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Abstract- Nuclear Power Plant monitoring is based on a system of sensors. During operation, some 

sensors may experience faults which might convey inaccurate or misleading information about the 

actual plant state to automated controls and to operators. In this thesis work, we develop a 

methodology automatically diagnose sensor faults in Nuclear Power Plants. The proposed 

methodology involves i) performing the wavelet transform of a measured signal, ii) creating the 

associated coloured spectrum and iii) using image processing techniques to compare the coloured 

spectrum with the coloured spectra obtained from historical data collected when the sensor was 

healthy. The performance of the proposed method in terms of false and missed alarms has been 

compared with that of traditional sensor monitoring techniques such as the Auto Associative Kernel 

Regression (AAKR) method. The proposed method is shown to be superior in the detection of sensor 

freezing. 

1. INTRODUCTION 

Sensor malfunctions in Nuclear Power Plants must be promptly detected to avoid lost power 
production, lost revenues and accident events which may pose harm to the personnel, public and 
environment. On the other hand the cost of sensor maintenance has become significant given the 
thousands of sensors installed in a Nuclear Power Plant. Sensor maintenance is typically performed 
during refuelling of the reactor and is causing some hours of plant unavailability. This results in a 
large economic impact. In this respect, the development and application of methods for continuous 
and effective monitoring of sensor health state,  the timely detection and identification of faulty 
sensors, the reconstruction of the incorrect signals before their use in the operation, and control and 
protection of the plant can be quite beneficial1. On-line calibration monitoring typically evaluates the 
performance of instrument channels by assessing their mutual consistency and possibly their 
consistency with other plant measurements.  
 
Traditional on-line calibration monitoring techniques include Auto Associative Kernel Regression 
(AAKR) and Principal Component Analysis (PCA). AAKR is an empirical model that estimates the 
values of some measurable variables in normal conditions and triggers the fault alarm when the 
reconstruction deviates from the measured signal9. PCA is a multivariate technique that analyses 
correlations among signals with the objective of representing them in a set of new orthogonal 
variables called principal components which are uncorrelated and ordered in such a way that the 
first few retain most of the variation present in all the original signals. Both modelling approaches 
require the availability of a dataset containing signal measurements collected by healthy sensors, 
typically referred to as Training set.  
 
Since, however, most applications of traditional on-line calibration techniques in Nuclear Power 
Plants have been confined to the monitoring of a relative small number of sensors, some issues still 
remain open about the scalability of these methods to the overall fleet of the thousands of sensors 
installed in the Nuclear Power Plant. Three main concerns arise from the prospect of large scale 
applications: 1), the amount of fast access memory needed to store all the training data is extremely 
large, 2) the complexity of performing multisignal reconstructions in such a highly dimensional space  
and 3) the cause of dimensionality for which larger the number of signals results in exponentially 
larger training patterns necessary to properly cover all possible plant situations and thus guarantee 
satisfactory sensor monitoring performances. A possible solution based on the reduction of the total 
on-line calibration monitoring task into a set of smaller sub-tasks of manageable size is explored in 
Ref.1. In particular, a solution based on a multiple objective genetic algorithm search for purposely 
grouping the signals has been proposed. The main advantage of the proposed approach lies in the 
ease of implementation of the task decomposition objectives of interest. Notice, however, that the 
proposed method provides a signal grouping specific for the plant under consideration, which 
cannot be applied to the entire fleet. Furthermore, the obtained signal reconstruction suffers from 
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spill-over effects, i.e. detection of abnormal conditions on signals different from those which are 
actually impacted by the abnormal behaviour15. 
 
In Baraldi et al, an ensemble of randomly generated groups of signals has been proposed. Although 
this approach is shown to be able to reduce the spill-over problem and it does not require long 
multi-objective searches for grouping the signals, it is characterised by the necessity of using several 
multivariate reconstruction models, which can be quite demanding from the computational point of 
view. 
 
The present work investigates the use of continuous wavelet transform (CWT) for sensor fault 
detection. A CWT is performed on the corresponding sensor signal and a coloured spectrum is 
extracted. Then, process image techniques are used to compare the pixels of the extracted coloured 
spectrum with that of the coloured spectra from historical signal sequences collected when the 
sensor was healthy. Finally, an alarm is given when the difference between the images is above a 
certain threshold properly set according to a proposed procedure based on the use of the receiver 
operation characteristic curve. 
 
 The practical industrial benefits of the proposed method for sensor diagnostics are: 1) it provides a 
visual representation of the sensor fault, 2) the simplicity of the approach which is easy to develop 
and thus not require setting many parameters and 3) the methods robustness to the spill-over effect.  
 
The proposed methodology is applied to a real industrial case study concerning the identification of 

anomalous operational transients in a rotating machine of an energy production plant (whose 

detailed characteristics cannot be reported, due to confidentiality reasons). 

The remainder of the paper is organised into six chapters. Section II illustrates the problem 

statement. This section highlights the issue associated with sensor validation, the kind of available 

data used and a general description of the methodology. Section III discusses the simulated sensor 

abnormalities and provides an in depth discussion of the methodology. Section IV presents the case 

study and the method performance. In addition, the results are compared to the industrially 

recognised Auto Associative Kernel Regression (AAKR) model. Section V provides considerations 

which include limitations of the model and areas for further research. Finally, Section VI concludes 

the paper with some acknowledgements. 
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2. MAINTENANCE PRACTICE IN NUCLEAR POWER PLANTS 

Transmission of accurate and reliable measurements is central to safe, efficient, and economic 

operation of nuclear power plants (NPPs).  Current instrument channel maintenance practice in the 

United States utilizes periodic assessment. Typically, sensor inspection occurs during refueling 

outages (about every two years). Periodic sensor calibration involves (1) isolating the sensor from 

the system, (2) applying an artificial load and recording the result, and (3) comparing this “As Found” 

result with the recorded “As Left” condition from the previous recalibration to evaluate the drift at 

several input values in the range of the sensor.  If the sensor output is found to have drifted from the 

previous condition, then the sensor is adjusted to meet the prescribed “As Left” tolerances. As an 

example, Coolant temperature in light water reactors (LWRs) is measured using resistance 

temperature detectors (RTDs) and thermocouples. The calibration of the RTD is performed after 

each refuelling outage. The procedure involves isolating and manually reading from all RTD whilst 

the plant is maintained at a constant and uniform temperature (known as isothermal plateau). This 

results in a period of plant activity of 8 hours.  If a deviation from the accepted level exist following 

inspection of all the RTD’s, the replacement and recalibration can lead to an additional 36 hours of 

plant activity. The current approach to sensor fault detection in operating light water reactors is 

expensive and time consuming, resulting in longer outages, increased maintenance cost, and 

additional radiation exposure to maintenance personnel, and it can be counterproductive, 

introducing errors in previously fault free sensors.  

Previous reviews of sensor recalibration logs suggest that more than 90 percent of nuclear plant 

transmitters do not exceed their calibration acceptance criteria over a single fuel cycle.  The current 

recalibration practice adds a significant amount of unnecessary maintenance during already busy 

refueling and maintenance outages.  Additionally, calibration activities create problems that would 

not otherwise occur, such as inadvertent damage to transmitters caused by pressure surges during 

calibration, air/gas entrapped in the transmitter or its sensing line during the calibration, improper 

restoration of transmitters after calibration leaving isolation or equalizing valves in the wrong 

position (e.g., closed instead of open or vice versa), valve wear resulting in packing leaks, and valve 

seat leakage.  In addition to performing significant unnecessary maintenance actions, the current 

sensor calibration practice involves only periodic assessment of the calibration status.  This means 

that a sensor could potentially operate out of calibration for periods up to the recalibration interval.  

These issues are further exacerbated in advanced reactor designs (Generation III+, Generation IV, 

and near-term and advanced SMRs), where new sensor types (such as ultrasonic thermometers), 

coupled with higher operating temperatures and radiation levels, will require the ability to monitor 

sensor performance.  When combined with an extended refueling cycle (from ~1.5 years presently 

to ~4–6 years as advanced reactors come on line), the ability to extend recalibration intervals by 

monitoring the calibration performance online becomes increasingly important. 

Due to these drawbacks, performance monitoring of NPP instrumentation has been an active area of 

research since the mid1980s (Deckert et al. 1983; Oh and No 1990; Ray and Luck 1991; 

Ikonomopoulos and van der Hagen 1997). Online calibration monitoring has become a prevalent 

area of research and can enhance reactor safety through timely detection of drift in sensors 

deployed in safety-critical systems.  In addition, it can reduce the maintenance burden by focusing 

sensor recalibration efforts on only those sensors that need to be recalibrated, avoiding wasted 

efforts and potential damage to sensors for which recalibration is not necessary.  The movement 

from analog to digital I&C within the nuclear power industry further supports online calibration 

monitoring through enhanced functionality.  As a consequence, it is anticipated that online 

recalibration monitoring within the nuclear power industry will become more widespread. The 
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advantages of such a monitoring technique are the elimination of the 8 hour isothermal plateau 

which results in saving of $750 K per cycle. Current online monitoring work at Sizewell Nuclear 

power plant suggest the calibration period can be extended to 8 years. This enables management to 

achieve the goal of 20 day outage and a 75% reduction in workload. 

3. PROBLEM STATEMENT 

For this thesis work, our objective is to develop a method capable of on-line detection of transient 

faults in sensor readings. Typical faults in sensor readings are (Ref.16) 

1. Freezing: the sensor reports a constant value for a large number of successive samples (see 

Figure 1); 

2. Noise: the variance of the sensor readings increase (see Figure 2); 

3. Quantisation: a reduction in the resolution of the analogue-to-digital conversion is observed 

(see Figure 3); 

4. Spike: a sharp change in the measured value between two successive data points (see Figure 

4); 

To undertake the fault detection task at time 𝑡, we consider the latest 𝐿 > 0 measurements 

provided by the sensor. These measurements are collected in the vector 𝒙(𝒕) = {𝑥(𝑡 − 𝑙 +

1), … . , 𝑥(𝑡)}  . In addition, we assume to have available 𝑁 vectors 𝒙𝐽(𝑡) = {𝑥𝐽(1), … , 𝑥𝐽(𝐿)}  where 

𝐽 = 1,2, … , 𝑁 of historical signal values collected in nominal condition.  Ideally, we want to maximise 

the number of nominal signals. The larger the normal set is the better performance of the fault 

detection method. Following this, a comparison is made between the on-line time window 𝒙(𝒕) and 

the entire set of nominal signals 𝒙𝑱(𝑡) . The result is compared with an optimised threshold 𝑷 for 

fault detection.  

 

 

       Figure 1: Freeze         Figure 2: Noise 
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  Figure 3: Quantisation                Figure 4: Spike 

4. THE METHOD 

The methodology proposed in this work for addressing the sensor validation issue is based on the 

following steps: 

Step 1: Compute the continuous wavelet transform 𝐶𝑊𝑇𝑥
𝛙(𝜏, 𝑠) of signal 𝒙(𝒕) and the 

corresponding scaologram image S. 

Step 2: Convert the truecolour scalogram image S into a greyscale image G. 

Step 3: Compute the dissimilarities 𝑑𝐽, 𝐽 = 1, … , 𝑁, between the greyscale image G and all 

the greyscale images 𝐺𝐽 , 𝐽 = 1, … , 𝑁, obtained by applying CWT to all historical signals 𝒙𝐽(𝑡),

𝐽 = 1, … , 𝑁 and then converting their scalograms 𝑆𝐽 into greyscale images 𝐺𝐽. 

Step 4: Find 𝐽∗ such that  

𝐽∗ = min(𝑑𝐽), 

 𝐽 = 1, … , 𝑁 

Step 5: Compare 𝐽∗ with a fixed threshold value 𝑇; If 𝐽∗ is greater than 𝑇, an anomaly is 

detected. If 𝐽∗ is less than 𝑇, the signal is nominal. 

Figure 5 shows a sketch of the proposed methodology. 
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Figure 6: Schematic of the CWT method 

 

4.1. Continuous Wavelet Transform and Scalogram 

A wavelet function (or wavelet, for short), is a function ψ ∈  L2(ℝ) with zero average 

(i.e.∫ ψ
 

ℝ
  =  0), normalized (i.e.∥ ψ ∥ =  1), and centered in the neighborhood of t =  0 (Mallat, 

1999). Scaling ψ by a positive quantity s, and translating it by u ∈  ℝ, we define a family of time-

frequency atoms, ψu,s , as 

ψu,s(t): =
1

√𝑠
ψ (

t−u

s
) , u ∈  ℝ, s > 0   Eqn. (1) 

Given f ∈  L2(ℝ), the continuous wavelet transform (CWT) of 𝑓 at time 𝑢 and scale 𝑠 is defined 

as 

𝑊𝑓(𝑢, 𝑠) ≔< 𝑓, ψu,s ≥ ∫ 𝑓(𝑡)
+∞

−∞
ψ∗

u,s
(𝑡)𝑑𝑡  Eqn. (2) 

and it provides the frequency component (or details) of 𝑓 corresponding to the scale s and time 

location t. The revolution of wavelet theory comes precisely from this fact: the two parameters 

(time u and scale s) of the CWT in (2) make possible the study of a signal in both domains (time 

and frequency) simultaneously, with a resolution that depends on the scale of interest. 

According to these considerations, the CWT provides a time-frequency decomposition of 𝑓 in 

the so called time-frequency plane. This method is more accurate and efficient than other 

techniques such as the windowed Fourier transform (WFT). The scalogram of  𝑓 is defined by the 

function 

𝑆(𝑠) ≔ ||𝑊𝑓(𝑠, 𝑢)|| = ( ∫ |𝑊𝑓(𝑠, 𝑢)|2 𝑑𝑢 )
+∞

−∞

1

2  Eqn. (3) 

representing the energy of W f at a scale s. Obviously, S(s) ≥ 0 for all scale s, and if S(s) > 0 we will say 

that the signal 𝑓 has details at scale s. Thus, the scalogram allows the detection of the most 

representative scales (or frequencies) of a signal, that is, the scales that contribute the most to the 

total energy of the signal. 
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 If we are only interested in a given time interval [𝑡0, 𝑡1], we can define the corresponding windowed 

scalogram by  

𝑆[𝑡0,𝑡1](𝑠) ≔ ||𝑊𝑓(𝑠, 𝑢)||
[𝑡0,𝑡1]

= (∫ |𝑊𝑓(𝑠, 𝑢)|2𝑡1

𝑡0
 𝑑𝑢 )

1

2
  Eqn. (4) 

A base wavelet and wave (or component time-frequency signal in the case of this work) are required 

to perform the continuous wavelet transform. The base wavelet chosen for the analysis was the 

Morlet wavelet given by ψ(𝑡) = 𝑒 
𝑖2𝜋𝑓𝑜𝑡𝑒

−(
𝛼𝑡2

𝛽2 )
  . Fig.6 provides a visual representation of the Morlet 

wavelet.  

To implement the CWT, the wavelet coefficients are obtained directly from (2). The wavelet is placed 

at the beginning of the signal, and set s=1 (i.e. the original base wavelet). The wavelet function at 

s=1 is multiplied by the signals  𝑓, integrated over all times. The wavelet is shifted to t=τ, and the 

transform value (also known as the wavelet coefficient) is obtained at t=τ and s=1. The procedure is 

repeated until the wavelet reaches the end of the signal. Following this, the scale s is increased by 

one and the procedure is repeated for all s values. Each computation for a given s fills a row of 

wavelet coefficients of the time-scale plane (Figure 5). For further information about wavelet 

transformation consult Appendix 1. 

 

Figure 5:  Illustration of wavelet transform 

 

Figure 6: Morlet wavelet 
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In signal processing, a scalogram is a visual method of displaying a wavelet transform. There are 3 

axes: x representing time, y representing scale, and z representing coefficient value. The z axis is 

often shown by varying the colour of brightness. As an example, Figure 8 is the scalogram 

representation of the normal signal in Figure 7 following a wavelet transform using the Morlet 

wavelet as the base wavelet.  

  

  Figure 7: normal signal       Figure 8: Scalogram of normal signal 

From the scalogram, we see that the colour map ranges from dark blue to yellow. The dark blue 

represents the minimum value and corresponds to the most similar reconstruction between the 

base wavelet and the signal. While, yellow represents the maximum value and corresponds to the 

most dissimilar reconstruction between the base wavelet and the reconstruction. The colour 

representation of the wavelet coefficients between these extremes was given by a linear 

interpolation.   

4.2. Greyscale Image 

Following the performance of the CWT and conversion to a scalogram, the image is then converted 

to a greyscale image to perform the image comparison. In photography and computing7, 

a greyscale digital image is an image in which the value of each pixel is a single sample, that is, it 

carries only intensity information. Images of this sort, also known as black-and-white, are composed 

exclusively of shades of grey, varying from black at the weakest intensity to white at the strongest. 

The advantage of converting to a greyscale image is that it allows for a direct comparison between 

other greyscale images. Figure 9 is the greyscale image of the normal signal in Figure 7. 

 

       Figure 9: greyscale of normal signal 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Scale_(ratio)
https://en.wikipedia.org/wiki/Colour
https://en.wikipedia.org/wiki/Photography
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Digital_image
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Sample_(signal)
https://en.wikipedia.org/wiki/Luminous_intensity
https://en.wikipedia.org/wiki/Black-and-white
https://en.wikipedia.org/wiki/Grey
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4.3. Dissimilarity between greyscale images 

Having achieved a greyscale image from the sensor data, this image is then compared to a backlog of 

greyscale images. These greyscale images have been created by the same method. The comparison 

between the images is made through the image pixels. However, instead of a pixel to pixel 

difference, the relative percentage difference was calculated. To describe a relative percentage 

difference method, consider two greyscale images which each contained 1 pixel of data. As they are 

greyscale images, their pixel values vary between 1 (white) and 0 (black). The Arithmetic difference 

is computed between the two pixels. Following this, the result is divided by the original pixel value. 

In our case, the original pixel value is the pixel value of the backlogged greyscale image.  The result is 

then multiplied by a factor of 100 to convert it into a percentage difference from the original pixel 

value. In practice, we do not consider just single pixel images but images which contain a large 

number of pixels. The new sensor greyscale image is compared with each of the backlog greyscale 

images in this way. In addition, the resultant value is summed up for each comparison and the 

minimum total is the value chosen to compare with the predetermined threshold. 

 

4.4. Threshold Learning  

As previously stated, the developed procedure involves the comparison of the summation of pixels 

from a difference greyscale image with a defined threshold. The threshold was set such values lower 

than the threshold were interpreted as normal operation while values greater than the threshold 

represented abnormal behaviour.  

As the signals which represented normal and abnormal operation were known, it was decided to 

optimise the threshold with a ROC analysis. A ROC analysis involves recording the number of false 

alarms (i.e. detections of faulty behaviour when no fault has occurred) and missed alarms (i.e. 

detection of normal behaviour when a fault has occurred) for a given threshold and repeating the 

process for different threshold values8. A graph of false alarms vs missed alarms for different 

threshold values is plotted and through statistical analysis an optimal threshold is chosen. Figure 13 

illustrates the result of a ROC analysis. This curve is characteristic of a ROC curve with the sharp 

decline at lower values followed by a plateau. 

.      

  Fig.13 CWT ROC curve    Fig.14 CWT distance vs Threshold 
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The optimal threshold is the threshold which corresponds to zero missed alarms and zero false 

alarms. (0, 0) represents the ideal value. Therefore, it was decided to calculate the distance between 

each point on the ROC curve and the ideal value using Eqn.3: 

   𝑑 = √(x1 − x2)2 + (y1 − 𝑦2)2     Eqn.3 

Fig.14 shows the results of the analysis.  
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From here onwards is my first thesis draft 

Includes case study and conclusion 

Subsection 2: Scalogram and Greyscale 

The normal signals were divided into smaller 500 time instances signals. This meant the result, 

following the wavelet transform, was a 797 x 500 element matrix with each element a wavelet 

coefficient for a given scale s and shifting parameter τ. However, as previously stated, the fault 

detection method developed is a comparison of pixels from an image not matrices. In signal 

processing, a scalogram is a visual method of displaying a wavelet transform. There are 3 axes: x 

representing time, y representing scale, and z representing coefficient value. The z axis is often 

shown by varying the colour of brightness. From the scalogram, we see that on the y-axis the scales 

were varied between 1 and 797. While the x-axis is the signal length of 500 time instances. The z-axis 

is a colour representation of the differing values of the wavelet coefficients. The colour map ranges 

from dark blue to yellow. The dark blue (minimum value) was given by a wavelet coefficient of 

0.0013 which was the lowest recorded matrix element and corresponds to the most similar 

reconstruction between the base wavelet and the signal. While, yellow (maximum value) given by a 

value of 38.1775 was the most dissimilar reconstruction between the base wavelet and the 

reconstruction. The colour representation of the wavelet coefficients between these extremes was 

given by a linear interpolation.  As a point to note, we notice that the normal signal is quite noisy to 

begin with and, therefore, the signals frequency is high. This means that high scales (i.e. lower 

frequencies) would provide large coefficient values while low scales (i.e. high frequencies) would 

result in coefficient values approaching 0 and would be a close approximation to the actual signal. 

This observation is clear from the scalogram of the normal signal as the dark blue values tend to 

accumulate at the lower scale values. 

  

  Fig. 7 normal signal       Fig. 8 Scaologram of normal signal 

The developed methodology requires a large amount of normal signals to train the model. All of the 

normal signals, denoted Training Set, were converted to scaolgrams and subsequently greyscale 

images. The limits of the greyscale images were set to 0 (black) and 1 (white). These limits were fixed 

among all the greyscale images. The advantage of converting to a greyscale image is that it allows for 

a direct comparison between other greyscale images. Fig. 9 is the greyscale image of the normal 

signal in Fig. 7. 

https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Signal_processing
https://en.wikipedia.org/wiki/Wavelet_transform
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Scale_(ratio)
https://en.wikipedia.org/wiki/Colour
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       Fig. 9 greyscale of normal signal 

Once a new signal from the sensor becomes available, denoted Test signal, the same procedure is 

performed. The Test signal undergoes a wavelet transform, then is converted to a scalogram and 

finally a greyscale image.. The threshold was an integer number with was achieved through a ROC 

analysis using normal and faulty signals. The Threshold was optimised such that if MIN_TEST was less 

than the Threshold the model classified the original signal as normal. Obviously, if MIN_TEST was 

greater than the Threshold the method determined the signal as abnormal. Fig. 10 provides a visual 

representation of the developed method. Fig. 11 displays the results of the CWT. The model 

correctly classified that the first 6 signals were normal while the remaining 4 were abnormal. 

 

Fig. 10 Schematic of the CWT method 
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Fig. 11 Plot of fault detection model 

 

IV. CASE STUDY 

Subsection 1: Simulated Abnormalities  

 

 

       Fig.1 Freeze              Fig.2 Noise 
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  Fig.3 Quantisation                Fig.4 Spike 

Subsection 2: Threshold Selection 

As previously stated, the six temperature signals represented normal operation of the component. It 

was decided to divide each signal into 8 time windows, each containing 500 time instances. The 

divided signals were placed into a cell, denoted Normal Set. Obviously, the Normal Set contained a 

total of 48 signals, each 500 time instances in length. Taking advantage of a matlab function which 

randomly permutes cell elements, The 48 signals of the Normal Set were randomly separated to 

three cells named Training, Validation and Test Set. The Training Set contained 33 signals, the 

Validation Set contained 7 signals and the Test Set contained the remaining 8 signals. In addition to 

the 7 normal signals, the Validation Set contained 5 simulated abnormal signals: 1 freeze, 1 spike, 1 

noise, 1 high level quantisation and 1 low level quantisation. Therefore, the Validation set contained 

12 signals each with 500 data points. The first 7 elements contained normal signals and the last 5 

simulated abnormalities.  

Once the three sets had been created, the next challenge was to determine an appropriate 

threshold for fault detection.  

The Training and Validation Sets were used for threshold optimisation. The 40 normal signals 

contained among the Training and Validation set were randomly distributed among the two sets at 

each iteration. The Test Set was neglected here but would be reintroduced to determine the 

methods performance 
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.      

  Fig.13 CWT ROC curve    Fig.14 CWT distance vs Threshold 

Summing the percentage difference pixels of an image resulted in a value of the order of 106. 

Therefore, it was decided to vary the threshold between 1x106 and 11x106 in steps of 106. The 

number of missed and false alarms were recorded after each iteration. The program calculated the 

number of missed and false alarms at each threshold value for a fixed Validation and Training Set. 

Following another execution of the program, the normal signals of the Validation and Training Sets 

were randomly divided among the two sets. However, the position of the normal and abnormal 

signals in the Validation set remained the same so a ROC analysis could be performed. Having 

executed the program 10 times, the mean number of false and missed alarms at each threshold 

value was calculated. Fig.13 shows the obtained ROC curve. This curve is characteristic of a ROC 

curve with the sharp decline at lower values followed by a plateau. 

The optimal threshold is the threshold which corresponds to zero missed alarms and zero false 

alarms. (0, 0) represents the ideal value. Therefore, it was decided to calculate the distance between 

each point on the ROC curve and the ideal value using Eqn.3: 

   𝑑 = √(x1 − x2)2 + (y1 − 𝑦2)2     Eqn.3 

Fig.14 shows the results of the analysis. It is clear from the graph that a value of 8x106 represented 

the best comprise between false and missing alarms and was chosen as the threshold value.  

 

Subsection 3: CWT and AAKR method performance 

Having determined the optimal threshold, the performance of the method could be calculated. The 

performance was defined as the number of false and missing alarms given the optimal threshold 

using new, ‘unseen’ data. Here the Test Set was reintroduced which contained signals which had not 

been used to optimise the model. The Test Set was made up of the 8 normal signals along with 20 

simulated abnormal signals i.e. 5 spike, 5 freeze, 5 noise and 5 quantised signals. These 28 signals 

were compared with the 40 normal signal which had been used to optimise the model. The 

developed CWT method was implemented and the results are as follows: 

CWT 
normal 
/8 freeze /5 spike /5  quants /5 noise /5 

Performance 1     0     0     1    0     
Table 1. Performance of the CWT model 
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It is evident from the above data that the method performs very well in identifying normal signals. 

Similarly, the method shows very promising results for the detection of a sensor under freezing, 

spike and noise. However, the method was unable to 1/5 of the quantised signals. The only 

incorrectly identified abnormality came from a very highly quantised signal (Fig. 16). Fig. 15 is the 

scalogram of the normal signal that the quantised signal was created from. It is difficult to notice 

differences in the scalograms. However, the numerical values of the coefficients differ. In fact, the 

MIN TEST of the missed alarm was 7.935x106 which is within one standard deviation of the threshold 

of 8x106. Further investigation into the reason for the false alarm is discussed in the conclusion and 

it emphasises a limitation of the model.  

 
Fig.15 normal signal used to simulate abnormalities   Fig.16 highly quantised signal 

Having achieved these results, a comparison was made to an industrially recognised model. Typically 

monitoring the condition of a component is based on an empirical model that estimates the values 

of some measurable variables (signals) in normal conditions and triggers the fault alarm when the 

reconstruction deviates from the measured signal9. The model considered in this work for 

reconstructing the component behaviour in normal conditions is the Auto Associative Kernel 

Regression (AAKR) method10 whose basic idea is to reconstruct the signal values in case of normal 

conditions given a current signal measurement vector as a weighted sum of historical observations. 

Thus, the application of the AAKR method requires the availability of a set of historical 

measurements. Having achieved the signal reconstruction, a residual is obtained between the 

observed signal and the reconstruction. If the residual is above the optimised upper limit or below 

the optimised lower limit, the model interprets an abnormal behaviour. Fig.17 shows a typical 

scheme of condition monitoring of a component using AAKR. Fig. 18 and Fig.19 shows an AAKR 

analysis of a normal and abnormal signal, respectively with the upper and lower limits. Reference 3 

provides a complete description of the method. 

 

Fig.17 Schematic of AAKR condition monitoring  
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         Fig.18 AAKR results from a normal signal         Fig.19 AAKR results from an abnormal signal 

The AAKR used the same temperature signals (i.e. six signals with 4000 time instances) which had 

been used for the CWT method. However, the signal lengths had been reduced to maximise the 

AAKR efficiency. A 120 x 200 matrix was created and denoted normalsignals. The division of the 

signals were as follow: values 1-20 of the six signals made up the first row of the matrix. Following 

this, inputs 21-40 made up the second row and so on until the matrix had been filled. Each of the 

200 rows became a vector, of length 120, and placed into a cell. The 200 vectors were randomly 

divided amongst three sets: Training, Validation and Test Set. The Training Set contained 140 signals, 

the Validation consisted of 30 signals and the Test Set consisted of 30 signals.  

Similar to the CWT method, the AAKR procedure requires the optimisation of a threshold. However, 

in this case, the threshold is the upper and lower limits. Again, the Training Set and Validation Set 

were used to optimise the limits while the Test Set was used later for performance evaluation. Along 

with the 30 normal signals in the validation set, 5 abnormal signals were added. These simulated 

abnormalities were 1 freeze, 1 spike, 1 noise, 1 highly quantised and 1 low level quantised signal. In 

total, the Validation Set contained 35 signals of which the position of the normal and abnormal 

signals was known. This meant that a second ROC analysis could be performed. After a trial was 

performed, it was decided to vary the upper and lower limits between a value of 6 and 12 in steps of 

0.1 to limit the computational time. Fig.20 and Fig.21 display the results of this optimisation process. 

The optimal threshold was chosen using the already described distance formula and was found to be 

9.  

 

          Fig.20 AAKR ROC curve   Fig.21 AAKR distance vs Threshold 
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Using the value of 9 as the upper and lower limits, the methods performance could be determined. 

The Test Set was reintroduced and, again, 20 abnormal signals were added to the Test Set i.e. 5 

freeze, 5 spike, 5 quantised and 5 noise. An AAKR analysis of the 50 signals was performed and the 

results are shown in Table 3. 

AAKR normal /30 freeze /5 spike /5  quants /5 noise /5 

Performance 0     4     0     0     0     
Table 3. Performance of AAKR model 

The devised method performed better in the determination of frozen sensor signals than the 

industrially recognised AAKR method. While, the other performance indicators, both normal and 

abnormal signals, were on par with the AAKR method. However, a major downside to the 

percentage difference method is the large computational time.  

Subsection 4: Alternative Approach 

In an effort to rectify this, the same procedure was followed. However, during the comparison 

between the greyscale images, a direct pixel to pixel difference was performed. In addition to this, 

an investigation into the nature of the simulated abnormalities was conducted. As previously stated 

the abnormalities were simulated from a normal signal (i.e. signal 3 time window 500-1000) and a 

total of 797 scales were chosen to create the scalogram image. Both frozen and spiked signal 

scalogarms (Fig.22 and Fig.23, respectively) resulted in differences from the normal signal scalogram 

(Fig.15) over a larger number of scales which would allow a pixel to pixel model to detect a sharp 

difference between what it considered normal signal and the simulated abnormality. However, a 

signal that is quantised or has noise added (Fig.24 and Fig.25, respectively) varies slightly from the 

normal signal throughout the signal length. This means that when the wavelet transform is 

performed on these signals the larger scales (i.e. lower frequencies) would reproduce results that 

were analogous to that of the normal signal resulting in similar images at higher scales which the 

pixel to pixel model would interpret as a normal signal and thus a large number of missed alarms 

would result.  However, the differences in the images could be identified with an investigation into 

then lower scales (i.e. higher frequencies).  

 Fig.22 Example of frozen scalogram  Fig.23 Example of spiked scalogram 
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 Fig.24 Example of highly quantised signal  Fig.25 Example of signal with noise 

Therefore, it was decided to filter the number of considered scales and concentrate on the lower 

scales. Through observation, it was clear that the images varied substantially for the first 300 scales 

and with larger scale values were indistinguishable. Therefore, the model was set to focus on scale 

values from 1-300 which would reduce the computational load and, thus, the computation time. Fig. 

26 and Fig.27 are scalograms of Fig. 24 and Fig. 25 respectively with scales from 1-300. 

The same CWT method was performed except the number of considered scales had been reduced. 

As before, the threshold was optimised for the lower scaled images. A value of 2700 was found to be 

the optimal threshold. Following this, an evaluation of the methods performance was conducted 

with new, ‘unseen’ data. The results are as follows: 

CWT (scales 1-300) normal /8 freeze /5 spike /5  quants /5 noise /5 

Performance 1     2     0     1     0     
Table 3. Performance of CWT model considering scales 1-300 

The filtered pixel to pixel method performance for normal signal detection was on par with the 

percentage difference method. It was also the same in the determination of quantised, noisy and 

spiked signals. But, the drawback is that 40% frozen signals were determined as normal which would 

cause safety concerns being applied at an industrial scale. While the overall pixel to pixel method 

performance was not as good as the percentage difference method, the computational time is 

significantly less. Therefore, a trade off exists between the two methods. The chosen method would 

depend on the work that needs to be done. If performance is desired, the percentage difference 

method is optimal. However, as a first tentative step, the pixel to pixel method would be better.  

                    

            Fig. 26 Normal signal with 300 scales         Fig.27 highly quantised signal with 300 scales 
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V. CONCLUSIONS 

In this article we have devised an alternative condition monitoring model using continuous wavelet 

transform (CWT). A case study which used real industrial temperature measurements and simulated 

abnormalities has been considered. The devised CWT model provided satisfactory performance in 

both false and missed alarm detection. The performance results are comparable to the traditional 

AAKR method. The devised method performed better in the determination of frozen sensor signals 

than the AAKR method. While, the other performance indicators, both normal and abnormal signals, 

were on par with the AAKR method. However, the main drawbacks of the approach are:  

(1) No shifting window. The normal signals were arbitrarily split into 500 time instant signals. 

Following this, the model was trained to identify these signals as normal operation. Now consider, a 

signal of length 500 being created from two consecutive normal signals which would itself be a 

normal signal of the component. However, having performed the wavelet transform and fault 

detection technique, the model would conclude that the signal is abnormal. Fig. 28 gives a visual 

representation of the limitation. This limitation can be overcome by introducing a shifting time 

window across the normal signals with the result being a larger collection of normal signals. 

(2) The developed method suffers from a lack of training data which represent normal operation. As 

previously mentioned a total of 33 signals of length 500 were used to train the model. This limitation 

can be seen as a consequence of the fixed time window. Furthermore, this limitation is evident in 

the method performance results. The method recognised one normal signal as abnormal. Upon 

further investigation into this incorrect determination, it was found that the MIN_TEST value was 

8.1725 x 106 which is just above the threshold and Fig. 29 displays the Training signal which was used 

to determine the MIN_TEST value. Notice that the two signals are of the same type however they 

have been offset by a factor of 7. Therefore, it was decided to repeat the calculation with a normal 

signal of that type but reduced offset. Fig. 30 displays all the normal signals of that type. Signal 3 

(which was the TEST signal) and Signal 4 were used to perform the CWT and the MIN_TEST value was 

7600000 below the Threshold. So this problem stems from the lack of normal signals to train the 

model as signal 4 was not contained in the 33 Training signals. Further investigation with a larger 

training set would be required and would reproduce greater method performance. 

 

Fig.28 The bottom normal signal is created from the end of the top normal signal and the beginning of the 

middle normal signal. The CWT concludes that this signal is abnormal. 
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Fig. 29 Training and Test signal for MIN_TEST                                Fig. 30 The 6 normal signals from 1001-1500 

(3) The high computational time required for its application, which is owing to the computation of 

the percentage differences between the current Test set greyscale image and all the Training data 

greyscale images. However, as addressed in the Case Study, an alternative method is proposed 

which involves the calculation of the pixel by pixel difference. Unfortunately, the proposed method 

results in reduced method performance. 

Overall, the results achieved using the percentage difference wavelet transform are very promising 

and would be an ideal starting point for future investigation. Other possible future works would 

involve the extension of the method to more simulated abnormalities and possible incorporation of 

a real signal abnormality. Furthermore, the Morlet wavelet remained the mother wavelet 

throughout the analysis, it would be interesting to vary the mother wavelet and perform a similar 

analysis. Finally, as an extension of the performed work, the CWT could be used in the classification 

of the different abnormalities present.  
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