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“Gravity,” said Dirk with a slightly dismissed shrug, “yes,
there was that as well, I suppose. Though that, of course,
was merely a discovery. It was there to be discovered.”...
“You see?” he said dropping his cigarette butt, “They even
keep it on at weekends. Someone was bound to notice sooner
or later. But the catflap ... ah, there is a very different
matter. Invention, pure creative invention. It is a door
within a door, you see.”

DOUGLAS ADAMS, Dirk Gently’s Holistic Detective Agency
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Abstract

Precise and autonomous landing capability is a key feature for
the next space systems generation. The possibility to carry

out Hazard Detection and Avoidance would allow both absolute and
relative correction maneuvers, dramatically increasing the robustness
and the flexibility of the mission. A novel guidance algorithm is
presented: the trajectory is modeled as a polynomial of minimum
degree required to satisfy the boundary constraints, leaving a reduced
set of parameter free to be optimized. The novelty of the proposed
method lies in the fact that it allows the computation of large diver-
sions, with a suboptimization of the fuel consumption, satisfying at
the same time all the constraints imposed by the system in terms
of control torques, thrust, and allowed hovering area. Only 2 or 3
optimization variables are needed, making the algorithm light enough
to run on-board. The flexibility of the guidance is addressed with
two different applications, a lunar landing and the close approach
to an asteroid. An ad hoc optimizer is also developed, based on
Differential Algebra, capable to solve the guidance optimization in
a fast and reliable way. Objective and constraints are modeled as
low order Taylor maps. The general features of the functions are
easily got, leading in a few iterations to the optimal solution, due
to the property of the Taylor series to converge to the true value in
proximity to the expansion point. An innovative hazard detection
and target selection algorithm is also proposed. The capability of
Artificial Neural Networks (ANNs) to extrapolate underlying rules in
complex datasets is exploited to obtain an automatic classifier that
builds a hazard map of the landing area, basing on a single image.
Manual establishment of heuristic correlations between image and
terrain features is no longer required, leaving to the ANN training
the task to identify these correlations automatically; the process is
run off-line, while only the trained network runs on-board, with a
minimal computational burden. A target selection algorithm exploits
the map to locate and rank the candidate landing sites following
safety and reachability criteria. A coherent and effective dataset for
rigorous training and test is generated with a realistic simulation
tool. The network showed the ability to select a safe landing site in
100 % of cases.
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1

“I didn’t know you could fly a plane.”
“Fly, yes. Land, no.”

Indiana Jones and the Last Crusade

1
Introduction

Certainly, landing is one of the most critical tasks that could be
involved in a space mission. The Entry, Descent, and Landing (EDL)
can be often considered as a mission bottleneck: a failure encountered
in this phase would lead with high probability to the complete loss of
the spacecraft. And even today, despite of the relatively large number
of successes attained in past years, landing is complex and difficult,
as denoted by the recent failure of the European Space Agency (ESA)
lander module Schiapparelli on Mars [1].

Moreover, it is going to be even more important in the next future:
in fact, a renewed interest in Solar System exploration has brought
in the last years to the design of several missions involving landing
maneuvers. Schiapparelli itself was just a single component of the
more articulated ESA/Roscosmos ExoMars program: together with
it, the Trace Gas Orbiter (TGO) was successfully released in a high
eccentric Mars orbit, with the purpose to search for signatures of
biological processes in the Martian atmosphere. The huge amount
of data collected by the lander during the descent will be exploited
to identify criticalities and improve the project of a second mission,
scheduled for the 2020 with the aim to deliver a rover on the surface
of the planet [2]. And beyond the ExoMars program, a Mars sample
return mission has been already included as a flagship mission in the
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ESA’s Aurora program to take place in the timeframe 2020-2025 [3].
Mars is a privileged target for scientific missions. NASA has

nowadays a long heritage in successful landings, begun with the
Viking program in the Seventies [4], continued more recently with
the Mars Pathfinder in 1997 [5], the two Mars Exploration Rover
missions in 2004 [6, 7], the Phoenix lander [8–12], and culminated
with the landing of the rover Curiosity in August 2012 [13,14]. Also
NASA is planning the landing of another rover for the 2020, in the
larger context of a Mars sample return [15].

Also human space flight has returned to be a topic of discussion:
NASA is planning to bring humans back in space with the devel-
opment of the Space Launch System (SLS), whose maiden flight is
scheduled for 2017 [16,17]. ESA will supply the Orion/MPCV Euro-
pean Service Module (ESM) for the unmanned Exploration Mission-1,
including ground and flight operation support [18]. Targets for the
subsequent manned Exploration-2 and 3 missions are under study,
including Near Earth Asteroids (NEAs) and the Moon as possible
destinations [19]. Provisions for the construction and delivery of a
second ESM have been taken. The SLS/Orion system is going to be
the basis for future manned missions to Mars after 2030 [20]. The
human exploration of Mars is nowadays considered as one of the
great objectives of the next decades, and it has started to attract
also private space companies and capitals [21].

Together with Mars, the Moon still remains a main destination for
exploration. Besides scientific research, our satellite is considered also
as a convenient environment to test and develop technologies required
to support future interplanetary missions [22]. ESA has conducted
several studies concerning a possible unmanned lunar lander [23]:
although the program was subsequently put on hold, the technologies
developed in that frame are going to be tested in a joint program
with the Russian Roscosmos agency, on Luna-Glob and Luna-Resurs
landers programs [24–26], with the Precise Intelligent Landing using
On-board Technology (PILOT) and the Platform for Resource Obser-
vation and in-Situ Prospecting in support of Exploration, Commercial
exploitation & Transportation (PROSPECT) experiments. Also, new
actors appeared on the scene in the last years: in 2013, the Chinese
mission Chang’e-3 successfully delivered a spacecraft carrying a rover
on the lunar soil with a soft landing maneuver [27], while the Indian
Space Research Organisation (ISRO) is planning to do the same with
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the Chandrayaan-2 mission in the next few years [28].
In addition to missions toward planets and their moons, there is a

strong interest in visiting small bodies as asteroids and comets. A
typical high-autonomy scenario in this case is the close approach to
a low-gravity object, finalized to either touch and go operations or
landing. The ESA Rosetta probe, launched in March 2004, has per-
formed a rendezvous with the comet 67P/Churyumov-Gerasimenko
in August 2014 [29]. The release of the lander Philae, with the
objective to collect and analyze on-board samples of comet’s soil,
has been successfully performed the next 12th November [30]. The
OSIRIS-REx spacecraft, launched by NASA in 2016, is traveling
to the NEA Bennu, to study it in detail, and bring back a sample
to Earth [31]. MarcoPolo-R, a project with similar objectives, has
been studied by ESA as M-class candidate mission for the launch in
2022 [32], while in the FY2014 budget proposal, NASA has included
a plan to robotically capture a small NEA and redirect it safely to
a stable orbit in the Earth-moon system where astronauts can visit
and explore it [33, 34]. ESA and NASA carried out a joint study
called AIDA, including ESA’s AIM and NASA’s DART spacecraft,
to rendezvous with the Didymos binary asteroid [35]. AIM will
rendezvous and study the asteroid system. Then, it will release a
lander named MASCOT-2 to one of the bodies, followed by two or
more CubeSats with the purpose to perform high-resolution visual,
thermal, and radar mapping of the smaller body (called Didymoon)
to build detailed maps of its surface and interior [36–38]. Finally, it
will observe closely the impact between Didymoon and the DART
spacecraft, to characterize the effects of the collision on the orbit
and on the internal structure of the secondary body. Unfortunately,
the mission has been suspended at the last ESA Ministerial Council
held in Lucerne, Switzerland, in December 2016 due to problems in
budget allocation [39]. Nevertheless, investigation about small bodies
in the Solar System still remains a topic of interest for the agency.

All the examples mentioned above share the common problem of
designing a landing on a celestial body. In these cases, safety is the
main driver in mission analysis and design process.

During the last decades, several improvements in automatic land-
ing precision have been achieved [14], but high uncertainties in attain-
able position at touchdown still impose severe requirements on the
selection of the landing site. The traditional selection process is very
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complex, with the strong limitation of fitting the absolute landing
site dispersion ellipse in a safe area that can be tens of kilometers
wide [40–46]. A powered descent phase is usually introduced at the
end of the landing maneuver to guide the spacecraft to the target final
altitude with null velocity, with the aim to ensure a safe touchdown,
but with no control on the horizontal final position. The landing
accuracy relies mainly on the precision in the determination of the
states at the beginning of the entire maneuver [13]. These limitations
are not going to be acceptable for the next space systems generation.
Often, scientifically relevant sites on the celestial body of interest are
associated with hazardous terrain features or confined in small areas;
in other cases there is no possibility to completely characterize an
interesting region in advance with the required accuracy. Moreover,
in the case of planetary landing, the short duration of the maneuver,
together with telecommunications delays, makes a continuous control
from the ground impossible. In case of proximity maneuvers around
low gravity bodies, the long duration of the operations allows a cer-
tain degree of remote control: the operation sequence can be designed
and corrected step by step over a timespan of days. But even in these
cases, high accuracy is still extremely difficult without an on-board
autonomous guidance system [45,47], while efficient counteraction to
unexpected events or failures is impossible at all, as demonstrated by
the uncontrolled bounce of the ESA lander Philae during the landing
on the comet 67P [48,49].

In addition, in the next future reusable launch vehicles are going to
become a key factor to achieve a simple and affordable access to space.
Between 2015 and 2016 the SpaceX Falcon 9 was the first commercial
launcher able to put in orbit its payload and to come back to Earth
successfully [21, 50]. In prospect of permanent human settlements
not only on Earth, but also on the Moon and other planets like Mars,
landing capabilities with a precision higher than tens of meters at
maximum are going to become a common requirement.

This is why precise and autonomous landing capability is a key
feature for the next space systems generation. The possibility to adapt
the trajectory during the descent would reduce the landing dispersion,
making possible the execution of both absolute and relative correction
maneuvers. At the same time, in conjunction with the capability
to distinguish hazardous from safe landing areas, the safety criteria
during the mission analysis could be relaxed, leaving to the system
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the task of the Hazard Detection and Avoidance (HDA), dramatically
increasing in this way the robustness and the flexibility of the future
exploration missions.

1.1 Autonomous Landing GNC Chain
An autonomous landing system with HDA capabilities should be able
to scan the area around the landing site, to verify if the nominal
target can be reached with the required level of safety and, if not, to
seek for an alternative safe and reachable one. Then, a new landing
path toward the updated target should be computed, followed by
the execution of the divert maneuver. The main difference from a
classical “blind” landing system is the presence of an autonomous
Guidance, Navigation, and Control (GNC) chain, made up by three
core components:

• Adaptive Guidance subsystem.

• Hazard Detection subsystem;

• Relative Navigation subsystem.

Plus, a landing site selector algorithm has the role to join hazard
detection and guidance modules. The overall system functional
architecture is shown in Figure 1.1.

Adaptive Guidance Once a new target is defined, this system re-
computes on the fly a new reference trajectory. This can be achieved
by solving on-board an optimum control problem. Being the fuel
mass a major part of the total vehicle mass, minimizing the fuel
consumption is one of the most suitable criteria in determining an
efficient strategy. Brute force optimization is not suitable for an on-
board computation, due to the limited hardware and time available.
Efficient trajectory formulations and optimization techniques must
be developed in order to find a feasible trajectory with a computation
time of the same order of magnitude of the control update frequency.

Hazard Detection and Target Selection This system (divided in
2 smaller subsystems in Figure 1.1 for the sake of clarity) analyzes
the nominal landing site area in search of a safe place to land. In case
of visible wavelength images, shadows, slopes and terrain roughness
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Figure 1.1: Autonomous Landing system functional architecture. The core
components of the HDA GNC chain are highlighted. Being vision-based systems
one of the major topics of this work, the role of the navigation camera in the
sensors block is highlighted as well, although not the only possible option.

shall be detected, in order to exclude hazardous terrain. Other
types of sensors, like Light Detection And Ranging (LIDAR), can
provide also direct measures of distances and slopes. Once located
the safe areas, the possible sites are ranked, following safety and
reachability criteria, and the best one is selected as new target.
Any additional criteria due to specific mission objectives (scientific
targets, illumination etc. etc.) can be considered in addition. Hazard
detection performances impose some requirements on the descent
trajectory, in terms of visibility of the nominal landing site area.
Efficient image processing algorithms and/or dedicated hardware are
required, in order to achieve performances compatibles with on-board
computation.

Precision Relative Navigation Relative navigation subsystem has
the role to identify the states of the system with respect to the ground.
To perform HDA tasks, an accuracy of the same order of magnitude
of the dimension of the potential hazards is required. The accuracy
guaranteed by classical navigation systems is too low for precision
landing purposes. HDA capabilities require a high relative precision
in the determination of position and speed, needed by the guidance
in order to re-compute the trajectory. Navigation errors are the main
source of inaccuracy in landing site attainment, for the knowledge of
the initial states with respect to the target is required for a proper
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guidance computation. Also, the hazard detection module requires
at least some basic telemetry to correctly estimate size and position
of suitable landing sites.

One of the most promising technologies to achieve such results is
the family of vision-based algorithms. Cameras are widely used in
space: they are relatively cheap and can have a very small form factor
with light weight and reduced power consumption, with a proven
flight heritage. A HDA system based on cameras could be tailored
to different mission categories, from the smallest and cheapest to the
most complex and largest. For this motivation a vision-based system
is taken as reference configuration, preferred to more complex and
expensive systems, e.g. LIDAR based GNC.

1.2 Previous Works
Currently, no complete HDA system has ever flown in a space mission.
Anyway, in the last decade, different research programs have faced
the problem. Different methods and technologies have been proposed,
but in most of the cases additional effort is still required in order to
increase the Technology Readiness Level (TRL) of these technologies
up to a level suitable for their exploitation in the next years.

Initiated in 2001, the ESA Navigation for Planetary Approach
and Landing (NPAL) project [51] has promoted the development
of a feature-tracking based visual navigation system. Dedicated
hardware for features extraction and tracking has been tested on
the ESA Precision Landing GNC Test Facility [52]. In the frame of
the ESA STARTIGER initiative, a multi-copter carrier platform was
developed [53]. This carrier platform demonstrated a safe lowering
and deployment of a rover mock-up to demonstrate the autonomous
landing of an exploration rover on a planetary surface. A feature-
tracking filter has been used for relative navigation, together with a
very simple hazard detection system based on shadows and texture
maps. The main goal of the Small Integrated Navigation system for
PLanetary EXploration (SINPLEX) project, promoted by DLR, is
to develop an innovative navigation system for exploration missions
which include a landing and/or a rendezvous and capture/docking
phase with a mass which is significantly lower than conventional
systems [54]. Multiple sensors data fusion (exploiting cameras, inertial
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sensors and LIDAR) has been tested on unmanned aerial vehicles
for the validation of space oriented navigation technologies, in the
context of the PERIGEO project, founded by the Spanish Centre
for the Development of Industrial Technology [55]. Laser altimeter,
Doppler LIDAR and flash LIDAR are instead the core sensors adopted
in the NASA Autonomous Landing Hazard Avoidance Technology
(ALHAT) project for both relative navigation and hazard detection
purposes, started in 2006. The system has in part been tested in flight
on helicopters [56] and on the rocket-propulsive terrestrial testbed
Morpheus vehicle [57].

1.3 Dissertation Overview and Main Contributions
to the Field

This work focuses on the two most innovative components of the au-
tonomous landing GNC chain: the Adaptive Guidance and the Hazard
Detection subsystems. A target ranking and selection algorithm has
been developed as well, to properly estimate the system performances.
A vision-based system, with a monocular visible wavelength camera
as main sensor, has been assumed as main configuration.

The problem of visual navigation has been widely studied in
recent years in the field of the robotics [58–61], although several
further improvements are still needed to effectively adapt existing
algorithms to space applications. The required level of accuracy is
achieved by fusing data of usual navigation sensors (inertial sensors
and laser/radar altimeters) with the tracking of landmarks obtained
by cameras. Research on this topic has been carried out in parallel
with this work, but it is not been included here.

A light and fast guidance algorithm is presented in Chapter 2.
On-ground Trajectory optimization for landing is indeed a well known
topic since years, for mission analysis purposes. On the contrary, the
adaptation of the trajectory on-board, to autonomously cope with
dispersions, navigation errors or ordered diversions for hazard avoid-
ance is still an open point. In this work, a trajectory computation
method is proposed that:

• Allows the (sub)optimization of the fuel consumption;

• Can compute large diversions;
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• Ensures the satisfaction of all the constraints imposed by the
system in terms of allowed hovering area, maximum control
torques, maximum and minimum thrust;

• Is light enough to run on-board, without intervention from
ground.

The trajectory is modeled as a polynomial of minimum degree
required to satisfy the boundary constraints. A reduced set of pa-
rameters (including the time of flight, the initial thrust magnitude,
and possible additional parameters that are problem dependent) is
left free for a constrained optimization able to minimize the fuel
consumption, satisfying at the same time all the other constraints
imposed by the actual spacecraft capabilities, and leaving enough
margins to further corrections in case of multiple retargetings. Classi-
cal guidances (like the one adopted for the Apollo mission, described
in [62]) do not consider path constraints like attitude control torques
magnitude, or minimum thrust magnitude. Only small diversions
can be considered to avoid infeasibility with reasonable confidence.
Then, many algorithms are not suitable for hazard detection and
avoidance tasks [63]. On the contrary, a very recent class of guid-
ance algorithms, based on pseudospectral collocation associated with
convex optimization is able to find nearly optimal solutions to large
diversions, but involving tens (or even hundreds) of optimization
variables [64,65]. An intermediate approach is here proposed, leading
to the computation of suboptimal solutions for large diversions with
only 2 or 3 optimization variables. The flexibility of the proposed
method is addressed with two different applications, a lunar landing
and the close approach to a low gravity small celestial body in the
NEA category. The robustness of the formulation is demonstrated
through Monte Carlo simulations coupled with a very basic optimizer.

Moreover, a novel, more complex optimizer, based on Differential
Algebra (DA), is developed, capable to solve the optimization problem
in a fast and reliable way. The objective and constraints functions
are modeled as low order Taylor Maps. The general features of the
function are easily got, leading in a few iterations in the neighborhood
of the optimal solution. There, the current point is refined, exploiting
the property of the Taylor series to converge to the true function
value in proximity to the expansion point.

In Chapter 3 a novel hazard detection and target selection algo-
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rithm is expounded. The capability of Artificial Neural Networks
to extrapolate underlying rules in complex datasets is exploited to
obtain an automatic classifier that, given a single image of the land-
ing area taken by a monocular navigation camera, is able to build
a hazard map of the terrain surrounding the target. This method
removes the need to manually establish heuristic correlations between
image features (e.g intensity mean and variance, etc.) and terrain
physical features (like slopes and rocks), leaving to the Artificial
Neural Network (ANN) training process the task to identify these
correlations automatically; the training is completely run off-line,
before flight, while only the trained network runs on-board, with
a minimum computational burden. Based on the hazard map, the
target selection algorithm locates and ranks the candidate landing
sites following safety and reachability criteria, leading to the selection
of the best target. A visual simulation tool is also developed to build
a coherent and effective image dataset used for the networks training.

Conclusions are drawn in Chapter 4. Obtained results are dis-
cussed, and a possible research roadmap toward a full integration
and testing of the algorithms developed is outlined in the end, in
prospect of a future practical exploitation in real space systems.
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Richard pushed the phone back into its cradle and slammed
his car into reverse for twenty yards to have another look at
the sign-post by the road junction he’d just sped past in the
mist. He had extracted himself from the Cambridge one-way
system by the usual method, which involved going round and
round it faster and faster until he achieved a sort of escape
velocity and flew off at a tangent in a random direction, which
he was now trying to identify and correct for.
Douglas Adams, Dirk Gently’s Holistic Detective Agency

2
Landing Guidance

Uncertainties in the determination of the system states can propagate
during the landing, making the spacecraft drift with respect to its
nominal path. The capability to continuously correct the trajectory
on-board would improve both relative and absolute precision, also
in case of nominal maneuver without safety diversions. In case of a
hazard avoidance maneuver, a completely new trajectory must be
generated.

In this chapter, the problem of the adaptive guidance for spacecraft
landing is analyzed. The guidance problem consists in finding a
feasible trajectory that drives a spacecraft, starting from a given set
of initial states, to a correspondent set of desired final states (the
target). The control profile of the spacecraft is defined by a time
history of the thrust vector. Being the control variables continuous,
the subspace of the feasible solutions is generally infinite (except for
the particular case in which there is just one feasible solution): an
additional criterion is then required to select the best solution in the
feasibility domain.

In this work, a fuel optimization criterion is followed. The min-
imization of the propellant consumption is a goal of every space
mission, as it allows a reduction in launch mass or an increase in
payload, and thus in the scientific return of the mission. In the
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specific case of the landing guidance, a fuel optimal approach in
HDA computation contributes to maximize the attainable landing
area, consequently increasing the chances to find a safe landing site.
Furthermore, it improves the possibility to perform additional sub-
sequent diversions, if requested by hazard detection as the altitude
decreases and the ground is analyzed with better resolution, or in
case of unexpected events. That is why propellant minimization can
be considered as an ideal criterion in the design of diversion trajecto-
ries. Since brute force numerical optimization usually implies heavy
computation with no guarantee of convergence, particular care is
required in finding efficient and robust formulations and optimization
methods, to obtain a reliable algorithm capable to run autonomously
on-board a spacecraft.

Different approaches to the problem have been adopted during the
years. At the dawn of the spaceflight era, the available computational
capability imposed strong limitations over the complexity of GNC
algorithms: a trajectory based on a quartic polynomial in time, with
no optimization involved, was used during the Apollo missions [62].
This class of methods allows to find a closed-form, explicit solution,
fast and easy to be implemented on-board, but is not able to take into
account any additional constraint except for boundary conditions [63].
Without the certainty that the solution is always feasible, only limited
corrections along the nominal path are allowed: the probability
to find an unfeasible solution is unpredictable, but it is higher as
the requested diversion increases. Despite of these drawbacks, the
simplicity of this method made it very popular: a derivative of the
Apollo lunar descent guidance has been still considered in recent years
for the Mars Exploration Rover (MER) missions [79], while another
variant of this explicit scheme based on a polynomial formulation of
the acceleration – called E-Guidance – has been recently considered
to accomplish HDA tasks [80].

As the available computational capabilities increased, various
other approaches to obtain both numerical and approximate optimal
solutions of the pinpoint landing terminal guidance problem have
been proposed. In [81] the first-order necessary conditions for the
problem are developed, and it is shown that the optimal thrust profile
has a maximum-minimum-maximum structure. Direct numerical
methods for trajectory optimization have been widely investigated,
not requiring the explicit consideration of the necessary conditions
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and with better convergence properties [82]. These methods have been
used together with Chebyshev pseudospectral techniques, to allow
the reduction of the number of the optimization variables [83]. Also
convex programming has been proposed to guarantee the convergence
of the optimization; this approach, coupled with direct collocation
methods, has proved that the size of the region of initial states for
which there exist feasible trajectories can be increased drastically
(more than twice) compared to the traditional polynomial-based
guidance approaches, but at the price of a higher computational cost,
due to the high number (up to hundreds) of optimization variables
involved [64]. This method has been coupled with a minimum-landing-
error approach, in order to compute a landing trajectory even in case
a feasible solution for the selected landing site is not found [65].

In the case of asteroids and comets, landing and close proximity
operations present some peculiarities, due to their small size and
irregular shape. In particular, the gravitational acceleration is very
weak and variable in function of the relative position of the spacecraft
with respect to the target. Due to that, orbits are generally complex
and non periodic, and stable only in certain regions [84]. A detailed
characterization of the target allows pure ballistic landing trajectories
to achieve high precision, but unmodeled dynamics and unpredictable
events can lead to uncontrolled bounces and multiple touchdowns with
undesired consequences [45, 48]. Zero Emission Effort/Zero Emission
Velocity guidance has been proved to produce a good approximation
of the fuel-optimal trajectory in close proximity maneuvers around
asteroids [85], and it has been applied together with high-order sliding
mode control to increase robustness to disturbances and unmodeled
dynamics [86,87]. Convex optimization has been adapted also for low
gravity bodies: also in this case, the solution obtained is near to the
true theoretical optimum, but with a large number of optimization
variables [88].

A guidance algorithm capable to dynamically recompute and cor-
rect the landing trajectory during the descent is here developed,
allowing the on-board choice of the landing site, as required by
systems that have to operate in full autonomy. An innovative semi-
analytical approach is proposed: the trajectory is parameterized in
a polynomial form, depending only on a few parameters that can
be efficiently optimized by fast optimization algorithms. Traditional
closed-form guidance schemes (such as Apollo guidance, E-guidance)
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are sub-optimal and do not include explicitly path constraints, po-
tentially leading to infeasible trajectories. On the other hand, fully
numerical methods, although extremely flexible in terms of opti-
mality and constraints evaluation, require the handling of hundreds
of optimization variables or complex gradient based optimization
techniques, and thus they are computationally intensive [63]. With
the proposed approach, the feasibility region is increased with respect
to traditional polynomial algorithms, avoiding at the same time the
higher computational cost of complex optimization methods, being
the number of variables to be optimized very low. Furthermore,
additional parameters allow us to include path constraints usually
not taken into account by traditional guidance algorithms. As a
result a simple, efficient, and nearly-optimal guidance law is obtained.
The proposed method is flexible enough to be tailored on problems
with very different time scales: as demonstration, it is here applied
to both the problems of a planetary and an asteroidal landing.

Specific ad-hoc optimizers are developed to obtain a fast compu-
tation, as required by on-board systems. At first, a very simple and
basic derivative-free method is tested, not for an in-flight use, but to
assess the effectiveness and robustness of the proposed formulation.
Then, a more complex method based on DA is developed. In DA the
usual algebraic operators are extended from real numbers to func-
tions, modeled as their Taylor expansions around a selected point, up
to an arbitrary order. The three components of the acceleration are
expressed as DA quantities, expanded around the nominal trajectory
followed by the lander at the retargeting epoch: in this case the
DA formulation leads to an exact representation of the acceleration
profile, due to its polynomial nature. From the acceleration history,
the mass trend is easily obtained through integration, leading to a
DA representation of the objective and the constraints as functions of
the two optimization variables around the expansion point). Such a
representation carries additional information regarding the quantity
that it represents: not only its value at the expansion point, but
also its sensitivity with respect the variation of the parameters that
concur to its determination (e.g. to the optimization variables).

The chapter is organized as follows: in Section 2.1 the general
logic of the proposed algorithm is presented. Then, it is formalized
in Section 2.2 for the planetary landing case, and in Section 2.3
for a NEA close approach. Section 2.4 expounds the optimization
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algorithms developed to solve the problem in a fast and reliable
way. Finally the results obtained in simulations of a lunar and an
asteroidal landing are discussed in Sections 2.5 and 2.6; Monte Carlo
simulations are exploited to assess the effectiveness of the proposed
method.

2.1 General Approach
The retargeting problem, as part of a HDA system, involves the last
part of the landing phase only. Hazard avoidance maneuvers take
place in the last few kilometers before the touchdown, and a powered
descent is assumed.

The proposed algorithm presents a general approach that can
be tailored on the specific problem, from slow (low-gravity objects)
to fast (planetary landing) dynamics. In this section the generic
procedure of the adaptive guidance is presented. In the next sections,
the method here expounded is applied to write the actual guidance
laws for two very different cases, a planetary landing and a soft
landing on a small asteroid-like target in a low gravity environment.

The implemented guidance is based on the following scheme:

1. The system translational dynamics are identified and expressed
in the general form: 

ṙ = v
v̇ = f(r,v,m,T)
ṁ = g(T)

(2.1)

where r is the position vector, v is the velocity vector, m is the
mass of the spacecraft, and T is the thrust vector. f(r,v,m,T)
and g(T) are generic functions of states and thrust.

2. The boundary constraints are defined. It is assumed that the
full spacecraft states r0, v0, and m0 are known at the time t0
when the retargeting is ordered. At final time tf constraints
on both position rf and velocity vf are considered. Additional
boundary constraints on initial and final acceleration can arise
from the actual system architecture, depending on propulsion
and attitude control systems requirements. Initial acceleration
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is expressed as function of initial thrust magnitude and, when
needed, initial spacecraft attitude.

3. The acceleration profile is expressed in a polynomial form in
time, of minimum order to satisfy the boundary constraints. By
inverse dynamics, a complete control profile is obtained, function
of time-of-flight and possible additional parameters. These
parameters are problem-dependent and can vary for different
applications, as described in the subsequent sections.

4. The problem is reduced to finding the values of these parameters,
according to any additional constraint not implicitly satisfied by
the polynomial formulation, minimizing the fuel consumption.
Representing as x the vector of optimization parameters, the
cost function is f(x) = m(t0)−m(tf), and the problem can be
expressed in the form:

min
x
f(x) such that

xL ≤ x ≤ xU
cL ≤ c(x) ≤ cU

(2.2)

The search space for the optimization variables is defined by
upper and lower bounds, xU and xL respectively. These are
called Box Constraints. The elements of c(x) in Equation (2.2)
are generally nonlinear functions of the optimization variables,
also bounded between lower and upper limits cL and cU . These
constraints need to be satisfied during all the landing maneuver,
and they are called Path Constraints.

In writing the actual guidance law, these general steps are tailored
to the specific case:

• The dynamic system is written;

• The proper assumptions about the spacecraft architecture and
mission requirements are made to derive the actual boundary,
box, and path constraints;

• The remaining unknown parameters are identified as optimiza-
tion variables, and the resulting optimization problem is formal-
ized.
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2.2 Planetary Landing: Problem Formulation

A planetary landing is characterized by fast dynamics. The expected
time of flight is in the order of magnitude of 1 min [63,64], and the
mass is expected to significantly change during the maneuver.

2.2.1 Problem Statement

In the case of a planetary landing, distances, for both downrange
and altitude, are small compared to the planet’s radius; thus, the
assumption of a constant gravity field with flat ground is appropriate.
This assumption is widely used and accepted in the development of
terminal guidances for planetary landing [62–64,79,80]. Furthermore,
aerodynamic forces are neglected. In fact the eventual presence of
atmosphere (especially with low density, as in the case of Mars)
could be negligible due to the relative low velocity (on the order of
100 m s−1), and shape of the spacecraft (without lifting surfaces), and
the associated forces can be then treated as disturbances [64].

m(t)

r(t)

x

z

y
TARGET

T(t)
g

Figure 2.1: Ground reference system.

The translational dynamics of the spacecraft are expressed in
a Ground Reference System (GRS) (see Fig. 2.1), where x is the
altitude, y is called the Downrange direction and z is the Crossrange
direction. The dynamics is described by the equations



ṙ = v

v̇ = T
m

+ g

ṁ = − T

Ispg0

(2.3)
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where g is the constant acceleration of gravity vector of the planet, Isp
the specific impulse of the main engine, and g0 the standard gravity
acceleration on Earth. The thrust net magnitude is indicated with
T = ‖T‖ .

In this system, the thrust vector acts as control variable. The mass
equation is linked to the control acceleration by the thrust-to-mass
ratio P:

P = T/m = v̇− g (2.4)
Then, the mass equation in system (2.3) can be rewritten as

ṁ = − P

Ispg0
m (2.5)

which is a first order linear ordinary differential equation whose
solution is

m(t) = m0 exp
− ∫ t

t0

P (τ)
Ispg0

dτ

 (2.6)

At the time t0 the initial states r0, v0 and m0 are supposed to
be known. At the end of the maneuver, at time tf, final states rf
and vf are required. Then, the optimal guidance problem is to find a
control profile T(t), to bring the system from the initial to the target
final states, that maximizes the final mass compatibly with all the
constraints imposed by the actual system architecture.

2.2.2 Parametric Trajectory Formulation
The main thruster is assumed to be rigidly connected to the spacecraft
body. Thus, the direction of the thrust vector is determined directly
by the spacecraft attitude. The spacecraft attitude is expressed
relatively to an auxiliary reference system, called Flight Reference
System (FRS), defined by the unit vectors [xf yf zf]T (see Fig. 2.2),
centered at the center of mass of the spacecraft, the xf axis pointing
toward the downrange direction (y in GRS), the zf axis pointing
downwards, an the yf axis forming a right-handed triad.

Attitude is defined as the rotation from FRS to the Body-fixed
Reference Frame (BRF). The body axes [xb yb zb]T are assumed
to be defined as in Fig. 2.3, where the xb direction is called Roll
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Figure 2.2: Flight reference system.

axis, yb is the Pitch axis and zb is the Yaw axis. The rotation is
expressed in Euler angles, in the 231 form, where θ (pitch angle) is
the first rotation around yb, ψ (yaw angle) is the second rotation
about zb, and φ (roll angle) is the third rotation around xb. The 231
form is preferred to the more traditional 321, because it avoids the
presence of singularities in the angles determination, in the field of
application of the landing phase (it is assumed that the thrust vector
is never required to have a downward component). The attitude with
respect to the flight reference frame is expressed by the direction
cosine matrix

Ab =


cψcθ sψ −cψsθ

−cφsψcθ + sφsθ cφcψ cφsψsθ + sφcθ

sφsψcθ + cφsθ −sφcψ −sφsψsθ + cφcθ

 (2.7)

where c and s are the abbreviated forms for cos and sin.
The rotation of the flight reference frame with respect to the

ground is constant and expressed by the matrix

Af =


0 0 −1
1 0 0
0 −1 0

 (2.8)

Following these assumptions, the thrust vector can be represented as:

T(t) = AT
f AT

b


−T (t)

0
0

 = −T (t)


cosψ(t) sin θ(t)
cosψ(t) cos θ(t)
− sinψ(t)

 (2.9)
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Figure 2.3: Body-fixed reference system.

By substituting Equation (2.9) in Equations (2.3) the system can
be written in its scalar form as:

ẋ = vx

ẏ = vy

ż = vz

v̇x = −T cosψ sin θ
m

+ gx

v̇y = −T cosψ cos θ
m

v̇z = T
sinψ
m

ṁ = − T

Ispg0

(2.10)

Equations (2.10) show that the system is not affected by the roll
angle φ. Due to this fact, φ is always considered as null. It must be
taken into account also the fact that the sensors used by navigation
and hazard detection would be probably required to maintain a
relatively stable pointing during the landing. The condition of null
roll angle makes easier the design of the spacecraft configuration. In
this form, the control variables consist of the thrust magnitude T ,
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the pitch angle θ and the yaw angle ψ; anyway, the attitude profile is
not a completely free parameter: pitch and yaw angles at time t0 are
known and fixed. This imposes an additional boundary constraint on
the initial acceleration, which now depends only on the initial thrust
magnitude:

v̇0 = −T (t0)
m0


cosψ0 sin θ0

cosψ0 cos θ0

− sinψ0

+


gx

0
0

 (2.11)

Moreover, at the end of the maneuver, the lander’s attitude is
required to be aligned with the local vertical on the Target Land-
ing Site (TLS). This boundary constraint is expressed through the
equation

v̇(tf)× n̂LS = 0 (2.12)
where n̂LS is the unit vector normal to the planetary surface at the
TLS. In case of flat surface, n̂LS is aligned with the x axis of the
ground reference frame (see Fig. 2.1), and Equation (2.12) reduces to

v̇y(tf) = v̇z(tf) = 0 (2.13)
No boundary constraint is put on the vertical component of the

control acceleration at the final time tf. This is because it is assumed
that the main thruster can be turned off instantaneously. This is
practically true, since the actuation of space thrusters is much faster
than the spacecraft dynamics [89, 90]. Then, total of 17 boundary
constraints are available for position, velocity and acceleration compo-
nents: 6 on initial states, 3 on initial acceleration (function of initial
thrust magnitude), 6 on target final states and 2 on final acceleration
due to final attitude requirements:

r(t0) = r0

v(t0) = v0

v̇(t0) = f(T0, θ0, ψ0)
r(tf) = rf
v(tf) = vf

v̇(tf) = [free, 0, 0]T

(2.14)
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The 3 components of the acceleration can be expressed in a poly-
nomial form. The minimum order needed to satisfy boundary con-
straints is 2 for the vertical axis, 3 for the horizontal components:

v̇(t) =


v̇x

v̇y

v̇z

 =


v̇0x + c1xt+ c2xt

2

v̇0y + c1yt+ c2yt
2 + c3yt

3

v̇0z + c1zt+ c2zt
2 + c3zt

3

 (2.15)

Integrating the acceleration two times, and applying boundary
constraints, the trajectory becomes function of tf and T0. Once
the acceleration profile is defined, the thrust-to-mass ratio can be
obtained from Equation (2.4) and the thrust profile is:

T = mP (2.16)
The mass profile is obtained by solving Equation (2.6). The

analytical calculation of the integral exponent is complex, but can
be easily attainable through numerical integration. The smooth
polynomial profile of the control acceleration makes the numerical
integration very efficient and precise even with a low amount of
function evaluations, suitable for on-board computation. From the
thrust unit vector n̂T = T/‖T‖ a complete guidance profile, in terms
of Euler angles and thrust magnitude, is obtained, function of initial
thrust magnitude T0 and final time tf:


θ = tan−1

(
n̂Tx/n̂Ty

)
− π ≤ θ ≤ 0

ψ = tan−1
(
n̂Tz

(
n̂2
Tx + n̂2

Ty

)−0.5
)
− π

2 ≤ ψ ≤ π

2
φ = 0

(2.17)

The free parameter tf can be replaced by the time-of-flight ttof =
tf − t0.

2.2.3 Trajectory Constraints
Box constraints, path constraints and any other additional constraint
not implicitly satisfied by the polynomial formulation have the gen-
eral form of Equation (2.2). For autonomous landing purposes,
throttleable engines are required [62, 64, 89, 90]. The initial thrust
magnitude is bounded to the thrust actually available on-board:
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0 < Tmin ≤ T0 ≤ Tmax (2.18)
while the time-of-flight must lie between its lower and upper limit:

0 < tmin ≤ tf ≤ tmax (2.19)
where

tmax = mfuel
Ispg0

Tmin
, tmin =

(
2r0x

Tmax/mdry − ‖g‖

)0.5

(2.20)

The theoretical tmax is determined by the amount of fuel on board
mfuel, whereas tmin corresponds to the time required by the lander
to reach the ground with maximum thrust pointing downward. The
lower bound tmin does not corresponds to a feasible soft landing
maneuver, but it is adopted as a theoretical lower limit to exclude
singularities arising towards tf = 0. In the actual implementation,
the inverse time-of-flight τf = 1/tf is adopted instead of tf as optimiza-
tion variable, with corresponding τmin = 1/tmax and τmax = 1/tmin.
This choice depends exclusively on code efficiency purposes: all the
considerations made so far remain valid, for there is no difference
in using the time or its inverse (once the change of variable is done
correctly).

From here onward, the notation x = [τf, T0]T is adopted for the
optimization variables vector. All the trajectory constraints are
rewritten in the form of g(x) ≤ 0; in order to achieve better conver-
gence properties, they are also scaled to assume a value between −1
and 0 inside the feasible domain. In the case of thrust magnitude
and time-of-flight, this leads to the normalized inequalities:

T0 − Tmax

Tmax − Tmin
≤ 0 (2.21)

Tmin − T0

Tmax − Tmin
≤ 0 (2.22)

τf − τmax

τmax − τmin
≤ 0 (2.23)

τmin − τf
τmax − τmin

≤ 0 (2.24)

Boundaries on thrust are applied also as path constraint:
T (t)− Tmax

Tmax − Tmin
≤ 0 (2.25)

Tmin − T (t)
Tmax − Tmin

≤ 0 (2.26)
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The angular velocity of the spacecraft is limited by the actual
control torques MCmax given by the Attitude Control System (ACS).
The extrapolation of the exact torques from angles is not immediate,
due to the coupled terms in the attitude dynamics. The objective
is to characterize such a rotational rate constraint without coupling
the problem to the rotational dynamics, to save computation time.
Torques are approximated by the decoupled term due to the angular
acceleration, which is a sufficiently accurate approximation in case of
small angles and low angular speed. Exploiting this approximation
leads to the following (normalized) inequality:

(
Imax

MCmax

)2
‖ω̇(t)‖2 − 1 ≤ 0 (2.27)

in which ω̇ is the derivative of the rotational velocity vector, and
Imax is the maximum moment of inertia at initial time t0. In this
way, the on-board calculation of inertia properties can be avoided,
and a safety margin in the torques calculation is introduced. The
assumption of null roll angle implies that the spacecraft does not
rotate around the control acceleration vector. Thus, this vector and
the rotational velocity vector are perpendicular with respect to each
other. It is then possible to obtain ω from the relation:

ȧ = ȧâ + ω × a = ȧ · a
‖a‖

a
‖a‖

+ ω × a (2.28)

where a = v̇− g is the control acceleration vector (whose derivative
ȧ is known exactly, being a polynomial in time), ȧ is the derivative
of the control acceleration modulus and â is the control acceleration
unit vector. The rotational rate vector can be then computed as:

ω =

[(
ȧ · a
‖a‖2

)
a − ȧ

]
× a

‖a‖2 = a × ȧ
‖a‖2 (2.29)

In a feasible landing path, altitude is always greater than zero.
This constraint can be improved considering a Glide-Slope Constraint.
In this case the lander is required to remain in a cone defined by the
maximum slope angle δmax, as showed in Fig. 2.4. This constraint has
a dual purpose: it assures that the the lander does not penetrate the
ground, even in presence of bulky terrain features near the landing
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Figure 2.4: Glide-slope constraint.

site; at the same time it limits the angle of view on the target. In
fact, the performances of vision-based navigation systems depend on
inclination at which the target is observed [91, 92]. Following [64],
the constraint takes the form

−∞ ≤ ‖Sgr(t)‖+ cTg r(t) ≤ 0 (2.30)
where

Sg =
[
0 1 0
0 0 1

]
(2.31)

cTg =
[
− tan δmax 0 0

]
(2.32)

The constraint can be rearranged and normalized as:

r2
y(t) + r2

z(t)
r2
x(t) tan2(δmax)

− 1 ≤ 0 (2.33)

Path constraints need to be satisfied at every time instant during
the landing. Here, they are evaluated discretely at Cebyshev-Gauss-
Lobatto (CGL) points: once the values at these points are known,
constraints can be reconstructed over the entire domain with Ceby-
shev pseudospectral collocation [93]. The values computed at CGL
points are exploited also to compute unknown derivative terms (ω̇)
through the Chebyshev differentiation matrix [93]. The evaluation of
the control acceleration at CGL point is included in the numerical
integration of the equation (2.6), to save computation time.

Finally, the polynomial formulation does not explicitly consider any
constraint on final mass, which must be included between the initial
value and the spacecraft dry mass. Since the mass trend is strictly
monotone (by problem construction: the thrust magnitude cannot
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be negative, an then the mass can only decrease) the evaluation of
the maximum mass constraint is redundant: the only constraint with
respect the minimum mass is verified. The initial mass value is still
exploited to obtain the normalized relation:

mdry −m(tf)
m0 −mdry

≤ 0 (2.34)

2.2.4 Optimization Problem
The optimization problem for planetary landing takes the form:

arg min
T0,τf

f(T0, τf), f(T0, τf) = −m(tf) (2.35)

in the domain defined by the inequalities:

T0 − Tmax

Tmax − Tmin
≤ 0 (2.36)

Tmin − T0

Tmax − Tmin
≤ 0 (2.37)

τf − τmax

τmax − τmin
≤ 0 (2.38)

τmin − τf
τmax − τmin

≤ 0 (2.39)

subject to constraints:

T (t)− Tmax

Tmax − Tmin
≤ 0 (2.40)

Tmin − T (t)
Tmax − Tmin

≤ 0 (2.41)

(
Imax

MCmax

)2
‖ω̇(t)‖2 − 1 ≤ 0 (2.42)

r2
y(t) + r2

z(t)
r2
x(t) tan2(δmax)

− 1 ≤ 0 (2.43)

mdry −m(tf)
m0 −mdry

≤ 0 (2.44)
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Denoting as g(x) the vector of the constraints defined by Equa-
tions (2.36–2.44), the problem can be written in the compact form:

arg min
x

f(x) subject to g(x) ≤ 0 (2.45)

The optimization could be solved with any Non Linear Program-
ming (NLP) solver: the choice of this solver has a huge impact over
the final convergence properties and computational time.

2.3 Asteroid/Small Body Landing: Problem Formu-
lation

Relatively low thrust and slow dynamics are typical of maneuvers in
low-gravity environment. The maneuver here presented is suitable for
both landing and close approach to low-gravity objects such as NEA.
The expected time is in the order of magnitude of several thousands
of seconds, but with a limited change in mass [86–88].

2.3.1 Problem Statement

The motion of the spacecraft is modeled in an asteroid-fixed Cartesian
frame, centered in the center of mass of the asteroid. Assuming the
asteroid rotational rate as constant, the dynamics are described (using
the same notation of the planetary landing case) by the well known
equations of motion for uniform rotating frames

ṙ = v
a = v̇ + 2ω × v + ω × ω × r

ṁ = − T

Ispg0

(2.46)

where a is the acceleration vector and ω is the asteroid rotational rate
vector. A restricted two-body model is considered: the spacecraft
mass is assumed to be negligible compared to the asteroid. The
adopted reference frame is represented in Fig. 2.5.

The acceleration vector acting on the spacecraft consists of different
contributions

a = g(r) + ac + d (2.47)
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Figure 2.5: Body-fixed asteroid reference frame.

in which g(r) is the gravitational acceleration, function of the position
in the asteroid reference frame, ac is the control acceleration and d is
a term that includes disturbances (such as solar pressure or gravity
terms not included in the adopted gravity model).

The asteroid is modeled as a tri-axial ellipsoid with uniform density
ρ. This allows us to analytically evaluate the gravitational component
of the acceleration as the gradient of its potential field Vg(r) [94]:

g(r) = −∇
(
Vg(r)

)
(2.48)

Although asteroids can have more complex motion, with non constant
rotational rate vector, the adopted model well adapts to the class of
objects target of current and near future missions, like 1999 RQ36
Bennu [31,86,87], 162173 Ryugu [95], and Didymos (which is a binary
system, in which both the primary and the secondary bodies are
assumed to be uniformly rotating ellipsoids, [36,38]).

Even in case of an asteroid with high irregular shape, at a certain
distance the gravity acceleration tends to be well described by a point
mass model [96]. The adopted tri-axial ellipsoid is a higher order
model, capable to properly describe the field in a wider region of
space. However, to cope with extremely complex shapes at short
distances, more complex approaches, such as a polyhedron shape
model [97], could always be considered without impacting on the
proposed guidance algorithm, for it is capable to handle any gravity
model in the form ag = g(r). Assuming the asteroid’s rotational
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rate vector aligned with the z axis, results ω = [0, 0, ω]T . Then, the
dynamical system can be written in scalar form as:



ẋ = vx

ẏ = vy

ż = vz

v̇x = 2ωvy + ω2x− ∂Vg
∂x

+ acx + dx

v̇y = −2ωvx + ω2y − ∂Vg
∂y

+ acy + dy

v̇z = −∂Vg
∂z

+ acz + dz

(2.49)

As the planetary landing case, the mass equation is linked to the
control acceleration that corresponds to the thrust-to-mass ratio:

ac = T/m = P (2.50)

The mass versus time trend is then evaluated with the same solution
of Equation (2.6).

2.3.2 Parametric Trajectory Formulation

From Equations. (2.49) and (2.47), the initial derivative of the velocity
depends on the initial control acceleration, which is determined by
the initial thrust vector T0 (disturbances are not taken into account
in the guidance algorithm). In order to minimize the number of free
parameters of the polynomial guidance the initial thrust vector is
constrained on the plane defined by r0 and rf , as shown in Fig. 2.6.

First a local frame defined by the direction cosines matrix A0 is
defined

A0 = [x̂0 ŷ0 ẑ0]T (2.51)

where
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Figure 2.6: Initial control acceleration.

x̂0 = − r0

‖r0‖
(2.52)

ẑ0 = rf × r0

‖rf × r0‖
(2.53)

ŷ0 = ẑ0 × x̂0 (2.54)

This local frame is aligned with the spacecraft-asteroid direction,
and its xy plane contains r0 and rf. By defining a second matrix
describing a rotation η0 around ẑ0

Aη0 =


cos η0 sin η0 0
− sin η0 cos η0 0

0 0 1

 (2.55)

The initial thrust vector T0 can be expressed as function of initial
thrust magnitude T0 and initial angle of thrust η0 only

T0 = AT
0 AT

η0

[
T0 0 0

]T
(2.56)

The problem is characterized by a set of 15 boundary constraints:
6 on initial states, 3 on initial control acceleration and 6 on the
desired final states
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

r(t0) = r0

v(t0) = v0

v̇(t0) = f(T0, η0)
r(tf) = rf
v(tf) = vf

(2.57)

These constraints are satisfied by expressing the acceleration in a
polynomial form. The minimum order needed to satisfy boundary
constraints is 3. If t0 = 0:

v̇(t) = v̇0 + c1t+ c2t
2 + c3t

3 (2.58)

By integrating Equation (2.58) as needed, and solving for the
boundary constraints, a fully defined trajectory can be determined,
depending on 3 parameters: time-of-flight ttof, initial thrust mag-
nitude T0, and initial angle of thrust η0. By solving acceleration
equations in the system (2.49) for ac a complete control acceleration
profile is obtained.

2.3.3 Trajectory Constraints

The search space for the time of flight is defined by

0 ≤ ttof ≤

√√√√2r2
0h0

µ
(2.59)

in which h0 is the initial altitude over the asteroid, and µ is its
gravitational parameter

µ = Gρ
4π
3 abc (2.60)

with G the universal gravitational constant, and a, b, c semi-axes
of the ellipsoid. The adopted upper bound represents the time that
the spacecraft would take to cover a distance equal to h0 in free fall,
if subject to a constant acceleration of gravity equal to g(r0). Indeed,
this time is not associated with a plausible trajectory, but it has the
proper order of magnitude (2-3 times the optimal ttof) for an efficient
optimum search.
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The initial thrust magnitude is bounded to the thrust available
on-board:

− Tmax ≤ T0 ≤ Tmax (2.61)

The initial thrust angle bounds should be large enough to cover
every direction in the plane:

− π

2 ≤ η0 ≤
π

2 (2.62)

During the landing the required thrust magnitude cannot exceed
the limit imposed by the engine on board. Since the control action is
evaluated in terms of acceleration, the corresponding thrust should
depend on the actual spacecraft mass, according to Newton’s second
law. In order to simplify the evaluation of the constraint and reduce
the computational burden, in the actual algorithm the constant value
of the initial mass is used. This assumption ensures the respect of the
original constraint (since the mass cannot never increase), without
being too restrictive, for the expected fuel consumption in low gravity
environment is relatively small compared to the spacecraft mass (less
than 1 %, see [87] and [88] and the results in Section 2.6):

0 ≤ ‖ac(t)‖ ≤
Tmax

m0
≤ Tmax

m(t) (2.63)

Also in this case, a Glide-Slope Constraint is considered. The
spacecraft is required to remain in a cone, pointing at the TLS and
defined by the maximum slope angle δmax, as showed in Fig. 2.7.

Due to the small dimension of the target, it is possible that the
maneuver starts from a position that does not satisfy this constraint.
In this case it is required that the spacecraft remains over a minimum
altitude as long as it doesn’t enter into the cone. The j-th general
constraint on trajectory shape can be represented in the form

−∞ ≤ ‖Sjr(t)− bj‖+ cTj r(t) + aj ≤ 0 (2.64)

where Sj ∈ R3×3, bj ∈ R3, cj ∈ R3 and aj ∈ R. In the case of the
glide-slope cone, we have



2.3. Asteroid/Small Body Landing: Problem Formulation 35

n

δmax
Glide Slope

hmin

M
in

. A
ltitu

d
e

INFEASIBLE

IN
F
E
A

SIB
L
Erf

Figure 2.7: Glide-slope and minimum altitude constraints.

Sg = I− nnT (2.65)

bg = Sgrf (2.66)

cTg = − tan(δmax)nT (2.67)

ag = −cTg rf, (2.68)

where n is the unit vector normal to the ground at the TLS. The
constraint on minimum altitude hmin for a tri-axial ellipsoid can be
expressed with

Sh = − diag
(
[βγ, αγ, αβ]

)
(2.69)

bh = 0 (2.70)

cTh = 0 (2.71)

ah = −αβγ (2.72)

where α = a + hmin, β = b + hmin and γ = c + hmin. Glide-slope
cone and minimum altitude can be bounded in a single trajectory
constraint through the inequality

−∞ ≤ min(Cg, Ch) ≤ 0 (2.73)
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where

Cg = ‖Sgr(t)− bg‖+ cTg r(t) + ag (2.74)
Ch = ‖Shr(t)‖+ ag (2.75)

Path constraints need to be satisfied at every time instant during
the landing. Pseudospectral techniques allow us to evaluate them
discretely at CGL points.

Also in this case, the additional constraint on final mass of Equa-
tion (2.34) is required:

mdry ≤ m(tf) ≤ m0 (2.76)

2.3.4 Optimization Problem

The generic optimization problem (2.2) for asteroidal landing is now
expressed as:

arg min
T0,ttof,η0

f(T0, ttof, η0), f(T0, ttof, η0) = −m(tf) (2.77)

in the domain defined by the inequalities:

0 ≤ ttof ≤

√√√√2r2
0h0

µ
(2.78)

−Tmax ≤ T0 ≤ Tmax (2.79)

−π2 ≤ η0 ≤
π

2 (2.80)

subject to constraints:

0 ≤ ‖ac(t)‖ ≤
Tmax

m0
(2.81)

−∞ ≤ min(Cg, Ch) ≤ 0 (2.82)

mdry ≤ m(tf) ≤ m0 (2.83)
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As in the case stated in Sec. 2.2.4 the problem can be solved with
different NLP solvers which strongly affect the actual performances
of the system. A detailed discussion about optimizers is expounded
in the next section.

2.4 Optimization Algorithms
In the selection and development of the optimization algorithms to
solve the guidance problem, three criteria have been followed:

• Convergence toward feasibility. The optimizer is required to find
at least a feasible solution, if one exists.

• Computation speed. The optimization should be fast, to have a
system compatible with on-board performances.

• Quality of the solution. The solution found should be as close
as possible to the optimal one.

The first two properties are mandatory: the system must ensure
at least a feasible solution (if it exists) to guarantee the safety of
the spacecraft. At the same time, an algorithm unable to run in
a timespan of the same magnitude of the system control update
frequency, with the limited computational resources on board a
spacecraft, would be of limited usefulness in prospect of a practical
implementation. On the other hand, the quality of the solution found
can be seen as an index of the performance obtained by the system.

The convergence of the optimization toward a correct solution
depends also on the proper formulation of the problem. Objective and
constraint functions can be written in different forms: a good choice
minimizes the number of local minima and leads to a smooth, well
scaled problem, easier to be optimized. To assess the effectiveness
of the proposed formulation, the system was initially tested with a
solver as simple as possible. A compass search algorithm, modified
to handle also nonlinear constraints, has been selected for this task.
Then, a more accurate algorithm, based on Differential Algebra, has
been developed. The capability to model entire functions as well as
real numbers as DA variables makes these techniques very effective
when applied to optimization, giving implicitly additional information
about the sensitivity of the objective and constraint functions to the
variation of the optimization variables.



38 Chapter 2. Landing Guidance

2.4.1 Modified Compass Search
In the context of autonomous adaptive guidance, fast computation
must be privileged, in prospect of a real-time implementation for on-
board hardware. Derivative-free optimization methods are attractive,
because they don’t require any differentiation of the cost function,
treating it as a “black-box”.

As first attempt, a Compass Search Method has been adopted.
The algorithm is not meant to be actually used in flight, but it has
been chosen to assess the effectiveness of the proposed formulation
even with a basic optimization algorithm. Since this method is
suitable only for unconstrained problems, some modifications have
been introduced to handle also non linear constraints. Only the
modifications applied to constraints handling are here described. For
a detailed description of the classical compass search method, see [98].

First, the optimization variables are normalized, to give them the
same relative weight in the optimization:

x̃ = x− xL
xU − xL

⇔ x = x̃(xU − xL) + xL (2.84)

Normalized optimization variables can vary between 0 and 1. Then,
a feasibility function F (x̃) is created, defined as

Φ(x̃) =
NC∑
j=0

1
wFj

max(0, gj) (2.85)

where gj are the components of a generalized constraints vector g(x̃),
and wF is a vector of weights, that normalize different constraints
that can have different orders of magnitude. In the planetary landing
formulation, the constraints are already in generalized form, and
a vector of unitary weights is adopted. In the case of asteroid
landing, instead, constraints are not normalized: this operation can
be handled also during the optimization. Following the same notation
of Equation 2.2, the vectors of generalized constraints and weights
are computed as follows:

g(x̃) =


cL − c(x̃)
c(x̃)− cU

0− x̃
x̃− 1

 , wF =


cU − cL
cU − cL
xU − xL
xU − xL

 (2.86)
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Note that the glide-slope lower bound of Equation (2.64), and
consequently the corresponding weight, is infinite. An improper
constraint evaluation is avoided by setting this weight to a value
with the correct order of magnitude: in this case, hmin is adopted. A
feasible set of optimization variables x̃ corresponds to a null value
of the feasibility function. On the contrary, in case of infeasibility,
Φ(x̃) > 0.

The optimization algorithm operates in two phases. Firstly, an
unconstrained compass search on the function Φ(x̃) is performed.
The search is stopped when a feasible point is found (Φ(x̃) = 0),
or when the iteration limit is reached. In this case, the problem is
classified as infeasible. If the fist step is successful the algorithm
keeps solving for the optimum through an unconstrained search on
the modified cost function f(x̃), defined as

f(x̃) = −m(τf) + ξ sgn
(
F (x̃)

)
(2.87)

where −m(τf) is the original cost function of the problem (2.2), and ξ
is a number certainly greater than the maximum value that the cost
function can assume. From here onward, this optimization method
will be identified as Modified Compass Search (MCS).

2.4.2 Differential Algebra Optimization

DA techniques were devised to attempt solving analytical problems
through an algebraic approach [99]. Historically, the treatment of
functions in numerics has been based on the treatment of numbers,
and the classical numerical algorithms are based on the mere eval-
uation of functions at specific points. DA techniques rely on the
observation that it is possible to extract more information on a
function rather than its mere values. The basic idea is to bring
the treatment of functions and the operations on them to computer
environment in a similar manner as the treatment of real numbers.

Referring to Figure 2.8, consider two real numbers a and b. Their
transformation into the floating point representation, a and b respec-
tively, is performed to operate on them in a computer environment.
Then, given any operation ∗ in the set of real numbers, an adjoint
operation ~ is defined in the set of Floating Point (FP) numbers so
that the diagram in Figure 2.8 commutes (the diagram commutes
approximately in practice due to truncation errors). Consequently,
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Figure 2.8: Analogy between the floating point representation of real numbers
in a computer environment (left) and the introduction of the algebra of Taylor
polynomials in the differential algebraic framework (right).

transforming the real numbers a and b into their FP representation
and operating on them in the set of FP numbers returns the same
result as carrying out the operation in the set of real numbers, and
then transforming the achieved result in its FP representation. In a
similar way, let us suppose two k differentiable functions f and g in
n variables are given. In the framework of differential algebra, the
computer operates on them using their k-th order Taylor expansions,
F and G respectively. Therefore, the transformation of real numbers
in their FP representation is now substituted by the extraction of the
k-th order Taylor expansions of f and g. For each operation in the
space of k differentiable functions, an adjoint operation in the space
of Taylor polynomials is defined so that the corresponding diagram
commutes; i.e., extracting the Taylor expansions of f and g and
operating on them in the space of Taylor polynomials (labeled as kDn

) returns the same result as operating on f and g in the original space
and then extracting the Taylor expansion of the resulting function.

High-Order Expansion Solution of an ODE

Differential algebra allows the derivatives of any function f of n
variables to be computed up to an arbitrary order k, along with the
function evaluation. This has an important consequence when the
numerical integration of an Ordinary Differential Equations (ODE)
is performed by means of an arbitrary integration scheme. Any
integration scheme is based on algebraic operations, involving the
evaluation of the ODE right hand side at several integration points.
Therefore, carrying out all the evaluations in the DA framework
allows differential algebra to compute the arbitrary order expansion
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of the flow of a general ODE with respect to the initial condition.
Without loss of generality, consider the scalar Initial Value Problem

(IVP) {
ẋ = f(x, t)
x(t0) = x0

(2.88)

Starting from the DA representation of the initial condition x0,
Differential Algebra allows us to compute the Taylor expansion of the
IVP with respect to the initial condition at the final time tf . Replace
the point initial condition x0 by the DA representative of its identity
function up to order k, which is a (k + 1)-tuple of Taylor coefficients.
As only the first two coefficients, corresponding to the constant part
and the first derivative respectively, are non zero, the DA variable
[x0] can be written as x0 + δx0, in which x0 is the reference point
for the expansion. If all the operations of the numerical integration
scheme are carried out in the framework of Differential Algebra, the
solution xi is approximated, at each fixed time step ti, as a Taylor
expansion in x0. For the sake of clarity, consider the forward Euler’s
scheme

xi = xi−1 + f(xi−1)∆t (2.89)
and substitute the initial value with the DA identity [x0] = x0 + δx0.
At the first time step we have

[x1] = [x0] + f([x0]) ·∆t (2.90)
If the function f is evaluated in the DA framework, the output of

the first step, [x1], is the k-th order Taylor expansion of the solution of
the IVP in x0 at t = t1. Note that, as a result of the DA evaluation of
f([x0]), the (k+1)-tuple [x1] may include several non zero coefficients
corresponding to high-order terms in δx0. The previous procedure
can be inferred through the subsequent steps. The result of the final
step is the k-th order Taylor expansion of the solution in x0 at the
final time tf . Thus, the solution of the IVP can be approximated, at
each time step ti, as a k-th order Taylor expansion in x0 in a fixed
amount of effort.

From here onward, this result will be expressed as [xi] = Px(δx0),
in which the square brackets remind that the output is a DA variable,
P indicates a Taylor map or polynomial, the subscript the quantity
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represented by the Taylor expansion, and the δ reminds that the
Taylor expansion is function of the variation with respect to the
reference values. Note that the expansion of the solution of the IVP
can be easily obtained also with respect to any parameter q that
appears in the dynamics model. In this case also the parameter
has to be initialized as a DA variable, i.e. [q] = q + δq, and the
solution at time ti is [xi] = Px(δx0, δq). The conversion of standard
integration schemes to their DA counterparts is straightforward for
explicit solvers, substituting operations between real numbers with
those on DA objects. In addition, whenever the integration scheme
involves step size control, an appropriate measure of the accuracy of
the Taylor expansion of the flow needs to be included.

The main advantage of the DA-based approach is that there is no
need to write and integrate variational equations in order to obtain
high order expansions of the flow. This result is basically obtained
by the substitution of operations between real numbers with those
on DA numbers, and therefore the method is ODE independent. The
availability of the resulting Taylor maps is exploited in this work
to implement a fast and efficient method for non linear constrained
optimization.

Optimization Based on Taylor Map Inversion
As in the case of MCS, the search for the optimum is divided in 2
subsequent phases. First, the algorithm searches for a feasible point
(feasibility phase); once feasibility is achieved, the solution is refined
to gain the optimum (optimality phase). The feasibility function
Φ(x) is defined as:

Φ(x) =
∑
i

wi
(
gi(x)

)2
(2.91)

where the weight wi corresponds to the Heaviside step function of
the i-th constraint:

wi = H
(
gi(x)

)
(2.92)

introduced to consider only active constraints. Given Φ(x), the
feasibility phase goes through the following steps:
1. The constraints are evaluated at the current point xj, to iden-

tify active constraints and weights wij. The first guess x0 is
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here assumed fixed in a predefined point inside the optimiza-
tion domain. In a real scenario, the actual lander state at the
retargeting epoch can be used as first guess to further reduce
the iterations required for the feasibility phase. If the point is
feasible, the algorithm passes to the optimality phase.

2. The feasibility function is expanded as a DA variable:

Φj = Φ(xj) −→ [Φj] =
∑
i

Pwigi(xj)(δxj) = PΦj(δxj)

(2.93)
where Pwigi(xj) denotes the Taylor expansion of the i-th con-
straint about the reference point xj with respect to the opti-
mization variables. To save additional computation time, when
a constraint is evaluated in multiple points (e.g. the path con-
straints at CGL points) only the most violated is included in
the computation of [Φj].

3. The Taylor expansion of the gradient of Φj with respect to the
optimization variables is obtained by derivation of [Φj]. Being
DA variables polynomials maps, derivation is a straightforward
process, available as a common operator in the DA domain.
The resulting 2-dimensional DA variable maps the value of the
partial derivatives with respect the variation of x:

[∇Φj] = P∇Φj(δxj) (2.94)

4. The gradient map is inverted: first, the constant part of the
gradient (corresponding to the real value of the gradient at
the expansion point xj) is subtracted: the new map obtained
describes the variation of the gradient as a function of the
variation of the expansion point:

[δ∇Φj] = P∇Φj(δxj)− P∇Φj(δxj)
∣∣∣
δxj=0

= Pδ∇Φj(δxj) (2.95)

The inversion of the map describes the variation of the expansion
point as a function of a variation of the partial derivatives [99]:
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[δxj] = P−1
δ∇Φj(δ∇Φj) (2.96)

The inverted map is evaluated at −P∇Φj(δxj)
∣∣∣
δxj=0

to obtain
the correction step to move from xj to the point of the domain
that cancels the Taylor approximation of the gradient in Equa-
tion 2.94. Once evaluated, the results is not more a DA variable,
but a vector of two reals:

∆xstep = P−1
δ∇Φj

(
−P∇Φj(δxj)

∣∣∣
δxj=0

)
(2.97)

5. The expansion point is updated with the relation:

xj+1 = xj + α∆xstep (2.98)

where the correction parameter α depends on the length of the
computed step:

α = a

‖∆x‖
+ b (2.99)

where a, b ∈ R+. This relation allows us to to reduce the step
size for unacceptably larger δxstep, while imposing at the same
time a minimum step size. This correction is necessary to achieve
a feasible point: in fact, the minimum of the feasibility function
Φ lies on the boundary of the feasible domain. Iterating from
the infeasible side of the equation without including α would
force the optimization process to get arbitrarily close to the
feasibility region without reaching it. Once the expansion point
is updated, the algorithm starts a new iteration from step 1. If
a predefined maximum number of iterations is reached without
achieving feasibility, or the requested step length is zero, the
process is interrupted and the requested retargeting is classified
as infeasible.

In the optimality phase, the solution computed in the feasibility step
is refined towards the optimum. The optimality function corresponds
to the original objective function modified as:
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f(x) = −m(τf) + 1
t

∑
i

log
(
−gi(x)

)
(2.100)

where the second term of the summation is a logarithmic barrier that
forces the solution to remain in the feasible domain. The optimality
phase works as follows:

1. The optimality function is expanded as a DA variable:

fj = f(xj) −→ [fj] = Pf (δxj) (2.101)

The solution of the equation (2.6) is expanded with an explicit
Runge-Kutta 4th order scheme along the CGL points, as de-
scribed in the previous sections. At the first step, the scaling
parameter of the logarithmic barrier t is initialized at a certain
value t0 ∈ R+. In this case, all the constraints gi(x) are ex-
panded in the DA function. Again, to save computation time, if
the same constraint is evaluated in multiple CGL points, only
the most violated is included.

2. The gradient of the optimality map [∇fj] is computed and
inverted with the same procedure described in the feasibility
step, to obtain the correction vector ∆xstep. The current point
is updated:

xj+1 = xj + ∆xstep (2.102)
as well as the logarithmic barrier scaling factor:

tj+1 = ktj (2.103)

with k > 1.

3. When operating with real numbers, the logarithmic barrier tends
to infinity while approaching the constraints, avoiding to step
outside the feasibility region. The DA representation of the
logarithm is a polynomial, that generally assumes a finite value
on the feasibility boundary (unless the expansion point is exactly
on the boundary itself). Thus, the computed ∆xstep may turn
out to point xj towards an infeasible region. To avoid this, the
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constraints are evaluated at the new point: if the new point
is feasible, the next iteration restarts from the step 1; if not,
a golden search is performed along the segment xj –xj+1 until
feasibility condition is met.

The optimality step ends when the step size goes below a predefined
tolerance (and the solution found is flagged as optimal), or when a
maximum of iterations is reached. In this last case, the solution is
probably suboptimal, nevertheless feasible, and then the algorithm
throws a warning.

2.5 Planetary Landing Simulation and Test
The performances of the guidance algorithm are assessed thought MC
simulations with variable number of samples M . As representative of
a planetary landing application, a lunar landing is chosen as test case.
In order to make realistic assumptions on spacecraft architecture, the
ESA Lunar Lander mission is taken as reference. Originally planned
for launch in 2018 and designed for landing near the Moon’s south
pole, the mission’s primary objectives include the demonstration of
safe precision landing technology as part of preparations for partic-
ipation to future human exploration of the Moon [89]. Later, the
project was put on hold at the 2012 ESA Ministerial Council, but
the technology developed in the context of Lunar Lander phase B1
could be exploited for future cooperations in the area of Lunar Ex-
ploration with Russia. The Luna-Resource Lander mission, planned
by Roscosmos for 2017, could be a testing platform for European
precision landing technology, with the proposed Hazard Detection
and Avoidance Experiment and the Visual Absolute/Relative Terrain
Navigation Experiment (VNE) [25].

The powered descend is assumed divided in 3 different phases [100]:
• Main Brake. In this phase, starting from 15 km of altitude at the
perilune of a transfer orbit, the thrust is constant at maximum
value, and most of the orbital velocity is dropped. At the end
of this phase, the spacecraft begins a pitch maneuver and the
hazard detection system starts to work.
• Approach. Between 2500 and 1500 m of altitude, the thrust
is reduced to get maneuverability. In this phase the thrust is
variable and retargeting can be commanded.
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Table 2.1: Lunar landing simulation: lander architecture assump-
tions.

Feature Value UoM
Wet mass mwet 1500 kg
Wet matrix of inertia diag(1650, 1500, 1500) kg m2

Dry mass mdry 790 kg
Dry matrix of inertia diag(845, 675, 675) kg m2

Isp 325 s
Imax 1000 kg m2

Tmin 1000 N
Tmax 2320 N
MCmax 40 N m

Table 2.2: Lunar landing nominal case (e denotes the vector of Euler angles).

Quantity Value Units Quantity Value Units

r0 [2000,−1062.27, 0] m rf [30, 0, 0] m
v0 [−35, 30, 0] m s−1 vf [−1.5, 0, 0] m s−1

e0 [−55, 0, 0] deg ef [−90, 0, 0] deg
m0 865 kg

• Terminal Descent. Once reached the vertical onto the TLS,
at 30 m altitude, the lander performs a vertical descent at the
constant speed of 1.5 m s−1 until touchdown.

HDA tasks take place in the approach phase. Assumptions on
lander architecture are summarized in Table 2.1, while the nominal
boundary conditions of a typical lunar landing maneuver, used for
all the simulation here presented, are synthesized in Table 2.2.

2.5.1 MCS - Algorithm Tuning

The polynomial formulation of the landing trajectory produces in-
herently exact states at the maneuver end. On the other hand,
pseudospectal methods are used to carry out the integral of Equa-
tion (2.6), necessary for mass computation. These methods involve
the selection of an order of approximation N (the number of discrete
points at which the approximated function is evaluated) which affects
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both precision and computational speed of the algorithm: higher
degree improves the precision of the path evaluation, but slows the
computation (by increasing the calculation time of single iterations).

The computational efficiency is assessed with a MC run with
M = 1×105 for values of N = [10, 15, 20, 25, 30]. The MCS algorithm
is written in Matlab R© code (with no speedups like mex functions or
any other compiled element). In this simulation only the retargeting is
considered, and the subsequent simulation of the diversion maneuver
is not included. The retargeting is assumed to be ordered from
the nominal landing path, at a random altitude between 500 m and
2000 m, with a random ordered diversion between −2000 m and
+2000 m, independently in both downrange and crossrange directions.
Figure 2.9 shows that the computation time is very stable, with very
low dispersion.
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Figure 2.9: Lunar landing: computational time as a function of approximation
order N .

The estimation of the algorithm precision is slightly different.
The control profile calculated by the algorithm, reconstructed with
Equations (2.17) and (2.9), is applied to the system (2.10) and inte-
grated trough a traditional Runge-Kutta (4,5) method. The result
is compared to the desired one to obtain the error on final position
and speed. For each value of N , a set of 10 000 feasible points are
considered. The initial altitude is constant at 2000 m, in order to
maximize dispersion due to the approximation of the guidance pro-
file reconstruction. The commanded diversion is random between
−2000 m and +2000 m in both the horizontal directions. Resulting
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errors for position at landing are shown in Fig. 2.10. The polynomial
approximation imposes on the trajectory a smooth profile, on which
the pseudospectral approximation is very effective. The error is small,
and it can considered negligible from N = 20 onward. Then, 20 has
been taken as nominal value for N .
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Figure 2.10: Lunar landing: position error at landing as a function of approxi-
mation order N .

2.5.2 MCS - Objective and Constraints Functions

Planetary landing maneuver requires the optimization of only two
parameters: is then possible to visualize graphically the objective
and the constraint functions. Due to the polynomial formulation,
the objective function maintains a very smooth shape, efficient to be
handled by NLP solvers. Figure 2.11 reports a typical example. The
initial conditions are the same reported in Table 2.2, except for the
initial position that is r0 = [2000 − 562.3 1000]T m. The function
is mainly dependent on time-of-flight, while the dependency on the
initial thrust magnitude is limited.

In Figure 2.12 the different infeasible regions associated to each
nonlinear constraint are shown, and the solution found is compared
to the actual global optimum (computed solving the optimization
problem with the nonlinear programming solver SNOPT). Note that
the absence of local minima together with a compact, although
non-convex, feasibility region produces an easy-to-solve optimization
problem.
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Figure 2.11: Lunar landing: objective function example.
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Figure 2.12: Lunar landing: nonlinear constraints and solution found example,
MCS optimization. The solution found is 5.64 % far than global optimum.
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2.5.3 DA Optimization - Algorithm Tuning
In the DA optimization process, the solution of the Equation (2.6)
is obtained by propagating the initial system states with an explicit
Runge-Kutta (4) scheme. Pseudospectal differentiation is exploited
only to evaluate the angular acceleration in the constraint (2.27). The
consequence is that the choice of the pseudospectral differentiation
order has a softer impact in the precision of the results with respect
the case of the MCS algorithm. In all the simulations here presented
with the DA optimization, N = 15 is adopted.

On the other hand, the selection of the proper DA expansion order
is crucial, trading between precision and computational performances.
Some preliminary tests on the DA representation of the objective
function were carried out to identify the most suitable value. The
solution evaluated numerically on a grid spanning the entire opti-
mization domain was compared to the solution obtained with the
evaluation of the Taylor polynomials. Expansion orders from 2 to
15 were tested, with different expansion points and maneuver cases.
Once a predefined relative accuracy threshold of 1% is selected, the
effective area is defined as the part of the domain in which the error
between the DA expansion and the numerical evaluation is within
the threshold.

T
0
 (norm.)

T
o
F

−
1
 (

n
o
rm

.)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

(a) DA order 2

T
0
 (norm.)

T
o
F

−
1
 (

n
o
rm

.)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

(b) DA order 15

Figure 2.13: Effective area of the DA representation. The inside of the area is
colored following the log10 of the error with respect to the real number computation.

It is observed that increasing the expansion order leads to a
more accurate representation of the objective function around the
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expansion point (and that proves the correct implementation of the
DA computation), but without a significant increment of the size of
the effective area (see Figure 2.13, in which a comparison between
order 2 and 15 is presented). This is due to the peculiar shape of the
objective function, that has a general simple shape but with subtle
changes of slope that makes it difficult to be represented globally.
In an optimization context, it is more efficient to quickly catch the
global features of the objective function, avoiding local minima, and
then to refine the solution locally toward the optimum: for all the
simulations here presented, the lowest possible order (i.e. order 2) is
adopted. In practice, all the simulations here presented that involve
the DA optimizer are written in C++ code. Differential Algebra is
implemented with the Dinamica DACE library [101].

2.5.4 DA Optimization - Objective and Constraints Functions

In Figure 2.14 the optimization process for 4 retargeting cases is
shown in detail. Each image represents the optimization domain, with
constraints boundaries and the objective function. The optimization
steps are depicted in black. The initial conditions are always the
same, of Table 2.2. In each case, the final target position vector rf is
changed. The DA optimization algorithm efficiently detects active
constraints and reaches the true optimum solution, even in cases of
small feasible area and multiple active constraints, such as the case
of Figure 2.14c.

2.5.5 MCS vs DA Optimization Comparison

A MC simulation is exploited also to assess the algorithm perfor-
mances in terms of attainable landing area and fuel consumption.
Starting from the initial conditions summarized in Table 2.2, a se-
ries of 1× 105 random diversions between ±4000 m along both the
horizontal axes is ordered at an altitude of 2000 m from a nominal
trajectory. The attainable landing area can be obtained by correlat-
ing optimization results together with the coordinates of the TLSs.
The same simulation is run with both the MCS and the DA opti-
mization algorithms: the results are shown in Figure 2.15. Only the
points classified as feasible are shown, colored following the value of
the objective function of the solution found. The system is able to
compute a feasible landing path in an approximately circular landing
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Figure 2.14: DA Single optimization cases. The algorithm is effective in tracking
the boundaries of the feasible area and to efficiently detect the activation of
different constraints at each iteration.
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area of radius larger than 2500 m centered at the nominal landing
site (at the origin of the figure), a performance better than what is
required for similar scenarios [100,102].

While the attainable area is practically the same with both the
optimizers, the quality of the solutions found is different. In the
case of the MCS algorithm, the fuel consumption presents sudden
variations, especially in cases in which the lander is required to
perform an additional brake along the downrange direction. On the
contrary, the solution found with the DA optimization is smooth over
the entire attainable area. This is an indicator of the fact that the
MCS is not always able to get the optimum, and stops the algorithm
at a sub-optimal point. Instead, the DA optimization gets always
the best possible trajectory. This phenomenon was already visible
comparing the optimization processes in Figures 2.12 and 2.14, and
it is even more evident with a comparison between the performances
of the semi-analytical guidance with the true optimal solution.

In fact, the adopted polynomial form actually limits the shape that
the trajectory can assume. Then, the optimal parameterized solution
generally differs with respect to the true optimal, which is known to
have a bang-bang solution [81]. In order to estimate the distance from
the optimum, the proposed algorithm is compared with an open-loop
numerical solution, computed through a pseudospectral collocation
method (using Tomlab/PROPT R© optimization software). Figure 2.16
refers to the same case adopted in Figure 2.11 and Fig. 2.12. The
solution found by the semi-analytical guidance optimized with the
MCS method is labeled “SAGuid (MCS)”; also the true optimal poly-
nomial solution is included (labeled “SAGuid (optimal)”), computed
by optimizing the semi-analytical guidance with SNOPT. Thrust,
attitude, and mass profiles are showed. Actually, the solution found
with the DA optimization algorithm is not reported in the figure;
in all the simulations carried out, the largest difference between the
solution found with SNOPT, and the solution found with the DA
optimization is less than 0.02 %,

The correlation between the time-of-flight and the optimality of
the solution, together with the discontinuous structure of the true
optimal thrust profile are clearly visible. Also, it can be seen as
polynomial solutions are approximations of the true optimal. In this
specific case, the solution found with MCS is 11 % higher than the
true theoretical optimum, while the distance reduces to only 2.5 %
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Figure 2.15: Lunar landing: Attainable area and fuel consumption comparison.
The quality of the solution found by DA optimization is clearly better than the
one found by the MCS algorithm.
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for the polynomial optimum solution found by the DA optimization
and SNOPT.
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Figure 2.16: Lunar landing: comparison to true optimal solution example,
retargeting maneuver. Polynomial solutions approximate the true optimal. The
propellant consumption found by MCS is 11% higher than the solution computed
by pseudospectral collocation; the polynomial optimum found by both the DA and
SNOPT differs by only 2.5 %.

In some cases, also the MCS is able to get the true polynomial
optimal solution: in Figure 2.17 the same optimality comparison for
a nominal approach phase (see Table 2.2) is shown. In this case the
MCS, the DA optimizer, and SNOPT find the same solution, that
differs by only 3.97 % with respect to the theoretical optimum.

The simulation of Figure 2.15b was exploited also to obtain an
estimation of the computation time for the DA optimizer. All the
simulations were tested on a Intelr CoreTM i7-2630QM CPU at
2 GHz of frequency. Figure 2.18 reports the results obtained: the
histogram at the top reports the time dispersion for feasible cases.
The mean computation time is 25.23 ms with a standard deviation of
7.16 ms. This implies a 3σ computation time below 46.71 ms. In case
of an infeasible retarget is ordered (Figure 2.18 bottom), the systems
performs a fixed number of iterations until either the maximum
iteration number (fixed at 30 for the simulations here presented),
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Figure 2.17: Lunar landing: comparison to true optimal solution example, nom-
inal maneuver. The propellant consumption found by MCS and DA optimization
corresponds to the true optimal parameterized solution, 3.97% higher than the
theoretical optimum.

or a stationary point (with null step length) is reached. In most of
the cases, the algorithm stops due to maximum iteration limit, and
then the computation time is quite constant, with a mean equal to
33.94 ms. The quite low dispersion (STD = 4.20 ms) is mainly due
to the cases in which a stationary point in the feasibility function is
reached. Comparing these results with the performances achieved
by the MCS (see Figure 2.9), it could appear that the DA optimizer
is even faster. This is not true, being the routine written in C++
language instead of Matlab code. Nevertheless, in both feasible
and infeasible region, the DA algorithm is still very fast. In a real
application, the degradation of the performances due to the algorithm
implementation on space grade CPUs (much slower than a PC) is
expected to be counterbalanced by the wide, further improvements
still possible in code optimization. Then, the guidance is expected
to be compatible with on-board computation, being the expected
control frequency in the order of magnitude of 10 Hz (equivalent to a
control update period of 100 ms).
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Figure 2.18: Lunar landing: DA optimization computation time

2.5.6 Landing Simulation: Nominal Navigation Errors

The guidance algorithm is tested in a 7DoF (three-dimensional ro-
totranslation with variable mass) retargeting simulator of a lunar
landing, realized in Matlab R© and Simulink R© environment.

In this full simulation, the maneuver is optimized with the MCS
algorithm: being the most critical of the considered algorithms, the
results here presented can be considered as a lower bound for the
system performance.

It is supposed that a nominal trajectory is known, obtained through
traditional optimization methods. The simulation covers the approach
phase from 2000 m altitude to the beginning of the terminal descent
onto the TLS, over a timespan of the order of magnitude of 70 s.
In order to test both effectiveness and diversion capability of the
algorithm, a MC simulation with M = 1000 is adopted. Table 2.3
shows initial and final boundary constraints imposed, together with
dispersion added to initial conditions, to include uncertainties at the
end of the main brake phase. Larger dispersions are considered for
the horizontal components of the initial position. In fact, all the
considered dynamics are relative, from the spacecraft with respect
to the landing site. During trajectory computation, ordering a retar-
geting or shifting the initial position of the same magnitude toward
the opposite direction are equivalent (actually, shifting the initial
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Table 2.3: Complete lunar landing simulation: initial and final conditions for
MC analysis.

Condition Nominal value 1σ UoM
Initial mass m0 865 ±10 kg
Initial position r0 [2000 − 1060 0]T ±[30 600 600]T m
Initial speed v0 [−35 30 0]T ±[0.5 0.5 0.5]T m s−1

Initial pitch angle θ0 −55 ±5 deg
Initial yaw angle ψ0 0 ±5 deg
Target position rf [30 0 0]T - m
Target speed vf [−1.5 0 0]T - m s−1

Target pitch angle θf −90 - deg
Target yaw angle ψf 0 - deg

Table 2.4: Lunar landing simulation: IMU per-
formance properties.

Property Value UoM
Scale factor 1 ppm
Misalignment Error 170 µrad
Bias Error 0.005 deg/h
ARW noise density 0.005 deg/

√
h

position is exactly what the guidance algorithm does). Thus, the
introduction of larger dispersions in the horizontal components of
the initial position allows us also to evaluate retargeting capabilities,
including both position uncertainties and random ordered diversions.

To properly test the guidance algorithm, it is applied to a lander
model more complex than the one adopted inside the guidance itself.
A full 7DoF model is considered for the spacecraft. The lander is
considered as a rigid body, with an inertia matrix linearly variable
with the mass (within the boundaries described in Table 2.1. Realistic
disturbances and navigation errors are added. A disturbance torque
is introduced by a 10 mm thrust misalignment from the spacecraft
center of mass. Errors in the states passed to the guidance block are
included to emulate a real navigation system. Attitude is supposed
to be estimated by an Inertial Measurement Unit (IMU), whose
performances are summarized in Table 2.4.
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The presence of a vision-based navigation system is assumed to
estimate position and speed. These systems make use of a radar
or laser altimeter to estimate the altitude with which the images
taken by cameras are resized to the proper scale. Since altimeters
absolute error increases with the distance from the ground, the error
in the estimate is modeled as a Gaussian random error with zero
mean and standard deviation varying linearly with the altitude. The
values adopted as reference are ±25 m and ±0.4 m s−1 (1σ) at 2000 m
altitude (they are both assumed to be null at zero altitude). The
guidance subsystem recalculates the trajectory every 5 s, to cope
with measure dispersion. From the guidance profile, at every update
of the control system, target quaternions and angular velocities are
computed, and a Proportional Integral Derivative controller is used
to calculate theoretical control torques. The attitude is assumed
to be controlled by a cluster of chemical thrusters able to supply
a constant torque of ±40 N m on each axis. Theoretical control
torques are processed by a Pulse Width Pulse Frequency (PWPF)
modulator that commands thrusters firings. The considered guidance
and control systems update rate is 20 Hz.

Figure 2.19 shows the obtained 3D trajectories. Dispersions in
position and velocity, for their horizontal (Fig. 2.20) and vertical
(Fig. 2.21) components are reported. Figure 2.22 shows the obtained
final attitude distribution. Overall, the system attains a good perfor-
mance despite of the uncertainties. The dimensions of the obtained
3σ ellipse are comparable to a possible lander footprint [89], giving
to the system hazard avoidance capabilities.

2.5.7 Landing Simulation: Sensitivity to Navigation Errors
Additional MC runs are exploited to assess the sensitivity of the
system to navigation errors. The same initial and target conditions
of Table 2.3 are assumed, except for the value of the navigation
errors standard deviation at the maneuver start. A sample number
M = 300 is adopted. The following values are considered for position
and velocity estimation:
• Pessimistic Case (PC): Position error: ±45 m; speed error:
±0.4 m s−1 (1σ);
• Optimistic Case (OC): Position error: ±10 m; speed error:
±0.4 m s−1 (1σ);
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Figure 2.19: Lunar landing simulation (M = 1000): 3D Landing trajectories.

• Exact Case (EC): Ideal measures with no navigation errors.

As for the nominal case (presented in the previous section) navi-
gation errors are supposed to decrease linearly with the altitude, and
they are assumed to be null at touchdown. The EC is considered to
highlight the effect of the navigation system over the final landing
accuracy. Figure (2.23) shows a comparison of the results obtained
for the 3 cases, including also the Nominal Case (NC) presented in
section 2.5.6. The obtained 3σ dispersion ellipses for final horizontal
position and velocity are presented. It can be seen that dispersion
due to control system only is at least one order of magnitude lower
than the one due to navigation. This proves that landing precision is
mainly affected by navigation errors.



62 Chapter 2. Landing Guidance

−30 −20 −10 0 10 20 30
−25

−20

−15

−10

−5

0

5

10

15

20

25

Y (Downrange) [m]

Z
 (

C
ro

s
s
ra

n
g

e
) 

[m
]

 

 

Shots

Target

Mean

3σ

(a) Position.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

v
Y
 (Downrange) [m/s]

v
Z
 (

C
ro

s
s
ra

n
g
e
) 

[m
/s

]
 

 

Shots

Target

Mean

3σ

(b) Horizontal velocity.

Figure 2.20: Lunar landing simulation: dispersion in final position and velocity,
horizontal components.
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Figure 2.21: Lunar landing simulation: dispersion in final position and velocity,
vertical components.
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Figure 2.22: Lunar landing simulation: final attitude dispersion.
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Figure 2.23: Lunar landing MC simulation: navigation errors effect. 3σ disper-
sion ellipses at touchdown for position (a) and velocity (b).
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Table 2.5: 1999 RQ36 “Bennu” nominal parameters.

Feature Value UoM
Major semi-axis, a 350 m
Intermediate semi-axis, b 287 m
Minor semi-axis, c 250 m
Density, ρ 1400 kg m−3

Rotational rate, ω 4.04× 10−4 rad s−1

Table 2.6: NEA landing: MC parameters, initial and target states.

Condition Nominal value 1σ UoM

Initial Position, r0 [1500, 0, 0]T ±[50, 100, 100]T m
Initial Velocity, v0 [0, 0, 0]T ±[0.1, 0.1, 0.1]T m s−1

Initial Mass, m0 750 - kg
Target Position, rf [0, 290, 0]T - m
Target Velocity, vf [0,−0.1, 0]T - m s−1

Specific Impulse, Isp 315 - s
Max Available Thrust, Tmax 10 - N
Dry Mass, mdry 740 - kg
Asteroid Density, ρ 1400 ±10% kg m−3

Asteroid Rotational rate, ω 4.04 × 10−4 ±10% rad s−1

2.6 Asteroid Landing Simulation and Test

A landing on the asteroid 1999 RQ36 “Bennu”, target of the mission
OSIRIS-REx, recently launched by NASA and scheduled to reach its
target in 2019 [31, 86], is selected as NEA application test. Table 2.5
summarizes the assumed asteroid nominal parameters.

The case of an equatorial landing is here presented. An equatorial
target has the additional challenge of its rotation, that the lander
is required to follow. Polar trajectories do not have this challenge.
The spacecraft is supposed to start at a near hovering condition; the
target state is on the vertical over the selected landing site, at 3 m of
altitude, with a vertical speed of 0.1 m s−1 toward the ground and a
null horizontal speed. Adopted parameters, initial and target states,
common to all the simulations here presented, are summarized in
Table 2.6. Only the MCS optimization algorithm has been tested for
NEA landing simulations.
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2.6.1 Algorithm Performance Estimation

The assessment of the computational performance is performed
through a MC simulation, with the same parameters of Table 2.6
and M = 10000. Figure 2.24 shows that the additional optimization
variable causes an increase of the computation time up to one order of
magnitude, compared to the planetary landing case. Anyway, due to
the relatively large time-of-flight typical of maneuvers in low-gravity
environment, it remains compatible with maneuver requirements.

The estimation of attainable landing area and fuel consumption
is carried out considering the nominal initial conditions of Table 2.6.
The landing site is varied over a regular grid of 1◦ resolution in both
latitude and longitude. From Fig. 2.25 it is shown that the spacecraft
can reach any site on the NEA surface, and that the fuel consumption
presents an asymmetry in longitude, due to the asteroid rotational
rate.
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Figure 2.24: NEA landing: algorithm computation time.

2.6.2 Landing Simulation: Exact Measures

Due to the weak gravitational acceleration involved, in a NEA landing
case the theoretical thrust can assume very low values (also for long
times) that could be not attainable by traditional propulsion systems.
Thus, it is assumed that the thrust is supplied by the same system
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Figure 2.25: NEA landing: attainable area and fuel consumption.

of chemical thrusters used by ACS, filtered by a PWPF modulation
system.

Sharing of the propulsion system is made possible by the slow
dynamics of both attitude and thrust control systems. During the
landing maneuver, the spacecraft is simply required to point toward
the asteroid center of mass. The actual GNC system architecture is
represented in Figure 2.26: the navigation system determines position
r, velocity v, attitude quaternions q and rotational rate vector ω.
Attitude control system computes the control torques Mc, while the
adaptive guidance system provides the control thrust vector Tc. Their
actuation is fused together by PWPF modulation in a unique thruster
activation scheme. This configuration presents several advantages:

• The 3 components of the thrust vector can be generated inde-
pendently, in body axes, leaving the spacecraft free to assume
any attitude imposed by vision-based navigation.
• There is no need of additional dedicated devices devoted to
low-thrust.
• No additional constraints are imposed over high-trust propulsion
system (devoted to large scale orbital control), in terms of thrust
throttleability or minimum thrust level.

As a result of this architecture, attitude and propulsion are as-
sumed as independent and the simulation is reduced to 4 degrees
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Figure 2.26: NEA landing: logical schematic of the GNC System.

of freedom (3 translations and the variable mass). The full landing
simulation is realized in Matlab R© and Simulink R© environment, with
MCS as optimization algorithm. As the landing site gets closer, the
trajectory is updated by additional runs of the algorithm, performed
at 1000, 500, 300, 200 and 150 m from the target. In this way, disper-
sion due to modulation is compensated. In this article an example
of equatorial landing is reported: asteroid and lander data, together
with initial conditions, TLS, and their relative dispersions, are the
same reported in Tables 2.5 and 2.6. MC simulations with M = 300
are run.

As visible from Figures 2.27-2.29, the modulation of the thrust
introduces a certain error in the attained position over the landing site.
Anyway this error remains into acceptable limits, with an obtained
final maximum accuracy of 8 m (3σ) from the target.

2.6.3 Landing Simulation: Navigation Errors

In the GNC system schematic represented in Fig. 2.26, is possible
to see how navigation errors influence trajectory calculation. At the
time the trajectory is recomputed, errors in position and velocity
determination affects directly the obtained path. Moreover, since
the thrust profile obtained from the optimization is expressed in
asteroid reference frame, a conversion in spacecraft body-fixed frame
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Figure 2.27: NEA landing MC simulation (M = 300), no navigation errors: 3D
landing trajectories.
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Figure 2.28: NEA landing MC simulation, no navigation errors: final position
distribution.
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Figure 2.29: NEA landing MC simulation, no navigation errors: final velocity
distribution.

is required at every control timestep to properly command the ac-
tuators. Errors in attitude determination affect the direction of the
actual thrust, introducing additional errors in attained states at the
maneuver’s end.

Assuming the presence of a visual-based navigation system, errors
in position and velocity are modeled as Gaussian errors, with zero
mean and variable standard deviation proportional to the distance
between the asteroid and the spacecraft. The values of 25 m and
0.1 m s−1, at the reference distance of 2000 m are adopted (they are
both considered null on the surface of the asteroid). The presence of
a star tracker is considered for attitude determination. The attitude
error is considered as Gaussian with a bias (mean) rotation of 5 arcsec
and a standard deviation of 3 arcsec around each axis. As in the
previous case, dispersion at touchdown is limited by updating the
trajectory as the spacecraft gets closer to the target, at the same
target distances of the first simulation. An MC run with M = 300 is
carried out.

Due to the relative long time requested by the maneuver, together
with the applied open-loop control, errors in states determination
at the retargeting epoch propagate up to potentially unacceptable
values, especially for position (while a good precision in velocity is
preserved), as shown in Figures 2.30 and 2.31. In particular, the error
obtained in final position is almost of the same order of magnitude
of the asteroid’s size itself, and cannot be accepted.
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Figure 2.30: NEA landing MC simulation (M = 300), navigation errors effect:
final position distribution.
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Figure 2.31: NEA landing MC simulation, navigation errors effect: final velocity
distribution.



2.6. Asteroid Landing Simulation and Test 71

2.6.4 Landing Simulation: Waypoint Trajectory
As possible method to regain precision at landing, the introduction
of a waypoint along the trajectory is investigated. The trajectory
computation is split into two concatenate maneuvers: in the first
one, the target of the trajectory optimization is not the TLS, but the
point 250 m above it, along the local vertical direction. Once this
first maneuver is ended, the system performs a second optimization
toward the final target. A third MC with M = 300 is adopted.

A level of precision of the same order of magnitude of the of the
case without navigation errors is recovered, as visible by comparing
Fig. 2.32 – 2.34 with the correspondent Fig. 2.27 – 2.29. This result
is achieved without a significant impact on propellant consumption
as shown in Fig. 2.35.
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Figure 2.32: NEA landing MC simulation (M = 300), waypoint improved
maneuver case: 3D landing trajectories.
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Figure 2.33: NEA landing MC simulation, waypoint improved maneuver case:
final position distribution.
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Figure 2.34: NEA landing MC simulation, waypoint improved maneuver case:
final velocity distribution.
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Figure 2.35: NEA landing MC simulation: comparison between single maneuver
and waypoint improved trajectory.
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I heard that your sailors have very similar experiences while
they traverse your seas and discern some distant island or coast
lying on the horizon. The far-off land may have bays, forelands,
angles in and out to any number and extent; yet at a distance
you see none of these (unless indeed your sun shines bright
upon them revealing the projections and retirements by means
of light and shade), nothing but a grey unbroken line upon the
water.

Edwin A. Abbott, Flatland

3
Hazard Detection

Locate safe landing areas is a very complex task. The actual definition
of “safety” itself is largely determined by the architecture of the
specific spacecraft, in terms of landing mechanisms (gears, legs,
airbags, etc.) and masses distribution, but it also depends on relative
factors, like the sensors field of view and the capabilities of the
attitude and propulsion subsystems to reach the candidate target
from the specific set of states the system has at the time of the
retargeting.

Early studies on HDA systems exploited very simple principles:
in [103] local variance over an intensity image is considered as a
way to estimate surface roughness, together with surface major ir-
regularities detection performed by a scanning ranging laser. Later,
the development of more powerful systems and specialized hardware
paved the way to the development of more complex and accurate
hazard detection methods. In the frame of the ALHAT project, car-
ried out by NASA since 2006, extensive studies have been conducted
on the hazard estimation based on a Digital Elevation Model (DEM)
obtained by active ranging sensors, such as Doppler LIDAR and flash
LIDAR, as shown by [56]. A proposal to include also scientific criteria
in the selection process is done by [104] exploiting soft computing
techniques. Other methods to reconstruct a DEM of the landing
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area through image processing techniques, such as shape from shad-
ing [105], stereo-vision [106] and shadow analysis [107] have been
investigated.

Four main criteria concur to determine if a landing site can be
classified as safe:

• Sensors field of view.
Areas that cannot be analyzed by the sensors system should be
classified a priori as unsafe; considering systems based on visual
information, areas in shadows are included in this category.

• Surface roughness.
The actual architecture of the lander touchdown system (legs,
airbags), determines which are the maximum allowed dimensions
of local obstacles that maintain the probability to get damages
below tolerable values.

• Slopes.
The maximum slope that the lander can handle without danger
of capsizing. This value should be determined together with
the maximum surface roughness with a proper margin of safety
basing on the actual lander architecture.

• Size of the safe area.
The landing site dimension must be compatible with the lander
footprint plus expected uncertainties due to the GNC system.

Plus, also if a target is found safe, it could be impossible to be
reached, due to the limited control authority of the spacecraft. Then,
also the probability to find a feasible trajectory to the target should
be taken into account in the selection process.

A novel hazard detection algorithm, based on ANN is proposed
in this work. ANNs appear particularly attractive for their general-
ization properties: in fact, once trained with proper data, this kind
of systems is able to autonomously determine “fading” rules that
describe the phenomenon under investigation [108]. This property
is very relevant for hazard detection. In fact, during algorithms
development, it is impossible to consider in advance all the types
of terrain morphological structures that a landing spacecraft could
potentially deal with during operations. In the concept here proposed,
the training process is carried out on ground, while only the trained
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network runs in flight. The ANNs working principle relies on a long
series of elementary mathematical operations (sums and multiplica-
tions), giving them a high computational efficiency, compatible with
real-time systems.

It is assumed that the system receives as input only images from
a monocular navigation camera and some basic telemetry, including
spacecraft altitude and attitude. The former is required to estimate
the scale factor of the observed scene, needed to correctly estimate
the size of the possible landing sites, while the latter is exploited to
correct distortions due to inclined views. The aim is to demonstrate
the robustness and the effectiveness of a neural networks based system
with minimal available information. In a real case, ANNs can be
provided with additional input from different sources (LIDAR, feature
tracking systems, stereo cameras etc.), making the system even more
effective.

The system is coupled with a landing site selection algorithm that
ranks the candidate sites following criteria of safety level, overall
dimension of the landing area (to add additional margin to cope with
possible landing dispersion), and distance from the nominal landing
site (to maximize the probability to find a feasible trajectory toward
the new selected target).

The chapter is structured as following: the assumption about how
the HDA tasks are accomplished during a planetary landing are ex-
pounded in Section 3.1. Then, in Section 3.2, the system architecture
is described; two different structures of ANNs are considered. The
generation of ground truth models for system training and validation
are explained in Section 3.3, and obtained results and performances
are assessed in Section 3.4.

3.1 Nominal HDA Maneuver
Some assumptions about the operations sequence during a planetary
landing maneuver are here expounded. As seen in Chapter 2, HDA
operations are assumed to be executed by a landing spacecraft during
the so-called Approach phase, starting at an altitude between 2500 and
1000 m, as the nominal landing site comes into sensors’ field of view,
depending on the landing strategy and on the specific target celestial
body. The actual required performances and operative conditions of
a hazard detection system largely depend on the specific operations
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planned to be performed in this phase.
For this work, a lunar landing is considered. The assumed op-

eration sequence is derived from real mission requirements (see
[14,64,79,100,102]), and it is summarized in Figure 3.1. Following,
it is described in detail:

1. HDA maneuvers starts at the beginning of the Approach Phase.
At this point, called HDA High Gate, the lander is assumed to
have a near down-looking camera, a vertical downward velocity
in the range 15−30 m s−1, and horizontal velocity (downrange)
5−15 m s−1.

2. The system performs a Large Scale Hazard Avoidance Maneuver :

(a) The system scans the landing area and builds a large-scale
hazard map. A new target landing site is selected.

(b) The landing trajectory is computed and a diversion ma-
neuver is commanded. The final target of this maneuver
is a point, called HDA Low Gate, located on the vertical
to the target, at altitude 250−500 m. The target velocities
are 10−5 m s−1 and 2−4 m s−1 respectively in vertical and
horizontal directions, with vertical attitude.

3. Then, the system performs a Small Scale Hazard Avoidance
Maneuver :

(a) The system scans again the landing area, building a small-
scale hazard map. If required by hazard detection, the
target landing site is updated.

(b) The trajectory is updated and if needed a new diversion
maneuver is commanded. The target point, called Termi-
nal Gate, is located at the target landing site, at altitude
30−50 m. At the Terminal Gate the lander is required
to have a vertical attitude, with a null horizontal velocity
(≤1 m s−1) and a small vertical speed ≤3 m s−1.

4. At the Terminal Gate the Approach phase ends and the Terminal
Descent phase starts. In this phase, the lander follows a vertical
trajectory at constant speed until touch down.
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Figure 3.1: Nominal Hazard Detection and Avoidance maneuver.

3.2 System Architecture
In Fig. 3.2 the logical scheme of the hazard detection system is
shown. For each position of the landing area, this system assigns
a hazard index, giving a measure of the safety of that position if
chosen as landing site. Hazard index can assume any value between 0
(completely safe) and 1 (absolutely hazardous). The hazard detection
consists in 4 stages:

1. Preprocessing: the raw image is acquired. The image is rectified
to compensate the perspective distortion in case of inclined view.

2. Indexes extraction: image is segmented at different scales and low
level information (e.g. local mean, variance, etc.) is extracted.

3. The extracted information is processed by an artificial neural
network and arranged in a hazard map.

4. TLS search. Computed hazard map is exploited to select the
most attractive landing site.
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In the following sections each stage is expounded in details.

Indexes Extraction Haz. Map Computation Target Ranking & Selection

ANN
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Figure 3.2: Hazard Detection system logical scheme. An artificial neural network
estimates hazard index value from elementary information extracted from the
image at different scales. Different ranking criteria are fused together to select
the best target.

3.2.1 Input and Preprocessing

Grayscale (8 bit, single channel) images have been considered as
system input. An image size of 1024× 1024 pixels (compatible with
most of the present camera devices for use in space) has been adopted.

Due to the kind of the considered Approach maneuver, it is as-
sumed that HDA systems operate in a near vertical attitude. Small
deviations from nadir pointing are corrected by the application of a
perspective transformation [109] just before the hazard map compu-
tation.

In the case of an inclined view, the pixel size is not uniform across
the image: more distant objects appear smaller. In the perspective
correction process the frame is rectified with a linear coordinates
transformation and then re-sampled to maintain a uniform pixel di-
mension. This process is required to proper carry out the subsequent
computation, but no additional information is actually recovered.
Then, the image resolution before resampling should be high enough
to allow the system to correctly detect hazardous features, in every
part of the frame. The resolution requirement is different at different
altitudes: for a large scale maneuver, the pixel size should not ex-
ceed the order of magnitude of the lander footprint, while for lower
altitudes, corresponding to a low scale hazard detection, it should
not be greater than the largest obstacle dimension handleable by the
landing system. Assuming a 60◦ field of view pinhole camera and a
1024× 1024 pixels sensor, the pixel size for a perfect down-looking
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attitude is equal to 2.25 m uniformly on the whole image, taken from
2000 m altitude. For an inclined view, this value increases (at worst)
up to 2.88 m for a deviation from nadir of 10◦. After this value, the
pixel size becomes quickly very large, increasing proportionally to
the tangent of the view angle. Considering also that, with the same
inclination, the pixel size increases linearly with the altitude, and
assuming a medium size lander with a 3 m footprint diameter, angles
up to 10◦ are considered acceptable.

This type of transformation assumes that attitude information is
known by the system, and that the scene can be considered as flat.
Errors in attitude and altitude estimation, and presence of orographic
reliefs introduce approximations whose impact over the system is
discussed more deeply in Section 3.4.3. If additional information is
available, e.g. a terrain shape model by a vision-based navigation
system, more complex corrections can be applied [110].

Plus, in order to perform hazard detection and avoidance tasks, the
landing site region is required to come into the sensor’s field of view
with sufficient time and control margin to maximize the lander divert
capabilities. This requirement excludes too inclined trajectories [79],
like the ones exploited during the Apollo missions [62], limiting in
this way the maximum view angle during the HDA phase.

3.2.2 Information Extraction and ANN Input Assembly

Indexes extraction is a key feature for a correct hazard detection with
neural networks. It consists in the extraction of low level information
from the raw image, with the aim to reduce the space of the data in
which neural network can detect morphological features of the real
world. The smaller the space, the more effective the network training
process, together with a reduction of the system’s complexity. At the
same time, an inappropriate choice of the indexes could lead to an
excessive loss of information, with consequent loss of accuracy in the
results.

A single-channel image can be considered as a discrete two-
dimensional function where the intensity on the ith pixel Ii depends
on the two spatial coordinates:

Ii = f(xi, yi). (3.1)

Then, it is possible to obtain derivative information with the
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appropriate discrete filters. Zeroth order information allows to have
a reference value from which the network can understand the general
brightness of the area analyzed in the acquired image. First and
second derivatives are instead indicators of the presence of specific
features on planetary surface detecting variations of pixel intensity.
Four different quantities were selected: mean, standard deviation,
gradient (1st derivative) and Laplacian of Gaussian (estimation of
the 2nd derivative). All the selected entities can be computed by the
application of different linear filters to the image. In this work, only
the most basic quantities have been considered, trying to maintain
the computational complexity at a minimum. More sophisticated
techniques to extract information from images actually exist, such as
independent component analysis [111], principal component analysis
[112], and Gabor filters [113]. Despite their high efficiency in carrying
information, they are also more demanding in terms of computational
burden: their study is left for future developments (see Section 4 for
a more complete discussion).

Each quantity can be computed in two different ways: by segmen-
tation or globally. In the first case, the input image is segmented in
sub-windows: the index is computed for the whole bounce of pixels
included in each of them. The resulting matrix of indexes has a
dimension equal to the size of the input divided by the size of the
adopted window. In the global case, the index is instead computed
on the whole image, by applying a linear filter with a sliding kernel
of predefined dimension. Then, the result is a matrix of the same
size of the input: the desired final size is obtained by downsampling
the image trough Gaussian pyramid in order to match the size of the
desired scale.

The knowledge of the same kind of information at different scales
allows neural networks to better understand depth and relative dis-
tances as described by [114]. The scale can be varied by varying the
segmentation window size or the number of subsequent downsam-
plings. Five scales, 2, 4, 8, 16, and 32 pixels (corresponding to a
downsampling pyramid levels number from 1 to 5 for global indexes)
have been initially selected: after some preliminary evaluations, scales
2 and 32 have been discarded. The former because of the greater
computation required, the latter for too excessive loss of information.

Combining 4 quantities, 2 extraction methods and the 3 remaining
scales, a total of 24 indexes are available. In a try and error process,
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they were tested in 12 different configurations. In this work, only
the most effective is presented: the minimum RMS error obtained at
the end of ANNs training phase, measured on the validation set (see
Section 3.3), was adopted as criterion to estimate the effectiveness
of the computation. In the actual implementation all the 3 different
scales, called simply small, medium and large from here onward,
respectively of sS = 4, sM = 8, sL = 16 pixel, are included, leading
to a final hazard map of 256×256 pixel in size. For a down-looking
camera with a 60◦ angle of view, this corresponds to a resolution of
9.02 meters per pixel, for images taken from an altitude of 2000 m
(representative of a HDA High Gate altitude), decreasing to a value
of 1.80 meters per pixel for images taken from 400 m. This value is of
the same order of magnitude of a realistic lander footprint, making
the final hazard map resolution appropriate for an efficient landing
site selection.

Mean µ and standard deviation σ are computed by segmentation
at each of the considered scales. The two statistical indexes are
defined as:

µ =
∑N
i=1 Ii
N

, (3.2)

σ =
√∑N

i=1(Ii − µ)2

N − 1 , (3.3)

where Ii corresponds to the intensity of the i-th pixel, N is the number
of pixels inside the considered image window. Image gradient (Grad)
and Laplacian of Gaussian (LoG) are computed by global filtering
and downsampling. Grad is approximated through an expanded 5×5
Prewitt kernel for both horizontal and vertical directions [115]. Then,
the square root of the sum of the square of every element of directional
gradients yields the total image gradient. Laplacian of Gaussian is a
second order operator widely used as edge detector [116, Ch. 4.2]. It
combines a Gaussian smoothing with the Laplacian operator and its
general formulation in continuous space is:

LoG(x, y) = − 1
πσ4

[
1− x2 + y2

2σ2

]
e−

x2+y2

2σ2 , (3.4)

where x, y represents image coordinates, centered at the current point,
while the filter standard deviation σ determines the characteristic
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length at which the filter tends to reject noise. Here it has been
implemented through a discrete linear 5×5 kernel.

In addiction to these indexes, also Sun inclination angle, defined
as the angle of the sun above the local horizon, is assembled in the
input matrix. This is necessary to make the neural network able to
correctly distinguish between sharp and blunt shadows. Summarizing,
the value of each hazard map pixel is computed from a vector of
13 component: µ, σ, Grad and LoG for each of the 3 considered
scales, plus the Sun inclination angle. Each component is normalized
before it is passed to the next stage. Eventually, assembling of the
whole input is concluded expanding indexes relative to bigger image
windows and higher downsample levels because of their intrinsic
smaller size, with a nearest neighbor criterion.

3.2.3 Artificial Neural Network and H-Map Computation

After assembling, input is processed by an Artificial Neural Net-
work. In this work, two alternative architectures are considered.
A Feedforward Multilayer Neural Network, and a Cascade Neural
Network.

Feedforward multilayer (shown in Figure 3.3) is the most simple
type of ANN, widely used in function regression and pattern recog-
nition [117, 118]. It consists in an input layer, one or more hidden
layers, and an output layer. The input is processed by each layer
sequentially; each layer is fully connected with the subsequent one.
The network architecture (number of hidden layers and neurons for
each layer) is a priori determined; the training process consists in
an optimization (by error backpropagation) of the weights of each
neuron. The main criticality of feedforward multilayer networks is
the choice of a suitable architecture: too complex schemes make the
system prone to overfitting phenomena and slow down the optimiza-
tion process. In this work, in order to determine the minimal effective
size of the net, progressively more complex architectures have been
tested: the final scheme consists in a single hidden layer made up
by 15 neurons. Addition of further neurons produces no significant
performance improvement.

In cascade networks, each layer is made up by a single neuron:
the input for each layer is the original input of the network, plus the
output of each previous hidden layer (see Figure 3.4). In this structure,
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Figure 3.3: Multilayer feed-forward network structure. The network structure is
predetermined and only neurons’ weights are trained.

hidden neurons are part of the optimization: at the beginning of the
training the net has only input and output layers, and hidden units
are progressively added, leading to a near-optimal architecture [119].

In the selection of the neural network architecture, the same cri-
teria followed for the choice of the indexes are followed: simpler
solutions are privileged, to assess the possibility to obtain an efficient
hazard detector with the minimum of the complexity. While multi-
layer network is the most simple type of ANN, the cascade network
is a first attempt to introduce an optimal architecture maintaining
a minimal structure. The two architectures share some characteris-
tics. Hyperbolic tangent is used as hidden layer activation function,
making the networks able to handle nonlinearities [120]. Since the
desired output is limited in the range [0, 1], the logarithmic sigmoid
is adopted as output function. At the end of the computation, a very
light blur filter is applied on the hazard map to relate nearby pixels.

3.2.4 Target Selection
Once the hazard map is computed, the system seeks a safe landing
site. Possible sites are classified and ranked according to the following
drivers:
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Figure 3.4: Cascade network structure. Hidden neurons are progressively added
during training. Each white square represents a weight.

• Minimum hazard level;

• Maximum landing area;

• Minimum distance from nominal landing site (required to maxi-
mize the probability to find a landing site actually reachable by
the lander divert capabilities).

For each of these principles, a specific index is assigned to each
landing site candidate. Then, the three indexes are fused in a unique
score exploited to create a global landing site ranking. The image
reference frame is considered. This frame is centered in the pixel at the
upper-left image corner, aligned with the image borders. Distances
in image reference frame can be expressed in pixel units (the position
of each pixel corresponds to the number of its column and row,
numerated from 0) or in real units (meters). The transformation
between them is a simple scaling conversion:

r = dresssx, (3.5)
where rT is the image position vector expressed in meters, xT is
the same vector expressed in pixels units, dres is the original image
resolution (after the perspective correction), expressed in meters
per pixel, and ss is the length, in pixels, of the “small” window



3.2. System Architecture 87

considered by neural networks during hazard map computation. A
sufficiently good estimation of the image resolution is required to
correctly scale the scene and then estimate the dimension of the
areas available for the landing. Then, at least information about the
altitude, camera field of view, and attitude (the minimum required for
image perspective correction and resolution estimation) are assumed
to be available to the system.
The following procedure is adopted:

1. The hazard map is thresholded at the maximum tolerable level
of hazard index for a safe landing site, denoted as zmax. All
the pixels above the threshold are classified as unsafe. Pixels
under this level are initially classified as Candidate Landing Site
(CLS).

2. For each pixel at coordinates xT = [i, j] with zij ≤ zmax the Size
Score rCLSij is computed as the distance from the nearest unsafe
pixel.

3. A safe landing site is required to respect a minimum dimension
requirement. Modeled as a circle, its radius is required to be:

rCLSij ≥ rmin = dfoot
2 + egnc, (3.6)

where dfoot is the lander footprint diameter, and egnc is the
expected landing error due to navigation imprecision, with the
desired level of confidence. Then, all CLSs that do not respect
this constraint are discharged.

4. For each remaining CLS the Diversion Score dCLSij is computed
as the distance from the Nominal Landing Site (NLS):

dCLSij = ‖rCLSij − rNLS‖, (3.7)

where rCLSij is the metric position of the CLS at image coordi-
nates, and rNLS is the metric position of the NLS.

5. The Safety Score zCLSij of each CLS is obtained by the mean of
the hazard index of the pixels contained in the circle centered
at the CLSij of radius rCLSij.
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6. The three scores are normalized to make their values to the
same order of magnitude. Than, a global “landability” score
lCLSij is obtained as:

lCLSij = wT


r̃CLSij

1− d̃CLSij
1− z̃CLSij

 , (3.8)

where wT is a vector of weights, introduced to give to the user
the faculty to confer more relative importance to one index
with respect to others. Symbols marked with a tilde stand for
normalized values.

7. Finally, the CLS with the larger global score is selected as TLS.

3.3 Network Training
ANNs performance depend widely on the completeness and coherence
of the dataset used to train the network. In the specific case of HDA
systems, the type of training set must be also tailored on the celestial
body target of the mission. In this work, a lunar landing case is
considered.

True lunar images present several criticalities: additional data
required to obtain the corresponding ground truth solution (in partic-
ular an affordable 3D model that can be associated with the images)
are only available for a very limited number of sites. On the con-
trary artificial images make possible an objective and precise ground
truth reconstruction, being all the setting and the 3D model used for
image generation completely known. Despite that, an high level of
photorealism is required to preserve coherence.

This latter approach has been selected for this work: a dataset of
98 artificial images has been generated and exploited for training and
testing purposes. Images are taken from an altitude of 2000 m, a value
inside the interval in which the HDA system is required to operate (see
Section 3.1), and they are divided into 3 subsets: training, validation
and test. The training set (67 images) is exploited to directly optimize
the networks weights with a backpropagation algorithm; network
overfitting is avoided using an early stopping method: the training
is stopped when the RMS error, evaluated on the validation set (23
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images), reaches a minimum. The test set, made up of 8 images, is
exploited to assess the system performances.

3.3.1 Artificial Images Generation: SECRET-PLAN

The use of artificial images gives a complete control over the scene.
For this motivation, it is very attractive for the generation of a
training dataset, that should be as complete as possible in terms of
terrain features and illumination conditions. On the other hand, a
lack of realism in image generation lead to incoherent results, not
representative of real operative conditions. A particular care is then
required in the image generation process. Some affordable solutions
are available on the market, like PANGU from University of Dundee
/ ESA [121], and Surrender by Airbus Defense and Space [122], but
unfortunately the access to the software is often complex or expensive.
For the purpose of this work, a new tool for the generation of realistic
images, representative of a dataset taken by a monocular navigation
camera during a lunar landing maneuver, has been developed. The
tool has named SElenitic Camera with Ray-traced Environment and
Terrain for Planetary LANding Simulator (SECRET-PLAN).

The tool is able to create artificial lunar landscapes from scratch,
generated by fractal noise, or to refine existing DEMs up to the desired
level of detail. High resolution DEMs of the Moon obtained from
LROC data1, with a variable resolution between 2 and 5 m/point,
have been used as starting point for the creation of the dataset.
First, the DEM resolution is improved up to 0.3 m/point, by adding
fractal noise, boulders, and craters to small to be visible with the
original resolution [123]. Craters deposition respects the statistical
distribution observed on the real lunar surface, as well as the real
craters formation process [124], while craters morphology follows
empirical morphometric relations obtained from lunar imagery [125].
A texture proportional to the local roughness is provided together
with the refined DEM. The output of SECRET-PLAN is a complete
3D model, together with a set of parameters regarding illumination
conditions, camera model, lander position and attitude. Finally, the
camera frame is rendered in POV-Ray2 with the desired settings.

1Courtesy of NASA and Arizona State University.
http://wms.lroc.asu.edu/lroc/rdr_product_select, last visit on: January 3, 2017.

2 Persistence of Vision Raytracer (Version 3.7) [Computer software]. Retrieved from
http://www.povray.org/download/
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Ray-tracing techniques, followed in the rendering process, allow the
attainment of the most realistic results, reproducing the same physical
phenomena of reflection and diffusion of light that happens in the
reality. A pinhole camera model, with a 60◦ angle of view has been
adopted. Table 3.1 summarizes the assumed camera parameters.
An example of image generated by SECRET-PLAN is shown in
Figure 3.5.

Figure 3.5: SECRET-PLAN example image. 4×4 km patch of the Planck Crater
floor on the Moon.

Table 3.1: Camera model parameters
for artificial images renderings.

Model Pinhole
Resolution 1024× 1024 pixel
Angle 60◦
Color 8 bit grayscale

3.3.2 Ground Truth Solution
Slopes and roughness can be extracted directly from DEM data.
For each DEM point, a surrounding circular window with diameter
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equal to the lander footprint is considered: the slope is computed
as the inclination of the mean plane obtained by a least squares
approximation of the points in the window. The plane is expressed
by the equation:

Z = aX + bY + c, (3.9)
where X and Y are the coordinates of the points in the window, and
Z is the altitude. Then, the plane inclination S is obtained as:

S = tan−1
(√

a2 + b2
)
. (3.10)

Roughness R is estimated as the difference between the maximum
and the minimum deviation of the window points from the mean
plane:

R = max
(
Zi− (aXi + bYi + c)

)
−min

(
Zi− (aXi + bYi + c)

)
, (3.11)

where the subscript i denotes the i-th DEM point inside the window.
Once slopes and roughness maps are available, they are converted in
camera image coordinates by a perspective transformation, computed
through rendering software. Then, they are exploited to obtain the
correspondent ground-truth hazard map. Each point is considered
safe if respect the following conditions:

• S ≤ Smax,

• R ≤ Rmax,

• the point is not in shadow.

Shadow map can be obtained through the same rendering software
adopted for the image generation: a rendering of the scene with the
terrain model textured in uniform white, with no reflections and no
environmental light, produces a boolean map in which sunlit regions
are perfectly white and shadows are perfectly black. Practically, the
process has been exploited only for the first images to automatically
identify an intensity threshold, in order to obtain shadow maps by
simply thresholding the camera image histogram (with a consistent
speedup of the training set generation process). At each pixel of
the camera image is assigned the hazard index 0 (perfectly safe) if
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respects all the conditions mentioned above. Pixels in shadow are
considered as out of the sensor range, and are then considered as
completely unsafe (hazard index 3). Hazard index 1 is assigned to
those pixels that fail only one of the tests on slope and roughness,
while the value 2 is assigned to those ones that fail both the tests.
Then, the obtained hazard map is normalized to bring back the
hazard index in the interval [0, 1].

At this stage the ground truth hazard map has the same resolution
of the camera image. In the last step, the map size is decreased up to
the resolution computed by ANNs (256× 256 for a 1024× 1024 pixel
frame) by applying a Gaussian pyramid. The downsampling pro-
cess increases the hazard map smoothness, making easier the ANNs
training process (ANNs are less effective in reproducing discontinu-
ous functions). Figure 3.6a reports an example of artificial image,
obtained from a real DEM of the Lowell crater floor, while the corre-
spondent ground truth hazard map is depicted in Figure 3.6b. Based
on this hazard map, is possible to compute the true safety and rank-
ing of landing sites with the algorithm presented in the previous
section, with zmax = 0.3.

(a) Original image. (b) Ground truth hazard map.

Figure 3.6: Ground truth solution computation. Artificial image, Lowell crater
floor DEM. Original image and ground truth map. Safe areas are depicted in
white (z = 0), while black represents shadowed regions (z = 1). Intermediate gray
levels represents unsafe regions failing one single or both safety tests (roughness
and slope).
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3.4 Performance Assessment

The hazard detector is written in C++ code. The OpenCV library3
has been used for image preprocessing tasks. The training of the
neural networks has been done with the FANN C++ library [126].
The system performance is verified by comparison with the ground
truth solution of a test set, which consists of four landscapes with
two different sun inclination angles (15◦ and 80◦) for a total of 8
images. A footprint dfoot = 3 m and a navigation error egnc = 15 m
(3σ) have been considered. The training ended for the two network
with a very similar value of Mean Square Error (MSE) over the test
set, equal respectively to 0.01940 (multilayer) and 0.02039 (cascade).

(a) Multilayer network. (b) Cascade Network.

Figure 3.7: Computed hazard map. Artificial image, Lowell crater floor DEM.
Safe areas are bright (low z).

ANNs are not expected to exactly reproduce the original ground
truth hazard map; instead an approximation of them is expected.
In Figure 3.7 an example of hazard map computed by the two
architectures, relative to the same input image of Figure 3.6, is
shown. It is possible to see how in both cases all the large scale
hazardous features are correctly detected; the network response tends
to be conservative, with a mean hazard index higher than the ground
truth solution. It can be seen how the cascade architecture tends

3The Open source Computer Vision library v2.7. Retrieved at: http://opencv.org/. Last
visit: January 3, 2017
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to give sharper results, while multilayer tends to smooth the hazard
index. For these reasons, the safety threshold zmax used in the actual
system is not required to be equal to the value used in ground truth
computation: on the contrary, its value should be tailored to the
specific architecture. Once compared with the ground truth, a landing
site can be classified as:

• True Positive (TP): a site correctly classified as safe;

• False Positive (FP): an unsafe site, erroneously considered safe;

• False Negative (FN): a safe site, seen as unsafe;

• True Negative (TN): a correctly recognized unsafe site.

It this then possible to define the Safety Ratio rS as the ratio
between the number of TP landing sites and the total number of
sites classified as safe:

rS = TP
TP + FP , (3.12)

while the Correctness Ratio rC is the ratio between the number of
the correctly found sites and the total number of true safe landing
sites in the image:

rC = TP
TP + FN . (3.13)

The probability to select an unsafe target is minimized by maxi-
mizing rS, while the maximization of rC increase the available landing
area. The system performances can be expressed in a unique index
J defined as:

J = r5
S r

1/5
C , (3.14)

where the exponents 5 and 1/5 are introduced to give more rela-
tive importance to landing safety, which is the main driver in the
performance assessment.

Values of zmax from 0.04 to 0.30 have been tested on the hazard
maps computed by the architectures under exams on the test set
images: obtained rS and rC are shown in Figure 3.8. A null ratio
value mean that no landing site has been found for the specific
threshold value. Looking at the compound performance index J in
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Figure 3.9, it is easy to identify the best threshold values of 0.23 and
0.17 respectively for the multilayer and the cascade networks.
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(a) Safety Ratio.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.2

0.4

0.6

0.8

1

r C

z
max

 

 
Multilayer

Cascade

(b) Completeness Ratio.

Figure 3.8: Architectures comparison, zmax threshold tuning. Safety and Com-
pleteness ratios define the overall system performance. Solid lines are mean
values, dashed lines are lower and upper boundaries.

Once the threshold is selected, it is possible to compare the per-
formances of the two architectures. In sites ranking, a weight vector
wT = [0.6 0.3 0.1] is adopted. The heavier weight (0.6) has been
assigned to the size score rCLS: a larger available area increase the
robustness of the system with respect to navigation uncertainties.
The intermediate weight corresponds to the diversion score dCLS,
in order to maximize the probability that a feasible trajectory is
found by the guidance system, minimizing the requested diversion;
the lightest weight is linked to the mean hazard index, being all
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Figure 3.9: zmax threshold tuning. Overall performance index (higher is better).
Solid lines are mean values, dashed lines are lower and upper boundaries.

the candidate targets already under the threshold zmax, and then
considered as safe. Following the obtained results are summarized:

• Always a True Positive is selected as first Target Landing site;

• The mean ranking of the first FP is 695 (cascade) and 460
(multilayer), allowing the system to always find a backup landing
site if required by the guidance system (worst case on single
image: 39 and 38, respectively).

Globally, the cascade architecture obtain a higher score principally
due to a higher safety ratio (0.9649 with respect to 0.9430 obtained
by multilayer architecture). Figures 3.10 and 3.11 show the landing
site ranking, and the final selected target, for the original image
of Figure 3.6, computed by the two architectures under test. It is
possible to see how the sharper hazard map obtained by cascade
networks allows to find a larger number of landing sites also with the
application of a smaller threshold value.

3.4.1 Real Images

The system has been also tested on real lunar images and photos taken
by Rosetta mission of the 67P/Churyumov–Gerasimenko. Being
unknown the Sun inclination angle, it has been briefly hypothesized
looking at the photos. Also the attitude of the spacecraft at the time
of the shots is a missing data (considering also that a true “local
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(b) Selected target.

Figure 3.10: Target ranking and selection. Multilayer ANN (zmax = 0.23).
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Figure 3.11: Target ranking and selection. Cascade ANN (zmax = 0.17).
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horizon” cannot be determined in the case of the 67P photos) the
images are then assumed to be taken with a perfect down-looking
pointing, and no perspective correction is applied. Moreover, in these
images there is no ground truth to quantitatively test the hazard
maps with. Thus, results are to be intended just as an example of
the ANNs generalization capabilities, and must be not intended as a
valuable result of the hazard detection system. Anyway, the choice
of the photos was dictated by the presence of relevant morphological
features, that could have challenged the system.

Moon In Fig. 3.12a, taken by LROC Narrow Angle Camera, de-
picting part of the Larmor Q crater floor, it is possible to spot some
fractures on the surface in the lower left hand side half, while the
rest of the image is characterized by diffuse roughness due to craters.
In its relative hazard maps (Figures 3.12b and 3.12c), the neural
networks seem to have qualitatively understood the terrain features,
assigning a distributed high hazard value to the rough region at top
right hand side and about maximum value precisely where fractures
are located. The higher sharpness of cascade networks w.r.t. the
smoother maps computed by multilayer architecture is clearly visible.

67P/Churyumov–Gerasimenko The great interest of both the sci-
entific community and companies in small celestial bodies pushed
to test the same hazard system used for lunar images on 67P/C-G.
Not many suitable images are available for the purpose, and even
less are equipped with data the neural network should need to be as
much efficient as it can. A test on the Imhotep region is presented
in Fig. 3.13a. This area is composed by many well distinct features:
a planar plateau with sharp boulders and rifts, developing from the
center to the top of the picture, surrounded by an irregular area full
of craters and high sloped sides. In the relative computed hazard map
(Figures 3.13b and 3.13c), the system seems to have qualitatively
understood hazard trends of the various areas: bright colors (safe) for
the planar area apart from the irregularities, gray and black (unsafe)
for the most of the rest. The very low albedo of this particular image
is sometimes interpreted as shadow by the cascade system, which
give more conservative results.
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(a) Original frame.

(b) Haz. map, multilayer network. (c) Haz. map, cascade network.

Figure 3.12: Lunar real surface image application, Larmor Q crater floor, NAC
frame M151726155R, courtesy of NASA/GSFC/ASU.
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(a) Original frame.

(b) Haz. map, multilayer network. (c) Haz. map, cascade network.

Figure 3.13: Comet 67P Churyumov-Gerasimenko, Imhotep region. Original
frame and hazard maps (Photo: ESA).
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3.4.2 Profiling

To properly estimate the computational weight of the proposed HDA
system, a profiling analysis has been carried out. Gperftools, a tool
released by Google under BSD license, has been selected as main
profiler method. Results have been cross-checked in two independent
ways: each subroutine execution has been measured with the high
resolution clock of the standard C++ chrono library, while with
the GNU/time command has been exploited to verify the overall
computation. All tests have been performed on a AMD A10-7700K
APU, running 64 bit Ubuntu 14.04 GNU/Linux operative system. In
each profiling test, the hazard detector runs in a cycle for 1000 times,
while the sampling frequency has been set to 250 Hz (the highest
possible value) to maximize the precision in runtime estimation. In
order to avoid modern processors’ automatic multi-core computation,
the system has been forced to run in single-thread configuration.

The estimation of the global computation time has a relative use-
fulness, being the performance of a real space hardware running with
a real-time operative system far different with respect to a common
PC, with diversities that are not completely a priori predictable.
On the other hand, it allows to evaluate the relative computational
weight of the subroutines that the algorithm is made up of, and to
identify possible bottlenecks.

Gperftools registered 108 148 hits at 250 Hz, for a total time of
432.59 s, while the correspondent CPU time resulted 432.67 s. Taking
into account the possible overhead that can affect measurements
differently with the two methods, the values are comparable. Fig-
ure 3.14 shows the breakdown of the computation time over the
different algorithm stages: the principal bottleneck is identified in
indexes extraction, that requires more than the 49% or the total
runtime. This result agrees with the expected: image processing
algorithms, that constitute most of the task, are computationally
expensive.

The sensitivity of the hazard map computation time from the
actual network architecture is weak. ANNs are computationally
efficient and the number of operations to be performed in this stage
has the same order of magnitude in both feedforward multilayer and
cascade neural network.

The computation time demanded by preprocessing, indexes extrac-
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tion, and hazard map computation is practically constant, operating
these subroutines on the whole image indifferently. It is not the
same for target ranking and selection, since the number of sites clas-
sified as safe is determined by both the input image and the adopted
threshold zmax. To estimate the theoretical maximum required time,
a profiling test with zmax = 1 has been performed. In this condition,
all the image is considered as a potential target and performances
decrease drastically, as can be seen looking at the dashed line in
Figure 3.14. This case is highly improbable, solely exploited to
identify a theoretical upper boundary of the computational burden:
the actual mean time measured during profiling test (solid gray in
the graph) is much lower, and target selection resulted the fastest
of the four algorithm’s stages. All the algorithm bottlenecks are
located in potentially high parallel tasks: recent developments of ded-
icated space qualified hardware, based on high performance parallel
units (such as Field Programmable Gate Arrays) allow to expect fur-
ther improvements in real applications up to real-time performances,
with a speedup greater than 100 times with respect a full software
implementation [127,128].

0 100 200 300

Target Search

Hmap

Extraction

Preprocessing

Time [ms]

31.3 (268.1)

63.7

212.6

124.9

Figure 3.14: Computation time breakdown. It is easy to see the bottleneck of the
indexes extraction stage. Theoretical maximum time required by target search is
shown in dashed line.
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3.4.3 Sensitivity to Uncertainties

The proposed system requires additional information about the alti-
tude and the attitude of the spacecraft: in this section it is briefly
discussed how uncertainties in this information could affect the pro-
posed hazard detection system. The attitude measure is involved
in the perspective correction during the preprocessing phase: in
this case, the deformation of the scene is not uniform on the image,
but increasing with the inclination at which a certain region is seen
(proportional to the tangent of the angle). Assuming a maximum
allowed inclination from the vertical equal to 15◦ and a 60◦ FoV for
the camera, the maximum inclination at which an area can appear in
the input image is 45◦. The expected attitude estimation accuracy is
far better than 1◦, relying on star trackers and inertial measurement
units [92]. Taking a 1 degree error as a worst case scenario, the
corresponding maximum relative error in lengths estimation would
be 3.55 %.

The altitude value is required for the computation of the image
resolution dres: uncertainties in the altitude estimation introduces
a scaling error of the entire scene, with a linear relationship. In
real systems the expected accuracy in position (and then altitude)
estimation is better than 1 %, using pure vision-based navigation.
Conjugated with laser range measures, an accuracy in position better
than 0.2 m is expected [56, 129]: this is equivalent to an error less
than 0.2 % from an altitude of 1000 m. The errors introduced by
altitude measurement are then at least one order of magnitude lower
with respect to other sources of uncertainty.

Also unknown orographic reliefs introduce errors in distances esti-
mation: a certain level of distortion is introduced by the perspective
correction, applied with the flat scene approximation, especially near
the edges of the scene. A certain amount of non uniform scaling error
is also introduced, due to the deviation from the scene mean plane
that alters the actual distance of the terrain with respect to the cam-
era. ANNs proved to be effective in correctly identifying the slopes,
while including the size of the landing area in the target ranking
criteria copes with scaling errors, privileging wider target. During
the tests, all the points selected as target resulted several times larger
than the minimum required. Terrain models with deviations from
the mean plane up to ±10 % (with respect to the altitude) have been
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included in the training and test set.
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And the story ends
Insanity said coldly
Still waiting for the chance
So out of nowhere it will rise
Oh, and another journey starts

Blind Guardian

4
Conclusion

One significant step toward the implementation of a full autonomous
landing GNC chain for space applications is presented in this work.
Attention has been put on two of the most innovative tasks that such
a system is required to accomplish: adaptive trajectory computation
and hazard detection.

Adaptive Guidance. A retargeting algorithm for spacecraft landing,
capable of updating and correcting a landing trajectory almost to the
touchdown, is presented. A novel approach based on the inclusion
of free parameters in a classical polynomial formulation is proposed,
in order to improve flexibility in the landing site choice, and to
consider additional non linear constraints during the descent, such
as thrust magnitude and attitude control torques boundaries. The
resulting algorithm has light computational load, and maintains a
high divert capability even with the use of a simple optimization
algorithm. A more complex optimizer based on Differential Algebra
and specifically developed for the landing optimization showed the
capability to get the true optimum solution of the parameterized
problem still maintaining a low computational burden.

The flexibility and the robustness of the proposed approach have
been tested by applying it in retargeting simulations of two very
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different cases, a lunar landing and a landing over a NEA, character-
ized by time scales and dynamics separated by at least 2 orders of
magnitude. Monte Carlo simulations have been exploited to assess
the algorithm retargeting capabilities.

The enforcement of the additional constraints has been verified by
complete landing MC simulations. The proposed guidance has been
applied to a lander simulator, including perturbed states (introduced
in order to emulate navigation system errors), a simple control system,
and pulsed actuators. The guidance algorithm resulted able to find
a feasible landing trajectory in all the tested cases, with attainable
landing areas larger than what is expected to be required in future
missions.

It has been observed that accuracy at touchdown is mainly affected
by navigation errors. Their impact can be mitigated by updating the
landing trajectory several times during the descent. This strategy
has proved effective especially in fast maneuvers, as in the tested
lunar landing case. On the other hand, it has been observed that in
the case of slow maneuvers (as in the NEA landing simulation) errors
can propagate more easily. Introducing an opportune waypoint on
the landing trajectory, a high level of precision is recovered, with a
negligible effect on fuel consumption. In these situations an accurate
project of the retargeting phase and of the guidance logic (waypoints,
update frequency, open or close loop control between two consecutive
updates) is required.

Hazard Detection and Target Selection. A new Hazard Detection
and Avoidance algorithm, based on Artificial Neural Networks, is
proposed as well. A deep analysis to detect which information can
be extracted from the original image and exploited as network input
has been carried out. The extraction of the most informative indexes
from the original image reduces the dimension of the neural network
input space, allowing a precise classification with a light network
architecture, maintaining in this way a low computational weight. A
fully objective training and validation method has been developed, in
order to avoid any dependency of the system performance from the
operator’s choices during the training phase and to have an affordable
estimation of the system capabilities. Two possible ANNs types have
been tested; also if a safe landing site was selected in the 100 % of
the test cases, the cascade networks ability to autonomously get a
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suboptimal structure makes them more effective in false positives
rejection than standard multilayer neural networks. More complex
ANNs architectures are still possible, with additional margins of
improvement.

A primary role in detection accuracy is played by the information
extraction stage: a proper selection of the input makes the neural
networks training process faster and more effective. In this field,
several improvements are still possible, and some options are under
study. Discrete wavelet transform is a promising technique, allowing
to distinguish between high an low frequency content of the image
recursively at multiple scales; also other representations, such as
independent component analysis and principal component analysis,
are potentially more efficient as information carriers with respect the
quantities here considered. However, most of these methods require
more computation: a trade-off between index complexity and needed
number of indexes should be carried out to maximize the system
performance, minimizing at the same time the overall computational
cost of the system. Nevertheless, the selection of the indexes remains
dependent on the user choice, and the verification of the effectiveness
of a specific combination is a very slow process, requiring a complete
training of the system to be properly estimated. In this context,
the application of machine learning techniques appears attractive,
to automatically obtain an optimal minimal representation suitable
for hazard detection in place of the indexes vector. Methods that
make use of unsupervised learning processes, such as autoencoders,
convolutional neural network and self-organized maps, appear as the
most promising options, and are currently under study.

Finally, the next step in system validation will require a deeper
testing. A wider test set will be considered, with more terrain types
and variations in environmental condition. Plus, the robustness of
the system with respect possible image quality degradation will be
assessed.

4.1 Roadmap for Future Research
Toward the implementation of a complete GNC chain for autonomous
landing, the integration of the two developed systems with a relative
navigation algorithm is the most logical next step. The naviga-
tion subsystem operates as the link between Hazard Detection and



108 Chapter 4. Conclusion

Adaptive Guidance: the coordinates of the selected target must be
identified in the real world, together with the current states of the
system with respect to the updated landing site. The Adaptive Guid-
ance module must then be fed with these data to properly compute
the new trajectory.

Not included in this work, a parallel research line about the appli-
cation of vision-based navigation to the spacecraft landing problem
has been carried out in last years, and it is still ongoing. Preliminary
results indicate that a proper data fusion between different sensors
is required, mixing classical measurements (laser/radar altimeter,
inertial measurements) with information available by new methods
(e.g features tracking by cameras, reconstructed DEM by LIDAR).
The geometrical characteristics of the problem (small rotations, and
high flatness of the scene, especially in the case of planetary land-
ings maneuvers) make the problem hard to be solved by pure visual
information, introducing some mathematical indeterminacies, for the
motion of optical features in the camera field of view is similar in
both pure translation and pure small rotation. The introduction of a
navigation filter is then required.

To prosecute the development of the proposed algorithms towards
real applications, an intensive test campaign is required, with both
software-in-the-loop and hardware-in-the-loop simulations. Valida-
tion campaigns, using Monte Carlo simulations coupled with high
fidelity landing simulators, are needed to ensure the functionality
of the routines in different conditions. A robust handling of the
exceptions must be provided to cope with unexpected event and non
nominal conditions.

Several improvements are needed also in prospect of a hardware
porting. At the current state, the routines implementation leaves
room to significant code optimization. The routines should be tested
on a real-time operative system, and a rigorous profiling should be
performed to identify bottlenecks and estimate a realistic computation
time.

Finally, a fast and repeatable method to generate realistic input
is necessary to achieve the required level of reliability. For this
purpose, a new landing simulation facility for optical GNC systems is
under development at the PoliMi Aerospace Science and Technology
Department premises 1.

1The author acknowledges the support received by the ESA Directorate of Human Spaceflight
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(a) Real image (b) Artificial rendering

Figure 4.1: PoliMi landing simulation facility. Comparison between a real image
and its correspondent artificial rendered with SECRET-PLAN.

The facility consists in a robotic arm, which carries a suite of
sensors (mainly a camera and a range detector simulating a laser
altimeter), moving them over a diorama reproducing the lunar land-
scape. The terrain simulator, coupled with a light system mimicking
the sunlight, provides a scaled environment for the simulation of lunar
landing maneuvers. The system is designed to work in both open
and closed loop, along predefined trajectories or guided by guidance
and control algorithms, with the spacecraft dynamics simulated in
parallel on a dedicated unit that control the arm pose and velocity.
Figure 4.1 shows a comparison between a real image, taken by the
facility’s camera, and a correspondent benchmark image rendered
with SECRET-PLAN. The simulator is currently entering a phase of
integration and functional tests before the beginning of the operations,
scheduled by the end of January 2017.

and Robotic Exploration, and by the Space Robotics Programs Office of Leonardo-Finmeccanica
in the setting of the landing simulation facility. The activity is carried out under ESA contract.





111

Bibliography

[1] “Schiapparelli descent data: decoding underway - ESA press release,”
http://exploration.esa.int/mars/58475-schiaparelli-descent-data-
decoding-underway/. Last visit: 10th Nov 2016.

[2] J. L. Vago, O. G. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio,
T. Blancquaert, D. McCoy, and R. de Groot, “ESA ExoMars program: The next
step in exploring Mars,” Solar System Research, vol. 49, no. 7, pp. 518–528, 2015,
doi: 10.1134/S0038094615070199.

[3] U. Derz and W. Seboldt, “Mars sample return mission architectures utiliz-
ing low thrust propulsion,” Acta Astronautica, vol. 77, pp. 83–96, 2012, doi:
10.1016/j.actaastro.2012.03.017.

[4] G. A. Soffen, “The viking project,” Journal of Geophysical Research, vol. 82,
no. 28, pp. 3959–3970, 1977, doi: 10.1029/JS082i028p03959.

[5] D. A. Spencer, R. C. Blanchard, R. D. Braun, P. H. Kallemeyn, and S. W.
Thurman, “Mars Pathfinder Entry, Descent, and Landing reconstruction,” Journal
of Spacecraft and Rockets, vol. 36, no. 3, pp. 357–366, 1999, doi: 10.2514/2.3478.

[6] R. Roncoli and J. Ludwinski, “Mission design overview for the Mars Explo-
ration Rover mission,” in AIAA Guidance, Navigation, and Control Conference,
Monterey, CA, Aug. 2002, doi: 10.2514/6.2002-4823. AIAA Paper 2002-4823.

[7] J. Crisp, M. Adler, J. Matijevic, S. Squyres, R. Arvidson, and D. Kass, “Mars
Exploration Rover mission,” Journal of Geophysical Research E: Planets, vol. 108,
no. 12, pp. ROV 2–1–ROV 2–17, 2003.

[8] P. N. Desai, J. L. Prince, E. M. Queen, M. M. Schoenenberger, J. R. Cruz, and
M. R. Grover, “Entry, descent, and landing performance of the Mars Phoenix
Lander,” Journal of Spacecraft and Rockets, vol. 48, no. 5, pp. 798–808, 2011, doi:
10.2514/1.48239.

[9] J. L. Prince, P. N. Desai, E. M. Queen, and M. R. Grover, “Mars Phoenix Entry,
Descent, and Landing simulation design and modeling analysis,” Journal of
Spacecraft and Rockets, vol. 48, no. 5, pp. 756–764, 2011, doi: 10.2514/1.46561.

[10] E. M. Queen, J. L. Prince, and P. N. Desai, “Multibody modeling and simulation
for Mars Phoenix Entry, Descent, and Landing,” Journal of Spacecraft and Rockets,
vol. 48, no. 5, pp. 765–771, 2011, doi: 10.2514/1.46918.

[11] R. C. Blanchard and P. N. Desai, “Mars Phoenix Entry, Descent, and Landing
trajectory and atmosphere reconstruction,” Journal of Spacecraft and Rockets,
vol. 48, no. 5, pp. 809–822, 2011, doi: 10.2514/1.46274.

[12] M. R. Grover, B. D. Cichy, and P. N. Desai, “Overview of the Phoenix Entry,
Descent, and Landing system architecture,” Journal of Spacecraft and Rockets,
vol. 48, no. 5, pp. 706–712, 2011, doi: 10.2514/1.46548.

http://exploration.esa.int/mars/58475-schiaparelli-descent-data-decoding-underway/
http://exploration.esa.int/mars/58475-schiaparelli-descent-data-decoding-underway/
http://dx.doi.org/10.1134/S0038094615070199
http://dx.doi.org/10.1016/j.actaastro.2012.03.017
http://dx.doi.org/10.1029/JS082i028p03959
http://dx.doi.org/10.2514/2.3478
http://dx.doi.org/10.2514/6.2002-4823
http://dx.doi.org/10.2514/1.48239
http://dx.doi.org/10.2514/1.46561
http://dx.doi.org/10.2514/1.46918
http://dx.doi.org/10.2514/1.46274
http://dx.doi.org/10.2514/1.46548


112 Bibliography

[13] R. Prakash, P. D. Burkhart, A. Chen, K. A. Comeaux, C. S. Guernsey, D. M.
Kipp, L. V. Lorenzoni, G. F. Mendeck, R. W. Powell, T. P. Rivellini, A. M. S.
Martin, S. W. Sell, A. D. Steltzner, and D. W. Way, “Mars Science Laboratory
Entry, Descent, and Landing system overview,” in IEEE Aerospace Conference
2008, pp. 1–18, Big Sky, MT, Mar. 2008, doi: 10.1109/AERO.2008.4526283.

[14] M. S. Martin, G. F. Mendeck, P. B. Brugarolas, G. Singh, F. Serricchio, S. W.
Lee, E. C. Wong, and J. C. Essmiller, “In-flight experience of the Mars Sci-
ence Laboratory Guidance, Navigation, and Control system for Entry, Descent,
and Landing,” CEAS Space Journal, vol. 7, no. 2, pp. 119–142, 2015, doi:
10.1007/s12567-015-0091-3.

[15] A. A. Gonzales and C. R. Stoker, “An efficient approach for Mars Sample Return
using emerging commercial capabilities,” Acta Astronautica, vol. 123, pp. 16–25,
2016, doi: 10.1016/j.actaastro.2016.02.013.

[16] C. E. Singer, “NASA’s Space Launch System marks critical design review,” in
SpaceOps Conferences, Daejeon, Korea, May 2016, doi: 10.2514/6.2016-2529.
AIAA Paper 2016-2529.

[17] A. A. Schorr and S. D. Creech, “Space Launch System spacecraft and payload
elements: Making progress toward first launch,” in AIAA SPACE Forum, Long
Beach, CA, sep 2016, doi: 10.2514/6.2016-5418. AIAA Paper 2016-5418.

[18] P. F. Marshall and S. D. Norris, “Orion project status,” in AIAA SPACE 2013
Conference and Exposition, San Diego, CA, Sep. 2013, doi: 10.2514/6.2013-5476.
AIAA Paper 2013-5476.

[19] J. Gutkowski, T. Dawn, and R. Jedrey, “Evolution of Orion mission design for
exploration mission 1 and 2,” in 39th Annual AAS Rocky Mountain Section
Guidance and Control Conference, vol. 157 of Advances in the Astronautical
Sciences, pp. 697–708, Univelt, San Diego, CA, Feb. 2016.

[20] J.-M. Salotti, “Robust, affordable, semi-direct Mars mission,” Acta Astronautica,
vol. 127, pp. 235–248, 2016, doi: 10.1016/j.actaastro.2016.06.004.

[21] E. Musk, “Making humans a multiplanetary species,” http://www.spacex.com/
mars (last visit: 29th Dec. 2016), Sep. 2016. Special keynote at 67th International
Astronautical Congress (IAC), Guadalajara, Mexico.

[22] B. Donahue, D. Burks, and D. Cooper, “Exploration opportunities enabled by
the space launch system,” in 2016 IEEE Aerospace Conference, pp. 1–11, Big Sky,
MT, Mar. 2016, doi: 10.1109/AERO.2016.7500788.

[23] J. D. Carpenter, R. Fisackerly, D. De Rosa, and B. Houdou, “Scientific prepara-
tions for lunar exploration with the European Lunar Lander,” Planetary and Space
Science, vol. 74, no. 1, pp. 208–223, 2012, doi: 10.1016/j.pss.2012.07.024.

[24] B. Gardini, L. Zelenyi, V. Khartov, A. Lukiyanchikov, I. Mitrofanov, A. Pradier,
C. Philippe, and J. Carpenter, “ESA-Roscosmos strategy for moon exploration,”
in 62nd International Astronautical Congress (IAC), Napoli, Italy, Sep. 2012.

[25] B. Gardini, “OUTLOOK after the CM 2012,” in European Commission Workshop
on Space Science and Exploration, Madrid, Spain, Feb. 2013.

[26] R. Fisackerly, J. Carpenter, G. Visentin, B. Houdou, B. Patti, F. Rizzi, P. Mag-
nani, and A. Fumagalli, “Accessing, drilling and operating at the Lunar south pole:
Status of European plans and activities,” in Earth and Space 2014: Engineering

http://dx.doi.org/10.1109/AERO.2008.4526283
http://dx.doi.org/10.1007/s12567-015-0091-3
http://dx.doi.org/10.1016/j.actaastro.2016.02.013
http://dx.doi.org/10.2514/6.2016-2529
http://dx.doi.org/10.2514/6.2016-5418
http://dx.doi.org/10.2514/6.2013-5476
http://dx.doi.org/10.1016/j.actaastro.2016.06.004
http://www.spacex.com/mars
http://www.spacex.com/mars
http://dx.doi.org/10.1109/AERO.2016.7500788
http://dx.doi.org/10.1016/j.pss.2012.07.024


Bibliography 113

for Extreme Environments - Proceedings of the 14th Biennial International Con-
ference on Engineering, Science, Construction, and Operations in Challenging
Environments, pp. 237–246, 2014, doi: 10.1061/9780784479179.027.

[27] C. Li, J. Liu, X. Ren, W. Zuo, X. Tan, W. Wen, H. Li, L. Mu, Y. Su, H. Zhang,
J. Yan, and Z. Ouyang, “The Chang’e 3 mission overview,” Space Science Reviews,
vol. 190, no. 1, pp. 85–101, 2015, doi: 10.1007/s11214-014-0134-7.

[28] P. Chauhan, A. Bhardwaj, S. Kumar, P. Kaur, and N. Bhandari, “Understanding
our celestial neighbors: An Indian perspective in planetary sciences and explo-
ration,” Proceedings of the Indian National Science Academy, vol. 82, no. 3, pp.
403–423, 2016.

[29] “Catching a Comet,” Science Special Issue, vol. 347, Jan. 2015.
[30] K. Geurts, C. Fantinati, S. Ulamec, and R. Willnecker, “Rosetta lander: On-comet

operations preparation and planning,” in SpaceOps 2014 Conference, Pasadena,
CA, May 2014, doi: 10.2514/6.2014-1752. AIAA Paper 2014-1752.

[31] J. Gal-Edd and A. Cheuvront, “The OSIRIS-REx asteroid sample return: Mis-
sion operations design,” in 13th International Conference on Space Operations,
Pasadena, CA, May 2014, doi: 10.2514/6.2014-1721. AIAA Paper 2014-1721.

[32] P. Michel, M. A. Barucci, A. F. Cheng, H. Böhnhardt, J. R. Brucato, E. Dotto,
P. Ehrenfreund, I. A. Franchi, S. F. Green, L.-M. Lara, B. Marty, D. Koschny, and
D. Agnolon, “MarcoPolo-R: Near-earth asteroid sample return mission selected for
the assessment study phase of the ESA program cosmic vision,” Acta Astronautica,
vol. 93, no. 0, pp. 530–538, 2014, doi: 10.1016/j.actaastro.2012.05.030.

[33] D. Reeves, D. Mazanek, B. Cichy, S. Broschart, and K. DeWeese, “Asteroid
redirect mission proximity operations for reference target asteroid 2008 EV5,” in
39th Annual AAS Rocky Mountain Section Guidance and Control Conference, vol.
157, pp. 655–666, San Diego, CA, 2016.

[34] G. L. Condon and J. Williams, “Asteroid Redirect crewed mission nominal design
and performance,” in SpaceOps 2014 Conference, Pasadena, CA, May 2014, doi:
10.2514/6.2014-1696. AIAA Paper 2014-1696.

[35] A. F. Cheng, “AIDA: Test of asteroid deflection by spacecraft impact,” in 44th
Lunar and Planetary Science Conference, The Woodlands, TX, Mar. 2013.

[36] A. Galvez, I. Carnelli, M. Fontaine, and C. Corral Van Damme, “Asteroid Impact
Mission (AIM) & Deflection assessment,” in European Planetary Science Congress
2012, Madrid, Spain, Sep. 2012.

[37] A. Galvez, I. Carnelli, M. Khan, W. Martens, P. Michel, S. Ulamec, and A. Hriscu,
“Asteroid investigation mission: the European contribution the the AIDA EU-US
cooperation,” in 24th International Symposium on Space Flight Dynamics, Laurel,
MD, May 2014.

[38] M. Küppers, I. Carnelli, A. Galvez, K. Mellab, and P. Michel, “The Asteroid
Impact Mission (AIM),” in European Planetary Science Congress 2015, Nantes,
France, Sep. 2015.

[39] “ESA council at ministerial level 2016: success, tinged with a bit of disap-
pointment,” http://blogs.esa.int/janwoerner/2016/12/04/esa-council-at-
ministerial-level-2016-success-tinged-with-a-bit-of-disappointment/.
Last visit: 20th Dec 2016.

http://dx.doi.org/10.1061/9780784479179.027
http://dx.doi.org/10.1007/s11214-014-0134-7
http://dx.doi.org/10.2514/6.2014-1752
http://dx.doi.org/10.2514/6.2014-1721
http://dx.doi.org/10.1016/j.actaastro.2012.05.030
http://dx.doi.org/10.2514/6.2014-1696
http://blogs.esa.int/janwoerner/2016/12/04/esa-council-at-ministerial-level-2016-success-tinged-with-a-bit-of-disappointment/
http://blogs.esa.int/janwoerner/2016/12/04/esa-council-at-ministerial-level-2016-success-tinged-with-a-bit-of-disappointment/


114 Bibliography

[40] H. Masursky and N. L. Crabill, “The Viking landing sites: Selection
and certification,” Science, vol. 193, no. 4255, pp. 809–812, 1976, doi:
10.1126/science.193.4255.809.

[41] R. Arvidson, D. Adams, G. Bonfiglio, P. Christensen, S. Cull, M. Golombek,
J. Guinn, E. Guinness, T. Heet, R. Kirk, A. Knudson, M. Malin, M. Mellon,
A. McEwen, A. Mushkin, T. Parker, F. Seelos, K. Seelos, P. Smith, D. Spencer,
T. Stein, and L. Tamppari, “Mars Exploration Program 2007 Phoenix landing
site selection and characteristics,” Journal of Geophysical Research: Planets, vol.
113, no. E3, 2008, doi: 10.1029/2007JE003021.

[42] D. A. Spencer, D. S. Adams, E. Bonfiglio, M. Golombek, R. Arvidson, and
K. Seelos, “Phoenix landing site hazard assessment and selection,” Journal of
Spacecraft and Rockets, vol. 46, no. 6, pp. 1196–1201, 2009, doi: 10.2514/1.43932.

[43] M. Golombek, J. Grant, D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta,
F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker,
B. Pollard, S. Lee, Y. Sun, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe
Dobrea, J. Michalski, and M. Watkins, “Selection of the Mars Science Laboratory
landing site,” Space Science Reviews, vol. 170, no. 1, pp. 641–737, 2012, doi:
10.1007/s11214-012-9916-y.

[44] S. Ulamec, J. Biele, A. Blazquez, B. Cozzoni, C. Delmas, C. Fantinati, P. Gaudon,
K. Geurts, E. Jurado, O. Küchemann, V. Lommatsch, M. Maibaum, H. Sierks,
and L. Witte, “Rosetta lander – Philae: Landing preparations,” Acta Astronautica,
vol. 107, pp. 79–86, 2015, doi: 10.1016/j.actaastro.2014.11.019.

[45] A. Accomazzo, S. Lodiot, and V. Companys, “Rosetta mission op-
erations for landing,” Acta Astronautica, vol. 125, pp. 30–40, 2016,
doi: 10.1016/j.actaastro.2016.01.013. Rosetta and Philae at comet
67P/Churyumov-Gerasimenko.

[46] L. Witte, R. Roll, J. Biele, S. Ulamec, and E. Jurado, “Rosetta lander Philae –
landing performance and touchdown safety assessment,” Acta Astronautica, vol.
125, pp. 149–160, 2016, doi: 10.1016/j.actaastro.2016.02.001. Rosetta and
Philae at comet 67P/Churyumov-Gerasimenko.

[47] K. Berry, B. Sutter, A. May, K. Williams, B. Barbee, M. Beckman, and
B. Williams, “OSIRIS-REx touch-and-go (TAG) mission design and analysis,” in
36th Annual AAS Rocky Mountain Section Guidance and Control Conference, vol.
149 of Advances in the Astronautical Sciences, pp. 667–678, Univelt, San Diego,
CA, Feb. 2013.

[48] S. Ulamec, C. Fantinati, M. Maibaum, K. Geurts, J. Biele, S. Jansen,
O. Küchemann, B. Cozzoni, F. Finke, V. Lommatsch, A. Moussi-Soffys, C. Del-
mas, and L. O’Rourke, “Rosetta lander – landing and operations on comet
67P/Churyumov–Gerasimenko,” Acta Astronautica, vol. 125, pp. 80–91, 2016,
doi: 10.1016/j.actaastro.2015.11.029.

[49] E. Remetean, B. Dolives, F. Souvannavong, T. Germa, J. Ginestet, A. Tor-
res, and T. Mousset, “Philae locating and science support by robotic vi-
sion techniques,” Acta Astronautica, vol. 125, pp. 161–173, 2016, doi:
10.1016/j.actaastro.2015.12.005.

[50] “CRS-8 launch and landing - SpaceX press release,” http://www.spacex.com/
news/2016/04/09/crs-8-launch-and-landing. Last visit: 10th Nov 2016.

http://dx.doi.org/10.1126/science.193.4255.809
http://dx.doi.org/10.1029/2007JE003021
http://dx.doi.org/10.2514/1.43932
http://dx.doi.org/10.1007/s11214-012-9916-y
http://dx.doi.org/10.1016/j.actaastro.2014.11.019
http://dx.doi.org/10.1016/j.actaastro.2016.01.013
http://dx.doi.org/10.1016/j.actaastro.2016.02.001
http://dx.doi.org/10.1016/j.actaastro.2015.11.029
http://dx.doi.org/10.1016/j.actaastro.2015.12.005
http://www.spacex.com/news/2016/04/09/crs-8-launch-and-landing
http://www.spacex.com/news/2016/04/09/crs-8-launch-and-landing


Bibliography 115

[51] B. Frapard and S. Mancuso, “Vision navigation for european landers and the
NPAL project,” in GNC 2005: 6th International ESA Conference on Guidance,
Navigation & Control Systems, Loutraki, Greece, Oct. 2005.

[52] G. P. Guizzo, R. Drai, N. Despré, and M. Manzano Jurado, “Flight tests results
of the precision landing GNC test facility,” in GNC 2011: 8th International ESA
Conference on Guidance, Navigation & Control Systems, Karlovy Vary, Czech
Republic, Jun. 2011.

[53] G. Hormigo, C. Gu, T. Lutz, S. Gardecki, F. Cordes, A. Böljes, J. Bolz, and P. De
Maagt, “Startiger Dropter project: integrated closed-loop vision-aided navigation
with hazard detection and avoidance,” in GNC 2014: 9th International ESA
conference on Guidance, Navigation & Control Systems, Porto, Portugal, Jun.
2014.

[54] S. Steffes, M. Dumke, D. Heise, M. Sagliano, M. Samaan, S. Theil, E. Boslooper,
H. Oosterling, J. Schulte, D. Skaborn, S. Söderholm, S. Conticello, M. Esposito,
Y. Yanson, B. Monna, F. Stelwagen, and R. Visee, “Target relative navigation
results from hardware-in-the-loop tests using the Sinplex navigation system,” in
AAS/AIAA Guidance, Navigation, and Control 2014, vol. 151 of Advances in the
Astronautical Sciences, pp. 171–184, Univelt, San Diego, CA, 2014.

[55] J. Montaño, P. Molina, E. Angelats, I. Colomina, and A. Latorre, “PERIGEO:
image processing techniques development & testing for multimodal absolute &
relative navigation,” in GNC 2014: 9th International ESA conference on Guidance,
Navigation & Control Systems, Porto, Portugal, Jun. 2014.

[56] N. Trawny, J. M. Carson, A. Huertas, M. E. Luna, V. E. Robak, A. E. Johnson,
K. E. Martin, and C. Y. Villalpando, “Helicopter flight testing of a real-time
hazard detection system for safe lunar landing,” in AIAA SPACE 2013 Conference
and Exposition, San Diego, CA, 2013, doi: 10.2514/6.2013-5313. AIAA Paper
2013-5313.

[57] J. M. Carson, N. Trawny, E. Robertson, V. E. Roback, D. Pierrottet, J. Devolites,
J. Hart, and J. N. Estes, “Preparation and integration of ALHAT precision landing
technology for Morpheus flight testing,” in AIAA SPACE 2014 Conferences and
Exposition, San Diego, CA, Aug. 2014, doi: 10.2514/6.2014-4313. AIAA Paper
2014-4313.

[58] A. J. Davison, “Real-time simultaneous localisation and mapping with a single
camera,” in Computer Vision, 2003. Proceedings. Ninth IEEE International Con-
ference on, vol. 2, pp. 1403–1410, Oct. 2003, doi: 10.1109/ICCV.2003.1238654.

[59] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
in 6th IEEE and ACM International Symposium on Mixed and Augmented Reality,
pp. 225–234, 2007.

[60] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct monocular
visual odometry,” in IEEE International Conference on Robotics and Automation,
pp. 15–22, 2014, doi: 10.1109/ICRA.2014.6906584.

[61] R. Mur-Artal, J. Montiel, and J. D. Tardos, “ORB-SLAM: a versatile and accurate
monocular SLAM system,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1147–1163,
2015, doi: 10.1109/TRO.2015.2463671.

[62] A. R. Klumpp, “Apollo lunar descent guidance,” Automatica, vol. 10, no. 2, pp.
133–146, 1974, doi: 10.1016/0005-1098(74)90019-3.

http://dx.doi.org/10.2514/6.2013-5313
http://dx.doi.org/10.2514/6.2014-4313
http://dx.doi.org/10.1109/ICCV.2003.1238654
http://dx.doi.org/10.1109/ICRA.2014.6906584
http://dx.doi.org/10.1109/TRO.2015.2463671
http://dx.doi.org/10.1016/0005-1098(74)90019-3


116 Bibliography

[63] I. Gerth and E. Mooij, “Guidance for autonomous precision landing on atmosphere-
less bodies,” in AIAA Guidance, Navigation, and Control Conference, National
Harbor, MD, Jan. 2014, doi: 10.2514/6.2014-0088. AIAA Paper 2014-0088.

[64] B. Açikmeşe and S. R. Ploen, “Convex programming approach to powered descent
guidance for Mars landing,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 5, pp. 1353–1366, 2007, doi: 10.2514/1.27553.

[65] L. Blackmore, B. Açikmeşe, and D. P. Scharf, “Minimum-landing-error powered-
descent guidance for Mars landing using convex optimization,” Journal of
Guidance, Control, and Dynamics, vol. 33, no. 4, pp. 1161–1171, 2010, doi:
10.2514/1.47202.

[66] P. Lunghi, M. Lavagna, and R. Armellin, “A semi-analytical guidance algorithm
for autonomous landing,” Advances in Space Research, vol. 55, no. 11, pp. 2719–
2738, 2015, doi: 10.1016/j.asr.2015.02.022.

[67] P. Lunghi, M. Ciarambino, and M. Lavagna, “A multilayer perceptron hazard
detector for vision-based autonomous planetary landing,” Advances in Space
Research, vol. 58, no. 1, pp. 131–144, 2016, doi: 10.1016/j.asr.2016.04.012.

[68] P. Lunghi, R. Armellin, P. Di Lizia, and M. Lavagna, “Semi-analytical adaptive
guidance computation based on differential algebra for autonomous planetary
landing,” in 26th AAS/AIAA Space Flight Mechanics Meeting, vol. 158 of Advances
in the Astronautical Sciences, pp. 2003–2022, Univelt, San Diego, CA, Jan. 2016.

[69] P. Lunghi, M. Lavagna, and R. Armellin, “Semi-analytical adaptive guidance
algorithm for fast retargeting maneuvers computation during planetary descent
and landing,” in 12th Symposium on Advanced Space Technologies in Robotics and
Automation (ASTRA), ESA/ESTEC, Noordwijk, The Netherlands, May 2013.

[70] P. Lunghi, M. Lavagna, and R. Armellin, “Adaptive semi-analytical guidance
for autonomous planetary landing,” in 64th International Astronautical Congress
(IAC), Beijing, China, Oct. 2013.

[71] P. Lunghi, M. Lavagna, and R. Armellin, “Semi-analytical guidance algorithm
for autonomous close approach to non-cooperative low-gravity targets,” in 24th
AAS/AIAA Space Flight Mechanics Meeting, vol. 152 of Advances in the Astro-
nautical Sciences, pp. 731–746, Univelt, San Diego, CA, Jan. 2014.

[72] P. Lunghi and M. Lavagna, “A neural network based hazard detection algorithm for
planetary landing,” in 9th International ESA Conference on Guidance, Navigation,
and Control Systems, Porto, Portugal, Jun. 2014.

[73] P. Lunghi, M. Ciarambino, and M. Lavagna, “Vision-based hazard detection with
artificial neural networks for autonomous planetary landing,” in 13th Sympo-
sium on Advanced Space Technologies in Robotics and Automation (ASTRA),
ESA/ESTEC, Noordwijk, The Netherlands, May 2015.

[74] P. Lunghi, M. Ciarambino, and M. Lavagna, “A multilayer perceptron hazard
detector for vision-based autonomous planetary landing,” in AAS/AIAA Astro-
dynamics Specialist Conference 2015, vol. 156 of Advances in the Astronautical
Sciences, pp. 1633–1650, Univelt, San Diego, CA, Aug. 2015.

[75] P. Lunghi, M. Ciarambino, and M. Lavagna, “Simulation facility for vision-
based planetary landing systems,” in 23th Conference of Italian Association of
Aeronautics and Astronautics - AIDAA, Nov. 2015.

http://dx.doi.org/10.2514/6.2014-0088
http://dx.doi.org/10.2514/1.27553
http://dx.doi.org/10.2514/1.47202
http://dx.doi.org/10.1016/j.asr.2015.02.022
http://dx.doi.org/10.1016/j.asr.2016.04.012


Bibliography 117

[76] P. Lunghi, M. Ciarambino, and M. Lavagna, “A new test facility for vision-based
hazard detection and avoidance systems for planetary landing maneuvers,” in
66th International Astronautical Congress (IAC), Jerusalem, Israel, Oct. 2015.

[77] P. Lunghi, M. Ciarambino, and M. Lavagna, “A hazard detection and avoid-
ance system for autonomous planetary landing,” in 23th Conference of Italian
Association of Aeronautics and Astronautics - AIDAA, Torino, Italy, Nov. 2015.

[78] P. Lunghi, M. Ciarambino, L. Losi, and M. Lavagna, “Development, validation
and test of optical based algorithms for autonomous planetary landing,” in
6th International Conference on Astrodynamics Tools and Techniques (ICATT),
Darmstadt, Germany, Mar. 2016.

[79] E. Wong, J. Masciarelli, and G. Singh, “Autonomous guidance and control design
for hazard avoidance and safe landing on Mars,” in AIAA Atmospheric Flight
Mechanics Conference, Monterey, CA, Aug. 2002, doi: 10.2514/6.2002-4619.
AIAA Paper 2002-4619.

[80] B. Parreira, P. Rogata, E. Di Sotto, A. Caramagno, J. M. Rebordao, P. Motrena,
and S. Mancuso, “Consolidated performance assessment of hazard avoidance
techniques for vision based landing,” in AIAA Guidance, Navigation, and Control
Conference, Hilton Head, SC, Aug. 2007, doi: 10.2514/6.2007-6854. AIAA
Paper 2007-6854.

[81] U. Topcu, J. Casoliva, and K. D. Mease, “Fuel efficient powered descent guidance
for Mars landing,” in AIAA Guidance, Navigation, and Control Conference, San
Francisco, CA, Aug. 2005, doi: 10.2514/6.2005-6286. AIAA Paper 2005-6286.

[82] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal
of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998, doi:
10.2514/2.4231.

[83] F. Fahroo and I. M. Ross, “Direct trajectory optimization by a Chebyshev
pseudospectral method,” Journal of Guidance, Control, and Dynamics, vol. 25,
no. 1, pp. 160–166, 2002, doi: 10.2514/2.4862.

[84] M. A. Lara and D. Scheeres, “Stability bounds for three-dimensional motion close
to asteroids,” Journal of the Astronautical Sciences, vol. 50, no. 4, pp. 389–409,
2003.

[85] M. Hawkins, Y. Guo, and B. Wie, “ZEM/ZEV feedback guidance application to
fuel-efficient orbital maneuvers around an irregular-shaped asteroid,” in AIAA
Guidance, Navigation, and Control Conference, Minneapolis, MN, Aug. 2012, doi:
10.2514/6.2012-5045. AIAA Paper 2012-5045.

[86] R. Furfaro, B. Gaudet, D. R. Wibben, and J. Simo, “Development of non-linear
guidance algorithms for asteroids close-proximity operations,” in AIAA Guidance,
Navigation, and Control Conference, Boston, MA, 19–22 August 2013, doi:
10.2514/6.2013-4711. AIAA Paper 2013-4711.

[87] R. Furfaro, D. Cersosimo, and D. Wibben, “Asteroid precision landing via mul-
tiple sliding surfaces guidance techniques,” Journal of Guidance, Control, and
Dynamics, vol. 36, no. 4, pp. 1075–1092, 2013, doi: 10.2514/1.58246.

[88] R. Pinson and P. Lu, “Rapid generation of optimal asteroid powered trajectories
via convex optimization,” in AAS/AIAA Astrodynamics Specialist Conference
2015, vol. 156 of Advances in the Astronautical Sciences, Univelt, San Diego, CA,
Aug. 2015.

http://dx.doi.org/10.2514/6.2002-4619
http://dx.doi.org/10.2514/6.2007-6854
http://dx.doi.org/10.2514/6.2005-6286
http://dx.doi.org/10.2514/2.4231
http://dx.doi.org/10.2514/2.4862
http://dx.doi.org/10.2514/6.2012-5045
http://dx.doi.org/10.2514/6.2013-4711
http://dx.doi.org/10.2514/1.58246


118 Bibliography

[89] R. Fisackerly, A. Pradier, B. Gardini, B. Houdou, C. Philippe, D. De Rosa, and
J. Carpenter, “The ESA Lunar Lander mission,” in AIAA SPACE 2011 Conference
and Exposition, Long Beach, CA, Sep. 2011, doi: 10.2514/6.2011-7217. AIAA
Paper 2011-7217.

[90] H. Ellerbrock, N. Henn, G. Hagemann, M. Riehle, and M. Kinnersley, “Chemical
propulsion challenges for ESA’s exploration missions and automatic return vehicle,”
in 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San
Diego, CA, jul 2011, doi: 10.2514/6.2011-5767. AIAA Paper 2011-5767.

[91] G. Flandin, B. Polle, N. Despré, J. Lheritier, N. Perrimon, and P. Blanc-Paques,
“Maturing vision based navigation solutions to space exploration,” in AIAA
Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, Aug.
2010, doi: 10.2514/6.2010-7601. AIAA Paper 2010-7601.

[92] J. Riedel, A. Vaughan, R. A. Werner, W. Tseng-Chan, S. Nolet, D. Myers,
N. Mastrodemos, A. Lee, C. Grasso, T. Ely, and D. Bayard, “Optical navigation
plan and strategy for the lunar lander Altair; OpNav for lunar and other crewed
and robotic exploration applications,” in AIAA Guidance, Navigation, and Control
Conference, Toronto, Ontario Canada, Aug. 2010, doi: 10.2514/6.2010-7719.
AIAA Paper 2010-7719.

[93] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in
Fluid Dynamics, Springer, New York, 1988.

[94] D. J. Scheeres, “Dynamics about uniformly rotating triaxial ellipsoids: Ap-
plications to asteroids,” Icarus, vol. 110, no. 2, pp. 225–238, 1994, doi:
10.1006/icar.1994.1118.

[95] Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, and S. Nakazawa, “System
design of the Hayabusa 2—asteroid sample return mission to 1999 JU3,” Acta As-
tronautica, vol. 91, pp. 356–362, 2013, doi: 10.1016/j.actaastro.2013.06.028.

[96] F. Ferrari, M. Lavagna, and K. C. Howell, “Dynamical model of binary asteroid sys-
tems through patched three-body problems,” Celestial Mechanics and Dynamical
Astronomy, vol. 125, no. 4, pp. 413–433, 2016, doi: 10.1007/s10569-016-9688-x.

[97] R. A. Werner and D. J. Scheeres, “Exterior gravitation of a polyhedron derived
and compared with harmonic and mascon gravitation representations of asteroid
4769 Castalia,” Celestial Mechanics and Dynamical Astronomy, vol. 65, no. 3, pp.
313–334, 1996, doi: 10.1007/BF00053511.

[98] T. Kolda, R. Lewis, and V. Torczon, “Optimization by direct search: New
perspectives on some classical and modern methods,” SIAM Review, vol. 45, no. 3,
pp. 385–482, 2003, doi: 10.1137/S003614450242889.

[99] M. Berz, Modern Map Methods in Particle Beam Physics, Academic Press, London,
1999.

[100] J. Delaune, D. De Rosa, and S. Hobbs, “Guidance and control system design
for lunar descent and landing,” in AIAA Guidance, Navigation, and Control
Conference, Toronto, Ontario Canada, 2010, doi: 10.2514/6.2010-8028. AIAA
Paper 2010-8028.

[101] A. Morselli, M. Rasotto, P. Di Lizia, R. Armellin, M. Massari, and A. Wittig,
“Nonlinear propagation of uncertainties in space dynamics based on taylor differ-
ential algebra,” Tech. Rep. Contract no. 4000109643/13/NL/MH Final Report,
European Space Agency, 2015.

http://dx.doi.org/10.2514/6.2011-7217
http://dx.doi.org/10.2514/6.2011-5767
http://dx.doi.org/10.2514/6.2010-7601
http://dx.doi.org/10.2514/6.2010-7719
http://dx.doi.org/10.1006/icar.1994.1118
http://dx.doi.org/10.1016/j.actaastro.2013.06.028
http://dx.doi.org/10.1007/s10569-016-9688-x
http://dx.doi.org/10.1007/BF00053511
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.2514/6.2010-8028


Bibliography 119

[102] M. C. Johnson, “A parameterized approach to the design of lunar lander attitude
controllers,” in AIAA Guidance, Navigation, and Control Conference, Keystone,
CO, 2006, doi: 10.2514/6.2006-6564. AIAA Paper 2006-6564.

[103] H. Pien, “Autonomous hazard detection and avoidance for Mars exploration,”
in 8th AIAA Computing in Aerospace Conference, Baltimora, MD, 1991, doi:
10.2514/6.1991-3731. AIAA Paper 1991-3731.

[104] R. Furfaro, W. Fink, and J. S. Kargel, “Autonomous real-time landing site selection
for Venus and Titan using evolutionary fuzzy cognitive maps,” Applied Soft Com-
puting, vol. 12, no. 12, pp. 3825–3839, 2012, doi: 10.1016/j.asoc.2012.01.014.

[105] B. Parreira, E. Di Sotto, A. Caramagno, and J. Rebordão, “Hazard avoidance
for planetary landing: GNC design and performance assessment,” in GNC 2008:
7th International ESA Conference on Guidance, Navigation & Control Systems,
Tralee, County Kerry, Ireland, Jun. 2008.

[106] S. Woicke and E. Mooij, “Stereo-vision algorithm for hazard detection during
planetary landings,” in AIAA Guidance, Navigation, and Control Conference,
National Harbor, MD, Jan. 2014, doi: 10.2514/6.2014-0272. AIAA Paper 2014-
0272.

[107] L. Matthies, A. Huertas, Y. Cheng, and A. Johnson, “Landing hazard detection
with stereo vision and shadow analysis,” in AIAA Infotech@Aerospace Conference,
Rohnert Park, CA, May 2007, doi: 10.2514/6.2007-2835. AIAA Paper 2007-
2835.

[108] K. Hornik, “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks, vol. 4, no. 2, pp. 251–257, 1991, doi:
10.1016/0893-6080(91)90009-T.

[109] M. S. Nixon and A. S. Aguado, Feature Extraction and Image Processing, Academic
Press, London, 3rd ed., 2012.

[110] T. Toutin, “State-of-the-art of geometric correction of remote sensing data: A
data fusion perspective,” International Journal of Image and Data Fusion, vol. 2,
no. 1, pp. 3–35, 2011, doi: 10.1080/19479832.2010.539188.

[111] A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John
Wiley & Sons, Inc., New York, 2001.

[112] B. Schölkopf, A. Smola, and K.-R. Müller, “Nonlinear component analysis as a
kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299–1319,
1998, doi: 10.1162/089976698300017467.

[113] J. G. Daugman, “Complete discrete 2-D Gabor transforms by neural networks for
image analysis and compression,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 36, no. 7, pp. 1169–1179, Jul 1988, doi: 10.1109/29.1644.

[114] A. Saxena, S. H. Chung, and A. Y. Ng, “Learning depth from single monocular
images,” in Advances in Neural Information Processing Systems 18, pp. 1161–1168,
MIT Press, Cambridge, MA, Dec. 2006.

[115] H. B. Kekre and S. M. Gharge, “Image segmentation using extended edge operator
for mammographic images,” International Journal on Computer Science and
Engineering, vol. 2, no. 4, pp. 1086–1091, 2010.

[116] M. S. Nixon and A. S. Aguado, Feature Extraction and Image Processing, Academic
Press, London, 2nd ed., 2008.

http://dx.doi.org/10.2514/6.2006-6564
http://dx.doi.org/10.2514/6.1991-3731
http://dx.doi.org/10.1016/j.asoc.2012.01.014
http://dx.doi.org/10.2514/6.2014-0272
http://dx.doi.org/10.2514/6.2007-2835
http://dx.doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/10.1080/19479832.2010.539188
http://dx.doi.org/10.1162/089976698300017467
http://dx.doi.org/10.1109/29.1644


120 Bibliography

[117] K. Hornik, M. B. Stinchcombe, and H. L. White, “Universal approxima-
tion of an unknown mapping and its derivatives using multilayer feedfor-
ward networks,” Neural Networks, vol. 3, no. 5, pp. 551–560, 1990, doi:
10.1016/0893-6080(90)90005-6.

[118] M. M. Leshno, V. Lin, A. Pinkus, and S. Schocken, “Multilayer feedfor-
ward networks with a nonpolynomial activation function can approximate
any function,” Neural Networks, vol. 6, no. 6, pp. 861–867, 1993, doi:
10.1016/S0893-6080(05)80131-5.

[119] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning architecture,” in
Advances in Neural Information Processing Systems 2, edited by D. S. Touretzky,
pp. 524–532, Morgan-Kaufmann, San Francisco, CA, 1990.

[120] H. Yonaba, F. Anctil, and V. Fortin, “Comparing sigmoid transfer func-
tions for neural network multistep ahead streamflow forecasting,” Jour-
nal of Hydrologic Engineering, vol. 15, no. 4, pp. 275–283, 2010, doi:
10.1061/(ASCE)HE.1943-5584.0000188.

[121] S. Parkes, M. Dunstan, I. Martin, P. Mendham, and S. Mancuso, “Planet sur-
face simulation for testing vision-based autonomous planetary landers,” in 57th
International Astronautical Congress (IAC), 2006.

[122] G. Jonniaux and D. Gherardi, “Robust extraction of navigation data from images
for planetary approach and landing,” in GNC 2014: 9th International ESA
conference on Guidance, Navigation & Control Systems, Porto, Portugal, Jun.
2014.

[123] U. J. Shankar, S. Wen-Jong, T. B. Criss, and D. Adams, “Lunar terrain surface
modeling for the ALHAT program,” in IEEE Aerospace Conference, pp. 1–10,
Big Sky, MT, Mar. 2008, doi: 10.1109/AERO.2008.4526300.

[124] C. A. Cross and D. L. Fisher, “The computer simulation of lunar craters,” Monthly
Notices of the Royal Astronomical Society, vol. 139, no. 2, pp. 261–272, 1968, doi:
10.1093/mnras/139.2.261.

[125] F. Hörz, R. Grieve, G. Heiken, P. Spudis, and A. Binder, Lunar Surface Processes,
chap. 4, pp. 61–120, Cambridge University Press, Cambridge, England, 1991.

[126] S. Nissen, “Implementation of a Fast Artificial Neural Network library (FANN),”
Tech. rep., Department of Computer Science - University of Copenhagen (DIKU),
2003.

[127] G. Capuano, M. Severi, E. Della Sala, R. Ascolese, C. Facchinetti, and F. Longo,
“Compact and high-performance equipment for vision-based navigation,” in 63rd
International Astronautical Congress (IAC), Napoli, Italy, Oct. 2012.

[128] M. Dunstan and K. Hornbostel, “Image processing chip for relative navigation for
lunar landing,” in 9th International ESA Conference on Guidance, Navigation,
and Control Systems, Porto, Portugal, Jun. 2014.

[129] F. Amzajerdian, D. F. Pierrottet, G. D. Hines, L. B. Petway, and B. W. Barnes,
“Doppler lidar sensor for precision navigation in GPS-deprived environment,” Proc.
SPIE, vol. 8731, pp. 87310G–87310G–6, 2013, doi: 10.1117/12.2018359.

http://dx.doi.org/10.1016/0893-6080(90)90005-6
http://dx.doi.org/10.1016/S0893-6080(05)80131-5
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000188
http://dx.doi.org/10.1109/AERO.2008.4526300
http://dx.doi.org/10.1093/mnras/139.2.261
http://dx.doi.org/10.1117/12.2018359

	List of Figures
	List of Tables
	Glossary
	Introduction
	Autonomous Landing GNC Chain
	Previous Works
	Dissertation Overview and Main Contributions to the Field
	Bibliographic Disclaimer

	Landing Guidance
	General Approach
	Planetary Landing: Problem Formulation
	Problem Statement
	Parametric Trajectory Formulation
	Trajectory Constraints
	Optimization Problem

	Asteroid/Small Body Landing: Problem Formulation
	Problem Statement
	Parametric Trajectory Formulation
	Trajectory Constraints
	Optimization Problem

	Optimization Algorithms
	Modified Compass Search
	Differential Algebra Optimization

	Planetary Landing Simulation and Test
	MCS - Algorithm Tuning
	MCS - Objective and Constraints Functions
	DA Optimization - Algorithm Tuning
	DA Optimization - Objective and Constraints Functions
	MCS vs DA Optimization Comparison
	Landing Simulation: Nominal Navigation Errors
	Landing Simulation: Sensitivity to Navigation Errors

	Asteroid Landing Simulation and Test
	Algorithm Performance Estimation
	Landing Simulation: Exact Measures
	Landing Simulation: Navigation Errors
	Landing Simulation: Waypoint Trajectory


	Hazard Detection
	Nominal HDA Maneuver
	System Architecture
	Input and Preprocessing
	Information Extraction and ANN Input Assembly
	Artificial Neural Network and H-Map Computation
	Target Selection

	Network Training
	Artificial Images Generation: SECRET-PLAN
	Ground Truth Solution

	Performance Assessment
	Real Images
	Profiling
	Sensitivity to Uncertainties


	Conclusion
	Roadmap for Future Research

	Bibliography

