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Abstract

Healthcare administrative databases are becoming more and more important and
reliable sources of clinical and epidemiological information. The present work marks
the first Italian attempt which focuses on the acquisition, management and study
of several data sources in the form of administrative databases regarding the Heart
Failure pathology. All the data used in this thesis have been extracted from the
administrative data warehouse of Lombardy Region, a region located in the northern
part of Italy whose capital is Milan. One of the main goal of the present work is
to identify, extrapolate and build a unique and consistent data structure to be used
for statistical and research purposes. The administrative databases are conceived as
repositories which are able to store many information but typically for managerial
aims. This work is a step forward in moving the focus from a descriptive stand point of
view to an inferential one. To achieve this goal, a great effort has been dedicated to the
development of efficient algorithms, some of them have been finalized into a R package
called msmtools. Moreover, this work studies the hospital admission-readmission
process in order to explore the Heart Failure patient’s epidemiology and to profile
the health service utilization over time. We also investigate variations in patient
care according to geographic area, socio-demographic characteristics as well as other
administrative and clinical variables. The heterogeneity of the different data sources
is fundamental to better characterize the disease progression and to possibly identify
what are the main determinants of a hospital admission, readmission and death in
patients with Heart Failure.



vi Abstract



Riassunto

I database amministrativi sanitari stanno diventando fonti di informazioni cliniche
ed epidemiologiche sempre più importanti e affidabili. Questo lavoro segna il primo
tentativo italiano che si concentra sulla acquisizione, la gestione e lo studio di diverse
fonti di dati amministrativi con focus su pazienti affetti da scompenso cardiaco. Tutti
i dati utilizzati in questa tesi sono stati estratti dalla banca dati di Regione Lombardia.
Uno dei principali obiettivi di questo lavoro è quello di identificare, estrapolare e
costruire una struttura di dati unica e coerente che possa essere utilizzata a fini
statistici e di ricerca. I database amministrativi sono concepiti come repository in
grado di memorizzare molte informazioni, tuttavia per scopi tipicamente gestionali.
Questo lavoro si propone di spostare l’attenzione da il classico approccio descrittivo
ad uno inferenziale. A tal fine, un notevole sforzo è stato dedicato allo sviluppo di
algoritmi efficienti, alcuni dei quali hanno portato allo sviluppo di un pacchetto R

chiamato msmtools. Inoltre, questo lavoro si è concentrato sullo studio del processo di
ammissione-riammissione ospedaliera al fine di esplorare l’epidemiologia della patologia
e di profilare l’utilizzo dei servizi sanitari nel corso del tempo, ma anche di studiare
variazioni nella cura del paziente in base alla zona geografica, alle caratteristiche
socio-demografiche, nonché ad altre variabili cliniche. L’eterogeneità delle diverse
fonti di dati risulta fondamentale per caratterizzare al meglio la progressione della
malattia e possibilmente identificare quali sono i principali determinanti di un ricovero
ospedaliero, di riammissione e di morte nei pazienti con insufficienza cardiaca.
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Chapter 1

Introduction

The present work is the first Italian attempt which focuses on the acquisition,
management and study of several data sources regarding the HF pathology collected
by the public healthcare system of Lombardy Region in Italy. We make use of such
databases extracted from the Region’s data warehouse in order to investigate several
aspects. One of the main goal of the present work is to identify, extrapolate and build
a unique and consistent data structure to be used for statistical and research purposes.
As we will describe later on, administrative databases are conceived as repositories
which are able to store many information but typically for managerial aims. This
work tries to move the focus from a descriptive stand point of view to an inferential
one. Moreover, this work studies the hospital admission-readmission process in order
to explore the HF patient’s epidemiology and to profile the health service utilization
over time. We also investigate variations in patient care according to geographic area,
socio-demographic characteristics as well as other administrative and clinical variables.
The heterogeneity of the different data sources is fundamental to better characterize
the disease progression and to possibly identify what are the main determinants of a
hospital admission, readmission and death in patients with HF.



2 Introduction

1.1 Structure of the Thesis

The thesis is organized as follows:

Chapter 1.

After a brief introduction to explain the project under which this work has been
realized, some references on the HF pathology are provided. In particular, we
discuss some of the key characteristics of the disease in order to understand
its complex pattern and unpredictable evolution with time as well as its issues
when clinicians need to diagnose it.

Chapter 2.

This chapter introduces the reader to the data sources under the context of
Administrative Data (AD). In particular, we discuss the necessary steps in order
to define a database which could sum up several characteristics related both to
the patient and his/her clinical behaviour. We also present each single dataset,
the contents as well as the structure which will be of fundamental importance.

Chapter 3.

This chapter is related to the computational challenges faced in the present work.
In particular, we discuss the memory allocation and optimization problems, we
present and describe the roadmap which we have built in order to achieve a
single and usable database for all the subsequent analyses. Finally, a new piece
of software in the form of a R package called msmtools is presented. We also
discuss its development process by going into details of the core algorithms used
to build the package as well as some of its functionalities.

Chapter 4.

This chapter introduces all the statistical models adopted in this thesis. In
particular, we discuss the analysis of longitudinal data through the use of survival
analysis and the multi-state models family by introducing some key quantities
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which will be estimated later on. We also introduce and explain the multi-state
model adopted and discuss the structure of the covariates.

Chapter 5.

This chapter focuses on the results obtained by fitting the models introduced in
chapter 4. We discuss the effect of the covariates on the different transitions
and we compare the results by using graphical tools. We also evaluate their
performances with respect to the observed behaviour.

Chapter 6.

This chapter summarizes what has been done and achieved in the present thesis
and also what can be further developed in future works.

Appendix A. This chapter presents all the side projects which have been carried
out while working on HF data.

All the developed procedures and analyses carried out in the present work have
made use of the R programming language version 2.15.3, 3.0.0 and higher [R Core
Team, 2016]. Several packages have also been used: they are cited as the work
progresses.

1.2 The Chronic Heart Failure Pathology

HF is a clinical syndrome characterized by typical symptoms (e.g. breathlessness,
ankle swelling and fatigue) that may be accompanied by signs (e.g. elevated jugular
venous pressure, pulmonary crackles and peripheral oedema) caused by a structural
and/or functional cardiac abnormality, resulting in a reduced cardiac output and/or
elevated intracardiac pressures at rest or during stress [Ponikowski et al., 2015]. In
general, HF tends to evolve into a chronic condition thus getting the Chronic Heart
Failure (CHF) label. CHF is a complex, heterogeneous clinical syndrome which often
requires urgent and continuing therapy [Maggioni, 2015]. The current definition of
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CHF restricts itself to stages at which clinical symptoms are apparent. Before any of
these symptoms arise, patients are substantially asymptomatic, though with abnormal
structural and functional cardiac conditions. For instance, they can present systolic
or diastolic Left Ventricular (LV) dysfunctional. Recognition of these precursors is
the key of a successful treatment which if starts at the precursor stage may reduce
mortality in patients with asymptomatic systolic LV dysfunction [Wang et al., 2003],
[Solvd Investigators, 1992]. Demonstration of an underlying cardiac cause is central to
the diagnosis of CHF. This is usually a myocardial abnormality causing systolic and/or
diastolic ventricular dysfunction. However, abnormalities of the valves, pericardium,
endocardium, heart rhythm and conduction can also cause CHF (and more than
one abnormality is often present). Identification of the underlying cardiac problem
is crucial for therapeutic reasons, as the precise pathology determines the specific
treatment used.

CHF is a major public health problem with relevant socioeconomic impact. It is
quite complicated to put a number on the prevalence of the disease because it mainly
depends on the definition applied. In general, it is approximately 1− 2% of the adult
population in developed countries, rising to ≥ 10% among people over 70 years of age.
Among people over 65 years of age presenting to primary care with breathlessness on
exertion, one in six will have unrecognized CHF [Mosterd and Hoes, 2007; Bleumink
et al., 2004; Redfield et al., 2003; Ceia et al., 2002]. The lifetime risk of CHF at
age 55 years is 33% for men and 28% for women [Bleumink et al., 2004]. Data on
temporal trends based on hospitalized patients suggest that the incidence of CHF
may be decreasing [Gerber et al., 2015; Owan et al., 2006].

Over the last 30 years, improvements in treatments and their implementation have
improved survival and reduced the hospitalization rate. The most recent European
data (ESC-CHF pilot study) demonstrate that 12-months all-cause mortality rates for
hospitalized and stable/ambulatory CHF patients were 17% and 7%, respectively, and
the 12-months hospitalization rates were 44% and 32%, respectively [Maggioni et al.,
2013]. In patients with CHF (both hospitalized and ambulatory), most deaths are due
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to cardiovascular causes, mainly sudden death and worsening HF. Hospitalizations are
often due to non-cardiovascular causes. Hospitalization for cardiovascular causes did
not change from 2000 to 2010, whereas those with non-cardiovascular causes increased
[Gerber et al., 2015; Bottle et al., 2014; Cowie, 2003].

Many patients will have several different pathologies, cardiovascular and non-
cardiovascular, that conspire to cause HF. Identification of these diverse pathologies
should be part of the diagnostic workup, as they may offer specific therapeutic
opportunities. Co-morbidities are of great importance in CHF since they can interfere
with the diagnostic process of CHF [Hawkins et al., 2013; Blondé-Cynober et al.,
2011], aggravate CHF symptoms and further impair quality of life [Enjuanes et al.,
2014; Hawkins et al., 2013]. They can contribute to the burden of hospitalizations
and mortality [Braunstein et al., 2003], as the main cause of readmissions at 1 and 3
months [Muzzarelli et al., 2010], affect the use of treatments for CHF [Reddel et al.,
2015], drugs used to treat co-morbidities may cause worsening CHF [Eschenhagen
et al., 2011], interaction between drugs used to treat CHF and those used to treat
occurrence of side effects. A correct management of co-morbidities is a key component
of the holistic care of patients with CHF.
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Chapter 2

The Administrative Data

In this chapter, we are going to describe what is to be considered an Administrative
Database (AD) and we will focus on a particular set of databases stored by the
Lombardy Region (Italy).

In recent years, ADs have become a reliable source of multiple types of information.
Their main purpose is to record almost any type of contact between a subject and a
complex system. This subject could be anything in between a private citizen, a bank,
a firm and all their relative interactions subscriptions. For example, administrative
records are maintained to regulate the flow of goods and people across borders, to
respond to the legal requirements of registering particular events such as births and
deaths, and to administer benefits, such as pensions, or obligations, such a taxation
(both for individuals and businesses). As such, the records are collected with a specific
decision-making purpose in mind which makes the identity of the unit, corresponding
to a given record, absolutely crucial. Furthermore, all the information are collected
primarily for administrative purposes thus not with any research or statistical goal.
In this work we are going to use ADs with the specific aim of carrying out measures
of several quantities of interest through a statistical approach.
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As always, there exists a tradeoff when looking at advantages and disadvantages.
Let us report some of the most common and acknowledged advantages. ADs are
typically very large, covering sample of individuals and time periods which are, in
principle, impossible to achieve both financially and logistically through common
survey methods. Alongside cost savings, the scope of ADs can be viewed also under
a research purpose label. Other advantages include relieving the burden on survey
respondents and providing data on individuals who would not normally respond to
more classical surveys such questionnaires and they can be linked one to another to
build up powerful research resources. They are collected for operational purposes and
therefore no additional costs of collection are required. Moreover, the recording process
is not intrusive to target population and is carried out routinely and automatically on
a time basis which strongly depends on the type of data itself. Sometimes, the update
process is continuous. Moreover, they provide historical information and everything is
built up on strong consistence, particularly if they are part of national systems. Despite
some criticism, they go under rigorous quality checks an they typically cover 100% of
population interest so that they can be considered remarkably reliable even at small
area level. Beside all these interesting and very powerful aspects, we can not forget
that ADs present some disadvantages too which we report in the following. All the
information collected is restricted to data required for administrative purposes, thus
limited to users of services and administrative definitions. Despite the huge amount
of data, sometimes proxy indicators have to be used. A general lack of contextual
and/or background information can occur. One of the issue that affects more these
data is the presence of missing or erroneous data and the lack of quality controls for
those variables which are appointed to be less important to the administrator for
whatever reason. This translates in outdated details of some sort. Finally, access for
researchers is dependent on support of data providers and, sometimes, it is not of
immediate acquisition.
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2.1 The Chronic Heart Failure Database

In this work, we will deal with several large ADs focused on the CHF pathology from
different point of view. Under this framework, the subjects of our data will be citizens
entered the Italian National Public Health System under different circumstances. The
databases have been built and are currently managed entirely by Lombardy Region
(Italy). They are part of its data warehouse infrastructure which Lombardy Region
uses to store several types of databases belonging to specific archives of the Sistema
Informativo Socio Sanitario (SISS). Among others, there are archives of infectious
diseases, vaccinations, rehabilitative assistance, pharmacological assistance, hospital
assistance, and so on so forth.

All the tables are organized following the very common star structure. Such a
schema presents some advantages like denormalized tables [Shin and Sanders, 2006;
Sanders and Shin, 2001]. This translates to simpler and more performing queries,
but also to fast aggregation thanks to specific algorithms, like grouping, which can
remarkably improve the reading capabilities of a database. This comes at the cost of
having an update process which can be tricky due to the introduction of some errors
if strong quality checks are not well built. The star structure contains multiple fact
tables which are linked all together through a linkage key. The linkage key provides
uniqueness of records and thus allows immediate identification of an event. The
algorithm adopted is the deterministic or rules-based record linkage. Of course, there
exist alternative methods like the probabilistic record linkage. What kind of linkage
method to employ in a given situation really depends on a variety of factors, some
of which are scientific and some of which are more subjective. In a very general
framework, we can affirm that for information rich scenarios, where direct identifiers
are available and of good quality, deterministic methods have been recommended
[Howe et al., 2007]. In these scenarios, these methods are easier to implement, easier to
interpret, and more effective. In information poor scenarios, for instance where direct
identifiers are unavailable, and/or data are of poor quality, probabilistic methods
consistently outperform deterministic ones even if they typically require a longer
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implementation time. We highlight the work of Gomatam et al. [2002] for an empirical
comparison between these two methods. Anyway, beyond these broad guidelines, the
final decision strongly depends on the ultimate goals of the study.

This work focuses on three tables within the Regional Healthcare System which
track and store hospital admissions data as well as pharmacological and outpatient
cares prescriptions. In particular, to best of our knowledge, this will be the first
consistent Italian attempt to build and use all these information jointly together. In
the following subsections we are going to describe the different datasets in details as
well as the process which brought to their construction.

2.1.1 Building the Minimal Database

Several steps must be taken in order to build an exploitable database which gathers
all the information we are requiring in just one accessible place. Querying the data
warehouse is a complex procedure which undergoes different limitations, for instance
the amount of follow-up years one can require or the number of patients for which
one would like to download information. Beside these reasons which are more related
to the interrogation operations theirself, the data acquisition has been splitted in two
parts. The former was used to identify those patients who have been admitted to
a given hospital with a confirmed diagnose of CHF and to collect all their hospital
admissions for this cause. The latter was used to depict the care process by mean
of collecting not only their hospital admissions and related information, but also all
their drug prescriptions and outpatient cares.

The raw databases which have been queried directly to Lombardy Region were
originally five. In this work we will work with three of them. Most of the available
information in the data come from a specific informative flux which is base on the
Hospital Discharge Paper (i.e. Scheda di Dimissione Ospedaliera (SDO)). This is
the tool which collects all the information associated with all the admission events
occurred in public and private hospitals located in the region. The SDO was initially
thought as a pure administrative tool with relative purposes. In Table 2.1, we show
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some of the fields which are typically recorded in the SDOs. In the next subsections,
we will reprise them in the context of the databases variables description.

Field Description

Gender Patient’s gender

Age Patient’s age

Group Primary diagnose group

Comorbidity Flag if any comorbidity is diagnosed within the

hospital admission

Table 2.1: Examples of fields recorded in the SDO.

Thanks to its valuable and rich information it is now a fundamental implement
on which many activities are based. For instance, the care program activity, hospital
assistance monitoring and different levels of clinical-epidemiological analyses. The
type of information which we can find in the SDO are various. Among others, we
find some registry information, hospitalization characteristics like which hospital and
diagnose are associated with the event, what type of hospitalization, date of admission,
clinical characteristic of the patient thus leading to specific diagnostic procedures.
Beside the information inside the SDOs, we managed two more data flows related to
drug prescriptions coming directly from the hundreds of pharmacies distributed across
the region as well as the outpatient cares taken by patients during their care process.

As we can imagine, the process of collecting and storing all these information
is amazingly complex. To have an idea of the size of these data we report some
descriptives of the original databases:

Hospital Admissions Database:

• number of records: 2,622,802;

• number of variables: 165;



12 The Administrative Data

• time window: 2000-2012;

• size: 6,6 GB.

Drug Prescriptions Database:

• number of records: 35,858,388;

• number of variables: 51;

• time window: 2006-2012;

• size: 26 GB.

Outpatient Cares Database:

• number of records: 128,777,598;

• number of variables: 70;

• time window: 2000-2012;

• size: 122 GB.

The total number of records is more than 167 millions which are generated by more
than 370 thousands patients.

Defining the selection criteria for patients who are affected by a given pathology
is very challenging due to the high risk of introducing strong biases in the entire
analysis process. Also, the definition of what is an heart failure is not intuitive and
requires some workarounds. All the assumptions and the selection criteria adopted
are explained in the methodological work by Mazzali et al. [2016]. To clarify some of
the key points, we sum up two fundamental concepts below. The former is related
to the definition of what is an hospitalization caused by CHF and the latter to the
definition of what is a CHF event and an incident event. Moreover, we also report
the flow chart of the quering process as show in Mazzali et al. [2016] in Figure 2.1

There are many studies which tried to define a set of criteria related to the
CHF pathology and they are all based on the information collected in the SDO
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	Figure 2.1: Data processing steps to build the project dataset as reported in Mazzali
et al. [2016]

which every single hospital fills in and for each patient who has been admitted into
that structure [Goff et al., 2000; Lee et al., 2005; Saczynski et al., 2012; Schultz
et al., 2013; Zarrinkoub et al., 2013]. These type of information are coded through
the International Classification of Diseases - Clinical Modification (ICD-CM) World
Health Organization [2015]. In particular, these data use the 9th revision, so ICD9-CM,
with the Italian version dated 1997 Ministero della Salute [1997]. The Agency of
Healthcare Research and Quality (AHRQ) proposed an indicator to evaluate intra-
hospital mortality for heart failure [AHRQ, 2015]. The Centers for Medicare and
Medicaid Services (CMS) developed a different model with aggregated diagnosis codes
into Hierarchical Condition Categories (HCC) [Pope et al., 2011].

The data warehouse which collects information through the SDOs stores all the
occurred events in the whole region. It often happens that a given patient is admitted
into a hospital and then transferred into a different structure in order to receive the
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best cares. For instance, a given structure may provide specific rehabilitation cares.
For these cases, the database records two separated events which actually might refer
to a unique care event. This happens because the databases are built upon single
events, but as we have seen, this is not the optimal structure. Hence, the very first
restructuring operation upon data had the goal to merge all the subsequent hospital
admissions for a given patient into a single record. The rational was simply to collapse
all the records which have no delay in between. That is, if a subsequent readmission
occurred the same day of the previous discharge then these two records have been
merged together. Moreover, this unique event is appointed as a CHF event if and
only if at least one of the two admissions had the relative AHRQ and/or CMS-HCC
codes, as described in Mazzali et al. [2016].

The raw databases have undergone a strong preprocessing procedure which aimed
at minimizing errors and at aggregating several sparse and very granular information.
Moreover, a restructuring procedure aimed at building a unique table in which each
row is well identified with respect to the original event. At this stage, the database
contains 51,565,258 events which are generated by 369,389 patients. This table collects
in the same place hospital admissions, pharmacological and outpatient cares events.

Finally, we identified the very first admission caused by CHF called incident event.
As pointed out earlier, the hospitalizations database covers the time window 2000 -
2012. An incident event is so if no other events occurred in the previous five years
[Mazzali et al., 2013]. The final time window considered is 2006 - 2012 in order to
have time consistency throughout the three databases, to respect the first admission
assumption and, last, because the recording system of the pharmacological database
prior 2006 was quiet different from the other two sources. This shrinkage caused a
further decrease in the number of records and patients which now are 20,293,118
generated by 187,520 patients. We will go in details over the software procedures
which allowed us to create the final dataset in Chapter 3.

All the aforementioned procedures have been carried out on the original unprocessed
databases as they got out from the data warehouse. Besides other reasons not directly
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related to this work, one of the main aim was to define and build a unique database
which provided a clear identification of the event type for each row. In Subsections
2.1.2, 2.1.3 and 2.1.4 we describe the different information when we focus on a
particular event like hospital admissions, drug prescriptions and outpatient cares,
respectively. In Subsection 2.1.5 we provide a description of the data structure which
is shared between all the databases.

2.1.2 The Hospital Admissions Database

In this subsection we describe the structure and the information which are strictly
related to what is inside the SDOs and is referred to the process of admitting a patient
into a given hospital within the Lombardy Region. These type of events will be
treated as guidance events. This means that, for each hospital admission we will try
to compute and link all the other information which are not coming directly from this
table. This particular operation will be discussed later on, but will be fundamental
for the purposes of these analyses.

Of all the more than 20 millions events, 583,345 (∼ 3%) are hospital admissions.
The available information is multiple. There are few variables which are shared
through the data sources and are: patient’s age and gender, censoring/death flag,
closing date/date of death. All the patients are labelled into four different groups
which are based on the diagnose which caused the a hospital admission. The interested
reader can find more about patients’ regrouping in Mazzali et al. [2016].

In Tables 2.2 and 2.3, we provide a description of all the original and computed
variables, respectively, as they appear in the final version of the dataset, that is after
all the cleaning and preprocessing operations. Column “Variable Name” represents
the name of the variable inside the databases, column “Description” provides a brief
explanation of the variable, column “Class” identifies the variable type as the software
reads the datasets. The type “int” refers to an integer variable, “char” to a string,
“date” to the date format as read by R, and “difftime” to the difference between two
dates in the “date” format.
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Variable Name Description Class

COD_REG Original patient’s unique identification ID int

gender Patient’s gender char

age Patient’s age int

group Primary diagnose group char

ASL_RESIDENZA Identification code of Italian Azienda Sanitaria

Locale (ASL) (Local Health Board)

int

IDosp Hospital identification ID char

labelOUT Patient’s censoring/death flag char

dateOUT Either patient’s censoring date/date of death date

dateADM Admission date date

year_discharge Year of discharge int

LOS Length of Stay in days difftime

riab Binary flag which marks if admission is in reha-

bilitation

int

ti Binary flag which marks if admission is in inten-

sive therapy

int

cardiochir Binary flag which marks if patient went through

heart surgery

int

ICD Binary flag which marks if patient has received

an Implantable Cardioverter Defribillator

int

CABG Binary flag which marks if patient went through

a Coronary Artery Bypass Surgery

int

charlson Charlson comorbidity scores1 int

metastatic Binary flag which marks the presence of metas-

tasis as a comorbidity

int

chf Binary flag which marks the presence of CHF as

a comorbidity

int

1For a detailed description of the scores, see the works of Charlson et al. [1987] and Gagne et al.
[2011]
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dementia Binary flag which marks the presence of dementia

as a comorbidity

int

renal Binary flag which marks the presence of renal

related issues as a comorbidity

int

wtloss Binary flag which marks the presence of weight

loss as a comorbidity

int

alcohol Binary flag which marks the presence of CHF as

a comorbidity

int

chf Binary flag which marks the presence of alcoholic

issues as a comorbidity

int

hemiplegia Binary flag which marks the presence of hemiple-

gia as a comorbidity

int

tumor Binary flag which marks the presence of tumors

as a comorbidity

int

arrhythmia Binary flag which marks the presence of arrhyth-

mia as a comorbidity

int

pulmonarydz Binary flag which marks the presence of one or

more pulmonary diseases as a comorbidity

int

coagulopathy Binary flag which marks the presence of coagu-

lopathy as a comorbidity

int

compdiabetes Binary flag which marks the presence of diabetes

as a comorbidity

int

anemia Binary flag which marks the presence of anemia

as a comorbidity

int

electrolytes Binary flag which marks the presence of elec-

trolytes related issues as a comorbidity

int

liver Binary flag which marks the presence of liver

issues as a comorbidity

int

pvd Binary flag which marks the presence of periph-

eral vascular disease as a comorbidity

int
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psychosis Binary flag which marks the presence of psychosis

as a comorbidity

int

pulmcirc Binary flag which marks the presence of pul-

monary circulation issues as a comorbidity

int

hivaids Binary flag which marks the presence of

HIV/AIDS as a comorbidity

int

hypertension Binary flag which marks the presence of hyper-

tension as a comorbidity

int

Table 2.2: Hospital Admission Database original variables.

Variable Name Description Class

ID Patient’s unique identification ID after prepro-

cessing

int

adm_number Number of hospital admissions per patient int

labelOUT.2 Patient’s specific status at the end of the study char

dateDISCHARGE Discharge date date

exposure Time in days since the patient had his/her first

record in the database

difftime

timetoREADM Time in days to the next event difftime

timeADMtoOUT Time in days between admission and the end of

the study

difftime

timeDISCHARGEtoOUT Time in days between discharge and the end of

the study

difftime

DEATH_intraH Binary flag which marks if death occurred inside

the hospital

int

DEATH Binary flag of death int

n_com Total number of comorbidities flagged int

n_pro Total number of surgical procedures registered int

Table 2.3: Hospital Admission Database computed variables.
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2.1.3 The Drug Prescriptions Database

This database deals with the pharmacological treatment undertaken by given a
patient through the Anatomical Therapeutic Chemical (ATC) classification system2.
This is by far the most common and best known coding systems for drugs. It operates
at five different levels of details where the first indicates the anatomical main group and
the fifth the chemical substance contained in the drug. The regional data warehouse
is able to collect a huge number of information spanning through different families of
drugs. In this work, we will focus only on those related to the cardiological system.
In particular, we do register drugs of the following families:

• A: alimentary tract and metabolism;

• B: blood and blood forming organs;

• C: cardiovascular system;

• N: nervous system.

Whenever a patient buys a drug, the associated ATC code is added to the dataset
and linked to the patient. Of all the more than 20 millions events, 11,238,019 (∼ 55%)
are given by drug prescriptions.

In Table 2.4, we provide a description of all the variables as they appear in the
final version of the dataset, that is after all the cleaning and preprocessing operations.

Variable Name Description Class

ID Patient’s unique identification ID after prepro-

cessing

int

COD_REG Original patient’s unique identification ID int

2For further information regarding ATC codes, refer to the following link http://www.whocc.

no/atc_ddd_index/

http://www.whocc.no/atc_ddd_index/
http://www.whocc.no/atc_ddd_index/
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qta_pharma Drug coverage in days according to the Defined

Daily Dose (DDD)

int

A10 Number of registered drugs used in diabetes int

B01 Number of registered antithrombotic agents int

B03 Number of registered antianemic preparations int

C01 Number of registered cardiac therapy int

C02 Number of registered antihypertensives int

C03 Number of registered diuretics int

C04 Number of registered peripheral vasodilators int

C05 Number of registered vasoprotectives int

C07 Number of registered beta blocking agents int

C08 Number of registered calcium channel blockers int

C09 Number of registered agents acting on the renin-

angiotensin system

int

N02 Number of registered analgesics int

Table 2.4: Drug Prescriptions Database variables.

It is worth saying that though the system is able to track all the way down to the
fifth ATC level, we decided that such a level of detail could be unfeasible during the
modeling phase. After several discussions with the clinicians involved in the project,
we came up with the variables reported in Table 2.4 which are a cutoff at the second
level.

2.1.4 The Outpatient Cares Database

The third database regards the outpatient cares in the form of outpatient ap-
pointments which the patient set after a prescription has been delivered. Similarly to
the pharmacological database, this one registers all the cares a patient undertakes.
The classification system tracks multiple things including main discharge diagnosis,
secondary diagnoses, surgeries and diagnostic and/or therapeutic procedures. Of all
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the more than 20 millions events, 8,471,754 (∼ 42%) are given by outpatient cares.
Again, here we focus on the number of cardiological outpatient cares as reported

in Table 2.5.

Variable Name Description Class

ID Patient’s unique identification ID after prepro-

cessing

int

COD_REG Original patient’s unique identification ID int

qta_pa Total number of outpatient cares taken int

eco Number of echocardiography int

visita_cardio Number of cardiological doctor’s visits int

visit_contr Number of control doctor’s visits int

test Number of stress tests int

controllo_device Number of device checks (i.e. peacemaker) int

ecg_dinamico Number of dynamic electrocardiograms int

monit_ecg Number of electrocardiogram monitorings int

ecg Number of electrocardiograms int

riab_card Number of cardiological rehabilitation int

Table 2.5: Outpatient Cares Database variables.

2.1.5 The Longitudinal Structure

The most important feature that the aforementioned databases share is their
structure which is called longitudinal. Longitudinal data can be defined as data
resulting from the observation of subjects (human beings, animals, organizations,
societies, countries) on a number of variables (health status, employment status,
arithmetic skills, financial situation) over time [Bijleveld et al., 1998]. This definition
implies the notion of repeated measures, i.e. the observations are collected on a certain
number of occasions for each statistical units. The pattern of these occasion is not
defined in general so that records can occur randomly. We do speak of longitudinal data
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whenever we have observed more than once or whenever the number of observation
points or measurement occasions (T ) is greater than one. The number of subjects may
vary from one to many as well as the number of variables involved. Thus, replication
over time distinguishes longitudinal research (T > 1) from cross-sectional research
(T = 1) [Bijleveld et al., 1998]. In the latter, we measure just one single outcome for
each individual in the study. There are plenty of advantages when using longitudinal
data: for instance, they can separate cohort and age effects by being able to identify
and track little changes over time within individuals (aging-effect) from differences
among people in their baseline levels (cohort-effects). There are many other pros and
cons in using such data and they have already been widely discussed in the literature.
Let us remind that a big advantage is that administrative data with the discussed
structure are population based and almost costless. This is key point since trying
to collect data in the longitudinal structure without the management and hardware
given by data warehouses which do that for governments/public system would be
economically unfeasible. For instance, we do have to ensure that the same subjects
can be measured repeatedly over the course of often many years. On the other hand,
particular caution must be taken when dealing with these type of data because their
quality and reliability are not alway as good as expected, due, for instance, to data
imputation issues (Nguyen and Barshes [2010], Grimes [2010], Hoover et al. [2011],
Gavrielov-Yusim and Friger [2013], Ieva et al. [2014], Mazzali and Duca [2015]).

There exist different ways of collecting longitudinal data. The first one is the
most common and natural way of tracking information that is prospectively, thus
following subjects forward in time. We say natural because if we think about a
data warehouse which collects data on a daily basis regarding healthcare events, we
intuitively think of that as a process which goes forward in time for each patient who
is registered. If it is the case, it is also possible to collect data retrospectively, by
extracting multiple measurements on each person from historical records. For sake of
clarity, these historical data could have been, with a high chance, administrative data
previously recorded in the prospective way.



Chapter 3

Software Development for Data

Preparation

A very consistent part of this thesis regards writing codes. In this chapter, we
are going to present and discuss all the steps which we have taken in order to read,
manage, develop and analyze all the databases.

R is a powerful tool for data mining/wrangling but caution must be taken when
very large datasets need to be processed. We will discuss some of the key issues related
to memory management and code optimization in Section 3.1 and we will present
a new R package specifically developed for data wrangling longitudinal datasets in
Section 3.3. Before going ahead with the present chapter, let us point out that all
the procedures have run always on a single-core per time. All the process of making
efficient codes by addressing the different issues we are going to discuss below have
been thought and built to be used on a consumer laptop and not on a cluster or in
any of the parallel paradigms. All the lines of code presented share the same printing
style. In particular, any line beginning with a single # is a comment. A double ##

represents a code output. When none of these symbols are printed out, then that line
is a piece of code which has to be executed.
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3.1 Memory Management and Code Optimization

One of the greatest feature of R is its interactivity and ease of use. R is a high-
level scripting language which implies that we do have to face some trade-offs with
performances. The main purpose of R is to make data analysis and statistics more
accessible to users, but at the same time it was not specifically designed to make the
life of a computer easier. There are several approaches that we may consider when
describing this language and one of the most important is how it uses memory.

It is well known that every time a certain operation is requested, whether arithmeti-
cal or procedural, something happens behind the scenes and we do not have complete
control on it. Specifically, R often works (i.e. almost always) with a call-by-value
schema as opposite to a way more efficient call-by-reference one. To clarify this
concept, consider the following few lines of code in which we define a vector of integers
a and we trace its memory address after very simple operations. The memory address,
represented below by a sequence of numbers and letters between [], is the memory
logical position in which the vector is temporarily stored. The memory is called
Random Access Memory (RAM) and it is responsible to manage all the information
that have to be read or written in a very fast way.

# defining the integer vector a

a = 1:10

# activating R memory tracing on a

tracemem( a )

## [1] [0x7fbeeb48ee88]

# assigning a to b

b = a

# modifying an element of b

b[ 1 ] = 1

## tracemem[0x7fbeeb48ee88 -> 0x7fbeeb3b8ad8]

## tracemem][0x7fbeeb3b8ad8 -> 0x7fbeebee1948]
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As we can see, every time we define a new object in the R environment, we associate
a specific memory block to it. When we add a new object, b in this case, we can see
that no other memory cells are occupied, hence R is passing the value of a to b by
reference. This operation comes at no cost and will be fundamental as we will discuss
later on in this chapter. As soon as we change even a single element of b, we can see
that the original memory cell is modified to a new one which is then edited again to
the final block in which we find the updated version of b. Editing b is done here by
value which means that the program is physically (i.e. through memory cells) passing
the value of a and then modify just one of its element. It is evident that the whole
operation that we are carrying out in just one line of code is not the best we can do
for several reasons. The first and most important one is that we are doing copies
which consume memory. R does copies, which here take the name of demand copies
or just internal copies, all the time, so this is something that we must be warned of
especially when dealing with large datasets.

The same exact behaviour occurs even when the common data.frame structure
is used. In the following example, we show that if we need to repeat, for whatever
reason, a given operation for n times, then the internal copies come into play n times
by assigning at each iteration a new memory cell. Below, we build a data.frame with
10 rows and 3 columns and we want to assign 0 to all the rows in the first column
whose value is below 0.5. It is a very simple filter and assign procedure that we take
3 consecutive times by using the for loop. As we can see, for each time new memory
cells are involved.

# defining a test data.frame object

df = data.frame( a = rnorm( 10 ), b = rnorm( 10 ), c = rnorm( 10 ) )

tracemem( df )

## [1] [0x7fe061ae7a48]

# checking for any memory variation

for ( i in 1:3 ) {

cat ( "i =", i, "\n" )



26 Software Development for Data Preparation

df[ df$a < 0.5, 1 ] = 0

}

## i = 1

## tracemem[0x7fe061ae7a48 -> 0x7fe06194b890]

## tracemem[0x7fe06194b890 -> 0x7fe0658f5ba8]

## tracemem[0x7fe0658f5ba8 -> 0x7fe0658f7688]

## i = 2

## tracemem[0x7fe0658f7688 -> 0x7fe0658fe1b0]

## tracemem[0x7fe0658fe1b0 -> 0x7fe0658fe480]

## tracemem[0x7fe0658fe480 -> 0x7fe0658f96e0]

## i = 3

## tracemem[0x7fe0658f96e0 -> 0x7fe0658f9848]

## tracemem[0x7fe0658f9848 -> 0x7fe0639ca0c8]

## tracemem[0x7fe0639ca0c8 -> 0x7fe0634af568]

3.1.1 Call-by-reference: the data.table package

The above example is totally unrealistic because it makes no sense to loop over
such an operation, but it is very useful though to understand what happens when
we code in R . The best solution that we can think of is to convert every operation
to a call-by-reference operation. Luckily, there exists a well known package called
data.table [Dowle et al., 2014] which addresses this particular issue and which does
many more things. For detailed explanations of the available functionalities, we remind
to the GitHub repository at https://github.com/Rdatatable/data.table. The
most important feature of data.table is that it does not make any copy whatsoever,
unless explicitly requested. To show this, we run again the previous example under
the data.table environment. As we can see, tracemem() is working on the dt, but
the original memory cell has not been changed.

https://github.com/Rdatatable/data.table
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# loading data.table package

library( data.table )

# defining a test data.table object

dt = data.table( a = rnorm( 10 ), b = rnorm( 10 ), c = rnorm( 10 ) )

tracemem( dt )

## [1] [0x7fe067613000]

# checking for any memory variation

for ( i in 1:3 ) {

cat ( "i =", i, "\n" )

dt[ a < 0.5, a := 0 ]

}

## i = 1

## i = 2

## i = 3

This is a very particular approach if we think at how the R ecosystem works. This
little difference, which is actually not even visible throughout the code, is at the basis
of writing efficient codes and has been extensively used throughout the present work.

3.2 A Roadmap Through Complexity

The goals of the following procedures are multiple, but they can be substantially
gathered into three main steps. In the first place, we want to be able to import and
manage multiple large datasets efficiently and we want to do this by exploiting a
suitable data structure with correct information in it. We also want to be able to
identify and work with a selection of specific events, for instance just hospitalizations.
This is described in Subsection 3.2.1. In the second place, we want to completely
restructure the original data such that each information related to drug prescriptions
and outpatient cares is well associated to a specific hospital admission. The reason
and the computational procedure are explained in Subsection 3.2.2. In the end, we
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want to reshape the classic longitudinal structure into a new form specifically created
to run a set of statistical models. This is briefly explained in Subsection 3.2.3 and then
discussed with greater details in Section 3.3. All of these waypoints are fundamentals
and necessary to safely navigate through such a complex system, though they hide
different levels of computational challenges and issues.

3.2.1 The Raw Data: Import and Events Generation

The very first step consists of importing the raw data. Several initial preprocessing
operations have been carried out on these data in order to achieve the structure and
the minimal that we have described in Section 2.1.1. The data came as csv files
splitted up into the seven years of the follow-up.

Each file contains the longitudinal information of all the three events: hospitaliza-
tions, drug prescriptions and outpatient cares. Besides the consistent work of taking
care of errors and mismatches, the strength of these data format is their simplicity
in understanding which type of event we are dealing with. For sake of clarity, in
Table 3.1, we show a simplified version of the data structure in which we can identify
the different events by simply looking at the variable tipo_prest such that 41 is an
hospital admission, 30 is a drug prescription and 21 is an outpatient care. We also
show the level of detail that we are able to manage by looking at variable class_prest.
This is the variable which contains the exact information related to a given event.
If we look at Table 3.1, we can see that the first row corresponds to an hospital
admission. Through class_prest, we recognize the cause of the admission which in
this case is related to a Chronic Obstructive Pulmonary Disease (COPD). The same
occurs when the event is a drug prescription and an outpatient care. The second
and fourth rows tell us that the patient bought an antithrombotic agents and took a
respiratory exam, respectively.
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row id ID tipo_prest class_prest

1 1 41 0127_COPD

2 1 30 B01AC06

3 1 30 B01AC06

4 1 41 0131_Adlt_resp_fl

5 1 30 C07AB07

6 1 21 0261_-_ALTROINGENERE

7 1 30 C03DA03

8 1 21 0121_-_MEDICINAFISICAERIA

9 1 21 0021_-_CARDIOLOGIA

10 1 21 0264_-_VISITADICONTROLLO

Table 3.1: Simplified version of a raw data file structure.

After the importing operations have been concluded correctly, we have run some
consistency checks related to data format. We noticed many incongruences on columns
which potentially may affect the subsequent operations. For instance, all date type
variables have been cast to character so that arithmetical operations were totally
impossible. Hence, the second step has been a complete scan of all the variable
classes in each file and where mismatches popped out, we have cast them back to the
appropriate class. Once all the different databases have been correctly loaded in the
environment, a fast binding procedure has been carried out in order to aggregate them
into one single dataset of 20,293,118 rows each of which is a tracked event coded as
reported in 3.1. This whole operation is very efficient and it takes only few seconds to
complete despite the amount of information to be processed and aligned. In the name
of labelling each object, from now on we will refer to this single dataset as HF_DATA.

From the HF_DATA structure, briefly reported in Table 3.1, we have built the
three specific event-type databases which we call SDO, PHARMA and OUTP for hospital
admissions, drug prescriptions and outpatient cares events, respectively. At this point,
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we can compute all the secondary custom quantities such as the Length of Stay in
a hospital, the time to the next admission, or the amount of a specific chemical
substance bought, or a given cardiological outpatient care taken. For instance, all the
extrapolation procedures of the lower levels of details of the ATC codes have been
done at this stage.

All the previous operations had three precise aims. The first one was to generate
a single longitudinal database which contained all the event types ordered by patient
ID and by time of event. The second one was to split again this database, but by
event’s type and not by event’s year (this was the original way of splitting the raw
data). There is also a more practical reason and it is related to the already mentioned
concept of optimization. Dealing with a single and large dataset and run several
complex operations on it could be hard to manage on a single machine. It is much
more convenient and efficient to work with independent tables of data. The third one
was to compute the most part of custom quantities which will be then used in the
modeling part.

3.2.2 Defining the Sample and Aligning Information

This is the core of the whole preprocessing part. The procedure has only two aims:
the first one is to define the final sample of eligible patients who will be selected for
the subsequent analyses. The second one is to align the information associated with
drug prescriptions and outpatient cares to the hospital admissions events.

Before going in the details of the two operations, let us point out a key fact. In
order to achieve our objectives, we need to introduce a hierarchy on our data. This
means that from now on, we consider the SDO events as our main events to which
we attach more information which come from the PHARMA and OUTP events. This
has consequences on several following procedures and analyses starting from the
information alignment. As we will see later on, we are now focusing more on the
hospital admissions process and its evolution with time than all the rest. We are
assuming that all the other information could help us in understanding and eventually
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modeling this process. Hence, hereafter each hospitalization will be labelled main
event, while both a drug prescription and an outpatient care will be labelled secondary
events.

So, back to the first procedure, with this in mind we want to identify all the
patients in the three databases who are eligible for the analysis and we want to do
that in order to exploit the full potential of the administrative data. In Table 3.2, we
report for each database (first column) the size in terms of the number of patients
(second column), the number of events they have generated (third column) and the
total number of variables in each structure (fourth column).

Type of events n. patients n. events n. variables

Hospital Admissions - SDO 187,5141 583,345 46

Drug Prescriptions - PHARMA 155,254 11,238,019 12

Outpatient Cares - OUTP 153,660 8,471,754 20

Table 3.2: Different sizes of the SDOs, PHARMAs and OUTPs.

As we can see, despite the amount of recorded events are not strictly related to the
number of patients. The SDOs outnumber the other two and this is effectively a issue
since for 32,260 and 33,854 patients we would not have any information associated with
PHARMA or OUTP, respectively. Our best option is to have at least one drug prescription
and one outpatient care for each SDO patient, hence we cut out all the patients who
do not belong to the intersection of the three samples. Again, this operation is carried
out very efficiently by exploiting the design of INTERSECT operator under the SQL2

programming language which is way faster than the related base function and which
is implemented in the data.table package. The final sample counts 144,933 patients

1Six patients were in the end rejected due to sevaral inconsistencies which we could not address.
2For further details, we refer to the following link: https://db.apache.org/derby/papers/

Intersect-design.html

https://db.apache.org/derby/papers/Intersect-design.html
https://db.apache.org/derby/papers/Intersect-design.html
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for whom we have all the information related to the three types of events. This step
defines the ultimate version of HF_DATA on which we will run all the next procedures.

By now, nothing has changed to the original data format. For each patient selected,
we do have all his/her events whether they are SDOs, PHARMAs, or OUTPs. The next big
jump we need to take in order to satisfy the concept that SDOs are the main events, is
to realign HF_DATA such that the longitudinal structure is kept, but the information
regarding the secondary events would be moved and shifted next to the main events
and not below. Let us explain this a little bit further with an example. Consider a
patient with 10 events: 3 are main events occurred at given points in time, the other 7
are secondary events such that 4 are given by drug prescriptions and 3 by outpatient
cares. We report them in Table 3.3. We would also like to highlight that missingness
is present, but is due to the fact the Length Of Stay (LOS) is a variable which is
strictly related to SDOs only.

row_id ID tipo_prest LOS date_of_event class_prest

1 1 41 10 01/01/2006 0133_Oth_low_resp

2 1 30 NA 01/15/2006 C07AB07

3 1 30 NA 01/15/2006 B01AA03

4 1 41 10 02/01/2006 0127_COPD

5 1 30 NA 02/20/2006 C03DA03

6 1 21 NA 02/25/2006 0251_-_UROLOGIA

7 1 41 20 03/01/2006 0106_Dysrhythmia

8 1 21 NA 03/23/2006 0021_-_CARDIOLOGIA

9 1 21 NA 03/28/2006 0132_-_DIALISI

10 1 30 NA 03/31/2006 C09AA01

Table 3.3: Example of the HF_DATA before the alignment procedure. From left to
right, we report the row id, the patient ID, the event type, the Length of Stay in a
hospital, the date of the event and the associated code for identification.
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The goal of this procedure consists in rearranging the information by shrinking
the database in order to have only the hospital admissions by rows and the secondary
events to be seated next to them as shown in Table 3.4. For demonstration purposes,
we simplified some part of information. We do not have anymore the fifth level of
ATC codes for chemicals, but only the families. For instance B01 are antithrombotic
agents, C03 are the diuretics, C07 are beta blocking agents, C09 are agents acting on
the reninangiotensin system. The same happens for the outpatient cares where now
we register only the general branches where CARDIO, DIALY and URO collect all the
cardiological, dialysis and urological related cares.

row_id ID LOS date B01 C03 C07 C09 CARDIO DIALY URO

1 1 10 01/01/2006 1 0 1 0 0 0 0

2 1 10 02/01/2006 0 1 0 0 0 0 1

3 1 20 03/01/2006 0 0 0 1 1 1 0

Table 3.4: The aligned version of HF_DATA in which each row is a hospital admission.
All the information related to the main event are self contained in the associated row.

As we can see, we reduce the complexity along the longitudinal dimension and in
the meantime we explode it in the other direction as we show in Figure 3.1. The
structure is well defined and is divided into three blocks of information. The first
block reflects the original HF_DATA and corresponds to the SDOs. The second and
the third blocks are instead aligned to the hospitalization rows thus increasing the
knowledge around that particular event. Main events here act as attractors of all the
other types of events so that the evolution of the process is now really associated with
the hospitalization pattern of a given patient.

To achieve this data format, a great effort has been dedicated to the identification
of the secondary events between the main ones. Doing so, allows us to know what
happens between two subsequent admissions. That is, we can track if a patient follows
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Hospital Admissions 
(main events)

Drug Prescriptions 
(secondary events)

Outpatient Cares 
(secondary events)

Block 1 Block 2 Block 3

Figure 3.1: Schematic of the aligned version of HF_DATA. Now it is clear how the
secondary events work as contributors to the whole set of information around a
hospital admission event.

doctor’s recommendations appropriately and his/her willingness to adhere to therapy
is consistent throughout the period.

From a computational point of view, the alignment procedure presents some
glitches which must be handled with caution. By going into details, we can analyze
and split the algorithm in two sub routines.
We define a primary key in order to quickly order the database and we choose it to
be patient’s ID. Due to the nature of the longitudinal structure, here the primary key
does not identify unique rows, but a set of multiple observations generated by the
same ID. Once the groups, or the first level of aggregation, have been identified, we
iteratively proceed to spot all the continuous sequences of secondary events which
occur between two main events. Each row has been marked with an identification
counter for each type of event to facilitate the reordering. It is worth to notice that
this step comes at high computational costs. The introduction of a key, which not
only stores the grouping structure, but also order the database very quickly is a
an important optimization step which reduced the computational time considerably.
After this first step, we have been able to compute the different indexes which track
each sequence of event. We have also computed a more general index which focuses
on main events in order to track their continuous sequences. All of them have been
added to HF_DATA and we report their structure for just one patient in Table 3.5.



3.2 A Roadmap Through Complexity 35

row_id ID tipo_prest hosp.id hosp pharm pa

1 1 41 1 1 NA NA

2 1 30 1 NA 1 NA

3 1 30 1 NA 2 NA

4 1 41 2 2 NA NA

5 1 30 2 NA 3 NA

6 1 21 2 NA NA 1

7 1 30 2 NA 4 NA

8 1 21 2 NA NA 2

9 1 21 2 NA NA 3

10 1 21 2 NA NA 4

11 1 21 2 NA NA 5

12 1 30 2 NA 5 NA

13 1 30 2 NA 6 NA

14 1 21 2 NA NA 6

15 1 21 2 NA NA 7

16 1 21 2 NA NA 8

17 1 21 2 NA NA 9

Table 3.5: Custom indexing structure in HF_DATA for the first two main events of
a given patient. We can notice how the indexes are able to track all the continuous
sequences of each event type.

This table contains several information. We have hosp.id which tracks whether the
given secondary event is related to the just occurred main event. For instance, we can
see how it repeats 1 for three times. This means that the patient has had a hospital
admission, given in the first row and for which we have hosp equals to 1, followed by
two secondary events, given by in the second and third row and for which we have
pharm equals to 1 and 2. In this case, all the secondary events are drug prescriptions
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so that is why we impute a NA in pa. Similarly, we can look at the events related to
the second hospital admission and seeing that there are 13 secondary events after the
main one. Four of them are drug prescriptions while the remaining 9 are outpatient
cares. Again we notice how the general index hosp.id marks this all sequence with a
2.

The second step of the algorithm takes care of excluding main events with a LOS of
zero and of physically aligning the data in the structure as shown in Figure 3.1. A
LOS of zero represents the so called day-hospital events for which we have no interest
at this early stage of the analysis. The realignment procedure has been carried out by
exploiting again the fast joins method. Specifically a triple inner join has been used
to efficiently achieve the goal.

3.2.3 Reshaping the Data

All the previous operations served to create a single database whose focus is on
hospitalizations. Moreover, each event is enriched with information coming from
multiple sources and the structure is once again longitudinal. The very final step of
our roadmap through complexity is to apply to the database a brand new reshaping
procedure which will modify the data structure into a new one much more suitable
for a specific set of statistical models called multi-state models. We will discuss with
greater details the technicalities of the procedure in Section 3.3 where we introduce
and explain the functionalities of the new R package we have developed. Multi-state
models and related concepts will be treated extensively later on in Chapter 4. In order
to fully understand the remaining part of this chapter, let us think of a multi-state
model as a method to study the movement of an individual between a define set of
states. States can be patient’s condition or, in our case, the physical location of a
patient inside or outside a hospital plus the state which identifies the death of the
patient.
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3.3 msmtools: Building Augmented Data in R

As we already explain, most of the effort of this work has been focused to the
development of routines with special attention to efficiency and speed. While most of
them, though the majority is automatic, were very data dependent, the whole process
of data reshaping could have been generalized to whatever database with certain and
well defined characteristics.

In this Section, we are introducing a new R package called msmtools [Grossetti,
2016] which has been developed by the author of this thesis. msmtools introduces
a fast and general method for restructuring classical longitudinal datasets into an
enhanced shape called augmented. The reasons for this are multiple as discussed in
the next subsection.

3.3.1 Motivations

The development of new software is always challenging and requires to have a
clear picture of what the purposes, advantages and possible glitches might be. There
are three main motivations which have driven the effort.

For what concerns this work, the main question to address has been typically the
following: how can we make things go faster without loosing efficiency and generality?
The answer is of course not trivial and if one is asking something about reproducibility
too, then these are all good reasons to start thinking about writing a consistence
peace of code which tries to address them all. When working with R, the first thing
which comes in mind is a package.

Besides the philosophical reasons and code ethics, the real deal here is that up
to now no methods exist to restructure time to event data of the format described
previously which satisfy certain requisites in order to run a multi-state model through
the msm package [Jackson, 2011]. So, the main reason is the lack of a computational
tool which could address this problem.

Seen the typical size of these days databases, a second fundamental motivation
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is related to code efficiency and speed. msmtools has been so developed with a
special attention to these two apects. All the functions are based on the well known
data.table package. Non-standard-evaluation has been exploited in order to reduce
the typing effort of the user [Wickham, 2014, 2015]. Lists are widely used because
of their flexibility and their efficiency. We also wanted to build a tool which could
take a very large dataset and process it quickly and without any computational glitch
especially when using a consumer machine instead of cluster or distributed computing.
As a result, msmtools can process around 50 millions patients in less than an hour on
a single processor.

The third motivation is more related the applicability of the software. Building
a general data wrangling code is very hard. msmtools can instead process any
longitudinal dataset with certain prerequisites and output a very general augmented
format which exploits all the information passed to the software. We are going to
discuss this in details in Subsection 3.3.2.

msmtools is available for download and installation from CRAN, the Comprehen-
sive R Archive Network. The current stable version is 1.2. To install and load it, type
the following:

install.packages( "msmtools" )

library( msmtools )

msmtools requires R version 3.0 or higher to run. It is also compatible with Mi-
crosoft R Open 3.2.3 or higher available at https://mran.microsoft.com/open/.
Development releases of the package are available on the GitHub repository https:

//github.com/contefranz/msmtools. In order to ensure their stability and con-
sistency, a continuous integration service named Travis-CI 3 has been configured.
Travis-CI specifically works to build and test the package hosted on GitHub.

3The service is open source and is available at: https://travis-ci.org

https://mran.microsoft.com/open/
https://github.com/contefranz/msmtools
https://github.com/contefranz/msmtools
https://travis-ci.org
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To install the latest release (possibly in development), run the following code:

devtools::install_github( "contefranz/msmtools" )

msmtools comes with three functions:

• augment(): the main function of the package. augment() processes a longitudi-
nal dataset to produce an augmented version;

• prevplot(): a graphical Goodness of Fit (GoF) tool which plots observed and
expected prevalences given a multi-state model as discussed in Subsection 4.4;

• survplot(): a second graphical GoF tool which plot fitted and empirical
survival curves given a multi-state model as discussed in Subsection 4.4. It also
compute the data on which plots are built.

In the next subsection, we are going to describe accurately the most important one.

3.3.2 The Function augment()

Let us recall some of the key feature of a longitudinal data structure. First of
all, it can be built upon several different type of observations. For instance, bank
transactions, online purchases, volcanic eruptions, hospital admissions, and so on
so forth. Among the many characteristics which qualify a dataset to be labelled as
longitudinal, there is one which, in this context, tops all the others and it is whether
observations are time distributed or not. For instance, if we can identify a starting
time and an ending time of a given observation, then we deal with data in which each
observation (row) has a well defined time length that is known and exact. If we cannot
identify any, then we deal with data in which observations are just points in time and
for which we do not know their duration. It is now clear that a dataset regarding
hospital admissions falls under the first category, while bank transactions fall under
the second one. In fact, the former typically provides the dates of admission in and
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discharge from a hospital, while the latter provides just the exact moment in time
at which the transaction occurred. This difference is rather fundamental. msmtools
has been developed to work exclusively with the first type of data. That means, if
observations are just points in time, then the package is of no help at all.

There exist a bunch of reasons why the classic longitudinal structure is not enough
when specific statistical analyses need to be run, particularly when dealing multi-state
models. Because this class of models focus on finding the probability of a subject,
a patient in our case, of being in a given state at a particular point in time, a first
observation could be that we are not able to infer anything about this state. The
data we are managing provides us information about the occurrence of specific events,
like hospital admissions. Looking at single rows does not suggest us if a patient is
inside a hospital or outside of it nor if he/she is dead or still alive. We clearly need a
new structure in which we exploit the longitudinal format to extrapolate new hidden
information in order to make them usable from the very beginning.

The workhorse of msmtools is the function augment() which takes a longitudinal
dataset with exact starting and ending times where each row represents an observation
of a given event of interest and reshapes it to produce an augmented version where each
row is a specific transition between two states. augment() takes several arguments: a
longitudinal dataset of classes data.table or data.frame, a data_key which identifies
the subject, an optional event counter with n_events, a pattern which provides the
subject’ status at the end of time, a starting and ending times as well as a censoring
time/death time given by t_start, t_end and t_cens or t_death, respectively. By
default, augment() builds a pre-defined vector of states (i.e. where a patient is at a
given time). The user can pass a custom vector through the argument state.

To illustrate how the function works, let’s consider the following example which
is based on the synthetic dataset hosp, available with msmtools. hosp mimics the
behaviour of a cohort of 10 patients. These are observed anytime they enter and get
out from a hospital. Each subject has his/her own admission pattern both from a
time scale point of view, and from the number of events recorded. The dataset counts
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53 rows and 12 variables. For a detailed description of the data, we remind to the
package vignette and to the help of the dataset itself.

So, let us consider a simplified version of hosp. We extract only the first two
patients, reducing the sample to 17 rows, and 8 variables out of 12 as depicted in
Table 3.6. These data formats are very common when dealing with observational
studies, or with chronic disease monitoring and with hospital admissions recording.
In general, they are a well established system where to collect information in.

row ID adm_number gender age label_2 dateIN dateOUT dateCENS

1: 1 1 F 83 dead 2008-11-30 2008-12-12 2011-04-28
2: 1 2 F 83 dead 2009-01-26 2009-02-16 2011-04-28
3: 1 3 F 83 dead 2009-05-13 2009-05-15 2011-04-28
4: 1 4 F 83 dead 2009-05-20 2009-05-25 2011-04-28
5: 1 5 F 83 dead 2009-06-12 2009-06-16 2011-04-28
6: 1 6 F 83 dead 2009-06-20 2009-06-25 2011-04-28
7: 1 7 F 83 dead 2009-07-17 2009-07-22 2011-04-28
8: 1 8 F 84 dead 2010-04-15 2010-04-20 2011-04-28
9: 1 9 F 84 dead 2010-10-11 2010-10-14 2011-04-28
10: 1 10 F 85 dead 2011-01-14 2011-01-17 2011-04-28
11: 1 11 F 85 dead 2011-04-27 2011-04-28 2011-04-28
12: 2 1 F 99 alive 2007-09-17 2007-09-27 2012-12-31
13: 2 2 F 100 alive 2009-04-09 2009-04-17 2012-12-31
14: 2 3 F 103 alive 2012-04-16 2012-04-20 2012-12-31
15: 2 4 F 103 alive 2012-04-24 2012-05-19 2012-12-31
16: 2 5 F 103 alive 2012-05-20 2012-05-25 2012-12-31
17: 2 6 F 103 alive 2012-08-19 2012-08-21 2012-12-31

Table 3.6: Longitudinal structure for the first two patients of dataset hosp with
the following quantities: ID is the subject, adm_number is a progressive event counter,
gender is the patient’s gender, age is the patient’s age in years, label_2 is the
patient’s condition at the end of the study or at his/her last observation, dateIN,
dateOUT and dateCENS are the admission, discharge and censoring / death times
respectively.
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A call to augment() would look like this:

hosp_augmented = augment( data = hosp, data_key = subj,

n_events = adm_number,

pattern = label_2,

state = list("IN", "OUT", "DEAD"),

t_start = dateIN, t_end = dateOUT,

t_cens = dateCENS )

The augmented data are reported in Table 3.7. Despite the fact that not the same
variables have been reported because of layout concerns, two things come up at first
sight. In the first place, the number of rows is more than doubled. We now have
35 observations against the initial 17. In the second place, new variables have been
created by the function and we report their description below:

• status: a status flag which gives the patient’s condition at a given point in
time. augment() automatically and quickly checks whether argument pattern
has 2 or 3 unique values and computes the correct structure of a given subject.
The variable is cast as character;

• status_num: the corresponding integer version of status;

• n_status: a mix of status and n_events cast as character. n_status comes
into play when a model on the progression of the process is intended;

• augmented: the new timing variable for the process when looking at transitions.
If t_augmented is missing, then augment() creates augmented by default. The
function looks directly to t_start and t_end to build it and thus it inherits
their class. In particular, if t_start is a date format, then augment() computes
a new variable cast as integer and names it augmented_int. If t_start is a
difftime format, then augment() computes a new variable as numeric and names
it augmented_num;
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row ID adm_number gender age label_2 augmented status n_status

1: 1 1 F 83 dead 2008-11-30 IN 1 IN
2: 1 1 F 83 dead 2008-12-12 OUT 1 OUT
3: 1 2 F 83 dead 2009-01-26 IN 2 IN
4: 1 2 F 83 dead 2009-02-16 OUT 2 OUT
5: 1 3 F 83 dead 2009-05-13 IN 3 IN
6: 1 3 F 83 dead 2009-05-15 OUT 3 OUT
7: 1 4 F 83 dead 2009-05-20 IN 4 IN
8: 1 4 F 83 dead 2009-05-25 OUT 4 OUT
9: 1 5 F 83 dead 2009-06-12 IN 5 IN
10: 1 5 F 83 dead 2009-06-16 OUT 5 OUT
11: 1 6 F 83 dead 2009-06-20 IN 6 IN
12: 1 6 F 83 dead 2009-06-25 OUT 6 OUT
13: 1 7 F 83 dead 2009-07-17 IN 7 IN
14: 1 7 F 83 dead 2009-07-22 OUT 7 OUT
15: 1 8 F 84 dead 2010-04-15 IN 8 IN
16: 1 8 F 84 dead 2010-04-20 OUT 8 OUT
17: 1 9 F 84 dead 2010-10-11 IN 9 IN
18: 1 9 F 84 dead 2010-10-14 OUT 9 OUT
19: 1 10 F 85 dead 2011-01-14 IN 10 IN
20: 1 10 F 85 dead 2011-01-17 OUT 10 OUT
21: 1 11 F 85 dead 2011-04-27 IN 11 IN
22: 1 11 F 85 dead 2011-04-28 DEAD DEAD
23: 2 1 F 99 alive 2007-09-17 IN 1 IN
24: 2 1 F 99 alive 2007-09-27 OUT 1 OUT
25: 2 2 F 100 alive 2009-04-09 IN 2 IN
26: 2 2 F 100 alive 2009-04-17 OUT 2 OUT
27: 2 3 F 103 alive 2012-04-16 IN 3 IN
28: 2 3 F 103 alive 2012-04-20 OUT 3 OUT
29: 2 4 F 103 alive 2012-04-24 IN 4 IN
30: 2 4 F 103 alive 2012-05-19 OUT 4 OUT
31: 2 5 F 103 alive 2012-05-20 IN 5 IN
32: 2 5 F 103 alive 2012-05-25 OUT 5 OUT
33: 2 6 F 103 alive 2012-08-19 IN 6 IN
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34: 2 6 F 103 alive 2012-08-21 OUT 6 OUT
35: 2 6 F 103 alive 2012-08-21 OUT 6 OUT

Table 3.7: Augmented structure for the first two patients of dataset hosp. New
variables added: augmented is the new time variable of the process, status is the
patient’ status flag for a given transition, n_status is a mix of adm_number and
status.

As we can see, now for each row we have the patient’ state occupied at a specific
transition. In this example, we passed to state the default argument which translates
in having three possible states: if a patient is inside a hospital, then a status IN is
associated; if a patient is outside a hospital, then a status OUT is associated and
when a patient dies, then a status DEAD is associated.

Given the complexity and the size of the data, which can be both very high in
principle, building a subject specific status flag marking his/her condition at a given
time point, could be tricky and computationally intensive. At the end of the study,
so at the censoring time, a subject, in general, can be alive, dead inside a given
transition if death occurs within t_start and t_end, or outside a given transition if
death occurs otherwise. After n events, the corresponding flag sequence is given by
2n + 1 for subjects who are alive and dead outside a transition, while it is just 2n

for subjects who died inside of it. Let us consider an individual with three events.
His/her status combinations will be as follows:

ALIVE: IN - OUT | IN - OUT | IN - OUT | OUT4;

DEAD OUT: IN - OUT | IN - OUT | IN - OUT | DEAD;

DEAD IN: IN - OUT | IN - OUT | IN - DEAD.

4We fictitiously indicate the last state in which we see a subject.
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augment() processes each patient’s condition as an independent object, in this a case
a list. It efficiently stores the necessary memory for them and then it fills each chunk
iteratively.

3.3.3 Further Notes on augment()

The main and only aim of augment() is data wrangling. When dealing with
complex structures like longitudinal data, it is really important to introduce some
rules which help the user to not fail when using the function. Here we discuss some of
these rules which are mandatory in order to get a correct workflow with augment().
Moreover, we will describe some of the under the hood procedures which the function
runs behind the scenes.

There are some arguments which are fundamental. They are pattern and state.
pattern must contain the condition of a given subject at the end of the study.
That is, how the subject is found at the censoring time. Because this peculiar
structure is very common when dealing with hospital admissions, the algorithm of
augment() takes this framework as a reference. So, what does this mean? pattern

can be either an integer, a factor or a character. Suppose we have it as an integer.
augment() accepts only a pattern variable with 2 or 3 unique values (i.e. running
length( unique( pattern ) ) must return 2 or 3). Now, suppose we provide a
variable with 3 unique values. They must be 0, 1, and 2, nothing different than that.
Let us explain this concept furthermore below:

Case 1. integer:

• pattern = 0: subject is alive at the censoring time;

• pattern = 1: subject is dead during a transition;

• pattern = 2: subject is dead out of a transition.
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Case 2. factor:

• pattern = alive this is the first level of the factor and corresponds to
pattern = 0 when integer;

• pattern = dead in: this is the second level of the factor and corresponds
to pattern = 1 when integer;

• pattern = dead out: this is the third level of the factor and corresponds
to pattern = 2 when integer.

Case 3. character:

• the unique values must be in alphabetical order to resemble the pattern of
the integer and factor cases.

In case one passes to pattern a variable which contains only 2 unique values,
augment() automatically detects if the unit has an absorbing state occurred in-
side or outside a given transition. From version 1.2 and higher, this is not anymore
a computational issue, but we suggest to always provide 3 unique values in order
to exploit the most efficient part of the code. Everything else different from what
described above will inevitably produce wrong behaviour of augment() with incorrect
results.

The second important argument is state. This is passed as a list and contains the
status flags which will be used to compute all the status variables for the process. The
length of state is 3, no less, no more and comes with a default given by: state =

list( "IN", "OUT" , "DEAD" ). The order is important here too. The status flags
must be passed such that the first one (IN) represents the first state (i.e., being inside
a hospital), the second one (OUT) represents the second state (i.e., being outside a
hospital), and the third one (DEAD) represents the absorbing state (i.e., being dead
inside or outside a hospital). Again, this is typical of hospital admissions data, where
a patient can enter a hospital, can be discharged from it, or can die. As we have
already see, the DEAD status is reached no matter if the subject has died inside or
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outside a transition (i.e. in our case, inside or outside the hospital). One may need a
higher level of complexity when specifying the states of a subject.

augment() by default takes a very simple status structure given by 3 different
values specified in argument state. In general, this is enough to define a multi-state
model, but one may require a more complex structure. Let us consider again the
dataset hosp for the 3rd, 4th, 5th, and 6th patients with the structure reported in
Table 3.8.

row subj adm_number rehab it rehab_it dateIN dateOUT dateCENS

1: 3 1 0 0 df 2012-09-18 2012-09-27 2012-12-31
2: 3 2 0 1 it 2012-11-28 2012-12-15 2012-12-31
3: 3 3 1 0 rehab 2012-12-18 2012-12-28 2012-12-31
4: 4 1 0 0 df 2008-08-13 2008-09-20 2012-12-31
5: 4 2 0 0 df 2012-03-18 2012-03-19 2012-12-31
6: 4 3 0 1 it 2012-07-02 2012-07-20 2012-12-31
7: 5 1 0 0 df 2006-02-09 2006-02-25 2008-04-16
8: 6 1 0 0 df 2009-03-05 2009-03-16 2010-12-19
9: 6 2 0 0 df 2009-07-06 2009-07-20 2010-12-19
10: 6 3 0 0 df 2010-11-17 2010-11-23 2010-12-19
11: 6 4 0 0 df 2010-12-05 2010-12-19 2010-12-19

Table 3.8: Data for 3rd, 4th, 5th and 6th patient in the dataset hosp. Beside the
already described variables there are: rehab and it which mark if the admission is in
rehabilitation or in intensive therapy units, respectively. rehab_it is a combination
of the first two and provides both the information in just one place.

As we can see, we have two variables which take into account the type of hospital
admission. rehab marks a rehabilitation admission while it marks an intensive
therapy one. They are both binary and integer variables, so one can compose them
to get something which is informative and, at the same time, usable in the context
of “making a status”. We then created the variable rehab_it which marks all the
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information in one place and it is a character. We can pass rehab_it to the argument
more_status to tell augment() to add these information into a new structure. Now,
it is important to remember that augment() introduces some rules when you require
to compute a more complex status structure. As we can see from the dataset, many
values of rehab_it are set to df. This stands for “default” and when augment() finds
it, it just computes the default status we already passed to argument state (i.e. in
this case, it can be ’IN’, ’OUT’, or ’DEAD’). The argument more_status always looks
for the value df, hence whenever we need to specify a default transition, we also need
to be sure to label it with this value.
So, if we run the following code, we build an augmented dataset with some more
information regarding status structure:

hosp_complex = augment( data = hosp, data_key = subj,

n_events = adm_number,

pattern = label_2,

state = list( "IN", "OUT", "DEAD" ),

t_start = dateIN, t_end = dateOUT,

t_cens = dateCENS,

more_status = rehab_it )

In Table 3.9, we report the augmented data when the argument more_status is
passed to augment(). The function computes new variables as follows:

• status_exp: is the direct expansion of status and the variable you passed to
more_status, which in this case is rehab_it. The function composes them by
pasting a ‘_’ in between;

• status_exp_num: the corresponding integer version of status_exp;

• n_status_exp: similar to what has been done before, augment() mixes infor-
mation coming from the current expanded status and the number of admissions
to provide the time evolution of the process.
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row subj adm_number rehab_it augmented status status_exp n_status_exp

1: 3 1 df 2012-09-18 IN df_IN 1 df_IN
2: 3 1 df 2012-09-27 OUT df_OUT 1 df_OUT
3: 3 2 it 2012-11-28 IN it_IN 2 it_IN
4: 3 2 it 2012-12-15 OUT it_OUT 2 it_OUT
5: 3 3 rehab 2012-12-18 IN rehab_IN 3 rehab_IN
6: 3 3 rehab 2012-12-28 OUT rehab_OUT 3 rehab_OUT
7: 3 3 rehab 2012-12-28 OUT rehab_OUT 3 rehab_OUT
8: 4 1 df 2008-08-13 IN df_IN 1 df_IN
9: 4 1 df 2008-09-20 OUT df_OUT 1 df_OUT
10: 4 2 df 2012-03-18 IN df_IN 2 df_IN
11: 4 2 df 2012-03-19 OUT df_OUT 2 df_OUT
12: 4 3 it 2012-07-02 IN it_IN 3 it_IN
13: 4 3 it 2012-07-20 OUT it_OUT 3 it_OUT
14: 4 3 it 2012-07-20 OUT it_OUT 3 it_OUT
15: 5 1 df 2006-02-09 IN df_IN 1 df_IN
16: 5 1 df 2006-02-25 OUT df_OUT 1 df_OUT
17: 5 1 df 2008-04-16 DEAD DEAD DEAD
18: 6 1 df 2009-03-05 IN df_IN 1 df_IN
19: 6 1 df 2009-03-16 OUT df_OUT 1 df_OUT
20: 6 2 df 2009-07-06 IN df_IN 2 df_IN
21: 6 2 df 2009-07-20 OUT df_OUT 2 df_OUT
22: 6 3 df 2010-11-17 IN df_IN 3 df_IN
23: 6 3 df 2010-11-23 OUT df_OUT 3 df_OUT
24: 6 4 df 2010-12-05 IN df_IN 4 df_IN
25: 6 4 df 2010-12-19 DEAD DEAD DEAD

Table 3.9: Augmented data when a complex structure is required. New variables
are: status_exp which mixes the information coming from status and argument
more_status. n_status_exp mimics the behaviour of n_status.
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augment() takes care of other two things before reshaping the data. In the
first place, it checks whether the hospital admissions process is monotonic. In the
second place, it scans several function arguments looking for the presence of missing
data. In order to get the data processed, a monotonic increasing process needs to
be ensured. augment() checks this both in case n_events is missing or not. The
data are efficiently ordered through the setkey() function with data_key set as the
primary key and t_start as the secondary key. Then it checks the monotonicity of
n_events and if it fails, it stops with error and returns the subjects for whom the
condition is not met. If n_events is missing, then augment() internally computes
the progression number with the name n_events and runs the same procedure. This
whole procedure is carried out with very little memory overheads thus it is very fast
and efficient despite the dataset is large. The search for missing data is now optional
and by default it is not run anymore. In fact, from version 1.2 the argument check_NA
has been introduced and set to FALSE. This is due because augment() has been
developed just for restructuring data. This procedure is computationally intensive and
could cause strong memory overheads. When dealing with very highly dimensional
datasets, this becomes mostly unfeasible. We then suggest to perform all these types
of checks before running augment(). If one really wants to run this procedure, can
set check_NA = TRUE and the detection will be performed over data_key, n_events,
pattern, t_start and t_end. Beware, that no missing imputation or deletion is
carried out. If any missing value is found, then augment() stops with error asking to
fix the problem.

As already said in Subsection 3.3.1, msmtools has been developed to be fast and
efficient. In Figure 3.2, we show the results of two simulation runs of the function
augment(). The procedure has been carried out on the GIGAT cluster available at
MOX (Department of Mathematics – Politecnico di Milano) which is made of 160
cores splitted into 5 nodes with a Xeon E4610-v2 CPU and 1.2 TB of RAM. The
simulations used just a single core. Each point in the plot represents a new simulated
longitudinal dataset which needs to be converted into the augmented format. In
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bottom the x-axis we report the number of input rows, which correspond to our
hospital admission events. In the left y-axis, we can read the running time of the
reshaping procedure. In the top x-axis, we can read the related number of output rows
obtained after the dataset has been converted into the augmented format. Finally, in
the right y-axis, we can see the number of patients for each simulated dataset. So,
what we like to highlight is that augment() is able to process almost the whole Italian
population in about an hour. Also, the computational complexity is quasi-linear,
which is a remarkable result.
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Figure 3.2: GIGAT simulations obtained with augment() for an increasing number
of patients.
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3.3.4 In Development

What has been described above is available as a stable release. There are though
some parts of the package which are still under development. Some of them are merely
related to the bug fixing process, while some others are brand new functions which
introduce more features into msmtools.

One of the biggest issue when dealing with multi-state models is the occurrence of
the same event, hence with the same status, in the exact same point in time. This is
strictly related to the definition of the time scale of the process under study, which in
our case is given by days. For instance, it is not possible to have two admissions on
the same day for the same patient. This would cause an error and the model would
simply not run. To overcome this problem, we can either delete all the events of the
patients who showed the issue or we can perform little time transformations only on
the critical rows (single events). We call this second approach the jittering algorithm.
The two possible solutions will be wrapped up into a R function which allows the user
to choose the rough solution or the more elegant one given the fact that the idea
behind is very different. While the first approach is very simplistic and has the only
aim at deleting patients, the jittering algorithm has instead the purpose of retaining
the highest number of units. At the present time, the algorithm is in alpha-testing, so
for this work we will adopt the rough procedure which deletes around 30% of patients.
Up to now the jittering algorithm is able to preserve around 90% of the patients. This
is mainly due to erratic behaviours of the patient’s structures which are therefore
hard to recognize and fix. Being able to intercept these peculiar patterns in order to
minimize the loss of patients is at the core objective of the ongoing development.

Despite the very fast processing time of the current msmtools version, another great
improvement in speed might be gained by using C code for the most demanding tasks.
For instance, we know that there are some bottlenecks in the augment() function like
the pattern recognition based on argument pattern when this is of length 2 or when
the algorithm looks for defining the dimension of targets for the reshaping. There has
been a lot of improvement both in speed and memory optimization, but the first one is
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a major problem which can only be bypassed using a compiled programming language
like C is. To fulfill this goal, we use the Rcpp package [Eddelbuettel, 2013; Eddelbuettel
et al., 2011] which makes really easier the integration between C++ code with existing
R one. In particular, all the implementation of loops and some consistency checks will
moved to compiled code.

Another desirable achievement would be the reimplementation of all the loops
using multicore computations. Though this makes no sense for small datasets, and in
fact it is not even recommended for our dataset because the number of events is too
small, it could be very powerful when the number events goes really up high. This is
the case where there are wide margins of speed improvements. This is in the very
alpha-testing phase and up to now we are implementing the parallel backend using
the following packages: parallel, doParallel [Analytics and Weston, 2015a], and
foreach [Analytics and Weston, 2015b].

There are many other minor general improvements and among them it is worth to
cite the integration of ggplot2 grammar of graphics [Wickham, 2009] in support of
the plots computed by the functions survplot() and prevplot().
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Chapter 4

The Statistical Models

In this chapter we discuss the set of statistical models we use to analyze the
dataset we have prepared in the previous chapter. We are particularly interested
in modeling the movement of a patient between a given set of states. We are also
interested in estimating the risk associated with the movement and the relative survival
distribution. Survival analysis and, more in general, multi-state models help answering
these questions. We provide a brief description of the two approaches in Sections 4.1
and 4.2.

4.1 Survival Analysis

Survival analysis involves the consideration of the occurrence of an event and
particularly, the time between a starting point and an ending point. In our case,
we can use this approach to estimate the time between an admission into a hospital
(starting point) and the death of a patient (ending point).

One of the most important aspect to keep in mind when dealing with this type
of analysis and data is the fact that there is no assurance that all the individuals
experience the event of interest (i.e. death) before the time of the study ends. This
has some consequences like the impossibility to compute the full survival times for
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these individuals. A situation like the one described is called censoring for which we
discuss some details in the next subsection.

4.1.1 Censoring and Truncation

Whenever we are dealing with time to event data, there is a certain percentage
of censored data. Together with the concept of censoring is the truncation which is
typically due to study design and it is thus deliberate.

Right censoring: occurs when a subject leaves the study or the study just ends
before an event occurs. For example, consider some patients in a clinical trial
which studies the effect of a given treatment for some cardiac pathology with
a closing time of 5 years. All the patients who did not show up any expected
sign after the treatment are labelled as censored. Typically, the censoring is
independent of the survival time. There two types of independent censoring:

• Type I: occurs when the dropout is completely random and/or the time
of the end of the study is fixed and thus no event of interest has occurred
before it;

• Type II: occurs when the study ends with a set of subjects experience a
fixed number of events.

Left censoring: is when the event of interest has already occurred before the actual
enrollment in the study. In this work we do not consider this case since it just
does not happen.

Right truncation: occurs when the entire study population has already experienced
the event of interest.

Left truncation: occurs when the subjects have been at risk before entering the
study. For example, consider the case of life insurance policy holders where the
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study starts on a fixed date and the event of interest is the age at the time of
death.

In this work, we assume type I right censoring. This is also called administrative
censoring and 91,403 patients (∼ 64%) registered in our database are of this kind.
The hypothesis of independent right censoring holds since the censoring mechanism is
due to an administrative choice and does not affect neither the disease progression nor
the estimate of risk of future events [Putter et al., 2007; Andersen and Keiding, 2002].

4.1.2 Survival and Hazard Functions

The analysis of survival data requires special methods due to the particular set of
data and to their characteristics. For example, data of this type are rarely normally
distributed but tend to be strongly skewed with the vast majority of events occurring
in early times.

In principle, survival data can be described and modeled in terms of two related
probabilities: survival and hazard. The survival probability S(t), also called the
survival function (s.f.), is the probability that an individual survives from the origin of
time to a specified future time t. S(t) contains crucial summary information from time
to event data and its values describe directly the survival experience of a study cohort.
The hazard probability, also called the hazard function (h.f.), is usually denoted with
h(t) or λ(t), the notation used in this work. λ(t) represents the probability that an
individual who is the study and thus under observation at a time t has an event at
that time. In other words, it is the instantaneous risk, or event rate, for an individual
who has survived to time t. This is the opposite information provided by S(t) which
focuses on not having an event. λ(t) is quite important since it can shed some light
on the conditional failure rates and thus it helps when we need to specify a survival
model.

Even if the two functions provide different information, there is a defined relation-
ship between them which is given by the following equation:
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λ(t) = − d

dt
[logS(t)] . (4.1)

This equation has a major consequence which is that if either S(t) or λ(t) is known,
then the other one is automatically determined. In other words, either functions
can be the basis of a survival analysis and their estimation methods are discussed in
Subsection 4.1.3.

4.1.3 Non-parametric Estimators

In this subsection, we briefly discuss two non-parametric estimators for the s.f. and
h.f. in the univariate case. S(t) can be estimated from observed survival times, both
censored and uncensored, using the so called Kaplan-Meier (KM) method [Kaplan and
Meier, 1958], also called product-limit method. Let us consider k individuals who have
events in the follow-up period at distinct times t1 < t2 < . . . < tk. Because events are
assumed to occur independently of one another, the probabilities of surviving from
one interval to the next one can be multiplied together to give the cumulative survival
probability. Put another way, the probability of being alive at time tj, given by S(tj),
is calculated from S(tj−1) which is the probability of being alive at the time tj−1, so:

S(tj) = S(tj−1)

(
1− dj

nj

)
, (4.2)

where dj is the number of events at time tj and nj is the number of individuals alive
immediately before tj . Here t0 = 0 and S(0) = 1. Between two events, S(t) is constant
which leads to compute an estimated step function whose values change only at the
exact times of the events. Every individual contributes information to this function
as long as they are known to be event-free. The estimator then takes the following
form for right-continuous processes:

Ŝ(t) =
∏
tj≤t

(nj − dj)
nj

, (4.3)
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with an approximated estimated variance given by Greenwood’s formula:

V̂ ar[Ŝ(t)] = Ŝ(t)2
∑
tj≤t

dj
(nj − dj)

. (4.4)

The KM estimator supports the computation of a Confidence Interval (CI). The plot
of the KM survival curve is a useful inspection tool which provides a summary of the
data.

Conversely to what discussed for S(t), there is no immediate way to estimate
λ(t). It is instead more convenient to estimate a quantity called Cumulative Hazard
Function (c.h.f.) denoted by Λ(t) defined as follows:

Λ(t) =

∫ t

0

λ(τ)dτ, (4.5)

which represents the area under the hazard curve between times 0 and t. Λ(t) has
again a relation with S(t) given by:

Λ(t) = − log [S(t)] , (4.6)

but the interpretation is harder. A possible way to interpret this quantity is to think it
as the number of events that would be expected for each individual by time t. A non-
parametric method to estimate Λ(t) is the Nelson-Aalen (NA) estimator [Hosmer Jr
and Lemeshow, 1999] and use the result to derive an estimate of λ(t) through a
kernel smoother to the increments [Ramlau-Hansen, 1983]. The NA estimator for the
cumulative hazard rate is defined as:

Â(t) =
∑
tj≤t

dj
nj
, (4.7)

where nj is the number of individuals at risk just prior to time tj . Hence, the estimator
is an increasing right-continuous step function with increments dj/nj at observed
failure times. Another estimation method is suggested in Cox [1979] and it is based
on order statistics. As we will discuss later on in Subsection 4.1.6, another approach
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is to assume that the survival times follow a specific probability distribution. Before
tackling this problem, we need to built a statistical model which is able to operate in
a multivariate framework.

Below in Subsections 4.1.4 and 4.1.5 we introduce the two families of regression
models for survival data.

4.1.4 The Semi-parametric Proportional Hazard Model

The main advantage of building a statistical model is that it allows the survival to
be assessed with respect to different variables simultaneously. Moreover, it is able to
provide an estimate of the effect of each of the factors involved. As for the dataset
under study, it is common to have several known quantities which can potentially
affect the outcome. As for the linear regression model, we make use of covariates to
improve the assessment of the response. Covariates may be registered and measured
at the time of entry to the study or at each time step corresponding to an event.
Covariates can be of different form. For example, they can be continuous (i.e. patient’s
age), binary (i.e. patient’s gender), unordered or ordered categorical (i.e. pathology
group and some performance status indicators).

There exist several Proportional Hazard (PH) models for modeling survival data.
Here, we briefly discuss one of the most common: the Cox Proportional Model (CPM)
[Cox, 1972]. CPM consists of a multivariate survival analysis regression model which
provides a statistical assessment between the event incidence as expressed by the h.f.
λ(t) and a set of p known covariates. Mathematically, the model has the following
form:

λ(t) = λ(0)(t) exp
[
β(t)Tz(t)

]
, (4.8)

where β(t) is the ith covariate effect vector and z(t) is the covariate vector. λ(0)(t)
is the baseline hazard function which represents the value of the hazard when no
covariates intervene. The semi-parametric form of this model is due to the fact that
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λ(0)(t) is estimated non-parametrically through the NA estimator while the covariates
effect through the Maximum Likelihood (ML) method. This version of the CPM is
also know as semi-parametric CPM (spCPM). The diffuse dependence on time is the
general form of the equation which will be simplified later on by introducing some
constraints. In principle, every part of the CPM can vary with time.

The model is composed such that λ(0)(t) is the intercept with the covariates that
act through a multiplicative effect on λ(t). This is the assumption PH in the CPM
and implies that the hazard of the event of interest in any given group is a constant
multiple of the hazard in any other. In practice, the different hazard curves should
be proportional and thus they should not cross each other. PH also implies that
the coefficient exp [βi] is expressed in the form of Hazard Ratio (HR) between two
individuals whose values of the covariate zi(t) differ by one unit when all the other
covariates are held constant. Because the CPM models the h.f. with equation 4.8,
this is equivalent to say that:

HR i = log

[
λi(t)

λi(0)(t)

]
=
∑
i

βi(t)zi(t). (4.9)

Hence, a unit increase in the covariate zi(t) is associated with a βi increase in the log

hazard rate. In other words, if the HR > 1, then for a unitary increase in the ith
covariate, the associated risk of event increases too and the survival length decreases.
We speak of a positively associated covariate with the h.f..

4.1.5 The Accelerated Failure Time Model

A second method to model survival data is represented by the so called Accelerated
Failure Time (AFT) models. This class of models assumes that the passage of time
can be slowed down or speeded up with respect to a given set of covariates. In other
words, the main focus here is the survival time of an individual which can be shortened
or extended depending on the covariates. If we consider a group of individual with
the covariate vector z(t) = (z1, z2, . . . , zp), then we can write the model using the s.f.
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as follows:

S̃(t) = S(φ t), (4.10)

where φ is an acceleration factor which depends on the covariates in the usual way:

φ = exp [(β1z1, β2z2, . . . , βpzp)] . (4.11)

4.1.6 The Parametric Approach

As we mentioned very briefly in Subsection 4.1.3, it is possible to estimate the h.f.
with a fully-parametric approach. There exist several models under this approach many
of them assume PH. In this work, we will also treat the AFT models [Kalbfleisch
and Prentice, 2011; Wei, 1992] which conversely to PHs assume an accelerating
(decelerating) effect of the covariate on the hazard. We will refer to these models
with parametric Proportional Hazard (pPH) and parametric Accelerated Failure
Time (pAFT) models which are totally similar to spCPMs from a concept and
interpretation point of views. The only difference dwells of course in how we estimate
λ(0)(t) and in the general form of the regression equation. In a parametric framework,
the baseline hazard is assumed to follow a specific probability distribution belonging
to a parametric family. Beside this, all the interpretations on the nature of the model
coefficients and relations hold.

The main assumption here is is that the survival time T follows a probability
distribution with density function f(t) such that:

S(t) = Prob(T > t) =

∫ ∞
t

f(τ)dτ. (4.12)

We deal now with three functions S(t), λ(t) and f(t) which are linked together through
the following relation:

f(t) = λ(t)S(t), (4.13)
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and it is easy to show that:

λ(t)S(t) = −
d
dt
S(t)

S(t)
S(t) =

d

dt

∫ t

∞
f(τ)dτ = f(t). (4.14)

Equation (4.14) implies that specifying one of the three key functions specifies the
other two.

The general form of a parametric survival regression model is as follows:

λ(t) = λpar
(0) (t,θ) r(β(t), z(t)), (4.15)

where λpar
(0) (t,θ) is the parametric baseline hazard function and r(β(t), z(t)) is a relative

risk function describing the effect of the covariates. In the present work, we assume r
to follow an exponential such that we can rewrite equation 4.15 as follows:

λ(t) = λpar
(0) (t,θ) exp

[
β(t)Tz(t)

]
. (4.16)

In Subsection 4.3.1, we will discuss the implementation of such a model using a specific
probability distribution.

4.2 Multi-state Models

Another approach to model survival type data is to consider the movement of
an individual through different conditions or states. In this work, we focus our
attention to a specific family of these models called Multi-State Models (MSM). These
constitute a very smart approach to analyzing categorical longitudinal data. As we
described in Chapter 3, the main event is given by a hospital admission and through
msmtools we have increased the amount of information self contained in each event
into single transition. From this point of view, a patient is seen as a subject who can
move from different state representing his/her hospital admission status.

In general, in MSMs with irregular observation times, the movement between states
is governed by a continuous time stochastic process. This process (X(t), t ∈ [0, τ ])
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occupies at any time one of a set of finite discrete states called state space given by
S = {1, . . . R} and with right continuous paths such that X(t+) = X(t) [Hougaard,
1999; Castañeda and Gerritse, 2010]. t is the observation time and assumes values in
[0, τ ] or [0, τ) with τ ≤ +∞.

Multi-state models have been successfully used in several medical applications in
which the main output was stages or levels of a disease. In our case, this corresponds
to register a hospital admission, discharge or death. It is common to define a MSM
by its matrix of transition intensities Q(t,Ft), where Ft is the history, or filtration, of
the stochastic process up to time t. In fact, an individual can move to one particular
state from a starting one according to a defined set of transition intensities qrs(t) with
r, s ∈ S. These intensities, or hazards, represent the instantaneous risk an individual
has of moving from state r to state s and characterize the process. In general, hazard
intensities functions can be written in the following form1:

qrs(t|Ft) = lim
δt→0

P (X(t+ δt) = s|X(t) = r,Ft)
δt

. (4.17)

Similarly, we can consider the transition probabilities matrix of being in each state at
a fixed time in the future as follows:

prs(t1, t2,Ft1) = Prob(X(t2 + δt) = s |X(t1) = r,Ft1). (4.18)

Equation 4.17 defines the h.f. in the context of MSMs. This form is rather general
and in the following sections we are going to discuss some of the assumptions which
can be considered in order to simplify the approach both from a statistical and a
computational point of view. The starting point is to use semi- and fully-parametric
approaches by exploiting equations (4.8) and (4.15) for CPMs and pAFT models,
respectively. For instance, we describe what is a general Markov model, a time-
homogeneous Markov model and a semi-Markov model. In later sections, we provide

1In the context of MSMs, we use the letter q to indicate the h.f. in place of λ to be more consistent
with the transition intensities matrix Q(t). The meaning and interpretation remain the same of
equations written in Section 4.1.
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a brief appraisal of the different types of model structures available. We will also
point out pros and cons of each approach and will show what type of structure we
adopted for the analyses.

4.2.1 Full Markov Model

One of the most powerful assumption one can incorporate in a model is that the
future evolution of the process is entirely described and thus depends only on the
current state of the ongoing process. This is call Markov property and in terms of
transition intensities implies the following:

qrs(t, z(t)) = lim
δt→0

P (X(t+ δt) = s|X(t) = r)

δt
, (4.19)

hence the transition intensities actually vary with time but do not depend anymore
on the filtration Ft. One of the peculiar advantages which this approach brings in,
is the ability to strongly simplify the likelihood of the system by expressing it as a
product of transition intensities:

L =
N−1∏
i=0

pxi, xi+1
(ti, ti+1), (4.20)

where the index i represents the number of observed transitions up to N − 1. The
transition probability matrix P (t) for a full Markov Model (fMM) satisfies the forward
Kolmogorov equations [Cox and Miller, 1977]:

dP (t1, t)

dt
= P (t1, t)Q(t), (4.21)

according to an initial condition P (t1, t) = I where P (t1, t) is the matrix with (r, s)

entry given by prs(t1, t). For the large majority of Q(t), the Kolmogorov equations
define a system of non-linear differential equations which cannot typically be solved
analytically. Numerical iterations are then required in order to solve the system. For
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most of the models used in this work, the algorithm of Broyden-Fletcher-Goldfarb-
Shanno (BFGS) has been adopted [Broyden, 1970; Fletcher, 1970; Goldfarb, 1970;
Shanno, 1970].

Note that in this case, the observation time of each event is known and exact.
Adopting this framework allows us to estimate the probability of transitioning from
one state to another (i.e. admission, discharge or death), with respect to patient
characteristics as well as his/her medical treatments which are all summarized in
the covariate vector (z(t)). In the present work, we assume the process to be a
time-homogeneous Markov process. This implies that the future trajectory of the
process depends only on the current state of the process and not on the previous
history and qrs is taken as constant in time. A state can be absorbing, meaning
that no transition exits from this state. In our case-study, death is the absorbing
state. It is possible to evaluate the probability of no events during a period and also
the number and types of events. In order to do so, we must consider the transition
probabilities matrix of being in each state at a fixed time in the future. Since the
process is time-homogeneous, the (r, s) entry of matrix P (t) depends only the time
interval length. The transition probability is given by:

prs(t) = Prob(X(t+ δt) = s |X(t) = r). (4.22)

The likelihood for the model is computed from the transition matrix, using the
matrix exponential algorithm because no analytical form is available for the model we
are going to consider later on. Consider a patient i who had ni transitions occurred
at the exact times (ti1, . . . tini

) with corresponding states (s(ti1), . . . s(tini
)). No other

transitions between the observed ones are allowed. The contribution to the likelihood
for the time interval (tj, tj+1) is then given by:

Lij = exp
[
qs(tj)s(tj)(tj+1 − tj)

]
qs(tj)s(tj+1), (4.23)

because we are assuming that a patient stays in state s(tj) throughout the time
interval between tj and tj+1 when he/she goes in state s(tj+1) precisely at time tj+1.
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Equation (4.23) accounts for the contribution of these two states. The full likelihood
L is given by the the product of all the terms Lij and depends on the intensity matrix
Q(t) such that:

L =
K∏
i=1

T∏
j=0

Lij, (4.24)

where K is the number of patients under study and T is the follow-up time.

4.2.2 Time-homogeneous Markov Models

A second strong assumption is to consider the process to be time-homogeneous,
thus leading to a time-homogeneous Markov Model (thMM). In words, this means
that the transition intensities are constants and independent of time t. A process of
this form has therefore the further property:

Q(t) = Q0, ∀t (4.25)

where Q0 is some constant matrix. Equation (4.25) has a strong implication: the
sojourn time within a given state defined as the amount of time spent in that state
(i.e. the number of days a patient stays in a hospital) is exponentially distributed
with a rate parameter

∑
s 6=r qrs where qrs is the entry in place (r, s) of the transition

matrix Q0.

If equation (4.25) is a reasonable assumption, then the transition probabilities
only depend on the length of the interval between t1 and t2 and not on t1 itself. This
allows us to rewrite equation (4.21) in the following form:

dP (t1, t)

dt
= P (t1, t)Q0, (4.26)

according to an initial condition P (0) = I. The solution of this equation is:

P (t) = exp (tQ0) , (4.27)
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which is typically computed to matrix exponential algorithm. Parameters estimation
is carried out through ML numerical optimization using BFGS.

4.2.3 Semi-Markov Models

A less restrictive, and possibly more realistic, assumption is to consider the sojourn
times dependence on the history of the process only through the present state and
the time since entry of that state. The resulting MSM forms a sequence of embedded
Markov models, called a Markov renewal model [Dabrowska et al., 1994; Prentice
et al., 1981; Gill, 1980; Lagakos et al., 1978], or also a semi-Markov Model (sMM). In
the present thesis, we will make use of the above mentioned types of approaches.

4.2.4 Structure of Multi-state Models

When modeling the movement of a subject throughout a set of states, things can
become oddly complicated. It is therefore important to define a structure which the
MSM has to follow. We have already introduced the transition matrix Q(t) in Section
4.2 which manages which transitions are permitted. We now introduce the concepts
of transient and absorbing state. The former defines a state which a subject can reach
at some point in time, but which can leave too. The latter defines a state for which a
subject can only enter once. By using these two types of states, it is possible to build
several different schemas which help to understand the undergoing process.

Unidirectional and Progressive Models

The simplest structure we can think of consists of a single chain of states S =

{1, . . . , R} where the progression from the initial state is always sequential till the final
state. This is called unidirectional model and in Figure 4.1 we show a representation
of it in which the last state R is an absorbing state which is indicated by A.

A simple survival model in which the outcome is given by two states, alive or dead, is
an example of unidirectional model.
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…State 1 State 2 State (R-1) State A

Figure 4.1: Scheme of a unidirectional MSM.

These types of models belong to a wider class of models called progressive. Pro-
gressive models are made up by two or more chains and the progression is again
sequential. From the initial state, a subject can move to one of the available chains
and then it continues the process till the absorbing state in the exact same way as in
unidirectional models. We show a scheme of progressive model in Figure 4.2.

State 1

State 2

State 3

State A

Figure 4.2: Scheme of a progressive MSM.

Bi-directional Models

What seems restrictive in previous structures is that there is no possible way back
from a state. Once the subject has moved from a given state, it must follow the chain
no matter what. Though this is not necessary unrealistic, it may be not the best
option for certain problems. Here is where bi-directional models come into play. They
allow transitions in either directions for transient states, or for a subset. A common
example is the recovery from a chronic disease. A patient starts in a healthy state,
then it gets diseased and eventually it can recover and get back to a healthy state
again. We show a scheme of this model in Figure 4.3.
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State 1 State 2

State A

Figure 4.3: Scheme of a bi-directional MSM.

For instance, a bi-directional model will be used to analyze the hospital admissions
process, as we will depict later on.

There can be cases in which no absorbing states are present either because they are
not physically achievable nor because they are not part of the process under study. A
very simple example is given by a bi-directional model in which all states are transient
as sowed in Figure 4.4.

State 1 State 2

State 3

Figure 4.4: Scheme of a bi-directional recurrent MSM.

4.2.5 Observation Pattern

When collecting data, there can be basically two different approaches:

• balanced observation: this scheme assumes that all subjects are observed at a
series of pre-defined times t1, . . . , tn. In its simplest case, called regular balanced
observation all the gap times between events are equally spaced. Observations
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then take place at t, 2t, . . . , nt. This type of scheme is commonly used in clinical
trials, such the randomized controlled trial;

• irregular observation: this scheme does not assume any pre-defined time structure
so that each subject can have its own. The observation times get a dependence
on the subject i as follows t1i, . . . , tnii. Our data belong to this category since
the hospital admissions process cannot predetermined.

4.3 The 3-state Model

The main goal of this work is to study the hospital admission-readmission process
given some patient’s characteristics. This translates in studying the movement of a
patient throughout different states defined in the database which we have built using
msmtools package.

The structure of the model is bi-directional with S = {1, . . . , 3} as showed in
Figure 4.5. The model accounts for the process of admissions and readmissions into
a given hospital and for the absorbing state of death. In other words, a patient is
observed at first because he/she is admitted to a hospital. Here, he/she gains the
status IN. Once the patient is in hospital, he/she can experience two different events.
If the patient is discharged, then he/she moves to the state OUT. If he/she dies in
hospital, then he/she moves to the absorbing state DEAD. Because the model is
bi-directional, once the patient is in the state OUT, he/she can experience two different
events once again: the former is being admitted back in a hospital thus moving to
the state IN, the latter is dying outside the hospital thus moving to the absorbing
state DEAD. Intuitively, this loop generates a wide variety of admission-readmission
patterns. We will discuss some details of its distribution in Chapter 5.

Though the model structure is simple and the number of states is small, our main
goal is to implement a robust statistical approach which allows us to investigate the
potential effect of the brand new covariates. As far as we know, this is the very first
Italian attempt to integrate the pharmacological and outpatient cares information
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IN OUT

DEAD

Figure 4.5: Scheme of the 3-state bi-directional MSM used for the assessment of
the admission-readmission process.

in the evaluation of hospital admissions process. In particular, we are interested in
investigating if and how much those covariates affect the transition probabilities of
being readmitted into hospital or of dying outside a hospital [Grossetti et al., 2016].

Furthermore, covariates are used such that each of them intervene in a specific
transition. In particular, we consider the information associated with a hospitalization
to be more effective for those transitions which depart from the state IN. Conversely,
all the cares which a patient may take have been considered to be more effective for
transitions departing from the state OUT. The model structure with defined groups
of covariates is showed in Figure 4.6.

The model represented in Figure 4.6 will be used under different assumptions. In
the first place we consider a time-homogeneous fMM in which the h.f. is modeled
with CPM through equation (4.8). In the second place we consider a fully-parametric
approach by assuming a probability distribution for the baseline hazard q(0)rs through
equation (4.15).

In order to compute the hazards, we need to define the associated intensity matrix
Q(t) = Q0 which provides all the possible instantaneous transition rates. For our
model, Q0 is a 3× 3 matrix with the following form:

Q0 =


0 qIN→OUT qIN→DEAD

qOUT → IN 0 qOUT →DEAD

0 0 0

 , (4.28)
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IN OUT

DEAD

hospital covariates

pharma + out. cares

hospital covariates pharma + out. cares

Figure 4.6: Scheme of the 3-state bi-directional MSM with the groups of covariates
highlighted.

where 0 means that there is no possibility of a direct transition between the given
two states.

In Table 4.1, we report the sets of covariates we adopted to run the models for
each transition. The selection of these factors has been made jointly with clinicians in
order to retain both the statistically significant covariates as well as the new variables.
As we will discuss in the next chapter, we do expect a substantial impact of the
new covariates on the admission-readmission probability. Models implementation
and estimation has been carried out through the R’s survival [Therneau, 2015;
Therneau and Grambsch, 2000], mstate de Wreede et al. [2011], msm [Jackson, 2011]
and flexsurv [Jackson, 2016] packages for CPMs and pAFT models, respectively.
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Transitions Covariates

IN → OUT
IN → DEAD

age, gender, charlson, rehab, it, n_pro, n_com

OUT → IN
OUT → DEAD

age, gender, charlson, LOS, C07, C09, sum_pa

Table 4.1: Transition specific covariates used in the model of Figure 4.6 where
age is the age in years a patient, gender indicates whether a patient is a man or a
woman, charlson is the comorbidity score given by the Charlson index, rehab and
it are binary flags indicating the passage in rehabilitation and/or intensive therapy
units, respectively, n_pro and n_com give the number of comorbidities and of surgical
procedures, respectively, LOS is the length of stay in hospital, C07, C09 and sum_pa

report the number of beta blocking agents, ACE-inhibitors agents and of cardiological
outpatient cares registered between two subsequent events, respectively.
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4.3.1 The parametric 3-state model

We have selected two distributions for the baseline hazard: the exponential and
the Weibull leading to a PH model and to an AFT model, respectively. Through the
function flexsurvreg() we obtain the estimates for the distributions parameters.

The Probability Density Function (PDF) of the exponential is:

f(x;λ) =

λe−λx x ≥ 0,

0 x < 0,
(4.29)

where λ is the rate parameter which represents the event rate of the process. The
higher λ is, the steeper the density is leading to a greater rate of event.

The PDF of the Weibull is:

f(x; β, k) =

kβ (xβ)k−1 e−(xβ)
k

x ≥ 0,

0 x < 0,
(4.30)

where k and β are parameters called shape and scale parameters, respectively. Both
are strictly greater than zero and need to be estimated. In particular, the shape
parameter is the quantity which defines three possible regimes in the AFT mode:

• k < 1: the failure rate decreases over time. The number of observed events gets
smaller over time, so that most of them occur at early stages;

• k = 1: the failure rate is constant over time. The Weibull reduces to the
exponential;

• k > 1: the failure rate increases over time. The number of observe events gets
larger over time.
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4.4 Graphical Goodness of Fit Tools

Assessing the validity of a multi-state model is not straightforward. There are
plenty of different GoF techniques and approaches to face this problem and in general,
there exist two main categories under which to regroup them: the former considers
informal approaches such graphical comparisons, the latter defines more formal
statistical tests. In this work, we are going to use informal GoF tools only in order to
better compare different methodological approach. Moreover, no statistical tests exist
for panel-type data in which death times are known and exact.

Here we briefly discuss two graphical methods for assessing a multi-state model.
In cases where the model has an absorbing state for which the exact time of entry is
known (i.e. DEAD in our case), a common approach is to compare the KM survival
curve with the estimate survival function which we call Ŝ(t). This is a very simple, yet
effective, tool to highlight any departure from the Markov model by considering the
degree of disagreement between the two curves. The idea behind this, is to consider
all the patients starting their process in the same state (i.e. IN in our case) at the
beginning of the study. We assume the starting time to be zero and all the subjects
move toward the defined absorbing state. If model assumptions are correct, we should
not observe a disagreement between empirical and estimated survival curves. What is
non-trivial here is to determine the threshold within which we consider a model to be
acceptable or not.

There are basically two ways of visualizing the comparison: the first one reports
the confidence bands around Ŝ(t), the second one reports bands around the KM
curve. In both methods, we are seeking to minimize the disagreement between the two
point-wise curves and we consider the confidence bands as the common acceptance
limits for which discard or not discard the multi-state model. While the second
approach is very simple and is typically calculated using a normal approximation like
Greenwood’s formula [Jackson, 2000], in general the confidence limit tends to be a little
broader than what requested. Bands around Ŝ(t) are straightforward in case of semi-
Markov or fully-parametric models, but are not easily computable for bi-directional
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Markov models because closed form expressions for the transitions probabilities are not
available. It is however possible to differentiate the associated matrix exponential such
that we obtain an expression for the derivates in term of partial derivatives and the
eigenvalues and eigenvectors of the intensity matrix Q(t). Hence, confidence intervals
is computed by simulating a given number of random vectors from the asymptotic
multivariate normal distribution implied by the maximum likelihood estimates and
covariance matrix of the log transition intensities and covariate effects. Then, for
each replicate the resulting transition probability matrix is computed. The described
approach is discussed in Mandel [2013] and can be computationally intensive because
intervals must be calculated at a series of times.

For Markov models, another well known tool is based on the comparison between
observed state occupancies at a fixed set of times and expected ones. The work of
Gentleman et al. [1994] discusses the method and its applicability. An indication of
where the data depart from the model is achieved by comparing the observed count
Ors(t1, t2) with the expected count Ers(t1, t2) for individuals in the state r at time t1
and in state s at time t2 through the following quantity:

Mrs =
[Ors(t1, t2)− Ers(t1, t2)]2

Ers(t1, t2)
. (4.31)

An ideal situation would see Mrs → 0 for any given point in time. Any deviance from
zero, implies a worsening of the model performances. However, determining whether
a deviation is statistically significant is currently impossible because no formal tests
are available yet. The main reason is related to the totally custom choice of time
knots at which interpolate the observed data. To estimate prevalence, the differential
form of the Aalen-Johansen (AJ) estimator [Aalen and Johansen, 1978] can be used
as follows:

p̂1s(t+ δt) =
R∑
r=1

p̂1r
dNrs(t)

Yr(t)
, (4.32)

where Yr(t) is the number of subjects under observation at time t in state r, dNrs(t)
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is the number of transitions from state r to s in the time interval (t, t+ δt), and p̂1r
is the corresponding 1, r value of the transition probability matrix. Actually, the
AJ estimator can be seen as a finite product of matrices. When right-censoring is
assumed, then this estimator is more efficient than considering just the proportion of
those subjects who are still under observation in each defined state2.

2This is also known as the simple moment estimator.



Chapter 5

Results

In this chapter we present the results of the statistical models. After some model
assessment, we will provide some interpretations. We also present some descriptive
statistics which helps in understanding heterogeneity of the patient’s population.

5.1 Descriptives

We do possess several information regarding each patient. In order to have an
idea of the data composition, we focus our attention on few quantities. For these, we
take a snapshot by providing histograms and other significant summaries.

As we have described in Subsection 3.3.4, the final sample of 144,933 patients has
been downsized to 101,821 in order to solve the same event at the same time issue.
The descriptives are then computed on this sample size.

A total of 36,109 (35.46%) patients died for any cause, 16,153 (15.86%) of which
died during a hospital admission. Age at first admission ranged from 18 to 106
years for women with a mean (SD) of 79.4 (10.4) years. Men’s age ranged from 18
to 104 years with a mean (SD) of 73.6 (11.9) years. Age at last discharge ranged
from 18 to 106 years for women with a mean (SD) of 80.6 (10.4) years. Men ranged
from 18 to 106 years with a mean (SD) of 75.0 (11.9) years. In Figure 5.1, we show
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comparison boxplots of age for women and men at first admission and at last discharge,
respectively. Wilcoxon rank sum tests confirm a significant difference in the gender
distribution for both cases (p ≤ 0.001).
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Figure 5.1: Boxplots of ages at first (left panel) and at last admission (right panel)
grouped by gender.

The average number (SD) of hospital admissions for women is 2.5 (1.95) with a
range of 1 - 34, while for men is 2.8 (2.25) with the same range. In Figure 5.2, we
show comparison boxplots of the number of events for women and men. Wilcoxon
rank sum tests confirm a significant difference in the gender distribution for both
cases (p ≤ 0.001).

The LOS ranges from 1 to 159 days for women with a mean (SD) of 10.4 days (6.5).
Men’s LOS ranges from 1 to 148 days with a mean (SD) of 9.3 days (6.3). Wilcoxon
rank sum test confirms a significant difference in the LOS distribution (p ≤ 0.001)
with respect to gender. In Figure 5.3, we show a comparison boxplots of LOS.

In Table 5.1, we report the number of transitions and their percentage with respect
to the total. Dependence has been assessed through the Pearson’s χ2-test (p ≤ 0.001).
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Figure 5.2: Histograms (left panel) and boxplots (right panel) of the number of
hospital admissions grouped by gender. The dashed-dotted lines in the histogram
panel mark the average values.

In Table 5.2, we report the number (percentage) of diagnosed comorbidities per
patient with respect to gender. Column “> 3” counts all the patients who have
more than 3 diagnosed comorbidities. We confirm a significant difference between
the two distributions, according to a Wilcoxon rank sum test (p ≤ 0.001). In Table
5.3, we report the number (percentage) of surgical procedures a patient experienced
with respect to gender. Column “> 3” counts all the patients who have undergone
more than 3 surgical procedures. We confirm a significant difference between the
two distributions, according to a Wilcoxon rank sum test (p ≤ 0.001). Much of this
difference is represented by having just one procedure or having no procedures at all.
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Figure 5.3: Histograms (left panel) and boxplots (right panel) of Length of Stay
grouped by gender. The dashed-dotted lines in the histogram panel mark the average
values.

We see how men count more procedures than women.
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To

IN OUT DEAD

From
IN -

258,330
(40.71%)

16,153
(2.55%)

OUT
172,662
(27.21%)

65,712
(10.35%)

19,956
(3.21%)

Table 5.1: Number of transitions (and percentage) recorded according to the
transition matrix Q0.

Diagnosed Comorbidities
Gender 0 1 2 3 > 3

Women
# com. 117 9,521 16,055 12,241 12,711
[%] 0.23 18.80 31.70 24.17 25.10

Men
# com. 125 9,456 14,788 11,952 14,865
[%] 0.24 18.47 28.89 23.35 29.04

Table 5.2: Number of diagnosed comorbidities with respect to gender. The last
column on the right counts all the patients with more than 3 comorbidities.

Number of Surgical Procedures
Gender 0 1 2 3 > 3

Women
# proc. 45,757 4,710 167 9 2
[%] 90.35 9.30 0.33 0.02 0

Men
# proc. 40,425 10,230 516 15 0
[%] 78.98 19.99 1.01 0.03 0

Table 5.3: Number of surgical procedures with respect to gender. The last column
on the right counts all the patients who experienced more than 3 surgical procedures.
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In Figure 5.4, we show the proportion of patients, grouped by gender, who take
or not take any beta blocking agents, ACE-inhibitors, and cardiological outpatient
cares. For instance we see that among women, 28,003 (55.3%) did take beta blocking
agents while 22,638 (44.7%) did not. Among men, 31,983 (62.5%) did take beta
blocking agents while 19,197 (37.5%) did not. For ACE-inhibitors, 12,992 (25.7%)
women did take it while 37,649 (74.3%) did not. For men, 40,355 (78.8%) did take
it while 10,825 (21.2%) did not. Among the cardiological outpatient cares, 36,207
(71.5%) women did take any cares while 14,434 (28.5%) did not. Among men, 42,009
(82.1%) did take them while 9,171 (17.9%) did not. We can see how men consistently
take more drugs and outpatient cares with respect to women. One of the possible
explanation of this behaviour could be a general more severe condition of the male
population in the sample. Though we are awared of the gender bias against women
with cardiovascular disease in terms of access to revascularization. Moreover, men are
younger than women (i.e. they generally die sooner) and they could have a slightly
different aetiology.

In Figure 5.5, we show the drill down on the drug prescriptions for patients who
did not take anything at all (label Nothing in the plot), did take only beta blocking
agents (label C07 in the plot), did take only ACE-inhibitors (label C09 in the plot),
and did take both of them at least once (label Both in the plot). Data are shown
grouped by gender. 22,782 (45.0%) women did take both, 5,221 (10.3%) did take beta
blocking agents only, 14,867 (29.4%) ACE-inhibitors only, while 7,771 (15.3%) women
did not take any drugs. Among men, 27,567 (53.9%) did take both, 4,416 (8.6%) did
take beta blocking agents only, 12,788 (25.0%) ACE-inhibitors only, 27,567 (53.9%),
while 6,409 (12.5%) did not take any drugs. As we can see, ACE-inhibitors seem
to be the preferred treatment in terms of prescriptions. Though we do not possess
exact data related to therapy compliance but only of puprescription purchasing, we
can think of these results as a compliance proxy. It seems that men are slightly less
compliance when a single therapy is prescribed, but better perform women when both
drugs are suggested.
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Figure 5.4: Barplots of the percentage of patients who take any beta blocking
(C07) or ACE-inhibitors (C09) (left and center panel, respectively) and cardiological
outpatient cares (right panel) grouped by gender.
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Figure 5.5: Barplot of the percentage of drug prescriptions. “Nothing” represents
patients who did not take C07 nor C09, “C07” and “C09” patients who did take beta
blocking agents or ACE-inhibitors only, respectively, “Both” patients who did take
both C07 and C09. Data are grouped by gender.
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5.2 Model Results

In this section we present and discuss the results of the different statistical models
we have adopted. In particular, in Subsections 5.2.1, 5.2.2, and 5.2.3, we show the
main outputs of the application of a full-, semi-Markov and fully-parametric models,
respectively. The three different approaches have been carried out using different R
packages as standalone tools or in one of their combination. We highlight the most
important ones which are: survival [Therneau, 2015; Therneau and Grambsch, 2000],
msm [Jackson, 2011], mstate [de Wreede et al., 2011], and flexsurv [Jackson, 2016].

The last two approaches require a further data reshaping procedure in order to
transform augmented or longitudinal data into a suitable form. We have used the msm
function msm2Suv() to carry out the procedure which takes a longitudinal dataset
and restructures it such that both observed and censored transitions are visible and
available at a glance. To clarify the concept, in Tables 5.4 and 5.5 we report, for a
given patient with few selected covariates, the augmented format as computed by
augment() and this new shape, respectively. As we can see, we still have multiple
observations for a single patient, but we also have several more related information.
They are:

• from and to: the departing and arrival status coded as in the original transition
matrix Q0;

• trans: the corresponding transition number as coded in Q0;

• Tstart and Tstop: the starting and ending time of a given transition;

• time: the clock-reset time scale of the event;

• obs/cens: a flag which marks an observed transition (1) or a censored one (0).

For a detailed description of the data structure and its applications, we remind to the
following two works of de Wreede et al. [2011] and Putter et al. [2007].
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row ID dateAUGMENTED age gender status

1: 35 2010-06-10 48 Man IN
2: 35 2010-06-17 48 Man OUT
3: 35 2010-12-20 49 Man IN
4: 35 2010-12-22 49 Man OUT
5: 35 2011-06-07 49 Man IN
6: 35 2011-06-10 49 Man OUT
7: 35 2011-10-08 49 Man DEAD

Table 5.4: Example of the augmented representation of the events for patient 35 as
computed by the function augment() in msmtools.

For the semi-Markov and fully-parametric approaches, we are going to use the
structure as shown in Table 5.5 as well as the clock-reset time variable to mark the
process events. For the semi-Markov model only, a further step is mandatory if
transition specific covariates are considered. We thus use the function expand.covs()

in the package mstate which takes the new data structure and expands the required
covariates so that a transition specific model can be run. In Table 5.6, we show the
expanded data structure in which age has been converted into a transition specific
covariate. Due to the fact that we have a model with four possible transitions,
the covariate is splitted accordingly being age.1 the value of patient’s age in the
transition 1, coded by trans = 1, which corresponds to the movement IN → OUT.
Hence, age.2, age.3, and age.4, are the corresponding age values for transition 2, 3,
and 4, respectively.

row ID from to trans Tstart Tstop time obs/cens age gender

1: 35 1 2 1 2010-06-10 2010-06-17 7 1 48 Man
2: 35 1 3 2 2010-06-10 2010-06-17 7 0 48 Man
3: 35 2 1 3 2010-06-17 2010-12-20 186 1 48 Man
4: 35 2 3 4 2010-06-17 2010-12-20 186 0 48 Man
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5: 35 1 2 1 2010-12-20 2010-12-22 2 1 49 Man
6: 35 1 3 2 2010-12-20 2010-12-22 2 0 49 Man
7: 35 2 1 3 2010-12-22 2011-06-07 167 1 49 Man
8: 35 2 3 4 2010-12-22 2011-06-07 167 0 49 Man
9: 35 1 2 1 2011-06-07 2011-06-10 3 1 49 Man
10: 35 1 3 2 2011-06-07 2011-06-10 3 0 49 Man
11: 35 2 1 3 2011-06-10 2011-10-08 120 0 49 Man
12: 35 2 3 4 2011-06-10 2011-10-08 120 1 49 Man

Table 5.5: Example of the longitudinal representation of the events for patient 35 as
computed by the function msm2Surv() in msm.

row ID from to trans Tstart Tstop age.1 age.2 age.3 age.4

1: 35 1 2 1 2010-06-10 2010-06-17 48 0 0 0
2: 35 1 3 2 2010-06-10 2010-06-17 0 48 0 0
3: 35 2 1 3 2010-06-17 2010-12-20 0 0 48 0
4: 35 2 3 4 2010-06-17 2010-12-20 0 0 0 48
5: 35 1 2 1 2010-12-20 2010-12-22 49 0 0 0
6: 35 1 3 2 2010-12-20 2010-12-22 0 49 0 0
7: 35 2 1 3 2010-12-22 2011-06-07 0 0 49 0
8: 35 2 3 4 2010-12-22 2011-06-07 0 0 0 49
9: 35 1 2 1 2011-06-07 2011-06-10 49 0 0 0
10: 35 1 3 2 2011-06-07 2011-06-10 0 49 0 0
11: 35 2 1 3 2011-06-10 2011-10-08 0 0 49 0
12: 35 2 3 4 2011-06-10 2011-10-08 0 0 0 49

Table 5.6: Example of the expanded age for patient 35 as computed by the function
expand.covs() in mstate.
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5.2.1 Full Markov Model Results

The parameters estimation is carried out through the function msm() in the package
msm which is applied to the data described in Table 5.4. In Table 5.7, we report the
hazard ratios and the relative 95% confidence intervals for the covariates which are
defined for all the transitions allowed in the model as specified by the transition matrix
Q0. They are age, gender and charlson. The gender’s values are reported for men
with respect to women. With an increase in the age of a patient, the risk of being
discharged from (HR = 0.9901 [0.9898; 0.9905]) or readmitted to a hospital (HR =
0.9890 [0.9886; 0.9894]) decreases. At the same time, we observe the natural effect of
aging when looking at transitions to death for which the hazard ratios are greater than
one. Being a men increases the risk of all the transitions to occur. An increase of the
Charlson index charlson increases the risk of dying both inside and outside a hospital
(HR = 1.2205 [1.2081; 1.2330] and HR = 1.2422 [1.2338; 1.2508], respectively). It
protracts the sojourn in the hospital (HR = 0.9317 [0.9286; 0.9347]) and also increases
the chances of a hospital readmission (HR = 1.0579 [1.0550; 1.0609]).

Transition age gender (men) charlson

IN → OUT 0.9901 [0.9898; 0.9905] 1.0990 [1.0903; 1.1078] 0.9317 [0.9286; 0.9347]
IN → DEAD 1.0576 [1.0555; 1.0597] 1.0755 [1.0415; 1.1105] 1.2205 [1.2081; 1.2330]
OUT → IN 0.9885 [0.9881; 0.9889] 1.1550 [1.1437; 1.1664] 1.0579 [1.0550; 1.0609]

OUT → DEAD 1.0507 [1.0489; 1.0526] 1.0833 [1.0522; 1.1154] 1.2422 [1.2338; 1.2508]

Table 5.7: Hazard Ratios and 95% confidence intervals for age, gender, and
charlson as computed by the full-Markov model. The gender covariate refers to the
men with respect to women.

In Table 5.8, we report the hazard ratios for the covariates which are defined only for
transitions departing from the state IN. They are, rehab, it, n_com and n_pro.
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Transition rehab it n_com

IN → OUT 0.4113 [0.4032; 0.4195] 0.6459 [0.6368; 0.6552] 0.9923 [0.9883; 0.9963]
IN → DEAD 0.4906 [0.4500; 0.5349] 1.5097 [1.4433; 1.5790] 1.0713 [1.0560; 1.0868]

Transition n_pro

IN → OUT 0.8879 [0.8742; 0.9017]
IN → DEAD 2.9423 [2.8350; 3.0537]

Table 5.8: Hazard Ratios and 95% confidence intervals for rehab, it, n_com, and
n_pro as computed by the full-Markov model. The gender covariate refers to the
men with respect to women.

Here several considerations can be done. The passage through the rehabilitation unit
decreases the chances of both transitions. A possible explanation could be that a
rehabilitative admission takes longer care time, so a patient is likely to stay more
days in a hospital (HR = 0.4113 [0.4032; 0.4195]). These cares also help the patient
to diminish the risk of death (HR = 0.4906 [0.4500; 0.5349]). The passage through
the intensive therapy unit acts the same way as the rehabilitative admission (HR =
0.6459 [0.6368; 0.6552]), but increases the chances of dying (HR = 1.5097 [1.4433;
1.5790]). This is something we can expect since a patient who undergoes any intensive
therapy surgery has a high probability of being in severe conditions. The number
of comorbidities and surgical procedures affect the risk of having a transition in the
same way. Both decrease the chances of being discharged from hospital sooner (HR =
0.9923 [0.9883; 0.9963]; and HR = 0.8879 [0.8742; 0.9017], respectively) but increase
the probability of dying. In particular, it seems that the surgical procedure have a
stronger impact (HR = 2.9423 [2.8350; 3.0537]) on the mortality of a patient compared
to the comorbidities (HR = 1.0713 [1.0560; 1.0868]).

In Table 5.9, we report the hazard ratios for the covariates which are defined only
for transitions departing from the state OUT. They are LOS, C07, C09, and sum_PA.
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Transition LOS C07 C09

OUT → IN 0.9992 [0.9986; 0.9998] 0.9618 [0.9608; 0.9628] 0.9427 [0.9420; 0.9435]
OUT → DEAD 1.0191 [1.0178; 1.0205] 0.9402 [0.9361; 0.9444] 0.9185 [0.9155; 0.9215]

Transition sum_PA

OUT → IN 0.9752 [0.9746; 0.9757]
OUT → DEAD 0.9362 [0.9331; 0.9394]

Table 5.9: Hazard Ratios and 95% confidence intervals for LOS, C07, C09, and sum_PA

as computed by the full-Markov model.

Here we observe a general decrease in the risk of having a transition, no matter which
it is except for an increase in the LOS which also increases the risk of dying outside the
hospital. The new covariates coming from the pharmacological and outpatient cares
seem to be effective in the prevention of patient’s death. In particular, the acquisition
of agents acting on the renin-angiotensin system, in the form of ACE-inhibitors (C09),
seems to be very effective.

Through the function survplot() in the package msmtools, we are able to build
specific survival curves for a given patient’s profile. That is, for a given set of covariates,
we compute the fitted survival curves as estimated by msm(). To give some examples,
we show a series of plots in which we focus on the effects of a single covariate of interest.
For all the other model’s covariates, we consider their mean values. In Figures 5.6 and
5.7, we can see how different increments in the number of comorbidities and surgical
procedures, respectively, change the survival function. In particular, it seems again
that procedures stronger affect the outcome.
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Figure 5.6: Estimated survival curves for the transition IN → DEAD for changing
values of the number of comorbidities. n_com is set to 3 (black curve), 5 (red curve),
8 (blue curve), 20 (green curve). For all the other covariates, the mean is taken. 95%
confidence intervals are also plotted.
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Figure 5.7: Estimated survival curves for the transition IN → DEAD for changing
values of the number of procedures. n_pro is set to 0 (black curve), 1 (red curve), 2
(blue curve), 4 (green curve). For all the other covariates, the mean is taken. 95%
confidence intervals are also plotted.
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Figure 5.8: Estimated survival curves for the transition IN→ DEAD for for changing
values in the rehabilitation and intensive therapy flags. Absence of rehabilitation
and intensive therapy cares (black curve), rehabilitation passage only (red curve),
intensive therapy passage only (blue curve). The black and red curve collapse one on
another even if the rehabilitation curve has a slightly more positive effect.
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5.2.2 Semi-Markov Model Results

Semi-Markov models relax the Markov assumption by including, in the definition of
the hazard function, the sojourn time in the previous state. The parameters estimation
is carried out through the function coxph() in the package survival which is applied
to the data described in Table 5.6. The covariate structure is the same of the full
Markov model. As we can see from table 5.10, 5.11, and 5.12, the model behaviour is
the same of the full Markov one. The relation between the covariates and the risk
associated with a given transition is thus retained. Even the intensities in the hazard
ratios are pretty similar.

Transition age gender (men) charlson

IN → OUT 0.9878 [0.9874; 0.9881] 1.1272 [1.1182; 1.1362] 0.9148 [0.9118; 0.9178]
IN → DEAD 1.0585 [1.0564; 1.0605] 1.0740 [1.0401; 1.1089] 1.2178 [1.2055; 1.2303]
OUT → IN 0.9893 [0.9889; 0.9898] 1.1482 [1.1370; 1.1596] 1.0515 [1.0486; 1.0545]

OUT → DEAD 1.0530 [1.0511; 1.0549] 1.0743 [1.0434; 1.1061] 1.2322 [1.2238; 1.2406]

Table 5.10: Hazard Ratios and 95% confidence intervals for age, gender, and
charlson as computed by the semi-Markov model. The gender covariate refers to
the men with respect to women.

Transition rehab it n_com

IN → OUT 0.3372 [0.3305; 0.3440] 0.5850 [0.5766; 0.5934] 0.9905 [0.9865; 0.9945]
IN → DEAD 0.4182 [0.3820; 0.4579] 1.5238 [1.4569; 1.5938] 1.0697 [1.0544; 1.0852]

Transition n_pro

IN → OUT 0.8872 [0.8736; 0.9011]
IN → DEAD 2.8043 [2.7016; 2.9108]

Table 5.11: Hazard Ratios and 95% confidence intervals for rehab, it, n_com, and
n_pro as computed by the semi-Markov model. The gender covariate refers to the
men with respect to women.
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Transition LOS C07 C09

OUT → IN 0.9992 [0.9986; 0.9997] 0.9639 [0.9629; 0.9649] 0.9454 [0.9446; 0.9461]
OUT → DEAD 1.0189 [1.0176; 1.0203] 0.9469 [0.9430; 0.9509] 0.9244 [0.9215; 0.9273]

Transition sum_PA

OUT → IN 0.9769 [0.9763; 0.9775]
OUT → DEAD 0.9414 [0.9383; 0.9445]

Table 5.12: Hazard Ratios and 95% confidence intervals for LOS, C07, C09, and
sum_PA as computed by the semi-Markov model. The gender covariate refers to the
men with respect to women.

5.2.3 Fully Parametric Models Results

In this subsection, we present the results obtained by assuming a probability
distribution for the baseline hazard. We have run two different models: the former
assumes an exponential baseline, the latter a Weibull one.

Exponential Baseline

In Table 5.13, we report the estimated rate parameter for the exponential dis-
tribution assumed for the baseline hazard. We observe how the transitions related
purely to admissions and readmissions ones have a rate parameter way greater than
those related to death. This means that the decay rate of the survival function is
faster with respect to admissions and readmissions than the one of deaths.

In Tables 5.14, 5.15, and 5.16 we report the model results for the different groups
of covariates. The considerations discussed in Subsection 5.2.1 still hold here. Hence,
we observe the strong effects of intensive therapy and surgical procedures. We confirm
again the positive effects, in terms of enhancing survival chances, of pharmacological
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and outpatient cares covariates. Despite these similar results, the shape of the
estimated survival curves has remarkably improved by better mimic the empirical
ones.

Transition rate

IN → OUT 0.2395886 [0.2325853; 0.2468027]
IN → DEAD 0.0000290 [0.0000245; 0.0000344]
OUT → IN 0.0143289 [0.0138367; 0.0148386]

OUT → DEAD 0.0000098 [0.0000083; 0.0000114]

Table 5.13: Estimates and 95% confidence intervals for rate parameter of the
baseline distribution as computed by the fully-parametric model with an exponential
baseline.

Transition age gender (men) charlson

IN → OUT 0.9903 [0.9900; 0.9907] 1.1022 [1.0934; 1.1110] 0.9321 [0.9291; 0.9352]
IN → DEAD 1.0570 [1.0549; 1.0591] 1.0720 [1.0382; 1.1069] 1.2196 [1.2073; 1.2321]
OUT → IN 0.9885 [0.9881; 0.9889] 1.1548 [1.1435; 1.1662] 1.0579 [1.0550; 1.0609]

OUT → DEAD 1.0502 [1.0483; 1.0520] 1.0773 [1.0464; 1.1091] 1.2415 [1.2331; 1.2500]

Table 5.14: Hazard Ratios and 95% confidence intervals for age, gender, and
charlson as computed by the fully-parametric model with an exponential baseline.
The gender covariate refers to the men with respect to women.
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Transition rehab it n_com

IN → OUT 0.4185 [0.4103; 0.4268] 0.6596 [0.6503; 0.6690] 0.9892 [0.9852; 0.9932]
IN → DEAD 0.4527 [0.4140; 0.4951] 1.5632 [1.4954; 1.6341] 1.0720 [1.0567; 1.0875]

Transition n_pro

IN → OUT 0.8645 [0.8511; 0.8782]
IN → DEAD 2.8595 [2.7547; 2.9682]

Table 5.15: Hazard Ratios and 95% confidence intervals for rehab, it, n_com, and
n_pro as computed by fully-parametric model with an exponential baseline.

Transition LOS C07 C09

OUT → IN 0.9992 [0.9986; 0.9998] 0.9617 [0.9607; 0.9627] 0.9427 [0.9420; 0.9435]
OUT → DEAD 1.0190 [1.0177; 1.0204] 0.9407 [0.9366; 0.9448] 0.9188 [0.9158; 0.9218]

Transition sum_PA

OUT → IN 0.9752 [0.9746; 0.9757]
OUT → DEAD 0.9367 [0.9336; 0.9398]

Table 5.16: Hazard Ratios and 95% confidence intervals for LOS, C07, C09, and
sum_PA as computed by the fully-parametric model with an exponential baseline.

Weibull Baseline

In Table 5.17, we report the estimated shape and scale parameters for the Weibull
distribution assumed for the baseline hazard. In particular, since this is an AFT
model, the shape parameter reflects the acceleration (deceleration) of the time flowing.
In other words, if the parameter is > 1, then the time to transition would be reduced
and viceversa. We can see that there is a speed up for transitions departing from
state IN and a slow down for transitions departing from state OUT.
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In Tables 5.18, 5.19, and 5.20, we report the hazard ratios estimated by the
fully-parametric model in which the baseline hazard is distributed as a Weibull.

Transition shape scale

IN → OUT 1.3115 [1.3075; 1.3156] 6.3205 [6.1734; 6.4710]
IN → DEAD 1.0429 [1.0299; 1.0561] 24852.1760 [20530.8124; 30083.1082]
OUT → IN 0.9106 [0.9073; 0.9138] 63.2889 [60.8855; 65.7872]

OUT → DEAD 0.8612 [0.8523; 0.8702] 330141.7708 [269078.4219; 405062.5393]

Table 5.17: Estimates and 95% confidence intervals for shape and scale parameters
as computed by the flexsurvreg() under a fully-parametric model with a weibull
baseline.

Transition age gender (men) charlson

IN → OUT 1.0051 [1.0048; 1.0054] 0.8973 [0.8918; 0.9028] 1.0769 [1.0742; 1.0797]
IN → DEAD 0.9482 [0.9463; 0.9501] 0.9331 [0.9049; 0.9622] 0.8279 [0.8196; 0.8364]
OUT → IN 1.0122 [1.0118; 1.0127] 0.8669 [0.8576; 0.8763] 0.9467 [0.9439; 0.9496]

OUT → DEAD 0.9423 [0.9402; 0.9444] 0.9422 [0.9109; 0.9746] 0.7879 [0.7815; 0.7942]

Table 5.18: Hazard Ratios and 95% confidence intervals for age, gender, and
charlson as computed by the fully-parametric model with a Weibull baseline. The
gender covariate refers to the men with respect to women.
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Transition rehab it n_com

IN → OUT 2.7120 [2.6676; 2.7570] 1.3283 [1.3144; 1.3425] 1.0133 [1.0101; 1.0164]
IN → DEAD 2.2040 [2.0230; 2.4012] 0.6608 [0.6326; 0.6903] 0.9358 [0.9229; 0.9488]

Transition n_pro

IN → OUT 1.7448 [1.7171; 1.7729]
IN → DEAD 0.3671 [0.3532; 0.3815]

Table 5.19: Hazard Ratios and 95% confidence intervals for rehab, it, n_com, and
n_pro as computed by fully-parametric model with a Weibull baseline.

Transition LOS C07 C09

OUT → IN 1.0009 [1.0003; 1.0015] 1.0408 [1.0396; 1.0420] 1.0625 [1.0615; 1.0634]
OUT → DEAD 0.9784 [0.9769; 0.9799] 1.0676 [1.0621; 1.0731] 1.0943 [1.0901; 1.0985]

Transition sum_PA

OUT → IN 1.0257 [1.0251; 1.0263]
OUT → DEAD 1.0715 [1.0674; 1.0756]

Table 5.20: Hazard Ratios and 95% confidence intervals for LOS, C07, C09, and
sum_PA as computed by the fully-parametric model with a Weibull baseline.

In Figures 5.9 and 5.10, we show a comparison between the observed survival
curve, computed with the Kaplan-Meier estimator, and the estimated curves by the
different models. Figure 5.9 refers to transitions departing from state IN. That is,
for the discharge and for the death inside the hospital transitions. The time scale is
reduced to 50 days due to an average LOS of 10 days which translates in the fact that
almost every patient has already moved from the starting state after this period of
time. Figure 5.10 refers to transitions departing from state OUT. That is, for the
readmission into hospital and death outside of it. Even if, in this case, it is not true
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that within 50 days every patient has died inside a hospital, the plot is consistent.
The observed and the estimated curves simply keep on moving far apart till end of
the follow-up time. The agreement between the estimated curve and the observed
one is a proxy of the model performance. The curve computed by the semi-Markov is
shown in black, the one computed by the exponential and Weibull models in red and
green, respectively.

Consider the semi-Markov model. We can clearly observe a lack of fit for all the
transitions. The model is not able to capture the observed pattern and this heavily
affects the estimation of the survival probabilities at any time. Even when the sojourn
time in the previous state is included so that the Markov assumption is relaxed, does
not seem to sufficiently compensate. We still need to introduce new assumptions in
order to improve the fit and hence obtaining a more valuable and reliable estimations.

Consider now the exponential model. We can observe a general improvement in
the fit with respect to the semi-Markov approach. In particular, for the discharge
and readmission to hospital transitions (see Figure 5.9), now the model correctly
intercepts the observed behaviour so that we do not observe a total tumble at less
than 5 days of LOS. The transition to death in hospital still suffers, even if we are
now able to mimic the observed pattern for almost 20 days. The transition to death
outside the hospital (see Figure 5.10) is not critical anymore in the sense that we do
not have two almost parallel curves. Now we observe a certain amount of overlapping,
particularly in the early times.

Finally, consider the Weibull model. With respect to the exponential baseline
model, we do observe a further improvement in the discharge and in the death outside
the hospital transitions (see Figure 5.9 and 5.10, respectively). For the former, now
the model not only mimics the observed shape, but it also intercepts the empirical
curve from the first day of follow-up time. For the latter, we observe an improved
overlap between the two curves for almost all the follow-up time.
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In order to quantify the deviation of the fitted survival curves from the empirical
one, we compute a point-wise error δ(t) conditioned to the current state as given by:

δ(t) = δi(t) = |Oi(t)− Ei(t)|, (5.1)

where i marks the current state, Oi(t) is the value of the Kaplan-Meier curve at the
time point t for the i-th state and Ei(t) is the relative estimated values of the survival
curve given by each model. In Figures 5.11 and 5.12, we show the results for transition
departing from state IN and OUT, respectively. The optimum is given when δ(t) = 0

and it is represented by the dotted-dashed grey line over zero. Any deviation from
this, can be interpreted as a deviation of the fitted survival curve from the empirical
one. It is clear how the semi-Markov model is the worst case with an error which is
consistently higher than any other approach. Conversely, the Weibull model seems to
outperform others, particularly in the transition to death from outside the hospital.

After the above considerations, we deem the Weibull model to be on top of all the
others.
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Figure 5.9: Comparison between the empirical survival curve (blue) with the
estimated ones through a semi-Markov (black), full-Markov (magenta), exponential
(red), and Weibull (green) models. Top panel refers to the transition from IN to OUT.
Bottom panel refers to the transition from IN to DEAD.
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Figure 5.10: Comparison between the empirical survival curve (blue) with the
estimated ones through a semi-Markov (black), full-Markov (magenta), exponential
(red), and Weibull (green) models. Top panel refers to the transition from OUT to
IN. Bottom panel refers to the transition from OUT to DEAD.
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Figure 5.11: Models performances with respect to the empirical survival curve. Left
panel refers to transition from IN to OUT. Right panel refers to transition from IN to
DEAD. The dotted-dashed grey line represents the optimum. Semi-Markov error is
reported in black, full-Markov in magenta, exponential in red, and Weibull in green.



5.2 Model Results 107

0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Readmision to Hospital

Time [days]

δ(
t)

semi-Markov
Exponential
Weibull

0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Death Outside Hospital

Time [days]

δ(
t)

semi-Markov
full-Markov
Exponential
Weibull

Figure 5.12: Models performances with respect to the empirical survival curve. Left
panel refers to transition from OUT to IN. Right panel refers to transition from OUT
to DEAD. The dotted-dashed grey line represents the optimum. Semi-Markov error is
reported in black, full-Markov in magenta, exponential in red, and Weibull in green.
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Chapter 6

Conclusions

This work has focused on the management and analysis of multiple healthcare
administrative databases for which Lombardy Region (Italy) has granted us the access
to. The present work marks the first Italian attempt which focuses on the acquisition,
management and study of several data sources regarding the HF pathology collected
by the public healthcare system of Lombardy Region in Italy. The main goal has
been to define a consistent and semi-automatic procedure to import multiple highly
dimensional and complex databases and to process their structure such that subsequent
statistical analyses could be performed. The original and unprocessed databases count
370 thousands patients who generate more than 167 millions events and for the first
time in Italy, we have been able to exploit the information coming from the drug
prescriptions and outpatient cares histories to model the hospitalization pattern of the
patient. This allowed us to to move the focus from a descriptive stand point of view
to an inferential one. Moreover, this work studied the hospital admission-readmission
process using different statistical approaches and assumptions. This allowed us to
explore the HF patient’s epidemiology and to profile the health service utilization
over time. We also investigate variations in patient care according to geographic
area, socio-demographic characteristics as well as other administrative and clinical
variables.
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During this thesis, there have been different steps in the workflow which marked
the advancement. Most of the effort consisted in the development of procedures in
order to import and process the data efficiently using R. In particular, we have been
able to import and work with all the datasets in a single environment on a single
machine. This has been achieved by widely using the call-by-reference paradigm, by
avoiding internal copies of environment objects and by consistently adopting the most
efficient method or objects during the coding phase.

The first part has focused on the data preprocessing and preparation such that all
the datasets could be read with the correct longitudinal structure. Each information
has been scanned and checked in order to avoid inconsistencies and to correct any
issue due to errors occurred in the original imputation phase.

We have developed from scratch a new R package called msmtools [Grossetti, 2016]
with the specific aim of modifying the longitudinal structure of the data into an
enhanced version which we called augmented. This new format has been introduced
to facilitate the modeling of such data under a multi-state models framework using
the package msm [Jackson, 2011]. msmtools has several important characteristics.
Among them, we highlight its speed, efficiency and generality. As we have described
in Section 3.3, the function augment() is able to process almost 60 millions patients in
less than an hour by running just in single core mode. This is very important because
it allows the reshaping of very highly dimensional data in a reasonable amount of
computational time. Moreover, the package is also very efficient in terms of memory
consumption, so that a large dataset can be processed on a single consumer machine.
At last, msmtools can work with any longitudinal dataset which satisfies certain
prerequisites like the identification of time located events. It is also able to introduce
even more general status types according to a combination of multiple information.
For instance, we may want to extend the information of being inside or outside a
hospital with more complex and general conditions like the type of hospital admission.
This can be achieved seamlessly with internal parameter of augment(). The package
also comes with two graphical tools which provide informal Goodness of Fit tests like
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a comparison between the empirical and estimated survival curves as well as observed
and estimated prevalences. Moreover, survplot() can predict the survival curves
generated by a specific patient’s profile through the model computed by msm(). It
can also return the related data very efficiently so that for each provided profile it is
possible to store point-wise estimation of the survival function.

The statistical analyses have used both survival and multi-state models. In
particular, we are interested in estimating the probability that a given patient moves
between different states. We have defined three different states which mark the patient
when inside the hospital (state IN), outside the hospital (state OUT) and when the
patient dies (state DEAD). The first two transitions are transient, while the third
defines the absorbing state. We have build a bi-directional illness-death model in
which a patient can move back and forth through the IN and OUT states. We have
then four possible transitions defined by the transition matrix Q0:

Q0 =


0 qIN→OUT qIN→DEAD

qOUT → IN 0 qOUT →DEAD

0 0 0

 , (6.1)

For this structure, we have made different assumptions which lead to four different
models. In particular, all the models are considered to be time-homogeneous, so
that the transition matrix is assumed constant with time. Then we have assumed a
Markov process for the first model implying that the future evolution of the process
depends only on the current state (see Subsections 4.2.1 and 5.2.1 for theoretical
definition and for results, respectively). In other words, we do not consider anymore
the full history of the process, but we deem that the last state provides sufficient
information for the estimation. The model is assessed through the function msm() in
the homonymous package and it has been run on the augmented database as computed
by the function augment() in the package msmtools. A second model, called semi-
Markov, relaxes the Markov assumption by including the sojourn time length in
the last state into the estimation (see Subsections 4.2.3 and 5.2.2 for theoretical
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definition and for results, respectively). The model is assessed through the function
coxph() in the package survival [Therneau, 2015] over the data structure computed
by the functions msm2Surv() and expand.covs() in the packages msm and mstate

[de Wreede et al., 2011], respectively. These first two models fall in the semi-parametric
approach since both of them are based on the Cox regression model which does not
assume any distribution for the baseline hazard function which is then estimated
non-parametrically. The third and fourth models, instead, assume a probability
distribution for the baseline. In particular, we have considered an exponential and a
Weibull models (see Subsections 4.1.6 and 4.3.1 for theoretical definition and 5.2.3 for
results, respectively). Both are assessed through the function flexsurvreg() in the
package flexsurv [Jackson, 2016] and are run with over the same data structure as
the semi-Markov model.

All the models have made use of the covariates age, gender, and charlson over
all the transitions; rehab, it, n_com, and n_pro over the transitions departing from
the state IN; LOS, C07, C09, and sum_pa over the transitions departing from the state
OUT.

In terms of parameters estimation, the overall behaviour of the four models is
comparable. First of all, we have confirmed a clear impact of the brand new set of
covariates which provide drug prescriptions and outpatient cares history. Pursuing a
correct therapy, both in terms of drug prescriptions and outpatient cares, positively
affects the general condition of a patient. They decrease the risk of hospital readmission
and death with all the hazard ratios being smaller than 1. In particular, ACE-inhibitors
have a slightly higher prevention rate with respect to beta blocking agents. Even
if we do not possess the exact data related to prescribed drugs consumption and
the outpatient cares taken, this result can be considered as a therapy compliance
proxy. A deeper study of these types of covariate is fundamental to investigate more
characteristics like the time duration of drug prescriptions. For instance, a correct
acceptance of therapy thus a prolonged compliance with time, might suggest an even
more positive effect over the transitions to death. Being a man increased the general
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risk of transitioning and the natural aging effect is present and positively affects the
probability of dying. Also the Charlson index correctly reflects the patient’s condition
with an increasing risk for higher index values. The rehabilitation and intensive
therapy units passage decrease the chances of being discharged. Both the mentioned
cares are typically more delicate and require a longer sojourn in the hospital and at
the same time, they help the patient by improving his/her general conditions. If a
rehabilitative admission positively acts also over a transition to death, this is not true
when a patient is admitted in the intensive therapy unit. This is something we might
consider acceptable since a patient who undergoes this type of therapies is typically in
more severe conditions. The number of comorbidities and surgical procedures behave
the same way. Both prolong the sojourn time in the hospital, that is the chances of
being discharged from hospital are lower, but increase the probability of dying. In
particular, having any of the surgical procedures has an impact almost three times
stronger than having any comorbidity. For what concern the covariates adopted to
model transitions departing from state OUT, we have observed a general decrease in
the risk. The only exception is given by the LOS which comprehensibly increases the
risk of dying.

Of the four adopted models, the one which better captures the patient’s process is
the fully-parametric one with a Weibull baseline. In particular, this is very effective
in intercepting the observed risk of being discharged from hospital as well as the risk
of dying outside of it. Moreover, the error is consistently lower than that of the other
model, except for moderate time intervals.

This work is a first attempt at modeling the process of hospital admissions using
the drug prescriptions and outpatient cares histories. From a statistical point of view,
the models implemented form a first framework onto which building their development.
This can be achieved in several different ways. For instance, an extension of the
covariates structure by including more information related to different dugs and
outpatient cares which, up to now, are restricted to cardiological ones. A change
in the statistical approach could also be considered. For instance, we may include
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Hidden Markov Models and Point Processes. From a computational point of view,
there is still room for the development of msmtools as discussed in Subsection 3.3.4.
Moreover, some effort could be dedicated to the development of a package which acts
as a wrapper of several others from a data restructuring point of view. Also, some
plotting methods have been build based on how the different estimation functions
internally work. Some ideas have already been formalized, but still a consistent shape
has not been achieved yet.



Appendix A

Side Projects

Beside the main topic and work of this thesis, several side projects have been
carried out in parallel during the past three years. The works described in Sections
A.1, A.2, and A.3 have been carried out in collaboration with different clinicians,
physiotherapists, biologists belonging to the Scientific Institute of Lumezzane - Fon-
dazione Salvatore Maugeri, IRCCS while the work described in Section A.4 is in
collaboration with MOXOFF - Mathematics for Innovation, a spinoff of the MOX
laboratory at Politecnico di Milano. In this chapter, we are going to present them
and briefly discuss their primary goals.

A.1 Effects of Tele Assistance

Over the last years, the interest in clinical interventions like Tele Assistance (TA)
has considerably increased [Goldstein and O’Hoski, 2014]. In particular, TA applied
to chronic diseases is consider to be a game changer in terms of patient’s and costs
management.

The present work focuses on the evaluation of the effects of addition of long-
term TA to patients affected with hypercapnic Coronary Obstructive Pulmonary
Disease (COPD). In particular, the study investigates what are the benefits in case
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Non-Invasive Ventilation (NIV) is adopted. This is a retrospective analysis of data
regarding hypercapnic COPD affected patients under long-term TA. The data have
been collected as a randomized study [Vitacca et al., 2009]. Patients have been
evaluated for at least 4 years including long-term TA with and without home night
NIV and with at least one hospital admission for respiratory illness in the previous
years before randomization of the original study. We considered three exclusion
criteria:

1. patients already randomized or with no working home phone, with a nursing
home residence or with no caregiver to facilitate phone contacts;

2. no COPD diagnosis;

3. presence of tracheostomy.

Those patients eligible for the study, have been admitted to hospital to begin a
4-week rehabilitation plan. Long-term Oxygen Therapy (OT) has been prescribed
for all patients according to the Italian Guidelines [Murgia et al., 2004] and home
NIV has been prescribed as well at least one year before the hospital admission, when
available.

Several baseline data have been recorded for all patients. Primary outcome
measures are the time to the first exacerbation and hospitalization in the following 12
months after discharge and the 12-months survival probability. KM method has been
used to assess first exacerbation and hospitalization as well as death. These quantities
have been also studied through a Cox PH regression model.

This study shows the usefulness of adding TA to long-term care plans in hypercapnic
COPD patients under long-term OT with or without night NIV. For a detailed
discussion of the results, we refer to the work of Vitacca et al. [2016].
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A.2 Recovery After Rotator Cuff Repair

This work aims to verify if the concomitant biceps surgery prejudices the shoulder
functionality during the short-term period in rotator cuff repair patients. Rotator cuff
tear is a common cause of disability of the shoulder and, among several diseases of the
upper limbs, is considered to be the one with higher associated costs whether from
a medical, surgical, insurance and management point of views. Surgical treatment
and repair of chronic condition is thus indicated when conservative treatment fails.
The goals of rotator cuff tear surgery are to decrease pain, improve functionality, and
prevent subsequent extension of the defect [Pai and Lawson, 2001]. This approach
seems to be effective and to provide very good results in 93.3% of cases [Redziniak
et al., 2009].

The present work has been conceived as a prospective longitudinal study carried
out on 101 patients who underwent surgery for rotator cuff repair. Observations
occurred at the admission (T0), at the end of the post-surgical rehabilitation period
(T1) and then after six months from the surgery (T2). Among the 101 patients, 25
underwent rotator cuff repair and additional tendon biceps surgery (ABS group) while
76 rotator cuff repair only (RCR group).

Final score, efficiency and effectiveness in Constant Scores have been considered
as outcome measures [Shah et al., 1990]. Several other quantities have been recorded.
Among others: the comorbidity index of Cumulative Illness Rating Scale (CIRS)
[Parmelee et al., 1995], the Range of Motion (ROM) of shoulder, the University of
California at Los Angeles (UCLA) shoulder score [Ellman et al., 1986], the Constant
Scale and Pain [Constant and Murley, 1987; DeLoach et al., 1998].

A 2-way mixed ANOVA has been implemented to investigate the effect of time
progression in interaction with patient’s group for these variables: Constant Score,
Pain, ROM, and UCLA. The magnitude of effects, where significative, has been
assessed through the η2 and Cohen’s d [Cohen, 1969] effect sizes.

Of the initial 101 patients, 8 have been lost at 6 months post-surgery so the final
analyses have been carried out on a sample of 93 patients. The sample size has been
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deemed adequate to highlight significant differences between groups in Constant Final
score with a power γ = 0.85 at a significance level of α = 0.05.

In this work we have been able to point out that both RCR and ABS patients
increased Constant Scores at T1 and at T2 with respect to T0, though ABS ones showed,
intuitively, lower scores than RCR. In general, poorer functionality has been observed
in ABS group in the different outcomes meaning that ABS affects the rehabilitation
program thus slowing down functional recovery of patients. Biceps surgery seems
to be an important predictor of the shoulder functionality both at T1 and at T2. In
literature, no evidence of this has been found.

Further details can be found in the work of Gialanella et al. [2016].

A.3 Bioelectrical Impedance Analysis

The measurement of body composition in terms of Fat-Free Mass (FFM) and
Fat Mass (FM) is of strategic importance in nutrition assessment. There exist a
wide variety of techniques all of which are considered standards for their reliability.
Typically, techniques such in vivo neutron activation, isotopic dilution and hydrostatic
weighing are considerably expensive, they require a high level of expertise and involve
the patient in terms of cooperation time. A different approach to specifically evaluate
FFM and Total Body Water (TBW) is to measure the electrical properties of biological
tissues. The technique is called Bioelectrical Impedance Analysis (BIA) and presents
several advantages over the other methods. Among others, we highlight its safeness,
portability, ease of use and cost-friendliness. A good review of the working principles
and applications can be found in the work of Kushner [1992].

For the purpose of the present study, let us recall some concepts of BIA. It is
possible to measure the variations the amount of blood flowing through an organ by
tracking the electrical changes in the section of the body under study. The impedance
of a isotropic conductor can be written as follows:
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Z = ρ
L

A
, (A.1)

where Z is the impedance [ohm], ρ is the specific resistivity of the medium [ohm ·
cm], L is the conductor length [cm] and A is the cross-sectional area [cm2]. Equation
(A.1) can be rearranged to explicitly solve for the volume V [cm3] by multiplying
everything for L/L as follows:

V = ρ
L2

Z
. (A.2)

Solving equation (A.2), that is the electrical volume, allows to measure the FFM and
TBW. Moreover, there is a direct relation between impedance and resistance which
helps us out to use them interchangeably. In general, BIA is used as a tool to describe
the impedance of a patient through its components given by the resistance R and
the reactance X of the conducting substance. This allows us to write the following
equation:

Z = R +X = R + (XL +XC) . (A.3)

where XL is the inductance and XC is the capacitance. Total body impedance is then
a combination of resistance and reactance across biological tissues.

The study counts a total of 408 patients with different pathologies. The full
analysis will be carried out on two groups of patients: the former is made of 166
patients affected by CHF and the latter of 64 patients affected by cardiomyopathy for
a total of 230 patients. We have registered several types of data like haematochemicals,
functional, and of course BIA data.

The aims of this work are multiple. The main objective is to describe the two
population through a classification based on the BIA data, that is based on reactance
and resistance data. At the present stage, a k-means algorithm has been implemented
[Hartigan and Wong, 1979]. A simulation study has also been included to specifically
evaluate the performance of the algorithm. The following quality indexes are adopted:
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the silhouette index [Rousseeuw, 1987] which provides a graphical tool to interpret
and validate the cluster analysis, the Caliński-Harabasz index [Caliński and Harabasz,
1974], and the C-index [Hubert and Schultz, 1976]. The procedure is interactive and
fast and consists in running a k-means multiple times by changing the initial random
seed at each iteration and the number of cluster given in input. The simulation is
iteratively repeated for at most 1000 times with the number of clusters ranging from
2 to at most 20. We always obtain a consistent general behaviour with an increasing
factor of fluctuation around the mean as the number of clusters grow.

To detect the number of cluster which best catches the variance, we use the
aforementioned indexes. For each of them, we either maximize or minimize an
objective function. In particular, for the silhouette index we look for the maximum of
the following function, as derived from the original paper of Rousseeuw:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
with− 1 ≤ s(i) ≤ 1, (A.4)

where a(i) is the average dissimilarity of the i-th element to all other objects of cluster
A, b(i) is the minimum of the average length from i to all the objects in cluster C
such that b(i) = min

C 6=A
d(i, C).

The Caliński-Harabasz index is the ratio of the between-cluster and within-cluster
dispersion. It should look familiar as this is actually the F-value1 of a one-way ANOVA
with K representing the number of factor levels. The criterion has proven to work
well in many situations. It also also shows a consistent robustness across the varying
number of clusters. Moreover, it is not affected by a low number of clusters in contrast
with the Duda and Hart index as discussed in the work of [Milligan and Cooper, 1985].
We show below the form of the index below:

CH = arg max

{
BGSS/(K − 1)

WGSS/(N −K)

}
= arg max

{
N −K
K − 1

BGSS
WGSS

}
, (A.5)

1Often it is also called pseudo F-statistic due to its similarity with the statistic used in the more
classical F-test.
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where BGSS is the between-group dispersion defined as the dispersion of the barycen-
ters Gk of each cluster with respect to the barycenter G of the whole set of data. It is
given by the trace of the between-group scatter matrix BG = BtB as follows:

BGSS = Tr(BG) =
K∑
k=1

nk‖G{k} −G‖2, (A.6)

where WGSS is the within-group dispersion. For each cluster Ck we introduce
the within-group scatter matrix WG{k}. If µ{k} designates the barycenter of the
observations in cluster k and X{k} is the matrix formed by the centered vectors
v
{k}
j = V

{k}
j −µ{k}j , then the scatter matrix is defined by WG{k} = X t,{k}X{k}. WGSS

is defined as the sum of the trace of the scatter matrix as follows:

WGSS =
K∑
k=0

Tr(WG{k}) =
K∑
k=0

∑
i∈Ik

‖M{k}
i −G{k}‖2. (A.7)

Finally, the C-index is defined as:

C = arg min

{
S − Smin

Smax − Smin

}
, (A.8)

where S is the sum of distances over all pairs of objects which form the same cluster,
n is the number of those pairs and Smin is the sum of the n smallest distances if all
pairs of objects are considered. Likewise Smax is the sum of the n largest distances
out of all pairs. The C-index is limited to the interval [0, 1] and we want to take its
minimum.

A second aim is to study the correlation of the Human Serum Albumin (HSA)
with mortality. HSA is a protein which is very abundant in human blood plasma and
is fundamental in the regulation of blood plasma colloid osmotic pressure. It acts
as a carrier protein for a wide range of endogenous molecules including hormones,
fatty acids, and metabolites, as well as exogenous drugs. It is known that an inverse
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correlation between the HSA concentration and the mortality risk does exist [Alderson
et al., 2003] in patients affected by acute and chronic illness. The study tries to
provide a snapshot of the protein metabolism impairment in CHF patients referred
to a rehabilitative center to perform cardiac rehabilitation. The 166 CHF patients
have been selected according to different HSA values which identify three different
sub-populations: a normal one, a sarcopenic one (i.e patients are affected by sarcopenia
which is a degenerative loss of skeletal muscle mass), and a cachectic one (i.e. patients
affected by cachexia which is a loss of weight, muscle atrophy as well as a loss of
appetite).

At the present stage, the simulation study has been correctly implemented and
the assessment step needs to be taken. The study of HSA correlations is currently
ongoing and requires a further preprocessing step due to the high impact of missing
data in the dataset.

A.4 Customer Churn in a No-Profit Setting

The analysis of the customer base is very challenging and requires a robust set of
tools in order to obtain consistent results. The world of customer base analysis, which
in the end becomes in the capacity of evaluating whether a customer is profitable or
not, is amazingly widespread. A very solid definition defines a profitable customer as
“a person, household, or company whose revenues over time exceed, by an acceptable
amount, the company costs of attracting, selling, and servicing that customer” [Kotler
and Armstrong, 2010]. This excess is called Customer Lifetime Value (CLV) and
nowadays is a pillar in many marketing and budgeting decisions within companies.

The study of the relation between a customer and a firm can be approached in
different ways. For instance, in this project we adopt the general framework we have
depicted in Chapter 4. We are interested in modeling the behaviour of a customer
along time in the context of no-profit associations. In this framework, an individual
starts a subscription with a given association which imposes the payment of recurrent
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fee. The payment frequency depends on the type of contract and can be monthly,
quarterly, every six month or yearly. In principle, a correct behaviour is given by no
interruptions in the payment flow. Of course, this happens rarely because, for whatever
reason, a payment or even a series of payments can be skipped. The individual is
now in a grey and misty situation because we do not know if he/she intends to renew,
actually reprise, the subscription or if he/she has completely abandoned it.

One of the main interest of no-profit associations is to maintain their donors,
especially the ones with at least one subscription. The aim is to compute a probability
of churn for each donor or cluster of them at a given point in time and highlight the
ones that show a risk of leaving the association. Moreover, the projects also aims at
implementing all the statistical models into a web-based platform which helps the
associations in managing the donors and the relative fundraising campaigns.

We have analyzed multiple datasets all in the longitudinal format. The main
dataset has 1,226,429 observations with 42 variables though several preprocessing
procedures have been carried out. For instance, we focus on the relation between
a given donor and his/her donations’ pattern by selecting just one and only one
subscription which registered the maximum number of donations. Moreover, we have
selected only women and men thus excluding families, foundations and firms. We have
considered only donor with a registered date of birth and we have excluded all the
events with time inconsistencies like the date of the end of the subscription occurring
before the subscription began. The final dataset consists of 619,794 events generated
by 30,707 donors.

MSMs help in the assessment of the movement between possible intermediate
states, beside the active and the absorbing ones. The model is bi-directional with
S = {1, . . . , 3}. The states are:

• active: the donor is following the correct payment schedule and the amount of
money is greater than zero;

• waiting: when a donor fails to respect the payment schedule, reaches this state;
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• inactive: if a donor signs the end of the subscription, then enters in the absorbing
state.

For this model, we assume a time-homogeneous full Markov process and we
estimate the transition probabilities using the msm package. Covariates are transition
specific and each transition is defined by a semi-parametric Cox model.

Up to now, we are able to produce a survival curve for each donor’s profile easily and
in very fast way for a specific association. The project is at its first lights and there is
still much to do, both in terms of database management, variables selection and model
improvements. For instance, a general data import and variables creation is under
development. This will ensure the possibility to independently work with different
associations whose databases have different structures. The variables selection process
will be finalized once all the databases will be well defined. The statistical models
will also be modified with respect to the new set of variables. However, the general
guideline is to exploit the work of this thesis and adapt the models accordingly.
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