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Abstract

THE thesis work focuses on the implementation of non-Keplerian mod-
els and their applications to space mission analysis scenarios. Non-
Keplerian dynamics are used to accurately reproduce the gravity

field around small Solar System bodies such as asteroids or comets and
to conveniently exploit their gravitational environment for trajectory de-
sign purpose. Compared to Earth or other planets in the Solar System,
small celestial bodies are characterized by very weak and irregular gravity
field. This turns into a highly challenging mission analysis to be solved
when designing a space mission. The mass distribution of such bodies
is modeled by means of either mass-concentrated or shape-based models.
Mass-concentrated models have the significant advantage to require less
computational effort and also, they naturally simulate the effect of having
a non-uniform density distribution and the presence of voids in the internal
structure of the celestial body. The mass-concentrated model is obtained
here by means of asteroid N-body gravitational aggregation. Shape-based
models can reproduce to higher fidelity the gravity field around homoge-
neous small bodies, given their shape and density distribution, at the cost
of a higher computational effort required, compared to mass-concentrated
models. Relevant solutions, of interest for space mission scenarios aimed at
the exploration of asteroids or comets, are found by using nonlinear system
dynamics techniques applied to non-Keplerian astrodynamics problems.
Such solutions include periodic motion and invariant manifolds associated
to equilibrium or periodic solutions in the proximity of such bodies. Mis-
sion analysis scenarios are studied for the case of exploration of binary
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asteroid systems. Investigated scenarios include landing about a binary
asteroid with a two-lobed elongated primary, designed through a patched
three-body approach. Close-proximity operations in the context of the As-
teroid Impact Mission (AIM) are investigated and suitable solutions are
presented to land a probe on the smaller asteroid of a binary couple. The
last scenario studies formation flying dynamics in the proximity of libration
point orbits associated to a binary system.

VIII



Table of Contents

Acknowledgements V

Abstract VII

List of Figures XIII

List of Tables XIX

1 Introduction 1
1.1 Small bodies and non-Keplerian dynamics . . . . . . . . . . 2
1.2 Historical review . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissertation overview . . . . . . . . . . . . . . . . . . . . . 8

2 Non-Keplerian Dynamical Models 11
2.1 The Restricted Three-Body Problem . . . . . . . . . . . . . 12

2.1.1 The Circular Restricted Three-Body Problem . . . . . 12
2.1.2 The Elliptic Restricted Three-Body Problem . . . . . 22

2.2 The N-Body Problem . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 The Unrestricted N-Body Problem . . . . . . . . . . 27
2.2.2 The Restricted N-Body Problem . . . . . . . . . . . 27

2.3 Small bodies . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.1 Shape-based models . . . . . . . . . . . . . . . . . . 28
2.3.2 N-mascon models . . . . . . . . . . . . . . . . . . . 32

2.4 Non-gravitational perturbations: SRP . . . . . . . . . . . . 33

IX



Table of Contents

3 Numerical Methods for Nonlinear System Dynamics 35
3.1 Software architecture for restricted problems . . . . . . . . 36

3.1.1 Initial guess . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 Correction . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.3 Continuation . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Periodic motion in restricted problems . . . . . . . . . . . . 46
3.2.1 The Circular Restricted Three-Body Problem . . . . . 47
3.2.2 The Elliptic Restricted Three-Body Problem . . . . . 51
3.2.3 Small celestial bodies . . . . . . . . . . . . . . . . . 54

3.3 Stable and unstable manifolds in restricted problems . . . . 56
3.4 The unrestricted N-body aggregation method . . . . . . . . 57

3.4.1 N-body gravitational dynamics . . . . . . . . . . . . 58
3.4.2 Degrees of freedom . . . . . . . . . . . . . . . . . . 60
3.4.3 Identification of aggregate’s shape . . . . . . . . . . 60

4 Non-Keplerian Solutions for Astrodynamics Problems 63
4.1 Periodic orbits . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1.1 The Circular Restricted Three-Body Problem . . . . . 64
4.1.2 The Elliptic Restricted Three-Body Problem . . . . . 64
4.1.3 Small celestial bodies . . . . . . . . . . . . . . . . . 72

4.2 Asteroid mascon models . . . . . . . . . . . . . . . . . . . 72
4.2.1 Simulation set up . . . . . . . . . . . . . . . . . . . 74
4.2.2 Aggregation dynamics . . . . . . . . . . . . . . . . . 76
4.2.3 Asteroid aggregate . . . . . . . . . . . . . . . . . . . 79

5 Mission Analysis Scenarios 83
5.1 Binary system with two-lobed primary . . . . . . . . . . . . 84

5.1.1 Model validity within the small body population . . . 86
5.1.2 Binary asteroid model . . . . . . . . . . . . . . . . . 88
5.1.3 Surface Of Equivalence . . . . . . . . . . . . . . . . 93
5.1.4 Landing scenario . . . . . . . . . . . . . . . . . . . . 97

5.2 Asteroid Impact Mission landing design . . . . . . . . . . . 108
5.2.1 Didymos three-body system . . . . . . . . . . . . . . 110
5.2.2 Landing design strategy . . . . . . . . . . . . . . . . 119
5.2.3 MASCOT-2 landing scenario . . . . . . . . . . . . . 124
5.2.4 Sensitivity analysis to design parameters . . . . . . . 126
5.2.5 Mission analysis results . . . . . . . . . . . . . . . . 132
5.2.6 Critical aspects of MASCOT-2 landing problem . . . 137

5.3 Triangular formation flying . . . . . . . . . . . . . . . . . . 140
5.3.1 Statement of the problem . . . . . . . . . . . . . . . 141

X



Table of Contents

5.3.2 Monte Carlo approach . . . . . . . . . . . . . . . . . 147
5.3.3 Global optimization approach . . . . . . . . . . . . . 151
5.3.4 Refinement of solution under the ER3BP . . . . . . . 155
5.3.5 Interpretation of results using manifold dynamics . . 163

6 Conclusion 165

Postface 171

List of Acronyms 173

Bibliography 175

XI





List of Figures

2.1 Inertial (X,Y) and rotating (x, y) frame . . . . . . . . . . . . 14
2.2 Primaries and libration points in the rotating frame, expressed

in non dimensional coordinates . . . . . . . . . . . . . . . . 19
2.3 Comet 67P/Churyumov-Gerasimenko (a) picture from Rosetta

spacecraft (credits: ESA, 2014) (b) polyhedral shape model. 31

3.1 Schematics of software architecture implemented . . . . . . 39
3.2 (a) Poincaré map generated by the intersection between the

dynamical flow and the Poincaré section Σ (b) example of
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“and everything under the sun is in tune
but the sun is eclipsed by the moon.
– There is no dark side of the moon really.
Matter of fact it’s all dark. –”

Waters, Eclipse

CHAPTER1
Introduction

Non-Keplerian gravity models are the present and future frontier of astrody-
namics. They provide unique opportunities for mission analysis and open
to a great variety of design solutions not available whenever a single point-
mass gravity source is dealt with. From the space mission design point of
view, the modeling of the gravitational environment through the use of mul-
tiple or non-spherical gravity sources can be effectively exploited to design
convenient orbital paths, to meet challenging requirements due to on-board
payloads, to decrease the cost of manoeuvres to be provided by the space-
craft. The use of non-Keplerian dynamics to fly space missions was largely
studied in the second half of the 20th century and found interesting applica-
tions since the launch of the International Sun/Earth Explorer 3 (ISEE-3) in
1978. ISEE-3 was the first spacecraft placed into a Halo orbit around the L1
Lagrangian point of the Sun-Earth system (SE-L1) and the first spacecraft
whose mission analysis was designed using a three-body strategy [35]. The
Sun-Earth L1 point is located between the Earth and the Sun and moves
with the same angular velocity of Earth and Sun as they revolve around
the barycentre of their system. For this reason, the L1 point was the ideal
location to place ISEE-3 to study the solar wind approaching the Earth.
After ISEE-3, other missions were designed to target three-body trajecto-
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Chapter 1. Introduction

ries: missions to SE-L1 served mainly for Sun observation, while SE-L2
(located behind the Earth, along the Sun-Earth line) for deep space obser-
vation. Other missions such as Hiten (1990) [133] were used as demon-
strator for low-cost transfers in the Earth-Moon system using three-body
dynamics.

In the last few decades the space community has put a lot of effort into
the exploration of small Solar System bodies, such as asteroids and comets.
Motivated by a great scientific interest, the exploration of small celestial
bodies represents the current and future frontier to extend the mankind’s
knowledge on how our Solar System was formed and how it evolves. In
addition, small bodies represent an ideal place for technology demonstra-
tion missions as they can serve as a test bench for deep-space In-Orbit-
Demonstration (IOD) experiments. Due to their peculiar properties, small
celestial bodies provide the unique opportunity of having a natural low-
gravity environment that can be used to study gravitational dynamics and
for many technological-related applications.

This thesis is focused towards studying and deepening the knowledge
of non-Keplerian dynamics to provide useful insights to support mission
analysis and spacecraft design. More in detail, non-Keplerian systems are
used to model the dynamics in the proximity of a small Solar System body.
Since the work aims at space design applications, restricted models are
considered to be representative of the dynamics of a spacecraft. Such mod-
els focus on the dynamics of a body (spacecraft), which moves under the
gravitational attraction of massive bodies, without influencing their motion.
This is true for bodies (spacecraft) whose mass is negligible with respect to
the mass of gravity sources (celestial bodies) and it is a common working
assumption in the field of astrodynamics and spacecraft design.

1.1 Small bodies and non-Keplerian dynamics

Small Solar System bodies such as asteroids and comet nuclei are known to
possess very irregular mass distribution and, consequently, a very irregular
gravity field. Also, such bodies have a very weak gravity field, compared
to that of more massive objects as Sun, planets and their major natural
satellites. Recently, the European Rosetta mission [131] showed how chal-
lenging comet landing can be. In 2014 Rosetta landed the Philae lander on
the surface of comet 67P/Churyumov-Gerasimenko [125], an extremely ir-
regular body whose shape and mass distribution were completely unknown
during the design phase of the mission. The comet’s gravity field was too
weak to keep the lander on the surface after touch down and did not pre-
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vent it from bouncing a couple of times before coming to a rest. From the
dynamics point of view, irregular field means highly chaotic motion, with
dynamics extremely sensitive to initial conditions. From the spacecraft de-
sign point of view, this means that a very small deviation in the state, which
can be due e.g. to navigation or manoeuvre errors, can result in a very large
discrepancy in the subsequent motion. This is very relevant for the case
of close-proximity operations and for example when collision avoidance
or soft-landing constraints are to be considered. In such case the chaotic
nature of the environment can lead to real world trajectories that does not
satisfy the constraints (colliding or not landing on the asteroid), even when
they are fulfilled by the nominal trajectory. For these reasons, the effective
design of trajectories to fly a spacecraft in the proximity of an asteroid re-
quires the knowledge of the physical, inertial and dynamical properties of
the target body. Due to their non-spherical mass distribution, a simple Ke-
plerian model is not suitable to accurately represent the dynamics around
small bodies. In some cases, when the mass distribution is very far from
being spherical, the Keplerian model can lead to very inaccurate results,
which are not acceptable for mission analysis design applications. This
motivates the use of non-Keplerian dynamics to model the environment in
the close proximity of such objects.

A recent example of a mission that makes use of non-Keplerian dynam-
ics is the Asteroid Impact Mission (AIM), the European contribution to
the Asteroid Impact and Deflection Assessment (AIDA), a joint mission
between the European Space Agency (ESA) and the National Aeronautics
and Space Administration (NASA) aimed to rendezvous with binary aster-
oid (65803) Didymos. AIM, whose launch is planned in 2020, is currently
under study and foresees the use of manifold dynamics associated to the
three-body system of Didymos binary asteroid to safely land a probe on the
smaller asteroid of the couple [42, 44]. More in detail, the dynamics of the
probe in the proximity of the binary asteroid are studied using a three-body
model with non-spherical gravity sources: since the mass distribution of
the asteroids is expected to be very irregular, shape-based models are used
to model the two asteroids.

1.2 Historical review

The history of non-Keplerian dynamics started in the 17th century, with
first studies by Newton on the Three-Body Problem (3BP) published in
its Philosophiæ Naturalis Principia Mathematica, also known as Principia
(1687). Newton studied the motion of the Moon around the Earth and in-
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troduced the effects of the Sun (third body) in the attempt of correcting the
error of the two-body model prediction. In the following centuries, a lot of
mathematicians contributed to the understanding of the 3BP and its reduc-
tions, as one of the most interesting and challenging problems in dynamics.
About a hundred years later, in 1772, Lagrange showed in his Essai sur le
Problème des Trois Corps the existence of analytical solutions in the gen-
eral 3BP when the three bodies are constrained to remain in an equilateral
triangle or collinear formation [118]. In the same year, Euler formulated
for the first time the Restricted Three-Body Problem (R3BP) and intro-
duced the synodic (rotating) reference frame. Being a restricted problem,
the R3BP studies the motion of a particle, moving under the gravitational
attraction of two massive bodies, called primaries, without influencing their
motion. Euler identified the three collinear libration points associated to
the rotating problem and, after him, Lagrange identified the two equilateral
ones. In 1836 Jacobi discovered the integral of motion associated to the
problem formulated by Euler. Then, in 1878, Hill was the first to give a
physical meaning to the Jacobian integral, by introducing the concept of
Zero Velocity Curves (ZVC) and showing how the energy of the particle
constrains and bounds its motion within the three-body system. After such
early analytical studies, once the mathematical formulation of the R3BP
was clearly established, the focus of researchers moved to the investigations
of the solutions associated to such problem. The ground breaking contri-
bution, which opened to the era of studies on solutions in such systems,
came from Poincaré. In his work Les Méthodes Nouvelles de la Mécanique
Céleste [108], Poincaré proved that the Jacobian integral is the only integral
of motion and an infinite number of periodic solutions exist in the R3BP.
The knowledge of periodic motion is very important to understanding the
dynamics of a complex dynamical environment such as the one generated
by multiple gravitational sources. Poincaré identified periodic solutions as
the only way the inaccessible problem of the three bodies can be made ac-
cessible and fully understood. Poincaré’s work motivated mathematicians
towards analytical and numerical investigations of periodic orbits in the
R3BP. The search for periodic solutions in complex non-Keplerian systems
represents one of the most promising and challenging problems in modern
astrodynamics. The most popular problems investigated was (and so are
nowadays) the Circular Restricted Three-Body Problem (CR3BP) and the
Elliptic Restricted Three-Body Problem (ER3BP). In the CR3BP the pri-
maries moves on circular paths around the barycentre of the system, while
the ER3BP represents a generalization of CR3BP for the case of elliptical
orbits of primaries. These problems gained popularity due to the fact that
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they are able to represent with a higher accuracy with respect to the simple
Keplerian model the motion of observable celestial bodies (e.g. the motion
of the Moon in the Sun-Earth system). The most relevant results obtained
in the first half of the 20th century in terms of periodic motion in R3BP are
well summarized by Moulton [97] and Szebehely [128].

The advent of numerical computing in the latter part of the 20th century
has provided a great boost to the study and analysis of such a complex dy-
namical system. A great milestone in the history of R3BP was related to the
discovery of periodic motions in the proximity of collinear libration points,
by Farquhar [34]. Periodic motion near Lagrangian points represented a
step forward into the space mission design era: it opened to a new variety
of solutions, able to meet new space mission objectives and to promote new
ideas for future mission opportunities. Also, from the dynamical investiga-
tions point of view, Farquhar’s work on three-dimensional periodic solu-
tions about libration points in the Earth-Moon three-body system started a
new era. Farquhar found three-dimensional periodic orbits in the proxim-
ity of libration points and named them ‘Halo’ orbits. More comprehensive
works came from Farquhar and Kamel [36], Breakwell and Brown [13],
Howell and Breakwell [74] and Howell [73], who extended the computa-
tion of a single orbit to a family of Halo orbits and to different values of
mass ratio of the primaries. The contribution due to Howell [72], who ap-
plied the method of differential corrections to find periodic motion in the
CR3BP, is of great importance to the development of numerical algorithms
to exactly compute periodic orbits. After them a lot of researchers, af-
ter numerical investigations, revealed the existence of many different kind
of families of periodic orbits, both around libration points and primaries,
computed in the frame of the CR3BP. Among them, relevant contributions
to periodic motion in the CR3BP include the work by Richardson [114],
who developed an analytical method to find initial guesses for periodic so-
lutions and the work by Goudas [61] and Hénon [68] who published studies
on the restricted three-body problem. Peculiar solutions such as orbits in
resonance with motion of the primaries are also of great interest [2, 135],
since these solutions are periodic not only in the synodic (rotating) frame
of the three-body system, but also in the inertial frame. Finally, the work
by Guzzetti et al. [52, 66] includes a comprehensive survey of orbit fam-
ilies in the Earth-Moon system and their properties. In general, classical
methods of nonlinear dynamics analysis, applied to astrodynamics prob-
lems are implemented to find peculiar solutions in non-Keplerian systems.
As mentioned, a lot of examples exist in the literature: a collection of these
methods can be found in the work by Schaub and Junkins [118], Koon et
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al. [82] and Parker and Anderson [105].
A further step into the analysis of realistic models of the dynamics is rep-

resented by the ER3BP. The ER3BP is a better approximation, compared to
the CR3BP, of the dynamics of a particle in the proximity of two attractors,
whose two-body motion is not circular. The non-zero eccentricity of the
orbits of primaries is the most notable perturbation leading the orbit not to
be periodic [105]. Compared to the widely studied CR3BP, periodic motion
in the ER3BP remains still to be largely explored. Different kinds of orbits
were targeted in the past, with the main focus either on systematic analysis
of the elliptical problem (e, µ) space dependency [15, 79, 86, 99, 117] or on
finding multi-revolution orbits about collinear libration points [17, 87, 106,
107]. Relevant studies on periodic motion under ER3BP include also the
work by Gurfil and Kasdin [63] and Palacian et al. [104].

Small Solar System bodies

It is a long time since mankind discovered the existence of celestial bodies
other than planets and their satellites in our Solar System. Due to their ob-
servability with the naked eye, comets were known since the ancient times
in history. The first asteroid known was Ceres, discovered by Giuseppe Pi-
azzi in 1801, from the Astronomical Observatory of Palermo. For a long
time, remote observation from ground was the only way to study asteroids
and comets and still today the largest amount of data available relies upon
remote surveys. Optical observations plays a fundamental role to the detec-
tion and discovery of new bodies and to estimate their physical properties.
Some information can be extracted from magnitude and light curve (fluc-
tuation in the reflected light) data. Optical observations are very useful to
detect binary systems and are used to estimate the size, shape and spin state
of the object. Also, information on the surface temperature and composi-
tion can be extracted by studying the spectrum of the body. In addition to
optical survey, a powerful technique for remote observation of asteroids and
comets is radar observation. This technique allows for a precise determina-
tion of the object’s orbit and for a very precise reconstruction of its shape
and spin state through radio telescopes observation. A complete survey of
techniques and results achieved through remote sensing is reported in the
books [12, 57, 89, 93].

The in situ exploration of small Solar System bodies began in 1986,
when an international cooperation between ESA, the Japanese Institute
of Space and Astronautical Science (ISAS) and the Soviet Union’s space
agency (in a joint cooperation with France) launched five probes, the so
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called Halley Armada, towards comet 1P/Halley. The closest flyby per-
formed by the European Giotto spacecraft at a distance of 596 km from the
comet nucleus provided the first close-up colour images of the nucleus of a
comet and of a small Solar System body. The first high-resolution images
of asteroids came from NASA’s Galileo spacecraft, which performed flybys
near asteroids (951) Gaspra in 1991 and (243) Ida in 1993. Galileo was also
the first to image a binary asteroid system, after the discovery of Dactyl,
the small moon of asteroid Ida. After that, NASA’s Near Earth Asteroid
Rendezvous (NEAR-Shoemaker) mission flew past asteroid (253) Mathilde
in 1997 and successfully performed rendezvous with asteroid (433) Eros
in 2000. This was the first close rendezvous with an asteroid and, after
remaining on a bounded orbit around Eros for approximately one year,
NEAR-Shoemaker achieved the first soft-landing on an asteroid surface in
2001. In the same year, NASA’s Deep Space 1 performed a flyby of comet
19P/Borrely, after having flown by asteroid (9969) Braille in 1999. NASA’s
Stardust mission performed a flyby of asteroid (5535) Annefrank in 2002
and then flew past comet 81P/Wild in 2004. Stardust was able to collect a
sample of comet dust and return it to Earth on 2006. The first sample-return
mission from an asteroid is the Hayabusa mission by the Japan Aerospace
eXploration Agency (JAXA), which successfully performed a rendezvous
with asteroid (25143) Itokawa in 2005. Hayabusa collected a small sam-
ple of asteroidal surface after touch down and returned it back to Earth
in 2010. In 2005 NASA’s Deep Impact reached comet 9P/Tempel and re-
leased an impactor on the nucleus. The effects of the impact were observed
in a subsequent flyby performed by the Stardust spacecraft. Afterwards, the
Deep Impact spacecraft performed a flyby of comet 103P/Hartley in 2010.
NASA’s DAWN mission performed rendezvous with asteroids (4) Vesta in
2011 and (1) Ceres in 2015. To date, the latest mission reaching a small
body is ESA’s Rosetta mission. Launched in 2004, Rosetta performed
the first rendezvous ever achieved with a comet, when reaching comet
67P/Churyumov-Gerasimenko after a ten-years trip, in 2014. On its way to
the comet, Rosetta flew past asteroids (2867) Šteins in 2008 and (21) Lute-
tia in 2010. After rendezvous with the comet, Rosetta remained approxi-
mately two years on bounded orbit around it and released the first cometary
lander (Philae) on the comet’s surface in 2014. Currently, two sample-
return missions are heading towards asteroids. The Japanese Hayabusa 2
was launched in 2014 and is on its path to asteroid (162173) Ryugu (for-
merly designated 1999 JU3), where it will release a lander, the Mobile As-
teroid Surface SCOuT (MASCOT), after rendezvous in 2018. A sample
of asteroidal surface will be then returned back to Earth in 2020. The sec-
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ond ongoing mission is NASA’s OSIRIS-REx mission, launched in 2016.
It will rendezvous with asteroid (101955) Bennu (formerly 1999 RQ36) in
2018 and return a sample back to Earth in 2023. Studies for future mission
opportunities include the AIDA mission, aimed at the exploration and de-
flection assessment of binary asteroid (65803) Didymos. AIDA is a joint
cooperation between ESA, which contributes with AIM and NASA, which
contributes with the Double Asteroid Redirection Test (DART). The mis-
sion is currently under study and planned to be launched in 2020, in order
to rendezvous (AIM) and impact (DART) with Didymos binary in 2022 1.

Nowadays, due to the large accessibility of the Near Earth Asteroid
(NEA) population to spacecraft, such bodies represent the current frontier
of space exploration. For this reason, the study of non-Keplerian dynam-
ics has extended to the modeling of gravity field produced by such celes-
tial bodies. Few strategies are usually adopted to model the gravity field
about asteroids. Classic methods consider harmonic expansion of gravita-
tional potential [80] to model the irregularities of a simple Keplerian field.
Shape-based methods are used to model the asteroid as objects with specific
shapes, such as homogeneous ellipsoids [119] or polyhedra [123, 137]: in
this case their distribution of mass is not spherical and the gravity field in
its proximity is computed accordingly. Other methods use a number of
masses (mascon models) to reproduce the mass distribution of the body.
The mascon method was first developed to explain the anomalies of the
Moon’s gravity field [98]. The inclusion of concentrations of mass in the
nearly spherical mass distribution of the Moon helped in the development
of a highly accurate lunar gravity model. A similar technique is used to re-
produce the gravity field of asteroids [25, 50, 58]. The applicability of each
method depends on the information available on the body’s mass distribu-
tion and on the level of accuracy required by the application. Typically,
each model fits a specific class of asteroids and application range. In gen-
eral, the determination of mass and bulk density of small body is a very
difficult task [71] and very little is known about their internal mass distri-
bution.

1.3 Dissertation overview

Despite the large number of studies on the topic, the full comprehension
of the general dynamics in non-Keplerian systems is still far to be reached.
Few studies exist concerning general properties of such systems. Com-

1At the time of writing this thesis, AIM design underwent phase A and B1. Phase B2 and subsequent ones
are currently awaiting for ESA ministry assembly approval.
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pared to the vast literature on the topic, this thesis aims at deepening and
harmonizing existing knowledge on non-Keplerian dynamics and their ap-
plications to mission analysis scenarios to small celestial bodies. After this
introductory chapter, the work is presented as follows.

Chapter 2 deals with the background knowledge and recalls mathemati-
cal formulations of non-Keplerian dynamical models under study. The for-
mulation of Circular and Elliptic Restricted Three-Body Problem is recalled
and the major properties of such models are discussed. Restricted and unre-
stricted N-Body problems are also recalled, with emphasis on applications
of such problems studied in this work. The problem of reproducing the
mass distribution of non-spherical objects is discussed and techniques re-
lated to shape-based models are recalled, together with N-body mascon for-
mulation. Finally, the formulation used to model the main perturbing effect
related to the asteroidal environment (solar radiation pressure) is recalled.

Chapter 3 describes the implementation of numerical methods in use to
find solutions of the dynamics relevant to the mission analysis scenarios
under study. First, a general-purpose method for targeting trajectories and
solutions within non-Keplerian models is described. The general software
architecture in terms of functional structure is presented, together with the
lower level details concerning the description of methods implemented in
each functional block. The applicability of such method is discussed for
the dynamical cases under study. An example of implementation of such
general-purpose method is shown for the case of periodic orbit investiga-
tion. Applications related to periodic motion in the CR3BP, ER3BP and
small body dynamics are detailed. Finally, the numerical implementation
of N-body gravitational dynamics method, developed to support aggrega-
tion dynamics simulation, is presented.

A survey of solutions relevant to mission analysis scenarios under study
is presented in Chapter 4. The existence and properties of periodic motion
is discussed for the case of CR3BP, ER3BP and small body dynamics. New
libration point periodic solutions, sorted by number of revolutions around
equilibrium point, are shown for the ER3BP case. Results from the asteroid
aggregation scenario are also shown for the case of small/medium sized
asteroid aggregation.

Chapter 5 reports the discussion of three mission analysis scenarios un-
der study, related to space missions to binary asteroid systems. The first
concerns a space mission to explore a binary asteroid with a two-lobed pri-
mary. The applicability of such model within the Solar System asteroidal
population is discussed. The relative dynamics and kinematics between
asteroids is studied and trajectory design within the binary system is per-
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formed by means of a patched three-body approach. The concept of Surface
Of Equivalence (SOE) is introduced to deal with the patched problem and
a design strategy to land a probe on the primary asteroid is discussed. The
second mission analysis scenario under study reproduces the AIM scenario.
This is related to the design of a ballistic landing of a small and passive
probe on the secondary of Didymos binary. The dynamical model in use is
described and its validity discussed. The strategy to land the probe is dis-
cussed and motivated. Landing results are reported for the realistic mission
analysis case, including the study of robustness of chosen solution. The last
case study is a formation flying scenario. Three spacecraft are considered
at the vertexes of an equilateral triangle, flying around libration point orbits
associated to three-body dynamics of binary systems. The study identifies
orientations of the formation suitable to satisfy natural formation keeping
properties. Formation keeping performance is quantified by means of per-
formance factors and results are found by means of combined Monte Carlo
and global optimization analyses and subsequently interpreted according to
monodromy matrix analysis. As for the relative motion between primaries
in the binary system, both CR3BP and ER3BP are studied.

Concluding remarks and future work opportunities are eventually dis-
cussed in Chapter 6.
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CHAPTER2
Non-Keplerian Dynamical Models

This chapter deals with the background knowledge needed to approach
the topics presented in this thesis. The mathematical formulation of non-
Keplerian dynamical models in use is presented and the properties of each
system are discussed when relevant to the case of spacecraft trajectory de-
sign.

The most relevant Non-Keplerian models for space mission applications
include Circular and Elliptic Restricted Three-Body Problems, whose for-
mulations are recalled in Section 2.1. Section 2.2 discusses applications
of the N-Body Problem (NBP), both in terms of restricted problem, with
a high fidelity model of the Solar System built by using a high number of
gravity sources, and in terms of unrestricted problem, whose application in
used for simulating asteroid aggregation processes. The latter problem is
deepened in Section 2.3, where strategies to model the gravity field pro-
duced by small celestial bodies such as asteroids and comets are discussed.
The mathematical modeling of the perturbing effect the Solar Radiation
Pressure (SRP) has on the orbital motion of a spacecraft is eventually re-
called in Section 2.4.
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2.1 The Restricted Three-Body Problem

The general or Unrestricted Three-Body Problem (also referenced as 3BP)
studies the mutual gravitational interaction between three point-mass bod-
ies. Space mission applications require the study of the motion of a space-
craft under the gravitational attraction of celestial bodies of the Solar Sys-
tem, such as Sun, planets or asteroids. In such case, the unrestricted prob-
lem can be simplified into a restricted problem. The Restricted Three-Body
Problem (R3BP) studies the motion of a small body (also referenced as
third body), which moves under the gravitational attraction of two massive
bodies, called primaries. The dynamics of the primaries are not influenced
by the presence of the third body. Such model is valid when the mass of the
third body (m) is negligible compared to that of the primaries (M1,M2)

m�M1,M2 (2.1)

Primaries are also referenced as P1 and P2 in the following, which refer
to M1 and M2 respectively and with M1 > M2. Since the primaries are
influenced by their mutual attraction only, they follow a two-body solu-
tion and their relative motion is a conic section. More in detail, bounded
relative motion between primaries is considered for astrodynamics appli-
cations, meaning circular or elliptical paths around the barycentre of the
system. Depending on the motion of the primaries, the dynamical model
is referenced either as CR3BP or as ER3BP. The different relative motion
between the primaries strongly influences the dynamical properties of the
system. Mathematical formulations of CR3BP and ER3BP are recalled in
sections 2.1.1 and 2.1.2.

2.1.1 The Circular Restricted Three-Body Problem

The main features and mathematical formulation of the CR3BP, with nota-
tion in use throughout this thesis, are recalled here. The classical formula-
tion of the Restricted Three-Body Problem considers three bodies as point
masses and studies the motion of the third body (m), which moves under
the gravitational attraction of the primaries P1, P2, without influencing their
motion (restricted problem). In the Circular Restricted Three-Body Prob-
lem, the two primaries are constrained to move on circular orbits around
the centre of mass of their two-body system.

Equations of motion in the inertial frame

Consider the inertial frame (X,Y,Z) centred in the barycentre of the system,
with primaries moving on the (X,Y) plane and Z parallel to the specific an-
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gular momentum vector associated to their two-body motion. The equation
of motion of the third body reads as

R̈ =
GM1

‖R1‖3
R1 +

GM2

‖R2‖3
R2 (2.2)

where G denotes the universal gravitational constant. R is the position
vector of the third body with respect to the barycentre of the system in the
inertial reference frame. R1 and R2 are the relative distances between the
third body and, respectively P1 and P2:

R1 = RP1 −R (2.3a)

R2 = RP2 −R (2.3b)
Ṙ and R̈ indicate respectively the first and second derivative of R with
respect to time.

Equations of motion in the rotating frame

As mentioned, the position of the primaries is solution of their two-body
interaction and it does not depend on R. Accordingly, RP1 and RP2 are
known functions of time. Being on circular orbits, they move with the same
angular velocity ω around the barycentre of their two-body system, with ω
directed as the Z axis. In such case it is possible to write the equation
of motion of the third body with respect to a specific frame, in order to
eliminate its explicit dependence on time. This can be done by using a
reference frame that is centred in the barycentre of the two primaries and
rotates together with them with the same angular velocity ω. This frame
is referenced as rotating or synodic (x, y, z) frame in the following. The
position of the primaries is fixed in this rotating frame, which is chosen
such to have both primaries lying on its x axis, as shown in Figure 2.1.
More in detail, P1 is located on the negative x axis, while P2 is on the
positive x axis.

In order to write Eq. (2.2) in the rotating frame, the inertial coordinates
are converted to the rotating ones. In the following, upper case letters iden-
tify vectors in the inertial frame and lower case ones refer to the rotating
frame. Since inertial and rotating coordinates differ for a rotation around
Z=z axis, the position vectors in the rotating frame can be retrieved by
means of the time-dependent rotation matrix Tω(t), defined as

Tω(t) =

 cos(ωt) sin(ωt) 0

− sin(ωt) cos(ωt) 0

0 0 1

 (2.4)
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Figure 2.1: Inertial (X,Y) and rotating (x, y) frame

Accordingly, the position vector r of the third mass in rotating frame can
be written as

r =


x

y

z

 = Tω(t)R (2.5)

Since Tω(t) is a rotation matrix, it can be inverted and its inverse is equal
to its transpose

T−1
ω (t) = TT

ω(t) =

cos(ωt) − sin(ωt) 0

sin(ωt) cos(ωt) 0

0 0 1

 (2.6)

consequently
R = TT

ω(t)r (2.7)

Note that Tω(t) preserves the norm of vectors

‖R‖ = ‖r‖ (2.8)

The velocity vector of the third body in the inertial frame is written as
function of rotating frame coordinates, by derivating Eq. (2.7)

Ṙ = ṪT
ω(t)r + TT

ω(t)ṙ (2.9)

Analogously, the acceleration vector is written as

R̈ = T̈T
ω(t)r + 2ṪT

ω(t)ṙ + TT
ω(t)r̈ (2.10)
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Equations (2.7) and (2.10) are substituted into Eq. (2.2) and the equation of
motion is written as function of rotating frame coordinates

T̈T
ω(t)r + 2ṪT

ω(t)ṙ + TT
ω(t)r̈ =

= GTT
ω(t)

(
M1

‖rP1 − r‖3
(rP1 − r) +

M2

‖rP2 − r‖3
(rP2 − r)

)
(2.11)

where rP1 and rP2 are constant vectors identifying the position of primaries
in the rotating frame, directed as the negative and positive x axis. Equa-
tion (2.11) can be simplified by knowing that

Tω(t)TT
ω(t) = I (2.12a)

Tω(t)ṪT
ω(t) =

0 −ω 0

ω 0 0

0 0 0

 (2.12b)

Tω(t)T̈T
ω(t) = −ω2I (2.12c)

By right-multiplying each term of (2.11) for Tω(t), substituting expres-
sions (2.12a), (2.12b) and (2.12c) and rearranging the equation, the follow-
ing is obtained

r̈ = ω2Ir − 2ω

0 −1 0

1 0 0

0 0 0

 ṙ+

+G

(
M1

‖rP1 − r‖3
(rP1 − r) +

M2

‖rP2 − r‖3
(rP2 − r)

) (2.13)

When the components of position vectors of the three bodies are written as

rP1 =


−xP1

0

0

 rP2 =


xP2

0

0

 r =


x

y

z

 (2.14)

the scalar form of Eq. (2.13) has the form
ẍ = ω2x+ 2ωẏ −G

(
M1

r31
(x+ xP1) + M2

r32
(x− xP2)

)
ÿ = ω2y − 2ωẋ−Gy

(
M1

r31
+ M2

r32

)
z̈ = −Gz

(
M1

r31
+ M2

r32

) (2.15)
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Chapter 2. Non-Keplerian Dynamical Models

where r1 and r2 represent the norm of relative position vectors between the
third body and the primaries

r1 = ‖rP1 − r‖ =
√

(x+ xP1)
2 + y2 + z2 (2.16a)

r2 = ‖rP2 − r‖ =
√

(x− xP2)
2 + y2 + z2 (2.16b)

Nondimensional equations of motion in the rotating frame

The equations of motion of the third body contain parameters related to the
primaries and their motion. Such parameters are not independent from each
other and the system can be reduced to a simpler form, by using nondimen-
sional variables. The conservation of linear momentum allows finding a
relation between coordinates of primaries in the rotating frame

−M1xP1 +M2xP2 = 0→ xP1 =
M2

M1

xP2 (2.17)

the primaries are on circular orbits around the barycentre of the system.
The distance between P1 and P2 is constant and equal to

d = xP1 + xP2 (2.18)

substituting it into Eq. (2.17)

xP1 =
M2

M1

(d− xP1) (2.19)

the position of primaries is written as function of their relative distance d
and masses −xP1 = − M2

M1+M2
d

xP2 =
(

1− M2

M1+M2

)
d

(2.20)

The angular velocity is associated to the two-body motion of the primaries
and is computed as

ω =

√
G(M1 +M2)

d3
(2.21)

The major parameters in Eq. (2.15) are now expressed as function of rel-
ative distance and mass of primaries. It is convenient to normalize the
equations of motion according to such values. More in detail, the nondi-
mensional form of the problem is normalized to the distance between the
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2.1. The Restricted Three-Body Problem

primaries, angular velocity and total mass of the system. The following unit
parameters are chosen

d̃ = 1 [length units]

(M̃1 + M̃2) = 1 [mass units]
ω̃ = 1 [rad/time units]

Nondimensional quantities are labeled here with superscript .̃ The physical
quantities of the problem are written as function of the parameter µ, which
is defined as the mass ratio between the primaries, as follows

µ =
M2

M1 +M2

(2.22)

Accordingly, the following relations are found

M̃1 = 1− µ
M̃2 = µ

−x̃P1 = −µ
x̃P2 = 1− µ

(2.23)

Finally, since G̃ becomes equal to one, the nondimensional equations of
motion for the third body are written

¨̃x = x̃+ 2 ˙̃y − 1−µ
r̃31

(x̃+ µ)− µ
r̃32

(x̃− (1− µ))

¨̃y = ỹ − 2 ˙̃x− ỹ
(

1−µ
r̃31

+ µ
r̃32

)
¨̃z = −z̃

(
1−µ
r̃31

+ µ
r̃32

) (2.24)

with
r̃1 =

√
(x̃+ µ)2 + ỹ2 + z̃2 (2.25a)

r̃2 =
√

(x̃− (1− µ))2 + ỹ2 + z̃2 (2.25b)

System (2.24) can be written in a more compact form, by defining the
pseudo-potential function associated to the nondimensional form of the
problem

Ũ(x̃, ỹ, z̃) =
1

2
(x̃2 + ỹ2) +

1− µ
r̃1

+
µ

r̃2

(2.26)

The pseudo-potential function Ũ(x̃, ỹ, z̃) depends only on the position of
the third body in the rotating frame and includes both the gravitational po-
tential due to the primaries’ attraction and the centrifugal potential due to
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Chapter 2. Non-Keplerian Dynamical Models

the rotation of the non-inertial synodic frame, which depends only on the
distance the particle has from the roation axis (z axis). Using the expression
of Ũ , system (2.24) becomes

¨̃x− 2 ˙̃y = Ũx̃

¨̃y + 2 ˙̃x = Ũỹ

¨̃z = Ũz̃

(2.27)

where the notation Ũ(·) indicates the partial derivative of the pseudo-potential
function with respect to the variable (·). As expected, the equations of mo-
tion in the rotating frame show no explicit dependence on time. Also, the
dynamics depend on the choice of the primaries only through the parameter
µ.

Equilibrium solutions

The rotating CR3BP is known to have five equilibrium points, called li-
bration or lagrangian points. The equilibrium condition implies that the
velocity is null. The libration points are stationary points for the pseudo-
potential Ũ , associated to energy minima or maxima, and they are found by
equating its gradient to zero

∇Ũ(x̃, ỹ, z̃) = 0 (2.28)

More into detail, Eq. (2.28) is written in scalar form as

Ũx = 0 (2.29a)

Ũy = 0 (2.29b)

Ũz = 0 (2.29c)

The location of libration points is fixed in the rotating frame. Equation 2.29c
leads to z̃ = 0 and therefore all libration points lay in the (x, y), as shown
in Figure 2.2. Three of them (L1, L2 and L3) are called collinear points
and are located on the x axis. The remaining two (L4 and L5) are called
triangular or equilateral points, since they form equilateral triangles with
the two primaries.

Equation 2.29b gives the location of the two equilateral points along the
y direction, with ỹ = 0 for the case of the three collinear points. Equa-
tion 2.29a results in a quintic equation, which provides the position of the
five equilibrium points along the x direction. As mentioned, the equilateral
points (L4 and L5) lie at the vertex of an equilateral triangle with primaries
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2.1. The Restricted Three-Body Problem

Figure 2.2: Primaries and libration points in the rotating frame, expressed in non dimen-
sional coordinates

occupying the remaining vertexes. In the nondimensional rotating frame,
the position of the equilateral point is written as function of the mass ratio
µ

rL4 =


−µ+ 1

2√
3

2

0

 rL5 =


−µ+ 1

2

−
√

3
2

0

 (2.30)

The study of the stability of the system around these points, allows their
classification as stable or unstable equilibrium solutions. Theoretically, if
the dynamical system is in an equilibrium state, it remains in that state
as t→∞. When real problems are considered, disturbances must be taken
into account: from a qualitative point of view, if the perturbed motion re-
mains confined in a small neighborhood of the equilibrium point, then the
equilibrium solution is named stable, otherwise, if the perturbed trajectory
departs from the equilibrium point, it is named unstable. In the case of
CR3BP, collinear points are known to be saddle points for the pseudo-
potential (unstable), while triangular points are stable under the following
condition [128]

µ < 0.03852 (2.31)

This implies that the largest primary must be at least roughly 25 times more
massive than the smaller primary. This condition is well verified in all
gravitational three body systems that include the Sun as primary, as well
as for the Earth-Moon system (µ ∼= 0.01215) and most of binary asteroid
systems.

19



Chapter 2. Non-Keplerian Dynamical Models

Energy considerations

The CR3BP, when written in the rotating frame, possesses an integral of
motion, called Jacobi integral. It can be demonstrated that the following
quantity is conserved during the motion of the third body in the rotating
frame (see [128] for the complete derivation)

1

2
( ˙̃x2 + ˙̃y2 + ˙̃z2)− Ũ(x̃, ỹ, z̃) = const (2.32)

such quantity is related to the specific mechanical energy of the third body,
being the sum of kinetic (Ẽk) and pseudo-potential (Ẽp) energy contribu-
tions 

Ẽ = Ẽk( ˙̃x, ˙̃y, ˙̃z) + Ẽp(x̃, ỹ, z̃)

Ẽk = 1
2
( ˙̃x2 + ˙̃y2 + ˙̃z2)

Ẽp = −Ũ(x̃, ỹ, z̃)

(2.33)

Note that Ũ is the pseudo-potential energy of the problem within the rotat-
ing system, since it includes a contribution due to the non-inertial motion
of the frame. The Jacobi integral of motion is often expressed through the
Jacobi constant C, which is related to such energy and it is defined as

C = −2Ẽ (2.34)

Note that, due to their opposite sign, if the energy increases, Jacobi constant
decreases and vice versa.

Very useful insights on the qualitative behaviour of the motion of the
third body can be assessed by means of energetic considerations and Jacobi
constant evaluation. More in detail, C can be used to establish regions of
motion in the three-body system, where the particle can or cannot be mov-
ing when provided with a given energy. Such regions are delimited by Zero
Velocity Surfaces (also referenced as Hill’s curves) and correspond to the
locus of points where the particle, for a given C, has zero velocity in the
rotating frame. The basics of Hill’s curves analysis are briefly summarized
here. The interested reader can refer to [118,128] for further details. Quali-
tatively, at a very low energy, if the particle is close to one of the attractors,
its motion is bounded in the close proximity of it. In such case the particle
does not have enough energy to either escape from the three-body system
or to be caught in the close proximity of the other primary. The lowest level
of energy that allows the third body to travel between the two primaries is
known to be that corresponding to the L1 point EL1 . With energy increased
above that of the L2 point EL2 , the particle can escape the three-body sys-
tem. Higher energy correspond to L3 point EL3 and even higher to the
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2.1. The Restricted Three-Body Problem

equilateral points EL4 = EL5 , which are reachable at the cost of a very
high energy to be provided to the particle.

State Transition Matrix

The concept of State Transition Matrix (STM) is recalled here. As it will
be clear from Chapter 3, the STM is a fundamental ingredient for numer-
ical methods of nonlinear system dynamics. Consider a general system of
nonlinear differential equations

Ẋ = f(X) (2.35)

where X indicates the n-dimensional state vector. The system (2.35) can
be linearized and written as first-order variational equations

δẊ = A(t)δX (2.36)

where δX represent the vector of small variations associated to the n-
dimensional state while the system matrix A(t) is the Jacobian matrix of
the system which, in general, can be written as

A(t) =
∂f

∂X
(2.37)

Variations of the initial state at time t0 can be correlated to variations of the
state at any time t, by introducing the concept of State Transition Matrix.
The STM is the n× n matrix defined as

Φ(t, t0) =
∂X

∂X0

(2.38)

and then
δX(t) = Φ(t, t0)δX(t0) (2.39)

The STM is a solution of the first-order variational equations (2.36)

Φ̇(t, t0) = A(t)Φ(t, t0) (2.40)

at initial time t0, the STM equals the n× n identity matrix

Φ(t0, t0) = In (2.41)

STM in CR3BP

In the case of CR3BP, the system of equations (2.27) can be written as
first-order variational equations, in the form (2.36). The matrix A(t) reads

A(t) =

[
0 I

Uxx 2Ω

]
(2.42)
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Chapter 2. Non-Keplerian Dynamical Models

A(t) is a 6×6 matrix and its four 3×3 submatrices are

0 = zero matrix
I = identity matrix

Uxx = matrix of second partials of pseudo-potential function Ũ

Ω =

 0 1 0

−1 0 0

0 0 0


The STM matrix can be numerically computed by solving Eq. (2.40) with
initial conditions from Eq. (2.41), and using the expression of A(t) in
Eq. (2.42).

2.1.2 The Elliptic Restricted Three-Body Problem

The Elliptic Restricted Three-Body Problem (ER3BP) considers the pri-
maries moving on ellipses around the barycentre of the system. Such prob-
lem is a generalization of the simpler CR3BP for e 6= 0. With analogy
to the CR3BP formulation in Section 2.1.1, the equations of motion of the
ER3BP are recalled here.

Equations of motion in the rotating frame

Eq. (2.2) is valid both for the case of circular and elliptic problem. The
equations of motion in the rotating frame are written considering that ω =
ω(t) is now time dependent and no longer constant as for the case of CR3BP,
with ω̇ 6= 0. Also, when seen from the rotating frame, the positions of the
primaries are no longer constant and pulsate along the x axis: xP1 = xP1(t)
and xP2 = xP2(t). Accordingly, (2.15) is written as

ẍ = ω(t)2x+ 2ω(t)ẏ + ω̇(t)y −G
(

M1

r1(t)3
(x+ xP1(t))+

+
M2

r2(t)3
(x− xP2(t))

)
ÿ = ω(t)2y − 2ω(t)ẋ− ω̇(t)x−Gy

(
M1

r1(t)3
+ M2

r2(t)3

)
z̈ = −Gz

(
M1

r1(t)3
+ M2

r2(t)3

)
(2.43)

with

r1(t) = ‖rP1(t)− r‖ =
√

(x+ xP1(t))
2 + y2 + z2 (2.44a)
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2.1. The Restricted Three-Body Problem

r2(t) = ‖rP2(t)− r‖ =
√

(x− xP2(t))
2 + y2 + z2 (2.44b)

Unlike the CR3BP case, this system is no more autonomous, since it explic-
itly depends on time. Instantaneously, system (2.43) is formally identical to
system (2.15), except for the terms ω̇y and ω̇x that appear at the right-hand
side of, respectively, first and second equation.

Nondimensional equations of motion in the rotating frame

As done for the circular case, information on the known motion of the pri-
maries can be used to obtain a reduced form of system (2.43). The relative
distance between P1 and P2 is no longer constant and it is solution of the
two-body problem between them, to be written as function of either true or
eccentric anomaly

d(t) =
p

1 + e cos θ(t)
= a(1− e cosE(t)) (2.45)

where p is the semi-latus rectum of the conic solution, θ is the true anomaly,
E is the eccentric anomaly and e is the eccentricity of the two-body orbit
of the primaries. The angular velocity ω(t) is also written according to the
two-body solution

ω(t) =

√
G(M1 +M2)

d(t)3
(2.46)

Equivalently, the angular velocity can be written as

ω(t) =
h

d(t)2
(2.47)

where h is the specific angular momentum of the orbit

h =
√
G(M1 +M2)a(1− e2) (2.48)

with a being the semi-major axis of the two-body solution. Two strategies
are commonly adopted to nondimensionalize the problem. Both strategies
start from the nondimensional set adopted for the circular case, except for
the choice of the unit length. The first strategy considers the characteristic
length to be the semi-major axis a of the two-body solution. Superscriptˆ
is used here to refer to nondimensionalization according to a. In this case,
the nondimensional angular velocity ω̂ is written as

ω̂ =
ĥ

d̂2
=

√
1− e2

(1− e cosE)2
(2.49)
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accordingly, its derivative is written as

˙̂ω = −2e

√
1− e2

(1− e cosE)4
sinE (2.50)

The positions of primaries are expressed as{
−x̂P1 = −µ(1− e cosE)

x̂P2 = (1− µ)(1− e cosE)
(2.51)

Substituting, the nondimensional equations of motion are written as
¨̂x = ω̂2x̂+ 2ω̂ ˙̂y + ˙̂ωŷ −

(
(1−µ)[x̂+µ(1−e cosE)]

r̂31
+ µ[x̂−(1−µ)(1−e cosE)]

r̂32

)
¨̂y = ω̂2ŷ − 2ω̂ ˙̂x− ˙̂ωx̂−

(
(1−µ)ŷ

r̂31
+ µŷ

r̂32

)
¨̂z = −

(
(1−µ)ẑ

r̂31
+ µẑ

r̂32

)
(2.52)

as done for the circular case, the nondimensional pseudo-potential associ-
ated to the problem is defined as

Û(x̂, ŷ, ẑ, t) =
1

2
ω̂2(x̂2 + ŷ2) +

1− µ
r̂1

+
µ

r̂2

(2.53)

and the equations of motion are written in a more compact form as
¨̂x− 2ω̂ ˙̂y = Ûx̂ + ˙̂ωŷ

¨̂y + 2ω̂ ˙̂x = Ûŷ − ˙̂ωx̂

¨̂z = Ûẑ

(2.54)

A different nondimensionalization strategy considers the characteristic
length to be the instantaneous distance between primaries. Unlike the pre-
vious case, the position of primaries in the rotating frame is fixed here and
their relative distance equals one at any time. This nondimensional frame
is then not only rotating but also pulsating along the x direction. Formally,
the equations of motion does not differ from system (2.27), which is valid
instantaneously. When referring to the rotating-pulsating frame, it can be
useful to refer to equations of motion in terms of true anomaly rather than
time. In this case, time derivatives are replaced by derivatives with respect
to true anomaly θ

d(·)
dt

=
d(·)
dθ

dθ

dt
(2.55)
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with
dθ

dt
=

h

d2
(2.56)

Superscripť is used here to refer to variables in the rotating-pulsating nondi-
mensional frame. Nondimensional equations of motion, in terms of true
anomaly variation, are written as

x̌′′ − 2y̌′ = Ǔx̌

y̌′′ + 2x̌′ = Ǔy̌

ž′′ = Ǔž

(2.57)

where (·)′ and (·)′′ indicate first and second derivative with respect to the
true anomaly θ. The pseudo-potential function Ǔ(x̌, y̌, ž, θ) associated to
the problem is defined as

Ǔ(x̌, y̌, ž, θ) =
1

1 + e cos θ

[
1

2
(x̌2 + y̌2 − ž2e cos θ)+

+
1− µ
ř1

+
µ

ř2

] (2.58)

the interested reader can refer to [64] for further details.

STM in ER3BP

As done for the circular case, details on the STM computation are discussed
here for the elliptic case. More in detail, the formulation related to motion
in terms of time variations, as expressed in system 2.54, is considered. As
mentioned, the system is non-autonomous and the six-dimensional state
vector associated to position and velocity of the third body in the rotating
frame must be augmented to introduce information of the motion of the pri-
maries. To this goal, the eccentric anomaly related to the two-body motion
of primaries is included in the seven-dimensional state vector

X = [x̂, ŷ, ẑ, ˙̂x, ˙̂y, ˙̂z, E]T (2.59)

The variational equations associated to the problem are written as

δẊ = A(t)δX (2.60)

where A(t) is the 7×7 Jacobian of the system

A(t) =

 0 I 0

UXX + ˙̂ωΩ 2ω̂Ω Γ

0 0 σ

 (2.61)
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the first row of A(t) expresses the derivatives of the velocities ˙̂x, ˙̂y, ˙̂z with
respect to the full stateX and it is made of three submatrices

0 = (3× 3) zero matrix
I = (3× 3) identity matrix
0 = (3× 1) zero matrix

the second row contains the derivatives of the accelerations

UXX = (3× 3) matrix of second partials

of Û with respect to position

Ω =

 0 1 0

−1 0 0

0 0 0


Γ = (3× 1) matrix of derivatives of

accelerations with respect to E

the last row contains the derivatives of Ė with respect to the full state

0 = (1× 3) zero matrix

σ = (1× 1) derivative of Ė with respect to E

Being the STM Φ(t, t0) solution of Equation 2.60, its components can be
computed numerically by solving the system{

Φ̇(t, t0) = A(t)Φ(t, t0)

Φ̇(t0, t0) = I
(2.62)

2.2 The N-Body Problem

The N-body problem studies the dynamics of N point-mass bodies under
their reciprocal gravitational attraction. Despite being a well known math-
ematical problem, with an established mathematical formulation, the full
comprehension of its solutions and dynamical behaviour is still very far
from being reached. It was proved that no analytical solution exists for
N > 2 and the problem is characterized by a highly non-linear (chaotic)
behaviour, which is reflected in a strong dependency of the solution on ini-
tial state of any body.
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2.3. Small bodies

2.2.1 The Unrestricted N-Body Problem

The classic Newton’s law expresses the gravitational interactions between
the N bodies, with each body moving under the gravitational attraction of
all remaining N-1 bodies

miR̈i = G

N∑
j=1,j 6=i

mimj

‖Rij‖3
Rij ∀i = 1 : N (2.63)

with Ri representing the position vector of the centre of mass of body i in
an inertial frame and Rij = Rj − Ri, while mi represents its mass and
G is the universal gravitational constant. Applications of the unrestricted
N-Body problem are used in this work of thesis to simulate asteroid aggre-
gation dynamics, to find suitable mass distribution models for an asteroid.
Further detail on the numerical implementation of the unrestricted N-Body
problem in this kind of application is provided in Section 3.4 and 4.2.

2.2.2 The Restricted N-Body Problem

As mentioned in Section 2.1, restricted problems finds real world applica-
tions on astrodynamics problems related to spacecraft trajectory design. In
such case, the focus is on the motion of a small body (spacecraft) under the
gravitational field generated by massive gravity sources, such as celestial
bodies in the Solar System. In this case, the following assumption holds

mS/C � mi ∀i = 1 : N − 1 (2.64)

meaning that the spacecraft does not influence the motion of the remain-
ing N-1 bodies. Applications of the restricted N-Body problem are imple-
mented in this work to provide a real world model of the Solar System. The
position of each celestial body, when relevant to the application, is pro-
vided with high accuracy by using planetary ephemerides retrieved from
JPL’s existing database (for the case of planets and planetary satellites) or
by using JPL’s Horizons system (for the case of asteroids and comets) [77].

2.3 Small bodies

Few strategies can be adopted to model the gravity field about asteroids.
Classic methods consider a spherical mass distribution of the asteroid and
include harmonic expansion of gravitational potential [80] to model the
irregularities of the field. These methods work well when the mass dis-
tribution of the gravity source is spherical or very close to be spherical,

27



Chapter 2. Non-Keplerian Dynamical Models

as in the case of planets and large natural planetary satellites. However,
such methods can be very inaccurate for the case of asteroids and comets,
especially during close-proximity operations. As for the case of spherical
harmonics, the series is known to converge exactly to the actual gravity
field only outside of the sphere circumscribing the small body (or Brillouin
sphere) [121]. This clearly does not fit with the need to design close prox-
imity or landing trajectories about elongated or non-convex bodies, which
is often the case in the NEA population. Also, a lot of series coefficients
must be known to have a good estimate of the gravity field and such in-
formation is hardly available for a mostly unknown celestial object. A re-
cent strategy models the gravity field according to shape information avail-
able on the asteroid/comet after optical and radar observation. If a shape
model of the body is available, the best technique is to represent it as an
homogeneous polyhedron [123, 137], based on such shape model. When a
detailed shape model is not available, simpler models of its shape can be
used, such as tri-axial ellipsoids [119]. A further class of methods makes
use of mass-concentrated models, also known as mascon models. These
methods model the mass distribution of the celestial body using multiple
point-mass sources and accordingly, the gravity field is the sum of multiple
central fields. The accuracy of each method depends on the modeled target
body and on the application. Typically, each model fits a specific class of
asteroids and application range.

In the following, the most suitable models for small celestial bodies ap-
plications are recalled and discussed. Section 2.3.1 recalls the techniques to
model small bodies through shape-based models, while Section 2.3.2 dis-
cusses the mascon model strategy and introduces a methodology to obtain
the final asteroid model based on multi-body N-body asteroid aggregation
simulation.

2.3.1 Shape-based models

The use of shape-based models is currently the most advanced technique
concerning refined and high-accuracy models of irregularly-shaped bodies.
Since they are built using shape information, such models are able to re-
produce the irregularities of the field produced by the irregular shape of the
target body. If accurate shape and mass distribution information is avail-
able, the model can virtually reproduce a real-world model of the target
body, by means of accurate shape and density distribution modeling. Due
to their usefulness within astrodynamics problems and for mission analy-
sis of spacecraft orbiting in the close-proximity of small celestial bodies,
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ellipsoid and polyhedron models are recalled here. Due to the very lit-
tle knowledge about interior mass or density distribution of asteroids and
comets [71], the case of uniform density distribution is studied.

Ellipsoid model

The implementation is based on the method proposed by Scheeres [119]
and models the gravity potential of an ellipsoid of constant density ρ, with
semi-axes α, β, γ, aligned respectively to the x, y and z axes of the refer-
ence frame, and with α ≥ β ≥ γ. The reference (x, y, z) is then aligned to
the principal axes of inertia of the ellipsoid. The shape of the ellipsoid is
delimited by (

x

α

)2

+

(
y

β

)2

+

(
z

γ

)2

= 1 (2.65)

the dimensional potential outside of the ellipsoid is written as

Uell(x, y, z) = −Gρπαβγ
∫ ∞
λ(x,y,z)

ϕ(x, y, z;u)
du

∆(u)
(2.66)

where G is the universal gravitational constant and

ϕ(x, y, z;u) =
x2

α2 + u
+

y2

β2 + u
+

z2

γ2 + u
− 1 (2.67)

∆(u) =
√

(α2 + u)(β2 + u)(γ2 + u) (2.68)

with parameter λ being solution of

ϕ(x, y, z;λ(x, y, z)) = 0 (2.69)

In order to include the effect of the ellipsoid gravity source into the equa-
tions of motion of the surrounding particle, the acceleration vector is com-
puted as the gradient of the potential function Uell(x, y, z)

aell =∇Uell(x, y, z) = −2Gρπαβγ


x
∫∞
λ

du
(α2+u)∆(u)

y
∫∞
λ

du
(β2+u)∆(u)

z
∫∞
λ

du
(γ2+u)∆(u)

 (2.70)

for completeness, the Jacobian of acceleration vector, namely the second
partials of potential, is reported here

∇aell = UellXX
= −2Gρπαβγ

Uxx Uxy Uxz

Uxy Uyy Uyz

Uxz Uyz Uzz

 (2.71)
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with

Uxx =

∫ ∞
λ

du

(α2 + u)∆(u)
− 2x2

(α2 + λ)2∆(λ)ψ
(2.72a)

Uyy =

∫ ∞
λ

du

(β2 + u)∆(u)
− 2y2

(β2 + λ)2∆(λ)ψ
(2.72b)

Uzz =

∫ ∞
λ

du

(γ2 + u)∆(u)
− 2z2

(γ2 + λ)2∆(λ)ψ
(2.72c)

Uxy = − 2xy

(α2 + λ)(β2 + λ)∆(λ)ψ
(2.72d)

Uxz = − 2xz

(α2 + λ)(γ2 + λ)∆(λ)ψ
(2.72e)

Uyz = − 2yz

(β2 + λ)(γ2 + λ)∆(λ)ψ
(2.72f)

and with ψ

ψ =
x2

(α2 + λ)2
+

y2

(β2 + λ)2
+

z2

(γ2 + λ)2
(2.73)

Polyhedron model

The computation of gravity contribution due to a polyhedron of constant
density ρ is recalled here. The derivation is based on the method proposed
by Werner and Scheeres [137]. The dimensional potential function Upoly

indicates the exact potential of an object, according to its shape model.
The contributions due to all faces and edges of the polyhedron are summed
together

Upoly(x, y, z) = −1

2
Gρ

( ∑
f∈faces

rf ·Ff ·rfωf−
∑
e∈edges

re·Ee·reLe
)

(2.74)

where G is the universal gravitational constant. rf and re are vectors from
the field point to face f and edge e. Ff is the dyad associated to face f of
the polyhedron model

Ff = n̂f n̂f (2.75)

with n̂f as the unitary vector normal to face f . Analogously, Ee is the dyad
associated to edge e of the polyhedron

Ee = n̂f1n̂
f1
e + n̂f2n̂

f2
e (2.76)

where f1 and f2 denotes the two faces sharing the edge e. n̂f1e is the unit
vector normal to the edge e and to n̂f1 and pointing opposite with respect
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to the centre of face f1. The term Le represents the potential of a wire
associated to the edge e

Le = ln
re1 + re2 + le
re1 + re2 − le

(2.77)

where re1 and re2 are vectors from the field point to the vertexes at the ends
of edge e, while le is the length of edge e. Parameter ωf is the solid angle
associated to the face f , when viewed from the field point

ωf = 2 arctan
rf1 · r

f
2 × r

f
3

rf1r
f
2r

f
3 + rf1r

f
2 · r

f
3 + rf2r

f
2 · r

f
1 + rf3r

f
1 · r

f
2

(2.78)

where rf1 , r
f
2 and rf3 are vectors from the field point to the three vertexes of

the triangular face f and rf1 , r
f
2 , r

f
3 are their norms. As done for the ellipsoid

model, the acceleration and its Jacobian are reported here

apoly =∇Upoly(x, y, z) = Gρ

( ∑
f∈faces

Ff ·rfωf−
∑
e∈edges

Ee ·reLe
)

(2.79)

∇apoly = UpolyXX
= −Gρ

( ∑
f∈faces

Ffωf −
∑
e∈edges

EeLe

)
(2.80)

Figure 2.3 shows an example of polyhedral model of comet 67P/Churyumov-
Gerasimenko, as compared to a high resolution picture taken by the Rosetta
spacecraft in 2014.

(a) (b)

Figure 2.3: Comet 67P/Churyumov-Gerasimenko (a) picture from Rosetta spacecraft
(credits: ESA, 2014) (b) polyhedral shape model.
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2.3.2 N-mascon models

In the late 1970s, Chapman [19] used the term “rubble pile” to indicate a
gravitational aggregate of boulders. Although a non-negligible fraction of
objects of more than 50 km diameter could be monolithic [12], recent stud-
ies and observations support the idea that many comet nuclei and asteroids
between 100 m and 100 km in size may be gravitational aggregates [111].
Celestial bodies of this class can have up to 40% porosity, or void fraction.
For this reason, homogeneous mass models of asteroids are usually not the
best choice to model gravitational aggregates with high accuracy since in-
ternal voids can significantly affect the outer field. To this goal, the target
body is modeled here using a mass-concentrated model, also referenced as
mascon model in the following. The basic idea is to model the mass dis-
tribution of the target body by means of N concentrated masses. In such a
way, the outer gravity field is expressed as the sum of N central bodies

r̈ = G
N∑
i=1

mi

‖ri‖3
ri ∀i = 1 : N (2.81)

where r is the position vector of the particle subjected to the field in the
(x, y, z) body-fixed frame, while ri is the distance between the particle and
the i-th mass mi

ri = Ri − r (2.82)

with Ri being the position of mi in the body-fixed frame. The positions
Ri of each i-th concentrated mass are fixed with respect to the body-fixed
frame and they represent the mass distribution of the object. How the
masses are displaced in the body-fixed frame and the values of each mass
mi are related to the target body to be modeled. The N masses can be dis-
tributed according to a specific mass distribution of the target body, or outer
field to be reproduced. A classical method fits N equal masses within the
shape of the target body on an evenly spaced grid [58]. Since this method
displaces all masses uniformly within the shape of the body, it represent
a simplification of analytical shape-based models and not a valid alterna-
tive for the case of gravitational aggregates. The simple gridded method
can be improved by introducing a non-uniform distribution of masses, with
mi 6= mj . To this goal, optimization can be applied, with position Ri and
masses mi as free parameters of the optimizer and with a given outer field
as reference. The optimal mascon approach is implemented using a genetic
algorithm to minimize the difference between the outer field generated by
the N mascon model and the real-world known field [25]. The last strat-
egy for mass displacements and mi definition, is by simulating the asteroid
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aggregation process. Such strategy is suitable for the case of gravitational
aggregates, or “rubble pile” asteroids: the mass distribution of the asteroid
is provided as output of a realistic aggregation scenario.

Applications related to mascon models are studied in this work of thesis.
A two-mascon model is used to reproduce a space mission scenario around
a two-lobed asteroid in Section 5.1. Further details on the numerical im-
plementation of the N-body gravitational aggregation model are provided
in Section 3.4.1, while results coming from numerical simulations are dis-
cussed in Section 4.2.

2.4 Non-gravitational perturbations: SRP

The model of the dynamics of a spacecraft flying in the Solar System can be
refined by including orbital perturbations due to non-gravitational effects.
Among these, one of the most relevant effect for space applications is pro-
voked by the SRP. Concerning applications discussed in this work, the per-
turbation is computed according to a very simple cannonball model [24].
The acceleration due to the SRP is estimated as

aSRP =
P (1 + Cr)A

c ·m
(2.83)

where P is the amount of power received from the Sun per square meter,
Cr is the reflectivity coefficient, A is the cross-section area, c is the speed
of light constant and m is the mass of the spacecraft.
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CHAPTER3
Numerical Methods for Nonlinear System

Dynamics

One of the most crucial aspect when dealing with non-Keplerian dynamics
is the capability to identify effective solutions, suitable for the mission anal-
ysis application under design. The great effort devoted by the astrodynam-
ics community to the problem of finding solutions to restricted three-body
systems has enhanced the understanding of such chaotic systems. How-
ever, the full comprehension of general non-Keplerian dynamics is far to
be reached and the capability to predict the dynamical behaviour of an ob-
ject moving in such environment is very poor, except for very confined
applications related mainly to R3BP. The reason is due to the nature of the
problem, to its strong nonlinearity and to the absence of general analytical
solutions. Numerical methods play a fundamental role in finding such solu-
tions and nowadays, represent the most powerful tool the designer can use
for mission analysis design.

This chapter discusses the problem of finding solutions associated to
non-Keplerian systems and presents the numerical methods used to com-
pute the trajectories and orbits throughout this thesis work. Typical exam-
ples related to mission analysis applications concern the search for periodic
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solutions. Section 3.1 presents the software architecture of a general pur-
pose method to address such problem. Although the software implementa-
tion proposed here is presented with a clear focus towards the computation
of periodic orbits, its application can be easily extended to the finding of any
wanted trajectory. The numerical tool includes and harmonizes three main
blocks of libraries, which implement the three fundamental ingredients to
compute periodic orbits: initial guess generation, correction and continu-
ation. The methods and techniques are general and can be applied to any
nonlinear dynamical system. Nomenclature and notation refer to nonlinear
dynamical system theory: see [67] for a detailed and rigorous description of
nonlinear dynamical system theory and [72, 82, 121] for the theory applied
to astrodynamics problems. Since the purpose of this work is to study as-
trodynamics applications, the research is focused towards two main kind of
non-Keplerian systems, which are very popular for spacecraft applications:
the restricted three-body problem and gravity field around small celestial
bodies. Applications of the implemented software architecture to periodic
motion identification are shown in Section 3.2. The most relevant solu-
tions for space mission applications are summarized and the suitability of
the different methods proposed is discussed for each specific case: initial
guess generation, correction and continuation methods are customized to
the specific solution to be targeted. Examples of algorithms used to find
periodic motion are presented. The algorithm in use for computation of
invariant manifold solutions is presented in Section 3.3. The last part of
the chapter (Section 3.4) is dedicated to an application indirectly related to
spacecraft trajectory design. An innovative numerical method used to solve
the unrestricted N-body problem is presented. Since it is an unrestricted
problem, its solutions are not directly used for spacecraft trajectory design.
Instead, they are used to generate suitable N-body mascon models that rep-
resent the mass distribution of an asteroid. Spacecraft trajectories can be
designed at a subsequent phase, using the software architecture presented
in Section 3.1 under the dynamics associated to the N-body mascon gravity
field (Section 2.3.2).

3.1 Software architecture for restricted problems

Part of the thesis work was devoted to the implementation and validation
of a general purpose software to be used for astrodynamics applications.
The software was implemented to support the thesis work and to provide
relevant dynamical solutions (orbits and trajectories) under non-Keplerian
dynamics. The current section discusses in more detail the general method-

36



3.1. Software architecture for restricted problems

ology used, the software architecture of the numerical tool implemented
and its applicability to astrodynamics problems. Given the framework of
the dynamics to be considered, the goal is to build a general tool for tra-
jectory design. A set of initial conditions unequivocally identifies the evo-
lution of the dynamics (initial value problem) and the resulting solution,
or trajectory, can always be retrieved by starting from the same set of ini-
tial conditions. For this reason, searching for specific trajectories means
searching for sets of initial conditions associated to these solutions.

Concerning existing numerical methodologies and implementations for
finding periodic motion in non-Keplerian systems, the majority of them
are based on the correction algorithm implemented by Howell [72]. Few
methods are used to provide initial guess to find a periodic solution after
differential corrections: Lo [85] showed how to look for initial guess con-
ditions in the centre subspace associated to a libration point, Howell and
Campbell [75] showed how to use bifurcation maps to find new families of
solutions starting from other families of orbits. Bifurcation problems are
detailed by Keller [81], for general nonlinear systems. A comprehensive
implementation, called AUTO [27], exists for continuation and bifurcation
problems in ordinary differential equations. Examples of its implemen-
tation to find periodic solutions in the CR3BP are given in [16, 28, 29].
Compared to AUTO, the proposed implementation aims to a much more
astrodynamics-related tool, with the scope of creating a tool to support
space mission analysis and design. As compared to existing studies, the
proposed software architecture aims at generalizing and harmonizing ex-
isting techniques into a unique and multi-purpose tool. According to the
current state of the art, no general-purpose tools able to handle different
systems and dynamics are available. Classical and recent techniques for
non-linear system dynamics are used and integrated together to build new
algorithms, in the attempt of creating more efficient schemes, that can be
customized to the properties of the system.

As mentioned, specific applications related to periodic motion identifi-
cation are presented. For any dynamical system, a periodic motion is found
when the dynamics repeat themselves in a certain time (period). Consider
the general nonlinear dynamical system

Ẋ = f(X) (3.1)

withX being the state vector. Let then

Xs = Γs(t) (3.2)

be a solution of system (3.1). If the function Γs(t) is periodic in time with
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period T
Γs(t) = Γs(t+ T ) (3.3)

then Xs is a periodic solution of the system of differential equations (3.1).
Analogously, concerning initial conditions of the initial value problem, at
time t = tin the state X(tin) corresponds to a periodic solution for the
dynamical system if after a certain time T

X(tin) = X(tin + T ) (3.4)

since in this system the particle is periodically coming back (with period T )
to the same point in the state space. A catalogue of periodic orbits (stored
as sets of initial conditions) relevant for space mission applications, was
generated for rapid trajectory design. Also, guidelines related to the appli-
cability of numerical methodologies to the different dynamics under study
were investigated. The ultimate goal is to enhance the comprehension of
non-Keplerian dynamics, in order to foresee a priori what kind of periodic
solutions can be expected to be found in a specific system.

As discussed, non-Keplerian dynamics are strongly non-linear, meaning
that solutions are highly dependent on their initial conditions (i.e., the initial
state of the bodies involved) and small variations of them can lead to very
different trajectories. For this reason, correction algorithms are needed to
correct initial conditions, to find those corresponding to a specific solution.
The choice of the initial guess to be provided to the corrector is crucial
to guarantee the method to converge to the aimed solution. In the case of
families of solutions (solutions sharing some properties or behaviour in the
dynamical system), such an initial guess is often provided by using infor-
mation available on other members of the family, i.e., by continuation from
other solutions close to the aimed one. The proposed integrated method for
periodic motion computation includes and harmonizes three main sets of
libraries (or blocks), which implement the three fundamental ingredients to
compute periodic orbits: initial guess generation (Section 3.1.1), correction
(Section 3.1.2) and continuation (Section 3.1.3). Methodologies to deal
with nonlinear system dynamics are also implemented: all libraries make
use of routines developed for the computation of relevant quantities such
as State Transition Matrix (STM) and variational equations, implemented
for each of the different dynamical system under study. More in detail, the
linearized system matrix associated to variational equations is written ana-
lytically for each dynamical system and the STM is computed numerically
based on this information, as described in Chapter 2. A more detailed de-
scription of the methods and their applicability to astrodynamics problems
is discussed in the following.
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The connection and exchange of information between each block is
schematically shown in Figure 3.1. The whole process is initiated by a
given initial guess, which is corrected to find the first periodic orbit solu-
tion. Then, this information is used to generate a new initial guess, to find
the next member of the family. Different methods and strategies are im-
plemented in each block. The suitable combination of methods is selected
according to the nature of solution to be found and to the dynamics of the
problem.

Initial Guess

Correction

Continuation

Periodic Orbit

Figure 3.1: Schematics of software architecture implemented

3.1.1 Initial guess

The term initial guess refers to a set of initial conditions used as first guess
to find, after correction, another set of initial conditions, the latter associ-
ated to the aimed periodic orbit. The initial conditions set typically includes
the state of the massless body (spacecraft) subjected to the gravity field, the
state of the gravity sources and other relevant properties of the system under
study (e.g. mass ratio or eccentricity of primaries for the case of three-body
systems). In the following the initial conditions set is referenced using the
notationXg. Depending on the case, the initial guess is provided according
to different strategies.

Catalog of available data

This represents the quickest way to find the initial guess when a catalogue
of periodic solutions is available. It allows to retrieve solutions in the cata-
logue or solutions close to orbits included in the catalogue.

Center manifold associated to an equilibrium point

This powerful technique is suitable to initiate the family of certain classes
of orbits such as planar or vertical Lyapunov, which emanate directly from
the centre manifold of the equilibrium point. Periodic and quasi-periodic
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orbits live in the centre manifold phase space associated to collinear li-
bration points. The centre manifold directions are found by analyzing the
eigenstructure of the linearized system near the libration point, which can
be written in the form

δẊ = AδX (3.5)

being δX the linearized state and A the system matrix. The eigenvectors
associated to the complex conjugate eigenvalues of the system matrix A
represent the directions tangent to the centre manifold subspace. The initial
guess Xg is found by moving a small step towards the centre manifold
direction near the libration point [85], such that

Xg = P + Eρ (3.6)

where P is the state vector associated to the libration point (with zero ve-
locity). E is a matrix that collects the eigenvectors of A associated to the
centre manifold

E =
[
v1 v2 . . . vn

]
(3.7)

where n is the size of the centre subspace associated to the problem. ρ
is a (n × 1) vector, used as a weight to define how far the guess is taken
from P and to select preferred directions in the centre subspace. This pa-
rameter shall be carefully tuned according to the specific case considered
and it should be small enough so that linearized system represents a good
approximation of the non-linear problem. Lastly, the initial conditions set
should include a guess for the period of the orbit to be found. This infor-
mation is retrieved using the eigenvalue frequency ‖λi‖ associated to the
centre manifold selected

T =
2π

‖λi‖
(3.8)

.

Center manifold associated to a periodic orbit

Relevant motion, of interest for space applications, can be found in the
proximity of a periodic orbit, when a centre manifold subspace exists in its
vicinity (e.g. quasi-periodic tori near Halo orbits [4]). With analogy to the
previous case, the guess if found in the direction of the centre eigenvectors
associated to the linearized system. In this case the analysis is performed
by studying the eigenstructure of the monodromy matrix associated to the
periodic orbit.
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Bifurcations

A bifurcation is typically identified by a sudden change of the properties
of the periodic solution along its family (e.g. modifications in the eigen-
structure of the monodromy matrix). This technique is suitable to initiate
the family of certain classes of orbits which emanates from bifurcations
of other families. An example is given here for the case of Halo family:
Hénon [68] showed that these particular orbits are the results of a bifurca-
tion of the planar Lyapunov family. No Halo orbits exist at energies lower
than the bifurcating one, hence no Halo orbit can be found in the centre
subspace in the vicinity of the libration points. The monodromy matrix as-
sociated to any Lyapunov orbit smaller than the bifurcating one (the one
having critical amplitude) has four centres, one stable and one unstable
eigenvalue. Focusing on the centre eigenvalues, two of them are real and
their value is equal to one, the other two are a complex conjugates pair with
unitary norm. Both couples of centre eigenvalues represent bounded mo-
tion in the proximity of the orbit and in particular the real unit eigenvalues
represent the periodic orbit, while the two complex conjugates represent
quasi-periodic motion nearby the Lyapunov. As the amplitude of the Lya-
punov orbit increases and approaches the critical amplitude, the conjugate
pair moves on the unit circle, approaching the real value of one. Hence, the
monodromy matrix of the critical Lyapunov has four real eigenvalues equal
to one. At this specific point, the quasi-periodic motion disappears while
two periodic motions are present: the first one is the in-plane motion (Lya-
punov orbit) while the second one has an out-of-plane component (Halo
orbit).

Bifurcation maps are extremely useful to understand connections be-
tween families of orbits and to help identify new families. The problem of
bifurcation in such nonlinear systems is extremely complex, since the prop-
erties of the dynamics can exhibit large variations depending on the energy
of the particle and on the parameters characterizing the gravity source (mass
ratio between primaries, eccentricity of their relative orbit, shape/mass dis-
tribution of the gravity source,. . . ).

Poincaré maps

A very effective strategy to explore the complexity of non-Keplerian dy-
namical systems, is to make use of Poincaré maps. In few words the
Poincaré map helps representing in a simpler way the dynamics, allowing
for an easy identification of relevant solutions. Examples of such solutions
are periodic and quasi-periodic orbits, heteroclinic and homoclinic connec-
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tions between solutions about equilibrium points.
Consider the general dynamical system (3.1) and its n-dimensional flow

φ. Let Σ be a hyperplane transversal to the flow. The Poincaré mapM is
defined as the set of points that intersects the hyperplane

M(X) = φ(TΣ,X) (3.9)

For the case of finding periodic motion, TΣ is the time the flow takes to
first return on the hyperplane where the initial conditions set X0 belongs
to. The hyperplane Σ is also called Poincaré section. Figure 3.2(a) shows
schematically the Poincaré map generated by the intersection between the
dynamical flow and the Poincaré section Σ. Figure 3.2(b) shows an exam-
ple of a numerically computed Poincaré map.

(a)
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Figure 3.2: (a) Poincaré map generated by the intersection between the dynamical flow
and the Poincaré section Σ (b) example of Poincaré map on (x-ẋ) section

Periodic orbits are represented on the map as fixed points if TΣ is equal
to the period of the orbit, as they return on the Poincaré section with the
same state they initially have. The red curve in figure 3.2(a) is an example
of periodic orbit on a Poincaré map: after one period, the flow intersects the
Poincaré section exactly at the starting pointX1. The periodicity condition
is fulfilled when the flow after one period is equal to the initial point and
reads as

M(X i) = φ(Ti,X i) = X i (3.10)

A different example of use of Poincaré maps is shown in Section 5.1, where
a map is used to find intersections between stable and unstable manifolds
in the patched three-body problem.
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Analytical approximations

The last method recalled here refers to the use of analytical or semi-analytical
methods to approximate periodic solutions near libration points. A widely
used method is that proposed by Richardson [114], where Halo orbits are
targeted based on a third-order analytical approximation.

3.1.2 Correction

Two main strategies exist to perform correction on the initial guess, to find
the initial conditions associated to the aimed periodic solution.

Differential corrections

Based on the classical algorithm proposed by Howell [72], differential cor-
rections algorithms are the most widely used technique for numerical cor-
rection of solutions. Modifications and customization are applied depend-
ing on the solution to be found and the dynamics to be investigated. The
methods are based on the definition of constraints to be satisfied and free
variables that can be modified by the corrector. The choice of free variables
vector χ and constraint condition F (χ) = 0 depends on the orbit to be
found and on the dynamics of the system. Typically, periodicity constraint
is enforced, by ensuring that the initial conditions set repeats itself after a
certain time (period of the orbit). In case of unique solution of the con-
strained problem (number of constraints equal to number of free variables),
a multi-variable iterative Newton’s method is employed:

χk+1 = χk − J(χk)
−1F (χk) (3.11)

Where subscript k refers to current iteration and J(χ) is the Jacobian ma-
trix of the problem, found by computing the derivatives of the constraints
with respect to the free variables. Since both constraints and free variables
are built using the state vector X of the spacecraft, the Jacobian matrix is
usually written using the components of the STM Φij , which are, by def-
inition, the partial derivatives of the state ∂Xi/∂Xj . In case time is free
to vary, time derivatives of the state that appear into J(χ) are computed
directly from equations of motion (3.1). The STM for the problem under
study is computed numerically based on variational equations associated to
the dynamics. In case of a under-constrained problem (free variables ex-
ceed the number of constraints), the solution is found by minimizing the
variation of free variables between two consecutive iterations:

χk+1 = χk − J(χk)
T
[
J(χk)J(χk)

T
]−1

F (χk) (3.12)
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Common implementations for astrodynamics applications include different
choice of shooting techniques:

• single-shooting: in this case, the initial state of the spacecraft is in-
tegrated forward into a single arc and the solution is found whenever
the trajectory returns at its initial state.

• multiple-shooting: the initial guess trajectory in discretized into a
series of patch points. The initial state at each patch point is inte-
grated independently and the complete solution is made by several
arcs, patched together. In this case, the constraint vector includes not
only the periodicity constraint, but also continuity constraint between
each arc. Multiple-shooting algorithms are in general more powerful
than single-shooting ones: both of them search for the solution using a
linear approximation (variational equations) of the initial guess trajec-
tory and multiple shorter arcs reduce the errors coming from lineariza-
tion, compared to a single long arc. Figure 3.3 shows an example of
multiple-shooting iterations, with the corrected solution that quickly
converges to a periodic orbit.

Figure 3.3: Multiple-shooting iterations

Depending on whether the dynamics have symmetries, the correction strat-
egy can exploit such symmetry through the mirror theorem. In these cases,
it is sufficient to generate a portion of the orbit, to automatically have the
complete one. Additional constraints must be enforced to ensure symme-
try. In this case, symmetry constraints replace periodicity constraints. The
implementation includes the distinction between fixed and variable time
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schemes. From the numerical point of view, the difference is made sim-
ply by defining the period as constraint or free variable. This distinction
is extremely important for the case of time-dependent systems, such as the
ER3BP or the gravity field of a spinning asteroid. The need of consider-
ing the additional constraint of a fixed-period algorithm can challenge the
corrector or, in some cases, lead to an over-constrained problem.

Optimization algorithms

Finding periodic solutions is equivalent to solving a boundary value prob-
lem (BVP). As an alternative to the use of differential corrections, the BVP
can be solved using optimization algorithms, with periodicity satisfied by
minimizing the difference between parameters in the initial conditions set,
evaluated at initial time and after one period.

3.1.3 Continuation

Continuation methods provide the initial guess to find the next orbit in the
family. Two main strategies are applied.

Single/multiple-parameter continuation

This method is very simple and provides the initial guess for the new orbit
by simply varying one or multiple parameters in the initial conditions set.
The new (varied) parameter shall be kept fixed by the corrector (it is put
into the constraint set), in order to find the new solution. Typical choice of
parameters to be continued include the initial position of the spacecraft, the
energy (to find similar orbits at different energy levels) and period (to find
a family of orbits within a certain period range). Single/multiple-parameter
methods are greatly useful to find solutions within different dynamical sys-
tems. In this case, the continuation parameter can be the mass ratio between
primaries, the eccentricity of their orbit (to find periodic solutions in the
ER3BP), or the geometry/mass distribution of the gravity source (for the
case of shape-based models of asteroids).

An example regarding Halo orbit generation is given here. To obtain
the first guess for the Halo orbit, starting from the six-dimensional state
corresponding to initial conditions of the bifurcating Lyapunov, a small step
∆z is provided in the out-of-plane direction. The new z state is kept fixed
by the corrector. The value of ∆z shall be chosen carefully, since it depends
on the choice of the system and on the method used to correct the initial
guess to the actual initial conditions of the Halo orbit. Depending on the
sign of ∆z, northern (∆z > 0) or southern (∆z < 0) Halo is generated.
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Pseudo-arclength continuation

This method is a special case of multiple-parameter continuation. Param-
eters to be continued are not chosen a priori, but the free variable vector
is continued along the direction tangent to the targeted orbital family, i.e.,
in the direction of the next member of the family. This method is very
efficient and typically is more robust than single/multiple-parameter con-
tinuation, since it does not require any a priori knowledge (or prediction)
of the evolution of the family.

The basic idea of the algorithm is reported here. The next orbit of the
family is associated to new initial conditions X0n , which are computed
starting from the available member of the family X0. In general, the new
initial conditions are found by moving from X0 of a step ρ in the state
space

X0n = X0 + ρ (3.13)

In the case of pseudo-arclength continuation, ρ in taken in the direction tan-
gent to the family of orbits. All orbits in the family satisfy the constrained
problem defined by the differential correction algorithm. Accordingly ρ is
the vector lying on the null space of the system matrix.

Concerning the example given above on CR3BP single-shooting correc-
tor, the initial conditions of the new orbit read as

X0n = X0 + ρ



n1

0

n2

0

n3

0


(3.14)

where ρ can be tuned by the user and indicates how far the new orbit shall
be with respect to the old one in the state space, while n1, n2 and n3 are the
first three components of the null vector of system matrix of (3.25).

3.2 Periodic motion in restricted problems

The most common non-Keplerian models, to be used for space mission de-
sign applications are presented here and the problem of finding periodic
solutions associated to each of them is discussed. The applicability of the
different techniques available is investigated, depending on the kind of dy-
namics and relevant parameters involved. As mentioned in the introductory
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section, the main focus is on CR3BP, ER3BP and small celestial body mod-
els.

3.2.1 The Circular Restricted Three-Body Problem

The CR3BP is the most studied non-Keplerian system and a wide variety
of studies on periodic motion exists. Due to the acquired knowledge on
the problem, a lot of different families of periodic orbits are known to ex-
ist. Relevant contributions include the work by Breakwell and Brown [13],
who computed families of orbits in the Earth-Moon system. Later, How-
ell [72–74] extended their work to compute families for different systems,
and study their properties depending on the mass ratio µ between primaries.
Recent works by Guzzetti et al. [66] and Folta et al. [52] include a compre-
hensive survey of orbit families in the Earth-Moon system and their prop-
erties. Here, a list of the most relevant to space mission design applications
is reported, and the applicability of the aforementioned numerical methods
to find periodic solutions is discussed for each of them.

• Halo: perhaps the most popular orbit in the CR3BP. The Halo family
is known to bifurcate from the planar Lyapunov family. In this case,
either single- or multiple-shooting corrector, with pseudo-arclength
continuation represent a suitable choice to find the whole Halo fam-
ily. Due to the symmetry of the problem, the mirror theorem can be
exploited and it is sufficient to find half orbit, provided that it crosses
orthogonally the (x,z) plane in the synodic frame. Halo orbits exist
around all collinear libration points (L1, L2, L3).

• Planar Lyapunov: this family emanates directly from the centre man-
ifold associated to a collinear point (either L1, L2 or L3). The orbits
are planar and lie on the (x,y) plane of the synodic frame. The fam-
ily can be easily continued by single parameter continuation (e.g. x
coordinate). As for the case of Halo orbit, the mirror theorem can be
exploited.

• Vertical Lyapunov: as the planar family, it emanates directly from
the centre manifold of a libration point, with the difference of having
a three-dimensional out-of-plane motion. The family evolves through
the out-of-plane component and therefore a z-continuation (or pseudo-
arclength) can be used to find the whole family. Unlike the planar
family, vertical Lyapunov can be found around the equilateral points
(L4, L5) as well.
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• Axial: this family can be generated starting from bifurcations in both
vertical and planar Lyapunov families: the Axial family connect the
two bifurcating planar and vertical Lyapunov orbits.

• Other libration point orbits: many other families of orbits exist in the
CR3BP. Examples are short and long period orbits around triangu-
lar points, Butterfly and Horseshoe orbits. Each family possess its
peculiar properties, but general and robust methods such as multiple-
shooting with pseudo-arclength continuation can be used successfully.

• Primary-centred: all previously-listed orbits are libration point orbits.
In addition, orbits around primaries can be of great interest for space
mission applications. A typical example is that of Direct Retrograde
Orbits (DRO), which are of extreme interest due to their convenient
stability properties. The general numerical scheme proposed applies.

• Resonant: these kinds of orbits possess peculiar properties in terms
of period that is, by definition, a multiple of the synodic period of the
primaries. Unlike the previously listed orbits, these are not arranged
in a continuous family, but can be found among all families. To be
found, it is crucial to use a fixed-time corrector, starting from a given
orbit of similar period.

Single-shooting for periodic motion in the CR3BP

An example is provided here for the case of a periodic orbit about a collinear
libration point in the CR3BP, using a single-shooting algorithm. Since the
equations of CR3BP (2.27) are symmetric with respect to the (x, z) plane
in the rotating frame, it is reasonable to assume that a periodic orbit about
collinear libration points crosses the (x, z) plane perpendicularly. Such
symmetry is used to simplify the problem and to speed up the corrector.
Periodicity is related to the orthogonality of the trajectory with respect to
(x, z) plane. Orthogonality (or periodicity) constraint reads as

y = ẋ = ż = 0 (3.15)
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When starting from the (x, z) plane, the initial state for a periodic orbit is

X0 =



x0

0

z0

0

ẏ0

0


(3.16)

Since the problem is symmetric with respect to the (x, z) plane, and the
periodic orbit will return to its initial state after one period, the trajectory
returns on the (x, z) plane after half period, with

Xh =



xh

0

zh

0

ẏh

0


(3.17)

where the subscript h refers to the state after half period of the orbit. If T
is the period of the orbit, then Th = T/2. The initial guess Xg provided to
the corrector is integrated in the CR3BP and checked after half period. An
initial guess for the half period Thg shall also be provided. The correction
algorithm can operate to modify the initial states x0, z0 and ẏ0, or the inte-
gration time Th until constraints are satisfied. The free variables vector is
written as

χ =


x0

z0

ẏ0

Th

 (3.18)

The constraint condition F (χ) refers to the state after half period and is
written as

F (χ) =


yh(χ)

ẋh(χ)

żh(χ)

 = 0 (3.19)
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The problem of finding the initial conditions for a periodic orbit is reduced
to the non-linear constrained problem{

Xh = f(X0, Th)

F (χ) = 0
(3.20)

Overall, the problem has three constraints and four free variables. To find
solutions to the under-constrained problem (3.20) and solve forχ, Eq. (3.12)
is used. To this goal, the Jacobian of the problem J(χ) is required. Since
the Jacobian contains the partial derivatives of the state, the STM after half
period is used. The impact of a slight variation in the initial state is related
to the change in the state after half period, through the State Transition
Matrix Φ(Th, 0)

δXh = Φ(Th, 0)δX0 (3.21)

assuming that X0 corresponds to the state at time t = 0. In addition,
the state after half period depends on the time Th: another term shall be
included to Eq. (3.21).

δXh = Φ(Th, 0)δX0 +



∂x
∂t
∂y
∂t
∂z
∂t
∂ẋ
∂t
∂ẏ
∂t
∂ż
∂t


Th

δTh (3.22)

which is equivalently written as

δXh = Φ(Th, 0)δX0 + ẊhδTh (3.23)

Equation (3.23) is expressed in matrix form and it is equivalent to six scalar
equations. Among these, the three equations representing the constraints
can be extracted. Also, knowing that the corrector is allowed to change
only x0, z0, ẏ0, and Th then

δy0 = δẋ0 = δż0 = 0 (3.24)

Variations related to constraint variables can be written as
δyh = Φ21δx0 + Φ23δzo + Φ25δẏ0 + ẏhδTh

δẋh = Φ41δx0 + Φ43δzo + Φ45δẏ0 + ẍhδTh

δżh = Φ61δx0 + Φ63δzo + Φ65δẏ0 + z̈hδTh

(3.25)
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or equivalently, in matrix notation

δF (χ) = J(χ)δχ (3.26)

with

J(χ) =

Φ21 Φ23 Φ25 ẏh

Φ41 Φ43 Φ45 ẍh

Φ61 Φ63 Φ65 z̈h

 (3.27)

which represent a system of three equations and four unknowns. Note that
Φi,j is the (i, j) element of the STM. Alternatively to solving the under-
constrained problem, a common choice is to operate on only three out of
the four free variables, while fixing either x0 or z0 and consequently

δx0 = 0 or δz0 = 0 (3.28)

In such case, the problem has equal number of constraints and free variables
and Eq. (3.11) can be used to solve the constrained system. The choice of
fixing x0 or z0 depends on the kind of orbit the corrector is targeting. For
example, δx0 = 0 can be imposed to find Lyapunov orbits, while δz0 = 0
to find Halo orbits. In case δx0 = 0 is chosen, the system becomes

δyh = Φ23δz0 + Φ25δẏ0 + ẏhδTh

δẋh = Φ43δz0 + Φ45δẏ0 + ẍhδTh

δżh = Φ63δz0 + Φ65δẏ0 + z̈hδTh

(3.29)

which is now a system of three equations in the three unknowns δz0, δẏ0

and δTh.

3.2.2 The Elliptic Restricted Three-Body Problem

The role of eccentricity in the R3BP is extremely relevant. From the dy-
namical point of view, compared to the CR3BP, the ER3BP is no longer
autonomous, being the dynamics of the latter time-dependents. This fact
highly challenges the problem of finding periodic solutions. For an orbit
to be periodic in the CR3BP, it is sufficient to replicate its six-dimensional
state, after a certain time (period of the orbit). The circular problem is
known to have an infinite number of periodic solutions which can be col-
lected into families of orbits with continuously varying period. This is not
true for the elliptic problem. Due to its explicit time dependency, it is not
sufficient for an orbit in the ER3BP to replicate its six-dimensional state:
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the whole dynamics shall be replicated, including the time-dependent posi-
tion of primaries. For this reason the ER3BP admits only isolated periodic
orbits, with well-determined periods. Since the time dependency of the
problem is due to the motion of the primaries, orbits in the ER3BP must be
periodic with a period commensurable to that of the primaries. From the
computational point of view, periodic solutions can be found through fixed-
time differential correction, starting from a resonant orbit in the CR3BP and
applying single-parameter continuation to slightly vary the eccentricity of
the system. The constraints to build the corrector must be chosen wisely
depending on the aimed orbit, and making sure not to over-constraint the
problem. After considering the increased complexity of the problem, gen-
eral methodologies presented in the previous section can be applied.

When considering nondimensional equations of motion 2.54, primaries
moves with normalized period of 2π: accordingly, periodic solutions of the
ER3BP must have period of T = 2πN , with N ∈ N+. Since the orbit
is periodic with period equal or multiple to that of the rotating frame, it is
periodic both in the rotating and in the inertial frame. The criterion for an
orbit to be periodic in the ER3BP was firstly given by [97], after merging
together the aforementioned period constraint and his considerations on the
symmetry of the problem

if the infinitesimal body crosses the x-axis perpendicularly when
the finite bodies are at an apse, its motion is symmetrical with
respect to the x-axis.

The formalization of the periodicity condition is due to [116], who gener-
alized it for the motion of n point-masses in the so called Mirror Theorem:

if n point-masses are acted upon by their mutual gravitational
forces only, and at a certain epoch each radius vector from the
(assumed stationary) centre of mass of the system is perpendicu-
lar to every velocity vector, then the orbit of each mass after that
epoch is a mirror image of its orbit prior to that epoch

According to [97] and [116], a sufficient condition for the motion in the
ER3BP to be periodic is that it has two perpendicular crossings with the
(x̂, ẑ) plane, which shall occur when the primaries are at an apse.

Single-shooting for periodic motion in ER3BP

Periodic orbits in the ER3BP are generated starting from orbits in the CR3BP
with same period, through differential corrections and eccentricity contin-
uation techniques. In agreement with the Mirror Theorem [116], the dif-
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ferential correction algorithm is implemented to target two perpendicular
crossings with the (x, z) plane. More in detail, a fixed-time single-shooting
algorithm is implemented, based on the algorithm proposed by Howell [72]
and adapted for the case of ER3BP. The initial guess is taken on the (x, z)
plane, at a time the primaries are at an apse. The correction algorithm tar-
gets the second perpendicular crossing, that occurs after π or multiples of
π, i.e., when the primaries happen to be at an apse again. The time be-
tween the two perpendicular crossings is half of the orbital period of the
periodic solution. In this case, it is sufficient to find half of the orbit, and
to propagate it forward for the remaining half period to have the full peri-
odic solution. With reference to Section 3.1.2, the vector of free variables
is written as

χ =


x0

z0

y′0

 (3.30)

where the subscript 0 indicates conditions at initial time, corresponding to
initial true anomaly f0 that equals either 0 (periapsis) or π (apoapsis). At
the end of the trajectory (half orbit), the state must satisfy the following
constraint condition, defined such to have perpendicular crossing on the
(x, z) plane

F (χ) =


yh

x′h
z′h

 = 0 (3.31)

with subscript h indicating the state after half period of the orbit, corre-
sponding to true anomaly fh = f0 + Nπ. The goal is to compute a so-
lution for the free variable vector χ that satisfies the constraint condition
F (χ) = 0. The result is found iteratively through the multi-variable New-
ton’s method (3.11). The Jacobian matrix J(χ) of the problem is found by
computing the derivatives of the constraint with respect to the free variables

J(χ) =
∂F (χ)

∂χ
=


∂yh
∂x0

∂yh
∂z0

∂yh
∂y′0

∂x′h
∂x0

∂x′h
∂z0

∂x′h
∂y′0

∂z′h
∂x0

∂z′h
∂z0

∂z′h
∂y′0

 =

Φ21 Φ23 Φ25

Φ41 Φ43 Φ45

Φ61 Φ63 Φ65

 (3.32)

with Φij being the element (i, j) of the STM Φ(fh, f0).
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3.2.3 Small celestial bodies

The goal is to develop a method able to find periodic motion around a
small body of any given shape/mass distribution. In this case, periodic so-
lutions would be found through variable-time differential correction. The
initial guess is provided by a periodic orbit in the simple Keplerian model,
to be corrected and continued through single/multiple-parameter continua-
tion. The continuation is related here to the change in shape of the primary.
For example, for a constant density ellipsoidal asteroid, continuation can be
achieved by slightly changing the mass distribution from spherical, to el-
lipsoidal. In this case the continuation parameters could be the semi-major
axes of the ellipsoid. The general idea applies to any shape of the gravity
source, which is initially decomposed into a single simple shape (or into
a cluster of multiple simple shapes), whose geometry is steadily continued
until the more complex polihedral shape is reached. As for the ER3BP
case, despite the increased complexity of the problem, numerical methods
proposed here can be successfully exploited to seek periodic motion.

Multiple-shooting for periodic motion around small celestial bodies

In this case, no symmetries in the dynamical environment can be exploited
since, in general, the mass distribution of the small celestial body is not
symmetric and the initial guess to be provided is a complete orbit. The
initial guess is divided into Np segment, each associated to a patch point.
With reference to Section 3.1.2, the vector of free variables contains the
state of each patch point. Also, since no time constraints are imposed to
find the solution, the integration times associated to each patch segment is
included in the 7Np-long free variables vector

χ =



X1

X2

...
XNp

T1

T2

...
TNp



(3.33)

In order to represent a unique solution, each arc must be fully connected to
its neighbor arcs. At each patch point, the state must satisfy the following
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constraint condition

F (χ) =


Xf

1 −X2

...

Xf
Np
−X1

 = 0 (3.34)

which results in a 6Np-long vector. Xf
i represent the final state after in-

tegrating initial state X i for the integration time Ti. The last constraint in
Eq. (3.34) (the last six scalar elements of constraint vector) is the period-
icity condition since it enforces connection between the last (Np) and the
first arc. As mentioned, the goal of the corrector is to find a solution for
the free variable vector χ that satisfies the constraint condition F (χ) = 0.
Since the number of constraints is lower than the number of free variables,
the system is under-constrained and the result is found iteratively using
Eq. (3.12). As usual, the Jacobian matrix J(χ) of the problem is found by
computing the derivatives of the constraint with respect to the free variables

J(χ) =
∂F (χ)

∂χ
=

=



∂Xf
1

∂X1
−∂X2

∂X2
0 . . . 0

∂Xf
1

∂T1
0 . . . . . .

0
∂Xf

2

∂X2
−∂X3

∂X3
0 . . . 0

∂Xf
2

∂T2
0 . . .

...
...

...

. . . 0
∂Xf

i

∂Xi
−∂Xi+1

∂Xi+1
0 . . . 0

∂Xf
i

∂Ti
0

...
...

...

−∂X1

∂X1
0 . . . 0

∂Xf
Np

∂XNp
0 . . . 0

∂Xf
Np

∂TNp


(3.35)

The quantity ∂Xf
i

∂Xi
is the STM between initial time ti at patch point i and

final time after integration ti + Ti

∂Xf
i

∂X i

= Φ(ti + Ti, ti) (3.36)
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Knowing that ∂X2

∂X2
is a 6× 6 identity matrix I6 and ∂Xf

i

∂Ti
= Ẋ

f

i , Eq. (3.35)
is written as

J(χ) =



Φ1 −I6 0 . . . 0 Ẋ
f

1 0 . . . . . .

0 Φ2 −I6 0 . . . 0 Ẋ
f

2 0 . . .
...

...
...

. . . 0 Φi −I6 0 . . . 0 Ẋ
f

i 0
...

...
...

−I6 0 . . . 0 ΦNp 0 . . . 0 Ẋ
f

Np


(3.37)

where Φi = Φ(ti + Ti, ti).

3.3 Stable and unstable manifolds in restricted problems

In previous sections the techniques to find periodic motion in a general non-
linear dynamical system were discussed. As discussed, periodic motion is
associated to the centre manifold subspace of a periodic orbit or of an equi-
librium solution. Here, solutions related to stable and unstable manifold
subspaces are discussed and the numerical technique in use to find such
solutions are presented. As for the case of centre manifold, stable and un-
stable manifolds can be associated both to equilibrium and to periodic orbit
solutions. The algorithm to compute invariant manifolds does not depend
on this distinction, except for the eigenstructure to be analyzed. When man-
ifold associated to an equilibrium solution is sought, the eigenstructure of
system matrix A, associated to the linearized system in the vicinity of the
equilibrium point is studied. In case of manifold of a periodic orbit, the as-
sociated monodromy matrix is studied. In both cases, the eigenpairs of the
monodromy (or system) matrix are computed. In order to compute stable
and unstable manifolds, stable and unstable subspace must be present in the
eigenstructure of the monodromy (or system) matrix. This is not the case
for stable orbits, whose eigenstructure is made of centre manifold only.

To provide an example, the computation of stable manifolds associated
to a periodic orbit is described here. The same method can be easily gen-
eralized for the case of unstable manifolds and for the case of solutions
associated to equilibrium points. The first step consists in identifying the
eigenvector associated to the stable (or unstable) eigenvalues of the mon-
odromy matrix. The manifold solution is computed moving along the stable
(or unstable) eigendirection, which is tangent to the manifold. The initial
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conditions of the manifold can be written as

X0 = Xorb + εΦ(t, t0)v (3.38)

whereXorb represent the state on the orbit where the manifold is departing
from (or the equilibrium point). The scalar ε represent the distance in the
state space between the point on the orbit and the starting point of the man-
ifold and it shall be carefully tuned by the user, depending on the dynamics
and on the kind of orbit to be found. Φ(t, t0) is the STM where t0 repre-
sent the initial time while t is the local time associated to the point on the
orbit where the manifold is departing from (identity matrix in the case of
equilibrium solution). Finally, v is the stable (or unstable) eigenvector of
the monodromy matrix. Initial conditions for the manifolds are computed
for all desired points in the orbit. Once all initial conditions for the mani-
folds are computed, they are integrated backward in time (forward in case
of unstable manifolds) to find the manifolds trajectories.

3.4 The unrestricted N-body aggregation method

As mentioned in Section 2.3.2, recent studies and observations support the
theory of “rubble pile” asteroids. According to this, small and medium
size asteroids may be gravitational aggregates of boulders. Such aggre-
gates have very low tensile strength, possessing no cohesive force other
than gravity. This evidence motivates the present work. The goal of the
method presented here is to obtain a N-body model of the asteroid mass
distribution by studying it as a gravitational aggregate. The physical prob-
lem is modeled as a classical unrestricted N-body problem, with mutual
gravitational interaction between all bodies (Section 2.2.1). Each boulder
is modeled as a rigid body: collision detection is implemented and contact
forces are included to describe the dynamics of the colliding bodies.

From the numerical point of view, the N-body problem is usually ap-
proached using two main classes of codes: N-body integrators and N-body
simulators [96]. Integrators solve the Newtonian equations of motion by
computing all N to N gravitational interactions between bodies. Simulators
incorporate models of dynamical or physical effects to partially estimate the
behaviour of the N bodies. As a consequence, the high accuracy of numeri-
cal integrators is associated with long computational time, whereas simula-
tors are usually faster. The selection of the algorithm is strictly dependent
on the application, namely on the physical phenomenon that must be re-
produced. Concerning the accretion of planetesimal and asteroid aggrega-
tion processes, relevant implementations include tree codes [112,113,126],
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hybrid codes [1], adaptive algorithms of optimal orders [110], systolic al-
gorithms [30] and, more in general, symplectic codes [18, 32, 138]. At the
time being, typical capabilities of N-body integration software include the
handling of a few hundred bodies with simple (spherical) shape. Collisions
and contact interaction between bodies are often resolved by interfacing
with hydrodynamics codes or by implementing hard/soft sphere collision
models [94, 111].

This section presents an innovative method used to model the N-body
gravitational and contact behaviour of a cluster of complex-shaped bodies.
The problem is implemented using the open source Chrono::Engine (C::E)
simulation library [90, 130], which is able to handle the contact and colli-
sion of large numbers of complex-shaped objects. From a computational
standpoint, the problem is characterized by the need to consider long-time
simulations of a large number of interacting bodies, simultaneously sub-
jected to gravity and contact forces. Gravity implies many-to-many interac-
tion, which depends on the inverse of the distance squared. Contact forces
require collision detection and the handling of non-smooth problems. C::E
was selected for its peculiar ability to efficiently and effectively simulate the
collision and interaction of large numbers of irregularly-shaped bodies. In
the following, only the aspects related to the N-body gravitational dynam-
ics are deepened, since they are relevant for the case of numerical method
for non-Keplerian dynamics, which is the topic of this chapter. As they are
out of the scope of this thesis work, the complete multi-body model and
contacts handling strategy are not detailed here. The interested reader can
refer to [51] for further details on the multi-body model, including a more
detailed description of contact model and collision dynamics implemented.

3.4.1 N-body gravitational dynamics

The method is used to obtain a mass distribution model asteroids after N-
body aggregation. In order to obtain different classes of bodies, the method
allows to investigate the effects that different initial conditions sets have on
the physical properties of the final aggregate. Initial conditions are given to
initiate the relative distance and velocity between bodies and also to initi-
ate their absolute state with respect to a given inertial frame (XY Z). The
dynamics of the system is allowed to have a predefined orbital angular mo-
mentum about the origin O of the aforementioned inertial frame. In this
case, all bodies rotate about O with a constant angular velocity Ω. Sys-
tem (2.63), representing the equations of motion for the centre of mass of
each body, can be equivalently written in a rotating frame (xyz) that rotates
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with angular velocity Ω with respect to the inertial frame

mir̈i = G
N∑

j=1,j 6=i

mimj

‖rij‖3
rij−miΩ×(Ω×ri)−2miΩ×ṙi ∀i = 1 : N

(3.39)
where ri is the position vector of body i in the rotating frame and rij =
rj − ri. The effect of the rotation is included by adding Coriolis and cen-
trifugal terms to the equation of motion of the centre of mass of the i-th
body. The addition of a predefined orbital angular momentum to the sys-
tem is used here to simulate a realistic asteroidal aggregation process, e.g.
re-accumulation dynamics of asteroidal fragments after a collision event.
In this case, all fragments initially belong to a unique asteroid that spins
with a certain angular velocity about its principal inertia axes. After a col-
lision with an external body occurs, fragments are created and scattered
away from the main body, but they keep part of the orbital angular momen-
tum they had before the collision when they were part of a unique body.
The aggregation phase simulated here can be applied to the subsequent re-
accumulation phase, as well as to other asteroid aggregation scenarios.

The code is classified as a numerical integrator, since it implements
all N to N gravitational interactions between bodies. More in detail, the
code implements equations (3.39). From the numerical point of view, sys-
tem (3.39) is an initial value problem and its solution strongly depends on
the choice of the initial conditions set, namely the initial relative state of
each body and angular velocity of the rotating frame. An important feature
of gravitational interaction, to be considered from the numerical point of
view, is that it is characterized by slow dynamics: for the case of N bodies,
the shortest characteristic time can be estimated as follows [112]

T ∼ 1√
Gρ

(3.40)

More in detail, a particle under the attraction of mass M at distance r is
known to orbit around it with orbital period proper of Keplerian solutions:

T ∼ 1√
GM/r3

(3.41)

In the case of N-body interactions, the fastest dynamics in the system are
found when two bodies happen to be very close to each other. The limiting
case can be found by assuming r as minimum distance between the two
bodies (characteristic size of the body) and M as mass of the body. In

59



Chapter 3. Numerical Methods for Nonlinear System Dynamics

this case, the standard Keplerian form can be written as (3.40), where ρ ∼
M/r3 is the material density of the bodies. A constraint for the numerical
integrator is derived from (3.40): since the dynamics are slow, there is no
need of having extremely small time steps of integration. To catch the
correct dynamical behaviour of the system, the integrator time step shall
satisfy

tstep <
T

2
=

1

2
√
Gρ

(3.42)

For typical values of asteroid material density ranging from 1000 to 4000 kg/m3 [111],
the maximum time step results in the order of 103 s.

3.4.2 Degrees of freedom

Several parameters have to be set to initiate the simulation of the aster-
oid aggregation process. To simulate realistic scenarios it is important to
carefully select the physical properties of the N bodies and to consistently
initiate their dynamics. Initial conditions play an extremely important role
when dealing with N-body dynamics. The set of initial conditions includes
the initial state of all N bodies. As described in Section 3.4.1, the state of
all bodies is expressed in a rotating frame that rotates with angular veloc-
ity Ω with respect to an inertial reference. In addition, the relative state of
each body, namely their position and orientation, as well as their linear and
angular velocity, are initialized with respect to the rotating reference frame.
Initial conditions are given at initial simulation time, or t0 in the following.

From the numerical point of view, the choice of the number of bodies
is crucial, since it has a great impact on the computational effort. For an
integrator, the cost of evaluating gravity is N2. For this reason, typical
capabilities of numerical integrators are often limited to few hundreds of
bodies. The computational cost can be reduced by clustering the gravita-
tional effect of bodies through domain decomposition. In this case, the cost
can be reduced to N logN (N-body simulators [112]).

An example of a complete set up of the numerical simulation and anal-
ysis of asteroid aggregation results, is provided in Section 4.2.

3.4.3 Identification of aggregate’s shape

When a stable aggregate is found, after its stabilization, the aggregate is
considered as a single asteroid. The shape of the aggregate is found as
the envelope of all bodies in the aggregate using an Alpha-Shape algo-
rithm [33]. Intuitively, the Alpha-Shape algorithm finds the enveloping
surface of the aggregate by rolling a sphere of radius α over the cluster of
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points representing the vertexes of the bodies. The value of α influences the
final result since it constrains the path of the rolling sphere, with α = ∞
being equivalent to the convex hull representation. For this reason, α must
be accurately chosen, based on characteristic size information on the final
aggregate.
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CHAPTER4
Non-Keplerian Solutions for Astrodynamics

Problems

In order to support mission analysis and trajectory design, relevant solu-
tions were generated for the most common systems related to space mis-
sion applications. Solutions presented here are computed using techniques
discussed in Chapter 3.

As mentioned, the software architecture of Section 3.1 is used to find
spacecraft trajectories within restricted problems. Among these, catalogues
of periodic orbits were built to quickly provide orbits to the designer, to be
selected according to specific requirements or mission objectives. Some of
them are presented here, with particular emphasis on new solutions iden-
tified in the ER3BP and in the proximity of small celestial bodies. A sur-
vey of periodic orbits is presented in Section 4.1: ER3BP solutions are
classified according to their resonance properties in Section 4.1.2 and cor-
related with well-known CR3BP solutions. Examples of periodic motion
near small celestial bodies are also shown in Section 4.1.3.

Section 4.2 shows results obtained from an N-body aggregation simula-
tion, using the numerical method introduced in Section 3.4. The simulation
scenario aims at reproducing the asteroid aggregation process, with refer-
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ence to available data from asteroids in the NEA population.

4.1 Periodic orbits

Examples of periodic motion computation is reported here. Attention is
paid to new solutions found in the Sun-Earth and Earth-Moon ER3BP and
within the binary asteroid system 65803 Didymos. Properties of families
of orbits around collinear libration points in the CR3BP are discussed to
support the investigation of ER3BP periodic motion.

4.1.1 The Circular Restricted Three-Body Problem

The orbital period ranges within Halo, planar and vertical Lyapunov fam-
ilies around collinear libration points are reported for the case of Earth-
Moon and Sun-Earth CR3BP. Table 4.1 shows orbital period ranges for
Halo families computed around L1, L2 and L3 in both Earth-Moon and
Sun-Earth system. Orbital periods are expressed in nondimensional form,
as recalled in Section 2.1.1, with 2π being the nondimensional period of
revolution of primaries. In both systems, the orbital period of L1 and L2
families is shown to be significantly lower than L3 family, the latter be-
ing on the order of one revolution of primaries. Planar and Vertical Lya-
punov families have in general higher periods with respect to Halo orbits
as they can became very large. For the case of L1 and L2 families, orbital
periods ranges between approximately 3 nondimensional units, up to 5-7
nondimensional units. Results found are in agreement with data reported
reported in [52, 66].

Table 4.1: Nondimensional orbital period for Halo families computed in the CR3BP.

T [nondim]
Libration Point Earth-Moon Sun-Earth

L1 1.84 - 2.78 1.52 - 3.06
L2 1.77 - 3.41 1.87 - 3.10
L3 6.15 - 6.23 6.28 - 6.28

4.1.2 The Elliptic Restricted Three-Body Problem

A survey of periodic motion in the ER3BP is presented here. The or-
bits are classified depending on the number of revolutions they perform
around collinear libration points during one revolution of the primaries.
Examples from both Earth-Moon (eccentricity e = 0.0554) and Sun-Earth
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(e = 0.0167) systems are shown. Resonant motion in the CR3BP is iden-
tified to be used as initial guess to compute periodic orbits in the ER3BP.
Table 4.2 shows periods of common resonant orbits, chosen in the interval
between π/5 and π, with a maximum of N = 2, with M,N ∈ N+ indicat-
ing respectively, the number of revolutions around libration point and the
number of revolutions of primaries.

Table 4.2: Orbital period of common resonant orbits.

T [nondim] M:N

1.26 5:1
1.40 9:2
1.57 4:1
1.79 7:2
2.09 3:1
2.51 5:2
3.14 2:1
4.19 3:2
6.28 1:1

Concerning CR3BP solutions, the existence of resonant motion in the
Halo families can be established by comparing Table 4.1 with Table 4.2.
Resonant 3:1 and 5:2 Halo orbits exist around L1 and L2, both in the case
of Earth-Moon and Sun-Earth system. In the Earth-Moon system, the L2
family has a slightly wider period range with respect to the L1 family and
includes 7:2 and 2:1 resonant orbits as well. In the Sun-Earth system, Halo
orbits with lower periods exist in the L1 family and 4:1 resonance is found.
A significantly larger period is observed for Halo orbits about the L3 point.
In this case the period is on the order of 2π and a 1:1 resonant behaviour is
observed for orbits of the L3 Halo families in the Sun-Earth system. As for
the case of vertical and planar Lyapunov families, 3:2 resonance is found in
all families around L1 and L2, in both Earth-Moon and Sun-Earth systems,
and 2:1 resonance is found in most of them. Families of Lyapunov about
L3 have period of approximately 2π, as in the case of Halo orbit families,
leading to 1:1 resonant motion with primaries.

Single-revolution orbits

Single-revolution orbits in the ER3BP are associated to 1:1 resonance with
the motion of the primaries: the spacecraft completes one orbit as the pri-
maries do the same around the barycentre of the system. Suitable initial
guess for periodic motion in ER3BP typically refer to 1:1 resonant orbits
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Figure 4.1: Single-revolution orbits: planar Lyapunov in CR3BP (red) and ER3BP (blue).
(a) L2 orbit in the Earth-Moon system (1:1 in the CR3BP). (b) L1 orbit in the Sun-Earth
system (5:2 in the CR3BP).

in the circular problem. In particular, solutions around L3 are of interest,
as well as large Lyapunov orbits, with period of 2π. An example, referring
to a planar Lyapunov orbit about L2 in the Earth-Moon system, is shown
in Figure 4.1(a). The picture shows the initial guess given to the correction
algorithm in red (the 1:1 Lyapunov resonant orbit in the CR3BP) and the
periodic solution after correction in the Earth-Moon ER3BP in blue, as seen
from the nondimensional rotating-pulsating frame. The eccentricity of the
problem is shown to have an effect on the orbit, as it shrinks the amplitude
of the orbit along the x axis. However, apart from this small effect, no sig-
nificant deviation from the circular case is found. This kind of behaviour
is observed for many 1:1 orbits, including those around L3, which are then
not very much affected by the eccentricity of the system.

A further example of single-revolution motion is shown in Figure 4.1(b),
with the case of a periodic orbit in the ER3BP generated from a 5:2 planar
Lyapunov orbit about L1 in the CR3BP. The corrector converges to a single
revolution orbit, of period 2π despite the different resonance properties of
the same orbit in the CR3BP, which completes 5 revolutions every two
revolutions of primaries. In addition to the different period, the geometry
of the solution appears to be different and a greater deviation is observed
with respect to the previous case.

Single-revolution orbits appear to be the only possible periodic motion
around L3: no multiple-revolution orbits are observed about L3. The reason
is found in typical orbital periods of L3 orbits, which are in the order of 2π.
Only 1:1 resonance motion is observed in this particular location.
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Double-revolution orbits

Double-revolution orbits are found starting from 2:1 resonance in the cir-
cular problem. Since such periodic motion exists in Halo and Lyapunov
families around L1 and L2 points, double-revolution orbits are found to be
quite common solutions in the ER3BP. Examples related to Halo, vertical
and planar Lyapunov are shown here.

Figure 4.2 shows examples of double-revolution orbits in the Earth-
Moon system. Periodic motion is depicted both in the nondimensional
rotating-pulsating frame (figures on the left side) and in the Moon centred
inertial frame (figures on the right side). Figures 4.2(a) and 4.2(b) refer to
a planar solution found starting from a Lyapunov orbit about L1. As any
other orbit shown in this work, the orbit is symmetric with respect to the
x-z plane. Due to its symmetry, the time between two consecutive perpen-
dicular crossings with the x-z plane is π. This result is in agreement with
the aforementioned mirror theorem, since every perpendicular crossing oc-
curs when the primaries are at an apse (every π). The orbit is made of two
loops and a half (symmetric) orbit includes the two halves of each loop.
Each loop has a period of approximately π, as the initial guess orbit in the
CR3BP. In particular, the smaller loop has a period slightly larger than π,
while the bigger loop is flown in a shorter time. Figures 4.2(c) and 4.2(d)
shows a three-dimensional periodic solution, found starting from a Halo or-
bit around L2 in the CR3BP. The three-dimensional view is shown together
with the projection of the ER3BP orbit on the x-y, x-z and y-z planes. The
same is shown for the periodic orbit in Figure 4.2(e) and 4.2(f), which refer
to a solution generating from a vertical Lyapunov near the L1 point. For the
case of double-revolution orbits shown in this work, all periodic solutions
appear to have similar properties in terms of geometry and period with re-
spect to their corresponding CR3BP orbit. Both Halo, planar and vertical
Lyapunov orbits in the CR3BP have period of π (they replicate their initial
state after 2π as well) and they split into two geometrically similar orbits
in the ER3BP. The nonzero eccentricity has the effect of duplicating the
single orbit into two semi-orbits, which does not replicate itself after π as
in the CR3BP, but becomes periodic of period 2π in the ER3BP. More in
detail, the two semi-orbits appear to be symmetric along the x axis, with
a contact point shared with their CR3BP reference orbit. The presence
of the contact point between ER3BP and CR3BP solutions is enforced by
the single-shooting numerical correction algorithm in use, to find a peri-
odic solution in the ER3BP associated to the specific (resonant) solution in
the CR3BP. Trajectories as seen from the Moon centred inertial frame are
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Figure 4.2: Double-revolution orbits (Earth-Moon system) shown in nondimensional
rotating-pulsating frame (left) and Moon centred inertial frame (right). Solutions gen-
erated from 2:1 resonant orbits in CR3BP: (a,b) planar Lyapunov about L1, (c,d) Halo
about L2, (e,f) vertical Lyapunov about L1. Projections of 3D ER3BP orbits on x-y, x-z
and y-z planes are shown in gray.
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also of interest. Since the motion is in resonance with primaries, it results
to be periodic in the inertial frame as well. Interesting behaviour appears
both for the planar case (Figure 4.2(b)) and for the three-dimensional cases
(Figure 4.2(d) and Figure 4.2(f)), where the orbits are shown to surround
the Moon with very peculiar oscillating paths.

Triple-revolution orbits

As for the case of double-revolution orbits, the existence of 3:1 resonance
in all families of Halo and Lyapunov orbits about L1 and L2 makes triple-
revolution orbits quite common solutions in the ER3BP. Figure 4.3 shows
some examples of triple revolution orbits, obtained from corresponding pe-
riodic motion in the CR3BP. In this case, periodicity in the state is reached
after three orbital loops. With analogy to what was observed at the double-
revolution cases, a similar orbit to that of CR3BP is replicated three times.
In the case of Figures 4.3(a) and 4.3(b), the periodic motion in the ER3BP
is found starting from a 3:1 resonant Halo orbit about L2 in the CR3BP.
Such orbit possesses orbital period of 2π/3. This example is in analogy
with the case shown in Figure 4.2(c) and 4.2(d): both cases refer to a Halo
orbit about L2, but with different orbital period. Figures 4.3(c) and 4.3(d)
show an ER3BP solution associated to a 3:2 vertical Lyapunov about L1 in
the CR3BP. In this case, the CR3BP guess has an orbital period of 4π/3,
since it completes three orbital loops as the primaries revolve two times
around the barycentre of the system. The orbital period is doubled with
respect to the case shown in Figures 4.3(a) and 4.3(b). Accordingly, the
resulting trajectory in the ER3BP is periodic with period 4π. Geometri-
cally, the outcome is similar to those observed so far: the orbit makes three
loops and is periodic both in the synodic and in the inertial frame. Same
considerations apply for the case of Figures 4.3(e) and 4.3(f), which re-
fer to a periodic ER3BP solution generated from a 3:2 resonant vertical
Lyapunov about L2 in the CR3BP. Periodicity is also observed after two
revolutions of primaries (4π). Very interesting behaviour is observed for
triple-revolution orbits, as seen from the Moon centred inertial point of
view. As for the case of double-revolution orbits, the trajectory path sur-
rounds the Moon with oscillations associated to the three orbital loops that
characterize triple-revolution motion.

A very interesting solution is obtained when providing a 3:1 resonant
Halo orbit about L1 in the CR3BP as initial guess. In this case the starting
point is a orbit with period 2π/3 and three loops are obtained in the ER3BP,
in order to match the period of 2π. The correction algorithm converges into
a peculiar solution, that connects motion between the neighborhoods of L1

69



Chapter 4. Non-Keplerian Solutions for Astrodynamics Problems

L2
Moon

0.2
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ẑ
[n
o
n
d
im

] 0.1

x̂ [nondim]

1

0.2

-0.21.2

CR3BP
ER3BP

(e)

Moon

-1

-0.5

1

0

-1

×105

0.5

1

×105
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Figure 4.3: Triple-revolution orbits (Earth-Moon system) shown in nondimensional
rotating-pulsating frame (left) and Moon centred inertial frame (right). Solution gen-
erated from 3:1 resonant Halo about L2 in CR3BP (a,b). Solutions generated from 3:2
resonant orbits in CR3BP: (c,d) vertical Lyapunov about L1, (e,f) vertical Lyapunov
about L2. Projections of ER3BP orbits on x-y, x-z and y-z planes are shown in gray.
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Figure 4.4: Triple-revolution orbit (Sun-Earth system) shown in (a) nondimensional
rotating-pulsating frame and (b) Earth centred inertial frame. Solution generated from
3:1 resonant Halo about L1 in CR3BP. Projections of ER3BP orbit on x-y, x-z and y-z
planes are shown in gray.

and L2 points. Such solution is in fact a heteroclinic connection between
a solution around L1 and a solution around L2. This periodic orbit might
be of great interest for space applications, since it provides free motion
between L1 and L2 and follows the higher fidelity dynamics associated to
ER3BP.

Quadruple-revolution orbits

The last class of periodic motion reported here is quadruple-revolution mo-
tion. Few cases of 4:1 resonance exist in the families of vertical and planar
Lyapunov. No 4:1 resonance orbit exists in the Halo families about L1,
L2 or L3 in the Earth-Moon system. As for the case studied in this work,
such resonance is observed only in the family of Halo orbits around L1, in
the Sun-Earth system. Figure 4.5(a) and 4.5(b) show an example of four-
revolution solution obtained from the 4:1 Halo about L1 in the Sun-Earth
CR3BP. As for the last case of triple-revolution orbits shown, the corrector
converges to a heteroclinic connection between L1 and L2 solutions. In this
case, the initial guess orbit possesses period of π/2 and then, the ER3BP
orbit is periodic after looping four times between L1 and L2. The looping
behaviour is clearly seen when looking at the projection of the motion in
the synodic frame on the y-z axis.
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Figure 4.5: Quadruple-revolution orbit (Sun-Earth system) shown in (a) nondimensional
rotating-pulsating frame and (b) Earth centred inertial frame. Solution generated from
4:1 resonant Halo orbit about L1 in the CR3BP. Projections of ER3BP orbit on x-y, x-z
and y-z planes are shown in gray.

4.1.3 Small celestial bodies

Examples of periodic motion computation in the proximity of a binary
asteroid system are provided in Figure 4.6. Halo and Lyapunov fami-
lies around L1 and L2 points are computed using a shape-based model of
Didymos binary asteroid system. Following the scheme discussed in Sec-
tion 3.2.3, the initial guess is provided using families of orbits in the Didy-
mos CR3BP. Periodic solutions were subsequently obtained in the higher
fidelity shape-based Didymos model. Didymain (bigger asteroid of the cou-
ple) is modeled as a constant density polyhedron, while Didymoon (smaller
asteroid) as a constant density ellipsoid. Further details on the shape-based
model of Didymos system are provided in Section 5.2.1. As discussed, the
orbit in the shape-based model is obtained by slightly varying the shape of
the primaries from spherical to the actual ones. Such an approach bene-
fits the space mission design, since it provides more accurate and realistic
solutions to the designer.

4.2 Asteroid mascon models

Following the method described in Section 3.4, the purpose is to study the
gravitational aggregation process of a cluster of boulders and to investigate
favorable conditions for the formation of a stable aggregate. The simulation
setup related to the NEA scenario to be studied is presented in Section 4.2.1.
The problem to be investigated is twofold: the study of gravitational aggre-
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Figure 4.6: Halo (red) and Lyapunov (blue) families about L1 and L2 in the shape-based
model of Didymos system

gation dynamics, and the study of the physical and dynamical properties
of the final aggregate. The first aspect includes the analysis and numerical
simulation of typical scenarios, for small and medium-size (hundreds of
meters) asteroid aggregation, to identify dynamical conditions that lead to
the formation of the aggregate or to the dispersion of the particle cloud. The
dynamical evolution of the system, up to the formation (or non-formation)
of a stable aggregate is studied in Section 4.2.2. The aggregation process is
studied by looking at the time profile of the orbital angular momentum of
the N-body system, and by monitoring the evolution of the relative position
of all bodies. The second aspect is related to what happens after the tran-
sient. In case the system has converged to a stable asteroidal aggregate, the
resulting physical and geometrical properties are studied and compared to
the properties of known asteroids. Shape and inertia properties of the ag-
gregate and their dependence on initial conditions are investigated. Results
are shown in Section 4.2.3 for all simulation sets. Significant quantities ex-
tracted from the simulation scenarios include the bulk density (mean den-
sity, including void fraction) of the aggregate, its inertial elongation (ratio
between maximum and minimum principal inertia moments) and rotation
state. In this respect, future work would include the generation of a cata-
logue of asteroid aggregates suitable to represent the mass distribution of
different classes of bodies.
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4.2.1 Simulation set up

The parameters are selected to simulate the aggregation process of com-
mon asteroids of small/medium size, with a characteristic size of hundreds
of meters. The physical properties of the asteroids are chosen among typ-
ical values of objects belonging either to the main asteroid belt or to the
Near Earth Asteroids (NEA) population [76, 78]. Table 4.3 summarizes all
simulation parameters in use. In the simulations, 200 bodies are randomly
generated in a three-dimensional cube whose side is 5 km long. The bodies
are medium size boulders of 130 m characteristic size on average, with the
smallest ones of 40 m. As mentioned earlier, this is likely the case of re-
accumulation after fragmentation due to a collision event. The aggregate is
then a “rubble pile” of loosely aggregated boulders. The material density
is set to 3000 kg/m3, which is typical for metallic-based asteroids [111].
As discussed in Section 3.4, gravity interactions are slow and the integra-
tor time step can be of the order of 103 s. However, a time step of 10 s
is chosen to correctly integrate collision dynamics, which are much faster
and need shorter integration time steps. With these figures, aggregation
processes reach a stable configuration after a transient of few tens of hours,
corresponding to computational times on the order of few minutes.

Table 4.3: Simulation parameters

Parameter Symbol Value

number of bodies N 200
characteristic size of bodies [min-average] L∗ 40-130 m
material density ρ 3000 kg/m3

initial position cube side length L0 5 km
integration time step tstep 10 s

Simulations are performed considering different sets of initial condi-
tions. The norms of linear and angular velocity vectors of each body range
from 0 (no relative motion between bodies) to the maximum values speci-
fied in Table 4.4. Analogously, different cases are explored concerning the
angular velocity of the rotating frame, which ranges from 0 to the maximum
value in Table 4.4. Maximum values specified in Table 4.4 are identified
as thresholds above which there is no aggregation of the bodies, which are
scattered apart from each other by too high relative velocities or centrifugal
force.

Table 4.4 defines boundaries on the magnitude of the velocities. Without
any loss of generality, the inertial frame (XY Z) is oriented such that Ω is
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Table 4.4: Range of values for initial conditions set

Parameter Symbol Max value

linear relative velocity of bodies v0 0.15 m/s
angular relative velocity of bodies ω0 10−2 rad/s
angular velocity of rotating frame Ω 5 · 10−5 rad/s

directed towards the positive Z axis, with Ω = ΩẐ = Ωẑ

Ω = Ω


0

0

1

 (4.1)

The direction of the linear and angular velocity of each body is randomly
generated.

The simulation campaign is performed by imposing to the system sev-
eral initial condition sets, in order to cover different aggregation scenarios
and to explore the combined effects between the initial conditions. Ta-
ble 4.5 summarizes all simulation sets considered. Each simulation set is
labeled using an ID, to provide references during the analysis of results.

Table 4.5: Simulation sets

Simulation set ID v0 [m/s] ω0 [rad/s] Ω [rad/s]

0 - no initial motion 0 0 0 0
1 - single parameter 1.1 0− 0.15 0 0

1.2 0 0− 10−2 0
1.3 0 0 0− 5 · 10−5

2 - double parameter 2.1 0− 0.15 0− 10−2 0
2.2 0− 0.15 0 0− 5 · 10−5

2.3 0 0− 10−2 0− 5 · 10−5

3 - all parameters 3 0− 0.15 0− 10−2 0− 5 · 10−5

The case with no initial motion between bodies and no rotation imposed
is marked ID ‘0’. The first simulation set (ID ‘1’) includes the analysis
of the effect of one initial condition at a time, with the remaining set to
zero. The second set (ID ‘2’) analyzes the effect of two parameters at a
time. Finally, the third set of simulations (ID ‘3’) investigates the effect of
simultaneous action of all initial conditions.
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4.2.2 Aggregation dynamics

An example of aggregation sequence is shown in Figure 4.7 for case ID ‘0’.
The N bodies are driven solely by their mutual attraction, with no effects
due to rotation of the reference frame. When boulders start to interact, few
small bodies are scattered away because of collisions and others depart after
reaching escape velocity conditions without any collision interaction. In
this case, after a dynamical transient, a stable aggregate eventually forms.

Figure 4.7: Aggregation sequence: case ID ‘0’ (example with 1000 bodies).

Figures 4.8 and 4.9 show the time profile of the orbital angular mo-
mentum of the system H with respect to the origin of the inertial frame,
computed as the vectorial sum of orbital angular momenta hi of the N bod-
ies

H =
N∑
i=1

hi =
N∑
i=1

miri × vi (4.2)

The orbital angular momentum hi refers to the orbital motion of the centre
of mass of the i-th body, where ri and vi are its velocity and position with
respect to the origin of the inertial frame. The contribution due to the spin-
ning motion of the i-th body is not accounted in hi. In the case of stable
aggregate formation, the orbital angular momentum of the N-body system
is also the rotational spinning angular momentum of the final aggregate.
For this reason, H is also referenced as rotational energy of the aggregate.

The norm and the three Cartesian components of H are shown as a func-
tion of simulation time. Case ID ‘0’ is shown in Figure 4.8(a). At t0, the
system is at rest; after a few hours, the first collisions between bodies take
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place. Most of the collisions occur between 5 and 10 hours after t0. After
the transient, the system turns into a single aggregate. The system is ini-
tially at rest and after the aggregation process, the final aggregate rotates
with a period of about 103 hours (slow rotator). A different case, extracted
from set ID 1.3, is shown in Figure 4.8(b). In this case, the centre of mass
of the N bodies are initially provided with a common orbital angular ve-
locity (Ω = 1.5 · 10−5 rad/s). The orbital energy of the system is partially
dissipated by collision events (between 5 and 10 hours after t0), but in the
end most of it is converted to rotational energy of the final aggregate. The
final cluster rotates with a period of a few hours (fast rotator).
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Figure 4.8: Orbital angular momentum of the N-body system: (a) case ID ‘0’ (b) case
extracted from set ID ‘1.3’ (Ω = 1.5 · 10−5).

Figure 4.9(a) shows a simulation case extracted from set ID 1.2. The
bodies are provided with a given spinning velocity about their body axes
(ω0 = 4 · 10−3 rad/s). The spinning state of each single body is trans-
mitted between boulders through collisions up to the formation of a single
aggregate, which have nonzero angular velocity despite the absence of ini-
tial orbital motion of the N bodies. In this specific case, the final aggregate
is left with a rotation period of some tens of hours (slow rotator). The ef-
fect of combined initial conditions in ω0 and Ω is shown in Figure 4.9(b).
The effect due to collisions of dissipating the kinetic energy associated with
rotation and of transferring orbital angular momentum among bodies is bal-
anced in this case. The orbital angular momentum of the system stabilizes
at about its initial value after the collisions transient. The resulting aggre-
gate is a fast-spinning asteroid.

Maximum breakup values (Table 4.4) identify the values of v0, ω0 and
Ω above which no aggregation occurs for the case of study specified in
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Figure 4.9: Orbital angular momentum of the N-body system: (a) ω0 = 4 · 10−3 rad/s
(from set ID ‘1.2’) (b) ω0 = 7 · 10−3,Ω0 = 1.5 · 10−5 rad/s (from set ID ‘2.3’).

Table 4.3. The results in terms of breakup values show good agreement with
data from the literature: as mentioned in [111], no stable aggregate larger
than 200 m is observed to spin faster than critical breakup period, which
is approximately 2.2 h for strength-less bodies of density ∼3000 kg/m3.
Also, aggregation is found for relative speeds between fragments lower than
surface escape velocity from the stable aggregate, which is found in the
range between 0.4 and 0.8 m/s for the case under study.

Figure 4.10: Formation of two main aggregates, extracted from simulation set ID 2.3 and
ID 2.2.

The formation of more than one aggregate is observed when initial con-
ditions are close to their maximum breakup values. A very common be-
haviour is that of two-lobed asteroids, which are very common in the Solar
System asteroidal population, as it will be discussed in Section 5.1.1. As
observed from the simulation performed, it is very likely for boulders to
combine into two main aggregates, which after a certain time collide with
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each other to form one bigger aggregate, or become a close or contact bi-
nary asteroid. Figure 4.10 shows two phases of such process, with the
formation of two main aggregates.

4.2.3 Asteroid aggregate

Different kinds of aggregates were obtained from the simulation campaign.
This Section identifies the properties of the aggregates and compares them
with known asteroids to verify the ability of the numerical code of repre-
senting gravitational aggregation phenomena. Once the asteroid is found
and its shape identified through the alpha shape algorithm (Section 3.4.3),
its characteristics are studied. Significant properties of asteroids are briefly
defined here. The first quantity considered is the inertial elongation (or
simply elongation in the following) λ, that is defined as the ratio between
the maximum and the minimum principal inertia moments. It is always
greater than or equal to one: the larger λ is, the more elongated the asteroid
is. Note that this property refers to the mass distribution of the asteroid, not
to its geometry. An important quantity for the case of asteroids is the bulk
density ρb, that refers to the mean density of the asteroid, including internal
voids. Accordingly, the porosity P is defined as

P = 1− ρb
ρ

(4.3)

where ρ is the material density (Table 4.3). In the following, Tagg is used
to indicate the period of rotation of the aggregate, Magg its total mass, and
Nagg the number of bodies (out of 200) in the final aggregate.

Figure 4.11 shows how inertial elongation, rotation period and number
of bodies in the aggregate are affected by initial conditions on v0 (blue
asterisks), ω0 (green stars) and Ω (red diamonds) for the case of study (Ta-
ble 4.3). Exponential or polynomial fitting curves are displayed to sepa-
rately show the trend of each contribution. The values of the initial con-
ditions refer to a normalized range on the abscissa: each parameter ranges
from 0 to 1, with 0 as their minimum value (v0 = ω0 = Ω = 0) and 1
their maximum value (v0 = v0max , ω0 = ω0max , Ω = Ωmax from Table 4.4).
The upper plot shows that high elongations are obtained for high Ω or for
low v0, while no precise trend can be derived for ω0. On the other plots, all
parameters are observed to share a common trend characterizing their ef-
fect on rotation period and number of bodies in the aggregate. As far as the
former is concerned, small relative motion and rotation produce slowly ro-
tating asteroids and vice versa: fast rotators are formed when the bodies are
initialized with high angular and linear velocities. In particular, within the
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Figure 4.11: Properties of the final aggregate as a function of normalized initial condi-
tions: simulation results and best fitting curves.

validity domain of this case of study, Ω is observed to produce the strongest
effect and ω0 the weakest one. As for the last case, the number of bodies
aggregating in the final asteroid decreases as velocities increase, with ω0

playing a dominant role.
Figure 4.12 shows simulation results that correlate the rotation period of

the asteroid to its elongation and total mass. Results are shown on semi-
logarithmic plots (the rotation period scale is logarithmic). A clear trend
can be extracted from the plot on the right: as far as gravitational aggre-
gates are concerned, smaller asteroids rotate faster than more massive ones.
This is found in agreement with balancing between centrifugal force and
gravitational attraction predicted by the theory [111].

Figures 4.13 and 4.14 show examples of asteroids obtained by envelop-
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Figure 4.12: Simulation results: rotation period as a function of inertial elongation and
total mass in the asteroid population.
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Figure 4.13: Shape of the final aggregate: (a) minimum (from set ID ‘1.2’) and (b) maxi-
mum (from set ID ‘2.3’) inertial elongation case.

ing all aggregating bodies after the dynamical transient. Minimum (Fig-
ure 4.13(a)) and maximum (Figure 4.13(b)) elongation cases are shown, in
a population of asteroids ranging from quasi-spherical shapes (λmin ' 1.15)
to highly elongated ones (λmax ' 2.7).

For what concerns the porosity (or equivalently the bulk density) of the
aggregates, the results show that very little variability exists for the case
of study. Porosity is found between 34% and 40% for all large stable ag-
gregates found, corresponding to ρb ' 1900 kg/m3. This is found to be in
good agreement with theory and observations concerning asteroids poros-
ity fraction after shattering and reassembling, estimated to be within 20%
and 40% [111]. A different result is obtained for the case of the small
aggregate depicted in Figure 4.14(b), for which P ' 14%, correspond-
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Figure 4.14: Shape of the final aggregate: (a) minimum (from set ID ‘1.2’) and (b) maxi-
mum (from set ID ‘2.1’) bulk density.

ing to ρb ' 2500 kg/m3. This result agrees with general trend observing
that smaller asteroids are more compact, with a lower fraction of interior
voids [111]. The lower level of porosity, compared to what is reported
in [111] can be explained by the low number of bodies forming the final
aggregate: only 25 out of 200 bodies are found in the final stable aggre-
gate, while aggregates with higher porosity have more than 125 bodies in
the final aggregate.
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CHAPTER5
Mission Analysis Scenarios

Rendezvous missions to small celestial bodies of our Solar System are
the current frontier of space exploration. Recently, Near Earth Asteroids
(NEA) have become of great interest for human space exploration. NASA
identified them as the intermediate step to be pursued on the mankind’s
way to Mars, being one of the motivations behind NASA’s Asteroid Redi-
rect Mission (ARM) [14,56,84]. Motivated by a great scientific interest and
invaluable technological demonstration opportunities, the close-proximity
exploration of asteroids and comets is among the latest challenges of mod-
ern astrodynamics. Nowadays, the problem of landing a space probe on
such celestial bodies is studied for the first time and the research on this
topic still is a very young field. Among the small body population, a great
interest is given on binary asteroid systems since 1993, when the first nat-
ural satellite of an asteroid was discovered by the Galileo spacecraft that
imaged Dactyl while performing a flyby near its bigger companion 243
Ida [8]. In the last few decades, many multiple asteroid systems were
discovered and it is currently estimated that about 16% of NEA are bi-
naries [88, 91]. The study of binary asteroids can be very interesting under
many aspects. These kinds of systems possess peculiar properties that make
them good candidates for scientific and technological studies. The binary

83



Chapter 5. Mission Analysis Scenarios

asteroid environment is the ideal place to study gravitational dynamics, to
enhance the understanding of how celestial bodies in the Solar System were
formed and how they evolve. More in detail, they offer the unique opportu-
nity to determine precisely asteroid masses and densities: nowadays, mass
and density are accurately known only for a few tens of small body ob-
jects. In case of binary systems, the mass of the asteroids can be accurately
computed after the orbit of the satellite object is measured [12]. In addi-
tion, it represents an ideal place for technology demonstration missions, as
a test bench for In-Orbit-Demonstration (IOD) experiments. For these rea-
sons, the study of the dynamical environment near an asteroid pair is an
extremely relevant topic for future missions design.

This chapter discusses Mission Analysis applications for the exploration
of binary asteroid systems. Three scenarios are studied. The first one (Sec-
tion 5.1) presents a novel patched strategy for trajectory design in the prox-
imity of a binary asteroid pair, when the primary asteroid is of a dog-bone,
elongated or contact binary kind. The concept of Surface Of Equivalence
(SOE) is introduced to deal with the patched problem and its transitions.
A landing design strategy based on Poincaré map analysis is proposed and
suitable landing solutions are identified for the case under study. The sec-
ond scenario (Section 5.2) discusses the design options for a ballistic land-
ing on the secondary of Didymos binary system, with explicit reference
to the ongoing design of the Asteroid Impact Mission (AIM). The mission
analysis strategy is outlined and taylored to the peculiar dynamics and re-
quirements related to the AIM mission. Relevant design parameters are
identified and their effect on the ballistic landing design is discussed. Ex-
pected landing results and proposed mission analysis design solution are
also presented. The third scenario (Section 5.3) refers to relative motion
within a binary system. Free formation flying is studied and preferred ini-
tial configurations are sought to fully exploit the natural dynamics and to
maximize some desired formation keeping performance.

5.1 Binary system with two-lobed primary

As discussed in Chapter 2, different strategies can be adopted to model
the gravity field about binary asteroid systems according to different lev-
els of accuracy [6, 53, 122]. Apart from the different representation of the
single asteroid mass distribution, all cited approaches start from the basic
idea that, because of the presence of two main gravitational sources, the
dynamics of a spacecraft in the proximity of a binary system can be nat-
urally modeled with a restricted three-body problem. This consideration

84



5.1. Binary system with two-lobed primary

represents the starting point of this study as well.

The trajectory design strategy proposed here models the dynamics around
a binary asteroid system by using two patched Three-Body Problems. The
patched three-body strategy is a generalization of the classical patched con-
ics approach [5]. The latter exploits a Keplerian decomposition (one attrac-
tor at the time) of the three-dimensional space, to design a trajectory in
an N-body model by patching different two-body solutions. Analogously,
three-body solutions can be patched together by considering two attractors
at the time [59, 82]. The transition between different gravity models is
driven by the definition of regions of influence, where different models ap-
ply. To this aim, the concept of Sphere Of Influence (SOI) [115] is usually
adopted.

The study proposes a novel patched approach. In analogy with the SOI,
the concept of Surface Of Equivalence (SOE) was developed to handle tran-
sitions between different dynamical models, with specific applications to
binary asteroids. In particular, but without any loss of generality, appli-
cations related to Circular Restricted Three-Body Problem (CR3BP) are
shown. The design approach and numerical methods can be easily gener-
alized to other restricted dynamical models (Elliptic Three-Body Problem,
Full Three-Body Problem, . . . ), as well as to other representation of the as-
teroid gravity field (polyhedron, ellipsoid, . . . ). The binary asteroid model
is described in Section 5.1.2, where the different three-body systems in use
are defined. The patched three-body model introduces some degrees of
freedom with respect to a classical two-body approach and it is intended to
model with higher accuracy the peculiar dynamical properties of such irreg-
ular and low gravity field bodies, while keeping the advantages of having a
full analytical formulation and low computational cost. The neighborhood
of the asteroid couple is split into two regions of influence where two differ-
ent Three-Body Problems describe the dynamics of the spacecraft. These
regions were identified by introducing the concept of SOE as defined in
Section 5.1.3, a three-dimensional surface that serves as boundary between
the regions of influence of each dynamical model. A potential scenario that
may benefit of such an approach in solving its mission analysis is eventu-
ally presented in Section 5.1.4. Cost-effective solutions to land a vehicle on
the surface of a low gravity body are found by patching stable and unstable
manifolds associated to the two different three-body systems by means of
Poincaré maps analysis on the SOE.

85



Chapter 5. Mission Analysis Scenarios

(a) (b)

(c) (d)

Figure 5.1: Example of two-lobed small bodies (a) Comet 67P/Churyumov-Gerasimenko.
Credits: OSIRIS/Rosetta, ESA, 2014 (b) 216 Kleopatra. Credits: Stephen Ostro et al.,
Arecibo Radio Telescope, NASA/JPL, 2000 (c) 4769 Castalia. Credits: Stephen Ostro
et al., Arecibo Radio Telescope, NASA/JPL, 1990 (d) 4179 Toutatis. Credits: Chang’e
2, CNSA, 2012.

5.1.1 Model validity within the small body population

The model implemented is suitable for certain classes of binary asteroids.
More in detail, a “big+small” binary couple is here considered. This is
a reasonable choice and not a very restrictive assumption with respect to
the binary asteroid population, since it is known that the mass of most of
known NEA binary systems is not evenly distributed among the two aster-
oids [76] where the couple usually consists of one big asteroid (primary)
and a smaller one (secondary). As a further assumption, the work focuses
on binaries whose primary asteroid is elongated or dipole-shaped. This as-
sumption is also quite realistic, confirmed by radar imaging of NEA and
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(a) (b)

Figure 5.2: Example of elongated small bodies (a) 433 Eros. Credits: NEAR, NASA, 2001
(b) 243 Ida. Credits: Galileo, NASA, 1993.

by the increasing information on asteroid shape available from rendezvous
missions and flybys. A large variety of natural bodies are suitable to be
represented with a mass dipole, since it is very common for small celestial
bodies to have two distinct lobes. It is the case of asteroids such as 4769
Castalia [100], 216 Kleopatra (the “dogbone” asteroid) [101], 2963 Bac-
chus [9], 4179 Toutatis [102], 12 Victoria [95] and 624 Hektor [26], as well
as comet 67P/Churyumov-Gerasimenko [125]. Some of them are shown
in Figure 5.1, using images provided by either spacecraft or radar observa-
tions from Earth. Elongated asteroids are also very common, few examples
are given: 1620 Geographos [103] (the mostly elongated body known in
the Solar System), 433 Eros [139] and 243 Ida [7, 8]. The latter two are
shown in Figure 5.2, as imaged by, respectively, NASA’s NEAR mission in
2001 and by the NASA’s Galileo spacecraft in 1993.

The goal of the study is to demonstrate the effectiveness of the patched
three-body approach presented here. For this reason, perturbing actions
external to the binary system were not included at this stage. Such effects
might include SRP and gravity of the Sun, as well as more accurate models
of the mass distribution of the asteroid (see Section 1) to model with higher
accuracy the gravity field of the asteroid and the dynamics of the spacecraft.
Concerning SRP, it is known that its effect becomes relevant when long-
term missions are considered. In this work the dynamical model is used
to compute short-time trajectories, hence the accuracy of the dynamics is
not compromised by the absence of such an effect. The assumption of
neglecting the gravity of the Sun is motivated by the fact that the mission
analysis is confined within the Sphere Of Influence (SOI) of the binary
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system. The radius of the SOI is here computed according to its classical
formulation [115]:

rSOI = rSun

(
mA

mS

) 2
5

= 8.61 km (5.1)

where mA is the total mass of the binary system, mS is the mass of the Sun
and rSun is the distance of the binary from the Sun, with data referring to the
study case as reported in Table 5.3. As shown in Figure 5.8, the dynamical
environment under study is confined well below the distance of 8.61 km
from the barycentre of the binary system.

5.1.2 Binary asteroid model

This section presents the assumptions made to define the dynamical model
and the binary system configuration. The dynamical model of the binary
asteroid system is built here using two rotating dipoles. As mentioned, the
gravity field associated to each dipole is modeled using the CR3BP formu-
lation. The first rotating dipole is identified with the binary couple itself:
the two asteroids are modeled as point masses and represent the primaries
of the first three-body problem. This system will be addressed in the text
as external system. The second rotating dipole is the result of approxi-
mating the gravity potential of the primary asteroid with the potential of
two masses (two-mass concentrated model or two-mascon in the follow-
ings). These two masses are the primaries of the second three-body prob-
lem, which will be addressed as internal system. When considering the
dynamics of the primary and secondary asteroid, this model can be seen as
a simplification of the Kokoriev-Kirpichnikov problem [62], which mod-
els the planar motion of a point mass and a symmetric rigid body whose
gravity field is approximated using a two-mascon model. As discussed in
Section 5.1.1, the latest assumption makes the model appropriate to rep-
resent particular classes of bodies, such as elongated, dog-bone shaped or
two-lobed asteroids. Asteroids 4769 Castalia, 2963 Bacchus, 624 Hektor
and 216 Kleopatra, due to their peculiar shape, are thought to be contact
or close binaries and therefore their mass distribution fits very well with
the two-mascon model. A particularly suitable candidate to be represented
with the proposed patched three-body model is asteroid 243 Ida, already
identified as a good candidate for proving the dynamical properties of the
Kokoriev-Kirpichnikov problem [62] with a real celestial body: asteroid
243 Ida is elongated and also, it has a small moon (Dactyl) orbiting around
it (Figure 5.2(b)).
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Figure 5.3: Binary system in the three-dimensional space. Rotational motions around Pri-
mary Asteroid Barycentre (PAB) and Binary System Barycentre (BSB) are represented
using angular velocities of the two dipoles

Figure 5.3 shows the orientation in the three-dimensional space of the
two asteroids and the angular velocity associated to the two rotating dipoles.
With reference to Figure 5.3, the Primary Asteroid Barycentre (PAB) and
the secondary asteroid (M2ext) are the primaries of the external system (PAB
is also referred asM1ext) and rotate with angular velocityωext around the Bi-
nary System Barycentre (BSB). On the other hand, M1int and M2int identify
the primaries of the internal system, which rotate with angular velocity ωint

about the PAB. Note that M1ext refers to the primary asteroid, as well as the
couple M1int ,M2int and therefore, the following relation holds

M1ext = M1int +M2int (5.2)

Relative kinematics between asteroids

As shown in Section 2.1.1, the nondimensional equations of motion of the
third body (Eq. (2.27)), expressed in the rotating frame of a single dipole,
depend only on the mass ratio µ between the primaries. When two differ-
ent rotating dipoles and their relative orientation in the 3D space are con-
sidered, other parameters must be settled to define the overall dynamical
system. In particular, dimensional quantities (or common nondimensional
ones) are to be considered as well as relative three-dimensional kinematics
between the two systems have to be defined. The term relative kinematics
is used here to indicate the relative motion between the rotation of the pri-
mary asteroid about its barycentre (ωint) and the revolution of the asteroid
couple (or revolution of the secondary in the followings) about the BSB
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(ωext). Reduction to special cases can be considered with respect to the
general kinematic problem. Four possible cases are identified to describe
the relative kinematics between two rotating dipoles in the binary asteroid
scenario.

(a) General case: the rotation of the primary is not coupled with the rev-
olution of the secondary as the two dipoles rotate independently in the
space, with ωint not aligned to ωext and ‖ωint‖ 6= ‖ωext‖ (Figure 5.3).

(b) Planar motion: ωint is aligned to ωext, in this case the primaries of both
rotating dipoles lie on the same plane. The two systems differ by a
relative rotation since ‖ωint‖ 6= ‖ωext‖ (Figure 5.4).

(c) Synchronous motion: the rotation of the primary is coupled with the
revolution of the secondary, but the angular velocity vectors are not
aligned. The resulting patched system is periodic and the motion of the
primaries is three-dimensional.

(d) Planar and synchronous motion: angular velocity vectors are equal both
in magnitude and direction (ωint = ωext). The motion of the primaries is
planar and no relative rotation exists between the two rotating dipoles.

Figure 5.4: Relative kinematics between internal and external dipoles (case (b), planar
motion)

As previously recalled, the mass ratio µ is sufficient to retrieve the equa-
tions of motion of the CR3BP in the nondimensional rotating frame. In
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Table 5.1: Set of parameters to tune the patched CR3BP system

Relative kinematics case set of parameters

(a) General case {µ,L∗,ω}ext {µ,L∗,ω}int +IC
(b) Planar motion {µ,L∗, ‖ω‖}ext {µ,L∗, ‖ω‖}int +IC
(c) Synchronous motion {µ,L∗, ω̂}ext {µ,L∗, ω̂}int +IC
(d) Planar and synchronous motion {µ,L∗}ext {µ,L∗}int +IC

addition, the characteristic length L∗ is required to represent the three-
body system in dimensional coordinates, and the angular velocity vector
is required to correctly represent the rotation of the dipole in the space.
In general, when two patched CR3BP are to be considered, the full set
of parameter {µ, L∗,ω} is required for each dipole, plus the information
on the relative orientation of the bodies at a certain epoch (Initial Condi-
tion or IC in the followings). When special relative dynamics between the
two rotating dipoles are considered (cases (b), (c) and (d)), the set of re-
quired parameters to unequivocally define the patched CR3BP system is
reduced due to constraints on the relative angular velocity. More in detail,
case (b) constrains the relative orientation of the angular velocity to be null,
while case (c) leaves as only degree of freedom their unitary directions (ω̂).
Case (d) refers to null relative angular velocity vector, both in magnitude
and direction. This special case, if seen from their common rotating frame,
constrains the primaries of the two dipoles to be fixed on a plane. It is a
reduction of case (b), hence it can be represented with Figure 5.4, when the
relative angular velocity ωrel = 0 (with ωrel = ‖ωint − ωext‖). The assump-
tion of zero relative angular velocity between the two rotating dipoles can
be made to design a trajectory in the patched three-body system for slow
rotating targets. In this case, the time spent on the trajectory is much less
than the time the asteroid takes to complete one rotation: hence, during the
time the spacecraft flies its trajectory, the relative position between the two
asteroids in the rotating frame has not changed significantly. In the latest
case, the two CR3BP are unequivocally defined by {µext, L

∗
ext, µint, L

∗
int} and

by selecting the IC (θ0, with reference to Figure 5.4), which constrains the
relative position of the four primaries. Table 5.1 summarizes the sets of
parameters to be fixed to unequivocally tune the patched CR3BP system,
depending on its relative kinematics.
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Dynamics of the spacecraft

The dynamical environment driving the motion of the spacecraft in the
proximity of the binary system is described here. As mentioned above,
the classical patched conics approach considers different regions of influ-
ence, bounded by the SOI computed around a single attractor, to model
the dynamics of the spacecraft. Similarly, the dynamical environment in
the proximity of the binary couple is split into two regions of influence,
bounded by the SOE computed around the primary asteroid. A qualitative
definition of the SOE is given here. Further details on its mathematical
definition and numerical computation are given in Section 5.1.3.

Intuitively, it can be assumed that the dynamics of the spacecraft are
dominated by the gravitational effect of the primary asteroid when it is near
to it, with the effect of the smaller asteroid negligible (M1ext >> M2ext).
This region is considered to be internal with respect to the SOE and the
motion of the spacecraft is governed by the internal CR3BP. With reference
to section 2.1.1, the equations of motion of the spacecraft are represented
by system (2.27) and can be equivalently rewritten in vectorial form as

ãint =


2 ˙̃y + Ux̃

−2 ˙̃x+ Uỹ

Uz̃


int

(5.3)

with notation referring to the internal nondimensional system, normalized
to have unitary angular velocity (ωint), total mass of the system (M1int +
M2int) and distance between primaries.

Far from the primary asteroid, its gravity field is approximated with a
simple central field, as the effects due to its non-homogeneous mass distri-
bution are negligible. In addition, the effect of the smaller asteroid turns to
be relevant as the primary field becomes weaker. This region is considered
to be external with respect to the SOE and the dynamics of the third body
is driven by the combined gravitational field of the binary couple (external
CR3BP). In analogy to what is done for internal system, the equations of
motion of the spacecraft moving outside the SOE are represented by sys-
tem (2.27), which in vectorial form reads

ãext =


2 ˙̃y + Ux̃

−2 ˙̃x+ Uỹ

Uz̃


ext

(5.4)

with notation referring to the external nondimensional system, normalized
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5.1. Binary system with two-lobed primary

to have unitary angular velocity (ωext), total mass of the system (M1ext +
M2ext) and distance between primaries.

The schematics of the dynamical system are shown in Figure 5.5: the
SOE represents the boundary between internal and external CR3BP.

Figure 5.5: Schematics of the dynamical system. SOE as boundary between regions of
applicability of internal and external CR3BP

5.1.3 Surface Of Equivalence

This section discusses the mathematical definition of the SOE and its nu-
merical computation for the landing scenario studied in Section 5.1.4. The
data used to produce results and figures presented here refer to data reported
in Section 5.1.4.

Definition of the SOE

The concept of Surface Of Equivalence is developed here to cover specific
needs related to the study and the design of trajectories in a patched three-
body model. The SOE is defined as the implicit surface

F(G,H) = 0 (5.5)

where G and H are vector fields, as defined in the following paragraph.
The SOE is used to compare such vector fields and, according to the prop-
erties of the fields and by selecting the properF(G,H), to establish bound-
aries of equivalent regions between them. The definition of the SOE pro-
vided here applies to the case study, as shown in the followings, to compare
gravity fields.
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SOE to compare gravity models

A simple application of the SOE concept is shown here to compare accel-
eration fields associated to different gravity models. More in detail, the
purpose is to identify regions in the three-dimensional space where two
different gravity models produce equivalent acceleration fields. It is here
highlighted that equivalent does not mean equal, but it does refer to specific
applications for which two acceleration fields, even if not equal, produce
equivalent results according to a specified accuracy. E.g. a massive at-
tractor can be modeled according to different mathematical models (single
central field, mass distributed model, mass concentrated model, polyhedron
model,. . . ) and, depending on the specific application (e.g. distance of the
spacecraft), these models can be seen as equivalent or not. It is known that
the intensity of the acceleration field is inversely proportional to the square
of the distance from the attractor: intuitively, different models of the same
attractor can be considered equivalent far enough from the singularities of
the field (gravity sources). Equivalence criteria are established through the
definition of the SOE since they are directly linked with the selection of
F(G,H).

Referring to the case study, the SOE is computed here to confine equiva-
lence regions between representation of primary asteroid gravity field with
the single mass or with the two-mascon model. G andH represent the ac-
celeration fields of, respectively, the two-mascon model (CR3BP, referred
as aint, as in Eq. (5.3)) and the single mass model (Restricted Two-Body
Problem, or R2BP, referred as a2B). It is convenient to evaluate both ac-
celeration fields in the rotating frame associated to the two-mascon model
(referred as internal system in Section 5.1.2), such that the asteroid remains
fixed in the space. In this particular reference frame, vector fields are time-
invariant and their functional expression read as

G = G(x, y, z) H = H(x, y, z)

To facilitate the comparison between acceleration fields, dimensional units
are used. More in detail, the dimensional form of Eq. (5.3) can be written
as

aint =


ω2

intx+ 2ωintẏ −G
(
M1int
r31

(x+ x1) +
M2int
r32

(x− x2)
)

ω2
inty − 2ωintẋ−Gy

(
M1int
r31

+
M2int
r32

)
−Gz

(
M1int
r31

+
M2int
r32

)


int

(5.6)

where x, y, z refer to the dimensional coordinates in the internal CR3BP,
x1, x2 represent the position of the two primaries on the x axis, r1, r2 the
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distance of the third body from the primaries and G is the universal gravi-
tational constant.

The contribution due to the single mass representation of the primary, in
the rotating frame reads as

a2B =


ω2

intx+ 2ωintẏ −G
M1int +M2int

r3
x

ω2
inty − 2ωintẋ−G

M1int +M2int
r3

y

−GM1int +M2int
r3

z


int

(5.7)

with r representing the distance of the spacecraft from the barycentre of the
system.

Since the vector field is being evaluated with spacecraft at rest (ẋ = ẏ =
ż = 0), Coriolis terms in equations (5.6) and (5.7) result to be zero and then
the equations can be simplified into the form used to define the SOE:

aint =


ω2

intx−G
(
M1int
r31

(x+ x1) +
M2int
r32

(x− x2)
)

ω2
inty −Gy

(
M1int
r31

+
M2int
r32

)
−Gz

(
M1int
r31

+
M2int
r32

)


int

= G(x, y, z)

(5.8)
and

a2B =


ω2

intx−G
M1int +M2int

r3
x

ω2
inty −G

M1int +M2int
r3

y

−GM1int +M2int
r3

z


int

= H(x, y, z) (5.9)

SOE example: relative difference in magnitude

In this paragraph, the SOE is computed by comparing the magnitude of dif-
ferent acceleration fields. Figure 5.6(a) shows contour lines of the function
f(x, y, z), which represents the relative difference in magnitude between
fields

f(x, y, z) =
‖aint − a2B‖
‖aint‖

(5.10)

The value of f in each point (x, y, z) of the domain corresponds to the
difference in magnitude between central field and two-mascon model as
percentage of the latter. As expected, the difference between the fields
is maximum near the asteroid and decreases monotonically moving away
from it.
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Figure 5.6: (a) Contour lines of function f(x, y, z) (Eq. (5.10)): projection on x, y
plane. Relative difference in magnitude expressed as percentage of ‖aint‖. (b) Three-
dimensional view of the SOE (with κ = 5%). Magnitude of acceleration fields is
compared

Equation (5.10) is included in the definition of the SOE (5.5), which is
expressed as the implicit surface

F(G,H) =
‖G−H‖
‖G‖

− κ = 0 (5.11)

or equivalently
‖aint − a2B‖
‖aint‖

= κ (5.12)

being κ a scalar value representing the norm of the vectorial difference be-
tween the fields normalized to ‖aint‖ or, in other words, the percentage of
difference between the models. The analytical expression of the SOE can
be written in the dimensional rotating frame by substituting equations (5.8)
and (5.9) into Eq. (5.12): it results into a nonlinear scalar equation to be
solved for the value κ. Figure 5.6(b) shows the three-dimensional SOE
computed for κ = 5%. As mentioned, the SOE bounds regions of equiva-
lence of different models, according to a specific accuracy. In this case, as
it appears clear from Figure 5.6(a), the SOE divides the domain into two
regions: the internal region (where f > 5%) and the external region (where
f < 5%). A region of equivalence between the two models, within the
accuracy of 5%, is then identified outside the SOE.

SOE example: relative difference in direction

Other SOEs can be computed according to different equivalence criteria.
The equivalence of two acceleration fields can be assessed in terms of vec-
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tor orientation (other than vector magnitude). In analogy to what is done
for the case of magnitude comparison, the relative difference in direction
between fields is defined as g(x, y, z)

g(x, y, z) = arccos

(
aint · a2B

‖aint‖‖a2B‖

)
(5.13)

Figure 5.7(a) shows contour lines of the function g(x, y, z) being the rela-
tive difference in directions, expressed in degrees, between the vector fields
under study. Again, the difference between the fields is maximum near the
asteroid and decreases away from it.
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Figure 5.7: (a) Contour lines of function g(x, y, z) (Eq. (5.13)): projection on x, y plane.
Relative difference in direction expressed in degrees. (b) Three-dimensional view of
the SOE (with γ = 2◦). Direction of acceleration fields is compared

In this case, the SOE is defined as

arccos

(
aint · a2B

‖aint‖‖a2B‖

)
= γ (5.14)

where γ is the angle between vectors of the different fields. Figure 5.7(b)
shows the three-dimensional SOE computed when γ = 2◦. In analogy to
the magnitude comparison case, the region of equivalence between the two
models, within the accuracy of 2◦, is identified outside the SOE.

5.1.4 Landing scenario

This section presents a space exploration scenario to a NEA binary sys-
tem. The patched three-body strategy described above is adopted here for
close proximity operations and to design the landing trajectory of a space
probe. With reference to Section 5.1.2, the relative kinematics of the target
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binary system and the dynamical environment are described, using the SOE
concept defined in Section 5.1.3.

Binary system data

All data used for the scenario under study are reported here. A target binary
system was defined by using typical physical values of asteroids among the
wide binary NEA population [76]: Table 5.2 reports the ranges of proper-
ties relevant for the case study. With reference to notation introduced in
Section 5.1.2, table 5.3 lists the selected values.

Table 5.2: NEA binary population (data from Johnston’s archive [76])

quantity range of values

Asteroid couple heliocentric semi-major axis [0.6− 3] AU
mass ratio [10−4 − 10−1]
distance between primaries [0.25− 8] km

Primary asteroid diameter [120− 8200] m

Secondary asteroid diameter [50− 800] m

Table 5.3: Physical values used for the case study

quantity symbol Value

Asteroid couple mass ratio µext 0.0065
characteristic length L∗

ext 1100 m
relative orientation θ0 0◦

distance from the Sun rSun 1.64 AU
total mass mA 4.59 · 1011 kg

Primary asteroid mass ratio µint 0.5
characteristic length L∗

int 400 m
size (ellipsoid semi-axis) (ax, ay , az) (400, 200, 200) m

Secondary asteroid size (sphere radius) R2 75 m

It is remarked here that for this case study, the shapes of the asteroids are
used only for representing their surface during the landing design: the sizes
of primary and secondary asteroids refer to their representation as ellipsoid
(or sphere).
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Relative kinematics of the binary system

The case study presented here refers to the simplest case in terms of relative
kinematics between asteroids among those presented in Section 5.1.2: it is
assumed that planar and synchronous motion applies for the binary system
under study (case (d)). This assumption simplifies the computations but
it does not affect the validity and meaningfulness of the design process.
The relative kinematics of the binary systems do not affect the motion of
the two rotating dipoles and therefore the applicability of the CR3BP in
their domain of interest: relative kinematics between asteroids are impor-
tant only at the SOE, where the transition between internal and external
CR3BP occurs instantaneously. In this respect, case (d) is equivalent to the
general non-synchronous and three-dimensional motion (case (a)), with the
two rotating dipoles aligned only during transition at the SOE. Moreover,
a simpler study case fits better than a more complex case with the needs
of showing and explaining a novel design approach, which is the goal of
this section. The patched approach shown here can be easily applied to any
general, more complex study case.

As shown in Table 5.1, when case (d) applies, the patched three-body
system is tuned by fixing the following set P of parameters, with reference
to Figure 5.4

P = {µext, L
∗
ext, µint, L

∗
int, θ0} (5.15)

The set P is selected according to the targeted binary system and refer to
properties of both binary couple and primary asteroid. Parameters related
to the external system µext and L∗ext refer to the asteroid couple since they
represent the mass ratio between the two asteroids and relative distance be-
tween them. Parameters of the internal system µint and L∗int are the degrees
of freedom to model the gravity field of the primary asteroid: the mass
ratio and distance of the two masses is used to approximate the mass dis-
tribution of the natural body. Last, θ0 fixes the relative position of the four
primaries {M1ext ,M2ext ,M1int ,M2int} in their common rotating frame. Val-
ues of P refer to Table 5.3. The targeted binary configuration is shown in
Figure 5.8: all primaries are collinear and lie on the x axis of the common
rotating frame. According to [120], if two asteroids are modeled as ellip-
soids, the smaller asteroid being aligned with the minimum inertia axis of
the primary represents an equilibrium configuration, which can be of stable
equilibrium depending on the values of angular momentum, mass ratio and
inertia properties of the asteroid couple. The design case under study is
however found to stay in the region of instability, due to the chosen mass
ratio between the asteroids. Nevertheless, the choice of the configuration is
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justified by the fact that the two dipoles interacts dynamically only during
transition at SOE: from the particle dynamics point of view, this patched
model can be representative of the case in which the primaries move with
a general non-synchronous, three-dimensional motion (case (a)), with in-
stantaneous transition at SOE during alignment of the dipoles. The relative
kinematics do not affect the dynamics of internal and external CR3BP in
their domain and, since the transition at the SOE between patched three-
body problems is instantaneous, the rotating dipoles need to be aligned
only when the spacecraft is at the SOE.

Two ellipsoids are used to approximate the surface of the asteroids to
design the landing trajectory and for visualization purposes.

Dynamical environment

The spacecraft moves in the proximity of the asteroid couple following
the dynamics described in Section 5.1.2. The computation of the SOE to
confine internal and external system is presented here for the study case.

Section 5.1.3 presents the mathematical definition of the SOE and shows
some examples of its computation around the primary asteroid. The magni-
tude of vectors between two different acceleration fields are compared and
serve to define condition (5.5) to compute the SOE. The results shown in
Section 5.1.3 are applied to the binary system case and used to compute the
SOE for the case of study presented here: inside the SOE the dynamics are
driven by the internal CR3BP (with effects due to the smaller asteroid neg-
ligible), outside the SOE the dynamics are driven by the external CR3BP,
with the primary modeled as single mass.

The case of study considers the magnitude SOE (Figure 5.6(b)) com-
puted in Section 5.1.3. The surface is defined as

‖aint − a2B‖
‖aint‖

= κ (5.16)

with the threshold value κ used in Section 5.1.3:

κ = 5% (5.17)

This value was selected with the goal of satisfying constraints on the geom-
etry of the problem (SOE not smaller than primary asteroid and not bigger
than the binary system) while keeping a satisfactory representation of the
dynamics: the internal three-body system is considered as the real world
model to represent the primary asteroid and the SOE represents a bound-
ary beyond which the gravity contribution of the primary is modeled to a
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lower accuracy (if SOE is too small the accuracy of the model of the pri-
mary is too low, if the SOE is too big the effect of the secondary inside it is
too high to be discarded). Since the differences in magnitude decreases by
moving away from the primary asteroid (Figure 5.6(a)), outside the SOE
the acceleration fields satisfy condition

‖aint − a2B‖
‖aint‖

< κ (5.18)

meaning that, outside the SOE, the acceleration fields are equivalent, within
the accuracy specified in (5.17).

Figure 5.8: Dynamical system, with two CR3BP and their libration points in the rotating
frame: green stars indicate libration point of the internal system, blue circles indicate
libration points of the external system

Figure 5.8 shows the dynamical environment to support trajectory de-
sign for the case study. The x, y projection of the SOE is shown here, split-
ting the neighborhood of the binary couple into two regions where internal
and external CR3BP apply. Libration points of both internal and external
systems are shown.

The patched three-body approach

An example of how the patched three-body system can be employed to
support the design of a potential mission scenario is presented. Solutions
to land a vehicle on the surface of the primary asteroid are selected by ex-
ploiting manifold dynamics of the two three-body systems. The interaction
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between the three-body problems was solved by means of Poincaré maps
analysis on the SOE.

The mission scenario considers a spacecraft initially following a peri-
odic orbit about the L1 point of the external CR3BP. During the landing
phase, the spacecraft follows the dynamics of the external system to reach
the SOE and then, after transition to internal CR3BP, it reaches the surface
of the primary asteroid. The landing trajectory is designed by patching to-
gether two trajectories of the external and internal CR3BP. More in detail,
the landing phase is initiated when the spacecraft leaves the initial orbit
exploiting its unstable manifolds, which drive the spacecraft towards the
primary asteroid, up to the SOE. At the SOE, the transition from external
to internal CR3BP occurs and a manoeuvre is performed to reach stable
manifolds that drive the spacecraft towards the surface of the asteroid. A
planar transfer case is compared to a full three-dimensional one.

The following paragraphs show trajectories computed in the external
and internal systems, and then discuss the landing solution found after
patching external with internal trajectories.

Trajectories in the external CR3BP

It is assumed that initial orbits are imposed by mission requirements and
constrained to keep the spacecraft permanently within the two asteroids,
for observation purposes. For this reason, a lyapunov and a halo orbit about
L1 are chosen as starting point for the planar and 3D landing solution (Fig-
ure 5.9).

(a) (b)

Figure 5.9: Initial orbits in the external CR3BP: lyapunov (planar case) and halo (3D
case) orbits about the L1 point (a) close up view in the proximity of the smaller asteroid
(b) x-y projection in the binary system
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(a) (b)

Figure 5.10: Unstable manifolds associated to (a) lyapunov and (b) halo orbits: forward
propagation in the external CR3BP

To let the spacecraft reach the SOE from its initial orbit, unstable man-
ifolds of both lyapunov and halo orbits are computed and propagated for-
ward within their domain of validity (Figure 5.10). The unstable manifolds
computed represent possible solutions for the first phase of the landing tra-
jectory, from the initial orbit to the SOE.

Trajectories in the internal CR3BP

According to the patched three-body model in use, the dynamics of the
spacecraft transition from external to internal CR3BP at the SOE.

(a) (b)

Figure 5.11: Families of (a) lyapunov and (b) halo orbits about L2 in the internal CR3BP:
suitable landing points are identified by intersections with asteroid surface
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(a) (b)

Figure 5.12: Stable manifolds associated to (a) lyapunov and (b) halo orbits: backward
propagation from landing points in the internal CR3BP

Trajectories in the internal CR3BP represent the last part of the landing
trajectory, from the SOE to the surface of the primary asteroid. Landing
points on the asteroid surface are sought first, by computing periodic orbits
in the internal CR3BP that intercept the surface of the primary. Figure 5.11
shows families of lyapunov and halo orbits about L2 in the internal CR3BP,
which intersects the surface of the asteroids. Suitable trajectories of the
spacecraft from the SOE to the asteroid are found by computing stable man-
ifolds associated to periodic orbits depicted in Figure 5.11. Manifolds are
propagated backwards starting from identified landing points. Figure 5.12
shows computed stable manifold trajectories starting from suitable landing
points, for both planar and three-dimensional cases.

Patched trajectories

Landing solutions are investigated in this paragraph, after patching external
with internal trajectories. A connection between unstable (external) and
stable (internal) manifolds shall be found on the SOE. To this aim, Poicaré
maps are used. Poincaré maps are widely used in dynamical system theory:
examples of specific applications to astrodynamics problems can be found
in [82]. To patch internal and external trajectories, the SOE is taken as
Poincaré section to compute the map.

The planar case is firstly discussed. Lyapunov orbits in internal and
external CR3BP and their associated manifolds are considered here and
shown in Figure 5.13(a). Since all trajectories are planar, the full six-
dimensional problem is reduced to four-dimensional. To find free connec-
tions between the stable and unstable manifolds, all four states x, ẋ, y, ẏ

104



5.1. Binary system with two-lobed primary

(a) (b)

Figure 5.13: Unstable (red) and stable (blue) manifolds associated to external and inter-
nal CR3BP (planar case): (a) manifold families and (b) chosen solutions
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Figure 5.14: Poincaré maps associated to the planar landing case: (a) y, ẋ and (b) y, ẏ.
Red dots represent unstable (external) manifolds, blue dots represent stable (internal)
manifolds

of internal and external manifolds must match each other on the Poincaré
section. However, the four states are not all independents as the location of
the Poincaré section constrains one position state. Three states need to be
matched at the SOE: one position state (x or y) and both velocity states (ẋ
and ẏ). To look at possible free transfers, two different Poincaré maps at
the SOE are built. Figure 5.14 shows the maps: red dots represent unsta-
ble manifolds associated to the external CR3BP, while blue dots represent
stable manifolds associated to the internal CR3BP.

Figures 5.14(a) and 5.14(b) show the projection of manifolds on the
SOE in the phase spaces (y, ẋ) and (y, ẏ). Stable and unstable manifolds

105



Chapter 5. Mission Analysis Scenarios

(a) (b)

(c) (d)

Figure 5.15: Unstable (red) and stable (blue) manifolds associated to external and inter-
nal CR3BP (3D case): (a) three-dimensional view (b) x,y (c) x,z and (d) y,z projections

have one intersection in the (y, ẋ) phase space, hence one point on the SOE
exists where manifolds have the same position and the same ẋ. On the other
hand, no intersections exist in the (y, ẏ) plane, and then, no points where the
whole state of internal and external manifolds matches exist. Since no free
transfer trajectories exist, a manoeuvre shall be performed on the SOE to
match the ẏ state. The intersection in Figure 5.14(a) is selected as possible
landing solution and referred as solution 1 in the followings. Figure 5.13(b)
shows the full trajectory associated to landing solution 1 in the x, y plane,
as patched trajectory in external and internal systems. Table 5.4 reports
the cost of the manoeuvre to be provided at the SOE, which in this case
corresponds to a ∆ẏ manoeuvre.

The three-dimensional case is then discussed. Figure 5.15 shows com-
puted manifolds associated to the three-dimensional case and their interac-
tion on the SOE.
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Figure 5.16: (a) Poincaré map associated to the 3D case: red dots represent unstable
(external) manifolds, blue dots represent stable (internal) manifolds (projection in the
x, y plane). (b) Selected landing solution for 3D case

In this case, connection points are sought to guarantee continuity in po-
sition state between internal and external manifolds: three states are to be
matched. The Poincaré section is again the SOE, which constraints one po-
sition state, and the map is built to represent x, y projection of manifolds
on the SOE. Figure 5.16(a) shows the Poincaré map and the three intersec-
tions that exist between stable and unstable manifolds. These are referred
as landing solutions 2, 3 and 4 in the followings. Blue dots in Figure 5.16(a)
are shown to belong to four different curves, which correspond to four dif-
ferent kinds of families of stable manifolds associated to internal CR3BP
solutions (Figure 5.12(b)).

Table 5.4: ∆v for selected landing solutions

ID landing solution ∆v [cm/s]

1 (2D) 33.7
2 (3D) 37.8
3 (3D) 39.4
4 (3D) 41.6

The cost of the manoeuvre to be performed at the SOE is reported in
Table 5.4 for all planar and three-dimensional selected solutions.
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5.2 Asteroid Impact Mission landing design

Following the heritage of NEAR-Shoemaker, which was the first spacecraft
to achieve a soft landing on an asteroid, and of the Rosetta mission, which
was the first to achieve a soft landing on a comet nucleus, the Asteroid
Impact Mission (AIM) [54, 55, 83] is planned to be the first to rendezvous
with a binary asteroid. Designed by ESA, AIM is planned to be launched
in 2020 and to arrive at the asteroid system in mid 2022 1. The target
is the near-Earth binary asteroid 65803 Didymos [124], which will transit
close to Earth (less than 0.1 AU) in late 2022. The binary system, whose
primary was originally discovered in 1996 and named 1996 GT, was re-
named Didymos, the Greek word for “twin”, in 2003, after the discovery of
a smaller satellite orbiting around the primary [76]. The primary asteroid
is informally called Didymain and its small companion Didymoon. As a
broader cooperation, AIM mission is part of the Asteroid Impact & Deflec-
tion Assessment (AIDA) [22,23,92] mission, a joint mission between ESA
and NASA. The goal of AIDA is to assess the effectiveness of deflecting
the heliocentric path of a threatening NEA for planetary defense purpose.
More in detail, AIDA shall monitor the effects of a kinetic impact towards
the surface of Didymoon on the heliocentric motion of the binary system.
Within AIDA cooperation, AIM has the role of scientific investigator and
shall observe the kinetic impact, which is achieved by means of the im-
pactor DART (Double Asteroid Redirection Test) [20,21,127], a spacecraft
designed by NASA. Such observations will support the study and under-
standing of the formation of asteroids and binary systems and the evolution
of the Solar System regarding collisional evolution of small celestial bod-
ies.

AIM shall rendezvous with Didymos prior to the arrival of DART in late
2022, after a nearly two-year interplanetary transfer. A sketch of AIM’s in-
terplanetary trajectory is shown in Figure 5.17(a), together with the orbital
path of the Earth and Didymos from launch to arrival, on the ecliptic plane.
The strategy to approach and rendezvous Didymos foresees relative naviga-
tion with respect to the asteroid system, using the on-board visual camera,
to ultimately estimate the actual orbital path of the asteroid and to correctly
rendezvous with it. Figure 5.17(b) shows the relative distance and veloc-
ity with respect to the target asteroid during the rendezvous phase, which
includes five impulsive maneuvers. One week is currently chosen as time
between two consecutive manoeuvres, in order to allow a detailed naviga-

1At the time of writing this thesis, AIM design underwent phase A and B1. Phase B2 and subsequent ones
are currently awaiting for ESA ministry assembly approval.
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Figure 5.17: (a) projection of AIM’s interplanetary trajectory on the ecliptic plane (b) rel-
ative position and velocity with respect to Didymos during the rendezvous manoeuvre

tion estimate to correctly rendezvous with the asteroid, and to have enough
time to re-schedule the manoeuvre sequence if needed. After rendezvous,
the spacecraft is currently designed to pursue its scientific goals and close-
proximity operations at the asteroid through the use of stationary points in
the neighborhood of the two asteroids. Since out of the scope of this work,
interplanetary mission analysis and close proximity operations of AIM are
not detailed here. A more detailed description of all phases of the mission
and a discussion on the motivation of mission analysis design solutions
can be found in [45,46,49]. After arrival, AIM shall operate with a twofold
goal, to perform both scientific investigations and technological demonstra-
tions. AIM shall characterize Didymos from a dynamical and geophysical
point of view and, after DART’s arrival, will assess the consequences of
the kinetic impact on the surface of Didymoon. The primary objectives of
AIM include the detailed study and characterization of the binary couple,
in terms of shape, mass, surface, sub-surface, interior structure, mechanical
and thermal properties of the asteroids. Among these, the internal com-
position of the smaller asteroid will be determined by means of bi-static
low frequency radar (LFR) tomography. Similarly to what is done with the
CONSERT instrument [69], on board the ESA’s Rosetta mission [131], the
radar will include a lander-orbiter architecture to host both transmitters and
receivers. A small lander, named MASCOT-2, shall be deployed on Didy-
moon to perform the Moonlet Engineering eXperiment (MEX) that will
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Chapter 5. Mission Analysis Scenarios

demonstrate the ballistic landing and operations of a miniaturized asteroid
lander on a binary system. MASCOT-2, a very small (about 13 kg) and
completely passive probe, is named after MASCOT [134], the lander on
board the Hayabusa-2 mission [132].

The Rosetta mission highlighted the challenges of designing close prox-
imity trajectories and landing a probe on the surface of an extremely irregu-
lar body such as comet 67P/Churyumov-Gerasimenko [125], whose shape
and mass distribution were completely unknown and unexpected during the
mission design phase. In that case, the Philae lander [10] release was chal-
lenged by the highly perturbed dynamical environment in the proximity of
the comet and by its very low and irregular gravity field. In analogy to the
Rosetta mission, AIM will deploy a small and passive probe that will reach
the surface of a largely unknown object after a purely ballistic descent.
MASCOT-2 lander does not feature any mechanism to anchor to the sur-
face of the asteroid, which makes the landing design even more challenging.
Moreover, Didymos system’s gravity field is expected to be weaker, with an
escape velocity from Didymoon’s surface of about 4-6 cm/s, since the as-
teroids are estimated to be nearly two (Didymain) and four (Didymoon) or-
ders of magnitude less massive than comet 67P/Churyumov-Gerasimenko.
In addition, the presence of two gravitational attractors makes the dynam-
ics in the close proximity of the couple highly unstable and chaotic. The
accurate knowledge of the dynamics driving the motion of a body in the
vicinity of such a binary system is then a key point for the success of the
mission, to correctly operate scientific payloads and to effectively land the
probe on the asteroid.

An effective strategy for MASCOT-2 release is proposed here. The in-
creased complexity of having two small bodies as gravity source is used
here as a potential opportunity to be exploited in the design process, through
the use of three-body modeling techniques. The AIM/MASCOT-2 scenario
is presented in the following paragraphs as a case study. However, the ap-
plied methodology is representative for any asteroid/small body scenario.

5.2.1 Didymos three-body system

The dynamics of MASCOT-2 in the proximity of the binary asteroid system
are modeled using a restricted three-body model, as detailed in the follow-
ing. The landing trajectory and dynamics of MASCOT-2 is studied during
close-proximity operations using the most precise up-to-date fidelity model
of Didymos. Shape-based models are used to represent the gravitational
contribution due to the two asteroids. Three-body solutions are investi-
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5.2. Asteroid Impact Mission landing design

gated within the Didymos binary system and suitable landing trajectories
are selected. More in detail, manifold dynamics near libration points as-
sociated to the asteroid three-body system are exploited to find low-energy
landing trajectories.

The modeling strategy is based on the CR3BP formulation, refined by
including the effects of non-spherical mass distribution when modeling
the two asteroids. Didymain and Didymoon are the primaries of a three-
body system and their motion is constrained on circular paths around the
barycentre of the binary. The classical CR3BP models the primaries using
spherical and uniform mass distribution around their centre of mass, which
is equivalent to consider point-mass sources. For this reason, the classical
CR3BP accurately describes the dynamics around the binary couple only
if the mass distribution of the two asteroids is close to be spherical. In
general, this is not the case for small celestial bodies. The highly irregular
mass distribution of such bodies can lead to very inaccurate results when
studying the dynamics in their close proximity. In this work, more accurate
models are implemented within a modified CR3BP, by including informa-
tion on more complex mass distribution into the classical CR3BP. As for
the case study, due to the lack of information and direct measurements re-
garding the mass distribution of the asteroids, the latter is directly recovered
from shape information: the mass is considered to be uniformly distributed,
within a non-spherical shape of the asteroid. Since it deals with the well-
known CR3BP formulation, this strategy takes advantage from the large
availability of dynamical solutions for astrodynamics and mission analysis
design, by adapting such solutions to the case of modified CR3BP.

Didymos modified CR3BP

The working assumptions of the CR3BP related to the dynamics of the pri-
maries are kept. The two asteroids follow a two-body circular path around
the barycentre of the binary and their motion is not influenced by the pres-
ence of the third body (MASCOT-2). As usual, the equations of motion of
the third body are written in the synodic frame, which rotates together with
the primaries (Section 2). Concerning the rotational motion of Didymoon,
observations show that the secondary is in a tidally-locked configuration,
having the same period of rotation about its axis and revolution about the
barycentre of the binary system. This configuration is such that Didymoon
shows the same face to Didymain during its motion. More in detail, its
smaller principal axis of inertia is aligned to the Didymoon-Didymain di-
rection. The relative configuration between the two primaries is fixed as
seen from the three-body synodic frame, with Didymoon’s smaller princi-
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pal axis lying on the x axis, together with the centres of mass of the pri-
maries, having nondimensional x̃ coordinates of−µ and 1−µ. Figure 5.18
shows Didymos three-body system as seen from the rotating frame, in di-
mensional coordinates.

(a) (b)

Figure 5.18: Didymos three-body system in rotating dimensional frame (a) x-y plane view
with libration points (b) three-dimensional view.

With reference to Section 2.1.1, the nondimensional equations of motion
of the spacecraft are written in the synodic frame as

¨̃x = x̃+ 2 ˙̃y + Ũ1x̃ + Ũ2x̃

¨̃y = ỹ − 2 ˙̃x+ Ũ1ỹ + Ũ2ỹ

¨̃z = Ũ1z̃ + Ũ2z̃

(5.19)

where the subscript (·)x̃, (·)ỹ or (·)z̃ indicate partial derivatives, superscript
˜indicates nondimensional coordinates, Ũ1 and Ũ2 represent the nondimen-
sional gravitational potential due to the primaries P1 and P2. Note that
Ũ1 and Ũ2 differ from the three-body potential function Ũ defined in Sec-
tion 2.1.1, the latter including the effects of both primaries and synodic
frame rotation. The classical CR3BP formulation considers point-mass (or
spherical) gravitational potentials, which can be written as

Ũ1 = Ũ1sph =
1− µ
r̃1

(5.20)

Ũ2 = Ũ2sph =
µ

r̃2

(5.21)

The modified version of the CR3BP implements shape based models of the
two asteroids. According to the latest observations of Didymos system,
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5.2. Asteroid Impact Mission landing design

information on the shape of the asteroids are partially available. A face-
vertex shape model of Didymain is available2, while Didymoon’s shape
is estimated to be an elongated tri-axial ellipsoid. The following para-
graphs describes briefly the strategy used to reproduce the asteroids gravity
field based on these shape models and recall techniques presented in Sec-
tion 2.3.1.

The gravity effect of Didymain is modeled using its shape model and
its mass distribution is considered to be uniform (constant density polyhe-
dron). The gradient of the polyhedron potential is written with reference to
Section 2.3.1 as

Upolyx1
Upolyy1
Upolyz1

 = Gρ

( ∑
f∈faces

Ff · rfωf −
∑
e∈edges

Ee · reLe
)

(5.22)

All parameters in Eq. (5.22) refer to Section 2.3.1, with notation �1 re-
ferring to coordinates of the field point with respect to the rotating frame
centreed at the centre of the polyhedron. Relations between x1, y1, z1 and
nondimensional coordinates associated to Didymos three-body system are
provided by 

x1 = (x̃+ µ)L∗

y1 = ỹL∗

z1 = z̃L∗

(5.23)

The potential function is nondimensionalized according to characteristic
length L∗ and time t∗ associated to the problem

Ũpolyx̃

Ũpolyỹ

Ũpolyz̃

 =


Upolyx1
Upolyy1
Upolyz1

 t∗2

L∗
(5.24)

Concerning Didymoon, the most updated model of its shape considers it
as an ellipsoid. Accordingly, its gravity effect is modeled using the potential
of a constant density tri-axial ellipsoid. With reference to Section 2.3.1 the
gradient of the potential due to the ellipsoid is written as

Uellx2

Uelly2

Uellz2

 = −2Gρπαβγ


x2

∫∞
λ(x2,y2,z2)

du
(α2+u)∆(u)

y2

∫∞
λ(x2,y2,z2)

du
(β2+u)∆(u)

z2

∫∞
λ(x2,y2,z2)

du
(γ2+u)∆(u)

 (5.25)

2The Didymain shape model is used in the frame of the AIM contract, however it is still unpublished (courtesy
of L. Benner and S. Naidu)
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All parameters in Eq. (5.25) refer to notation used in Section 2.3.1. Simi-
larly to what is done for the polyhedron case, notation �2 refer to coordi-
nates of the field point with respect to the dimensional rotating frame ori-
ented as principal axis of the ellipsoid. Relations between such coordinates
and coordinates of Didymos three-body system are provided by

x2 = (x̃− 1 + µ)L∗

y2 = ỹL∗

z2 = z̃L∗

(5.26)

As for the polyhedron case, the potential of the ellipsoid is nondimension-
alized according to characteristic length L∗ and time t∗ associated to the
problem 

Ũellx̃

Ũellỹ

Ũellz̃

 =


Uellx

Uelly

Uellz

 t∗2

L∗
(5.27)

To implement the modified CR3BP formulation, the gravity terms due
to the asteroids are modified to include the effects of their non-spherical
mass distribution: point mass potentials are replaced by nondimensional
shape-based potentials Ũpoly and Ũell. Partial derivatives of shape-based po-
tential functions are included in the modified CR3BP equations of motion
as follows 

¨̃x = x̃+ 2 ˙̃y + Ũpolyx̃ + Ũellx̃

¨̃y = ỹ − 2 ˙̃x+ Ũpolyỹ + Ũellỹ

¨̃z = Ũpolyz̃ + Ũellz̃

(5.28)

Note that only gravity terms due to the primaries acting on the third body
are modified. No changes are made on the assumptions regarding the mo-
tion of the centre of mass of the two primaries and their mutual interaction.

Model validity

The previous section defines the model used to propagate the dynamics of
MASCOT-2 in the proximity of the binary couple. Since the gravity field is
extremely low, it might be worth to consider the effects of orbital perturba-
tions due to SRP and fourth-body effect (Sun or Earth). Table 5.5 reports
the order of magnitude of orbital perturbations acting on the lander, as com-
pared to Didymos gravity acceleration at 1 km from the primary, which is
found to be the only relevant driver for MASCOT-2 dynamics. The most
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relevant perturbing effect, the SRP, is indeed three orders of magnitude less
important than Didymos gravity. Accordingly, the SRP could be relevant
only in case of long time of flights. This is not the case for MASCOT-2,
which is foreseen to only have a short ballistic descent of a few hours be-
fore reaching the surface of Didymoon. Fourth body perturbations due to
Sun and Earth (which is closer than 0.1 AU during MASCOT-2 descent)
are shown not to be relevant at all.

Table 5.5: Dynamical effects acting on MASCOT-2 in the proximity of Didymos system

Order of magnitude [m/s2]

Didymos gravity 10−5

SRP 10−8

Sun’s gravity (4th body) 10−11

Earth’s gravity (4th body) 10−13

The most important source of perturbation will likely be the irregular-
ities of Didymain and Didymoon gravity fields, which act in a very rele-
vant way on MASCOT-2 dynamics during its ballistic descent. Figure 5.19
shows an example of landing trajectory, propagated using different mod-
els of the Didymain-Didymoon gravity field. Dotted-dashed line indicate
the trajectory in the classical CR3BP model. In this case, the mass distri-
bution of both Didymain and Didymoon is modeled as a uniform sphere
(central field). This case is referenced in the figure with sphere-sphere (S1-
S2). The second case is referenced as sphere-ellipsoid (S1-E2) and refer to
the modeling of Didymain as sphere and Didymoon as ellipsoid. The last
case is the most accurate and is the one described in the previous section:
polyhedron-ellipsoid (P1-E2), with polyhedral model of Didymain and el-
lipsoidal model of Didymoon.

Figure 5.19 shows that a significant difference exists in the final trajec-
tory when comparing different modeling strategies of Didymoon, while no
relevant effects are observed when modeling Didymain as a sphere or using
the polyhedron model. For mission analysis application, S1-E2 and P1-E2
models are shown to be suitable for representing MASCOT-2 dynamics.
Concerning results presented in this work, in many cases, the S1-E2 model
was preferred for its effectiveness in terms of computational time compared
to the P1-E2 model.

Sample solutions

This section presents simple solutions related to the classical CR3BP, i.e.
to the sphere-sphere model. Such solutions are used to initiate the design
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Figure 5.19: Ballistic descent with different models of Didymain-Didymoon gravity:
sphere-sphere (S1-S2), sphere-ellipsoid (S1-E2), polyhedron-ellipsoid (P1-E2).

process, to investigate MASCOT-2 ballistic descent opportunities. Periodic
orbits and invariant manifold families are investigated as suitable solutions.
The goal is to investigate solutions to land on Didymoon, hence only L1
and L2 related trajectories are considered here, due to their vicinity to Didy-
moon asteroid. Trajectories in the proximity of L3, L4 and L5 can be used
during close-proximity operations to fulfill specific requirements on pay-
loads and asteroid visibility such as bounded motion in the neighborhood
of L4 and L5 or even as disposal strategy for AIM spacecraft on the surface
of Didymain through L3 related trajectories. Concerning periodic motion,
families of Halo orbits about first and second collinear points are shown in
Figure 5.20 and 5.21.

(a) (b)

Figure 5.20: Families of Halo orbits about (a) L1 and (b) L2, as seen from Didymos
system co-rotating frame.

Some of the orbits in the L1 and L2 family intersect the surface of Didy-
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(a) (b)

Figure 5.21: Family of L2 Halo orbits, enlargement of Figure 5.20(b).

moon. These can be selected as suitable solutions for landing design: in
this case the lander could be directly injected in the impacting orbit. This
implies that the release occurs very close to Didymoon’s surface, which is
not desirable from the AIM spacecraft safety point of view. To avoid this
safety issue, it is possible to exploit stable manifold dynamics associated to
the orbit. Figure 5.22 shows examples of stable manifolds associated to a
Halo orbit about L2. Both x-y and three-dimensional view are shown.

(a) (b)

Figure 5.22: Stable manifolds associated to a L2 Halo orbit.

To design the landing trajectory, the manifolds are computed and prop-
agated backwards starting from the point on the orbit that intersects the
surface of Didymoon. Some of these three-body solutions are shown in Fig-
ure 5.23. More in detail, stable manifolds associated to Halo and Lyapunov
orbits about L2 are shown respectively in Figure 5.23(a) and 5.23(b). As
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mentioned, such trajectories can be exploited for the last part of the landing
manoeuvre, namely the ballistic descent of MASCOT-2 after release.

(a) (b)

Figure 5.23: Stable manifolds associated to a (a) Halo and a (b) Lyapunov orbit about
L2, as seen from Didymos system co-rotating frame.

(a) (b)

Figure 5.24: Example of ballistic descent on a stable manifold associated to a Lyapunov
orbit about L2: (a) inertial and (b) rotating frame.

Figure 5.24 shows an example of a trajectory extracted from the man-
ifolds family associated to a Lyapunov orbit about L2. The trajectory is
shown both in the inertial and in the rotating frame. In this example, the
ballistic descent could start very far from the surface of Didymoon, depend-
ing on the knowledge of the gravity field and on release errors.
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5.2.2 Landing design strategy

MASCOT-2, as its predecessor MASCOT (on board the Hayabusa mis-
sion), is a completely passive probe. It does not have any device to stop
or anchor on Didymoon’s surface once there. Also, MASCOT-2 does not
have any orbit-controlling device, such as thrusters. For this reason, the
landing trajectory must be carefully designed, and a well-designed purely
ballistic descent is the only chance to reach Didymoon’s surface. The suc-
cess of the landing is completely depending on the choice of the release
condition. Moreover, the safety of AIM spacecraft must be ensured during
all phases of the mission, meaning that the release point shall be far enough
from both asteroids. Given these requirements, two major criticalities are
identified for the MASCOT-2 scenario. The first critical aspect regards the
capability of the lander to reach the surface of Didymoon after release. This
is an extremely challenging problem under such nonlinear and chaotic dy-
namics described in Section 5.2.1. A small deviation in the release state
could lead to very different trajectories, which might or might not intersect
Didymoon’s surface. To avoid this problem, the landing trajectory shall be
confined in a region with low divergence of the dynamical flow. The second
challenge related to the MASCOT-2 landing design appears clearly linked
to whether the lander will stay or not on the surface after touch down. The
extremely low-gravity environment will likely induce the probe to bounce
multiple times until reaching a stable position on Didymoon’s surface or, in
the worst condition, to escape from the asteroid’s gravity field. For this rea-
son, the lander shall be put on a suitable trajectory, that allows the lander to
safely reach Didymoon with a sufficiently small touch down velocity, such
that it will not bounce away. From the design point of view, the touch down
velocity plays a major role, especially when compared to the local escape
velocity at the asteroid surface.

In order to better understand the dynamical behaviour of the third body
in such peculiar environment, it is worth to highlight the role of the escape
velocity and identify the main design options for the case study. In the
frame of the classical restricted two-body problem, the escape velocity is
defined as the minimum velocity to escape from the gravitational attraction
of the body. In this case, the limiting condition corresponds to the velocity
to be inserted on a parabolic arc, which reaches the SOI of the attractor
after infinite time. Conversely, this means that a body release at the SOI,
heading towards the attractor through a pure ballistic descent, will reach
its surface with a touch down velocity greater or equal than the minimum
escape velocity. This imposes a dynamical constraint to the minimum touch
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down velocity reachable from outside the SOI. The only way to decrease
the touch down velocity with a pure ballistic descent is to release the probe
from within the SOI, in order to let the probe withstand to the gravitational
acceleration for a smaller time span. As for the case of Didymos system
and when Didymoon’s rotation is taken into account, the minimum escape
velocity from Didymoon’s surface occurs at the equator and it is slightly
lower than 8 cm/s. The SOI with respect to the main attractor (Didymain),
is approximately 180 m, which corresponds to nearly 100 m altitude from
Didymoon’s surface. As mentioned, this is valid for the case of restricted
two-body problem formulation, which can lead to very inaccurate results in
the Didymos case of study.

Analogous concepts can be derived for the case of restricted three-body
problem. The R3BP is known not to have an analytical solution of the
equations of motion and, unlike the case where a single attractor is present,
the escape velocity from Didymoon’s surface differs depending on the local
latitude and longitude. When dealing with R3BP, it is common to look at
the qualitative behaviour of the motion of the third body using the energy
approach. More in detail, zero relative velocity surfaces (Hill’s curves) can
be derived to qualitatively bound the motion of the particle in the proxim-
ity of the two primaries (see [118, 128] for further detail). Interesting in-
sights on MASCOT-2 scenario can be derived by following this approach.
Analogously to the two-body case, it is possible to define the escape ve-
locity as the minimum velocity allowing a massless body to escape from
Didymoon’s surface. For a sufficiently low amount of energy, zero relative
velocity surfaces will separate clearly the region near P1 from the region
near P2: in this case, a body near P2 is trapped to stay in its neighborhood.
For a higher energy level, a connection between the two zero relative ve-
locity surfaces opens in correspondence of the L1 point: in this case, the
particle is allowed to move between P1 and P2 regions, by passing through
the L1 neck. With relation to MASCOT-2 scenario, this condition can be
seen as the lowest energy for a particle to escape from Didymoon’s neigh-
borhood. Figure 5.25 shows an example of low energy trajectory escaped
from Didymoon through the L1 neck.

More in detail, the lowest energy trajectory to escape from P2 region
is the stable manifold associated to L1 point. The velocity at intersection
between the manifold and the surface of Didymoon corresponds to the min-
imum escape velocity from Didymoon’s surface. This kind of information
can be used to assess the existence of a ballistic landing trajectory, from
outside the P2 region. With analogy to the escape problem, a lander can
reach the surface from L1 through its unstable manifold. Both landing and
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Figure 5.25: Low energy escape from Didymoon through the L1 neck of Hill’s curves.

escaping trajectories are found at the same level of energy, corresponding to
the opening of the L1 neck. Intuitively, the minimum energy correspond to
the minimum escape velocity from Didymoon’s surface. In the following,
this velocity will be referenced as L1 escape velocity, or vL1. As for the
case of Didymos, this trajectory corresponds to an escape velocity vL1 of
about 4.57 cm/s. In analogy to what was discussed for the two-body case,
this value represents the minimum touch down velocity when the probe is
released from L1 point. It is known that a higher level of energy allows
the opening of the L2 neck. In this case, the particle has enough energy to
escape from the attraction of both asteroids. The L2 escape velocity (vL2)
represents the velocity corresponding to the level of energy for which the
L2 neck opens. The same considerations made for L1 apply: in this case,
in order to escape from L2 neck the minimum escape velocity vL2 is about
5.11 cm/s. Figure 5.26 shows the stable/unstable manifold branches asso-
ciated to L1 and L2, corresponding respectively, to minimum escape/touch
down velocity solutions.

To summarize, no escape is possible for velocities below the L1 point
limit vL1, while escape is possible through the L1 neck for vL1 < v < vL2

and through the L2 neck for v > vL2. L1 and L2 escape velocities are re-
ported in Table 5.6 for different cases of Didymos modeling: escape condi-
tions are compared for the case of sphere-sphere (S1-S2), sphere-ellipsoid
(S1-E2) and polyhedron-ellipsoid (P1-E2) models. Note that values differs
significantly when Didymoon is modeled as sphere or ellipsoid, while there
is no substantial dependency on Didymain’s modeling strategy.

Figure 5.27 shows a Monte Carlo simulation performed to support en-
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Figure 5.26: Stable (blue) and unstable (red) manifolds associated to L1 and L2 points.
Stable manifolds corresponds to minimum escape velocity solutions, unstable mani-
folds to minimum touch down velocity solutions

Table 5.6: L1 and L2 escape velocities for different Didymos models: sphere-sphere (S1-
S2), sphere-ellipsoid (S1-E2) and polyhedron-ellipsoid (P1-E2) [cm/s].

S1-S2 S1-E2 P1-E2

vL1 4.95 4.58 4.57
vL2 5.23 5.11 5.11

ergy considerations when looking at touch down velocities. A uniform dis-
tribution of points is considered on the surface of Didymoon and the dy-
namics are propagated backwards from each of these points, with a given
touch down velocity v at the surface, uniformly distributed in direction. It is
shown that no trajectories comes from outside the binary system for touch
down velocities below the L1 point limit vL1 (Figure 5.27(a)), while some
trajectories exist through the L1 neck for vL1 < v < vL2 (Figure 5.27(b)).
Trajectories through both L1 and L2 are finally shown for v > vL2 (Fig-
ure 5.27(c)).

The L1 case is the lower limiting case in terms of energy level of the
third body. This solution might be applied to the MASCOT-2 scenario.
However, due to safety issues, the L1 solution is discarded in favor of a
safer release from L2 side. It is indeed preferable to release the lander
from outside the asteroid system (L2 side) rather than from between the
two asteroids (L1 side). For these reasons, for MASCOT-2 scenario, low
energy trajectories associated to unstable manifold of L2 are investigated
as suitable landing solutions. A purely ballistic landing can be achieved
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(a) (b) (c)

Figure 5.27: Monte Carlo simulation: backwards integration of dynamics with initial
velocity v from the surface of Didymoon (a) v < vL1, (b) vL1 < v < vL2, (c) v > vL2.

by releasing MASCOT-2 from the L2 point, on its unstable manifold. This
constraints the release altitude and the AIM spacecraft trajectory to the L2
point. Different and higher release altitudes are desirable from the mission
design point of view. To achieve this goal, the design strategy foresees
to construct the ballistic descent starting from outside the L2 region, by
combining the stable L2 manifold (from release point up to L2) with the
unstable manifold (from L2 to Didymoon’s surface). The targeted com-
plete ballistic path of MASCOT-2 from release up to touch down is shown
in Figure 5.28(a). The chosen manifold solution is also suitable to address
the challenge of reaching Didymoon after release, since it provides mini-
mization of the instability and divergence of the dynamical flow. From a
mathematical point of view, the L2 point includes a 2D stable and a 2D un-
stable manifold branch. This means that, once at L2, when switching from
stable to unstable manifold, the lander will have the same probability to fall
either on the wrong unstable manifold branch (outgoing from Didymos sys-
tem) or on the right unstable manifold branch (ingoing towards the surface
of Didymoon). Since no trajectory control can be operated by MASCOT-2,
the lander is released close to the stable manifold, but not exactly on it. The
release point is found after propagating backward the state of the landing
point associated to the nominal manifold solution, but considering a higher
touch down velocity (same direction). The dynamics are backwards prop-
agation until the release distance is reached. This procedure increases the
robustness of the landing solution, at the cost of a slightly higher energy and
touch down velocity. A more detailed description of the procedure used to
find the nominal landing trajectory is provided in Section 5.2.5.

The values in Table 5.6 are important since they represent dynamical
constraints for the MASCOT-2 landing problem. Any ballistic trajectory
coming from outside the Didymos system towards Didymoon, will reach
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(a) (b)

Figure 5.28: (a) Stable (blue) manifold branch carries the lander from release point up
to L2, where it jumps on the unstable (red) branch to proceed towards the Didymoon’s
surface. (b) Robust landing trajectory with release in the proximity of L2 stable mani-
fold

the asteroid with a touch down velocity that is (equal or) higher than vL2.
Since the AIM spacecraft, for safety reason, will not deploy MASCOT-
2 too close to the two asteroids, vL2 represents the minimum touch down
velocity for candidate ballistic trajectories related to the AIM/MASCOT-
2 scenario. It is highlighted here that manifolds are computed using the
modified CR3BP formulation described in Section 5.2.1.

5.2.3 MASCOT-2 landing scenario

MASCOT-2 will be released by the AIM spacecraft at a safe distance of
200 m from Didymoon’s surface. As discussed in the previous section, the
baseline design strategy foresees the exploitation of the manifold dynamics
associated to the L2 point. Numbers and figures refer to physical param-
eters of Didymos system as reported in [109]. The following paragraphs
reports the main assumptions related to the AIM design scenario.

Release

MASCOT-2 will be released by AIM by means of a spring-based mech-
anism, which will provide a relative velocity between the lander and the
orbiter of few cm/s. From the mission design point of view, the chosen
ballistic trajectory must be robust to uncertainties in the release event. The
nominal trajectory is validated against state dispersion at release. More in
detail, errors related to AIM navigation and release mechanism are taken
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into account and the information is used to assess the success rate of the
release. The following contributions are considered:

• Navigation error: applied on the full release state (both position and
velocity) of AIM spacecraft at release. Dispersions are computed ac-
cording to AIM navigation information.

• Release mechanism error (vector direction): error in relative veloc-
ity between MASCOT-2 and AIM spacecraft at release. The error is
dispersed around the nominal release velocity provided by the spring.
The error in direction is quantified within a half-cone angle of 5 deg
(1σ value) around nominal release direction.

• Release mechanism error (vector norm): the error is quantified into
the 10% (1σ value) of the nominal release velocity norm.

Interaction with asteroid surface

An important part of MASCOT-2 landing design is to assess and simu-
late the dynamics of the lander once it gets in contact with the asteroid’s
soil. The interaction with Didymoon’s surface is a crucial point to establish
whether MASCOT-2 will escape or not after bouncing. As mentioned, a
successful landing will likely see MASCOT-2 bouncing few times on the
surface of Didymoon before coming to a rest. The modeling of the surface
interaction heads to the definition of the velocity of MASCOT-2 after touch
down.

• Velocity after touch down (norm): the most important aspect to be
studied is to assess the quantity of energy dissipated at touch down.
This effect can be summarized into a single parameter, called restitu-
tion coefficient, defined as the ratio between velocity after (v+

TD) and
before (v−TD) touch down

η =
v+

TD

v−TD
(5.29)

The restitution coefficient ranges from 0 (fully inelastic collision) to
1 (fully elastic collision) and it represents a measure of the energy
dissipated at contact (η ≤ 1). As for the case of study, two different
effects are considered as dissipative terms: part of the energy at touch
down will be absorbed by the structure of MASCOT-2 (ηstruct), part of
it will be absorbed by the asteroid’s soil (ηsoil):

η = ηsoil · ηstruct (5.30)
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The restitution coefficient allows to evaluate the amount of energy
dissipated by the impact, which essentially turns into a decrease in
the norm of the velocity vector after bouncing. The actual parameter,
related to the Didymoon/MASCOT-2 scenario, is of course very diffi-
cult to be known and it is usually estimated according to the expected
surface properties. Missions such as JAXA’s Hayabusa [132], ESA’s
Rosetta [10, 134] and NASA’s NEAR-Shoemaker [136] have shown
how hard is to accurately estimate such parameter based on the soil’s
response and that a high level of uncertainty exists. For this reason, a
worst case scenario is considered here, with very poor dissipation in-
troduced by a very hard soil (ηsoil = 0.9). The damping effect provided
by MASCOT-2 structure was estimated and the overall coefficient of
restitution is η = 0.6.

• Velocity after touch down (direction): uncertainties on the local soil
inclination are included in the model to stochastically reproduce the
irregularities of the surface. The direction of velocity after touch down
is computed according to uniform distribution in azimuth and with
gaussian distribution in elevation with mean value of 90 deg and 3σ
value dispersion of 70 deg.

5.2.4 Sensitivity analysis to design parameters

In order to properly design an effective landing trajectory and to be ro-
bust to real-world conditions, it is important to identify design parameters
critical for the success of the manoeuvre. This section presents sensitivity
analyses performed on the design parameters. Being related to an ongoing
mission design, the analyses presented might refer to different phases of
design process. Hence, numbers and figures might not be fully consistent
with other provided in the text, due to updates on requirements and data
available during the design phase. However, the general results in terms of
behaviour and identification of criticalities hold.

Sensitivity to Didymos properties

A great source of uncertainty could reside in the actual mass of Didymos.
In particular, concerning the three-body dynamics, the ratio between the
two masses is the relevant parameter. Table 5.7 shows escape L1 and L2
velocities for the nominal and limiting cases, when the mass ratio is taken
as

M2/M1 = 0.0093± 0.0013 (5.31)
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Results show that the higher M2/M1, the higher the success rate. A very
low value of M2/M1 can critically affect the success of the landing ma-
noeuvre, while no problem is expected for mass ratio equal or greater than
its nominal value.

Table 5.7: L1 and L2 escape velocities in [cm/s] for different mass ratio between Didymos
primaries

M2/M1 vL1 vL2

0.0080 4.03 4.50
0.0093 4.61 5.14
0.0106 5.16 5.76

Sensitivity to release condition

As far as the spacecraft design is concerned, the major source of error in
MASCOT-2 trajectory is surely due to uncertainty in release conditions.
General sensitivity analyses showed that position error can be tolerated up
to tens of meters, while the dynamics imposes a much more stringent re-
quirement on velocity dispersion which cannot be tolerated to be above a
few cm/s. The effects associated to each separate contribution due to navi-
gation, release mechanism error in direction and in norm of velocity vector
are investigated. Nominal error are defined, with reference to Section 5.2.3.
The relevance of each effect is identified by means of Monte Carlo simu-
lation performed using different values of uncertainty. In the attempt to
increase landing performance, lower errors with respect to nominal one are
investigated. The aim is to identify critical parameters whose reduction
of uncertainty can be effective to increase the landing performance. Monte
Carlo simulations are performed using a fraction of the nominal error (10%,
20%,. . . ) associated to the three aforementioned effects when considered
separately: when one effect’s uncertainty is decreased, the remaining two
are taken with their nominal uncertainty. Sensitivity on successful land-
ing probability is shown in Figure 5.29, for the case of release from 200
m and 300 m altitude. Each point in the curves represents a Monte Carlo
simulation performed. Each curve represents the simulations performed
while varying one parameter associated to dispersion. The blue line refers
to navigation error: several Monte Carlo simulations are ran using nominal
(100%) release mechanism errors and variable error on navigation error,
from 10% up to nominal (100%). The percentage is directly applied on the
error to be summed to the release state of AIM (both position and velocity).
The same applies for the other two cases. The red line refers to variation
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in the error associated to the norm of release mechanism velocity, which
ranges between the 10% of its nominal value (that correspond to 1% of
velocity) and its nominal value (10% of velocity) while keeping the other
effect as nominal. Finally, the yellow line refers to errors in the direction
of release mechanism velocity, which ranges between 10% of its nominal
value (half cone angle of 0.5 deg) and its nominal value (half cone angle
of 5 deg). Figure 5.29 shows clearly that the most relevant error that affect
the success rate of the landing is due to the norm of release mechanism
velocity. It is shown indeed that a decrease in this error gives a substan-
tial increase in success rate. The same is not true for the other errors: the
increase of navigation accuracy and the increase in release mechanism di-
rection release accuracy do not affect in a relevant fashion the success of
MASCOT-2 landing.
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Figure 5.29: Successful landing probability with release from (a) 200 m and (b) 300 m
altitude

Similarly to what is done with success rate, the sensitivity of landing
point location to dispersion is also studied for the cases of release from 200
m and 300 m altitudes. Figure 5.30 and 5.31 show the 3σ dispersion of
latitude and longitude bands of the landing point for the case of, respec-
tively, release from 200 m and 300 m. The results show that both errors in
norm and direction of release mechanism velocity are relevant with respect
to dispersion in longitude, while navigation error plays a minor role. Con-
cerning the effects on latitude dispersion, the difference is shown to be very
low (about 5 deg) between worst and best cases. The latitude is therefore
not very affected by release errors.

As a further relevant parameter to be studied, the sensitivity analysis is
also performed on the time of flight during ballistic descent, from release
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Figure 5.30: 3σ dispersion of (a) latitude and (b) longitude bands of landing point with
release from 200 m
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Figure 5.31: 3σ dispersion of (a) latitude and (b) longitude bands of landing point with
release from 300 m

until rest on Didymoon’s surface. Figure 5.32 shows results for the cases
under study. As for the case of landing point, the time of flight is shown to
be affected by both errors in norm and direction of the release mechanism
velocity.

Sensitivity to touch down conditions

A very important issue to be addressed is the assessment of escape probabil-
ity after touch down. With this respect, the key parameter is the restitution
coefficient η defined in Section 5.2.3, namely the ratio between the velocity
of the lander after and before touch down. Results are here presented re-
lated to different restitution coefficient to reproduce the interaction between
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Figure 5.32: 3σ dispersion of time of flight until rest on surface with release from (a) 200
m and (b) 300 m altitude

MASCOT-2 and Didymoon’s surface.

• Dissipation of velocity normal to the surface (ηn = 0.5, ηt = 1). In
this case the effects of the restitution coefficient are subdivided into
tangential and normal contributions. The absolute value of the veloc-
ity after touch down is dissipated of ηn = 0.5 in the direction normal
to the surface, while its component tangent to the surface is not dis-
sipated at all (ηt = 1). To assess the probability of escaping due
to bouncing after the first touch down, a Monte Carlo simulation is
run. All dispersed landing points (first touch down) are considered.
The trajectory after the first bouncing is then computed for each land-
ing point solution by assuming a uniformly distributed direction of
velocity vector after touch down. This strategy is driven by the un-
certainties in the relative geometry between the lander and the soil at
the landing points and it allows to take into considerations all possible
inclinations of Didymoon’s surface. Figure 5.33 shows an example of
bouncing dynamics until rest. The relevant aspect to be highlighted is
that with no dissipation of tangential component of velocity, the lander
keeps bouncing towards the equatorial latitude band, with very large
longitude footprint.

• Hard soil and low energy dissipation by MASCOT-2 structure (η =
0.9). In this case touch down dynamics is modeled using an extremely
conservative assumption for the restitution coefficient. Figure 5.34(a)
shows dispersed trajectories after first touch down for a single bounc-
ing and for a single landing trajectory. The height after bouncing is
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(a) (b)

Figure 5.33: Bouncing until rest associated to velocity dissipation normal to the surface:
(a) x, y view (b) 3D view (early spherical Didymoon model)

very high, since very little energy is dissipated after touch down. The
dynamics clearly show a westwards trend, since the majority of sec-
ond landing points are located further west with respect to the first
landing point.

(a) (b)

Figure 5.34: Hard soil and low structural dissipation case: (a) trajectories after first
touch down (early spherical Didymoon model) and (b) bouncing until rest

Figure 5.34(b) shows an example of full simulation from release up
to rest on Didymoon or escape. This specific case refer to very good
condition in terms of release, which is very robust since all trajectories
reach Didymoon. However, due to the high η and the low dissipation
of energy, some of them escape after the first touch down.
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5.2.5 Mission analysis results

This section presents results related to MASCOT-2 ballistic landing. The
way the nominal landing trajectory is computed is presented first. Suitable
release geometry is then discussed from the orbiter (AIM spacecraft) point
of view. Conditions for optimal release are identified to minimize the effect
of the error induced by the release mechanism on MASCOT-2. Finally, re-
sults in terms of successful landing probability and landing point dispersion
on Didymoon’s surface are shown.

Nominal landing

As discussed in Section 5.2.2, the nominal release strategy is based on the
exploitation of manifold dynamics associated to L2. MASCOT-2 will be
released near the stable manifold and will transit near L2 to the unstable
manifold branch to reach Didymoon’s surface. The strategy to compute
such trajectory is described and discussed here.

The nominal trajectory is computed starting from the inner branch (be-
tween Didymoon and L2) of the unstable manifold solution associated to
the L2 point. The manifold is computed with the technique described in
Section 3.3, starting from the L2 point and propagating the dynamics for-
ward until the surface of Didymoon is intersected. Unstable L2 manifold
dynamics would naturally push the lander towards the surface, even after
bouncing. For this reason, the intersection of the manifold with the sur-
face is a favorable location to be targeted for MASCOT-2 landing. As men-
tioned, a direct release on the stable manifold with transition to the unstable
manifold at L2 is not robust from the mission design point of view, since the
lander, once at L2, would have a 50% chance to follow either the ingoing or
the outgoing manifold branch. For this reason, a higher energy solution is
adopted. Due to its favorable location, the landing position identified by the
manifold’s intersection with Didymoon’s surface is kept fixed. The higher
energy solution is found by increasing the velocity at touch down and by
integrating the dynamics backwards, until the desired release distance from
Didymoon is reached. Higher energy trajectories generated through this
strategy are shown in Figure 5.35 to cross the upper part of the L2 neck of
the Hill’s curves. This region is close to the stable ingoing branch of the
L2 manifold. The trajectories found are natural connections between the
stable ingoing L2 manifold and the unstable ingoing L2 manifold and fits
with the goal of the design strategy.

The drawback of choosing a higher energy solution is that, due to a
higher touch down velocity, the risk the lander escapes after bouncing is
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Figure 5.35: Landing trajectories based on unstable L2 manifold solution for increasing
touch down velocities.

higher. However, analyses and investigations performed (Section 5.2.4)
have shown that favorable conditions near the unstable manifold landing
point guarantee very low risk of escape. After extensive investigation on
sensitivity due to the different parameters involved in the design, as shown
in Section 5.2.4, a touch down velocity of about 6.2 cm/s was selected to
generate the nominal ballistic landing trajectory.

Optimal AIM release conditions

As described in Section 5.2.3, MASCOT-2 release uncertainties depend
both on release mechanism and on AIM spacecraft navigation. Uncertainty
in release position is only dependent on AIM navigation accuracy, whereas
uncertainty in release velocity is due to the combined effect between AIM
navigation accuracy and release mechanism accuracy. Figure 5.36 shows
examples of release velocities, referring to two different release strategies
(plain and dashed arrows). V M indicates the velocity of MASCOT-2 at re-
lease in the synodic three-body reference frame. This value is common for
both strategies, since it is chosen a priori in order to release the lander near
manifold dynamics and it is provided by the initial condition on the nom-
inal landing trajectory. V M is then a constraint from the design point of
view, to ensure high landing successful probability. V sc is the velocity of
AIM spacecraft, while V M-sc is the relative velocity between MASCOT-2
and AIM spacecraft. The following vectorial relation holds:

V M = V sc + V M-sc (5.32)
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Figure 5.36: Release velocities: optimal release (dashed) compared to general one
(plain).

As mentioned in Section 5.2.3, the error in the norm of the release ve-
locity V M-sc due to spring mechanism equals the 10% (1σ) of its nominal
value. For this reason, it is convenient to minimize ‖V M-sc‖when designing
AIM release conditions. The term optimal refers here to release conditions
that minimize the errors at the release event. The minimization includes
the fulfillment of some constraints: V M is constrained since it represents
the initial conditions for the ballistic descent close to the stable L2 man-
ifold. Also, for safety reasons, AIM is constrained on a hyperbolic-kind
orbit, with pericentre at release point. In that case, V sc is constrained to be
orthogonal to the x axis and aligned to the y axis. Given such constraints
together with Eq. (5.32), the optimal release condition occur when V M-sc

is aligned with the x axis and equal to the x component of V M, while V sc

equals the y component of V M. It can be easily proven that this condition
minimizes ‖V M-sc‖ and consequently minimizes the 10% error on it.

Success rate

The results presented here refer to the nominal trajectory case, under the
assumptions related to the mission scenario presented in Section 5.2.3. The
robustness of the ballistic landing solution is validated against release and
touch down uncertainties, to guarantee the success of the landing strategy.
A Monte Carlo analysis is performed to assess successful landing probabil-
ity. The dispersed release conditions are propagated forward using the hi-
fidelity polyhedron/ellipsoid three-body model described in Section 5.2.1.
The dynamics of the lander are propagated until MASCOT-2 comes to a
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rest on Didymoon’s surface, or escapes from Didymos system. Bouncing
dynamics is modeled as described in Section 5.2.3 and the resting condition
is associated to the residual vertical velocity of the lander after bouncing.
More into detail, MASCOT-2 is considered at rest when its vertical velocity
is lower than 0.5 cm/s.

Monte Carlo analysis is run with 200 000 points for each different re-
lease altitude under study. More in detail, release altitudes of 100, 150,
200, 250 and 300 m from Didymoon’s surface are considered.

Figure 5.37: Dispersed landing trajectories from release altitude of 200 m.

Figure 5.37 shows an example of dispersed release conditions and land-
ing trajectories associated to the case of 200 m altitude release. The figure
is included only for visualization purpose, since only 200 trajectories (out
of 200 000) are displayed.

Table 5.8: Escape probability from Didymoon.

Release Escaped trajectories [%]
altitude [m] after release after touch down TOTAL

100 1.14 0.00 1.14
150 1.26 0.00 1.26
200 3.18 0.01 3.19
250 5.79 0.04 5.83
300 6.03 0.32 6.35

Table 5.8 shows the percentage of escaped trajectory after release disper-
sion, for all considered release altitudes. Escape rate is divided into escaped
after release and escaped after touch down. In the first case, the uncertainty
drives MASCOT-2 on a different path, which, due to the extremely chaotic
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nature of the dynamics, does not allow the lander to reach the surface of
Didymoon. The second case accounts for MASCOT-2 state after first touch
down and in particular, for the cases when the lander is put on an escape
trajectory after bouncing on the asteroid. As expected, the success rate of
the ballistic landing increases as the release altitude decreases. Success-
ful probability ranges from a worst case value of 93.65% for release from
300 m altitude, to a maximum of 98.86% in the case of release from 100
m altitude. Results in terms of success rate are in agreement with a similar
analysis performed by DLR [129] on MASCOT-2 landing probability.

Landing dispersion

After assessing the successful rate of the release strategy, it is important
to study the outcome of the successful landing in terms of final landing
point dispersion. Table 5.9 reports the latitude and longitude bands related
to MASCOT-2’s point at rest on Didymoon, for the different release alti-
tude cases. The time of flight (ToF) during ballistic descent and bouncing,
from release up to rest on Didymoon is also reported. Uncertainty range is
included and specified according to a Gaussian 3σ distribution.

Table 5.9: Landing dispersion on Didymoon’s surface at rest: latitude/longitude bands
and time of flight between release and rest.

Release Dispersion at rest [µ± 3σ]
altitude [m] Latitude [deg] Longitude [deg] ToF [h]

100 0.2 ± 32.5 23.3 ± 87.9 1.81 ± 0.95
150 0.0 ± 31.5 20.1 ± 66.7 2.19 ± 1.06
200 0.1 ± 32.9 19.7 ± 60.5 2.50 ± 1.21
250 -0.1 ± 36.6 20.5 ± 64.8 2.77 ± 1.41
300 0.1 ± 44.3 19.5 ± 86.0 2.95 ± 1.35

With reference to the case of 200 m release altitude in Table 5.9, Fig-
ure 5.38 shows the landing dispersion on the surface of Didymoon when
the lander is at rest. More in detail, the latitude-longitude map is shown
in Figure 5.38(a), while the three-dimensional view of all landing points
on Didymoon’s surface is shown in Figure 5.38(b). Latitude and longitude
distributions of resting point are displayed, respectively, in Figure 5.38(c)
and 5.38(d).

It must be highlighted that the dynamical behaviour of the lander after
touch down is heavily dependent on the choice of the restitution coefficient
η, defined in Section 5.2.3. According to latest assumptions on release pa-
rameters and restitution coefficient, the results show that the landing region
can be estimated within an uncertainty in the latitude-longitude region on
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Figure 5.38: Landing dispersion at rest for the case of 200 m altitude release. (a) latitude-
longitude map (b) three-dimensional view of Didymoon (c) latitude and (d) longitude
distribution of points.

the order of tens of degrees. This allows to state that the lander will likely
come to a rest in the hemisphere of Didymoon opposite to Didymain.

5.2.6 Critical aspects of MASCOT-2 landing problem

As mentioned in the previous sections and proved by the results and analy-
ses presented, the problem of MASCOT-2 landing is extremely challenging.
A summary of the problem’s criticalities is provided here. Two main critical
aspects can be identified: the first is related to the capability of MASCOT-2
to reach Didymoon after release and a pure ballistic landing. The second is
related to the capability of MASCOT-2 of staying on the surface of Didy-
moon after touch down, without escaping from its weak gravity attraction.
Relevant design parameters and physical properties of Didymos affecting
such capabilities are summarized here.
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Capability to reach Didymoon

Reaching Didymoon is the most critical aspect regarding MASCOT-2 de-
scent because the gravity environment around the Didymos binary system
is extremely chaotic, and a very small deviation of release conditions can
drive the lander far from Didymoon. The most relevant parameters are:

• Mass distribution among Didymos system (mass ratio between Didy-
moon and Didymain): it is shown that the higher M2/M1, the better it
is in terms of success rate. This parameter can be very critical for val-
ues M2/M1 < 0.0093 (nominal up-to-date value), while not critical
for M2/M1 ≥ 0.0093

• Nominal release: it is extremely important to select the release point
conditions in Didymoon three-body system. As discussed in Sec-
tion 5.2.2, nominal release is chosen exploiting manifold dynamics
associated to the L2 point. The success rate decreases dramatically
and the landing can never be achieved when manifold dynamics is not
exploited.

• Release uncertainties: as discussed, position uncertainty is not an is-
sue and can be tolerated up to tens of meters. On the other hand, ve-
locity dispersion can be very critical for values above few cm/s. More
into detail, sensitivity analyses performed (Section 5.2.4) showed that
uncertainties due to the norm of velocity release mechanism can be
very critical concerning the success rate of the landing manoeuvre. A
strategy to mitigate such effect is discussed in Section 5.2.5.

Capability to stay on Didymoon

Staying of Didymoon after touch down is very critical for MASCOT-2 land-
ing design, due to the very low gravity attraction of Didymoon and, conse-
quently, to its very low escape velocity. Relevant parameters to this problem
are:

• Mass ratio between Didymoon and Didymain: the escape velocity in-
creases as the mass of Didymoon increases. Analogously to the pre-
vious case, the higher M2/M1, the better it is.

• Restitution coefficient: this parameter is the key parameter to model
the interaction between the soil and MASCOT-2. It is shown to be
very critical for values η > 0.7, while not critical for η ≤ 0.7.

• Uncertainty in soil inclination: this has shown not to be critical in
terms of success rate.
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5.2. Asteroid Impact Mission landing design

• Nominal release: due to its peculiar dynamics, the escape velocity
from the surface of Didymoon is not constant but it depends on lati-
tude and longitude. For this reason it is very important to land on a
region with low escape velocity. As discussed in Section 5.2.1, such
region is that associated to unstable manifold dynamics. As for the
case selected, unstable manifold dynamics associated to the L2 point
provide a low energy solution (low touch down velocity) that pushes
MASCOT-2 away from L2 point, and then towards Didymoon’s sur-
face, even after touch down.
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5.3 Triangular formation flying

A further investigated scenario concerns a very challenging problem of
modern astrodynamics. The design of formations of spacecraft in a non-
Keplerian environment represents one of the most promising research fields
for future space mission design. Two or more cooperating spacecraft can
greatly answer some very complex mission goals, not achievable by a sin-
gle spacecraft. Many scientific fields find possible applications and benefit
from this peculiar coupling: observation and basic science, from telecom-
munications to space exploration. When designing classical formations of
spacecraft, the cost to be paid is the resolution of a highly challenging tra-
jectory and station keeping problem solving, to satisfy tight requirements
on relative dynamics between each member of the formation. The exploita-
tion of low acceleration regions such as the proximity of equilibrium points
associated to a three-body system opens to a wide range of design oppor-
tunities, and three-body dynamics can be conveniently used to reduce such
trajectory and station keeping needs. The evolution of a free formation or-
biting in the proximity of periodic orbits about collinear libration points is
investigated here.

The problem of formation flying was extensively studied in the past
decades and many missions employing such architecture were designed.
However, very few concepts of formations of spacecraft were studied to ex-
ploit three-body dynamics. Several studies aimed to the design of control
strategies for formations of spacecraft under a three-body dynamics exist,
but very few of them studies the free relative motion between the spacecraft
as they are subjected to this highly unstable and non-linear environment.
Among them, Barden and Howell [4] exploited the natural motion on the
centre manifold near periodic orbits to reproduce tori of quasi-periodic tra-
jectories that can be useful for the design of naturally bounded formations
of spacecraft. Few years later, Gómez, Marcote, Masdemont and Mon-
delo [60] derived regions around periodic orbits with zero relative velocity
and radial acceleration, which ideally keep unchanged the relative distances
between the spacecraft in the formation. Finally, Héritier and Howell [70]
extended the analysis done by Gómez et al. and derived low drift regions
(low relative velocity and acceleration) around periodic orbits, as quadric
surfaces. Ferrari and Lavagna [37] generalized the work by Héritier and
Howell to the whole three-body domain, identifying regions of zero rela-
tive acceleration and velocity (ZRAV loci) for large formations of space-
craft. Also, the relative dynamics of a three-spacecraft triangular formation
were investigated and suitable initial conditions were found in the Earth-
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Moon system [37]. Controlled formations were studied under the ER3BP
formulation [3] but still there is very little known about the free relative
dynamics within this particular dynamical environment.

A three spacecraft triangularly-shaped formation is assumed as a rep-
resentative geometry to be investigated. One example of such a formation
arrangement is the Laser Interferometer Space Antenna (LISA) [11], which
consists of three identical spacecraft, placed around a reference point that
orbits the Sun, following a circular path. Other examples of similar config-
urations are given by Cluster II [65] and Magnetospheric Multiscale Mis-
sion (MMS) [31]: both of them employ a tetrahedral (triangular pyramid)
formation to study Earth’s magnetosphere. The study identifies initial con-
figurations that provide good performance in terms of formation keeping,
and investigates key parameters that control the relative dynamics between
the spacecraft within the three-body system. Simulated scenarios include
the dynamics within Earth-Moon and Sun-Earth three-body systems. This
choice is made to reproduce scenarios with similar geometry with respect
to past or existing formation flying missions. However, the analysis can be
easily generalized to any choice of mass ratio µ between primaries of any
three-body system. Formation keeping performance is quantified by moni-
toring shape and size changes of the triangular formation. Some constraints
are imposed to the relative dynamics within the formation and the best so-
lution, in terms of free and uncontrolled dynamics is identified within a
specific set of initial conditions. The analysis is performed under several
degrees of freedom to define the geometry, the orientation and the location
of the triangle in the synodic rotating frame: one parameter defines the size
of the triangle and five parameters describe unequivocally its location and
orientation in the rotating frame. The solution is provided in terms of ini-
tial configuration of the formation which fits at best the constraint imposed
on the formation dynamics. Two different strategies are implemented and
compared to find the initial configurations that maximize performance in-
dexes: a brute force Monte Carlo approach (Section 5.3.2) is compared
with a global optimization approach (Section 5.3.3).

5.3.1 Statement of the problem

This section presents the problem addressed, showing how numerical sim-
ulations and the optimization problem are set and what is the domain of
validity of the study. As mentioned, the study focuses on the free dynamics
of a formation of satellites, with the goal to find suitable initial configura-
tions leading to good performance in terms of formation keeping. In the
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present section, the reader will find explanation to what is referenced with
the term initial configuration and to what is meant by formation keeping
performance. In addition, criteria driving the selection of suitable initial
configurations will be defined and motivated.

The problem is formulated as follows. An uncontrolled three-spacecraft
formation undergoes non-Keplerian dynamics, with applications studied
under the CR3BP and ER3BP formulations. The dynamical state of the
formation is initiated by selecting relative initial position and velocity be-
tween the spacecraft. Also, the initial location of the formation in the three-
dimensional space shall be selected. In this study, the motion close to li-
bration point orbits in CR3BP and ER3BP is investigated and formations
are initially located around such orbits (reference orbits in the followings).
The dynamics of the spacecraft are integrated forward and their relative
positions are monitored in time.

Formation flying geometry

Three identical spacecraft are located at the vertexes of an equilateral tri-
angle. The initial configuration of the formation is specified by a set of
parameters representing the initial size and orientation of the triangle.

Figure 5.39: Triangular formation in the local frame

Figure 5.39 shows a possible initial configuration of the formation with
respect to the local frame, which is centred in the barycentre of the forma-
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tion and defined such that x, y and z are directed as the axes of the three-
body synodic frame. The initial size of the triangle is identified by the
parameter d, which represents the distance between each spacecraft and the
barycentre of the equilateral triangle. The initial orientation of the forma-
tion is found using the vector normal to the triangle plane n and the angle
γ which represent positive rotation about n axis as shown in Figure 5.39.
Five parameters are used to unequivocally define the geometry and the ori-
entation of the formation in the rotating frame. Lastly, the barycentre of the
formation is located on the reference orbit, which has to be chosen. Sum-
marizing, to define the initial configuration of the formation the following
parameters shall be fixed:

• d: distance between each spacecraft and the centre of mass of the
formation

• n: normal to the triangle plane (three-component unit vector)

• γ: rotation about n axis

• Xref: reference orbit (initial conditions)

Once the initial configuration is selected, meaning the initial state of the
three spacecraft, the equations of motion are integrated forward in time for
each spacecraft as they evolve near the reference trajectory. The evolution
of the formation is monitored. As mentioned, the aim of the study is to
investigate the effect that different initial configurations have on the relative
dynamics between the three spacecraft and to identify the best cases.

Performance factors

The ideal formation keeping condition can be synthesized with no change
in shape and size of the initial triangular configuration as the spacecraft fly
near the reference orbit. The ideal condition is, of course, impossible to ob-
tain if the formation is free and uncontrolled, in the extremely chaotic and
nonlinear three-body environment. Nonetheless, it is possible to seek pre-
ferred initial configurations which lead to small changes in shape and size
of the formation after given time intervals, which means cheaper formation
keeping needs. In order to evaluate how the formation is maintained, it is
important to monitor how the shape and the size of the triangular forma-
tion change during the evolution of the three spacecraft along the orbit. It
is proposed here a strategy to measure formation keeping performance, by
quantifying both shape and size changes, in order to identify initial condi-
tions sets leading to good formation keeping maintenance. To this purpose,
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two performance factors are used: the Shape Factor (SF), which takes into
account for the change in the shape of the triangle, and the Size or Dimen-
sion Factor (DF), which takes into account for the change in size of the
triangular formation. These performance indexes were introduced by the
author in a previous work [37]. Their analytical expressions and mathemat-
ical definitions are recalled in the following paragraphs.

• Shape Factor (SF): to evaluate and quantify the shape changes of the
triangular formation during its evolution on the reference orbit, the
Shape Factor is been defined and conveniently expressed in a mathe-
matical way. The analytical expression of the SF is selected to guar-
antee some features that should be performed by such a function. First
of all, a nondimensional factor should be considered, in order to allow
comparisons between different systems and investigations, this would
also help to keep the expression as general as possible. Most impor-
tant, the variables of the function, shall meaningfully allow the mon-
itoring of the shape changes. A good choice is to select as variables
the ratios of the sides of the triangle. Referring to Figure 5.39:

ε1 =
a

b
ε2 =

a

c
ε3 =

b

c
(5.33)

These three parameters allow the monitoring of the shape changes: it
can be easily noticed that the shape is unchanged if and only if

ε1 = ε2 = ε3 = 1 (5.34)

and therefore they can provide a good way of determining where the
shape is unchanged. Note that only two of these parameters are inde-
pendent: ε1 and ε2 are chosen here as variables to write the expression
of the SF function

SF = f(ε1, ε2) (5.35)

Next, the mathematical expression of the Shape Factor function is
built. To proceed, some constraints are introduced, in order to shape
the mathematical function in a convenient way. For the purpose of the
study, it is convenient to consider a function which is equal to one if
and only if the shape of the triangle is unchanged. It is also useful to
set this function such that it can range from 0 to 1 in a monotonic way,
so that the lower its value, the worse the condition in terms of shape
maintenance. Considering then the selected variables, both ε1 and ε2

are always greater than zero, being the ratios of two positive numbers.
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For this reason, it is better to consider a function whose variables’ do-
main is always greater than zero. Moreover, since the choice of the
ratios (5.33) is arbitrary, it is convenient to have a function which is
symmetric with respect to ε and 1

ε
, having an expression which is not

dependent on the definition of the ratios. For example, considering
two sides of the triangle:

a = 1 [length unit]
b = 5 [length unit]

the SF function shall return the same result if the ratio is defined as
both

ε =
a

b
=

1

5
or ε =

b

a
= 5

Based on these considerations, the following expression is selected as
SF function

SF = e−
√

(ln ε1)2+(ln ε2)2 (5.36)

Figure 5.40: Shape Factor (logarithmic scale)

Figure 5.40 shows the 3D graphics of Equation (5.36) and represents
the SF function. Note that the numerical value of the SF depends
on the choice of the ratio to use: for example, the choice (ε1, ε2)
will provide different numerical results form the choice (ε1, ε3) or (ε2,
ε3). It is possible to make the Shape Factor independent also from
that choice by computing SF for all three possible choices and then
taking the average value. However, without any loss of generality, the
analyses performed in this work relate to Equation (5.36), and not to
the averaged SF.
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• Size or Dimension Factor (DF): the second key aspect to be moni-
tored during the evolution of the formation on its orbit is the size of
the triangular formation. It can happen that the distance between the
spacecraft grows very fast without changes (or with little changes) in
the shape of the formation: this situation is not detected by a change
in the SF. The DF is introduced to identify such behaviours. Similarly
to what done for the SF, a nondimensional parameter is considered.
Also in this case ratios between sides of the triangle are considered as
variables, but the ratio is computed here for each side, with respect to
its initial length. Referring to Figure 5.39:

ζ1 =
a

a0

ζ2 =
b

b0

ζ3 =
c

c0

(5.37)

where the subscript 0 denotes the initial length of the sides (initial
configuration, a0 = b0 = c0). From the mathematical point of view,
the only condition to be verified is that the DF equals one only at the
initial time and if the average size of the formation is maintained. It
shall be also considered that, once again, the variables represent ratios
of positive numbers. A very simple form is adopted, by averaging the
three ratios ζ1, ζ2 and ζ3

DF =
ζ1 + ζ2 + ζ3

3
(5.38)

Equation (5.38) is able to tell whether the three spacecraft are getting
farther or closer to each other and if the size of the formation is grow-
ing or reducing. Differently from the SF, the DF needs information
on the initial state of the formation and provides a measure of the size
of the triangle at a certain time after initial time. Roughly speaking,
DF=5 at t = t1 (with t1 > t0) means that the triangle is, on average,
five times bigger than its initial size at t = t0.

Examples of how performance factors behave in time during the evo-
lution of the formation near its reference orbit are shown in Figure 5.41.
Performance factors are evaluated for different initial orientations of the
formation. In this case, with reference to Figure 5.39, the results refer to a
formation lying in the (y, z) plane, with n directed as the positive x axis.
Accordingly, γ refers to a simple rotation about the x axis. Rotations are
computed here starting from γ = 0, found when one spacecraft is along the
positive z axis and the remaining two are below the (x, y) plane. Nondi-
mensional time is shown on the abscissa, referring to the percentage of or-
bital period of the reference orbit (the time span goes from 0 to one period
Torb).
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Figure 5.41: Time evolution of (a) Shape Factor and (b) Dimension Factor for different
initial orientations (with n directed as the positive x axis)

To compare different initial conditions sets, the value of the performance
factors is evaluated after one period of the reference orbit. The behaviour
of performance factors is studied to find the closest conditions to the ideal
situation (no change in shape and size of the formation), which is given by

SF = 1 DF = 1 (5.39)

5.3.2 Monte Carlo approach

A simulation campaign is set up to explore a wide set of initial configura-
tions. As mentioned in Section 5.3.1, the initial orientation of the triangle,
the initial size of the formation and the reference orbit are the free param-
eters investigated. The order of magnitude of the size d of the formation
is chosen by analogy with existing missions employing similar formation
configurations: for example, the size of Cluster II [65] and MMS [31] for-
mations varies from few kilometers up to few thousands of kilometers. For
the general analysis, the simulation campaign is set up by considering the
d = 1, 10, 100 km. For what concerns the orbital path of the spacecraft,
the study is performed by considering only planar reference orbits. In par-
ticular, the following Lyapunov orbits about L1, L2 and L3 of Earth-Moon
system are considered:

L1 Ay = 8 246, 44 582, 88 339 km
L2 Ay = 7 334, 75 019, 145 740 km
L3 Ay = 6 874, 100 719, 338 888 km

where Ay represents the maximum semi-amplitude of the orbit in the y di-
rection. In the followings, the orbits will be referenced as L1(1), L1(2),
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L1(3), L2(1), L2(2),. . . where the numbers in the brackets indicates which
orbit, from the smallest (1) to the largest (3), is being referenced. For exam-
ple, L3(2) refers to the intermediate orbit about L3 with Ay = 100 719 km.
Figure 5.42 shows the orbits used as reference, in the Earth-Moon rotating
frame. Overall, three values of size d, nine reference orbits and several
initial orientations of the formation with respect ot the rotating frame are
considered.
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Figure 5.42: Reference Lyapunov orbits in the Earth-Moon system

The functions in Figures 5.41(a) and 5.41(b) are evaluated at t = Torb
for any different initial orientation and size d of the formation and for any
of the selected reference orbits.

Results

Interesting results can be obtained by comparing all simulated scenarios.
Figure 5.43 shows the outcome of the simulation campaign. The value of
performance factors after one period is computed for any possible case:
each set of parameters is represented by a point in the SF-DF plane. Note
that DF increases on the abscissa, while SF decreases on the ordinate: the
ideal formation keeping condition (5.39) is then located at the left-bottom
corner of the graph, where both performance factors equal one. The best
conditions must be sought then in the left/lower region of the plot.

Blue triangles represent solutions associated to formations orbiting L1,
green dots are associated to formations orbiting L2 and red stars to forma-
tions orbiting L3. The first thing to be noticed is that there are big differ-
ences in terms of final size of the formation (DF) depending on the libration
point the reference orbit is about. Limited to the simulation domain under
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Figure 5.43: Totality of solutions (limited to the case of study)

study, L3 orbits appears by far the best place to host a formation of satel-
lites: all solutions related to L3 orbits exhibit a lower DF then any other so-
lution about L1 or L2. Looking at numbers, the final value of DF is always
lower than 25 if L3 orbits are considered, while it is always greater than 80
for L1 orbits and it is always greater than 120 for L2 orbits. For what con-
cern formation keeping, the orbits considered here about L1 and L2 appear
not to be good candidates to host a triangular formation of satellites, since
after one orbital period the size of the triangle increases dramatically and
the spacecraft lose their initial relative configuration.

Discarding all solutions related to L1 and L2 orbits, the analysis is car-
ried forward by focusing on L3 orbits only. Figure 5.44 show an enlarge-
ment of Figure 5.43, considering only solutions associated to L3 orbits.
The effects of the initial orientation of the formation are studied. Interest-
ing patterns can be identified, when looking at simple rotations, i.e. when
n is directed towards x, y or z axes. Blue triangles represent cases with
normal directed as the x axis, green dots are associated to formation plane
normal to the y axis and red stars to cases with normal towards the z axis.
Each point refers to a different value of in-plane rotation angle γ (ranging
from 0 to 2π), initial size of the formation d and initial orbit about L3. The
figure shows that the best performance is achieved when considering the
formation lying on the (x, z) plane, that is when n is directed towards y
axis. Figure 5.45 shows the same solutions depicted in Figure 5.44 (only
L3 orbits) sorted by reference orbit (smaller to larger orbit about L3). The
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Figure 5.45: Solutions associated to L3 orbits (according to the reference orbit)

selection of the orbit produces different results in terms of DF values: the
bigger the orbit, the smaller the maximum DF experienced by the forma-
tion. However, while being true for the maxima, this is not true for the DF
minima since the overall best case is found for a formation flying about the
smallest orbit about L3. Concerning the initial size of the formation, no
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relevant effects are observed for the different d values investigated.

5.3.3 Global optimization approach

The goal of the optimization problem is to explore a large domain of initial
conditions and to find the optimal set in terms of maximization of formation
keeping performance, quantified thanks to some performance factors. To
this aim, the optimizer is chosen to implement a genetic algorithm. The
followings discuss the set up of the optimization problem, including the
description of the initial population set, the boundaries of the search space
domain and the fitness function.

Search space domain

The initial population set includes all parameters needed to initiate the nu-
merical integration of the spacecraft dynamics. With reference to Sec-
tion 5.3.1, several parameters are used to unequivocally define the initial
geometry, location and orientation of the triangular formation. In addition,
the velocity of each spacecraft (v1,v2,v3) at the beginning of the numerical
integration is also included here as a free parameter.

To set up the optimization process, the search space is clearly defined,
by identifying boundaries the parameters are allowed to range within. The
order of magnitude of the size of the formation d is chosen by analogy with
existing missions employing similar formation flying configurations: for
example, the size of Cluster II [65] and MMS [31] formations varies from
few kilometers up to few thousands of kilometers. In this work, a signifi-
cantly wider range of variability is allowed for the initial size of the triangle
that can range between 1 m and 105 km. No constraints are imposed on the
relative orientation of the triangle, meaning that no limitations are imposed
on n and γ, except for the numerical need of keeping n as an unit norm
vector. For what concerns the orbital path of the spacecraft, the analysis
is performed by considering families of Lyapunov and Halo orbits about
L1, L2 and L3 in the Sun-Earth three-body system. Each component of the
initial velocity vector of each spacecraft is allowed to range within ±20%
range with respect to the velocity on the reference orbit vref. Table 5.10
summarizes the initial population set, highlighting the effect of the param-
eter on the initial configuration of the formation and its limiting range.

Fitness function

After the initial population is settled, the dynamics of the three spacecraft
are integrated forward in time as they evolve near the reference orbit. The
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Table 5.10: Initial population set

Parameter Range

d 1 m - 105 km
n any direction, ‖n‖ = 1
θ 0 - 2π
X ref L1,L2,L3 Lyapunov and Halo families
v1 vref ± 20%
v2 vref ± 20%
v3 vref ± 20%

fitness function refers to the evaluation of formation keeping performance
after one complete orbital period associated to the reference orbit and it is
based on the performance factors defined in Section 5.3.1. From the nu-
merical implementation point of view, the evaluation of the fitness function
f(ξ) includes the integration of the equations of motion for all three space-
craft and the evaluation of SF and DF after one period of the reference orbit.
The figure to be minimized by the optimizer is written as

f(ξ) = (1− SF (ξ)) + |1−DF (ξ)| (5.40)

where ξ indicates the initial population set and both SF and DF are com-
puted after the numerical integration of the dynamics. Equation 5.40 is
equal to zero if SF = DF = 1, meaning that its minimum corresponds to
the optimal initial condition set in terms of formation keeping performance.
More in detail, Eq. (5.40) can be written as

f(ξ) = (1− (e−
√

(ln a
b )

2
+(ln a

c )
2

)) + |1−
a
a0

+ b
b0

+ c
c0

3
| (5.41)

where the effects of initial conditions (a0, b0, c0) and of the outcome of the
integration of the dynamics (a, b, c) are clearly visible.

Results

The results of the optimization process are presented here. The optimal
initial configurations, limited to the domain of parameters defined in the
previous section, are found. Table 5.11 summarizes the results of the op-
timization, grouped according to the family of reference orbit. The results
show that the optimizer does not converge to a good solution for the case
of L1 orbits, whereas suitable solutions are found concerning L2 and L3
orbits. In agreement with what obtained with the Monte Carlo approach
(Section 5.3.2), the overall best case is found for orbits about L3.
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Table 5.11: Results of the optimization: best performance factor achieved

Reference orbit SF DF

L1 Lyapunov 2e-3 59
Halo 4e-3 24

L2 Lyapunov 1.00 1.07
Halo 0.75 1.00

L3 Lyapunov 1.00 1.00
Halo 1.00 1.00

Regarding L2 solutions, the optimizer is shown to converge to good re-
sults, in particular for the case of lyapunov orbits. Figure 5.46 shows that
the geometry of the formation is preserved after one orbital period (indeed
SF=1.00, DF=1.07) while its orientation changes with respect to its initial
configuration.
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Figure 5.46: Triangular formation at time t0 (red) and after one orbital period (blue) (L2
Lyapunov)

The best solutions are found when considering orbits about L3. In this
case the geometry and orientation of the formation is fully preserved after
one orbital period, as shown in Figure 5.47(a), where the formation at t0
is almost overwritten by the formation after one orbital period. The three
spacecraft are located on nearly periodic orbits nearby the reference halo
orbit, since their motion is periodic with about the same period of the ref-
erence orbit.

Figure 5.47(b) shows the time behaviour of performance factors during
the evolution of the formation on the reference orbit. The abscissa rep-
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Figure 5.47: L3 Halo: (a) triangular formation at time t0 (red) and after one orbital
period (blue) (b) performance factors as function of time

resents nondimensional time, normalized to one period of the reference
orbit (the time spans from 0 to Torb). As mentioned, the fitness function in-
cludes the evaluation of formation keeping performance at t = Torb. SF and
DF functions exhibit a periodic behaviour: in both cases the performance
reaches a minimum after half orbit and it increases towards the optimal con-
dition at the end of the orbital period. This means that the geometry of the
formation is not kept constantly as it evolves along its orbit, but it reaches
the optimum periodically, with a period equal to the period of the reference
orbit.

In the case of lyapunov family about L3 the optimizer converges to a
small orbit, and the formation has a characteristic size comparable to the
amplitude of the orbit. Figure 5.48(a) shows the evolution of the triangular
formation during one orbit and Figure 5.48(b) shows the behaviour in time
of performance factors. In this case the formation changes shape during one
period, with lowest formation keeping performance reached at 1/4 Tref and
3/4 Tref. At that points, the triangle collapses nearly onto a line and naturally
gets back to its initial geometrical configuration after Tref/2 from t0. It is
worth to notice that the three spacecraft experience periodic motion and
their paths are actually out-of-plane orbits in the proximity of the reference
lyapunov orbit (Figure 5.49).

The optimal initial configuration, in case of L3 halo and lyapunov orbits
are shown in Figure 5.50(a) and in Figure 5.50(b). The overall optimal case
is indeed achieved when the n unity vector is directed towards the x axis,
that is when the triangular formation lies initially on the y, z plane.
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Figure 5.48: L3 Lyapunov: (a) time evolution of the triangular formation (b) performance
factors as function of time

5.3.4 Refinement of solution under the ER3BP

The previous section shows results related to CR3BP dynamics. Both Monte
Carlo and global optimization approach agree on the fact that best solu-
tions are achieved when L3 orbits are considered. Here, the analysis is
replicated for the more realistic case of ER3BP dynamics. As detailed in
Section 3.2.2, finding periodic motion in ER3BP is more challenging than
in the CR3BP, due to the fact that the elliptic problem is not autonomous
and explicitly depends on time. In order to investigate how the solution
of the free triangular formation problem under study is affected by such
change in the dynamics, one reference orbit about L3 in ER3BP is con-
sidered. The orbit is depicted in Figure 5.51 and represents a resonant 1:1
periodic orbit with one-year period about L3 in the Sun-Earth system. As
described in Section 4.1.2, the orbit is generated starting from a resonant
1:1 orbit in the CR3BP about L3, through eccentricity continuation. The
maximum amplitudes of the orbit in the y and z directions are

∆y = 3.88 · 108 km

∆z = 3.39 · 104 km

Note that the out-of-plane amplitude (∆z) is significantly lower than am-
plitudes along x and y directions: for this reason the orbit is classified here
as a quasi-planar Halo orbit.
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Figure 5.49: Orbital paths of spacecraft around reference lyapunov orbit about L3 (a) 3D
(b) x-y (c) x-z (d) y-z views

Monte Carlo Approach

A Monte Carlo simulation campaign is set up and several initial configura-
tions of formations in L3 are explored. Different initial orientations of the
triangle (n, γ) and initial sizes of the formation (d) are considered. In this
second step of the study, the simulation campaign is set up by considering
the following values to initialize the size of the formation:

d = 10N m with N = 0, 1, 2, . . . , 8

meaning that the size of the triangle varies from a minimum of 1 m up to a
maximum of 105 km.

The orientation of the formation is generated randomly, with a uniform
spherical distribution. Figure 5.52 shows the distribution associated to the
orientation of the triangle. Each point in Figure 5.52 represents a different
orientation of the formation: the normal to the triangle n is the vector con-
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Figure 5.50: Optimal configuration (a) halo (b) lyapunov about L3
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Figure 5.51: Reference orbit

necting the origin of the reference frame to the point on the sphere, which
is centred in the barycentre of the formation. In this work 104 points are
used to generate initial conditions for vector n. For each n case, different
values of angle γ are considered, ranging between 0 and 360◦, with an in-
cremental value of 5◦. This leads to 72 different values of γ for each normal
vector to the triangle plane. Summarizing, the simulation scenario includes
9 different initial sizes of the formation, 104 different normal vectors to the
triangle plane, 72 different rotation angles γ and one reference orbit, for a
total amount of 9 x 104 x 72 = 6.48 millions of different cases simulated.

After computing SF and DF performance for each different set of pa-
rameters, it is useful to look at aggregated results, to identify the best initial
configurations. Figure 5.53 shows the results for d = 1 km. Each set of
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y
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n

z

Figure 5.52: Orientation of the formation, uniform spherical distribution to set up Monte
Carlo simulation (104 points)

Figure 5.53: Solutions for d = 1 km (72 x 104 points)

initial conditions (72 x 104 different sets in this case) is represented by a
point in the SF-DF plane. The coordinates of each point represent the value
of SF and DF after integrating the equations of motion starting from that
particular set of initial conditions, for one period of the reference orbit.

Concerning the initial size of the formation, no relevant effects are ob-
served for the different d values explored. Aggregated results associated to
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different d values looks very similar between them and when compared to
Figure 5.53. The identification of the best case between different sets of
results shows also very little dependence on the parameter d. It can be then
concluded that, under the domain investigated in this work, the initial size
of the formation has no relevant effect on the relative dynamics between
spacecraft in the proximity of the chosen reference trajectory. This result
agrees with the results of the analysis performed under the CR3BP formu-
lation (Section 5.3.2). Formation keeping performance depends mainly on
the initial orientation of the triangle plane (n, γ). The first step is to iden-
tify convenient solutions in terms of n, that is the normal unity vector to
the triangle surface.

y
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n with 0.97<DF<1.03

(a)

y

x

n

z

(b)

Figure 5.54: (a) n ensuring highest performance (b) Best initial configuration

Figure 5.54(a) shows regions on the overall distribution sphere where
n (vector joining the origin with point on the sphere) leads to SF < 0.8
(black stars) or to a DF between 0.97 and 1.03 (red diamonds). The in-
tersections between these regions correspond to the points in the neighbor-
hood of the ideal point in Figure 5.53. Note that as far as the cases high-
lighted by Figure 5.54(a) are concerned, the triangle lies on the y, z plane
or slightly inclined with respect to it. Figure 5.54(b) shows the overall best
case, achieved when the n unity vector is directed towards the x axis, that
is when the triangular formation lies initially on the y, z plane. For what
concern the last parameter (γ), the results show that the best performance
is always achieved when one of the spacecraft lies on the (positive or neg-
ative) y axis of the rotating frame. This initial configuration leads to values
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of SF and DF after one period of

SF = 0.98

DF = 1.02

which is nearly equal to the ideal condition (5.39) of unchanged shape and
size of the formation.

As mentioned in the previous paragraphs, performance is evaluated only
at the end of the period, without considering the evolution of the formation
along the reference orbit. It is interesting to look at the behaviour of the
formation while it orbits near the reference path.
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Figure 5.55: SF (top) and DF (bottom) behaviour in time during one orbit, best initial
configuration case

Figure 5.55 shows the time behaviour of the two performance factors
during a complete orbital period. Note that the two functions oscillates
with the same period of the orbit, reaching the lowest performance nearly
at half orbit. At that point, the triangle collapses nearly onto a line (Fig-
ure 5.56(a)), but finally it got back to almost its initial configuration (Fig-
ure 5.56(b)).

Global optimization approach

The optimization process is replied for the case of elliptic problem. The
aim is to study whether any change occurs in the results of the optimization,
under a different dynamical model. To this goal, only the best case coming
out from the previous analysis is considered for comparison (orbits about
L3).
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Figure 5.56: Triangular formation after (a) half period (b) one period: comparison be-
tween initial (red) and final (blue) formation

The results confirm what was obtained so far. The two performance
factors after one period reach the optimal condition

SF = 1.00

DF = 1.00

and the initial orientation is found to be lying in the y-z plane (Figure 5.57),
in agreement with previously obtained results.
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Figure 5.57: Optimal initial configuration for the elliptical case
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Perturbed case: Solar Radiation Pressure

Finally, the found solution is propagated using a higher fidelity model of
the dynamics, considering both the effect of the eccentricity of Earth’s orbit
around the Sun (ER3BP) and the effect due to SRP. This small perturbation
is included into the dynamics of the three spacecraft, to model the effects
on their orbital path. Values of mass and surface properties are selected in
analogy with LISA, Cluster II and other formation flying missions cited in
the introduction to this section, keeping the relevant parameters on the same
order of magnitude. In particular, the analysis is set up with the followings
values:

• m = 200 kg

• Cr = 0.2

• A = 2 m2

with reference to notation in use in Section 2.4 and the acceleration is quan-
tified using Eq. (2.83). With such assumptions, the resulting effect of the
Solar Radiation Pressure is very low: the ratio between accelerations due
to SRP and to the gravity of the Sun results to be on the order of

β =
aSRP

agrav
∼ 10−5 (5.42)

−3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1

x 10
8

−1.5

−1

−0.5

0

0.5

1

1.5

x 10
8

 

x [km]

 

y 
[k

m
]

unperturbed
with SRP

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
F

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

t [%T
orb

]

D
F

 

 unperturbed
with SRP

(b)

Figure 5.58: (a) Perturbed orbit (200 years) (b) SF (top) and DF (bottom) behaviour in
time during one orbit with Solar Radiation Pressure Perturbation, best initial configu-
ration case

Figure 5.58(a) shows a simulation of orbital propagation, where the per-
turbed equations of motion are integrated for 200 Torb (200 years) and com-
pared to the unperturbed orbit. The chosen orbit appear to be very stable, as
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the perturbed trajectory remains in the proximity of the unperturbed orbit.
Finally the motion of the three spacecraft of the formation are integrated
in time considering the perturbing effect. Figure 5.58(b) shows the effect
of the perturbation, with respect to the unperturbed dynamics. As for the
reference orbit, the effect on the spacecraft trajectories is very small and the
formation keeping performance does not vary in a significant way.

5.3.5 Interpretation of results using manifold dynamics

It is useful to compare results obtained through Monte Carlo analysis and
global optimization with considerations based on the dynamic nature of
the system. Since the work considers periodic orbits, the problem can be
studied by analyzing the eigenstructure of the monodromy matrix (STM
after one orbital revolution, Section 2.1). The analysis through monodromy
matrix inspection is performed for all reference orbits under study, both in
the circular and elliptic case.

As detailed in the previous sections, the best initial configurations are
associated to L3 reference orbits. Such orbits are stable, since they have
a 6D centre manifold eigenstructure, with the monodromy matrix having
3 pair of complex conjugate eigenvalues. Since the spacecraft move in the
centre manifold associate to the periodic orbit, the formation has a bounded
motion near the reference trajectory, with no risk of departing from it. This
is confirmed from results shown in Figure 5.53, where the DF does never
reach very high values, as it does for the case of L1 or L2 orbits. In the
L3 case, the orientation is only important to preserve the geometry of the
formation, since the motion is bounded anyway. This is no longer true
for L1 and L2 cases, where unstable orbits are to be considered. In that
case, the eigenstructure of the monodromy matrix include a 2D (or 4D)
stable/unstable manifold, and a 4D (or 2D) centre manifold. Being such a
case, the eigendirections of the monodromy matrix play a major role not
only for shape preservation, but also for assessing the possibility to have
bounded motion in the proximity of the reference orbit. Figure 5.59 shows
the directions of eigenvectors of the monodromy matrix, that is the direction
tangent to the manifolds associated to the periodic orbit. Few cases are
displayed, with one Halo and Lyapunov orbit chosen near L1 and L2. For
all cases, the centre manifold is shown to be tangent to the orbit and directed
as the y axis. Also, it belongs to the (y, z) plane. This is shown to be in
agreement with results from Monte Carlo and global optimization analyses,
where the best solution is found when the triangular formation initially lies
on the (y, z) plane.
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Overall, the relative orientation of the formation with respect to the
eigendrections of the monodromy matrix associated to the reference orbit
is of main importance in terms of formation keeping performance. This is
confirmed by the fact that results shows that performance does not depend
on the size of the initial equilateral triangle, but only by its orientation.
This fact is shown to be always true for the cases under study and even
more relevant for the case of unstable reference orbits.
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Figure 5.59: Tangent to manifold directions at t0 for (a) L1 Halo (b) L1 Lyapunov (c) L2
Halo (d) L2 Lyapunov
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CHAPTER6
Conclusion

This thesis deals with non-Keplerian dynamics and their applications re-
lated to trajectory design of space missions. Different aspects of the prob-
lem were faced and investigated. This chapter summarizes the major find-
ings and results of this work, by recalling the work done and its usefulness
when related to mission analysis applications, highlighting the elements of
innovations with respect to existing knowledge and previous works in the
field. Possible directions and opportunities for future work are eventually
discussed.

The first element of innovation that was introduced, relates to the general-
purpose method presented in Section 3.1. As mentioned in Chapter 1, a
lot of studies on motion under non-Keplerian and multi-body dynamics
exist. However, the software in use in often tuned to the specific case
under study and in most cases the same algorithms do not have general
validity and are not applicable to other problems without implementing
modifications on the code. Very few implementations of general purpose
codes exist. The software architecture proposed here is intended to be
a very astrodynamics-related tool, to support space mission analysis and
design. The software provides ready-to-use libraries for the modeling of
the most common systems for astrodynamics applications: restricted three-
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body problems (CR3BP, ER3BP) and small body dynamics (shape-based,
mascon models). The novelty of the implementation proposed here is the
ability of joining all most popular available methods for periodic orbit com-
putation into a harmonized and user-friendly software architecture. The
goal was to enhance understanding of the applicability of the different tech-
niques available, depending on the kind of dynamics and relevant param-
eters. Classical and recent techniques for non-linear system dynamics are
used and integrated together to build new algorithms, in the attempt of cre-
ating more efficient schemes, that can be customized to the properties of
the system. Also, the approach proposed for finding solutions around small
bodies is innovative. As mentioned in Section 1, some studies on periodic
motion around such irregular bodies exist, but still the topic is very new
and unexplored. Existing studies investigate possible solutions directly by
searching for peculiar configurations of the dynamics around small bod-
ies. This method is useful to identify periodic motion or trajectories within
a certain well-defined dynamical system, i.e. a given asteroid or comet.
However, the results obtained can hardly be generalized to be valid to any
other targeted celestial body. Conclusions drawn from a single investiga-
tion cannot be, in general, applied to other cases of celestial bodies with a
different mass distribution. The approach proposed here is intended to be
much more general and systematic: the properties of the attractor (which
generates the dynamical environment) are slightly varying and periodic so-
lutions are found as the primary changes its shape and mass distribution.
The properties of periodic orbits are monitored and their dependency to
the mass distribution of the primary is studied. In this way, it is possi-
ble to study in detail the effects that influences the existence and nature of
periodic motion around such irregular bodies. The procedure can be fol-
lowed for several typical shapes of common asteroids (diamond, dog-bone,
elongated, . . . ), in order to create a database of what to expect from these
particular dynamical environments in terms of periodic motion. The the-
sis objectives included the creation of a catalogue of periodic orbits for the
most common systems relevant for space mission applications, and also, the
definition of guidelines related to the applicability of the numerical method-
ologies to the different dynamical problems under study. The ultimate goal
was to enhance the comprehension of the dynamics in a specific system, in
order to foresee a priori what kind of periodic solutions can be expected to
be found.

Concerning applications related to asteroid aggregation dynamics, a new
implementation is presented to deal with N-body gravitational dynamics.
Current capabilities of N-body integrators include the ability to simulate
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the aggregation dynamics between hundreds of bodies of simple (spheri-
cal) shape. The proposed implementation is able to handle the simultane-
ous gravitational interaction between hundreds of bodies, including con-
tact dynamics between bodies of complex (non spherical) shape. To test
and validate the implementation, significant scenarios were analyzed in the
framework of asteroid formation processes and different sets of initial con-
ditions were investigated. The initial dynamical state of the N bodies is
found to play a fundamental role in the evolution of the cloud of boulders.
In detail, the state of the N bodies was initialized by either imposing no
initial relative motion between them, or by imposing a given rotational and
relative motion. The presented results show good agreement with theoret-
ical predictions and observations, and suggest the ability of the numerical
code to predict natural aggregation phenomena. The outcome of the ag-
gregation process in used as a high-fidelity model of the asteroid’s mass
distribution. Such models are suitable to represent “rubble pile” asteroids
and small celestial bodies with a significant amount of porosity. Space
mission scenarios can be reproduced to compute trajectories and simulate
the motion of a spacecraft under the complex gravity field of such highly
irregular bodies.

Concerning mission analysis scenarios under study, the dynamical model
of a binary asteroid is built with a patched three-body approach. Relative
kinematics between asteroids was investigated for the case of binary sys-
tems and design parameters was identified for the specific relative configu-
ration under study. The dynamical model appears to be particularly suitable
to model certain classes of bodies, which are very common among asteroid
population, such as elongated and dog-bone shaped asteroids, as well as
contact or close binaries. To confine regions of applicability of the patched
three-body problems, the concept of SOE is introduced and defined. The
dynamical model was used to simulate possible mission scenarios aimed to
the exploration of a NEA binary system. Landing trajectories are identified
by means of manifolds interaction between patched three-body problems,
resolved through Poincaré analysis on the SOE. The dynamical model de-
fined in this work can serve as an easy and useful tool to identify trajectories
in such complex dynamical systems. The patched three-body approach al-
lows the exploitation of the peculiar dynamical properties of the CR3BP
and cost-effective trajectories can be computed starting from periodic or
quasi-periodic orbits and their invariant manifolds. The SOE, defined in
this work, represents a tool to compare different vectorial fields: within the
patched three-body approach, the SOE is exploited as a valuable alternative
to the SOI, in case small and low-massive systems, such as asteroids, are

167



Chapter 6. Conclusion

considered as sources of gravity field. When the assumptions on the distri-
bution of mass in the binary system are valid, the physical system is well
represented by the dual three-body model; hence it is possible to rely on
its solution, avoiding the expensive computational effort required by higher
fidelity models. The resulting trajectory can be used as a suitable first guess
solution, to be differentially corrected towards a higher fidelity model for
further mission analysis refinements.

The MASCOT-2 landing scenario, in the framework of AIM and AIDA
missions, is presented. The strategy to design a ballistic trajectory to land a
small and passive probe to the surface of Didymoon is discussed and suit-
able solutions to satisfy mission objectives are presented. Results show that
the extremely low gravity environment does not guarantee the lander to stay
on the surface after touch down, and MASCOT-2 will most likely bounce
until reaching a stable position of Didymoon. Successful landing probabil-
ity is assessed for the case study and landing dispersion is evaluated. Criti-
cal parameters affecting the success of the landing manoeuvre are identified
and solutions to mitigate the risk are proposed by convenient exploitation of
the three-body environment. Compared to solutions found using classical
Keplerian models, three-body dynamics are found to be much more effec-
tive to increase the success rate of the landing manoeuvre, to lower the risk
of rebounding on the surface of the secondary, and to increase the safety
of the overall release manoeuvre to be performed by AIM. More in detail,
the modeling of the gravity field near the binary asteroid through the use
of non-Keplerian dynamics is shown to be crucial to the effective landing
design, since no solutions compliant with requirements can be found us-
ing the simpler Keplerian model. Non-Keplerian dynamics is also needed
to accurately simulate the behaviour of the lander after release, since the
simpler central field is unacceptably inaccurate for the AIM/MASCOT-2
landing scenario.

The free dynamics of an equilateral triangular formation of spacecraft
under the CR3BP and ER3BP formulations are studied. The relative dy-
namics between spacecraft of the formation were investigated by consid-
ering several initial configurations sets, in terms of orientation, size and
location of the formation with respect to the three-body synodic frame. To
quantify and compare formation keeping performance, two performance
factors were defined to monitor both shape and size changes of the triangu-
lar formation in time. Suitable initial configurations of the formation, lead-
ing to good natural formation keeping performance, were identified thanks
to combined Monte Carlo and global optimization methods. More in detail,
the results of the study highlight that within the domain of study, perfor-
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mance is not dependent on the size of the triangle, while it strongly depends
on the initial orientation and on the reference orbit the formation is orbiting
about. This result is further supported by considerations on the manifold
structure associated to the reference orbit and confirmed by Monodromy
matrix analysis performed on the periodic orbits considered. As far as the
present study is concerned, the best performance is achieved for formations
orbiting about L3, and in particular when the triangle lies on the y, z plane
of the synodic reference frame, with one spacecraft on the x, y plane. It is
important to remark that only free dynamics is considered, meaning that the
formation comes back to nearly its initial configuration without any control
action, but only through a convenient exploitation of three-body dynamics.
When designing such kind of missions, to lower formation keeping needs
to be provided to the three spacecraft, the initial orientation and reference
orbit of the formation must be chosen carefully.

Future work

As a general consideration, the work presented in this thesis can be ex-
tended and generalized to include more mission scenarios and trajectory
design solutions. Concerning the software architecture presented here, it
can be enriched by means of more efficient schemes and algorithms to
be implemented. As mentioned, applications of this scheme can be used
to produce comprehensive catalogues of solutions related to known small
celestial bodies. This would help the mission analysis process and trajec-
tory design, since it would provide a priori ideas and hints on how motion
within such chaotic dynamics can be. To support this, the catalogue of peri-
odic solutions can be coupled with a further enriched catalogue of asteroid
models, related both to homogeneous shape-based models, or to N-body
mascon models, which can be generated for different classes of asteroids
by using the N-body aggregation scheme presented in this thesis. As far
as the N-body aggregation model is concerned, future work includes the
need of considering a larger number of bodies in the simulation. The cost
of evaluating gravity is N2, but it can be reduced to N log(N) by clustering
the interaction effect between far clusters of bodies. Such clustering can be
pursued by means of partitioning the domain using octrees, and GPU-based
parallelization of gravitational and contact forces computation. This would
increase the capability of the implementation to handle a higher number of
bodies, extending the possibility to simulate different dynamical scenarios,
including impact and disruption ones.
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Postface

This thesis is a comprehensive work based on the work carried out during
the Ph.D. period. The work on Asteroid Impact Mission has been per-
formed by the author under ESA contract with Politecnico di Milano, dur-
ing the phase A and B1 of AIM mission design. Part of the work and results
discussed in this thesis has been published as journal papers or presented at
conferences. A list of major publications is here provided.

- F Ferrari, M Lavagna, and K C Howell. Dynamical model of binary aster-
oid systems through patched three-body problems. Celestial Mechanics
and Dynamical Astronomy, 125(4):413–433, 2016

- F Ferrari, A Tasora, P Masarati, and M Lavagna. N-body gravitational and
contact dynamics for asteroid aggregation. Multibody System Dynamics,
39(1):3–20, 2017

- F Ferrari and M Lavagna. Suitable configurations for triangular forma-
tion flying about collinear libration points under the circular and elliptic
restricted three-body problems. Acta Astronautica, 2016

- F Ferrari, M Lavagna, and K C Howell. Trajectory design about binary
asteroids through coupled three-body problems. In Spaceflight Mechanics
2014, Roby S. Wilson et al. (Eds.), pages 2093–2110, Santa Fe, NM, USA,
2014

- F Ferrari and M Lavagna. Formation flying and relative dynamics under
the circular restricted three-body problem formulation. In Spaceflight
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- F Ferrari and M Lavagna. Asteroid impact monitoring mission: Mission
analysis and innovative strategies for close proximity maneuvering. In
Proceedings of the 4th IAA Planetary Defense Conference, Frascati, Italy,
2015

- F Ferrari and M Lavagna. Triangular formation flying under the elliptic
restricted three-body formulation. In Proceedings of 65th International
Astronautical Congress, Toronto, CA, 2014

- F Ferrari and M Lavagna. Design drivers for formation flying near collinear
libration points in the circular and elliptic restricted three-body problems.
In Proceedings of the 8th International Workshop on Satellite Constella-
tions and Formation Flying, 2015

- F Ferrari and M Lavagna. Asteroid impact mission: A possible approach
to design effective close proximity operations to release mascot-2 lander.
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CO, USA, 2015

- F Ferrari and M Lavagna. Consolidated phase a design of asteroid impact
mission: Mascot-2 landing on binary asteroid didymos. In Proceedings
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- F Ferrari, M Lavagna, and I Carnelli. Coupling high fidelity body mod-
eling with non-keplerian dynamics to design aim-mascot-2 landing tra-
jectories on didymos binary asteroid. In Proceedings of the 6th Inter-
national Conference on Astrodynamics Tools and Techniques, Darmstadt,
DE, 2016
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List of Acronyms

3BP Three-Body Problem

AIDA Asteroid Impact and Deflection Assess-
ment

AIM Asteroid Impact Mission
ARM Asteroid Redirect Mission

BSB Binary System Barycentre

C::E Chrono::Engine
CNSA China National Space Administration
CR3BP Circular Restricted Three-Body Problem

DART Double Asteroid Redirection Test
DF Dimension Factor

ER3BP Elliptic Restricted Three-Body Problem
ESA European Space Agency

IOD In-Orbit-Demonstration
ISAS Institute of Space and Astronautical Sci-

ence
ISEE-3 International Sun/Earth Explorer 3
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List of Acronyms

JAXA Japan Aerospace eXploration Agency
JPL Jet Propulsion Laboratory

LFR low frequency radar
LISA Laser Interferometer Space Antenna

MASCOT Mobile Asteroid Surface SCOuT
MEX Moonlet Engineering eXperiment
MMS Magnetospheric Multiscale Mission

NASA National Aeronautics and Space Adminis-
tration

NBP N-Body Problem
NEA Near Earth Asteroid
NEAR-Shoemaker Near Earth Asteroid Rendezvous

P1-E2 polyhedron-ellipsoid
PAB Primary Asteroid Barycentre

R3BP Restricted Three-Body Problem

S1-E2 sphere-ellipsoid
S1-S2 sphere-sphere
SF Shape Factor
SOE Surface Of Equivalence
SOI Sphere Of Influence
SRP Solar Radiation Pressure
STM State Transition Matrix

ToF time of flight

ZRAV loci zero relative acceleration and velocity
ZVC Zero Velocity Curves
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