Scalable Data Management and Processing for
Genomic Computing

A DISSERTATION PRESENTED
BY
ABDULRAHMAN KalTOoUuA
TO
THE DEPARTMENT OF ELECTRONICS, INFORMATION AND BIOENGINEERING

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
IN THE SUBJECT OF
INFORMATION TECHNOLOGY

PoriTEcNico D1 MiLANO
MIiLAN, ITALY
NOVEMBER 2016

Thesis advisor: Stefano Ceri Abdulrahman Kaitoua

Scalable Data Management and Processing for Genomic Computing

ABSTRACT

The recent emergence of Next Generation Sequencing (NGS) technologies, in genomics field,
produced vast amounts of genomic data. NGS resulted in dropped the cost of sequencing ("reading”
in general terms) genomic material very fast. There exist many methods to extract signals from the
genomic data, that associate a region of the genome with some interesting information - such as a
mutation or a peak of expression. Thus, a new problem is emerging: making sense of these signals,
heterogeneous in nature, through new kind of languages that can extract relevant information from
various heterogeneous sources, integrate them in a new data management system, and compute in-
teresting results. Biologists say that a huge amount of information is undiscovered within the repos-
itories that have been built in the last decade - therefore, the focus of genomic data management for
the next decade is querying and analysing heterogeneous genomic data.

This thesis is about scalable data management and processing for genomic data. We developed
anew system which consists of a new query language called GenoMetric Query Language (GMQL),
a new data model for heterogeneous data (called Genomic Data Model - GDM), and a new process-
ing engine which embeds scalable genomic algorithms implemented on several data flow engines.
The name (GMQL) derives from the ability of the language of dealing with region-based operations
which take into account the regions topological location to the reference genome. GDM mediates all
existing heterogeneous data formats. In combination, GDM and GMQL introduce a paradigm shift,
by providing a high-level, declarative query language which supports data-driven computations.

GMAQL is a collective effort which has involved a group of students and professors from Po-
litecnico di Milano. The work reported in this PhD thesis is focused on the design, implementation
and validation of the scalable genomic data management and processing system; The architecture of
various prototypes of GMQL, GDM, and the scalable genomic processing algorithms.

GMAQL is a domain-specific language. In this thesis, we developed several scalable algorithms

for genomic processing for serving the needs of GMQL queries. By the use of data flow engines as our

1ii

Thesis advisor: Stefano Ceri Abdulrahman Kaitoua

target implementations, we capitalize upon existing frameworks which are available today and will be
developed in the future by the data management community. In order to increase the parallelism of
the genomic algorithms in data flow engines, we proposed new data binning methodologies that are
suitable for genomic data and for the nature of the data flow engines. We also used our genomic
algorithms for comparing dataflow engines and we developed versions of the scalable algorithms that
take advantage of the nature of data flow engines - for example in SciDB, based on multidimensional
arrays, we make use of the fast access to slices of the array.

Along with the design of the system and the scalable genomic algorithms, the implementa-
tion has gone through phases, and specifically we delivered a first implementation of GMQL, called
GMQL V1, based on Hadoop 1 and the target systems Pig; and a second implementation, called
GMAQL V2, based on Hadoop 2 and the target systems Spark, Flink, and SciDB. The thesis describes
the rationale of the two implementations and the process that led from the first to the second proto-
type.

GMAQL engine has a well-designed system architecture with modular organization; system
modules can be easily tested, maintained or replaced. GMQL is translated to an intermediate, target-
independent representation, based on a Directed Acyclic Graph (DAG), which describes workflows
of basic operation nodes. Each node is a primitive operation that implements a specific functionality
of GMQL, and operations are mapped to specific target systems; in this way, we can support several
implementations to several target systems.

The GMQL engine architecture includes a repository abstraction which is technology-independent,
hence several options (local file system, Hadoop File system, scientific database management) are
made available by simply including a different repository interface.

Several aspects of the architecture are designed for fast execution on big data sets. This thesis
also includes a thorough performance analysis, by comparing GMQL engine V1 to V2, Flink to Spark
implementations, and Spark to SciDB implementations. From such studies, we learnt about optimal
parameters settings for the scalable genomic algorithms on diverse data sizes and platforms.

We also include some preliminary results of a study which we are conducting in order to field-

iv

Thesis advisor: Stefano Ceri Abdulrahman Kaitoua

test GMQL applicability. We implemented a pipeline that uses GMQL for studying gene expression
in normal and cancer cells in the context of DNA 3D structure; the study is based on big data sets for
about twenty available tissues, thousands of samples for either normal or tumor cases are considered
in the study.

In summary, this thesis is a step forward in the development of a systemic approach to scal-
able genomic data management and processing. Whereas other approaches focused on extracting
genomic features from data, our approach is on combining these heterogeneous features so as to solve
complex biological problems. We believe that the importance of a systemic approach to genomic data
management will grow in the near future, with the availability of huge repositories of genomic data

sets.

Contents

INTRODUCTION

1.1 DNA e
1.1.1 Composition and Organization
1.1.2 Functioning

1.2

1.3
1.4

1.5
1.6

1.7

1.1.3 Mutations and Inheritance
Exposing the Sequence
1.2.1 DNA Sequencing

1.2.2 The Next Generation Sequencing Revolution

1.2.3 NGS Experiments

Genomic Data Repositoriesand Consortia

Motivation for Thesis work

1.4.1 Tertiary analysis

1.4.2 Limitationsin Data Management

Contributions
Structure of this thesis

Thesis publications

GMQL: New Paradigm for Data-Centric Genomic Computing

GENoMIC DAaTA MODEL

2.1

2.2

The Genomic Data Model (GDM)

Examples

THE GENOMETRIC QUERY LANGUAGE

3.1
3.2
3.3

General Properties
Predicates Evaluation

Syntactic Conventions

vi

N-TEN- T TN TN O N O O ©

- - — -
W (08} - -

15

16
16

17

IT

3.4 Relational GMQL Operations o

3.4.1 Select. e
3.42 Project L e
3.43 EBxtend
344 Group ... e
3.45 Merge ... e
3.4.6 Order. e e
3.4.7 Union e e e e e e e e e e e e e e e e
3.4.8 Difference e
3.5 Domain-SpecificOperations
3.5.1 Cover. e e e e e e e e
3.2 Map ... e
3.5.3 Join . ..o e e e e e
3.6 UtilityOperations
3.6.1 Materialize

CASE STUDY: MAPPING GENE EXPRESSION OF NORMAL AND CANCER CELLS TO TOPO-

LOGICAL DOMAINS

4.1 Contributions e
4.2 Datasources e e e e e e e e
43 Pipeline
4.4 Heatmaps e

GENDATA: System Architecture for Big Genomic Data processing

INTRODUCTION TO B1G DATA TECHNOLOGIES

st ApacheHadoop. o

s.1.1 Hadoop Distributed File System

s.1.2 YARN as a Distributed Operating System
s2 ApacheKnox
5.3 Livy oo o e
s.4 ApachePig
5.5 ApacheSpark L
5.6 ApacheFlink
5.7 SciDB . .. e e e e e

vii

34
35
36
38
39

42

6 GMQL SYSTEM ARCHITECTURE 52

6.1 GMQLV1 . .. e e e e 52
6.1.1 Translator 53

6.1.2 Orchestrator e 55

6.2 GMQLV2 . .. e e 56
6.2.1 FromVitoVa e e 56

6.2.2 Architecture e 58
GMQL Task Management 60

Execution of GMQL Queries0 62

6.3 Repositorymanagement 65
6.3.1 Integrated Access to heterogeneous Public Repositories 69

6.4 Retrievalsystem. Lo 69
6.5 WebServices e e 71
6.6 WeblInterface e 74
6.7 GMQLV2Deploymentmodes 75
6.7.1 SparkDeployment L L o 75

6.7.2 GMQL Deployment on a Single Machine or onlocal cluster 76

6.7.3 SparkLauncherServer, 77

6.7.4 DeploymentonRemote Cluster 78

7 SCALING-OUT GMQL OPERATORS ON DATA FLOW ENGINES 80
7.1 State of the art of interval intersection algorithms 80
7.1.1 Linear Sweep Algorithm Lo Lo L. 80

7.1.2 Binningalgorithms Using Trees 81

7.1.3 Interval intersection using Map reduce 83

7.1.4 DISCuSsion e e e e e e e e e e e e e e 83

7.2 JOIN . .o e e e e e 85
72.1 Introduction 85

7.2.2 EvaluationSteps Lo 87

7.2.3 Binningand SearchSpace o 0 L. 88

7.2.4 Evaluation of Distal ClausesinStep1 90

7.2.5 Join Execution Strategy in Flinkand Spark 91

73 Map . . e e 95
74 COVEr . . . o o e e e e e e e e e 97

viii

III EVALUATION: Comparing Different GMQL Implementations

10

11

ExPERIMENTAL EvaLuaTiON OF GMQL ENGINE V1

8.1 GMQL V1 Implementation Optimization
8.1.1 Effect of By-Chrom Parallelism
8.1.2 Size-SpecificTuning L

8.2 Comparison with the Stateofthe Art

8.3 GMQL V1 ScalingwithBigDatasets

84 UseCaseExample

ExpERIMENTAL EvaLuaTION OF GMQL ENGINE V2

9.1 Join OperationBenchmark L 0.
9.1.1 OptimalBinSize
9.1.2 Performance comparison with different Bin Sizes
9.1.3 Data Shuffling and Ordering with MinDistance

9.2 Map OperationBenchmark,

9.3 GMQL Vi1 Versus V2 Comparison

9.4 Performance Scaling withmore AWSNodes

COMPARATIVE EVALUATION OF FLINK AND SPARK

10.1 Framework Comparison 0. ..

102 Histogram

10.3 MappingtoaReference. L oo o L oL

10.4 Joinof OverlappingRegions

10.5 Benchmark e
10.5.1 Histogramexecution L.
10.5.2 Mapexecution Lo L

10.6.3 Joinexecution Lo L L e

COMPARATIVE EVALUATION OF SPARK AND SciDB

11.1 RegionsFiltering L L

11.2 RegionAggregation o

11.3 RegionHistogram

11.4 RegionMapping e
11.4.1 Single Dimensional spacebinning 0L
11.4.2 Bi-dimensional Binning

11.5 Comparative Evaluation of D1, D2 Binning Strategies

ix

101

102
102
103
103
104
106

107

109
109

110

113
113
115

119

121
121
122
125§
125
128
128
131

133

12 CONCLUSION AND FUTURE WORK 148

REFERENCES 156

Acknowledgments

Iwould first like to express my gratitude to my supervisor Prof. Stefano Ceri as well as to my co-
supervisor Prof. Marco Masseroli for their continuous support, motivation, and patience throughout
my research and doctorate studies. I am very grateful to Prof. Ceri for introducing me to the world of
Genomics. Without his guidance and persistent help, this thesis would not have been possible.

I'would also like to thank Politecnico Di Milano, as well as the GeneData 2020 Project for sup-
porting the funding of this research. Many thanks also go to all the members of DEIB (Department
of Electronics, Information and Bioengineering). I thank the Ph.D. international office especially Mr.
Marco Simonini and Mrs. Elena Cortiana for all their help throughout the past three years. I also have
great gratitude to my colleagues in GeneData 2020 project for team work and for making the work
very pleasant; Pietro Pinoli, Vahid Jalili, Francesco Venco, Stefano Perna, Fernando Palluzzi, and Arif
Canakoglu.

Last but not least, I am deeply grateful to my parents who raised me to become the person I
am today, and continue to support me in all aspects of my life. I also have a deep gratitude to my wife

for her support. Their love and encouragement are at the basis of all my achievements.

xi

Storing and processing genome data will exceed the computing

challenges of running YouTube and Twitter, biologists warn

Erika Check Hayden, July 2015

Introdu&ion

DNA is among the most important scientific discoveries of the last centuryj; it is the founda-
tion of all the forms of life that we known. After the recent advances in technologies for reading the
DNA, the next challenge is understanding the signals which are hidden in the DNA. And given that
DNA behavior is encoded within big data, cooperation between biologists and computer scientists
is much needed. In this chapter we briefly introduce basic notions about DNA organization and pro-
cessing (sequencing technology, types of experiments and public repositories), then we discuss the

motivations and main contributions of the thesis.

1.1 DNA

A proper description of DNA mechanisms is outside the scope of this chapter; we try to give
the fundamental concepts necessary to understand the rest of this dissertation. For a much more

complete yet concise and simple introduction, the reader is invited to read [1].

1.1.1 COMPOSITION AND ORGANIZATION

Deoxyribonucleic acid (DNA) is the molecule that encodes the instructions which are nec-
essary for the development and functioning of viruses and all the cells of living organisms. DNA is

copied and passed from parents to offspring; sometimes errors or mutations happen and are passed

too to future generations, sometimes giving to them advantages. DNA was the first element of life
appearing on Earth and for millions of years it evolved, creating the immense variety of forms of life
that shaped the face of our planet.

DNA is composed of a series of smaller molecules called nucleotides. There are only 4 types of
nucleotides: adenine (abbreviated "A”), thymine (abbreviated "T”), guanine (abbreviated "G”),
and cytosine (abbreviated ”C”). Nucleotides, also called bases from one of their components, are
very similar to each other. Their chemical structure ensures that they can be chained together, form-
ing a series. The order of the bases is fundamental: specific sub-sequences result in different prop-
erties and encode different meanings. In this sense, DNA can be effectively considered a vehicle of
information [1].

In its most common organization, DNA is made of two complementary chains of nucleotides,
called strands. Bounded together, strands take the form of the well-known double-helix. Being read
by the biological machinery of cells in opposite directions, they are conventionally defined positive
and negative. A fundamental property of these two series is that they are specular. In fact, nucleotides
do not only bind chemically to form a chain, but also each base is more weakly connected to another
one in the opposing strand. Specifically, A always binds with T and C always binds with G. In this
way each strand is a reversed representation of the other; when one is damaged, an organism is able

to repair it using the remaining half of the information.

3\
e e " 1] S5
" ‘e Base H I ".'I—H‘Lr;r:g:n
A G T A c G
s
Sugar

IO EOROY OROROE
@ & @® v @ @

Mucleotide Phosphate

Image adapted from: National Human Genome Research Institute.

Figure 1.1.1: Schematic representation of a segment of DNA molecule

The organization of the DNA varies a lot, but in the majority of organisms DNA is split in one
or more packages, known as chromosomes, made by a single DNA molecule plus other elements used
to maintain a specific organization, a bit like a system of ropes and pulleys. Sometimes, specific parts
of a chromosome are so tightly folded that they end up not accessible to other biological machinery

present in a cell, while other times zones that are thousands of bases far between each other in the

same sequence find themselves adjacent in the 3D space; These spatial characteristics are essential for
DNA functioning, as we will see briefly in Chapter 4. The whole genetic content of a cell or organism

is called genome.

1.1.2 FUNCTIONING

To an information scientist, at first sight DNA molecules appears as long strings composed of
only 4 different characters. However, the meaning of such characters and their sequence is puzzling.
Inside the DNA are genes, specific regions that code for proteins, the building blocks of life. In fact,
each triplet of nuclotides, called codon, has a specific meaning: it can signal the start of a gene, the
end of it, or one specific amino acid, the component of proteins. In a very simplified way, genes
are sequences of words, and these words explain to a cell how to build its pieces, including DNA
molecules themselves. This amazing system is known as genetic code [2].

More in details, the genes are copied by the cell machinery into a very similar protein, the
ribonucleic acid or RNA, contain fragments of DNA information and are free to be carried around
the cell. RNA is in fact responsible for transmitting its information to other parts of a cell, for instance
the ribosomes, particles that are in charge of finally building the proteins. This process is called gene
expression.

While fascinating and complex by itself, gene expression does not explain the full functioning
of DNA, and genes represent only a part of it. In fact, some proteins are made to bind to specific
parts of the DNA, enabling (or disabling) different mechanisms: for instance they could stop genes
expression, or else augment it, by increasing the quantity of RNA produced coping a given genes.
In many cases, a combination of proteins is necessary to obtain a certain effect. The machinery that
copies DNA into RNA is also made by proteins. If DNA was a computer program, it would be one

able to modify, regulate and evolve itself and the hardware on which is functioning.

1.1.3 MUTATIONS AND INHERITANCE

As it undergoes many operations and transformations, sometimes DNA can be damaged. In
most cases, the cell uses one of the two strands to “backup” the original information, but sometimes
it is not possible to do it correctly and mutations occur. A mutation can be as little as a single nu-
cleotide taking the place of another one, but sometimes very large sequences are inserted or deleted.
In extreme cases entire chromosomes are affected; for example, the Down Syndrome is caused by
a chromosome duplication. Some mutations, in particular the smallest ones, do not have any effect
and are said to be silent: for example when they happen in non-coding part of the DNA. The genetic
code also has some redundancy, and a’G’ becoming a A’ in a gene could have no effect whatsoever.
Other times mutations are fatal and do not permit the cell to function correctly anymore; in such

cases, cells destroy themselves or generate tumors. In very rare cases, mutations are beneficial: an

organism not only survives, but it has also an advantage. Such changes represent one of the major
elements in evolution.

In fact, mutations and the DNA in general are passed from one generation to another, with a
mechanism known as inheritance. Organisms reproduce in two ways: either one parent is necessary
or two. Single cells and unicellular organisms, like bacteria, reproduce by making a copy of the entire
cell DNA. The cell then splits in two independent cells, each one containing an identical copy of the
same genome. Complex organisms work differently: in this case two cells containing only half of the
original DNA are merged in a new one. Such organisms always have paired chromosomes: one copy
from each parent.

Usually in biology the term mutation specifically refers to changes in the DNA in a fully de-
veloped organism. However, all organisms belonging to the same species have a different DNA since
their birth: the most common variations between individuals are instead known as Single Nucleotide
Polymorphism, or SNP. More precisely, a SNP is a DNA sequence variation occurring commonly
within a population (e.g. 1%) in which a single nucleotide, A, T, C or G, in the genome differs be-
tween members of a biological species or paired chromosomes. Such variations are responsible for
very evident characteristics, like the color of the eyes, but also more subtle ones, like the capacity
to produce a slightly different version of a protein that brings resistance (or weakness) to a specific

disease.

1.2 EXPOSING THE SEQUENCE

1.2.1 DNA SEQUENCING

DNA sequencing is the process of determining the precise order of nucleotides within a DNA
molecule. The first sequencing techniques were invented in the 70s: in 1977 the first complete genome
of a virus was obtained [3]. In 2001, thanks the so called Shotgun technique, the first draft of a com-
plete human genome was produced [4]. Shotgun sequencing was a process designed for analysis of
DNA sequences longer than 1000 base pairs, up to and including entire chromosomes. The method
requires the target DNA to be broken into random fragments; after sequencing individual fragments,

the sequences can be reassembled on the basis of their overlapping regions.

1.2.2 THE NEXT GENERATION SEQUENCING REVOLUTION

Knowing a complete human genome of a specific individual was crucial, but was only the
start. After that success, the throughput requirement of DNA sequencing grew by an unpredicted
extent and led to laboratory automation and process parallelization. Factory-like enterprises called
sequencing centers were created, that house hundreds of DNA sequencing instruments operated

by cohorts of personnel. However, cost and time remained the bottleneck [5].

Cost per Genome

Moore's Law

N I H National Human Genome
Research Institute

genome.gov/sequencingcosts

T

20012002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 1.2.1: Genome processing and analysis process.’

In the last ten years new techniques emerged, making the sequencing process faster, cheaper
and more precise. Such techniques are known as Next Generation Sequencing [6] [7]. Since 2007
the first next-generation sequencing instruments could generate as much data in one day as several
hundred of previously used sequencers, and could be operated by a single person [5]. The new tech-
niques also allowed for the first time the identification of all mutations in an organism at the genomic
level [5].

By the emergence of NGS, the cost of the genome sequencing dropped from a million to
around one thousand dollars, see Fig.1.2.1'. A great amount of sequenced genomes were gener-
ated [8] (the data size trend is doubling with time, Fig.1.3.1.)

Although, the cost of sequencing a genome is around one thousand dollars[9], The average
analysis cost of this sequence could be about1s thousands dollars. Having good engineered tools
may reduce the efforts spent by bio-informaticians and biologists to analyze the genome, and thus
reduce the analysis expense.

A full description of the current sequencing techniques are outside our scope, a nice overview

on the subject can be find in [10]. In general, sequencing follows the following steps:
« The genetic material (DNA or RNA) is fragmented and prepared

« 'The machine isolate the fragments

'https://www.genome.gov/sequencingcosts/

« The nucleotides of the fragment are identified in order, producing a file containing short se-

quences also known as reads

The reads can be aligned to each other in order to obtain the so called genome assembly, a
representation of the original chromosomes from which the DNA originated. Sequence alignment is
a complex topic by itself. A survey of sequence alignment algorithms for next-generation sequencing

canbe foundin [11].

1.2.3 NGS EXPERIMENTS

NGS technology opened the laboratories to many types of biological experiments that permits
to study the state of the genome in a cell in particular conditions.

The plain DNA sequencing, sometimes abbreviated as DNA-seq, possibly restricted to specific
areas of interest, can be used to identify the mutations in a sample respect to a reference genome.
After the reads are produced by the machines, they are aligned to an existing assembly, or reference
genome. The result are specific region coordinates on the reference, accompanied with some data;
these regions are then directly used or further analyzed with various algorithms.

An important type of NGS experiments are the ones based on Chromatin ImmunoPrecipita-
tion (ChIP), known also as ChIP-sequencing or ChIP-seq . These methods make use of antibodies
to isolate the regions on which certain proteins are binding. The result of the experiment is a signal
which is stronger in the points in which the observed protein is binding more. Various algorithms and
tools are used to distinguish the real information from noise, one of the most used is MACS [12].

Another type of experiment we mention is RNA sequencing [13], or RNA-seq, also called
Whole Transcriptome Shotgun Sequencing. It is used to reveal a snapshot of RNA presence and
quantity from a genome at a given moment in time. It is useful to make an estimate of gene expression
in a given condition, but also to detect many phenomena, like gene fusions, i.e. when two genes are
founded creating a new hybrid gene.

With DNase-Seq [14] (DNase I hypersensitive sites sequencing) we indicate amethod used to
identify the location of regulatory regions, based on the genome-wide sequencing of regions sensitive
to cleavage by an enzyme known as DNase I. Such sites are thought to be characterized by being
highly accessible; therefore, a DNase I sensitivity assay is a widely used methodology in genomics for

identifying which regions of the genome are likely to contain active genes.

1.3 GENOMIC DATA REPOSITORIES AND CONSORTIA

In recent years, numerous public repositories were created for storing and categorizing differ-

ent types of genomic data. One of the most well-known is the Gene Expression Omnibus (GEO)

project[15] [16]. GEO s defined as "a public functional genomics data repository supporting MIAME-
compliant data submissions. Array- and sequence-based data are accepted” [17]. The micro-array
were experiments that predate the NGS era, when it was only possible to identify few and very specific
genomic sequences. MIAME stands for Minimum Information About Micro-Array Experiments
and, as the name suggests, MIAME defines a core of data that must be associated to each experiment
[18]. GEO works as a public repository were scientists can upload their data to share their experi-
ments within the biology community. It does not have a strong structure a part from the minimum
requirements: this provides obvious flexibility but it has also clear limits when it comes to organize
or retrieve data from it.

The ENCyclopedia Of DNA Elements project, or in short ENCODYE, is instead more recent
and much more focused on NGS data. The project aims to identify all functional elements in the
human genome sequence and it is organized as "an international consortium of computational and
laboratory-based scientists working to develop and apply high-throughput approaches for detecting
all sequence elements that confer biological function” [19]. The ENCODE Consortium started the
pilot phase in September 2003 with the funding of eight projects aimed to the large-scale identifica-
tion of a variety of functional elements [19]. The results of the pilot phase were published on Nature
in 2007 [20] and the produced Data was mainly stored on GEO or on publicly accessible Web sites
specifically developed by ENCODE Consortium participants. Files with region data are also accessi-
ble though the UCSC Genome Browser, which will be described later in this chapter. An ENCODE
portal [21] was created to index all the data, allowing users to query different data types regardless
of location. Access to metadata associated with each experiment was also provided. The target of
current phase of ENCODE (2012-2016) is to expand the number of cell types, data types and assays
and includes the study of both the human and mouse genomes. The last integrative publication on
the project can be found at [22].

While ENCODE is focused on studying the functioning of the human (and mouse) genome,
the 1000 Genomes Project is the first project to sequence the genomes of a large number of individ-
uals, to provide a "comprehensive resource on human genetic variation” [23] [24]. More precisely,
the goal of the project is to find the most genetic variants, i.e. with frequencies of at least 1% in the
populations studied.

Global Alliance for Genomics and Health [25] is a large consortium of over 200 research insti-
tutions with the goal of supporting voluntary and secure sharing of genomic and clinical data; their
work on data interoperability has produced a data conversion technology [26].

A wide sector of genomic research is focused on studying cancer. In this respect, a very impor-
tant project is the The Cancer Genome Atlas, or TCGA [27]. TCGA is a USA government project
which it waslaunched in 2006. It grew to include samples from 11,000 patients across 33 tumor types

and represents the largest tumor data collection ever to be analyzed for key genomic and molecular

DNA SEQUENCING SOARS

Human genomes are being sequenced at an ever-increasing rate. The 1000 Genomes Project has
aggregated hundreds of genomes; The Cancer Genome Atlas (TGCA) has gathered several thousand; and
the Exome Aggregation Consortium (ExAC) has sequenced more than 60,000 exomes. Dotted lines show
three possible future growth curves.
== Recorded growth | Pl
+=+ Double every 7 months (historical growth rate)

-+ Double every 12 months (lllumina estimate)

Double every 18 months (Moore's law)

Human Genome Project

1st personal genome

w
@
=
<}
=
[
oo
=
©
=
{=
-
o
)
o
£
=
=
@
>
=
[
=
E
=
o

Figure 1.3.1: The trend of PetaBytes of genomic data [8].

characteristics [27]. TCGA data have been used in various studies on comparing cancer types, for

example [28].

1.4 MOTIVATION FOR THESIS WORK

1.4.1 TERTIARY ANALYSIS

So far, the bio-informatics research community has been mostly challenged by primary analy-
sis (production of sequences in the form of short DNA segments, or reads”) and secondary analysis
(alignment of reads to a reference genome and search for specific features on the reads, such as vari-
ants/mutations and peaks of expression); but the most important emerging problem is the so-called
tertiary analysis, concerned with multi-sample processing, annotation and filtering of variants, and
genome browser-driven exploratory analysis. While secondary analysis targets raw data in output
from NGS processors by using specialized methods, tertiary analysis targets processed data in out-
put from secondary analysis and is responsible of sense making, e.g., discovering how heterogeneous
regions interact with each other.

Tertiary processing consists of integrating DNA features; these can be specific DNA variations
(e.g., a variant or mutation in a DNA position), or signals and peaks of expression (e.g., regions with
higher DNA read density). Processing can also give structural properties of the DNA, e.g., break
points (where the DNA is damaged) or junctions (where DNA creates loops, and then locations

which are distant on the 1D string become close in the 3D space), Fig. 1.4.1.

* Analysis of hardware generated data,
machine stats etc.

. * Production of sequence reads and quality
Primary ccores

Analysis J

e QA filtering on raw reads A
Alignment/ Assembly of reads

* Production of sequence reads and quality
Secondary scores

Ana|y5i5 * QA and Variant calling on aligned reads J

¢ Multi-sample processing ™
e QA/QC of variant calls

* Annotation and filtering of variants

e Data aggregation

Tertiary * Association analysis

* Population structure analysis

Analysis

* Genome browser driven exploratory
analysis S

Figure 1.4.1: Genome processing and analysis process.

10

1.4.2 LIMITATIONS IN DATA MANAGEMENT

While gigantic investments are targeted to sequencing the DNA of larger and larger popula-
tions, comparably much smaller investments are directed towards a computational science for mas-
tering tertiary analysis. Bio-informatics resources are dispersed in provisioning a huge number of
tools for ad-hoc processing of genomic data, targeted to specific tasks and adapted to technology-
driven formats, with little emphasis on powerful abstractions, format-independent representations,
and out-of-the-box thinking and scaling. Programming data manipulation operations directly in Python
or Ris customary.

Another source of difficulty comes from “metadata’, which describe DNA region-invariant
properties of the biological sample processed by NGS, i.e., the sample cell line, tissue, preparation
(antibody used), experimental conditions, and in case of human samples the race, gender, and other
phenotype-related traits. This information should be stored in principled data schemes of a “LIMS”
(laboratory information management system) and be compliant with standards, but biologists are
very liberal in omitting most of it, even in well-cured repositories. Thus managing the vast amount

of samples coming from different data sources and from a different data formats is challenging.

1.5 CONTRIBUTIONS

The GENDATA 2020 project was launched in 2013 by a consortium of nine Italian universities,
headed by Politecnico di Milano, to propose and build a new global approach to master the increasing
complexity of genomic data. We attempted instead to empower biologists with a high-level, abstract
data management paradigm, which could empower them with radically new data processing capabil-
ities.

The effort of the project was on tertiary data analysis, the final steps of the current classical
genomic experimental pipeline, after that the DNA has been sequenced (through primary analysis)
and after that specific features of the DNA have been identified (through secondary analysis). We
understood that it is “mission impossible” for basic computer science to have an impact on primary
and secondary analysis: algorithms are biologically driven and already very specialized and efficient.
Tertiary data analysis, instead, lacks good systems for “making sense” of genomic information. This
work has led to the formalization of GenoMetric Query Language (GMQL). My thesis describes the
implementation of GMQL on cloud computing systems.

Animplementation of GMQL over cloud computing technologies brings parallelism efficiency,
through data distribution (using HDFS [29]) and processing distribution (using MapReduce [30],
Spark[31], Flink[32], etc.).

We started to build the GMQL system by translating GMQL script to Apache Pig Latin [33],
this produced the first implementation of GMQL - also: GMQL V1 - and allowed us to test the

11

concept of a query language for genomics in the cloud. GMQL V1 went through several phases of
refinement and optimization of the processing and architecture, until it took its shape that it shown in
this thesis; but the link between GMQL and the implementation language was too tight. Eventually,
we decided that we wanted to have the query language GMQL to be abstracted from the implemen-
tation, so that we could change the implementation platform. This lead to a complete redesign of the
system and to a second implementation of GMQL - also: GMQL V2- based on an abstract repre-
sentation of the language, that could then be implemented using several data flow engines.

The innovations that are present in this thesis are summarized below:

« We propose a paradigm shift based on introducing a very simple data model which mediates all
existing data formats, and a high-level, declarative query language which supports data extrac-

tion as well as the most standard data-driven computations required by tertiary data analysis.

« We built two subsequent systems, GMQL V1 and GMQL V2, thereby achieving the following

advantages:

— The system has a well-designed system architecture with modular organizations; system

modules are easily tested, maintained or replaced.

— Queries are translated into Directed Acyclic Graph (DAG) with operation nodes, that
represents an intermediate representation of GMQL. DAG nodes then are implemented

in any technology.

- High level repository abstraction that is technology-independent, hence several reposi-
tory technologies (local file system, Hadoop File system, Database, MongoDB or; ..) are

made available by simply implementing the repository interface.

— Support a retrieval system that uses inverted index technology [34] for faster file selec-

tion. While samples are organized in heterogeneous datasets.

— The system supports three implementations, on Flink, Spark and SciDB.

« To increase the parallelism of query processing algorithms using data flow engines, we pro-
posed new genomic processing algorithms using dynamic binning of the genomic data. Also
versions of the binning algorithms was developed to take advantage of the nature of SciDB, a

data base based on multidimensional arrays, by making fast access to slices of the data.

« Algorithms and system optimizations has been proposed and comparisons has been conducted.
Performance comparison are conducted for GMQL version one to GMQL version two, Flink

to Spark, and Spark to SciDB.

12

« Implemented a pipeline that uses GMQL for studying gene expression in normal and cancer
cells in the context of DNA 3D structure using big data (about twenty available tissues and

thousands of patients samples are considered in the study).

1.6 STRUCTURE OF THIS THESIS

This thesis consists of three parts. The first part is called "GMQL: New paradigm for Data-
centric Genomic Computing” and includes three chapters. Chapter 2 presents the GDM data model;
Chapter 3 presents the GMQL language and its operations definitions, Chapter 4 shows GMQL in
use on a biological application.

The second part of the thesis is called "GENDATA: System Architecture for Big Data Pro-
cessing” and also includes three chapters. Chapter 5 provides an introduction to cloud computing
technologies used in this thesis work, along with a short introduction to SciDB. Chapter 6 discusses
how the GMQL implementation evolved from V1 to V2, and describes the architecture of the repos-
itory and the deployment modes of the system. Chapter 7 discusses the implementation of GMQL
domain-specific operations with specific algorithms that uses binning strategy.

The third part of the thesis is called "EVALUATION: Comparing several Implementations of
GENDATA” and deals with performance analysis and evaluation. Chapter 8 shows the evaluation of
GMAQL V1, Chapter 9 shows the evaluation of GMQL V2 along with a comparison to GMQL V1,
Chapter 10 shows a comparison between the two implementations in GMQL V2 (Apache Spark [31]
and Apache Flink [32]), and finally Chapter 11 shows a comparison between the implementations
in Spark [31] and SciDB [35].

1.7 'THESIS PUBLICATIONS

This thesis includes many contributions which have been recently published:

The vision of GenData 2020 is presented in *: Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco
E. Data management for next generation genomic computing. Proceedings of the 19th Int. Conf.
on Extending Database Technology, Bordeaux, March 2016.

The GDM model is presented in *: Ceri S, Kaitoua A, Pinoli P, Masseroli M. Genomic data
modeling for interoperability and next generation genomic data management. In: Rojas I, Ortuiio
F, editors. Proceedings of the 4th International Work-Conference on Bioinformatics and Biomedical
Engineering (WBBIO 2016), April 20-22, 2016; Granada, SP. 2016. p. 1-4.

GMAQL as a method for genomic processing is presented in: Masseroli M, Kaitoua A, Pinoli P,
Ceri S. Modeling and interoperability of heterogeneous genomic big data for integrative processing

and querying. , Methods 2016. DOL: 10.1016/j.ymeth.2016.09.002.

*Names are sorted by last name

13

GMQL is presented in: Masseroli M, Pinoli P, Venco F, Kaitoua A, Jalili V, Palluzzi F, Muller H,
Ceri S. GenoMetric Query Language: A novel approach to large-scale genomic data management.
Bioinformatics journal 2015; 31(12): 1881-1888. DOI: 10.1093 /bioinformatics/btvo48.

GMQL V1 is presented in *: Ceri S, Kaitoua A, Masseroli M, Pinoli P, Venco F. Data man-
agement for heterogeneous genomic datasets. IEEE/ACM Transactions on Computational Biology
and Bioinformatics 2016. DOI: 10.1109/TCBB.2016.2576447

GMAQL V2 is presented in: Kaitoua A., Pinoli P., Bertoni M., Ceri S. Framework for Support-
ing Genomic Operations, IEEE Transactions on Computers 2016 (in press) DOI 10.1109/TC.2016.2603980

The comparison between Flink and Spark is presented in *: Bertoni M., Ceri S., Kaitoua A.,
Pinoli P. Evaluating Cloud Frameworks on Genomic Applications. 1EEE Big Data Conference,
Santa Clara, Nov. 2015.

The comparison between Spark and SciDb is in ?: Cattaneo S., Ceri S., Kaitoua A., Pinoli P.
Evaluating Genomic Big Data Operations on SciDB and Spark, submitted to IEEE Big Data Con-

ference, Washington, Nov. 2016.

14

Partl

GMQL: New Paradigm for Data-Centric

Genomic Computing

15

Without big data analytics, companies are blind and deaf,
wandering out onto the Web like deer on a freeway.

Geoftrey Moore

Genomic Data Model

A paradigm shift in tertiary genomic data management is brought by the Genomic Data Model
(GDM)), a simple data model which links genomic features to their associated metadata. This model
is able to homogeneously describe semantically heterogeneous data and makes the ground for pro-
viding data interoperability, which can be achieved through a high-level, declarative query language
for genomic big data. This model is published in [36, 37]

2.1 THE GENomic DAaTA MoDEL (GDM)

The Genomic Data Model [38], is based on two entities: the genomic region and the metadata.
Regions (upper part of Fig. 2.1.1) have a normalized schema (i.e., a table of typed attributes) where
the first five attributes are fixed and the next attributes are variable and reflect the “calling process” that
produced them. The fixed attributes include the sample identifier and the region coordinates (the
chromosome whom the region belongs to, its left and right ends, and the strand - i.e., the “+” or “-” of
the two DNA strands on which the region is read, and “*” if the region is not stranded). The model
can be adapted to the rare cases of regions across chromosomes. Metadata (middle part of Fig. 2.1.1)
are even simpler. They are arbitrary, semi-structured attribute-value pairs, extended to include the
sample identifier. We consider this model a paradigm shift, because a single model describes, though
simple concepts, all types of processed data (peaks, signals, mutations, DNA sequences, loops, break

points).

16

id, (chr, left, right, strand), (p-value)
(chr1, 21070, 22375, *), (0.00025)
(chr1, 22700, 24300, *), (0.00057)
(chr2, 51050, 52903, *), (0.01500)
(chr1, 20550, 21900, *), (0.01204)
(), ()

chr2, 51700, 53140, 0.00020

, antibody_target, H3K4me1
, cell, K562

, data_type, ChiP-seq
, treatment, none

, antibody_target, CTCF

, cell, K562

, data_type, ChiP-seq

chrl

1,
1,
1,
2,
2,
id, attribute, value
1
1
1
1
2
2
2

chr2

0.00025 0.00057 0.01204 id=1
id=2
0.01204 0.00020

Figure 2.1.1: Genomic Data Model, data files.

The data model is completed by a constraint: data samples can be included into a named
dataset when their genomic regions have the same schema. Thus, Fig. 2.1.1 shows the PEAKS dataset
for “ChIP-Seq” data with two samples (1 and 2) whose regions fall within two chromosomes (1 and
2) and whose variable part of the schema consists of the attribute P_VALUE (each peak’s statistical
significance). Note that the sample ID provides a many-to-many connection between regions and
metadata of the same sample; e.g., sample 1 has 3 regions and 4 metadata attributes, sample 2 has 2
regions and 3 metadata attributes; regions of the first and the second sample are not stranded (star
means not stranded). Metadata tell us that sample 1 has cell “Ks62” and sample 2 has an antibody
target of “CTCEF”. This example is simple, but we can associate a schema with arbitrarily complex pro-
cessed data, where typed and named attributes serve the purpose of any numerical or statistical opera-
tion across compatible values. An important operation is the schema merging, which allows merging
datasets with different schemata (the operation builds a new schema such that fixed attributes are
in common and variable attributes are concatenated; in this way, we provide interoperability across

heterogeneous processed data.

2.2 EXAMPLES

Each dataset is stored within GenData 2020 using two tables, one for regions and one for meta-

data; an example of the two tables for representing a particular experiment, called ChIP-seq, is shown

17

MUTATIONS

schema = ID, (CHR, LEFT, RIGHT, STRAND), A, G, C, T,
del, ins, inserted, ambiguos, Max, Error,
A2T, A2C, A2G, C2A, C2G, C2T

instance = 1, (“chrl”, 917179, 917180, “*"), 0, 0, 0, O,
i, o, .7, #,”, 0, 0, O, O, O, O, O, O

RNA-seq

schema = ID, (CHR, LEFT, RIGHT, STRAND), source, type,
score, frame, genelID, transcriptionID,
RPKM1, RPKM2, iIDR

instance = 1, (chr8, 101960824, 101960847, *), “GencodeV10”,
“transcript”, 0.026615, NULL, “ENSG00000164924.11",
“ENST00000418997.1”, 0.209968, 0.193078, 0.058

Figure 2.2.1: Examples of schema with one instance for two different types of processed data;

coordinates are enclosed within two records.

in Fig.2.1.1. Note that the region value has an attribute P_VALUE of type float (representing how sig-
nificant is the calling of the peak of expression in that genomic region) note also that the ID attribute
is present in both tables and provides a many-to-many connection between regions and metadata of
asample; e.g., sample 1 has 3 regions and 4 metadata attributes, sample 2 has 2 regions and 3 metadata

attributes’. The regions of the two samples are within chromosomes 1 and 2 of the DNA, and both

are not stranded.

While the above example is simple, GDM supports the schema encoding of any processed data
ChIP-seq, DNA-seq, RNA-seq, ChIA-PET, VCF, and SAM/BAM for-

mats. We use GDM also for modeling annotations, i.e. regions of the genome with known properties

type, e.g, files for mutations,

(such as genes, with their exons and introns). Schema encodings and one exemplar instance of mu-

tations and RNA-seq data samples are decribed in Fig.2.2.1.

"Note that the quadruple (id, chr, left, right) is not a key of the region table (because a sample can have multiple re-
gions with the same coordinates), and similarly the pair (id, attribute) is not a key of the metadata table (because metadata

attributes can be multi-valued).

18

I firmly believe that the next great breakthrough in bioscience
could come from a 15-year-old who downloads the human

genome in Egypt.

Thomas Friedman

The GenoMetric Query Language

The main abstraction for querying genomic dataset have been formalized as a new query lan-
guage, called GenoMetric Query Language (GMQL); the name derives from its ability of computing
distance-related queries along the genome, seen as a sequence of positions. GMQL is a closed alge-
bra over datasets: results are expressed as new datasets derived from their operands. Thus, GMQL
operations compute both regions and metadata, connected by IDs; they perform schema merging
when needed [39]. A GMQL query (or program) is expressed as a sequence of GMQL operations

with the following structure:

<variable> = operation(<parameters>) <variables>

where each variable stands fora GDM dataset. Operations are either unary (with one input variable),

or binary (with two input variables), and construct one result variable.

3.1 GENERAL PROPERTIES

GMAQL operations form a closed algebra: results are expressed as new datasets derived from
their operands. All operations produce aresult dataset consisting of several samples, whose identifiers
are either inherited by the operands or generated by the operation. Each operation separately applies

to metadata and to regions; the region-based part of an operation computes the result regions, the

19

metadata part of the operation computes the associated metadata so as to trace the provenance of
each resulting sample; identifiers preserve the many-to-many mapping of regions and metadata.

Most GMQL operations, although defined upon two connected data structures, are extension
of classic relational algebra operations, twisted to the needs of genomics; they are denoted as rela-
tional. Three domain-specific operations, called COVER, (distal) JOIN and MAP, significantly extend
the expressive power of classic relational algebra.

The main design principles of GMQL are relational completeness and orthogonality. Complete-
ness is guaranteed by the fact that classical algebraic manipulations are all supported, suitably ex-
tended and adapted to comply with region-based calculus. Orthogonality is achieved because no op-
erator can be defined as a suitable expression of all other operators; note that the classic abstractions
of grouping is supported, with the same semantics, in the unary operations GROUP and COVER, and
similarly joining is supported, with the same semantics, in the binary operations JOIN, MAP, MERGE
and DIFFERENCE.

Compared with languages which are currently in use by the bioinformatic community, GMQL
is declarative (it specifies the structure of the results, leaving its computation to each operation’s imple-
mentation) and high-level (one GMQL query typically substitutes for a long program which embeds
calls to region manipulation libraries); the progressive computation of variables resembles other alge-
braic languages (e.g. Pig Latin, [33]). For all these features, GMQL may inspire a change of paradigm

in genomics, along a direction that was indicated long ago by Edward T. Codd’s seminal papers.

3.2 PREDICATES EVALUATION

Parameters of several operations include predicates, used to select and join samples; predicates
are built by arbitrary Boolean expressions of simple predicates, as it is customary in relational algebra.
The region attributes can refer positionally to the schema, i.e., $0 denotes the first attribute $1to the

second, and so on. Predicates are either evaluated in the context of regions or of metadata, as follows:

« Predicates on metadata have an existential interpretation over samples: they select the entire
sample if it contains some metadata attributes such that the predicate evaluation on their values
is true. Formally, for each sample, a simple predicate p expressed as (A comp V) on metadata
M is defined as:

p <= I (a,v) EM: (a;=A) A (v, comp V)

When a predicate on metadata uses an attribute which is missing, the predicate is unknown;
we use three-value (i.e. true, false, unknown) logic for metadata predicates p, and we se-
lect samples s for which p(s) is true given the above interpretation. The special predicate

missing(A) is true if the attribute A is not present in M.

20

« Predicates on regions have a classic interpretation: they select the regions where the predicate
is true. Legal predicates must use the attributes in the region’s schema; when a predicate is
illegal, the query is also illegal, and compilation fails." The evaluation of predicates involving
two or more regions (essentially join predicates) is defined only when regions have compatible
strands; positive and negative strands are incompatible, but they are both compatible with a

missing strand.

3.3 SYNTACTIC CONVENTIONS

Operations have the general syntax:
OUT=0PERATOR (parm-1;..parm-N [; n-parm-1]..[;n-parm-M]) IN-1 [IN-2];
Where

« All operations produce an output OUT; unari operations apply to a single dataset (IN-1), bi-
nary operations apply to two datasets (IN-1 and IN-2).

« parm denotes default unnamed parameters for the OPERATOR. The semantic of these param-

eters is inferred from their position.

« n-parm: optional parameters that have to be specified in the form of pairs "name: value".
The semantics of each one of these parameters is inferred from its name, therefore their posi-

tion is irrelevant.
Attributes exist in metadata and regions, denoted as follows:

o <attribute-name>: any-string(.any-string)* for a generic metadata attribute

name.

o <field-name> : any-string(.any-string)* for a generic attribute in the region

schema.

The prefix 1ist denotes a comma-separated list of elements, e.g. <list-field-name> or <list-attribute-

name>. For what concerns case sensitivity:
« Region and field names are case sensitive: e.g. pvalue != pValue != PVALUE

« GMQL keywords are not case sensitive: e.g. UPSTREAM == upstream ==UpStReAm

'Region predicates may include metadata attributes, but in such case they are legal iff the metadata attribute is single-
valued and not null, and invalid otherwise; in such case, for a given sample, metadata attributes are equivalent to constant
values.

21

3.4 REeLATIONAL GMQL OPERATIONS

We next describe relational operations; they include six unary operations (SELECT, PROJECT,
EXTEND, MERGE, GROUP and SORT) and two binary operations (UNION and DIFFERENCE).

3.4.1 SELECT

<82> = SELECT([<pm>] [;] [region: <pr>][;][semijoin: <ps>]) <S1>;

Where:

« <pm>: Expression whose atomic predicates are in the form: alribute-name (== | > | <
| >= | <=) (‘value’ | decimalNumber). Atomic predicates are concatenated by
means of the OR, AND and NOT operators; e.g. antibody=="CTCF’ AND NOT (weight

> 100 OR disease == ‘cancer’).

« <pr>: Expression whose atomic predicates are in the form: field-name (== | > | < | >=
| <=) (‘value’ | decimalNumber). Atomic predicates are concatenated by means of
the OR, AND and NOT operators; e.g. pvalue < 0.001 OR label==’promoter’

« <ps>: Semi-join expression in the form: <list-attribute-name> IN <dataset>;e.g.
antibody,cell,treatment NOT IN HG_BROAD

It keeps in the result all the samples which existentially satisfy the predicate on metadata <pm>
and then selects those regions of selected samples which satisfy the predicate on regions <pr>; a
sample is legal also when it contains no regions as result of a selection. Identifiers of selected samples
of the operand S1 are assigned to the result Sa.

Semi-join clauses are used to further select samples; they have the syntax: <A1>..<An>
IN <extV>. Each attribute occurrence Ai corresponds to a predicate p(a;, a;), where 4; and g; are
attributes with the same name. a; belongs to the schema of A, g; to the schema of extV. The predicate
is true for a given sample s; of S1 with attribute g; iff there exists a sample in the variable denoted as
extV with an attribute 4; and the two attributes a; and g; share at least one value. Formally, if M

denotes the metadata of samples of extV, then:

p(“iaaj) — (ai,v,») € M;, (apvj) € Mg v = v;

A semi-join clause can be constructed as the conjunction of the above simple metadata predicates
that refer to the same variable extV. Semi-joins are used to connect variables, e.g., in the example

below:

QUT = SELECT(semijoin: antibody_target IN EXP2) EXP1;

22

samples of EXP1 are selected only if they have the same antibody_target value as in at least one
sample of EXP2.

3.4.2 PROJECT

<82> = PROJECT([<Ar1> .. <Arm>]
[;] [metadata: [<Am1> .. <Amn>]
[;] [region_update: <Url> AS <f1>, .., <Urh> AS <fh>]
[;] [metadata_update: <Uml> AS <h1>, .., <Umk> AS <fk>]) <S1>;

It keeps in the result the metadata (Am) and region (Ar) attributes expressed as parameters®. It can
also be used to build new attributes as scalar expressions £i (e.g., for metadata the age from the
birthdate; forregions, the Length of aregion as the difference betweenitsright and left ends).
If the name of existing schema attributes are used, the operation updates region attributes to new

values. Identifiers of the operand S1 are assigned to the result S2.

3.4.3 EXTEND

<S2> = EXTEND(<Am1> AS <gl>, .., <Amn> AS <gn>) <S1>;

It generates new metadata attributes Am as result of aggregate functions g applied to region attributes;
aggregate functions are applied sample by sample, and resulting tuples are triples with the sample
identifier, the attribute name Am, and the computed aggregate value. The supported aggregate func-
tions include COUNT (with no argument), BAG (applicable to attributes of any type) and SUM, AVG,
MIN, MAX, MEDIAN, STD (applicable to attributes of numeric types). E.g., in the example below:

OUT = EXTEND(RegionCount AS COUNT, MinP AS MIN(Pvalue)) EXP;

for each sample of EXP, two new metadata attributes are computed, RegionCount as the number of

sample regions, and MinP as the minimum Pvalue of the sample regions.

3.4.4 GROUP

<S2> = GROUP([<Am1> .. <Amn>]
[;] [meta_aggregate: <Gml> AS <gl1>, .., <Gmn> AS <gn>]
[;]1[region_group: <Arl> .. <Arn>]
[;] [region_aggregate: <Gril> AS <gl>, .., <Grn> AS <gn>]) <S1>;

%A syntactic variant (using the keywords ALL. BUT) allows to specify only the attributes that are removed from the
result; this variant is very useful with datasets having hundreds of metadata.

23

It is used for grouping both regions and metadata according to distinct values of the grouping at-
tributes. For what concerns metadata, each distinct value of the grouping attributes is associated
with an output sample, with a new identifier explicitly created for that sample; samples having missing
values for any of the grouping attributes are discarded. The metadata of output samples, each corre-
sponding a to given group, are constructed as the union of metadata of all the samples contributing to
that group; consequently, metadata include the attributes storing the grouping values, that are com-
mon to each sample in the group. New grouping attributes Gm are added to output samples, storing
the results of aggregate function evaluations over each group. Examples of typical metadata grouping
attributes are the Classification of patients (e.g, as cases or controls) or their Disease values.

When the grouping attribute is multi-valued, samples are partitioned by each subset of their
distinct values (e.g., samples with a Disease attribute set both to 'Cancer' and 'Diabetes' are
within a group which is distinct from the groups of the samples with only one value, either ' Cancer'
or 'Diabetes'). Formally, two samples s; and s; belong to the same group, denoted as s;7,s;, if and

only if they have exactly the same set of values for every grouping attribute A, i.e.
sivs = {v|3(A,v) € M;} = {v|3(4,v) € M;}

Given this definition, grouping has important properties:
o reflexive: s;y,s;
o commutative: s;y,5; <= ;7,8
o transitive: s;7,5; A\ S y,8i = SkY4Si

When grouping applies to regions, by defaultitincludes the grouping attributes chr, left, right,
strand; this choice corresponds to the biological application of removing duplicate regions, i.e. re-
gions with the same coordinates, possibly resulting from other operations, and ensures that the result
is a legal GDM instance. Other attributes may be added to grouping attributes (e.g., RegionType);
aggregate functions can then be applied to each group. The resulting schema includes the attributes
used for grouping and possibly new attributes used for the aggregate functions. The following exam-

ple is used for calculating the minimum Pvalue of duplicate regions:

OUT = GROUP(Pvalue AS MIN(Pvalue)) EXP;

3.4.5§ MERGE

<82> = MERGE ([groupby: <AM1>, ..,<AMn>]) <S1>;

It builds a dataset consisting of a single sample having as regions all the regions of the input samples

and as metadata the union of all the attribute-values of the input samples. When a GROUPBY clause

24

is present, the samples are partitioned by groups, each with distinct values of grouping metadata at-
tributes (i.e,, homonym attributes in the operand schemas) and the cover operation is separately
applied to each group, yielding to one sample in the result for each group, as discussed in Section

3.4.4.

3.4.6 ORDER

<S2> = ORDER([<Am1> [DESC], .., <Amn> [DESC]]
[;]1[meta_top: <k> | [;] meta_topg: <k>]
[;] [region_order: <Ar1> [DESC], .., <Arn> [DESC]]
[;] [region_top: <k> | [;] region_topg: <k>]) <S1>;

It orders either samples, or regions, or both of them; order is ascending as default, and can be turned
to descending by an explicit indication. Sorted samples or regions have a new attribute Order, added
to either metadata, or regions, or both of them; the value of Order reflects the result of the sorting.
Identifiers of the samples of the operand S1 are assigned to the result S2. The clause TOP <k> extracts
the first k samples or regions, the clause TOPG <k> implicitly considers the grouping by identical
values of the first n — 1 ordering attributes and then selects the first k samples or regions of each

group. The operation:

OUT = ORDER(RegionCount; meta_top: 5;
region_order: MutationCount DESC; region_top: 7) EXP;

extracts the first 5 samples on the basis of their region counter and then, for each of them, 7 regions

on the basis of their mutation counter.

3.4.7 UNION

<§3> = UNION() <S1> <S2>;

It is used to integrate possibly heterogeneous samples of two datasets within a single dataset; each
sample of both input datasets contributes to one sample of the result with identical metadata and
merged region schema. New identifiers are assigned to each sample.

Two region attributes are considered identical if they have the same name and type; the merg-
ing of two schemas is performed by projecting the schema of the second dataset over the schema of
the first one. Fields of the first dataset which are missing in the second one are set to NULL value, for
all the regions of the second operator. For what concerns metadata, attributes are prefixed with the

strings LEFT or RIGHT so as to trace the dataset to which they refer.

25

3.4.8 DIFFERENCE

<S3> = DIFFERENCE([joinby: <Attl>, .., <Attn>]) <S1> <S2>;

This operation produces a sample in the result for each sample of the first operand S1, with identical
identifier and metadata. It considers all the regions of the second operand, that we denote as negative
regions; for each sample s1 of S1, it includes in the corresponding result sample those regions which
do not intersect with any negative region.

When the JOINBY clause is present, for each sample s1 of the first dataset S1 we consider as
negative regions only the regions of the samples s2 of S that satisfy the join condition. Syntactically,
the clause consists of a list of attribute names, which are homonyms from the schemas of S1 and of
S2; the strings LEFT or RIGHT that may be present as prefixes of attribute names as result of binary
operators are not considered for detecting homonyms. We formally define a simple equi-join pred-
icate a; == aj, but the generalization to conjunctions of simple predicates is straightforward. The

predicate is true for given samples s1 and s2 iff the two attributes share at least one value, e.g.:

p(aiaaj) <~ El (ahvi) € MU (aj>vj) € Mz V= 1)j
The operation:
OUT = DIFFERENCE(joinby: antibody_target) EXP1 EXP2;

extracts for every pair of sampless,, s, of EXP1 and EXP2 having the same value of ant ibody_target

the regions that appear in s, but not in s,; metadata of the result are the same as the metadata of s,.

3.5 DOMAIN-SPECIFIC OPERATIONS

We next focus on domain-specific operations, which are more specifically responding to ge-
nomic management requirements: the unary operation COVER and the binary operations MAP and
JOIN.

3.5.1 COVER

<S2> = COVER/FLAT/SUMMIT/HISTOGRAM (<minAcc>, <maxAcc>
[; groupby: <Aml>, .., <Amn>]
[; aggregate: <Ari1> AS <gl>, .., <Arn> AS <gn>]) <S1>;

The COVER operation responds to the need of computing properties that reflect region’s intersec-
tions, for example to compute a single sample from several samples which are replicas of the same
experiment, or for dealing with overlapping regions (as, by construction, resulting regions are not

overlapping.)

26

Sample 1

Sample 2

Sample 3

1 2 3 2 1 2 1 Accumulation
Indexes

Cover(2,2)

Cover(1,2)

Cover(2,3)

Figure 3.5.1: Accumulation index and COVER results with three different minAcc and maxAcc
values.

Let us initially consider the COVER operation with no grouping; in such case, the operation
produces a single output sample, and all the metadata attributes of the contributing input samples in
S1 are assigned to the resulting single sample s in S2. Regions of the result sample are built from the

regions of samples in S1 according to the following condition:

« Each resulting region r in S2 is the contiguous intersection of at least minAcc and at most
maxAcc contributing regions r; in the samples of S1%; minAcc and maxAcc are called accu-

mulation indexes®.

Resulting regions may have new attributes Ar, calculated by means of aggregate expressions over the
attributes of the contributing regions. Jaccard Indexes® are standard measures of similarity of
the contributing regions r;, added as default region attributes. When a GROUPBY clause is present,
the samples are partitioned by groups, each with distinct values of grouping metadata attributes (i.e.,
homonym attributes in the operand schemas) and the cover operation is separately applied to each
group, yielding to one sample in the result for each group, as discussed in Section 3.4.4.

For what concerns variants:

« FLAT returns the union of all the regions which contribute to the COVER (more precisely, it
returns the contiguous region that starts from the first end and stops at the last end of the

regions which would contribute to each region of the COVER).

>When regions are stranded, cover is separately applied to positive and negative strands; in such case, unstranded
regions are accounted both as positive and negative.

*The keyword ANY can be used as maxAcc, and in this case no maximum is set (it is equivalent to omitting the
maxAcc option); the keyword ALL stands for the number of samples in the operand, and can be used both forminAcc
and maxAcc. Cases when maxAcc is greater than ALL are relevant when the input samples include overlapping regions.

SThe JaccardIntersect indexis calculated as the ratio between the lengths of the intersection and of the union
of the contributing regions; the JaccardResult index s calculated as the ratio between the lengths of the result and of
the union of the contributing regions.

27

Sample 1

Sample 2

Sample 3

1 2 3 2 1 2 1 Accumulation
Indexes

Cover(2,3)

Summit(2,3)

Flat(2,3)

Histogram(2,3)

Figure 3.5.2: Accumulation index and COVER results with three different minAcc and maxAcc
values. In addition to histogram, Flat, and Summit.

« SUMMIT returns only those portions of the result regions of the COVER where the maximum
number of regions intersect (more precisely, it returns regions that start from a position where
the number of intersecting regions is not increasing afterwards and stops at a position where

either the number of intersecting regions decreases, or it violates the max accumulation index).

« HISTOGRAM returns the nonoverlapping regions contributing to the cover, each with its accu-

mulation index value, which is assigned to the AccIndex region attribute.

Example. Fig. 3.5.1 and Fig.3.5.2 show three applications of the COVER operation on three samples,
represented on a small portion of the genome; the figure shows the values of the accumulation index
and then the regions resulting from setting the minAcc and maxAcc parameters respectively to (2, 2),
(1,2),and (2,3).

The following COVER operation produces output regions where at least 2 and at most 3 regions
of EXP overlap, having as resulting region attributes the min pValue of the overlapping regions and

their Jaccard indexes; the result has one sample for each input cell.

RES = COVER(2, 3; groupby: cell; aggregate:
pValue AS MIN(pValue)) EXP;

3.5.2 Map

<83> = MAP([<Ari1> AS <gi>, .., <Arn> AS <gn>]
[;1[joinby: <Aml1>, .., <Amn>]) <S1> <S2>;

28

MAP is a binary operation over two datasets, respectively called reference and experiment. Let us
consider one reference sample, with a set of reference regions; the operation computes, for each sam-
ple in the experiment, aggregates over the values of the experiment regions that intersect with each
reference region; we say that experiment regions are mapped to reference regions. The operation pro-
duces a matrix structure, called genomic space, where each experiment sample is associated with a
row, each reference region with a column, and each matrix row is a vector of numbers®. Thus, a MAP
operation allows a quantitative reading of experiments with respect to the reference regions; when
the biological function of the reference regions is not known, the MAP helps in extracting the most
interesting regions out of many candidates.

We first consider the basic MAP operation, without JOINBY clause. For a given reference sam-
ples,, let R, be the set of its regions; for each sample s, of the second operand, withs, =< id,, R,, M, >
(according to the GDM notation), the new sample s, =< id,, R,, M, > is constructed; id, is gener-
ated from id, and id,’, the metadata M, are obtained by merging metadata M, and M,, and the regions
R, = {< c,.f, >} are created such that, for each region r, € R,, there is exactly one regionr, € R,
having the same coordinates (i.e., ¢, = ¢,) and having as features f, obtained as the concatenation of
the features f, and the new attributes computed by the aggregate functions g specified in the operation;
such aggregate functions are applied to the attributes of all the regions r, € R, having a non-empty
intersection with r,. A default aggregate Count counts the number of regions r, € R, having a non-
empty intersection with r,. For each region, a field named count_LeftDSName_RighDSName is
added, storing the result of Count aggregate. The operation is iterated for each reference sample, and
generates a sample-specific genomic space at each iteration.

When the JOINBY clause is present, for each sample s1 of the first dataset S1 we consider the re-

gions of the samples s2 of S2 that satisfy the join condition. Syntactically, the clause consists of a list of
attribute names, which are homonyms from the schemas of S1 and of S2; the strings LEFT or RIGHT
that may be present as prefixes of attribute names as result of binary operators are not considered for
detecting homonyms.
Example. Fig. 3.5.3 shows the effect of this MAP operation on a small portion of the genome; the
input consists of one reference sample with 3 regions and three mutation experiment samples, the
output consists of three samples, each with the same regions as the reference sample, whose features
corresponds to the number of mutations which intersect with those regions. The result can be inter-
preted asa (3 X 3) genome space.

In the example below, the MAP operation counts how many mutations occur in known genes,

where the dataset EXP contains DNA mutation regions and GENES contains the genes.

®Biologists typically consider the transposed matrix, because there are fewer experiments (on columns) than regions
(on rows). Such matrix can be observed using heat maps, and its rows and/or columns can be clustered to show patterns.

"The implementation generates identifiers for the result by applying hash functions to the identifiers of operands, so
that resulting identifiers are unique; they are identical if generated multiple times for the same input samples.

29

| | | ‘ Reference

. R | sample 1

I | N D N | sample 3

| | Sample 2

3 3 S Output 1
| 2 | | 2 | 2 Output 2
| [| [2] 0 Qutput 3

Figure 3.5.3: Example of map using one sample as reference and three samples as experiment,
using the Count aggregate function.

RES = MAP() GENES EXP;

3.5.3 JOIN

<S3> = JOIN([<genometric-pred>][;] [output: <coord-gen>]
[;] [joinby: <Aml1>, .., <Amn>]) <S1> <S2>;

The JOIN operation applies to two datasets, respectively called anchor (the first one) and experi-
ment (the second one), and acts in two phases (each of them can be missing). In the first phase, pairs
of samples which satisfy the joinby predicate (also called meta-join predicate) are identified; in the
second phase, regions that satisfy the genometric predicate are selected. The meta-join predicate al-
lows selecting sample pairs with appropriate biological conditions (e.g., regarding the same cell line
or antibody); syntactically, it is expressed as a list of homonym attributes from the schemes of S1
and S2, as previously. The genometric join predicate allows expressing a variety of distal conditions,
needed by biologists. The anchor is used as startpoint in evaluating genometric predicates (which are

not symmetric). The join result is constructed as follows:

« The meta-join predicates initially selects pairs s, of S1 and s, of S2 that satisfy the joinby con-
dition. If the clause is omitted, then the Cartesian product of all pairs s, of S1 and s, of S2 are
selected. For each such pair, a new sample s,, is generated in the result, having an identifier id,,,

generated from id, and id,, and metadata given by the union of metadata of s, and s,.

+ Then, the genometric predicate is tested for all the pairs < 7,7, > of regions, with r, € s,
and r; € s,, by assigning the role of anchor region, in turn, to all the regions of s1, and then
evaluating the genometric predicate condition with all the regions of s2. From every pair <

r;,7; > that satisfies the join condition, a new region is generated in s,,.

30

From this description, it follows that the join operation yields results that can grow quadratically
both in the number of samples and of regions; hence, it is the most critical GMQL operation from a
computational point of view.

Genometric predicates are based on the genomic distance, defined as the number of bases
(i, nucleotides) between the closest opposite ends of two regions, measured from the right end of
the region with left end lower coordinate.® A genometric predicate is a sequence of distal conditions,

defined as follows:

« UP/DOWN® denotes the upstream and downstream directions of the genome. They are inter-
preted as predicates that must hold on the region s, of the experiment; UP is true whens, is in
the upstream genome of the anchor region'®. When this clause is not present, distal conditions

apply to both the directions of the genome.

« MD(K)'! denotes the minimum distance clause; it selects the K regions of the experiment at
minimal distance from the anchor region. When there are ties (i.e., regions at the same distance
from the anchor region), regions of the experiment are kept in the result even if they exceed

the K limit.

« DLE(N)'*denotes the less-equal distance clause; it selects all the regions of the experiment such

that their distance from the anchor region is less than or equal to N bases*®.

« DGE(N)'* denotes the greater-equal distance clause; it selects all the regions of the experiment

such that their distance from the anchor region is greater than or equal to N bases.

Genometric clauses are composed by strings of distal conditions; we say that a genometric clause
is well-formed iff it includes the less-equal distance clause; we expect all clauses to be well formed,
possibly because the clause DLE (Max) is automatically added at the end of the string, where Max is
a problem-specific maximum distance.

Example. The following strings are legal genometric predicates:

8Note that with our choice of interbase coordinates, intersecting regions have distance less than o and adjacent regions
have distance equal to o; if two regions belong to different chromosomes, their distance is undefined (and predicates based
on distance fail).
°Also: UPSTREAM, DOWNSTREAM.
1°Upstream and downstream are technical terms in genomics, and they are applied to regions on the basis of their strand.
For regions of the positive strand (or for unstranded regions), UP is true for those regions of the experiment whose right
end is lower than the left end of the anchor, and DOWN is true for those regions of the experiment whose left end is higher
than the right end of the anchor. (Remaining regions of the experiment are overlapping with the anchor region.) For the
negative strand, ends and disequations are exchanged.
"Also: MINDIST, MINDISTANCE.
12Als0: DIST <= N, DISTANCE <= N.
13DLE(-1) is true when the region of the experiment overlaps with the anchor region; DLE(o) is true when the region
of the experiment is adjacent to or overlapping with the anchor region.
*Also: DIST >= N, DISTANCE >= N.

31

B)

Figure 3.5.4: Different semantics of genometric clauses due to the ordering of distal conditions;
excluded regions are gray.A: MD(1), DGE(100); B: DGE(100), MD(1)

DGE(500), UP, DLE(1000), MD(1)

DGE(50000), UP, DLE(100000), (S1.left - S2.left > 600)
DLE(2000), MD(1), DOWN

MD(100), DLE(3000)

Note that different orderings of the same distal clauses may produce different results; this aspect has
been designed in order to provide all the required biological meanings.

Examples. In Fig. 3.5.4 we show an evaluation of the following two clauses relative to an anchor
region: A: MD(1), DGE(100);B: DGE(100), MD(1). IncaseA,theMD(1) clause is computed
first, producing one region which is next excluded by computing the DGE(100) clause; therefore, no
region is produced. In case B, the DGE(100) clause is computed first, producing two regions, and
then the MD (1) clause is computed, producing as result one region'®.

Similarly, the clausesA: MD(1), UPandB: UP, MD(1) may produce different results, asin
case A the minimum distance region is selected regardless of streams and then retained iff it belongs
to the upstream of the anchor, while in case B only upstream regions are considered, and the one at
minimum distance is selected.

Next, we discuss the structure of resulting samples. Assume that regions r; of s; and r; of s;
satisfy the genometric predicate, then a new region r; is created, having merged features obtained
by concatenating the feature attributes of the first dataset with the feature attributes of the second
dataset as discussed in Section 3.4.7. The coordinates c; are generated according to the coord-gen

clause, which has four options *6:

5The two queries can be expressed as: produce the minimum distance region iff its distance is less than 100 bases and
produce the minimum distance region after 100 bases.

161f the operation applies to regions with the same strand, the result is also stranded in the same wayj; if it applies to
regions with different strands, the result is not stranded.

32

1. LEFT assigns to r;; the coordinates ¢; of the anchor region.
2. RIGHT assigns to r;; the coordinates ¢; of the experiment region.

3. INT assigns to r; the coordinates of the intersection of r; and r;; if the intersection is empty

then no region is produced.

4. CAT (also: CONTIG) assigns to r;j the coordinates of the concatenation of r; and r; (ie., the
region from the lower left end between those of r; and 7; to the upper right end between those

of r;and ;).

Example. The following join searches for those regions of particular ChIP-seq experiments, called
histone modifications (HM), that are at a minimal distance from the transcription start sites of genes
(TSS), provided that such distance is greater than 120K bases'”. Note that the result uses the coor-

dinates of the experiment.

RES = JOIN(MD(1), DGE(120000); output: RIGHT) TSS HM;

3.6 UTILITY OPERATIONS

3.6.1 MATERIALIZE

MATERIALIZE <S1> INTO file name;

The MATERIALIZE operation saves the content of a dataset S1 in a file, whose name is specified, and
registers the saved dataset in the system to make it seamlessly usable in other GMQL queries. All
datasets defined in a GMQL query are, by default, temporary; to see and preserve the content of
any dataset generated during a GMQL query, the dataset must be materialized. Any dataset can be
materialized, however the operation is time expensive; for best performance, materialize the relevant

data only.

7This query is used in the search of enhancers, i.e., parts of the genome which have an important role in gene activation.

33

Wewish to discuss a structure for the salt of deoxyribose nucleic
acid. (D.N.A.). This structure has novel features which are of

considerable biologic interest.

Rosalind Franklin®

2Rosalind Elsie Franklin was an English chemist and
X-ray crystallographer who made contributions to the un-
derstanding of the molecular structures of DNA, RNA,
viruses, coal, and graphite.

GMQL Case Study: Mapping Gene Expression of
Normal and Cancer Cells to Topological Domains,

using GMQL

At actual size, a human cell's DNA totals about 3 meters in length, so how does it fit in a cell
nucleus? and does the 3D structure affect its functionality? In mammals, DNA is packed in the cell
nucleus (just like a zip file); three meters of DNA is packed in a very efficient way.

Recent investigations have shown that our genome and those of other mammals is partitioned
into large functional units called topologically associated domains, or TADs for short, see Fig.4.0.1.
TADs are very long DNA sections containing one or more genes and their regulatory elements. These
TADS are constructed by the binding of CTCF protein to certain regions on the DNA sequence,
forming loops, see Fig.4.0.1. An important function of TADs appears to be the formation of self-
contained areas of gene regulation, which are at the same time isolated these from neighbouring areas.

The human genome contains around 20,000 protein-coding genes. Surprisingly, the small
roundworm C. elegans measuring just one millimetre in length has almost the same number of genes
in spite of the fact that humans and roundworms differ radically in their biological complexity. This is
because humans are able to better exploit their genetic potential, firstly by modifying gene products

and secondly by using the same genes for a number of different functions.

34

CTCF anchor
amowhead indical
motif orientation)

Figure 4.0.1: This illustrative rendering of a 2.1 Mb region on chromosome 20, shows eight
domains, six of which are demarcated by loops between convergent CTCF-binding sites lo-
cated at the domain boundaries. Approximately 10,000 of these loops are present in the human
genome.[40]

TADs, topologically associated domains, play a key role in this respect. Each TAD comprises
one or more genes together with all their regulatory elements. Their structure has been well con-
served throughout evolutionary history and can be found in various cell types, as well as in various
species. Regulatory elements within a TAD act only within "their” TAD; conversely, genes in neigh-
bouring TADs are isolated from their influence. How the separation of one TAD from another is ac-
complished remains to be shown, but there is increasing evidence that so called boundary elements
prevent the contact between TADs.

On the basis of three rare diseases in humans, scientists have now shown that shifts in the
boundaries of TADs can lead to significant changes in the regulation of associated genes. TADs are
therefore crucial for the proper functioning of genes. The researchers’ findings show that heredi-
tary diseases can be caused not only by changes in coding genes themselves but also, surprisingly, by

changes in non-coding regions located far from those genesl.

4.1 CONTRIBUTIONS

A recent paper [41] has revealed evidence of the relationship between a specific brain cancer
(Glioma induced by specific mutations) and TAD boundaries disruption, an oncogene which causes
the Glioma is deregulated by an active enhancer in a contiguous TAD due to the disruption of a TAD
boundary acting as insulator, Fig.4.1.1. We believe that other types of cancer might be related to TADs
disruption, thus we started a systematic study, using big data as indicators of loops and differential
gene expression in normal and tumor cells as in function of boundary disruption (currently ongoing).

In what follows, we discuss the use of GMQL for studying the relationships between gene activity in

"http://medicalxpress.com/news/2015-05-rare-diseases-destruction-functional-boundaries.html

35

Figure 4.1.1: lllustration of two TADs in a healthy genome. Above: The presence of a “wall”

between the two regions means that the regulator (= enhancer) in TADa can only influence the
gene in TADa but not the gene in TADb. Below: If the boundary between two TADs is altered
or shifted due to a mutation, the regulator/enhancer can also influence genes that are normally
shielded from it.

normal and tumor cells and the TADs organization. We built a processing pipeline that uses GMQL
to analyse 22 tissues, each with thousands of samples, and each considered for both normal and tumor

cells.

4.2 DATA SOURCES

Two types of data are needed: RNASeq data for gene expression in normal and cancer cells for
a set of patients, and TADs regions. RNASeq data are collected from two repositories: The Cancer
Genome Atlas (TCGA)[42] and the Genotype-Tissue Expression (GTEx) [43].

« GTEx data is organized in a two dimensional array with rows as genes, columns as patients
samples and cells values as the expression. An additional meta file is attached to this matrix
and contains information including the samples’ tissue type and if it is a cancer cell or normal

cell table 4.2.1.

36

| Genes | patient, | patient, | patient, | |

| Gene, | exp, | exp,, | exp,, | . |
| Gene, | exp,, | exp,, | exp,, | . |
Gene, | exp;, exp,,
Gene,

Table 4.2.1: GTEx matrix data.

TADs Genes activity between Normal and Cancer cell

5 |

K Tissue Extract Tissue Project the Columns

g. Breast samples IDs>27P/es 11 (samples)

©

w

()

=]

w

—

= GTeX Samples Gtex Table

k3] Info (samplelD, c°"f"‘"5 are

© Tissue) tissues

& Rows are Genes

i

(Array of Tissue X
L 2
- Activity .
o] Q e Generate Domain
N "§ Thresho (AVG expression, Map To TADS maping of
[a =] Active, NotActive, .| Give Sum(Active) Tissue’s genes
fj g GeneName) based ” Sum(InActive) with different
aQ wn on expression BAG Genes Names expression
] g threshold level levels
2 o
oo

Figure 4.3.1: Pipeline for extracting TADs' Genes activity in cancer and normal cells.

« TCGA data is downloaded from local repository in BED format [44], which is suitable for use
in GMQL input?.

TADs data are regions, each with a start and stop coordinate, collected from Gene Expression
Omnibus (GEO) repository . GEO stores TADs of nine cell types, for our experiments we used only
HMEC and IMRgo.

37

Chr Start stop Expression Active Inactive GeneName

11869 11870 0.0127425044759 0 1 ENSG00000223972.4
29806 29807 6.31710440308 1 0 ENSG00000227232.4
29554 29555 0.00551011355827 0 1 ENSG00000243485.2
36081 36082 0.000274514415457 0 1 ENSG00000237613.2
52473 52474 0.0 0 1 ENSG00000268020.2
62948 62949 0.000451931150941 0 1 ENSG00000240361.1
69091 69092 0.000301984033237 0 1 ENSG00000186092.4

S

Figure 4.3.2: Genes classified to Active and InActive, in respect to the average gene expression.

4.3 PIPELINE

Our pipeline has three stages, data extraction, filtering and mapping. The pipeline, Fig.4.3.1,
includes modules written in GMQL, R and shell. The data extraction stage applies to the expression
data of GTEx, which are accessed by a specific tissue and cell status (normal or tumor). As result
of this process, GTEX data table 4.2.1 is partitioned into smaller bi-dimensional tables of genes and
patients based on the tissue and the cell status (normal or tumor). This step is performed simply by
a shell code that iterates on the tissues names and builds the corresponding matrix. TCGA data is
directly downloaded using the TCGA2BED [45] project, having as objective the transformation of
TCGA into a GMQL compatible format.

The GMQL code selects the genes from annotation dataset then map them to the data from
TCGA2BED, then we take the average of all the experimental samples expression for the same gene
region using the command Cover(ALL,ALL) with average evaluation. The next step is to classify
the genes to active and not active using two Select statements and two Extend operations, the result
from this step is shown in Fig. 4.3.2.

Finally, using GMQ, we map the TADs with the list of genes from the previous step. The map
operation shows how the genes overlap with each TAD, and computes the number of active and num-
ber of inActive genes in each TAD. The output of this step looks like Fig.4.3.3, and the GMQL code
is simply:

G1 =SELECT (cell_type=="Liver”) TCGA2BED_RNASeqV2;

L1 = SELECT (type=="IMR_90”) GEO_Domains;

GENES = SELECT (Feature == ‘genes’ AND Prov == "UCSC’) ANNOTATIONS;

G2 = MAP(BAG(geneNames) as Genes, avg(expressison) as expression) GENES G;
GENES_EXP AVG ALL SAMPLES=COVER(ALL,ALL,AVG(expression) as GeneAvgExp) G2;
ACTIVE_GENES = SELECT (region: GeneAvgExp > 0) GENES_FROM_ALL SAMPLES;
INACTIVE_GENES = SELECT (region: GeneAvgExp == 0) GENES_ FROM_ALL SAMPLES;
ACTIVE_GENES: = EXTEND(region: ACTIVE as 1, INACTIVE as o) ACTIVE_ GENES;

*http://bioinf.asi.cnr.it/ tcgazbed/
3http:/ /www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE63525

38

ID Chr Start stop Expression Active Inactive GeneNames

8428983 13 105850000 106120000 0.00012721 0 1 ENSG00000223972.4

8428983 2 201170000 201350000 1.85252614 0 3 ENSG00000223973,ENSGOO..
8428983 3 124690000 125310000 1.74521027 O 13 ENSG00000223974.1,ENSGOO..
8428983 12 96660000 96790000 0.02484547 0 2 ENSG00000223976.2,ENSGOO..
8428983 22 32150000 32370000 10.9026418 1 8 ENSG000002235.4,ENSGO0.

Figure 4.3.3: Number of Active and Inactive genes in each TAD.

Figure 4.4.1: Heatmap of TADs vs Tissues active genes for normal cells from GTEx.

INACTIVE_GENES:1 = EXTEND (region: ACTIVE as o, INACTIVE as 1) INACTIVE_GENES;
GENES_ACTIVITY = UNION() ACTIVE_GENES:1 INACTIVE GENES;;
MAPPING = MAP(AVG(GeneAvgExp) AS TADAvgExp, SUM(ACTIVE) AS Active,
SUM(INACTIVE) AS InActive) L1 GENES_ACTIVITY;
MATERIALIZE MAPPING INTO outActive;
The last step is to get all the tissues in a single two dimensional matrix whose rows are TADS,

columns are tissues, and the cells are either active genes number or the ratio of active vs inactive genes.

4.4 HEATMAPS

We plotted three heat maps of the results generated by the MAP operation, one related to nor-
mal cells using GTEx, and two using TCGA and respectively normal and tumor cells; Fig. Fig.4.4.1

shows genes activity using GTEX for all tissues in 40 TADs, within chromosome 1 (out of a total of

39

Color Key
GenesActivation

2 -1 012
Column Z-Score

135747
- - O . 0184741
0294 741
| Ferd]
B35
SEd
| SEd
I
- -] i
I
j
I
-
i
{
|| i
I
_— - m !
i
| Bdi
G §
Gl i
RS D RER G LR AR PR REERE Y
L vt
BEabgBEd Mg uEendifg

Figure 4.4.2: Heatmap of TADs vs Tissues active genes for TCGA normal patients. 30 TADs
are considered of chromosome 1.

3000 TAds).

The comparison of activity levels in tumor (Fig.4.4.3) and normal (Fig.4.4.2) tissues is per-
formed using TCGA both for normal and tumor cells so that the levels of expressions are measured
in the same way (we used about 9ooo samples). Given the two representations, we can explore for
patterns of change, i.e. seeing certain tissues or certain TADS where gene activity rises or drops, and
also look for outliers within a specific TAD (relative to all tissues) or tissue (relative to all TADS).
Comparative heat maps of gene activity over TADS in normal and tumor cells have not been de-
scribed so far in the literature, thus this very simple visual description can be used as start point for
further investigation by biologists; in our pipeline, we can easily change the choice of TADs and of

gene expression level in order to regenerate the two heat maps.

40

Color Key

GenesActivation

-2

Column Z-Score

apleriniprtin] o 7T o VTN e DV N T T P ACHHIDH LD
EoUBE e EEE R E T s SN TR s

bbb P LT LY L

T T T e

I-
1

1—
1—
1_
1=
1—
1_
1=
1—
1_
1=
]

!

]

Figure 4.4.3: Heatmap of TADs vs Tissues active genes for TCGA cancer patients. 30 TADs

are considered of chromosome 1.

41

Part 11

GENDATA: System Architecture for Big

Genomic Data processing

42

There were § exabytes of information created between the
down of civilization through 2003, but that much information

is now created every 2 days.

Eric Schmidt, Google, 2010

Introduction to Big Data technologies

GMAQL is designed to run on top of data flow engines. Most of the data flow engines run on
top of Hadoop, which is considered as a distributed operating system for cloud engines. We imple-
mented GMQL on top of several cloud engines such as: Apache Pig[33], Apache Spark[31, 46], and
Apache Flink[32]; in addition, we also developed an implementation of GMQL on SciDB[35], a
multidimensional database designed for big scientific data analysis. In addition to the data manage-
ment engines, we used some other systems for remote interaction and monitoring, such as Apache
Knox[47], Livy[48] and Ganglia[49]. Understanding the features of these engines and systems is es-
sential for designing the software architecture of GMQL; data distribution and shuffling have a great
affect on the performance of any cloud computing application, including GMQL.

In this chapter, we show the Hadoop resource management framework and the distributed file
system of Hadoop (HDFS[29, s0]) and YARN[51] to describe how application code and data are
distributed to a cluster, and how processing is scheduled. We also discuss Livy and Knox services.

Then we introduce the Spark, Flink, Pig and SciDB data processing engines.

5.1 ApPACHE HAaDpDOOP

Apache Hadoop [52] is an open source framework for distributed storage and processing.
Hadoop supports fault tolerance on cluster of machines and distributed storage with the assump-

tion that it is common to have failures on cluster of nodes. The initial versions of Hadoop 1.x consist

43

@ J\Z B APACHE @
-4 aplhieddice, ' PIG

e | Spoik'|| Y Flink
@ YARN

@F%ﬁ_g[mmp HDFS

Figure 5.1.1: Part of Hadoop echo system.

only of Hadoop Distributed File System (HDFS) for storage and Map reduce Engine for processing.
The subsequent versions of Hadoop 2.x consist of HDES for storage, Yarn for resource-management,
and any other processing engine to run on top of Yarn in addition to MapReduce. Part of the echo
system of Hadoop 2.x is shown in Fig.5.1.1.

Historically, Google published a paper on Google File System (GFS) in 2003 [53] and MapRe-
duce at 2004 [30]. Based on these papers the open source community started the development of an
open source Distributed File System (DFS) and a distributed processing engine like MapReduce of
Google, that in 2006 evolved into Hadoop.

A Hadoop cluster consists of a single master node and a set of slaves nodes. Although Hadoop
is considered a framework of a single point of failure for HDFS because of the centralized master node,
a secondary NameNode offers Hadoop a back up for the distributed file system in case of failure of
the master node. Hadoop setup for efficient performance is not a trivial, since there are more than
a hundred configurations to be set[54]. Setting Hadoop configurations [55, 56] affects the overall
cluster processing. Keeping Hadoop on the default configurations leads to a very poor performance

and low resource utilization.

5.1.1 HaApoop DISTRIBUTED FILE SYSTEM

HDFS|29, 50] is a distributed file system that provides high-throughput access to application
data. It has many similarities with existing distributed file systems, but also significance differences
from them. HDEFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
HDES provides high throughput access to application data and is suitable for applications that have
large data sets[29].

HDES breaks down user’s files into blocks of data and stores them in distributed places to sup-
ports the parallel processing on the data. Block size is configured when the cluster is installed, the de-

fault is 64MB; every file with the size greater than the block size is broken down into several blocks.

44

The files’ blocks are replicated into number of copies on the machines, the replication factor is set
in HDFS configurations. Increasing the replication factor increases also the system fault tolerance
when a node goes offline. HDFS consists of one nameNode process that resides on the master node
in Hadoop Cluster and several dataNodes processes that resides on the slave machines (one on each

slave machine, master machine can be both master and slave node).

« HDFS NameNode is responsible for storing a look up table that contains information on the
files blocks’ location in the cluster. This information includes; files blocks and location of

blocks in the cluster, replication number and the locations of the replicas for each block.

« A DataNode is responsible to manage data locally on each slave node. DataNode is also re-

sponsible to report the data health of the node by managing read/write processes of the node.

5.1.2 YARN AS A DISTRIBUTED OPERATING SYSTEM

YARN(51] is the prerequisite for running Enterprise Hadoop, providing resource manage-
ment and a central platform to deliver consistent operations, security, and data governance tools
across Hadoop clusters. YARN also extends the power of Hadoop to new technologies within a data
center so that they can take advantage of cost effective, linear-scale storage and processing. It pro-
vides developers a consistent framework for writing data access applications that run in Hadoop, as
described in Fig.s.1.1.

With the introduction of YARN, applications are no longer managed from the Job manager, but
from the Application master that can resides on any node in the cluster. The ApplicationMaster is a
framework-specific entity that negotiates resources from the ResourceManager and works with the
NodeManager(s) to execute and monitor the component tasks. The ResourceManager is the ultimate
authority that arbitrates resources among all applications in the system. The ResourceManager has
a scheduler, which is responsible for allocating resources to the various applications running in the
cluster, according to constraints such as queue capacities and user limits.

Each ApplicationMaster has responsibility for negotiating appropriate resource containers from
the scheduler, tracking their status, and monitoring their progress. From the system perspective, the
ApplicationMaster runs as a normal container. The NodeManager is the per-machine slave, which is
responsible for launching the applications’ containers, monitoring their resource usage (cpu, mem-

ory, disk, network) and reporting the same to the ResourceManager [51].

5.2 APACHE KNOx

Apache Knox Gateway [47] is a system that provides a single point of authentication and access

for Apache Hadoop services in a cluster. The goal is to simplify Hadoop security both for users (i.e.

45

who access the cluster data and execute jobs) and operators (i.e. who control access and manage the
cluster). The gateway runs as a server (or cluster of servers) that provide centralized access to one or

more Hadoop clusters. In general the goals of the gateway are as follows:

« Provide perimeter security for Hadoop REST APIs to make Hadoop security easier to setup
and use.
- Provide authentication and token verification at the perimeter.

- Enable authentication integration with enterprise and cloud identity management sys-

tems.

— Provide service level authorization at the perimeter.
« Expose a single URL hierarchy that aggregates REST APIs of a Hadoop cluster.

— Limit the network endpoints (and therefore firewall holes) required to access a Hadoop

cluster.

- Hide the internal Hadoop cluster topology from potential attackers.

5.3 Livy

Livy (currently an alpha release) is a service that enables easy interaction with an Apache Spark
cluster over a REST interface. It enables easy submission of Spark jobs or snippets of Spark code,
synchronous or asynchronous result retrieval, as well as SparkContext management, all via a simple
REST interface or a RPC client library [48]. Livy also simplifies the interaction between Spark from
application servers, thus enabling the use of Spark for interactive web/mobile applications. Addi-

tional features include:

« support of long running SparkContexts, that can be used for multiple Spark jobs, by multiple

clients.
« Sharing of cached RDDs or Dataframes across multiple jobs and clients.

« Multiple SparkContexts can be managed simultaneously, and they run on the cluster (YARN/Mesos)

instead of the Livy Server for improved fault tolerance and concurrency.
« Jobs can be submitted as precompiled jars, snippets of code, or via Java/Scala client API.

« Ensure security via secure authenticated communication.

46

5.4 APACHEPIG

Apache Pig [33] is a high-level platform for creating programs that run on Apache Hadoop us-
ing a language called Pig Latin. Apache Pig was originally developed at Yahoo Research around 2006
for researchers creating and executing MapReduce jobs on very large data sets. In 2007, it was moved
into the Apache Software Foundation. Pig Latin abstracts the programming from the Java MapRe-
duce idiom into a notation which makes MapReduce programming high level, similar to that of SQL
for RDBMSs. Pig Latin can be extended using User Defined Functions (UDFs) which the user can
write in Java, Python, Java Script, Ruby or Groovy and then call directly from the language. Apache
Pig engine translates the Pig Latin script into a set of nodes in a Directed Acyclic Graph (DAG) for
pipeline execution. The DAG Nodes are implemented in either MapReduce [30], Apache Tez [57],
or Apache Spark [31]. Apache Pig uses lazy execution of the DAG and executes the pipeline in splits
instead of sequentially. Pig Latin as a plan text should be submitted to Pig engine for execution, sub-
mission can be through Pig shell APIs or PigServer instance using Java application.

Apache Pig can be executed on a single Java Virtual Machine (JVM), which means running
all Pig engine’s processes as threads in a single process, usually this used for development process
while writing Pig Latin code. The single JVM execution receives the input data from Local File Sys-
tem LES or HDES. The cluster execution mode is deployed on Hadooop for execution and resource
management. For small data sizes (allocating to one experiment in GMQL up to 20 mega bytes), the
single JVM mode (called Local execution) is preferable because it skips the complexity of allocating
resources and running on a cluster, while it is not suitable for big data processing.

Apache Pig work flow starts by building the execution plan out of the Pig script and then set the
execution environment to either Local (single JVM), MapReduce, Spark, or Tez. Then the Pig com-
piler compiles the Pig Script to the target execution environment. The UDF along with the compiled
code are shiped to HDES for execution. The output result will reside on HDFS.

5.5 APACHE SPARK

Spark[31, 46, 58, 59] was initially developed at Berkeley University as part of the AMP (Al-
gorithms, Machines, People) !'and became an open-source project in 2009; it is now a much larger
Apache project, with more than 400 developers from over 50 companies [3 1, 46, 60].

The programming model of Spark is based on an abstraction called resilient distributed datasets
(RDDs); each RDD holds the data objects in memory, whereas conventional MapReduce systems
read data from stable storage (e.g. the distributed file system) and write it back to stable storage,
incurring significant cost for loading the data and writing it back at each stage. Internally, the Spark

engine receives an operator DAG of RDD objects, then the DAG Scheduler takes care of partitioning

lhttps: //amplab.cs.berkeley.edu/

47

them so as to support parallelism, and the Task Scheduler launches tasks and manages task failures in
away that is agnostic to the content of tasks: finally, Workers execute individual tasks. Optimizations
of operations consists in selecting algorithms based on the partitioning option that minimizes data
transfer between workers.

Sparkincludes set of operators including Map, flatMap, mapPartition, Reduce, Repartition, Filter,
Union, cartesian, coGroup, SortByKey, CountByKey; The above operations are also denoted as trans-
formations, as they produce RDDs from either RDDs or input files, whereas other operations are
denoted as actions, as they do not produce RDDs, but instead they either pass a result set to the em-

bedding program or write data to the disk. The distinguishing aspects of Spark are:

« Support of declarative, SQL-like queries through the Spark SQL [58] version, that supports
structured queries over distributed dataset DataFrame[s8], with integrated APIs in Python,
Scala, Java and R. The tight integration allows injecting SQL queries within complex analytic

algorithms.

« Support of a rich set of operations based on key-value pairs (e.g. sortByKey, reduceByKey,
countByKey, aggregateByKey) that facilitate key-based operations.

« Support of check pointing of operations [3 1], that provides the ability to rebuild lost data on
failure using lineage: each RDD remembers how it was built from other datasets and can re-

compute its values from the last checkpoint.

It is important to note that Spark lacks of explicit iteration operators, while it dedicates several op-
erators to key-based computations, including sorting, counting, grouping and reducing; this makes
Spark particularly suited to implement classic key-based map-reduce algorithms, such as Word Count.

In our project, we make little use of key-based and iterator-based computations.

5.6 APACHE FLINK

Flink[32] was developed as a cooperative project within Technical University (TU) and Hum-
boldt University (HU) in Berlin. It is now developed as an open-source Apache project. Its program-
ming model is based on the notion of DataSet, that can be constructed from collections (lists, sets,
arrays) or from external sources (files, databases). DataSets are transformed by operators, which ap-
ply to DataSets and return one DataSet, currently: Map, flatMap, mapPartition, sortPartition, hashPar-
tition, partitionCustom, Reduce, Rebalance, Filter, Union, Cross, coGroup, combineGroup, reduceGroup,
firstN, project, aggregate, deltalteration, bulkIteration. Their names clearly recall algebraic data manip-
ulations, and indeed each operation performs a high-level transformation upon DataSets. The distin-

guishing aspects of Flink are:

48

« Transparent use of persistent memory management: Flink starts by operating in memory, and

splits data to disk based on need, with custom object serializer for Flink operations.

« Use of high-level optimization, based upon equivalence transformations applicable to job graphs
(derived from program operators). Transformations produce an optimal join graph based on a
cost model; as a consequence, the Flink programmer should not be concerned about low-level

implementation of operators.

« Use of two kinds of iterators within program workflows. The bulk iterator applies to complete
DataSets, the delta iterator applies to the new items added to a DataSet during the last itera-
tion. Iteration allows to optimize flows, in particular to use suitable data formats and pipelining

between two consecutive graph operations, omitting useless data transformations.

o Use of streaming processes as true streams, by means of pipelines which apply to streams and
move incoming data to operators as soon as they arrive, thereby allowing flexible window op-

erations on streams.

Flink can be used as a streaming engine because it is able to send data from one operation to the next
tuple by tuple, without waiting the filling of intermediate buffers (or micro batches). This feature is
used also in the batch processing, since batches are considered as a finite sets of streaming data. Iter-
ation is particularly useful for implementing machine-learning algorithms [61], like K-Means, where
the same block of instructions that calculates the centroids is executed many times over the same

dataset of points. Iteration is also used by several join and cross methods.

5.7 SciDB

SciDB [62, 63] is a new open-source data management system intended primarily for use in
application domains that involve very large scale array data; for example scientific applications such
as astronomy, remote sensing and climate modelling, bio-science information management, as well
as commercial applications such as risk management systems in the financial services sector, and the
analysis of web log data. A specific SciDB extension is applied to genomic data.

SciDB’s Multidimensional Array Clustering (MAC) storage subsystem is built to efficiently
store multi-attribute multidimensional arrays, exceeding tens of terabytes in size, in a distributed
DBMS, while facilitating array-style slicing and lookup operations as fast as possible [35].

The most common operations that SciDB should be efficiently support are: slices, returning
all relations for some values of a certain dimension, multiple horizontal slices, with projections that
only returns a subset of the attributes, and sub-region selections, rectilinear regions defined by di-

mensions. Fig.5.7.1, Fig.5.7.2, and Fig.5.7.3 show these three operations in order to understand what

49

dimension2 - dimension2 dimension2
4 e,
null 1 EaelE s — — 1ol 1 3
e e, . — e
| I
3 | | 3 3
2 o 2 2 ' ‘\ghi !
9.8 ifrzs = e T|T T Tz T Ilos I
\ M) = = "= i = | 1
1 1, 1[N
31 1 1 | ||
T i > === '
dimensionl 5 N 2 .
1 dimensionl dimensionl
1 21314 1 2 3 4 1 2 3 4

Figure 5.7.1: Slice on dimen- Figure 5.7.2: Slice and pro- Figure 5.7.3: Sub-region se-
sion. jection. lection.

they mean on an array data structure. In order to meet the above objectives, MAC was designed using

the following features.

o Columnar storage with respect to attribute. Even if an array has hundreds of attributes, only

the attributes requested by the query are read off on the disk.

o Algebraic indexing. SciDB can very quickly figure out the on-disk physical location of a cell or
a requested block of cells. The indexing method utilizes a combination of hashing as well as

lookup structures that are automatically maintained as the data sizes grow.

« Clustering. SciDB clusters data in it’s chunks so that co-local regions of the logical array are
co-located in the physical data. This ensures that, for a slice or between query, the number of

disk locations that need to be visited to retrieve the required data is minimized.

SciDB run as a network of processes, or instances, each responsible for a subset of the overall
data, usually on a cluster of multiple physical computers, or nodes. Each instance keeps data in its own
file system directory, which is usually located on an independent storage device, but may also be part
of a large, shared storage subsystem.

Every MAC works is broken into a grid of fixed-size rectilinear chunks that partition the mul-
tidimensional space of the array. Each chunk is then assigned to a particular instance using a hash
function over the chunk’s coordinates in the array space. Chunks for different attributes are stored
separately.

Figure 5.7.4 shows an example. The attribute al and a2 are stored separately. The chunk size
is set to 3 X 3 and there is a total of 9 chunks’ worth of data for each attribute. The diagram shows
the chunks at position {0, 0} are assigned to instance 1, whereas the chunks at {3, 3} are assigned
to instance 2 by virtue of hashing. Prior to being written to disk, chunks are run-length encoded,

compressing out frequently repeated values. There is also a hidden empty bitmap (EBM) attribute

50

. . SCIDB 1
dimensionl

EEE o (0,0
p- B -2 (0,0)
[] EBM {0,0}

dimension2

SCIDB 2

T
.|

>l - 3.3
-l -2 (3.3}
dimensionl 7 .7 [] EBM {3,3}

S e W

SCIDB ..
P T T

dimension2

==

a2

Figure 5.7.4: Chunking and distribution mechanism, from Paradigm4 documentation.

stored as a run-length encoded bitmask that encodes the positions of non-empty cells inside each
chunks.

The chunking aspect of the architecture ensures that only a few chunks are required to satisfy
a particular dimensional query. For example, to project al from a slice along dimension1=4, we
would only need to scan 3 of the chunks: a1{0,3}, a1{3,3%} and a1{6,3}. Attribute a2 is not
touched since it is not requested. Only 3 chunks out of 18 total would have to be read off the disk.
Moreover, the hashing ensures that the three chunks are likely on separate SciDB instances, so that
the disk reads can happen in parallel.

In DBMS-theoretic terms, SciDB is said to automatically index and cluster data on dimensions.
Indexing means that, given particular dimension coordinates, the system can retrieve data at those
coordinates without having search through most of the data; it is just a quick matter of locating the
right chunks. Clustering means that data which are close to each other in the array coordinate system

are likely stored in the same region on disk.

51

The first 9o percent of the code accounts for the first 9o percent
of the development time...The remaining 10 percent of the code

accounts for the other 9o percent of the development time.

Tom Cargill

GMQL System Architecture

The main contribution of this thesis is the GMQL Engine[36, 38, 39], that was built and im-
proved through several stages during the course of this Ph.D. thesis. We started by building a simple
translator from GMQL to Pig Latin language (GMQL version 1.x). Then, we developed a language-
independent system architecture of GMQL in which the GMQL compiler generates directed acyclic
graphs (DAGs) as intermediate representation, and then DAG nodes are implemented using differ-
ent cloud computing technologies (GMQL version 2.x). Along the development of GMQL engines
V1 and V2, we improved the GMQL repository (from 1.x to 3.x), the web services (from 1.x to 2.x)
and the web interface (from 1.x to 2.x).

The rest of this chapter is about the GMQL engine development through its different versions,
then the repository architecture and finally the web services and web application. We also discuss the

different deployment modes that we developed in order to adapt to different hardware architectures.

6.1 GMQLV1

GMQL v1 [38] uses a syntax-directed translation from GMQL into Pig Latin, implemented
in Racket language[64]. Every GMQL command is translated to a set of Pig Latin commands. In
order to implement an eficient retrieval system for GMQL data, we developed a java application
that orchestrates the data retrieval (as described in section 6.4), the data management (repository)

and the data processing (Pig engine). The GMQL V1 system architecture in shown in Fig.6.1.1. It

52

System Architecture
‘ Web interface ‘
‘ Web Services ‘
Ochestrator :
> e GMAQL Compiler
(Optimizer) l—
| GMQL
v 3 v
\
Hadoop
PIG Apach ;
Lucene Engine pac S Processing LIMS
Engine :
Engine
A 0 Engines A
) 4) 4
. External Data
N Local File Sys. Hadoop DFS Source (IEO
Repository Server)
Data Sources

Figure 6.1.1: GMQL V1 Architecture.

includes the repository layer, the engine layer and the GMQL layer, which in turn consists of an

orchestrator and a compiler, and is accessible through a web service API. We published this system

in [38],[39].

6.1.1 TRANSLATOR

Our developed translator has two components, the lexer and the parser. The former one scans
the GMQL query and generates a list of tokens; the latter one identifies sub-sequences of the token
list which correspond to grammar rules, using a LALR(1) algorithm [65]. When a statement is se-
mantically valid, the compiler first infers the schema of the newly introduced variable, then updates
the internal state and finally emits the Apache Pig code that performs the requested operation. The
internal state contains the name and schema of each variable which is either generated or mentioned
in the query. We implemented the GMQL translator in Racket [64], a general-purpose functional
programming language in the Lisp/Scheme family associated with a powerful set of tools; Racket
has advanced macro system and higher order functions, which facilitate the production of a concise,
clean and safe code. Fig. 6.1.2 shows the translation of the JOIN in the following example code. The
following GMQL program searches for those regions, of particular ChIP-seq experiments, called his-

tone modifications (HM), that are at a minimal distance from transcription start sites of genes (TSS),

53

TSS_meta_grp = GROUP TSS_meta BY $0;
HM_meta_grp = GROUP HM_meta BY $0;

N =

TSS_HM_meta_crs = FOREACH (CROSS TSS_meta_grp,
HM_meta_grp) GENERATE ($0,$2),($0,$2);

TSS_HM_meta_flat = FOREACH TSS_HM_meta_crs
GENERATE($0,FLATTEN($1));

RES_meta = UNION (FOREACH TSS_HM_meta_flat
GENERATE New/d($0.$0,$1.90), FLATTEN($1)),
(FOREACH TSS_HM_meta_flat

10 GENERATE New!/d($0.$0,51.$0), FLATTEN($2));

11 TSS_exp_grp = GROUP TSS_exp BY ($0,$1.50) ;
12 HM_exp_grp = GROUP HM_exp BY ($0,$1.$0);

O 0N U1 D W

13 TSS_HM_exp_crs = FOREACH (JOIN TSS_exp_grp BY $0.$1,

14 HM_exp_grp BY $0.$1) GENERATE (30,$2),($1,$3);
15 DEFINE RES_joiner =

16 GenometricPig.Join('MinDist+GreaterThan’,

17 120000,'120000’, right’);

18 RES_exp = FOREACH(FOREACH TSS_HM_exp_crs

19 GENERATE RES_joiner($1))

20 GENERATE FLATTEN($0);

Figure 6.1.2: Translation of a GMQL JOIN into Pig Latin.

provided that such distance is greater than 120K bases’.

RES = JOIN(MINDISTANCE AND DISTANCE > 120000;
RIGHT) TSS HM;

In Fig. 6.1.2, lines 1-10 are concerned with metadata and produce the data bag RES_meta.
The metadata of the two operands are first grouped by sample and then the cross product of samples
is generated and flattened; each pair in the cross product is associated with a new sample having as
metadata the union of the metadata of the two operands.

Lines 11-20 work on regions. We encoded in Java programming language a fast-join algorithm
which searches for matching regions at minimal and bound distance. First, samples are grouped and
paired (as in the case of metadata). Then, the RES_joiner class is defined as result of invoking the
MinDist+GreaterThan Java code; the defined function is invoked on each pair of samples and the
result is finally flattened. The linking of metadata and regions of each output sample is guaranteed by
the use of the same hash function on the two ids of the input pairs, at lines 8 and 10 for the metadata

and within the Join function for the regions.

"This query can be used in the search for enhancers, i.e., parts of the genome which have an important role in gene
activity regulation; the complete example, with a similar query, isin [39], Section 3.2.

54

Un/Register User
Create/Delete DS

Add/del Sample to/
from DS

List DS / All DSs

Repository Manager

Shell Commands

Create Index

Search index

Lucene Manager

Schedule GMQL

jobs from users

Translate GMAQL to
PIG

Track the execution
and manage history

QmMal Job Manager

Control
parallelization
factors

Choose versions of
Pig translations
based on platform
specifications

GMQL Job Optimizer

Ochestrator (Optimizer)

Figure 6.1.3: GMQL V1 orchestrator.

6.1.2 ORCHESTRATOR

The orchestrator controls the processing flow of the GMQL code, including compilation, data
selection from the repository, scheduling of the efficient execution of Pig Latin code over the Apache
Pig engine [33], and storing of the resulting datasets in the repository in standard format. The orches-
trator has four components: the Repository Manager, for registering users and creating, deleting
and changing datasets and their samples; the Index Manager, for creating and searching metadata
indexes; the GMQL Job Manager, for launching the GMQL compiler, scheduling GMQL jobs and
reporting about the status of GMQL jobs to users; and the GMQL Job Optimizer, for controlling the
parallelization factors and choosing the version of Pig Latin translator as shown in Fig.6.1.3. When
a user submits a GMQL query, the orchestrator uses the job manager to call the GMQL compiler,
which produces the query translation into Pig Latin and the search criteria for loading the relevant
samples from the repository. Then, the orchestrator uses the index manager to search the index and
select the samples that comply to the search criteria, produces a list of the URISs of the samples to be
loaded and invokes the job optimizer, which sets the execution parameters (such as the paralleliza-
tion factors discussed in the next section); eventually, the orchestrator manages the outcome of the
computation, including indexing of the result and storage in the user space. The system supports two
types of execution, a Local mode and a Map-Reduce mode; the former one is suggested only for small
data sizes, during the setup and debugging of GMQL programs.

The orchestrator can be invoked through different interfaces, including:

« Linux shell commands, each supported by suitable APIs, for managing the repository (adding
users, adding/deleting datasets, and adding/deleting samples from existing datasets) and for

compiling, running and tracking the execution of GMQL queries.

« RESTful web-services, which use the standard HTTP protocol and JSON files, thereby en-

abling the access to GMQL from within bioinformatics software and workflow engines, such

55

as Galaxy [66, 67].

62 GMQLV2

6.2.1 FroMmMViTOV2

GMAQL V1 was a good prototype to prove the functionalities of GMQL. The performance of
GMQL V1 was good in comparison to the state of the art applications, (see section 8). However,
it showed several several technical and performance limitations, which led to the development of
GMAQL V2. The most important goal of GMQL V2 is extensibility. GMQL V1 was limited in ex-

tensibility along with other technical limitations:

« V1 was limited to a single target engine - Pig Latin. Apache Pig started to fade because of the

introduction of faster and more flexible engines.

« The only connection between GMQL and Apache Pig was through Pig Server using string
queries of pig Latin. This limits our control on the back-end execution and the reporting of

€rrors.

« The ability to connect GMQL to data mining and analysis tools was limited since Pig was de-

veloped as a data retrieval and processing engine only.

« Optimizations were limited since we have no control of the output of Pig Latin operations.
The best we could do is to run the code in chunks and materialized every output, which is not

efficient.
« GMQL V1 was hard to install as it requires several other tools attached to it.
GMAQL V1 has other performance limitations:

« Scripts are translated to long Pig Latin scripts which is in turn are translated to long chains of
MapReduce jobs, that consume huge time to execute. Our example in section 6.1.1 contains
only one GMQL command that s translated to 20 lines of Pig Code and around 16 MapReduce
jobs. This makes the execution time of V1 very long in comparison to in typical runs of cloud

computing engines.

« Meta operations consume small amount of time to be executed, in comparison to region oper-
ations, but this is not exploited in V1. The translator of Meta operations to Pig Latin generates
several MapReduce jobs that consume time to execute, which is not efficient for the reserved

resources.

56

User Side GMQL V2

(Web services [Web interface)

(GMAQL System Manager)

GmaL D
.y DAG GDM ata
P Abstraction Data Types Management
Compiler
e
DAG i . . Indexing
Implementation Operations
(e q
L, Abstraction execPlan)
Environment Optimizer Repository
Variables and L GMQL Core _Management)
cluster DAG
settings
: W(GMQL Dispatcher - launcher)
Apache Spark || Apache Flink SciDB
Implementation || Implementaion | | Implementation
5

Figure 6.2.1: GMQL V2 Architecture.

GMQL V2 architecture achieved the following advantages over GMQL V1 implementation:

« Flexibility in implementation. We built an intermediate representation of GMQL operations

that then translated to the implementing language.

« Optimization. By using GMQL V2, we were able to optimize the execution of GMQL queries
by optimizing the Directed Ascyclic Graphs (DAGs) with language-indipendent omizations
(such as; performing meta operations before regions operations and then optimize the execu-

tion of region operations based on the meta results).

« High performance due to the use of in memory cloud engines such as Apache Flink and Apache
Spark. The low level implementations in Flink and Spark results in a small number of stages
in comparison to the number of MapReduce jobs generated in GMQL V1. Less stages lead to

lower execution time.

« Wide range of libraries that can be used for data analysis and mining. Both Spark and Flink are
connected to machine learning libraries that have good performance for machine learning on

the cloud.

o The ability to use different data sources and not just HDFS. GMQL V2 architecture was built
to be both flexible with the levels of the engine implementation, repository type (file system,
No SQL DB, or normal data bases) and repository manager implementation; this extendability

is discussed in the next section.

57

Compiler Compiles GMQL Script to DAG
cul Command Line Interface

Core DAG abstraction and implementation interfaces

Dot Draws the DAG

GMQL Server Manages implementations & Launches GMQL Server

Repository Repository Manager- contains several implementations
SciDB SciDB Implementation
Spark Implementation

Flink Flink implementation

SCiDB-ScalaAPI Scala API developed to access SciDB using Scala commands

Serial-tester Tests several implementations and compares the output

GMAQL Tasks

Manages users and tasks
Manager

Figure 6.2.2: GMQL V2 Modules.

6.2.2 ARCHITECTURE

GMAQL V2 architecture is shown in Fig.6.2.1. GMQL V2 is coded in Scala 2.10, consists of a set
of modules described in Fig.6.2.2. The system receives as input the GMQL queries with environment
variables and parameters, such as the choice of the running implementation (Spark, Flink, SciDB)
and the deployment mode for the engine and the repository (local, with Yarn on the same machine,
or with Yarn on remote machine), and the output files type (GTF [68] or tab delimited).

Several implementations can not co-exist in the same GMQL deployment, because of the con-
flict of dependencies between the implementation engines, for instance Spark and Flink would uses
different version of Netty [69].

GMQL was built as distinct modules and the connections between the modules are minimized
as much as possible to make it easy to replace or maintain one module with no effect to other modules
(or at least with a traceable effect that can be managed). Thus GMQL can be published in several
different versions, every published versions of the engine should include the Kernel Modules,i.e. the
core module, GMQL Server module, CLI module and one of the implementations modules. Note
that GMQL compiler is not a kernel module: GMQL v2.x can run directly by calling the Scala APIs
of the DAGs. The five packaging versions are published:

(A) Shell only package

(B) Shell with Repository package

58

(©)
(D)
(E)

S = SELECT(antibody=="ETS1") [BedScoreParser] |/Local/Input/Path/inputFolder/; |
A = SELECT(NOT(leaveout=="something")) [RnaSeqParserl ann;

J = MAP(antibody;) A S;

MATERIALIZE] into|/Loca1/0utput/Path/outdata/: |

Figure 6.2.3: GMQL script shows how to use GMQL with no repository.

import fit.polimi.genomics.GMQLServer.GmglServer
import fit.polimi.genomics.core.DataStructures.overParameters.{CoverFlag, N}
import fit.polimi.genomics.spark.implementationJGMQLSparkExecutor

import [it.polimi.genomics.spark.implementationJloaders.test3Parser

import org.apache.spark.{isparkcontext, Sparkconf}

Figure 6.2.4: Importing GMQL packages.

Web Services Package
Web interface Package

Java API Package

The packages are described in details in the following.

(4)

(B)

(©)

Shell only package. This package contains the Kernel modules in addition to the compiler mod-
ule; it does not contain a repository so there is no record of execution, and no track of users
output data. The user specifies the directories of the input and the directories of the output
inside GMQL scrip, see Fig.6.2.3. This is the easiest installation package of GMQL but the
users should specify the data parser explicitly in GMQL code as shown in Fig.6.2.3.

Shell with Repository package. This package is the same as Shell only package with the addition
of a repository module. This package supports multiple users and does not force the GMQL
script composer to specify the data parser or the location of the files, it is enough to specify
the dataset name for input and output. Set of shell commands are added to Command line
Interface to manage the repository by showing the users datasets and navigating the datasets
samples. Each user has his own work space in addition to the public work space. Samples can

be shared between users.

Web Services Package. This package is mostly used inside a genomic pipeline such as Galaxy
[66, 67]. The full list of the web services is described in section 6.5. This package contains
the Kernel Modules along with the compiler module, the repository module, GMQL Task
Manager and the web services. The web services are developing the Play framework[70] in

Java.

59

object Cover {
def main(args : Array[Stringl) {

val conf = new SparkConf()
val sc:SparkContext =new SparkContext(conf)

val server = new GmglServer(new

GMQLSparkExecutorIsc:sc)H

val ex_data_path = "/home/abdulrahman/Desktop/datasets/coverData/"
val output_path = "/home/abdulrahman/testCover/res/"

val dataAsTheyAre = serverlREAD ex_data_pathlUSING test3Parser()

val cover = dataAsTheyArei.COVER(CoverFlag.COVER, N(2), N(3), List(), None)

server setOutputPath output_patthATERIALIZE coverl

server.run()

1

Figure 6.2.5: GMQL example in Scala without GMQL Compiler, direct call to GMQL opera-
tions (Cover operation).

(D) Web interface Package. This package contains a a web interface that connects to the GMQL
system thorough the web services interface using RESTFul web service[71] and the HTTP

protocol. The web interface is shown in section 6.6.

(E) Java/Scala API Package. GMQL can be called as a set of libraries inside Java or Scala code.
The user is responsible to import the Kernel libraries and the compiler if needed, as shown
in Fig.6.2.4. By using the API package, the developer can call the GMQL operations directly,
without writinga GMQL script and compiling the GMQL script, as shown in Fig.6.2.5. Fig.6.2.5
shows how to setup GMQL environment by creating an instance of GMQL server and select-
ing the implementation (GMQLSPARKExecutor). All the parameters of the cover operation
are found in GMQL Core library.

DoT MODULE AND SERIAL TESTER. 'The Dot module and serial tester module, shown in Fig.6.2.2,
are used for GMQL debugging. The Dot module uses graph visualization software called Graphviz
[72]. GMQL serial tester is shown in Fig.6.2.6. The tester generates data, then runs Spark and Flink
implementations one after the other; at the end, it compares the results. This allows us to compare
executions and to verify the system after changes that affect each of the implementations. The serial

tester also reports the execution time for each implementation, for performance tuning.

GMQL Task MANAGEMENT

The GMQL task manager is the lowest level in Fig. 6.2.2, it takes care of the multi users execu-

tion tracking and reporting. GMQL task manager calls the GMQL compiler that compiles GMQL

60

Spark

Data
Generator

Compile Compare

éFlink

Figure 6.2.6: Comparing Flink and Spark execution engines.

GMQLCompiler GMAQLCore
GMQLCommandLinelnterface

-username: String [Optional]
+executionMode: [Flink|Spark|SciDB]
+binsize: Long

+outputFormat: String [GTF|TAB]
+scriptPath:String

+schema

+Main()
-setLogger(jobID:String)

Implementation

Sparklmplementation Flinklmplementation

SciDBImplementation

Figure 6.2.7: Task manager

61

-NUM_THREADS: Int

-id_to_job_map: HashMap(s,List[s]] +COMPILING
-user_to_jobIDs_map:HashMap +COMPILE_FAILED
-jobID_to_outputDSs_map:HashMap +COMPILE_SUCCESS
+registerJob(exec,bin,user,outputForm) +PENDING
+getGMQUob(username,joblID) +RUNNING
+scheduleGMQUIob(jobID) +EXEC_SUCCESS
+scheduleGMQUobForYarn(jobID) +DS_CREATION_FAILED
-getjob(jobID) +DS_CREATION_RUNNING
-getuserjobs() +DS_CREATION_SUCCESS
-getjobLog() +EXEC_FAILED

-shutdown() +SUCCESS
& L
GMQLLauncher .

1

+job: GMQUob e —

+run(): GMQLLancher

+getStatus(): Status.Value -Implementation: Implementation
+getAppName() - bin: Long

- user:String
- script: String
- outputFormat

-ElapsedTime: ElapsedTime
GMQLLauncherSpark GMQLLauncherFlink -status: Status
- outputVariales : List[String]

- server:GMQLServer

1 - translator: Translator
GMQLLauncherSparkLivy LocalLuancher operators: List[Operator]
- submitHandle: GMQLLauncer

+compile()
] +runGMQL()
SciDBLauncher +createDS()
-loginfo
-logError

+getExecutionTime()
+getCompileTime()
+getDSCreationTime()
+getMessage()

GMQLCompiler GMQLCore +getJobStatus()
-generateloblID()

Figure 6.2.8: Task manager

script generating two sets of DAGs (meta and regions), these DAGs then executed by calling the
implementation of the DAG nodes. The task manager receives the execution request from the web
service and registers the user request after checking the user in the system (GMQLTasManager).
Each GMQL script runs a GMQLJob that contains all the information about the job execution, the
output datasets, deployment launcher and the repository manager (deployment modes will be dis-
cussed in section6.7.) Some of the functionality supported by the task manager are described in the
class diagrams shown in Fig.6.2.8 and Fig. 6.2.7. Fig.6.2.8 is connected to Fig.6.2.7 by the link from

the Local execution to the implementation class.

Execution oF GMQL QUERIES

DAG operators apply separately to metadata and to regions, hence each GMQL operator is
mapped to at least two (one for region and one for meta data) or possibly more DAG operators,
as illustrated in Table 6.2.1; due to the language orthogonality, most GMQL operators require the
introduction of specific DAG operators; however, the MetaJoin and MetaGroup clauses of GMQL

are highly reused by many different operators as much as some meta data operators like CombineMD.

62

’ GMQL Operation | DAG Operators

SELECT SelectMD, SelectRD, SemiJoinMD
PROJECT ProjecMD, ProjectRD

EXTEND ExtendMD, AggregateMD

MERGE MergeMD, MergeRD

GROUP GroupMD, GroupRD

ORDER OrderMD, OrderRD, PurgeRD

UNION UnionMD, UnionRD

DIFFERENCE JoinMD, DifferenceRD

COVER GroupMD, MergeMD, GenometricCoverRD
MAP JoinMD, CombineMD, GenometricMapRD
JOIN JoinMD, CombineMD, GenometricJoinRD
STORE StoreMD, StoreRD

Table 6.2.1: DAG Operators used for each GMQL operations.

The most relevant feature of DAGs is that they illustrate the dependencies between DAG operators;
every DAG node includes as parameters the pointers to the DAG nodes that it depends from.

The entire translation of GMQL operations requires 28 DAG nodes in total; each node is im-
plemented in Flink, Spark, and SciDB.

Fig. 6.2.9 shows the DAG constructed for the following query, which includes five SELECTs,
two JOINs, and one DIFFERENCE; in this example, all samples are extracted from global datasets,
named PEAKS and ANNOTATIONS.

AC = SELECT(Antibody == 'AcK27') PEAKS;
ME1 = SELECT(Antibody == 'melK4') PEAKS;
ME3 = SELECT(Antibody == 'me3K4') PEAKS;
GENES = SELECT(Feature == 'genes' AND Prov == 'UCSC') ANNOTATIONS;

PE = JOIN(DLE(O); CONTIG) AC ME1;

E = DIFFERENCE() PE ME3;

AX = JOIN(MD,DLE(100000); LEFT) E GENES;

R = SELECT(LogFCgene > 1.5 AND LogFCen >1.5) AX;
MATERIALIZE R;

Note that the query variables are either extracted from the repository (in this case the PEAK and
ANNOTATION variables) or defined by operations before being used by other operations, and such
precedence relationship determines the edges of DAGs. Note also that region loaders are invoked

after the loading of the corresponding metadata, so that theyload just the regions of selected samples.

63

IRReadRD IRReadMD IRReadMD IRReadRD
dataset=PEAKS dataset=PEAKS dataset=ANNOTATIONS dataset=ANNOTATIONS
loader=BedParser loader=BedParser loader=AnnParser loader=AnnParser

f T \ /_V A V_\

IRSelectMD IRSelectMD IRSelectMD

predicate predicate predicate
(antibody,EQ, me3K4) \\\ (antibody,EQ, melK4) (antibody,EQ,AcK27)

N

IRPurgeRD IRPurgeRD IRPurgeRD IRCombineMD

N

IRGenometricJoin
cond=(DistLess, 100)
builder=CONTIG

A

IRDifferenceRD
A

IRSelectMD
AND (predicate(feature,EQ,gene),
predicate(provider,EQ,UCSC))

IRPurgeRD

IRGenometricJoinRD

cond=(DistLess, 100000), (MinDist,1)

builder=LEFT

A

AND(predicate($0,GT,1.5),

IRSelectRD

predicate($3,GT,1.5))

INVOKE N4 (N3(N1,N2)) “

Figure 6.2.9: DAG for a GMQL Query

EXECUTE N1
V1l=load(DS1)

EXECUTE N2
V2=load(DS2)

El KN
N/

EXECUTE N3

EXECUTE N4

Figure 6.2.10: Recursive descent of the DAG

V4=unop(V3)

V3=binop(V1,V2)

The DAG execution is triggered by the GMQL operation STORE. Consider queries with a sin-
gle STORE operation®; we denote the set of nodes which are reachable from StoreMD as "meta-DAG”.
The DAG has two roots, called StoreMD and St oreRD; the translator adds a dummy root node which
has StoreMD and StoreRD as direct precedences, and then invokes the execution on such dummy
root. The execution of any node cannot occur until all the nodes from which it depends are executed,
and this induces a partial ordering of node executions. Note that the DAG creates only one node for
each query variable, and therefore the operation that computes a variable is executed once, even if a
variable is used multiple times in a query. A simple case is illustrated in Fig. 6.2.10: the execution of
node N4 recursively invokes the execution of N3 and then of N1 and N2; such nodes directly invoke
loaders of two datasets DS1 and DS2. Then, the execution of N3 can be concluded, and finally the

execution of N4 can be concluded.

6.3 REPOSITORY MANAGEMENT

Data supported by GMQL are organized in datasets, they are collections of homogeneous bi-
ological samples. From the system’s viewpoint, each dataset corresponds to a variable in the GMQL
language and each sample in the dataset corresponds to two files (sample file and meta file). For ter-
tiary analysis, our interest is centered on results of dnaseq, rnaseq or chipseq experiments, thus the
input file formats that we consider are standard bed files, narrow peaks, big peaks, bedgraph, VCE,
GTF, or any tab delimited format. The objectives of GMQL repository are:

« Ease of use: the user should register the files to GMQL with an operation demanding no tech-

nical skill and no overhead.

« Privacy protection: each user should have a private space where his data are initially loaded;
each user can designate data resulting from GMQL operations as persistent, and these are
added to his private space. In addition, users can be part of a group which have shared access

to the group datasets.

« Read-only access to public data: each user should, in addition to her private data, have access

to public data, which however cannot be manipulated by individual users.
« Transparency: the user should not to be aware of how files are managed by the system.

« Extensibility: the architecture must be easy to install and maintain, e.g. due to the addition of

new data types.

Two GMQL Repository versions have been developed:

*When a DAGs has multiple STORE operations, at least one of them does not depend on any stored variable; this
induces a partial order of materializations.

6s

Repository Architecture

‘User1) e (
. [Meta
GMQL history _ | = samples data
SEhems @) BED Nar
— Meta Dat userl
Metadata ST
MetaData Index _ -
s Id DataSet XML o Meta
ame control data as P Samples e e
private users | l
User#
Public Private Public Private
Main Server Local System Hadoop Distributed File System (HDFS)

Figure 6.3.1: Repository V1 architecture.

« GMQL repository V1, shown in Fig.6.3.1, includes only a Local File System (LFS), orga-
nized within the Linux file system of the master node of the computing framework, and an
Hadoop Distributed File System (HDFS) [29], shared among all the computing nodes.
GMAQL repository V1 is tightly connected to both LES and HDFS and can not work with any

other storage system or file system.

« GMQL repository V2 uses the structure of V1 for storage in LFS, but without the dependency
on HDFS, as in V2 repository we can use any file system or data base. The class diagram struc-

ture of the GMQL repository is shown in Fig. 6.3.2.

Datasets are subdivided in metadata and region data; Apache Lucene [34] indexes metadata.
Both file systems have a public and a private space. Besides the genomic data, the LFS stores system-
controlled information, encoded in XML, about the registered users, their security control and priv-
ileges, their saved queries and the location of their private resources®.

In both V1 and V2 repositories, all the datasets are stored in their original text format, as usu-
ally these files must be concurrently available to users for other computations. The datasets that are
selected by a GMQL query are serialized by suitable adapters and translated to the internal binary
GDM format on demand, so as to be loaded in the engine before query execution; at that point, they

can be managed by GMQL engine. In this way, we do not replicate data in the native and GDM

*In the system installation at IEO-IIT (https://www.ieo.it/en/http://genomics.iit.it/), a center of
excellence in oncology research,we connected the repository to a Laboratory Information Management System (LIMS)
designed for storing both the raw data after NGS and the workflows for producing processed data into the HDFS [73].

66

https://www.ieo.it/en/
http://genomics.iit.it/

: . GMQLSample
GMOQOLRepository
+ name: 5tring
+Im port DS({IR Dat aSet, username, List[G M

+ID: String -
aLsamples], GMQLScript) 00 | @ meeesssssesssmecscessseceecsecessscsessessesees GMQLParse
+DeleteDSs|IRDataset, usemmae)
+AddSampleTeDS| GMOLSample) E +INTEGER
dle S
+DeleteSampleFromDS(GMALSample) IRDataSet +DOUBLE
+STRING

+ListAlIDSs(username
{) + position: String +FLOAT

+exportDSToLocalDir DS, LocalDir))))
+DSExists| IR Dataset) + schema: [String, Parsing_Type] +LONG
+CHAR

+D5ExistsinPublic(IRDataset}) =~ AR

+getDSstat istics|IRData5et, use mame))
+getMetalIRDataset, username) 1
+getsample Meta(Ds,username Sample)

..FsearchMetalDs, username query) GMQLDataSetXML

+ samples: List[GMQLSam ple] +name:string
+DSMame: string +fieldType:GMQLParse
) +userM ame: String —
+schemaDir: String &
DFSRepository +schemaType: GMOLSchemaType
+schema: GMQLSchema 1
< Ss +GMQLScript:String
+Create()
+getindexURI({) 1
+addsample(sam ple:G MOLSample) 1

+schemaType: GMOLSchemaTypes
+Fields: List[GMQLSchem aField]

+checkSamplelnDS{sample) 0§ sessssseeecsccesescsccsscscccececsscsscssesees
LFSRepository :izzm:::gamplﬂ 1
""""""""""""""""""""""""" +check UserExists(usermame)

+exists()

- " +getD5Stat istics() e
SCIDB_Repository -zenerateDSXML() +GTF
+

e mm i m i -store XML(XMLEle ment Location)
+DEL
-genergteSchemaXMLL] | emieeeeeemeeseeeee—e——e——e—————————
-buildMetafile Andindex()

+deliample(sample .G MOLSample)

Figure 6.3.2: Repository V2 architecture.

67

formats and we minimize data translations from native into GDM format.

Datasets in GMQL repository are represented by an XML file, that keeps information about:

« The dataset files names (samples’ names) along with the IDs.
« Repository type (LFS, HDFS, Remote File System-RFS, SCIDB, or DB).
« Location of the GMQL script that generated this dataset (if any).

<dataset name="HG19 ENCODE BED", Location = "RFS",
GMQL_SCRIPT="/home/.../examplel.GMQL",
schemaDir="/to/path /global.schemata">
<url id=1>"/to/path /myBed.bed"</url>
<url id=2>"/to/path /myOtherBed.bed"</url>

</dataset>

The schema file is provided in a XML file where each field has a data type and a name, the line
order of the fields should be the same as the positions of the fields in the sample file:

<?xml version="1.0" encoding="UTF-8"7>

<gqlSchemaCollection name="GMQL_SCHEMA">

<gqlSchema name="HG19_ENCODE_BED" type="bed">
<field type="STRING">Chromosome</field>
<field type="LONG">start</field>
<field type="LONG">stop</field>
<field type="STRING">name</field>
<field type="CHAR">strand</field>
<field type="FLOAT">score</field>

</gqlSchema>

</gqlSchemaCollection>

Fig.6.3.2 shows that dataset and sample for GMQL are represented by an intermediate representa-
tion IRdataSet, GMQLSample classes. By using an intermediate representation for the dataset in
GMQL engine, we make it possible to change the physical representation of the dataset from being
an XML files stored locally records in a database that contains users datasets and permissions, with
out affecting the system functionality. A simple implementation of the dataset XML files (GMQL-
DataSetXML class) to simplifies the installation of the system (no additional tools to install or con-
figure connections) this representation is effective in a distributed processing system like the GMQL

engine.

68

In Fig.6.3.2 we can see the types that the system can parse (Integer, float, double, string and
char) we already have parsers for the following text files: tab delimited format (DEL), general transfer
format (GTF) [68], and variant call format (VCF) [74].

The GMQL repository interface already have four implementations; LFS, HDES, RFS and
SCIDB, and can be expended so as to support other implementations (e.g. data bases such as Mn-
goDB [75] or any other NO-SQL engines).

6.3.1 INTEGRATED ACCESS TO HETEROGENEOUS PUBLIC REPOSITORIES

Very large-scale sequencing projects are emerging; as of today, the most relevant ones include:

« The Encyclopedia of DNA elements (ENCODE) [22], the most general and relevant world-
wide repository for basic biology research. It provides public access to more than 4,000 exper-
imental datasets, including the just released data from its Phase 3, which comprise hundreds

of epigenetic experiments of processed data in human and mouse;

+ The Cancer Genome Atlas (TCGA) [42], a full-scale effort to explore the entire spectrum of

genomic changes involved in human cancer;

« The 1000 Genomes Project [76], aiming at establishing an extensive catalogue of human ge-

nomic variations from 26 different populations around the globe;

« The Epigenomic Roadmap Project [77], a repository of “normal” (not involved in diseases)

human epigenomic data from NGS processing of stem cells and primary ex vivo tissues.

Our data repository contains thousands of files and almost half a TeraByte of data of public datasets,

as shown in 6.3.3.

6.4 RETRIEVAL SYSTEM - THE USE OF AN INVERTED INDEX

GMAQL is a retrieval and processing engine. The simplest way to perform data retrieval, using
cloud computing technologies, is to load the dataset and then filter the samples. The filtering condition
is either a region condition applied to the sample regions, or meta condition applied to the meta data.
To implement the retrieval system, we perform region selection by filtering regions data (samples files)
based on the regions condition, and we also perform meta selection by filtering the meta data based
on the meta condition. The meta data filtering is applied only after downloading the data, so it is not
effective in producing the subset of samples IDs that are needed for processing (see Fig.6.3.3). This
filtering operation consumes a considerable execution time and blocks the resources.

For this reason, we decided to use Lucene in order to index the metadata. We perform the
retrieval in GMQL by:

69

Consortium Imported datasets # of samples| File size (MB)
HG19_ENCODE_BED 1,933 34,201
HG19_ENCODE_BROAD 1,970 23,552

ENCODE HG19_ENCODE_NARROW 1,999 7,168
MM9_ENCODE_BROAD 441 2,355
MM9_ENCODE_NARROW 277 1,162

EPIGENOMICS HG19_EPIGENOMICS_ROADMAP_BED 78 595

ROADMAP HG19_EPIGENOMICS_ROADMAP_BROAD 979 23,244
HG19_TCGA_Cnv 2,623 117
HG19_TCGA_DnaSeq 6,361 276
HG19_TCGA_Dnamethylation 1,384 29,696
HG19_TCGA_Mirna_lsoform 9,227 3,379
HG19_TCGA_Mirna_Mirnaseq 9,227 569
HG19_TCGA_RnaSeq_Exon 2,544 31,744

TCGA
HG19_TCGA_RnaSeq_Gene 2,544 3,584
HG19_TCGA_RnaSeq_Spljxn 2,544 30,720
HG19_TCGA_RnaSeqV2_Exon 9,217 114,688
HG19_TCGA_RnaSeqV2_Gene 9,217 20,480
HG19_TCGA_RnaSeqV2_Spljxn 9,217 105,472
HG19_TCGA_RnaSeqV2_lsoform 9,217 49,152

Grand total 19 datasets 81,012 412,835

Figure 6.3.3: Repository data.

70

Files on Selective Load of Selective Load Of

HDD Meta ' samples
Sam/meta

Query Index

Selected
DataSet
(Samples/Meta
Files)

Query: antibody ==x" and cell >= 10

Figure 6.4.1: Retrieval system with the selective load and Lucene index.

« First, query the dataset’s Lucene index, which results in a list of samples IDs.
« Then, use these IDs to selectively load the samples files needed for processing.

« Selection on regions is more efficient by pushing the regions filtering to the load phase, that

loads only the regions needed for processing.

When adding a dataset to the repository, the Lucene [34] index for the added dataset meta files
is built on the fly. Usually indexing the meta data does not consume much time since the meta data
is usually small in size in comparison to the sample files. For example, the total datasets meta size of
Narrow Peaks, Broad peaks, and RnaSeqV2 Genes are respectively 5.4MB, 6MB, and 50MB, while
the number of samples in each is respectively 1999, 1970, and 9217). The index is built once for each
dataset. All the generated datasets from GMQL has its Lucene index built in parallel for its meta
data. The use of Lucene index decrease the meta selection time from over two minutes for selection
on RnaSeqV2 Genes dataset to only 300 milliseconds, which equals to 400X speed up.

In order to see the the performance improvement of using the selective load and Lucene index
over the traditional filtering, we did a test on the narrow peaks dataset shown in Fig.6.3.3. The per-

formance of the selection shown in table 6.4.1. The sizes of inputs and outputs is shown in Fig.6.4.2.

6.5 WEB SERVICES

While simple and efficient, the command line interface provided by the GMQL it is not flexible
and complete enough to provide a satisfactory user experience. For instance, the user must manu-

ally load its own files on the server, or find out where GQML saves the results. Even worse, there

71

DataSize (GB)
O R NWDHhUUONOWWW

input ‘output input output input output input output

2000 files 1500 files 1000 Files 500 files

Figure 6.4.2: Select input and output data sizes.

’ Dataset (# of samples) | Complete Load (sec) | Selective Load with Lucene (sec) ‘

’ 2000 ‘ 150 ‘ 0.315 ‘
’ 1500 ‘ 125 ‘ 0.315 ‘
1000 104 0.315
500 8o 0.315

Table 6.4.1: Selection performance with Selective load and Lucene.

is nothing that helps to write queries; in particular, composing the select predicates is particularly
challenging without knowing in advance all the meta-data.

We decided to build on the top of the system a set of web services to be able to manage the data
in a much simpler way. We designed them as RESTFul that uses HITP protocol[78].

The advantage of exposing Web Services relies on the fact that multiple applications can use
them without the need to worry about the specific implementation or the necessity to access directly
the elements of a system. Moreover, the use of web-services to access cloud-computing resources is
by now a common approach [79].

Between the various technologies, we adopted the Representational State Transfer (REST) ar-
chitecture style [71]. RESTful systems communicate very easily over the Hypertext Transfer Proto-
col with the same HTTP verbs (GET, POST, PUT, DELETE, etc.) used by web browsers to retrieve
web pages and send data to remote servers.

The complete list of web services we expose is shown in figure 6.5.1. In synthesis, the opera-

tions that can be performed on the system are:
« Upload of files. This includes meta-data and samples, queries, and schema xml files.

« Run queries and track their progress.

72

Repository Browser

Files to browse
Metadata
Query
Schemas

All

REST Path
SSERVICES_ROOTS/rest/repo/browse-c/meta
SSERVICES_ROOTS/rest/repo/browse/query
SSERVICES_ROOTS/rest/repo/browse/schema
SSERVICES_ROOTS/rest/repo/browse/all

Repository Downloader

Function
DownloadFile

REST Path
SSERVICES_ROOTS/rest/repo/download/{user}/{filekey}

DataSet Manager

Function

Prepare data set for download
Download (after preparation)
Delete dataset

List all

Upload samples

Add samples
Create data set

REST Path
SSERVICES_ROOTS/rest/datasets/prepare/{dataSetName}/{clean}
SSERVICES_ROOTS/rest/datasets/zip/{dataSetName}
SSERVICES_ROOTS/rest/delete/{dataSetName}
SSERVICES_ROOTS/rest/listAll
SSERVICES_ROOTS/uploadSamples/{dataSetName}/{status}

*possible values for status can be <first>, to tell the service to create a
new directory tu upload the files, or <schema>, to tell the service that a
schema is uploaded and not a sample. All other values will be ignored.
SSERVICES_ROOTS/addSamples/{dataSetName}
SSERVICES_ROOTS/create/{dataSetName}

Repository Uploader

Function
DownLoad DataSet

REST Path
SSERVICES_ROOTS/rest/repo/upload/query/{user}/{filekey}

Metadata Browser

Function
MetadataFromExperimentid

MetadataFromExperimentid
FilteredExperiments
GetUniqueAttributes
GetUniqueValuesForAttribute
GetExperimentsHavingMetadata

REST Path

SSERVICES_ROOTS/rest/browse-c /meta/id/{filekey}/{experimentid}/
{attributes} [attributes seprated by “___ "]
SSERVICES_ROOTS/rest/browse-c/meta/id/{filekey}/{experimentid}
SSERVICES_ROOTS/rest/browse-c /meta/filtermany
SSERVICES_ROOTS/rest/browse-c /meta/{filekey}
SSERVICES_ROOTS/rest/browse-c /meta/{filekey}/{attribute}
SSERVICES_ROOTS/rest/browse-c /meta/{filekey}/{attribute}/{value}

Schema Browser

Function
GetSchemas

REST Path
SSERVICES_ROOTS/rest/browse/schema/{filekey

Figure 6.5.1:

List of the Web Services exposed by the system

73

« Download of files. Datasets can be downloaded after being prepared and compressed in a zip

file.
« Browse queries, meta-data files, schema files.

« Browse meta-data in details: it is possible to retrieve, for each data-set, the meta-data of all the

samples that respect some simple query on their meta-data.

The services are built on top of the Orchestrator, are coded in Java and run on a Tomcat7 server
[80]; they require the user to log in, thus is possible to add new users by simply registering them on

Tomecat *.

6.6 WEB INTERFACE

Fig.6.6.1 shows the latest version of the web interface of GMQL. This web interface is built in
Scala using the Play Framework [70] . A previous version of GMQL had the same components but
in separated pages and it was less user friendly.

All the connections between GMQL and the web interface are handled by a request call to
the web services using HTTP protocol and a replay in a JSON file. The web interface uses javascript,
JQuery and AJAX technologies. The web interface consists of:

« Query editor where the user can enter the GMQL script and run the Job.

« The dataset browser: shows the private and public datasets. In the private space, the user can
show samples, add datasets or samples, delete datasets or samples, update datasets, and down-

load datasets.

o The schema browser: shows the schema of a dataset. When a user click on a dataset in the

dataset browser, the schema browser get updated automatically.

« Meta Browser: allows the user to navigate the meta data so as to progressively create the se-
lection statement. The meta browser shows the result of the selection that is being built of

predicates generated using a drop-down list selection.
« Job tracker: Shows all the jobs that this user is running or ran in the past.

« UCSC browsing: by clicking on the browsing button the system will send the regions of a
dataset to UCSC browser for viewing using the APIs provided by the browser.

*Tomcat users will not be able to use the command line or access to the server outside the interface, providing a simple
but effective layer of security

74

GMQL GMQL-REST Demo Video

Data sets

> & Private
Vv = Public
> il HG19_BED_ANNOTATION
> i HG19_ENCODE_BED
> i HG19_ENCODE_BROAD
> B HG19_ENCODE_BROAD_JULY_2016
> i HG19_ENCODE_NARROW
> il HG19_ENCODE_NARROW_IULY_2016
> i HG19_EPIGENOMICS_ROADMAP_BED
> i HG19_EPIGENOMICS_ROADMAP_BROADPE
> il HG19_TCGA cnv
> W HG19_TCGA_Dnamethylation
> il HG19_TCGA_Dnaseq
> i HG19_TCGA_mimnaseq_isoform
> i HG19_TCGA_mimaseq_mirna
> B HG19_TCGA_maseq_exon
> i HG19_TCGA_maseq_gene
> i HG19_TCGA_maseq_spljxn

Query editor ,_‘l

1 DATA_SET_VAR = SELECT(cell_description ==
2 MATERTALIZE DATA_SET_VAR INTO sss;

Query name fileName

Output

© GTF
Format

Tab Delimited

= Show jobs

Schema

Hello abdulrahman kaitoua Logout

Schema type: broadPeak

Field name
chr

start

stop

name

score
strand
signal

pualue

Field type Heat map
STRING

LONG

LONG

STRING

INTEGER

STRING

FLOAT

FLOAT

FLOAT

> i HG19_TCGA_masequ2_exon avalue
> i HG19_TCGA_maseqv2_gene
> i HG19_TCGA_maseqv2_isoform
> W HG19_TCGA_maseqv2_splixn

Metadata browser Sample Metadata

DATA_SET_VAR = SELECT(cell_description == ‘astrocytes-hippocampal ')
HG19_ENCODE_BROAD;

e
-]

Figure 6.6.1: GMQL V2 Web interface

6.7 GMQL V2 DEPLOYMENT MODES

As we have seen that GMQL v2 engine can have several implementation of GMQL using dif-
ferent big data engines such as Pig, Flink, spark or SciDB. By having GMQL repository being able to
connect to different file systems or databases, we have almost many to many relationship in the choose
of the implementing engine and the repository type. Spark and Flink can connect to LES, HDFS, DB,
MongoDB and so on, while SCIDB connects to a SciDB repository, as shown in Fig.6.7.1.

In the SciDB deployment a master GMQL machine is always connected to a remote SciDB
cluster, thus the following discussion applies only on Flink and Spark; we will take Spark as an exam-
ple.

GMAQL deployment modes are Local and Remote deployment modes; in the GMQL Local
mode, GMQL engine is installed on the master node of Hadoop and Spark cluster. While in the
GMQL Remote mode, GMQL engine is installed on a separated machine (GMQL master machine)
connected remotely to Hadoop and Spark cluster master node. We describe these modes in details

in the following subsections.

6.7.1 SPARK DEPLOYMENT

In order to have good understanding of GMQL deployment modes, we show the deployment

modes of the underlying cloud computing engine (Spark in this case). Spark has several deployment

7S

Processing Engine Implementation

Storage|Repository manager

A 4 \ 4 \ 4 \ 4 A 4 A 4

Figure 6.7.1: GMQL System deployment, the selection of engine and repository manager im-
plementations.

modes, here we mention the most relevant ones:

o Single Process deployment: In operating systems, applications run in a separated processes and

6.7.2

each process can run several threads inside. The simplest Spark deployment is to run Spark
application with Spark engine in a single system process. In this deployment mode the Spark
Context class, creates thread for every component of Spark (job tracker and task trackers).
Running Spark Application pragmatically (call spark from inside a scala/java code) will create
a single process deployment. In this deployment mode Spark can read/write from LEFS, since

it is in a single machine.

Standalone Deployment: in this mode we have to install a compiled version of Spark on each
node on the cluster. Spark cluster can be a single machine or more. To run Spark on a cluster
of more than one machine, Spark uses a distributed storage such as HDEFS, see Fig.6.7.2. In

this mode Spark controls resources management over the cluster.

Spark over Yarn: Spark is installed on the master node of Yarn cluster only. Spark submit the
applications to Yarn, while Yarn control the resource management, see Fig.6.7.2. In this mode,
Yarn serves as an Operating System, manages resources between several cloud computing en-

gines including Spark.

GMQL DEPLOYMENT ON A SINGLE MACHINE OR ON LOCAL CLUSTER

Spark has several deployment modes, leaded to more flexibility in deploying GMQL engine.

« GMQL asa Single Java/Scala Application: GMQL uses Spark Single process deployment mode,

mentioned in the previous subsection. In this mode, GMQL Java application runs the Spark

76

Yarn
HDFS HDFS
(a) Standalone (b) Over Yarn

Figure 6.7.2: Spark deployment.

implementation programmatically. In this mode, the GMQL application is a single JAR file
(java ARchive), that is executed as normal Java application using Java shell command. This

deployment is good in case of having single server and we have light GMQL queries.

« GMQL Over Yarn: Here, we use Spark over YARN deployment mode from Spark, while GMQL
application is submitted to Spark using Spark-Submit shell command or using it Spark Launcher
Server (mentioned bellow), which was introduced in Spark 1.5.1 and later versions. In this de-
ployment mode GMQL Application JAR will be loaded in YARN, resources will be reserved
in YARN and finally the application will run; This process takes from 30 to 9o seconds delay
before running GMQL application, which is not suitable for light GMQL queries. This de-
ployment is good when we have more than one machine for GMQL and GMQL application

runs on the master machine of the cluster.

GMQL Spark deployment can skip HDFS and run on LFS (Local File System) in case of a
single machine installation with local process or single node cluster running. This installation is good

for small data size and for debugging.

6.7.3 SPARK LAUNCHER SERVER

The Spark launcher server (L. Server) listens locally for connections from client launched by
the library. Each client has a secret that it needs to send to the server to identify itself and establish
the session. Clients have a limited time to connect back to the server, otherwise the server will ignore
the connection. The architecture of Spark launcher server is shown in Fig.6.7.3.

The launcher server is used when Spark apps are launched as separate processes than the call-
ing app. It looks more or less like the following: The server is started on demand and remains ac-
tive while there are active or outstanding clients, to avoid opening too many ports when multiple
clients are launched. Each client is given a unique secret, and have a limited amount of time to con-
nect back (SparkLauncher#CHILD CONNECTION_TIMEOUT), at which point the server will

throw away that client’s state. A client is only allowed to connect back to the server once.

77

User App | spark-submit | Spark App

| L. Server |< | L. Backend

v | |
|
| | <per-app channel> |

| App Handle |<
I |

Figure 6.7.3: Spark launcher Server Architecture, available in Spark 1.5.1 and later.

The launcher server listens on the localhost only, so it doesn’t need access controls (aside from
the per-app secret) nor encryption. It thus requires that the launched app has a local process that
communicates with the server. In cluster mode, this means that the client that launches the applica-

tion must remain alive for the duration of the application (or until the app handle is disconnected).

6.7.4 DEPLOYMENT ON REMOTE CLUSTER

This type of deployment was used when we installed GMQL in CINECA cluster[81]. The de-
ployment consists of a master node that holds GMQL Application and a cluster of Hadoop machines,
shown in Fig.6.7.4.

We use Livy[48], described in sections.3, to connect to the remote cluster of Spark as shown in
Fig.6.7.4; we call GMQL launcher that uses Livy, SparkLivyLauncher, as shown in the class diagram
of the server manager in Fig.6.2.8. Livy uses web service client to connect to Livy server (Livy server
is installed on Hadoop cluster master node). SparkLivyLauncher launches GMQL job and ping re-
mote Livy server for the status of the job and when the job ends with either success or fail, finally
SparkLivyLauncher request the logs to show to the GMQL user.

Spark runs on Hadoop remotely, in order to connect to HDES on the remote cluster, we use
Knox server[47], described in sub-sections.2, that allows us to move data in/out the remote HDFS;
we created an implementation of the repository that uses Knox, called Remote Reposiotry Manager
(RFS), as shown in the class diagram of the repository in Fig.6.3.2. All file system operations of list-
ing files of a directory, copying file, or moving files are handled using a POST, GET, and CREATE
commands of HTTP protocol though Knox.

78

I_ GMQL Remote Cluster Deployment _I
History
Web A
p
GMAQL Server Knox HDES
Manager

GMAQL Application Server Hadoop Cluster

L .

Figure 6.7.4: Deployment on an application server and Remote Hadoop cluster.

= Galaxy

PROJECT

79

Information is the oil of 21" century, and analytics is the com-

bustion engine

Peter Sondergaard, Gartner Research

Scaling-out GMQL operators on Data Flow Engines

Parallelizing genomic operations is an essential ingredient of the GMQL system. This chapter
overviews the various basic approaches to parallel computing for scientific data, and then dwells into
the implementation used in GMQL, which is based on binning the genome. We focus on domain-

specific operations: join, map, and cover, as they are computationally very heavy.

7.1 STATE OF THE ART OF INTERVAL INTERSECTION ALGORITHMS

There are three main approaches to interval intersection ; the use of Linear Sweep algorithm,

of R-trees, and of Map reduce; we show them below in details.

7.1.1 LINEAR SWEEP ALGORITHM

In computational geometry, a sweep line algorithm [82] or plane sweep algorithm is a type of
algorithm that uses a conceptual sweep line or sweep surface to solve various problems in Euclidean
space. It is one of the key techniques in computational geometry.

The idea behind algorithms of this type is to imagine that a line (often a vertical line) is swept or
moved across the plane, stopping at some points. Geometric operations are restricted to geometric
objects that either intersect or are in the immediate vicinity of the sweep line whenever it stops, and

the complete solution is available once the line has passed over all objects.

8o

Our problem is defined for interval intersection as follows: Given a set I of nintervals [J;, ;] C

R,1 < i < n, compute all pairs of intervals from that intersect. This can be solved in O(nlogn + k)
I

2
First observe that two real intervals intersect if and only if one contains right endpoint of the

time and O(n) space, where k is the number of intersecting pairs from

other.

Sort the set {(I;,0)|1 < i < n} U {(r;,1)|1 < i < n} in increasing lexicographic order and
denote the resulting sequence by P. Store along with each point from P its origin (i). Walk through P
from start to end while maintaining a list L of intervals that contain the current pointp € P.

Wheneverp = (l,0),1 < i < n,insertiinto L. Wheneverp = (r;,1),1 < i < n, remove i
from L and then report for all j € L the pair ij as intersecting.

By keeping L intervals in memory, the maximum length of L cannot exceed the number of
intervals; thus, the in-memory implementation is at risk of errors with big set of intervals.

Simpler implementation of this algorithm is adopted by the state of the art tools for region
intersection, i.e. BedOps [83] and BedTools version 2.18 [84]. In this implementation, the interval
is kept as a pair I;(/, r) and the sorting is performed based on the left end of the interval only. Then,
the intersection is checked sequentially with no regards to the position of the right end of the interval.
This implementation is fast and does not consume much memory; as we have P sorted intervals by
left end, the algorithm checks the current interval p; in the sequence with the next adjacent interval
pi+, and if p; does not intersect with p,;, then we consider the p; interval does not intersects with all
intervals with index greater than i+1 so there is no need to keep it in memory for farther comparison.
In this way, containing intervals (intervals that have one or more intervals inside it) can all be skipped

except one (the first one sorted by left end).

7.1.2 BINNING ALGORITHMS USING TREES

R-Trees[85] (Rectangular Trees) are used in three of the most famous tools for region (inter-
val) intersection in genomics: the UCSC genome browser[86, 87] (with the Generic Model Organ-
ism Database[88] - GMOD), SAMTOOLS([89] and BedTools versions less than 2.8. R-Trees parti-
tions intervals from datasets into hierarchical bins. Intervals from another dataset are then compared
within matching bins, thus reducing the search space of the intersection check.

Constructing R-Trees starts by grouping the nearby points and represent them with their min-
imum bounding rectangle in the next higher level of the tree. Since all points lie within this bounding
rectangle, a query that does not intersect the bounding rectangle also cannot intersect any of the con-
tained objects. At the leaflevel, each rectangle describes a single object; at higher levels the aggrega-
tion of an increasing number of objects. This can also be seen as an increasingly coarse approximation

of the data set.

81

Rl R4 R11

‘Rz | |ps
RS Riz
RLO |
RE R14
R12 T
Rz R7 [R1g
R17
RE R16 o
RIS
Rl | Rz
R2 | R4 | RS RE | RT
. .r'-.. . ¥ - - . _...'I- . - - - y
Re | R3 | R10 |R11|R1z2 R1Z Rl R1S R1E R17 RlE|R19

Figure 7.1.1: R-Trees simple example.

R-Tree is balanced just like a B-Tree, with maximum number of entries for leaf nodes (the best
performance is observed with minimum number of entries equal to 30 to 40 percent of the maximum
umber of entries.) R-Trees are stable for large databases and datasets, where nodes can be paged to
memory when needed, but the whole tree cannot be kept in main memory.

R-Trees binning approach is shown in Fig.7.1.1". In addition to the construction time of R-tree,
amajor problem in this approach is thread divergence, which occurs when intervals are not uniformly
distributed inside the bins, leading to unbalanced bin sizes. If we represent the intervals with left and
right ends as coordinates, we would have something similar to the example in Fig.7.1.1.

Several refinements of R-Trees are proposed to increase the performance of either the con-
struction or the query time, where minimization of both coverage and overlap is crucial to the per-
formance. Overlap means that, on data query or insertion, more than one branch of the tree needs to
be expanded (due to the way data is being split in regions which may overlap). Minimizing coverage
improves the pruning performance, allowing to exclude whole pages from search more often.

The R+ Tree[90] is a refinement of R-trees that looks for data using location of (x,y) on earth
surface; it avoids overlapping of internal nodes by inserting an object into multiple leaves if necessary.
R+ trees differ from R trees in the following aspects: (1) nodes are not guaranteed to be at least half
filled, (2) the entries of any internal node do not overlap, (3) an object ID may be stored in more
than one leaf node.

R*-trees are a variant of R-trees used for indexing spatial information. R*-trees have slightly

higher construction cost than standard R-trees, as the data may need to be reinserted; but the resulting

"https://en.wikipedia.org/wiki/Rtree

82

Experiment Sample Experiment Sample

Search Space
for join (coss
product)

reference sample
reference sample

L |
I

Bin size

Figure 7.1.2: Binning search space. All intervals from reference that falls in one bin (bin n) will
be intersected only with intervals fall in (bin n).

tree will usually have a better query performance. Like the standard R-tree, it can store both point and
spatial data. When anode overflows, a portion of its entries are removed from the node and reinserted
into the tree. This has the effect of producing more well-clustered groups of entries in nodes, reducing

node coverage.

7.1.3 INTERVAL INTERSECTION USING MAP REDUCE

Some attempts were made to do interval intersection using map-reduce, others using directly
the data flow engines Pig, Spark, or Flink.

BioPig [91] provides a set of Pig Latin extensions for specific processing of data files produced
by next generation sequencing (NGS) machines. In BioPig, a software developer can write user de-
fined functions (UDFs) in Java programming language, but then s/he has to manage the Pig Latin
scripts manually. SeqPig in [92] also uses Pig Latin for scripting operations for genomics. SeqPig
and BioPig use the Hadoop-BAM [93] library for casting the different genomics data types before
Hadoop processing.

Data management systems developed so far concentrate on secondary analysis (e.g., [94-96]);
Adam [97], an offset of Spark dedicated to genomics, is also focused on secondary analysis. Func-
tionality of binning and regions operations are more general (Map, Join, Cover, Flat, Histogram, and
summit) in GMQL than doing only region intersection by Adam.

Authorsin [98], proposed a MapReduce work-flow that starts from the data from the sequenc-

ing machine and performs short read alignment using a parallel version of BWA aligner.

7.1.4 DISCUSSION

Linear sweeping produces good performance (complexity of O(NLogN)) but since it is a lin-
ear scanning on a sorted intervals, parallelism is difficult to achieve without binning the data. Because

those intervals have diverse lengths and are intersecting with each other. R-tree algorithms have a

83

' \ R1
Bin0

R3

| \
| \
\ \
= ‘ RS ‘ Binl ‘ R2 |
\ \
\ |

Bin2 R1 |

Figure 7.1.3: Regions before binning. Figure 7.1.4: Regions of Fig.7.1.3 after

assigning bins.

good parallelism since they bin the data as leafs of a tree, but they require a considerable construc-
tion time.

Building indexwith R-Trees is a good solution when a portion of the experiment data is queried
only (not all the leafs); this is the case when we query a single interval or a small set of intervals over
an R-Tree while the target intersecting intervals resides as well in a small number of leafs of the R-
Tree. Maintaining and storing the index of the R-Tree is troublesome when we have big data because
of the balancing mechanism of the R-Trees.

When the results of several queries (reference intervals) on an R-Tree are distributed on all the
leafs (this is the case when we map a genes annotation reference sample to experiment sample, the
genes annotation sample span on almost all the encoding genome space), then all the leafs should be
scanned, possibly several times. The intervals in the reference set (each interval is considered a query
on the R-Tree) are independent queries for the R-Tree, thus, the R-Tree is queried for each interval
separately. Independent queries are good for parallelism but we may end up scanning the same bin
(leaf) twice for two regions which intersects within the same bin. No optimization is performed to
merge the queries targeting the same (bin) leaf in one query.

For the above reasons, we did not use R-Trees for binning but we designed our own binning
method. The method is quite simple: we bin all the samples of GMQL operands (typically called
reference and experiment) using the same bin size. All the regions that span more than one bin are
replicated to all the bins which they span. This basic binning operation is slightly different for each
GMQL operation, for example the min-distance and map operations use slightly different binnings;
this will be discussed in the following sections. The basic binning operation is shown in Fig.7.1.3 and
Fig.7.1.4.

We next present the domain-specific GMQL operations based on binning: Join, Map and

Cover.

84

7.2 JOIN

Before discussing the join implementation, we discuss the clause evaluation order, the binning

strategy, and the interaction between the binning strategy and the query-specific search space.

7.2.1 INTRODUCTION

The JOIN operation applies to two datasets, respectively called anchor and experiment; the
operation produces a result sample for every pair of samples of the operand datasets, whose identifier
is obtained by applying a hash function to the identifiers of the operand samples; the regions within
each result sample are generated from the regions of the operand samples that satisfy a genometric
predicate; their coordinates are computed according to four region composition options and their
values are obtained by concatenating the values of the regions of the operands, where a full account
of the join operation is presented, including region composition options, join partitioning, and meta-
data management. Thus, the join operation produces results that can grow quadratically both in the
number of samples and of regions; hence, it is the most critical GMQL operation from a computa-
tional point of view.

Genometric predicates are based on the notion of genomic distance, defined as the number of
bases (i.e. nucleotides) between the closest opposite ends of two regions, measured (using a numeric
type, e.g. Integer) from the right end of the region with left end lower coordinate.> A genometric

predicate is a sequence of distal conditions, defined as follows:

« UP/DOWN denotes the upstream and downstream directions of the genome. They are interpreted
as predicates that must hold on the region of the experiment; UP is true when it is in the up-
stream genome of the anchor region®. When this clause is not present, distal conditions apply

to both the directions of the genome.

« MD(K) denotes the minimum distance clause; it selects the K regions of the experiment at min-
imal distance from the anchor region. When there are ties (i.e. regions at the same distance
from the anchor region), regions of the experiment are kept in the result even if they exceed

the K limit.

« DLE(N) denotes the less distance clause; it selects all the regions of the experiment such that

*With our choice of interbase coordinates, intersecting regions have distance less than o and adjacent regions have
distance equal to o; if two regions belong to different chromosomes, their distance is undefined (and predicates based on
distance fail).

3Upstream and downstream are technical terms in genomics, and they are applied to regions on the basis of their strand.
For regions of the positive strand, UP is true for those regions of the experiment whose right end is lower than the left end
of the anchor, and DOWN is true for those regions of the experiment whose left end is higher than the right end of the
anchor. For the negative strand, ends and disequations are exchanged.

85

A)

[
A -
S EEm e |) B
B)
> -
""""] N

Figure 7.2.1: Different semantics of genometric clauses due to the ordering of distal condi-
tions. The vertical bar is set at distance 100 from the reference region. In case (A) the mini-
mum distance region is first selected (on the left) and then excluded by the distance predicate
(on the right), therefore no region is produced. In case (B) the distance predicate selects two
regions (on the left), out of which the minimum distance region is selected (on the right).

their distance from the anchor region is less than or equal to N bases®.

« DGE(N) denotes the greater distance clause; it selects all the regions of the experiment such that

their distance from the anchor region is greater than or equal to N bases.

Genometric clauses are composed by strings of distal conditions; a genometric clause is well-formed
onlyifit includes the less distance clause; we expect all clauses to be well formed, possibly because the
clause DLE (Max) is automatically added at the end of the string, where Max is a problem-specific
maximum distance.

Examples. The following strings are legal genometric predicates:

DGE(500), UP, DLE(1000), MD(1)
DGE (50000), UP, DLE(100000)
DLE(2000), MD(1), DOWN
MD(100), DLE(3000)

Note that different orderings of the same distal clauses may produce different results; this aspect has
been designed in order to provide all the required biological meanings, and is further discussed in
Section 7.2.2, where we discuss distal clause evaluation.

Example. In Fig. 7.2.1 we show an evaluation of the following two clauses relative to an anchor
region: A: MD(1) ,DLE(100),B: DLE(100),MD(1). In case A, the MD(1) clause is computed

first, producing one region which is next excluded by computing the DLE(100) clause; therefore, no

*DGE(-1) is true when the region of the experiment overlaps with the anchor region; DGE(0) is true when the region
of the experiment is adjacent to or overlapping with the anchor region.

86

region is produced. In case B, the DLE(100) clause is computed first, producing two regions, and
then the MD (1) clause is computed, producing as result one region®.

Similarly, the clauses A: MD(1) ,UP and B: UP,MD(1) may produce different results, as in
case A the minimum distance region is selected regardless of streams and then retained iff it belongs
to the upstream of the anchor, while in case (B) only upstream regions are considered, and the one

at minimum distance is selected.

7.2.2 EVALUATION STEPS

The order of execution of distal conditions influences the result; this depends on the fact that
the min distance clause (MD) clause is not commutative with the greater distance clause (GLE) and
with the stream clause (UP/DOWN); the less distance clause DLE is commutative with all other clauses,
and stream and greater distal clauses are commutative with each other. Thus. the evaluation of a
genometric predicate requires a sequence of 3 steps, where clauses within each step are commutative

and each step can be missing:

« Step 1 includes the DLE clause of the query and the stream and greater distal clauses which

preceed the MD clause; if a query-specific DLE clause is not present, then DLE (Max) is added,

where Max denotes the maximum biological distance®.

« Step 2 includes the MD clause.
« Step 3 includes the stream and greater distal clauses after the MD clause.
Examples. The genometric predicate:

DGE(500), MD(10), UP

produces the following three steps:

Step 1: DGE(500), DLE(Max)
Step 2: MD(10)
Step 3: UP

The genometric predicate: DOWN, MD(10), DGE(2000), DLE(5000) produces the following
three steps:

SThe two queries can be expressed as: produce the minimum distance region iff its distance is less than 100 bases and
produce the minimum distance region after 100 bases.

®If a query includes the clause DLE (M1) and M1 > Max, the clause is turned into DLE (M) by the execution engine;
users can set the maximum biological distance of each query execution.

87

Step 1: DOWN, DLE(5000)
Step 2: MD(10)
Step 3: DGE(2000)

Some simpler predicates may require a single step, e.g. DGE(50000), UP, DLE(100000) is
mapped to Step 1.

7.2.3 BINNING AND SEARCH SPACE

The process of binning splits every chromosome of the genome into several bins of equal size
S; for each chromosome, bins are progressively numbered starting from o and the i-th bin spans from
S X itoS X (i41) — 1. Foragiven bin size S, a point placed at i bases from the chromosome start is
assigned to the bin b(i) = |i/S]. Intervals between a left end /; and a right end r; are assigned to the
bins between b(1;) and b(r;).

In order to effectively evaluate distal clauses, each anchor regions is associated with its search
space, consisting of intervals of bins that may include matching regions of the experiment; search
spaces are built according to the distal conditions of Step 1; it includes all potential matches, as Steps
2 and Step 3 are filters of the regions produced by Step 1. Consider an anchor region with left end

and right end r; let M be the maximum distance and let B, denote the last bin of each chromosome ¢
7. Then:

« Ifthe clause is LTE(d), then the search space is the interval of bins between b(I— d) (excluding
bins with i < o) and b(r + d) (excluding bins withi > B,).

« Ifthe clause is LTE(d,) and GTE(d,), with d, > d,, then the search space is the two intervals
of bins between b(I — d1) and b(I — d2) (excluding bins with i < o) and between b(r + d,)
and b(r + d,) (excluding bins with i > B,).

« If the clause is GTE(d,), then the search space is the two intervals of bins between b(I — M)
and b(I — d,) (excluding bins with i < o) and between b(r+d,) and b(r + M) (excluding bins
withi > B,).

When the UP/DOWN clause is present, the search space is limited to the upstream/downstream direc-
tions of the genome. A representation of the search space for the anchor region as effect of the DLE
and DGE clauses is shown in Fig. 7.2.2 (cases 1 and 2); the third case shows the effects of combining
the DLE, DGE and DOWN clauses.

’Given that chromosomes have different sizes, B, is a specific number for each chromosome.

88

Distance less than 500
Anchor region

|
|
| H
500 1000 1200 1300 1500 2000 2500

O — e — e ————

Bin0 Binl Bin2 Bin3 Bin4

Bin assignment space

Distance greater than 300
Anchor region

O m—mr— e ————

500 1000 1200 1300 1500 2000 2500
Bin0 Binl Bin2 Bin3 Bin4

Bin assignment space Bin assignment space

_Distance less than 500 >> Distance greater than 300 >> Downstream

| ‘ ‘ | Anchor region |
o
i

i
|
| H
500 1000 1200 1300 1500 2000 2500

O -—r— e ————

Bin0 Binl Bin2 Bin3 Bin4

Bin assignment space

Figure 7.2.2: Search spaces for three distal clauses, Step 1. The dashed lines show the borders
of bin size 500 bases, the red lines are the search space borders, the green line shows the search
space confirming to the query, and the anchor region is the reference region (size 100 bases)
that we are calculating the search space for. Each line is an example and has its query on the
top left corner.

89

7.2.4 EVALUATION OF D1STAL CLAUSES IN STEP 1

This construction allows a parallel evaluation of join predicates. In particular, the following

theorem holds due to the way in which search spaces are constructed:

Theorem 1. The join predicate between an anchor region and any experiment region falling outside of its

search space is false.

In addition, we would like to evaluate the Step 1 join predicate between given regions of the anchor
and experiment in a given bin only, so as to generate the corresponding result region only once, avoid-

ing duplicates. The following theorem provides a solution of this problem.

Theorem 2. If the Step 1 predicate between an anchor region and an experiment region is true, it can be

tested in a given bin, denoted as testing bin.

Proof. We build the proof by considering four cases which exhaustively cover the relationships be-

tween anchor and experiment regions, and defining the testing bin for each of them.

o Assume that the experiment is at the left of the anchor, i.e. the experiment’s left end is strictly less
than the anchor’s left end and the experiment’s right end is less than or equal to the anchor’s
right end. Then, the testing bin is the experiment bin with greatest number (the one at the
smallest distance from the anchor); the predicate can be true only if the portion of experiment
region within the testing bin intersects with the search space. Some examples are shown in Fig.
7.2.3, where the testing bin is denoted by a thicker trait. The predicate can be true in case (a)
(when the testing bin falls within the search space) and is false in case (b) (as the region is too

close to the anchor) and (c) (as the region is too distant from the anchor).

« 'The case when the experiment is at the right of the anchor is symmetric; in such case, the exper-
iment’s right end is strictly greater than the anchor’s right end and the experiment’s left end
is greater than or equal to the anchor’s left end. Then, the testing bin is the experiment bin
with the smallest number; also in such case, the predicate can be true only if the portion of

experiment region within the testing bin intersects with the search space.

o Assume that the experiment is included within the anchor. Recall that by construction the search
space either properly includes the anchor region or does not overlap with it. Thus, the exper-
iment can satisfy the join predicate only if it intersects with the search space in anyone of its
bins; conventionally, we may use as testing bin the experiment bin with the smallest number.

This case is illustrated in Fig. 7.2.4.

« Finally, assume that the anchor is included in the experiment. Then, the anchor is at negative

distance from the experiment, and again the search space either properly includes the anchor

90

Search Space Anchor

Figure 7.2.3: Experiment regions at the left of the search space. Every bar is one base unit.

Anchor

Figure 7.2.4: Experiment regions enclosed within the anchor region. Every bar is one base unit.

region or does not overlap with it; it follows that the join predicate between the region and the
anchor can be true only if the search space includes the anchor. Conventionally, we may use

as testing bin the anchor bin with the smallest number. This case is illustrated in Fig. 7.2.5.
]

Thanks to Theorem 2, at each bin B we evaluate Step 1 conditions just for those pairs of experiment
and anchor regions such that B is their testing bin; thus, we either discard the pair of regions, or
produce the resulting regions exactly once. This result is used by the parallel execution strategy which

is next discussed.

7.2.5 JOIN EXECUTION STRATEGY IN FLINK AND SPARK

Fig. 7.2.6 illustrates the flow of Flink and Spark operators for implementing a join operation.
We recall that joins require first to select the pairs of samples that need to be joined, using a metadata
predicate, and then to compute the result regions, using a genometric predicate. The operation ap-
plies to two datasets, respectively called anchor and experiment; as a running example we consider the

join with:

Anchor

Figure 7.2.5: Anchor region enclosed within the experiment region. Every bar is one base unit.

91

Algorithm Blocks Flink

Spark
[Anchor DS. | [ExperimentDS.] [AnchorDS.| [ExperimentDS.] [AnchorDS.| [ExperimentDS.]
etaJoin 1 etaJoin 1 MetaJoin
[Binning | L [Binning | 2 [FlatMap | L[FlatMap | 2 [FlatMap | L| FlatMap |
3 3-4.1 Joﬁ 3
a1 a1
P e
Sort
[3rd Clause block] 4.3 4.3-5[_FlatMap 4.3-5@*@
5 L

Figure 7.2.6: Operators for encoding the Join algorithm in Flink and Spark

Step 1: DGE(140), DLE(500)
Step 2: MD(1)
Step 3: DOWN

computed on:

Anchor: Id, chromosome, start, stop

1 C1 150 160

1 C1 285 390

Experiment: Id, chromosome, start, stop
2 C1 10 20

2 C1 430 550

2 C1 750 780

Throughout the examples of this section, we do not consider strands; in reality, join predicates evalu-
ation is defined only between regions with compatible strand®. We also do not consider region values,

they are carried along with each region and concatenated in the result’.

« Block 1 (Metajoin) produces in output, for each anchor sample, the join list of the experiment

samples that must be joined to it.

Example. The join list of sample 1 is [2].

8Positive and negative strands are not compatible, and they are both compatible with undefined strands.

*With big value sizes, it is convenient to project the values prior to Block 1 and then join them to resulting regions
within Block s.

92

« Block 2 (FlatMap) is responsible of copying regions to the bins:

— For every anchor region and bin b intersecting with the search space, it generates a copy
of the anchor region for every bin b of the search space, by adding to it the attribute Bin
(b) and the attribute SBin (the bin where the anchor region starts.)

— For every sample of the join list and for every bin b intersecting with each experiment
region, it generates a copy of the experiment region, by adding to it the attribute Bin
(b) and the attributes SBin (the bin where the anchor region starts) and EBin (the bin

where the anchor region ends.)

Note thatanchor regions are replicated at the bins of their search space, computed in this block,
and experiment regions are replicated at the bins which intersect with them. The added at-
tributes allow to test with a simple predicate if the current bin b is the testing bin of a given pair

of anchor and experiment regions, based on the four cases of Theorem 2.

Example. With a bin size B = 100, the first anchor region is copied to the bins o, 2 — 6, the
second anchor region is copied to the bins o — 8; the experiment regions is copied to the bins

0,4 —5and7.

+ Block 3 (Join) joins the anchor and experiments by chrom and bin. In this way, for any pair
of anchor and experiment samples to be joined and for any of their anchor and experiment re-
gions, all the relevant data are available at all bins, hence also at their testing bin. This operation
is the most expensive, as it may join millions of regions to millions of regions; it is effectively
computed by the Join operator, available in both frameworks. Performance depends on the
bin size, as smaller bin size increases both replication and parallelism, therefore we study its

optimal tuning as a function of data sizes and query parameters.

Example. The following pairs are produced:

Bin Chr Id1 SB1 L1 R1 Id2 L2 R2

BO C1 1 B1 150 160 2 10 20

B4 C1 1 B1 150 160 2 430 550
B5 C1 1 B1 150 160 2 430 550
B7 C1 1 B1 150 160 2 750 780
BO C1 1 B3 285 390 2 10 20

B4 C1 1 B3 285 390 2 430 550
B5 C1 1 B3 285 390 2 430 550
B7 C1 1 B3 285 390 2 750 780

93

« Block 4.1 (Join in Flink, FlatMap in Spark) performs Step 1, by computing the distance be-
tween the regions in each row and then selecting only the rows of the testing bins where the
distal conditions hold; testing bins are determined as indicated in the four cases of the proof
of Theorem 2. This step is computed in parallel in each bin, in Flink is included in the Join of

step 3, in Spark is a FlatMap.

Example. The following pairs are produced:

Bin Chr 1Idl SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270
BO C1 1 B3 285 390 2 BO BO 10 20 265

B7 C1 1 Bin3 285 390 2 B7 B7 750 780 360

« Block 4.2 (GroupBy, Sort, GroupReduce) performs Step 2, by selecting experiment regions
based upon their minimal distance from anchor regions; it is implemented by the GroupBy,
Sort and GroupReduce operators, but it requires data shuftling for collecting the experiment
regions at nodes where sorting by distance and top — k selection can be performed. We can
reduce data shuffling with an alternative implementation, which adds a sort operation at each
bin, producing at each bin the top — k regions; these needs to be moved, while all other regions

can be discarded. We discuss pros and cons of this alternative implementation in Section 9.1.3.

Example. The following pairs are produced:

Bin Chr 1Id1 SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270
BO C1 1 B3 285 390 2 BO BO 10 20 265

« Block 4.3 (FlatMap) performs Step 3, by further reducing the filtered regions according to the
distal conditions of Step 3. It uses the FlatMap operator.

Example. In the example, the condition DOWN filters one pair, producing:

Bin Chr 1Idl SB1 L1 R1 Id2 SB2 EB2 L2 R2 D
B4 C1 1 B1 150 160 2 B4 B5 430 550 270

« Block 5 (FlatMap) is responsible of outputing the resulting pairs, by computing their sample
identifier and their region coordinates according to the coordinate composition option and is

executed together with block 4.3

94

Example. We finally obtain the following result, where a new sample identifier is generated as
a hash function of the identifiers of the two operands, and the resulting region is obtained by

concatenating the operand regions:

Id Chr Start Stop
Hash(1,2) Chrl 150 550

7.3 MaAp

MAP is a binary operation over two datasets, respectively called reference and experiment. Let

us consider one reference sample, with a set of reference regions; the operation computes, for each
sample in the experiment, new values produced by aggregation functions over the values of the ex-
periment regions that intersect with each reference region; we say that experiment regions are mapped
to reference regions. The operation produces a regular structure, called genomic space, where each ex-
periment sample is associated with a row, each reference region with a column, and each matrix entry
is a single value'®. Thus, a MAP operation allows a quantitative reading of experiments with respect to
the reference regions; when the biological function of the reference regions is not known, MAP helps
in extracting the most interesting regions out of many candidates.
Example. When the input consists of one reference sample and three experiment samples, the output
consists of three samples with the same regions as the reference sample, whose features corresponds
to the number of mutations which intersect with those regions. The result can be interpreted as a
(3 X 3) genome space.

The encoding of the Map operation as a sequence of operations for Spark and Flink is shown in
Fig. 7.3.1. The algorithm requires to bin the two datasets, to group them by sample pair, chromosome
and binning, to compute intersections within the bins, to compute aggregate functions, and output
the results for each sample pair. The complexity of this problem grows quadratically with the sizes of
the reference and experiment dataset. In the example, we count the experiment regions intersecting

with reference regions; we consider:

Anchor: Id, chromosome, start, stop

1 C1 150 235

Experiment: Id, chromosome, start, stop
2 C1 10 230

1%Biologists typically consider the transposed matrix, because there are fewer experiments (on columns) than regions
(on rows). Such matrix can be observed using heat maps, and its rows and/or columns can be clustered to show patterns.

9S

Algorithm Blocks Flink Spark

|Reference| |Experknent| | Reference | |Experknent| |Reference| |Experknent|
l 1 Metaloin 1 Metaloin
v v W7 v v
| Binning Binning | 2-3 | FlatMap thMad 2—3| FlatMap |thMaM
L] L7 L]
| Intersection | 4 | CoGroup | 4 | Left Quter Join |
v
l | Flat Map |
| Result Creation | 5 | GroupBy | s
¢ A 4
| Reduce | | Reduce by Key
v v v
|C0mputation of aggregates| 6 | Map | 6 | Map |
2 2 v
| Store | | Store | | Store

Figure 7.3.1: Operators for encoding the Map algorithm in Flink and Spark

« Block 1 (Metajoin) produces in output, for each reference sample, the map list of the experi-

ment samples that must be mapped to it.

« Block 2 (Experiment Binning) is responsible of copying experiment regions to the bins. For
every experiment region and bin b intersecting with the experiment, it generates a copy of the

region for every bin b; only the attributes which are used by aggregate functions are copied.

Example. With bins of size 100, the following copies are generated:

Id Chr Bin Start Stop

cl 0 10 230
cl 1 10 230
cl 2 10 230

Note that a list of attribute values is generated, but no attribute value is needed for computing
the COUNT.

« Block 3 (Reference Binning) is responsible of copying reference regions to the bins. For every
reference region of a given sample, for every bin b intersecting with the reference, and for every
experiment samples in its map list, a copy of the reference region is built, having as attributes
the concatenation of Id, Chr, Bin, Start, Stop ofthe reference with the Eid of the
experiment and with a new attribute H obtained by hashing all the attributes except the bin; this
attribute is later used for assembling all copies relative to the same reference and experiment

regions.

Example. The following copies are generated:

96

Id Chr Bin Start Stop Eid H
1 c1 1 150 235 2 567
1 c1 2 150 235 2 567

« Block 4 (LeftJoin) is responsible of computing a partial map within each bin. It joins references
and experiment by Eid, Chr and Bin; if the join succeeds, it further selects resulting tuples
by considering only the bins where either the reference region or the experiment region start
(note that this bin exists and is unique by construction). At each selected pair, a portion of the
aggregate function is computed. A new region is built, having as attributes the concatenation
of Chr, BinwithRid, Start, Stop, Hofthereferenceand EId, EStart, EStop, V
of the experiment; V stores the experiment values to be used by the aggregate functions (in the
case of Count, it stores 1.) Ifthe join fails, because of the left join constructor, all the reference
information is stored to the result, with null values stored for the experiment; in this way, all

reference regions are correctly accounted.
Example. The following copies are generated, and the second one is then filtered:
Chr Bin RId Start Stop H EId EB EStart Estop V

cl 1 1 150 235 567 2 c1 1 10 230 [1]
cl 2 1 150 235 567 2 c1 2 10 230 [1]

« Block 5 (Assembling) is responsible of assembling all copies corresponding to the same refer-
ence and experiment at one node, through data shuflling; the operation is performed thanks
toareduce phase which uses the Hash attribute. Partial sums are performed for computing

COUNT, and lists of attribute values are concatenated within a bag.

Example. In the example, the two regions are reduced to one, as they have the same hash

attribute. The following region is generated:

Rid Chr Start Stop Val
567 chrl 150 235 1

« Block 6 (Aggregating) is responsible of computing aggregate functions, by applying them to
the bag of values built at block 5. This step does not apply to the running example.

7.4 COVER

The COVER operation applies to a single dataset and computes a single sample from several in-

put samples by taking into account region intersections. In the basic COVER operation, each resulting

97

region r is the contiguous intersection of at least minAcc and at most maxAcc regions r; in the input
samples; minAcc and maxAcc are called accumulation indexes'".

Resulting regions may have new attributes Ar, calculated by means of aggregate expressions
over the attributes of the contributing regions. Jaccard Indexes'?are standard measures of simi-
larity of the contributing regions r;, added as default attributes. Three variants of the basic COVER are

biologically relevant:

o The HISTOGRAM variant returns the nonoverlapping regions contributing to the cover, each

with its accumulation index value, which is assigned to the AccIndex region attribute.

« The FLAT variant returns the union of all the regions which contribute to the COVER (more
precisely, it returns the contiguous region that starts from the first end and stops at the last end

of the regions which would contribute to each region of the COVER).

o The SUMMIT variant returns only those portions of the result regions of the COVER where the
maximum number of regions intersect (more precisely, it returns regions that start from a po-
sition where the number of intersecting regions is not increasing afterwards and stops at a po-
sition where either the number of intersecting regions decreases, or it violates the max accu-

mulation index).

We discuss the computation of the Histogram, i.e. of the accumulation index, as discussed
in Section 3.5.1; all other properties of the Cover are easily derived from that index. A sequential
algorithm for solving this problem consists of scanning the genome from left to right and maintain
the accumulation count. At every start of a region the count is incremented, and at every stop is
decremented; the result is given by every consecutive pairs of region ends with a positive counter. In
the following, we propose a parallel version of this algorithm which relies on partitioning the genome
into bins. The operation flow is shown in Fig. 7.4.1.

Example. We show only three regions, with the peculiarity that the first region stops where the sec-

ond region starts and that the third region intersects with two bins, whose size is set to s00.

Id, Chr, Start, Stop
1 chrl 154 237
1 chrl 237 450
1 chr2 460 600

""The keyword ANY can be used asmaxAcc, and in this case no maximum is set (it is equivalent to omitting themaxAcc
option); the keyword ALL stands for the number of samples of the operand, and can be used both for minAcc and
maxAcc; these can also be expressed as arithmetic expressions built by using ALL (e.g, ALL-3, ALL+2, ALL/2);
cases when maxAcc is greater than ALL are relevant when the input samples include overlapping regions.

>The JaccardIntersect index is calculated as the ratio between the lengths of the intersection and of the union
of the contributing regions; the JaccardResult index s calculated as the ratio between the lengths of the result and of
the union of the contributing regions.

98

Algorithm Blocks Flink Spark

| E):'?eriment | | Experiment | | Expe&i’ment |
| Binning | 1 | FlatMap | 1 | FlatMap |
v v L7
| Building of Hash-Map | 2 | GroupBy | 2 [Reduce By Key |
¥
| Reduce |
N v
| Result Creation | 3 | Flat Map | 3 | Flat Map |
b
[Binning Post-P\I’ocessing | a4 [Filter Filter | a4 | Filter Filter |
Boarder Merge
y v y ¥ R [
| Union | 5 | Union | 5 | Union |
v ¥
|C0mputation of Aggregates| | Genometric Map | | Genometric Map |
b 07
| Store | | Store | | Store |

Figure 7.4.1: Operators for encoding the Cover algorithm in Flink and Spark.

1 chr2 580 700

« Block 1 (FlatMap) is responsible for the binning. For each region, it emits a new tuple for each
bin it intersects. The output tuple contains the chromosome, the bin and a hash-map; in the
hash map, we associate every region start with +1 and every region stop with -1. In the case a
region crosses the border between two bins, we split it into two contiguous regions; one from
the start to the border and one from the border to the stop (if the regions spans for more than

two bins, the same procedure is repeated).

Chr , Bin, HashMap[Int,Int]
chrl 0 {154->+1, 237->-1}
chrl 0 {237->+1, 450->-1}
chr2 0 {460->+1, 500->-1%}
chr2 1 {500->+1, 600->-1%}
chr2 1 {580->+1, 700->-1%}

« Block 2 (GroupBy, Reduce) is responsible of grouping the output dataset of the previous block
by chromosome and bin. Then, on each partition an associative function is applied by the
Reduce, which builds a single tuple for each chromosome and bin containing a hash-map with
all the starts and stops of the regions in the bin; notice that in the worst case, the size of this

hash-map is the same as the the length of the bin, therefore it fits in memory.
Chr, Bin, HashMap[Int,Int]

99

chri

0 {154->+1, 237->0, 450->-1}

chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 580->+1, 600->-1, 700->-1}

« Block 3 (FlatMap) returns the list of produced regions, along with their accumulation value,

with each region placed within a bin, thus creating a raw histogram:

Chr,
chri
chr?2
chr2
chr2
chr2

Start, Stop, Count

154 450 1
460 500 1
500 580 1
580 600 2
600 700 1

« Block 4 (Filter) starts with two filters that separate the regions properly contained in the bins

(left filter) from the regions overlapping with bins (right filter). The latter regions must be

merged when they are adjacent and with the same count. This processing requires a GroupBy

and a ReduceGroup. In the specific example, the right filter is applied to the regions of chro-

mosome 2, producing the region:

Chr, Start, Stop, Count
chr2 460 580 1

« Finally, Block 5 (Union) performs the union of the regions separately produced, Block 6 com-

putes the aggregate (if any) using a Genometric Map operation and then (DataSink) writes

them to the disk; it generates:

Chr, Start, Stop, Count
chrl 154 450 1

chr2 460 580 1
chr2 580 600 2
chr2 600 700 1

100

Part 111

EVALUATION: Comparing Different
GMQL Implementations

101

Performance is your reality. Forget everything else.

Harold S Geneen

Experimental Evaluation of GMQL Engine V1

In this chapter, we present the performance of the GMQL V1 system in comparison with the
state-of-the-art; we also show that the system has a linear scale-up. Finally, we present a full exam-
ple with biological interpretation. We measured performances both on Amazon Web Service cloud,
taking advantage of multiple nodes, and on our server, an Intel® Xeon® Processor with CPU Es-2650
at 2.00 GHz, six cores, RAM of 128 GB, hard disk of 4x2 TB, and the engines Apache Hadoop 2.6.2,
Apache Pig o.15.0 and Apache Lucene s.3.1.

8.1 GMQL V1 IMPLEMENTATION OPTIMIZATION - PARALLELISM IN THE GENER-

ATED CODE

Several aspects of the translation contribute to the generation of high-performance Apache Pig

code (which makes the translator a sort of syntax-directed optimizer):

« Use of by-pair parallelism, generated when an operations can be split into independent com-

putations over pairs of samples.

« Use of by-chrom parallelism, which is generated by partitioning the GROUP and CROSS Apache
Pig operations by chromosome. This is a classic distributed join; as result, regions are only pro-

duced from input regions with matching chromosomes’.

"This parallelism is produced by changing, in Fig. 6.1.2, lines 11 and 12, where GROUP has to be applied by using also

102

N
o

c

E 3 —*—by-pair

Q

= —*—by-chrom
= 20

S

= 10

5

]

lﬁ 0

500 1000 1500 2000 2500
of input samples (joined with 3 reference samples)

0

Figure 8.1.1: Performance of by-chrom parallelism added to by-pair parallelism.

« Use of suitable parallelism directives in Apache Pig operations, so as to improve the perfor-

mance (e.g., setting the number of reducers as a function of the size of the input bags).

We instead delegate basic Apache Pig optimizations (such as dead-code deletion, filter pushing and
so on) to the Apache Pig compiler, which is called upon the generated code.

8.1.1 EFFECT OF BY-CHROM PARALLELISM

In Fig. 8.1.1 we show the effect of adding by-chrom parallelism to the by-pair parallelism of the
JOIN operation of three reference samples over an increasing number of experiment samples. The
figure shows an important reduction of processing time with the addition of by-chrom parallelism,
which depends both on the increased parallelism and reduced data sizes of operands (we also ob-
served much smaller intermediate data sizes); moreover, all algorithms of join and map in GMQL V1
need the ordering of regions along the genome, and the time of ordering is also reduced with smaller
data sizes. We found similar results in other operations and hence generally adopted the by-chrom

parallelism together with the by-pair parallelism.

8.1.2 Si1ze-Speciric TUNING

In our experiments we used Apache Pig version 0.15.0; this version performs an automatic
setting of internal parameters based on the size of the input of each Pig operation, controlling paral-
lelization aspects such as the number of reducers. Our compiler allows overruling of the setting of
the reducer threshold, limiting the amount of data that should be managed by each reducer; we noted
better performance by increasing the standard number of reducers by a factor 4, dividing the input in
chunks of 0.25 GB rather than 1 GB.

We then considered the behavior of Apache Pig operations with small input sizes. We noted
that operations over metadata are less demanding and operations over regions are more demanding.

Thus, after several experiments, we empirically produced a simple rule: if the size of inputs of an

the chromosome, and lines 13 and 14, where CROSS is turned into a join on the chromosome.

103

Apache Pig operation is above 2 GB, we simply set the reduce threshold to 0.25 GB; if it is below 2
GB, we assign to the Apache Pig operation a fixed number of reducers, equal to 1 if the operation
applies to metadata and to 8 if the operation applies to regions, where 8 is the number of reduce slots
available on our server. We tested this rule on many complex queries and obtained a performance

gain between 10% and 20%?>.

8.2 (COMPARISON WITH THE STATE OF THE ART

No cloud computing system operates on region-based processed data, but BEDTools [84] and
BEDOPS [83] are popular biologists’ tools for scripting region-based computations which perform
set-oriented operations upon regions; hence, we consider them the closest tools for a state-of-the-art
comparison. They provide single machine code that uses multi-threading for some computationally
expensive operations; they do not support implicit iteration over data samples or metadata manage-
ment.

As BEDTools and BEDOPS are not cloud computing tools, they have excellent performance
when applied to one pair of samples; however, these tools scale with great difficulty, both for what
concerns programmability and performance. Since they do not support implicit iteration, for a com-
parison we coded a read function, which iteratively reads input files, and then scripted programs

with explicit iteration. For instance, the GMQL operation:

RES = MAP(COUNT) GENE EXP;

is encoded by the following BEDOPS program:*

sort-bed ~/gene.bed > ~/filel_sorted.bed;

i=0

while read NAME
do

i = $0@1+1))

sort-bed $NAME > ~/file2 sorted.bed;

bedmap --ec --count --echo ~/filel_sorted.bed
~/file2_sorted.bed > "~/$i.bedOpsRes";

echo "$i.$NAME";

done < ~/inputfiles.txt

*In Example 3.2 in [39], which includes a cascade of 4 GMQL joins and is translated into 32 Apache Pig operations
that use reducers, we obtained a reduction of execution time of 17%, from 633 to 525 seconds.

3For brevity, we do not show the encoding in BEDTools and for distal join both in BEDTools and BEDOPS; neither
BEDTools nor BEDOPS have metadata, hence we omitted from the translation of GMQL the Apache Pig code which
loads and builds metadata.

104

120
100 —-—GMQL

=

‘E 80 | —+BEDOPS
Q

g0 BEDTools
= 40

<

g 20

3

o 0 &=

(]

o 0 500 1000 1500 2000

of input samples (joined with 3 reference samples)

Figure 8.2.1: Performance of the DISTANCE JOIN operation with increasing number of sam-
ples; GMQL vs. BEDOPS vs. BEDTools.

35 —-GMQL
<30 —*-BEDOPS
25 *—~BEDTOOLS

1 501 1001 1501 2001
of input samples (mapped to 1 reference sample)

Figure 8.2.2: Performance of the MAP operation with increasing number of samples; GMQL vs.
BEDOPS vs. BEDTools.

Fig. 8.2.1 shows comparative performances of the DISTANCE JOIN operation between three
reference samples of about 45K regions each and an increasing number of experiment samples with an
average of soK regions and 7.5 MB size each. GMQL performs worse than BEDOPS and BEDTools
when experiment samples are less than 50, but it outperforms them above such threshold.

Fig. 8.2.2 shows comparative performances of the MAP operation with a count aggregate func-
tion in the same experimental setting, but with a single reference sample; in this case, GMQL per-
forms worse when experiment samples are less than 500, but it outperforms both BEDOPS and BED-
Tools above such threshold. Furthermore, GMQL time does not depend on the complexity of op-
eration (e.g., number of computed aggregates), but rather to the need of distributing sample files,
partitioned over the number of chromosomes, to the computing nodes. Instead, BEDOPS requires
an increase of 30% of execution time for computing two aggregates, and BEDTools does not support
multiple aggregates.

We conclude that BEDOPS has comparatively better performance than BEDTools, as inde-
pendently reported in [99], and that beyond given thresholds GMQL performs faster on big data;
moreover, GMQL provides a cloud computing solution, whose performance will increase with bet-

ter operating system, better computing infrastructures and larger clouds.

10§

900
—*-CROSS

800
=
£ 700 | —-DISTANCE /
T 600

150 T

£ MINDISTANCE |
S 500 w00 U
§
& 400 so | e
S 300 0 =T
o 0 500 1000 1500 2000 2500
£ 200
w

100

0 & -
0 500 1000 1500 2000 2500

of input samples (joined with 3 reference samples)
Figure 8.3.1: JOIN performance over big data.

1000
—*-CROSS
—*—MAP

Execution time (min)

0 ¥ .
0 500 1000 1500 2000 2500
of input samples (mapped to 1 reference sample)

Figure 8.3.2: MAP performance over big data.

8.3 GMQL V1 ScALING WITH B1G DATASETS

Fig. 8.3.1 illustrates the performance of the three kinds of JOIN (DISTANCE, MINDISTANCE
and FIRST AFTER DISTANCE), when executed with 3 samples of about 45K regions each as fixed
references and a growing number of samples (up to 2.5K) as experiment samples; these samples have
a variable number of regions and sizes, with an average of 50K regions and 7.5 MB size each. The
diagram shows almost linear scaling; it also shows that the encoding of the JOIN as crossproduct
(CROSS) has much worse performance.

MAP is a simple case of DISTANCE JOIN; hence, its performance curves are similar. Fig. 8.3.2
shows the MAP performance when the set of all known human genes (both protein coding and not)
is used as single reference sample; note the linear scale up to only 15 minutes with 2500 experiment
samples (77,778,000 regions) and 45K genes.

We also used the Hadoop framework provided by Amazon Web Services* with m3.2xLarge
model, 8 CPU, 30 GB RAM, 2x80 GB storage SSD to test the MAP operation with over than 4000
samples, our largest dataset (about 31.1 GB); parallelism was set to 1 master node and s, 10, and 15

slave nodes, respectively. Table 8.3.1 shows a significant reduction in execution time with the increase

*http://aws.amazon.com/

106

http://aws.amazon.com/

Table 8.3.1: Scalability of MAP execution time by increasing parallelism in the Amazon Web
Service cloud

Master Nodes ‘ Slave Nodes ‘ Processing Time

1 5 29 min 14 sec
1 10 19 min 30 sec
1 15 16 min 30 sec

of the number of nodes, although scalability is lower when going from 10 to 15 nodes, most likely due

to higher communication overhead.

8.4 UsE CASE EXAMPLE

This example uses a MAP operation to count the peak regions in each ENCODE ChIP-seq sam-
ple that intersect with a gene promoter (i.e., proximal regulatory region); then, in each sample it
projects over (i.e., filters) the promoters with at least one intersecting peak, and counts these pro-

moters. Finally, it extracts the top 3 samples with the highest number of such promoters.

HM_TF = SELECT(dataType == 'ChipSeq') ENCODE;
PROM = SELECT(annotation == 'promoter') ANN;
PROM1 = MAP(peak_count AS COUNT) PROM HM_TF;
PROM2 = PROJECT(peak_count >= 1) PROM1;

PROM3 = AGGREGATE(prom_count AS COUNT) PROM2;

RES = ORDER(DESC prom_count; TOP 3) PROM3;

The query was executed over 2,423 samples including a total of 83,899,526 peaks, which first were
mapped to 131,780 promoters within the ANN annotation dataset, producing as result 29 GB of data;
next, promoters with intersecting peaks were counted, and the 3 samples with more of such promot-
ers were selected, having between 30K and 32K promoters each. Processing required 11 minutes and
50 seconds.

The RES result variable includes both regions and metadata; the former ones indicate interest-
ing promoter regions (that can be further inspected using viewers, e.g., genome browsers), the latter
ones allow tracing provenance of resulting samples. Fig. 8.4.1 shows 4 metadata attributes of the re-
sulting samples: the order of the sample, the antibody and cell type considered in the ChIP-seq
experiment, and the promoter region count.

Further biological use case examples were thoroughly illustrated and discussed previously in

[39].

107

ID ATTRIBUTE VALUE
131 order 1

131 antibody RBRP5S
131 cell H1-hESC
131 count 32028
133 order 2

133 antibody SIRT6
133 cell H1-hESC
133 count 30945
113 order 3

113 antibody H2AFZ
113 cell H1-hESC
113 count 30825

Figure 8.4.1: Metadata excerpt of the resulting samples.

108

Don’t lower your expectations to meet your performance.
Raise your level of performance to meet your expectations. Ex-
pect the best of yourself, and then do what is necessary to make
it a reality.

Ralph Marston

Experimental Evaluation of GMQL Engine V2

In this chapter, we evaluate the performance of the GMQL V2 system in comparison with V1;
we also show the performance of domain specific operations and the scalability of the algorithms
with the increase of the data size and number of nodes in the cluster. Testing has been done on alocal
server thathas 16 core and 125 GB of RAM. GMQL V1 is executed on Apache Pig over Hadoop Yarn,
while we have chosen the Spark implementation for V2 over Hadoop Yarn [51]. We noticed that the
cluster resources reservation was very high in Pig execution (over 90% of the resources) while it was
moderated for Apache Spark execution (less than half the resources dedicated for this processing).

The data used for this test is a real data from Encode [22].

9.1 JOIN OPERATION BENCHMARK

Join operation has several options as described in chapter 3. The test includes five queries; the
first query contains only a distance predicate, with no restriction on streams, thus it can be solved by
using the first step of the join execution strategy discussed in Chapter 7. The second query contains
in addition a mindistance predicate, therefore it requires two steps of the execution strategy. The third
query contains a sequence of predicates: it includes distance greater than, then up stream, and finally
a distance less than function; for this query, all the steps of the join execution strategy are needed.
The fourth query, without a mindistance predicate, can be solved by executing only the first step; the

fifth query is similar to the second one except that the distance less than condition is less restrictive,

109

w
wu
o

Q1 —*-Q2 Q3 —=—Q4 Q5

Exec Time (sec)
- N N w
w o w o
o o o o

=
o
o

N

1k 5k 10k 50k 100k 200k 500k M 10M

w
o

o

Bin Size

Figure 9.1.1: Execution times of 5 join queries with different bin sizes.

yielding to a larger result.

Q 1 = DistLess(100000)

Q 2 = DistLess(50000), MinDistance(2)

Q 3 = DistGreater(50000), Upstream(), DistLess(100000), MinDistance(1)
Q 4 = DistGreater(50000), Upstream(), DistLess(100000)

Q 5 = DistLess(200000), MinDistance(1), Upstream()

Fig.9.1.1 shows the execution times of the five join queries with different bin sizes. The test
shows that the best bin size for all the join queries is the same and it does not change much, even
though different queries require different steps of execution. The best performance in Fig.9.1.1 is
associated with the fourth query since the fourth query limits the search space to up stream and has a

smaller distance interval.

9.1.1 OprPTIMAL BIN S1ZE

As discussed before, the rationale of binning is to reduce the number of regions to be consid-
ered within each bin, instead of computing chromosome-wide cross product; however, regions that
cross the binning borders must be replicated. Large bins reduce replication of regions, but they lead
to producing and matching many pairs of regions within each bin; conversely, short bins increase
replication and therefore the generation of matching regions that should not be produced in output.

The choice of a good bin size depends on many factors:

« Physical characteristics of the cluster: if the executors have a large amount of memory, then
larger bins can be used, as the cost of computing larger cross products in-memory is generally

less than the cost of shuffling regions.

2500

-{-dist<0
-O-dist<1k
dist < 10k

2000

1500 - il
[4
Id

1000 - g
.
ol
e
»

Figure 9.1.2: Execution time of Join as a function of bin size in logarithmic scale for Flink

« Total number of regions: when regions increase in number, smaller bins are needed in order

to avoid huge cross products;

« Average region length: when regions are longer than bins, they are going to produce many

replicates, thus increasing the cost of data shuffling and the number of useless tests.

Figure 9.1.2 shows the execution time of the join using the Flink engine, for different choices
of the distal predicate (note that if the distance is less than 10K bases many more resulting regions are
produced w.r.t. distances of 1K or of zero bases, yielding to longer execution times). In these cases,
bin size between 1K and 10k bases are optimal. Figure 9.1.3 shows the same experiment using the
Spark engine; in these cases, bin size close between 0.5 X 10K and § X 10K are optimal.

Figure 9.1.4 shows the execution time of the cover using the Flink engine, for different choices
of the minimum and maximum accumulation indexes; note that the performance does not depend
on accumulation indexes: once the histogram is computed (Block 3), then the extraction of result

regions (Blocks 4-6) has very similar costs for any choice of accumulation indexes.

9.1.2 PERFORMANCE COMPARISON WITH DIFFERENT BIN S1ZES

Join execution times of Flink and Spark are compared in Fig. 9.1.5. For small bin sizes and
restrictive clauses (less matching regions) Flink has better performance, whereas for large bin sizes
and more permissive clauses (more matching regions) Spark has better performance. In the Cover,
pipeline parallelism results in faster execution times for Flink; Fig. 9.1.6 shows that the cover exe-

cution times are rather similar for an optimal choice of the bin size, but Flink outperforms Spark for

900

-3-dist<1k
ol dist < 10k| |
700 |
600 |
gs
500 - s
o m
LS B 0
400 - Ty i
‘Q\ R . 2 S
~~<~>~.-- 4
300 . 0o nnnnonoe: Qree”
102 10% 10¢ 10°

Figure 9.1.3: Execution time of Join as a function of bin size in logarithmic scale for Spark

1100

T T

-0 - COVER(1,2)
1000

-{3- COVER(2, ANY)| T

8-
)
v
)
.
)
)
L)
900 A
)
)
*
[}
800
%
[}
[}
[}
[}
)

700 |
.
600 |- G“ g .
‘\‘ "l
. ‘
500 - \6 e
§
oy o
. i
400 | B . .
e‘. _-8-_&. '8'-’-'4— 8
300
102 10° 10 10° 10° 107 108

Figure 9.1.4: Execution time of Cover for Flink

2500

- Flink dist<0

- Flink dist < 1K
Flink dist < 10K

- Spark dist <0

- Spark dist < 1K
Spark dist < 10K

2000

BHOOO

1500 -

1000 - g
.,
o
ol
g

Figure 9.1.5: Comparison of Join execution times as a function of bin size and join clause in
logarithmic scale for Flink and Spark

either small or large bins. These results are coherent with our findings described in the next Chapter.

9.1.3 DATA SHUFFLING AND ORDERING WITH MINDISTANCE

Each reference region is replicated to all the bins whose distance from the anchor region is less
than the query constant; this is implemented by Block 2 of Section 7.2.5, and may generate a large
number of regions satisfying the join condition at each bin, expecially when the query constant is set
to Max, the maximum biological region length. This in turn may cause a lot of data shuffling for ex-
tracting the top-k regions of a minimal distance join; to reduce overhead, we suggested an alternative
implementation which adds an intermediate sorting step (see Block 4.2 of Section 7.2.5). Figure 9.1.7
shows the network statistics (retrieved using Ganglia'); the area in the first rectangle corresponds to
the standard execution and shows heavy data shuffling, while the area in the second rectangle refers
to the alternative implementation which includes the intermediate sorting step and shows a much

lighter data shuffling.

9.2 Mapr OPERATION BENCHMARK

Small Narrow peaks samples are used in tests that fit in memory, thus we can use algorithms
without using binning in this test. The test has been done with the normal implementation of V1 and

an implementation of GMQL V2 that does not have a binning step, since we did the test on Narrow

thttp:// ganglia.sourceforge.net/

113

14000

12000 Ell
10000 [I‘| -
8000 '| s
6000 |- l‘]
4000 |- t.’ 1
\
\ o
2000 b o =
-9 b Er":r-_--{,l
L 0050588 0. 0:0-0.0
102 10° 10 10° 108 107

108

Figure 9.1.6: Comparison of Cover execution times as a function of bin size in logarithmic
scale for Flink and Spark

AMZN-EMR Cluster Network last hour

120 N
108 N
u
hoo8an
-
] B0 M
3
2 oM
20 M
a _I‘.n.
08:20 08:40 09: 09
@ In Now:l03.4k Min:103.4k Avg: 49.3M Max:'107.2M
B out MNow:128.9k Min: 92.7k Avg: 49.1M Max:106.5M

Figure 9.1.7: Comparison of data shuffling strategies

114

N
(8]

N
o

=
wu

(2]

——V1 V2

0 1000 2000

Exe Time (min)
=
o

o

of samples
Figure 9.2.1: Map Operation with a single reference.

200
——\V2 —=-V1

[N
193]
o

100

Exec Time (min)
(%
o

|

0 1000 2000
of Samples

Figure 9.2.2: Map Operation with a multiple reference samples (11 samples).

peaks data [22]. Narrow peaks data can fit in memory. The V2 implementation of the Map operation
is implemented in Apache Spark. The test uses two different reference sets; the first set contains only
one sample (genes regions) and another reference dataset contains 11 annotation sample.

The tests in Fig.9.2.1 shows Map operation performance with the increase of data size between
V1 and V2. V2 shows linear speed up over V1 with the increase of the number of samples. Fig.9.2.2

shows that V2 is less sensitive to the increase of the size of the reference dataset in comparison to V1.

9.3 GMQL V1 VErsus V2 COMPARISON

We used a real life application to show the power of GMQL and the difference of profiling of
the application in V1 and V2. The application is composed of 4 phases:

« Preparation: pre-process in data by selecting the data needed from the repository. Data se-
lected are promoters, genes, and Transcription factors (TF) from broad Peaks, and narrow

peaks (from Encode). The pre-processing includes data section, counting the number of re-

115§

HM_TF_rep_broad = SELECT(dataType == 'ChipSeq' AND view == 'Peaks' AND setType == "exp' AND cell == 'ECC-1') HG19_ENCODE_BROAD;
HM_TF_broad_good = EXTEND(_Region_number AS COUNT(S0)) HM_TF_broad_good;

HM_TF_broad_good_cover_0 = COVER(GROUPBY cell, antibody_target; 1, ANY; AVG(signal)) HM_TF_broad_good_0;
HM_TF_broad_good_cover = EXTEND(_Region_number_cover AS COUNT(S0)) HM_TF_broad_good_cover_0;

PROM_O = SELECT(original_provider == 'Campaner' AND annotation_type == 'promoter') HG19_BED_ANNOTATION;

PROM = EXTEND(_Region_number AS COUNT($0)) PROM_0;

GENE_O = SELECT(original_provider == 'Campaner' AND annotation_type == 'gene') HG19_BED_ANNOTATION;

GENE = EXTEND(_Region_number AS COUNT($0)) GENE_O;

Figure 9.3.1: Preparation phase of the application

HM_TF_PROMonly_0= MAP() HM_TF PROM;

HM_TF_PROMonly_1 = SELECT(; count_HM_TF_PROM > 0)HM_TF_PROMonly_0;

HM_TF_PROMonly = EXTEND(_Region_number AS COUNT($0)) HM_TF_PROMonly_1;

HM_TF_PROMnot_0 = DIFFERENCE(JOINBY cell, antibody_target) HM_TF HM_TF_PROMonly;

HM_TF_PROMnot = EXTEND(_Region_number_diff AS COUNT($0)) HM_TF_PROMnot_0;

HM_TF_PROMnot_GENEonly_0 = MAP() HM_TF_PROMnot GENE;

HM_TF_PROMnot_GENEonly_1 = SELECT(; count_HM_TF_PROMnot_GENE > 0) HM_TF_PROMnot_GENEonly_O;
HM_TF_PROMnot_GENEonly = EXTEND(_Region_number_diff AS COUNT($0)) HM_TF_PROMnot_GENEonly_1;
HM_TF_PROMnot_GENEnot_0 = DIFFERENCE(JOINBY cell, antibody_target) HM_TF_PROMnot HM_TF_PROMnot_GENEonly;
HM_TF_PROMnot_GENEnot = EXTEND(_Region_number_difference AS COUNT($0)) HM_TF_PROMnot_GENEnot_0;

Figure 9.3.2: Annotating the transcription factors to Genes, Promoters, Not Genes or Promot-
ers, and both.

gions in each sample (add it to its meta data), and materialize the result. This phase contains
three Selection operations, and four Extend operations, and one Cover operation (cover

is used from merging replicas), see Fig.9.3.1.

« Annotation: Transcription Factors produced by preparation step are annotated as Promoters
and not promoters (extending the metadata of the promoters region number), and as Tran-
scription factors that serves as genes or not. This operation contains two Map operations, two
Difference operations, four Extend operations and two additional Selection operations
on regions; in total 10 GMQL operations without the initial selection and the materialization
operations. the final result of this step is a classification (annotation) of promoters, shown in

Fig.9.3.2.

« Extraction: The cell line and antibody target needed for the study are extracted. This step
contains three Map operations and three additional Selection operations; in total 6 GMQL

operations shown in Fig.9.3.3.

« BiCData: Bicdata maps the antibody targets regions to the promotorial ones. This is done
to know which and how many HM (Histon Modifications) and TF (Transcription Factor)
regions are present in every promoter. To do so, we select the PROM sample prepared in
Preparation, the HM_TF PROMonly dataset annotated in Annotation, and then the sample
selecting from HM_TF PROMonly only the one of the antibody target TEAD4. This step

116

TEAD_PROMonly_ECC1 = SELECT(antibody_target == 'TEAD4' AND cell == 'ECC-1') HM_TF_PROMonly;
TEAD_PROMnot_GENEonly_ECC1 = SELECT(antibody_target == 'TEAD4' AND cell == 'ECC-1') HM_TF_PROMnot_GENEonly;
TEAD_PROMnot_GENEnot_ECC1 = SELECT(antibody_target =='TEAD4' AND cell =='ECC-1') HM_TF_PROMnot_GENEnot;
TEAD_HM_TF_PROMonly_ECC1 = MAP(JOINBY cell;) TEAD_PROMonly_ECC1 HM_TF_PROMonly;
TEAD_HM_TF_PROMnot_GENEonly_ECC1 = MAP(JOINBY cell;) TEAD_PROMnot_GENEonly_ECC1 HM_TF_PROMnot_GENEonly;
TEAD_HM_TF_PROMnot_GENEnot_ECC1 = MAP(JOINBY cell;) TEAD_PROMnot_GENEnot_ECC1 HM_TF_PROMnot_GENEnot;

Figure 9.3.3: Extraction.

PROM_HM_TF_PROMonly_ECC1 = MAP() PROM HM_TF_PROMonly_ECC1;

PROM_TEAD_HM_TF_PROMonly_ECC1 = MAP() PROM TEAD_HM_TF_PROMonly_ECC1;

PROM_TEAD_ECC1 = SELECT(; count_PROM_TEAD_HM_TF_PROMonly_ECC1 >0) PROM_TEAD_HM_TF_PROMonly_ECC1;
PROM_TEADnot_ECC1 = SELECT(;count_PROM_TEAD_HM_TF_PROMonly_ECC1 == 0) PROM_TEAD_HM_TF_PROMonly_ECC1;
PROM_HM_TF_PROMonly_TEAD_ECC1 = MAP() PROM_TEAD_ECC1 HM_TF_PROMonly_ECC1;
PROM_HM_TF_PROMonly_TEADnot_ECC1 = MAP() PROM_TEADnot_ECC1 HM_TF_PROMonly_ECC1;

Figure 9.3.4: BICDATA phase.

contains four Map operations in addition to three Select operations; in total 7 GMQL oper-

ations, shown in Fig.9.3.4.
The profiling of the four stages of this application is discussed in the same order of execution:

(A) The profiles of the application for both GMQL V1 execution and for GMQL V2 execution,
shown in Fig. 9.3.5 and Fig.9.3.6, give insight of the improvement of GMQL from V1 to V2
and how it is distributed to the different operations. We can see from the profiling that the
preparation phase is almost constant as portion of the execution time. V2 execution is 4.6X

faster than V1 in the preparation phase, as shown in Fig.9.3.8.

(B) From the profile shown in Fig. 9.3.5, we note that the annotation phase consumes the largest
portion of the execution time of the application; this is due to the high number of Map re-

duce jobs generated to perform the operations of GMQL. The increment in the number of

Annotation

Annotation 29%

27%

Annotation
35%

Figure 9.3.5: V1 application Figure 9.3.6: V2 application Figure 9.3.7: Speed Up of
profiling. profiling. the application from V1 to V2.

117

1500
M Execution Time V1 [sec] M Execution Time V2 [sec]

1000

0 I

Preparation Annotation Extraction Bicdata

Figure 9.3.8: Performance comparison of GMQL V1 versus V2 for real case application.

Map Reduce jobs increases the number of read/write operations on the hard disk, since ev-
ery MapReduce job materializes the result on hard disk and cannot stream it to the next map
reduce job. In addition to that, the translation of GMQL to Pig Latin does not optimize the
processing when if finds duplicate operation. For these reasons, V2 execution is 7.6X faster

than V1 in the annotation phase, as shown in Fig.9.3.8.

(C) The extraction phase contains a JOIN, which is the heaviest and most optimized in V2. opera-
tion in this phase which is the most optimized operation. For these reasons, V2 execution is

10.6X faster than V1 in the extraction phase, as shown in Fig.9.3.8.

(D) Fig. 9.3.6, shows that the Bicdata phase takes the largest portion of the execution time in V2,
while Fig. 9.3.7, shows that this phase has the lowest speed up in the applications. Bylooking to
the operations in this phase, we notice that the most present operation is Map. Map Operations
in V2 uses the binning mechanism which, as we have seen in chapter 7, adds extra overhead
of the binning and the replication of the regions that crosses the bins. Samples of this case fit
in memory and V1 uses sweep line algorithm on the pair of samples that it maps. Thus, V2

execution is only 3.3X faster than V1.

The total speed up of GMQL V2 execution over GMQL V1 execution for this application is §5.6X.
The application execution speed up details in regards to the phases is shown in Fig.9.3.7.

As aside note, in V1 the Map operation uses parallelism by sample and by chromosome, thus,
the Map operation works well on samples that have small chromosomes that fitin memory. In case of
very large samples, when a single chromosome from reference and experiment samples can not fit in
memory, the GMQL V1 Map operation fails. This draw back of V1 was solved in V2 by the binning

strategies mentioned in Chapter 6.

118

250

- 50 samples
~0- 100 samples
500 samples
200&\ =% 1000 samples 1
~ /a
\\ 7
~ #
150 -~ 4
- s
\\\ ,,
& i
100 G P 4
-
50 4
- T
P=====C —z@===z======@======§
0 X

Figure 9.4.1: Scaling of execution time by increasing the number of AWS nodes

9.4 PERFORMANCE SCALING WITH MORE AWS NODES

We considered the execution of several joins with the same reference and an increasing number
of samples, using the Flink execution engine, and scaling the size of the AWS network from s to 10,
15, and 19 nodes® Fig. 9.4.1 shows that the performance improves with largest networks with up to
soo samples, but in the case of 1000 samples the performance decreases; this is due to an excess of
communication overhead with the addition of nodes.

Table 9.4.1 shows the query cost using AWS, which charges a fixed price per node and time
unit®. We note that the cost of query execution increases with the growth of the network size, but
this is compensated by a decreased execution time (see Fig. 9.4.1). However, with 1000 samples and
going from 15 to 19 slave nodes, we note both an increase of cost and of execution time. An elastic
system could benefit of constant monitoring of execution times, by dynamically shutting down nodes

when such behavior occurs*.

*Our AWS grant allows for configurations of at most 20 nodes.

3The hour cost of an Elastic Map Reduce (EMR) instance is the sum of the cost of nodes and the cost of EMR ser-
vice. In our case we used M3.XLarge instances which cost 0,266$/h plus 0,070$/h for EMR service, yielding a total of
0,336$/h; therefore, a cluster of 6 nodes (s slaves + 1 coordinator) of EMR costs 2,016$/h. Instances are paid hourly but
we run batches of several experiments, thus we can redistribute execution costs to each query weighted by the execution
time in seconds. For example, if a query takes 20 seconds to execute, then the cost of that query is 0,0112$.

*However, such query-specific elastic system cannot be easily developed in AWS, as configuration switching is time
expensive.

119

#of samples | 6 nodes | 11 nodes | 16 nodes | 20 nodes

5o samples 0,0112 0,020§ 0,0299 0,0373
100 samples 0.0168 0,0236 0,0403 0,0467
500 samples 0,0644 0,0770 0,0896 0,0933
1000 samples 0,1120 0,1232 0,1419 0,3640

Table 9.4.1: Cost of query execution (in US Dollars) with different samples and cluster sizes

120

You can have data without information, but you cannot have

information without data.

Daniel Keys Moran

10

Comparative evaluation of Flink and Spark

In this chapter, we present a benchmark of the Flink and Spark engines on genomic abstractions
which are used within the GMQL implementation. The benchmark is an indication of the ability
of the two engines to deal with the requirements of big genomic data processing. We performed
our experiments on the Amazon Cloud, in most cases with a small cluster of one master and five
slaves (m3.xlarge); we used Flink-0.9.1" and Spark 1.52 *. We concentrate on Join and Cover (Map is
very similar to Join). The datasets are: TSS for references (one sample of 131780 short regions from
UCSC transcription start sites), and NARROW for experiments (1999 samples from Encode Narrow

Peak Dataset, which has a total of 143 million regions and an average of 71915 regions per sample).

10.1 FRAMEWORK COMPARISON

Flink and Spark are both general-purpose data processing platforms and top level projects of
the Apache Software Foundation (ASF). They have a wide field of applications and are usable for
dozens of big data scenarios. They support several extensions, e.g. to SQL-like queries (Spark: Spark
SQL, Flink: MRQL), graph processing (Spark: GraphX, Flink: Spargel (base) and Gelly(library)),
machine learning (Spark: MLIib, Flink: Flink ML) and stream processing (Spark Streaming, Flink

"flink-0.9.1/bin/yarn-session.sh -n s -jm 768 -tm 10752 -s 4; yarn.heap-cutoff-ratio = 0.15.
*default EMR parameters. spark-submit —master yarn —deploy-mode client —-num-executors 20 —executor-memory
5G.

121

Streaming). Both are capable of running in standalone mode, yet most usage occurs on top of Hadoop
(YARN, HDES). For what concerns their differences?:

« Flink uses dataset variables and is optimized for cyclic or iterative processes by using iterative
transformations on collections. This is achieved by an optimization of join algorithms, oper-
ator chaining and reusing of partitioning and sorting. However, Flink is also a strong tool for
batch processing. Flink streaming processes data streams as true streams, i.e. data elements
are immediately "pipelined” though a streaming program as soon as they arrive. This allows to

perform flexible window operations on streams.

« Spark is based on resilient distributed datasets (RDDs), (mostly) in-memory data structures
giving to Spark the power of functional programming paradigms. Spark is capable of big batch
calculations by binning memory; Spark streaming wraps data streams into mini-batches, i.e.
it collects all data that arrives within a certain period of time and then runs a regular batch
program on the collected data. While the batch program is running, the data for the next mini-

batch is collected.

10.2 HISTOGRAM

A classic operation in genomics is to compute the accumulation index, i.e. for each position in
the genome the number of regions which overlap with that position; the operation applies to all the
samples of a dataset.

A sequential algorithm for solving this problem consists of scanning the genome from left to
right and maintain the accumulation count. Every time we meet the start of a region, we increment
the count by one; conversely, every time the stop of a region is met, we decrease it. The result is made
of all the consecutive couples of region ends (either starts or stops) between which the accumulation
count is positive and does not change. In the following, we propose a parallel and distributed version
of this algorithm, which relies on partitioning the genome into segments of identical length, called
bins. For each chromosome, the i-th bin spans from i * BIN_SIZE to (i + 1) * BIN_SIZE . Binning
the genome has been introduced within the UCSC Genome Browser [86] in order to speed up the
search for portions of the genome that must be loaded within the same browser window.

This algorithm can be programmed in Spark and Flink using very similar workflows of oper-
ators, hence it is an excellent benchmark; we start discussing the Flink implementation, supposing

BIN SIZE = s500. Its high-level operation flow is shown in Fig. 10.2.1 on the left.

3A thorough comparison of Flink and Spark can be found in http://stackoverflow.com/questions/28082581/what-
is-the-differences-between-apache-spark-and-apache-flink.

122

Histogram

Flink Spark
Data Source 1 Data Source
v v
Flat Map 2 Flat Map
¥
GroupBy 3-a
¥
Reduce 3-b Reduce by key
v v
Flat Map 4 Flat Map
1 i !
Filter | Filter 5-a Filter | Filter
J ¥
| GroupBy | s-b | GroupBy |
! ¥
[ReduceGroup | 5-¢ | Flat Map]
) - !
Union 6 Union
v v
Data Sink 7 Data Sink

Figure 10.2.1: Operators for encoding the Histogram algorithm in Flink and Spark.

Block 1 (Data Source) is responsible for reading the sample files, parsing them line-by-line,
cast each value according to the desired type, and generate a unique dataset of regions. We
show only three regions from sample 1 and chromosomes 1 and 2, with the peculiarity that
the first region stops where the second region starts and that the third region intersects with

two bins.

id, chromosome, start, stop
1 chrl 154 237
1 chrl 237 450
1 chr2 460 600

Block 2 (FlatMap) is responsible for the binning. For each region, it emits a new tuple for each
bin it intersects. The output tuple contains the chromosome, the bin and a hash-map; in the
hash map, we associate every region start with +1 and every region stop with -1. In the case a
region crosses the border between two bins, we split it into two contiguous regions; one from
the start to the border and one from the border to the stop (if the regions spans for more than

two bins, the same procedure is repeated).

chromosome, bin, HashMap[Int,Int]
chrl 0 {154->+1, 237->-1}
chrl 0 {237->+1, 450->-1%}
chr2 0 {460->+1, 500->-1}

123

chr2 1 {500->+1, 600->-1}

« Block 3 (GroupBy) is responsible of grouping the output dataset of the previous block by chro-
mosome and bin. Then, on each partition an associative function is applied by the Reduce,
which builds a single tuple for each chromosome and bin containing a hash-map with all the
starts and stops of the regions in the bin; notice that in the worst case, the size of this hash-map

is the same as the the length of the bin, therefore it fits in memory.

chromosome, bin, HashMap[Int,Int]
chri 0 {154->+1, 237->0, 450->-1}
chr2 0 {460->+1, 500->-1}
chr2 1 {500->+1, 600->-1}

« Block 4 (FlatMap) returns the list of produced regions, along with their accumulation value,

with each region placed within a bin, thus creating a raw histogram:

chromosome, start, stop, count
chrl 154 450 1
chr2 460 500 1
chr2 500 600 1

« Block s (Filter) starts with two filters that separate the regions properly contained in the bins
(left filter) from the regions overlapping with bins (right filter). The latter regions must be
merged when they are adjacent and with the same count. This processing requires a GroupBy
and a ReduceGroup. In the specific example, the right filter is applied to the regions of chro-

mosome 2, producing the region:

chromosome, start, stop, count
chr2 460 600 1

« Finally, Block 6 (Union) performs the union of the regions separately produced, and Block 7
(DataSink) writes them to the disk; it generates:

chromosome, start, stop, count

124

Map

Flink Spark
| pata Source] Data Source | 1 | Data Source| Data Source |
2-2

| FlatMap | Flatmap | 3 | FlatMap | FlatMap |

| CoGroup | 4-2 | CoGroup |
4-b | Flat Map |

| GrovlepBy | s5-a

V]
| Reduce | s5-b | Reduce by Key |
| Data Sink | 6 | Data Sk |

Figure 10.3.1: Operators for mapping experiments to references in Flink and Spark.

chrl 154 450 1
chr2 460 600 1

The Spark implementation slightly differs from the Flink implementation because it supports a Re-
duceByKey operation at step 3-b that makes the GroupBy operation at step 3-a unnecessary, and
executes a FlatMap at step 5-c instead of a ReduceGroup (compare the left and right sides of Fig.

10.2.1.)

10.3 MAPPING TO A REFERENCE

The encoding of this problem as a sequence of operations for Spark and Flink is shown in Fig.
10.3.1. The algorithm requires to bin the two datasets, to group them by sample pair, chromosome
and binning, to compute intersections within the bins, to count them, and output the results for each
sample pair. The complexity of this problem grows quadratically with the sizes of Experiments and

References; in our benchmark, the reference is a single sample.

10.4 JOIN OF OVERLAPPING REGIONS

Finally, we compare Spark and Flink on the join of regions of different samples. We consider
three datasets, filter two of them by simple predicates (e.g. on the region’s SCORE), join the overlap-
ping regions of the first two datasets and produce as result the union of those regions; then we join
the resulting regions in the same way with the regions of a third dataset. Two regions satisfy the join

predicate when they overlap, i.e. when the starting point of one region falls between the start and end

125§

point of the other one. Note that in most genomic applications joins have complex join conditions
(they are theta-joins) and resulting tuples are assembled through region-based computations (such
as the union of join operands).

Also in this case we use binning so as to parallelize the join operations along the genome. The
binning procedure has some inherent difficulty when two joined regions spread over many bins. In
such cases, the resulting region should be produced only by one of the bins, specifically the first one
where the two regions overlap.

In Flink, it is possible to apply a selection function while reading the input, and at the same

time to assign a region to all the bins with which it overlaps; the code of the Map function is:

ds.flatMap {
(r: FlinkRegionTypeReduced, out: Collector[(Long, String, Long,
Long, Array[Double], Int, Int)]) =>
if (selection.fun(r. 5(selection.index)))
{val binStart = (r._3 / BIN_SIZE).toInt
val binEnd = (r. 4 / BIN_SIZE).tolInt
for (i <- binStart to binEnd) {
out.collect((r. 1, r. 2, r. 3, r. 4, r. 5, binStart, i))

Then, Flink supports only equi-join in the where clause (equal chromosome, equal bin), but it allows
to put more conditions for theta-join (overlap) as much as construction of the result (by taking the
union of regions) as internal predicates and constructors which are applied to matching regions, with

a very compact code shown below.

leftDs.join(rightDs) .where(1,6)
.equalTo(1,6){
(1, r, out : Collector[(Long, String, Long, Long, Array[Double])]) => {
if((1._6.equals(l._7) || r._6.equals(r._7))
& (1. 3<r. 48 r.3<1..4))

out.collect((1._ 1, 1. 2, Math.min(1. 3, r._3),
Math.max(1l. 4, r. 4), 1. 5 ++ r. 5))

126

Join
Flink Spark

| Data Source| Data Source| Data Source] 1 | Data Source| Data Source | Data Source]
| Flatmap | FlatMap | FlatMap | 2 | Flatmap | FlatMap | FlatMap |
| Join | 3-a | Join |
3-b | FlatMap |
| Join | 4-a | Join |
4-b | Flat Map |
| Data Sink | 5 | Data Sink |

Figure 10.4.1: Operators for encoding the join algorithm in Flink and Spark

The resulting workflow is quite simple, and consists just of the cascading of the above opera-
tions for each pair of datasets, as shown in Fig. 10.4.1.

Spark supports joining on keys without additional internal predicates or constructor; there-
fore, each join of the application requires a couple of operations, a simple join on keys (chromosome
and bin) followed by the application of a FlatMap operator to filter the results and keeping only over-
lapping regions, thus producing the output with two passes on the input rather than one; see Fig.
10.4.1. Besides this aspect, the Flink and Spark implementations are quite similar.

The Spark engine supports also SQL Spark, a more declarative and SQL-like dialect of Spark. In
SQL Spark, variables are read to a data frame and can be given a schema; specifically, after reading the
input data and binning, each dataset is independently defined as a table with the operation illustrated

below:

binRegions (inputDS) .toDF("ID","Chr",
"Start","Stop", "Values","binstart",
"bin") .registerTempTable("ds")

At this point, SQL Spark supports SQL-like select-project-join operations, as follows:

val result =
sqlContext.sql("SELECT * " +
"FROM ds1 JOIN ds2 " +
"ON dsl1.Chrl = ds2.Chr2
AND dsl.binl = ds2.bin2 " +

127

"WHERE dsl1.Startl < ds2.Stop2 " +

"AND ds2.Start2 < dsl.Stopl " +

"AND (dsl.binstartl = dsl.binl
OR ds2.binstart2 = dsl.binl)")

This operation includes the selection and join but does not include the construction of resulting re-
gions, which is produced by a FlapMap operation (as before); therefore, the operator flow of this
second encoding is still the one represented in Fig. 10.4.1. In our benchmark, we found no signif-
icant difference in performance between the two encodings, most likely because are they internally

mapped to the same operators.

10.5 BENCHMARK

We performed our experiments on the Amazon Web Services (AWS) cloud, using a configu-
ration with m3.2xlarge machines, each with 8 virtual CPUs, 30GB of memory, and 2 x80 GB of SSD
storage. The testing setup contained one driver node and three configurations of slave nodes, set at
10, 15, and 19 nodes respectively. With 15 slave nodes, we set the number of executors to 120 giving
120/15 = 8 executors per node; considering that the OS and Hadoop consume about 6GB of the
node’s memory, each executor had about 3 GByte of memory. We used 8o executors in the case of
10 nodes and 152 executors in the case of 19 nodes, so that also in these cases we had 8 executors
per node, with the same amount of available memory. With this setting, we observed (by using the
Ganglia resource monitor*) that servers were fully used in terms of their CPU. We used Flink 0.9.0

and Spark 1.3.1.

10.5.1 HISTOGRAM EXECUTION

We start by comparing how the Flink and Spark engine manage the blocks of operations dis-

cussed in Section 10.2. We observe that:

« Flink groups the blocks within two stages, that are sequentially executed. In particular, Blocks

1-4 belong to Stage 1, and Blocks 5-7 belong to Stage 2, as illustrated in Fig. 10.5.1.

« Spark groups the blocks within three stages, that are sequentially executed. In particular, Blocks
1-3 belong to Stage 1, Blocks 4-5 belong to Stage 2, and Blocks sa-6-7 belong to Stage 3, as il-

lustrated in Fig. 10.5.2.

4ht‘tp:/ /ganglia.sourceforge.net/

128

Stage 1 Stage 2
1 - DataSource

2 - Flat Map
3a - GroupBy (Shuffle)
3b - Reduce
4 - Flat Map
5a - Filter
5a - Filter

5b - GroupBy (Shuffle)
| 5¢ - GroupReduce
6 - Union
7 - Data Sink

Figure 10.5.1: Stages of histogram computation in Flink.

Stage 1 Stage 2 Stage 3
1 - Data Source (HadoopRDD)
2 - Flat Map
3 - Reduce by key (Shuffle)
4 - Flat Map
5a - Filter

| 5b - GroupBy (Shuffle)

| 5c - Flat Map
Sa - Filter
6 - Union

7 - Data Sink

Figure 10.5.2: Stages of histogram computation in Spark.

Note that Flink produces less stages, each with more operations; this is in general an advantage, be-

cause the end of stages typically require a synchronization, while inside stages operations run in par-

allel, yielding to greater parallelism.

’ Case | Size (GByte) | Regions | Samples ‘

Small 4.1GB 100,947.792 200
Medium 21GB 509,237,187 1000
Large 43GB 1,034,186,018 2000
Very Large 105GB 2,556,236,090 5000

Table 10.5.1: Features of the datasets used in the Histogram application.

Next we discuss the experiments in terms of data sizes. We used the same experimental data
for both the Histogram and Map application, and we designed four cases, respectively named small,
medium, large and very large, whose dimensions are summarized in Table 10.5.1. Regions are extracted
from samples of Encode repository [21] but they are then redistributed to artificial samples so as to
guarantee the availability of enough experimental data. Note that the very large setting includes 2.5

billions of regions, subdivided within sooo datasets.

129

’ Engine | Small | Medium | Large | Very Large

Flink 78 250 446 1020
Spark (KSer) | 101 277 554 1957
Spark (]Ser) 122 420 916 3332

Table 10.5.2: Execution times (in seconds) for the Histogram application.

3500
3000 =—[link

‘%72500 =—Spark(KSer)
= 5000 Spark(JSer)
C
]
-Z 1500
3
@ 1000
>
(NN}
500
0
Small Medium Large Very Large

DataSet size

Figure 10.5.3: Execution time of the Histogram application in Flink and Spark, with 15 slave
nodes and increasing sizes of input.

Execution times of the application in Flink and Spark with 15 slave nodes are reported in Table
10.5.2, and graphically compared in Fig. 10.5.3. We note that Flink outperforms Spark, especially in
the very large setting. In Spark, it is possible to change the data serializer, which can either be adapted
to the data format or be generic. In our benchmark, we used both the default Java serializer and the
Kryo general serializer’; performance was best with the latter choice, as shown in Fig. 10.5.3; in the
very large setting, Flink outperforms Spark with Kryo serializer by a factor 2, and the Java serializer by

a factor 3.

SWe will write serializers specifically suited to genomic data formats, but the general benchmark is best served by

500
» 400
o
£ 500 X
c
h=l
5200 o Fjink
% 100 —*Spark(KSer)
Spark(JSer)
0
10 15 19

Number of nodes in the cluster

Figure 10.5.4: Execution time of the Histogram application in Flink and Spark, medium set-
ting, with increasing nodes.

130

Stage 1

1 - DataSource

2a - Map
2b - Distinct
‘ 3a - Flat Map ‘
1 - DataSource ‘
‘ 3a - Flat Map ‘
‘ 4a - CoGroup ‘
‘ 5a - Group By |
‘ 5b - Reduce |
| 6 - Data Sink

Figure 10.5.5: Stages of Map computation in Flink.

Stage 1 Stage 2 Stage 3 Stage 4
1 - Data Source
2a - Map
2b - Distinct
1 - Data Source
3a - Flat Map
3a - FlatMap
4a - CoGroup
4b - Flat Map
5 - Reduce
6 - DataSink

Figure 10.5.6: Stages of Map computation in Spark.

We next considered the medium setting and considered different cluster sizes, ranging from 10
to 19% see Fig. 10.5.4. In this setting, the two frameworks have very similar performance when Spark

uses the Kryo serializer.

10.5.2 MAP EXECUTION

We compare how the Flink and Spark engine manage the blocks of operations discussed in
Section 10.3. We observe that Flink groups all the blocks within one stage (see Fig. 10.5.5), while
Spark requires four stages (see Fig. 10.5.6). This is again an advantage for Flink in terms of less need
for synchronization and greater parallelism.

For what concerns the reference file, we used the RefSeq genes, which amounts to 30,692
unique regions. Mapping thousands of experiments to the set of known genes is a biologically rel-
evant query, allowing to quantitatively compare the genes in terms of their overall overlap with avail-
able peaks of expression. Execution times of the application in Flink and Spark are reported in Table

10.5.3,and graphically compared in Fig. 10.5.7. In this application Flink outperforms Spark, showing

generic serializers.
5Our AWS configuration, covered by a grant, is limited to 20 nodes.

131

’ Engine | Small | Medium | Large | Very Large
Flink 53 178 281 652
Spark (KSer) | 136 377 935 2154
Spark (]Ser) 175 583 1049 2710

Table 10.5.3: Execution times (in seconds) for the Map application.

]
C
e
5
2 1000
(]
b
w

=—Flink
——Spark(KSer)
Spark(JSer)

Medium

Small Large Very Large

DataSet size

Figure 10.5.7: Execution time of the map application in Flink and Spark, with 15 slave nodes

and increasing sizes of input.

execution times that are three to four times faster in all settings; Kryo serialization slightly outper-

forms the Java serialization.

We next considered the medium setting and considered again different cluster sizes, ranging

from 10 to 19, see Fig. 10.5.8. Note that the difference in performances further increases with 10

nodes.

1000
800
600

400

Execution time (s)

200

=—Flink
=—Spark(KSer)
Spark(JSer)

&—-_—_-_—_“’_“——————4

10 15 19
Number of nodes in the cluster

Figure 10.5.8: Execution time of the map application in Flink and Spark, medium setting, with

increasing nodes.

132

Stage 1

1 - DataSource
2 - Flat Map
1 - DataSource
2 - Flat Map
1 - DataSource
2 - Flat Map
3a - Join |
‘ 4a - Join
|5 - Data Sink

Figure 10.5.9: Stages of join computation in Flink.

Stage 1 Stage 2 Stage 4

1 - DataSource
1 - DataSource

3a - Join
4b - Flat Map
Stage 3
1 - DataSource
4a - Join
4b - Flat Map

5 - Data Source

Figure 10.5.10: Stages of join computation in Spark.

10.5.3 JOIN EXECUTION

We finally consider the Join application of Section 10.4; we observe that Flink groups all the
blocks within one stage (see Fig. 10.5.9), while Spark requires four stages, with stages 1 and 3 dedi-
cated to loading data from the sources, stages 2 and 4 dedicated to joins, and with stage 3 in parallel
with the sequence of stages 1 and 2 (see Fig. 10.5.10).

For what concerns data sizes, we designed three cases, respectively named small, medium, and
large, whose dimensions are summarized in Table 10.5.4; we generated three tables with very close
numbers of regions. Regions have an attribute SCORE, used for the selection condition.

Execution times of the application in Flink and Spark with 15 slave nodes are reported in Table

Case | Size (GByte) | Regions Samples

Small 1X3 39,424,000X3 1X3
Medium 2.5X3 98,560,000%x3 1X3
Large 5X3 197,120,000X3 1X3

Table 10.5.4: Features of the datasets used in the Join application.

133

’ Engine | Small | Medium | Large ‘
Flink 81 361 867
Spark 8o 115§ 204

Table 10.5.5: Execution times (in seconds) for the Join application.

1000

800 ==Flink =e=Spark

600

400

Execution time (s)

200

0
Small Medium Large

DataSet size

Figure 10.5.11: Execution time of the Join application in Flink and Spark, with 15 slave nodes
and increasing sizes of input.

10.5.5, and graphically compared in Fig. 10.5.11; we used the Kryo serialization. In this application,
Spark is faster than Flink, especially with the large setting (where it is 4 times faster). The better per-
formances of Spark over Flink are confirmed by considering also the diagram showing how execution
time decreases with increasing number of the nodes, fixing the input data to the medium case (see
Fig. 10.5.12).

Based on these experiments, we currently adopt a bin size of 10K bases for map and join and
of 1M bases for cover both in Spark and Flink; we will also continue the development of GMQL on

both systems, as the experiments do not demonstrate a clear winner between the two engines.

600

)
()
o
(]

=e—Flink —e=Spark
400

300

N
o
o

Execution time (s

-

o

o
[

o

10 15 19
Number of nodes in the cluster

Figure 10.5.12: Execution time of the Join application in Flink and Spark, medium setting,
with increasing nodes.

134

It is an immutable law in business that words are words, ex-
planations are explanations, promises are promises but only

performance is reality.

Harold S Geneen

11

Comparative Evaluation of Spark and SciDB

In this chapter, we present a benchmark of the Spark and SciDB engines at work on genomic ab-
stractions which are used within the GMQL implementations. The benchmark compares a general-
purpose cloud based system with a specialized database for scientific computing. For the experiments
reported in this chapter, we use synthetic data, so that we can trace performance scaling with con-
trolled, growing data sizes; synthetic datasets are similar to Encode peak datasets [22]. Datasets have

the following features:

o The schema includes just a Score attribute. Chromosomes are 22, and each chromosome has

1 million bases.

« Regions in each chromosome are 2300, and they are randomly distributed over the chromo-

some space; their length is randomly distributed between 20 and 500 bases.

We then generate 5 datasets with an increasing number of samples (up to 20K) and regions (up to 1
billion); see Fig. 11.0.1. In the last section we also show experiments over real genomic datasets. We
performed our experiments on the Amazon Web Services (AWS) cloud, using a configuration with

r3.4xlarge machines; 16 cores, 122 GB of RAM and 320GB of SDD.

135

’ Dataset | Size (MByte) | Regions (Million) | Samples ‘

’ REF ‘ 2.3 ‘ 0.506 ‘ 1 ‘
DS 1 3.5 0.1012 2
DS > 38 1.012 20
DS 3 375 10.120 200
DS 4 3832 101.2 2000
DS s 38232 1012 20000

Table 11.0.1: Features of the datasets used in the filtering operation.

’ Test | DS 2 | DS 3 | DS 4 | DS s ‘
Spark Q1 | 4.391 | 6.063 | 9.403 | 43.645
SciDB Q1 | o.110 | 0.136 | 0.385 4.515

Spark Q2 | 4.640 | 6.447 | 10.299 | 46.049
SciDB Q2 | 0.161 | 0.581 | 5.673 | 58.137

Spark Q3 | 0.123 | 0.140 | 0.284 | 2.035
SciDB Q3 | 4.478 | 6.145 | 9.813 | 44.015

Table 11.1.1: Execution times (in seconds) for the filter operation.

11.1 REGIONS FILTERING

We start comparing how Spark and SciDB execute the filtering operations discussed in Section

3.1. We consider three selection predicates:
« Q1: chr='chril'
e Q2: score>0.9
e« Q3: (chr='chrl') and (score>0.9)

Execution times of the operations in Spark and SciDB are reported in Table 11.1.1, and graphi-
cally compared in Fig. 11.1.1. We note that execution times for SciDB on Q1 and Q3 are much smaller
than on Q2; in the former cases SciDB exploits the between operator and outperforms Spark. In tt
Q2, instead, SciDB must read each single cell in order to apply the filtering operation, and in such

case the execution time is similar to Spark, and it actually becomes worse with increasing data sizes.

11.2 REGION AGGREGATION

Execution times of region aggregation Q4 in Spark and SciDB are reported in Table 11.2.1,

and graphically compared in Fig. 11.2.1. In this case we observe a huge difference between the two

136

-
20 B
—————— -
e ————
— 10° 10° 107 10°
E'SO
= 40 -
< -z
= 20
o -
S mmmmmm— e . |
3 10f 108 107 10°
60
40 “.“_
20 -
-
_____ —
e —
10° 108 107 108

dataset size

Figure 11.1.1: Execution times of region filtering in Spark and SciDB

| Test [DS 2| DS 3| DS 4| DS_s

Spark Q4 | 10.667 | 18.730 | 29.094 | 133.938
SciDB Q4 | o.155 0.169 | 0.307 1.747

Table 11.2.1: Execution times (in seconds) for the aggregation operation.

platforms performance: SciDB exploits the possibility to run in parallel the aggregation function in

each chunk, and thus SciDB outperforms Spark.

11.3 REGION HISTOGRAM

Execution times of region histogram Q5 in Spark and SciDB are reported in Table 11.3.1, and
graphically compared in Fig. 11.3.1. Region histogram is encoded in a very similar way in SciDB
and in Spark; hence, the overall perfornance in the two systems is quite similar, and there is no clear

winner.

dataset size

Figure 11.2.1: Execution times of region aggregation in Spark and SciDB

137

’ Test |DS_2 | DS 3 | DS 4 | DS s
Spark Qs | 8.005 | 32.234 | 85.841 | 260.332
SciDB Qs | 1.520 | 8.667 | 69.275 | 222.767

Table 11.3.1: Execution times (in seconds) for the aggregation operation

300 -

[| Spark
| |==sciDB

250 -

50 -

0 ! .
10° 10° 107 108
Dataset size (# of regions)

Figure 11.3.1: Execution times of region histogram in Spark and SciDB

11.4 REGION MAPPING

Execution times of region mapping Q6 in Spark and SciDB are reported in Table 11.4.1, and
graphically compared in Fig. 11.4.1. Region mapping is an operation of quadratic complexity, sim-
ilar to the join; hence, execution times are much higher (expressed in minutes). In this case, we note
that Spark outperforms SciDB, whose performance rises to about 1.5 hrs when comparing .s million
regions of the reference with 101 million regions of 2000 experiments (note that this is a very big data
operation, as it potentially requires so trillion comparisons). For this reason, and given the limita-
tions of SciDB binning algorithms discussed in Section 3.D, we decided to focus on a new method
for genome binning, that better adapts to the computational model of SciDB, discussed in the next

section.

| Test | DS 2|DS_3|DS_4|
Spark Q6 | o.12 0.57 3.82
SciDB Q6 | 0.28 3.29 | 95.33

Table 11.4.1: Execution times (in minutes) for the mapping operation.

138

1000
800
600
400

time(s)

200

0 J
10° 10° 107
dataset size

Figure 11.4.1: Excution times of region mapping in Spark and SciDB

11.4.1 SINGLE DIMENSIONAL SPACE BINNING

One of the most critical operation using a region based data model is the interval intersection.
This procedure is frequently used in genomic analysis and its computation represent a complex prob-
lem working on big data. This section describes the optimization adopted by Paradigm4 in order to
improve this procedure.

Figure 11.4.2 shows how Paradigm4 computes the region intersection by applying a binning
strategy (they call the bins "buckets”). Without presenting in deep the used code, we will summarize
the strategy.

« Step 1 - Compute the maximum length of the regions. This value will define the lower bound
for the bins size. In this way we can be sure that each region falls at maximum into two different

bins.

o Step 2 - Each region is then duplicated joining the datasets with a synthetic 2 cells array. Then
bin ids are assigned. To the first copy is selected the bin where falls the left end of the region,
and for the second copy the bin where falls the right end. If the two values are the same, the
second copy is dropped. At the end each region, duplicated if required, is marked with a single
bin id.

o Step 3 - Execute a cross_join between the two prepared datasets on same chromosome and
same bin id. This will reduce the original cross product checking just the regions that fall in

the same bin.

« Step 4 - The intersection condition is then applied on the cross join result, selecting just the

intersecting regions for each bin.

o Step s - It’s required a clean up step to avoid duplicates in the result. Looking at figure 11.4.2,
the couple (R2,E2) is evaluated both for bin 1 and bin 2. To remove duplicates the procedure

drops the pairs composed by two regions not starting in the current bin.

« Step 6 - Finally, the result is produced simply merging the partial ones.

139

. R2 Reference
Experiment
-
¢ STEP 1
max length computation
Bin 1 Bin 2 i
Reference

ST Experiment

¢ STEP 2
replication and binning

m Experiment

é Bin 1 ; Bin 2 ;
?
i § :

Reference

Bin 1

\

Bin 2

STEP 3
bin cross join

STEP 4 and 5
intersection (gray)
and clean up (red)
filtering

Figure 11.4.2: Binning strategy adopted by Paradigm4 in the genomic add-on.

140

Bin 4 Bin 5

Left

1ol
x10%

Figure 11.4.3: Region assignment to bins with bi-dimensional binning

Using the presented procedure, really distant regions are not evaluated, reducing the compu-
tation complexity of the operator. Nevertheless this method has two drawbacks: all data have to be
replicated a fixed number of times, and the method is sensitive to the presence of really big regions

that, however few, increase the bin size reducing the parallelism.

11.4.2 BI-DIMENSIONAL BINNING

We propose Bi-dimensional binning as an alternative strategy to mono-dimensional binning,
that exploits the array storage management of SciDB. As in mono-dimensional binning, the aim is to
test for overlap just few pairs of regions, which could possibly intersect. In this approach, each region

R is assigned to a bin defined by a pair of identifiers:

RS ari RSO
bin_size bin_size

A region is assigned to the (1, m) bin when it starts in the n-th bin and ends in the m-th bin

(see Fig. 11.4.3); note that the genome is partitioned into a bi-dimensional grid rather than a mono-

141

dimensional vector, and that every region is mapped to a point in such grid; since each region is
constrained to have start < stop, a region can be assigned only to a cell either in the primary
diagonal or above the diagonal of such space, and each region is assigned to exactly one bin. Note that
in most genomic applications points tend to cluster either in the diagonal or in the cells immediately
above the diagonal.

Consider now the mapping between aReference and an Experiment dataset. For each bin
in the reference we can divide the experiment regions into three groups: (a) regions that for sure
intersect all the reference region in the bin, (b) regions that can potentially intersect them, and (c)
regions that do not intersect them. By exploiting this partitioning, we can reduce the search space for
each reference bin to a specific window in the experiment space, that includes just the regions that
actually can intersect the regions of that bin.

Consider the bin (2, 3) of the reference, i.e., regions that start in bin 2 and end in bin 3. Fig.
11.4.4 shows the regions of the experiment that certainly intersect with them, while Fig. 11.4.5 show
regions of the experiment that could possibly intersect with them; their composition (taking into
account that no region falls below the diagonal) generates a rectangular target space for the bin (2, 3)
of the reference, shown in Fig. 11.4.6.

The bi-dimensional binning strategy for region mapping is illustrated in Fig. 11.4.7. In this
approach, several independent queries are executed, one for each non-empty bin of the reference
(the figure shows theee such queries). For a given bin of the reference, an AFL query computes range
intersections with all the regions of the experiment which belong to the bin’s target space; the result
is an aggregate value, associated to the regions of the reference bin.

A block diagram sketch for the algorithm is shown in Fig. 11.4.8. Initially, the query builds the
bin of the reference and the target space of the experiments using the between operator, which is
efficiently applied to the regions’ dimensions. Then, execution continues in a similar way as discussed
in Section 3.D; thus, a cross_join is performed, intersecting regions are extracted and grouped,

and aggregate functions are computed.
11.5 COMPARATIVE EVALUATION OF D1, D2 BINNING STRATEGIES WITH SPARK BIN-
NING

As first evaluation of bidimensional binning, we consider again query Q6 of Section 4.D; exe-
cution times are reported in Table 11.5.1, and graphically compared in Fig. 11.5.1; note that, when

executed over the dataset DS _4, bidimensional binning improves of about 3X over monodimensional

142

Left

x10%

Figure 11.4.4: Experiment regions that intersect with regions in bin (2,3)

Right <10t
4 5 6 7

Left

x10*

Figure 11.4.6: Target space for the regions of bin (2,3)

Test | DS 2 | DS 3 | DS 4 ‘
Spark Q6 0.12 | 0.57 3.82
SciDB D2 Q6 | 0.43 2.10 | 28.49
SciDB D1 Q6 | 0.28 3.29 | 95.33

Table 11.5.1: Execution times (in minutes) for the mapping operation.

143

Reference Experiment

Right 0t Right 0t
5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

1 2 3 4

Left
@

1ol
x10*

v

Map Operation Map Operation Map Operation
Range Intersection Range Intersection Range Intersection
Right 10t
5 6 9 10

Left

*10¢

Result

Figure 11.4.7: Bi-dimensional binning strategy

Ref. Regions Exp. Regions

imension redimension

imension and aggregate
store

Figure 11.4.8: Block representation of region mapping using bi-dimensional binning in SciDB

144

== Spark
90 || s SciDB 1D

SciDB 2D

Time(min)

Dataset size (# of regions)

Figure 11.5.1: Comparison of Spark and SciDB with two binning strategies

’ Dataset | Size (MByte) | Regions (Thousands) | Samples ‘
’ GENES ‘ 0.7 ‘ 23.033 ‘ 1 ‘
| PROMOTERS | 2.3 \ 49.052 I

NP 1 17 363.537

NP_ 2 41 938.753 4

NP 3 57 1264.764 8

NP 4 108 22300.698 16

Table 11.5.2: Features of the real datasets used in the map operation.

binning, covering part of the difference in performance between SciDB and Spark.

In order to better evaluate bi-dimensional binning, we then considered real datasets. For the

references, we considered two different types of regions:

 Genesare heterogeneous regions, as their maximum length is 24187702, their minimum length

is 19, their average length is 60680, and their median length is 20102. This length variability

could negatively affect mono-dimensional binning.

« Promoters are small homogeneous regions, each of size 2999, artificially built around a spe-

cific genomic position, the transcription start site * This lenght regularity could instead favor

mono-dimensional binning.

The experiments datasets are collected from encode Narrow Peaks (NP) with different sizes, as shown

in11.5.2.
Performance comparisons are shown in Fig. 11.5.2 and 11.5.3. Note that in all cases Spark out-

performs SciDB, but the difference between Spark and SciDB with bidimensional binning is much

""These regions are biologically relevant as they contain genomic information that is most relevant to RNA transcrip-

tion.

145

30 -

e 1 D-BiN
e 2D-BiN
Spark

25 -

20 -

(m)

Execution time

T i | .)
0 0.5 1 1.5 2 25 3 3.5
Experiment size (regions) %108

Figure 11.5.2: Performance comparison using genes as reference

40 -

e 1 D-BiN
e 2D -BiN
Spark

1%}
a

Execution time(m)
- - n n W
o o o (&) o
T T T T

o
T

o

)
1 1.5 2 25 3 3.5
Experiment size (regions) %108

o
oL
o

Figure 11.5.3: Performance comparison using promoters as reference

reduced, and that Spark and SciDB curves scale in a similar way. Note as well that bidimensional bid-
ding always outperforms monodimensinal binning; the two curves are however find with different
replication factors for monodimensional binning, as replication is set to 8 for genes and to 2 for pro-
moters. This choice of the best replication factor was obtained after several experiments and shows
that, with suitable tuning, monodimensional binning can be adapted to differences in reference re-
gions.

Although a large number of benchmarks exist for comparing general purpose cloud-based en-
gines such as Spark and Flink, including academic articles ([61]) and posts?, we are not aware of
benchmarks comparing these engines with array-based scientific databases, such as SciDB or Vertica.

We shows that this benchmark has no clear winner; as expected, SciDB performs better when it ben-

2http:/ /sparkbigdata.com/102-spark-blog-slim-baltagi/ 14-results-of-a-benchmark-between-apache-flink-and-
apache-spark.

146

efits from the array-based database organization (hence, on region filtering and aggregation), while
Spark performs better on massive region mapping operations (similar to joins). The histogram op-
eration, that does not fall in either categories, has very similar performances in SciDB and Spark. We
also present an original binning strategy, called bi-dimensional binning, and showed that such strat-
egy outperforms the conventional mono-dimensional binning strategy used by SciDB, reducing the
gap in performance between SciDB and Spark. Bi-dimensional binning can be used for parallelizing

any interval-based computation and therefore has wide applicability, which goes beyond genomics.

147

In literature and in life we ultimately pursue, not conclusions,
but beginnings.

Sam Tanenhaus

12

Conclusion and Future work

We described GMQL as a new paradigm for data-Centric genomic computing; we described
the system architecture of GMQL and its evolution from V1 to V2, and we discussed the advantages
of V2 over V1, mostly due to its modular architecture. We recently deployed our system in a public
network at Cineca'. We described domain-specific operations of GMQL; we introduced binning as
a general approach to the parallelization of genomic operations. We identified the trade-offs due to
the bin dimensions; we proved that, although multiple bins may carry the result of region compar-
ison, the result can be safely extracted from a single bin; and we explained how the binning logic is
implemented by using Flink, Spark and SciDB. Experiments demonstrate that the bin size is a critical
parameter for the overall performance of domain-specific operations.

We also showed the scaling of performance in a multi-node cloud computing network; adding
computing power increments the performance but at an increasing cost per sample; moreover, above
a given threshold, an increase in the number of nodes may cause a loss in performance, given the
complexity of multi-node computation.

Our project’s architectural choice, which includes a portable GMQL implementation to SciDB,
Spark and Flink, appears well motivated by our benchmarks; we believe that supporting various im-
plementation engines will be a key feature of our genomic data management project in the long run,

as we will be able to match application requirements to the best target system and to closely follow

'http:/ /www.bioinformatics.deib.polimi.it/ GMQL/interfaces/

148

the evolution of cloud-based platforms.

The experiments demonstrate that domain-specific GMQL operations scale extremely well
when challenged by very large datasets; therefore, GMQL is an ideal formalism to cope with big
queries of today’s and tomorrow’s genomic computing. We are using GMQL in advanced biological
research, for understanding how topological domains, i.e. recently discovered functional subdivisions
of the genome, include genes which are highly expressed in either normal or tumor cells. This prob-
lem is addressed by a very simple GMQL program over the TCGA big data repository, focused on
cancer; a complete pipeline iterating over 20 tissues and normal vs tumor types runs in about 2 hours.

For future work, we will develop methods for dynamic assignment of the bin size for Map,
Join and Cover operations, based on the input data profiling. we will also work on the management
of GMQL clusters, where each cluster contains different implementation of GMQL (Spark, Flink,
SciDB), coordinated by a master GMQL application machine. GMQL master application will choose
the implementation based on the profiling of GMQL code provided by the user. GDM data would
be distributed on several clusters and GMQL master application will optimize the processing, at the
same time by minimizing the data migration.

For longer-term, we are planning to turn GMQL into an i ncubated project within Apache, so
as to provide a strong community of users and developers. We also plan to deliver custom services
and to provide access to a large repository of public data, constructed by integrating and curating data
from ENCODE [21], TCGA [27], 1000 Genomes Project [76] and other sources.

149

[1]

[s]

References

Dna is a structure that encodes biological information. http://www.nature.com/
scitable/topicpage/dna-is-a-structure-that-encodes-biological-6493050.
Accessed: 2016-08-05.

Francis HC Crick et al. The origin of the genetic code. Journal of molecular biology, 38(3):367-
379, 1968.

SA Langeveld, AD van Mansfeld, PD Baas, HS Jansz, GA Van Arkel, and P] Weisbeek. Nu-
cleotide sequence of the origin of replication in bacteriophage phixi74 rf dna. Nature,

271(5644):417-420, 1978.

Eric S Lander, Lauren M Linton, Bruce Birren, Chad Nusbaum, Michael C Zody, Jennifer Bald-
win, Keri Devon, Ken Dewar, Michael Doyle, William FitzHugh, et al. Initial sequencing and
analysis of the human genome. Nature, 409(6822):860-921, 2001.

Stephan C Schuster. Next-generation sequencing transforms today’s biology. Nature methods,
5(1):16-18, 2008.

[6] Jay Shendure and Hanlee Ji. Next-generation dna sequencing. Nature biotechnology,

26(10):1 135—1145, 2008.

[7] Jorge S Reis-Filho et al. Next-generation sequencing. Breast Cancer Res, 11(Suppl 3):S12,2009.

Michael Eisenstein. Big data: The power of petabytes. Nature, 527(7576):S2-S4, 2015.

Daniel Summerer. Enabling technologies of genomic-scale sequence enrichment for targeted
high-throughput sequencing. Genomics, 94(6):363-368, 2000.

Elaine R Mardis. The impact of next-generation sequencing technology on genetics. Trends in
genetics, 24(3):133-141, 2008.

Heng Li and Nils Homer. A survey of sequence alignment algorithms for next-generation se-
quencing. Briefings in bioinformatics, 11(5):473-483, 2010.

Yong Zhang, Tao Liu, Clifford A Meyer, Jérome Eeckhoute, David S Johnson, Bradley E Bern-
stein, Chad Nusbaum, Richard M Myers, Myles Brown, Wei Li, et al. Model-based analysis of
chip-seq (macs). Genome Biol, 9(9):R137, 2008.

Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for transcrip-
tomics. Nature Reviews Genetics, 1 o(1) :§7—63, 20009.

150

http://www.nature.com/scitable/topicpage/dna-is-a-structure-that-encodes-biological-6493050
http://www.nature.com/scitable/topicpage/dna-is-a-structure-that-encodes-biological-6493050

[14]

Lingyun Song and Gregory E Crawford. Dnase-seq: a high-resolution technique for mapping
active gene regulatory elements across the genome from mammalian cells. Cold Spring Harbor
Protocols, 2010(2):pdb—prots384, 2010.

Ron Edgar, Michael Domrachev, and Alex E Lash. Gene expression omnibus: Ncbi gene ex-
pression and hybridization array data repository. Nucleic acids research, 30(1):207-210, 2002.

Tanya Barrett, Dennis B Troup, Stephen E Wilhite, Pierre Ledoux, Dmitry Rudnev, Carlos
Evangelista, Irene F Kim, Alexandra Soboleva, Maxim Tomashevsky, and Ron Edgar. Ncbi
geo: mining tens of millions of expression profiles—database and tools update. Nucleic acids
research, 35(suppl 1):D760-D765, 2007.

Gene expression omnibus. http://www.ncbi.nlm.nih.gov/geo/. Accessed: 2016-08-
0s.

Alvis Brazma, Pascal Hingamp, John Quackenbush, Gavin Sherlock, Paul Spellman, Chris
Stoeckert, John Aach, Wilhelm Ansorge, Catherine A Ball, Helen C Causton, et al. Minimum
information about a microarray experiment (miame)—toward standards for microarray data.
Nature genetics, 29(4):365—371, 2001.

ENCODE Project Consortium et al. The encode (encyclopedia of dna elements) project. Sci-
ence, 306(5696) :636—640, 2004.

Ewan Birney, John A Stamatoyannopoulos, Anindya Dutta, Roderic Guigd, Thomas R Gin-
geras, Elliott H Margulies, Zhiping Weng, Michael Snyder, Emmanouil T Dermitzakis,
Robert E Thurman, et al. Identification and analysis of functional elements in 1% of the hu-
man genome by the encode pilot project. Nature, 447(7146):799-816, 2007.

Encode project. http://www.genome.gov/encode/. Accessed: 2016-08-05.

ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the human
genome. Nature, 489(7414) 1§7—74,2012.

1000 genomes project website. http://www.1000genomes. org/. Accessed: 2015-08-05.
Nayanah Siva. 1000 genomes project. Nature biotechnology, 26(3):256-256, 2008.

Global alliance for genomics and health. http://genomicsandhealth.org/. Accessed:
2016-08-05.

Gaggh data working group. http://gasgh.org/. Accessed: 2016-08-05.

The cancer genome atlas website. http://cancergenome.nih.gov/. Accessed: 2016-08-
0s.

[28] John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozen-

berger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome Atlas Re-
search Network, et al. The cancer genome atlas pan-cancer analysis project. Nature genetics,
45(10):1113-1120, 2013.

151

http://www.ncbi.nlm.nih.gov/geo/
http://www.genome.gov/encode/
http://www.1000genomes.org/
http://genomicsandhealth.org/
http://ga4gh.org/
http://cancergenome.nih.gov/

[29]

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In 2010 IEEE 26th symposium on mass storage systems and technologies
(MSST), pages 1-10. IEEE, 2010.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008.

Matei Zaharia, Mosharaf Chowdhury, Michael] Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. HotCloud, 10:10-10, 2010.

Apache flink. https://flink.apache.org/. Accessed: 2016-08-15.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins.
Pig latin: a not-so-foreign language for data processing. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, pages 1099—1110. ACM, 2008.

Apache lucene. https://lucene.apache.org/core/. Accessed: 2016-08-05.
Paradigm4 Inc. SciDB MAC Storage Explained, 2015. Downloaded on April 2016.

Stefano Ceri, Abdulrahman Kaitoua, Marco Masseroli, Pietro Pinoli, and Francesco Venco.
Data management for heterogeneous genomic datasets. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2016.

Stefano Ceri, Abdulrahman Kaitoua, Pietro Pinoli, and Marco Masseroli. Genomic data mod-
eling for interoperability and next generation genomic data management. In Proceedings of the
4th International Work-Conference on Bioinformatics and Biomedical Engineering, pages 20-22.
WBBIQ, 2016.

Stefano Ceri, Abdulrahman Kaitoua, Marco Masseroli, Pietro Pinoli, and Francesco Venco.
Data management for heterogeneous genomic datasets. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 2016.

Marco Masseroli, Pietro Pinoli, Francesco Venco, Abdulrahman Kaitoua, Vahid Jalili, Fernando
Palluzzi, Heiko Muller, and Stefano Ceri. Genometric query language: a novel approach to
large-scale genomic data management. Bioinformatics, 31(12):1881-1888, 2015.

Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D Bochkov,
James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S Lander, et al. A
3d map of the human genome at kilobase resolution reveals principles of chromatin looping.
Cell, 159(7):1665-1680, 2014.

William A Flavahan, Yotam Drier, Brian B Liau, Shawn M Gillespie, Andrew S Venteicher,
Anat O Stemmer-Rachamimov, Mario L Suva, and Bradley E Bernstein. Insulator dysfunction
and oncogene activation in idh mutant gliomas. Nature, 529(7584):110-114, 2016.

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Mills Shaw, Brad A Ozen-
berger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, Joshua M Stuart, Cancer Genome Atlas Re-
search Network, et al. The cancer genome atlas pan-cancer analysis project. Nature genetics,
45(10):1113-1120, 2013.

152

https://flink.apache.org/
https://lucene.apache.org/core/

[43] John Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad,

Richard Hasz, Gary Walters, Fernando Garcia, Nancy Young, et al. The genotype-tissue ex-
pression (gtex) project. Nature genetics, 45(6):580-585, 2013.

Bed format. https://genome.ucsc.edu/FAQ/FAQformat. Accessed: 2016-08-15.

Eleonora Cappelli Stefano Ceri Marco Masseroli Fabio Cumbo, Giulia Fiscon1 and Emanuel
Weitschek. Tcgazbed: extracting, extending, integrating, and querying the cancer genome
atlas. BMC Bioinformatics (under revision), 2016.

Apache Spark. Apache spark™-lightning-fast cluster computing, 2014.

Apache knox. https://knox.apache.org/. Accessed: 2016-08-05.

Livy engine. http://1livy.io/index.html. Accessed: 2016-08-05.

Ganglia monitoring system. http://ganglia.info/. Accessed: 2016-08-15.

Dhruba Borthakur. The hadoop distributed file system: Architecture and design. Hadoop
Project Website, 11(2007):21, 2007.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev Konar,
Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth, et al. Apache hadoop
yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud
Computing, page 5. ACM, 2013.

Apache hadoop. http://hadoop.apache.org/. Accessed: 2016-08-05.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In ACM
SIGOPS operating systems review, pages 29—43. ACM, 2003.

Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.’, 2012.

Karthik Kambatla, Abhinav Pathak, and Himabindu Pucha. Towards optimizing hadoop pro-
visioning in the cloud. HotCloud, 9:12, 2009.

Shrinivas B Joshi. Apache hadoop performance-tuning methodologies and best practices. In
Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering, pages
241-242.ACM, 2012.

Bikas Saha, Hitesh Shah, Siddharth Seth, Gopal Vijayaraghavan, Arun Murthy, and Carlo
Curino. Apache tez: A unifying framework for modeling and building data processing appli-
cations. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, pages 1357-1369. ACM, 2015.

Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xi-
angrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al. Spark sql: Relational data
processing in spark. In Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, pages 1383-1394. ACM, 2015.

153

https://genome.ucsc.edu/FAQ/FAQformat
https://knox.apache.org/
http://livy.io/index.html
http://ganglia.info/
http://hadoop.apache.org/

[59]

[60]

[63]

[64]

[65]

Matei Zaharia, Mosharaf Chowdhury, Michael] Franklin, Scott Shenker, and Ion Stoica. Spark:
cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, volume 10, page 10, 2010.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mc-
Cauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2—2. USENIX Association,
2012.

Norman Spangenberg, Martin Roth, and Bogdan Franczyk. Evaluating new approaches of big
data analytics frameworks. In International Conference on Business Information Systems, pages
28-37. Springer, 2015.

Philippe Cudré-Mauroux, Hideaki Kimura, K-T Lim, Jennie Rogers, Roman Simakov, Emad
Soroush, Pavel Velikhov, Daniel L Wang, Magdalena Balazinska, Jacek Becla, et al. A demon-
stration of scidb: a science-oriented dbms. Proceedings of the VLDB Endowment, 2(2):1534—

1537, 2000.

Michael Stonebraker, Paul Brown, Donghui Zhang, and Jacek Becla. Scidb: A database man-
agement system for applications with complex analytics. Computing in Science & Engineering,
15(3):54-62,2013.

Racket translator. http://racket-lang.org/. Accessed: 2016-08-15.

Frank DeRemer and Thomas Pennello. Efficient computation of lalr (1) look-ahead sets. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(4):615-649, 1982.

[66] Jeremy Goecks, Anton Nekrutenko, James Taylor, et al. Galaxy: a comprehensive approach

for supporting accessible, reproducible, and transparent computational research in the life sci-
ences. Genome Biol, 11(8):R86, 2010.

[67] Jelle Scholtalbers, Jasmin Ré8ler, Patrick Sorn, Jos de Graaf, Valesca Boisguérin, John Castle,

[68]

[69]

and Ugur Sahin. Galaxy lims for next-generation sequencing. Bioinformatics, page btt11s, 2013.

General transfer format. http://www.ensembl.org/info/website/upload/gff.
html. Accessed: 2016-08-15.

Netty as an asynchronous event-driven network application framework for rapid development
of maintainable high performance protocol servers and clients. http://netty.io/. Ac-
cessed: 2016-08-05.

Play framework as high velocity web framework for java and scala. https://www.
playframework.com/. Accessed: 2016-08-05.

Leonard Richardson and Sam Ruby. RESTful web services. ” O’Reilly Media, Inc.’, 2008.

Graphviz: a graph virtualizaiton software. http://www.graphviz.org/. Accessed: 2016-
08-05.

154

http://racket-lang.org/
http://www.ensembl.org/info/website/upload/gff.html
http://www.ensembl.org/info/website/upload/gff.html
http://netty.io/
https://www.playframework.com/
https://www.playframework.com/
http://www.graphviz.org/

[73]

[88]

Francesco Venco, Yuriy Vaskin, Arnaud Ceol, and Heiko Muller. Smith: A lims for handling
next-generation sequencing workflows. BMC bioinformatics, 15(Suppl 14):S3, 2014.

Variant call format. http://www.1000genomes.org/wiki/Analysis/
variant—-call-format/. Accessed: 2016-08-15.

Mongodb. https://www.mongodb.com. Accessed: 2016-08-15.

1000 Genomes Project Consortium et al. A map of human genome variation from population—
scale sequencing. Nature, 467(73 1 9) :1061-1073,2010.

Casey E Romanoski, Christopher K Glass, Hendrik G Stunnenberg, Laurence Wilson, and
Genevieve Almouzni. Epigenomics: Roadmap for regulation. Nature, 518(7539):314-316,
2015.

W3c web services glossary.

Jason H Christensen. Using restful web-services and cloud computing to create next generation
mobile applications. In Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 627-634. ACM, 2009.

Apache tomcat. http://tomcat.apache.org/. Accessed: 2016-08-05.

North east italian interuniversity consortium for automatic computation. http://www.
cineca.it/en. Accessed: 2016-08-05.

Line sweep algorithms. https://www.topcoder.com/community/data-science/
data-science-tutorials/line-sweep-algorithms/. Accessed: 2016-08-15.

Shane Neph, M. Scott Kuehn, Alex P. Reynolds, Eric Haugen, Robert E. Thurman, Audra K.
Johnson, Eric Rynes, Matthew T. Maurano, Jeff Vierstra, Sean Thomas, Richard Sandstrom,
Richard Humbert, and John A. Stamatoyannopoulos. Bedops: High performance genomic
teature operations. Bioinformatics, 2012.

Aaron R. Quinlan and Ira M. Hall. Bedtools: a flexible suite of utilities for comparing genomic
features. Bioinformatics, 26(6):841-842, 2010.

Antonin Guttman. R-trees: a dynamic index structure for spatial searching, volume 14. ACM,
1984.

Ucsc genome browser. https://genome.ucsc.edu/index.html. Accessed: 2016-08-
0s.

Donna Karolchik, Robert Baertsch, Mark Diekhans, Terrence S Furey, A Hinrichs, YT Lu, Kr-
ishna M Roskin, M Schwartz, Charles W Sugnet, Daryl] Thomas, et al. The ucsc genome
browser database. Nucleic acids research, 31(1):51-54, 2003.

Generic model organism database. http://www.gmod.org. Accessed: 2016-08-05.

1S5S

http://www.1000genomes.org/wiki/Analysis/variant-call-format/
http://www.1000genomes.org/wiki/Analysis/variant-call-format/
https://www.mongodb.com
http://tomcat.apache.org/
http://www.cineca.it/en
http://www.cineca.it/en
https://www.topcoder.com/community/data-science/data-science-tutorials/line-sweep-algorithms/
https://www.topcoder.com/community/data-science/data-science-tutorials/line-sweep-algorithms/
https://genome.ucsc.edu/index.html
http://www.gmod.org

[89]

[92]

[95]

[96]

(98]

[99]

Heng Li, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor Marth,
Goncalo Abecasis, Richard Durbin, et al. The sequence alignment/map format and samtools.
Bioinformatics, 25(16):2078-2079, 2000.

Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The r+-tree: A dynamic index for
multi-dimensional objects. University of Maryland, 1987.

Henrik Nordberg, Karan Bhatia, Kai Wang, and Zhong Wang. Biopig: a hadoop-based analytic
toolkit for large-scale sequence data. Bioinformatics, page btt528, 2013.

André Schumacher, Luca Pireddu, Matti Niemenmaa, Aleksi Kallio, Eija Korpelainen, Gian-
luigi Zanetti, and Keijo Heljanko. Seqpig: simple and scalable scripting for large sequencing
data sets in hadoop. Bioinformatics, 30(1):119-120, 2014.

Matti Niemenmaa, Aleksi Kallio, André Schumacher, Petri Klemeld, Eija Korpelainen, and
Keijo Heljanko. Hadoop-bam: directly manipulating next generation sequencing data in the
cloud. Bioinformatics, 28(6):876-877, 2012.

Marek S Wiewiérka, Antonio Messina, Alicja Pacholewska, Sergio Maffioletti, Piotr Gawrysiak,
and Michal] Okoniewski. Sparkseq: fast, scalable, cloud-ready tool for the interactive genomic
data analysis with nucleotide precision. Bioinformatics, page btuz43, 2014.

Christos Kozanitis, Andrew Heiberg, George Varghese, and Vineet Bafna. Using genome query
language to uncover genetic variation. Bioinformatics, 30(1):1-8,2014.

Samir Tata, Joseph S Friedman, and Abhishek Swaroop. Declarative querying for biological
sequences. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Conference
on, pages 87-87. IEEE, 2006.

Matt Massie, Frank Nothaft, Christopher Hartl, Christos Kozanitis, André Schumacher, An-
thony D Joseph, and David A Patterson. Adam: Genomics formats and processing patterns for
cloud scale computing. University of California, Berkeley Technical Report, No. UCB/EECS-2013,
207,2013.

Luca Pireddu, Simone Leo, and Gianluigi Zanetti. Mapreducing a genomic sequencing work-
flow. In Proceedings of the second international workshop on MapReduce and its applications, pages
67-74. ACM, 2011.

Kristian Ovaska, Lauri Lyly, Biswajyoti Sahu, Olli A Janne, and Sampsa Hautaniemi. Genomic
region operation kit for flexible processing of deep sequencing data. IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB), 10(1):200-206, 2013.

156

	Introduction
	DNA
	Composition and Organization
	Functioning
	Mutations and Inheritance

	Exposing the Sequence
	DNA Sequencing
	The Next Generation Sequencing Revolution
	NGS Experiments

	Genomic Data Repositories and Consortia
	Motivation for Thesis work
	Tertiary analysis
	Limitations in Data Management

	Contributions
	Structure of this thesis
	Thesis publications

	I GMQL: New Paradigm for Data-Centric Genomic Computing
	Genomic Data Model
	The Genomic Data Model (GDM)
	Examples

	The GenoMetric Query Language
	General Properties
	Predicates Evaluation
	Syntactic Conventions
	Relational GMQL Operations
	Select
	Project
	Extend
	Group
	Merge
	Order
	Union
	Difference

	Domain-Specific Operations
	Cover
	Map
	Join

	Utility Operations
	Materialize

	Case Study: Mapping Gene Expression of Normal and Cancer Cells to Topological Domains
	Contributions
	Data sources
	Pipeline
	Heatmaps

	II GENDATA: System Architecture for Big Genomic Data processing
	Introduction to Big Data technologies
	Apache Hadoop
	Hadoop Distributed File System
	YARN as a Distributed Operating System

	Apache Knox
	Livy
	Apache Pig
	Apache Spark
	Apache Flink
	SciDB

	GMQL System Architecture
	GMQL V1
	Translator
	Orchestrator

	GMQL V2
	From V1 to V2
	Architecture
	GMQL Task Management
	Execution of GMQL Queries

	Repository management
	Integrated Access to heterogeneous Public Repositories

	Retrieval system
	Web Services
	Web Interface
	GMQL V2 Deployment modes
	Spark Deployment
	GMQL Deployment on a Single Machine or on local cluster
	Spark Launcher Server
	Deployment on Remote Cluster

	 Scaling-out GMQL operators on Data Flow Engines
	State of the art of interval intersection algorithms
	Linear Sweep Algorithm
	Binning algorithms Using Trees
	Interval intersection using Map reduce
	Discussion

	Join
	Introduction
	Evaluation Steps
	Binning and Search Space
	Evaluation of Distal Clauses in Step 1
	Join Execution Strategy in Flink and Spark

	Map
	Cover

	III EVALUATION: Comparing Different GMQL Implementations
	Experimental Evaluation of GMQL Engine V1
	GMQL V1 Implementation Optimization
	Effect of By-Chrom Parallelism
	Size-Specific Tuning

	Comparison with the State of the Art
	GMQL V1 Scaling with Big Datasets
	Use Case Example

	Experimental Evaluation of GMQL Engine V2
	Join Operation Benchmark
	Optimal Bin Size
	Performance comparison with different Bin Sizes
	Data Shuffling and Ordering with MinDistance

	Map Operation Benchmark
	GMQL V1 Versus V2 Comparison
	Performance Scaling with more AWS Nodes

	Comparative evaluation of Flink and Spark
	Framework Comparison
	Histogram
	Mapping to a Reference
	Join of Overlapping Regions
	Benchmark
	Histogram execution
	Map execution
	Join execution

	Comparative Evaluation of Spark and SciDB
	Regions Filtering
	Region Aggregation
	Region Histogram
	Region Mapping
	Single Dimensional space binning
	Bi-dimensional Binning

	Comparative Evaluation of D1, D2 Binning Strategies

	Conclusion and Future work
	References

