϑ1 ϑ2 . . . ϑnϑ ]′ is a vector of unknown parameters, but ϕ = [rZ(t −
1) . . . rZ(t−nϑ), u(t) . . . u(t−nu)]′ now contains both exogenous input u (i.e., genre,
sub-genre, . . . ) and measured ratings rZ , with nu being the degree of the exogenous
part.

We fix nu = 0, since we assume only algebraic dependency between input and
output. This observation comes from the nature of the system at hand: e.g. we suppose
that the program broadcast at a given time does not affect the future rating. Once the
additional parameter nu is fixed, the procedure remains the same as the one given for
AR models.

The resulting nθth order ARX model can be rewritten as a first-order, nθ-dimensional
vector autoregression model:

RZ(t) = ARZ(t− 1) + U(t) + E(t)

where U(t) = [u(t), 0, . . . , 0]T . The corresponding K-step predictor of the stochastic
component Z is

R̂Z(t+K|t) = AKRZ(t) + U(t),
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as U(t) is assumed to be perfectly known, whereas the formula for the total predicted
TV rating is again (6.8).

6.4 Experiment Setup

In this section we describe the compared methods and their settings.

6.4.1 Compared Methods

The dynamic models are compared with three static state-of-the art approaches, one
based on individual viewing habits and two on aggregated television ratings.

CARS: we implemented the context-aware collaborative-filtering model with fuzzy
seasonal context described in [61]. The model is solved by using the implicit
tensor-based factorization algorithm iTALS described in [60]. We first define the
user-context-item tensor R = {rufs} where rufs is the total number of minutes
that user u spent watching programs with features f during time slot s

rufs =
∑
t

rufs(t) (6.10)

The tensor is approximated as the product of three latent factor matrices A ∈
<l×u,B ∈ <l×i and X ∈ <l×s (one for each dimension, l is the number of latent
features)

rufs ≈
∑
l

αlu · βli · γls (6.11)

where α ∈ A, β ∈ B and γ ∈ X . The estimated television ratings for user u on
item i in time slot s is

r̂usi =
∑
l

αlu · βli · γls (6.12)

STAT: a static regression model considering program-based covariates (e.g., genre,
sub-genre) and time-based covariates (e.g., day of week, hour of day) described in
[43]. This model predicts the audience by a linear combination of the covariates in
input. We created a model for each time series, thus resulting in 24 ∗ 217 = 5208
regressors. This method does not consider any temporal dependency of the data,
as each data point contributes independently to the coefficients estimation. This
method is an aggregated method and requires aggregated data in input.

NESTED: the nested logistic model described in [42]. This model is nested in the
sense that the prediction is computed by the product of two parts: the first part
computed the probability of watching TV, while the second part computes the
probability to watch some channel provided that the TV is being watched. The
estimation is performed using weighted least squares. This model belongs to the
static category and requires aggregated data. The set of covariates used is the same
as the aforementioned STAT method. Like the previous method, this algorithm
does not consider any temporal dependency of the data.
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Chapter 6. Linear TV Audience Prediction

6.4.2 Settings

We used the full dataset described in Section 5.4.1. The six months of the dataset have
been partitioned into three subsets: training set (first four months), validation set (one
month) and test set (last month).

Based on the results presented in [43], we have chosen to apply the AR model (6.1)
to each channel c and to each time slot s by defining

r(t) = rcs(t) =
∑
f /∈c,u

rufs(t) (6.13)

where rcs(t) contains the television ratings per channel and slot. Overall we created
217 × 24 = 5, 208 models (one per channel and time slot). The models can be easily
trained in parallel, each one on a different partition of the dataset.

The sampling time t has been set to one day. Smaller sampling times (e.g., one hour)
have been avoided because of the lead-in anchoring effect: with one-hour sampling time
the model overfits the ratings of the previous hour.

Ratings (6.13) have been detrended by using (6.2) with α = 0. Frequency analysis
detected a weekly seasonality, as expected, which has been removed by using (6.4) with
τ = 7.

For each channel and time slot we have applied the MDL formula (6.6) to identify
the model order nϑ. The MDL has been computed on the validation set, once each
model has been trained on the test set. Table 6.1 shows that most of the models are first
order models.

Order nϑ Percentage
1 75.3 %
2 10.3 %
3 5.4 %
4 2.8 %
5 1.1 %

Table 6.1: Orders of the auto-regressive models (only the most frequents)

We used 9 exogenous inputs u as side information in the ARX model (6.9): seven
for genre (“young”, “sport”, “movies”, “life-style”, “entertainment”, “news”, “unde-
fined”), one for holiday, and one for live-event. Each of them is a binary input: 1 if the
attribute is present, 0 otherwise. The genre inputs are later normalized with respect to
the number of non zero genres in the inputa. The holiday input is set to 1 if the day
is a national vacation other than Saturday or Sunday. The live-event input is set to 1
if the program scheduled in the time slot is a live event. The root mean squared error
(RMSE) has been used to measure the accuracy of the different methods. As we are
measuring television ratings in terms of average number of viewing time, we normalize
the error with respect to the number of users in the sample (5,666), in order to make it
independent of the population size

e =

√∑
c,s,t [rc,s(t)−r̂c,s(t)]2

Nchannels×slots×days

Nusers
(6.14)
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6.5. Results

Error AR ARX STAT
per household and
channel [min/hour]

0.8218 0,8039 0,8670

Table 6.2: Error for predictions at 1-day distance
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Figure 6.2: Improvement with respect to STAT method

The error e is measured in terms of
minutes

hour× household× channel
With a preliminary set of experiments we compared the accuracy of the baseline meth-
ods CARS, STAT and NESTED. The STAT method, despite its simplicity, outper-
formed both the CARS and NESTED methods. This can be explained by considering
that, when aggregating television ratings (either measured or predicted), the seasonal
effect becomes stronger and context becomes the main effect.

6.5 Results

Table 6.2 shows the error for the STAT, AR and ARX methods when predicting televi-
sion ratings at one day of distance. The first raw of the table shows the value of e for
the three different models. The errors seem relatively small for all the models. But we
should keep in mind that these errors have to be scaled with respect to the number of
households.

Figure 6.2 shows the improvement in accuracy with respect to the static method, as
a function of the prediction horizon. As expected, the dynamic models perform much
better than the static one for short-term predictions (almost 8% improvement for the
ARX model). When the prediction horizon increases, the accuracy of the simple AR
models approaches the accuracy of the static model. However, the ARX model with ex-
ogenous inputs performs significantly better than the static model even for predictions
up to 14 days in the future with an improvement of 3%.
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Figure 6.3: Predicted vs. measured television ratings, for the most popular channel, between 20:00 and
21:00.

Figure 6.3 shows the predicted ratings for the most popular TV channel in the test
month, by using both the ARX and STAT methods. Predictions are computed by using
the previous three months for training, and are compared with the measured ratings.
From the figure we observe that during the last week the television ratings deviated
from the “normal” behavior. The static model is not able to react to this change, while
the dynamic model better adapts to the new trend.

6.6 Discussion

The analysis of the results presented in the previous section suggest a number of inter-
esting considerations: (i) models working on aggregated television ratings have a better
accuracy than models working directly on viewing events, (ii) dynamic models have a
better accuracy than static models for short term predictions, and (iii) dynamic models
with exogenous input have better accuracy even for long-term predictions.

1. Context-aware collaborative filtering based on tensor factorization is consistently
the worst performer, even with respect to less detailed and sophisticated methods.
Given the fact the the algorithm is working on detailed and non-aggregated view-
ing data, we did not expect this result. This may have to do with the fact that
aggregated viewing present strong seasonal effects that are easily described with
linear models.

2. Dynamic models outperform static regression models for short term predictions.
This is not surprising as dynamic model are able to quickly react to lead-in ef-
fects or to other unexpected changes in the values. With long-term predictions,
auto-regressive models reduce their advantages over static models as they asymp-
totically became equivalent to static models.

3. Exogenous inputs are able to easily capture features of television programs and
to boost the dynamism of the model even on long-term predictions, when the
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6.6. Discussion

correlation with past ratings is less strong.

With the billions of dollars spent annually on TV commercials, reliable audience
predictions are required to evaluate the effectiveness of this investment.

In this chapter we explore a new context-driven approach for the prediction of tele-
vision audience (e.g., viewing time) based on time series analysis and auto-regressive
dynamic models. The inclusion of side information as exogenous variables is able to
capture the intrinsic appeal of each program based on observable attributes. The dy-
namic models outperform collaborative-filtering and regression-based models in pre-
dicting television ratings for short and long term horizons.

We have validate our results on a large-scale dataset containing 21 million TV view-
ing events collected from 5,666 households over 217 channels during a period of 6
months. The dataset has been released publicly.

The superior performance of auto-regressive models with respect to context-aware
collaborative filtering techniques suggests that context-driven auto-regressive models
could be efficiently applied to more traditional recommender systems domains as a
valid alternative – or as an integration – to collaborative-filtering, especially in the case
of time-dependent recommendations.

In this domain seasonality and ephemeral catalog properties break down the ImP
assumption and make traditional non-context-driven approaches to perform poorly. We
showed that even simple context-driven baselines outperform complex traditional tech-
niques and we developed context-driven algorithms that take advantage of the “context-
driveness” of the TV domain to deliver more accurate audience predictions.
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CHAPTER7
E-Tourism

The E-tourism domain exhibits characteristics that make it very different from other
recommendation domains (see Figure 1.1). Item consumption is very much driven by
the season: some hotels are best picks in the hot season and some of them are the best
in the cold season. Weather and season can also influence the choice of restaurants as
well as flight bookings. The item consumption is also driven by the intent of the user:
if the user’s intent is to have a very relaxing holiday enjoying the sea, this can lead to
very different choices with respect to a user interested in art and museums.

The most important peculiarity in this domain is relative to the bounded capacity,
e.g. the items cannot be consumed by an unlimited number of users (such as in the
movie recommendation domain), but each item has a maximum capacity over which
the item is not available and thus not recommendable. This property holds for seats in
restaurant or in a flight as well as for rooms in a hotel. During the high season it could
be difficult for a user to find a room, since most hotels are already booked. Experience
tells us that hotels which are the best in the users’ opinion are the first to be reserved and,
consequently, the first to become unavailable in high season. We refer to this scenario
as the missing short head scenario [33]. Predicting the order in which the hotels become
fully booked is of great interest for the E-tourism domain. First it helps into identifying
the “best” hotels and thus improve the quality of recommendation. Second, forecasting
the availability of hotels can help users in planning their trips more accurately. For
example a hotel booking platform may advise the user that the hotel she is seeing is
going to be fully booked soon. This feature exists in real products. In this chapter we
investigate the problem of ranking the hotels, from the first that becomes “unavailable”
to the last available one. We show that by using contextual information we are able to
outperform the baseline that uses only collaborative information.
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Chapter 7. E-Tourism

7.1 Problem Definition

Many studies (e.g., [46, 52]) pinpoint that users’ opinion is influenced by a number of
factors, the predominant being others’ opinion and judgments, manifested for example
in on-line reviews. The issue is how to operationalize this behavior in terms of mea-
surable factors. Intuitively, average ratings and number of reviews can both influence
users’ booking choices. According to the TopAvg method defined in [35], the hotels
most likely booked by users are the ones with the largest average rating r̄i, defined as

r̄i =

∑
u rui
ni

(7.1)

where rui is the rating of user u to item i, and ni is the number of users who rated
item i. However, average ratings computed over a larger support are considered more
reliable by the users compared to the ones calculated over a smaller support. Therefore,
popularity can be used as an alternative metric to define the best hotels, as with the
TopPop method described in [35]. The two metrics (average rating and popularity) are
not necessarily correlated, as low popularity may come along with a high hotel rating
and vice versa.

In this chapter we aim at developing a context-driven hotel recommendation algo-
rithm which is able to suggest the best available hotels by using average rating, popu-
larity and other contextual signals.

7.2 Background

A first study relative to users in different availability conditions has been carried out in
[34, 33]. The authors performed off-line and on-line experiments evaluating the perfor-
mance of personalized and non-personalized algorithms in two availability conditions:
full availability (low season) and partial availability (high season).

They proved that popularity-based methods outperform personalized methods in
condition of full availability (high season). This means that the top popular hotels
are the best choice for most of the users. In low availability conditions, instead, the
personalized approaches are better: when the “best hotels are gone”, the taste of the
user drives the decision making process. This demonstrates that context (in this case
the availability of items) has a crucial impact on the recommendation performance.

In order to simulate high and low season conditions, they developed a recommender
system for recommending available hotels. Modeling hotel availability allows the sys-
tem to determine the “short head” of the best hotels, and so the ones that are the first to
be fully booked. This recommender combines the average rating and the popularity of
the hotels, following the principle that hotels that are both top rated and rated by many
users are the best ones.

In this chapter we show how the performance of this recommender can be improved
by taking context into account.

7.3 Context-Driven Available Hotel Recommender

Our Context-Driven Available Hotel Recommender (CDAHR) is a recommendation
algorithm that takes into account average rating, popularity, stars of the hotel and con-
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7.4. Experiment Setup

textual signals such as price, distance from the center and occupancy. Average rating,
popularity, and the stars are, intuitively, good predictors for the hotel availability. Be-
sides these predictors, contextual signals also play an important role. Price is a valuable
information because usually good hotels are more expensive. On the other hand users
tend to book hotels that less expensive. The distance from the center usually has an
impact in the perceived quality of the hotel: hotels that are closer to the center tend
to be booked first. The occupancy of the city is also a valuable piece of information
because it could help the model in distinguishing the different training conditions.

By using these features we frame the problem as a classification problem where
the dependent variable is the class available/not available. In order to do so we use
large margin classifiers (Support Vector Machines) which are able to deliver accurate
predictions even with a small amount of training data. In the prediction step we used
the confidence in the prediction for the “available” class to rank the hotels.

7.4 Experiment Setup

In order to measure effectiveness of CDAHR in predicting the booking behavior of a
community of users, we measure if our recommender is able to predict the classification
of hotels according to their availability. We used Venere.com APIs to download the full
list of hotels for a number of European cities. Moreover, for each city we identified a
low-availability period with the following experiment: on a Friday we simulated last-
minute reservations by querying Venere.com on available rooms for that same weekend
and requiring a two night reservation for two people on all the hotels for that city. For
each city we used 240 queries as training data and 20 queries as test data with different
occupancy levels. For each hotel the APIs of Venere.com return the average rating, the
stars of the hotel, the number of users that rated the hotel and the availability of that
hotel according to the query parameters (date and rooms), as well as other contextual
information such as the minimum and maximum prices, the proximity to the city center,
price in high and low season conditions. For each city

• we create a ranked list of hotels according to our recommendation algorithm

• we define the occupancy b as

b =
# unavailable hotels

# total hotels
(7.2)

• we define short head hotels as those ranked among the b topmost hotels in the list.

Our hypothesis is that hotels in the short head are not available, while hotels in the
long tail are available.

Figure 7.1 depicts all the possible combinations of actual/predicted available/u-
navailable hotels. True positives (TP) are the available hotels that are in the long tail,
while false negatives (FN) are the available hotels in the short head. True negatives
(TN) are fully booked hotels that are in the short head, while false positives (FP) are
unavailable hotels in the long tail.

In order to measure the quality of our classifier we use accuracy

accuracy =
TP + TN

TP + TN + FP + FN
(7.3)
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Figure 7.1: Available and not available hotels

7.4.1 Compared Methods

As a baseline, we use a random classifier. Given an occupancy level of b, we can think
that a random classifier performs a random permutation over the list of hotels, which is
split in two parts with a proportion of b. Intuitively, the greater the proportion of hotels
that are fully booked is, the more likely a random permutation will have a fully booked
hotel in the first b ∗ #total hotels. The probability that a hotel classified as fully booked
(probability b) is actually fully booked is b*b, giving us the probability of the True
Negative (TN), while the probability that is not fully booked is b ∗ (1− b), representing
the false negative rate. The same reasoning can be extended to the TN and FN:

TN : b ∗ b
FN : b ∗ (1− b)
FP : (1− b) ∗ b
TP : (1− b) ∗ (1− b)

The sum of TP, TN, FP and FN is 1, either by calculating the sum of the previous
definitions or by considering that together they constitute the whole space of possible
events, as depicted in Figure 7.1. So the accuracy of the random classifier, given an
occupancy level of b is:

random accuracy = b2 + (1− b)2 (7.4)

We use the shrunk average rating defined in [34, 33] as our baseline. This scoring
function combines popularity and average rating as the following:

¯̄ri =
r̄ini + kni
ni + k

(7.5)

where k is a shrink constant that controls the support of the estimation. For k = 0
hotels are ranked according to the traditional definition of average rating (TopAvg).
For k →∞ hotels are ranked according to their popularity (TopPop). For intermediate
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7.5. Results

values of k both popularity and average rating contribute to the definition of the short
head of fully booked hotels. We used the training set to tune k for the shrank average
rating for each test case.

For our CDAHR, we trained and compared an SVM classifier per each city, with
different occupancy levels. We used a linear kernel and we pre-processed the input
data by mean-variance normalization. We used a value of 0 as ground truth for a fully
booked hotel and 1 for an available one and we used the confidence in the prediction as
the score for ranking. We used a linear kernel, with ε = 0.1. For each classifier we ran
a 5-fold cross-validation to set the best C and γ values.

7.5 Results

Table 7.1 shows the performance of the compared methods for each city (that yields a
different occupancy level). The table reports the number of hotels of each city as well
as the average, minimum and maximum occupancy levels b together with the accuracy
of the compared methods. First of all it is worth noting that his table validates our
theoretical calculation of the random performances, because the differences from the
theoretical performance are very small. Our CDAHR method outperforms the base-
lines in all test cases, both in low and high season scenarios (low and high levels of
b). The increment is more evident when the shrank rating yields performance that are
comparable to the random baseline, e.g. London. This pinpoints that considering only
rating and popularity is not sufficient for predicting the ranking among the hotels. Our
context-driven method, instead, shows remarkably good performance, validating our
intuition that context is the main driver for the hotel decision making process.

Table 7.2 shows the weights for the linear SVM classifier for each city. A positive
sign of the weight means that that variable positively contributes to the estimation of
an available hotel. A negative sign, instead, indicates that that variable makes the ho-
tel fully booked. As a rule of thumb, a negative weight means that that variable is a
characteristic of the hotel that makes it one of “the best” hotels in that particular city.
We can note that the values are consistent among cities. It is important to point out that
even if the occupancy is the same for each test case, it varies in the training, so it was
included as feature to let the algorithm model different occupancy levels. Occupancy
has a negative effect on the prediction, this means that the confidence of the algorithm
in classifying a particular hotel as available decreases with the occupancy. Although the
coefficient for the rating has a low absolute value, its sign is always negative: it means
that the higher the average rating, the lower are the chances that the hotel is available.
The same holds for proximity, the closer is the hotel, the less likely it will be available,
although in this case the absolute value is lower and we can deem this variable as in-
significant. Surprisingly, the popularity has a positive effect in the availability of the
hotel: the more popular it is, the more likely it will be available. This can be due to the
lack of correlation between popularity and average rating: a hotel with many reviews
in not necessarily a good one. The stars of the hotel also have a positive effect on the
availability: this can be related to the price, the higher the number of stars is, the higher
is the price, and thus fewer people can afford to book that hotel. The prices in low and
high season deserve a separate analysis, because they are correlated to each other. In
general, a high price in high availability condition does not increase the willingness of
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Table 7.1: Accuracy of the compared methods for each city. Number of hotels and minimum, maximum
and average occupancy levels are reported.

Characteristics Accuracy
City #hotels avg b min b max b Random Shrank CDAHR
Moscow 129 0.302 0.279 0.426 0.583 0.695 0.727
Athens 246 0.295 0.276 0.313 0.603 0.681 0.848
Stockholm 178 0.220 0.096 0.365 0.674 0.754 0.810
Monaco 458 0.519 0.319 0.646 0.529 0.606 0.769
Amsterdam 308 0.356 0.214 0.909 0.614 0.686 0.741
London 852 0.393 0.302 0.775 0.559 0.558 0.739
Lisbon 327 0.386 0.336 0.529 0.525 0.581 0.762
Paris 1057 0.262 0.139 0.832 0.687 0.701 0.752
Dublin 230 0.381 0.183 0.730 0.607 0.679 0.738
Rome 721 0.421 0.381 0.619 0.512 0.571 0.787
Vienna 288 0.547 0.444 0.979 0.553 0.630 0.818
Prague 459 0.458 0.353 0.904 0.552 0.609 0.794
Copenhagen 153 0.309 0.118 0.601 0.628 0.625 0.816

the user in booking it. On the contrary, a high price in the low availability condition
makes it appealing for the users to book it. The positive correlation of the highPrice
with the probability of a hotel to be fully booked can be explained by the fact that in the
low availability condition, the hotel with the higher prices are typically the best ones
remained. In the high availability condition, instead, users tend to book cheaper hotels.

7.6 Discussion

We developed CDAHR, a method that outperformed the state of the art in the prob-
lem of predicting the hotel availability. This study has a lot of implications in the
E-tourism domain. First of all our study pinpoints that considering only average rating
and popularity is not enough to capture the user booking intentions. Considering con-
text, instead, greatly increases the prediction performance. Thus the addition of context
to the model helps in modeling the booking process of the user, that jointly considers
the rating, the popularity, the price, the stars, the distance from the center and the gen-
eral availability conditions of the city. This chapter shows that the context can be very
valuable even in non personalized settings, such as the hotel booking domain. Besides
identifying the factors that lead the decision making process in the hotel booking do-
main, we developed a high-accuracy context-driven recommendation method that can
adapt to different occupancy levels. This can be useful in hotel booking domain sites,
to warn the user that the hotel would not be available soon. It can also be helpful for
balancing the short-head/long-tail distribution of hotels, by recommending users hotels
that are in the long tail, possibly at lower fares.
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Table 7.2: Weights learned for each city by the SVM classifier. Proximity is related to the proximity of
the hotel to the city center. Occupancy is the percentage of booked hotels over the total number of
hotels. Stars are the hotel stars, while lowPrice and highPrice are the prices for high and low season
conditions, respectively.

City rating popularity proximity stars highPrice lowPrice occupancy
Moscow -0.090 0.213 -0.019 0.247 -0.992 0.678 -0.325
Athens -0.090 0.215 0.000 0.265 -0.958 0.657 -0.332
Stockholm -0.090 0.214 -0.010 0.265 -0.996 0.683 -0.324
Monaco -0.083 0.205 -0.041 0.250 -0.896 0.607 -0.340
Amsterdam -0.081 0.209 -0.018 0.260 -1.044 0.711 -0.320
London -0.105 0.194 -0.021 0.255 -1.102 0.780 -0.338
Lisbon -0.081 0.206 -0.020 0.247 -0.991 0.672 -0.331
Paris -0.108 0.267 -0.007 0.278 -1.133 0.771 -0.256
Dublin -0.085 0.221 -0.009 0.265 -1.003 0.674 -0.323
Roma -0.082 0.210 -0.016 0.221 -0.960 0.654 -0.346
Vienna -0.088 0.197 -0.024 0.258 -0.987 0.670 -0.306
Prague -0.071 0.197 -0.028 0.251 -0.973 0.650 -0.315
Copenaghen -0.092 0.212 -0.011 0.259 -0.996 0.682 -0.325
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CHAPTER8
Mobile Apps

In this chapter we explore the Mobile App Recommender Systems (MARS). We will
introduce two different problems addressed in this field: the application discovery,
which aims at suggesting apps to be installed on the smart device to the user and the
usage prediction related to suggesting installed apps to be opened, for a quicker and
handier launch. We will present a detailed literature review on these two problems but
we will focus on the usage prediction because of its context-driven nature. We present
our hybrid approach to the usage prediction that combines the Most Frequently Used
and the Naïve Bayesian algorithms and improves the performance in terms of Mean
Reciprocal Rank, Precision and Mean Average Precision. The superior performance
of the proposed algorithm highlights the task oriented nature of the usage prediction
problem and its dependency from the context.

8.1 Introduction

The mobile app market is growing at a tremendous rate. According to Gartner1 the
mobile app market will grow at least five times faster than the internal IT organizations’
capacity to deliver them by the end of 2017. Gartner forecasts 2.1 billion mobile phones
by 2019 which will fuel the demand for apps in the enterprises.

Mobile apps domain is the prefect example to describe this transition. The peculiar-
ities of this domain depicted in Figure 1.1 are: life cycle and task and intent. The life
cycle property that breaks the ImP paradigm is relative to the trendiness of the apps:
many of them have a trendy period after which the user interest in this app decreases.
The second peculiarity is relative to the strong task oriented nature of the mobile app
domain. Usually users want to accomplish a goal with their mobile devices and, in

1http://www.gartner.com/newsroom/id/3076817
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order to accomplish this goal, a number of applications have to be opened. The se-
quence of apps opened by a user can be seen as a session (or workflow) to perform
a particular task. Suppose that a user wants to have diner in a restaurant. First she
may open instant messaging apps to agree with her friends for the schedule. Then she
may open a browser or a review app to check the reviews of the restaurants in order
to choose the one that best fit her needs. These needs can be strongly context-driven.
For example she could have agreed to eat Japanese food, or to eat outside because the
weather is lovely, or to eat near the workplace. Then she may open a navigation app in
order to reach the place. This sequence of opened applications can be recurrent in other
users’ usage patterns. The process of finding and opening a new application can be op-
timized by suggesting in the home page the applications that the user is probably going
to open next according to the system’s understanding of the user’s goal. The contextu-
alization trend is felt both from academia and industry: recently Google has released
the context-awareness APIs that allow any Android application to request high level,
aggregated contextual information and to create triggers when the context changes2.

The process of installing a new mobile application is usually done via an app store.
All of the app stores nowadays employ a recommendation algorithm to suggest new
apps to the user on the basis of the users’ past history of downloads, context and edito-
rial needs. Figure 8.1 is showing the interface of the most common mobile app stores.
Besides the official app stores there are plenty of unofficial ones which have their own
interface and their own recommendation algorithms. However these app stores usually
contain links to the official app stores. The only exception is Android that allows users
to install applications from not official sources. In this way a custom app store can
be a mobile application (or a website) from which users can directly download apps.
Research literature has widely addressed the problem of app discovery, i.e. the recom-
mendation of new apps to be installed by the user. Many online evaluations were using
custom app stores on the Android platform [67, 133, 21, 143, 40, 11, 39, 130, 146, 117].

Each of the major mobile operating systems has its own method to present the list of
apps to the user. Windows Phone adopts a tile interface, where users can rearrange the
app icons and also change their size and appearance. Apple iOS has a paged interface
where each installed app is present. Users can rearrange them and create folders. An-
droid instead has a different approach: the home screen does not contain each installed
application by default, but the user can access the list of installed applications and drag
them into the home page. Although Android has no official default home screen, it
allows third party applications (i.e. launchers) to customize the home page. There are
plenty of launchers to choose from: some are showing mobile app recommendations
(e.g. Yahoo Aviate Launcher) that allow the user to quickly open installed applications.
Some other launchers are more classical, e.g. they allow the user to create as many
pages as he wants and fill them with the application they want to access fast (e.g. Nova
Launcher, Trebuchet). Google’s standard launcher is Google Now Launcher which
presents the users with a page containing its Google Now suggestions and updates
and lets also users arrange the applications icons into other pages. Although Windows
Phone has its own standard launcher, it allows users to download custom ones. Apple
iOS, instead, does not allow to change the default launcher but has a page in which

2https://developers.google.com/awareness/
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(a) Apple App Store (b) Google Play Store (c) Windows Phone Store

Figure 8.1: Most widespread app stores

presents the most frequently used applications and contacts for quick access3.

8.2 Background

There are two main scenarios in which app recommenders can be employed: instal-
lations and usage. In the installation (or app discovery scenario) [139] the system
recommends applications that are new to the users, e.g. the store recommendations.
Usage prediction [70] is relative to the suggestion of the application to be launched. In
principle, the same algorithm can be applied to both scenarios but different scenarios
benefit from specialized algorithms. There is a third scenario that is relative to mo-
bile app security issues such as malware detection. However we will not address these
works because they fall outside of the scope of this chapter, addressing the problem
from the security point of view.

8.2.1 Mobile application installation scenario

Finding the right application for the user need is very difficult. A report4 states that
nearly 3 out of 10 applications are instantly deleted after installation. This highlights
the need for better recommender systems that understand the current need of the user.
Most of the work on mobile app recommendation is relative to the installation scenario
which is similar to the classical recommendation scenarios.

The recommendation of mobile apps to be installed poses two main challenges with
respect to traditional recommender systems: size of catalog and negative feedback. The
first challenge is relative to the tremendous number of applications available for down-
load for app stores, which is around 2 million for both Apple App Store and Google

3as of 2016
4http://www.appbrain.com/stats/number-of-android-apps/
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Play store and and around 600k for windows app store5. This huge catalog is chal-
lenging for the both scalability and accuracy of recommender systems. As a counter-
example, traditional movie recommender systems are dealing with much smaller cata-
logues: the dataset relative from the Netflix Prize contained information on about 17k
movies, while IMDB today has information about 355k movies6. The large number of
items makes the dataset very sparse and this has also a huge impact on the performance:
differently from the movie domain, it is more difficult to spot the right applications that
the user will install and this usually lowers accuracy.

Another issue is relative to the feedback: in this setting a combination of explicit
(e.g. the ratings) and implicit (e.g. the installation of an app) feedback is available.
Moreover the event of installation of an app is a vague indicator of whether the user
likes an application [70]. According to a recent survey7, almost a third of mobile appli-
cations are instantly deleted after installation.

Hereafter we list the papers in this direction.

AppJoy: Personalized Mobile Application Discovery [139] This is one of the first and most
cited papers on mobile app recommendation. The authors develop Slope One, a rec-
ommendation algorithm that uses the usage data of applications with a CF technique,
ignoring the user ratings, following the “rate with your feet” principle: what the user
does matters more than her ratings when profiling her application needs. The authors
perform an extensive online evaluation of their system.

Climbing the App Wall: Enabling Mobile App Discovery through Context-Aware Recommenda-
tions [67] Karatzoglou et al. develop a context-aware recommender system for a
custom app store called appazaar. Their approach to the problem pivots around the
tensor factorization, a context-aware recommendation algorithm, specifically the Djinn
Model: they build a user-item-context tensor, where each context is a separate dimen-
sion. In this way they are able to model user tastes in different contexts, such as moving,
location, time of the day, and day of week. As additional contextual variables they also
use the number of times an app was used, thus leveraging usage data. Baltrunas et al. in
[11] perform offline and online experiments to validate tensor factorization algorithm.
They create a custom app store called Frappé where their algorithms are tested in a
large scale environment. The dataset used for the paper was released to the community
(See Section 8.2.3).

Interoperability-Enriched App Recommendation [133] Wenxuan and Airu describe a rec-
ommender system that exploits cross-store data to provide recommendations. Their
approach is similar to [67], but they use the store as additional contextual variable.
They employ a user-based similarity measure to recommend new apps to user. In their
work they are able to track the same app in different stores. By using cross-store data,
their model can learn more powerful and detailed relations between users and mobile
apps.

5http://goo.gl/DFxBec
6http://www.imdb.com/stats
7http://www.appbrain.com/stats/number-of-android-apps/
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AppTrends: A Graph-based Mobile App Recommendation System Using Usage History [8]
Bae et al. present a recommender system based on graphs and on app usage data to
provide mobile app installation recommendation. They create a graph where the nodes
are apps and the edges are relative to the co-occurrences of application usage of a user
in a particular session. They define the session as the sequence of apps opened between
the moment the user turns on the phone until the screen goes off. For recommendation
they define a fit score that computes the similarity between the user graphs when adding
a new node (app) to the existing graph.

A Context-Aware Retrieval System for Mobile Applications [89]. The authors of the paper
develop a TF-IDF algorithm [19] which uses the description of app and the context
of the user to infer user interest first on topics (categories) and then project it to apps.
They carried out an online evaluation to test the effectiveness of their approach with 16
participants. They adopt a bag of word a approach to deal with context descriptions and
app metadata.

App Recommendation: A Contest between Satisfaction and Temptation [142] Yin et al. model
the process of adoption of an app as a contest between the owned app’s actual value (i.e.
how much the user likes an installed app) and the candidate app’s tempting value, (e.g.
how much the user is willing to install a new app). For example a user is less likely
to download a weather forecast app if she already has one. They introduce the concept
of continous consumption, in which the consumption of an app is not one-shot, such
as with movies or books, but it serves the user continously. The idea of modeling the
app installation in this way is new to recommender systems and standard Collaborative
Filtering techniques are not able to infer such kind of relations. It is important to point
out that in a real scenario if the tempting value is high enough (even if not higher than
the actual value of the existing app in contest) the user will download the new app, test
it and then decide which app to keep, since many apps are uninstalled right after their
installation.

Evolving Mobile App Recommender Systems: An Incremental Multi-objective Approach [136]
Xia et al. adopt a multi-objective approach to optimize the recommender system to-
wards ranking, diversity, revenue and robustness metrics. They propose a variant of the
Latent Semantic Analysis (LSA) [48] algorithm to compute recommendations. More-
over they model the evolution of the system by introducing the method of rank aggre-
gation, which is denoted as deriving a “consensus” ranking of the alternatives, given
the diverse ranking preferences of various criteria. Their method outperform standard
LSA method, but they did not compare the performance with standard Collaborative
Filtering techniques.

Personalized Mobile Application Discovery [141] Yang et al. use the installed apps and
their relative usage as input to their recommender system. They use installations to
compute the popularity of apps and the usage to compute the user interest. In order
to model the user interest, not-so-popular apps have much more descriptive power. As
an example, a swimming app and a chat app may be used with the same frequency,
but the swimming app reflects the user’s interest much better than the generic chat
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app. They apply a weighting scheme derived from TF-IDF and employ the Slope One
algorithm [139].

App Mining: Finding the Real Value of Mobile Applications [143] Yu and Au Yeung use
also uninstallation data as negative feedback. In their model, named “Actual Value”,
the perceived value of each app is computed on the basis of the time elapsed between
the installation and the uninstallation of that specific app and on user’s “expertise”.

Swarm Intelligence methods [137, 135] Xia et al. apply swarm intelligence to optimize
an objective function chosen from similarity, diversity, and utility. Their model is in-
spired by the organization of bullets in a revolver gun, from which the algorithm takes
its name, Cylinder Filling, since the solution is fixed size and has a ring structure. In
this cylinder, the bullets are the recommendations. Their algorithm works by successive
refinements to the “bullets” via particle swarm optimization, maximizing the objective
function.

Top-N Selection [40, 39] Cui and Liang exploit the fact that user interests spawn across
different categories to diversify the recommendation list. Their approach is to generate
the recommendation list with a standard Collaborative Filtering algorithm and then
balance the number of apps from different categories on the basis of the previous user
history in these categories. The experiments have been carried out using two categories:
games and utilities.

A Novel APP Recommendation Method Based on SVD and Social Influence [130] Wang et al.
explore the addition of social influence to the field of app discovery. They use a Data-
Based Influence Diffusion Model to model the reciprocal influence of users and embed
it in an Singular Value Decomposition (SVD) [71] based recommendation algorithm
that leverages usage data. They defined the social influence in a non-symmetrical way,
thus allowing the discovery of “seed” users. Their evaluation has been conducted offline
using Tencent App Store data of 10k users.

A combination of temporal and general preferences for app recommendation [65] Jang et al.
use topic modeling to recommend cold start apps to users. They use a model to capture
users’ temporal preference patterns and Latent Dirichlet Allocation (LDA) [19] to learn
the general user preferences. They used three users to validate their hypothesis.

What Special about Top-N Recommendation for Mobile App Stores [146] Zhu et al. try to
determine if browsing history, app update history, and app categories introduce a bias
in user app downloads. Moreover they compare the performances of different recom-
mendation algorithms in different app categories. As for the user browsing history, they
found out that the last hour of browsing is directly related to the user app downloads.
Therefore remote past history should be used to infer user interest, not as a way to infer
app downloads. For app update, they found out that the action of updating an app is
correlated with app usage. App categories are also correlated to user app download,
with some user preferring certain categories. According to their study there is not an
algorithm which is clearly better for all app categories, so the authors suggest to use
different models for different categories.
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AppFunnel: A Framework for Usage-centric Evaluation of Recommender Systems that Suggest
Mobile Applications [21] The authors of the paper develop a method for a comprehen-
sive evaluation of mobile app recommenders. They introduce different metrics follow-
ing the life span of an application, from the recommendation, through view in store,
installation, direct usage, and long term usage. They use the appazaar 8 app store to
carry out the evaluation. Their main finding is that context-aware recommenders are
have better performance in the short term, while non-context-aware ones have better
performance in long term.

8.2.2 Mobile application usage scenario

This scenario is relative to “app launchers”, i.e. contextualized user interfaces for
smartphones. Instead of presenting applications in static order, these app launchers
use recommendation algorithms to highlight apps that a user will most likely need in
the current context. An example of this is the Yahoo Aviate Launcher9 for Android
devices that presents the users with an application list tailored to their needs.

Differently from app installation setting, usage prediction is limited to the apps that
are currently installed by the user. According to a survey10 in 2014 the average number
of installed apps on Android phones is 95. While this fact makes prediction easier
because the predictions for only the installed apps have to be computed, the training of
a collaborative model should be able to handle nearly all the item set, thus increasing
the training complexity.

Moreover users tend to use applications much more often than installing them. This
can be an issue for models that take into account the sequentiality (i.e. time series) of
the opened apps .

The peculiarity of this scenario is its strong context dependence. The authors of
[22] argue that context is the main driver for mobile app recommendations. One of
their findings is that the app usage is maximum in afternoon and evening, peaking
around 6PM. According to this study the communications app are used every hour of
the day. News apps are likely to be used in the morning. After communication apps
wind down during the evening, games become predominant. Social apps have their
highest probability of usage in the late evening (from 9PM to 1AM). The authors also
defined the concept of application chain i.e. a sequence of apps opened without the
device being in standby mode for longer than 30 seconds. They found that 68.2% of
the applications chains are composed by a single application, 19.5% by two and 6.6%
by three. According to this finding the vast majority of users tend to use a very small
set of apps when interacting with their smart device. However [8] and [63] reported
opposite results with respect to the importance of the session. The authors of [22] also
found empirical evidence for location as a co-variate for mobile app usage behavior. For
example they found differences between Europe and US, or by examining functional
regions like inside or outside the airport. An interesting finding is that when moving
faster than 25km/h users tend to use multimedia applications and, surprisingly, they
are less interested in travel applications. With this study authors confirm that time and

8http://matthiasboehmer.de/appazaar/
9http://aviate.yahoo.com/

10http://thenextweb.com/apps/2014/08/26/android%2Dusers%2Daverage%2D95%2Dapps%
2Dinstalled%2Dphones%2Daccording%2Dyahoo%2Daviate%2Ddata/
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location are the most important contextual signals that drive the mobile application
recommendation.

In the following we list the research papers in this area:

Preference, Context and Communities: A Multi-faceted Approach to Predicting Smartphone App
Usage Patterns [138] Xu et al. develop a bag of features approach to model the con-
textual features and a similarity metric to perform recommendations. Their approach
leverages three key factors that affect everyday app usage decisions: (i) intrinsic user
app preferences and user historical patterns, (ii) user activities and the environment as
observed through sensor-based contextual signals, and (iii) the shared aggregate pat-
terns of app behavior that appear in various user communities. They test their method
with offline data, involving 4606 users and with an online experiment involving 35
users.

Contextual Adaptive User Interface For Android Devices [64] Jain et al. develop a contex-
tual adaptive user interface not only for recommending apps, but also for some action
buttons (e.g., call or text this contact). Their interface is reactive to device sensors read-
ings, user location, duration of contact, category of person being contacted, day and
time, and application usage logs. The interface adaptations involve changing ordering
of menu items, prominently display UI predicted elements, selectively displaying ap-
plication icons, changing the positioning of icons, and overlaying predicted icons on
current application screen. They test their custom interface with 4 users.

Mining Mobile Application Sequential Patterns for Usage Prediction [83] Lu et al. use the
Mobile Application Sequential Pattern Mine algorithm to model the sequence of opened
applications. Their location-based approach first discovers the stay locations for the
user and then mine the sequence of applications for these places as well as for the
paths between these locations. Their objective is to predict the usage of applications
to preload them in memory for a faster app launch. Offline experiments validate their
model against most-recently-used and most-frequently-used baselines.

Conditional Log-linear Models for Mobile Application Usage Prediction [70] Kim and Mielikäi-
nen use Conditional Log-linear Models to predict application usage. The model de-
scribes the conditional probability of application usage given observed context vari-
ables. The approach is based on discriminative models, which uses logistic regression
and conditional random fields. The contextual variables used are time, location, wifi
network and last used apps. They evaluate the algorithm offline using data from 142
users with at least 2,500 usage events each.

Prophet: What App You Wish to Use Next [148] Zou et al. predict app open events with
Bayesian models. They compare their method with existing baselines, such as Most
Recently and Most Frequently used. Bayesian models slightly increase the performance
with respect to baselines.

Predicting The Next App That You Are Going To Use [9] Baeza-Yates et al. use a variety of
features representing the real-time spatio-temporal contexts and the session to predict
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mobile app usage using Tree Augmented Naïve Bayes. They conduct an extensive
offline evaluation using Yahoo Aviate Data. The authors also propose some methods
for addressing both the user and app cold start problem. For the app cold start they
divide the apps in two categories: short and long term apps. For both categories they
exploit the concept of “wisdom of the crowd”, i.e. other user’s usage pattern of the same
app. The difference is that for short term apps, after some hours the estimations can
be replaced by the actual usage of the user, while for long term apps the replacement
happens more smoothly. For cold start users, they propose two strategies: (i) provide
the recommendations from most similar users on the basis of the catalog of installed
apps and (ii) create a fictitious usage history profile on the basis of the similarity of the
catalog of the installed apps (the pseudo-user strategy).

On the Feature Discovery for App Usage Prediction in Smartphones [75] Liao et al. use the
Minimum Description Length criterion to select features used for the kNN app usage
prediciton. They model two different kinds of features: the Explicit Feature (EF) from
the readings of built-in sensors, and the Implicit Feature (IF) from app usage relations.
The IF feature is derived by constructing an app usage graph that models app usage
transitions. The graph is used to discover usage relations among apps. Since users may
have different usage behaviors on their smartphones, they propose a personalized fea-
ture selection algorithm: minimum description length. It selects those features whose
combination has the shortest length to describe the training data. They evaluate the
algorithm with an online experiment involving 50 users against Most Recently Used
(MRU), Most Frequently Used (MFU), Adaboost, Decision Tree and Bayesian meth-
ods.

Understanding and Prediction of Mobile Application Usage for Smart Phones [119] Shin et
al. develop a personalized contextual launcher for Android devices based on Naïve
Bayes method, after performing a study on the most useful contextual variables. The
personalized interface aims at presenting the user with a app recommendations in order
to reduce the cognitive effort in finding the app to be launched. An interesting point
is raised in the discussion of the paper: users may be disoriented if the order of apps
is continuously changing, thus mitigating the effect of the algorithm in reducing the
cognitive effort. The authors suggest to have a static part in the home screen with most
frequently used apps and a dynamic part, containing the other recommendations.

Practical Prediction and Prefetch for Faster Access to Applications on Mobile phones [102]
Parate et al. use a method based on the prediction by partial match [90] to predict the
usage of apps and also to prefetch the apps in memory for faster app launch. Predic-
tion by Partial Match is one of the widely used methods in text compression. At a high
level, PPM operates by scanning character sequences, and building up a variable-length
Markov-based predictor on the fly. However for PPM the longest prefix is the most rel-
evant, while for apps both long and short sequences are relevant for recommendations.
The paper also describes methods for estimating which is the right time to prefetch an
application in memory. In order to test the effectiveness of their approach, they devel-
oped a widget for the Android platform, which has been installed 43k times and has
7,630 active users.
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Fast App Launching for Mobile Devices Using Predictive User Context [140] Yan et al. de-
scribe FALCON, a method based on contextual variables, such as user location and
temporal access patterns, to predict app launches before they occur. This algorithm
tries to model sessions (tasks) of users with the idea of triggers and followers: trigger
events, for example answering a phone call or reading an text message, have a tendency
to open a sequence of other applications (followers) within a relatively short time inter-
val between each other. Their algorithm relies on temporal bursts: some users may use
an app, e.g. a game, continuously for a period of time and then do not open it for sev-
eral months. The combination of these insights and the spatial and temporal contextual
variables make the algorithm effective in predicting app usage. They prototyped FAL-
CON on a Windows Phone with minimal impact on the system energy consumption
and memory footprint.

MobileMiner: Mining Your Frequent Patterns on Your Phone [122] Srinivasan et al. use
sequential pattern mining and temporal patterns to address the app launch problem.
The algorithm mines frequent co-occurrence usage patterns directly on the device and
derives association rules among apps and between apps and context, such as {Morn-
ing} → {UseGmail}. They evaluate their approach online by developing an Android
application that has been installed by 106 users in a period of 3 months.

On Mining Mobile Apps Usage Behavior for Predicting Apps Usage in Smartphones [76] Liao
et al. used temporal and periodical features to improve top-k recommendation. On the
basis of the explored features, the algorithm dynamically derive an app usage proba-
bility model to estimate the current usage probability of each app in each feature. They
propose two selection algorithms and evaluate the performance by using two real mo-
bile app usage traces.

Algorithms that are employed in this scenario are very different to each other and try
to model a different contextual aspect. This diversity of approaches reflects the novelty
of this domain and the lack of a well-established solution. This is deeply connected to
the context modeling: the presence of context and its importance in this field broadens
the category of algorithms to be used, spanning from information retrieval techniques,
to data mining, optimization, and even text-compression techniques, showing that the
transition from personalization to contextualization is not easy nor straightforward.

8.2.3 Datasets

The field of mobile application recommendations is not very well tackled by the recom-
mender systems literature. This is partly due to the lack of publicly available datasets,
as mobile application companies do not disclose their findings in this field. Most works
in this area exploit private datasets. The only publicly available datasets are Frappé11

and Nokia Mobile Data Challenge (MDC)12 (see Table 8.1).
Many studies on installation leverage both installation and usage data. In fact, while

the feedback of an installation is not very informative (the application can be uninstalled
right after its installation or never be used), the usage data is indicative of user’s interests

11http://baltrunas.info/research-menu/frappe
12https://www.idiap.ch/dataset/mdc
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and habits. In the usage scenario, on the contrary, only usage data are used but they are
linked with contextual information. Besides time and location, which are the most
common contextual signals used, many studies use other contextual variables such as
battery level [122], wifi SSID [70], speed of connection [145], accelerometers [138],
the presence or absence of headphones [9], and other sensory data [63].

All datasets used in the literature come from either online app stores or from mon-
itoring apps installed on the phone. Datasets from app stores can be collected ei-
ther by crawling online stores (e.g. Google Play Store) or by creating custom app
stores. Datasets collected directly from apps running on smartphones contain installa-
tion, uninstallation and app usage profiles. Some apps perform the monitoring activity
as a side effect for their main task (e.g. app launchers). Others apps are designed with
the main purpose of profiling users.

Crawl Crawling from official app stores is the easiest way to obtain mobile app data.
Datasets crawled from existing app stores do not contain user’s signals (e.g. instal-
lation, uninstallation) that are used to train CF algorithms and, more importantly, as
ground truth to evaluate RSs. These datasets can be used only to build CBF algorithms
allowing to gather information only on app category, app description, average ratings
and some reviews. This is why papers using crawled data [89, 137, 135] describe non
personalized algorithms, that mainly work with app description and categories and do
not require data about user activities.

Custom App Store Some works use data coming from custom app stores. A custom
app store is a service that presents the user with apps to be installed on the device. It
can be a separate store, which physically hosts the apps and provides the possibility
to download them directly (available only on the Android platform, e.g. Amazon App
Store) or it can be a proxy app store, which points to the original app store in the
moment of installation. An example of separate app store is the appazaar app store13,
an academic project (now discontinued) that provided data for both online and offline
testing to: [67, 20, 21, 22, 23]. An example of a proxy custom app store, available
for the Windows Phone platform, is Wpapps, used in [133]. The advantage of the app
store with respect to crawling is that it can log the browsing behaviour of the users,
e.g. click on an app or read its description. However, differently from the separate
custom app store, a proxy app store cannot directly log the event of installation. If a
custom app store is provided as a phone app, it can leverage the data coming from both
the information coming from the store and the information gathered as an actual app
installed on the phone.

App collecting data Any application installed on the phone has the possibility to gather
data about the installed apps and their usage. Different apps have been developed for
this purpose: AppSensor application is used in [22], AntTest in [145], AppTrends in
[8], AppJoy in [139], Device Analyzer in [54], and AppKicker in [102]. Other apps
for which the name is not provided are used in [119, 76]. [140] gave an iphone for 14
months to get usage and contextual data data.

13http://matthiasboehmer.de/appazaar/
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App Launchers An app launcher is an application that manages the home screen of a
smartphone. Examples of app launchers are Google Now Launcher, Nova Kauncher or
Yahoo Aviate Launcher, all of them for the Android platform. Being the app launcher
an actual application installed on the device, it can collect data about the installed appli-
cations and their usage. The dataset used in [9] has been collected using Yahoo Aviate
Launcher14 for Android. Another launcher, iLauncher, is used in [123]. The advantage
of the launcher over a normal app installed on the phone is that a launcher can log every
event occurring on the home screen of the device, e.g. swipes over the different home
pages.

The most used datasets in MARSs are Nokia Mobile Data Challenge, AppJoy, Net-
Sense, and Frappe. [63, 70, 148] used the Nokia Mobile Data Challenge 2012, . Nokia
Research Center Lausanne collected data from smartphones of almost 200 participants
over more than year and released it for the research community. The dataset is be avail-
able upon request12. Another dataset, AppJoy was collected by the authors of [139] and
subsequenlty used in [138, 141]. The dataset should be available15 but the download
link is not working at the time of writing. The NetSense dataset is related to a study
launched in August of 2011 consisting of 200 incoming freshmen at the University of
Notre Dame and was used in [86]. Frappe, was created for research in [11] and it is
publicly available11.

Table 8.1 summarizes the characteristics of the datasets for installation and usage
scenarios. The #source column refers to the source of data, either custom app store,
app or launcher. Column #events refers to the total number of events in the dataset,
either usage or installation or both. The type of events can be inferred by looking at
usage and installations columns. Column context is marked if time and
location of each event are present. Crawled datasets are not reported since this table
does not contain any information about user activities.

8.3 Context-driven hybrid usage prediction algorithm

Our Context-Driven Hybrid Usage Prediction (CDHUP) algorithm is a combination of
the two most common and effective usage prediction algorithms, namely Most Fre-
quently Used (MFU) and Naïve Bayes. MFU is a simple method which recommends
the most frequently used apps for each user. A Bayesian network is a probabilistic
graphical model that represents a set of random variables and their conditional depen-
dencies via a directed acyclic graph. In this graph the nodes represent the variables and
the edges represent the probabilities. A Naïve Bayes classifier is a simple model that
describes particular class of Bayesian network - where all of the features are class-
conditionally independent. Our Naïve Bayes classifier computes the probability of
opening each app conditioned to the context in which we want to make the predic-
tion. The prediction can involve one or more contextual variables. Here is an example
for the mathematical formulation of the probability with only one contextual variable:

P (i|C1) = P (i, C1)/P (C1) = P (C1|i)P (i)/P (C1) (8.1)

where i is the app for which we are calculating the probability and C1 is the con-
14http://aviate.yahoo.com/
15http://www.cs.uml.edu/~glchen/sam/
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Publication Source users items time span events us
ag

e
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st
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co
nt

ex
t:

tim
e

an
d

lo
ca

tio
n

av
ai

la
bl

e

[139] app 4,600 16,950 400 d 10M x x
[8] app 206 2 w 4,2 M x

[140]
[141] app 1,325 1,489 14 m 1.3 M x x x
[138]
[22] app 4,125 22,626 163 d 4,92 M x x

[145] app 13,969 16,878 485 d 103 M x x
[63]
[70] app 200 ≥ 1 y 1M x x x

[148]
[64] app ≥ 4 50 x x
[83] app 30 > 100 5 m 3,432 seqs x x
[86] app 200 3 y x
[54] app 30 1.5M x

[123] app 34 98 d x
[75] app 50 x x

[119] app 23 1 m x x
[102] app 100 14 m 17k x x
[122] app 106 x x

[76] app 12 636 5 m 42k x
app 80 3,280 15 m 1M x

[67] store 3,260 18,205 3,7 M x x x
[133] store 30k 1M 10M x x
[117] store 100k 7k 2 w 1.82M x x
[142] store 3,308 5,661 x
[143] store 460k 62k 1 w x
[11] store 1,000 2 m 351k x x x x
[39] store 1,463 7,836 x

[130] store 300k x x
[146] store 220k 6,522 13 d x
[21] store 45 3 m 287 x x x
[9] launcher 480 6 m x x

Table 8.1: Datasets

sidered context. The following equation describes the mathematical formulation of the
probability with 3 contextual variables involved:

P (i|C1, C2, C3) = P (i, C1, C2, C3)/P (C1, C2, C3) = P (C1, C2, C3|i)P (i)/P (C1, C2, C3)
(8.2)

For the prediction our algorithm computes the probabilities for each app to be opened
under one(or more) specific context(s). Apps with the highest opening probability will
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be recommended to the user.
We used a maximum of 4 contextual variables:

• CTOD: time of the day. This variables divides a 24 hour day into four differ-
ent intervals: morning (between 6AM and 12AM, afternoon (between 12AM and
6PM), evening (between 6PM and 12PM), and night (between 12PM and 6AM).

• CLOC: location. In the raw data, the longitude and latitude of the user are given
for each type of event. Firstly, locations are clustered with the information that
people mostly spend their time at work in the morning and the afternoon time of
day and they tend to spend the night at home. After clustering, the places that the
user has been the most are assigned as work or home. If a location is above 10
meters from home or work it is marked as other.

• CMOV: moving. When the user opens several applications within a short period of
time, it is possible to observe if the user is stationary, walking or even in a vehicle
moving faster. To classify the situation of the user in terms of movement, the
movement speed is calculated. And they are grouped by the speed (v) in meters per
second (m/s) as follows: Not available if there are no consecutive events within 3
minutes, Stationary if 0m/s ≤ v < 0.1m/s, Walking if 0.1m/s ≤ v < 2.4m/s,
Faster if v ≥ 2.4m/s [67].

• CDOW: day of week. It represents the ordinal day of week, from Monday (0) to
Sunday (6).

Our CDHUP an ensemble of 5 different algorithms: MFU, Naïve Bayes with CTOD,
Naïve Bayes with CLOC, Naïve Bayes with CMOV, and Naïve Bayes with CDOW.
In order to merge the algorithms we are simply averaging the probabilities calculated
by each algorithm for each app. Our algorithm is executed per user, i.e. there is no
collaborative filtering involved.

8.4 Experiment setup

8.4.1 Dataset

We used a dump of one week of 2015 of the Yahoo Aviate Launcher. The data contains
installations and open events for any app the user installed. The raw data includes
following information:

• User id

• App id

• Timestamp

• Latitude

• Longitude

• City

• Day of week ∈ {0, 1, 2, · · · , 6}
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Figure 8.2: Distribution of app open events per user
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Figure 8.3: Distribution of app open events per user limited to users having less than 2,000 events

• Hour of day ∈ {0, 1, · · · , 23}

• Event type ∈ { open, install, uninstall }

The number of installation events is 785,965 while the number of open events is
110,185,157 for a total of 110,971,122 events. The dataset also contains the list of apps
installed by each user. The number of users is 201,513, the number of apps is 115,443
for an average of 33 apps installed by each user. Figure 8.2 shows the histogram of
app open events for users. The x axis reports the number of events in the bin, while
the y axis reports the number of users for that bin. As we can see the number of open
events per user varies up to 8,500, but most of the users have less than 1,000 events.
Figure 8.3 details the previous histogram for users having less than 2,000 open events.
As we can notice the majority of users have less than 100 open events. Figure 8.4
shows the distribution of open events for the top 20 most used apps. The y axis report
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Figure 8.4: Distribution of app open events per app

the percentage of open events for each app. The x axis report the app ids, sorted by
decreasing number of open events. This plot shows that top 10 applications account for
45% of all open events. Figure 8.5 presents the number of apps installed in the users’
devices. The x axis reports the bins for the number of apps, while the y axis reports the
number of users in the bin. As we can see from the plot, most of the users have between
30 and 50 applications installed.

40.000 applications in our dataset is not present in the Play Store anymore as of
November 2016. We included these apps in the UNKNOWN category. The reason
for this is that some of these apps are native like call, contacts or settings, and some
of them are apps provided by the manufacturer. Figure 8.6 shows the app category
distribution before removing the apps not in the store anymore (8.6a) and after (8.6b)
over the apps in our dataset. Categories are reported in the x axis and the number of
apps in the y axis. We can see the UNKNOWN category is is accounting for most of
the apps while games becomes the most common category for the apps in the dataset
after the filtering. Figure 8.7 shows the number of open events for the top 15 used
application in the 3 location contexts considered. The x axis reports the name of the
application while the y axis reports the number of open events for that application.
Three consecutive colored bars represent number of open events when the user located
at work, home and other. We can immediately notice that some applications are used in
specific locations. Figure 8.8 shows the number of open events for the app categories in
the location contexts considered. Some categories, such as FINANCE are mostly used
at work. Figure 8.9 shows the number of open events during the time of day by the top
15 used applications. The x axis reports the name of the application while the y axis
reports the number of open events for that application. Four consecutive colored bars
represent number of open events during the day. We can notice that some applications
are mostly opened during the evening. Figure 8.10 shows the number of open events
during the time of day by the top 91-100 used applications. In this case it is even clearer
that some apps are mostly used during particular times of the day. Figure 8.11 shows
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Figure 8.5: Number of apps installed in user devices

the number of open events by time of day for the app categories. Some categories, such
as MEDICAL, are mostly opened in specific times of the day.

8.4.2 Evaluation Methodology

In order to evaluate our algorithm we split the dataset temporally. For each user we
consider the first 80% of events as training set and the last 20% as test set. We used
Mean Reciprocal Rank (MRR), Precision (PRE), and Mean Average Precision (MAP)
metrics. For precision we used only the next event as ground truth, while for the other
metrics we consider all the events in the test set as ground truth.

8.5 Results

Table 8.2 shows the performance of the compared algorithm with four different dataset
filtering conditions: only keeping the apps in store and keeping the apps in store but
removing the top 10, 25 and 100 most used apps. The table compares MFU, Naïve
Bayes (CTOD, CLOC, CMOV) an ensemble of three single Naïve Bayes predictors,
each one only using one contextual variable, and CDHUP two different versions of our
algorithm ensembling MFU with three and four single Naïve Bayes predictors each one
using only one contextual variable. We can see that our CDHUP with 5 algorithms is
outperforming the other algorithms with any filtering condition and with any of the con-
sidered metrics. Results show that removing the most used apps leads to performance
increments. This indicates that our algorithm is better at predicting long tail apps than
most popular apps. However the percentage improvement of our algorithm over the
baselines is very similar regardless of how many top popular apps are removed.

8.6 Discussion

In this chapter we presented our work in the Mobile Application Recommender Sys-
tems field. We reviewed the state-of-the-art publication in the field and the datasets
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(a) Distribution of app categories before filtering
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(b) Distribution of app categories after filtering

Figure 8.6: Distribution of app categories before and after filtering

used, highlighting the challenges and the differences with respect to traditional recom-
mender systems domains. We proposed an usage prediction algorithm able to outper-
form the baseline techniques. We also validated the ensemble theory, which says that
the combination of weak learners produces a stronger learner. In the app discovery
scenario the algorithms are closer to standard RSs, but many of them take into account
different kind of feedbacks (installation and usage data). In the app usage scenario,
instead, the problem is much different from traditional recommendation setting and
context is crucial to this scenario. In this scenario many different approaches are devel-
oped, from sequential pattern mining, to swarm intelligence methods, through bayesian
and tensor based techniques. By considering these two different problems we showed
how prominently context assumed a central role in the user modeling. We also showed
that taking into account the contextual information in the model improves the prediction
accuracy.

108



i
i

“thesis” — 2016/12/6 — 8:08 — page 109 — #117 i
i

i
i

i
i

8.6. Discussion

co
m

.f
a
ce

b
o
o
k.

ka
ta

n
a

co
m

.a
n
d
ro

id
.c

h
ro

m
e

co
m

.i
n
st

a
g
ra

m
.a

n
d
ro

id

co
m

.g
o
o
g
le

.a
n
d
ro

id
.g

o
o
g
le

q
u
ic

ks
e
a
rc

h
b
o
x

co
m

.g
o
o
g
le

.a
n
d
ro

id
.g

m

co
m

.s
n
a
p
ch

a
t.

a
n
d
ro

id

co
m

.f
a
ce

b
o
o
k.

o
rc

a

co
m

.g
o
o
g
le

.a
n
d
ro

id
.y

o
u
tu

b
e

ki
k.

a
n
d
ro

id

co
m

.t
u
l.
a
v
ia

te

co
m

.s
e
c.

a
n
d
ro

id
.a

p
p
.s

b
ro

w
se

r

co
m

.w
h
a
ts

a
p
p

co
m

.g
o
o
g
le

.a
n
d
ro

id
.t

a
lk

co
m

.y
a
h
o
o
.m

o
b
ile

.c
lie

n
t.

a
n
d
ro

id
.m

a
il

co
m

.j
b
.g

o
sm

s
Apps

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

Work
Home
Other

Figure 8.7: Open events in home, work, or other location for the top 15 used applications
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Figure 8.8: Open events in home, work, or other location for the app categories

109



i
i

“thesis” — 2016/12/6 — 8:08 — page 110 — #118 i
i

i
i

i
i

Chapter 8. Mobile Apps

co
m

.f
a
ce

b
o
o
k.

ka
ta

n
a

co
m

.a
n
d
ro

id
.c

h
ro

m
e

co
m

.i
n
st

a
g
ra

m
.a

n
d
ro

id

co
m

.g
o
o
g
le

.a
n
d
ro

id
.g

o
o
g
le

q
u
ic

ks
e
a
rc

h
b
o
x

co
m

.g
o
o
g
le

.a
n
d
ro

id
.g

m

co
m

.s
n
a
p
ch

a
t.

a
n
d
ro

id

co
m

.f
a
ce

b
o
o
k.

o
rc

a

co
m

.g
o
o
g
le

.a
n
d
ro

id
.y

o
u
tu

b
e

ki
k.

a
n
d
ro

id

co
m

.t
u
l.
a
v
ia

te

Apps

0

500000

1000000

1500000

2000000

2500000

N
u
m

b
e
r 

o
f 

e
v
e
n
ts

Morning
Afternoon
Evening
Night

Figure 8.9: Open events during the time of day for the top 15 used applications
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Figure 8.10: Open events during the time of day for the top 91-100 used applications
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Figure 8.11: Open events during the time of day for the app categories

Table 8.2: Algorithms performance in terms of Mean Reciprocal Rank (MRR), Precision (PRE), and
Mean Average Precision (MAP) with different dataset filtering conditions.

Filtering Algorithm MRR PRE MAP

in store filtering

MFU 0.4497 0.7019 0.8376
Naïve Bayes (CTOD + CLOC + CMOV) 0.4588 0.7154 0.8377
CDHUP (MFU + CTOD + CLOC + CMOV) 0.4594 0.7159 0.8408
CDHUP (MFU + CTOD + CLOC + CMOV + CDOW) 0.4526 0.7319 0.8459
MFU 0.4719 0.6942 0.7564

in store filtering Naïve Bayes (CTOD + CLOC + CMOV) 0.4894 0.7116 0.7657
no top 10 apps CDHUP (MFU + CTOD + CLOC + CMOV) 0.4902 0.7119 0.7657

CDHUP (MFU + CTOD + CLOC + CMOV + CDOW) 0.5058 0.7267 0.7747
MFU 0.4438 0.6689 0.6983

in store filtering Naïve Bayes (CTOD + CLOC + CMOV) 0.4477 0.6854 0.7033
no top 25 apps CDHUP (MFU + CTOD + CLOC + CMOV) 0.4516 0.6862 0.7068

CDHUP (MFU + CTOD + CLOC + CMOV + CDOW) 0.4598 0.7010 0.7172
MFU 0.4394 0.6544 0.6277

in store filtering Naïve Bayes (CTOD + CLOC + CMOV) 0.4483 0.6708 0.6386
no top 100 apps CDHUP (MFU + CTOD + CLOC + CMOV) 0.4502 0.6712 0.6401

CDHUP (CTOD + CLOC + CMOV + CDOW) 0.4631 0.6850 0.6566
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CHAPTER9
Discussion and Conclusions

With this thesis we showed how in many domains context-driven recommendation can
solve the problems of traditional recommendation methods, as depicted in Figure 1.1.
Task and intent can be captured by looking at all the contextual signals, especially the
session. The current session tells us which kind of items the user is looking for (in
case of webshops) or can give a hint on the type of task the user is performing (Chapter
3). An ephemeral catalog can be addressed by estimating the preference of the user
in features, instead of items (Chapter 5). We solved the seasonality problem in linear
TV by creating a model for each time slot, eventually smoothing and blending them
to perform recommendation (Chapter 6). The life cycle of the item can be addressed
by modeling the usual item popularity curve in the algorithm itself, thus enabling it
to suggest always new, fresh and trendy items (Chapter 4). The bounded capacity
problem causes the best items, such as hotel or flight or restaurant, to be the first to
become unavailable. In such a scenario, a context-driven recommender system should
take into account the motivations that led the user to click on that particular item: was it
because she likes that item regardless of the availability of other items or was it a choice
over a limited set of items? We showed that a context-driven algorithm provided with
such information (Chapter 7) is able to outperform state of the art techniques. We then
aim at continuing our work on mobile app recommendation, where context is crucial to
address the task/intent and the life-cycle challenges that this domain poses (Chapter 8).

Unfortunately we were not able to produce an answer to our research question which
is valid in all of the considered domains, because each domain is peculiar and the im-
portance of the contextual variables varies from domain to domain. Time and session,
however, can be identified as the most useful contextual variables. Nonetheless the
methodology for determining the best way to leverage context in each domain is sim-
ilar: it is a mixture of common sense reasoning, availability of contextual variables
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and empirical evaluation. For each domain we can have an hypothesis on the contex-
tual variables that drive the item consumption process. Then this hypothesis has to be
matched to the availability of the data we can use. Finally the utility of the contextual
variables is evaluated by creating an algorithm that makes use of it and evaluating its
performance. We presented many cases in which this methodology led to performance
increments.

In many domains we found out that habits drive the item consumption process. On
one hand, habits can be best leveraged by a personalized algorithm: an algorithm which
can learn the user habits can better predict the next consumed items. On the other hand
(i) habits of different users can be very similar, (ii) a user can have more than one habit,
and (iii) habits occur in specific contexts. A context-driven algorithm does not try to
model the user as a whole, but it tries to model the user as a collection of habits, each
relative to a particular situation and intent. Actually a context-driven algorithm tries to
model the habit itself and looks for occurrences of this habit in different contexts and
different users. In other words, while from a personalized perspective habits can be
seen as the expression of the user taste, from a context-driven perspective they are the
expression of the tastes of many users when they are in the same situation and want to
accomplish the same goal.

We pointed out the importance and the benefits of recommendations leveraging con-
text. Now more than before it is time to focus on context-driven recommendations:
there is the necessity, coming from new EU regulations that have been adopted as of
April 14th 2016, and many enabling factors.

These new regulations give individuals more control over their personal data and
make certain data less available to recommender systems, including:

• The need for the individual’s clear consent to the processing of personal data

• Easier access by the subject to his or her personal data

• The rights to rectification, to erasure and “to be forgotten”

• The right to object, including to the use of personal data for the purposes of “pro-
filing”

• The right to data portability from one service provider to another

They also lay down the obligation for controllers (those who are responsible for
the processing of data) to provide transparent and easily accessible information to data
subjects on the processing of their data1. These new regulations pose some challenges
to the current state-of-the-art recommender systems. Basically every user can deny
the use of its personal data. However, a context-driven recommender system is able
to perform recommendations even without any personal information, using data in an
anonimized way.

The most important enabling factor for context-driven recommender systems is the
rising importance of the context due to the massive usage of smartphone and connected
devices in our everyday life. Fitness bands, as an example, can measure our footsteps
and our heartbeat; an ever increasing number of cars have smartphone-like operating

1http://www.consilium.europa.eu/en/policies/data-protection-reform/data-protection-
regulation/
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systems, e.g. Android Auto; some products have started to control our houses, e.g.
Amazon Echo; the TV itself is connected to the internet, opening possibilities that were
not possible in the early Linear TV days. Bluetooth beacons and NFC communication
have started to spread out, opening up for possibilities like location based or proximity
based ads. Our smartphones are recently enabled to perform payments, just like a
regular credit card.

All these new possibilities open up for a new kind of recommender systems, the
demand being faster than academic response. The Google Context Awareness API2

started to provide high quality, already processed location and contextual signals, en-
abling the applications to make use of them in a very simple way. A use case, for
example, is to ask for a review of a restaurant the moment users move away from them.
There are two different set of APIs that are provided: the Snapshot API gets instant
details about the user current environment, while the Fence API reacts to changes in
the user environment, giving the possibility to developers to create contextual triggers.
The use of these APIs can provide context-driven algorithms the data they need for per-
forming recommendations. If we can achieve to store this data in an anonimized way
not in contrast with new EU regulations, we can give the freedom to the algorithms
to exploit this huge amount of contextual information, as well as easiness of handling
them, protecting the privacy of the users at the same time. Moreover a context-driven
recommender can also be used as a fall-back algorithm in a personalized setting when
users are not logged in the system. As an example, in the hotel booking domain, many
users do not log in until the moment of payment. Another benefit of CDRS is relative to
group recommendation, since usually a group of people share their context. In addition
to that, context-driven algorithms can explain recommendation much more effectively:
each recommendation can be explained by using the predominant contextual signal that
led to that particular recommendation. Lastly, context-driven algorithms can actually
“pop” the filter bubble [103], because the past history of the user does not prevent her
to find new items of interest. Of course, contextualization has its own bubble effect, but
people have more control over the situation and the goal of the moment than on their
past history.

The context-driven paradigm requires to address a number of research challenges.
Contextual variables, for instance, are often continuous, but factorization methods re-
quire the input to be discrete. So some methods have to be explored in order to trans-
form the continuous input into a discrete form without losing information. An initial
step into this direction has been made by [61]. Missing values also need to be addressed.
Current state-of-the-art methods must have an input for each dimension, making it hard
to handle missing contexts. While for some domains this does not constitute an issue,
sensory data very often present missing values. The scalability of the recommendation
phase poses some challenges to context-driven recommender systems. While for stan-
dard user-item setting recommendations can be precomputed, with context-driven is not
so simple. Since the recommendation has to take into account each contextual state, a
context-driven algorithm can either precompute them if the set of contextual states is
not large or it has to compute recommendations in real time, given the set of contextual
variables. Another issue is related to the evaluation: standard approaches can still be
used but replacing the user with contextual variables in the simplest case. However,

2https://developers.google.com/awareness/
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when dealing with sessions, the evaluation must be adapted to take into account the
sequential nature of the problem. There are some problems (like recommending the se-
quence of apps to perform a task) in which a strict ordering has to be respected. Other,
instead, tolerate some degree of flexibility, like the playlist recommendation domain.

The conceptualization of the contextual turn [97] opens up for new challenges in rec-
ommender systems, allowing them to go beyond the classic, well explored, user-item
matrix setting. We hope that such setting will foster some creative and out-of-the-box
thinking about recommender systems. The potential for such a turn is already there:
context-aware algorithms are already available, but they are tightly coupled with per-
sonalization; very powerful algorithms such as gradient boosted trees or deep learning
are increasingly applied to traditional recommender systems problems, but they have
just started to exploit the context.

In some domains, such as Jobs, Apps and Linear TV Program Recommendation,
personalization could not be avoided and so the algorithms presented are not purely
context-driven, but rather personalized algorithms heavily using context. So for some
domains personalization is still a requirement, but there is room to exploit the context
in a better way. Ensemble Theory has been proven to effectively take the best of many
different algorithms (see Chapter 4 and Chapter 8). The power of the Ensemble Theory
pictures a scenario where both personalization and contextualization can coexist and
they both contribute to improve the serendipity, diversity and overall quality of recom-
mendation. If the recommender systems community wants to keep up with industry
needs, more realistic and different use case scenarios has to be addressed, instead of
achieving very little improvement in a problem in which state-of-the-art techniques
perform already well.

Concluding, research on recommender systems has always tried to mimic human
behaviour in choosing items, but this was done by giving very little information to the
algorithms. If we want the algorithms to mimic better the human decision making pro-
cess, they have to take advantage of as many pieces of information as possible and know
how to exploit them. This is the core idea of context-driven recommender systems: they
try to infer as much as they can the situation and the intent of the user, exploiting all the
available information that surrounds the event of a user interacting with a system. Only
by providing the algorithm with nearly all the decision variables that the users implic-
itly uses to make a choice, we can expect algorithms to take decisions much more like
humans do.
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