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Introduction

In this thesis we develop a class of models for the analysis of spatially distributed

data with complex dependencies, such as space-time data over spatial domains

with a complex shape, or data characterized by stationary or non-stationary spa-

tial anisotropy. Appropriately taking into account the structure of the complex

dependencies present in the data is fundamental to provide accurate estimation

for data arising from many fields of sciences, such as physics, biology, meteorol-

ogy and geology.

The proposed method is based on spatial regression with partial differential

penalization. The idea of regularization with differential operators is common

in functional data analysis for instance to tackle the problem of univariate or

multivariate curve fitting (Ramsay and Silverman, 2005). Similar approaches

can be used for the estimation of surfaces or spatial fields. Some examples are

given by thin plate splines (Wahba, 1990), soap-film smoothing (Wood et al.,

2008) and bivariate splines (Guillas and Lai, 2010).

In this work, we consider the spatial regression with partial differential reg-

ularization method introduced by Ramsay (2002), Sangalli et al. (2013) and

Azzimonti et al. (2015). This method interfaces advanced statistical methodol-

ogy and numerical analysis techniques. In particular, it makes use of the finite

element method.

This technique is able to efficiently deal with data distributed over complex

domains, including irregularly shaped domains, featuring strong concavities and

interior holes (Sangalli et al., 2013), or non-planar domains (Ettinger et al., 2016;

Dassi et al., 2015). Furthermore, the method can take into account specific infor-

mation on the behavior of the phenomenon under study, which is fundamental

in many applications to obtain meaningful estimates. Indeed, the model has

the capacity to incorporate problem-specific prior information about the spatial

structure of the phenomenon under study, formalized in terms of a governing

partial differential equation (Azzimonti et al., 2014, 2012) and can provide es-

timated fields which satisfy known boundary conditions (Sangalli et al., 2013;

Azzimonti et al., 2014, 2012). Moreover, if space-varying covariates are available,

they can be accounted for in the model via a semi-parametric framework.

This thesis shows that spatial regression with partial differential regulariza-
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INTRODUCTION

tion can be extended to deal with more complex types of spatial or spatio-

temporal dependences, including space-time data observed over complex spatial

domains (Chapter 1), spatial data characterized by unknown spatial stationary

anisotropy (Chapter 2), and spatial data characterized by spatial non-stationary

anisotropy driven by the texture of the domain (Chapter 3).

In Chapter 1 we extend the spatial model presented in Ramsay (2002) and

Sangalli et al. (2013) to include the time dimension. This chapter is based on

Bernardi et al. (2016). In particular, we consider spatio-temporal data defined

on a spatial domain featuring strong concavities which affect the phenomenon

under study. In this work we introduce a penalization which separately takes

into account the spatial dimension and the temporal dimension. Simulation

studies show the good performances of the proposed model with respect to

other spatio-temporal techniques. In particular, the proposed technique pro-

vides more accurate estimates when the phenomenon under study is influenced

by the complex geometry of the spatial domain. Indeed, the classical methods

for spatio-temporal data are not well suited for the analysis of this kind of data

since they do not take into account the geometry of the domain. The method

is applied to the analysis of the waste production in Venice province. Also in

this applied case, the proposed method can properly take into account the com-

plex shape of the domain and is able to capture the temporal evolution of the

phenomenon.

In Chapter 2, we consider data characterized by stationary spatial anisotropy.

In this case, the approach proposed by Ramsay (2002) and Sangalli et al. (2013)

is not applicable since the Laplacian is an isotropic operator and therefore the

resulting smoothing effect would not capture the spatial structure present in the

data. The method we propose makes use of an anisotropic diffusion operator in

the regularization as to properly take into account the spatial anisotropy present

in the data. Differently from Azzimonti et al. (2015) and Azzimonti et al. (2014),

we do not assume that the anisotropic diffusion operator in the regularizing term

is suggested by a priori knowledge of the problem under analysis; rather, we

consider it as unknown and we estimate it from the data. To this end, we adopt

a profiling estimation approach, adapting to our setting the parameter cascading

technique proposed by Ramsay et al. (2007), Cao and Ramsay (2007), Cao and

Ramsay (2009), Cao and Ramsay (2010) and Xun et al. (2013). Simulation

studies compare the proposed method to both isotropic and anisotropic kriging

in various simulation settings. The method is illustrated via an application to

a benchmark dataset concerning rainfall data over Switzerland, that was used

for the Spatial Interpolation Comparison 97 (Dubois et al., 2003). Also in this

applied case, the technique is able to capture the right anisotropy, thus providing

a good estimated spatial field. This chapter is based on the submitted work

Bernardi et al. (2017), developed in collaboration with Prof. James O. Ramsay

and Dr. Michelle Carey.
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INTRODUCTION

Chapter 3, presents the first steps for the development of the method for the

analysis of data characterized by non-stationary spatial anisotropy induced by

the texture of the domain. In this case, the domain of the phenomenon is not ho-

mogeneous, but presents regions with different characteristics which determine a

non-homogeneous spatial dependence of the data. The motivating applied prob-

lem concerns the estimation of the population mobility in the metropolitan area

of Milan from mobile phone data (Manfredini et al., 2015; Secchi et al., 2015;

Zanini et al., 2016; Passamonti, 2016). The domain under study is strongly

characterized by the presence of roads, which affect the distribution of the data.

Indeed, the phenomenon is characterized by strong anisotropy along the main

roads, while it is more homogeneous in the regions without main roads. The

method we propose accounts for the non-homogeneity in the spatial dependence

of the data by considering, in the penalization term, a non-stationary anisotropic

diffusion operator whose anisotropy is estimated from the geometry of the road

network characterizing the domain. The estimation of the anisotropy is per-

formed with the technique presented in Della Rossa et al. (2010), where an

algorithm is developed to model traffic flows in complex networks such as large

urbanized areas. This work is in collaboration with Prof. Fabio Della Rossa.
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Chapter 1

A penalized regression model
for spatial functional data with
application to the analysis of
the production of waste in
Venice province

This chapter is based on Bernardi et al. (2016).

1.1 Introduction

In this chapter we deal with spatio-temporal data distributed over a spatial

domain which presents complex geometries. That is, the irregular shape of

the domain influences the phenomenon under study and there are important

geographical elements within the boundary such as islands and peninsulas that

impact the distribution of the data. We refer to such domains as textured.

As an illustrative example, consider the estimation of the temporal evolution

of the amount of per capita municipal waste produced in the towns of Venice

province. Figure 1.1 shows the Venice province, with dots indicating town cen-

ters, including municipalities and other tourist localities of particular relevance.

The province boundary is shown by a red line, highlighting the irregular shape of

the province administrative borders and its complex coastlines, with the Venice

lagoon partly enclosed by elongated peninsulas and small islands.
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Quarto D'Altino
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Figure 1.1: Spatial domain of the Venice waste data, with a red line highlighting the province
boundary and dots indicating the towns centers.

The data are measurements from 1997 to 2011 of the yearly amount of per

capita municipal waste (total kg divided by the number of municipality residents)

and are provided by the Arpav, the Agenzia regionale per la prevenzione e

protezione ambientale del Veneto.

Figure 1.2 shows the temporal evolution of the production of per capita waste

in the towns of Venice province and Figure 1.3 is a bubble plot of the data

at a fixed year, 2006. The phenomenon portrayed by these data is expressed

differently in different parts of the domain. Consider for instance the two towns

of Cavallino-Treporti (in the peninsula at the north-east of Venice) and Quarto

d’Altino (north of Venice), indicated by black dots in Figure 1.3. The temporal

evolution of the production of per capita municipal waste in the two towns,

highlighted in Figure 1.2, is rather different, with strongly increasing and high

values in the seaside and tourist town of Cavallino-Treporti, opposed to the not

increasing and lower values measured in hinterland town of Quarto d’Altino.

These two towns are close in terms of their geodesic distance, but they are

actually separated by the Venice lagoon. Hence, appropriately accounting for

the shape of the domain, characterized for instance by a strong concavity formed

by the lagoon, is crucial to accurately handle these data.

When analyzing the temporal evolutions of the amount of per capita munici-

pal waste, we shall make a strong simplification of the nature of these data, and

consider them in the framework of geostatistical functional data (Delicado et al.,

2010), where the datum is observable in principle in any point of the domain,

instead of in the framework of functional areal data. As detailed in Section 1.7,
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Figure 1.2: Temporal evolution of the yearly per capita production (kg per resident) of munic-
ipal waste in the towns of Venice province.
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Figure 1.3: Per capita production (kg per resident) of municipal waste in the towns of Venice
province in 2006. The data include all municipalities of Venice province and additional four
localities (Bibione, Murano, Lido di Venezia and Pellestrina), that do not constitute a munic-
ipality on their own, but have been included due to their tourist relevance and their location
on the domain. For these additional four localities, the considered datum is a replicate of the
datum of their corresponding municipalities (see Section 1.7).
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1.2. DATA AND MODEL

this is due to the fact that we miss the information concerning the urbanized ar-

eas of the municipalities, where the type of waste here considered (that does not

include agricultural, industrial, construction/demolition and hazardous waste)

is produced.

Various methods have been recently proposed for the analysis of spatially

dependent functional data. Starting from the pioneering work of Goulard and

Voltz (1993), kriging prediction methods for stationary spatial functional data

are developed in Delicado et al. (2010), Nerini et al. (2010) and Giraldo et al.

(2011). Recent techniques developing universal kriging approaches for spatially

dependent functional data are offered by Caballero et al. (2013), Menafoglio

et al. (2013) and Menafoglio et al. (2014). An extension of kriging for functional

data which takes into account the presence of covariates is developed in Ignaccolo

et al. (2014). The same data can be also considered in a more classical space-time

data framework. An extensive literature on spatio-temporal models has been

produced; we refer the reader to Cressie and Wikle (2011) and references therein.

On the other hand, these methods are not well suited for the context we are here

considering because they do not take into account the shape of the domain; for

instance these methods would smooth across concave boundary regions, thus

closely linking data points that are in fact far apart by land connections.

Recent methods for the analysis of spatio-temporal data that instead specif-

ically account for the geometry of the domain of interest are described in Au-

gustin et al. (2013) and Marra et al. (2012). These models are based on the

spatial smoother proposed by Wood et al. (2008). Here, we extend the spa-

tial models with differential regularization described in Ramsay (2002), Sangalli

et al. (2013) and Azzimonti et al. (2015) to time dependent data, and propose

a Spatio-Temporal regression model with Partial Differential Equations regular-

ization (ST-PDE). The model is implemented in R (R Core Team, 2016), based

on the package fdaPDE (Lila et al., 2016).

This chapter is organized as follows. Section 1.2 describes the ST-PDE model.

Section 1.3 shows the numerical implementation of the model. Section 1.4 il-

lustrates the extension of the model for the inclusion of space-time varying co-

variates. Section 1.5 describes a variation of the ST-PDE model. Section 1.6

compares via simulation studies the ST-PDE model to other spatio-temporal

prediction techniques. Section 1.7 shows the application of the proposed method

to the analysis of the per capita municipal waste in the Venice province. Section

1.8 outlines some possible model extensions.

1.2 Data and model

Let {pi = (xi, yi); i = 1, ..., n} be a set of n spatial points on a bounded domain

Ω ⊂ R2, whose boundary ∂Ω is a curve of class C2, and {tj; j = 1, ...,m} be

a set of m time instants in a time interval [T1, T2] ⊂ R. Let zij be the value

9



1.2. DATA AND MODEL

of a real-valued variable observed at point pi and time tj. In our illustrative

application, the spatial domain Ω is the province of Venice, the spatial locations

pi are the centers of the towns, the time instants tj are the years between 1997

and 2011 and the variable of interest zij is the amount of per capita municipal

waste produced in the town i and year tj. The data zij are a sampling of space

dependent temporal curves. Equivalently, they can be seen as a sampling of time

dependent surfaces on Ω.

We assume that {zij; i = 1, ..., n; j = 1, ...,m} are noisy observations of an

underlying spatio-temporal smooth function f(p, t):

zij = f(pi, tj) + εij i = 1, ..., n, j = 1, ...,m, (1.1)

where {εij; i = 1, ..., n; j = 1, ...m} are independently distributed residuals with

mean zero and constant variance σ2.

We estimate f(p, t) by minimizing a penalized sum of square error functional

J(f), where the penalization takes into account separately the regularity of the

function in the spatial and temporal domains. Various choices for the regular-

izing terms in space and in time are possible. Here, we use simple isotropic and

stationary regularizing terms in both space and time. In particular, following

Ramsay (2002), Wood et al. (2008) and Sangalli et al. (2013), we use the spatial

roughness penalty

JS (g(p)) =

∫
Ω

(
∆g(p)

)2

dp, (1.2)

where g : Ω→ R and the Laplacian ∆g(p) = ∂2g
∂x2 (p) + ∂2g

∂y2
(p) provides a simple

measure of the local curvature of g. Other possible choices for spatial roughness

penalties are, for instance, that associated with thin plate splines, given by∫
R2(

∂2g
∂x2 (p))2 + 2( ∂2g

∂x∂y
(p))2 + (∂

2g
∂y2

(p))2dp, or penalizations involving more com-

plex partial differential operators describing prior knowledge on the phenomenon

under study (see, e.g., Azzimonti et al. (2015)). As for the temporal dimension,

we here adopt the classical penalty

JT (h(t)) =

∫ T2

T1

(drh(t)

dtr

)2

dt , (1.3)

where h : [T1, T2] → R. See, e.g., Ramsay and Silverman (2005), Chapter 5, for

details.

The spatial penalty JS is applied to the spatio-temporal function f(p, t) and

then integrated over the temporal domain [T1, T2], and analogously the temporal

penalty JT is applied to f(p, t) and then integrated over the spatial domain Ω.

The field f is thus estimated by minimizing the following penalized sum of square

10



1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

error criterion:

J(f) =
n∑
i=1

m∑
j=1

(
zij − f(pi, tj)

)2
+

+ λS

∫ T2

T1

∫
Ω

(
∆f(p, t)

)2

dpdt+ λT

∫
Ω

∫ T2

T1

(∂rf(p, t)

∂tr

)2

dtdp, (1.4)

where λS > 0 and λT > 0 are two smoothing parameters that weight the penal-

izations respectively in space and time. The choice of these parameters will be

discussed in Section 1.3.3. As detailed in the following section, the regularizing

terms in (1.4) induce the space-time covariance structure of the estimator and

different regularizations would imply different covariance structures.

1.3 Numerical implementation of the model

We represent the spatio-temporal field f(p, t) as an expansion on a separable

space-time basis system. Specifically, let {ϕk(t); k = 1, ...,M} be a set of M basis

functions defined on [T1, T2] and {ψl(p); l = 1, ..., N} a set of N basis functions

defined on Ω. Then, f is represented by the following basis expansion:

f(p, t) =
N∑
l=1

M∑
k=1

clk ψl(p) ϕk(t), (1.5)

where {clk; l = 1, ..., N ; k = 1, ...,M} are the coefficients of the expansion on the

separable spatio-temporal basis.

1.3.1 Choice of the basis systems in space and time

Various possible bases can be used for the expansions in the spatial and temporal

domains. Here, we use in space a finite element basis on a triangulation Ωτ of

the spatial domain Ω of interest. This choice leads to an efficient discretization

of the functional J and allows an accurate account of the shape of the spatial

domain.

We illustrate the construction of such basis on Venice domain. Before build-

ing the basis, we simplify the original spatial domain represented in Figure 1.1,

excluding the coastal uninhabited regions and the smaller islands, and keeping in

the domain of study only the four major islands: Venice, Murano (at the north-

east of Venice), Lido di Venezia (at the south-east of Venice) and Pellestrina (at

the south of Lido). We then smooth the boundary of the domain with regres-

sion splines. Finally, we obtain a piecewise linear boundary, sub-sampling from

this smooth curve so that the features characterizing the domain are preserved.

Figure 1.4 shows the simplified boundary of Venice province, while Figure 1.5

shows the detail around the city of Venice. This region is particularly interesting

11
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Figure 1.4: Simplified boundary of the Venice province.
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Figure 1.5: Detail of the simplified boundary of the Venice province.
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1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

since it shows the four islands we keep in the domain. Here the domain includes

four bridges: one linking Venice to the continent and the others linking some of

the islands between themselves; the first one is an actual bridge with a road and

a railway, while the other bridges represent regular and frequent ferries among

the islands.

A triangulation of the resulting simplified domain is then obtained using the

R package fdaPDE (Lila et al., 2016). In particular, we start from a Delau-

nay triangulation, constrained within the simplified boundary, where each of the

town locations and each point defining the simplified boundary become a triangle

vertex. A more regular mesh is then obtained with additional vertices, impos-

ing a maximum value to the triangle areas. Figure 1.6 displays the resulting

triangulation of Venice province. For this application, here and in Section 1.7,

instead of using as coordinates the latitude and longitude, we employ the UTM

coordinate system, which allows to compute the distance between two points on

the Earth’s surface by means of the Euclidean distance instead of the geodesic

distance.

Bibione

San Michele
al Tagliamento

Pellestrina

Lido di Venezia

Murano
Cavallino−Treporti

Quarto D'Altino

Venice

Figure 1.6: Triangulation of the Venice province.

The finite element basis is composed by globally continuous functions that

coincides with a polynomial of a certain degree on each element of the domain

triangulation. In particular we use here linear finite element basis, that are

piecewise linear functions. The dimension of the spatial basis is strictly related

to the triangulation of the spatial domain: there is one basis function for each

knot of the triangulation; for linear finite elements, each basis is associated to

a vertex of the triangulation and has value 1 at that vertex and 0 at all other

13



1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

vertices. Figure 1.7 shows an example of linear basis function.

Figure 1.7: Example of linear finite element basis function.

For the temporal dimension, we use here a cubic B-spline basis with penal-

ization of the second derivative, with knots coinciding with the sampling time

instants of the dataset. Other basis systems may turn out to be more appropri-

ate in other applicative contexts. For instance, Fourier basis are well suited to

the case of cyclic data, possibly with penalization of the harmonic acceleration

operator, instead of the order r derivative considered in (1.3).

In case of dense sampling schemes, in space or time, coarser spatial or tempo-

ral grids may be preferred, for computational saving. But in general, the number

of coefficients to be estimated, M × N , may be larger than the corresponding

number of observed data values m× n. This does not create any problem from

the estimation point of view, thanks to the presence of the regularizing terms.

We never experienced any numerical instability of the method.

1.3.2 Discretization of the penalized sum-of-square error func-
tional

Let z be the vector of length nm of observed values at the n×m spatio-temporal

locations, f the vector of length nm of evaluations of the spatio-temporal function

f at the n × m spatio-temporal locations, and c the vector of length NM of

coefficients of the basis expansion (1.5) of the spatio-temporal field f , with entries

14



1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

ordered as follows

z =



z11

...

z1m

z21

...

z2m

...

znm


f =



f(p1, t1)
...

f(p1, tm)

f(p2, t1)
...

f(p2, tm)
...

f(pn, tm)


c =



c11

...

c1M

c21

...

c2M

...

cNM


.

Let Ψ be the n × N matrix of the evaluations of the N spatial basis functions

in the n space locations {pi; i = 1, ..., n},

Ψ =


ψ1(p1) ψ2(p1) . . . ψN(p1)

ψ1(p2) ψ2(p2) . . . ψN(p2)
...

... . . .
...

ψ1(pn) ψ2(pn) . . . ψN(pn)

 .
Moreover, define the vectors of length N of the spatial basis functions ψ, and of

their first order partial derivatives ψx and ψy, by

ψ =


ψ1

ψ2

...

ψN

 ψx =


∂ψ1/∂x

∂ψ2/∂x
...

∂ψN/∂x

 ψy =


∂ψ1/∂y

∂ψ2/∂y
...

∂ψN/∂y

 .
Finally, let R0 be the N×N matrix of the integrals over Ωτ of the cross products

of the N spatial basis, i.e.,

R0 =

∫
Ωτ

ψψT . (1.6)

Analogously, let Φ be the m×M matrix of the evaluations of the M temporal

basis functions in the m time instants {tj; j = 1, ...,m}:

Φ =


ϕ1(t1) ϕ2(t1) . . . ϕM(t1)

ϕ1(t2) ϕ2(t2) . . . ϕM(t2)
...

... . . .
...

ϕ1(tm) ϕ2(tm) . . . ϕM(tm)

 .
Moreover, define the vectors of length M of the temporal basis functions ϕ, and

of their second order derivatives ϕtt, by

ϕ =


ϕ1

ϕ2

...

ϕM

 ϕtt =


d2ϕ1/dt

2

d2ϕ2/dt
2

...

d2ϕM/dt
2

 .
15



1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

Finally, let K0 be the M ×M matrix of the integrals over [T1, T2] of the cross

products of the M temporal basis, i.e.,

K0 =

∫ T2

T1

ϕϕT . (1.7)

Consider now the nm×NM matrix B = Ψ⊗Φ, where ⊗ denotes the Kronecker

product. Then f = Bc. We may then rewrite the sum of square error functional

J in (1.4) as

J = (z−Bc)T (z−Bc) + λScT (PS ⊗K0)c + λTcT (R0 ⊗ PT )c

= (z−Bc)T (z−Bc) + cTPc ,
(1.8)

where PS and PT are the matrix discretizations of the spatial and temporal

penalization terms, and P is the overall penalty P = λS (PS⊗K0) + λT (R0⊗PT ).

Specifically, the matrix PT is obtained by direct discretization of the temporal

penalty term in (1.3):

PT =

∫ T2

T1

ϕttϕ
T
tt;

see Ramsay and Silverman (2005) for details. For the matrix PS, following

Ramsay (2002) and Sangalli et al. (2013), we consider a computationally efficient

discretization of the spatial penalty term in (1.2), that does not involve the

computation of second order derivatives of the basis functions, but only of first

order derivatives. This discretization is given by PS = R1R
−1
0 R1, where

R1 =

∫
Ωτ

(ψxψ
T
x +ψyψ

T
y ),

and it is based on a variational characterization of the estimation problem; see

Ramsay (2002) for details. This formulation uses the Neumann condition at

the boundary of the domain of interest implying zero flow across the boundary.

Various other boundary conditions are possible; see Sangalli et al. (2013). As

shown in Azzimonti et al. (2015), in the finite element space used to discretize

the problem, the matrix PS is in fact equivalent to the penalty matrix that would

be obtained as direct discretization of the penalty term in (1.2) and (1.4) and

involving the computation of second order derivatives.

Finally, the coefficients vector ĉ that minimizes the functional J in (1.8) is

computed deriving J with respect to c and setting the derivative equal to 0,

obtaining

ĉ = (BTB + P )−1BTz.

1.3.3 Properties of the estimator

The estimator ĉ is linear in the observed data values z, and has a typical penal-

ized least-square form. Denote by Id the identity matrix of dimension d. Since
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1.3. NUMERICAL IMPLEMENTATION OF THE MODEL

E[z] = f and V ar[z] = σ2Inm, we obtain

E[ĉ] = (BTB + P )−1BT f ,

V ar[ĉ] = σ2(BTB + P )−1BTB(BTB + P )−1.

Consider the vector B(p, t) = ψ(p)T ⊗ ϕ(t)T of evaluations of the separable

basis system at the spatio-temporal location (p, t), with p ∈ Ω and t ∈ [T1, T2].

The estimate of the field f at this generic location is thus given by

f̂(p, t) = B(p, t)ĉ = B(p, t)(BTB + P )−1BTz

and its mean and variance are given by

E[f̂(p, t)] = B(p, t)(BTB + P )−1BT f

V ar[f̂(p, t)] = σ2B(p, t)(BTB + P )−1BTB(BTB + P )−1B(p, t)T .

(1.9)

The regularizing terms in (1.4) induce the space-time covariance structure of

the estimator, given by

Cov[f̂(p1, t1), f̂(p2, t2)] =

σ2B(p1, t1)(BTB + P )−1BTB(BTB + P )−1B(p2, t2)T ,

where (p1, t1), (p2, t2) are two space-time locations in the considered space-time

domain and P is the discretization of the chosen regularizing terms. Different

regularizations would imply different covariance structures. For instance, Az-

zimonti et al. (2015) consider a regularized spatial regression model and show

that by changing the regularizing terms and considering more complex differen-

tial operators it is possible to include in the model a priori information about

the spatial variation of the phenomenon, and model also anisotropies and non-

stationarities. The proposed modelling (1.1)-(1.4) jointly defines the first order

structure and second order structure of the estimator.

The smoothing matrix

S = B(BTB + P )−1BT

maps the vector of observed values z to the vector of fitted values ẑ = f̂ = Sz.

The trace of the smoothing matrix constitutes a commonly used measure of the

equivalent degrees of freedom for linear estimators. We can thus estimate σ2 by

σ̂2 =
1

nm− tr(S)
(z− ẑ)T (z− ẑ). (1.10)

This estimate of the error variance, plugged into (2.14), can be used to compute

approximate pointwise confidence intervals for f. Moreover, the value of a new
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1.4. MODEL WITH COVARIATES

observation at location point pn+1 ∈ Ω and time instant tm+1 ∈ [T1, T2] can

be predicted by ẑn+1 m+1 = f̂(pn+1, tm+1), and approximate prediction intervals

may be constructed.

Finally, the values of the smoothing parameters λS and λT may be chosen

via Generalized Cross-Validation (GCV), searching for the values of λS, λT that

minimize

GCV (λS, λT ) =
nm

(nm− tr(S))2
(z− ẑ)T (z− ẑ).

1.4 Model with covariates

The model described above can be easily extended to include space-time varying

covariates. Consider the semi-parametric generalized additive model

zij = wT
ij β + f(pi, tj) + εij i = 1, ..., n, j = 1, ...,m, (1.11)

where wij is a vector of q covariates associated to the observation zij, at location

pi and time instant tj, and β is a vector of q regression coefficients. We can

jointly estimate the vector of regression coefficient β and the spatio-temporal

field f by minimizing the following penalized sum of square errors criterion

J(f,β) =
n∑
i=1

m∑
j=1

(
zij −wT

ij β − f(pi, tj)
)2

+

+ λS

∫ T2

T1

∫
Ω

(
∆f(p, t)

)2

dpdt+ λT

∫
Ω

∫ T2

T1

(∂2f(p, t)

∂t2

)2

dtdp . (1.12)

LetW be the nm×q matrix containing the vectors {wij; i = 1, ..., n; j = 1, ...,m}:

W =



wT
11

wT
12
...

wT
1m

wT
21
...

wT
2m
...

wT
nm


.

Let HW be the matrix that projects orthogonally on the space generated by

the columns of W , i.e. HW = W (W TW )−1W T and let Q = Inm − HW . The

discretization of the functional J(f,β) in (1.12) is given by

J = (z−Wβ −Bc)T (z−Wβ −Bc) + cTPc .
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To compute the estimates of the vector of regression coefficients β and of the

vector c of coefficients of the basis expansion of the spatio-temporal field f , we

compute the first partial derivatives of J with respect to β and c, and set them

equal to zero, getting the following explicit solution of the estimation problem:

β̂ = (W TW )−1W T (z−Bĉ),

ĉ = (BTQB + P )−1BTQz.

The estimator ĉ has a penalized least-square form; given ĉ, the estimator β̂ has

a least square form.

1.4.1 Properties of the estimator

Let Sf = B(BTQB + P )−1BTQ, so that

β̂ = (W TW )−1W T (Inm − Sf )z.

Since E[z] = Wβ + f and V ar[z] = σ2Inm, and exploiting the fact that the

matrix Q is idempotent and QW = 0, we obtain

E[ĉ] = (BTQB + P )−1BTQf ,

V ar[ĉ] = σ2(BTQB + P )−1BTQB(BTQB + P )−1

and

E[β̂] = β + (W TW )−1W T (Inm − Sf )f ,

V ar[β̂] = σ2(W TW )−1 + σ2(W TW )−1W TSfS
T
f W (W TW )−1.

(1.13)

The estimate of the field f and its distributional properties follow as for the

model without covariates. The smoothing matrix S, such that ẑ = Sz, is now

given by

S = HW +QSf .

The trace of this matrix is given by tr(S) = q + tr(Sf ) and measures the edf of

this estimator, given by the sum of the q degrees of freedom corresponding to the

parametric part of the model and the tr(Sf ) degrees of freedom corresponding

to the non-parametric part of the model. We can estimate σ2 as in (1.10).

Given this estimate, it is possible to construct approximate pointwise confidence

intervals for f as in the case without covariates. Moreover, using σ̂2 in (1.13), it

is now also possible to compute approximate confidence intervals for β. Finally,

the value of a new observation at location point pn+1 ∈ Ω and time instant

tm+1 ∈ [T1, T2] and with associated covariates wn+1 m+1 can be predicted by

ẑn+1 m+1 = wT
n+1 m+1 β̂ + f̂(pn+1, tm+1), and approximate prediction intervals

may be constructed.
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1.5 A variation of the proposed ST-PDE model

A variation of the proposed ST-PDE model can be defined as follows. Equiva-

lently to (1.5), we can express the spatio-temporal field f in the following basis

expansions:

f(p, t) =
M∑
k=1

ak(p) ϕk(t) (1.14)

f(p, t) =
N∑
l=1

bl(t) ψl(p), (1.15)

where {ak(p); k = 1, ...,M} are the spatially varying coefficients of the expansion

of the space-time field on the temporal basis and {bl(t); l = 1, ..., N} are the

temporally varying coefficients of the expansion of the field on the spatial basis.

Then, in analogy with Augustin et al. (2013) and Marra et al. (2012), we can

apply the spatial penalty JS to the M spatially varying coefficients ak(p) in the

basis expansion (1.14), and the temporal penalty JT to the N temporally varying

coefficients bl(t) in the basis expansion (1.15). In this case, the field f is thus

estimated by minimizing the following penalized sum of square error criterion:

J̃(f) =
n∑
i=1

m∑
j=1

(
zij − f(pi, tj)

)2
+

+ λS

M∑
k=1

∫
Ω

(
∆(ak(p))

)2

dp + λT

N∑
l=1

∫ T2

T1

(drbl(t)
dtr

)2

dt . (1.16)

The numerical implementation of this method has only minor differences with

the one presented in Section 1.3. Denote by Id the identity matrix of dimension

d. Then the discretized functional is given by

J̃ = (z−Bc)T (z−Bc) + λScT (PS ⊗ IM)c + λTcT (IN ⊗ PT )c,

where the identity matrices IM and IN have replaced the matrices K0 in (1.7) and

in R0 in (1.6), respectively. Minimizing the functional (1.16) is thus equivalent

to minimizing the one in (1.4) if the spatial and the temporal basis used for the

numerical discretization are orthonormal. Here, we use basis systems which are

not orthonormal; nevertheless, the basis systems considered are sparse, so that

the terms ∫ T2

T1

ϕk(t)ϕl(t) dt and

∫
Ω

ψl(p)ψk(p)dp

are nonzero only for a few couples of indexes (l, k) with l 6= k. We compared the

results of the two methods in all the simulation studies in Section 1.6 obtaining

the same performances for the two methods in all cases. In the following we

show only the results for the ST-PDE method.
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1.6 Simulation studies

We present some simulation studies and compare the proposed model with three

other approaches to spatio-temporal field estimation.

The first method is spatio-temporal kriging with a separable variogram mar-

ginally gaussian in space and exponential in time, chosen among a number of

possible variogram models, with parameters estimated from the empirical vari-

ogram. (The choice among different variograms was based on visual inspection of

the resulting estimates, avoiding wiggly estimates but requesting that the spatio-

temporal behavior of the field was well captured.) This method is implemented

using the function krigeST of the R package gstat (Pebesma, 2004).

We then consider two space-time models presented in Augustin et al. (2013)

and Marra et al. (2012). One model adopt a thin plate spline basis in space

and a cubic spline basis in time, and minimizes a functional analogous to (1.16),

where the spatial penalty is replaced by the thin plate spline energy recalled in

Section 1.2. The other model uses the soap film smoothing described in Wood

et al. (2008) in space and a cubic spline basis in time, and minimize the same

functional in (1.16). The two latter methods are implemented using the function

gam of the R package mgcv (Wood, 2006). Finally, for these two methods, as

well as for the model here proposed, the values of the smoothing parameters

λS, λT are chosen via GCV.

We apply the aforementioned methods to simulated data on a C-shaped spa-

tial domain. The test function, sampled at a few time instants, is shown in the

left panels of Figure 1.8, and its analytical expression is detailed in the Appendix.

This function is constructed starting from the spatial test function considered

for instance in Ramsay (2002), Wood et al. (2008) and Sangalli et al. (2013),

and introducing the time component in a not separable way.

We present here five simulation studies: in the first two cases we consider

different sampling schemes, with fewer or more observations in space and in

time; in the third case we include covariates; in the fourth case we consider

correlated noise; finally, in the fifth case we start from areal data and consider

the approximation consisting in assigning each datum to the area centroid.

1.6.1 First simulation study

We sample 200 spatial locations uniformly in the C-shaped domain at 9 time

instants equally spaced from 0 to π. We simulate the data from model (1.1),

with a gaussian noise with mean 0 and standard deviation 0.7.

Figure 1.8 shows in the first column the spatio-temporal test function at

the 9 sampling time instants, in the second column the simulated data, and in

the following columns the corresponding estimates obtained by spatio-temporal

kriging (KRIG), the space-time model using thin plate spline (TPS), the space-

time model using soap film smoothing (SOAP), and the space-time model here
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proposed (ST-PDE).

Figure 1.8: The spatio-temporal test function, the simulated data and the estimated functions
with spatio-temporal kriging (KRIG), space-time model using thin plate spline (TPS), space-
time model using soap film smoothing (SOAP) and ST-PDE.
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Figure 1.9 shows the boxplots of the Root Mean Square Errors (RMSE) of

the space-time field estimates given by the four methods over 50 replicates of the

noise generation. The RMSE is computed over a fine grid of the spatio-temporal

domain (step 0.05 in space and π/24 in time).

A visual inspection of the RMSE shows that SOAP and ST-PDE methods

give better estimates than KRIG and TPS. The reason for this comparative

advantage is apparent from Figure 1.8. In fact, the KRIG and TPS methods,

that do not take into account the shape of the domain and smooth across the

two arms of the C-shaped domain, provide poor estimates of the field when the

true f is characterized by high values in one of the two C arms and low values

in the other arm. The best estimates are provided by the ST-PDE model.

Figure 1.9: First simulation study. Boxplots of the RMSE of the estimates of the spatio-
temporal field obtained by the four tested methods: spatio-temporal kriging (KRIG), space-
time model using thin plate spline (TPS), space-time model using soap film smoothing (SOAP)
and ST-PDE.

1.6.2 Second simulation study: fewer spatial locations and more
time instants

In this second simulation case we perform the same simulation study described in

Section 1.6.1, but with fewer observations in space and more in time. Specifically,

we consider 50 spatial locations uniformly distributed in the C-shaped domain

and 33 time instants equally spaced in the time interval [0, π].

Figure 1.10 shows the boxplots of the RMSE of the space-time field estimates

over 50 replicates of the noise generation. The RMSE is computed over a fine

grid of the spatio-temporal domain (step 0.05 in space and π/64 in time). Also

in this case, SOAP and ST-PDE provide better estimates than TPS and kriging,

with ST-PDE returning the best estimates.
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Figure 1.10: Second simulation study: fewer spatial locations and more time instants. Boxplots
of the RMSE of the estimates of the spatio-temporal field obtained by the four tested methods.

1.6.3 Third simulation study: covariates

Within the same simulation setting described in Section 1.6.1, we also perform a

study including a space-time varying covariate. Specifically, the covariate used

is the following space-time function:

w(x, y, t) = cos(5x)

√
t+ 1

5
. (1.17)

We generate data from model (1.11), setting β = 1. The other simulation

specifications are as in Section 1.6.1. We here compare the proposed ST-PDE

method to the space-time models using thin plate spline and soap film smoothing.

We do not instead consider the spatio-temporal kriging in this case because the

function krigeST of the R package gstat cannot handle covariates.

Figure 1.11 shows the boxplots of the RMSE of the space-time field estimates

over the 50 replicates of the noise generation. The RMSE is computed over the

same fine grid of the spatio-temporal domain used in Section 1.6.1. Likewise

in the simulation studies without covariates, SOAP and ST-PDE, that account

for the shape of the domain, provide better estimates than TPS, that is instead

blind to the domain structure. The best estimates are provided by the ST-PDE

model.

The RMSE of the estimates of β over the 50 replicates are instead comparable

for the three methods: 0.14 for TPS, 0.09 for both SOAP and ST-PDE. In

the first simulation replicate, the approximate 95% confidence interval for the

parameter β associated to the ST-PDE estimate is given by [0.88, 1.16].
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Figure 1.11: Third simulation study: covariates. Boxplots of the RMSE of the estimates of the
spatio-temporal field obtained by the three methods tested in this case: TPS, SOAP, ST-PDE.

1.6.4 Fourth simulation study: correlated noise

We performed a fourth simulation study within the same setting described in

Section 1.6.1, but generating the additive noise with a spatio-temporal covariance

structure. We use the function RFsimulate of the R package RandomFields

(Schlather et al., 2016) to generate a spatio-temporal random field with mean

zero and a stationary isotropic covariance model belonging to the Matern family.

The corresponding covariance function, which depends on the distance r ≥ 0

between two points, is the following

C(r) =
√

2rK1

(√
2r
)
, (1.18)

where K1 is the modified Bessel function of second kind; moreover we consider

here an anisotropy matrix with stretch arguments equal to 40 for the space

components and equal to 80 for the time component.

Figure 1.12 shows the boxplots of the RMSE of the space-time field estimates

over the 50 replicates of the noise generation. The RMSE is computed over the

same fine grid of the spatio-temporal domain used in Section 1.6.1.

The same observations made in the previous simulation studies still hold in

this case.

Figure 1.12: Fourth simulation study: correlated noise. Boxplots of the RMSE of the estimates
of the spatio-temporal field obtained by the four tested methods.
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1.6.5 Fifth simulation study: areal data assigned to area cen-
troid

In this simulation study we generate areal data over subdomains of the spatial

domain and assign each datum to a point representing the center of the subdo-

main. This simulation study is devised to mimic our applicative context, where,

as detailed in the following section, we are lead to approximate areal data by

assigning them to point locations, due to the unavailability of information con-

cerning the subdomains shapes. We do not in general suggest to make such an

approximation, unless it is unavoidable. As detailed in Section 1.8, in future

research we intend to develop a model extension to handle areal data. In any

case, we show that also in this approximated and simplified data setting, the

model proposed outperforms the competitor methods.

We sample 50 square (0.2×0.2) spatial subdomains Di uniformly distributed

over the spatial C-shaped domain and we compute their centers pi. Figure 1.13

represents the spatial subdomains and their centers. We consider 9 time instants

{t1, ..., t9} equally spaced from 0 to π. We compute the data in the following

way:

zij =
1

|Di|

∫
Di

f(p, tj)dp + εij i = 1, ..., 50, j = 1, ..., 9,

and assign each value zij to the spatio-temporal location (pi, tj). The noise has

the same distribution as in the previous simulation studies.

Figure 1.13: Spatial subdomains.

Figure 1.14 shows the boxplots of the RMSE of the space-time field esti-

mates given by the four methods over 50 replicates of the noise generation. The

RMSE is computed over the same fine grid of the spatio-temporal domain used

in Section 1.6.1.
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Figure 1.14: Fifth simulation study: areal data assigned to area centroid. Boxplots of the
RMSE of the estimates of the spatio-temporal field obtained by the four tested methods:
spatio-temporal kriging (KRIG), space-time model using thin plate spline (TPS), space-time
model using soap film smoothing (SOAP) and ST-PDE.

The results are analogous to the ones obtained in the previous simulation

studies: SOAP and ST-PDE provide better estimates than TPS and kriging,

with kriging performing worse than in the previous simulation cases considered.

The best estimates are also in this case provided by the ST-PDE model.

1.7 Application to the analysis of the production of
waste in Venice province

We apply the ST-PDE method to the dataset of annual amount of per capita

municipal waste produced in the Venice province.

1.7.1 The Venice waste dataset

Open Data Veneto1 provides the gross and per capita annual amount of munic-

ipal waste produced in each municipality of the Venice province in the period

from 1997 to 2011. We here consider for the analysis the annual per capita

municipal waste, in kg per municipality resident.

Municipal waste includes that produced in houses and public areas, but does

not include special waste, i.e. industrial, agricultural, construction and demoli-

tion waste, or hazardous waste, for which there are special disposal programs.

Therefore, the data refer only to the urban area of the municipality, whilst they

do not refer to the agricultural or industrial areas in the municipality territories.

Since no data identifying the urbanized areas of the municipalities is available,

we face here two possible simplifications of the problem. We can either partition

the Venice province in the municipality territories and attribute each datum to

the whole territory of its municipality, or assign each datum to a point represent-

ing the center of the municipality. We here adopt the second simplification. The

1http://dati.veneto.it/dataset/produzione-annua-di-rifiuti-urbani-totale-e-pro-capite-1997-2011
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spatial coordinates of the town centers are available online2. As mentioned in

Section 1.3, latitude and longitude are converted into UTM coordinate system.

In some cases there are localities which do not constitute a municipality on

their own, but are under the jurisdiction of another town. In this case, there are

two or more main urbanized areas in the municipality territory. Some of these

localities are not negligible for the problem under analysis due to their tourist

relevance and their location on the domain; for this reason we add them to the

data. Specifically, we include the seaside town of Bibione, the eastern most

village indicated in Figure 1.1. This popular vacation destination falls under

the jurisdiction of the municipality of San Michele al Tagliamento, north west of

Bibione; the waste data considered for Bibione are a replicate of the data of San

Michele al Tagliamento. Moreover, we replicate the data of Venice in the islands

of Murano, Lido di Venezia and Pellestrina, because of their tourist relevance

and the particular shape of the domain.

Since intuition suggests that the production of waste is affected by tourism,

we include in the model a covariate which accounts for it. Specifically we con-

sider the number of beds in accommodation facilities (such as hotels, bed and

breakfast, guest houses, campings, etc.) divided by the number of residents.

This ratio may be as large as 7 in some tourist towns by the sea. The number

of beds in accommodation facilities is provided by Istat3, the Italian national

institute for statistics.

1.7.2 Analysis of Venice waste data by ST-PDE

Figure 1.15 shows the estimated spatio-temporal field at fixed time instants.

The estimate for the coefficient β is 39.7 meaning that one more unit in the

ratio between the number of beds in accommodation facilities and the number

of residents is estimated to increase the yearly per capita production of waste

by residents by about 40kg. The estimated spatial field f shows the highest

values, across the years, in correspondence of the coastline, around the towns

of Bibione, Lido di Jesolo and Cavallino-Treporti. These higher values may be

due to a type of tourism that is not captured by the available covariate, such

as daily tourists who do not stay overnight, and vacationers who either own

or rent vacation houses. The higher values of the field are also probably due

to the presence of many seasonal workers, working in accommodation facilities,

restaurants, cafés, shops, beach resorts and other services, who are not residents

of these towns.

Although Venice is one of the most visited cities in Italy, and this tourism

is active all year round, the production of per capita waste in Venice appears

to be lower than in other nearby tourist localities by the seaside. This might

2http://www.dossier.net/utilities/coordinate-geografiche/
3http://www.istat.it/it/archivio/113712
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Figure 1.15: Estimated spatio-temporal field for the Venice waste data (yearly per capita
production) at fixed time instants.
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Figure 1.16: Temporal evolution of the estimated spatio-temporal field for the Venice waste
data (yearly per capita production) at fixed spatial locations.

be partly explained by the fact that the tourist activities in Venice are not so

highly characterized by seasonality as in the smaller seaside villages, and people

working in tourist activities in Venice are more likely to be themselves residents

of this large city.

It is significant to notice how the estimated function does not smooth across

concave boundaries. For example, the area of the city of Quarto d’Altino and

the one around the city of Cavallino-Treporti show different ranges of values.

Indeed, even though the two towns are geographically close, they are separated

by the Venetian lagoon. This difference is evident also from the first two panels of

Figure 1.16, which shows the estimated spatio-temporal field at fixed localities:

Quarto d’Altino, Cavallino-Treporti, Venice and Bibione. In these plots the red

dots are obtained subtracting from the data the estimated contribution by the

covariate, i.e. β̂wij.

The temporal evolution plots in Figure 1.16 show the ability of the method
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to capture the temporal trend of the phenomenon. The method provides good

estimates also for the municipality of Cavallino-Treporti, which presents a strong

variation of per capita waste over the year. The large increase of the per capita

waste of Cavallino-Treporti is partly explained by the fact that, during the first

years of this study, this town was under the jurisdiction of Venice, while the

data for this new municipality are available only from 2002. In particular, the

data for Cavallino-Treporti for years 1997 to 2001 are a replicate of the data of

the municipality of Venice. Nevertheless, the strong variation in the data is well

captured by the estimated function.

1.8 Model extensions

Various extensions of the proposed model are possible. A first generalization

consists in modelling data that are areal in space and integral in time, and esti-

mating an underlying spatio-temporal intensity function. In the application to

Venice waste data, if information about the urbanized areas of each municipal-

ity would become available, such a model extension would for instance allow to

appropriately refer the waste datum to the area and year where it is produced,

estimating a spatio-temporal intensity of waste production.

Extending the work of Azzimonti et al. (2015) it is also possible to include a

priori information available on the phenomenon under study, using more com-

plex differential regularizations modelling the space and/or time behavior of the

phenomenon. This also allows to account for non-stationarities and anisotropies

in space and/or time. Along the same lines, if a priori information about the

interaction between space and time was available, then it would make sense to

consider a unique space/time regularizing term based on a time-dependent PDE

that governs the phenomenon behavior. Azzimonti et al. (2015) for instance

analyze the blood flow velocity in a section of the carotid artery at a fixed time

instant corresponding to the systolic peak, starting from Echo-Color Doppler

data, and including a priori information on the problem under study. By in-

troducing the time dimension, we could study how the blood flow velocity field

varies during the time of the heart-beat. PDEs are commonly used to describe

complex phenomena behavior in many fields of engineering and sciences, includ-

ing bio-sciences, geo-sciences, and physical sciences. Potential applications of

particular interest of this space-time technique in the environmental sciences

would for example concern the study of the dispersion of pollutant released in

water or in air and transported by streams or winds, and the study of the prop-

agation of earthquakes, tsunamis, and other wave phenomena. If one wishes

instead to consider simpler isotropic and stationary regularizations, then a pos-

sibility to allow for stronger interactions in space/time, with respect to the model

here presented, would consists in defining a unique regularizing term based on

a heat equation.
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1.8. MODEL EXTENSIONS

Finally, data distributed over curved domains, instead of over planar do-

mains, could be handled by extending the model proposed in Ettinger et al.

(2016). Considering the same application presented by Ettinger et al. (2016)

and Dassi et al. (2015), this would permit the study of time-dependent hemody-

namic forces exerted by blood-flow over the wall of inner carotid arteries affected

by aneurysms, taking into account the complex morphology of these vessels. An-

other fascinating field of application of this modelling extension would be in the

neurosciences, studying signals associated to neuronal activity over the corti-

cal surface, a highly convoluted thin sheet of neural tissue that constitutes the

outermost part of the brain. In the geo-sciences, this would permit the study

of data distributed over regions with complex orographies. Moreover, general-

izations to time-dependent data of the spatial regression model introduced by

Wilhelm and Sangalli (2016) would also further broaden the applicability of the

proposed model to important engineering applications, especially in the auto-

motive, naval, aircraft and space sectors, where space-time varying quantities

of interest are observed over the surface of a designed 3D object, such as the

pressure over the surface of a shuttle winglet.
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Appendix

1.A Spatio-temporal test function

The spatio-temporal test function f(x, y, t), defined over the C-shaped domain,

used in the simulation studies, is constructed as:

cos(t)(q + x) + (y − r)2 if x ≥ 0 & y > 0

cos(2t)(−q − x) + (−y − r)2 if x ≥ 0 & y ≤ 0

cos(t)(− arctan( y
x
)r) + (

√
x2 + y2 − r)2K(x, y) if x < 0 & y > 0

cos(2t)(− arctan( y
x
)r) + (

√
x2 + y2 − r)2K(x, y) if x < 0 & y ≤ 0

,

where K(x, y) = ( y
r0
1|y|≤r0&x>−r +1|y|>r0||x≤−r)

2, 1A denotes the indicator func-

tion of the subset A, r0 = 0.1, r = 0.5 and q = πr
2

.
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Chapter 2

Modelling spatial anisotropy
via regression with partial
differential regularization

This chapter is based on the submitted work Bernardi et al. (2017).

2.1 Introduction

Many, if not most, spatial phenomena are characterized by spatial anisotropy.

Just to name a few examples, in biology, anisotropy is naturally induced by the

arrangement and orientation of fibers and cells in a tissue, or by the morphology

of the organs; in meteorology, it may be caused by the presence of winds and sea

streams, or by the orography of the region under study; in geology, by the process

of sedimentation. A simple illustrative example is displayed in Figure 2.1, that

pictures a dataset of 467 daily rainfall measurements made in Switzerland on the

8th of May 1986; this dataset was used for the Spatial Interpolation Comparison

97 (Dubois et al., 2003). The size and color of point markers represent the

value of the rainfall at each location, highlighting a strong spatial anisotropy,

with higher rainfall values alternating with lower rainfall values along elongated

regions oriented in the northeast-southwest direction.
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Figure 2.1: Switzerland rainfall data.

Accurately modelling and estimating the anisotropy in the variable of interest,

when this cannot be well described by the available covariates, is not trivial and

most statistical analyses of spatially distributed data are carried out assuming

the isotropy of the spatial field. For some examples of models which take into

account anisotropy see for example Ecker and Gelfand (2003) Budrikaité and

Dučinskas (2005) Blanchet and Davison (2011).

Here we adopt a functional data analysis approach and propose to model

spatial anisotropy via regression with partial differential regularization. Ramsay

(2002), Wood et al. (2008) and Sangalli et al. (2013) consider spatial regression

with a roughness penalty that involves the Laplacian of the spatial field: this

partial differential operator provides a simple and isotropic measure of the curva-

ture of the spatial field, and its use in the regularizing term induces an isotropic

smoothing effect. Thin plate splines (Wahba, 1990) and bivariate splines over

triangulations (Guillas and Lai, 2010) offer other classical and recent proposals

of spatial isotropic smoothing defined as penalized regression with differential

regularization. Azzimonti et al. (2015) extend the method in Ramsay (2002)

and Sangalli et al. (2013) to the case where the regularizing term involves a

more general partial differential equation (PDE) that induces an anisotropic

and non-stationary smoothing. Azzimonti et al. (2015) assume that the PDE

is suggested by prior knowledge of the phenomenon under study, coming for

instance from the physics or morphology of the problem; the parameters of the

PDE are consequently fixed considering their physical meaning.

We here instead assume no prior knowledge of the spatial variation of the
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considered problem, nor do we assume the existence of a physical law governing

the system, but we use the PDE in the regularizing term to model the spatial

variation of the phenomenon, learning the anisotropy from the data. Specifically,

the PDE in the regularizing term induces an anisotropic stationary smoothing

effect; the parameters in the PDE determine the direction and the intensity of

the anisotropy; these parameters are here considered unknown and are estimated

from data. As in Ramsay (2002), Sangalli et al. (2013) and Azzimonti et al.

(2015), we here represent the spatial field via finite elements, which provide a

basis for piecewise polynomial surfaces.

Moreover, we estimate the parameters of the PDE in the regularizing term

by parameter cascading. This generalized profiling estimation procedure was

originally introduced by (Ramsay et al., 2007) to retrieve the parameters of an

ordinary differential equation (ODE), starting from noisy measurements of the

ODE solution. This technique has been successfully applied in other contexts,

such as penalized smoothing (Cao and Ramsay, 2007, 2009), dynamical models

(Cao et al., 2008) and linear mixed-effects modeling (Cao and Ramsay, 2010).

Xun et al. (2013) extended this technique to estimate the parameters of a PDE,

again starting from noisy measurements of the PDE solution. In our case, we

use parameter cascading to obtain the parameters of a PDE in a more general

setting, where the data do not come from the solution of the PDE itself. The

estimated PDE does not model the phenomenon which generated the data, but

rather is used as a regularizing term to characterize the spatial distribution of

the data. Moreover, spatially varying covariates can be included in the model.

We test the performance of anisotropic spatial regression with PDE regular-

ization (anisotropic SR-PDE) via extensive simulation studies, comparing it to

both isotropic and anisotropic kriging, with various variogram models, and to

the isotropic SR-PDE method described in Ramsay (2002) and Sangalli et al.

(2013). The comparative studies show that, when simulating from an anisotropic

Matérn field, anisotropic SR-PDE has significant lower root mean square error

(RMSE) than isotropic SR-PDE, and it also has significantly lower RMSE than

isotropic and anisotropic kriging. In particular, anisotropic SR-PDE provides

better estimates with respect to anisotropic Matérn kriging, that should consti-

tute the best possible model as it assumes the same space covariance structure

used to generate the data. Furthermore, also when space-varying covariates are

added, the proposed anisotropic SR-PDE provides significantly better estimates

than all other considered methods, including anisotropic universal Matérn krig-

ing. Moreover, anisotropic SR-PDE also outperforms all other methods when

generating from a field defined over an irregularly shaped domain.

The chapter is organized as follows. Section 2.2 describes the model. Section

2.3 provides implementation details. Section 2.4 extends the model for the in-

clusion of space-varying covariates. Section 2.5 is devoted to simulation studies.

Section 2.6 shows the application of the proposed method to the analysis of the
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Switzerland rainfall data. Finally, Section 2.7 draws some directions for future

research.

2.2 Model

Let {pi = (xi, yi); i = 1, . . . , n} be a set of n points on a bounded domain

Ω ∈ R2, whose boundary ∂Ω is a curve of class C2. We denote by |Ω| the area of

the domain Ω. Let zi ∈ R be the value of a variable of interest observed at point

pi. We assume that {zi; i = 1, . . . , n} are noisy observations of an underlying

smooth function f : Ω→ R:

zi = f(pi) + εi i = 1, . . . , n, (2.1)

where {εi; i = 1, . . . , n} are independently distributed residuals, with mean zero

and constant variance σ2.

We want to estimate the spatial field f by minimizing the following penalized

sum-of-square-error functional:

Jρ(f,K) = (1− ρ)
1

n

n∑
i=1

(zi − f(pi))
2

+ ρ
1

|Ω|

∫
Ω

(∇ · (K∇f))
2
, (2.2)

where the operator ∇ is defined as ∇ = ( ∂
∂x
, ∂
∂y

)T and K is a symmetric and

positive definite matrix. The inclusion of the anisotropic diffusion operator ∇ ·
(K∇f) in the regularizing term provides an anisotropic smoothing effect, where

the anisotropy is determined by the matrix K. Indeed, the eigenvectors of K fix

the directions of maximum and minimum smoothing, while the corresponding

eigenvalues set the intensity of the smoothing in each direction, with the ratio

between the two eigenvalues determining the intensity of the anisotropy. Figure

2.2 illustrates the spatial regularization implied by three different matrices K,

represented via ellipses whose axes are oriented according to the eigenvectors of

K and have length proportional to the corresponding eigenvalues. In the case

considered in the left panel of Figure 2.2, K is the identity matrix, and the

model reduces to the one presented in Ramsay (2002) and Sangalli et al. (2013),

where the penalty involves the operator ∆f = ∇ · ∇f = ∂2f
∂x2 + ∂2f

∂y2
, that is the

Laplacian operator. In this case, the smoothing is isotropic: the penalization

equally weights the curvature of the spatial field along every direction. The

cases considered in the central and right panels of Figure 2.2 provide examples

of anisotropic penalizations with different angles and intensities. The smoothing

along the direction of the major axis has a longer range, while the smoothing

along the minor axis has a shorter range. This effect is more pronounced in case

represented in the right panel.
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Figure 2.2: Graphical representation of the smoothing effect implied by stationary isotropic
(left) and anisotropic (center and right) penalizations. The anisotropy matrix K is represented
by ellipses: its eigenvectors (the ellipses axes) identify the direction of the anisotropy, while the
eigenvalues (proportional to the axes lengths) determine the intensity of the anisotropy.

The smoothing parameter ρ ∈ (0, 1) weights the contribution of the data fit-

ting term (the least squares) against the regularization term, in the estimation

of the spatial field. The higher ρ is, the more we control the roughness of the

spatial field f through the anisotropic diffusion operator, forcing the estimated

spatial field to be characterized by the anisotropy defined by K; the smaller the

ρ, the more we locally adapt to the data. The way we parametrize the smoothing

parameter in this work is different with respect to the one considered in Ramsay

(2002), Sangalli et al. (2013) and Azzimonti et al. (2015). The new parametriza-

tion of the smoothing parameter in the functional (2.2) is here introduced to

more efficiently balance the least squares term and the regularizing term, and

consequently improve the optimization of the functional.

We want to solve the non-convex optimization problem of minimizing the

functional Jρ(f,K) with respect to f andK, with a value of ρ selected to properly

weight the effect of the regularization and to accurately estimate the anisotropy

matrix K. We here propose a two-step algorithm which estimates separately

K and f . The anisotropy matrix K is estimated using a parameter cascading

approach, which is described in Section 2.2.1. The estimation of the spatial field

f is conditional on K. The problem of estimating f , minimizing the functional

Jρ(f,K) for a fixed value of K, has a unique solution (see Section 2.2.2); this

infinite-dimensional problem can be discretized via finite elements (see Sections

2.2.3 and 2.2.4).

2.2.1 Estimation of the anisotropy matrix K via parameter cas-
cading

We here show how we use parameter cascading for the estimation of the anisotropy

matrixK. As mentioned in the Introduction, Ramsay et al. (2007) and Xun et al.

(2013) use parameter cascading to respectively estimate the parameters of an

ordinary differential equation and of a partial differential equation, starting from

noisy observations of the solution of the differential equation itself. In our case,
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the data do not come from the solution of the PDE, but the PDE is used as a con-

venient model to describe the spatial anisotropy characterizing the distribution

of the data. Our final goal is the accurate fit of the spatial field. The different

focus and the different setting considered here require some modification of the

implementation of parameter cascading with respect to (Ramsay et al., 2007)

and Xun et al. (2013). This will be further detailed in Section 2.3.2.

The parameter cascading algorithm distinguishes two classes of parameters

to estimate: the structural parameters, which are the parameters of direct inter-

est for the analysis, and the nuisance parameters, which are essential for fitting

the data, but are not of direct interest. In our setting, when estimating the

anisotropy matrix K, the structural parameter is K and the nuisance parame-

ters are the coefficients of the expansion used to represent f . The estimates of

the nuisance parameters are obtained minimizing the functional Jρ(f,K) with

respect to f for a fixed K. The solution is called f̂K and it is an implicit function

of the structural parameter: each time K is changed, the functional Jρ(f,K) is

re-optimized with respect to f alone. The structural parameter is then obtained

by the optimization of the functional

H(K) =
n∑
i=1

(
zi − f̂K(pi)

)2

, (2.3)

which depends on K implicitly, through f̂K . Since f̂K is already regularized, H

does not include the regularization term and is simply the data fitting criterion.

The minimization of the criterion H(K) does not have a closed-form solution,

so its optimization is performed numerically. The minimization of the criterion

Jρ(f,K) with respect to f , for a fixed K, can instead be characterized similarly

to Sangalli et al. (2013) and Azzimonti et al. (2015), as detailed in the following

sections.

2.2.2 Estimation of the spatial field f given the anisotropy ma-
trix K

Let Hm(Ω) be the Hilbert space of functions belonging to L2(Ω) along with

all their distributional derivatives up to order m. The functional Jρ(f,K)

in (2.2) is well posed for f ∈ H2(Ω) with appropriate boundary conditions.

Given a symmetric and positive definite matrix K, the minimizer of Jρ(f,K)

exist and is unique; boundary conditions ensure the uniqueness of the solu-

tion. Various boundary conditions may be considered; for example, Dirichlet

conditions impose the value of f at the boundary ∂Ω, while Neumann condi-

tions impose the flux of the function through the boundary. In the following,

we consider homogeneous Neumann boundary conditions (i.e., null value of the

normal derivative of f at the boundary, meaning null flux through the bound-

ary). See Azzimonti et al. (2015) for the case of general boundary conditions.

39



2.2. MODEL

We denote by V (Ω) the subspace of H2(Ω) characterized by the chosen bound-

ary conditions. We set z = (z1, . . . , zn)T and, for any function h : Ω → R, we

set hn = (h(p1), . . . , h(pn))T . The estimator is characterized by the following

proposition.

Proposition 2.1. Given a symmetric and positive definite matrix K, there ex-

ists a unique estimator f̂ ∈ V (Ω) which minimizes (2.2). Moreover, f̂ satisfies

(1− ρ)
1

n
hTn f̂n + ρ

1

|Ω|

∫
Ω

(∇ · (K∇h))(∇ · (K∇f̂)) = (1− ρ)
1

n
hTnz (2.4)

for every h ∈ V (Ω).

Proof. The result follows from Proposition 1 in Azzimonti et al. (2015), by ap-

propriate reparametrization of the smoothing parameter, and by setting L =

∇ ·K∇f and u = 0.

The fourth-order problem (2.4) can be rewritten as a coupled system of sec-

ond order problems. Then, using Green’s theorem (integration by parts), it is

possible to obtain an equivalent reformulation of the problem that involves only

first order derivatives. See the Appendix for details. This reformulation of the

problem can thus be discretized via finite elements. This enables to approximate

the infinite dimensional estimation problem by a finite dimensional one, and to

reduce the estimation problem to the solution of a linear system.

2.2.3 Finite elements

To construct a finite element space, we first obtain a regular triangulation T of

the domain Ω where adjacent triangles share either a vertex or a complete edge.

Thus, the domain Ω is approximated by the union of all triangles ΩT , and the

boundary ∂Ω is approximated by a polygon (or multiple polygons in case of a

domain with holes).

As an example, Figure 2.3 shows the triangulation for the Switzerland rainfall

data. As a preprocessing step, we obtain a simplified border for the data in

order to have a small number of points defining the boundary of the domain

and, therefore, a simpler triangulation. We can discard the precise definition

of the boundary since, in this application, the border has no influence on the

phenomenon under study: rainfall is not correlated with the political borders

of Switzerland. The simplification of the boundary is shown in the left panel

of Figure 2.3, where the blue line represents the actual border of Switzerland,

the red line is the simplified boundary we use in our analysis and the black dots

represent the data locations. The final triangulation is shown in the right panel

of Figure 2.3.
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Figure 2.3: Left panel: Switzerland border (blue line) and simplified domain boundary (red
line), with data locations represented by black dots. Right panel: triangulation of the simplified
domain.

On the triangulation T , we define the finite element space V r
T (Ω), with r =

1, 2, . . . , as the space of continuous surfaces over ΩT that are polynomials of

degree r when restricted to any triangle in T . This space is spanned by a set of

finite elements basis functions {ψj(p); j = 1, . . . , N}, where each basis function

is a locally supported piecewise polynomial function associated with a knot of

the triangulation, and that takes value 1 at the associated knot and 0 on all

other knots. For the simulation studies and for the application here presented,

we use linear finite elements, as done in the Chapter 1. In this case, the knots

of the triangulation coincide with the triangle vertices ξ1, . . . , ξN .

Let ψ = (ψ1, . . . , ψN)T be the N -vector of the basis functions. Then we can

represent a function h as an expansion on the basis system:

h(p) = hTψ(p), (2.5)

where h = (h1 . . . hN) is the vector of coefficients of the basis expansion. It turns

out that h coincides with the evaluations of the function h at the N mesh nodes,

i.e.,

h = (h(ξ1), . . . , h(ξN))
T
.

In fact, h(ξi) =
∑N

j=1 hjψj(ξi) =
∑N

j=1 hjδij = hi.

2.2.4 Discretization of the spatial field f via finite elements

Let Ψ be the n×N -matrix of the evaluations of the N basis functions at the n

locations {pi; i = 1, . . . , n}:

Ψ =


ψ1(p1) ψ2(p1) . . . ψN(p1)

ψ1(p2) ψ2(p2) . . . ψN(p2)
...

... . . .
...

ψ1(pn) ψ2(pn) . . . ψN(pn)

 .
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Moreover, let R0 and R1 be the following N ×N -matrices:

R0 =

∫
ΩT

ψψT , R1 =

∫
ΩT

∇ψ(K∇ψ)T .

The following Proposition states that, once re-casted in the finite element

space, finding the estimator f̂ , for a fixed K, reduces to solving a linear system.

See the Appendix for details.

Proposition 2.2. Given a symmetric and positive definite matrix K, the esti-

mator f̂ ∈ V r
T (Ω) exists and is unique and is given by f̂ = f̂ψ, where[
−(1− ρ) 1

n
ΨTΨ ρ 1

|Ω|R1

R1 R0

][
f̂

h

]
=

[
− (1− ρ) 1

n
ΨTz

0

]
.

Proof. The existence and uniqueness of the solution are ensured by the invert-

ibility of the matrices R0 and
(

(1− ρ) 1
n

ΨTΨ + ρ 1
|Ω|R1R

−1
0 R1

)
.

From Proposition 2.2, we obtain the following expression for f̂ , the vector of

coefficients of the basis expansion for the spatial field estimate f̂ :

f̂ =

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨTz, (2.6)

where P = R1R
−1
0 R1 represents the discretization of the penalty term in Equa-

tion (2.2). The discretization of the penalty term only involves first order deriva-

tives thanks to the weak formulation (2.13) of the estimation problem, derived

in the Appendix.

2.3 Implementation details

2.3.1 Parametrization of the anisotropy matrix K

Various choices are possible for the parametrization of the anisotropy matrix. In

our work, we parametrize the matrix K with the parameter θ = (α, γ), where α

represents the direction of the anisotropy and γ its intensity. The matrix K(θ)

is then uniquely defined by setting its determinant equal to 1. Given α and γ,

the matrix K is constructed exploiting its eigendecomposition, as follows:

K(θ) = Q(α)Σ(γ)Q(α)−1,

where

Q(α) =

[
cos(α) − sin(α)

sin(α) cos(α)

]
and Σ(γ) =

1
√
γ

[
1 0

0 γ

]
.

The choice of this parametrization implies a periodicity of the functional H in

(2.3) with respect to the parameter α; the numerical implementation of the

estimation method appropriately takes this point into account.

42



2.3. IMPLEMENTATION DETAILS

2.3.2 Implementation of the algorithm and selection of the op-
timal smoothing parameter ρ

We here discuss the automatic choice of the smoothing parameter ρ. In that

respect, it must be noticed that the optimal ρ for the estimation of the anisotropy

matrix K differs from the optimal ρ for the estimation of the spatial field f

conditional on K. In fact, when estimating the anisotropy matrix K, ρ should

be large enough to imply a significant effect of the anisotropy in the estimated

field; instead, when estimating the spatial field f for a given K, the smoothing

parameter ρ should be selected to properly balance the effect of the penalization

and the adherence to the data, and this is typically found in correspondence

of rather small values of ρ. Indeed, in all the simulation studies and in the

application we carried out, the optimal ρ for the estimation of K was at least

one order of magnitude larger than the optimal ρ for the estimation of f given

K. Specifically, we proceed as follows.

Having no knowledge of the right amount of regularization to impose for the

optimal estimation of the anisotropy matrix K, we consider a grid of d possible

values for the smoothing parameter {ρ1, . . . , ρd} spanning regularly the interval

(0,1). For instance, the grid we use in the simulations and in the analysis of

the Switzerland rainfall data is: (0.01,0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9). For

each value of the smoothing parameter in this grid, the optimal anisotropy matrix

is found, thus leading to the estimation of d anisotropy matrices {K̂1, ..., K̂d}.
At this point, the choice of the optimal K among the d estimated ones is lead by

the goal of our analysis: the optimal estimation of the spatial field. Indeed, we

want to choose the anisotropy matrix which leads to the best estimated spatial

field. Thus, we perform the estimation of f given the d possible anisotropy

matrices {K̂1, . . . , K̂d}, where we now select in each case the optimal smoothing

parameter ρ via generalized cross validation (GCV). We then select, among all of

the d estimated anisotropy matrices and corresponding estimated spatial fields,

the ones corresponding to the smallest GCV value.

The GCV index is available in closed-form for the model here considered, and

given by

GCV(ρ) =
n

(n− tr(S))2
(z− ẑ)T (z− ẑ), (2.7)

where S is the smoothing matrix, which maps the vector of observed values z to

the vector of fitted values ẑ: ẑ = Sz, i.e.

S = Ψ

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨT .

The estimation of the anisotropy matrix K for a grid of possible smoothing

parameters ρ also helps the numerical optimization of the functional H. In-

deed, the functional H as a function of θ shows different levels of regularity

for different values of ρ: for lower values of ρ, the surface is smooth and has

43



2.4. INCLUSION OF SPACE-VARYING COVARIATES

a quadratic behavior, while, for higher values of ρ, it is almost flat in some

regions and has a narrow ridge in correspondence of its minimum. As an ex-

ample, Figure 2.4 shows the surfaces H(θ) for two extremes values of ρ (0.01

and 0.9) for the Switzerland rainfall data. The optimization algorithm can eas-

ily identify the right minimum for the first surface, but needs a proper starting

point to reach the global minimum in the case of the second surface. In order

to improve the performances of the optimization algorithm and to avoid local

minima, for each value ρj for j = 2, . . . , d, we provide, as starting point of the

optimization of H(θ), the optimum obtained from the optimization for the value

ρj−1. This technique allows the optimization method to start its search in the

basin of attraction of the global minimum. In our implementation, we use the

optim function of R (R Core Team, 2016) for the minimization of the functional

H. In the numerical tests we performed, we never experienced any problem of

convergence of the optimization algorithm.

The implementation of the model is based on the R package fdaPDE (Lila

et al., 2016). The same package allows to create and refine the triangulations.

To make a comparison between the parametrization used in this Chapter

(parameter ρ) and the one used in Chapter 1 (parameter λ), the grid of ρ values

selected here corresponds to a quasi-linear (sinusoidal) grid on the parameter

log(λ). For example, in the case of 200 data distributed on a domain of area

100, the grid of ρ values used here corresponds approximately to the following

grid of log(λ) values: (-4, -2.25, -1.5, -0.7, -0.15, 0.3, 0.7, 1, 1.5, 2, 3).

Figure 2.4: Surface H(θ) for two values of the smoothing parameter: ρ=0.01 (left panel) and
ρ=0.9 (right panel).

2.4 Inclusion of space-varying covariates

The method described in the previous sections can be extended to handle space-

varying covariates. Let wi = (wi1, . . . , wiq)
T be a q-vector of covariates observed

at pi. The model in Equation (2.1) can be modified to include an additive
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term which takes into account the contribution of the covariates. Specifically,

we consider the following semi-parametric generalized additive model:

zi = wT
i β + f(pi) + εi i = 1, . . . , n, (2.8)

where β ∈ Rq contains regression coefficients. The penalized sum-of-square-error

functional becomes:

Jρ(β, f,K) = (1− ρ)
1

n

n∑
i=1

(
zi −wT

i β − f(pi)
)2

+ ρ
1

|Ω|

∫
Ω

(∇ · (K∇f))
2
. (2.9)

The proposed two-step algorithm estimates separately the matrix K and the

couple β, f . The anisotropy matrix K is estimated using a parameter cascading

approach. The estimation of β and f is conditional on K.

To estimate the anisotropy matrix K, we minimize the functional:

H(K) =
n∑
i=1

(
zi −wT

i β̂K − f̂K(pi)
)2

, (2.10)

where β̂K and f̂K are implicit functions of the structural parameter K, and are

obtained minimizing the functional Jρ(β, f,K) with respect to β and f for the

given K.

As for the estimation of f and β, given the estimated matrix K, we can

prove, in a similar way to the one described in Section 2.2 and in the Appendix,

that the estimation problem is well posed: the solution exists and is unique. Let

W be a n × q-matrix whose i-th row is the vector wi of covariates at location

pi. Let P = W (W TW )−1W T be the matrix that projects orthogonally on the

subspace of Rn generated by the columns of W and let Q = I − P , where I is

the identity matrix.

Proposition 2.3. There exists a unique pair
(
β̂ ∈ Rq, f̂ ∈ V (Ω)

)
which mini-

mize (2.9) for a fixed symmetric and positive definite matrix K. Moreover,

• β̂ = (W TW )−1W T (z− f̂n);

• f̂ satisfies

(1− ρ)
1

n
hTnQf̂n + ρ

1

|Ω|

∫
Ω

(∇ · (K∇h))(∇ · (K∇f̂)) = (1− ρ)
1

n
hTnQz

for every h ∈ V (Ω).

Proof. The estimator β̂ is obtained by differentiation the functional Jρ(β, f,K)

in (2.9) with respect to β; then, by plugging β̂ in (2.9), the result is proven as

in the proof of Proposition 2.1.

Analogously to the case without covariates, after introducing the discretiza-

tion with finite elements, we obtain the following result.
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Proposition 2.4. Given a fixed symmetric and positive definite matrix K, the

estimators
(
β̂ ∈ Rq, f̂ ∈ V r

T (Ω)
)

that solve the discrete counterpart of the esti-

mation problem exist and are unique. Moreover,

• β̂ = (W TW )−1W T (z− f̂n);

• f̂ = f̂ψ, where f̂ satisfies[
−(1− ρ) 1

n
ΨTQΨ ρ 1

|Ω|R1

R1 R0

][
f̂

h

]
=

[
− (1− ρ) 1

n
ΨTQz

0

]
.

Proof. The existence and uniqueness of the solution are ensured by the invert-

ibility of the matrices R0 and
(

(1− ρ) 1
n

ΨTQΨ + ρ 1
|Ω|P

)
.

Solving the system for f̂ leads to the following expression for the vector of

coefficients of the basis expansion for the spatial field estimate f̂ :

f̂ =

(
(1− ρ)

1

n
ΨTQΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨTQz. (2.11)

For simplicity of exposition, we here organized the parameter cascading step,

used for the estimation of the anisotropy matrix K, defining β as a nuisance

parameter. On the other hand, one could as equivalently define β as a structural

parameter. In fact, the minimizer of the sum of square error functional in (2.10),

with respect to β, leads to the same form of the estimator β̂ that is given in

Propositions 2.3 and 2.4.

2.5 Simulation studies

In this section, we present the results of three simulation studies that show

the performances of the proposed method (anisotropic SR-PDE) and compare

it to isotropic smoothing with penalization of the L2-norm of the Laplacian as

described in Sangalli et al. (2013) (isotropic SR-PDE), and to isotropic and

anisotropic kriging. The isotropic kriging estimates are obtained with the func-

tion krige of the R package gstat (Pebesma, 2004) estimating the parameters

of the variogram with the function fit.variogram of the same package. The

anisotropic kriging estimates are obtained with the function krige.conv of the

R package geoR (Ribeiro Jr and Diggle, 2016) estimating the parameters of the

variogram with the function likfit of the same package. We use four classical

variogram models: Matérn, Gaussian, Spherical and Exponential. For some sim-

ulation replicates, we observed numerical instability with Matérn and Gaussian

kriging: the estimation of the variogram parameters performed with the function

likfit failed, not returning any valid result; in these cases, we run again the

function trying different initial values for the parameters, until finite estimates
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were obtained. The few replicates when the instability could not be avoided

were excluded from the analysis. For all the simulation studies, we also per-

formed isotropic and anisotropic filtered kriging with the function Krig of the

R package fields (Nychka et al., 2015) for the variogram models implemented

in the package (Matérn and Exponential), but we did not find any significant

difference with respect to standard kriging (as confirmed by pairwise Wilcoxon

test on the RMSE). Hence, to save space, the results for filtered kriging are not

included.

2.5.1 First simulation study: Matérn field with varying anisotropy

In the first simulation study, we generate 200 Matérn fields characterized by

varying anisotropy, using the function RFsimulate of the R package Random-

Fields (Schlather et al., 2016). The anisotropy matrices are randomly generated

by sampling the angle and the first element of the diagonal from two uniform

distributions with ranges [0, π] and [0.2, 0.5] respectively; the second element of

the diagonal is fixed to 1. The smoothness parameter ν is fixed to 2. Figure 2.5

shows three fields generated for this first simulation study.

angle = 0.63π
first diagonal element = 0.23

angle = 0.57π
first diagonal element = 0.34

angle = 0.27π
first diagonal element = 0.47

Figure 2.5: First simulation study. Three generated Matérn fields with different anisotropy
angles and intensities (determined by the values of the first diagonal element of the anisotropy
matrix, the second being fixed to 1).

Within a squared domain of side length 10, we uniformly sample 200 points,

imposing a minimum distance of 0.1 among them. Each generated random field

is then sampled at these 200 locations, adding a gaussian noise with mean 0 and

standard deviation 0.2 (which corresponds approximately to 5% of the range of

the data).

The top right panel of Figure 2.6 shows the data obtained in the first simu-

lation replicate, corresponding to the true field represented in the top left panel

of the same figure. The central and bottom rows of the same figure compare

the field estimates obtained by isotropic and anisotropic SR-PDE and isotropic

and anisotropic Matérn kriging. Superimposed to the true field and to the

corresponding estimates are ellipses representing respectively the true and esti-

mated anisotropy matrices: in the case of anisotropic SR-PDE, to use the same
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parametrization of the anisotropy matrix considered in the data generation and

in the kriging estimation, we plot here the squared root of K, normalized in or-

der to have first eigenvalue equal to 1. To help the interpretation of this figure,

we also superimpose circles to isotropic estimates. Anisotropic estimates clearly

better capture the behavior of the true field with respect to the corresponding

isotropic estimates.

To evaluate the goodness of the fit, we compute the RMSE over the 200 sim-

ulation replicates of the estimated field with respect to the true one, on a fine

regular square grid spanning the whole domain with spacing 0.05. Figure 2.7

shows the boxplots of the RMSE of the estimates obtained with the different

methods. The gray boxplot corresponds to the proposed method. Anisotropic

SR-PDE has better performances with respect to all isotropic techniques. In-

deed, pairwise Wilcoxon tests confirm that the RMSE of the estimates obtained

with anisotropic SR-PDE are significantly smaller than those associated with the

isotropic methods, with p-values of the order of 10−16. Moreover, anisotropic

SR-PDE has also significantly smaller RMSE than anisotropic kriging, with p-

values of pairwise Wilcoxon tests of the order of 10−3 for the comparison with

the Matérn and Spherical kriging, and of the order of 10−5 for the comparison

with Exponential and Gaussian kriging. In particular, it should be noticed that

the RMSE of the estimates obtained with the proposed method are significantly

smaller than the RMSE of the estimates obtained by anisotropic Matérn kriging,

which should, in this case, be the best possible model, since it assumes the same

covariance structure used to generate the data.
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Figure 2.6: First simulation study. First row: true field (left) and sampled data (right), with
the triangulation used for SR-PDE estimates in gray. Second row: estimates provided by
isotropic SR-PDE and isotropic Matérn kriging. Third row: estimates provided by anisotropic
SR-PDE and anisotropic Matérn kriging.
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Figure 2.7: First simulation study. Boxplots of the RMSE over the 200 simulation replicates
of the estimates obtained with isotropic and anisotropic SR-PDE and isotropic and anisotropic
kriging with different variogram models (Matérn, Gaussian, Spherical and Exponential).

The anisotropy is correctly identified by the proposed method. Indeed, the

right angle of anisotropy is estimated, as shown in Figure 2.8, which reports a

scatterplot of the estimated angle against the true angle.
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Figure 2.8: Second simulation study. Scatter plot of the angles of anisotropy estimated by the
proposed method versus the true angles.
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2.5.2 Second simulation study: Matérn field with varying aniso-
tropy and inclusion of covariates

In this simulation study, we consider the same simulation setting described in

Section 2.5.1, but we add a space-varying covariate. Specifically, for 200 simula-

tion replicates, we generate from the semiparametric model (2.8), with f equal

to one of the 200 Matérn fields generated for the first simulation study, β = 1

and wi = 2 sin((xi/5− 1)1.5π) cos((yi/5− 1)1.5π).

Figure 2.9 shows, in the first row, the Matérn field in the first simulation

replicate and the space-varying covariate; the total field, obtained adding the

Matérn field and the covariate, is represented in the first panel of the second

row. The following rows of the same figure compare the corresponding estimates

provided by isotropic and anisotropic SR-PDE and isotropic and anisotropic

universal Matérn kriging. Also in this case, taking into account the anisotropy

significantly improves the fitting.

Figure 2.10 shows the boxplots of the RMSE of the estimates obtained with

the different methods over the 200 replicates. The RMSE of the fields estimated

with anisotropic SR-PDE are significantly lower than the ones obtained with

the isotropic techniques, with p-values of pairwise Wilcoxon tests of the order of

10−14 for the comparison with isotropic SR-PDE, and of the order of 10−16 for

the comparison with isotropic universal kriging. Furthermore, anisotropic SR-

PDE has also better performances with respect to anisotropic universal kriging

with the different variogram models, with p-values of pairwise Wilcoxon tests of

the order of 10−16. It should here be remarked that surprisingly anisotropic SR-

PDE does significantly better even than universal Matérn kriging, which exactly

assumes the same covariance structure used to generate the data.
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Figure 2.9: Second simulation study. First row: true Matérn field and space-varying covariate.
Second row: total field and sampled data, with the triangulation used for SR-PDE estimates
represented in gray. Third row: estimates provided by isotropic SR-PDE and isotropic universal
Matérn kriging. Fourth row: field estimates provided by anisotropic SR-PDE and by anisotropic
universal Matérn kriging.
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Figure 2.10: Second simulation study. Boxplots of the RMSE of the estimates obtained with
isotropic and anisotropic SR-PDE and isotropic and anisotropic universal kriging with different
variogram models (Matérn, Gaussian, Spherical and Exponential).

2.5.3 Third simulation study: field over irregular domain

In this simulation study, we want to test the performances of the considered

methods in estimating the spatial field represented in the top left panel of Figure

2.11 from its noisy measurements. The field is defined on a rectangular domain

with an elongated rectangular hole within it. The values of the field on the two

sides of the hole are different; therefore the complex geometry of the domain

should be taken into account to properly estimate this field.

Within the domain of side lengths 8 and 4, we uniformly sample 300 locations,

imposing a minimum distance of 0.2 among them. We then sample the field at

these 300 locations, adding a gaussian noise with mean 0 and standard deviation

0.1 (which corresponds to 5% of the range of the data). We repeat the simulation

for 200 independent realizations of the additive gaussian noise.

The top right panel of Figure 2.11 shows the data obtained in the first sim-

ulation replicate. The central and bottom rows of the same figure show the

field estimates provided by isotropic and anisotropic SR-PDE and isotropic and

anisotropic Matérn kriging. Differently from kriging, SR-PDE is able to prop-

erly take into account the shape of the domain, while kriging smooths across the

internal boundaries, closely connecting data points that are instead separated

by the hole in the domain. Anisotropic SR-PDE improves the performances

of isotropic SR-PDE, providing estimated fields with more regularity along the

direction of anisotropy.

We then compare the various methods on the base of the RMSE over the

200 simulation replicates, with the RMSE computed on a fine regular square

grid of step 0.05 spanning the whole domain. As apparent from the boxplots of

the RMSE displayed in Figure 2.12, and confirmed by Wilcoxon pairwise tests,
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the RMSE of the estimates obtained with anisotropic SR-PDE are significantly

smaller than those associated with isotropic SR-PDE and to both isotropic and

anisotropic kriging with any variogram model.
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Figure 2.11: Third simulation study. First row: true field and sampled data, with the triangu-
lation used for SR-PDE estimates in gray. Second row: field estimates provided by isotropic
SR-PDE and isotropic Matérn kriging. Third row: field estimates provided by anisotropic
SR-PDE and anisotropic Matérn kriging.
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Figure 2.12: Third simulation study. Boxplots of the RMSE over the 200 simulation replicates
of the estimates obtained with isotropic and anisotropic SR-PDE and isotropic and anisotropic
kriging with different variogram models (Matérn, Gaussian, Spherical and Exponential).

2.6 Application to the analysis of the Switzerland
rainfall data

We apply the proposed method to the analysis of the dataset of 467 daily rainfall

measurements made in Switzerland, which was used for the Spatial Interpolation

Comparison 97 (Dubois et al., 2003). The data are shown in Figure 2.1.

The data include the elevation at the 467 locations, that we use here as a

covariate since intuition suggests that the orography of the region may play an

important role in the rainfall phenomenon; see Figure 2.13 that shows the ele-

vation over Switzerland. However, when implementing the anisotropic SR-PDE

model using the elevation as a covariates, it turns out that elevation is not sig-

nificant in the model. This is probably due to the fact that the effect of elevation

on rainfall is not linear; the apparent anisotropy in the distribution of rainfall

is the result of the interaction between the geomorphology and atmospheric cir-

culation. Unfortunately, data about wind streams and atmospheric circulation

are not included in this dataset. We thus discard the elevation from the model

and compute the SR-PDE estimate without this covariate.
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1000

2000

3000

4000

Figure 2.13: Elevation in the Switzerland region. This plot is obtained with the R package
geostatsp (Brown, 2015).

Figure 2.14 displays the estimated anisotropy matrix, superimposed to the

data, and Figure 2.15 shows the corresponding field estimate. These figures

highlight that the proposed method correctly identified the anisotropy and that

it provides a smooth field that is able to capture the important features of the

data, with the elongated regions of homogeneous values well defined.
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Figure 2.14: Anisotropy matrix (represented by the blue ellipse) estimated for the Switzerland
rainfall data (represented by the colored dots).
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Figure 2.15: Field estimate for the Switzerland rainfall data obtained with the proposed
method.

2.7 Possible model extensions and directions of fu-
ture research

The SR-PDE method can be extended to handle spatio-temporal data, gener-

alizing the model proposed by Bernardi et al. (2016), and to deal with areal

data instead of geostatistical data, following a similar approach as in Azzimonti

et al. (2015). Another possible extension is to data observed over curved do-

mains, combining the method here proposed with the one described in Ettinger

et al. (2016). This extension would be particularly interesting in the field of geo-

sciences and environmental sciences, since data are often observed over regions

presenting a complex orography; for instance, in the application to Switzerland

rainfall data, we could include elevation in the definition of the domain of in-

terest. Furthermore, another very interesting generalization of the proposed

approach would consist in integrating it with the model framework introduced

by Azzimonti et al. (2015), where the regularizing term involves a more complex

PDE, Lf = u, suggested by prior knowledge and the phenomenon behavior, and

that includes anisotropic and non-stationary diffusion, transport and reaction

terms:

Lf = −∇ · (K(x, y, θ)∇f) + b(x, y, η) · ∇f + c(x, y, ζ)f. (2.12)

In Azzimonti et al. (2015) the parameters θ, η and ζ in the diffusion, transport

and reaction terms in (2.12) are fixed on the base of their physical meaning,
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thanks to the prior knowledge of the problem under study. On the other hand,

oftentimes the prior knowledge of the phenomenon is not as detailed as to indi-

cate the specific values for these parameters. In such contexts, these parameters

could be estimated from data, generalizing the methodology presented in this

chapter. This would enable us to combine prior knowledge and observed data in

the definition of the anisotropic and non-stationary spatial variation of the phe-

nomenon. In particular, the use of prior knowledge would avoid un-identifiability

issues, which would otherwise be inevitably involved in a such a flexible mod-

elling of anisotropic and non-stationary spatial variation. See also Fuglstad,

Simpson, Lindgren and Rue (2015), that extend the approach based on Gaus-

sian random fields and stochastic PDEs introduced in Lindgren et al. (2011).

Other works which developed models to handle non-stationary anisotropy in

spatial data within the framework of Gaussian random fields are Fuglstad, Lind-

gren, Simpson and Rue (2015), Fuglstad et al. (2013), Fuglstad et al. (2014). In

the application to Switzerland rainfall data, if information about wind stream or

air circulation were available, it could be used to define a PDE with anisotropic

and non-stationary diffusion and transport terms; in particular, the transport

terms can be used to induce unidirectional smoothing effects in the direction of

the wind streams.
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Appendix

2.A Estimation of f given the anisotropy matrix K
and discretization via finite elements

As shown in Azzimonti et al. (2015), by introducing an auxiliary variable g, we

can write the fourth-order problem (2.4) as a coupled system of second order

problems: {
∇ · (K∇f̂) = g in Ω

f̂ = 0 on ∂Ω

{
ρ 1
|Ω|∇ · (K∇g) = −(1− ρ) 1

n

∑n
i=1(f̂ − zi)δpi in Ω

g = 0 on ∂Ω.

By integrating the differential equations against test functions h, v, and exploit-

ing Green’s theorem (or integration by parts), we then obtain the following weak

formulation of the problem: find f, g such that

(1− ρ)
1

n
hTn f̂n − ρ

1

|Ω|

∫
Ω

(∇g ·K∇h) = (1− ρ)
1

n
hTnz∫

Ω

gv +

∫
Ω

(∇v ·K∇f̂) = 0

(2.13)

for any h, v. This reformulation of the estimation problem involves only first

order derivatives and it is well suited to be solved numerically by discretization

via the finite element space V r
T (Ω) described in Section 2.2.3 of the main text.

This allow us to reduce the infinite dimensional problem to a finite dimensional

one, and to reduce the estimation to the solution of a linear system. Indeed,

taking the functions f, g, h, v in the finite element space V r
T (Ω), we obtain the

following expressions for the integrals in (2.13):∫
ΩT

(∇g ·K∇h) = gTR1h,

∫
ΩT

gv = gTR0v,

∫
ΩT

(∇v ·K∇f̂) = vTR1f̂ .

This leads to Proposition 2.2.
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2.B Properties of the estimator

For a fixed value of the anisotropy matrix K, the properties of the estimator can

be derived, as in Section 1.3.3 of Chapter 1.

The estimator f̂ in (2.6) is linear in the observed data values z, and has a

typical penalized least-square form. The estimate of the field f at a generic

location p ∈ Ω is given by

f̂(p) = ψ(p)f̂ = ψ(p)

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨTz

and its mean and variance conditional on K are given by

E[f̂(p)|K] = ψ(p)

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨT fn

V ar[f̂(p)|K] = σ2ψ(p)

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨT

Ψ(1− ρ)
1

n

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

ψ(p)T .

The covariance between the estimates of the field f at two generic locations

p1 and p2 conditional on K is given by

Cov[f̂(p1), f̂(p2)|K] =

σ2ψ(p1)

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

(1− ρ)
1

n
ΨT

Ψ(1− ρ)
1

n

(
(1− ρ)

1

n
ΨTΨ + ρ

1

|Ω|
P

)−1

ψ(p2)T .

.

As can be observed from the expressions of the means of the field estima-

tors presented here and in Chapter 1, the bias of the estimators is not zero.

As described in Ettinger et al. (2016) and Azzimonti et al. (2014), this bias is

due to two sources: the inclusion of the regularizing term in the estimation and

the discretization. The first source is common to all penalized regression tech-

niques and disappears as n increases, if the smoothing parameter decreases with

n. The second source is due to the choice of employing a basis expansion and

disappears as the mesh is refined. See Lemma 1 and Theorem 3 in Azzimonti

et al. (2014) that provides some preliminary results on asymptotic unbiasedness

of the estimators. The study of the consistency of these estimators, which in-

cludes convergence to zero of the variance, is still an open problem. This study

involves also the search for a rate of decrease of the smoothing parameter with

respect to n that makes the variance vanish.
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Chapter 3

Analysis of data with complex
non-stationary spatial
anisotropy influenced by the
texture of the domain

3.1 Introduction

Data with spatial dependence arise from many fields of sciences such as meteo-

rology, biology and geosciences. When analyzing spatial data, it is of paramount

importance to understand the physical phenomenon generating the data and to

adapt the estimation technique to properly take into account the characteristics

of the specific phenomenon under study.

A smoothing technique able to do that is spatial regression with penalized

regularization. This technique has been described in the previous chapters of

this thesis and its flexibility has already been shown. The various modelling fea-

tures of this technique include the ability to properly deal with complex domains

featuring concavities or interior holes, the possibility of imposing known bound-

ary conditions and the capacity of including in the model covariate information

via a semi-parametric framework.

Another important feature of this technique is the flexibility given by the

possibility of adapting the penalization term to the specific problem at hand.

Indeed, the penalization term involves a general Partial Differential Equation

(PDE) which can model various phenomena. In the simplest case, where no

knowledge is available on the phenomenon under study, the PDE in the penal-

ization term is the simple Laplacian operator (see Ramsay (2002) and Sangalli

et al. (2013)). When prior knowledge can be expressed by a differential model,

it can be included in the penalization in order to characterize the spatial depen-

dence of the solution to the estimation problem (see Azzimonti et al. (2015)). If
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no prior knowledge on the phenomenon is available, but the data show a spa-

tial dependence which is not isotropic, an anisotropic diffusion operator, whose

parameters are estimated from the data, can be included in the penalization, as

described in Chapter 2.

In this chapter we explore the possibility of characterizing the PDE involved

in the penalization considering the texture of the domain on which the data are

defined. In particular, we consider data characterized by non-stationary spatial

anisotropy induced by the structure of the domain.

As an illustrative example, we consider mobile phone data in the metropoli-

tan area of Milan. We analyze the Telecom Italia database, which collects the

measurements of a quantity called Erlang, consisting of the average number of

mobile phones using the network for calling over time intervals of 15 minutes and

square sites with dimension 232m×309m. The data are collected from Wednes-

day, March 18th 2009, 00:15 to Tuesday, March 31st 2009, 23:45 on a uniform

lattice of 97×109 sites. These data are used to investigate population dynam-

ics, since the Erlang measurements can be considered as an approximation of

the number of active people present in that site at that time. See Manfredini

et al. (2015), Secchi et al. (2015), Zanini et al. (2016) and Passamonti (2016) for

previous works on these data.

In this chapter, we show some first analysis considering the Erlang data for

a fixed time interval (Monday, March 23rd 2009, from 19:00 to 19:15), thus

treating them as spatial data without for the moment considering the temporal

evolution. Moreover, we assign the value measured for each site to the center

of the 232m×309m domain on which it is measured, thus setting the analysis in

the framework of geostatistical data instead of in the framework of areal data.

Section 3.4 describes, among the possible extensions, how to analyze these data

taking into account the temporal dependence and considering them as areal data.

The top panel of Figure 3.1 shows the distribution of the data on the spatial

domain for the time instant we fixed. The data are represented over the map of

the metropolitan area of Milan, which is also reported in the bottom panel.
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Figure 3.1: Erlang data at a fixed time instant (Monday, March 23rd 2009, 19:00) over the
map of the metropolitan area of Milan, which is shown in the bottom panel.
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As can be observed in the picture, the data are characterized by high values

in the central part of the domain, the municipality of Milan, and lower values

in the surrounding regions, the hinterland and countryside. An interesting char-

acteristic of these data is the spatial structure the data show in the hinterland

regions. In particular, large regions of low values (red areas in the plot) are sep-

arated by narrow elongated regions of higher values (represented in yellow and

green in the plot). This non-homogeneity in the spatial dependence of the data

is explained by the road network characterizing the domain, as shown in the

right panel of the figure: the regions of the hinterland characterized by higher

values follow the directions of the highways and the main roads.

This dataset is an example of a phenomenon strongly influenced by the tex-

ture of the domain. Indeed, in this case, the domain is not homogeneous, but

presents regions with different characteristics which determine a non-homogeneous

spatial dependence of the data. In particular, the road network induces strong

local anisotropy along the main roads.

We here propose to analyze the Erlang data using a spatial regression with

penalized regularization, where the PDE involved in the penalization accounts

for the topology of the road network characterizing the metropolitan area of

Milan. The estimation of the parameters of the PDE will be driven by the

knowledge of the road network of the metropolitan area of Milan. In particular,

we consider a non-stationary anisotropic diffusion operator whose anisotropy is

estimated from the geometry of the road network characterizing the domain.

The estimation of the anisotropy is performed with the technique presented in

Della Rossa et al. (2010), where an algorithm is developed to model traffic flows

in complex networks such as large urbanized areas.

The rest of the chapter is organized as follows. Section 3.2 describes the

model used to analyze the data. Section 3.3 show the first results obtained

for the analysis of the Erlang data. Section 3.4 gives an overview of possible

extensions of the analysis and future directions of work.

3.2 Model

We consider a bounded spatial domain Ω ∈ R2, whose boundary ∂Ω is a curve

of class C2. Let zi ∈ R be the value of a variable of interest observed at n point

pi = (xi, yi); i = 1, . . . , n within Ω. We assume that {zi; i = 1, . . . , n} are noisy

observations of an underlying smooth function f : Ω→ R:

zi = f(pi) + εi i = 1, . . . , n, (3.1)

where {εi; i = 1, . . . , n} are independently distributed residuals, with mean zero

and constant variance σ2.

We want to estimate the spatial field f by minimizing the following penalized
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sum-of-square-error functional:

Jλ(f) =
n∑
i=1

(zi − f(pi))
2

+ λ

∫
Ω

(∇ ·K(p)∇f)
2
, (3.2)

where λ is the smoothing parameter, the operator ∇ is defined as ∇ = ( ∂
∂x
, ∂
∂y

)T

and K(p) is a function defined on Ω taking values in the space of symmet-

ric and positive definite 2×2-matrices. K(p) defines the non-stationary spatial

anisotropy characterizing the differential operator ∇ ·K(p)∇f . In this setting,

K(p) has the same meaning of the matrix K considered in Chapter 2, but in this

case it is not constant over the spatial domain Ω. Moreover, it is not estimated

from the data, but exploiting information which comes from a different source

with respect to the data.

We estimate K(p) using the method proposed by Della Rossa et al. (2010),

which was developed to model traffic flows in complex networks spanning two-

dimensional regions, such as large urbanized areas. In Della Rossa et al. (2010),

the traffic flow is modelled with a diffusion-advection equation characterized by

two parameters which can be seen as the permeability matrix (or diffusion tensor)

and the drift vector (or motion trend). These two parameters are estimated over

a tessellation of the domain by means of an algorithm based on cellular automata

that exploits the geometry of the network. Indeed, the method starts form a

black-and-white image of the map of the roads network such as those represented

in Figure 3.2 and simulates random walks along the sub-networks contained in

the cells of the tessellation using a multi-start Monte Carlo algorithm. The

estimators of the permeability and of the drift are obtained averaging over all the

trajectories the mean and the covariance of the increments of each trajectory. For

the purpose of our analysis we are interested in the estimate of the permeability

matrix, which we use as estimate of K(p).

In our implementation of the method, we estimate K(p) on a fine regular

square tessellation of the domain, obtaining an estimated function K(p) that

is piecewise constant on each subdomain of the tessellation. The estimation of

K(p) is done independently on each subdomain, considering only the part of the

road network within it. For each subdomain, the algorithm simulates the motion

of 20000 cars through it, considering both directions of travel for each road. Each

car starts its motion from one of the intersections of the roads of the network with

the border of the considered subdomain, with a starting velocity of 15km/h. The

displacement of each car follows the road on which the car is, and is proportional

to its velocity, which decreases if the car is approaching an intersection and

otherwise increases up to a maximum velocity of 105 km/h. After a car reaches

an intersection, it starts again its motion following one of the roads adjacent

to that intersection, choosing randomly with a uniform probability. Each car

stops its motion when it reaches the boundary of the considered subdomain; the

algorithm stops when all the cars have reached the boundary. The matrix K is
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then computed as the mean over the 20000 replicates of the covariance matrix

of the displacements of which each trajectory is composed.

3.3 Analysis of Telecom Italia Erlang data

In order to define K(p), we start from the map of the road network in the

metropolitan area of Milan. The website of Lombardy region1 provides the map

of the main roads, secondary roads, highways and railways, which is shown in the

left panel of Figure 3.2. We do not consider railways since the technique applied

to estimate K(p) is based on modeling cars flowing along roads. Moreover,

we exclude from our analysis the secondary roads, since a visual inspection of

the data suggests that the local spatial anisotropy is mainly due to main roads.

Therefore, the road network we consider in the following takes into account main

roads and highways and it is represented in the right panel of Figure 3.2.

Figure 3.2: Road network in the metropolitan area of Milan. Left panel: main roads, sec-
ondary roads, highways and railways. Right panel: main roads and highways. Data from
www.geoportale.regione.lombardia.it.

The results of the estimation of K(p) are shown in Figure 3.3 on the fine

regular grid of spatial locations {pi; i = i, ..., N} corresponding to the centers of

the square subdomains of the tessellation. The symmetric and positive definite

matrices K(pi) are represented as ellipses whose axes are oriented according

to the eigenvectors of K and have length proportional to the corresponding

eigenvalues. The top panel shows the estimated K(p) on the whole domain of

the metropolitan area of Milan, while the bottom panel shows a detail of the

south-east region of the domain. The resulting K(p) models precisely the roads,

assuming isotropic values in the regions without roads and strongly anisotropic

values along the roads.

1http://www.geoportale.regione.lombardia.it
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Figure 3.3: Estimated non-stationary anisotropy K(p) represented via ellipses. The blue lines
represent the road network used for the estimation of K(p). Top panel: whole domain. Bottom
panel: detail.
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As a preprocessing step prior to the analysis of the Eralng data, negative val-

ues have been removed and treated as missing data since they are non-admissible

and the logarithmic transformation sign(x) log(|x| + 1) has been applied to he

data.

The result of the estimation of the spatial field performed with the spatial re-

gression with non-stationary anisotropic penalty is represented in the right panel

of Figure 3.4, while the left panel of the same figure shows as a comparison the

estimated field obtained with spatial regression with isotropic penalty. Figure

3.5 represents the difference between the two estimated fields. The difference

is higher along the main roads, where the non-stationary anisotropic technique

provides a more accurate estimate of the field.
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Figure 3.4: Estimated spatial fields with spatial regression with isotropic penalty (left panel)
and spatial regression with non-stationary anisotropic penalty (right panel).
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Figure 3.5: Difference between the estimated spatial fields with spatial regression with isotropic
penalty and spatial regression with non-stationary anisotropic penalty. The black lines repre-
sent the road network used for the estimation of K(p).

3.4 Model extensions

As mentioned in the Introduction, Telecom Italia Erlang data are collected over

a time period of 14 days; therefore, to proper analyze these data, the temporal

dependence should be taken into account. A possible approach is the one we pro-

pose in Chapter 1, where the penalty term is the sum of a spatial regularization

and a temporal regularization. Moreover, the Erlang measurements are integral

in time and space, since each datum refers to a temporal interval of length 15

minutes and to a square site with dimension 232m×309m. This characteristic of

the data can be modeled considering the framework of areal data (see Azzimonti

et al. (2015)).

In this setting, we consider {Ωi; i = 1, ..., n}, n sub-domains of the spatial

domain Ω, and {[Tj−1, Tj]; j = 1, ...,m}, m sub-intervals of a temporal domain

[T0, Tm] ⊂ R. In the case of Erlang data, the spatial sub-domains are the sites

of the tessellation of the metropolitan area of Milan, while the temporal sub-

intervals have length 15 minutes. Let zij be the measurements of the quantity

of interest obtained from an underlying smooth function f : Ω× [T0, Tm]→ R in

the following way:

zij =

∫ Tj

Tj−1

∫
Ωi

f(p, t)dpdt+ ηij i = 1, . . . , n j = 1, . . . ,m, (3.3)
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where {ηij; i = 1, . . . , n; j = 1, . . . ,m} are independently distributed residu-

als, with mean zero and variance proportional to |Ωi|(Tj − Tj−1), where |Ωi| is

the area of the spatial domain Ωi.

In this setting, the penalized sum-of-square-error functional becomes:

Jλ(f) =
n∑
i=1

m∑
j=1

1

|Ωi|(Tj − Tj−1)

(
zij −

∫ Tj

Tj−1

∫
Ωi

f(p, t)dpdt

)2

+

λS

Tm∫
T0

∫
Ω

(
∇ ·K(p)∇f(p, t)

)2

dpdt+ λT

∫
Ω

Tm∫
T0

(∂2f(p, t)

∂t2

)2

dtdp. (3.4)

Another possible extension would be the inclusion of other sources of infor-

mation in the definition of the regularizing differential operator. Indeed, the

distribution of the data suggests that the presence of railway stations and of the

Linate airport plays an important role in the phenomenon under analysis. There-

fore, in the same way as the road network suggests a non-stationary anisotropic

diffusion term, the railway stations and the Linate airport may suggest a non-

stationary forcing term.

Another interesting line of research that could be developed in future work

could be the extension to handle data with complex spatio-temporal dependence

distributed over non-planar domains by integrating the approach described in

this thesis with the approaches described in Ettinger et al. (2016) and Dassi

et al. (2015).
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Nerini, D., Monestiez, P. and Manté, C. (2010), Cokriging for spatial functional

data, Journal of Multivariate Analysis 101(2), 409–418.

Nychka, D., Furrer, R., Paige, J. and Sain, S. (2015), ‘fields: Tools for spatial

data’. R package version 8.4-1.

URL: www.image.ucar.edu/fields

Passamonti, F. (2016), Spatio-temporal mobile phone data in milan: Bagging-

voronoi exploration and modeling through soil use and land cover data, Mas-

ter’s thesis, Politecnico di Milano, MOX - Dipartimento di Matematica.

Pebesma, E. J. (2004), Multivariable geostatistics in s: the gstat package, Com-

puters & Geosciences 30, 683–691.

R Core Team (2016), R: A Language and Environment for Statistical Computing,

R Foundation for Statistical Computing, Vienna, Austria.

URL: https://www.R-project.org/

Ramsay, J. O., Hooker, G., Campbell, D. and Cao, J. (2007), Parameter estima-

tion for differential equations: a generalized smoothing approach, Journal of

the Royal Statistical Society: Series B (Statistical Methodology) 69(5), 741–

796.

Ramsay, J. O. and Silverman, B. W. (2005), Functional data analysis, Springer.

Ramsay, T. (2002), Spline smoothing over difficult regions, Journal of the Royal

Statistical Society: Series B (Statistical Methodology) 64(2), 307–319.

Ribeiro Jr, P. J. and Diggle, P. J. (2016), geoR: Analysis of Geostatistical Data.

R package version 1.7-5.2.

URL: https://CRAN.R-project.org/package=geoR

Sangalli, L. M., Ramsay, J. O. and Ramsay, T. O. (2013), Spatial spline re-

gression models, Journal of the Royal Statistical Society: Series B (Statistical

Methodology) 75(4), 681–703.

Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke,

S., Martini, J., Ballani, F., Moreva, O., Menck, P. J., Gross, S., Ober, U.,

Christoph Berreth, Burmeister, K., Manitz, J., Morena, O., Ribeiro, P., Sin-

gleton, R., Pfaff, B. and R Core Team (2016), RandomFields: Simulation and

Analysis of Random Fields. R package version 3.1.16.

URL: http://CRAN.R-project.org/package=RandomFields

74



BIBLIOGRAPHY

Secchi, P., Vantini, S. and Vitelli, V. (2015), Analysis of spatio-temporal mobile

phone data: a case study in the metropolitan area of milan, Statistical Methods

& Applications 24(2), 279–300.

Wahba, G. (1990), Spline models for observational data, Vol. 59 of CBMS-NSF

Regional Conference Series in Applied Mathematics, Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania.

Wilhelm, M. and Sangalli, L. M. (2016), Generalized spatial regression with

differential regularization, Journal of Statistical Computation and Simulation

pp. 1–22.

Wood, S. (2006), Generalized additive models: an introduction with R, CRC

press.

Wood, S. N., Bravington, M. V. and Hedley, S. L. (2008), Soap film smoothing,

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

70(5), 931–955.

Xun, X., Cao, J., Mallick, B., Maity, A. and Carroll, R. J. (2013), Parameter

estimation of partial differential equation models, Journal of the American

Statistical Association 108(503), 1009–1020.

Zanini, P., Shen, H. and Truong, Y. (2016), Understanding resident mobility in

milan through independent component analysis of telecom italia mobile usage

data, The Annals of Applied Statistics 10(2), 812–833.

75


	Introduction
	A penalized regression model for spatial functional data with application to the analysis of the production of waste in Venice province
	Introduction
	Data and model
	Numerical implementation of the model
	Choice of the basis systems in space and time
	Discretization of the penalized sum-of-square error functional
	Properties of the estimator

	Model with covariates
	Properties of the estimator

	A variation of the proposed ST-PDE model
	Simulation studies
	First simulation study
	Second simulation study: fewer spatial locations and more time instants
	Third simulation study: covariates
	Fourth simulation study: correlated noise
	Fifth simulation study: areal data assigned to area centroid

	Application to the analysis of the production of waste in Venice province
	The Venice waste dataset
	Analysis of Venice waste data by ST-PDE

	Model extensions

	Appendix
	Spatio-temporal test function

	Modelling spatial anisotropy via regression with partial differential regularization
	Introduction
	Model
	Estimation of the anisotropy matrix K via parameter cascading
	Estimation of the spatial field f given the anisotropy matrix K
	Finite elements
	Discretization of the spatial field f via finite elements

	Implementation details
	Parametrization of the anisotropy matrix K
	Implementation of the algorithm and selection of the optimal smoothing parameter 

	Inclusion of space-varying covariates
	Simulation studies
	First simulation study: Matérn field with varying anisotropy
	Second simulation study: Matérn field with varying anisotropy and inclusion of covariates
	Third simulation study: field over irregular domain

	Application to the analysis of the Switzerland rainfall data
	Possible model extensions and directions of future research

	Appendix
	Estimation of f given the anisotropy matrix K and discretization via finite elements
	Properties of the estimator

	Analysis of data with complex non-stationary spatial anisotropy influenced by the texture of the domain
	Introduction
	Model
	Analysis of Telecom Italia Erlang data
	Model extensions


