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Abstract

IN recent years, power generation industry is facing new issues given by the need to
increase productivity as well as improve flexibility of production due to dispatch-
ing priority of alternative power sources. While in the past the target of higher

productivity was reached with the development of new plants, nowadays the industry
of power generation prefers to improve the performances of existing plants. In steam
cycles for example, the efficiency of the energy conversion is optimized by increasing
the operating temperature of the steam boiler. This action has a negative impact in the
creep resistance of the boiler and its components, that were designed to operate at lower
temperatures. On the other hand, the demand for flexibility directly affects the load cy-
cles subject by the components. From this viewpoint, a large number of start-ups and
load variations lead to a fatigue damage that has a detrimental effect on the residual life
of the power plant. The interaction between the critical creep and fatigue conditions
may then results in unexpected onset of cracks or premature failure of cracked bod-
ies. In order to prevent this catastrophic scenario, periodic inspections are requested to
identify the presence of defects and characterise their entity. However, in situ inspec-
tions are not always possible. The pressurized pipes of power plants for example, may
present flaws on the inside surface. These defects are not easily detectable by modern
non-destructive testing and even when detected, the estimation of the time to failure
at the in service temperature is still a challenging topic. The development of reliable
assessment strategies to evaluate the presence and the evolution of cracks is therefore
strongly requested by the industry.
Lately, several international committees have developed codes to assess the acceptabil-
ity of flaws in metallic structures for high temperature applications. Among these codes
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it is worth mentioning EDF Energy R5 [10], British standard BS7910 [12], API 579 [5],
and FITNET [24]. These procedures, despite the large scatter in creep and creep-fatigue
resistance properties, divide materials into classes depending on their chemical compo-
sition, and tend to consider the lower resistance bound. This choice might result in
an over conservative estimation of the residual life of the component. In this context,
the availability of experimental data performed on the same batch material of the plant
components, could drastically improve the assessments without affecting reliability. In
addition to this, it is worth noting that even if standard calculation procedures have been
sufficiently tested and verified, in some critical operating conditions, however, they tend
to simplify the actual problem. Although in creep crack growth (CCG) conditions, the
assessment is successfully performed and validated on components by using the crack
tip parameter C∗, in creep-fatigue regime instead, it is treated by superposing creep and
fatigue damages rather than analyze their interactions. However, experimental tests
show that simple superposition of the phenomena is not always acceptable. From this
point of view, the transposition to components of specific crack tip parameters still not
considered by these standards, might result in a better quality of the assessments that
could, in this way, consider the interactions between creep and fatigue.
The aim of this thesis is to study the relationship between crack propagation rates and
crack tip parameters represents a material property that does not depend on the geom-
etry of the cracked body, and thus it can be used in assessment procedures to evaluate
the residual life of components operating at HT in both CCG and creep-fatigue (CFCG)
conditions. Differently from the available codes, the assessment of a pressurized pipe
subject to cyclic load was modeled by introducing the crack tip parameter of CFCG
tests rather than simply superposing the two damages separately. This parameter is in-
tended to represent the physical interactions between fatigue and creep.
To support this apporach, a high temperature (HT) resistance map for a modified P91
power plant steel produced by Tenaris has been built. The uniaxial creep data provided
by Tenaris represents a starting point for the CCG, CGCG, and fatigue crack growth
(FCG) tests performed at 600 ◦C, at different stress intensity factors, and at different
hold times (CFCG only) in order to complete the HT resistance map. The results of
these tests are used to define time-dependent crack tip parameters that govern crack
propagation rates.
After a preliminary study dedicated to the identification of an opportune uniaxial creep
model able to predict the viscous behavior at different stress conditions reliably, CCG
and CFCG tests were performed. A constant monitoring of the load-line displacement
through a high sensitivity transducer and crack size through the direct current poten-
tial drop method, was necessary to define the crack tip parameters that govern crack

II



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page III — #5 i
i

i
i

i
i

propagation. The target of CCG tests was the identification of the two time dependent
fracture mechanics parameters valid for steady-state creep and small-scale creep condi-
tions respectively: the C∗ integral and the Ct parameter. The C∗ integral derives from
Rice definition of integral J but accounts for the displacement vector rate introducing
a time dependency that is typical of creep strains. If plotted in logarithmic scale with
crack propagation rates, a linear relationship can be found representing the material
behavior at HT independent from the geometry of the cracked body. The C∗ param-
eter was also determined numerically from the load-line displacement records of 2D
and 3D finite element (FE) simulations that combined the creep model by Graham-
Walles [26] with a modified cavity growth theory by Cocks and Ashby [14] in order
to predict CCG in compact tension C(T) specimens. The numerical C∗ well correlated
with the experimental values confirming the Graham-Walles as a valid creep model for
FE simulations. In small-scale creep instead, the Ct parameter represents a measur-
able estimation of the C(t) integral that has a similar meaning of the C∗ integral but
is defined only on a limited contour close to the crack tip where the creep zone size
is still dominant with respect to the elastic-plastic zones. The Ct parameter is then a
crack driving parameter that is able to represent the transition between small-scale and
extensive creep conditions since as per definition it trends to C∗ at times higher than
the transition ones.
During creep-fatigue tests at reasonable short hold times, the condition of extensive
creep may not occur during a cycle. The crack tip parameter in this regime is rep-
resented by the (Ct)avg parameter that is defined as the integral of the Ct parameter
evaluated at the hold time and requires the acquisition of crack propagation and load-
line deflection during each cycle. Despite some scatter in the experimental data given
by the complexity of the load-line displacement measurements during the hold time,
the creep-fatigue crack growth rates exhibited a power law based trend with the (Ct)avg

parameter. The main advantage of working with crack tip parameters is that they have
been also formulated for a wide range of components, e.g. pressurized pipes with sev-
eral crack configurations, according to the results of numerical simulations and thus
they can be easily included in calculation codes. The fracture mechanisms of creep
and creep-fatigue have been also studied with detailed micrographs of the crack front
section showing that the crack propagation starts with voids concentration at the grain
boundaries that coalesce originating creep micro-cavities. Micrographs prove the ap-
plication of void growth continuum damage approaches to model CCG numerically.
A CCG assessment method was developed to model creep crack initiation (CCI) and
growth in pressurized cylinders with circumferential/axial semi-elliptical defects. It is
based on the combination of two main criteria, the two criteria diagram (2CD) and the
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σref based C∗ approach recognised and accepted by the FITNET and BS7910 proce-
dures respectively. The 2CD implemented in this analysis is strictly related to uniaxial
creep data and the stress intensity factor calculated at crack initiation, i.e. a crack prop-
agation of 0.2 mm, during CCG tests. The C∗ parameter in case of pressurized pipes
is Cref and is defined by using the concept of reference stress under the hypothesis
that steady-state creep generates a uniform stress distribution. CCI and CCG have been
calculated as an example for a P91 pipe subject to internal pressure with an axial de-
fect on the inside surface and compared with the procedure described in API 579 code
applied with the material properties of 9Cr1MoV steel according to the MPC Omega
method [42]. API 579 assessment is too conservative when compared with the combi-
nation of the 2CD and Cref models. In creep-fatigue conditions instead, the residual
life of a component depends not only on the creep properties of the material but also on
the frequency of application of the load cycle. If the pressure is maintained for a long
hold time th, the creep zone size has time to increase and dominate the cyclic plastic
zone while when hold times are short enough, this does not happen and the creep zone
is confined to the crack tip. The (Ct)avg parameter is able to characterize the crack
propagation depending on the hold time and addresses the shortage of CFCG assess-
ment procedures that actually account for the interaction mechanisms between creep
and fatigue damage. It is defined under the hypotheses of complete and no creep re-
versal due to cyclic plasticity or, thanks to the creep reversal parameter CR determined
from experimental CFCG tests, for partial creep reversal. The (Ct)avg parameter was
integrated in the R5 TDFAD approach to evaluate creep-fatigue crack initiation and
propagation. The TDFAD procedure evaluates crack initiation by superposing the ef-
fects of creep and fatigue separately. It required the uniaxial creep data, CCG initiation
data and fatigue crack growth (FCG) data in terms of Paris-Erdogan law that was col-
lected from dedicated tests. CFCG is modelled according to the (Ct)avg parameter that
was calculated for the same pipe geometry previously mentioned according to a combi-
nation of the analytical definition of the creep zone size and a numerical estimation of
C∗. As expected, at low hold times (0.1 and 1 h) the fatigue damage becomes dominant
reducing the residual life drastically. The case study at th = 10h represents the actual
operating condition of power plants and exhibited a propagation close to the pure CCG
behaviour.
With the aim to improve the quality of future assessments, the C∗ parameter of pressur-
ized cylinders was investigated by means of FE analyses with different crack configu-
rations. These simulations extend the aforementioned FE CCG analysis to large scale
components and, if integrated with an opportune model of cyclic plasticity, they could
represent the creep-fatigue interactions, one still challenging target of computational
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time dependent fracture mechanics.
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Nomenclature

Symbols

(Ct)avg Crack tip parameter in creep-fatigue conditions

(Ct)ssc Crack tip parameter valid for small-scale creep conditions only

(da/dt) Crack propagation rate

(da/dt)avg Average crack propagation rate in CFCG

2c Semi-elliptical crack shape

α Coefficient in (Ct)avg model

α′ Multiaxial stress state parameter

α′′ Semi-empirical function in the cavity growth theory

α′′0 Semi-empirical function for uniaxial conditions in the cavity growth theory

αdev Deviatoric part of the backstress tensor

α0 Multiplier in material elastic-plastic behavior

αc Backstress tensor in Chaboche model

αi Coefficient in creep load-line displacement rate model

αk Backstress component

αn Constant for creep zone size determination

β Coefficient in (Ct)avg model
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β0 Coefficient in Irwin’s theory

χ′ Material constant in Kachanov model

χ′′ Material constant in Liu-Murakami model

∆εc Creep strain variation

∆a Crack propagation variation

∆ac Creep crack propagation

∆af Fatigue crack propagation

∆acf Creep-fatigue crack growth

∆K Stress intensity factor range

∆P Load variation during fatigue cycles

∆t Time step

∆Vc Load-line deflection variation during the hold time

∆Vr Load-line deflection range between 2 adjacent fatigue cycles.

δ Normalised angle of semi-elliptical crack

∆U̇ Energy rate variation

α̇k Backstress component evolution

˙̄εp Equivalent plastic strain increment

∆̇c Creep load-line displacement rate

ω̇ Damage evolution rate

σ̇ Total stress rate

ε̇ Total strain rate

ε̇c Creep strain rate

ε̇a Axial strain rate

ε̇r Radial strain rate

ε̇ref Reference strain rate

ε̇ss Steady-state creep strain rate
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ṙc Creep zone size rate

U̇ Energy rate

u̇i Components of the displacement rate vector

U̇t Energy rate variation in transient creep

V̇c Creep load-line deflection rate

V̇ss Steady-state load line deflection rate

ẆE Strain energy density rate

η Coefficient in C∗ generic definition

ηLLD Coefficient in C∗ definition of ASTM E1457

η1 Calibration function for C∗ determination

Γ Contour around the crack tip

γ coefficient for limit stress solution

γk Coefficient in backstress components evolution

r̂c Angular-dependent function in Adefris’ creep zone size definition

λ Coefficient in creep isochronous curves

ν Poisson ratio

ω Damage

Φ Coefficient in creep load-line displacement rate model

φ Exponent of the da/dt vs. C∗ relation

φ′ Exponent for da/dt vs. Ct relation

φ′′ Coefficient in (da/dt)avg vs. (Ct)avg relation

σ Applied stress

σ0 Yield stress

σ1 Maximum principal stress

σa Axial stress

σh Hydrostatic stress
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σc0.2 0.2% proof stress from average isochronous stress-strain curves

σ0cp Cyclic yield stress

σax Axial stress

σeq Equivalent stress

σn,pl Nominal stress

σref Reference stress

σR Rupture stress

Triax Triaxial stress

θ Angle taken from the semi-elliptical crack surface

ε Total strain

ε∗f Multiaxial creep ductility

εc Creep strain

εcexp. Experimental creep strain

εcpred. Predicted creep strain

εe Elastic Strain

εp Plastic strain

ε0 Yield strain

εf Uniaxial creep ductility

εref Total reference strain

ϕ′ Material constant in Kachanov model

ϑ Angle from the crack tip

ξcp Constraint factor in cyclic plastic theory

A Norton law multiplier

a Crack length

A′ Material constant in Kachanov model

A′′ Material constant in Liu-Murakami model
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a0 Initial crack length

Ai Material constant in Graham-Walles model

aeff Effective crack length

Ai,i Coefficients for G0,1 coefficients determination

Apl Plastic are used to calculate the J integral

B C(T) specimen thickness

b Remaining ligament ahead of the crack tip

B′ Material constant in Kachanov model

B′′ Material constant in Liu-Murakami model

bc Material parameters in isotropic hardening law

Bn Net section thickness

C Paris law multiplier

c Exponent in the tT vs. σR relation

C(t) C(t)-integral in small-scale creep

C∗ Crack tip parameter in steady state creep conditions

C0 Material constant of Larson Miller model

C1 Material constant for material creep toughness determination in TDFAD ap-
proach

Ci Elastic compliance

Ck Coefficient in backstress components evolution

CR Creep reversal parameter

Ct Crack tip parameter valid for small-scale and extensive creep conditions

Cref Reference crack tip parameter in creep conditions

CODf Final crack opening displacement of JIC tests

D Multiplier of the da/dt vs. C∗ relation

d Grain size
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D′ Multiplier for da/dt vs. Ct relation

D′′ Coefficient in (da/dt)avg vs. (Ct)avg relation

D1 Material constant for material creep toughness determination in TDFAD ap-
proach

Dv Material parameter in CFCG model

DAC Damage after crack according to API RP 579

DBC Damage before crack according to API RP 579

E Elastic modulus

F Shape function

f Frequency

F I Derivative of the shape function

F0 Coefficient in C∗ definition

fc Void fraction at coalescence

fh Area fraction of voids in grain boundary

fi Initial void fraction

fz Area fraction of voids in the arbitrary boundary

Fcr(θ, n) Creep angular function

fps Coefficient for plastic collapse load determination

G Parameter used in the cavity growth theory

Gi Coefficients for stress intensity factor determination

H Multiplier in the tR vs. σR relation

HLLD Coefficient in C∗ definition of ASTM E1457

h1 Calibration function for determining C∗

h3 Calibration function for determining the load-line displacement rate V̇ss

In Parameter in stress fields formulation

J Crack tip parameter for elastic-plastic fracture mechanics
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Jel Elastic component of the J integral

JIC Critical J-Integral at initiation

K Nominal stress intensity factor

K0 Stress intensity factor at the beginning of the test

Kr Fracture thoughness parameter in TDFAD approach

KIi Stress intensity factor at initiation

Kmat Material total fracture toughness considering creep and fatigue

Kmax,0 Maximum initial stress intensity factor

Kri Fracture toughness parameter in TDFAD approach

l Half distance between voids

Lr Plastic collapse parameter in TDFAD approach

Lmaxr Limit line for plastic collapse in TDFAD approach

Lel Average element size

LLD Load-line displacement

LS Least squares

m Paris law exponent

m′ Material constant in Kachanov model

m′′ Material constant in Liu-Murakami model

m0 Exponent in material elastic-plastic behavior

Mi Coefficients for determining G2,3,4

mi Material constant in Graham-Walles model

mcp Exponent in cyclic plastic theory

Min Coefficient for plastic collapse load determination

N Number of cycles

n Norton law exponent

n′ Material constant in Kachanov model
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n′′ Material constant in Liu-Murakami model

ni Material constant in Graham-Walles model

Nbs Number of backstress

P Applied load

P0 Coefficient in numerical estimation of C∗ parameter

Pi Pipe internal pressure

pL Plastic collapse load

PR Creep reversal constant

PLM Larson Miller parameter

Q Coefficients in TDFAD approach

q1 Material constant for material creep toughness determination in TDFAD ap-
proach

q2 Material constant in Liu-Murakami model

Q∞ Material parameters in isotropic hardening law

R Load ratio

r Radial distance from the crack tip

Rσ TCD Ligament damage parameter

rc Creep zone size radius

ri Inner radius of a pipe

RK TCD crack tip damage parameter

ro Outer radius of a pipe

rcp Cyclic plastic zone size

S Deviatoric stress tensor

s Arc length of the contour Γ

Sij Deviatoric stress

T Temperature
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t Time

tA Assessment time

tc Time to coalescence of voids

th Hold time

Ti Components of the traction vector

ti Initiation time

tR Rupture time

tT Transition time from small-scale creep to extensive creep

tCCG Time of CCG propagation

texposure Total exposure time of a component at high temperature

tT Transition time from small-scale creep to steady-state creep condition

V Volume of the cylinder in the cavity growth theory

V0 Instantaneous load-line deflection

Vc Creep load-line deflection

Vt Total load-line deflection

W C(T) specimen width

w Pipe wall thickness

z Arbitrary half distance comprehended between l and w in the cavity growth
theory

Acronyms

2CD Two criteria diagram

C(T) Compact tension

CCG Creep crack growth

CCI Creep crack initiation

CFCG Creep-fatigue crack growth

CFCI Creep-fatigue crack initiation
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COD Crack opening displacement

EC Extensive creep

EPFM Elastic-plastic fracture mechanics

FCG Fatigue crack growth

FE Finite Element

HRR Hutchinson Rice and Rosengren stress fields

HT High temperature

LCF Low cycle fatigue

LEFM Linear elastic fracture mechanics

PD Potential drop

SEM scanning electron microscope

SSC Small-scale creep

TC Transition creep

TDFAD Time dependent failure assessment diagram

TDFM Time dependent fracture mechanics
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CHAPTER1
Analysis of Cracks in Creep and Creep-Fatigue

Regime

Most of the components operating in the power generation industries must deal with
critical operating conditions due to the high temperature (HT) and the sustained load
cyclically reached, due to the sequence of start-ups and shut-downs. Under these condi-
tions, creep damage can occur widespread, interesting the entire structure, or localized,
e.g. at the crack tip of geometrical defects.
In modern power plant components, the first kind of damage is unlikely to happen due
to the high attention paid in the creep resistance design, deriving from considerable
knowledge about the behavior of materials under HT. The latter, instead, is a more in-
sidious issue, dependent on the presence of defects that may derive from manufacturing
or operating at critical conditions. In this case, the cracked component might be sub-
jected to creep crack growth (CCG) and creep-fatigue crack growth (CFCG) even at
low loading conditions.
This Chapter deals with the main aspects associated to time dependent fracture mechan-
ics in creep and creep-fatigue regime of components operating at high temperature.
A review of the crack tip parameters for characterizing creep crack growth, and how
they are calculated, in extensive and small-scale creep conditions, by analytical ap-

1
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

proach and/or from the load-line displacement records is presented.
The fracture mechanics parameter valid for small-scale creep conditions are extended
to describe creep-fatigue crack growth, after appropriate integration during the hold
time of the load cycle.
The energy rate definition of these crack tip parameters is given and the extension
to pipe components operating at high temperature, as covered by several assessment
codes, is discussed.

1.1 Creep Crack Growth

Since the concepts of linear elastic fracture mechanics (LEFM) and elastic-plastic frac-
ture mechanics (EPFM) do not deal with creep strains, it is evident that a new approach
shall be followed to characterize crack growth at high temperature: the time dependent
fracture mechanics (TDFM). TDFM does not exclude LEFM and in addition to this is
strictly related to the concepts of EPFM. A component subjected to high temperature
(T exceeds the 35% of material’s melting temperature) and a sustained load presents
an irreversible creep strain εc that has the typical behavior of Fig. 1.1. It is made up by
three main zones:

• primary creep (zone I): it happens right after the loading phase and is characterized
by a fast decrease of the creep strain rate ε̇c. It lasts for a limited amount of time.

• steady-state creep (zone II): it starts after the primary creep and is characterized
by a constant creep strain rate for the material under investigation. For a large
class of materials, including the power plant steel of interest in this thesis, it is the
longest phase in a creep test. Most of the components operate under steady-state
creep conditions and for this reason most of the following crack tip parameter will
be defined under these conditions.

• tertiary creep (zone III): it is characterized by rapid increase in the creep strain rate
until rupture. The components that work at high temperatures are not designed to
operate under these critical conditions.

During steady-state creep the creep strain rate ε̇ss is mainly defined by the Norton law:

ε̇ss = Aσn (1.1)

where A and n are material constants fitted to uniaxial creep data and σ is the applied
stress. Under steady-state creep, the stress field at crack tip can be described by the
combination of three different zones as shown in Fig. 1.2:

• P. is the plastic zone characterized by the crack tip parameters K and J integral.

2
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1.1. Creep Crack Growth
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Figure 1.1: Uniaxial creep curve of P91 at 600◦C.

Figure 1.2: Stress fields at the crack tip during steady state creep.

• E. is the elastic zone if the small-scale yielding conditions are verified, i.e. the
yield radius is limited to a zone confined to the crack tip. In case this condition is
not verified, the elastic zone is completely replaced by the plastic zone.

• C. is the creep zone characterized by stress relaxation due to creep strain.

The size of the creep zone is strictly related to the creep behavior of the material as well
as the crack propagation rate. In a stationary crack, for example, the creep zone is likely
to increase becoming dominant. When the creep zone size is relatively small compared
to the elastic and plastic zones, J and K still remain the crack tip parameters to define
the crack propagation rate. However when the creep zone size is comparable to the
elastic and plastic zone sizes, J and K loses their meaning and thus new parameters
that accounts for time dependent deformation should be defined. The typical creep zone
size evolution is shown in Fig. 1.3. Three different zones are identified:

• small-scale creep (SSC) i.e. when the creep zone is confined to the crack tip and
is small compared with the elastic zone;

• transition creep (TC). The creep zone size has increased to its maximum radius;

3
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

Figure 1.3: Creep zone evolution with time.

• extensive creep (EC). The creep zone size is extended to all the remaining ligament
of the cracked component. This condition is reached when the creep strain is in
the steady-state of Fig. 1.1.

The simplest parameters that characterize crack tip stress field in CCG regime are de-
fined in EC conditions, because the steady-state creep zone is constant and, therefore,
no interactions with the elastic-plastic zones are considered. For this reason they will
be discussed earlier than the crack tip parameters under SSC and TC which are more
complicated to be defined, although under the assumptions of stationary cracks they
may also be obtained.

1.1.1 The C∗ Integral

When a specimen is subjected to high temperature and a sustained load for a sufficient
amount of time to reach the steady-state creep, the creep strain rate ε̇c can be expressed
as a function of the applied stress σ according to Eq. (1.1). This expression is analogous
in case of plastic strain εp:

εp

ε0

= α0

(
σ

σ0

)m0

(1.2)

where σ0 and ε0 are normalization values commonly taken as yield strength and strain
and α0 and m0 are material constants obtained by fitting a tensile test. Proceeding with
the analogy between the creep strain rates and the plastic strains, if ε̇c then

A =
α0ε0

σm0
0

(1.3)

n = m (1.4)
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Figure 1.4: Schematic draw of the line contour used to define C∗ integral.

With Eqs. (1.3) and (1.4) Landes and Begley [15] and at the same time Nikbin et
al. [34], modified the expression of J integral by Rice [43] by changing from the dis-
placement vector u to its derivative u̇:

C∗ =

∫
Γ

ẆEdy − Ti
(
∂u̇i
∂x

)
ds (1.5)

In Eq. (1.5) Γ is a line contour taken counter-clockwize from crack’s lower surface to
upper surface (Fig. 1.4), ẆE is the strain energy rate density, Ti is the traction vector
defined by the outward normal nj and s is the arc length of the contour. The strain
energy rate density can be related to the point stress σij:

ẆE =

∫ ε̇ij

0

σijdε̇ij (1.6)

One of the main aspects that candidate the C∗ integral as a crack tip parameter in EC
conditions is its path independence that can be demonstrated by considering the closed
line contour of Fig. 1.5. Because of a closed line contour the sum of the C∗ integrals
shall be null.

C∗Γ1
+ C∗Γ2

+ C∗Γ3
+ C∗Γ4

= 0 (1.7)

but since the line contours Γ2 and Γ4 are approximately parallel to the x axis, dy = 0 as
well as the traction vectors Ti. Thus C∗Γ1

= −C∗Γ3
demonstrating the path independence

of the C∗ integral. In the same work Landes and Begley [15] gave an energy rate
interpretation of the C∗ integral by analysing the load-line deflection of two identical
specimens that have a different initial crack length, a0 and a0 + ∆a, loaded at the same
load level P . If multiple specimen couples are loaded at different loads it is possible
to obtain the load variation as a function of the steady-state load-line deflection rate.
At a fixed V̇ss value, the energy rate or the stress power input U̇ to a cracked body is

5
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

Figure 1.5: C∗ integral path independence demonstration.

Figure 1.6: Energy rate interpretation of the C∗ integral.

represented by the area underneath the plot of Fig. 1.6. Thus during a crack propagation
from a0 to a0 + ∆a the stress input variation ∆U̇ is given by the difference between
U̇(a) and U̇(a+ ∆a). C∗ integral can be expressed equal to:

C∗ = − 1

B

dU̇

da
(1.8)

whereB is the thickness of the cracked body. Another important step to validate the C∗

integral as a crack tip parameter is to find a relationship with the crack tip stress fields.
Goldman and Hutchinson [25] found this relationship valid in EC conditions starting
from the Hutchinson Rice and Rosengren (HRR) stress fields:

σij =

(
C∗

InAr

)1/(1+n)

σ̂ij(ϑ, n) (1.9a)

ε̇ij = A

(
C∗

InAr

)n/(n+1)

ε̂ij(ϑ, n) (1.9b)

6
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1.1. Creep Crack Growth

Figure 1.7: Schematic plot of the test load as a function of the steady-state load-line deflection.

where r is the radial distance from the crack tip, ϑ is the considered angle and σ̂ij and
ε̂ij are angular functions. The expressions for In are obtained by the HRR definition
for plane stress and plane strain conditions:

In = 6.568− 0.4744n+ 0.04042n2 − 0.001262n3 P. Strain (1.10a)

In = 4.546− 0.2827n+ 0.0175n2 − 0.45816n3 P. Stress (1.10b)

After the previous considerations, the C∗ integral has been widely accepted as a crack
tip parameter to correlate creep crack growth rates in extensive creep conditions. The
next step is to discuss the methods to allow its estimation. There are three possible
ways to determine C∗:

• Experimental methods;

• Semi-empirical methods;

• Numerical solutions.

Experimental determination of C∗ integral

The experimental method for determining C∗ was studied by Landes and Begley [15].
It consists in the analysis of the load-line deflection rate V̇ss of a set of identical speci-
mens with different crack lengths a tested at different load levels for sufficient time to
reach steady-state creep conditions (Fig. 1.7). At different load-line deflection rate it
is possible to express the energy rate U̇ as a function of the crack size a as shown in
Fig. 1.8. The slope of each curve is simply related to C∗ by Eq. (1.8). Although the
C∗ obtained with this method is valid for all the specimen configurations, it requires a
great number of specimens.

7
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

Figure 1.8: Schematic plot used to calculate C∗ experimentally.

Semi-empirical method to determine C∗ integral

A semi-empirical method to determine C∗ can be derived by applying the following
relationships to Eq. (1.8):

C∗ =
1

B

∫ V̇ss

0

(
∂P

∂a

)
V̇ss

dV̇ss (1.11)

C∗ =
1

B

∫ P

0

(
∂V̇ss
∂a

)
P

dP (1.12)

During EC the load-line displacement rate V̇ss is related to the load P according to Eq.
(1.13):

V̇ss = φ
( a
W
, n
)
P n (1.13)

Where W is the width of the cracked body and n is the exponent of the Norton power
law. Combining Eqts (1.13) and (1.11)) the C∗ can now be expressed for known ge-
ometries. In Eq. (1.14) the C∗ solution for a compact tension (CT) specimen with
a/W > 0.40 is reported:

C∗ =
PV̇ss

B(W − a)
φ(a/W, n)

n

n+ 1
(1.14)

where φ(a/W, n) = (2 + .522(1− a/W )) and (W − a) is the length of the remaining
ligament ahead of the crack tip. Several expressions of φ(a/W, n) function exists for a
wide range of testing specimen geometries.

Numerical solution to determine C∗ integral

A possible way to calculate the C∗ parameter is through finite element (FE) analy-
ses. This approach starts from the numerical estimation of J integral according to Eq.
(1.15):

J = α0σ0ε0(W − a)h1(a/W,m0)

(
P

BP0

)m0+1

(1.15)

8
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1.1. Creep Crack Growth

where h1 is a calibration function fitted to numerical simulations that for CT specimens
has the values reported in Tab. 2.12, and P0 depends on another calibration function η1:

P0 = 1.455η1(W − a)σ0 P. Strain

P0 = 1.071η1(W − a)σ0 P. Stress
(1.16)

with:

η1 =

[(
2a

W − a

)2

+ 2

(
2a

W − a

)
+ 2

]1/2

−
[(

2a

W − a

)
+ 1

]
(1.17)

By performing a substitution according to Eq. (1.3) and (1.4), C∗ parameter as well as
steady-state load-line displacement rate V̇ss can be determined according to the follow-
ing equations:

C∗ = A(W − a)h1

( a
W
, n
)( P

1.455η1B(W − a)

)n+1

(1.18a)

V̇ss = Aah3

( a
W
, n
)( P

1.455η1B(W − a)

)n
(1.18b)

where h3 is an analogous of h1.

Crack Growth Rate - C∗ correlation

Once that C∗ is determined by means of different methods, different authors, e.g. Sax-
ena [51], demonstrated its ability to represent the creep crack propagation in EC condi-
tions in different specimen geometries and components validating once again its use as
a crack tip parameter able to correlate the crack propagation rate in creep regime as:

da

dt
= D · (C∗)φ (1.19)

with D and φ material constants.

1.1.2 Crack tip parameters in small-scale/transition creep

The study of CCG under the hypothesis of extensive creep conditions is justified by the
fact that at high temperatures, the longest period of time is spent in steady-state creep.
However a residual life estimation of a component, performed by just considering EC
conditions, might be non-conservative because the stress at the crack tip may be signif-
icantly lower then under SSC/TC conditions. For this reason, the crack tip stress fields
defined in Eq. (1.9a) and b) may be updated for SSC/TC conditions, by considering
an elastic-viscous behaviour of the material under power-law creep according to Eq.
(1.20):

ε̇ =
σ̇

E
+ Aσn (1.20)

9
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where ε̇ and σ̇ are the total strain rate and stress of the material. Equation (1.20) can be
easily integrated in the time t obtaining the total strain ε:

ε =
σ(t)

E
+

∫ t

0

A(σ(τ))ndτ (1.21)

Riedel and Rice [29] rewrote Eq. (1.21) in order to find a unique relationship between
stress and strain:

ε =
σ(t)

E
+ Af(t)(σ(t))n (1.22)

where E is the elastic modulus and

f(t) =

∫ t

0

(
σ(τ)

σ(t)

)n
dτ (1.23)

at a constant value of t Eq. (1.22) becomes:

ε =
σ

E
+ Af(t)σn (1.24)

That is written in the same form of the Ramberg-Osgood relation in elastic-plastic ma-
terial properties (ε = σ/E+α0(σ/E)m0). Stress σ is then uniquely related to the strain
ε so that J is path independent. Thus HRR stress fields of Eq. (1.9a) and b) can be
rewritten:

σij = σ0

(
J

α0σ0ε0Imr

) 1
1+m0

σ̂ij(ϑ,m0) =

[
J

InAf(t)r

] 1
n+1

σ̂ij(ϑ, n) (1.25a)

εij = α0ε0

(
J

α0σ0ε0Imr

) m0
1+m0

ε̂ij(ϑ,m0) = Af(t)

[
J

InAf(t)r

] n
n+1

ε̂ij(ϑ, n)

(1.25b)

With Im = In. Since σij ∝ [1/f(t)]1/(n+1) Eq. (1.23) becomes:

f(t) =

∫ t

0

[
f(t)

f(τ)

] n
n+1

dτ (1.26)

By trial and error it has been found that the solution of this integral is:

f(t) = (n+ 1)t (1.27)

By substituting the solution of Eq. (1.27) into Eq. (1.25a) and considered that in small-
scale yielding conditions J integral is related to the stress intensity factor K by Eq.
(1.28):

J =
K2

E
(1− ν2) (1.28)

the HRR stress fields are rewritten according to:

σij =

[
K2(1− ν2)

EInA(n+ 1)tr

] 1
n+1

σ̂ij(ϑ, n) (1.29a)

εij =

[
K2(1− ν2)

EInA(n+ 1)tr

] n
n+1

A(n+ 1)tε̂ij(ϑ, n) (1.29b)

10
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If Eq. (1.29a) is derived it is possible to express the strain rate ε̇ij:

ε̇ij = A

[
K2(1− ν2)

EInA(n+ 1)tr

] n
n+1

ε̂ij (1.30)

All the equations that describe the stress fields in SSC conditions depend on time and
on the extension of the creep zone size r which from now on will be identified as rc.
Equation (1.29a),1.29b), and (1.30) are valid only until the transition, from SSC/TC to
EC conditions, occurs at the crack tip.

Estimation of the creep zone size rc

Riedel and Rice [29] proposed a definition of the creep zone size as the radius from
the crack tip where creep strain εc is equal to the elastic strain εe. Through numerical
simulations they have characterized the creep zone size as a function of proper angular
functions Fcr defined in plane stress and strain conditions for different values of the
Power law exponent n:

rc(ϑ, n) =
1

2π

(
K

E

)2 [
(n+ 1)InE

nAt

2π(1− ν2)

] 2
n−1

Fcr(ϑ, n) (1.31)

that can be rewritten:

rc(ϑ, n) =
1

2π

[
(n+ 1)2

2nαn+1
n

] 2
n−1

K2(EAt)
2

n−1Fcr(ϑ, n) (1.32)

where αn+1
n is a coefficient that for 3 < n < 13 is equal to 0.69. The angular functions

Fcr are shown for different values of n and ϑ in Fig. 1.9 as continuous lines. Adefris
et al. [40] gave an alternative definition of the creep zone size as the radius where the
creep strains εc are equal to 0.2% changing Eq. (1.31) to:

rc,0.2%(ϑ, n) =

[
(n+ 1)A

.002

]n+1
n (1− ν2)K2

(n+ 1)AEIn
t

1
n · r̂c(ϑ, n) (1.33)

where r̂c is an angular-dependent function. This expression of the creep zone size is
more stable with respect to the one of Eq. (1.31) when n = 1. In this condition
Eq.(1.33) shows a linear growth of the creep zone size with time. A transition time tT
can now be defined by equating the equations that define the stress fields in SSC/TC
(Eq. 1.29a) and in EC (Eq. 1.9a):

tT =
K2(1− ν2)

E(n+ 1)C∗
(1.34)

11
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Figure 1.9: Angular functions Fcr to determine the creep zone size according to Riedel and Rice [29]:

upper half = plane strain, lower half = plane stress

C(t) Integral

Bassani and McClintock [7] demonstrated that in SSC the crack tip stress fields can be
related to the C(t) integral calculated at a contour line close to the crack tip Γ:

C(t) =

∫
Γ→0

ẆEdy − Ti
∂u̇i
∂x

ds (1.35)

Equation (1.35) is similar to the C∗ integral definition of Eq. (1.5), with the difference
that is calculated close to the crack tip where the creep is dominant. In their work
Bassani and McClintock [7] found a relationship between the C(t) integral and the
HRR stress fields:

σij =

(
C(t)

AInr

) 1
n+1

σ̂ij (1.36a)

ε̇ij = A

(
C(t)

AInr

) n
n+1

ε̂ij (1.36b)

If the stress fields of Eq. (1.29a) and (1.36a) it is possible to demonstrate that when
r → 0:

K2(1− ν2)

E(n+ 1)t
≈ C(t) (1.37)

12
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Thus C(t) shall become equal to C∗ when EC conditions are reached becoming path
independent. This consideration in summarized in Eq. (1.38):

C(t) ≈ K2(1− ν2)

E(n+ 1)t
+ C∗ (1.38)

that combined with the definition of transition time tT (Eq. 1.34) becomes:

C(t) =

(
1 +

tT
t

)
C∗ (1.39)

C(t) integral is then valid for the entire range of creep deformation covering SSC,
TC, and EC. Although, in SSC, TC, and EC regimes, the C(t) definition as a contour
integral at a contour line Γ → 0 represents a limitation with respect to the practical
application of this parameter. In fact, with the definition for Γ→ 0, it is not possible to
measure this parameter on the basis of the load-line displacement under SSC and TC
and, as a consequence, theC(t) parameter can not be used as crack tip parameter able to
correlate creep crack growth in SSC and TC regime. In addition to this, FE simulations
proved that Eq. (1.38) is very sensitive to the creep constants A and n affecting the
reliability of its estimation as proved by Saxena [50] (Fig. 1.10).

Figure 1.10: Comparison between the analytical estimation of C(t) according to Eq. (1.38) and the

numerical and experimental estimation of an alternative crack tip parameter Ct [50].

Ct parameter

To overcome this difficulty, Saxena [49] proposed a new crack tip parameter, Ct that
also tends to C∗ in EC condition as C(t) parameter, moreover, according to its defini-
tion, it is measurable at the load-line displacement, also in SSC and TC regimes. Ct
parameter is defined under the hypotheses that no crack extension occurs and that a
linear elastic response occurs at the load application. If several pairs of identical spec-
imens with different crack sizes (a and a + ∆a) are tested at different load conditions

13
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Figure 1.11: Creep load-line displacement of coupled specimens with different crack sizes loaded at

different stress levels.

Figure 1.12: Schematic draw of the meaning of the energy rate variation in transient creep.

it is possible to analyze the change in the creep load-line deflection Vc as shown in Fig.
1.11. If a time t in SSC is considered (i.e. t/tT << 1), the difference of the areas under
the plot of the applied stress as the function of creep load-line deflection rate V̇c for the
two crack lengths of Fig. 1.12 represents the instantaneous stress power supplied to
two cracked bodies tested with the same creep strain histories ∆U̇t. The Ct parameter
can be related to the energy rate variation according to Eq. (1.40):

Ct = − 1

B

∂U̇t(a, t, V̇c)

∂a
(1.40)

This equation represents the energy rate interpretation of the crack tip parameter Ct,
where the time dependency can be observed.
In order to be able to determine Ct experimentally a relationship between load P , creep
load-line deflection Vc, crack size a, and time t is needed. Irwin stated that because of
creep strain the initial crack lenght a0 shall be corrected to the effective crack length
aeff :

aeff = a0 + β0rc (1.41)

14
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where rc is the creep zone size of Eq. (1.31) and β0 is a scaling factor that in creep
regime is equal to 1/3 if ϑ = 90◦. The creep load-line deflection Vc is represented by
the difference between the total load-line deflection Vt and the instantaneous deflection
V0 given by the application of the load. It can be expressed as a function of the elastic
compliance Ci of the cracked body:

Vc = Vt − V0 = P
dCi
da

β0rc (1.42)

The elastic compliance is then related to the applied stress intensity factor K:

K

P
BW 1/2 = F

( a
W

)
=

(
1

2

d(CiBE)

d(a/W )

)1/2

(1.43)

where F is the shape function that depends on the crack size and the cracked body
geometry. Equation (1.43) can be rewritten:

dCi
da

=
2BK2

EP 2
(1− ν2) (1.44)

By substituting Eq. (1.31) and (1.44) into Eq. (1.42) and differentiating it is possible to
define the creep load-line deflection rate V̇c:

V̇c =
4αi(1− ν2)

E(n− 1)
β0Fcr

(
P

B

)3
F 4

W 2
(EA)

2
n−1 · t−

n−3
n−1 (1.45)

where

αi =
1

2π

(
(n+ 1)2

2nαn+1
n

) 2
n−1

(1.46)

and the shape function F is expressed as:

F
( a
W

)
=
K

P
BW 1/2 (1.47)

Equation (1.45) can be rewritten as:

V̇c = Φ
( a
W
, t
)(P

B

)3

(1.48)

where

Φ =
4αi(1− ν2)

E(n− 1)
β0Fcr

F 4

W
(EA)

2
n−1 t−

n−3
n−1 (1.49)

Thanks to the load-line deflection rate definition of Eq. (1.48) it is now possible to
update Eq. (1.40) in SSC and evaluate the crack tip parameter (Ct)ssc through some
simple substitutions:

(Ct)ssc = − 1
B
∂U̇t

∂a
= 1

Bda
B

[∫ V̇c
0

(
V̇c
Φ

)1/3

dV̇c −
∫ V̇c

0

(
V̇c

Φ+ ∂Φ
∂a
da

)1/3

dV̇c

]
= 1

da

∫ V̇c
0

[
1−

(
1 + 1

Φ
∂Φ
∂a
da
)−1/3

] (
V̇c
Φ

)1/3

dV̇c

= 1
da

∫ V̇c
0

1
3Φ

∂Φ
∂a
da
(
V̇c
Φ

)1/3

dV̇c

= 1
3Φ

∂Φ
∂a

3
4
(V̇c)

4/3
(

1
Φ

)1/3

(1.50)
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Equation (1.48) can be rearranged as following:
1
Φ

= 1
V̇c

(
P
B

)3(
1
Φ

)1/3
=
(

1
V̇c

)1/3 (
P
B

) (1.51)

and replaced in Eq. (1.50):

(Ct)ssc =
PV̇c
4B

1

Φ

∂Φ

∂a
(1.52)

The term 1/Φ · ∂Φ/∂a is calculated by accounting that:

Φ = Φ
( a
W

)
→ ∂Φ

∂a
=

1

W

∂Φ

∂
(
a
W

) (1.53)

Thus it is possible to evaluate 1/Φ · ∂Φ/∂a:

∂Φ

∂a
=

4

W

F ′

F
(1.54)

with F ′ = dF/d(a/W ), and substitute it to Eq. (1.52):

(Ct)ssc =
PV̇c
BW

F ′

F
(1.55)

It is now possible to express the crack tip parameter (Ct)ssc as a function of the creep
zone size by deriving and substituting Eq. (1.42) into Eq. (1.55)

(Ct)ssc =
P 2

BW

F ′

F

dCi
da

β0ṙc =
2K2(1− ν2)

EW
β0
F ′

F
ṙc (1.56)

or by relating it to Eq. (1.45):

(Ct)ssc = P
BW

F ′

F
4αi(1−ν2)
E(n−1)

β0Fcr
(
P
B

)3 F 4

W 2 (EA)
2

n−1 t−
n−3
n−1

= 4αi(1−ν2)
E(n−1)

β0Fcr
K4

W
(EA)

2
n−1 F

′

F
t−

n−3
n−1

(1.57)

Equation (1.56) relates the (Ct)ssc parameter to the creep zone size evolution ṙc val-
idating its use as a crack tip parameter. Equation (1.57) instead suggests that (Ct)ssc

can be determined for every specimen geometry for which a stress intensity factor K is
defined. The (Ct)ssc parameter is valid just for SSC regime although Bassani et al. [8]
and Saxena [48] extended it to EC conditions. In this case the crack tip parameter is Ct
and at high times t tends to C∗:

Ct = (Ct)ssc + C∗ (1.58)

By recognizing that:
V̇c ≈ V̇ssc + V̇ss (1.59)

and that the generic expression of C∗ based on Eq. (1.14) is updated depending on the
term η that differs for every geometry:

C∗ =
PV̇ss
BW

η
( a
W
, n
)

(1.60)
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Figure 1.13: Crack propagation rate as a function of the Ct parameter for large C(T) specimens [3].

Saxena [47] rewrote Eq. (1.58)

Ct = (Ct)ssc + C∗ =
PV̇c
BW

F ′

F
− C∗

(
F ′

ηF
− 1

)
(1.61)

This last expression of Ct covers every range of creep conditions from SSC to EC
as demonstrated by Saxena et al. [3] that experimentally calculated the Ct parameter
in large size C(T) specimens. Using large specimens increases the crack propagation
that happens during SSC and EC conditions. Figure 1.13 shows the trend of crack
propagation rate that slows down at the beginning of the tests in full SSC conditions
and starts to increase when approaching extensive creep conditions.

The Ct parameter is able to estimate the trend of crack propagation rates in both
conditions validating once again its use as a crack tip parameter for CCG regime able
to correlate the creep crack growth rate in SSC and TC regimes, as well as in EC regime
according to:

da

dt
= D′Cφ′

t (1.62)

with D′ and φ′ constants of the material.

1.2 Creep-Fatigue Crack Growth

Until here the most diffused CCG parameters have been presented and analyzed demon-
strating their correlation to the crack growth rates for known geometries, like testing
specimens, as well as complex geometries, like components. These parameters are
able to estimate the residual life of a component that is subject to high temperature
and a sustained load for a long period of time. However in power generation industry,
dispatching priorities demands for higher flexibility that, in plant components context
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results in critical operating conditions. Repetitive start-ups cause a cyclic load, intro-
ducing a fatigue damage which cannot be described by the crack tip parameters of Sec.
1.1. In fact under these conditions each cycle consists in a rise phase, where the load
is applied, followed by an hold phase (hold time th), with sustained load, and a decay
phase, where the load is brought to its minimum. The crack tip is characterized by elas-
tic, plastic, creep, and cyclic plastic zones (Fig. 1.14) that change with time at every
fatigue cycle causing creep-fatigue crack growth (CFCG). The plastic zone is expected
to grow together with crack propagation due to stress increasing. The creep zone is also
expected to increase together with time. The cyclic plastic zone is instead expected to
stabilize, after an amount of fatigue cycles. The size and the evolution of these zones
depends on the material creep and cyclic plasticity resistance. It might be worth noting

Figure 1.14: Numerical estimation of the elastic, plastic, creep, and cyclic plastic zones during the

third cycle of a creep-fatigue test [50].

that during a CFCG test three main situations may verify:

• The creep strain is not reversed by the fatigue cycle. This situation corresponds to
Fig. 1.15a) where the creep zone is more relevant than the cyclic plastic zone. At
the beginning of a new hold cycle the Ct parameter starts from the value reached
at the end of the previous hold cycle demonstrating that creep strain is not reversed
by the fatigue cycle. This is typical of materials with high cyclic yield strength or
tests at very long hold times th.
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1.2. Creep-Fatigue Crack Growth

• The creep strain in completely reversed by the fatigue cycle. This situation corre-
sponds to Fig. 1.15b) where the cyclic plastic zone is dominant with respect to the
creep zone. In this case at the beginning of each new hold cycle the Ct parameter
starts from the value that was observed during the beginning of the first hold cycle
showing that fatigue cycles are reversing the creep strain.

• Creep zone and cyclic plastic zone are comparable and therefore creep strain may
be partially reversed during the unloading-reloading cycle. As expected, most of
the materials operate under this condition.

Figure 1.15: Schematic diagram of the interactions between the creep zone and the cyclic plastic zone

in case of no creep reversal a) and complete creep reversal b)

1.2.1 Crack tip parameter in CFCG regime

To characterize the crack growth in the creep-fatigue regime, Saxena and Gieseke [4]
suggested to use an average value of the crack tip parameter Ct during a N th fatigue
cycle defining the (Ct)avg parameter:

(Ct)avg =
1

th

∫ t(N)+th

t(N)

Ctdt (1.63)
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

that accounts for the relevant phenomenon, that is the interaction between the creep
damage accumulation at the crack tip and the subsequent effect of the fatigue cycle.
Equation (1.63) can be rewritten, for the two ideal behaviors of the material named no
creep reversal and complete creep reversal, as Eq. (1.64a and b) respectively:

(Ct)avg =
1

th

∫ N(th)

(N−1)th

Ct dt (1.64a)

(Ct)avg =
1

th

∫ th

0

Ct dt (1.64b)

(Ct)avg estimation in specimens

Yoon et al. [36] adapted the Ct definition of Eq. (1.61) to calculate (Ct)avg in C(T)
specimens:

(Ct)avg =
∆P∆Vc
BWth

F ′

F
− C∗

(
F ′

Fη
− 1

)
(1.65)

where ∆P and ∆Vc are the load and load-line deflection range during the cycle.
Thanks to Eq. (1.65) the (Ct)avg crack tip parameter can be easily determined through
the load-line deflection in experimental creep-fatigue tests, providing a creep-fatigue
crack growth rate for the tested material as:(

da

dt

)
avg

= D′′(Ct)
φ′′

avg (1.66)

where D′′ and φ′′ are material constants.

(Ct)avg analytical estimation

Under the hypotheses of instantaneous cyclic plasticity and secondary creep behavior
and in plane strain conditions it is also possible an analytical evaluation of the (Ct)avg

parameter for both conditions of complete creep reversal and no creep reversal. For
complete creep reversal, Saxena and Gieseke [4] combined Eq. (1.64) with the Ct
definition of Eq. (1.57) and (1.58):

(Ct)avg = 1
th

∫ th
0

([
4αi(1−ν2)
E(n−1)

β0Fcr
∆K4

W
(EA)

2
n−1

(
F ′

F

)
t−

n−3
n−1

]
+ C∗

)
dt

= 1
th

4αi(1−ν2)
E

β0Fcr
∆K4

W
(EA)

2
n−1

(
F ′

F

) [∫ th
0

1
n−1

t−
n−3
n−1dt

]
+ C∗

= 1
th

4αi(1−ν2)
E

β0Fcr
∆K4

W
(EA)

2
n−1

(
F ′

F

) ∣∣∣∣ 1
n−1

t
1−n−3

n−1

1−n−3
n−1

∣∣∣∣th
0

+ C∗

= 1
th

4αi(1−ν2)
E

β0Fcr
∆K4

W
(EA)

2
n−1

(
F ′

F

)
1
2
tht
−n−3

n−1

h + C∗

= 2αiβ0(1−ν2)
E

Fcr
∆K4

W
F ′

F
(EA)

2
n−1 t

−n−3
n−1

h + C∗

(1.67)

where ∆K is the stress intensity factor range between a cycle.
When the fatigue cycle is not enough to reverse the creep strain (Ct)avg can be evaluated
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1.2. Creep-Fatigue Crack Growth

with the same expression of Eq. (1.57) and (1.58) with the only difference that the time
t is replaced by the effective time of permanence at the maximum load Nth:

(Ct)avg =
4αi(1− ν2)

E(n− 1)
β0Fcr

K4

W
(EA)

2
n−1

(
F ′

F

)
(Nth)

−n−3
n−1 + C∗ (1.68)

In his PhD thesis, Grover [27] found a correlation between the quantity of reversed
creep and the creep reversal parameter CR defined as the ratio between the load-line
deflection variation calculated at the end of one hold cycle and the beginning of the
next hold cycle ∆Vr, and the the load-line deflection measured during hold time ∆Vc

with reference to Fig. 1.16:

CR =
∆Vr
∆Vc

(1.69)

If CR = 1, ∆Vr = ∆Vc representing the condition of complete creep reversal while if

Figure 1.16: Schematic diagram of the creep reversal parameter CR.

CR = 0, ∆Vr = 0 representing the condition of no creep reversal. Since with the creep
reversal parameter an intermediate situation between Eq. (1.67) and (1.68) is analyzed,
(Ct)avg was redefined according to:

(Ct)avg = [1− CR]
1

th

∫ Nth

(N−1)th

Ctdt+ CR
1

th

∫ th

0

Ctdt (1.70)

That if substituted to Eq. (1.57) and (1.58) becomes:

(Ct)avg =
2αiβ0(1− ν2)

EW
Fcr∆K

4F
′

F
(EA)

2
n−1[

CR +
2(1− CR)N−

n−3
n−1

n− 1

]
t
−n−3

n−1

h + C∗
(1.71)

The creep reversal parameter CR can also be determined analytically by observing that
the load-line deflection variations ∆Vr and ∆Vc are related to the size of the cyclic
plastic zone rcp and the creep zone rc respectively. CR can now be expressed as:

CR = PR
rcp
rc

(1.72)
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

where rc is defined according to Adefris [40] Eq. (1.33), PR is the creep reversal
constant that can be fitted from experimental values of CR and rcp is defined as:

rcp =
1

ξcp

mcp + 1

mcp − 1

(
(1−R)K

2σ0cp

)2

(1.73)

where mcp is the exponent of the cyclic plastic law, σ0cp is the cyclic plastic yield
strength and ξcp is a coefficient that has a value of 2π in plane stress and 6φ in plane
strain. By combining Eq. (1.72) with Eq. (1.33) and (1.73) and by observing that
σ0cp/0.002 = E, CR can be rewritten as:

CR = PR
1

ξcpr̂c

mcp + 1

mcp − 1

.002
n+1
n E

[(n+ 1)ANth]
1/n

In(1−R)2

4σ2
0cp(1− ν2)

(1.74)

The analytical calculation of CR joint with the analytical calculation of (Ct)avg param-
eter (Eq. (1.71)) allows the application of the experimental creep-fatigue correlation
given in Eq. (1.66) to assess CFCG in components.

1.3 Creep-Fatigue Crack Growth Rate for Components

The early approaches to model CFCG in full-scale components were mainly based on
the simple superposition of the creep damage, characterized by the C∗ parameter, and
the fatigue damage [32]:

da

dN
=

(
da

dN

)
cycle

+ thD(C∗)φ (1.75)

where (da/dN)cycle is the crack propagation associated to fatigue, that is defined ac-
cording to the Paris-Erdogan law [41]:(

da

dN

)
cycle

= C∆Km (1.76)

with C and m material constants obtained from FCG tests at constant load. The lim-
itation of this approach is given by the fact that the C∗ parameter is a stabilized value
of the C(t) integral, under extensive creep conditions, when the creep zone size is
dominant with respect to the elastic and plastic zones resulting in a lack of interaction
effects between the creep and fatigue damages. However, as previously discussed, dur-
ing short hold times, this particular condition may not occur. To overcome this issue
Viswanathan [52] by introducing a non-linear power law dependence of crack growth
rate on hold time:

da

dN
=

(
da

dN

)
cycle

+DvK
2φt1−φh +D(C∗)φth (1.77)
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1.4. Summary

where Dv is a material constant obtained from experimental CFCG tests. Although this
approach is expected to be more accurate than the one of Eq. (1.75), it does include any
contribute that accounts for the evolution of the creep zone size.
To address this problem, a state-of-the-art approach to predict CFCG rate in compo-
nents provides a damage partitioning analysis where the crack propagation per cycle is
split between fatigue and time-dependent damage according to Eq. (1.78):

da

dN
=

(
da

dN

)
cycle

+

(
da

dN

)
time

(1.78)

In this Equation, the crack propagation due to CCG is modeled instead through the
(Ct)avg parameter that thanks to the power law of Eq. (1.66) is able to describe the av-
erage crack propagation rate (da/dt)avg during a cycle. Equation (1.78) can be rewritten
by integrating the creep contribution on the hold time th.

da

dN
= C∆Km +

∫ th

0

D′′ [(Ct)avg]
φ′′ dt (1.79)

With this equation the crack propagation per cycle is expressed as a superposition be-
tween a pure fatigue contribution and an additional contribution that includes the effects
of creep and creep-fatigue interaction. The interaction between creep and fatigue can
be modeled under the hypotheses of complete and no creep reversal or, as will be pro-
posed in Ch. 3, under the hypothesis of partial creep reversal by means of the creep
reversal parameter CR experimentally determined from CFCG tests on C(T) specimens
and used for (Ct)avg calculation.

1.4 Summary

This Chapter deals with a comprehensive review of the crack tip parameters that de-
scribe CCG and CFCG in testing specimens and components. After a brief introduc-
tion about the creep damage in cracked components, the EPFM concept of J integral is
extended to account for time dependent creep strains defining the new integral C∗ valid
for extensive creep conditions. The C∗ integral is path independent, has a strain energy
interpretation and is related to the HRR stress fields. It is easily estimated with a semi-
empirical method that analyze the load-line deflection records of testing specimens. It
can also be determined for complex geometries by means of numerical simulations and
has been widely accepted as a crack tip parameter to correlate the creep crack growth
rate in EC conditions.
In SSC and TC conditions, Bassani and McClintock [7] introduced the C(t) integral
with an analogous expression of C∗ evaluated at a contour strictly close to the crack
tip but, unfortunately, it can not be estimated at the load-line and it can not be used to
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Chapter 1. Analysis of Cracks in Creep and Creep-Fatigue Regime

correlate creep crack growth rates in SSC conditions. Saxena [49], solved this issue by
defining a new crack tip parameter Ct that, by definition, tends to C∗ in EC conditions
and, in addition to this, is measurable at the load-line also in SSC and TC conditions.
With this prospective, the crack tip parameter Ct is able to correlate creep crack growth
rates in every creep conditions. In case of complex geometries, an analytical definition
of the Ct is given by relating the load-line deflection rate V̇c to the rate of expansion of
the creep zone radius rc.
In CFCG conditions at sufficient short hold times, the steady-state creep may never be
reached. Since the creep zone size is in continuous competition with the cyclic plastic
zone, by integrating the Ct parameter during the hold time th, it is possible to deter-
mine a new crack tip parameter (Ct)avg that governs the average crack propagation
rate during the fatigue cycles. (Ct)avg accounts for the interaction given by the creep
damage accumulation at the crack tip and the fatigue damage, correlating the average
crack propagation rates. As perCt parameter, also (Ct)avg can be analytically expressed
under the hypotheses of complete or no reverse of the creep strains due to cyclic plas-
ticity. In case of partial reverse of creep strains, CFCG tests allow the estimation of a
creep reversal parameter CR defined by Grover [27] that accounts for the interactions
between the creep and the cyclic plastic zones leading to a new analytical estimation of
the (Ct)avg based on this material property. Since the analytical calculation of the creep
reversal parameter CR allows the estimation of a more accurate correlation between the
average crack growth rate and the (Ct)avg parameter, the formulations to assess CFCG
in components have been also reported.
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CHAPTER2
Material Properties and Experimental Work

As discussed in Ch. 1 during CCG and CFCG regime, the crack tip parameters are
strictly dependent on the elastic, plastic, creep, and cyclic plastic zones and their evo-
lution with time.
This Chapter starts with a description of the P91 steel investigated material, and its
elastic-plastic and creep properties. Afterwards, the extended experimental campaign
of CCG and CFCG tests performed to investigate the crack propagation rate correlation
with crack tip parameters in creep and creep-fatigue conditions, is reported.
Since the state-of-the-art approach to model CFCG in components is given by superpo-
sition of fatigue and time dependent damage, FCG tests were necessary to identify the
Paris-Erdogan law coefficients that describe high temperature crack growth associated
to fatigue only.
This chapter ends with the application and comparison of different methods to evaluate
the JIC parameter in high temperature fracture toughness tests. These tests have been
necessary to investigate the resistance of P91 at high temperature when the load level
is high enough to cause plastic collapse prior to creep damage.
All the tests presented in this work are based on different specimen geometries that
were directly extracted from an actual pipe reserved for the occasion.
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Chapter 2. Material Properties and Experimental Work

2.1 P91 grade steel

The material analyzed in this work is a single batch of modified P91 grade steel man-
ufactured by Tenaris for applications at the maximum temperature of 600 ◦C. P91 is
a standard material for power industry due to the combination of its good mechanical
and creep resistance properties that make it a good candidate in power generation appli-
cations, where high temperatures and stresses represent a critical operating condition.
Another important aspect of P91 is that its resistance characteristics are maintained
over time because of a high oxidation temperature limit that allows the design of lower
thickness components. The typical chemical composition of a P91 steel is reported in
Tab. 2.1. Its high Chromium content (between 8 and 9.5 %) increases the resistance

Table 2.1: P91 standard chemical composition in % [1].

C Si Mn P S Al Cr Mo Ni V N others

0.08-0.12 0.2-0.5 0.3-0.6 ≤0.02 ≤0.01 ≤0.04 8-9.5 0.85-1.05 ≤0.4 0.18-0.25 0.03-0.07 Nb 0.06-0.1

to static loads and oxidation while the presence of Molybdenum increases the creep
resistance. A small percentage of Nickel and Manganese is included in the alloy to
improve its hardenability. Very important in P91 production is the thermal treatments
of normalizing and tempering that significantly affect the microstructure that is mainly
characterized by martensite. The analyzed material is subject to a specific thermal
treatment that was designed by Tenaris in order to increase the creep resistance without
compromising its high temperature elastic-plastic properties. The heat treatment, and
the resulting microstructure, are not reported in the present thesis for confidentiality
agreement.
High temperature tensile tests at 600 ◦C have been performed by Tenaris according to
the applicable ASTM E8 standard [20]. The geometry used in this test is shown in Fig.
2.1. The gauge lenght is 50 mm and the diameter is 10 mm. The stress-strain curve
is reported in Fig. 2.2 together with the elastic modulus E and the yield strength σ0.
The viscous behavior was characterized by means of uniaxial creep tests performed at
600 ◦C by Tenaris according to the ASTM E139 standard [16], on the same batch of
material used in this thesis for the experimental campaign. The specimen geometry is
a cylindrical specimen, similar to the one adopted for tensile tests (2.1) with the excep-
tion of a couple of ribs for extensomenter accomodation. The matrix of the uniaxial
creep tests is reported in Tab. 2.2 together with the rupture times tR and the minimum
creep strain rates ε̇ss. Uniaxial creep curves at high and low stresses are shown in Fig.
2.3 (a) and (b) respectively. From the creep strain rate curves of Fig. 2.4 (a) and (b) it
was possible to analyze the minimum creep strain rate during steady-state ε̇ss as a func-
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2.1. P91 grade steel

Figure 2.1: Schematic draw of the cylindrical specimen used in tensile tests.
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Figure 2.2: Stress vs. strain curve for P91 at 600 ◦C.

Table 2.2: Creep test matrix of P91 at 600 ◦C.

σ [MPa] tR [h] ε̇ss [1/h]

90 104100 1.727E-7

100 66410 3.819E-7

110 38500 5.457E-7

120 18380 1.132E-6

130 5238 4.946E-6

160 635 6.264E-5

tion of the applied stress σ. The creep tests of Fig. 2.4 (a) and (b) has been combined
with an additional dataset provided by Tenaris, related to different batches of the same
P91 material, in order to fit the Norton law of Eq. (1.1) by means of a least squares
minimization algorithm (Fig. 2.5). The pairs of A and n constants determined at low
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Figure 2.3: Uniaxial creep curves of P91 at 600 ◦C.
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Figure 2.4: Creep strain rate evolution with time of P91 at 600 ◦C.

Table 2.3: Material constants for P91 at 600 ◦C.

A
n

[MPa−nh−1]

σ < 121MPa 2.71e-014 3.69

σ ≥ 121MPa 2.18e-039 15.71

and high stresses are reported in Tab. 2.3. The creep resistance in terms of rupture
time for P91 may be defined according to the Larson-Miller parameter PLM :

PLM = T · (C0 + log tR) (2.1)
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Figure 2.5: Norton law of P91 at 600◦ C.
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Figure 2.6: Larson Miller Parameter.

where T is the temperature expressed in ◦K, tR is the rupture time of creep tests in
hours and C0 is a constant (C0 = 20 for standard materials). If the nominal stress of the
creep tests is plotted in logarithmic scale versus the obtained Larson-Miller parameter
a linear trend can be observed as demonstrated in Fig. 2.6 for the same tests of Fig. 2.5.
The Norton law and the relationship between Larson-Miller parameter and stress will
be fundamental to transpose the P91 data, from specimen to component geometry in the
crack assessment strategies for pressurized pipes presented in Ch. 3, but to account for
the presence of defects, an extensive experimental campaign including: CCG, CFCG,
FCG, and JIC tests has been performed in the framework of the present thesis and
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Chapter 2. Material Properties and Experimental Work

reported in the following sections.

2.2 CCG tests [22]

Creep crack growth tests was the first series of tests performed to investigate the behav-
ior of the P91 material in presence of defect. The aims of these tests is:

• to investigate the initiation of the creep crack propagation and the crack propa-
gation rate as a function of the nominal intensity factor at the beginning of the
test;

• to obtain experimental correlation between the crack propagation rate and the
crack tip parameters for extensive creep (Eq. (1.14)) and for small-scale and tran-
sition creep (Eq. (1.58)). This relationship is intrinsic of the material and does
not depend on the analyzed geometry, becoming fundamental in the crack propa-
gation assessment of pipe components according to both the classical approach of
BS 7910 [12] and the concept of Ct parameter (1.1.2).

All the CCG tests reported in this work, have been performed at 600 ◦C according
to the applicable ASTM E1457-15 standard [6]. The compact tension C(T) specimen
geometry of Fig. 2.7 was designed to easily accommodate the leads of the direct cur-
rent potential drop (PD) measurement system that was used, to determine the crack
propagation rates during the tests.
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Figure 2.7: C(T) specimen geometry with potential drop measurement arrangement.
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Chapter 2. Material Properties and Experimental Work

Figure 2.8: CCG tests setup.

2.2.1 CCG Experimental Tests

All CCG tests were performed on the creep testing machine SATEC JE 1016 that fea-
tures a maximum capacity of 12000 N. The load is applied by means dead weights
through a leverage system. The C(T) specimen (Fig. 2.8) is enclosed in a three
controlled zones furnace SATEC SF-17 2230 that can reach a maximum tempera-
ture of 1200 ◦C. The furnace control is able to guarantee a temperature fluctuation
of ±2◦C with respect to the nominal test temperature. This range is constantly mon-
itored through a thermocouple located in proximity of the specimen notch. The C(T)
geometry of Fig. 2.7 is designed to allows PD crack size measurements. As shown in
Fig. 2.8 two holes in the upper and lower surface hold the leads that distribute current to
the specimen. Four holes located in the front face of the C(T) specimen hold the leads
that measure the potential drop in two different zones, remote and local with respect to
the crack tip. A PD calibration curve for this specific geometry was found in the work
of Belloni et al. [9]. The specimen is fixed to the testing machine by two pin holes that
allow rotations. At these points, the load-line displacement was measured by means of
an extensometer properly connected by a dedicated equipment.
A typical creep crack life can be divided in two main parts:

• initiation of crack propagation (CCI) and

• creep crack growth (CCG)

CCI comprehends the amount of time needed after the application of the load, to reach
a creep crack growth of ∆ac = 0.2 mm. During CCI the specimen is in SSC and TC
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2.2. CCG tests [22]

conditions. The value of 0.2 mm is defined according to the size of the tested C(T)
specimens (in this case B = 1/2′′). The time needed to reach 0.2 mm of creep crack, is
called initiation time ti and is used in the components assessment codes to identify CCI.
In order to produce reliable CCI times, a sharp notch is needed. For this reason, each
specimen was fatigue pre-cracked at room temperature on a servo-hydraulic machine
with a load ratio R = 0.1 and a maximum load that produces a lower stress intensity
factor than the one that is going to be tested. After a fatigue pre-crack of 1.7 mm was
reached, side grooves were machined, in order to guarantee a straight crack front in the
crack size measurements post test. With this procedure the specimen thickness B was
reduced of 20% to the net section thickness Bn = 20%B ≈ 10.1 mm. The specimen is
now ready for testing.
After the test temperature is reached and maintained for 1 h, the initial stress intensity
factor K0 is applied through dead weights. During the test, temperature on the speci-
men, load-line displacement and PD measurements are acquired simultaneously thanks
to a dedicated Labview program. In order to achieve reliable crack estimations, the
PD technique was not based on single readings but on the average of multiple read-
ings when the current is circulating in the specimen. Each average reading is always
compared in relation with the average of multiple readings without active current in the
specimen.
A CCG test ends when the crack propagation reaches 0.7 a/W or when crack propaga-
tion and load-line displacement measurements show that the beginning of the tertiary
stage of crack growth is reached and the specimen is about to fail. At the end of the
test the specimen is brittle broken in liquid nitrogen to avoid any further plastic de-
formation. As per ASTM E1457-15 standard [6], the CCG test is valid only after the
initial crack front a0 and the final creep crack propagation ∆ac front, evaluated at nine
equally spaced points, pass several requirements. Starting from a valid CCG test, it is
possible to estimate initiation time and the steady-state crack tip parameter C∗ based
on the experimental data, in order to find its relationship with the crack propagation
rate (da/dt) (Fig. 2.9). Table 2.4 summarizes all the test data performed on P91 at 600
◦C including the value of the nominal stress intensity factor at the beginning of the test
(K0), the value of the crack length at the beginning of the test (a0) and the main results
of each test: the transition time tT , the time for CCI ti, the creep crack propagation at
the end of the test ∆ac, and the time to rupture tR.

2.2.2 CCG Test Results

The results expressed in terms of crack propagation as a function of time are shown
in Fig. 2.10 and in terms of load-line displacement in Fig 2.11. As expected, tests
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Figure 2.9: Schematic representation of the initiation data for specimen P91-10.

Table 2.4: CCG test data matrix.

Specimen
P K0 a0 tT ti ∆ac tR

[N] [MPa
√

m] [mm] [h] [h] [mm] [h]

P91-05 5607 28 12.13 1 2.82

P91-08 4373 22.4 12.2 4 2.23

P91-02 3818 19.2 12.19 11 1.47

P91-10 2982 14.9 12.1 35 2.8
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Figure 2.10: Creep crack propagation as a function of the test time for P91 at 600 ◦C.

performed at lower initial stress intensity factor last longer. CCI data can be plotted
as the stress intensity factor KIi evaluated at the initiation time ti, i.e. when the creep
crack propagation ∆ac reaches 0.2 mm. The stress intensity factor solution used to
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Figure 2.11: Load-line displacement during the CCG tests.

Table 2.5: Coefficients of Eq. (2.4) of P91 at 600 ◦C.

M [MPa
√
mh−p] p

calculate KIi for C(T) specimens is the one reported in Eq. (2.2)

K =
P

(BBn)0.5W 1/2
F (2.2)

where F is the shape function that for C(T) specimens is defined as:

F =

[
2 + a/W

(1− a/W )3/2

]
(0.886 + 4.64(a/W )− 13.32(a/W )2 + 14.72(a/W )3

−5.6(a/W )4)

(2.3)

The trend shown in Fig. 2.12 was fitted to the power law of Eq. (2.4) and will be used
in Ch. 3 for CCI assessment of pipe components.

KIi = Mtpi (2.4)

The coefficients obtained by this fitting procedure are reported in Tab. 2.5. The crack
propagation rate exhibits the same behavior in all load conditions. In fact during CCI
it slowly decrease reaching its minimum until the beginning of EC conditions where it
increases until the rupture time tR. Moreover the minimum crack propagation rate de-
creases for lower initial stress intensity factors. The plot of total load-line displacement
Vt of Fig. 2.11 confirms this trend.
As previously anticipated, after the tests, the specimens were brittle broken in liquid
nitrogen in order to observe the pre-crack and final crack fronts by means of optical
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Figure 2.12: Stress intensity factor at initiation as a function of initiation time.

Figure 2.13: Application of the ASTM E1457 [6] crack validity criteria.

microscopy and to perform the crack validity criteria provided by ASTM E1457 [6]
that determine if the validity of the CCG test, on the basis of nine equidistant point
measurements along the crack front (Fig. 2.13). Each specimen passed the ASTM
E1457 [6] crack validity criteria (Fig. 2.14) and thus it was possible to analyze the ex-
perimental data to estimate the CCG crack tip parameters. The steady-state creep crack
tip parameter C∗ can be calculated only:

• when the ratio between the creep LLD rate V̇c and the total LLD rate V̇t is greater
than 0.5

• at times greater than the transition time tT as defined from Eq. (1.34)

• at times greater than the time to CCI ti.

Under the hypothesis that the LLD rate given by monotonic plasticity is negligible, V̇c
can be isolated from V̇t by defining the instantaneous elastic LLD rate V̇0 in relation to
the crack propagation rate and the stress intensity factor K:

V̇0 =
da

dt

Bn

P

(
2K2

E ′

)
(2.5)
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Figure 2.14: Pre-crack (red) and final crack fronts (blue) after specimen break in liquid nitrogen.
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Figure 2.15: Ratio between creep and total LLD rate.

where E ′ is equal to E and E/(1 − ν2) in plane stress and plane strain conditions
respectively. The LLD rate given by creep deformation is obtained by using Eq. (1.42).
The ratio between creep and total LLD rate of Fig. 2.15 is always greater than 0.5
validating, according to the ASTM E1457 standard [6], the use of C∗ as a crack tip
parameter. As reported in Tab. 2.4, the initiation time ti represents the threshold for the
estimation of the C∗ parameter, as it is always greater than the corresponding transition
time tT . TheC∗ parameter can now be estimated, after CCI, by using a modified version
of Eq. (1.14) that accounts for side grooved specimens:

C∗ =
PV̇t

Bn(W − a)
HLLDηLLD (2.6)
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Table 2.6: tab:EtaLLD.

a/W ηLLD

0.35 1.89

0.40 2.07

0.45 2.20

0.50 2.20

0.60 2.20

0.70 2.20

C* [MPa m/h]
10-4

10-3

10-2

10-1

100

(d
a/

dt
) 

[m
m

/h
]

 K
0
 = 28 MPa m0.5

 K
0
 = 22.4 MPa m0.5

 K
0
 = 19.2 MPa m0.5

 K
0
 = 14.9 MPa m0.5

 Fit
 95% Prediction Band

Figure 2.16: Crack propagation rate as a function of the C∗ parameter obtained experimentally.

where HLLD is a function of the Norton law exponent (for C(T) specimens HLLD =

n/(n + 1)) and ηLLD is a function of the crack size a/W as reported in Tab. 2.6 for
C(T) specimens.

The crack propagation rate is plotted in Fig. 2.16 as a function of the experimental
values of C∗ for all the tests. As expected, the lower the applied loads are, the lower
the crack propagation and LLD rates are resulting in lower estimations of C∗. It might
be worth noting that even if data prior initiation time have been cut out, the relationship
between (da/dt) and C∗ at the beginning of the test is not unique. This behavior can
be attributed to the fact that the examined material is interested by a long small-scale
creep phase characterized by a dominant primary creep strain that extends beyond the
initiation times. However in EC conditions, the data points lie on a line. Thus, the
power law fit of Eq. (1.19) was used to interpolate the crack propagation rate with the
C∗ parameter. The results of this fit are shown in Fig. 2.16 as the thick continuous line
together with the 95% prediction bounds. Material constants for the fit and the 95%
bands are reported in Tab. 2.7.
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Table 2.7: Coefficients of Eq. (1.19) for P91 at 600 ◦C.

D φ

[mm/(MPam)φhφ−1]

Fit

Upper bound

Lower bound

Moving to the Ct parameter valid for SSC, TC, and EC conditions of Eq. (1.61), this
equation, modified in order to account for side grooves of C(T) specimens, becomes:

PV̇c
(BBn)0.5W

F ′

F
− C∗

(
F ′

ηF
− 1

)
(2.7)

where the term F ′/F was taken from the CFCG testing ASTM E2760-10 standard [18]:

F ′

F
=

[
1

2 + a/W
+

3

2(1− a/W )

]
+

+

[
4.64− 26.64(a/W ) + 44.16(a/W )2 − 22.4(a/W )3

0.886 + 4.64(a/W )− 13.32(a/W )2 + 14.72(a/W )3 − 5.6(a/W )4

] (2.8)

and the term η can be expressed for C(T) specimens with creep exponent n = 10, an
average condition between the high and low stresses Norton law constants of Tab. 2.3,
as a function of the crack size a/W as shown in Tab. 2.8: The η values of Tab. 2.8 have

Table 2.8: η values for C(T) specimen with n = 10.

a/W η(a/W, n = 10)

0.4 3.504

0.5 4.111

0.6 5.020

0.7 6.536

0.8 9.563

been extended to intermediate a/W values thanks to a 4th grade polynomial fit.
The obtained Ct values are plotted in Fig. 2.17 with the crack propagation rates. As
shown, at the beginning of the test, the relationship between (da/dt) and Ct is not
unique. This can be explained considering that the Ct parameter is defined under the
hypothesis that no crack propagation occurs during small-scale creep but, for the in-
vestigated material, as previously observed in the C∗ parameter estimation, this phase
(SSC) extends longer than the initiation time. Results were fitted to the power law
of Eq. (1.62). The D′ and φ′ values for the fit and upper/lower prediction bands are
reported in Tab. 2.9 according to the experimental results.
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Figure 2.17: Crack propagation rate as a function of the crack tip Ct parameter valid for SSC, TC, and

EC conditions.

Table 2.9: Coefficients of Eq. (1.62) for P91 at 600 ◦C.

D′ φ′

[mm/(MPam)φ
′
hφ

′−1]

Fit

Upper bound

Lower bound

2.3 CFCG Tests [22]

In the late years, CFCG tests are starting to play an important role in material char-
acterization in presence of defects. The aim of this series of tests is to investigate the
interaction phenomena between the fatigue damage experienced by the material during
the load and unload cycle at high temperature, and the creep damage experienced by
the material during the hold time under sustained load at high temperature.
In particular, the focus is on the effects of initial nominal stress intensity factor, as well
as on the effects of the hold time period in the range 0.1-10 h, of interest for the ap-
plication of the investigated material. All the CFCG tests presented in this work have
been carried out at 600 ◦C according to the applicable ASTM E2760-10 standard [18].
The same C(T) specimen configuration of CCG tests (Fig. 2.7) was tested in order to
avoid any effect of geometry in the experimental results.
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Figure 2.18: Trapezoidal shaped load of CFCG tests.

2.3.1 CFCG Experimental Tests

Most of CFCG tests were performed on the same CCG testing machine SATEC JE
1016 that was modified for the occasion. A brushless motor designed to balance the
leverage system was used to apply and remove the load to the specimen at the end of a
predefined hold time th. The total load was then split in two parts. One part is always
applied to the train load in order to obtain a load ratio R > 0, while the remaining part
is applied and released according to the trapezoidal shaped load of Fig. 2.18.
As for CCG tests, room temperature pre-crack is required in order to obtain a sharp

starter crack, and all C(T) specimens have been side grooved to obtain a straight crack
propagation necessary for crack validation measurements. The test procedure applied to
CFCG tests is similar to the one previously described for CCG tests. Crack propagation
rates have been calculated from direct current PD measurements, one time for cycle
at the beginning of each hold phase. The LLD was acquired several times per cycle
during the load hold phase, in order to obtain the creep load-line deflection variation
∆Vc according to Fig. 1.16. For comparison, specimen P91-26 was tested on a servo-
hydraulic testing machine. In these case, the C(T) dimensions of this specimen are
shown in Fig. 2.33, and the crack propagation rate was recorded by means of elastic
compliance.
The CFCG test matrix is reported in Tab. 2.10 comprehending: the nominal stress
intensity factor range ∆K0 at the beginning of the test, the maximum stress intensity
factor at the beginning of the test Kmax,0 the initial crack size a0, the final crack size
af , the creep-fatigue crack propagation ∆acf , and the rupture time tR. As shown, a
load ratioR = 0.1 was studied at different values of initial stress intensity factor ranges
∆K0 at different hold times th.
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Table 2.10: Creep-fatigue crack growth tests matrix.

Specimen R
P th ∆K0 Kmax,0 a0 af ∆acf tR

[N] [h] [MPa m0.5] [MPa m0.5] [mm] [mm] [mm] [h]

P91-26 0.1 8714 0.1 22.6 25.11 7.99 9.49 1.50

P91-06 0.1 4750 0.1 21.5 23.88 12.17 19.77 7.60

P91-137-09 0.1 4435 1 21.2 23.55 12.64 13.23 0.59

P91-137-10 0.1 4730 10 21.7 24.11 12.31 15.60 3.29

P91-137-01 0.1 3615 1 16.4 18.22 12.22 14.91 2.69

P91-07 0.1 3530 2 15.6 17.33 11.99 12.49 0.5
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(b) Nominal ∆K0 = 16 MPam0.5.

Figure 2.19: Crack propagation of CFCG tests of P91 at 600 ◦C.

2.3.2 CFCG Test Results

Figure 2.19 (a) reports CFCG tests performed at a maximum initial nominal value of
stress intensity factor Kmax,0 equal to 23.3 and ∆K0 = 21, with different hold times
ranging from 0.1 h and 10 h. The results show the effect of the increasing hold time
that reduces the crack propagation rate significantly. Moreover, The test with hold time
equal to 0.1 h is the one performed for comparison on a servo-hydraulic testing ma-
chine, where the crack propagation was monitored by means of the elastic compliance
method. It can be observed a significant difficulty in estimating the crack propagation
by means of compliance method for low values of crack length (< 0.5mm) that reflects
in a different trend of the two curves in particular during the first stage of the crack
propagation. Comparing the results of Fig. 2.19 (a) and (b) it can be observed that at
the same values of hold time, the crack propagation rate decreases with the initial value
of stress intensity factor amplitude.
After each test, specimens were brittle broken in liquid nitrogen for the five crack val-
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idation measurements as disposed by the ASTM E2760 standard [18] and as reported
in Fig. 2.20 for specimen P91-07. The creep-fatigue crack fronts are shown in Fig.

Figure 2.20: Crack validity check on five point measurements on specimen P91-07.

2.21 and resulted valid for all the tests. The crack tip paramter (Ct)avg was calculated

Figure 2.21: Pre-crack and final crack fronts of the CFCG tests after liquid nitrogen failure.

by measuring the load-line deflection rate during the hold time of each cycle. Equation
(1.65) was modified according to ASTM standard [18] to account for side grooved C(T)
specimens:

(Ct)avg =
∆P∆Vc

(BBn)1/2Wth

F ′

F
(2.9)

The average crack propagation rate is shown as a function of the crack tip parameter
in Fig. 2.22. However at low hold times of the order of 0.1 h the LLD change is
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reduced and therefore it does not allow a reliable (Ct)avg estimation. For specimens
P91-06 and THOR-137-09 no reliable load-line deflection rates were measured thus
it was not possible to evaluate the (Ct)avg parameter accurately and are not reported
in Fig. 2.22. As for the previous CCG tests, a power law fit was performed to relate

(C
t
)
avg

 [MPa m/h]
10-4

10-3

10-2

10-1

100

(d
a/

dt
) av

g
 [m

m
/h

]

∆K = 22.6 MPa m0.5 ; t
h
 = 0.1 h

∆K = 21.7 MPa m0.5 ; t
h
 = 10 h

∆K = 16.4 MPa m0.5 ; t
h
 = 1 h

∆K = 15.6 MPa m0.5 ; t
h
 = 2 h

Fit
95% Prediction Band

Figure 2.22: Average crack propagation rate as a function of the (Ct)avg parameter for P91 steel at

600 ◦C at different initial stress intensity factor ranges and hold times.

average crack propagation rate to the (Ct)avg parameter according to Eq. (1.66). The
coefficients found during the fitting procedure are reported in Tab 2.11 together with
the correspondent upper and lower 95% prediction band.
As previously discussed in Ch. 1, an analytical estimation of the (Ct)avg parameter is

Table 2.11: Coefficients of Eq. (1.66) for P91 at 600 ◦C based on the numerical estimation of (Ct)avg .

D′′ φ′′

[mm/(MPam)φ
′′
hφ

′′−1]

Fit

Upper bound

Lower bound

possible by using a Norton law based creep model that describes the evolution of the
creep zone size during a CFCG test. Equation (1.67) defines the crack tip parameter
under the hypothesis of complete creep reversal given by the fatigue cycles. (Ct)avg

depends on the stress intensity factor range ∆K, the hold time th, the Norton creep
law multiplier and exponent A and n, and the crack tip parameter in CCG conditions
C∗. C∗ was also obtained by means of Eq. (1.18a) that was derived from numerical
simulations. If a C(T) specimen is studied the calibration function h1(a/W, n) has
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Table 2.12: h1 calibration function for C(T) specimens with different crack sizes and creep exponent n.

n

a/W 1 2 3 5 7 10 13 16 20

0.25 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57

0.375 2.15 1.72 1.39 0.970 0.693 0.443 0.276 0.175 0.098

0.5 1.94 1.51 1.24 0.919 0.685 0.461 0.314 0.216 0.132

0.625 1.76 1.45 1.24 0.974 0.752 0.602 0.459 0.347 0.248

0.75 1.71 1.42 1.26 1.033 0.864 0.717 0.575 0.448 0.345

≈1 1.57 1.45 1.35 1.18 1.08 0.95 0.85 0.73 0.630

the values of Tab. 2.12. The (Ct)avg parameter obtained with this approximation is
shown in Fig. 2.23 The tests performed at ∆K0 = 22.6, 21.2, and 15.6 were stopped
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Figure 2.23: (da/dt)avg as a function of the crack tip parameter (Ct)avg calculated analytically for

P91 steel at 600 ◦C.

at the beginning of the tertiary and last phase of the test without providing a sufficient
crack growth rate increment. The power law fitting procedure was performed also on
this analytical estimations on the (Ct)avg parameter obtaining the coefficients of Tab.
2.13. Until this step, the crack tip parameter suitable to represent CFCG was calculated

Table 2.13: Coefficients of Eq. (1.66) for P91 at 600 ◦C based on the analytical estimation of (Ct)avg .

D′′ φ′′

[mm/(MPam)φ
′′
hφ

′′−1]

Fit 0.1631 0.4528

Upper bound 1.0014 0.4528

Lower bound 0.0266 0.4528

45



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 46 — #76 i
i

i
i

i
i

Chapter 2. Material Properties and Experimental Work

Figure 2.24: Schematic diagram for ∆Vh and ∆Vr determination.

Table 2.14: Stabilized values of CR.

Test: CR

∆K = 22.6 MPa m0.5 th = .1 h

∆K = 16.2 MPa m0.5 th = 1 h

∆K = 15.6 MPa m0.5 th = 2 h

∆K = 15.6 MPa m0.5 th = 2 h

Average value

experimentally, and analytically by means of Eq. (1.67) that assumes that all the creep
strain is reversed during the load release after the hold time. In real applications, the
creep strain reverse given by cyclic load is represented by a percentage of the creep
strain. The experimentally defined creep reversal parameter CR, studied by Grover
and Saxena [28], is able to define how the cyclic load reinstate the crack tip stress
field during the unloading portion of the trapezoidal fatigue load cycle. It is calculated
from experimental load-line deflection of CFCG tests as the ratio between the load-
line deflection range calculated between the end of the hold time of one cycle and
the beginning of the hold time of the next cycle, and the load-line deflection during
the hold time. A schematic representation of how it can be calculated is shown in
Fig. 2.24 based on the experimental data of the CFCG test P91-26. The experimental
values of CR found by analysing the experimental load-line deflections is plotted in
Fig. 2.25 as a function of the normalized test time together with its average value
after the initial transition. The stabilized values of CR are reported in Tab 2.14. An
average value of CR of        was used in the following calculations. The crack tip
parameter for creep-fatigue tests under the hypothesis of partial creep reversal may now
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Figure 2.25: Creep reversal parameter CR as a function of normalized time for P91 at 600◦C.
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Figure 2.26: Creep-fatigue average crack propagation rate as a function of the (Ct)avg parameter

calculated by assuming the partial reverse of creep strains through the CR parameter.

be calculated according to Eq. (1.66) and related to the average CFCG rates as shown
in Fig. 2.26. The linear relationship through the logarithmic values of (da/dt)avg and
(Ct)avg is defined by a power law with the coefficients D′′ and φ′′ reported in Tab. 2.15.
The results discussed in this Section represent the experimental characterization of the
creep-fatigue behavior of the investigated material according to the new concept of
(Ct)avg parameter (Eq. (1.65)), that accounts for continuous restart of the creep damage
accumulation at the crack tip of the propagating crack under creep-fatigue regime.
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Table 2.15: Coefficients of Eq. (1.66) for P91 at 600 ◦C based on the analytical estimation of (Ct)avg

through the creep reversal parameter CR.

D′′ φ′′

[mm/(MPam)φ
′′
hφ

′′−1]

Fit 0.4456 0.5731

Upper bound 1.9560 0.5731

Lower bound 0.1015 0.5731

Figure 2.27: Fracture surface of specimen P91-10 after CCG test at K0 = 14.9 MPa m0.5.

2.4 Creep and Creep-Fatigue Damage at the Crack Tip

The C(T) specimens tested in CCG and CFCG conditions have been observed by means
of scanning electron microscope (SEM) in order to characterize the evolution of the
damage mechanisms. For this purpose, after brittle breaking in liquid nitrogen, one
half of each specimen was sectioned at the midline section (B/2) using a micro miter
saw that does not alter the damaged surface as shown in Fig. 2.27. The straight crack
path associated to the room temperature pre-crack shows a trans-granular fracture while
the irregular shape associated to CCG is given by inter-granular fracture typical of
creep damage. The backscattering SEM image of Fig. 2.28 performed at ∆ac = 1.8

mm, below the crack surface, shows an high density of microvoids of different sizes.
These microvoids are located at the grain boundaries, as observed in Fig. 2.29 and
coalesce proportional to the creep strain. Microvoids coalescence starts originating
microcracks (Fig. 2.30a) oriented 45◦ from the crack front. These microcracks, close
to the crack tip where stresses are higher, lead to the formation of subcracks causing
macro crack propagation (Fig. 2.30b). By observing the creep-fatigue fracture surfaces,
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2.4. Creep and Creep-Fatigue Damage at the Crack Tip

Figure 2.28: Backscattering image of P91-10 at ∆ac = 1.8 mm.

Figure 2.29: SEM detail of microvoids on P91-10 specimen.

(a) Microcrack. (b) Subcracks.

Figure 2.30: Microcracks formation observed with SEM at the end of the creep crack propagation of

test P91-10.

it has been found that in short hold time tests (th = 0.1, 1 h) where fatigue is dominant,
the crack path is characterized by higher peaks and valleys compared to the CFCG test
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Figure 2.31: Crack paths of CFCG tests performed on P91 at 600 ◦C.

Figure 2.32: Creep-fatigue fracture mechanisms by voids coalescence and microcracks formation.

with 10 hours hold time as shown in Fig. 2.31. The mechanism of fracture observed
from CFCG tests is the same of CCG tests, starting with void growth and coalescence
followed by microcracks formation that, at long terms, origins the macrocrack (Fig.
2.32 The SEM observations suggest that in order to be able to predict creep and creep-
fatigue damage correctly, a big effort must be spent to identify a suitable cavity growth
theory that accounts for void coalescence and intergranular fracture.
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2.5. FCG Tests [22]

Figure 2.33: Front face C(T) specimen used in FCG tests.

2.5 FCG Tests [22]

Fatigue crack growth tests at high temperature were performed in order to be able to
analyze the CFCG as a decomposition between pure fatigue and creep damages (Eq.
(1.79). From this viewpoint, high and medium (10, 1 Hz) frequency fatigue tests are
expected to exclude any stress relaxation allowing the estimation of the high temper-
ature fatigue damage exclusively. All FCG tests have been carried out according to
the ASTM E647 standard [19]. The constant load procedure is intended to estimate
the coefficients of the Paris-Erdogan law of Eq. (1.76) at different load ratios R and
frequencies f .

2.5.1 FCG Tests Experimental Setup

Since at high frequencies PD measurements are not possible, the C(T) specimen ge-
ometry presented in Sec. 2.2 has been modified in order to accommodate an high
temperature extensometer for crack size determination by means of elastic compliance.
The specimen geometry is shown in Fig. 2.33. All tests were performed on a MTS 793
servo-hydraulic testing machine and that supports a maximum load of 100 kN. In order
to start the test with a sharp notch, all the specimens were room temperature precracked
and the crack length was controlled by means of clip-on gage extensometer. After pre-
cracking, specimens were loaded on the testing machine inside a two controlled zones
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Figure 2.34: FCG test setup showing furnace and HT extensometry.

furnace that was heated until the temperature of 600 ◦C (Fig. 2.34). Because no ther-
mocouples were used during the test, a temperature calibration was needed. For this
reason six K type thermocouples were welded to both sides of a dummy specimen at
low medium and high position. When the six thermocouples range of temperature was
within ±2◦C from the set temperature the upper and lower temperature values of the
oven were saved and used for the FCG tests. Prior beginning the test, the crack length
given by elastic compliance was verified together with the elastic modulus. Tests were
performed in load control. A sinusoidal shaped load wave was applied between a max-
imum and minimum value that remained constant until the end of the test. During
fatigue load, elastic compliance, crack length, and cycle number were continuously
monitored until the gauge length of the extensometer was reached. The test matrix for
FCG tests is summarized in Tab. 2.16 indicating that two load ratios R =0.1 and 0.7
were studied as well as two frequencies f = 1 and 10 [Hz]. In Tab. 2.16 is also reported
the initial stress intensity factor range ∆K0, the maximum initial stress intensity factor
Kmax,0, the initial crack length a0, and the fatigue crack propagation ∆af . After each
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2.5. FCG Tests [22]

Table 2.16: FCG test matrix.

Specimen R
f ∆K0 Kmax,0 a0 ∆af

[Hz] [MPa m0.5] [MPa m0.5] [mm] [mm]

P91-24 0.1 1 15 16.66 8.5 11.21

P91-22 0.1 10 15 16.66 8.37 11.55

P91-25 0.7 1 5 16.66 8.26 10.71

P91-23 0.7 10 5 16.66 8.59 10.98

Figure 2.35: Pre-crack (red) and final crack fronts (blue) of the FCG tests after liquid nitrogen failure.

test the specimens were brittle broken in liquid nitrogen in order to check the initial and
final crack front sizes as shown in Fig. 2.35

2.5.2 FCG Tests Results

The results in terms of crack propagation per cycle as a function of the applied stress
intensity factor range are shown in Fig. 2.36 As expected tests performed at low fre-
quency f = 1 Hz exhibit the highest crack propagation rates. This might be an indi-
cation that creep damage is already starting to affect the crack propagation negatively.
The crack propagation per cycle is lower at higher load ratios even if specimen failure
happens earlier. Since the experimental data plotted on a logarithmic scale provided a
linear behavior, they were fitted to the Paris-Erdogan law of Eq. (1.76). The sets of con-
stant of this fitting procedure at different load ratios and frequencies are summarized in
Tab. 2.17. The constants obtained at high frequency are assumed to represent the pure
high temperature fatigue behavior and thus will be used in the following application of
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Figure 2.36: FCG test results of P91 at 600 ◦C at different frequencies and load ratios.

Table 2.17: Paris-Erdogan law fit results.

Specimen
C

m
[m1-m/2 MPa−m N−1]

P91-24 2.5647

P91-22 2.6831

P91-25 2.4430

P91-23 1.6559

the superposition model.

2.6 Superposition model for CFCG crack estimation.

The model discussed in Sec. 1.3 uses the concept of linear superposition of crack
propagation due to creep and fatigue damages. The crack propagation during one cycle
is then defined as the summation between the fatigue crack growth during one cycle
depending on the Paris-Erdogan law and the creep-fatigue crack growth during the
hold time that, is related to the crack tip parameter (Ct)avg. Among the Paris-Erdogan
law constants of Tab. 2.17, the one associated to test P91-22 were chosen to predict the
CFCG tests. The reason of this choice stands in the higher frequency of this test (f = 10

Hz) that excludes any significant stress relaxation given by creep strains and the load
ratio R = 0.1 equal to the CFCG tests that are going to be modelled. The model used
to simulate the creep-fatigue portion of crack propagation depends on the power law fit
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2.6. Superposition model for CFCG crack estimation.
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(b) Partial creep reversal.

Figure 2.37: Creep-fatigue crack propagation according to the superposition model.

of Sec. 2.3.2. Due to the lack of reliable experimental load-line deflection records at
short hold times, the fit constants used in the superposition model are the one reported
in Tab. 2.11 that have been found by analysing Eq. (1.67). The crack propagation per
cycle is defined according to the following equation:

da

dN
= C∆Km + thD

′′ ((Ct)avg)
φ′′ (2.10)

where (Ct)avg was calculated in two conditions, under the hypothesis of complete creep
reversal according to Eq. (1.67) and under the hypothesis of partial creep reversal
according to Eq. (1.71) with the creep reversal parameter CR. The same test conditions
of the CFCG specimens have been reproduced through a Matlab script that applies the
superposition model. The results in terms of crack propagation as a function of time
are shown in Fig. 2.37. As expected the creep-fatigue superposition model based on
the assumption of complete creep reversal is less conservative than the one based on
the creep reversal parameter CR. In fact, at ∆K0 = 21.5, 21.7, and 15.6 MPam0.5

overestimates the time to rupture while the superposition model based on the partial
interaction between creep and fatigue always underestimates the time to failure. The
superposition model has no mechanistic explanation though and this explain why its
application is still under discussion. However used in combination with the (Ct)avg

definition based on CR it was able to provide conservative solutions at all the load
conditions and thus its extension to model the residual life of pressurized pipes is now
possible.
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2.7 JIC Tests

Fracture toughness tests have been performed in order to identify the plastic collapse
limit of the P91 material at high temperature. The procedure applied to identify JIC
follows the indications contained in the ASTM E1820-11 standard [17]. This standard
identifies two possible procedures: the resistance curve method and a basic procedure
based on a multi-specimen approach. The resistance curve method turned out to be not
reliable to identify JIC at elevated temperatures. A basic procedure was applied in order
to reduce the scatter in crack size measurement and consequently in JIC estimations.

2.7.1 JIC Tests Experimental Setup

The geometry used in JIC experimental tests is represented by a C(T) specimen where
the crack opening displacement (COD) is measured at the load-line as shown in Fig.
2.38. The C(T) specimens knife edges were modified from the original design with a
7 mm diameter hole in order to accommodate the extensometer without any tight fit.
The basic procedure for measurement of fracture toughness provides room temperature
pre-cracking in order to achieve a sufficient sharp initial notch. Since no thermocou-
ples were used during the tests, a temperature calibration was performed with the same
procedure already described in Sec. 2.5.1. In order to respect the standard require-
ments for initial and final crack length, side grooves were machined after pre-cracking.
As first trial, the JIC was calculated according to the multi-specimen approach. This
procedures uses one specimen to define a complete resistance curve. A specimen is
loaded at a constant load-line displacement rate until a predefined COD level. During
this loading ramp, at determined COD levels, the specimen is unloaded and reloaded
in order to evaluate the crack size through the elastic compliance method. Each un-
loading/reloading sequence represents a point in the J-Resistance curve. However this
method has proved to provide unreliable results when 4 specimens were tested. The
load-COD curve of Fig. 2.39a) and b) shows that at low COD rates, the specimen reac-
tion to unloading and reloading phase is affected by stress relaxation without allowing
a relevant crack estimation by means of elastic compliance. When crack propagation
is not evaluated correctly, the J-Resistance curve exhibits a significant scatter that does
not guarantee an accurate JIC estimation. The basic procedure overcomes this issue by
testing multiple specimens at different final COD levels. During this tests, the speci-
men is monotonic loaded until the end of the test. The COD rate during loading was
0.6 mm/min. After brittle break in liquid nitrogen, the initial and final crack sizes are
measured at 9 points and used to evaluate the J-∆a data point. According to this proce-
dure six specimens were tested until the final COD levels CODf reported in Tab. 2.18
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2.7. JIC Tests

Figure 2.38: C(T) specimen used for fracture toughness tests.

together with the initial crack size a0, the crack propagation during the test ∆a and the
final value of J . The initial and final crack sizes of Tab. 2.18 have been calculated
according to the optical images of Fig. 2.40
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Figure 2.39: Load vs. COD curve of one P91 C(T) specimen tested with the resistance curve method at

600 ◦C.

Table 2.18: JIC tests matrix of P91 at 600 ◦C.

Specimen
CODf a0 ∆a J

[mm] [mm] [mm] [N/mm]

P91-J06 3.25 16.21 1.51

P91-J04 3.00 14.70 1.30

P91-J05 2.50 14.74 1.01

P91-J01 2.00 14.73 0.71

P91-J02 1.50 14.72 0.49

P91-J03 1.00 14.72 0.23

2.7.2 JIC Test Results

The load vs. COD curves of all the JIC tests performed according to the basic procedure
are shown in Fig. 2.41. All tests exhibit a similar behavior without an excessive scatter
in the measured load. The J integral is represented by a function of the area under the
load-COD curve Apl plus its elastic component Jel defined as:

Jel =
K2(1− ν2)

E
(2.11)

The obtained J integral is plotted as a function of the crack propagation obtained at the
end of the test in Fig. 2.42. The data points highlighted by a plus marker have been
used in the J fitting procedure as described in ASTM E1820 [17]. This procedure fits
a power law to the J-∆a dataset:

J = C2

(
∆a

k

)m2

(2.12)

58



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 59 — #89 i
i

i
i

i
i

2.7. JIC Tests

Figure 2.40: Initial and final crack front size of C(T) specimens tested for fracture toughness according

to the basic procedure.
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Figure 2.41: Load vs. COD curves of P91 tested at 600 ◦C.

with k = 1 mm. The results obtained during this fitting procedure are reported in Tab.
2.19. The interception between the fit shown in Fig. 2.42 and the green 0.2 mm offset
line gives the value of JIC =       [N/mm] that corresponds to a stress intensity factor
KIC =      MPa m 0.5.
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Figure 2.42: J integral as a function of the crack propagation during the tests for P91 at 600 ◦C.

Table 2.19: J-∆a fit coefficients.

C2 [N/mm] m2

2.7.3 Numerical Validation with Key-Curve Method

The JIC value obtained with experimental fracture toughness tests has been verified by
investigating a numerical technique called Key curve method that was developed by
Joyce et al. [33]. This method assumes that the load P in a fracture toughness test is a
function of crack size a/W and COD COD/W :

P = f

(
a

W
,
COD

W

)
(2.13)

The function f(a/W,COD/W ) is the key curve and can be determined numerically
and experimentally. The numerical key curve method is illustrated in Fig. 2.43 where
several load-COD curves obtained by numerical simulations at different stationary
crack sizes intercept an experimental test record. These intersections can be used to
estimate the crack size at a determined load P of the experimental data. With this
procedure, starting from one test a complete J-Resistance curve can be extrapolated.
With this aim, a numerical plane model of the C(T) specimen was studied with the FE
software Abaqus. Because of symmetry only half of the specimen was studied as in
Fig. 2.44. The elastic-plastic properties of Sec. 2.1 were applied to the model as well
as a mesh of quadratic plane strain elements. Close to the crack tip, the mesh was re-
fined to an average element size Lel = 50µm according to Fig. 2.45. Different initial
crack sizes were studied and compared with the experimental data as illustrated in Fig.

60



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 61 — #91 i
i

i
i

i
i

2.7. JIC Tests

Figure 2.43: Schematic diagram of the key curve method.

Figure 2.44: FE model of the C(T) specimen for the key curve method application.

Figure 2.45: Detail of the mesh close to the crack tip.
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Figure 2.46: Key curve method applied to evaluate P91-J06 J-Resistance curve from experimental data.
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Figure 2.47: J −∆a curve obtained from the key curve method and comparison with the experimental

J-Resistance curve for P91 at 600 ◦C.

2.46. The intersection with the FE curves with the test record allowed the estimation
of the J-Resistance curve shown in Fig. 2.47 that is compared with the one obtained
experimentally. The JIC value obtained by performing this procedure is       N/mm
and corresponds to a critical stress intensity factor KIC =       MPa m0.5. This value
is similar to the one obtained experimentally although the results of the FE simulations
exhibit a J − ∆a curve steeper than the experimental data. This might be due to the
fact that the COD rate during experimental tests was not sufficient to exclude any creep
strain contribution in the final results.
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2.8 Summary

In this Chapter a deep characterization of the material properties of a modified P91
was presented. Starting from the results of high temperature tensile tests and uniaxial
creep tests kindly provided by Tenaris, it was possible to estimate the high temper-
ature elastic-plastic properties and the Norton power law constants according to Eq.
(1.1). These last parameters were fundamental for an estimation of the crack tip param-
eters C∗ and Ct deriving from experimental crack propagation and load-line deflection
records of CCG tests performed at different initial stress intensity factors. The two
parameters describe the crack propagation rate in EC and SSC conditions respectively
according to a power law trend.
A similar procedure was performed to estimate the crack tip parameter (Ct)avg from
CFCG tests performed at different initial stress intensity factor ranges and hold times.
With the purpose to analyze the creep-fatigue propagation as a superposition of time-
dependent and fatigue propagation, FCG tests have been performed at different frequen-
cies and load ratios. The obtained coefficients of the Paris-Erdogan law that relates the
crack propagation per cycle to the stress intensity factor range, have been used to assess
the reliability of the superposition law that is nowadays the most common approach to
model CFCG in calculation codes. With this purpose, with the superposition model that
combines the Paris-Erdogan law and the (Ct)avg − (da/dt)avg relation, the CFCG tests
were simulated under the hypotheses of full creep reversal and partial reversal thanks
to the CR parameter that was estimated experimentally from the load-line deflection
records of the experimental tests. The predictions based on the (Ct)avg estimation by
means of CR produced the most conservative solutions and thus the same approach will
be used in the following pipe assessments of Ch. 3.
In order to verify the limit load of plastic collapse of cracked components, the JIC
parameter was determined from high temperature fracture toughness tests performed
according to the basic procedure approach that involves the testing of multiple speci-
men to identify a single J-Resistance curve.
Lastly, by analysing with SEM the crack tip damage of the tested CCG and CFCG
specimens, the fracture mechanisms occurring at high temperature in presence of stress
intensification due to cracks, have been investigated. In both CCG and CFCG condi-
tions, cracks propagate after voids growth and coalescence that leads to microcracks
formation. The density of these voids is proportional to the time permanence at high
temperature and the stress range.
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CHAPTER3
Residual Life Estimation of Pipe Components

This Chapter aims to transpose the crack tip parameters defined in Ch. 2 to more
complex components, in order to study the standard code procedures to assess the ac-
ceptability of flaws in pressurized pipes.
In creep crack growth assessments, the application of experimental correlation between
crack growth rate and C∗ or Ct parameter is discussed. It is shown that, when material
properties extracted from experimental data performed on the examined material are
considered, the quality of the assessments is improved and in some particular condi-
tions, the residual life estimation for the components might increase.
In order to address the lack of available standard codes that actually deal with inter-
actions between creep and fatigue, rather than approaching the phenomenon with a
simple superposition law, the (Ct)avg parameter associated to CFCG is introduced, un-
der the hypothesis of partial creep strain reversal based on the creep reversal parameter
CR. With this approach a crack tip parameter, that accounts for small-scale creep, is
introduced in the creep-fatigue crack propagation assessment.

3.1 Standard Assessment Procedures for Components

In the past years, different organizations have developed assessment procedures to de-
termine the acceptability of flaws in pipe components operating at high temperatures.
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Chapter 3. Residual Life Estimation of Pipe Components

The life prediction design of components in presence of defect is strongly dependent
on material’s uniaxial creep data in terms of temperature, stress, steady-state creep
strain rate and failure time. However, experimental tests covers a limited range of fail-
ure times (until tR = 105) while power plant components are designed to operate for
longer. A crack growth assessment extrapolates experimental data on specimens to
actual pipe components with sufficient reliability in order to guarantee a conservative
residual life estimation.
The crack tip parameters C∗ and C(t), that have widely been used to describe crack
propagation rates for several testing specimen geometries, characterize the material’s
behavior in a specific temperature T and load condition and thus they are independent
from the geometry that is considered. This means that they are theoretically applicable
also with actual components. However, they strictly depend on the load-line deflection
values that are not always easily measurable. In a pressurized pipe for example, the
triaxial stress state makes difficult to estimate of a proper load-line. Also measurement
system can not be the same used for testing specimens.
Moreover, according to these standards, the resistance properties are given depending
on material classes that often include material of same chemical composition but of
different creep, creep-fatigue damage.
Among these assessment procedures it is worth mentioning the:

• EDF Energy R5 [10],

• BS 7910 [12],

• API 579-1/ASME FFS-1 [5], and

• FITNET [24]

The more recent between these standards is the EDF Energy R5 [10] that was updated
in 2014. It covers cracked bodies that are subject to creep conditions in volumes 4 and
5. The creep and creep-fatigue crack propagation is based on the time dependent failure
assessment diagram (TDFAD) that evaluates for a predefined amount of time whether
an hypothetical defect propagation will occur or not. It recognizes two main failure
mechanisms, one given by material creep toughness and the other given by plastic col-
lapse. The first is given by the stress intensity factor that produces the supposed crack
propagation in the assessed time while the latter identifies a limit load that brings to
plastic collapse the entire ligament section. Creep-fatigue conditions are modelled by
superposing the creep and fatigue damages. The supposed crack propagation that is
going to be verified is reduced by a portion associated to pure fatigue crack propaga-
tion. As expected, this approach might over simplify the issues related to creep-fatigue
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3.1. Standard Assessment Procedures for Components

interactions presented in Sec. 1.2 although it is considered conservative and does not
affect the assessment reliability.
Another calculation standard that recognizes and shares some approaches of R5 [10]
and Fitnet [24] is the british standard BS 7910 [12]. The proposed CCG assessment
defines a strategy, to evaluate the C∗ parameter in pipe components, based on the con-
cept of reference stress under the hypothesis that steady state creep generates a uniform
stress distribution. In CFCG regime, it recalls the TDFAD concept of R5 [10], super-
posing creep and fatigue crack growth separately. In both R5 and BS 7910 the creep
and fatigue properties are defined according to specific material classes, when no exper-
imental data performed on the assessed material are available. Each class correspond
to materials with similar chemical composition and creep-fatigue resistance properties.
The CCG approach contained in Part 10 of API 579 [5] considers the combination of
two damages, one before crack initiation i.e. a crack propagation of 0.2 mm, and an-
other after crack initiation. The damage before crack depends on rupture data defined
with the Larson-Miller parameter [38] from uniaxial creep tests, while the damage af-
ter crack is calculated by using specific formulations of C∗ and Ct parameters, always
based on the reference stress. The creep-fatigue damage is modelled by simple super-
position of creep and fatigue damages, and the acceptability criteria is given as a sort of
safety coefficients that shall not be exceeded. API 579 suggests the use of experimental
data performed on the material that is going to be assessed. However, when these are
not available, strongly suggests the use of the MPC Project Omega Creep Data [42], a
database that defines the creep properties of 23 classes of materials. Although a dif-
ferent approach is proposed, API 579 refers to R5 and BS 7910 and recognize them as
alternative procedures.
FITNET [24] is part of a European project that finished at the end of May 2006. It
covers fracture, fatigue, creep, and corrosion. The assessment of components operating
in creep conditions is contained in part 8, and splits the calculation procedure in two
parts that model creep crack initiation (CCI) and CCG. In order to assess CCI FITNET
identifies two possible approaches: the TDFAD proposed by R5 and the two crite-
ria diagram (2CD) by Edwald et al. [31]. The 2CD attributes initiation to three main
damages: ligament, mixed mode, and crack tip. These damages are strictly related to
the Larson-Miller parameter, the stress intensity factor at initiation of CCG tests, and
the rupture stress at the assessment temperature all calculated based on the reference
stress definition. Creep crack growth is modelled through a definition of the C∗ for the
pipe components based on the reference stress. Also the FITNET procedure accepts
the use of experimental data or, in case they are missing, creep resistance data based
on different classes of materials based on the chemical composition. Once again the
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Chapter 3. Residual Life Estimation of Pipe Components

creep-fatigue interaction, when significant, is modelled through a simple superposition
of the crack propagation due to creep and fatigue.
Although each procedure considers different approaches to model the creep and creep-
fatigue crack propagation in components operating at high temperatures, one thing that
is in common is the morphology of the possible defects that are defined according to
Fig. 3.1. Crack is supposed to present a semi-elliptical or elliptical shape, when not

Figure 3.1: Pipe crack morphology according to assessment standards.

passing trough the wall thickness. Another important aspect that is treated in common
for each standard is the assessment that is performed by evaluating two main regions
of the crack surface identified as the A and B red dots of Fig. 3.1, that represent the
plane strain and plane stress conditions respectively. By evaluating the crack propaga-
tion rate in these regions it is possible to estimate the crack shape evolution during the
assessment time. This is important for a reliable assessment as the crack tip parameters,
the reference stress, and the stress intensity factor directly depend on the ratio a/(2c)
between these two regions.

3.2 CCG Prediction

In this section an assessment procedure [2] based on the combination of the two crite-
ria diagram (2CD), as suggested by FITNET [24] and the BS 7910 [12] Cref model,
is evaluated in order to model CCI and CCG in pipes subject to internal pressure, in
presence of semi-elliptical longitudinal cracks on the inside surface. For the P91 grade
steel under examination, the relationship between stress, temperature, and rupture time
was given according to the Larson-Miller parameter previously introduced in Sec. 2.1.
In order to describe the steady-state creep strain rate for the component, the Norton law
relationship of Fig. 2.5 was used. The coefficients used in the assessment are the one
reported in Tab. 2.3 for low and high stresses fit. The creep crack initiation data of
CCG tests were used in the 2CD to estimate the time needed to the pipe component to
present a crack propagation of 0.2 mm under plane strain conditions. With this purpose
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the relationship between the experimental values of stress intensity factor and time at
initiation of Fig. 2.12, were modeled according to the fitted power law coefficients
of Tab. 2.5. The creep crack growth rates for the pipe geometry were characterized
according to the crack tip parameter C∗ under the hypothesis that steady-state creep
occurs prior to creep crack initiation after a complete stress redistribution on the liga-
ment region close to the crack tip. Equation (1.19) that defines the creep crack growth
(da/dt) as a function of the C∗ based on experimental data, was modified in relation
to material’s multiaxial creep ductility ε∗f according to the BS 7910 procedure [12] as
follows:

da

dt
=

3 · (C∗)
n

n+1

ε∗f
(3.1)

In this assessment, the crack propagation was evaluated in two different locations of
the crack front characterized by plane strain and plane stress conditions (point A and
B of Fig. 3.3 respectively). According to Maleki et al. [45] the multiaxial ductility ε∗f
is equal to uniaxial ductility εf in plane strain conditions and equal to 1/7εf in plane
stress conditions. A uniaxial creep ductility εf = 0.25 was derived as an average value
from the creep tests of Sec. 2.1. This allows the evaluation of Eq. (3.1) under these
two conditions and a comparison with the experimental data coming from CCG tests
on C(T) specimens as shown in Fig. 3.2.
The first important observation is that the different slope of the predicted crack prop-
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Figure 3.2: Creep crack growth rate as a function of C∗ parameter: comparison between the

experimental tests and Eq. (3.1).

agation rates versus the experimental ones demonstrating that this approach may be or
not conservative depending on the range of the C∗ parameter. In particular, for low C∗
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Chapter 3. Residual Life Estimation of Pipe Components

values, typical of the average components operating conditions, may not be conserva-
tive.
Crack propagation in pipe components under creep conditions occurs similarly to test-
ing specimens. The first stage is the time needed to crack initiation i.e. to propagate 0.2
mm. CCI is characterized by an accumulation of creep damage without a significant
crack propagation. The second stage is characterized by steady-state creep conditions
where crack propagation rate starts to increase leading to component failure. The ac-
cepted exposure time of a pipe component to 600 ◦C is thus calculated as:

texposure = ti + tCCG (3.2)

The data required in this proposed assessment are: operating conditions; geometry of
the pipe and pipe’s imperfection; creep and creep crack growth material data, which
in this case were based on the same batch of material of the P91 used in power plants.
The transferability of these data to multiaxial stress conditions is based on the concept
of reference stress of the pipe primary load as defined in BS 7910 [12]. This approach
works under the hypothesis that creep state, after stress relaxation, causes a uniform
stress distribution along the ligament. Figure 3.3 shows the geometrical configuration
of the pipe proposed as a case study for the application of this assessment procedure.
A service temperature of 600 ◦C and two pressure loads of 25 and 50 MPa were con-
sidered The 2CD was developed for the assessment of crack initiation in components

Figure 3.3: Geometry of the defected P/T91 pipe proposed as case study.

where ligament damage and crack tip damage are in competition among themselves,
in determining the critical level of damage at the crack tip [23]. The 2CD of Fig. 3.4
shows that for each damage a different load parameter is considered. The nominal
stress σn,pl, i.e the reference stress acting on the component, considers the stress situa-
tion along the ligament, while the nominal elastic stress intensity factor KIid, at a time
zero, characterizes the condition at the crack tip. The nominal stress normalized with
respect to the stress for creep failure at the assessment temperature identifies the stress
ratio:

Rσ =
σn,pl
σR

(3.3)
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When the crack tip is considered, the nominal elastic stress intensity factor K normal-
ized with respect to the stress intensity factor at initiation (KIi, in Fig. 2.12) identifies
instead the stress intensity ratio:

RK =
K

KIi

(3.4)

The main difference between the two ratios is that RK accounts for the presence of a
defect in the assessed component whileRσ just take into consideration the creep effects
on smooth specimens away from possible defects. The 2CD defines three mechanisms
of damage responsible of crack initiation. A low value of K/σn,pl is an indication that
the crack initiation is due to widespread damage in the ligament section while a high
ratio K/σn,pl instead, indicates that the crack initiation is due to localized damage at
the crack tip. The region between the two extremes of Fig. 3.4 accounts for damages
interaction defining a mixed damage mode. Creep crack initiation is verified when the
assessed point lies above the blue limit line of Fig. 3.4. In Fig. 3.4 diagram, the initial

Figure 3.4: Two criteria diagram for crack initiation time calculation.

conditions of the CCG tests are evaluated according to the 2CD exhibiting a mixed
mode damage failure given by a reference stress higher than the creep rupture stress
and a nominal stress intensity factor close to the value at initiation.
For the pipe component of Fig. 3.3 the 2CD was applied by calculating:

• the time corresponding to the boundary line of the ligament damage zone. This
time was calculated as the rupture time tR evaluated according to the Larson-
Miller parameter for an hypothetical rupture stress σR defined in relation to the
nominal stress as σref/0.75;

• the time corresponding to the boundary line of the crack tip damage zone. This

71



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 72 — #102 i
i

i
i

i
i

Chapter 3. Residual Life Estimation of Pipe Components

limit time is calculated by reversing the power law relationship of Eq. (2.4) at
the nominal stress intensity factor KIid for the component that was calculated
according to the FITNET [24] procedure. The power law coefficients used in this
assessment are the one reported in Tab. 2.5;

• the time corresponding to the boundary line of the mixed mode damage. This cal-
culation requires an iterative procedure where the assessment time tA is changed
progressively. Each time tA corresponds to a Larson-Miller parameter calculated
according to Eq. (2.1). From the Larson-Miller parameter the equivalent rupture
stress σR is calculated. The ratio Rσ = (σref = σn,pl)/σR can now be calculated
and plotted together with its analogousRK point evaluated as the ratio between the
nominal stress intensity factor K and the stress intensity factor at initiation time
with ti = tA according to Eq. (2.4). When the data point exits the acceptability
area, the mixed mode initiation time is found.

The minimum of the three initiation times calculated corresponds to the time for a
creep crack growth of 0.2 mm. The results are summarized in Tab. 3.1, for a operating
pressure of 25 MPa and different initial defect sizes according to Fig. 3.3.

As seen in Fig. 3.2, where the experimental data of crack initiation are reported

Table 3.1: Summary of the predicted initiation time for each type of damage and for each imperfection

size of Fig. 3.3. The actual initiation time for each defect size is in underlined format.

Imperfection size Ligament damage Mixed mode damage Crack tip damage

5% w 38251 h 20880 h 513285 h

10% w 38251 h 12981 h 124511 h

12.5% w 38251 h 10745 h 76116 h

for CCG tests, this approach is expected to be conservative at nominal stress intensity
factors within the range of the experimental tests. However it still needs to be verified
at lower stress intensity factor applications.
After CCI was obtained through the 2CD, CCG was evaluated according to the crack tip
parameter C∗ by taking advantage of its linear trend with the creep crack propagation
rates. The C∗ parameter for the pipe geometry was calculated based on the reference
stress σref according to Eq. (3.5)

C∗ = σref ε̇ref

(
K

σref

)2

(3.5)

where ε̇ref is the reference strain rate defined in the Norton creep law of Eq. (1.1)
by using the high and low stresses fits reported in Tab. 2.3, K is the stress intensity
factor evaluated at a time t for a crack of size a and 2c subject to a reference stress
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σref calculated from the formulation by Sun et al. [53]. Fig. 3.5 illustrates the crack
propagation evolution with time until the maximum acceptable size, that in this work
was set equal to the 85% of the wall thickness w, is reached. The plotted results were
carried out for a low loading case (25 MPa of internal pressure) and mean trend of
the material reported in Fig. 2.5. In all the three crack configurations, the admissible
exposure time was higher than 105 hours. The reference stress approach of Eq. (3.5)

Figure 3.5: Crack propagation versus time for geometry and imperfection size of Fig. 3.3.

is valid under the hypothesis that the damage for the component is evaluated as the
damage in uniaxial tests. Different expressions of the reference stress based on the
plastic collapse definition led to a significant change in the results in terms of residual
life estimation. Fig. 3.6 e.g. reports the crack evolution for an initial defect size of
5%w when different reference stress global and local approaches [11], were applied. It
might be worth noting that the C∗ estimations deriving from different σref expressions
are higher than the definition of Sun [53] resulting in faster crack propagation rates.
This represents another source of uncertainty in the application of the standardized
procedures for components assessment.
The case study was also analyzed according to the assessment code API 579 [5], where

the creep crack propagation rate is defined depending on the Ct parameter:

Ct = C∗

[(
tT
t

)n−3
n−1

+ 1

]
(3.6)

reminding that tT is the transition time from small-scale to steady-state creep. Ac-
cording to this approach the C∗ integral is calculated with an expression similar to Eq.
(3.5):

C∗ =
ε̇ref

1−DBC −DAC

(
K2

σref

)
(3.7)
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Figure 3.6: Crack propagation versus time for imperfection size equal to 5% w and different methods

to evaluate σref . Bib. refers to [53].

where DBC and DAC are the damage before and after cracking respectively, obtained
by the application of the MPC Omega project method [42] that was developed from the
examination of creep resistance properties of different materials. This method defines
the time to failure and creep strain accumulation as a function of stress, temperature,
and load conditions. The residual life of a pressurized pipe in presence of defect is
calculated from the Ct parameter using Eq. (1.62) with the calibration coefficients D′

and φ′ given by the MPC Omega project [42]. The creep crack growth rate correla-
tion with the Ct parameter provided by the MPC Omega project is compared with the
experimental data of CCG in Fig. 3.7. As for the Cref approach, the prediction ac-
cording to the MPC Omega project, results conservative at high Ct values while at low
Ct values, in the typical range of power plant components, it might produce non con-
servative estimations with respect to the experimental results. The coefficients of the
9Cr1MoV class of material reported in the standard were used to represent the creep
damage on the modified P91 steel. Figure 3.8 a) and b) shows the crack propagation
predicted according to API 579 code [5] for an initial defect size equal to 5%w for the
two pressure conditions of 25 and 50 MPa. As foreseen by standard, lower and upper
bound were calculated to account for material’s scatter band. The same case study in
terms of initial crack size, load conditions, and scatter band was recalculated with the
proposed model according to Eq. (3.5) leading to the results reported in Fig. 3.9 a)
and b). It is interesting to note that the predictions based on the proposed model of Eq.
(3.2) are in good agreement with the API 579 [5] residual life estimations, for low stress
conditions that are intended to represent the actual operating conditions of power plant
components. In high pressure conditions instead, the API 579 prediction resulted to be
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Figure 3.7: Comparison between the (da/dt)-Ct relationship of the experimental CCG tests and the

MPC Omega project.

more conservative with respect to the Eq. (3.2) model. However the scatter bands of
Fig. 3.8 a) and b) highlight the importance of having a reliable creep database based on
the investigated material as well as CCG data to improve the residual life estimations.
In this context, a reduction in the predicted life time by a factor of 2 can be observed for
both low and high loading conditions. Moreover a degree of uncertainty is still present,
due to: the application of the 2CD to predict crack initiation; the use of the reference
stress concept to calculate the crack tip parameter C∗ or Ct; the use of standard defined
relationship between the crack growth rates and the crack tip parameters.

3.3 CFCG Prediction

This section deals with the definition and verification of an assessment procedure based
on the combination of different approaches in order to predict creep fatigue crack initia-
tion and growth in pressurized pipes with a longitudinal flaw on the inside surface. The
following calculation codes strongly rely on material data that have been collected dur-
ing this work and therefore are expected to produce a more accurate prediction of the
creep fatigue behavior for the P91 steel. Creep-fatigue crack initiation (CFCI) has been
obtained by means of the Time Dependent Failure Assessment Diagram (TDFAD) con-
tained in R5 code [10]. Creep-fatigue crack propagation instead was defined according
to the crack tip parameter (Ct)avg [4] that accounts for transient creep conditions where
creep and cyclic plastic damaged zones interact within each other. At high hold times it
trends to the stabilized value C∗, typical of CCG condition. The relationship between
the average crack propagation rate (da/dt)avg and (Ct)avg obtained from CFCG tests on

75



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 76 — #106 i
i

i
i

i
i

Chapter 3. Residual Life Estimation of Pipe Components

0 500 1000 1500 2000
Time [h]

0

2.21

4.41

6.62

8.82

11.03

a 
[m

m
]

0.85 w

Lower
Medium
Upper

(a) High Stresses.

0 1 2 3 4 5 6 7 8
Time [h] ×105

0

2.21

4.41

6.62

8.82

11.03

a 
[m

m
]

0.85 w

Lower
Medium
Upper

(b) Low Stresses.

Figure 3.8: Crack propagation versus time for imperfection size equal 5%w according to ASME/API

Code [5].
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C(T) specimens may be transposed to any kind of geometry for which a stress intensity
factor can be defined.

3.3.1 CFCG estimation through the (Ct)avg approach

The crack tip parameter in creep-fatigue conditions is the (Ct)avg and since it repre-
sents the average value of the small scale creep parameter Ct during the hold time of a
creep-fatigue test, it is supposed to represent crack propagation rate even during tran-
sients. For this reason it was used to predict CFCG in a pressurized pipe with an inside
surface semi-elliptical shaped axial crack. As seen in Ch. 1.2, (Ct)avg can be estimated
analytically under different hypothesis:

• Complete creep reversal, i.e. the fatigue cycle completely redistribute the stress
field at the crack tip. In this case (Ct)avg is determined by the following equation
expressed for a pipe component starting from Eq. (1.67):

(Ct)avg =
2αiβ0(1− ν2)

E
Fcr(θ, n)

∆K4

w

F ′

F
(EA)

2
n−1 t

−n−3
n−1

h + C∗ (3.8)

• No creep reversal, i.e. the hold time is long enough that the creep zone become
dominant with respect to the cyclic plastic zone. In this case (Ct)avg is determined
by the following equation expressed for a pipe component starting from Eq. (3.9):

(Ct)avg =
4αiβ0Fcr(θ, n)

(n− 1)Ew
(1− ν2)K4F

′

F
(EA)

2
n−1 (N · th)−

n−3
n−1 + C∗ (3.9)

• Interaction between creep and fatigue damages through the CR parameter. In this
case no assumption on the dominant damage mechanism is considered and the
(Ct)avg definition for a pressurized pipe consists in the combination of Eq. (3.8)
and (3.9):

(Ct)avg =
2αiβ0Fcr(θ, n)

Ew
(1− ν2)∆K4F

′

F
(EA)2/(n−1)[

CR +
2(1− CR)N−[(n−3)/(n−1)]

n− 1

]
· (th)−[(n−3)/(n−1)] + C∗

(3.10)

where αi has the same value of Eq. (1.46) with αn+1
n = 0.69 for 3 ≤ n ≤ 13 and

β is 1/3 under plane strain conditions [8]. The angular function Fcr is estimated at
different angles ϑ (eg. ϑ = 0◦ plane stress and θ = 90◦) and at different power law
exponents n according to Riedel and Rice [29] (Fig. 1.9). With an average n value
of 10 obtained from uniaxial creep data on the modified P91 and under plane strain
conditions Fcr is equal to 0.3824. ν is the Poisson ratio and F ′ is the derivative of
the shape function F that was calculated numerically according to the API RP 579 [5]
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Table 3.2: h1(a/W, n) values for C(T) specimens [37]: plane strain conditions.

a/W n = 1 n = 2 n = 3 n = 5 n = 7 n = 10 n = 13 n = 16 n = 20

0.25 2.23 2.05 1.78 1.48 1.33 1.26 1.25 1.32 1.57

0.38 2.15 1.72 1.39 0.97 0.693 0.443 0.276 0.176 0.098

0.50 1.94 1.51 1.24 0.919 0.685 0.461 0.314 0.216 0.132

0.63 1.76 1.45 1.24 0.974 0.752 0.602 0.459 0.347 0.248

0.75 1.71 1.42 1.26 1.033 0.864 0.717 0.575 0.448 0.345

1.00 1.57 1.45 1.35 1.18 1.08 0.95 0.85 0.73 0.63

formulation. The average crack propagation rate (da/dt)avg is related to the creep-
fatigue crack tip parameter (Ct)avg from the power law of Eq. (1.66). The values of D′′

and φ′′ used in the following assessments were chosen according to the values of Tab.
2.15 referred to the fit of CFCG tests performed on C(T) specimens where the (Ct)avg

parameter was estimated by means of the creep reversal parameter CR. Equations (3.8,
3.9) and (3.10) directly depend on the estimation of the stabilized value of the C(t)

integral, i.e. C∗, that, for this assessment, was calculated according to the BS7910 [12]
Cref approach based on the concept of reference strain rate ε̇ref (Eq. (3.5)). After all
the necessary parameters have been defined, it is now possible to evaluate the (Ct)avg

and according to Eq. (1.66) the crack propagation rate. This procedure was included in
a Matlab iterative script in order to assess the crack propagation rate during the entire
operating life of a component subject to creep-fatigue. In order to validate the method,
the model presented so far was applied to determine CFCG in C(T) specimens and
compare the results with the experimental data. The formula of Eq. (3.10) was adapted
to C(T) specimen by changing w with W and F ′/F according to Eq. (2.8) [49]. A
solution based on numerical simulations was used to determine the C∗ of Eq. (3.10) in
case of C(T) specimens. This solution is based on the work of Kumar et al. [37] that
gives an analytical J-integral estimation. If the creep strain rate ε̇c is considered instead
of the plastic strain εp, J-integral becomes the crack tip parameter C∗ as previously
demonstrated in Eq. (1.18 a) with η1 defined as per Eq. (1.17). The h1 values estimated
by [37] are reported for plane strain conditions in Tab. 3.2. When different values
of a/W and/or n were considered, the values of h1 were interpolated. The averaged
stress constants of Tab. 2.3 were used to model CFCG according to the (Ct)avg model
defined through the creep reversal parameter. The results in terms of creep-fatigue crack
growth as a function of time are shown as dotted lines in Fig. 3.10 and compared with
the experimental data (continuous lines). The time to failure of the C(T) specimens is
well estimated for each test except the one performed at ∆K = 16.4 MPa m0.5 with
th = 1 h which is overestimated. This is also shown in Fig. 3.11 where a comparison
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Figure 3.10: CFCG model results for C(T) specimens and comparison with experimental data of P91

at 600◦C.
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Figure 3.11: Comparison of the predicted and experimental rupture times of C(T) specimens.

between the experimental and predicted times to failure is shown.

3.3.2 CFCI estimation through the TDFAD approach

In this section the CFCI is modeled through the TDFAD approach contained in R5 [10]
code. The TDFAD provides the construction of a limit line (Fig. 3.12) that changes
according to the considered amount of time defining a region inside where, an hypo-
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Chapter 3. Residual Life Estimation of Pipe Components

thetical crack propagation will not be reached during the assessed time. It is built by
evaluating Kr parameter according to:

Kr =

[
Eεref
Lrσc0.2

+
L3
rσ

c
0.2

2 · Eεref

]−0.5

(3.11)

where E is the elastic modulus for the material at the temperature of the assessment,
εref is the total strain from average isochronous stress-strain curves calculated at the
reference stress σref = Lrσ

c
0.2. The stress σc0.2 represents the 0.2% proof stress from

the average isochronous stress-strain curves. Kr trends to a null value when Lr factor
is greater than a cut-off value Lmaxr defined as:

Lmaxr =
σR
σc0.2

(3.12)

where σR is the rupture stress at the desired time of assessment. Since σR and σc0.2 are
time dependent, the limit line as well as the cut-off values change with the assessment
time. The rupture time tR of a uniaxial creep test can be expressed with reference to

Figure 3.12: Schematic diagram of the TDFAD.

the test stress σR according to:

tR(σR) = HσrR (3.13)

The coefficients of Eq. (3.13) are reported in Tab. 3.3 and were determined from a
fitting procedure applied to the experimental creep rupture data presented in Sec. 2.1.
Eq. (3.13) can be easily reversed in order to express the rupture stress σR at the assessed
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Figure 3.13: Failure time tR as a function of test stress σR of P91 at 600 ◦C.

Table 3.3: Coefficients of Eq. (3.13) for P91 at 600 ◦C.

H r

2.8057E24 -9.8252

time tA

σR =

(
tA
H

)1/r

(3.14)

In this TDFAD assessment the creep deformation is described through the secondary-
tertiary creep law of Eq. (3.15):

εc(σ, t) = λε̇min(σ)tR(σ)

[
1−

(
1− t

tR

)1/λ
]

(3.15)

where ε̇min is the minimum creep strain rate of uniaxial creep tests and tR(σ) is the
rupture time at the actual stress σ that acts on the component. λ is a material constants
that was obtained equal to 7.74 by fitting the experimental uniaxial creep curves of P91
at 600 ◦C of Fig. 2.3 (a) and (b). The minimum creep strain rate during steady-state
ε̇ss was modeled according to the Norton law of Eq. (1.1) by using the high and low
stresses A and n parameters of Tab. 2.3. CCG tests have been used to determine the
material stress intensity factor at initiation i.e. a crack propagation of 0.2 mm. The
experimental data of Fig. 3.14 were fitted to Eq. (3.16) in order to determine the
material constants C1, D1 and q1 of Tab. 3.4

Kc
mat =

[
E

(
C1 +

∆a

D1

) 1
q1

· t
−
(

1
q1
−1

)
i

]0.5

(3.16)
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Chapter 3. Residual Life Estimation of Pipe Components

Because the assessment is performed in creep-fatigue regime, from high temperature
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i
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P
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m
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5 ]

K
mat
c  = [E(C

1
+∆a/D

1
)1/q

1 t
i
-(1/q

1
-1)]0.5

Exp
Fit

Figure 3.14: Material creep fracture toughness at initiation: experimental data and fit.

Table 3.4: Material constants for determining creep fracture toughness of P91 at 600 ◦C.

C1 D1 q1

fatigue tests it is possible to identify the propagation ratio per cycle as a function of the
stress intensity factor variation using the Paris law of Eq. (1.76). The experimental tests
shown in Fig. 2.36 at different load ratios R and frequencies, provided 4 sets of Paris
law constants. The set of constants obtained by test P91-24 performed at f =1 [Hz] and
R = 0.1 was used in the following calculations. At this point the complete procedure
to evaluate whether an hypothetical defect occurs during the assessment time or not is
reported.

• The first step consists of assuming an initial assessment time tA that shall be short
enough to guarantee that initiation, i.e. a crack propagation of 0.2 mm, is not
reached during this time.

• Evaluate the rupture stress σR at the time tA with Eq. (3.14).

• Minimize Eq. (3.15) in order to obtain the stress σc0.2 that produces a creep strain
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εc of 0.2% in the assessment time tA.

εc(σc0.2, tA) = 0.2%→ σc0.2 (3.17)

• Determine the cut-off value Lr,max according to Eq. (3.12).

• In order to build the limit line a vector ~Lr shall be defined:

~Lr =

(
0 :

Lr,max
∆Lr

: Lr,max

)
(3.18)

• The reference stress σref can now be defined:

~σref = ~Lrσ
c
0.2 (3.19)

• The reference creep strain εref can be obtained by using the isochronous creep
curve of Eq. (3.15) and by subtracting the elastic part of the strain ~σref

E

~εref (~σref , tA) = λε̇min(~σref )tR(~σref )

[
1−

(
1− tA

tR(~σref )

)1/λ
]

+
~σref
E

(3.20)

• The limit line can now be calculated:

~Kr =

(
E~εref
~Lrσc0.2

+
~L3
rσ

c
0.2

2E~εref

)−0.5

(3.21)

The limit line defines a region inside which, a propagation of 0.2 mm will not be
reached during the assessment time. This limit line entirely depends on material be-
havior in fact geometry, pressure and crack morphology of the pipe has not still been
considered. It is now possible to evaluate the material creep toughness parameter Kmat

based on the stress intensity factor range acting on the pipe 3.3 considering a load ra-
tio R = 0.1 and different hold times th and operative pressures Pi. The existence of
fatigue cycles requires a revision of the assumed defect propagation during the assess-
ment time. The creep-fatigue crack propagation variation ∆acf is then split between
fatigue ∆af and creep ∆ac damage respectively:

∆ac = ∆acf −∆af (3.22)

where fatigue crack propagation during the assessment time is obtained with the Paris
Law during the number of cycles N considered:

∆af =

∫ tA

0

(
da

dt

)
dt =

∫ tA
th

1

(
da

dN

)
dN =

tA
th∑
i=1

C∆Km (3.23)
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∆K is calculated according to the API RP-579 code [5] and will be discussed later.
The initiation model based on CCG experimental data of Fig. 3.14 is used to define
a new material toughness parameter Kmat starting from the material creep toughness
parameter Kc

mat of Eq. (3.16):

Kmat = Kc
mat

[
∆ac
∆acf

]1/2q1

(3.24)

As previously anticipated, mode I stress intensity factor Ki and stress intensity factor
range ∆K was calculated according to the API RP 579 [5] code. For a cylinder with a
semi-elliptical shape crack in longitudinal direction facing internal pressure the stress
intensity factor and its range is given by Eqs (3.25 and 3.26):

K =
Pir

2
o

r2
o − r2

i

[
2G0 − 2G1

(
a

ri

)
+ 3G2

(
a

ri

)2

− 4G3

(
a

ri

)3

+ 5G4

(
a

ri

)4
]√

πa

Q

(3.25)
∆K = (1−R)K (3.26)

where G0 and G1 coefficients can be determined by using the following equations

G0 = A0,0 + A1,0δ + A2,0δ
2 + A3,0δ

3 + A4,0δ
4 + A5,0δ

5 + A6,0δ
6 (3.27)

G1 = A0,1 + A1,1δ + A2,1δ
2 + A3,1δ

3 + A4,1δ
4 + A5,1δ

5 + A6,1δ
6 (3.28)

where δ is given by:

δ =
2θ

π
(3.29)

where θ is the considered angle, e.g. θ = 0 in plane stress condition (point B of Fig.
3.3) and θ = π/2 in plane strain condition (point A of Fig. 3.3). Ai,i coefficients
are summarized in Tab. 3.5 for a longitudinal semi-elliptical inside surface crack in a
cylinder. Different values of a/c and a/w were considered by linearly interpolating the
given values. Q is a coefficient that depends on the crack geometry:

Q = 1 + 1.464
(a
c

)1.65

for a/c ≤ 1 (3.30)

Q = 1 + 1.464
( c
a

)1.65

for a/c > 1 (3.31)

Coefficients G2, G3 and G4 can be determined according to the following equations in
plane strain conditions φ = π/2:

G2 =

√
2Q

π

(
16

15
+

1

3
M1 +

16

105
M2 +

1

12
M3

)
(3.32)

G3 =

√
2Q

π

(
32

35
+

1

4
M1 +

32

315
M2 +

1

20
M3

)
(3.33)
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Table 3.5: Aii influence coefficients for a longitudinal semi-elliptical inside surface crack in a cylinder.

w/ri a/c a/w Gi A0 A1 A2 A3 A4 A5 A6

0.33333 0.03125

0
G0 0.1965046 2.9373464 -5.2582823 7.4889153 -6.9282667 3.3673349 -0.6677966
G1 0.005178 0.175028 2.771868 -4.6457154 4.6780502 -3.276809 0.9840994

0.2
G0 0.2172042 2.5042847 -2.1152523 -1.0663053 5.5897238 -5.8369981 1.9620413
G1 0.0076407 0.2402259 2.3741989 -3.4818023 3.2921834 -2.5081221 0.8062819

0.4
G0 0.221304 3.086523 -5.31628 10.10488 -9.41905 3.078245 -0.07513
G1 0.010904 0.237907 2.725715 -4.55891 6.414869 -5.95648 2.022734

0.6
G0 0.232672 3.453643 -7.51716 21.60268 -27.4566 15.28585 -3.30802
G1 0.012487 0.283331 2.511357 -3.38107 6.255188 -7.18553 2.628915

0.8
G0 0.243151 3.792504 -9.4367 34.62553 -49.5858 30.87791 -7.47816
G1 0.012925 0.352624 1.997745 -0.58383 3.076408 -5.71804 2.284734

0.33333 0.0625

0
G0 0.2695332 2.1626001 -1.6551569 -1.2970208 4.5604304 -4.3163876 1.4010655
G1 0.0138667 0.1827458 2.5749608 -3.9044679 3.3556301 -2.1772209 0.6420134

0.2
G0 0.2844799 2.0640002 -1.1370689 -1.3784733 3.1901236 -2.4501643 0.6364234
G1 0.0196105 0.216275 2.5422614 -4.2578287 4.5779897 -3.5058747 1.1186308

0.4
G0 0.322094 2.438214 -1.98376 0.244152 4.224652 -5.91198 2.249442
G1 0.03027 0.269097 2.624235 -4.32539 5.244741 -4.41492 1.427343

0.6
G0 0.369015 2.865779 -3.67144 7.489422 -5.18818 -1.15028 1.427836
G1 0.042148 0.350887 2.498683 -3.8769 6.128223 -6.28316 2.200696

0.8
G0 0.427453 3.194318 -5.00364 17.18344 -22.1341 11.3312 -2.13695
G1 0.054034 0.441918 2.130498 -1.76695 3.500662 -4.66738 1.655006

0.33333 0.125

0
G0 0.4065238 0.7772483 3.8861644 -12.573943 16.760207 -11.014593 2.8706957
G1 0.032027 0.1825342 2.2670449 -2.7076615 1.2088194 -0.377743 0.0763155

0.2
G0 0.4128225 1.1171748 1.7294667 -6.5703783 8.5967302 -5.578925 1.4430231
G1 0.0491457 0.0109153 3.9207133 -9.2000295 12.768245 -9.8975712 3.034571

0.4
G0 0.499977 1.11228 3.40801 -12.8313 19.95677 -15.1319 4.407079
G1 0.065536 0.265337 2.296419 -3.19376 2.622579 -1.81326 0.549769

0.6
G0 0.617501 1.225733 4.031972 -14.5662 24.32044 -19.8868 6.106634
G1 0.099839 0.284951 2.683812 -4.61271 5.80132 -4.842 1.533094

0.8
G0 0.792049 1.012777 6.866883 -21.9541 36.42926 -29.7102 9.010192
G1 0.147658 0.224455 3.553285 -7.20684 10.47417 -8.38954 2.38831

0.33333 0.25

0
G0 0.6152816 -0.3348694 6.295562 -15.590618 19.299508 -12.488107 3.3010035
G1 0.0703566 0.2828152 1.4036169 -0.6511596 -1.2076596 1.0318656 -0.2423741

0.2
G0 0.61512 -0.2559286 6.9419508 -19.977395 28.061835 -19.892262 5.6000832
G1 0.0890045 0.1593445 2.5204791 -5.1000189 6.3764694 -4.8919376 1.5129735

0.4
G0 0.730513 -0.32208 6.342731 -15.3906 18.41126 -11.3497 2.819398
G1 0.1265635 0.1445088 2.2324974 -3.0386458 2.2662085 -1.4535727 0.4548018

0.6
G0 0.912433 -0.76652 9.156134 -23.0813 29.89695 -19.9456 5.311944
G1 0.168776 0.101417 2.609113 -3.88848 3.419227 -2.20104 0.612027

0.8
G0 1.162612 -1.39709 12.5962 -31.8562 42.73281 -29.1466 7.768164
G1 0.245071 -0.1281 3.94243 -7.53721 9.006448 -6.08161 1.536629

0.33333 0.5

0
G0 0.8776607 -0.6729719 3.7721411 -6.520906 6.3377934 -3.7028038 0.9872447
G1 0.1277541 0.4368502 0.4904522 1.0427434 -2.9631236 2.0826525 -0.5184313

0.2
G0 0.8818313 -1.0917996 6.7441757 -15.991176 21.054792 -14.772037 4.2281725
G1 0.1441557 0.1424866 2.3284045 -4.7895448 6.1386818 -4.8362727 1.5452935

0.4
G0 0.940798 -0.49854 1.917025 -0.01925 -4.63706 5.216683 -1.80754
G1 0.1711202 0.1668531 1.926756 -3.2630245 3.5831509 -2.8636537 0.9729171

0.6
G0 1.115289 -1.34423 5.945865 -10.0972 8.932753 -4.06213 0.718593
G1 0.2163543 0.1549463 1.5248691 -1.5230688 0.7692177 -0.7731253 0.369949

0.8
G0 1.291008 -1.34637 4.360198 -3.76081 -1.33649 3.843603 -1.66933
G1 0.261785 0.151261 1.179357 0.356858 -2.84394 2.601947 -0.874

0.33333 1

0
G0 1.1977992 -0.524487 0.1498299 2.3284866 -5.1058499 4.3469049 -1.348798
G1 0.1870117 0.6987352 0.13169 0.7269255 -2.5259384 2.1756251 -0.6540458

0.2
G0 1.1843664 -1.1847612 4.990228 -13.538735 21.119771 -17.017414 5.4794601
G1 0.2064638 0.1880635 3.2277985 -9.0382566 13.410536 -10.743271 3.4724686

0.4
G0 1.2310867 -1.2996546 5.3458402 -14.297856 22.283375 -18.132719 5.9308732
G1 0.2232606 0.1330441 3.4286845 -9.5400946 14.273538 -11.599332 3.8156481

0.6
G0 1.3016702 -1.3329884 4.6823879 -11.389326 16.885721 -13.394792 4.3283933
G1 0.2440755 0.1533295 3.0387623 -7.9723882 11.374712 -9.0179366 2.9233036

0.8
G0 1.405999 -1.48444 4.601583 -9.7191 12.97917 -9.59639 2.96047
G1 0.254777 0.3338937 2.0367399 -5.9096868 9.5170399 -8.2252015 2.7607498

0.33333 2

0
G0 0.8150546 -0.5623828 1.4465771 -4.6778133 8.4192164 -7.9025932 2.9866351
G1 0.1359146 0.070234 3.5558581 -11.034445 16.967724 -14.126991 4.8706612

0.2
G0 0.8291377 -0.9895481 4.1798664 -12.600881 20.280744 -16.914774 5.7445745
G1 0.1367171 0.0546432 3.3517976 -10.030368 14.931862 -12.199484 4.1771813

0.4
G0 0.8281292 -1.0079708 4.356094 -13.17069 21.184349 -17.62477 5.9654552
G1 0.1383911 0.0271839 3.5221879 -10.559706 15.796147 -12.905023 4.4038513

0.6
G0 0.8416824 -1.0386714 4.4633302 -13.408838 21.463769 -17.80813 6.0224184
G1 0.1432074 0.0086329 3.611371 -10.774368 16.083937 -13.122391 4.4757876

0.8
G0 0.8492888 -0.8700518 3.1479406 -8.7543723 13.222524 -10.685678 3.6241547
G1 0.1360843 0.2203399 2.2144388 -6.1874959 8.3319395 -6.6071612 2.3172922

G4 =

√
2Q

π

(
256

315
+

1

5
M1 +

256

3465
M2 +

1

30
M3

)
(3.34)
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where M1, M2 and M3 are equal to:

M1 =
2π√
2Q

(3G1 −G0)− 24

5
(3.35)

M2 = 3 (3.36)

M3 =
6π√
2Q

(G0 − 2G1) +
8

5
(3.37)

The plastic collapse load pL was defined according to the global solution proposed by
the R6 [11] code:

pL =γfps

[
1

Min

ln(1 + a/ri)

(
1 + a/ri

(
1− 1

Min

))
ln

(
1 + w/ri
1 + a/ri

)]
+√(

1 +
1

2

(
1 +

1

Min

)
a/rifps

)
+

1

4

(
1− 1

M2
in

)
(a/rifps)2−(

1 +
1

2

(
1 +

1

Min

)
a/rifps

) (3.38)

where:

•

Min =

(
1 +

1.4(a/ri)(
a
c

)2
(1 + a/ri)

)0.5

(3.39)

•

fps =


1 w/o crack face pressure

1
1+ 1

2
αηi

for (a/c) ≤ 1

Φ
Φ+ 1

2
αηi

for (a/c) > 1
w/ crack face pressure

(3.40)

•

γ =


1 Tresca based solution

2√
3

Mises based solution
(3.41)

It is now possible to identify a point on the TDFAD diagram (Fig. 3.12):

Lr =
Pi
pL

(3.42)

Kri =
K

Kc
mat

(3.43)

If the assessed point lies inside the limit line of Fig. 3.12, the assessment time tA is
increased by a step time ∆t. When the assessed point is no longer confined in the limit
line, the initiation time is reached and crack propagation rate can now be evaluated
according to the (Ct)avg model through the creep reversal parameter CR.
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3.3.3 Creep-Fatigue Crack Initiation and Propagation Assessment

After validation with experimental data, the proposed creep-fatigue crack initiation and
growth model was extended to the pipe geometry displayed in Fig. 3.3 with an initial
crack size a = 5%w, 10%w, and 12.5%w at the nominal pressure level of 25 MPa. The
C∗ parameter included in Eq. (3.10) was calculated according to the Cref approach
contained in BS 7910 standard ( [12]). The results shown in Fig. 3.15 (a), (b), and (c)
highlight the detrimental effect given by the cyclic load. The shorter the hold time th is,
the faster the crack propagation is. However, if a hold time of 10 hours is considered,
i.e. the typical operating condition of power plant pipes, the residual life is reduced by
an approximated factor of 2.2 with respect to the life prediction in pure CCG conditions
obtained by imposing a hold time th = 500000 hours. Regarding residual life estima-
tions in CCG conditions, it might be worth noting how the failure time is reduced with
respect to the CCG assessments of Sec. 3.2. This was expected because, as previously
discussed, both approaches provided by API 579 [5] and BS 7910 [12] did not provide
a conservative solution at low stress and crack growth rate levels with C∗ and Ct (Fig.
3.2 and 3.7) while the procedure discussed in this Section strongly depends on crack
propagation correlation functions obtained experimentally in Ch. 2.

3.4 Summary

In this Chapter methods to model creep and creep-fatigue crack initiation and growth
in power plant pipes were discussed. Under creep conditions, the 2CD approach con-
tained in the Fitnet [24] procedure was combined with the BS7910 [12] approach in
order to model CCI and CCG respectively. The 2CD was based on the experimen-
tal tests of uniaxial creep and CCG performed on the modified P91 material. In this
context, the ligament damage was evaluated according to the Larson-Miller parameter
while the crack tip damage was based on the creep crack initiation data. The CCG rates
were obtained by using their relationship with the crack tip parameter Cref that was
calculated with a reference stress approach. The Norton law coefficients for high and
low stresses reported in Tab. 2.3 were used to identify a reference strain rate ε̇ref that
allowed the estimation of the crack tip parameter Cref . The predictions performed with
this method provided a good estimation of the residual life for the component operating
at 25 MPa and were aligned to the same estimations performed with the API 579 [5]
method. The predictions performed at an internal pressure of 50 MPa instead turned
out to be less conservative that the API 579 code.
Under creep-fatigue conditions, the TDFAD approach contained in R5 code [10] was
sided by an alternative method based on the analytic calculation of the crack tip pa-
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Figure 3.15: Creep-fatigue crack initiation and growth predictions in pressurized pipes with axial

defect operating at 25 MPa .

rameter (Ct)avg under the hypothesis of partial reversal of the creep strains during the
fatigue cycles. The TDFAD approach was applied to evaluate the CFCI and required:
experimental creep data in terms of rupture times, creep and minimum creep strain
rates; experimental CCI data derived from the CCG tests of Sec. 2.2; the Paris-Erdogan
coefficients derived from the HT FCG tests of Sec. 2.5. CFCG was modeled by means
of the (Ct)avg parameter thanks to its analytical definition based on the creep reversal
parameter CR that was determined from the load-line displacement records of the ex-
perimental CFCG tests performed on C(T) specimens (Sec. 2.3). The results obtained
from the application of this proposed method, highlighted at the operating conditions
of 25 MPa, the detrimental effects of the fatigue damage. The shorter the hold time
th is, the faster the crack propagation rates are. Although by assessing an hold time
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3.4. Summary

of 10 hours, close to the actual load cycles of power plant pipes, the time to rupture is
reduced by a factor of 2.2 with respect to the pure CCG prediction.

89



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 90 — #120 i
i

i
i

i
i



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 91 — #121 i
i

i
i

i
i

CHAPTER4
Numerical Simulations of CCG and CFCG

This chapter deals with the description of finite element (FE) analyses performed to
predict the CCG and CFCG behavior of the experimental tests previously described in
Ch. 2.
The CCG model, after validation by means of comparison with the experimental tests
on C(T) specimens, is extended to a pipe geometry in order to characterize the creep
damage distribution in axial cracks located on the inside surface.
A good estimation of the HT resistance for a material represents a starting point for the
residual life assessment of cracked components. A comprehensive review of several
uniaxial creep models with the aim to identify the one, that in combination with an
opportune continuum damage approach, is able to estimate by FE analysis the creep
crack propagation rate.
The numerical simulations were performed on the FE software Abaqus 6.14 with ded-
icated Fortran user subroutines to represent the viscous behavior of the material, the
creep damage, and the crack propagation.

4.1 Uniaxial Creep Models

The main aspect regarding the numerical simulations under these critical conditions is
represented by the need of an opportune creep model that, not only is able to describe
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Chapter 4. Numerical Simulations of CCG and CFCG

the experimental phenomenon accurately, but, also, it can be easily applied to the FE
framework. For this reason, a critical review of the state-of-the-art uniaxial creep mod-
els shall be always considered when trying to predict CCG and CFCG behavior through
numerical simulations.
All the different approaches found in scientific literature provided a good starting point
for the FE simulations contained in this work. In addition to this, they also highlighted
some limitations. Firstly, some of them, do not always provide a complete description
of the creep damage. As it will be later shown, some approaches are formulated neglect-
ing the primary part of the creep curves. This results in simulating under the hypothesis
of an instantaneous steady-state creep behavior for the material that is acceptable when
modeling high reference stresses, but might be not enough accurate when modeling
low reference stresses, i.e. the standard operating condition for power plant pipes. This
aspect, also, represents a limitation when modeling creep-fatigue crack growth. In fact,
the interaction between the evolving creep zone and the cyclic plastic zone is not rep-
resented by neglecting the small-scale creep effects. This also explain the reason why
nowadays not so many CFCG numerical models are available. The last important short-
coming related to CCG and CFCG simulations, is the transposition of these models to
predict the resistance of components rather than testing specimens. Creep crack growth
models are typically obtained by:

• uniaxial creep deformation models that explicitly admit cavitation damage;

• their extension to multiaxial streess conditions given by the presence of crack tip.

Uniaxial creep models can be further divided in two main groups depending on the
variable that is used to describe the creep strain rate ε̇c:

• time dependent models;

• strain dependent models.

Among the time dependent models the one proposed by Kachanov [35] consists in a
couple of continuum damage constitutive equations that define the creep strain rate ε̇c

and the damage evolution rate ω̇:

ε̇c =
3

2
A′
(

σeq
1− ω

)n′
Sij
σeq

tm
′

(4.1)

ω̇ = B′
σχ
′

R

(1− ω)ϕ′
tm
′

(4.2)

where A′, n′, m′, B′, χ′ and ϕ′ are material constants that must be fitted to complete
experimental creep curves at different stress σeq and Sij is the deviatoric stress tensor.
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4.1. Uniaxial Creep Models

The rupture stress σR is defined according to Eq. (4.3) in relation to the multiaxial
stress state parameter α′ and the maximum principal stress σ1.

σR = α′σ1 + (1− α′)σeq (4.3)

This model does not require any extension to multiaxial stress state which is already
included by considering Eq. (4.3). With the Kachanov model it is also possible to
reproduce the entire creep curve including primary secondary and tertiary creep. The
primary part of the creep curve is given by the tm′ term where m′ has a negative value.
A′ and n′ have the same function of the A and n Norton law constants of Eq. (1.1) and
therefore they describe the steady-state creep deformation. Equation (4.1) tends to an
infinite value when the damage ω tends to a unit value simulating tertiary creep, i.e.
a fast creep strain rate. In this model the determination of the six material constants
might be challenging due to the different ranges of each constant. Hyde et al. [30] sug-
gested a simplified three variable approach that can be applied if the normalized creep
curves at the same temperature and at different stress levels show a similar behavior.
Unfortunately, as previously discussed (Sec. 2.1), P91 is affected by a different creep
mechanism if low and high stresses are considered as shown in the normalized creep
curves of Fig. 4.1. For this reason, the simplified approach by Hyde [30] is not appli-
cable in this work and therefore, the standard six variables approach shall be followed.
However the numerical applicability of this model might be complicated due to the fact
that the damage evolution (Eq. (4.2)) starts at ω values close to unity as, also, observed
by Saber [46]. This causes an extreme damage localization at the crack tip and an high
mesh dependency of the solution.
Another time dependent model that is less mesh-dependent is the one proposed much

later by Liu and Murakami [39] based on a micromechanics approach. It consists in the
two constitutive Eqs (4.4 and 4.5):

ε̇c =
3

2
A′′σn

′′−1
eq Sij exp

[
2(n′′ + 1)

π
√

1 + 3/n′′

(
σ1

σeq

)2

ω3/2

]
(4.4)

ω̇ =
B′′(1− e−q2)

q2

σχ
′′

R eq2ω (4.5)

where A′′, n′′, B′′, q2 and χ are material constants. This model suggests an exponential
damage evolution equation that reduces the singular stress sensitivity observed in the
Kachanov’s model. In this way the damage is no longer confined to a limited area of the
crack tip and thus the mesh-dependency is drastically reduced. However the Liu and
Murakami model itself does not account for primary creep. With the aim to simulate
even the transient during the application of the load, it requires the extension proposed
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Figure 4.1: Normalized creep curves of P91 at 600 ◦C.

by Riedel [44] that changes Eq. (4.4):

ε̇c =
3

2
A′′σn

′′−1
eq Sij exp

[
2(n′′ + 1)

π
√

1 + 3/n′′

(
σ1

σeq

)2

ω3/2

]
tm
′′

(4.6)

The term tm
′′ is analogous of the one present in Kachanov’s model and is added to rep-

resent the primary creep in fact m′′ has a negative value. The modified Liu-Murakami
model depends on six material constants, that shall be determined from experimental
creep uniaxial data, and the multiaxial stress state coefficient α, that can be determined
either by fitting experimental creep tests of notched bars or experimental CCG tests on
C(T) specimens.
In this work the material constants A′′, n′′ and m′′ of Eq. (4.6) were fitted to the ex-
perimental uniaxial creep data of Fig. 2.3 that cover a stress range from 80 to 160
MPa through a least squares regression method. The material constants obtained dur-
ing this fitting procedure are reported in Tab. 4.1. The Liu-Murakami modified model
was then analytically applied to estimate the uniaxial creep behavior. Fig. 4.2 shows,
as example, a comparison between the analytical estimation of the uniaxial creep test
performed at σ = 120 MPa. The model gives a good prediction of the failure time for
the specimen and, also, the primary creep and the minimum creep strain rate ε̇min are
well reproduced.
The next step is to verify the applicability of this model in a FE environment. With this

purpose a 3D axisimmetric model was built with the FE software Abaqus based on the
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Table 4.1: Liu-Murakami model material constants for P91 at 600◦C.

A′′ n′′ m′′

6.42E-21 8.02 -0.65
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Figure 4.2: Analytical application of the Liu-Murakami modified model with the material constants of

Tab. 4.1.

geometry of the creep cylindrical specimen of Fig. 4.3 with a gage length of 50 mm and
a diameter of 10 mm. Because of axial symmetry only half of the specimen was studied.
The elastic-plastic material properties previously discussed in Sec. 2.1 where applied
together with the modified Liu-Murakami model that was linked to the FE software by
means of a Fortran user-defined subroutine CREEP.for. The load, corresponding to a
stress σ = 120 MPa, has been applied to a point lying on the symmetry section that
was coupled to the upper surface. An average element size Lel = 100µm was used in
the midline section and it is of the same order of magnitude of the average grain size
for the studied P91 steel. Simulation was performed in two steps: the first consists in
the application of the test load, while the latter is a viscous step where the irreversible
creep deformation occurs. The strain has been acquired at the gauge length so that it
was possible to compare the creep strain as a function of time with the experimental
data and the analytical application of the model as shown in Fig. 4.4. The solution
obtained with the FE method appears significantly different from the experimental and
the analytical results. The reason of this can be attributed to the numerical integration
of the FE simulation. In fact, at the beginning of the viscous step, small time steps are
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Figure 4.3: Schematic draw of the uniaxial creep specimen.
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Figure 4.4: Liu-Murakami modified model application to FE method: comparison with analytical

model and experimental results

required in order to converge to the solution. If a small time t is considered, e.g. 1E-10,
Eq. (4.6) trends to high values of strain rates ε̇c causing a premature creep deformation
that decreases the time to failure significantly. This problem was solved by consider-
ing an initial time that is similar to the first creep strain data after the beginning of the
experimental creep test. However, this approach is difficultly applicable to CCG sim-
ulations where the reference stress of the C(T) specimens is lower than the minimum
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stress σ of the uniaxial creep tests. This numerical integration issue could be solved by
considering creep models that depend on other variables instead of the total time of the
simulation.
The model proposed by Graham and Walles [26] depends on the creep strain εc and,
therefore, the time dependency is implicit reducing any numerical integration issue.
The original model contains also a temperature dependency that, for the purpose of
this work, was neglected because a reference temperature of 600 ◦C is considered. It
consists in the superposition of three power laws according to Eq. (4.7):

ε̇c = A1σ
n1
eq (εc)m1 + A2σ

n2
eq (εc)m2 + A3σ

n3
eq (εc)m3 (4.7)

where Ai, ni and mi are material constants that as for previous models have been fitted
to uniaxial creep data through a least squares regression technique. Due to the large
range of the experimental creep strain rate data, the least squares LS were normalized
according to:

LS =

(
εcexp. − εcpred.

εcexp.

)2

(4.8)

where εcexp. and εcpred. are the experimental creep strain and the predicted creep strain
by using the Graham-Walles model. The fitting procedure allowed the determination
of the 9 material constants reported in Tab. 4.2. It might be worth noting that since
the available creep data highlighted a different behavior when low and high stresses
are applied, splitting the fit procedure between two datasets representing the low and
high stresses condition is expected to produce more accurate results. However, in a nu-
merical simulation context, splitting the constitutive equation of the creep strain in two
different solutions, reduces the time to convergence of the FE problem. For this reason
it was chosen to represent the uniaxial creep data through a unique fit comprehending
low and high stresses.
The axi-symmetric model used for the Liu-Murakami modified model was used, once

Table 4.2: Graham-Walles model material constants for P91 at 600 ◦C.

A1 A2 A3 n1 n2 n3 m1 m2 m3

2.22E-42 7.75E-12 4.15E-13 16.42 1.45 6.03 -0.71 -0.80 3.69

again, to evaluate the numerical applicability of the model. For this reason, the user-
defined subroutine CREEP.for was rewritten according to the Graham-Walles model
and all the stress range of the experimental creep tests (Fig. 2.3, Ch. 2) were analyzed.
Results are shown in Fig. 4.5 (a) and (b) in terms of creep strain as a function of time.
The experimental data are well reproduced by the model at all the stress ranges. The
failure time of the specimens is always underestimated except for the test performed
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Figure 4.5: Graham-Walles FE model creep curves: comparison with experimental tests.

at σ = 130 MPa that is slightly overestimated (Fig. 4.6. This can be attributed to the
usual scatter in the experimental creep data. Fig. 4.7 shows the creep strain rate ε̇c as a
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Figure 4.6: Comparison between the predicted and the experimental failure times.

function of time in low stresses (a) and high stresses (b) conditions. To summarize, the
Graham-Walles model was successfully fitted to experimental creep data and included
in a FE simulation of uniaxial creep cylindrical specimen. The numerical results were
validated at different stress levels after they provided a good agreement with the ex-
perimental data. The primary creep phase is well represented and is expected to give a
good estimation of the load-line displacement in the following CCG simulations. For
this reason the Graham-Walles model was selected to represent the creep behavior in
the FE simulations of the next section.
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Figure 4.7: Graham-Walles FE model creep strain rate as a function of time: comparison with

experimental tests.

4.2 Ductile Exhaustion Approach to Model Creep Damage

Once the creep behavior of the material is correctly described, CCG simulations re-
quires an extension from uniaxial to multiaxial state conditions, and a formulation for
the creep damage calculation. This extension which is already included in the damage
formulations of Kachanov and Liu-Murakami modified models, however is not present
in the Graham-Walles creep model. For this reason, a ductility exhaustion approach
was studied and applied to this latter model, in order to be able to represent the creep
damage even in cracked components that are affected by a multiaxial stress state close
to the crack tip.
The ductility exhaustion approach can be summarized by looking at Fig. 4.8. It consists
on considering the ligament ahead of the crack tip as a combination of multiple creep
cylindrical specimens. As soon as one of these specimens reaches its creep ductility
εf , it is no longer able to support stresses and therefore causes the crack to propagate.
The damage approach used in the following simulations is based on a modification by
Wen and Tu [54] of the Cocks and Ashby [14] model, for intergranular fracture during
power-law creep under multiaxial stresses.
The typical morphology of a creep crack growth is shown in Fig. 4.9 and is the result of
an experimental CCG test of Sec. 2.2. Fig. 4.9. Fig. 4.9 a) shows the initial formation
of voids that nucleates at grain boundaries and, usually, with a perpendicular orienta-
tion with respect to direction of the tensile stress. Fig. 4.9 b) illustrates the coalescence
of these voids that create a grain-sized crack. After long periods at high temperature,
these micro-cracks link to each other causing the creep crack to propagate as shown in
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Figure 4.8: Schematic diagram of the ductility exhaustion approach.

Figure 4.9: Creep crack growth morphology of P91 tested at 600◦C.

Fig. 4.9 c).
The reason for cavity nucleation might be found in different mechanisms such as va-

cancy condensation, grain boundary sliding and dislocation pile-ups, but knowledge
about them is not yet clear. Therefore the model herein described will deal with the
cavity growth and coalescence rather than the nucleation processes. In this context
several phenomenon are possible causes for cavity growth:

• Viscoplastic cavity growth;

• Diffusion controlled cavity growth;

• Constrained diffusion cavity growth.
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Figure 4.10: Schematic Diagram of the cavity growth model [54].

Each of these theories directly depend on the material properties and the temperature
and stress levels applied to the material. It is known that at high strain rates and stresses
the cavity growth might be due to viscoplasticity that directly alters the grains mor-
phology, while at low strain rates and stresses, the vacancy diffusion is the driving
mechanism for cavity growth. This explains, also, the different behavior found in the
minimum strain rate of the uniaxial creep tests that varies with the applied stress (Fig.
2.5). In spite of that, in CCG conditions, the presence of an initial crack (Figs 4.10 a)
and b)) drastically increases the strains and stresses in a region close to the cracktip.
Therefore, viscoplasticity is assumed to be the driving mechanism for cavity growth
and coalescence, if a contour close to the cracktip is considered.
In this area, Fig. 4.10 (c) shows two grains, with a group of voids located in the grain
boundary region, subjected to a multiaxial traction σa + Triax. The cavity growth is
measured by analysing the change of the volume of the slab containing the cavities if
the following assumptions are verified:

• Incompressible material without volume variations;

• Shperical cavities of radius rh change in volume but not in shape;

• Grain boundaries slide in order to accomodate the volume change in the slab;

• The slab width is much larger than its thickness;
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• The cavity growth at grain boundaries is controlled by Power-law creep;

• The hydrostatic stress σh has no effect on the steady-state creep strain rate if there
are no cavities.

The cylindrical volume of Fig. 4.10 (d) is considered in this model. This cylinder has
a radius of dimension l equal to the semi distance between voids and height d i.e. the
a grain size for the studied material. At the midline section of the volume a spherical
cavity of radius rh is considered and in order to obtain a better bound an additional
arbitrary boundary zone cylinder of radius z where rh < z < l is identitfied. The
cylinder is subjected to the axial stress σa and the triaxial stress Triax. On the grain
boundary (see Fig. 4.11) the area fraction of voids fh is easily described by Eq. (4.9)

fh =
πr2

h

πl2
=
r2
h

l2
(4.9)

The next step is to find a relationship between fh and the and the creep strain without

Figure 4.11: Schematic draw of the grain boundary.

considering any voids. In this context the variation of volume V can be expressed as a
function of the rate of variation of fh and the steady-state creep strain rate ε̇ss:

1

V

dV

dt
=

2rh
d

(
dfh
dt
− fhε̇ss

)
(4.10)

and at the same time as a function of the axial strain rate ε̇a:

1

V

dV

dt
= ε̇a + 2ε̇r = ε̇a − ε̇ss (4.11)
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where ε̇r is the radial strain rate and in case of a cylinder is equal to −ε̇ss/2. Thanks to
the energy principles, Cocks and Ashby [14] suggested the upper bound for ε̇a:

ε̇a = ε̇ss

(
1− 2rh

d

fh
fz

)
+

2rh
d

fh
fz

(
ε̇ss

(1− fz)n

)
(1 +G)(n+1)/2 (4.12)

where fz = r2
h/z

2 is the area fraction of voids in the boundary cylinder of radius z and

G = 3

(
n

n+ 1

1− fz
ln fw

Triax
σa

)2

(4.13)

where Triax/σa = σh/σeq − 1/3. By combining Eqs (4.10 - 4.12) it is possible to
express the void growth rate dfh/dt as a function of the power law creep:

dfh
dt

= ε̇ss
fh
fz

(
(1 +G)(n+1)/2

(1− fz)n
− (1− fz)

)
(4.14)

Since of difficulties in finding a scientific relation between the void growth rate dfh/dt
and the stress triaxiality σh/σeq Cocks and Ashby gave a semi-empirical equation:

dfh
dt

=
ε̇ss
α′′

(
1

(1− fh)n
− (1− fh)

)
(4.15)

where α′′ is a function of the hyperbolic sine of a parameter containing the creep power
law exponent n and the stress triaxiality [14]:

α′′ = sinh−1

[
2(n− 0.5)

(n+ 0.5)

σh
σeq

]
(4.16)

Eq. (4.15) can now be integrated in order to obtain the time to coalescence tc of the
micro-voids between the interval:

fh = fi, t = 0

fh = fc, t = tc
(4.17)

where fi and fc are the initial void density and the void density at coalescence respec-
tively.

tc =

∫ fc

fi

ε̇ss
α′′

(
1

(1− fh)n
− (1− fh)

)
dfh (4.18)

By multiplying and dividing by (n − 1) the integral can be solved considering that∫
f ′(x)/f(x) is equal to ln f(x) where f(x) = (1 − (1 − fh)n+1) and f ′(x) = (n +

1)(1− fh)n:

tc =
α′′

ε̇ss

∫ fc

fi

n+ 1

n+ 1

(1− fh)n

[1− (1− fh)n+1]
dfh

=
α′′

ε̇ss(n+ 1)

∣∣ln [1− (1− fh)n+1
]∣∣fc
fi

=
α′′

ε̇ss(n+ 1)
ln

[1− (1− fc)n+1]

[1− (1− fi)n+1]

(4.19)
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The multiaxial ductility ε∗f is easily determined according to Eq. (4.20)

ε∗f = ε̇sstc =
α′′

n+ 1
ln

[1− (1− fc)n+1]

[1− (1− fi)n+1]
(4.20)

The uniaxial creep ductility εf can instead be calculated by updating the α′′ function to
its uniaxial formulation α′′0 obtained by observing that in uniaxial conditions σh/σeq =

1/3 at the time to coalescence tc0 in uniaxial conditions

α′′0 = sinh−1

[
2

3

(n− 0.5)

(n+ 0.5)

]
(4.21)

ε∗f = ε̇sstc0 =
α′′0
n+ 1

ln
[1− (1− fc)n+1]

[1− (1− fi)n+1]
(4.22)

Thus the ratio, between multiaxial and uniaxial ductility, is now expressed by dividing
Eq. (4.22) by Eq. (4.20):

ε∗f
εf

=
α′′

α′′0
=

sinh
[

2
3

(
n−0.5
n+0.5

)]
sinh

[
2
(
n−0.5
n+0.5

)
σh
σeq

] (4.23)

As previously anticipated, in 2014 Wen and Tu [54] proposed a modification of the
Cocks and Ashby cavity growth model that consists in the change of the function α′′

and α′′0 with the following equations:

α′′ =

[
2− 0.5

(
1

5n

)n−1
]
/ exp

[
2(n− 0.5)

(n+ 0.5)

σh
σeq

]
(4.24)

α′′0 =

[
2− 0.5

(
1

5n

)n−1
]
/ exp

[
2

3

(n− 0.5)

(n+ 0.5)

]
(4.25)

Following this approach the creep dutility ratio of Eq. (4.23) becomes:

ε∗f
εf

=
α′′

α′′0
= exp

[
2

3

(
n− 0.5

n+ 0.5

)]
/ exp

[
2

(
n− 0.5

n+ 0.5

)
σh
σeq

]
(4.26)

and as shown in Fig. 4.12, with this modification, the theoretical normalized values
of void growth rate [1/(ε̇ssfh) · dfh/dt] is better described, especially at low levels of
stress triaxiality σh/σeq, than the Cocks-Ashby original model.
For this reason the model by Wen-Tu [54] will be used to predict the crack propagation
in the following CCG simulations because it is expected to represent better the void
evolution even at low stress triaxiality condition, i.e. in regions where the stresses and
strains intensification given by the crack tip is not relevant.
Thus a damage variable at the increment i, ωi can now be defined by using Eq. (4.26)

ωi = ωi−1 +
∆εc

ε∗f
(4.27)
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Figure 4.12: Normalized void growth rate: comparison between the theoretical, Cocks-Ashby and

Wen-Tu models.

where ∆εc is the creep strain variation during increment i. This damage variable will
be included in the FE code such as, when it reaches a value close to unity causes crack
propagation.
This formulation of damage is included in the user-defined subroutine MPC.for for 2D
analyses and in the user-defined subroutine USDFLD.for for 3D analyses.

4.3 CCG Numerical Simulation for C(T) Specimen [21]

Two FE models were considered during the numerical investigation of the CCG behav-
ior of C(T) specimens of P91 material at 600◦C:

• 2D plane strain 4 nodes elements model;

• 3D hexahedral 8 nodes elements model.

These two models were studied in order to identify possible variations in the results
when considering a simplified plane strain condition rather than a 3D simulation that is
known to correctly represent the constraint condition of the C(T) specimen (Fig. 2.7)
used in the experimental tests of Sec. 2.2. In fact, in 3D, besides representing the cor-
rect conditions of plane strain and plane stress along the crack front, it is also possible
to study the effects of the presence of the side grooves that reduce the section thickness
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Table 4.3: C(T) specimens data for FE simulations.

W [mm] B [mm] Bn [mm] a0 [mm] K0 [MPa m0.5] P [N] ∆ac [mm]

25.4 12.7 10.1 12.3
15.0 2940 2.4
19.2 3770 1.8
22.4 4400 2.7

B to the net section thickness Bn.
In both models same elastic-plastic properties of Sec. 2.1 were applied while the creep
damage was modeled thanks to the user-defined subroutine CREEP.for that was im-
plemented according to the Graham-Walles model of Sec. 4.1 and the user-defined
subroutine MPC.for implemented according to the ductility exhaustion damage model
of Sec. 4.2.
For the damage calculation according to Eq. (4.26), the uniaxial creep ductility εf was
used to calculate its equivalent in multiaxial stress conditions according to Eq. (4.26).
The value of εf was chosen from the experimental creep data of Fig. 2.3. However
since the tests provided a very large scatter in data, different values of εf were studied
in a sensitivity analysis that, in the following section follows the preliminary results
obtained with an optimized value of uniaxial creep ductility based on the experimental
CCG data of Sec. 2.2. For each model, three initial stress intensity factor conditions
were studied in order to represent the experimental CCG tests of Sec. 2.2. The max-
imum crack propagation allowed was limited to the creep crack variation during the
tests ∆ac. The specimen data for 2D and 3D FE simulations are reported in Tab. 4.3
where a0 is the initial crack size, K0 is the initial stress intensity factor, P is the applied
load, and ∆ac is the final creep crack propagation.
Both FE analyses consists in two different time steps. The first lasts 1 hour and is a
simple elastic-plastic step where the test load is applied. The second is a visco-elastic-
plastic step that lasts the amount of time needed to reach the maximum creep crack
propagation ∆ac allowed.

2D model

Because of symmetry only half of the C(T) specimen was modeled as shown in Fig.
4.13. A section thickness equal to the net section thickness Bn was given to the model
and as a consequence the applied load P was changed with respect to the experimental
data in order to obtain the same initial stress intensity factor K0. Thus the load P was
applied to a reference point RF that was coupled to a rigid body coincident with the
pin hole. To the reference point only vertical displacements were allowed. The liga-
ment section represented by the thick black line of Fig. 4.13 was constrained on a rigid
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surface through a multi point constraint implemented, together with the damage formu-
lation, in the user-defined MPC.for subroutine that allows the sliding of the ligament
in the crack propagation direction. This subroutine acts by constraining the vertical
displacement of all the points lying along the ligament unless the value of damage at
the integration points, close to the nodes at the crack tip (black points of Fig. 4.14 (b)),
is greater than 0.99. When this condition is verified in both integration points, the crack
tip node is then released causing a crack propagation of the same size of the element
size Lel. The refined mesh, in a region with a length equal to ∆ac, is illustrated in
Fig. 4.14 (a). An element size of 100 µm was adopted because it is of the same order
of magnitude of the average P91 grain size, although, other element sizes were, also,
studied in order to investigate the mesh dependency of the numerical results.

Figure 4.13: Schematic diagram of the 2D FE model.

3D model

Because of symmetry only a fourth of the C(T) specimen was modeled according to
Fig. 4.15. In order to improve the mesh quality, the starting notch of the C(T) specimen
was not reproduced. Once again the viscous behavior is modeled with the same user-
defined subroutine CREEP.for while the damage and the crack propagation are modeled
by the user-defined subroutine USDFLD.for. The damage model is the same ductility
exhaustion approach used in 2D analyses, while the crack propagation is modeled in
a different way. The subroutine defines the elastic modulus E as a function of the
user-defined field variable, i.e. the damage ω according to Tab. 4.4. Thus, as soon as
the damage ω reaches 0.99 at the crack tip node, the elastic modulus of the adjacent
element, is slowly reduced to a unitary value as shown in Fig. 4.16. With a unit value
of elastic modulus, the element is no longer able to support any stress causing the crack
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Figure 4.14: Mesh detail close to the crack tip.

Table 4.4: Elastic modulus dependence on the field variable ω.

E [MPa] ω

147016 0

147016 0.99

1 1.00

Figure 4.15: Schematic draw of the 3D model.

propagation. The load was applied to a reference point that was coupled to the cylindric
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Figure 4.16: Damage and stress evolution in one node of the 3D FE simulation.

Figure 4.17: Schematic diagram of the load coupling and the ligament section in the 3D FE model.

section in magenta of Fig. 4.17. Symmetry boundary conditions were applied to the
ligament section (dotted area of Fig. 4.17) and the midline section of Fig. 4.18 . In
order to fully replicate the CCG tests a curvilinear crack front was given to each model
according to the experimental pre-crack front sizes measured in nine points as shown
in Fig. 4.19. Close to the crack tip the mesh was refined with an average element size
of 100 µm as illustrated in Fig. 4.20. As per the 2D model, other element sizes will be
studied in order to identify the mesh dependence of the numerical solution.
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Figure 4.18: Schematic diagram of the midline section in the 3D FE model.

Figure 4.19: Comparison between the experimental and numerical initial crack front.

4.3.1 CCG Model Results on C(T) Specimens

All the FE simulations at different initial stress intensity factors are performed until
the maximum creep crack growth allowed ∆ac was reached. Results in terms of crack
propagation as a function of time are shown in Fig. 4.21. A good estimation of the
crack propagation rates has been achieved numerically at different stress intensity factor
levels for the correspondent uniaxial creep ductility values εf = 0.13 and 0.24 for 2D
and 3D simulations respectively. A comparison between the predicted and experimental
rupture times tR is plotted in Fig. 4.22. It might be worth noting that the numerical
model always underestimate the actual rupture time bringing to a conservative solution.
The 3D simulations are also able to provide the morphology of the final crack front.

In Fig. 4.23 the fracture surface of the test performed at K0 = 15 MPa m0.5 is shown
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Figure 4.20: Mesh refinement close to the crack tip.
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Figure 4.21: FE results in terms of crack propagation as a function of time at different stress levels.

and compared with the equivalent finite element simulation. The crack front is well
predicted including the lateral surface of the C(T) specimen that is interested by a faster
crack propagation since the stress field is affected by the presence of the side grooves.
In order to be able to give a numerical estimation of C∗ i.e. the crack tip parameter in
CCG conditions, the crack propagation rate shall be considered in combination with the
load-line displacement (LLD) rate V̇t as demonstrated in Sec. 1.1.1. For this purpose
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Figure 4.22: Comparison between the predicted and experimental rupture times of the C(T) specimens.

Figure 4.23: Fracture surface at the end of CCG test performed at K0 = 15 MPa m0.5.

in each FE simulation an additional history output has been requested: the vertical
displacement of the load-line reference point RF. This value has been compared with
the experimental one obtained during the tests by the LVDT instrumentation in Fig.
4.24. The results show that the LLD is correctly predicted for the test at K0 = 15
MPa m0.5 only. In fact the load-line displacement of the remaining tests is significantly
underestimated. In Fig. 4.25 the load-line displacement rate is shown as a function of
time. It might be worth observing how the correlation between the experimental and
numerical results is missing especially in the first part of the curve. In this region the
LLD is purely related to the creep deformation while in the linear and final regions it
is mostly governed by the crack propagation rate. This is an indication that the viscous
behavior of primary creep is not yet well represented. This might be due to limited
uniaxial creep data that covers a stress range until 160 MPa. This limit is not enough
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Figure 4.24: Load-line displacement as a function of time.
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Figure 4.25: Load-line displacement rate as a function of time: comparison between experimental and

numerical results.

to comprehends the stress intensification that happens at the crack tip at high stress
intensity factors.
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Sensitivity analysis to uniaxial ductility

As previously anticipated, the P91 creep data fitted in Sec. 4.1 provided a large scatter
of uniaxial ductility ranging from values of 0.04, found at σ = 20MPa, until 0.37
found at σ = 160MPa. The optimum values of 0.13 and 0.24 have been found with
reference to 2D and 3D simulations respectively. In Fig. 4.26 the results of the model
sensitivity to εf are shown and compared with the experimental test performed at K0 =

15MPam0.5 in terms of crack propagation (a) and load-line displacement (b). The
3D model is clearly more affected by the ductility variation than the 2D model. Its
rupture time tR is significantly reduced to approximately 1/5 of the experimental data.
The optimized value εf = 0.24 for 3D simulations represent the experimental creep
data obtained at high stresses while the value of 0.13 for 2D simulations is more close
to the results at low stresses. This suggests that the 3D model is more accurate since
the stress field at the crack tip is high because of stress triaxiality and thus a higher
value of εf is needed. A net specimen thickness Bn of 10.1 mm might be too short
to verify the hypothesis of testing in purely plane strain conditions. If an intermediate
condition between plane strain and plane stress is considered, the crack growth rate of
the 2D simulation would increase. Thus a higher uniaxial ductility would be needed in
order to slow down the crack growth to a level comparable with the experimental crack
growth rate.

Numerical estimation of the C∗ parameter

The load-line displacement rate together with the crack propagation rate can be used to
evaluate the crack tip parameter in CCG conditions. According to the ASTM standard
E1457 [6] the C∗ parameter is calculated as suggested in Eq. (4.28).

C∗ =
PV̇c

Bn(W − a)

[
2 + .522

(
1− a

W

)] n

n+ 1
(4.28)

From numerical simulations performed at K0 = 15MPam0.5, thanks to the definition
of a crack tip, it is also possible to estimate the C(t) integral that is able to describe
the crack growth in different creep conditions. In small-scale creep regime it is path
dependent and thus needs to be calculated through a limited crack tip contour in order
to confine the problem to an area where the stress-strain fields are purely dominated by
creep rather than elasticity. In steady-state creep conditions, after the transition time
tT is passed, the C(t) integral becomes path independent trending to the same value
of C∗. The transition time of tT = 35 hours has been determined experimentally and
numerically according to Eq. (1.34). Thus the comparison between experimental C∗,
C∗ calculated by LLD and crack propagation rate of numerical simulations and C(t)
integral is proposed in Fig. 4.27. All the data prior to the transition time were excluded.
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Figure 4.26: Sensitivity analysis of the uniaxial creep ductility.
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Figure 4.27: Comparison between the C∗ and C(t) integral obtained: experimentally from CCG test of

P91 at K0 = 15MPam0.5, from crack propagation and LLD data derived by numerical

simulations and from Abaqus calculation of the C(t) integral using crack tip contours.

The 3D model exhibits a similar behavior of C∗ and C(t) integral while the 2D model
shows a significant difference between the two parameters. In spite of that the crack
tip parameters obtained with the simulations fall in the experimental range provided by
the test performed at K0 = 15MPam0.5. However it is interesting to note how the
power-law relationship of Eq. (1.19) is lost at low crack propagation rates, i.e. at the
beginning of the CCG. This indicates that the transition time tT of 35 hours might be
too short to reach extensive creep conditions. This means that the creep zone is not yet
large enough with respect to the elastic and plastic zones. Under these conditions the
relationship provided by Eq. (1.19) is no longer unique.

4.4 CCG Model of a pressurized cracked cylinder

Since the combination of the Graham-Walles creep model and the modified void growth
theory by Cocks and Ashby provided a good estimation of the CCG resistance of C(T)
specimens, the 3D FE model was extended to predict the behavior of a pressurized
cylinder with a pre-existing axial defect on the inside surface.
The geometry analyzed in this Section is shown in Fig. 4.28 and features an initial
crack size with a = 5%w = 0.555 mm, and a/(2c) = 0.025 → c = 11.1 mm. Due to
the axial symmetry of the model, only 1/8 of the pipe was analyzed in order to reduce
the computational time. The pipe geometry consists of two different parts that were
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4.4. CCG Model of a pressurized cracked cylinder

Figure 4.28: Finite element model of the pressurized pipe with an axial defect on the inside surface.

analyzed with different element types: 2D 8-node doubly curved thick shell elements
with reduced integration for the further region from the crack tip„ and 3D 20-node
quadratic brick elements with reduced integration for the region in proximity of the
crack tip. Splitting the model in two parts was fundamental to further reduce the size
of the problem. The shell to solid coupling constraint of Fig. 4.29 was applied in order
to transfer stresses from one region to the other. The same elastic-plastic properties of

Figure 4.29: Representation of the shell to solid coupling constraint between the 2D and the 3D

element regions.

the FE model for the C(T) specimen were used, while the creep behavior, the crack tip
damage, and the crack propagation, were modeled with the combination of CREEP.for
and USDFLD.for user-defined subroutines previously discussed for the 3D C(T) model.
An internal pressure load of 25 MPa was applied to the model together with an axial
stress σax = 32.2 MPa that was calculated from the thick walled pipes formulations of
Lame. The boundary conditions are represented in Fig. 4.30 and consist in the circum-
ferential symmetry of the pipe thickness and the axial symmetry. The mesh size close
to the crack tip was built in order to guarantee an average element size Lel = 100µm

comparable to the one used in C(T) specimen simulations. The detail of the mesh is
shown in Fig. 4.31. The simulation consists in two steps: a first static step where the
pressure load is applied followed by a second step, where the viscous behavior of the
material is evaluated together with the creep damage distribution and the crack prop-
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Figure 4.30: Schematic representation of the boundary conditions of the FE pipe model.

Figure 4.31: Detail of the mesh at the crack tip.

agation. A maximum time of 200000 hours was simulated according to the analytical
residual life estimations of Sec. 3.2.
The results of the FE simulation performed on the pressurized pipe exhibited an initial
damage concentration on the plane strain section as shown in Fig. 4.32 (a) where the
creep damage contours are plotted over the crack tip region. The crack propagation,
i.e. a creep damage greater than 0.99, starts at a time t = 78400 h on the symmetry
section of the FE model (Fig. 4.32 (b) ) and reaches the plane stress section at a time
t = 133000 h as shown in Fig. 4.32 (c). The simulation ended at 157000 hours reach-
ing a crack propagation of 0.4 mm in the plane strain section and 0.2 mm in the plane
stress section as shown in Fig. 4.32 (d). The FE analysis stopped because the minimum
increment time of 1E-30 hours was reached indicating the beginning of a propagation
phase characterized by high crack propagation rates. The crack propagation in the three
regions on the crack tip A, B, and C is illustrated in Fig. 4.33 showing a crack initiation

118



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 119 — #149 i
i

i
i

i
i

4.4. CCG Model of a pressurized cracked cylinder

of 0.2 mm at approximately 105 hours. The plane strain crack propagation recorded at
the end of the simulation is consistent with the average creep crack growth prediction
provided by the API 579 procedure illustrated in Fig. 3.8 (b).
The FE model described in this Section is also applied to perform a numerical evalua-

tion of the C(t) integral distribution along the crack front. Since creep crack propaga-
tion introduces a discontinuity in the C(t) calculation, the model has been modified in
order to represent the early stage of steady-state creep damage, where the crack is sta-
tionary. With this method, the C(t) integral estimation by FE software, is not affected
by numerical errors but, in the meantime, accounts for the creep damage since the user-
defined subroutine CREEP.for, based on the Graham-Walles model, is still applied. The
C(t) integral has been calculated on eight different crack tip contours along the entire
crack front. The maximum time for the simulation has been set to 80000 hours because
in this amount of time, no significant crack propagation occurs.
The crack tip contours provided by the FE simulation have been analyzed in the three
regions A, B, and C of Fig. 4.33. In all the three regions, among the eight crack tip
contours, the third one provided the highest C(t) values without being affected by nu-
merical singularity and thus it is the one shown in Fig. 4.34. The numerical simulation
confirmed that the plane strain region is the one interested by an higher C(t) integral
with respect to the rest of the crack front. The plane stress region is interested by the
minimum C(t) integral and, as seen in the previous numerical simulations, is charac-
terized by a slower crack propagation than the plane strain section. Moreover, the C(t)

estimation at point A, is also consistent with the analogous estimation performed by
means of the API 579 approach based on the Ct parameter validating the FE model
described so far.
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Chapter 4. Numerical Simulations of CCG and CFCG

(a)

(b)

(c)

(d)

Figure 4.32: Evolution of the creep damage ω along the crack front.
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4.4. CCG Model of a pressurized cracked cylinder

Figure 4.33: Creep crack propagation in three regions at the crack tip.

Figure 4.34: Comparison between the C(t) integral numerically evaluated in three crack tip regions

and the Ct parameter according to API 579 [5].
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Chapter 4. Numerical Simulations of CCG and CFCG

4.5 CFCG Numerical Simulations

In this Section the preliminary study of a CFCG model based on the combination of the
Chaboche cyclic plasticity model [13] and the averaged Norton law of Sec. 2.1. The
model was applied first to simulate cyclic plasticity in Low Cycle Fatigue (LCF) tests
in presence of hold time and then was applied to evaluate the interactions within the
creep zone size, the monotonic plastic zone, and the cyclic plastic zone.

4.5.1 Cyclic Plasticity Model

The non-linear kinematic hardening model by Chaboche is based on the definition of a
yield surface:

f(σ − αc) = σ0 (4.29)

where σ is the stress tensor, αc is the backstress tensor, and σ0 is the yield stress.
The yield surface is usually defined in the deviatoric space assuming the following
expression:

f(σ − αc) =

√
3

2
(S − αdev) : (S − αdev) (4.30)

where S is the deviatoric stress tensor and αdev is the deviatoric part of the backstress
tensor. The plastic strain increment can be obtained by using the normality flow rule:

ε̇p =
∂(σ − αc)

∂σ
˙̄εp (4.31)

where the equivalent plastic strain increment is defined as:

˙̄εp =

√
2

3
ε̇p : ε̇p (4.32)

The isotropic hardening gives the change of the yield stress as a function of the accu-
mulated equivalent plastic strain. In the FE software Abaqus, the isotropic hardening is
considered by using a Voce type equation:

σ0 = σ|0 +Q∞
(
1− e−bcε̄p

)
(4.33)

where σ|0 is the yield surface size at zero plastic strain, and Q∞ and bc are additional
material parameters that shall be calibrated from cyclic test data. The kinematic harden-
ing is described through a non-linear kinematic law. The overall backstress is composed
of multiple backstress components, where the evolution of each backstress component
is defined as:

α̇k = Ck ˙̄εp
1

σ0

(σ − αc)− γkαk ˙̄εp (4.34)

122



i
i

“TesiDottoratoCorretta” — 2017/1/5 — 16:07 — page 123 — #153 i
i

i
i

i
i

4.5. CFCG Numerical Simulations

and the overall backstress is computed from the relation:

αc =

Nbs∑
k=1

αk (4.35)

where Nbs is the number of backstress and Ck and γk are material parameters. The ma-
terial parameters that were used in the cyclic plasticity model by Chaboche, were taken
from a technical report containing LCF and ratchetting tests performed at 600 ◦C on
the modified P91 steel of Tenaris (Tab. 4.5). As previously discussed the deformation

Table 4.5: Cyclic plastic model parameters for P91 at 600 ◦C.

σ0 Q∞ bc Nbs C1 C2 C3 γ1 γ2 γ3

220 -100.9 0.9 3 140105 17701 2499 2000 333.3 1

associated to creep damage was modeled through a simple Norton power law because
the application of the Graham-Walles model of Sec. 4.1 resulted in convergence prob-
lems during the loading-unloading phases of the fatigue cycles. The averaged Norton
law coefficients of Tab. 2.3 were used in the FE model. The combined cyclic plasticity
and creep model was first verified by replicating the two test conditions reported in Tab.
4.6 derived from the LCF tests with hold time where Rε is the strain ratio and εa is the
strain amplitude.

Table 4.6: LCF with hold time test conditions.

Specimen: Rε th [h] εa [mm/mm] ε̇ [mm/mm/s]

Test1 0.5 1 0.0025 0.001

Test2 0 1 0.0025 0.001

4.5.2 CFCG Model: FE Framework

Due to symmetry, the LCF specimen geometry of Fig. 4.35 was modeled by consider-
ing half of the gauge length with 4-node bilinear axisymmetric quadrilateral elements.
The element size in all the gauge length considered was kept equal to 50 µm. As shown
in Fig. 4.35 the load was obtained by imposing a uniform displacement on the upper
surface of the numerical model. The load, hold, and unload phases were obtained by
defining a strain amplitude that reaches its maximum during the loading phase accord-
ing to the predefined strain rate of 0.001 mm/mm/s, remains constant during the hold
phase, and reaches the minimum strain during the unload sequence with the predefined
strain rate. During the simulation, the vertical reaction force at the loading point was
acquired together with the vertical strain at the gauge length at equidistant time points.
The Chaboche model parameters were given as the plastic properties for the FE model
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Chapter 4. Numerical Simulations of CCG and CFCG

Figure 4.35: LCF test specimen geometry and FE model.

while the Norton law coefficients, were implemented in a CREEP.for user-defined sub-
routine.

4.5.3 CFCG Model Results

In Fig. 4.36, the results of FE simulations are compared with the experimental tests
of Tab. 4.6 in terms of cyclic plastic curves at the first (N = 1) and last fatigue cycle
(N = 25). The combination of the cyclic plasticity model and the averaged Norton
law is able to numerically predict the experimental tests at different strain ratios. For
this reason, the CFCG model has been used to characterize the evolution of the creep,
the monotonic plastic, and the cyclic plastic zones during CFCG tests. In Fig. 4.37
the extension of these zones is shown for a CFCG test with th = 0.1 h at the end of
the second cycle. This study, which is currently under investigation, might lead to a
new approach to numerically evaluate the creep reversal parameter CR, overcoming the
difficulties found during the experimental evaluation at short hold times. However, to
reach this relevant result, numerical problems have to be solved in order to simulate the
evolution of the creep, plastic, and cyclic plastic zones at higher number of cycles.

4.6 Summary

The importance of a valid uniaxial creep model that is able to represent the material’s
behavior even in a FE environment has been discussed. For this purpose the continuum
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4.6. Summary
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Figure 4.36: Results of the visco-cyclic plastic FE model and comparison with the experimental data.

Figure 4.37: Creep, plastic, and cyclic plastic zones predicted by FE analysis at the end of the second

cycle of a CFCG test with th = 0.1 h.

damage mechanics based models of Kachanov [35] and Liu-Murakami [39] and the
Graham-Walles model [26] were studied and fitted to the uniaxial creep data of Fig.
2.3. The time dependent models of Kachanov and Liu-Murakami exhibited numeri-
cal issues when applied to FE. The short increment times required to converge at the
beginning of the numerical solutions, caused premature creep strain. This issues were
solved by changing to the strain dependent model by Graham-Walles. Once its FE
applicability was verified by means of creep simulations that gave a good correlation
with the experimental data, the uniaxial problem was extended to its multiaxial case.
With this aim a modification of the cavity growth theory by Cocks-Ashby [14] was
used to predict CCG through a plane strain (2D) and a 3D FE model of the C(T) speci-
men. Considering the large scatter deriving from experimental data, the uniaxial creep
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Chapter 4. Numerical Simulations of CCG and CFCG

ductility used in the simulations was used as an optimization parameter. Plane strain
and 3D simulations provided a good correlation with experimental creep crack growth
rates and a good estimation of the load-line displacement at low stress intensity factors
only. This suggests that the range of stresses covered by the Graham-Walles model fit
shall be extended by means of additional uniaxial creep models at higher stresses. For
the case study K0 = 15 MPa m0.5 the load-line displacement and crack propagation
records from numerical simulations have been used to recalculate the crack tip param-
eter C∗ showing a good prediction when compared with the experimental data as well
as with the numerical estimation provided by Abaqus software. However the first hours
after the transition time tT from small-scale to extensive creep conditions as per ASTM
E1457 [6], confirmed the absence of a unique relationship between crack propagation
rates and C∗ as previously observed in Sec. 2.2.2.
The 3D model of the C(T) specimen was extended to characterize CCG in a pressurized
cylinder with an axial defect on the inside surface. The results of the FE simulation,
highlighted the creep damage evolution on the pipe, that starts from the plane strain
symmetry section and spreads up to the plane stress section.
The same numerical model for the pipe was analyzed under stationary crack conditions
in order to predict the stabilized value of the crack tip integral C(t) in EC conditions
i.e. C∗. The FE model provided a good prediction of the integral C(t) in agreement
with the API 579 [5] estimation, based on the Ct parameter, evaluated for the same
geometry.
A preliminary study to numerically describe the creep-fatigue interactions was also pre-
sented. A CFCG model was proposed, based on the combination of the cyclic plasticity
model by Chaboche [13] and the Norton law of Eq. (1.1), in order to predict the LCF
behavior of the modified P91 when a hold time is applied during the fatigue cycle. The
model provided a good correlation with the experimental data at different strain ratios
Rε and for this reason, it has been used to assess the creep, plastic, and cyclic plastic
zones interaction during the first cycles of a CFCG test, on a C(T) specimen, with a hold
time th = 0.1 h. The results have shown that from the end of the second hold cycle,
the creep zone size is dominant with respect to the plastic and cyclic plastic zones. In
this context, additional simulations will be performed in order to study the evolution of
these zones, at higher number of cycles, after solving the issues given by the numerical
discretization of the problem.
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CHAPTER5
Concluding Remarks and Further Developments

This thesis dealt with the study of the creep and creep-fatigue resistance properties of
a modified P91 power plant steel. The methodological approach used in this work was
strongly focused on the application of time-dependent fracture mechanics concepts in
creep and creep-fatigue regime to components with the aim to:

• present a critical review of the classical approaches to high temperature assess-
ments of such components that does not account for creep-fatigue interaction phe-
nomena;

• discuss and validate a new approach to improve the quality of future assessments
based on a fracture mechanics parameter able to describe the creep-fatigue inter-
action effects related to crack tip damage evolution;

• study a numerical approach to simulate time-dependent crack propagation in com-
ponents by means of accurate FE analyses.

The starting point was the discussion of the crack tip parameters that govern the initi-
ation and propagation of defects under creep and creep-fatigue regime, and their trans-
position to large scale components in order to analyze the effects of critical operating
conditions, like high frequency load cycles, and over pressure. In addition to this, the
finite element method was used to recreate not only the experimental test conditions but
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Chapter 5. Concluding Remarks and Further Developments

also the crack tip parameters evolution in order to validate its application to estimate
the residual life of components.
To support the methodological approach, an experimental campaign to collect homo-
geneous CCG and CFCG resistance data in order to characterize the intrinsic response
of the material to high temperature and cyclic loads was presented.
In this thesis, Chapter 1 contained a comprehensive review of all the state-of-the-art
crack tip parameters that describe CCG and CFCG in both specimens and components.
Starting from the definition of the elastic-plastic crack tip parameter J integral, the
time-dependent fracture mechanics C∗ was introduced. Its empirical and analytical
formulations made it a perfect candidate to characterize CCG in both testing specimens
and components for whom it is possible to define a stress intensity factor. When an-
alyzing small-scale or transition creep conditions, the C∗ is replaced by the C(t) that
is defined at a small contour close to the crack tip, where creep zone is still dominant.
However, considering its difficult experimental estimation, C(t) was replaced by the
Ct parameter easily measurable at the load-line. Ct, not only characterizes the CCG in
small-scale creep, transition creep, and extensive creep but it is also measurable at the
load-line and, as C∗, has an analytical formulation that make it extendable to different
geometries. The ability to describe the crack tip stress fields in transient conditions,
is also important in CFCG regime. From a modified expression of Ct the crack tip
parameter in CFCG conditions (Ct)avg is defined. As the other crack tip parameters,
(Ct)avg can be calculated at the load-line of testing specimens and, through analytical
expressions under the hypotheses of complete and absent creep strain reversal due to
cyclic plasticity, for complex geometries.
After having analyzed the main crack tip parameters that describe the crack propagation
of defects under creep and creep-fatigue conditions, Chapter 2 includes a brief intro-
duction of the modified P91 material object of this thesis. The elastic-plastic properties
at high temperature and the uniaxial creep test data provided by Tenaris represented
a starting point for the experimental campaign performed during this work. The Nor-
ton law and the Larson Miller parameters determined from uniaxial creep tests were
fundamental in the description of the pure creep behavior, however, in presence of
cracks, additional tests are required to describe the evolution of defects in HT condi-
tions. CCG tests were performed at different initial stress intensity factors with the aim
to: characterize the creep crack initiation through a power law relationship between
the time and the stress intensity factor at initiation; determine the crack tip parameters
of time-dependent fracture mechanics. The parameters C∗ and Ct obtained from the
experimental CCG data of crack propagation and load-line displacement were corre-
lated to the crack propagation rates through a power law relationship. In creep-fatigue
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conditions, CFCG tests were performed to assess the effects of different hold times and
initial stress intensity factor ranges. The load-line displacement records, were used to
estimate the crack tip parameter (Ct)avg that correlates the average crack propagation
rate (da/dt)avg. Due to the difficult estimation of the load-line deflection during short
hold times, the (Ct)avg was also estimated according to its analytical formulation under
the hypothesis of complete creep reversal and partial creep reversal after the experi-
mental determination of the creep reversal parameter CR. Fatigue crack growth tests
performed at 600 ◦C were used to identify the Paris-Erdogan law for P91 and com-
bine it with the (Ct)avg parameter in order to apply a superposition model that provides
creep-fatigue crack propagation by summation of time-dependent and fatigue damage.
In order to conclude the material’s resistance map at high temperature, fracture tough-
ness tests carried out according to the basic procedure of ASTM E1820 [17] provided
the estimation of JIC for the modified P91 that was later validated with FE simulations
based on the key-curve method.
The correlation between the CCG and CFCG crack tip parameters and the crack prop-
agation rates set the basis for the creep and creep-fatigue crack growth assessments of
Chapter 3, where new flaw acceptability methods based on the combination of different
approaches were presented. In CCG conditions, the Two Criteria Diagram contained in
Fitnet [24] code was applied together with the reference C∗ approach (Cref ) proposed
in British Standard 7910 [12] to evaluate the evolution of different defect morphologies
in a pressurized pipe. The Two Criteria Diagram for creep crack initiation estimation
was built with the uniaxial creep data on the modified P91 provided by Tenaris, and
the initiation data derived from the experimental CCG tests. The CCG was predicted
by means of the Cref approach under the hypothesis of a uniform stress distribution
on the ligament section due to stress relaxation given by creep strain. The residual life
estimations performed at different initial defect sizes, provided a good agreement when
compared with the API 579 [5] approach based on the Ct parameter at the low internal
pressure of 25 MPa and less conservative result at the critical high pressure of 50 MPa.
However, it might be worth noting that, the conservative results of both approaches pro-
vided by BS 7910 and API 579 might be lost when assessing lower loading conditions,
as observed from the comparison between the reference stress based crack tip parame-
ters and the experimental crack tip parameters of C∗ and Ct derived during CCG tests.
With the purpose to propose an alternative CFCG assessment method for pressurized
pipes with internal defects, the Time Dependent Failure Assessment Diagram suggested
by R5 code [10] was analyzed in combination with the (Ct)avg approach under the hy-
pothesis of partial creep strains reversal thanks to the creep reversal parameter CR that
was previously obtained from experimental CFCG tests on C(T) specimens. The latter
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Chapter 5. Concluding Remarks and Further Developments

method considers the effective interaction between the creep and fatigue damages and
does not model the creep-fatigue damage as a simple superposition between the two
phenomena. In this proposed procedure, creep-fatigue crack initiation is predicted ac-
cording to the TDFAD, that was personalized with the P91 experimental data derived
from creep, CCG, and FCG tests. Creep-fatigue crack growth instead, was predicted
after the definition of a (Ct)avg for the investigated component that was based on the
CR parameter and on an analytical formulation of the C∗ parameter. The results of
this method highlighted the effects of the hold time th: the shorter the hold time is,
the faster the crack propagation is. However, when typical power plant hold times are
considered, the detrimental effect given by the fatigue cycle does not play an important
role in the residual life estimation. The defects acceptability assessments highlighted
the need of an accurate crack tip parameter description in complex geometries.
The numerical simulations discussed in Chapter 4 were studied with this purpose. CCG
required a deep material characterization in terms of creep resistance that was obtained
by analyzing strengths and weaknesses of different uniaxial creep models. Among all
the investigated models, the Graham-Walles was selected because it was able to rep-
resent complete creep curves at different stress conditions, without being affected by
numerical integration issues. For this reason it was implemented in the FE software
Abaqus through the user-defined subroutine CREEP.for in combination with a contin-
uum damage mechanics approach based on a modified void growth theory by Cocks
and Ashby [14], to predict CCG in C(T) specimens. The results of the FE model pro-
vided a good correlation with the experimental CCG data, as well as a good estimation
of the crack tip parameter C∗ derived from the numerical crack propagation and load-
line displacement records of 2D and 3D simulations.
Hence, the model was extended to assess the creep damage distribution on a pressurized
pipe with a semi-elliptical axial defect on the inside surface. The numerical simulation
on pipe geometry highlighted a damage concentration in the plane strain section at the
crack tip that slowly evolves to the plane stress section in agreement with the results
obtained from the CCG assessments presented in Chapter 3. With the aim to analyze
the creep fatigue damage interactions a preliminary study of a numerical CFCG model
based on the combination of the Chaboche cyclic plasticity theory and the steady-state
creep strain rate distribution according to the Norton law, was introduced. The FE
model was able to correctly simulate the creep-fatigue interaction in LCF tests in pres-
ence of hold times. The same model was used to characterize the size of the creep,
plastic, and cyclic plastic zones on a CFCG test, with hold time th = 0.1 h, on a C(T)
specimen. The FE model showed a dominant creep zone already at the end of the sec-
ond cycle while the size of the cyclic plastic zone is similar to the monotonic plastic
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zone.

5.1 Further Developments

The results achieved in this thesis analyzed new strategies to assess time-dependent
fracture mechanics in pipe components by means of analytical and numerical approaches
that calls for further developments.

The proposed assessment procedure to evaluate CFCG in cracked pipes by means of
the combination of the TDFAD and the (Ct)avg − (da/dt)avg correlation, still relies on
analytical estimations of the crack tip parameter C∗. In this context, a numerical esti-
mation of the C∗, based on the CCG FE model presented in this thesis and validated on
the investigated material, could enhance the accuracy of the residual life assessments
without affecting reliability. This improvement strongly demands for the study of dif-
ferent pipe and crack configurations that could be easily obtained thanks to additional
FE analyses based on the user-defined subroutines examined during this work.

The presented pipe FE model, that accounts for creep crack propagation, could be
further investigated by studying the solutions given by different mesh sizes and crack
shapes. Analyses with different mesh sizes allow to critically analyze the evolution of
the creep damage zone in different crack front regions. The analyses with different crack
shapes allow to analyze the crack propagation front as a function of the initial defect
geometry.

Analytical and numerical approaches strongly depend on material resistance data
obtained from experimental tests. In this context, the CFCG data collected during this
work (Fig. 2.22), strongly demand to perform additional tests in order to gain a more
reliable crack propagation rate correlation for the (Ct)avg based assessment.

The CFCG numerical model used to simulate the interaction between the creep,
plastic, and cyclic plastic zones, potentially leads to a new method to calculate the
creep reversal parameter CR overcoming the experimental difficulties found at short
hold times. However, additional issues given by the numerical discretization of the
problem, need to be solved in order to be able to extend the model at higher number of
cycles.
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APPENDIXA
Computational Resources and Times for FE

Analyses

Table A.1: Computational resources and times for FE analyses.

Simulation Elements number Nodes number Hardware Time required [h]

CCG C(T) 2D 702 765 4 cores 8 GB RAM 20 min

CCG C(T) 3D 16758 18751 16 cores 128 GB RAM 14 h 30 min

CCG Pipe 48250 53197 16 cores 128 GB RAM 35 h

Pipe Stat. Crack 48250 53197 16 cores 128 GB RAM 10 h 45 min
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