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Abstract

Modelling and control of �exible lightweight manipulators has been matter
of research since the late 80s. Nevertheless, the interest on this topic is still
intense. Manipulators where structural �exibility deserve to be considered
in the design stage can be found in a range of applications including tra-
ditional industrial robots, nuclear materials manipulation, agricultural and
space robotics as well as in autonomous vehicle applications. The introduc-
tion of lightweight robots is a driver of innovation when trending technolo-
gies require decreasing power consumption and low manipulator masses in
view of increasing performances requirements. The aforementioned trends
encourage the use of lightweight manipulators and the development of re-
lated technologies, but whenever high performances are required, a severe
issue arises: vibrations. The main subject of this thesis is the development
of a closed-form model of three-dimensional �exible manipulator with links
of general shape and the synthesis of a two-timescale control system able
to improve the performances of the manipulator and substantially increase
damping with respect to the classical P/PI control structure. The resulting
performance are achieved by means of a controller acting on the robot joints
in a "fast" timescale, coupled with a traditional system acting on the "slow"
timescale. A compact model of a generic three-dimensional �exible body
was initially developed in an object-oriented modelling framework, namely
Modelica, and based on the �oating frame of reference (FFR) formulation.
The equations of motion have been formulated in the Newton-Euler form,
allowing a complete calculation of the Coriolis and gyroscopic terms of the
inertial forces for the elastic degrees of freedom. The model allows consider-
ing bodies of general shape through the calculation of shape functions, which
describe the geometry, as the result of the modal analysis performed by �nite
elements packages. The results achieved in the development of the generic
body model have then been exploited in the development of a closed-form
model of �exible manipulator. The proposed model is based on the adop-
tion of the spatial vector notation, which allows to combine the equations
of motion of the links calculated in the previous step, leading to a multilink
three-dimensional model in closed form with respect to the joint angles and
the modal coordinates. The motion equations can be computed for links
with arbitrary shape and cardinality; hence, the model results to be highly
adaptable and computationally e�cient. The model has been validated by
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means of comparison with literature benchmarks obtained with the classical
multibody approach and with experiments collected on a real manipulator.
Despite its e�ciency and accuracy, the closed form model is not suitable for
real-time control and active vibration damping due to its inherent complex-
ity, hence an approximated model based on the integral manifold approach
has been developed starting from the complete model previously described.
The approximated model has therefore been compared with the original
closed-form model and with experimental data retrieved from the MERIt
dataset. The subsystems resulting from the adoption of the integral man-
ifold approximation are in fact two: a "slow" nonlinear subsystem, which
can be controlled by means of classical techniques, and a "fast" linear sub-
system, whose dynamic matrices exhibit a dependency on the state of the
"slow" subsystem, namely the spatial con�guration of the robot. A control
technique is �nally presented for the family of the "fast" subsystems, which
is based on advanced nonconvex H-in�nity control. The overall control sys-
tem provides better performances with respect of the classical techniques,
allowing a consistent vibration damping and a substantial increase in the
control bandwidth. Future developments will concern controllability and
observability analysis on the vibration system and a state estimator for the
"fast" subsystem, based on considerations related to the use of sensors, such
as the strain gauges position, in conjunction with the analysis of the shape
functions relating the strain to the modal variables.
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Sommario

La modellazione ed il controllo di manipolatori �essibili lightweight è oggetto
di ricerca sin dalla �ne degli anni 80, ciononostante, questo tema è ancora
di grande interesse sia industriale che scienti�co. Esistono numerosi campi
applicativi dove la �essibilità strutturale dei manipolatori non può essere
trascurata, si pensi ad esempio alla manipolazione di scorie nucleari, la robot-
ica agricola e spaziale cosi come le applicazioni di manipolazione su veicoli.
L'introduzione di robots leggeri è inoltre un importante driver tecnologico
nelle applicazioni che richiedono basso cosumo energetico ed alte prestazioni
dinaniche, pertanto l'uso di manipolatori leggeri e lo sviluppo delle rela-
tive tecnologie di modellazione e controllo è fortemente incoraggiato dalle
richieste del mercato. Sfortunatamente l'uso di strutture leggere abbinate
ad alte prestazioni conduce inevitabilmente al problema delle vibrazioni.
L'argomento principale di questa tesi è lo sviluppo di un modello tridimen-
sionale in forma chiusa di manipolatore �essible e la sintesi di un sistema
di controllo a due scale di tempo in grado di migliorare le performances del
manipolatore attraverso lo smorzamento attivo delle vibrazioni. Le suddette
prestazioni vengono raggiunte attraverso un controllore agente sui giunti del
manipolatore in una scala di tempo veloce, accoppiato con un classico schema
di controllo del moto, agente sulla scala di tempo lenta. Inizialmente, è stato
sviluppato un modello di corpo �essibile generico e object-oriented, basato
sulla formulazione �oating frame of reference. Le equazioni di moto sono
state formulate secondo l'approccio di Newton-Eulero, permettendo il calcolo
completo dei termini giroscopici e di Coriolos per le forze d'inerzia agenti sui
gradi di libertà elastici. La generalità del modello è stata ottenuta attraverso
il calcolo di funzioni di forma che descrivono la geometria, come risultato di
una fase di pre-processing portata a termine da solutori ad elementi �niti.
I risultati ottenuti nello sviluppo del modello di corpo generico sono stati
sfruttati per mettere a punto un modello in forma chiusa di manipolatore
�essibile. Il suddetto modello è basato sull'adozione della spatial vector no-
tation, che permette di combinare le equazioni di moto dei links, creando
un modello di manipolatore �essibile multilink in forma chiusa rispetto alle
variabili di giunto ed alle coordinate modali. Le equazioni di moto pos-
sono essere risolte per links di qualsiasi forma e cardinalità, di conseguenza
il modello è particolarmente versatile e computazionalmente e�ciente. Il
modello è stato validato attraverso il confronto con esperimenti e�ettuati su
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un manipolatore reale. Nonostante l'e�cienza e l'accuratezza che caratteriz-
zano il modello in forma chiusa, quest'ultimo risulta poco adatto alla sintesi
di sistemi di controllo attivo di vibrazioni, a causa della complessità intrin-
seca che lo caratterizza. Conseguentemente, è stato sviluppato un modello
approssimato, basato sull'approccio integral manifold. Il suddetto modello
è stato poi confrontato con il modello originale e con i dati sperimentali
ottenuti dal dataset MERIt. L'adozione dell'approccio integral manifold ha
permesso di dividere il modello originale in due sottosistemi: un sistema
"lento" non lineare, controllato con tecniche classiche, ed un sistema "ve-
loce" lineare tempo variante, le cui matrici presentano una dipendenza dallo
state del sistema lento. In�ne, è stata presentata una tecnica di controllo per
la famiglia dei sistemi "veloci" basata sul controllo H-in�nito non convesso
e nonsmooth. Il sistema di controllo complessivo permette di incrementare
sensibilmente le performances rispetto alle tecniche classiche.
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Chapter 1

Introduction

Lightweight manipulators are used nowadays in a wide variety of applications
ranging from the replacement of human action in hazardous environment to
agricultural robotics, mobile robotics, robotic surgery and the well known
�eld of space robotics. Although the adoption of robotic manipulators is
widely spread in every industrial �eld, most of the existing industrial ma-
nipulators are designed with the aim of maximizing the structural sti�ness in
order to reduce the vibrations of the end-e�ector and achieve a good position
accuracy. This high sti�ness is often achieved by using heavy materials and
bulky design which necessarily yield ine�ciency in terms of performances,
dexterity and power consumption, the last of which is gaining great atten-
tion in the recent trends of industrial innovation, as shown by the presence
of several European and National projects on the topic of energy e�ciency
in industrial environments.

The use of lightweight structures in industrial scenarios is an interesting
alternative to the classic approach, and several advances are expected. Com-
pared to the conventional heavy robots, manipulators with �exible structures
have the potential advantage of lower costs, higher operational speed, greater
payload-to-manipulator weight ratio, lower energy consumption and safer
operation due to low inertia. This approach presents however a drawback:
reduced masses and extended workspaces enhance the e�ects of structural
�exibility, yielding to vibrations as a consequence of low sti�ness. The struc-
tural vibrations appear to be one of the main obstacles tht prevent the design
of control loops with high bandwidth and accurate positioning capability. It
has been estimated that many cumulative hours have been spent in order
to damp down the vibration in the remote manipulator system in a Space
Station-assembly Shuttle mission [40].

In this scenario, an accurate modelling of the system and an e�cient con-
trol technique acquire crucial importance, however, a robotic system with
�exible links is governed by a system of nonlinear partial di�erential equa-
tions aimed to describe the distributed �exibility. The exact solution of such
system is not practically feasible and the in�nite dimensional model imposes
several constraints on the design of the controller as well. In the 90's and
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CHAPTER 1. INTRODUCTION

00's decades, such a challenging problem has attracted several researchers
leading to brilliant results: an exaustive review on modelling can be found
in [123] while good a survey on control approaches is in [14]. The interest
in the topic seems to have somehow decreased since the mid 00's due to
the great amount of literature developed so far and to the complexity and
peculiarity of the problem at hand. Although, some relevant scienti�c work
has been recently carried out [68, 82, 115, 119, 137, 158] and, as shown by a
recent review [117], some open problems can still be tackled in this area and
further advances can be made.

To the author's knowledge, the majority of the research has been carried
out on single-link or planar two-links manipulators where links with uni-
form shape are considered [14, 123], while a general approach for modelling
three-dimensional manipulators with links of general shape is still missing.
Moreover, linearised approaches to the links' �exibility are considered, hence
there is the need of incorporating large deformations, geometrical sti�ening
and composite materials. This thesis aims to give a substantial contribu-
tion in this �eld by developing a complete, closed-form model for three-
dimensional �exible manipulators with links of general shape based on the
Newton-Euler formulation of the motion equations. Subsequently, a control-
oriented, approximated model, based on the integral manifold approach [135]
is sinthesized, and �nally, a control strategy based on a non smooth and non
convex optimization, originally described in [7] is proposed. Another sub-
stantial contribution of this thesis is the development of an object-oriented
model of �exible body for multibody simulation purposes, based on the same
Newton-Euler formulation, which has been carried out as a �rst step towards
the synthesis of the closed-form model. However, this object-oriented model
represents an ancillary result as it contains a complete description of the
calculation of the quadratic and Coriolis terms of the inertial forces acting
on the elastic degrees of freedom. To the author's knowledge this is a brand
new result with respect to literature.

1.1 Approaches to distributed �exibility

Flexible manipulators are described by continuous non linear dynamical sys-
tems characterized by an in�nite number of degrees of freedom, hence a
complete mathematical description should be based upon nonlinear partial
di�erential equations, which can hardly be tackled for simulation and con-
trol design purposes. As a consequence, it is necessary to introduce methods
to describe the distributed �exibility with a �nite number of parameters.
Three approaches are generally used in order to derive approximated mod-
els: lumped parameters, assumed modes method (AMM) and �nite elements
method (FEM).

Historically, the �rst and simplest adopted approach consists in devel-
oping a lumped parameters method [62, 89, 154, 160]. In this method each
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CHAPTER 1. INTRODUCTION

�exible link is divided into a �nite number of rigid links connected by joints,
and �exibility is represented by springs that restrict the joints' motion. Actu-
ally, this method has been rarely used since the 90' because of the roughness
of the approximation and the di�culty in determining a physical meaning
for the springs' sti�ness. Moreover, the addition of a further degree of free-
dom to an existing model causes a variation of all the frequencies, yielding
a model di�cult to re�ne and maintain.

The Assumed modes method is widely used in literature [17, 19, 22, 35,
78,111,157]. In this approach, links' �exibility is described through the use
of shape functions de�ned over the entire extension of the link. These func-
tions are based on spatial mode eigenfunctions and usually are represented
by truncated modal series. Although this method is conceptually simple,
the best selection of modal shapes and boundary conditions is not trivial,
an example of clamped boundary conditions can be found in [17], while in [8]
pinned-pinned boundary conditions, and in [11] free-free conditions are used.
On the other hand, in the Finite Element formulation [114, 116, 149], shape
functions are de�ned over small subdomains of the link as polynomial func-
tions and the choice of boundary conditions can be treated in a straightfor-
ward manner. This approach is usually considered a suitable method in the
context of design of robotic systems [66,138] but lacks of performances and
tractability when coming to simulation and control. A thorough comparison
of the two approaches has been reported by Theodore and Ghosal in [140].
In particular, they recommend the assumed modes model formulation for
discretization of manipulator links with uniform cross-sectional geometries
and single-link manipulators, whereas the �nite elements formulation is rec-
ommended for complex cross-sectional geometries and for multilink manip-
ulators. It must be pointed out that AMM is usually adopted in the case
of simple geometries where global shape functions can be analytically com-
puted, while FEM formulation is usually not feasible for any real time or
control application, as the cardinality of the state variables dramatically
increases in the case of complex geometries.

Assuming that the modes shapes are time-invariant, formulation of the
shape functions does not necessarily enter in the motion equations of the
manipulator. In fact, once suitable boundary conditions have been imposed
(see in particular [35,140] for the AMM and [58] for the FEM), and the shape
functions have been completely de�ned, they need to be evaluated at the tip
of the links only, while the spatial dependence is resolved by integration over
the spatial domain of the links, introducing a number of constant parameters
characterizing the mechanical properties. In turn, solid modelling packages
for �nite element analisys (FEA) can be conveniently used for the o�-line
computation of the above-mentioned parameters, particularly in the case of
complex geometries, performing also an orthonormalization of mode shapes
[96], which is of great importance for model simpli�cation. Without using
such tools, the analysis is almost always limited to the adoption of the Euler-
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CHAPTER 1. INTRODUCTION

Bernoulli or Timoshenko beam model for the �exible links [17, 78, 114, 116,
140,157].

In this thesis, the latter approach has been followed, thus the model
reduction feature provided by several FE commercial codes has been ex-
ploited. In fact, most commercial FEA packages [2, 30, 95] can reduce the
huge number of nodal coordinates to a much smaller number of modal coordi-
nates (two or three in the case of robotic manipulators, according to [140]).
This task is usually carried out by means of the classical Craig-Bampton
method [28] or other recently proposed methods [73, 77, 100], and the �ex-
ible body parameters are stored either in ASCII or binary �les after the
analysis. Subsequently, the data describing the �exible link can be used to
build the dynamic model of the manipulator.

1.2 Approaches to dynamic modelling

Di�erent schemes for modelling of the �exible manipulators' dynamics have
been proposed in literature, the equations of motion of the manipulator can
be obtained by means of the Euler-Lagrange or the Newton-Euler approach.
In the �rst case the mathematical model is derived from energy principles fol-
lowing the same conceptual scheme adopted for rigid manipulators, but dif-
ferently from the simple rigid systems, a potential energy is stored by virtue
of the de�ections of the links, as well as kinetic energy is expressed by means
of links' de�ection rate. The Lagrange-Euler formulation results in a sym-
bolic, closed form, dynamic model of the manipulator, and it is best suited
for study of dynamic properties and analysis of control schemes. Several ex-
amples of dynamic models of manipulators that use a Lagrangian approach
can be found in literature1 for single link [21, 56, 57, 98], two-links [105, 143]
and multilink [34, 35, 128]. However, in the Euler-Lagrange approach the
model of the manipulator is obtained as a whole, in closed form, by means
of the symbolic computation of the derivatives of potential and kinetic ener-
gies. This can be considered as an obstacle for the development of a modular
model with respect to the number of links. Moreover, to the knowledge of
the author, there is no result in literature which describes a complete com-
putation of the Coriolis and centripetal terms of the inertia forces for the
elastic degrees of freedom of a three dimensional body in the Lagrangian
approach.

On the contrary of the Lagrange-Euler formulation, in the Newton-Euler
formulation the motion equations are outlined separately for each (�oating)
link and formalized on the D'Alambert's principle. The forward propaga-
tion of the kinematic quantities, common to the Lagrange-Euler approach,
is followed by a backward propagation of forces/torques from the tip to the
base, and by a projection of the joint constraint forces on the axes of motion.
Several examples of single link [112], two-links [53,103] and multilink [18,70]

1The list of examples cited here is not exaustive, see [123] for a complete rieview
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CHAPTER 1. INTRODUCTION

manipulators' models can be found in literature, however, the Newton-Euler
formulation is usually adopted in multibody system dynamic analysis, where
components representing the objects are connected in order to form complex
mechanisms. In this context the Newton-Euler formulation is more suitable
to a modular approach with respect to the Lagrangian formulation. The
Newton-Euler approach is also generally preferred [71] for implementation
of real-time, model-based control schemes, because of its computational e�-
ciency. The computational procedure described above is generally computed
with a recursive approach [63,69,156].

In this thesis, the dynamic model of the manipulator is obtained by means
of the Newton-Euler approach and the adoption of the spatial vector nota-
tion [43, 44, 50]. Di�erently from all the other formulations based on the
Newton-Euler equations, the model is here obtained in closed form with
respect to the joint angles and the global vector of elastic coordinates, fur-
thermore the inertia matrix and the nonlinear quadratic velocity terms are
explicitly computed in the same context. The model input data are given
by the number of links' modal coordinates, the inertia invariants, the struc-
tural sti�ness matrices, the shape function matrices relevant to the links'
connectors, and the undeformed relative positions between connectors. It
must be pointed out that the computation of a closed form model for three-
dimensional manipulators with multiple links of general shape is a totally
new result in the �eld of �exible manipulators' modelling.

1.3 Choice of the coordinates system

The choice of the coordinates system for the description of the �exible ma-
nipulators' links con�gurations represents a more di�cult problem with re-
spect to the rigid robots, in the latter case, given the vector of joint state
angles and derivatives, the kinematic con�guration of the manipulator is
known. Conversely, in the �rst case the �nite set of state variables de-
scribing the deformation can be expressed in terms of relative nodal dis-
placements and in�nitesimal rotations with respect to the undeformed con-
�guration or in terms of absolute coordinates. The �rst approach is the
most widely adopted in the �eld of �exible manipulators and multibody dy-
namics [60, 108, 109, 113, 150] and it known as Floating Frame of Reference
formulation (FFR), thoroughly described in [124]. In the FFR formulation,
each body is attached to a moving frame of reference undergoing large (rigid)
motion, while the (small) elastic displacements are obtained in local coordi-
nates with respect to the reference frame. It must be pointed out that the
inertia terms of the equations of motion are highly nonlinear in the FFR
formulation. Conversely, in the case of large deformation problems, an ap-
proach based on the adoption of absolute coordinates for the �exible state
variables can be e�ective. This formulation is known as Absolute Nodal Co-
ordinate Formulation (ANCF) [124,124,125]. The ANCF, adopting absolute
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CHAPTER 1. INTRODUCTION

displacements and global slopes as nodal coordinates, results in a constant
mass matrix, zero centripetal ad Coriolis inertia forces, and highly nonlinear
elastic terms, even in the case of linear elastic behaviour. An interesting
comparison between the two approaches can be found in [97].

On the other hand, in order to model large deformations within the FFR
formulation, it is possible to subdivide a body into several �exible com-
ponents or substructures, adopting for each substructure a FFR formula-
tion [151]. Using this approach (or substructuring method), it is usually
necessary to formulate the substructure compatibility constraints, to be im-
posed at the substructures interfaces, explicitly. For the sake of completeness
it must be mentioned that, as recently pointed out by Heckmann [58], the
substructuring method is a technique to �nd a speci�c solution for a speci�c
problem but it is not systemically supported as the ANCF formulation, and
requires skilled modelers (in particular, using more substructures does not
necessarily improve the accuracy of the solution).

In this thesis, an approach based on the FFR formulation has been
adopted, as the �exible dynamical behaviour of the manipulators consid-
ered in this context can be con�ned to the case of small de�ections. Anyway
it will be shown how to adopt substructuring in order to cope with the issues
related to high �exibility.

1.4 Control design

Plentiful work has been carried out in the literature investigating the control
of �exible manipulators [14,117], particularly on the single-link robots, where
the dynamics is not geometry-dependent and hence linear. Furthermore, the
task of controlling a �exible robot turns out to be tough when coming to
multi-link manipulator, because of the spatial con�guration dependency of
the dynamics. The control problems of a �exible robotic arm can be classi�ed
in four main objectives, listed here in increasing order of di�culty [14]:

• End e�ector positioning problems

• Rest to rest end e�ector motion in �xed time

• Trajectory tracking in the joint space

• Trajectory tracking in the operational space (end-e�ector trajectory
tracking)

The classical positioning problem, which can be recap in the �rst and
second objectives described above, is the easiest and the �rst developed ap-
proach [80,101,120]. A linear feedback together with a constant feedforward
action has been shown to asymptotically stabilize the system [36] when some
structural damping is present. Conversely, if the passive damping is not
present, a classical linear control based on the linearisation of the manipula-
tor's dynamics around the desired �nal position can be designed [133, 134].
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CHAPTER 1. INTRODUCTION

As far as rest to rest motion is concerned, the problem has been investigated
by several researchers [15,20,93,152]. A remarkable result consists in a feed-
forward approach for both single link and multilink manipulators, developed
in [31].

When coming to tracking problems, which concern the third and fourth
task listed above, a nonlinear control strategy that takes into account the
complex coupling between the �exible dynamics of the links and the motion
of the manipulator is required. On the other hand, the tip trajectory track-
ing is considered the toughest control problem for �exible manipulators as
the non-colocated relation between the torque input and the tip position give
rise to unstable zero dynamic, thus a direct inversion of the dynamics would
lead to closed loop internal instability. Due to the great interest on this topic,
a great amount of approaches can be found in literature ranging from the ap-
plications of colocated and non colocated PD regulators [36,74,75,120,148],
computed torque methods [24, 32, 33] based on the input/output lineariza-
tion, adaptive control [9, 153] based on lagrangian dynamics, sliding mode
control [23], or even neural network based algorithms [64, 84]. Moreover,
several results have been obtained in the �eld of robust and optimal con-
trol [3, 10, 67, 91, 132, 144] which has been widely used in literature due to
the guaranteed robustness and stability properties of the system with re-
spect to unmodeled dynamics. Nevertheless, the problem of synthesizing
a robust controller for such a complex family of systems is not trivial, on
top of that, the results found in literature are highly tailored on the speci�c
problem at hand, usually represented by a single link or two links manipu-
lators. An additional approach that deserves to be mentioned, exploits the
natural two-time scale nature of the dynamics of �exible manipulators. This
mathod has been initially developed by means of the singular perturbation
approach [128] and further developed in the context of the integral manifold
approach [92, 129,136, 155]. In this cases, two di�erent controllers are used,
a "slow" controller tracks the desired trajectory while a "fast" controller
stabilizes the �exible dynamics. This approach yields a substantial reduc-
tion of the design complexity at the expense of an approximate tracking. In
this work the integral manifold approach has been followed together with an
innovative approach based on constrained robust control. The closed-form
model has been adapted in the context of the integral manifold, leading to
a control-oriented model of the �exible manipulator. This model is consti-
tuted by two interacting subsystems loperating in two di�erent time scales.
Finally, two independent controllers have been computed, the synthesis of
the "slow" controller follows an approach based on the method described
in [128], while the "fast" controller exploits a new result in the �eld of ro-
bust control based on a non smooth and non convex optimization of the
controller with respect to a mixed H2/H∞ cost function and subject to
structural contraints, thoroughly described in [6, 7].
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CHAPTER 1. INTRODUCTION

1.5 Chapters summary

Chapter 2 describes the development of the equations of motion for the
generic �exible body model, the formulation is based on the Newton-Euler
equations and relies on the calculation of nine inertia invariants which can
be computed by means of a FE preprocessing stage. The described formu-
lation is based on the FFR approach and includes the full computation of
the Coriolis and centripetal terms of the inertial forces which constitutes a
fresh result with respect to literature. The model is then implemented in an
object-oriented framework and validated with respect to literature bench-
marks.
Chapter 3 introduces the three dimensional model of �exible manipulator.
The model is obtained in closed form with respect to the joint angles and the
modal elastic variables and is based on the aggregation of the models of the
single links by means of the spatial vector notation. Further extensions of
the model are presented which account for links with high �exibility and for
the presence of payloads. In order to validate the model, some simulations
are shown where the manipulator's model is compared against benchmarks
from literature and against a dataset obtained by means of an experimental
platform.
Chapter 4 describes the derivation of a control-oriented, approximated
model, based on the previously developed closed-form. A brief description
of the adopted integral manifold approach is initially performed, then, the
formal derivation of the approximated model is carried out and the com-
putational procedure, which yields the derivation of two approximated sub-
systems is shown. Finally, the approximation is validated with respect to
literature benchmarks and the aforementioned experimental platform, and
the di�erences with the complete closed-form model are discueesd.
Chapter 5 �nally discusses an approach to the control of �exible manipula-
tors based on the approximated model developed in Chapter 4. An approach
based on the classical robust control is initially described and applied. Sub-
sequently, due to poor performances in the controller performances, a novel
approach based on the optimization of the robust controller, subject to ad-
ditional structural and performances constraints is applied. The obtained
results demonstrate the e�ectiveness of the proposed approach.

10



Chapter 2

Object oriented model of general

�exible body

The �rst step related to the development of a �exible manipulator model is
constituted by the realization of a reliable model for the generic �exible body.
In this chapter the construction and testing of the aforementioned model
will be described. The model is based on the FFR approach introduced in
Chapter 1 and on the Newton-Euler formulation of the motion equations,
extensively described in [124]. The model has been developed in the context
of an and object-oriented framework. The motivation of this choice fol-
lows the last trends in the modeling of manipulators and, more generally, of
mechatronic systems. In these contexts the modular and acausal approach
are gaining relevance both in academic and industrial environments [47] as
they provide e�ective tools in order to master the complexity of large cyber-
physical models by means of the component modelling paradigm. Whenever
a modular approach is adopted, the modelling e�ort is focused on the de-
velopment of the equations of the single component, and system-level model
organization is managed by means of the de�nition of standard component
interfaces. The object-oriented framework is the natural choice in order to
tackle this complexity.

It must be pointed out that the work illustrated in this chapter constitutes
the base for the results described in the following chapters on one hand, but
on the other hand it can be considered as an independent research result,
being the �rst example of generic object-oriented body model fully described
in terms of its equations and code. The developed model constitutes a step
forward in terms of generality with respect to the state of the art due to the
capability of representing bodies of general shape. The data describing the
body are retrieved from a �nite element preprocessing stage, allowing the
shape and material of the body to be arbitrary. The FE preprocessing stage
is extensively described in Appendix [48].
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CHAPTER 2. OBJECT ORIENTED MODEL OF GENERAL FLEXIBLE BODY

2.1 Object oriented �exible multibody - State of the

art

Object-oriented modelling techniques and tools have started emerging at
the end of the 70's (e.g., ASCEND [110], OMOLA [86], gPROMS [102],
MOSES [81]). As a main result of this research, some speci�c paradigms
have been stated [118] and implemented in the Modelica language [139],
and some modelling and simulation environments have been designed, both
commercial (Dymola [29], MathModelica [85], SimulationX [42]) and open-
source (OpenModelica [51]). Coming to the speci�c case of multibody sys-
tems, and sticking to the Modelica language, although the presented ideas
are more general, the adoption of a fully modular approach requires the de-
scription of the dynamics of every single body in terms of local variables,
while the interaction between di�erent bodies has to be described using the
connectors of the standard Modelica multibody library [104]. A connec-
tor is associated with a reference frame, so that a connection is equivalent
to a rigid junction of the two connector frames. The connector assumes
the cut force and torque as �ow variables [118], while the e�ort variables
are given by the position of the origin of the connector frame with respect
to the world frame and by an orientation object1, describing the relative
orientation between the world frame and the connector frame. The local
description of the body's dynamics which is a peculiar characteristic of the
Modelica paradigm naturally calls for the FFR approach, previously de-
scribed. There exist two Modelica libraries able to process the output of
FE codes and produce a �exible body model compatible with the Modelica
Multibody Standard Library. The �rst has been developed by the German
Aerospace Center (DLR) [59] and distributed by Modelon AB., the other is
distributed by Claytex Services Ltd. The DLR FlexibleBodies library sim-
ply provides two Modelica classes (models): one for the beam model (Beam)
and one for general �exible bodies exported from FE codes (ModalBody).
The results of the FE analysis performed by several general purpose codes
(Abaqus [30], Ansys [2], MSC.Nastran [95]) are �rst processed by another
commercial code: FEMBS, distributed by SIMPACK AG [131], performing
modal reduction in a two-step process. Guyan or Craig-Bampton reduction
methods are applied in the �rst step to keep the �exible body input �le to
FEMBS small, while in the second reduction step the modes of interest (i.e.
in the frequency range of interest) for multi-body simulation are selected.
The reduced modal representation is then stored in a Standard Input Data
(SID) �le [122, 147], an object-oriented data structure developed to de�ne
a standard format to exchange data between FE and MBS codes. When a
ModalBody class is instantiated the user has just to specify the name of the

1The internal representation of the orientation (i.e., the parametrization of the relative rotation matrix)
in the Modelica multibody library is completely masked to the user. In addition to that, the orientation
object is endowed with methods to compute rotation matrices and angular velocities, to rotate vectors,
etc., so that knowledge about the actual description form of orientation is not necessary.
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SID �le containing the modal description of the body.
The Claytex library directly generates the Modelica model of a �exible

body from the output of the model reduction process performed by three
FE codes: namely Nastran, Genesis and Abaqus. It must be pointed out
that none of the aforementioned libraries is open-source, hence there is no
way to inspect the code and understand which dynamic terms are consid-
ered, particularly no description of the Coriolis and gyroscopic terms of the
inertial forces are provided.However, the correct description of these terms
(provided here) can be crucial in applications where high angular speeds
are considered. Moreover, the DLR FlexibleBodies library requires the use
of an external commercial code, namely FEMBS, in order to produce the
Modelica model while the model described here is completely open-source
and freely available.

With reference to the fundamental step of FE model reduction, in addi-
tion to classical techniques, such as the modal truncation [27] or the compo-
nent mode synthesis [28], several other techniques have been recently inves-
tigated [45, 46], taking into account speci�c criteria, such as computability
for large scale systems, stability preservation, quality of the reduced order
model, model error evaluation, model tuning in a given frequency range, and
more. For example, reduction methods based on Krylov subspaces, singular
value decomposition (SVD), Gramian matrices, proper orthogonal decompo-
sition (POD) have been considered and implemented in the software package
Morembs [100], which gives the user a tool for selecting several model order
reduction techniques.

2.2 Motion equations of the �exible body

2.2.1 Kinematics

To start the treatise, it is convenient to recall the generalized Newton-Euler
equations for a generic unconstrained �exible body, formulated with respect
to a local reference frame rigidly attached to the body itself [121, 124] and,
based on that, to introduce the inertia invariants, assuming a continuous
mass distribution.

The position (in local coordinates) of a point on a �exible body, see
Fig. 2.1, is given by:

ū = ū0 + ūf ,

where ū0 is the �undeformed� (i.e., rigid) position vector and ūf is the de-
formation contribution to position (i.e., the deformation �eld).

If small elastic de�ections are considered, the in�nite dimensional defor-
mation �eld on the body can be approximated by a functional basis space
with �nite dimension, say M , so that the vector ūf can be expressed by the
�nite dimensional product

ūf = Sq (2.1)
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Figure 2.1: Floating reference system

where S is the [3 ×M ] shape functions matrix (i.e., a matrix of functions
de�ned over the body domain and used as a basis to describe the deformation
�eld of the body itself) and q is the M -dimensional vector of deformation
degrees of freedom.

The position of a point on a deformable body can then be expressed in
world reference as

p = r + Aū = r + Aū0 + ASq ,

where r is the vector identifying the origin of the body local reference system
and A is the rotation matrix for the body reference system.

The representation of a generic �exible body in world reference requires
then 6 +M d.o.f. (6 corresponding to rigid displacements and rotations and
M to the deformation �eld), i.e.,

q =
[

rT θT qT
]T

,

where θ represents the undeformed body orientation angles.

2.2.2 Dynamics

The motion equations for a generic �exible body, expressed in the local
reference frame, can be developed applying the principle of virtual work
[90,118], yielding mI3 m˜̄d

T

C C̄T
t

m˜̄dC J̄ C̄T
r

C̄t C̄r Me


 ¨̄r− ḡ

˙̄ω
q̈

 =

 03

03

−Keq−Deq̇

+

 hrω
hθω
hfω

+

 hre
hθe
hfe

 ,

(2.2)
where ¨̄r, ˙̄ω, q̈ are the linear, angular and deformation accelerations respec-
tively expressed in the local reference frame, ḡ is the gravity acceleration, I3

is the 3 × 3 identity matrix, Me, De, Ke are the structural mass, damping
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and sti�ness matrix respectively, hrω, hθω, hfω are the vectors of gyroscopic
and centripetal terms and hre, hθe, hfe are the vectors of external forces, ap-
plied at the body connectors (recall the discussion in Section 1).

The terms in the generalized mass matrix depend on some inertia invari-
ants, which in turn depend on the shape functions and on the body mass
distribution2 The dependency of the terms of the mass matrix with respect
of the invariants is the following, recalling that S =

[
s1 s2 . . . sM

]
:

m =

∫
V

ρ dV = I1 , (2.3)

m˜̄dC =

∫
V

ρ˜̄u dV =

∫
V

ρ˜̄u0 dV +

∫
V

ρ(̃Sq) dV

=

∫
V

ρ˜̄u0 dV +
M∑
i=1

(∫
V

ρs̃i dV

)
qi = Ĩ2 +

M∑
i=1

Ĩ3
i qi , (2.4)

C̄T
t =

∫
V

ρS dV =

∫
V

ρ
[

s1 s2 . . . sM
]
dV

=
[

I3
1 I3

2 . . . I3
M

]
, (2.5)

C̄T
r =

∫
V

ρ˜̄uS dV =

∫
V

ρ˜̄u0S dV +

∫
V

ρ(̃Sq)S dV

=

∫
V

ρ˜̄u0S dV +
M∑
i=1

(∫
V

ρs̃iS dV

)
qi = I4 +

M∑
i=1

I5
i qi, (2.6)

Me =

∫
V

ρSTS dV = I6, (2.7)

J̄ =

∫
V

ρ˜̄uT ˜̄u dV =

∫
V

ρ˜̄uT0 ˜̄u0 dV +

∫
V

ρ˜̄uT0 (̃Sq) dV

+

∫
V

ρ(̃Sq)
T

˜̄u0 dV +

∫
V

ρ(̃Sq)
T

(̃Sq) dV

=

∫
V

ρ˜̄uT0 ˜̄u0 dV −
M∑
i=1

(∫
V

ρs̃i ˜̄u0 dV

)
qi

−
M∑
i=1

(∫
V

ρ˜̄u0s̃i dV

)
qi −

M∑
i=1

M∑
j=1

(∫
V

ρs̃is̃j dV

)
qiqj

= I7 −
M∑
i=1

(
I8T
i + I8

i

)
qi −

M∑
i=1

M∑
j=1

I9
ijqiqj (2.8)

Where ṽ is the skew-symmetric matrix associated to vector v.

2The kinematic quantities carrying a bar like "r̄ar" are referred to the FFR, while the same quantities
without the bar are referred to the world reference frame
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2.2.3 The gyroscopic and centripetal terms

The vectors of gyroscopic and centripetal terms relevant to the rigid degrees
of freedom are given by

hrω = −ω̄ × ω̄ ×md̄C − 2ω̄ × C̄T
t q̇ , (2.9)

hθω = −ω̄ × J̄ω̄ − ˙̄Jω̄ − ω̄ × C̄T
r q̇ , (2.10)

where

˙̄J = −
M∑
i=1

(
I8T
i + I8

i

)
q̇i −

M∑
i=1

M∑
j=1

I9
ij(q̇iqj + qiq̇j), (2.11)

The computation of the vector relevant to the elastic degrees of freedom
is much more involved and requires the de�nition of two more inertia in-
variants. The equations required to calculate the aforementioned terms are
reported here, while the full computation and proof are reported in Appendix
A

The �nal formula of the vector is:

hfω =

 ω̄1

(∑3
i=1 dii

)
− ω̄TD1

ω̄2

(∑3
i=1 dii

)
− ω̄TD2

ω̄3

(∑3
i=1 dii

)
− ω̄TD3

T ω̄
−2
[
ω̄1

(
I11

32 − I11
23

)
+ ω̄2

(
I11

13 − I11
31

)
+ ω̄3

(
I11

21 − I11
12

)]
q̇ , (2.12)

Starting from the de�nition:

hfω = −
∫
V

ρST ˜̄ω2ū dV − 2

∫
V

ρST ˜̄ωSq̇ dV

=

(∫
V

ρ
[
− ˜(ω̄ × ū)S

]T
dV

)
ω̄ − 2

(∫
V

ρST ˜̄ωSdV

)
q̇, (2.13)

and de�ning ST =
[

ŝT1 ŝT2 ŝT3
]
one obtains

hfω =

∫
V

ρ

 ω̄1ū
TS− ω̄T ū1S

ω̄2ū
TS− ω̄T ū2S

ω̄3ū
TS− ω̄T ū3S

T dV

 ω̄
−2

(
ω̄1

∫
V

ρ
(
ŝT3 ŝ2 − ŝT2 ŝ3

)
dV

)
q̇

−2

(
ω̄2

∫
V

ρ
(
ŝT1 ŝ3 − ŝT3 ŝ1

)
dV

)
q̇

−2

(
ω̄3

∫
V

ρ
(
ŝT2 ŝ1 − ŝT1 ŝ2

)
dV

)
q̇, (2.14)

which yields (2.12), by de�ning

Di =

 di1
di2
di3

 =

∫
V

ρūiS dV , I11
ij =

∫
V

ρŝTi ŝj dV i, j = 1, 2, 3 (2.15)
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In turn, matrix Di is given by:

Di =

∫
V

ρūiS dV =

∫
V

ρ (ū0 + Sq)i S dV

=

∫
V

ρū0iS dV +

∫
V

ρ (Sq)i S dV =

 I10
i1

I10
i2

I10
i3

+

∫
V

ρŝiqS dV

=

 I10
i1

I10
i2

I10
i3

+

∫
V

ρqT ŝTi S dV

=

 I10
i1

I10
i2

I10
i3

+

 qT I11
i1

qT I11
i2

qT I11
i3

 i = 1, 2, 3, (2.16)

where (v)i is the i-th element of vector v and I10
i1

I10
i2

I10
i3

 =

∫
V

ρū0iS dV i = 1, 2, 3, (2.17)

Invariants I10
ij and I11

ij may be however computed from invariants I8
i and I9

ij

in fact, recalling that

I8
i =

∫
V

ρ

 −ū03s3i − ū02s2i ū02s1i ū03s1i

ū01s2i −ū03s3i − ū01s1i ū03s2i

ū01s3i ū02s3i −ū02s2i − ū01s1i

 dV ,
I9
ij =

∫
V

ρ

 −s3is3j − s2is2j s2is1j s3is1j

s1is2j −s3is3j − s1is1j s3is2j

s1is3j s2is3j −s2is2j − s1is1j

 dV ,
one obtains

(
I10
ij

)
k

=


(I8
k)ji i 6= j = 1, 2, 3 k = 1, . . . ,M

1
2

[(I8
k)ii − (I8

k)ll − (I8
k)mm]

i = j = 1, 2, 3
l,m = 1, 2, 3

k = 1, . . . ,M

(
I11
ij

)
kl

=


(I9
kl)ji i 6= j = 1, 2, 3 k, l = 1, . . . ,M

1
2

[(I9
kl)ii − (I9

kl)mm − (I9
kl)nn]

i = j = 1, 2, 3
m,n = 1, 2, 3

k, l = 1, . . . ,M

Matrix De, modeling the dissipative properties of the material, is de�ned
as De = αMe + βKe, where α and β are the so-called Rayleigh damping
coe�cients.
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2.2.4 External forces

Assuming Nc connectors attached to a �exible body the vectors of external
forces are given by

hre =
Nc∑
i=1

f̄i, (2.18)

hθe =
Nc∑
i=1

(
τ̄i +˜̄lif̄i

)
, (2.19)

hfe =
Nc∑
i=1

(
STi f̄i + ŜTi τ̄i

)
, (2.20)

where f̄i and τ̄i are the forces and torques acting at the connector frames
projected on the local reference frame, l̄i is the position vector from the origin
of the local body reference frame to the origin of the connector frame, Si
and Ŝi are the slices of the modal matrix corresponding to the translational
and rotational d.o.f. of connectors. Note that

l̄i = ū0i + Siq, (2.21)

with ū0i being the undeformed position of the i-th connector.
In order to project the forces and torques acting at the connector frames

on the local reference frame, small rotations of the connectors due to body
deformation must be taken into account. These small rotations can be still
obtained by a modal superposition as

θi =

 θi1
θi2
θi3

 = Ŝiq , (2.22)

so that the rotation matrix between the deformed and the undeformed con-
nector orientation can be de�ned as

Âi = I3 + θ̃i =

 1 −θi3 θi2
θi3 1 −θi1
−θi2 θi1 1

 , (2.23)

Therefore, if Āi is the (constant) rotation matrix between the connector
frame and the local frame in the undeformed con�guration, the projection
of the force fi and the torque τi acting at the connector frame i is given by:

f̄i = ÂiĀifi, (2.24)

τ̄i = ÂiĀiτi, (2.25)

To cope with the connector structure it is also necessary to compute the
kinematic quantities Ai and pi relevant to each connector, thus the rotation
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Table 2.1: Flexible body data

M Number of deformation d.o.f.
I1, I2, I3i , I

4, I5i , I
6, I7, I8i , I

9
ij , I

10
ij , I

11
ij Inertia invariants

De,Ke Structural damping and sti�ness matrix
Nc Number of connectors

Si, Ŝi Slices of the modal matrix of connectors d.o.f.
ū0i, Āi Undeformed position

and orientation of connectors

Figure 2.2: Modelica model of a general �exible body

matrix between the frame connector and the world reference frame and the
position of the origin of the connector frame with respect to the world frame.
This leads to

Ai = AÂiĀi, (2.26)

pi = r + Al̄i, (2.27)

As a result, the set of data describing a �exible body can be summarized
as in Table 2.1.

2.3 Structure of the Modelica model

The Modelica model of a general �exible body (Fig. 2.2) is characterized by
an array of Nc multibody connectors, while the data in Table 2.1 have been
suitably collected in the Modelica record BodyData. The record is de�ned
as replaceable:

replaceable parameter FEMData.BodyData data;

so that it is possible, by exploiting the features of the Modelica language,
to assign a di�erent data record to each FEMBody instance, by simply
replacing the record in the model declaration, as in

FEMBody FlexPendulum(redeclare FEMData.PendulumData data,
alpha=1,
beta=0.5,
d=1);
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Figure 2.3: Example of virtual connection graph

where alpha, beta, d are the parameters de�ning the damping matrix De.

An important question arises when considering the state variables in-
troduced by the model. The standard Modelica multibody library [104]
de�nes a virtual connection graph (2.3) in order to handle overdetermined
di�erential-algebraic equations (DAE) systems, generated by connections
among models. When a model is a component of a tree structure, thus di-
rectly or indirectly connected to a root, its kinematic variables are calculated
as algebraic functions of some state variables, corresponding to another node
of the tree. In the opposite case, 12 state variables and a root node, attached
to a connector, must be introduced in order to describe the body orientation
and position.

It must be pointed out that, when dealing with rigid bodies, the spatial
relation between connectors is purely algebraic, thus any connector can be-
come a root, since said algebraic relations can be inverted by the symbolic
manipulator. On the other hand, in the FFR approach, every quantity of the
�exible body is referred to the body reference frame, say FFR, without nec-
essarily having a connector attached; it is then natural to de�ne the frame
FFR as a root. Otherwise, the quantities r̄, ˙̄r, ¨̄r, A, ω̄, ˙̄ω are obtained from
one of the body connectors, according to eqs. (2.26,2.27).

The spatial relationships among frame FFR and connector frames are how-
ever more involved with respect to the rigid body case, due to the presence of
elastic d.o.f., hence, for the sake of e�ciency it is necessary to �nd out which
connector belongs to the tree path, say connector A (rooted(A.R)=true),
and to explicitly reverse the equations relevant to that connector. Thus,
the kinematic quantities of the frame FFR are explicitly de�ned from the
kinematic quantities of frame A and, in turn, the kinematic quantities of all
other connectors are de�ned from the kinematic quantities of frame FFR.
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2.4 Validation of the model

Being focused on a general object-oriented formulation of �exible multibody
systems, this paper adopts the classical modal approach, based on the model
reduction performed by several packages in order to interface the results of
the FEM modelling with ADAMS [96]. As a result of the model reduction
step, most of the data reported in Table 2.1 are stored in a binary Modal
Neutral File (.mnf), in turn converted into an ASCII �le (.mtx). The inertia
invariants I10

ij and I11
ij however, are not stored in the .mnf and .mtx �les, so

they are computed by two Modelica functions according to eqs. (2.18) and
(2.18), when the BodyData record is instantiated, i.e.,

parameter Real inv10[3,3,M] = FEMPackage.calcInv10(M,inv8);
parameter Real inv11[3,3,M,M] = FEMPackage.calcInv11(M,inv9);

In this work, the FEM models have been created with Abaqus [30], which
is endowed with a speci�c tool for the generation of the .mnf �le. The
procedure [99] consists of two steps, in the �rst a modal eigenvalues analysis
must be performed, in the second the modal reduction process is carried out,
inertia invariants are calculated and the .mnf �le containing the relevant
data is created.

As far as the choice of the boundary conditions is concerned, it must be
pointed out that it largely depends on the problem at hand. In this respect,
a comprehensive survey is reported in [58] where, in the case of chain and
tree-structured multibody systems, it is suggested to align the boundary
conditions with the local d.o.f. of the connecting joints.

To generate the ASCII �le containing the Modelica BodyData record, a
parsing software tool has been built. The only data required to de�ne the
Modelica model, and not stored in the .mtx �le, are the number and the
spatial layout of the connector frames on the body. Accordingly, the parsing
tool ask the user to specify an input list representing the FEM nodes in
which Modelica connectors must be placed.

Several di�erent numerical examples have been considered, so as to thor-
oughly test and validate the body model. Particular care has been taken
in the choice of the aforementioned examples as all of them has been found
in literature. In the opinion of the author the comparison with experiments
and simulation carried out by other researchers is a fundamental step of
validation. In the following subsections the most signi�cant test cases are
brie�y reported, comparing the results obtained with an analytical �exible
beam model previously developed in Modelica, whose description can be
found in [118]. It must be pointed out that both the analytical model and
the literature benchmarks are limited to a planar deformation �eld while the
model here presented is characterized by a three-dimensional �eld, hence the
examples here presented must be considered for validation purposes but the
model has been used in further simulations where 3D �exibility is crucial [48]
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Figure 2.4: Modelica model of the �exible pendulum.

All simulations have been performed on a workstation equipped with an In-
tel Xeon 4Ghz and 2Gb RAM processor, and the CPU simulation times
have been reported. However, it must be pointed out that the CPU time
varies largely, depending on the damping ratio, the numerical solver and the
numerical tolerance.

2.4.1 Flexible pendulum

The �rst benchmark example is taken from [41], where a �exible rod swings
under the action of gravity.

The Modelica model of the system is sketched in Fig. 2.4: the �exible
body is connected to the world reference frame through a revolute joint and
to a massless body on the opposite tip. In order to observe the tip de�ection
a RelativeSensor component has been used.

While in the case of the analytical beam model the FFR is always placed
in one of the beam ends (referring to Fig. 2.4 it is attached to the joint
connector), in the case of a model derived by numerical modal reduction the
FFR corresponds to the global coordinate system adopted in the FE solid
modelling step.

The rod has a length L = 0.4 m, a cross sectional area A = 0.0018 m2

and a density ρ = 5540 kg/m3. Di�erently from [41], in FEM-based models
it is not possible to assign the second moment of area arbitrarily, as it is
indirectly calculated in the FEM preprocessing stage. In order to mantain
the same body data used in [41] the quantity E×J (second moment of area
× Young's modulus) was kept coherent with [41], assuming a round section
for the rod (J = πr4/4 m4). The FEM beam model has been therefore
created with Abaqus, characterized by 20 nodes and 20 B31 one-dimensional
elements. Then, after the frequency and substructuring analysis steps, a
number of 15 eigenmodes was retained.

The DASSL integration algorithm was adopted, with a tolerance of 1 ×
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Figure 2.5: Flexible pendulum tip displacement. Solid line: FEM model, dashed line:
analytical model.

Figure 2.6: Flexible pendulum swing angle. Solid line: FEM model, dashed line: analyt-
ical model.

10−6, and the simulation required 0.062 s of CPU time. The results were
compared with those obtained in [49], where the same beam was modeled
analytically, in this case the simulation required 0.032 s of CPU time. Figure
2.5 shows the translational displacement of the pendulum tip in the motion
direction, namely the distance between the tip of the �exible beam and the
tip of a rigid beam, while Fig. 2.6 shows the swing angle, namely the relative
orientation between the connector frames at both ends of the �exible beam
in the plane of motion. As it is apparent, the results obtained with the FEM
model (solid line) are in good accordance with the analytic one (dashed line)
and with the experiment reported in [41].

2.4.2 Elastic slider crank mechanism

The elastic slider-crank mechanism is one of the most widely used benchmark
for �exible multibody systems simulation, and involves a closed chain [22,54,
87]. In this respect, here the same simulation experiment considered in [41]
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Figure 2.7: The slider-crank simulation scheme.

Figure 2.8: The elastic slider-crank model.
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Figure 2.9: Position of the slider block. Solid line: FEM model, dashed line: analytical
model.

and [49] has been performed. The Modelica model, composed by a �exible
crankshaft, a �exible rod and a rigid massless slider block, connected with
frictionless revolute and prismatic joints, is shown in Figs. 2.7 and 2.8.

A round section beam was considered for the rod, with a length L =
0.304 m, a cross sectional radius r = 0.005 m, and a density ρ = 2767 kg/m3.
The second moment of area was J = 4.909 × 10−10 m4, calculated as in
Section 2.4.1, with the aim of keeping the quantity E×J consistent with [41]
and [49]; the elasticity modulus E was set to 1× 109 N/m2. The FEM rod
model was computed as a beam containing 30 B31 nodes, and 15 eigenmodes
were retained.

The crankshaft was characterized by the same physical parameters of the
rod but the length, which was L = 0.152 m, and the elasticity modulus:
E = 5 × 107 N/m2; the FEM model was made by 15 B31 elements, and 10
eigenmodes were retained.

In accordance with [41] and [49], a simulation time of 1.6 seconds was
assumed, while driving the crankshaft with the following torque:

τ =

{
M(t) = 0.01(1− e−t/0.167), t ≤ 0.7 s

0, t > 0.7 s
(2.28)

The simulation was performed with a RADAU algorithm and a tolerance
of 10−6 and the simulation CPU time was 28.42 s, while the simulation of the
analytic beam model required a CPU time of 21.14 s. Figures 2.9 and 2.10
compare again the results obtained with both analytical (dashed line) and
FEM (solid line) beam model, which are also in good accordance with [41].

2.4.3 The spin-up manouver

The classical FFR formulation adopted here is based on a linear strain-
displacement relationship in the de�nition of the elastic potential energy.
This approach leads to e�cient simulations and small number of elastic
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Figure 2.10: Displacement of the rod's middle point. Solid line: FEM model, dashed line:
analytical model.

coordinates but lacks of accuracy when the deformation �eld is inherently
nonlinear (large deformations) and higher order terms in the strain energy
must be taken into account. Typical examples of this phenomenon are the
elicopter and wind turbine blades where the bodies are subject to great
deformations due to loads, but also the cases of beams subject to axial loads
is of interest. This e�ect is referred to in literature as geometrical sti�ening.
Thorough treatise can be found in [16,88,107,126]

Among the various methods proposed in the literature to account for the
geometrical sti�ening [16, 88, 151] the easiest one is the application of the
substructuring technique [151], dividing a �exible body into smaller rigidly
connected substructures, each one described by a local FFR. In this way,
although each substructure is characterized by small deformations, the whole
assembled structure can represent very large deformations. One of the main
advantages of this approch is that the models based on the FFR formulation
can be used by rigidly connecting them, on the other hand the number
of state variables grealty increases with the number of substructures and
some e�ects like axial deformation due to bending are still not reproduced.
Several methods other then substructuring have been proposed in literature,
based on the inertial coordinates representation, but this family of methods
produce models that are heavily dependent on the geometry and whose
description is not possible in terms of the local coordinates. The classical
spin-up manoeuver problem, another frequently used benchmark in �exible
multibody simulation in order to point out geometrical sti�ening [126, 127,
145], is here considered. A �exible beam rotates about an axis passing
through one of its ends, according to the following law [126]:

θ(t) =

{
Ω
T

[
t2

2
+ ( T

2π
)2(cos(2πt

T
)− 1)

]
, t < T

Ω(t− T/2), t ≥ T
(2.29)

thus, the spin-up manoeuver starts at t = 0 and ends at t = T , reaching a
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Figure 2.11: Beam substructuring.

constant angular velocity Ω.
It is worth noticing that the analytical model considers a planar deforma-

tion �eld, while the FEMmodel considers a 3D deformation �eld. As such, in
order to compare the results obtained with both models, in a �rst simulation
experiment gravity was not considered. The following data were assumed
for the beam: length L = 8 m, cross sectional area A = 7.299×10−5 m2 and
density ρ = 2767 kg/m3. As in the other experiments the product E×J was
kept coherent, so the following value was assumed for modulus of elasticity
E = 1.3359× 1012 N/m2.

Three di�erent simulation experiments were performed, corresponding to
the target angular velocities of Ω = 2 rad/s, Ω = 4 rad/s and Ω = 10 rad/s
and the de�ection of the tip, namely the di�erence between the tips of a rigid
and a �exible beam in the plane of motion, was recorded [126]. In the case
of Ω = 2 rad/s and Ω = 4 rad/s the FEM beam model was substructured
in 4 elements (Fig. 2.11), each one with a length L = 2 m and consisting of
20 B31 nodes, 15 eigenmodes were retained, while in the case of Ω = 10 the
beam was substructured in 8 elements, each one with a length L = 1 m.

Figure 2.12 shows a comparison between the results obtained with the
analytic beam model (dashed line) and the FEM model (solid line), as it
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Figure 2.12: Tip de�ection in spin up manouver at di�erent angular velocities. Solid line:
FEM model, dashed line: analytical model.

Figure 2.13: Tip de�ection in the plane of motion with gravity at di�erent angular veloc-
ities.

is apparent, a good agreement was obtained. The simulations based on the
analytic beam model took 0.22 s of CPU time for Ω = 2 rad/s and Ω = 4
rad/s, 0.40 s for Ω = 10 rad/s, while the simulations based on the FEM
model took 2.06, s 2.65 s, and 3.71 s respectively.

In a second set of simulation experiments, gravity was added along the
negative y-axis, retaining the model data of the previous simulations. As
shown in Fig. 2.13, the de�ection of the beam tip in the plane of motion is
de facto unchanged. On the other hand, the displacement along the y-axis
(Fig. 2.14) showed the 3D e�ects of centripetal terms, raising up the tip of
the beam. The CPU time requested in these simulation experiments resulted
longer, namely 6.59 s, 7.64 s and 10.03 s for Ω = 2 rad/s, Ω = 4 rad/s and
Ω = 10 rad/s respectively.
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Figure 2.14: Tip de�ection along y axis with gravity at di�erent angular velocities.
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Chapter 3

Closed form Newton-Euler of

�exible manipulators

In this chapter one of the main results of the thesis is described. A dynamic
model of �exible manipulators, based on the Newton-Euler approach and on
the adoption of the spatial vector notation [43,44,50], is developed. A similar
approach has been also adopted in [18], while in [1] a recursive formulation is
obtained, in which the Newton-Euler motion equations are derived for links
and joints in terms of position and orientation of the FFR. In [76] a O(n)
mass matrix inversion method using Lie derivatives has been also proposed.
The model is obtained in closed form with respect to the joint angles and
the global vector of elastic coordinates, furthermore the inertia matrix and
the nonlinear quadratic velocity terms are explicitly computed in the same
context.

The model is based on the generic body model described in Chapter 2,
hence the input data (namely the inertia invariants) can be analytically com-
puted according to either AMM or FEM formulation or, in case of complex
geometries, can be extracted as the output of a �nite element preprocessing
stage. The ability to extract the data from FE models leads to a greatly
pliable models, in fact it is possible to account for links of general shape and
material.

The closed form Newton-Euler dynamic model of �exible manipulators is
then validated by comparing a simulation obtained with a Matlab implemen-
tation against the multibody approach in a classical example often proposed
in literature. A further simulation is carried out in order to compare the
model against experimental results provided by the MERIt dataset. The
MERIt project [83], developed by the Technische Universität Dortmund,
which the author would primarily like to thank, makes freely available a
set of measurement data carried out by the TUDOR experimental �exible
robot.

Notwithstanding the original aim of MERIt is the identi�cation of ma-
nipulator's dynamics, in the context of this work a subset of the experi-
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Table 3.1: Link data

Mi Number of modal coordinates
I1i , I

2
i , I

3
j,i, I

4
i , I

5
j,i, I

6
i , I

7
i , I

8
j,i, I

9
jk,i Inertia invariants

Ke,i Structural sti�ness matrix

Si, Ŝi Shape functions matrices
ū0i Undeformed relative position between FFRs
ẑ′i−1 Joint rotation axis

ments provided by the dataset has been reproduced by means of the Mat-
lab/Simulink simulation environment, and results have been compared with
the measurements, with the aim of validating the closed form model.

3.1 Equations of motion of the �exible manipulator

The dynamic model of the �exible manipulator will be derived in the follow-
ing closed form:

Mθθ(θ, q)θ̈ + Mθq(θ, q)q̈ + Cθ(θ, q, θ̇, q̇) = τ , (3.1)

MT
θq(θ, q)θ̈ + Mqq(θ, q)q̈ + Deq̇ + Keq + Cq(θ, q, θ̇, q̇) = 0,(3.2)

where θ = col{θi} ∈ RN , q = col{qi} ∈ RM , τ = col{τi} ∈ RN , and θi, qi,
τi, are the joint angles, the Mi-dimensional vector of modal coordinates of
link i and the joint torques respectively. Furthermore M =

∑N
i=1Mi. Thus,

all matrices and vectors in eqs. (3.1,3.2) will be directly computed starting
from link data, summarized in Table 3.1.

3.1.1 Kinematics

Let the local FFR attached to link i be {Oi,xi,yi, zi}, as shown by Fig.
3.1), and let {O′i,x′i,y′i, z′i} be another local reference frame, having the same
orientation of the FFR frame in the undeformed con�guration and with the
origin O′i coinciding with the origin Oi+1 of the FFR of the next link in the
chain. The angle θi is the coordinate of the joint connecting link i to link
i− 1, while ẑ′i−1 is the axis of rotation in the frame {O′i−1,x

′
i−1,y

′
i−1, z

′
i−1}.

Remark 1. Some of the de�nitions given in this Chapter have alredy been
given in Chapter 2, the author believes that for the sake of clarity and
cleraness of the tractation some redundancy can be suitable.

Remark 2. The notation adopted to describe the undeformed con�guration
is redundant with respect to the notations usually adopted in robotics, i.e.,
the Denavit-Hartenberg notation [37]. However, it is compliant with the
description of bodies in FEM packages and with the notation adopted in
Chapter 2, which is necessary to describe distributed �exibility in case of
complex geometries of links.
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Figure 3.1: Reference frames.

If small elastic de�ections are considered, the in�nite dimensional defor-
mation �eld on the body can be approximated by a functional basis space
with �nite dimension, say Mi, so that the position pi+1 of the origin Oi+1 of
the (i+ 1)-th frame with respect to the world reference frame is given by:

pi+1 = pi + pi+1,i , (3.3)

pi+1,i = Aiūi = Aiū0,i +AiSiqi , (3.4)

where Ai is the (3 × 3) rotation matrix relating the FFR and the world
reference frame, ū0,i is the position vector relating the two frames in the
undeformed con�guration1, Si is the [3 ×Mi] shape function matrix (i.e.,
a matrix of functions de�ned over the body domain and used as a basis to
describe the deformation �eld of the body itself) and qi is theMi-dimensional
vector of modal coordinates. Accordingly, the relation between the linear
accelerations of the two frames, for i = 1, . . . , (N − 1), is given by:

v̇i+1 = v̇i − p̃i+1,iω̇i +AiSiq̈i + v̇′i+1 , (3.5)

v̇′i+1 = ωi × (ωi × pi+1,i +AiSiq̇i) , (3.6)

where p̃ is the skew-symmetric matrix associated to vector p. For i = 0,
instead, it is:

v̇1 = v̇′1 , (3.7)

v̇′1 = −g , (3.8)

where g is the gravity acceleration in the world frame. In this way it is
possible to easily account for gravitational terms in the motion equations.

1The bar above a vector indicates that the vector is expressed with reference to the local FFR.
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The rotation matrixAi+1 of the (i+1)-th frame with respect to the world
frame is in turn related to the rotation matrix Ai as follows:

Ai+1 = AiÂiĀi , (3.9)

Âi = U +
(̃
Ŝiqi

)
, (3.10)

Āi = Āi(ẑ
′
i, θi+1) , (3.11)

where U is the 3×3 identity matrix, and matrix Âi de�nes small rotations of
the frame {O′i,x′i,y′i, z′i} with respect to the FFR due to body deformation,
obtained by a modal superposition through the [3×Mi] shape function ma-

trix Ŝi, while matrix Āi de�nes a rotation of the frame {Oi,xi+1,yi+1, zi+1}
of an angle θi+1 about an axis de�ned in the frame {O′i,x′i,y′i, z′i} by the
constant unit vector ẑ′i.

The angular velocity and acceleration of the (i + 1)-th frame, for i =
1, . . . , (N − 1), are therefore given by:

ωi+1 = ωi +AiŜiq̇i +AiÂiẑ
′
iθ̇i+1 , (3.12)

ω̇i+1 = ω̇i +AiÂiẑ
′
iθ̈i+1 +AiŜiq̈i + ω̇′i+1 , (3.13)

ω̇′i+1 = ωi ×
(
AiŜiq̇i +AiÂiẑ

′
iθ̇i+1

)
+Ai

(̃
Ŝiq̇i

)
ẑ′iθ̇i+1 , (3.14)

while for i = 0,

ω1 = A0Â0ẑ
′
0θ̇1 (A0 = Â0 = U), (3.15)

ω̇1 = A0Â0ẑ
′
0θ̈1 + ω̇′1 , (3.16)

ω̇′1 = 0 (3.17)

Adopting the spatial vector notation [43,44,50], thus de�ning

V̇i =

[
ω̇i,
v̇i

]
∈ R6, V̇ ′i =

[
ω̇′i
v̇′i

]
∈ R6, Pi =

[
U 0

−p̃i+1,i U

]
∈ R6×6,

(3.18)

Bθ,i =

[
AiÂiẑi

0

]
∈ R6, Bq,i =

[
AiŜi
AiSi

]
∈ R6×Mi , (3.19)

eqs. (3.5) and (3.13) can be collected into:

V̇i − Pi−1V̇i−1 = Bθ,i−1θ̈i +Bq,i−1q̈i−1 + V̇ ′i . (3.20)

In turn, de�ning with N the number of the links, and withM =
∑N

i=1Mi the
number of elastic variables, it is possible to collect all the equations (3.20)
into a single global equation of the form

PT V̇ = Bθθ̈ + Bqq̈ + V̇ ′, (3.21)
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with V̇ = col{V̇i} ∈ R6N , V̇ ′ = col{V̇ ′i } ∈ R6N

P =



U −P T
1 0 . . . 0 0

0 U −P T
2 . . . 0 0

0 0 U . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . U −P T

N−1

0 0 0 . . . 0 U

 ∈ R6N×6N , (3.22)

Bθ =



Bθ,0 0 0 . . . 0 0
0 Bθ,1 0 . . . 0 0
0 0 Bθ,2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Bθ,N−2 0
0 0 0 . . . 0 Bθ,N−1

 ∈ R6N×N , (3.23)

Bq =



0 0 0 . . . 0 0
Bq,1 0 0 . . . 0 0
0 Bq,2 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . Bq,N−1 0

 ∈ R6N×M . (3.24)

3.1.2 Dynamics

The motion equations for the �exible links are the same equations described
in Chapter 2 where an additional index i is added to the terms in order to
identify the i-th link. Equation 2.2 is revised as: miU mi

˜̄d
T

C,i C̄T
t,i

mi
˜̄dC,i J̄i C̄T

r,i

C̄t,i C̄r,i Me,i


 ˙̄vi

˙̄ωi
q̈i

 =

 03

03

−Ke,iqi −De,iq̇i


+

 hrω,ihθω,i
hfω,i

+

 hre,ihθe,i
hfe,i

 (3.25)

As a consequence, all equations from 2.3 to 2.20 must be revised accordingly.
A complete description cam be found in [13]

Collecting the torque and force in a spatial vector Fi =
[
nTi fTi

]T ∈
R6, and projecting the motion equations relevant to the angular and linear
accelerations on the world frame one obtains

Ivv,iV̇i + Ivq,iq̈i −Cv,i = Fi − P T
i Fi+1, (3.26)
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where

Ivv,i =

[
AiJ̄iA

T
i miAi

˜̄dC,iA
T
i

miAi
˜̄dTC,iA

T
i miU

]
∈ R6×6, (3.27)

Ivq,i =

[
AiC̄

T
r,i

AiC̄
T
t,i

]
∈ R6×Mi , Cv,i =

[
Aih

θ
ω,i

Aih
r
ω,i

]
∈ R6, (3.28)

A single global equation can be again obtained by de�ning
Ivv = diag{Ivv,i} ∈ R6N×6N , F = col{Fi} ∈ R6N , Cv = col{Cv,i} ∈ R6N

and

Ivq =



Ivq,1 0 0 . . . 0 0
0 Ivq,2 0 . . . 0 0
0 0 Ivq,3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Ivq,N−1 0
0 0 0 . . . 0 Ivq,N

 ∈ R6N×M (3.29)

as follows

IvvV̇ + Ivqq̈ − Cv = PF . (3.30)

A global equation can be also obtained for the dynamics of the elastic
coordinates which, according to (2.2), are de�ned by:

ITvq,iV̇i +Me,iq̈i = −Ke,iqi −De,iq̇i + hfω,i −BT
q,iFi+1. (3.31)

De�ning Me = diag{Me,i} ∈ RM×M , Ke = diag{Ke,i} ∈ RM×M , De =

diag{De,i} ∈ RM×M , Cf = col{hfω,i} ∈ RM one obtains

IT
vqV̇ + Meq̈ + Deq̇ + Keq − Cf = −BT

qF (3.32)

3.1.3 Closed form model

By solving eq. (3.21) with respect to V̇ , and eq. (3.30) with respect to F ,
and substituting in eq. (3.32) one obtains eq. (3.2):

MT
θqθ̈ + Mqqq̈ + Deq̇ + Keq + Cq = 0 (3.33)

where

MT
θq =

{(
IT
vqP−T

)
+
[
BT
q

(
P−1IvvP−T

)]}
Bθ, (3.34)

Mqq = Me + BT
q

(
P−1IvvP−T

)
Bq

+
[(
IT
vqP−T

)
Bq

]
+
[(
IT
vqP−T

)
Bq

]T
, (3.35)

Cq =
{(

IT
vqP−T

)
+
[
BT
q

(
P−1IvvP−T

)]}
V̇ ′

−BT
q

(
P−1Cv

)
− Cf . (3.36)
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It must be recalled that matrix P is invertible, and that its inverse is the
upper-triangular matrix

P−1 =



U P T
2,1 P T

3,1 . . . P T
N−1,1 P T

N,1

0 U P T
3,2 . . . P T

N−1,2 P T
N,2

0 0 U . . . P T
N−1,3 P T

N,3
...

...
...

. . .
...

...
0 0 0 . . . U P T

N,N−1

0 0 0 . . . 0 U

 ∈ R6N×6N (3.37)

being

Pi = Pi+1,i, Pi,k = Pi,jPj,k, P−1
i,j = Pj,i. (3.38)

The e�cient computation of the inverse of the P matrix is particularly
relevant as it appears in many terms of the mass matrix.

The joint input torque τi is equal to the scalar product between the i-th
joint rotation axis and the torque ni

τi =
(
Ai−1Âi−1ẑ

′
i−1

)T
ni =

[ (
Ai−1Âi−1ẑ

′
i−1

)T
0
]
Fi = BT

θ,i−1Fi,

(3.39)
so that

τ = BT
θF (3.40)

from which eq. (3.1) follows

Mθθθ̈ + Mθqq̈ + Cθ = τ (3.41)

where

Mθθ =
[
BT
θ

(
P−1IvvP−T

)]
Bθ, (3.42)

Cθ =
[
BT
θ

(
P−1IvvP−T

)]
V̇ ′ −BT

θ

(
P−1Cv

)
. (3.43)

The described procedure contains the complete calculation for all the
terms of eqns. 3.1 and 3.2 which describe a closed form model of manipulator
in terms of the joint angles and elastic variables, leading to one of the main
results of this work.

Remark 3. Starting from matrices Ivv and Ivq the computation of the ma-
nipulator inertia matrix requires the computation of eight matrix products,
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namely:

M1 = P−1IvvP−T , (3.44)

M2 = M1Bθ, (3.45)

M3 = BT
θM2, (3.46)

M4 = BT
qM2, (3.47)

M5 = BT
qM1Bq, (3.48)

M6 = IT
vqP−T , (3.49)

M7 = M6Bq, (3.50)

M8 = M6Bθ, (3.51)

To this aim, suitable algorithms and data structures can be used, taking
advantage of the sparse structure of the matrices.

Remark 4. When mode shapes are ortonormalized, as usually done by FEM
packages [96], an identity matrix is obtained forMe,i = I6

i , while the sti�ness
matrix Ke,i is a diagonal matrix, whose elements are the squares of mode
frequencies.

3.1.4 Adding an external force at the tip

In order to model interactions of the end e�ector with external objects, the
model can be extended to account for an external wrench acting at the tip
of the manipulator.

If Fe =
[
nTe fTe

]T ∈ R6 is the wrench exerted on link N at the origin
of the frame {O′N ,x′N ,y′N , z′N}, eqs. (3.30) and (3.32) modify as it follows:

IvvV̇ + Ivqq̈ − Cv = PF + P̃Fe, (3.52)

IT
vqV̇ + Meq̈ + Deq̇ + Keq − Cf = −BT

qF + B̃T

q Fe, (3.53)

where

P̃ =



0
0
0
...
0
P T
N

 ∈ R6N×6, B̃T

q =



0
0
0
...
0
BT
q,N

 ∈ RM×6 (3.54)

so that the following holds

Mθθθ̈ + Mθqq̈ + Cθ = τ + BT
θP−1P̃Fe, (3.55)

MT
θqθ̈ + Mqqq̈ + Deq̇ + Keq + Cq =

(
B̃T

q + BT
qP−1P̃

)
Fe, (3.56)
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3.1.5 Adding a payload at the tip

Assume {O′N ,x′N ,y′N , z′N} as the end-e�ector frame and model the payload
as a rigid body withmp, Ip and r̄p de�ning its mass, inertia tensor and vector
locating its center of mass with respect to the end-e�ector frame respectively.

Applying the Newton-Euler equations to the payload, considered as a
�oating body and subject to the wrench −Fe, gives

˜̄rp ˙̄vp + Ip ˙̄ωp = −ω̄p × Ipω̄p − n̄e, (3.57)

mp ˙̄vp + ˜̄rTp ˙̄ωp = −ω̄p × (ω̄p × r̄p)− f̄e, (3.58)

and projecting the said equations on the absolute frame through the matrix

Ap = ANÂN , while de�ning V̇p =
[
ω̇Tp v̇Tp

]T ∈ R6 yields

Fe = −Ivv,pV̇p − Cv,p, (3.59)

where

Ivv,p =

[
ApIpA

T
p Ap ˜̄rp

Ap ˜̄r
T
p mpU

]
, (3.60)

Cv,p =

[
ωp ×ApIpA

T
pωp

ωp × (ωp ×Apr̄p)

]
, (3.61)

Recalling that V̇p can be obtained as:

V̇p = P̃T V̇ + B̃qq̈ + V̇ ′N+1 (3.62)

V̇ ′N+1 =

[
ωN ×

(
AN ŜN q̇N

)
,

ωN × (ωN × pN+1,N +ANSN q̇N)

]
, (3.63)

substituting (3.63) in (3.59) and (3.59) in (3.52), (3.53) one obtains:

ÎvvV̇ + Îvqq̈ − Ĉv = PF , (3.64)

Î
T

vqV̇ + M̂eq̈ + Deq̇ + Keq − Ĉf = −BT
qF , (3.65)

where

Îvv = Ivv + P̃Ivv,pP̃
T
, (3.66)

Îvq = Ivq + P̃Ivv,pB̃q, (3.67)

Ĉv = Cv − P̃
(
Ivv,pV̇

′
N + Cv,p

)
, (3.68)

M̂e = Me + B̃T

q Ivv,pB̃q, (3.69)

Ĉf = Cf − B̃T

q

(
Ivv,pV̇

′
N + Cv,p

)
, (3.70)

Therefore, equations (3.1) and (3.2) still follow by simply replacing Ivv,
Ivq, Cv, Me, Cf in (3.34) and (3.36), while (3.42) and (3.43) are replaced

with Îvv, Îvq, Ĉv, M̂e, Ĉf .
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3.1.6 Modeling highly �exible manipulators

In order to cope with a high �exibility, link i can be subdivided into more
rigidly connected �exible elements or substructures, as shown in Fig. 3.2,
each one described through a FFR approach introducing Mk modal coordi-
nates. De�ne with Ne the total number of elements of the whole manipulator
and with M =

∑Ne
k=1 Mk the total number of modal coordinates.

Let θi = θe
k̄
, i = 1, . . . , N denote the �real� joint angle between element

k̄−1 and k̄ and consider a �dummy� joint angle θek if a rigid connection exists

between element k− 1 and k, thus θek = 0, θ̇ek = 0, θ̈ek = 0. In the latter case
it is also:

Ak+1 = AkÂk = Ak

[
I +

(̃
Ŝkqk

)]
, (3.71)

ω̇k+1 = ω̇k +AkŜkq̈k + ω̇′k+1, (3.72)

ω̇′k+1 = ωk ×AkŜkq̇k (3.73)

V̇k − Pk−1V̇k−1 = Bq,k−1q̈k−1 + V̇ ′k (3.74)

By comparing eq. (3.20) with eq. (3.74) it is immediately apparent that
the model remains formally identical by removing the columns of matrix Bθ

corresponding to the �dummy� joint angles and with matrices Bq and Bθ

having dimensions 6Ne ×M and 6Ne ×N respectively.

Figure 3.2: Substructuring a highly �exible bar into k + 1 segments
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3.2 Validation of the model

The validation of the model has been carried out in two steps, the results
obtained by implementing and simulating model (3.1,3.2) in MATLAB have
been �rst compared with the results obtained by simulating the same sys-
tem in other multibody environments. Two simulation scenarios have been
chosen, the model has been initially compared with a literature benchmark
used also in Chapter 2; then a di�erent simulation scenario has been con-
sidered, where a planar robot with two links is subject to low-speed and
high-speed movements, in this case the results are compared with a di�erent
sotware, namely MSC/Adams [94] which relies on a Lagrangian formulation
for the �exible degrees of freedom. As a second step, the model of an ex-
perimental manipulator has been implemented and the simulation has been
compared with experimental results provided by the MERIt dataset ( [83]),
which contains several measurements carried out on the TUDOR experimen-
tal platform, a three DOFs elastic manipulator designed by the Technische
Universität Dortmund.

3.2.1 Simulations - Slider crank

The �rst considered scenario is the same described in Section 2.4.2 which
has been selected for several reasons:

• This experiment on the slider-crank mechanism is a widely known
benchmark used in literature.

• The mechanism is in fact a closed kinematic chain which requires a
feedback force on the tip in order to be simulated within this framework.
An e�cient way to cope with this problem is described below.

• The same benchmark has been used in Chapter 2 in order to validate
the object-oriented body model, in this context the model has been
used in a slightly di�erent way, in order to maximise the similarity
between the two. This is supposed to further validate and demonstrate
the pliability of the general approach.

The links' data (Tab. 3.1) have been obtained as the result of a FE pre-
processing followed by a modal reduction step [28], the procedure adopted
in order to obtain the data is basically the same described in Section 2.4.2.
It must be however pointed out that the prismatic joint previously adopted
in order to constrain the tip of the slider to move along the x axis closes a
kinematic chain, and actually de�nes an overall di�erential-algebraic equa-
tion (DAE) system. Since the simulation of this DAE system resulted very
di�cult to be tackled by MATLAB solvers from a numerical point of view,
the kinematic constraint has been replaced by a very sti� spring-damper
system, acting on the tip of the slider along the y axis, with a sti�ness
constant K = 1 × 105 N/m and a damping D = 100 Ns/m. For the sake
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Figure 3.3: Dymola model scheme of the slider crank.

Figure 3.4: Displacement of the slider along the x axis obtained with the Dymola simu-
lation (dashed line), and with the MATLAB simulation (solid line).

of comparison, the Modelica model previously described has been modi�ed
in order to be as much similar as possible with the MATLAB simulation
model, Fig. 3.3 shows the relevant Dymola model scheme.

The DASSL solver has been used in Dymola, while the ode15s solver has
been used in MATLAB.

Figure 3.4 shows the displacement of the slider along the x axis, obtained
with the MATLAB (solid line) and Dymola (dashed line) simulation; as it
is apparent, the two plots are indistinguishable. Some di�erence between
the two simulations is appreciable in Fig. 3.5, where the transverse dis-
placements of the rod center with respect to a rigid motion are shown. The
results are in agreement with the benchmark reported in [41] and with the
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Figure 3.5: Transverse displacements of the rod center with respect to a rigid motion
obtained with the Dymola simulation (dashed line), and with the MATLAB simulation
(solid line).

results reported in Chapter 2. It must be pointed out that the provided
example represents a planar mechanism while the model is suited for three
dimensional dynamics, but literature lacks of 3D widely used benchmarks.

3.2.2 Experimental validation

In order to show the e�ectiveness of the modelling technique here proposed,
we will now develop the model of the TUDOR experimental platform, a three
DOFs elastic manipulator designed by the Technische Universität Dortmund.

Notwithstanding the original aim of MERIt is the identi�cation of ma-
nipulator's dynamics, in the context of this work a subset of the experi-
ments provided by the dataset has been reproduced by means of the Mat-
lab/Simulink simulation environment, and results have been compared with
the measurements, with the aim of validating the closed form model.

The equivalent kinematics of the manipulator, whose complete descrip-
tion can be found in [84], is depicted in Fig. 3.6. The �rst link is rigid, and
the �rst actuated joint moves the robot in the X-Z horizontal plane. Hence,
in the context of this work, only the second and third links are considered,
making the remaining system equivalent to a planar �exible robot. The
second and third joints operate on the X-Y vertical plane, acting on joint
angles θ1 and θ2. The manipulator kinematics is structured in order to have
gravity acting on the negative Y direction. The elastic links, labelled l1 and
l2, are constituted by spring steel rods with rectangular cross section. The
rods are oriented in order to have the great �exibility in the motion plane.
Links, joints and motors data are summarized in Tabs. 3.2 and 3.3.

As for the measurement system, strain gauges are placed on each elastic
rod, strains are measured at 46 mm and 260 mm from the root of the �rst
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Table 3.2: Tudor Link data

Link 1 Link 2

Length 440 mm 410 mm
Width 15 mm 15 mm
Height 4 mm 4 mm

Density 7800 Kg/m
3

7800 Kg/m
3

Young Modulus 200 GPa 200 GPa

Table 3.3: Tudor Joint data

Joint 1 Joint 2

Motor model EC-max40 EC-max30

Rotor and gear Inertia 9.41× 10−6 Kgm2 0.82× 10−6 Kgm2

Torque constant 44.8 mNm/A 12.9 mNm/A
Gear Ratio 320 : 1 246 : 1
Mass 1.6680 Kg 0.5885 Kg

rod, and 45 mm and 235 mm from the root of the second rod. It must
be considered however, that the initial part of each link is clamped due to
mechanical connection to the joint. The length of the clamp along the X
direction is 31 mm for the �rst link, and 28 mm for the second one. In Fig.
3.7, strain gauge positions and clamped parts are shown.

The manipulator can be equipped with a variable payload on the tip, the
dataset includes experiments with di�erent payloads, namely 0, 100, 200,
300 and 400 g. Nine tests are provided for every payload condition, and
in every test a di�erent pseudo-random set point is generated for the joint
angles θ1 and θ2.

Summarizing, the experimental measurements provided by the MERIt
dataset are: joint angles and velocities, motor currents and the strain mea-
sured by the sensors.

The link data, summarized in Table 3.1, have been obtained by means
of a FE modal reduction stage, similarly to the data of the slider-crank
mechanism outspread in the previous section.

Both links have been modelled with beam elements, as shown in Fig. 3.8,
adopting an automatic procedure for node placement, except for the nodes
corresponding to the strain sensor positions. Three nodes have been placed
at a distance of 1.5 mm each, in the position corresponding to each strain
gauge, in order to obtain the strain value from the nodal displacements.

For each �exible link, only 3 eigenmodes have been considered (see Table
3.4), the 2nd eigenmode has been discarded, because it is a bending mode
in the out-of-plane direction, where no strain gauge are present in the ex-
perimental setup. Though the number of eigenmodes is low, it has revealed
adequate to correctly represent the �exible dynamics of TUDOR. An higher
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Figure 3.6: Equivalent kinematic (A) and picture (B) of the robot of the TUDOR exper-
imental platform.

Figure 3.7: Locations of the strain gauges along the robot.
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Table 3.4: Considered eigenfrequencies

Link 1 Link 2

Mode number Frequency (Hz) Mode number Frequency (Hz)

1 4.7 1 22.9
3 75.6 3 143.44
4 241.3 4 401.33

Figure 3.8: Mesh of the FEM model of a link.

precision could be achieved with more eigenmodes causing, however, an in-
creased computational burden.

The boundary conditions adopted in the FE analysis have great in�uence
on the mode shapes of the �exible links, manipulator's links are clamped
at one end, hence the nodes corresponding to the clamped part have been
constrained in the FE model. Furthermore, clamping the �rst node of the
link intrinsically guarantees that the FFR is placed in the above mentioned
node, hence the hypotesis of placing the FFR in the base �exible links is
satis�ed.

The motor and gear inertia related to the actuator on θ2 are considered
in the FE modelling stage by applying a concentrated mass �xed on the �rst
link's tip, while the payload on the manipulator's tip is considered in the
closed form model.

In order to correctly simulate the motion of the manipulator, a closed-loop
approach has been adopted. The commanded joint angles have been used
as set points for two PID controllers that have been manually tuned with
the aim of correctly reproduce the behaviour of the TUDOR manipulator in
terms of joint positions. The closed loop approach has been chosen in order
to compensate the e�ects of friction and rotary inertia, while focusing the
attention on the �exible dynamics.

MERIt, includes only joint, current and link strain, no absolute or relative
displacement of the links is provided. On the contrary, the model described
in sec. 3.1 determines only displacements and orientation of the nodes with
respect to the FFR. Absolute nodal positions can then be computed. In order
to compare experimental results with simulations, link strains at the stain
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gauge positions have been derived from the nodal displacements. The beam
elements are 1D from the FE perspective, hence, the strain on the surface of
the beam must be computed starting from the transversal de�ection. The
de�ection of three consecutive nodes, placed at a relative distance of 1.5 mm
have been calculated by means of the Si shape matrices. Then, recalling that
the FFR presents no de�ection, a cubic function Ω(x) = Ax3 + Bx2 + Cx,
describing de�ection along the beam length, has been interpolated in the four
nodes (FFR and three nodes around the gauge position). Finally, considering
that strain is proportional to the second derivative of the de�ection with
respect to the beam length coordinate x, we can compute the strain ε(i) at
point xi along the beam as follows: ε(i) = (6Axi + 2B)(hsection/2).

Remark 5. The approach adopted here in order to derive the strain is feasible
for beam-like structures. In the case of more complex FE models it is possible
to obtain some strain matrices, namely Sst

i which directly relate the strain
of a FE node i to the modal coordinates through a linear relationship of the
kind:

ε(i) = Sst
i q (3.75)

For the sake of space limitation, only results related to experiments with
a payload of 400 gr. are reported here. All the �gures shown in this Section
present a comparison between MERIt experimental data, represented by a
black solid line, and simulation results, represented by a dashed grey line.
First of all, Figs. 3.9 and 3.10 report the joint angles. Though, PID position
regulators have been manually tuned, the response generated by the model is
so closed to the experimental one that the two curves overlap. On the other
hand, concerning the validation of the �exible dynamics, it can be noticed
that there is again a good accordance between the simulated model and
experimental data. In particular, Figs. 3.11-3.14 show a comparison between
the strain gauge measurements and the strain computed by the model, at the
same positions, while Fig.3.15 shows a zoom of the strain at X1,1 in a small
time window. These �gures reveal that small di�erences between simulated
and experimental data are due to the e�ect of material damping, which
is a parameter di�cult to identify without speci�c experiments, and static
measurement o�sets, as it can be seen when the manipulator is stationary
(see, e.g., the �rst 10 seconds of Fig.3.11).

In order to con�rm the results of the time domain analysis, a frequency
analysis of the strains has been performed as well. Figs. 3.16-3.19 show
a comparison between the frequency response of the strain gauge measure-
ments and the strains computed using the model. These �gures reveal, again,
a good accordance between model and experimental data. In particular, a
resonance around 2 Hz is shown by the simulation and experimental data
as well. Strains on X1,2 and X2,2 for an experiment with a 200 g. payload
are brie�y reported in Figs. 3.20 and 3.21.
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Figure 3.9: First joint angle θ1, Experimental results (dashed line), and MATLAB simu-
lation (solid line).

Figure 3.10: Second joint angle θ2, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.11: Comparison between the strain gauge measurements and the strain computed
by the model at the position X1,1, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.12: Comparison between the strain gauge measurements and the strain computed
by the model at the position X1,2, Experimental results (dashed line), and MATLAB
simulation (solid line).
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Figure 3.13: Comparison between the strain gauge measurements and the strain computed
by the model at the position X2,1, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.14: Comparison between the strain gauge measurements and the strain computed
by the model at the position X2,2, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.15: Comparison between the strain gauge measurements and the strain computed
by the model at the position X1,1, Experimental results (dashed line), and MATLAB
simulation (solid line).

49



CHAPTER 3. CLOSED FORM NEWTON-EULER OF FLEXIBLE
MANIPULATORS

Figure 3.16: Comparison between the FFT of the strain computed by the model and Dy-
mola simulations at the position X1,1, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.17: Comparison between the FFT of the strain computed by the model and Dy-
mola simulations at the position X1,2, Experimental results (dashed line), and MATLAB
simulation (solid line).

50



CHAPTER 3. CLOSED FORM NEWTON-EULER OF FLEXIBLE
MANIPULATORS

Figure 3.18: Comparison between the FFT of the strain computed by the model and Dy-
mola simulations at the position X2,1, Experimental results (dashed line), and MATLAB
simulation (solid line).

Figure 3.19: Comparison between the FFT of the strain computed by the model and Dy-
mola simulations at the position X2,2, Experimental results (dashed line), and MATLAB
simulation (solid line).
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Figure 3.20: Comparison between the strain gauge measurements and the strain computed
by the model at the position X2,1, Experimental results (dashed line), and MATLAB
simulation (solid line) - payload 200 gr.

Figure 3.21: Comparison between the strain gauge measurements and the strain computed
by the model at the position X2,2, Experimental results (dashed line), and MATLAB
simulation (solid line) - payload 200 gr.
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Chapter 4

Development of a control

oriented model

The closed form model described in Chapter 3 is suited for dynamic analysis
and simulation but it is a�ected by several issues when coming to model
based control. The model is inherently nonlinear, hence many control syn-
thesis techniques related to model based optimization appear unfeasible or
cannot guarantee stability properties, moreover the computational burden
required to implement control schemes which rely upon real-time simulation
can negatively a�ect the performances of the control systems. A common
approach for the synthesis of control for such complex systems is to derive a
simpli�ed model for example by linearizing or by neglecting "fast" dynam-
ics. Unfortunately, when coping with the control of �exible manipulators,
the fast dynamics are represented by vibrations and therefore a model based
control should rely upon a model where these dynamics are correctly repre-
sented.

The techniques based upon the singular perturbation (SP) approach [128],
along with the composite control theory [26,79], allow to overcome this issue
by means of a model separation based on time scaling. The aforementioned
SP methodologies consider a reduced simpli�ed model in �rst instance, which
is meant to capture the dominant phenomenon characterized by slow dynam-
ics. In second instance the neglected phenomena are carried out by de�ning
a second reduced model as a correction of the simpli�ed one. Furthermore,
exploiting the theoretical framework provided by the composite control the-
ory, a separate control law for each subsystem can be synthesized.

A �exible manipulator naturally exhibits a two-time scale behaviour where
the rigid overall motion represent the slowest phenomenon, while the par-
asitic phenomenon can be associated to the vibrations induced by distur-
bances or by the motion control. As a consequence, a control problem related
to vibration damping in �exible manipulators naturally recalls a modeling
approach based on the SP.

In this chapter a model based on the SP method is presented. In fact,
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an additional step with respect to the classical SP is here disclosed; the
model is developed by means of the integral manifold (IM) approach [72,129],
which can be considered as an extension of SP. The IM technique is aimed
to overcome the limits of the classical SP by obtaining the reduced order
models with an O(εp) approximation, conversely to the O(ε) approximation
adopted in the SP.

4.1 Introduction to the singular perturbation theory

Consider the following singular perturbation model of generic ODE:

ẋ = f (x, z, u, ε, t) (4.1)

εż = g (x, z, u, ε, t) (4.2)

With the following conditions:

x(t0) = x0 (4.3)

z(t0) = z0 (4.4)

where and x ∈ RN, z ∈ RM are the state variables, u is the vector of con-
trol inputs and , ε is a small positive scalar called perturbation parameter.
Assume also that f and g are continuously di�erentiable with respect to
all their arguments. Since the perturbation parameter ε is supposed to be
small, the velocity ż = g/ε can be large with respect to the velocity of the
state variables x and therefore the state variables z are supposed to quickly
approach a quasi-steady state trajectory. Conversely,the x state variables
are are subject to slower transients. Therefore,the singularly perturbed dy-
namic system exhibits a two time scale behaviour, provided that the per-
turbation parameter is properly choosen. Loosely speaking, the z substate
represents the "parasitic" phenomena which are responsible for the presence
of higher order terms in the dynamic model. Supposing ε = 0 one �nds an
approximate solution of the initial problem which takes into account only
the dominant phenomena. In this case, the dimension of the state space
shrinks from N +M toM , and the state equation (4.2) degenerates into the
algebraic equation

0 = g(x̄, z̄, ū, 0, t) (4.5)

where the bar here denotes that the variables belong to the system with
ε = 0.

The model 4.1,4.2 is said to be in standard form if and only if equation
4.5 has k ≥ 0 distinct real roots.

z̄ = φi(x̄, ū, t), i = 1, 2, ...k (4.6)

Assuming that the model (4.1,4.2) is in standard form, for every i = 1, 2, ...k
there exist a reduced order model obtained by substituting φi(x̄, ū, t) into
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equation 4.1 as follows:

˙̄x = f(x̄, φi(x̄, ū, t), ū, 0, t) (4.7)

Equation (4.7) represents the quasi steady state model where the state
is supposed to converge when the z variables have rapidly converged to a
root of (4.6), hence the model represents the slow part of (4.1,4.2). As
a consequence x̄ is an O(ε) approximation of x uniformely in the interval
[t0, T ].

x = x̄(t) +O(ε) (4.8)

The z state variables do not undergo the the same approximation in the
whole interval [t0, T ]. Consider a quasi steady state z̄. The initial value at
time t0 is:

z̄(t0) = φ̄i(x̄(t0), t0) (4.9)

which can signi�cantly di�er from the initial condition z0. As a consequence,
the approximation:

z = z̄(t) +O(ε) (4.10)

is conversely valid only after the original variable z converges to its quasi
steady state z̄ that is for t ∈ [t1, T ], being t1 > t0. In the interval [t0, t1] the
system is subject to a transient, which deserves to be analyzed.

Consider the time variable τ de�ned as follows:

τ =
t− t0
ε

(4.11)

The τ time is 0 at initial time and rapidly grows for t > t0. The rate of
growth depends on the ε parameter. The following di�erential relation holds:

dτ

dt
=

1

ε
(4.12)

Then, consider a variable ẑ(τ) which represents the discrepancy between
the original z and the approximation z̄ in such way:

z = z̄(t) + ẑ(τ) (4.13)

ẑ is called boundary layer correction and is function of τ , because it
vanishes as z tends to z̄ after a fast transient.

In order to describe the transient it is possible to de�ne a boundary layer
system

dẑ

dτ
= g(x0, ẑ(τ) + z̄(t0), 0, t0), ẑ(0) = z0 − z̄(t0) (4.14)

where x0, t0 and z̄ can be considered as �xed in the τ -time scale.
It must be pointed out that the correctness of the approximation stated

in eq (4.13) is related to the stability of the system (4.14). The proof
(Tikhonov's theorem) can be found in [141], [61]. In order to formally derive
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the approximations (4.8) and (4.13) consider the derivatives of x and z with
respect to t and τ .

˙̄x(t) +
dx̂

dτ

dτ

dt
= f(x̄+ x̂, z̄ + ẑ, ε, t) (4.15)

ε ˙̄z(t) + ε
dẑ

dτ

dτ

dt
= g(x̄+ x̂, z̄ + ẑ, ε, t) (4.16)

Substituting the quasi-steady-state reduced model (4.7) into (4.15) yelds

dx̂

dτ
= ε[f(x̄+ x̂, z̄ + ẑ, ε, t)− f(x̄, z̄, 0, t)] (4.17)

As a consequence, when ε tends to 0, also dx̂/dτ does, hence if ε = 0 and
x̄(t0) = x0, then x̂(τ) is equal to 0. Moreover, given that the right hand side
of 4.17 is bounded, then x(t, ε) → x̄(t) and approximation 4.8 is valid. On
the other hand equation 4.16 yelds

dz̄(τ)

tτ
= g(x̄(t), z̄(t) + ẑ(τ), ε, t)− ε ˙̄z, ẑ(0) = z0 − z̄(t0) (4.18)

4.2 The singularly perturbed model of �exible manip-

ulator

In this section, the singularly perturbed model of manipulator will be de-
rived. Consider the closed-form model described in Chapter 3 where the
damping is neglected1:[

Mθθ Mθq

MT
θq Mqq

] [
θ̈
q̈

]
+

[
Cθ
Cq

]
+

[
0

Keq

]
=

[
τ
0

]
(4.19)

and consider the inverse of the inertia matrix as follows:[
Mθθ Mθq

MT
θq Mqq

]−1

=

[
Hθθ Hθq

Hqθ Hqq

]
(4.20)

The original model can be explicitly written as:

θ̈ = −HθθCθ −HθqCq + Hθθu−HθqKeq (4.21)

q̈ = −HqθCθ −HqqCq + Hqθu−HqqKeq (4.22)

where u = τ
Since the parasitic phenomenon which we want to con�ne in the boundary

layer correction are the manipulator vibrations, it is convenient to relate the
perturbation parameter to the system sti�ness. Recalling that the sti�ness
matrix Ke is supposed to be a diagonal one can de�ne:

1The sngularly perturbed model described here and the Integral manifold model described in the
following section are intended for control purposes, hence structural damping can be neglected as it
positively contributes in vibration control.
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ke = min {ke,j,i} , ε =
1√
ke

(4.23)

A scaled sti�ness matrix K̄e is conveniently de�ned as follows:

K̄e = ε2Ke (4.24)

It must be pointed out that, due to the characteristics of the model reduc-
tion exerted by the FE packages which orthogonalize the vibration modes,
the sti�ness matrix contains the squares of the links' natural frequencies.
The perturbation parameter is consequently equal to the inverse of the links'
lowest natural frequency.

Two subsets of the state variables can be de�ned:

x =

[
x1

x2

]
=

[
θ

θ̇

]
, z =

[
z1

z2

]
=

[
Keq
εKeq̇

]
(4.25)

and the equations (4.21,4.22) can be written as follows:

ẋ1 = x2

ẋ2 = −Hθθ(x1, ε
2K̄−1

e z1)Cθ(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2)

−Hθq(x1, ε
2K̄−1

e z1)Cq(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2)

+Hθθ(x1, ε
2K̄−1

e z1)u−Hθq(x1, ε
2K̄−1

e z1)z1 (4.26)

εż1 = z2

εK̄−1
e ż2 = −Hqθ(x1, ε

2K̄−1
e z1)Cθ(x1, ε

2K̄−1
e z1,x2, εK̄

−1
e z2)

−Hqq(x1, ε
2K̄−1

e z1)Cq(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2)

+Hqθ(x1, ε
2K̄−1

e z1)u−Hqq(x1, ε
2K̄−1

e z1)z1 (4.27)

Finally, following the singular perturbation theory, two subsystems can
be derived from equations (4.26, 4.27). Considering (4.27) where ε = 0 and
solving one obtains:

z̄2 = 0

z̄1 = −H−1
qq (x̄1, 0)Hqθ(x̄1, 0)[ūCθ(x̄1, 0, x̄2, 0)]

+Cq(x̄1, 0, x̄2, 0) (4.28)

It must be recalled that Cq is inherently equal to zero if the elastic vari-
ables and their derivatives are zero.

The slow subsystem is derived from (4.26) considering ε = 0 and (4.28):

˙̄x1 = x̄2

˙̄x2 = Hθθ(x̄1, 0) + Hθq(x̄1, 0)H−1
qq (x̄1, 0)Hqθ(x̄1, 0)[ū

−Cθ(x̄1, 0, x̄2, 0)] (4.29)

57



CHAPTER 4. DEVELOPMENT OF A CONTROL ORIENTED MODEL

Applying the Shur complement2 the slow subsystem can be rewritten as:

˙̄x1 = x̄2

˙̄x2 = M−1
θθ (x̄1, 0)[ū− Cθ(x̄1, 0, x̄2, 0)] (4.30)

Which coincides with the rigid manipulator model.
Considering τ = t/ε as the fast timescale and η1 = z1− z̄1, η2 = z2− z̄2,

the boundary layer system is:

dη1

dτ
= η2

dη2

dτ
= −Hqq(x̄1, 0)η1 + Hqθ(x̄1, 0)(u− ū) (4.31)

which is linear but parametric in the state of the slow subsystem.

4.3 The integral manifold approach

The singular perturbation approach is a powerful tool to decompose the com-
plex model of manipulator described in Chapter 3, but it is based on the
assumption that ε is su�ciently small to preserve the time-scale separation.
This assumption can be critical as the manipulator sti�ness decreases; the
perturbation parameter consequently increases and the nominal bandwidth
achieved by the slow controller must be consequently reduced. The integral
manifold approach aims to overcome the O(ε) approximation, in this theory,
the reduced order subsystems are obtained by means of a O(ε)p approxima-
tion, allowing to cope with two timescale modelling of soft manipulators.

De�nition 6. (Integral manifold de�nition)
Consider a n-dimensional surface Σt in the s-dimensional space Rs. The

surface is de�ned by m equations, where m = s−n. These equations express
m state variables as functions of the remaining n. If one considers surfaces
that vary with time, explicit functions can be written as follows:

Σt : z = h(x, t) z ∈ Rm, x ∈ Rn (4.32)

assuming that:

• ∂h/∂x exist, are continuous and have full rank

• ∂h/∂t exist, are continuous over the interval of interest, which should
preferably be in�nite.

2M−1
θθ (x̄1, 0) = Hθθ(x̄1, 0) + Hθq(x̄1, 0)H−1

qq (x̄1, 0)Hqθ(x̄1, 0)
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Then, consider the dynamic system ∆t:

ẋ =f(x, z, t)

ż =g(x, z, t),
(4.33)

A surface Σt is an integral manifold for the system ∆t if every solution
z(t), x(t) of ∆t which is in the surface Σt at t = t0 remains in Σt for all
t ∈ (t0, t1), that is

z(t) = h(x(t), t) t ∈ (t0, t1) (4.34)

In practice, an integral manifold is a surface on which the system remains
for all t > t0 given that it is on the surface at t = t0.

De�nition 7. (Manifold condition)
If Σ : z = h(x, t) satis�es the partial di�erential equation:

∂h

∂t
+
∂h

∂x
f(x, h(x, t), t) = g(x, h(x, t), t) (4.35)

the surface Σ is an integral manifold for the system (4.33)

If one can �nd the manifold equation h(x, t), the system's dynamics is
restricted to the manifold, so it can be described by the following n-th order
system:

ẋ = f(x, h(x, t), t) x ∈ Rn (4.36)

However, it must be recalled that the reduced-order system is an correct
reduction only if the system's state belongs to the manifold at t = t0, i.e.
z(t0) = h(x(t0), t0). Whenever the system is not on the manifold at the
initial state, the distance between the system's state z(t) and the manifold
can be described by a new set of coordinates, in turn:

η = z − h(x, t) η ∈ Rm (4.37)

In order to obtain a description of the o� -manifold one can di�erentiate
η with respect to time, as follows:

η̇ = g(x, η + h(x, t), t)− ∂h

∂x
f(x, η + h(x, t), t)− ∂h

∂t
(4.38)

Conversely, when the initial o� -manifold transient ends, the system reaches
an equilibrium with η = 0. During this phase the on-manifold system is de-
scribed by equation 4.36. In the following section it will be shown how the
integral manifold approach can be exploited in order to tackle with the �ex-
ible manipulators modelling, where the on-manifold subsystem represents
the dominant phenomena and the o� -manifold takes into account the fast
dynamics.
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4.4 An integral manifold model of �exible manipulators

Consider the �exible manipulator model described in the previous section;
if the �exibility is described by q ∈ Rnc modal state variables, an integral
manifold Σe with dimension 2nc can be introduced as follows:

z̄1 = h1(x1,x2,u, ε)

z̄2 = h2(x1,x2,u, ε)
(4.39)

The application of the aforementioned manifold condition (4.35) to the
system expressed in (4.26, 4.27) yelds to the following constraint:

εḣ1 = h2

εK̄−1
e ḣ2 = −Hqθ(x1, ε

2K̄−1
e h1)Cθ(x1, ε

2K̄−1
e h1,x2, εK̄

−1
e h2)

−Hqq(x1, ε
2K̄−1

e h1)Cq(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2)

+Hqθ(x1, ε
2K̄−1

e h1)u−Hqq(x1, ε
2K̄−1

e h1)h1 (4.40)

In order to determine an analytical expression of the manifold, the manifold
condition (4.35) should be solved, however this requires the solution of par-
tial di�erential equations which turns out to be a very tough task. In the
following, an approximation of Σe based on a series expansion at the O(ε3)
will be considered. Assume the series expansion relative to the manifold
condition for z1 and z2 as follows:

z̄1 = h1(x1,x2, ū,0) +
∂h1(x1,x2, ū, ε)

∂ε
ε+

∂2h1(x1,x2, ū, ε)

∂ε2
ε2 +O(ε3)

= h0
1 + h1

1ε+ h2
1ε

2 +O(ε3) (4.41)

z̄2 = h2(x1,x2, ū,0) +
∂h2(x1,x2, ū, ε)

∂ε
ε+

∂2h2(x1,x2, ū, ε)

∂ε2
ε2 +O(ε3)

= h0
2 + h1

2ε+ h2
2ε

2 +O(ε3) (4.42)

ū = ū0 + ū1ε+ ū2ε2 +O(ε3) (4.43)

The approximated formulation of the manifold will be substitued in equation
(4.40) in order to calculate the terms of the expansion explicitely. To this
purpose, all the terms of eqns. (4.21,4.22) must be expanded consistently.
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Hqθ(x1, ε
2K̄−1

e z1) = Hqθ(x1,0)

+ε2

N∑
i=1

Mi∑
j=1

1

k̄e,j,i

∂Hqθ(θ, q)

∂qj,i

∣∣∣∣
q=0

h0
1,j,i +O(ε3)

= Hqθ(x1,0) + ε2Ĥqθ(x1,0) +O(ε3) (4.44)

Hqq(x1, ε
2K̄−1

e z1) = Hqq(x1,0)

+ε2

N∑
i=1

Mi∑
j=1

1

k̄e,j,i

∂Hqq(θ, q)

∂qj,i

∣∣∣∣
q=0

h0
1,j,i +O(ε3)

= Hqq(x1,0) + ε2Ĥqq(x1,0) +O(ε3) (4.45)

Cθ(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2) = Cθ(x1,0,x2,0)

+ε2
N∑
i=1

Mi∑
j=1

1
k̄e,j,i

∂Cθ(θ,q,θ̇,q̇)
∂qj,i

∣∣∣
q=0

h0
1,j,i

+ε
N∑
i=1

Mi∑
j=1

1
k̄e,j,i

∂Cθ(θ,q,θ̇,q̇)
∂q̇j,i

∣∣∣q=0
q̇=0

(
h0

2,j,i + εh1
2,j,i

)
+O(ε3)

= Cθ(x1,0,x2,0) + εC̃0

θ(x1,0,x2,0)

+ε2
(
Ĉθ(x1,0,x2,0) + C̃1

θ(x1,0,x2,0)
)

(4.46)

Cq(x1, ε
2K̄−1

e z1,x2, εK̄
−1
e z2) = Cq(x1,0,x2,0)

+ε2
N∑
i=1

Mi∑
j=1

1
k̄e,j,i

∂Cq(θ,q,θ̇,q̇)

∂qj,i

∣∣∣
q=0

h0
1,j,i

+ε
N∑
i=1

Mi∑
j=1

1
k̄e,j,i

∂Cq(θ,q,θ̇,q̇)

∂q̇j,i

∣∣∣q=0
q̇=0

(
h0

2,j,i + εh1
2,j,i

)
+O(ε3)

= Cq(x1,0,x2,0) + εC̃0

q(x1,0,x2,0)

+ε2
(
Ĉq(x1,0,x2,0) + C̃1

q(x1,0,x2,0)
)

(4.47)

where:

H̄qθ(x1,0) = K̄eHqθ(x1,0) ,
¯̂Hqθ(x1,0) = K̄eĤqθ(x1,0)

H̄qq(x1,0) = K̄eHqq(x1,0) ,
¯̂Hqq(x1,0) = K̄eĤqq(x1,0)

(4.48)

The partial derivatives of Hθθ,Hθq,Hqθ and Hqq
3 with respect to the

modal coordinates can be calculated recalling that 4:

3In the following, the arguments of Hθθ,Hθq ,Hqθ,Hqq ,Cθ,Cq , their derivatives and their expansions
will be omitted for the sake of brevity. The aforementioned quantities are always evaluated in z1 = z2 = 0

4

M−1M = I,

M−1′M +M−1M ′ = 0,

M−1′ = M−1M ′M−1
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[
∂Hθθ

∂qj,i

∂Hθq

∂qj,i
∂Hqθ

∂qj,i

∂Hqq

∂qj,i

]
= −

[
Hθθ Hθq

Hqθ Hqq

] [ ∂Mθθ

∂qj,i

∂Mθq

∂qj,i
∂MT

θq

∂qj,i

∂Mqq

∂qj,i

][
Hθθ Hθq

Hqθ Hqq

]
(4.49)

While the partial derivatives of the components of the mass matrix can
be calculated starting from the terms of equations (3.5-3.32) as described in
Appendix B.

As mentioned before, the approximated formulation of the manifold is
substituted in equation (4.40), yelding the reduced order on-manifold sys-
tem:

εḣ0
1 + ε2ḣ1

1 = h0
2 + h1

2ε+ h2
2ε

2 (4.50)

εḣ0
2 + ε2ḣ1

2 = −
(
H̄qθ + ε2 ¯̂Hqθ

) [
Cθ + εC̃0

θ + ε2
(
Ĉθ + C̃1

θ

)]
−
(
H̄qq + ε2 ¯̂Hqq

) [
Cq + εC̃0

q + ε2
(
Ĉq + C̃1

q

)]
+
(
H̄qθ + ε2 ¯̂Hqθ

) (
ū0 + ū1ε+ ū2ε2

)
−
(
H̄qq + ε2 ¯̂Hqq

) (
h0

1 + h1
1ε+ h2

1ε
2
)

(4.51)

The equivalent powers of ε are equated, obtaining:

h0
1 = −H̄−1

qq H̄qθ

(
Cθ − ū0

)
− Cq (4.52)

h1
1 = −H̄−1

qq H̄qθū
1 (4.53)

h2
1 = H̄−1

qq

[
−H̄qθ

(
Ĉθ + C̃1

θ − ū2
)
− ¯̂Hqθ

(
Cθ − ū0

)
− ¯̂Hqq

(
Cq + h0

1

)
− ḣ1

2

]
−Ĉq − C̃1

q (4.54)

h0
2 = 0 ⇒ ḣ0

2 = 0 , C̃0

θ = 0 , C̃0

q = 0 (4.55)

h1
2 = ḣ0

1 (4.56)

h2
2 = ḣ1

1 (4.57)

In order to obtain the equations of the on-manifold subsystem it is pos-
sible to substitute the expansions of the matrices into equation (4.26), ob-
taining:

ẋ1 = x2 (4.58)

ẋ2 = −(Hθθ + ε2Ĥqq)(Cθ + ε2[Ĉθ + C̃1

θ])

−(Hθq + ε2Ĥθq)(Cq + ε2[Ĉq + C̃1

q])

−(Hθθ + ε2Ĥθθ)(ū
0 + εū1 + ε2ū2)

−(Hθq + ε2Ĥθq)(h̄
0 + εh̄1 + ε2h̄2) (4.59)
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which, considering only the terms up to ε2 and grouping the equal powers
of ε yelds:

ẋ1 = x2 (4.60)

ẋ2 = −Hθθ

[
Cθ −

(
ū0 + ū1ε+ ū2ε2

)]
−Hθq (Cq + z̄1)

−ε2
[
Hθθ

(
Ĉθ + C̃1

θ

)
+ Ĥθθ

(
Cθ − ū0

)]
−ε2

[
Hθq

(
Ĉq + C̃1

q

)
+ Ĥθq

(
Cq + h0

1

)]
(4.61)

The initial discrepancy describing the distance of the z from the manifold
can be described by a new set of coordinates, de�ned as follows:

η1 = z1 − h1(x1,x2,u, ε)

η2 = z2 − h2(x1,x2,u, ε)
(4.62)

Introducing a fast time scale τ = t/ε and di�erentiating with respect to
τ the η coordinates one obtains:

dη1

dτ
= ε

dη1

dt

= εż1 − εḣ1

= ε
1

ε
z2 − ε

1

ε
h2

= η2 (4.63)

dη2

dτ
= εż2 − εḣ2

= −(Hqθ + ε2Ĥqθ)(Cθ + εC̃0

θ + ε2[Cθ + C̃1

θ])

−(Hqq + ε2Ĥqq)(Cq + εC̃0

q + ε2[Cq + C̃1

q])

+(Hqθ + ε2Ĥqθ)(ū+ uf )− (Hqq + ε2Ĥqq)z1

+(Hqθ + ε2Ĥqθ)(Cθ + εC̃0

θ + ε2[Cθ + C̃1

θ])

+(Hqq + ε2Ĥqq)(Cq + εC̃0

q + ε2[Cq + C̃1

q])

−(Hqθ + ε2Ĥqθ)ū− (Hqq + ε2Ĥqq)h1 (4.64)

Which can be simpli�ed, yelding the �nal equations for the o�-manifold
subsystem:

dη1

dτ
= η2

dη2

dτ
= −

(
H̄qq + ε2 ¯̂Hqq

)
η1 +

(
H̄qθ + ε2 ¯̂Hqθ

)
uf

(4.65)
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where uf = u− ū is the fast control input, and

η(0) = z0(t0)− z̄(t0) (4.66)

are the initial conditions of the fast variables.
It can be easily observed that the system (4.65) is the O(ε3) re�nement

of the singular perturbation system described in Section 4.2. The system
(4.65) is linear and time varying, the varying parameter are the states of the

slow subsystem x1 = θ but not in x2 = θ̇, hence it depends on the spatial
con�guration of the manipulator but not on the joint velocities. Conversely,
the o�-manifold system is highly non linear.

4.5 Model validation

The validation of the model has been carried out by means of comparison
with the data obtained from the MERIt [83] dataset, thoroughly described
in Section 3.2.2 and with simulations obtained from the model described in
Chapter 3. It must be pointed out that the validation of the model raised
several issues; the integral manifold approach is based on the partition of
the system into a on-manifold subsystem and a correction subsystem with
the hypothesis that the o� -manifold fast dynamics reaches a steady state
condition in a time-scale where the slow, on-manifold is quasi-constant. In
other words, the integral manifold model, coupled with the O(ε3) approxi-
mation can be considered valid if a clear separation between the time-scales
of the subsystems is present in the manipulator. This assumption can be
valid in several contexts where the manipulator's motion is relatively slow
with respect to the vibrations, like nuclear or agricoltural robot which don't
require very high operational speeds. However, this is not the case of the
MERIt dataset, where the bandwidth of the motion and vibrations inter-
sect. As a consequence it has been decided to use the MERIt data only for
the validation of the slow subsystem, while two simulation scenarios have
been built with the aim of validating the o� -manifold system. It must be
mentioned that the implementation of the model in the Matlab/Simulink
environment is not trivial, the details about coding and numerical simula-
tion are omitted here for the sake of brevity, however some relevant aspects
deserve to be mentioned:

• The theory of integral manifold lacks of a rigorous procedure for the
expansion of the control input in terms of u0, u1 and u2, hence the
control torque relative to the on-manifold subsystem only acts oh the
ū0 term for the sake of simplicity. A possible way to cope with the ū1

and ū2 terms will be discussed in Chapter 5, but it turns out to be
irrelevant in this phase of model validation.

• The formulation of the h2
1 term involves the derivative of h1

2, which is,
in turn, the second derivative of h0

1. This term must be calculated nu-
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merically, on the other hand the double numerical derivation would lead
to unattainable results. In order to cope with this, the derivatives have
been approximated with high-pass butterworth �lters, tuned around a
frequency of 30Hz.

4.5.1 Validation of the on-manifold subsystem

The on-manifold subsystem has been validated through a comparison with
the MERIt dataset. The experimental setup and subset of data used for
comparison are the same described in Section 3.2.2. The model described
in this chapter naturally inherits part of the setup used to validate the
closed-form model described in Chapter 3, hence the same approach has
been adopted, two manually tuned PID regulators have been applied to the
manipulator's joints in order to obtain a joint angle essentially identical be-
tween the experimental data and the simulations. A similar approach has
been adopted in order to compare links' �exibility; the strains have been
derived from the nodes' de�ection by means of a linear interpolation and
compared with MERIt's strain gauges measurements. It must be recalled
that the comparison with MERIt is provided with the aim of validating the
on-manifold subsystem, hence the output of the o� -manifold system has not
been considered in this phase5. As a consequence, during the simulations
shown in the following one expects to see the quasi steady state dynamics
of the strain reproduced by the state space of the system. That is exactly
what happens, �gures 4.1 and 4.2 show the comparison between measured
and simulated strains in the case of a payload mass of 400 g, where the ex-
perimental data are represented in a grey dashed line while the simulatons
are solid black lines. Moreover, in Figure 4.3 the normalizer spectra of the
signals are shown. These �gures clearly show that the integral manifold re-
duced order system represents a low frequency approximation of the original
system.

4.5.2 Validation of the o�-manifold subsystem

The validation of the o�-manifold system is much more involved, as it has
been explained at the beginning of this section, the boundary layer system
has been derived under the hypothesis that the slow variables and the slow
control input are in a steady state during the fast transient. In the exper-
iments collected into the MERIt dataset, this assumption is not satis�ed:
slow variables (i.e. joints angular positions and velocities)and the slow in-
put (i.e. torques at the joints) vary vary with a frequency content similar
with respect of the links vibrations, due to the lack of a vibration damping
system. Therefore, the boundary layer system has been validated by means
of two di�erent experiments, in both cases a comparison with the original,
closed form model has been carried out.

5The η state variables have been �xed to zero
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Figure 4.1: 1-st link - comparison between measured and simulated strains

Figure 4.2: 2-nd link - comparison between measured and simulated strains

In the �rst simulation the TUDOR platform has been considered, but a
di�erent experiment with respect to the MERIt dataset has been carried out.
The joint angles have been �xed to zero during the simulation, and a non-
zero initial value has been assigned to the o�-manifold state variables η. The
time evolution and frequency content of the tip transverse de�ection have
been compared to the corresponding quantity simulated with the complete
model (described by Eqs. (3.1,3.2)). The aim of this procedure is to validate

66



CHAPTER 4. DEVELOPMENT OF A CONTROL ORIENTED MODEL

Figure 4.3: Strain FFT - comparison between measured and simulated strains

the analytical derivation of the manifold model with respect to the original
one.

If the slow state variables θ, θ̇ and the slow input us are �xed to zero, the
timescale separation hypothesis is inherently satis�ed; moreover, the quasi
steady state trajectory z̄ is constant and therefore links de�ections are only
due to the o�-manifold dynamics, which is described by the boundary layer
system. In this con�guration, links de�ections computed by the boundary
system and by the complete model can be compared. Non-zero initial value
has been assigned to the η variables and the same has been done for the
corresponding modal coordinates of the original model. The links vibrate
around their constant quasi steady state trajectory. Figure 4.4 shows a
comparison between the complete model (in dashed grey line) and the in-
tegral manifold model (in black solid line). Results demonstrate how the
o�-manifold system e�ectively reproduces the fast system dynamics. The
initial perturbation of the fast system, and the corresponding perturbation
of the q variables in the complete model do not have a comparable physi-
cal meaning, hence the de�ections have been normalized in order to show
the similar evolution in terms of vibration frequency, which can be further
observed in the frequency domain plot.

Another simulation scenario, not based on the TUDOR experimental
platform has been carried out: Consider a planar robot subject to gravity
with two links and both joints in the horizontal plane. The quasi steady state
trajectory is constant in the vertical plane which is out of the manipulator's
motion space. The links' vibration on the vertical plane (which are due to the
e�ect of gravity force) can be described by the boundary layer system. This
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Figure 4.4: Comparison between link de�ection of the boundary layer system and of the
original model

Table 4.1: Planar robot link data

Length 300 mm
Thickness 2 mm
Height 50 mm

Density 2800 Kg/m
3

Young Modulus 700 GPa
Poisson's coe�cient 0.33

con�guration has been exploited to compare links de�ection on the vertical
direction computed by the boundary layer system with links de�ection on
the vertical direction computed by the original model.

The manipulator considered here is composed by two thin arms modeled
with shell elements in the FE preprocessing and two joints whose axis are
directed in the height direction of the links. The links' data are reported in
Table 4.16 while the retained eigenvalues are shown in Fig 4.5. The shape
and FE elements of the links have been choosen in order to show the three-
dimensional deformation �eld of the manipulator, induced by the twisting
compliance of the links.

Since the link section is thin, shell �nite elements have been used to mesh
the link. The value of the perturbation parameter ε for the links of this
manipulator is 0.05 which is signi�cantly lower then the value of TUDOR7,
hence the time scales are meaningfully separated and the hypothesis of the

6The damping ratio adopted in both cases is the lowest which guarantees numberical stability during
the simulation

7The perturbation parameter for the TUDOR platform is 0.22. It must be recalled that ε = 1√
ke

i.e.

the inverse of the lowest proper frequency of a link. However the frequencies of the system are usually
signi�cantly lower then the the frequencies of the single links, depending on the system's con�guration
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Figure 4.5: FE eigenmodes analysis of the links' frequency (from the left
f=18.1,114.4,213.3,427.3 Hz)

Figure 4.6: Slow system input torque pro�le

approach are observed.
The simulations have been performed by applying a bang-bang torque to

the �rst joint, reported in 4.6, while the second has been �xed at ϑ2 = $/2
by means of spring-damper system, in such a way to maximize the twisting
on the �rst link.

Figure 4.7 compares links de�ections of the original model and of the
reduced order system. Again, the slow system represents the low frequency
approximation of the original system.

Figures 4.8 and 4.9 show the time domain and the frequency domain
comparison of links de�ections in the horizontal plane between the original
model and the complete integral manifold model (which is composed by the
slow and the fast subsystem). This comparison con�rms the hypothesis un-
der which the boundary layer system has been derived, namely that the slow
varibles must keep constant during the fast transient. Since this assumption
is not veri�ed in the plane of motion, the boundary layer system does not
represents the o�-manifold dyanmics correctely.

On the other hand, the assumption is veri�ed in the vertical plane, where
the quasi steady state trajectory z̄ is constant during the simulation. Since
the assumption is veri�ed, the boundary layer system correctly represents
the o�-manifold dynamics, as it can be seen from �gure 4.10 and 4.11, which
show good accordance between the models.
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Figure 4.7: Links de�ection in the horizontal plane (plane of motion): comparison between
the original model and the reduced order model

Figure 4.8: Links de�ections in the horizontal plane (plane of motion): comparison be-
tween the original model and the complete integral manifold model
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Figure 4.9: Links de�ections in the horizontal plane (plane of motion): frequency domain
comparison between the original model and the complete integral manifold model

Figure 4.10: Links de�ections in the vertical plane: comparison between the original
model and the complete integral manifold model
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Figure 4.11: Links de�ections in the vertical plane: frequency domain comparison between
the original model and the complete integral manifold model
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Chapter 5

Control strategies for vibration

damping

In this chapter, the problem of the control of �exible manipulators will be
tackled. One of the main objectives of the modelling work carried out in
the previous chapter is to provide an e�ective framework for the synthesis
of control schemes based on the separation of the system into two subsys-
tems. Once the overall dynamics is divided in two subsystems, a di�erent
feedback controller can be synthesized for each subsystem and the resulting
controls can be merged exploiting the theoretical framework provided by the
composite control theory. The controller acting on the on-manifold system
has to track the reference trajectory in the joint space, i.e. it deals with the
motion of the manipulator; on the other hand, the fast controller is intended
to damp links vibration around the quasi steady state equilibrium trajectory
de�ned by the slow system.

The composite control technique was �rst proposed in [26] and it was
originally conceived to cope with the design of a feedback control for a
singularly perturbed system. However, since the integral manifold approach,
together with the O(ε3) approximation can be considered as an extension of
the singular perturbation approach, the composite control technique can be
successfully applied even to the integral manifold model.

5.1 Tuning of the on-manifold subsystem control

According to the composite control technique, the composite control law for
the singularly perturbed system

ẋ = f (x, z,u, ε, t) (5.1)

εż = g (x, z,u, ε, t) (5.2)

is set up as follows:
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u = us + uf (5.3)

The slow control us is a feedback control for the slow system, which has to
track the reference trajectory of the slow state variables x. On the other
hand, the fast control uf is a feedback control for the boundary layer system,
which has to stabilize the fast states along the quasi-steady state equilibrium
trajectory, i.e. it deals with the o� manifold dynamics. Hence, the fast
control must be inactive along the quasi-steady state equilibrium trajectory
which represents the on manifold dynamics:

uf (x, z̄) = 0 (5.4)

Consequently, the quasi-steady state equilibrium trajectory z̄ of the z subset
of state variable is a function of the slow control only:

z̄ = h(x̄,us, ε, t) (5.5)

The reduced order subsystem (obtained by the substitution of the equation
(5.5) into the state equation (5.1)) is a function of the slow control only as
well:

˙̄x = f(x̄,h(x̄,us, ε, t),us, t) (5.6)

Therefore, the slow control law can be designed independently from the fast
control. Moreover, it is a function of the x subset of state variables only:

us = us(x) (5.7)

On the other hand, the design of the fast control law depends on the
slow control, because the boundary layer system ((5.8)) is a dynamic system
parametrized in the slow variables x and in the slow control us, which are
assumed to be constant during the fast transients.

dη

dτ
= g(x̄,η(τ) + z̄(x̄,us, ε, t),uf , t) (5.8)

Consequently,

u = us(x̄) + uf (x̄,η) (5.9)

In conclusion, the composite control technique signi�cantly simpli�es the
controller design of a two time scale system. The design of a feedback control
for the system described by the state equations (5.1) and (5.2) is split into
the design of two control systems which can be synthesized independently,
given that the o� -manifold control is inactive along the quasi steady state
equilibrium trajectory.

The composite control technique simpli�es the stability analysis as well:
the only hypothesis which must be satis�ed is that the fast subsystem is
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uniformly stabilizable for any slow trajectory x̄ [12]. The goal is now to
design a control system of the on-manifold subsystem which allows to track
a reference joint trajectory and a fast control system for the o� -manifold
subsystem which stabilizes the de�ections along the quasi steady-state tra-
jectory, i.e. damps the vibrations induced by the links' �exibility.

5.2 On-manifold subsystem control law

In the integral manifold approach, a Taylor series expansion of the control
law is considered (see Section 4.4):

us = ū0 + εū1 + ε2ū2 (5.10)

The derivation of each term is a consequence of the control scheme design; a
possible choice, originally described in [128], is adapted here to the manip-
ulator model. The on-manifold subsystem is initially approximated at O(ε)
and a control scheme based on the inverse model is computed, then higher
order terms are introduced step-by-step and the equal-power terms of the
control are computed accordingly.

5.2.1 Derivation of the �rst term of the on-manifold control input

Consider the system (4.61) approximated to O(ε), where the on-manifold

state variables are assumed ẋ1 = θ̇ and ẋ2 = θ̈.

θ̈ = −Hθθ

[
Cθ − ū0

]
−Hθq

[
Cq + h0

1

]
(5.11)

Recalling that

h0
1 = H̄−1

qq H̄qθ

[
ū0 − Cθ

]
− Cq (5.12)

and substituting eq. (5.12) into the slow system (5.11), one obtains

θ̈ = −Hθθ

[
Cθ − ū0

]
−Hθq

[
Cq + H̄−1

qq H̄qθ

[
ū0 − Cθ

]
− Cq

]
=

[
Hθθ −HθqH̄

−1
qq H̄qθ

] [
ū0 − Cθ

]
Using the Shur complement one obtains:

θ̈ = M−1
θθ (x̄,0)

[
ū0 − Cθ

]
(5.13)

Equation (5.13) corresponds to the rigid system as alredy shown in sec-
tion 4.2. 1. Hence the control law for the u0 slow control term can be

1it must be remembered that all these matrices are evaluated in (x̄,0)
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chosen arbitrarily among the well-known control techniques developed for
rigid robots. One of these is the inverse model technique described in [130].
The control term ū0 is set up in order to compensate the nonlinear term Cθ:

ū0(θ, θ̇) = Mθθ(θ, θ̇)v(t) + Cθ(θ, θ̇) (5.14)

where v(t) is the control variable. Consequently, the rigid system (5.13) can
be considered as a double integrator system

θ̈ = v (5.15)

The target input v is related to the reference trajectory which has to be
tracked, namely it is de�ned as follows:

v = θ̈ref +KD[θ̇ref (t)− θ̇(t)] +KP [θref (t)− θ(t)] (5.16)

The substitution of the target input expression (5.16) the system (5.15)
yields the equation:

[θ̈ref − θ̈] +KD[θ̇ref (t)− θ̇(t)] +KP [θref (t)− θ(t)] = 0 (5.17)

where KP and KD are the matrices of the positions and velocities gains
respectively.

By choosing:

KP = diag(ω2
1, ω

2
2, . . . , ω

2
N) (5.18)

KD = diag(2ξ1ω1, 2ξ2ω2, . . . , 2ξNωN) (5.19)

the frequencies and the damping of the eigenvalues corresponding to each
joint position error in (5.17) are determinated and consequently the rate of
convergence of the joint position errors [12].

5.2.2 Derivation of the second term of the on-manifold control

input

Once the slow control term ū0 has been determined, the O(ε2) reduced order
model can be taken into account in order to �nd the expression of the control
term ū1:

θ̈ = −Hθθ

[
Cθ − ū0 − εū1

]
−Hθq

[
Cq + h0

1 + εh1
1

]
(5.20)

Recalling that:

h1
1 = H̄−1

qq H̄qθū
1 (5.21)

by substituting the expressions of h0
1 and of h

1
1 into the reduced order system

(5.20), one obtains:
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θ̈ = − Hθθ

[
Cθ − ū0 − εū1

]
− Hθq

[
Cq + H̄−1

qq H̄qθ

[
ū0 − Cθ

]
− Cq + εH̄−1

qq H̄qθū
1
]

(5.22)

and, simplifying:

θ̈ =
[
Hθθ −HθqH̄

−1
qq H̄qθ

] [
ū0 − Cθ + εū1

]
= M−1

θθ

[
ū0 − Cθ + εū1

]
(5.23)

recalling the expression of the slow control term ū0 given by the equation
(5.14), one obtains:

θ̈ = M−1
θθ

[
Mθθv + εū1

]
(5.24)

Therefore, ū1 = 0, since the aim of the slow control is to track the
reference control variable v.

5.2.3 Derivation of the third term of the on-manifold control in-

put

Once the slow control terms ū0 and ū1 have been determined, the O(ε3)
reduced order model is taken into account. The ū2 control term is obtained
by means of a similar procedure. Consider the O(ε3) model written as
follows:

θ̈ = M−1
θθ

[
ū0 − Cθ

]
+ ε2

[
Hθθū

2 +D(θ, ẋ, ū0)
]

(5.25)

where

D(θ, ẋ, ū0) = −Hθq(h
2
1+Ĉq)−HθθĈθ−Ĥθθ(Cθ−ū0)−Ĥθq(Cq+h0

1) (5.26)

Recalling eq. (5.14), the control term ū2 can be calculated as:

ū2 = −H−1
θθ D(x1,x2, ū

0) (5.27)

Therefore, the slow control term ū2 can be interpreted as the control input
which provides a compensation of the disturbance created by the e�ect of
the �exibility acting on the reduced order system.

5.2.4 Simulation of the on-manifold control system

The on-manifold control law described in Section 5.2 has been tested through
a simulation. The control system described in the previous section has been
applied to the closed form model described in Chapter 3. In order to carry
out the simulations the physical data of the TUDOR platform have been
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Figure 5.1: Setpoint of the manipulator's joints positions

used. The reference signals for the manipulator's joints are built interpolat-
ing a �fth order polynomial in order to obtain an analytic expression of the
velocities and accelerations, which are inherently continuous. The reference
positions are reported in Figure 5.1.

The control law has been set up as described previously in this section,
i.e.:

us = ū0 + εū1 + ε2ū2 (5.28)

= (Mθθv + Cθ) + ε2
(
−H−1

θθD
)

(5.29)

while the frequencies and damping factors have been chosen as ω1 = 12 rad/s,
ω2 = 16 rad/s and ψ1 = ψ2 = 1; Figures 5.2 and 5.3 show a comparison of
the system response to the setpoint variations, the setpoint is depicted with
a black full line, in dark grey dashed line is represented the case where the
ū2 term is not considered, while the light grey dotted line is the case where
all the control terms are active. As mentioned before, the ū2 term aims
to compensate the e�ect of the disturbances induced by the o� -manifold
dynamics (i.e. the fast, vanishing dynamics) which can be substantially ne-
glected in this case. Therefore the contribution of the ū2 term is negligible,
as shown by �gure 5.4 where the torques corresponding to each control term
are shown.

It must be pointed out that the choice of the frequencies and the damping
factors which determine the rate of convergence of the joints errors is a
challenging task in the presence of the fast controller. The separation of the
slow and the fast time scale must be ensured also in closed loop, hence, a
trade o� among joints trajectories tracking accuracy and separation of the
two time scale is necessary [129].
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Figure 5.2: Position of the manipulator's joints (zoom)

Figure 5.3: Velocities of the manipulator's joints

5.3 Robust control of the o�-manifold subsystem

The o� -manifold subsystem described by eqs. (4.65) is linear, but the dy-
namic matrices are parametric in x1. Assuming that x1 = θ this dependency
intuitively describes the in�uence of the manipulator's spatial con�guration
on the vibration dynamics, indeed, the system (4.65) is not dependent on the
x2 states. As a consequence, parameters of the o� -manifold system varies
in a bounded set, which corresponds to the manipulator's joints space. As
discussed in Section 4.4 the o� -manifold dynamics describes the distance
from the quasi steady state condition (i.e. the system on the manifold),
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Figure 5.4: Torques acting on the joints

hence the goal of a control system acting on the joints is to bring back to
zero the state variables of the o� -manifold as consequence of disturbances,
i.e. to damp the vibrations that arise from the manipulator's motion. In
this context, the o� -manifold system can be considered as a MIMO linear
system, whose matrices vary in a bounded set and can be computed numer-
ically for a �nite subset of the same parameter. In this scenario, several
control techniques can be applied, as discussed in Chapter 1. Nevertheless,
most of these techniques have been developed with the assumption to have
an explicit description of how the varying parameter in�uences the the dy-
namics matrices of the system. In the case discussed here, this dependency
is deeply involved and its explicit formulation is very di�cult to achieve,
consequently, a technique based on the robust control has been carried out
and simulated in order to test the e�ectiveness of the control.

5.3.1 Robust control synthesis

As a �rst attempt, a control scheme based on the classical robust control
has been formulated. Consider the o� -manifold system 4.65:

dη1

dτ
= η2 (5.30)

dη2

dτ
= −

(
H̄qq + ε2 ¯̂Hqq

)
η1 +

(
H̄qθ + ε2 ¯̂Hqθ

)
uf (5.31)

which, in the following will be represented in the traditional state space form
as:

dη

dτ
= Aη + Buf (5.32)
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where

A =

[
0M×M IM×M

−
(
H̄qq + ε2 ¯̂Hqq

)
0M×M

]
∈ R2M×2M (5.33)

is the state matrix, and

B =

[
0M×N(

H̄qθ + ε2 ¯̂Hqθ

) ] ∈ R2M×N (5.34)

is the matrix of control inputs. Recalling that the H̄qθ H̄qq
¯̂Hqθ and

¯̂Hqq

matrices depend on the θ state variables, one can rewrite the system (5.32)
in transfer function form as follows:

y = Guf (5.35)

Here the system is MIMO, G ∈ R2M can be reformulated as an uncertain
matrix of transfer functions characterized by an output multiplicative un-
certainty ∆ ∈ R2M and

G = G0(I +W∆) (5.36)

where the matrix G0 is the nominal model, ∆ is a matrix of scalar functions
which is unknown but assumed to be uniformly bounded in its induced
matrix norm at all frequencies, i.e. for MIMO systems:

σ̄(∆(jω)) ≤ 1, ∀ω (5.37)

or equivalently, recalling the de�nition of H∞ norm for MIMO systems2

||∆||∞ ≤ 1 (5.38)

while theW term is commonly called uncertainty weight and describes the
amount of uncertainty that characterize the system. 3 In the speci�c case of
the system 5.32 the goal is to represent the variability of theA and B system
matrices by means of the formulation 5.36 and synthesize a robust control
able to stabilize the system robustly with respect to the varying parameter.

Figure 5.5, represents the upper linear fractional transformation (upper
LFT) equivalent representation of (5.36). A common way to describe this
representation of the system is Lu(P ,∆) where the u subscript denotes the
upper LFT, see [159] for further details. If it is possible to �nd a feedback
controllerK between y and u such that G is stable for all the norm bounded
uncertainties ||∆||∞ ≤ 1 then the controller K is said to be robustly sta-
bilizing and the system is robustly stable. The robust stabilization problem
can be stated in terms of an equivalent H∞ optimal control problem.

The system P of Figure 5.5 can be written as:

P =

[
P11 P12

P21 P22

]
=

[
0 G0

W G0

]
(5.39)
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Figure 5.5: Uncertain model with multiplicative uncertainty

Figure 5.6: Uncertain model with multiplicative uncertainty and feedback controller

And the closed loop system including the controller, shown in Figure 5.6
can be written in an equivalent form:

z = (I − F∆)−1F v, F = Ll(P ,K) (5.40)

where F = Ll(P ,K) denotes the lower LFT which, in turn, is the closed loop
transfer function for the nominal system. According to the classical control
theory for SISO systems, the feedback loop 5.6 is stable if F = Ll(P ,K)
is stable and the loop transfer function F∆ has magnitude less then one at
the cross-over frequency ωc. This result is known as small gain theorem. By

2The Matrix norm is de�ned as the maximum singular value σ̄(∆(jω)), therefore the H∞ is expressed
as: ||∆||∞ = supωσ̄(∆(jω))

3It must be recalled that in literature one can �nd other description of the uncartainty, for the sake
of brevity not reported here. See [146,159] for details.
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the assumption that ∆ is norm-bounded |∆(jω)| < 1, ∀ω, robust stability
is thus guaranteed if the transfer function F satis�es |F (jω)| < 1, ∀ω, or
equivalently ||F ||∞ < 1. Regarding MIMO systems the transfer function
equivalent to (5.40) can be written as:

z = (I − F∆)−1F =
1

det(I − F∆)
adj(I − F∆)·F (5.41)

Assuming that F and ∆ are both stable, the stability of 5.41 is determined
by the roots of det(I −F∆). Since the system shown in Figure 5.6 is stable
for su�ciently small ∆, it follows that if a norm bounded ∆ exist such
that (5.41) is unstable, then a ∆ should exist such that (5.41) has a pole
on the stability boundary, implying det(I − F (jω)∆(jω)) = 0 for some
ω. Consequently, the robust stability condition for MIMO systems can be
written as:

det(I − F (jω)∆(jω)) = 0, ∀ω, ∀ ||∆||∞ ≤ 1 (5.42)

After some analysis it can be shown that condition (5.42) holds if and only
if σ̄(F (jω)) < 1 ∀ω or equivalently ||F ||∞ < 14 The main signi�cance of
(5.42) is to give a quantitative characterization of the robust stability in
terms of the H∞ norm, hence the problem of �nding a robust control for the
o� -manifold system can be recast into an optimal control problem where
the following cost function is considered:

J∞(K) = ||Ll(P ,K)||∞ (5.43)

The problem is to �nd a controller K such that the cost function J∞(K) is
minimized (under additional constraint considered later). The direct min-
imization of J∞(K) turns out to be a tough problem [39, 52, 55], while it
is much easier to construct a stabilizing controller which achieves a given
bound. One can use this result to iteratively search for the sub-minimum
J∞(K) to a given degree of accuracy. This procedure is known as 'γ-
iteration'.

Further considerations can be made if some more assumptions on the
structure of the uncertainty are considered. In many cases the robust sta-
bility condition (5.42) can lead to unnecessarily conservative designs, but if
the uncertainty ∆ can be restricted to a diagonal structure, i.e.:

∆ =


∆1 0 . . . 0
0 ∆2 . . . 0
...

...
. . .

...
0 0 0 ∆n

 , ||∆i|| < 1, i = 1, 2, . . . , n (5.44)

4The result:
F ||∞ < 1 ⇒ robust stability

is a classical result that follows the small gain theorem, while the dual:

F ||∞ < 1 ⇐ robust stability

was proven only in the late 1980's and follows the fact that if ||F ||∞ ≥ 1 then a ||∆||∞ ≤ 1, which can
have arbitrary phase, can always be found to destabilize the system.
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then, the robust stability condition (5.42) cannot be reduced to a simple
condition on the H∞ norm of the closed loop transfer function. However, a
similar condition can be found de�ning a quantity:

µ(F (jω)) = δmin((F (jω))−1 (5.45)

where:

δmin(F (jω)) = min{δ : det(I − F (jω))∆(jω) = 0 for some ∆ ∈∆s(δ)}
(5.46)

and

∆s(δ) = {∆ = block diag(∆1,∆2, . . . ,∆n), ||∆i||∞ < δ} (5.47)

The quantity µ(F ) is called structural singular value (SSV) and was intro-
duced in [38] in order to provide a condition for robust stability with respect
to structured uncertainties, it can be considered as a generalization of the
maximum singular value.

The de�nition of structured singular value does not provide a method for
computing the actual value, moreover, the SSV turns out to be very hard to
calculate numerically (see [142]) and no e�cient algorithm exists. A more
tractable approach is to compute an upper bound on µ, this approach is
referred to as "DK -optimization" or "µ-synthesis" [106] and its description
is not reported here.

Returning to the o� -manifold system, the robust control approach de-
scribed above can be useful to synthesize a controller where the uncertainty
∆ describes the dependency of the system from the parameter x1. However,
it must be recalled that the �nal goal is to damp the vibrations (i.e. drive
the state of the system to zero), but the described approach only guarantees
the robust stability of the controlled system. As a consequence, a set of
constraints on the resulting closed loop, aimed to force the dynamic behav-
ior of the system must be formalized. In light of this, a result thoroughly
described in [25] can be exploited. As shown in [52, 65] the H∞ synthesis
can be formulated as a convex optimization problem involving linear matrix
inequalities. In this framework it is possible to add constraints to the opti-
mization problem as LMI regions and solve the constrained problem, given
that the intersection of the constraints de�ne a convex region. By de�ning
one or more LMI constraints, one can de�ne the region of the complex plane
in which the closed loop poles of the system should be placed.

De�nition 8. De�nition of the LMI region A subset Θ of the complex
plane is called a nth order LMI region if there exist a symmetric matrix
Ψ ∈ Rn,n and a matrix Ω ∈ Rn,n such that:

Θ = {z ∈ C : fd(z) = Ψ + Ωz + ΩT z < 0} (5.48)

In the speci�c case of the problem at hand, the goal is to introduce
damping in the closed loop system as well as a minimum speed of the system
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Figure 5.7: Admissible region of the closed loop poles

response. This constraints, which are graphically described in Figure 5.7,
can be expressed through the convex intersection of two contraints, shown
in the following.

The speed of response corresponds to restraining the real part of the poles
to be under a minimum value α, i.e.:

R(z) < α⇔ 2α + z + zT < 0 (5.49)

hence it is su�cient to take Ψ = 2α and Ω = 1
Similarly, in order to constrain the system to a given damping one can

de�ne the following:

aR(z) + |bI(z)| < 0⇔
(
a(z + z̄) −b(z + z̄)
b(z + z̄) a(z + z̄)

)
< 0 (5.50)

which yelds:

Ψ =

(
0 2
0 0

)
, Ω =

(
a −b
b a

)
(5.51)

Summarizing, the procedure for the setup of the robust control problem
consists in:

• Sampling the joints space with a resolution at choice.

• Identify a shaping �lterW and a nominal model G0 in such a way that
the array of o� -manifold systems can be correctly described by (5.36)
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Table 5.1: Manipulator's Link data

Length 400 mm
Section outer short axis 40 mm
Section outer long axis 60 mm
Width 2 mm

Density 270 Kg/m
3

Young Modulus 70 GPa

Figure 5.8: FE image of the manipulator's link

• Build an augmented system similar to the one described by eq.(5.39)

• Setup an optimization problem in order to �nd a controller K subject
to the constraints described in (5.49,5.50) such that the H∞ norm of
the transfer function between v and z is ||Pvz||∞ < 1

The procedure described above has been tested on a benchmark simu-
lation case developed ad-hoc. A stabilizing robust controller has been syn-
thesized starting from the o� -manifold model and the results have been
tested on the original closed-form model. The manipulator considered in
this phase is still a two-links planar robot, but the links have been built
starting from a three-dimensional shape, shown in 5.8 and the gravity �eld
has been applied in such a way to be not parallel to the joints' axis, in order
to appreciate the e�ect of gravity on the manipulator's con�guration. The
link's data are summarized in table 5.1. In Figure 5.8 the CAD model of the
links is shown. The nodes of the FE model considered rigidly connected to
the joints are highlighted in light red. For the sake of simplicity a minimal
number of eigenmodes has been retained, namely 2 for every link. Such
a low number greatly simpli�es all the following phases, but at the same
time allows to overcome the limits of the traditional manipulator's controls
techniques where the control is tuned with the aim of having a closed-loop
cutting-frequency ωc lower then the �rst eigenfrequency of the system, in
order not to excite the resonance.
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Figure 5.9: Bode diagram (Magnitude) of the transfer function from u(2) to η(4)

In order to determinate the shaping �lters W and setup a control based
on eq. (5.36) the joints space has been reduced to a bidimensional grid of
points spacing from −π to π with a step of π/12, yielding to an array of
144 systems. The Matlab function ucover has been used on the array of
the transfer functions in order to obtain an uncertain model, the order of
the covering �lter has been set to 6. As an example, Fig. 5.9 shows the
magnitudes of a subset of the transfer functions from u(2) to η(4). The
system is a�ected by great variability with respect to the joints' position,
moreover, it is not possible to obtain from ucover an uncertain model which
describes the uncertainty of the system in such a way to be parametric with
respect to inputs and and outputs5. The system is however MIMO with
more outputs then inputs, hence an output multiplicative description of the
uncertainty is able to capture the variability of the system with a more
subtle granularity. As a consequence, an output multiplicative uncertainty
(coherently with the description adopted in (5.36)) has been chosen. The
magnitude of the �lter corresponding to the subsystem array of Figure 5.9
is reported in Figure 5.10. As shown, the weighting �lter has a signi�cant
magnitude at low frequencies, which is a phenomenon known to negatively
a�ect the performances of the classical robust control schemes.

Subsequently, an augmented system of the form represented in (5.39) has
been built and a stabilizing controller has been searched by means of the
h2hinfsyn and by means of the syndkMatlab commands which respectively
implement a procedure to synthesize a controller using the LMIs (based
on the algorithm discussed in [25]) optimization and the µ-synthesis (based
on [106]). In the �rst case additional constraints based on the LMIs described

5This statement deserves explanation: The ucover function gives a weighting �lter as output, but
accepts only a one-dimensional array as input, hence it is only possible to create an array of systems with
both inputs for every output
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Figure 5.10: Bode diagram (Magnitude) of the �lter covering the variability from u(2) to
η(4)

above have been placed in the optimization procedure, the damping ratio
of the closed loop poles has been set to ψ = 0.3 and the minimal speed of
response to 10 rad/s. This procedure is carried out in a semi-automatic
manner in Matlab, that is, a tool for the computation of the LMIs can
be used. The matrices describing the admissible regions of the closed loop
poles result as the intersection of the regions de�ned by eqs. (5.49,5.51). In
particular, the minimum response speed is described by setting
mathbfPsis = 20 and
mathbfOmegas = 1, while the matrices

Ψd =

(
2 0
0 0

)
, Ωd =

(
0.866 −0.5
0.5 0.866

)
(5.52)

describe the constraint related to damping, and the intersection of the re-
gions is given by simply group the constraints together as follows:

Ψ =

 2 0 0
0 0 0
0 0 20

 , Ω =

 0.866 −0.5 0
0.5 0.866 0
0 0 1

 (5.53)

Conversely, in the case where the µ-synthesis algorithm has been ex-
ploited, no additional constraint on the closed loop poles positions have
been applied as optimization constraints, because the built-in functions in
Matlab doesn't allow to set the relative constraints explicitly.

Despite the weakness of the dynamic constraints the LMI based opti-
mizer could not �nd a feasible solution, while the µ-synthesis based solver
found a solution, which is a controller of order 82. It must be recalled that
no dynamic performance constraint was set during the µ-synthesis, as a
consequence the solver has been able to �nd a solution, but the resulting
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controller has unfeasible dynamic performances (i.e. no damping action). It
must be pointed out that the feasibility of a solution greatly depends on the
speci�c problem at hand, one could hope in the feasibility of the proposed
method for manipulators whose dynamic vibrational behavior is less a�ected
by spatial con�guration, however some further considerations can be made.
The proposed approach is simple in terms of model description and problem
setup, nevertheless the dynamics of the system is complex and highly vary-
ing, moreover there are typically less inputs then outputs, leading to an even
more complex control problem. Other control techniques with completely
di�erent approach could be explored, like a gain scheduling approach based
on an LPV description of the system [5], but this techniques require to com-
pute a function describing the dependency of the system's matrices from
the parameters. This computation is very though for the model considered
here and a robustly stabilizing controller is guaranteed only in the case of
systems a�ne in the parameters [3]. Furthermore the controllers computed
with the techniques described above often result in high-order systems and
require great computational time to be synthesized.

In order to solve the problem within the framework adopted in the pre-
vious sections, a very e�ective method, based on the theoretical results de-
scribed in [4, 7], has been adopted. This technique constitutes a practical
alternative to the classical H∞ control as it adopts a non-smooth and non
convex optimization algorithm based on Clarke subdi�erentials of the H∞
norm. The mathematical treatise of this method is very involved, hence
the reader is referred to [7] for a complete description and to [6] for further
examples. This technique can be considered as an evolution of the robust
control approach where several limitations of the classical results have been
overcome. The main feature of this approach is to explicitly optimize the
controller with respect to an array of closed loop models. Such kind of
optimization problems is known to be non-smooth and non-convex6, nev-
ertheless an e�cient optimization technique has been formulated. Other
peculiar characteristics of this method are listed in the following.

• The structure of the controller must be de�ned a priori.

• Additional control objectives can be added to the problem as "soft
constraints".

• Performance and stability margins requirements can be added as "hard
constraints"

• The description of the model variability is not handled through weight-
ing �lters and structured uncertainties, instead it is considered explicitly
by optimizing the cost functions over an array of closed loop systems.

6The non-smoothness is due to the �nite array of systems with respect to which the optimizer must
operate, while the non convexity is a consequence of the structural constraints on the controller
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Figure 5.11: Block diagram of the closed loop systems.

The controller synthesis algorithm is implemented in Matlab through the
systune command. The solver requires to de�ne a controller structure and
an array of closed loop systems where the signals subject to optimization
or constraints are labelled. The block diagram of the systems is reported
in Fig. 5.11, recalling that the �nal goal of the control system is to damp
the vibrations an LQG control objective has been set up, where the output
system response to a white noise input vector in d is considered as "soft con-
straints" or performance index. The output responses have been weighted
in order to greatly penalize the lower frequency modes and particularly the
η1 variables. Additionally, "hard constraints" on the position of the closed
loop poles and the stability margin has been placed into the optimization
problem, in particular, the minimum damping ratio of the poles has been
set to ψ = 0.5 and the minimum phase margin has been set to 50 degrees.
The controller order has been �xed to 4. It must be pointed out that the
speci�c values of the tuning goals for the closed loop system can vary as a
consequence of the manipulator's task and hardness of the control synthesis
problem. One of the advantages of this technique is to allow several di�erent
choices of the constraint within the same framework, leading to a �ne tuning
of performances and robustness.

With the constraints and performance costs described above, the solver
systune has been able to �nd a stabilizing controller with the prescribed
performances. Figure 5.12 shows the closed loop poles and zeros of all the
elements of the transfer functions array from d(1) to y(2) as example, while
Figue 5.13 shows the Nyquist diagram of the transfer functions. As shown,
the constraints related to the poles position (i.e. damping) and phase mar-
gin have been ful�lled. As a further check, Figure 5.14 shows the impulse
response of the open loop vs closed loop system.

The synthesized controller has been tested on the original closed-form
model by means of the following procedure:
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Figure 5.12: Pole/Zero map of the transfer function from d(1) to y(2)

Figure 5.13: Nyquist diagram of the transfer function from d(1) to y(2)

• Two joint position setpoints, mainly composed by interpolated steps
have been created for both joints in such a way to test the in�uence of
the disturbances created by the motion of the �rst joint on the second
and vice versa.

• A position tracking task based on the developed trajectories has been
given as input to the on-manifold controller acting on the closed-form
model in the Matlab/Simulink simulation environment

• The gains of the on-manifold controller have been manually raised in
order to increase the control action until vibrations in the manipulator
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Figure 5.14: Impulse response of the open loop vs closed loop transfer function from d(1)
to y(2)

have been observed.

• Finally, the o� -manifold controller has been introduced and the results
have been observed.

Figures 5.15 and 5.16 shows a comparison of the positions of the tip of
the links in the two cases. The simulation with the o� -manifold controller
inactive is reported in full black line, while the simulation reported in grey
dashed line has been carried out with the controller active. Figure 5.17
shows a frequency analysis of the transverse tip position of the second link,
the controller e�ectively damps the vibrations of the system induced by the
motion.
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Figure 5.15: Comparison of the �rst links' tips transverse position with the o� -manifold
control system o� (black line) and on (grey line)

Figure 5.16: Comparison of the second links' tips transverse position with the o� -manifold
control system o� (black line) and on (grey line)
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Figure 5.17: Comparison of the links' tips transverse positions frequency content, o� -
manifold control system o� (full black line) and on (dashed grey line)
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Chapter 6

Conclusions and future

developments

6.1 Conclusions

In this thesis, the problem of modelling and control of a �exible manipulator
has been tackled. This topic has been matter of research for decades, nev-
ertheless, the great majority of the scienti�c work has been carried out on
single link or two-links planar models derived by means of the Lagrangian
approach. Here, a modular model, able to describe three-dimensional ma-
nipulators with �exible links of general shape, has been carried out by means
of the Newton-Euler approach. It must be pointed out that this model has
been computed starting from the Newton-Euler equations of motion of the
generic �exible body. In this context, a preliminary object-oriented model
has been developed and a remarkable result has been obtained, that is, the
explicit computation of the Coriolis and centripetal terms of the inertial
forces acting on the elastic degrees of freedom. The development of this
model can be considered as the fundamental element for the realization of
the subsequent results as it provides a tool for the simulation and testing in
an independent multibody environment. Moreover, it constitutes as a sub-
stantial contribution in the �eld of object-oriented mechanical modelling, as
witnessed by several feedbacks recieved by the Modelica community.

Starting from the Newton-Euler generic body model and taking advan-
tage of the spatial vector algebra, the �exible manipulator model has been
derived. The examples found in literature that follow a similar approach, al-
though limited to planar deformation �eld and beam-like structures, usually
solve the equations of motion by means of a recursive technique. Unlike the
commonly adopted approaches, in this work the model has been derived in
closed form with respect to the joint angles and the elastic variables, leading
to a model suitable for simulation and analysis. Another remarkable result
consists in the ability of the model to consider links of general shape by
using the substructuring feature provided by �nite elements solver. Further
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improvements have been carried to the model by considering links with high
�exibility and the presence of payloads as well as time-varying forces act-
ing on the tip. The model has been validated with respect to benchmarks
found in literature, moreover, thanks to the MERIt dataset provided by TU
Dortmund, it has been possible to validate the aforementioned model with
respect to experimental data.

The model disclosed in this work is highly nonlinear and its inherent com-
plexity makes it unsuitable for the synthesis of an active vibration damping
system. To this purpose, an approximated model, based on the integral
manifold approach has been derived. Since the integral manifold is an ex-
tension of the singular perturbation theory, a singularly perturbed model
has been initially developed and subsequently decomposed in two interact-
ing subsystems, a on-manifold system representing the slow dynamics and
the o� -manifold system describing the fast dynamics, i.e. the vibrations.
While the on-manifold system turned out to be highly nonlinear and weakly
in�uenced by the vibratory dynamic, the o� -manifold system is instead lin-
ear, time varying, and heavily dependent on the state of the slow system,
i.e. on the spatial con�guration of the manipulator.

Making use of the approximated models, the problem of model-based
control design has been addressed. In order to simplify the control prob-
lem, and following the approach adopted in the modelling phase, the two
time-scales composite control theory has been used to derive two separate
model-based control systems. The controller for the slow system has been
computed by means of a technique based on the model inversion, and it is
aimed to track trajectories in the joint space. Conversely, the control system
relative to the o� -manifold, fast system, is directed toward damping the vi-
brations and stabilizing the system along the steady state. To this purpose,
a controller based on an evolution of the robust control approach has been
derived. Particularly, a novel technique, based on the optimization of the
the controller with respect to an array of system models, has been applied.
Moreover, this approach allows to force structural constraints on the con-
troller and to explicitly ensure the closed loop stability. The controller has
�nally been tested by means of simulations, demonstrating good results in
terms of vibrations damping.

6.2 Future developments

Despite the amount of theoretical and engineering work that has been carried
out, several open issues still deserve to be explored. From the theoretical
point of view, there are several aspects related to the observability and
controllability of the system which should be discussed. Furthermore, this
topic is strictly related to the issue of state estimation. The matter was not
discussed in the contest of this thesis, nevertheless, an e�ective technique
aimed to provide the estimation of the elastic modal variable is essential.
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Many results related to this subject can be found in literature, however,
an e�ective estimation method for three dimensional manipulators is still
missing and the problem is further complicated by the generality of the
links' geometry.

Further research would be suitable in the context of the control systems
as well. The dependency of the o� -manifold system from the joints con�gu-
ration naturally calls for an LPV control scheme based on the recent results
on the stability of a�nely controlled LPV systems. Nevertheless it must
be recalled that the dependency is very involved, hence, further work is re-
quired in order to consider this techniques. Furthermore, other model-based
control techniques usually applied to �exible manipulators, brie�y recalled
in Chapter 1 deserve to be explored.

Finally, the realization of a three dimensional experimental platform is
essential for the testing and validation of the techniques presented here,
as much as for the study of further developments in terms of modelling,
identi�cation and control.
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Appendix A

Computation of the Coriolis and

centripetal terms relative to the

elastic degrees of freedom

The Coriolis and centripetal terms for the elastic degrees of freedom are
computed from the formulation originally described in [1], i.e.:

hfω = −
∫
V

ρST
(

˜̄ω
2
ū + 2 ˜̄ω

·
ūf

)
dV

= −
∫
V

ρST ˜̄ω2ū dV − 2

∫
V

ρST ˜̄ωSq̇ dV (A.1)

which can be divided in two terms corresponding to the two integrals, that
will be analysed separately. Consider the �rst integral,∫

V

ρST ˜̄ω2ū dV =

∫
V

ρH dV (A.2)

where the function H is de�ned as follows

H = −ST ˜̄ω2ū = −S
T
ω̄ × (ω̄ × ū)

= ST (ω̄ × ū)× ω̄ = ST ˜(ω̄ × ū)ω̄ = CT ω̄ (A.3)

Consequently, de�ning the ST matrix as

ST =
[

ŝT1 ŝT2 ŝT3
]
, (A.4)

the C matrix can be written as:

C = ˜(ω̄ × ū)
T

S = − ˜(ω̄ × ū)S = − ˜(ω̄ × ū)

 ŝ1

ŝ2

ŝ3

 , (A.5)

and recalling that
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˜(ω̄ × ū) =

˜ω̄2ū3 − ω̄3ū2

ω̄3ū1 − ω̄1ū3

ω̄1ū2 − ω̄2ū1


=

 0 −ω̄1ū2 + ω̄2ū1 ω̄3ū1 − ω̄1ū3

ω̄1ū2 − ω̄2ū1 0 −ω̄2ū3 + ω̄3ū2

−ω̄3ū1 + ω̄1ū3 ω̄2ū3 − ω̄3ū2 0

 (A.6)

(A.7)

One can compute C as:

C = − ˜(ω̄ × ū)

 ŝ1

ŝ2

ŝ3


=

 ū1ω̄2ŝ2 − ū2ω̄1ŝ2 + ū1ω̄3ŝ3 − ū3ω̄1ŝ3

−ū1ω̄2ŝ1 + ū2ω̄1ŝ1 + ū2ω̄3ŝ3 − ū3ω̄2ŝ3

−ū1ω̄3ŝ1 + ū3ω̄1ŝ1 − ū2ω̄3ŝ2 + ū3ω̄2ŝ2

 (A.8)

Every line of the matrix (A.8) can be expressed as a combination of two
elements. Focusing on the �rts row, the positive terms ū2ω̄1ŝ2 and ū3ω̄1ŝ3

can be computed from the the following expression

ω̄1

[
ū1 ū2 ū3

]  ŝ1

ŝ2

ŝ3

 = ū1ω̄1ŝ1 + ū2ω̄1ŝ2 + ū3ω̄1ŝ3 (A.9)

and the negative terms −ω̄2ū1ŝ2 and −ω̄3ū1ŝ3 are computed recalling that

−
[
ω̄1 ω̄2 ω̄3

]
ū1

 ŝ1

ŝ2

ŝ3

 = −ω̄1ū1ŝ1 − ω̄2ū1ŝ2 − ω̄3ū1ŝ3. (A.10)

As a consequence, the �rst row of the matrix (A.8) can be expressed as

ω̄1ū
TS− ω̄T ū1S. (A.11)

Extending this expression to the other rows, matrix C is:

C =

 ω̄1ū
TS− ω̄T ū1S

ω̄2ū
TS− ω̄T ū2S

ω̄3ū
TS− ω̄T ū3S

 (A.12)

Consequently, the �rst part of hfω can be written as:

∫
V

ρST ˜̄ω2ū dV =

∫
V

ρH dV =

∫
V

ρCTdV ω̄ =

(∫
V

ρC dV

)T
ω̄ (A.13)
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Where

∫
V

ρC dV =

 ω̄1

∫
V
ρūTS dV − ω̄T

∫
V
ρū1SdV

ω̄2

∫
V
ρūTS dV − ω̄T

∫
V
ρū2SdV

ω̄3

∫
V
ρūTS dV − ω̄T

∫
V
ρū3SdV

 (A.14)

In order to compute (A.14), one can conveniently de�ne a matrix Di as:

Di =

 di1
di2
di3

 =

 ∫V ρūi1SdV∫
V
ρūi2SdV∫

V
ρūi3SdV

 (A.15)

For the purpose explicitly computing D, the I10 and I11 inertia invariants
can be introduced as follows:

I10
ij =

∫
V

ρū0iŝj dV (A.16)

I11
ij =

∫
V

ρŝTi ŝj dV (A.17)

(A.18)

As a consequence of the introduction of the invariants, matrix D, is given
by:

Di =

∫
V

ρūiS dV =

∫
V

ρ (ū0 + Sq)i S dV

=

∫
V

ρū0iS dV +

∫
V

ρ (Sq)i S dV =

 I10
i1

I10
i2

I10
i3

+

∫
V

ρŝiqS dV

=

 I10
i1

I10
i2

I10
i3

+

∫
V

ρqT ŝTi S dV =

 I10
i1

I10
i2

I10
i3

+

 qT I11
i1

qT I11
i2

qT I11
i3

 i = 1, 2, 3

Focus on the �rst term of the �rst line of matrix (A.14), it can be rewritten
in terms of the I10 and I11 inertia invariants as follows.
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ω̄1

∫
V

ρūTS dV = ω̄1

∫
V

ρ
[
ū1 ū2 ū3

]  ŝ1

ŝ2

ŝ3

 dV
= ω̄1

∫
V

ρū1ŝ1 + ū2ŝ2 + ū3ŝ3)dV

= ω̄1

[∫
V

ρū1ŝ1 dV +

∫
V

ρū2ŝ2 dV +

∫
V

ρū3ŝ3 dV

]
= ω̄1

[
I10

11 + qT I11
11 + I10

22 + qT I11
22 + I10

33 + qT I11
33

]
=

3∑
j=1

dii (A.19)

While the second term of the �rst line of matrix (A.14) can be rewritten in
terms of the D matrix as follows:

−ω̄T
∫
V

ρū1SdV = −ω̄T
∫
V

ρu1

 ŝ1

ŝ2

ŝ3

 dV
= −ω̄T

∫
V

ρ

 ū1ŝ1

ū1ŝ2

ū1ŝ3

 dV = −ω̄TD1 (A.20)

Summarizing, the �rst row of (A.14) can be written as:

ω̄1

∫
V

ρūTS dV − ω̄T
∫
V

ρū1SdV = ω̄1(
3∑
i=1

dii)− ω̄TD1 (A.21)

Extending the same computation to the other lines of (A.14), the �rst term
of hfω can be computed as follows:

−
∫
V

ρST ˜̄ω2ū dV =



ω̄1(
3∑
i=1

dii)− ω̄TD1

ω̄2(
3∑
i=1

dii)− ω̄TD2

ω̄3(
3∑
i=1

dii)− ω̄TD3



T

ω̄ (A.22)

Regarding the second term of hfω further elaborations are necessary, it can
be written as:

−2

∫
V

ρST ˜̄ωSq̇ dV = −2(

∫
V

ρST ˜̄ωS dV )q̇ = −2Fq̇ (A.23)

116



APPENDIX A. COMPUTATION OF THE CORIOLIS AND CENTRIPETAL
TERMS RELATIVE TO THE ELASTIC DEGREES OF FREEDOM

where F is de�ned as:

F =

∫
V

ρST ˜̄ωS dV (A.24)

Recalling that ST
(

˜̄ωS
)
can be written as:

ST ˜̄ωS =
[

ŝT1 ŝT2 ŝT3
]  0 −ω̄3 ω̄2

ω̄3 0 −ω̄1

−ω̄2 ω̄1 0

 ŝ1

ŝ2

ŝ3

 (A.25)

= −ŝT1 ω̄3ŝ2 + ŝT1 ω̄2ŝ3

+ŝT2 ω̄3ŝ1 − ŝT2 ω̄1ŝ3

−ŝT3 ω̄2ŝ1 + ŝT3 ω̄1ŝ2

= ω̄1(̂sT3 ŝ2 − ŝT2 ŝ3) + ω̄2(̂sT1 ŝ3 − ŝT3 ŝ1)

+ω̄3(̂sT2 ŝ1 − ŝT1 ŝ2) (A.26)

One can write F in terms of the invariants by computing the elements as
follows:

F = ω̄1

∫
V

ρ(̂sT3 ŝ2 − ŝT2 ŝ3) dV + ω̄2

∫
V

ρ(̂sT1 ŝ3 − ŝT3 ŝ1) dV

+ ω̄3

∫
V

ρ(̂sT2 ŝ1 − ŝT1 ŝ2) dV

= ω̄1(I11
32 − I11

23) + ω̄2(I11
13 − I11

31) + ω̄3(I11
21 − I11

12) (A.27)

Consequently, the complete expression of hfω in terms of the I10 and I11

inertia invariants is the following:

hfω =



ω̄1(
3∑
i=1

dii)− ω̄TD1

ω̄2(
3∑
i=1

dii)− ω̄TD2

ω̄3(
3∑
i=1

dii)− ω̄TD3



T

ω̄ (A.28)

− 2
[
ω̄1(I11

32 − I11
23) + ω̄2(I11

13 − I11
31) + ω̄3(I11

21 − I11
12)
]
q̇

where

Di =

 di1
di2
di3

 =

 I10
i1 + qT I11

i1

I10
i2 + qT I11

i2

I10
i3 + qT I11

i3

 (A.29)

However, an explicit expression for the I10 and I11 inertia invariants still has
to be computed.
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Recalling that the I8 invariant can be expressed as follows:

I8
k =

∫
v

ρ

 −ū02s2k − ū03s3k ū01s2k ū01s3k

ū02s1k −ū01s1k − ū03s3k ū02s3k

ū03s1k ū03s2k −ū01s1k − ū02s2k

 dV

One can calculate I10
k from eq. (A.16) by expanding the terms inside the

integral of the expression above, as follows:

u0iŝj = ū0i

[
(ŝj)1 (ŝj)2 (ŝj)3 . . . (ŝj)M

]
(A.30)

=
[
ū0i(ŝj)1 ū0i(ŝj)2 ū0i(ŝj)3 . . . ū0i(ŝj)M

]
(A.31)

yielding

I10
ij =

∫
V

[
ū0i(ŝj)1 ū0i(ŝj)2 ū0i(ŝj)3 . . . ū0i(ŝj)M

]
dV (A.32)

Having de�ned

ST =
[

ŝT1 ŝT2 ŝT3
]

=
[

s1 s2 s3 . . . sM
]T

(A.33)

with the notation adopted so far, sij is the ij
th element of matrix S, cor-

risponding to the jth element of the vector si or, adopting the notation based
on vectors ŝ, is the ith element of vector ŝj. summarizing:

sij = (sj)i = (ŝi)j (A.34)

it follows that the scalars (ŝi)j are in fact the scalars sij. Consequently,
the scalar elements of I10

k can be computed starting from the elements of I8
i

as follows:

(
I10
ij

)
k

=


(I8
k)ji i 6= j = 1, 2, 3 k = 1, . . . ,M

1
2

[(I8
k)ii − (I8

k)ll − (I8
k)mm]

i = j = 1, 2, 3
l,m = 1, 2, 3

k = 1, . . . ,M
(A.35)

The relation (A.35) for the out-of-diagional terms is trivial, while re-
garding the the diagonal terms of the I10, one can obtain these terms from
invariant from I8 in the following way.

(I10
11)k =

1

2

[
(I8
k)11 − (I8

k)22 − (I8
k)33

]
=

1

2
[−ū02s2k − ū03s3k − (−ū01s1k − ū03s3k)− (−ū01s1k − ū02s2k)]

=
1

2
[+(ū01s1k + ū01s1k) + (ū03s3k − ū03s3k) + (ū02s2k − ū02s2k)]

= ū01s1k (A.36)
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(I10
22)k =

1

2

[
(I8
k)22 − (I8

k)11 − (I8
k)33

]
=

1

2
[−ū01s1k − ū03s3k − (−ū02s2k − ū03s3k)− (−ū01s1k − ū02s2k)]

= ū02s2k (A.37)

(I10
33)k =

1

2

[
(I8
k)33 − (I8

k)11 − (I8
k)22

]
=

1

2
[−ū01s1k − ū02s2k − (−ū02s2k − ū03s3k)− (−ū01s1k − ū03s3k)]

= ū03s3k (A.38)

Invariant I11 is computed in a similar way with respect to invariant I10,
starting from the scalar elements of I9. Recalling that I9 can be de�ned
expressed as:

I9
kl =

∫
V

ρ

 −s3ks3l − s2ks2l s2ks1l s3ks1l

s1ks2l −s3ks3l − s1ks1l s3ks2l

s1ks3l s2ks3l −s2ks2l − s1ks1l

 dV ,

(A.39)
One can calculate the scalar terms of I11

kl by expanding the term ŝTi ŝj as
follows:

ŝTi ŝi =


(ŝi)1(ŝj)1 (ŝi)1(ŝj)2 (ŝi)1(ŝj)3 . . . (ŝi)1(ŝj)M
(ŝi)2(ŝj)1 (ŝi)2(ŝj)2 (ŝi)2(ŝj)3 . . . (ŝi)2(ŝj)M

...
...

. . .
...

...
(ŝi)M(ŝj)1 (ŝi)M(ŝj)2 (ŝi)M(ŝj)3 . . . (ŝi)M(ŝj)M

 (A.40)

Again, as a consequence of eq.(A.34), the elements of invariant I11 can be
computed as:

(
I11
ij

)
kl

=


(I9
kl)ji i 6= j = 1, 2, 3 k, l = 1, . . . ,M

1
2

[(I9
kl)ii − (I9

kl)mm − (I9
kl)nn]

i = j = 1, 2, 3
m,n = 1, 2, 3

k, l = 1, . . . ,M

and again, the out-of-diagonal terms are obtained directly from the elements
of I9

kl, while the diagonal terms are obtained as follows:

(I11
11)kl =

1

2

[
(I9
kl)11 − (I9

kl)22 − (I9
kl)33

]
=

1

2
[−s3ks3l − s2ks2l − (−s3ks3l − s1ks1l)− (−s2ks2l − s1ks1l)]

= s1ks1l (A.41)
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(I11
22)kl =

1

2

[
(I9
kl)22 − (I9

kl)11 − (I9
kl)33

]
=

1

2
[−s3ks3l − s1ks1l − (−s3ks3l − s2ks2l)− (−s2ks2l − s1ks1l)]

= s2ks2l (A.42)

(I11
33)kl =

1

2

[
(I9
kl)33 − (I9

kl)11 − (I9
kl)11

]
=

1

2
[−s3ks3l − s1ks1l − (−s2ks2l − s1ks1l)− (−s3ks3l − s2ks2l)]

= s3ks3l (A.43)
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Appendix B

Partial derivatives of the inertia

matrix

In this Appendix, the partial derivatives of the terms of inertia matrix with
respect to the elastic coordinates are derived.

The inertia matrix is subdivided in four submatrices, namely Mθθ, Mθq,
Mqq and the transpose of Mθq. Their partial derivatives with respect to
the elastic coordinates will be derived in the following, expanding the con-
stitutive terms of every matrix element.

The partial drivative of Mθθ is:

∂Mθθ

∂qj,i
=

∂BT
θ

∂qj,i
P−1IvvP−TBθ + BT

θ

∂P−1

∂qj,i
IvvP−TBθ

+BT
θP−1∂Ivv

∂qj,i
P−TBθ

+BT
θP−1Ivv

∂P−T

∂qj,i
Bθ

+BT
θP−1IvvP−T

∂Bθ

∂qj,i
(B.1)

where

∂Bθ

∂qj,i
=



∂Bθ,0
∂qj,i

0 0 · · · 0 0

0
∂Bθ,1
∂qj,i

0 · · · 0 0

0 0
∂Bθ,2
∂qj,i

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ∂Bθ,N−2

∂qj,i
0

0 0 0 0 0
∂Bθ,N−1

∂qj,i


(B.2)
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and the terms of the last matrix can be calculated as:

∂Bθ,k

∂qj,i
=

[
∂(AkÂkẑk)

∂qj,i

0

]
(B.3)

Moreover:

∂
(
AkÂkẑk

)
∂qj,i

=


0 , i > k

Ai
∂Âi
∂qj,i

ẑi = Ai
∂(̃Ŝiqi)
∂qj,i

ẑi = Ai

˜(
Ŝiσj,i

)
ẑi , i = k

∂Ak
∂qj,i

Âkẑk , i < k

(B.4)

∂Ak

∂qj,i
=

 0 , i ≥ k

Â0Ā0 · · ·
˜(
Ŝiσj,i

)
Āi · · · Âk−1Āk−1, i < k , i < k

(B.5)

where σj,k is a vector of Mk null elements but the j-th, equal to 1. The
derivative of P−1 can be calculated as follows:

∂P−1

∂qj,i
= −P−1 ∂P

∂qj,i
P−1 (B.6)

∂P
∂qj,i

=



0 −∂P T1
∂qj,i

0 · · · 0 0

0 0 −∂P T2
∂qj,i

· · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 −∂P TN−1

∂qj,i

0 0 0 0 0 0


(B.7)

∂Pk
∂qj,i

=

[
0 0

−∂p̃k+1,k

∂qj,i
0

]
(B.8)

∂p̃k+1,k

∂qj,i
=
∂ ˜(Akū0,k)

∂qj,i
+
∂ ˜(AkSkqk)

∂qj,i
(B.9)

∂ ˜(Akū0,k)

∂qj,i
+
∂ ˜(AkSkqk)

∂qj,i
=


0 , i > k
AiSiσj,i , i = k
∂Ak
∂qj,i

(ū0,k + Skqk) , i < k
(B.10)

Subsequently, the partial derivative of Ivv must be computed.

∂Ivv

∂qj,i
= diag

{
∂Ivv,k
∂qj,i

}
(B.11)
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∂Ivv,k
∂qj,i

=

 ∂(AkJ̄kATk )
∂qj,i

∂(Akmk ˜̄dC,kA
T
k )

∂qj,i

∂(Akmk ˜̄dC,kA
T
k )

T

∂qj,i
0

 (B.12)

∂
(
AkJ̄kA

T
k

)
∂qj,i

=
∂Ak

∂qj,i
J̄kA

T
k +Ak

∂J̄k
∂qj,i

AT
k +AkJ̄k

∂AT
k

∂qj,i
(B.13)

∂
(
Akmk

˜̄dC,kA
T
k

)
∂qj,i

=
∂Ak

∂qj,i
mk

˜̄dC,kA
T
k +Ak

∂
(
mk

˜̄dC,k

)
∂qj,i

AT
k +Akmk

˜̄dC,k
∂AT

k

∂qj,i
(B.14)

∂J̄k
∂qj,i

=


0 , i 6= k

−
(
I8T
j,i + I8

j,i

)
−

Mi∑
l=1

(
I9
jl,i + I9

lj,i

)
ql,i , i = k

(B.15)

∂
(
mk

˜̄dC,k

)
∂qj,i

=

{
0 , i 6= k

Ĩ3
j,i , i = k

(B.16)

The partial derivatives of the other submatrices are calculated in a similar
way.

∂Mθq

∂qj,i
=

∂BT
θ

∂qj,i
P−1Ivq + BT

θ

∂P−1

∂qj,i
Ivq

+BT
θP−1∂Ivq

∂qj,i

+
∂BT

θ

∂qj,i
P−1IT

vvP−TBq + BT
θ

∂P−1

∂qj,i
IT
vvP−TBq

+BT
θP−1∂IT

vv

∂qj,i
P−TBq

+BT
θP−1IT

vv

∂P−T

∂qj,i
Bq + BT

θP−1IT
vvP−T

∂Bq

∂qj,i
(B.17)

and the subterms are computed as:

∂Ivq

∂qj,i
=



∂Ivq,1
∂qj,i

0 0 · · · 0 0

0 ∂Ivq,2
∂qj,i

0 · · · 0 0

0 0 ∂Ivq,3
∂qj,i

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ∂Ivq,N−1

∂qj,i
0

0 0 0 0 0
∂Ivq,N
∂qj,i


(B.18)
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∂Ivq,k
∂qj,i

=

[
∂Ak
∂qj,i

C̄T
r,k +Ak

∂C̄Tr,k
∂qj,i

∂Ak
∂qj,i

C̄T
t,k

]
(B.19)

∂C̄T
r,k

∂qj,i
=

{
0 , i 6= k
I5
j,i , i = k

(B.20)

∂Bq

∂qj,i
=



0 0 0 · · · 0 0
∂Bq,1
∂qj,i

0 0 · · · 0 0

0 ∂Bq,2
∂qj,i

0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0

0 0 0 0
∂Bq,N−1

∂qj,i
0


(B.21)

∂Bq,k

∂qj,i
=

[
∂Ak
∂qj,i

Ŝk
∂Ak
∂qj,i

Si

]
(B.22)

Finally, the partial derivative of Mqq is computed as follows.

∂Mqq

∂qj,i
=

∂BT
q

∂qj,i
P−1IvvP−TBq + BT

q

∂P−1

∂qj,i
IvvP−TBq

+BT
qP−1∂Ivv

∂qj,i
P−TBq

+BT
qP−1Ivv

∂P−T

∂qj,i
Bq + BT

qP−1IvvP−T
∂Bq

∂qj,i
(B.23)

+
∂IT

vq

∂qj,i
P−TBq + IT

vq

∂P−T

∂qj,i
Bq

+IT
vqP−T

∂Bq

∂qj,i
+
∂BT

q

∂qj,i
P−1Ivq + BT

q

∂P−1

∂qj,i
Ivq + BT

qP−1∂Ivq

∂qj,i

The derivatives of Cθ and Cq are calculated with a similar procedure.

∂Cθ
∂qj,i

=
∂BT

θ

∂qj,i
P−1IvvP−T V̇

′
+ BT

θ

∂P−1

∂qj,i
IvvP−T V̇

′
+ BT

θP−1∂Ivv

∂qj,i
P−T V̇ ′

+BT
θP−1Ivv

∂P−T

∂qj,i
V̇ ′ + BT

θP−1IvvP−T
∂V̇ ′

∂qj,i
− ∂BT

θ

∂qj,i
P−1Cv

−BT
θ

∂P−1

∂qj,i
Cv −BT

θP−1 ∂Cv
∂qj,i

(B.24)

where
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∂V̇ ′

∂qj,i
= col

{
∂V̇ ′k
∂qj,i

}
(B.25)

∂V̇ ′k
∂qj,i

=

[
∂ω̇′k
∂qj,i
∂v̇′k
∂qj,i

]
(B.26)

∂ω̇′k
∂qj,i

∣∣∣∣q=0
q̇=0

=
∂ω̃k−1

∂qj,i
Ak−1Âk−1ẑ

′
k−1θ̇k + ω̃k−1

∂Ak−1

∂qj,i
Âk−1ẑ

′
k−1θ̇k

+ω̃k−1Ak−1
∂Âk−1

∂qj,i
ẑ′k−1θ̇k (B.27)

∂ωk−1

∂qj,i

∣∣∣∣q=0
q̇=0

=
k−2∑
l=0

(
∂Al

∂qj,i
Âlẑ

′
lθ̇l+1 +Al

∂Âl

∂qj,i
ẑ′lθ̇l+1

)
(B.28)

∂v̇′k
∂qj,i

∣∣∣∣q=0
q̇=0

=
∂ω̃k−1

∂qj,i
(ω̃k−1pk,k−1)+ω̃k−1

(
∂ω̃k−1

∂qj,i
pk,k−1

)
+ω̃k−1

(
ω̃k−1

∂pk,k−1

∂qj,i

)
(B.29)

∂Cv
∂qj,i

= col

{
∂Cv,k

∂qj,i

}
(B.30)

∂Cv,k

∂qj,i
=

 ∂Ak
∂qj,i

hθω,k +Ak
∂hθω,k
∂qj,i

∂Ak
∂qj,i

hrω,k +Ak
∂hrω,k
∂qj,i

 (B.31)

∂hθω,k
∂qj,i

∣∣∣∣∣q=0
q̇=0

= −∂
˜̄ωk

∂qj,i
J̄kω̄k − ˜̄ωk

∂J̄k
∂qj,i

ω̄k − ˜̄ωkJ̄k
∂ω̄k
∂qj,i

(B.32)

∂ω̄k
∂qj,i

=
∂AT

k

∂qj,i
ωk +AT

k

∂ωk
∂qj,i

(B.33)

∂hrω,k
∂qj,i

∣∣∣∣q=0
q̇=0

= −∂
˜̄ωk

∂qj,i
˜̄ωkmkd̄C,k− ˜̄ωk

∂ ˜̄ωk
∂qj,i

mkd̄C,k− ˜̄ωk ˜̄ωk
∂
(
mkd̄C,k

)
∂qj,i

(B.34)

and

∂Cθ
∂q̇j,i

= BT
θP−1IvvP−T

∂V̇ ′

∂q̇j,i
−BT

θP−1 ∂Cv
∂q̇j,i

(B.35)

where
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∂V̇ ′

∂q̇j,i
= col

{
∂V̇

′
k

∂q̇j,i

}
(B.36)

∂V̇ ′k
∂q̇j,i

=

[
∂ω̇′k
∂q̇j,i
∂v̇′k
∂q̇j,i

]
(B.37)

∂ω̇′k
∂q̇j,i

∣∣∣∣q=0
q̇=0

=
∂ω̃k−1

∂q̇j,i
Ak−1Ŝk−1q̇k−1 + ω̃k−1Ak−1Ŝk−1

∂q̇k−1

∂q̇j,i

+
∂ω̃k−1

∂q̇j,i
Ak−1Âk−1ẑ

′
k−1θ̇k +Ak−1

˜(
Ŝk−1

∂q̇k−1

∂q̇j,i

)
ẑ′k−1θ̇k

∂ωk−1

∂q̇j,i
=

{
0 , i > k − 2

AiŜiσj,i , i ≤ k − 2
(B.38)

∂q̇k−1

∂q̇j,i
=

{
0 , i 6= k − 1
σj,i , i = k − 1

(B.39)

∂v̇′k
∂q̇j,i

∣∣∣∣q=0
q̇=0

=
∂ω̃k−1

∂q̇j,i
ω̃k−1pk,k−1 + ω̃k−1

∂ω̃k−1

∂q̇j,i
pk,k−1

+
∂ω̃k−1

∂q̇j,i
Ak−1Sk−1q̇k−1 + ω̃k−1Ak−1Sk−1

∂q̇k−1

∂q̇j,i
(B.40)

∂Cv
∂q̇j,i

= col

{
∂Cv,k

∂q̇j,i

}
(B.41)

∂Cv,k

∂q̇j,i
=

 Ak
∂hθω,k
∂q̇j,i

Ak
∂hrω,k
∂q̇j,i

 (B.42)

∂hθω,k
∂q̇j,i

∣∣∣∣∣q=0
q̇=0

= −∂
˜̄ωk

∂q̇j,i
J̄kω̄k − ˜̄ωkJ̄k

∂ω̄k
∂q̇j,i

− ∂ ˜̄ωk
∂q̇j,i

C̄T
r,kq̇k

− ˜̄ωkC̄
T
r,k

∂q̇k
∂q̇j,i

− ∂ ˙̄Jk
∂q̇j,i

ω̄k − ˙̄Jk
∂ω̄k
∂q̇j,i

(B.43)

∂ ˙̄Jk
∂q̇j,i

=


0 , i 6= k

−I8T
j,i + I8T

j,i −
Mk∑
l=1

(
I9
jl,i + I9

lj,i

)
ql,i , i = k

(B.44)
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∂hrω,k
∂q̇j,i

= −∂
˜̄ωk

∂q̇j,i
˜̄ωkmkd̄C,k − ˜̄ωk

∂ ˜̄ωk
∂q̇j,i

mkd̄C,k

−∂
˜̄ωk

∂q̇j,i
2C̄T

t,kq̇k − ˜̄ωk2C̄
T
t,k

∂q̇k
∂q̇j,i

(B.45)

and �nally

∂Cq
∂qj,i

=
∂IT

vq

∂qj,i
P−T V̇ ′ + IT

vq

∂P−T

∂qj,i
V̇ ′ + IT

vqP−T
∂V̇ ′

∂qj,i

+
∂BT

q

∂qj,i
P−1IvvP−T V̇

′

+BT
q

∂P−1

∂qj,i
IvvP−T V̇

′
+ BT

qP−1∂Ivv

∂qj,i
P−T V̇ ′

+BT
qP−1Ivv

∂P−T

∂qj,i
V̇ ′ + BT

qP−1IvvP−T
∂V̇ ′

∂qj,i
−
∂BT

q

∂qj,i
P−1Cv

−BT
q

∂P−1

∂qj,i
Cv −BT

qP−1 ∂Cv
∂qj,i

− ∂Cf
∂qj,i

(B.46)

It must be pointed out that the calculation of the derivatives for the Coriolis
and quadratic terms is very involved, namely:

∂Cf
∂qj,i

= col

{
∂hfω,k
∂qj,i

}
(B.47)

∂hfω,k
∂qj,i

=


∂ω̄1,k

∂qj,i

(
k∑
l=1

dll,k

)
+ ω̄1,k

(
k∑
l=1

∂dll,k
∂qj,i

)
− ∂ω̄Tk

∂qj,i
D1,k − ω̄Tk

∂D1,k

∂qj,i

∂ω̄2,k

∂qj,i

(
k∑
l=1

dll,k

)
+ ω̄2,k

(
k∑
l=1

∂dll,k
∂qj,i

)
− ∂ω̄Tk

∂qj,i
D2,k − ω̄Tk

∂D2,k

∂qj,i

∂ω̄3,k

∂qj,i

(
k∑
l=1

dll,k

)
+ ω̄3,k

(
k∑
l=1

∂dll,k
∂qj,i

)
− ∂ω̄Tk

∂qj,i
D3,k − ω̄Tk

∂D3,k

∂qj,i



T

ω̄k

+


ω̄1,k

(
k∑
l=1

dll,k

)
− ω̄TkD1,k

ω̄2,k

(
k∑
l=1

dll,k

)
− ω̄TkD2,k

ω̄3,k

(
k∑
l=1

dll,k

)
− ω̄TkD3,k



T

∂ω̄k
∂qj,i

−2
∂ω̄1,k

∂qj,i

(
I11

32,k − I11
23,k

)
q̇k − 2

∂ω̄2,k

∂qj,i

(
I11

13,k − I11
31,k

)
q̇k

−2
∂ω̄3,k

∂qj,i

(
I11

21,k − I11
12,k

)
q̇k (B.48)
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∂Dm,k

∂qj,i
=


∂qTk
∂qj,i

I11
m1,k

∂qTk
∂qj,i

I11
m2,k

∂qTk
∂qj,i

I11
m3,k

 (B.49)

∂Cq
∂q̇j,i

= IT
vqP−T

∂V̇ ′

∂q̇j,i
+ BT

qP−1IvvP−T
∂V̇ ′

∂q̇j,i
−BT

qP−1 ∂Cv
∂q̇j,i

− ∂Cf
∂q̇j,i

(B.50)

∂Cf
∂q̇j,i

= col

{
∂hfω,k
∂qj,i

}
(B.51)

∂hfω,k
∂qj,i

=


∂ω̄1,k

∂q̇j,i

(
k∑
l=1

dll,k

)
− ∂ω̄Tk

∂q̇j,i
D1,k

∂ω̄2,k

∂q̇j,i

(
k∑
l=1

dll,k

)
− ∂ω̄Tk

∂q̇j,i
D2,k

∂ω̄3,k

∂q̇j,i

(
k∑
l=1

dll,k

)
− ∂ω̄Tk

∂q̇j,i
D3,k



T

ω̄k

+


ω̄1,k

(
k∑
l=1

dll,k

)
− ω̄TkD1,k

ω̄2,k

(
k∑
l=1

dll,k

)
− ω̄TkD2,k

ω̄3,k

(
k∑
l=1

dll,k

)
− ω̄TkD3,k



T

∂ω̄k
∂q̇j,i

−2
∂ω̄1,k

∂q̇j,i

(
I11

32,k − I11
23,k

)
q̇k − 2

∂ω̄2,k

∂q̇j,i

(
I11

13,k − I11
31,k

)
q̇k

−2
∂ω̄3,k

∂q̇j,i

(
I11

21,k − I11
12,k

)
q̇k − 2ω̄1,k

(
I11

32,k − I11
23,k

) ∂q̇k
∂q̇j,i

−2ω̄2,k

(
I11

13,k − I11
31,k

) ∂q̇k
∂q̇j,i

− 2ω̄3,k

(
I11

21,k − I11
12,k

) ∂q̇k
∂q̇j,i
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