
Department of Mathematics
Doctoral Program in

Mathematical Models and Methods in Engineering

Functional data analysis for high dimensional and complex

genomic data

Doctoral Dissertation of:
Alice Carla Luisa Parodi

Supervisor:
Prof. Piercesare Secchi
The Chair of the Doctoral Program:
Prof. Irene Maria Sabadini
Tutor:
Prof. Roberto Lucchetti

Year 2016 - XXIX cycle





abstract

In this work we aim to connect the advanced statistical techniques of Func-
tional Data Analysis with the high dimensional and complex setting of ge-
nomic data.

Specifically, we adapt some statistical techniques to the needs of the bio-
logical community, both providing solutions to specific problems with inno-
vative biological insights and developing efficient tools to make our research
easily fruitful for the community. We present how the identification of phase
and amplitude variations in functional data can be useful to define and clas-
sify ChIP-sequencing profiles or cognitive decline curves of patients affected
by Alzheimer’s disease.

Beside that, we present a new method, called FLAME, to deal with high
dimensional and sparse Function-on-Scalar linear regression. We introduce
FLAME both in its theoretical aspects and in its algorithmic implementation
and then we present some applications related to the genomic area. FLAME
has been used to analyze the influence of Single Nucleotide Polymorphisms
to the longitudinal measurements of lung development of children affected
by asthma and the influence of the stool and buccal microbiome in the
growth of children affected by an overweight condition.
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I N T R O D U C T I O N

The recent development of advanced techniques to collect life sciences data
requires the concurrent introduction of efficient statistical tools to extract
meaningful information from huge amount of complex records. At this
stage, the real challenge is to fully analyze the collected data, isolating the
relevant information contained, without any a priori reduction of the com-
plexity of the problem to exploit the state-of-the art statistical techniques.
Then, statistics has a key role in developing efficient methodologies to deal
with this new life-science community challenge.

The research we present in this work has the aim to present some real
applied problems, collected from the biological environment of the -omics
community, as well as some advanced statistical techniques (related to the
functional data analysis) to efficiently analyze these data.

From early XX century, when the Genetic science was born, many innova-
tions have been introduced: from Gregor Mendel and his heredity studies,
through the Watson and Crick DNA double helix and the complete coding
of the human genome, we are now in the era of Next Generation Sequencing.
Next Generation Sequencing is a collection of new methods and laboratory
techniques to analyze the genome, the transcriptome and the epigenome to
identify not only the sequence of nucleotides our DNA is made by, but also
the complex mechanism of codification of proteins and the complete nucleus
environment where the DNA is immersed.

These new techniques, however, produce measurements which could be
intrinsically longitudinal, since they vary in time or space, or which could
affect the phenotypic expression of individuals in different ways with the
passage of time. Therefore, in this work we introduce functional data tech-
niques, to avoid an a priori simplification of the data to make multidimen-
sional statistical techniques applicable. Moreover, we ensure to deal with the
computational effort required to analyze such a huge amount of data and
to allow the reproducibility of the analysis in different datasets from similar
experiments: to support the statistics and biologist community we develop
efficient R packages, mainly coded in c++, and upload them on public repos-
itories.
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The dissertation is split into two parts. In Part i the main focus is the
isolation of the phase and amplitude variability, while in Part ii the main
focus is the analysis of the influence of external factors on functional data.

Phase and Amplitude variability

When we analyze a functional data set, two different sources of variability
could be present within data: a variability in the magnitude of the signal
(amplitude variability) and a variability in the time-system of measurement
(phase variability). The paired analysis of these two distinct sources of vari-
ation can make great advantages in the detection of meaningful aspects of
the signals. In this part we present two case studies, one from the epigenetic
area of ChIP-sequencing experiments and one related to the progression of
Alzheimer’s disease, in which phase variability plays a key role. We intro-
duce two methods to identify and then remove the phase variability from
the data and to analyze the remaining amplitude variation.

Functional Linear Models

Beside the internal sources of variation considered in the previous part, func-
tional data may be influenced by external factors. For example, some ge-
nomic measurements may affect phenotypic expressions. Moreover, since
the phenotypic response can be longitudinally measured on time we aim to
isolate the genomic measurements that really influence the phenotype and
how their influence varies with the passage of time. This is why in this
part we develop a new method, called FLAME: to deal with high dimension
sparse Function-on-Scalar regression. Beside presenting the method with its
theoretical properties and computational details, to show FLAME efficiency
we introduce two real case studies related respectively to the influence of Sin-
gle Nucleotide Polymorphisms to the lung development and to the influence
of the microbiome on the growth of children.
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Part I

P H A S E A N D A M P L I T U D E VA R I A B I L I T Y





... the problem is that the curves exhibit two types of variability. Am-
plitude variability pertains to the sizes of particular features, ignoring
their timings. Phase variability is variation in the timings of the fea-
tures without considering their sizes.

Ramsay and Silverman (2005)

This is how Ramsay and Silverman define Phase and Amplitude variabil-
ity. The idea of this distinction comes from the observation that, given a
set of curves fi(x), the variability among them can be due to a variation
in the ordinate f or in the abscissae x. In the typical example of Berkeley
Growth Data of Jones and Bayley (1941), we can notice that a child can be
shorter than an other in a certain time since he is overall shorter than the
other or since he has a different speed of growth and then at that time he
hasn’t reached the height of the other yet. The aim of alignment techniques
is, then, the identification of the variation in the fi that is due to an abscissae
variation, so that the quantification of the phase variability is possible. Once
this source of variability is detected and removed, meaning that the abscissa
grid of each fi is transformed through an opportune warp, curves have the
same time-scale and the remaining variability is the amplitude variability,
only due to ordinate variations.

Different approaches have been defined to deal with the problem of iden-
tification of phase and amplitude variability, as presented in Marron et
al. (2015) and Vantini (2012). From Sakoe and Chiba (1978) with the Dy-
namic Time Warping and the definition of piecewise-linear warping func-
tions, through the landmark registration, which identifies the characteristic
features of functions and transforms the abscissa of curves to make the fea-
ture coincide in time, to the more general definition of functional registration
of Ramsay and Silverman (2005) and Srivastava and Klassen (2016). In this
last contest warping functions can assume more general shapes and differ-
ent metric are introduce to compare functions.
Here we focus on the registration with affine warping functions, as pre-
sented in Sangalli et al. (2010): the abscissae grid of the functions is adjusted
with the application of shifts and dilations. Given two functions f1 and f2,
the set of possible transformations for the abscissae (or set of warping func-
tions) W and a distance measure d to compare the two curves, we look for
the function h ∈W s.t.

h = arg min
s∈W

d(f1 ◦ s, f2).
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h is, then, the function to be applied to the abscissae grid of f1 to make
the time time-scale of the two functions as similar as possible and it is com-
puted minimizing the distance of the transformed f1 from f2. fR1 = f1 ◦ h is
defined as the registered curve of f1 to f2 and now d(fR1 , f2) does not con-
tain any more the contribution of a phase variability, but quantifies only
the amplitude variability. It has to be noticed that W and the metric d
have to satisfy some coherence requirements; for example, W should be a
convex space with a group structure with respect to the function compo-
sition ◦ and d and W have to be consistent: a simultaneous warping of
two generic functions f1, f2 with the same h doesn’t modify their distance
d(f1, f2) = d(f1 ◦h, f2 ◦h) ∀h ∈W. Affine transformations and L2 distances,
for example satisfy these requirements.

In the next chapters two examples of real datasets where this distinction
is crucial and reveals key aspects of the data are presented: in Chapter 1 a
ChIP-sequencing experiment is illustrated; while in Chapter 2 the focus is
the progression of Alzheimer’s disease.

A ChIP-Seq experiment

ChIP-sequencing is a technique presented in Barski and Zhao (2009) and de-
veloped in order to analyze the epigenetic structure of the cells, where epi-
genetic is the field of genomic sciences studying the molecular mechanisms through
which cells can modify their expression without modifying the coding information
of the DNA sequence, but varying, for example, the three-dimensional structure of
the molecule or the expression level of genes (Carey (2012)). Specifically, epige-
netic focuses on the analysis of proteins surrounding DNA to detect their
influence on the DNA expression. ChIP-sequencing, in particular, consists
of the isolation of a specific protein in the nucleus of cells and in the anal-
ysis of its connection with the double helix of the DNA. The output of this
technique is a measurement throughout the genome of a count indicating
the presence of the protein in the region next to the genomic sequence. The
human genome consist of 3, 234, 830 basis and then the output of a single
ChIP-seq experiment is a longitudinal measure on these millions of basis.
Then, a functional data approach allows to consider the longitudinal mea-
surement as a curve on the genome domain. Specific bioinformatics tools,
like MACS proposed by Zhang et al. (2008), isolate the relevant regions of
the genome where there is evidence of the presence of the protein. Then
the curve throughout the genomic domain is reduced to a set of curves on
specific regions of the genome. This set of curves can show both differences
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in amplitude and phase, as inspected in Chapter 1.
Moreover we present a further scenario in which the analysis of phase vari-
ability can improve current biological techniques. It influences the initial
step of the definition of the curve on the genome: specifically, the count on
the genome is obtained as a sum of two separate measurements which need
to be aligned before the sum. Then, the systematic definition of phase vari-
ability improves the current method which deals just with the identification
of significant points on the two measurements.

This Chapter is within the Genomic Computing Project including the
Statistics Group of Politecnico di Milano and the IEO-IIT research group and
it is part of an already submitted paper. Codes are available on the FunChIP

R/Bioconductor package (Parodi et al. (2016)), whose vignette is proposed
in Appendix A. The package is build up to deal with ChIP-seq data, but it
can be used also to analyze similar genomic structures like ChIP-exp experi-
ments (Rhee and Pugh (2012)).

Heterogenety of cognitive decline in dementia

In the analysis of the progression of Alzheimer’s disease we focus on the
cognitive decline of patients. The objective is the identification of the ini-
tial point of the development of the disease (time-zero). It is well known,
in fact, that Alzheimer’s disease can reveal itself at different ages of the pa-
tients and often the first neurological visit does not correspond to the first
appearance of cognitive decline. Both the identification of the starting point
of the cognitive decline as a specific age or as the first neurological visit can
be inaccurate. Then here we propose to exploit the alignment techniques to
accurately identify the initial point of the cognitive decline. Moreover, the
evolution of Alzheimer’s disease can differ depending on the severity of the
pathology and we want to propose a method that allows to consider differ-
ent evolutions of the disease. The curves we measure are the results of the
Mini-Mental State Examination (MMSE) proposed by Folstein et al. (1975):
it is an indicator of the cognitive ability of patients during time. Allowing
the possibility of different evolutions of the cognitive decline of patients and
variations in the starting points of curves, we split patients in two groups
which reveal faster and slower decline of the disease. Moreover we aim to
identify some risk factors and biochemical markers to increase diagnostic ac-
curacy for patients with a faster or slower decline. In this analysis we focus
on two measurements: the presence of the Tau protein in the cerebrospinal
fluid and the presence of a variant of the APOE gene. The level of Tau
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reflects the neuronal and axonal degeneration or the possibly formation of
neurofibrillary tangles (Andreasen et al. (2001)) and then the development of
the Alzheimer’s disease. In Tanzi and Bertram (2001), instead, the ε4 variant
of the APOE gene is confirmed to be strongly related to the development of
Alzheimer’s disease. In our analysis we prove that with an efficient defini-
tion of the time-zero of the disease and a consequent efficient split of patients
in slower and faster decliners, these two biomarkers become very significant.

This work is part of an already submitted work developed with Profes-
sor Steven Kiddle, Caroline Johnston, Chris Wallace and Richard Dobson
form the Genetic and Developmental Psychiatry Center of King’s College of
London and Cambridge Institute of Public Health.

8



1
A C H I P - S E Q E X P E R I M E N T: P H A S E A N D A M P L I T U D E

VA R I A B I L I T Y T O P R E P R O C E S S A N D A N A LY Z E C U RV E S
O N T H E G E N O M E

1.1 introduction

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) gener-
ates local accumulations of sequencing reads on the genome, which cor-
respond to specific protein-DNA interactions or chromatin modifications.
In Figure 1.1 a graphical overview of a ChIP-seq experiment is presented.
Specifically, the sequenced reads gather together at the genomic regions cor-
responding to the interactions sites and their accumulation can be identified
with specific tools (Wilbanks and Facciotti (2010)) to isolate the enriched re-
gions on the genome and define the correspondent profile of reads (peaks).
Enriched regions are detected by considering the total area of the correspon-
dent peak above a background signal, usually neglecting their shapes, which
instead may convey additional biological information. Peaks, in fact, exhibit
a variety of shapes: for example, Transcription Factor (TF) peaks usually
display a gaussian-like profile, while some histone marks can show more
elongated contours. However, even for a specific transcription factor, en-
riched regions may display differences in shapes, which are rarely taken
into account when analysing ChIP-seq data (Guo et al. (2010), Zhang et al.
(2011), Mendoza-Parra et al. (2013)).

See for example Figure 1.2 where some Genome Browser profiles showing
different peak shapes are presented.

Notably, Cremona et al. (2015) classify the peaks of the human transcrip-
tion factor GATA-1 with five indices summarizing their shapes, and link the
clusters they obtain to specific biological insights: among others, to different
regulatory complexes and different changes in gene expression. Neverthe-
less, the choice of the indices only provides a projected view of the peak
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Figure 1.1: Figure from Kidder et al. (2011) to
present the ChIP-sequencing technique. In the
panel A. the experimental setting of the ChIP-seq
experiment is introduced; histone marks and tran-
scription factors which binds the DNA sequence
are isolated through the linkage with a specific
antibody (B.) and then the associated fragments
of DNA are collected and purified by the tran-
scription factor and the antibody. With specific
tools the ends of the fragments (reads) are se-
quenced: in panel C. the right (called and 5’ end
or negative read) and left (3’ end or positive read)
reads are highlighted in blue and yellow: the
coding sequence (i.e. the sequence of Adenine,
Timine, Citosine and Guanine basis forming the
segment) of the DNA is read. All the reads are
then aligned on a reference genome and on each
basis of the genome the number of positive and
negative reads aligned there are counted, forming
(E.) a sequence of positive and negative counts
through the genome. Specific tools, like MACS
(Wilbanks and Facciotti (2010)) identify enriched
regions on the genome: these regions show counts
statistically larger than the global count profile;
there positive and negative counts are measured,
the blue and yellow peaks of the panel F.. To de-
fine the global profile on the genome representing
not only the positive and negative reads, but the
entire fragments (gray lines of panel C.), it is nec-
essary to estimate the fragment length. We pro-
pose a method to estimate this length considering
the global shape of the positive and negative pro-
files. Finally (G.) for each region of the genome
associated to the presence of the protein we can
compute the a global count, summing the positive
and negative counts, once the reads are extended
up to the fragment length. It is the gray peak that
we will analyze in its shape profile.
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Figure 1.2: Genome Browser (Kent et al. (2002)) profiles of transcription factors and
histone modifications showing different shapes both across different experiments
and within the same experiment.

shapes along some specific axes, which may not capture all the relevant
details. Here we present a method based on the isolation of phase and am-
plitude variability to define first of all the shapes of peaks and then to cluster
them: after building up the peaks and approximating their profiles with cu-
bic B-splines, the clustering technique classifies peaks applying a k-mean
alignment and clustering algorithm. The method is implemented, together
with all necessary preprocessing steps, in an user-friendly R/Bioconductor
(Gentleman et al. (2004)) package FunChIP (Parodi et al. (2016)) which also
provides some visualization tools for a quick inspection of the results. From
the original set of aligned reads on the genome (yellow and blue segments
of panel D. of Figure 1.1), stored in a .bam file, and the list of the enriched
regions of the ChIP-seq experiment, in the .bed file, FunChIP builds up the
positive and negative peaks of panel F., estimates the fragment length to
build up the global profile of panel G., defines its functional approximation
and classifies the global profiles on the enriched regions on the genome con-
sidering their shape. In this chapter we provide an application of this tool
to some real ChIP-Seq datasets related to the transcription factor Myc in 3T9

murine fibroblasts; we show also how the clusters defined by the functional
analysis are associated with different genomic locations and transcriptional
regulatory activities.

This chapter is organized as follows. In Section 1.2 we outline the prepro-
cessing steps applied to ChIP-seq data and present the clustering technique.
In Section 1.3 we introduce the three datasets we will apply the clustering al-
gorithm and in Section 1.4 the biological analyses we led. Finally, in Section
1.5 some concluding remarks.
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1.2 methods

In this work, we employ several functional data techniques to analyze ChIP-
seq data. In particular, in Section 1.2.1 we describe how to estimate the
fragment length l used in the sequencing, by aligning (shifting) the positive
and negative reads generated in the ChIP-seq experiment. Then, in Section
1.2.2 we introduce an efficient algorithm, combining k-means clustering with
a global alignment of the peaks, to classify the functional representations of
ChIP-seq peaks.

1.2.1 Preprocessing

Given the location of the enriched regions on the genome, stored in a .bed

file, and the .bam file containing the aligned reads of the ChIP-sequencing
experiment, we introduce a method to define the global shape of the peaks
identified by the experiment. As a first step, we collect for each genomic re-
gion i in 1, . . . N, contained in the .bed file, the reads aligned on the positive
and negative strands, and define the correspondent coverage functions, ci+
and ci−. We assume that in each region the positive and negative coverages
measure the same signal, shifted by a integer value d (see Figure 1.3 for a
clarification). In our case of single-end sequencing, reads aligning on oppo-
site strands are sequenced from the same fragments and the parameter d is
then related to the original length of the fragments l as

l = d+ r,

where r is the known read length.

The parameter d may be provided by the peak caller, as in case of MACS,
but classically it is computed considering only the highest points of the pos-
itive and negative peaks, while we estimate d considering the whole profile
of these peaks: we detect the shifting value which minimizes the global dis-
tance between the two groups of reads. In Supplementary Figure S1.1 we
present the effects of setting d = 0 which corresponds to the definition of
peaks as they are stored in the .bam file, ignoring the characteristics of the
sequencing tools used in ChIP-Seq experiments. Focusing on the estimation
of the d parameter, Figure 1.3 shows in the left panel the two peaks obtained
with positive and negative coverage, while in the right panel the same two
peaks, but shifted to minimize their distance. In particular, defining csi− the

12
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Figure 1.3: Left panel: positive and negative peaks in their original position. Right
panel: the same positive and negative peaks, but shifted of the value d estimated
from Equation (1.1).

negative coverage function of the ith region, shifted by s basis, d is computed
as

d = argmin
s

N∑
i=1

D(ci+, csi−), (1.1)

where D is a suitable distance between curves. In this specific case, given
two functions f(t) and g(t) and the union of their domains Ω, fΩ(t) and
gΩ(t) are f(t) and g(t) extended to zero where they are not defined on Ω.
Then D is

D(f,g) =

∫
Ω(fΩ(t) − gΩ(t))2dt

|Ω|
.

Once we have estimated the parameter d, we can compute for each region
i the global coverage function ci, obtained as the sum of ci− and ci+, ex-
tended on their 3’ ends up to the fragment length l. Figure 1.4 shows an
example of peak obtained as global coverage, from the extension of positive
and negative peaks, while in Figure 1.5 10 random peaks of the MycER0h
dataset (Sabò et al. (2014)) are drawn. The peaks in Figure 1.5 are centered
around their summits (or maximum point of the peak).

After computing the global coverage c for each enriched region of the
.bed file, peaks are preprocessed to define the correspondent functions f and
allow the application of functional data techniques. Here the description of
the preprocessing steps required to define the functions f:
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Figure 1.4: Global coverage function of a peak and smoothing. Left panel: Example
of a peak (grey line), obtained as the sum of the positive (yellow) and negative (blue)
reads, extended by d. The positive and negative peaks generated by the extended
(continuous lines) and unextended (dashed lines) reads are also shown. Right panel:
the original peak (grey line) and its representation after background removal and
smoothing (black lines); peaks are centered around their summit.

1. Removal of the background. Given the characteristics of the ChIP-Seq
experiments, each peak has a background, which can be generated by
the specific sequence, PCR bias or random noise. In order to compare
peaks, we estimate the background as constant along the peak and
equal to the minimum value the count assumes, and we remove it
from the data.

2. Extension of the peak. Each peak is defined on a specific enriched ge-
nomic region; we assume that, once we have removed the background,
the peak is only a small part of the global coverage function on the
whole genome that now assumes value 0 outside the enriched regions.
Then each peak can be indefinitely extended with zeroes. This proce-
dure allows the definition of a proper metric on the union of the do-
mains to align peaks and isolate their phase and amplitude variability
(see Section 1.2.2).

3. Smoothing. Peaks must be smoothed to allow the computation of the
derivatives of the coverage functions. The smoothing is performed
trough a cubic B-spline basis (Ramsay and Silverman (2005)), with
knots every 50 nucleotides; this basis guarantees the continuity of
functions and derivatives up to the second order. We introduce a
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Figure 1.5: 10 randomly selected global peaks centered around their summits.

penalization on the second order derivative to control the roughness
of the smoothed functions, measured in terms of changes of concavity.
The smoothness parameter is estimated by minimizing the Generalized
Cross Validation either on the data or on the derivatives. See Figure 1.4
(right) for an example of B-spline smoothing and Figure 1.6 (left panel)
for the smooth approximation of the 10 random peaks previously in-
troduced.

4. Scaling. A further optional preprocessing step consists in the scaling of
the spline approximation. With this step we aim to isolate the shape
of peaks, neglecting their width and area. All the peaks can be nor-
malized to have the same width, equal to the minimum width of the
peaks of the dataset, and area, equal to 1 (see Figure 1.6, right panel).
The effects of scaling are detailed in Supplementary Figures S1.2, S1.3,
S1.4, where the analyses we present on the MycER0h dataset are run
on the scaled version of its peaks.

1.2.2 Clustering: k-mean alignment method

We adapt the k-mean alignment method, introduced in Bernardi et al. (2014);
Patriarca et al. (2014); Sangalli et al. (2010, 2014) to ChIP-Seq peaks. The
algorithm is an efficient method to perform unsupervised classification of
functional data, taking into account their shapes and the possible data mis-
alignment. A set of curves can be different either by amplitude (variability
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Figure 1.6: Preprocessing on the 10 peaks of Figure 1.5. Left panel: spline approx-
imation of the peaks centered around their summits; right panel: the same peaks
are scaled to the same area and width.

on the y axis) or by phase (variability on the x axis) (Marron et al. (2015);
Ramsay and Silverman (2005); Vantini (2012)), and a classification method
should take into account these two aspects together. The k-mean alignment
algorithm (detailed in Algorithm 1) is an iterative procedure combining the
k-mean classification method with the possibility of varying the phase of
functions (alignment).

Two elements must be defined to run the algorithm, as explained in San-
galli et al. (2010): a class of warping functions W to define the alignment
procedure, and a distance between two curves ρ(·, ·), together with a con-
sistency requirement: simultaneous warping of two curves with the same
warping function should not introduce a variation in their distance. The
warping functions W should be a convex space with a group structure with
respect to the function composition ◦ to ensure that nested applications give
rise to functions of the same family.
In this work, we define W as the set of discrete shifts

W = {h : h(t) = t+ q with q ∈ Z}.

With this choice, two peaks can be shifted by an integer value to remove the
phase variability. The distance function ρ(·, ·), instead, is a linear combina-
tion of the Lp distance of data and the Lp distance of derivatives:

ρ(f,g) = (1−α)‖f− g‖Lp +αw‖f′ − g′‖Lp . (1.2)
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Algorithm 1: k-mean (k-medoid) alignment algorithm
Given a set of functions f1, . . . , fN and a number k of clusters
Template: random choice (if not provided) of the initial centers of the
clusters τ1 . . . , τk
while decrease of the distance ρ higher than a fixed threshold do

foreach i ∈ 1 : N do
Alignment: fi is aligned to each template τj: the optimal
warping function h?i,j in W is detected

h?i,j = argmin
h∈W

ρ(τj, fi ◦ h)

Assignment: fi is assigned to the best cluster

j?i = argmin
j∈1:k

ρ(τj, fi ◦ h?i,j)

end
foreach j ∈ 1 : k do

Template: identification of the new template of the cluster τj.
In case of k-medoid algorithm, if {f̃1, . . . , f̃Nj} is the set of
functions assigned to cluster j:

τj = argmin
τ∈{f̃1,...,f̃Nj}

Nj∑
i=1

ρ(τ, f̃i)

Normalization: the average warping function of the curves
belonging to j is set to be the identity transformation

end
end
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Specifically, here, we use the L2 distance, where ‖f− g‖L2 with f and g two
functions is defined on the common domain Ω is

‖f− g‖L2 =

√∫
Ω

(f(t) − g(t))2 dt.

Other possible choices for the distance are the L1 distance or the L∞ distance:

‖f− g‖L1 =
∫
Ω

|f(t) − g(t)|dt ‖f− g‖L∞ = max
t∈Ω

|f(t) − g(t)|

Focusing on the weight α and w introduced in Equation 1.2, α is a user-
defined parameter in [0, 1] and w ∈ R is chosen to balance the data and
derivative contribution. In particular, we propose a definition of the weight
w as the median of the ratio of the pairwise distances of data and derivatives:

w = median
(
‖f− g‖Lp
‖f′ − g′‖Lp

)
.

It is relevant to notice that f and g can be defined on domains with different
length and in order to compute their distance f and g are extended with
zeros on the union of their domains, as allowed by the preprocessing step of
Section 1.2.1.

Finally, we note that at each step of the k-mean algorithm a center for
each cluster must be defined (template). We choose it as the element of
the cluster with minimum total distance from all the other members of the
cluster (k-medoid algorithm).

1.2.3 Clustering: definition of the final classification

For a complete definition of the classification of the data with the algorithm
of Section 1.2.2, we need to provide k, the number of clusters to split the
dataset. We select this parameter in a data-driven way, analyzing different
classifications obtained for different values of k. For each case, we compute
the global distance within clusters, i.e. the sum on all clusters of the distance
of each element of the cluster fi from the correspondent template τj:

ρk =

k∑
j=1

Nj∑
i=1

ρ(fi, τj),
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Figure 1.7: Global within-cluster distance dk as a function of the number of clusters.
Red line: peaks aligned to minimize distance; black line: unaligned peaks. This
graph can be used to identify the best number of clusters for the classification of
peaks and the contribution of the alignment procedure in the decrease of the global
distance.

where Nj is the number of elements of the cluster j. A graphical represen-
tation of ρk/N, where N is the total number of peaks, as a function of k for
the MycER0h dataset is shown in Figure 1.7. Clearly, the distance within a
cluster decreases with k: the optimum value of this parameter is defined as
the elbow of the curve, that is a value associated to a significant reduction of
the distance when compared to the smaller values of k, and to a negligible
variation when compared to higher values of k. In this plot we show both
the result of the k-mean alignment algorithm and the result of the same clas-
sification, but without aligning peaks at each iteration. Clearly, the distance
within clusters is reduced by aligning the peaks (red line, see Section 1.2.2):
while in general aligning the peaks can introduce a sizeable decrease in the
global within cluster distance, as shown for example in Supplementary Fig-
ure S1.2, in this case the effect is less pronounced, but still appreciable.
For this dataset, we consider the classification with alignment for k = 2

clusters; even k = 3 would have been a possible choice (see Supplementary
Figures S1.5, S1.6, S1.7 and S1.8). However for k = 3, cluster 1 and 2 look
very similar, made up by small and irregular peaks, and even in the biologi-
cal analysis no strong difference between them is highlighted.
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1.3 case studies

We apply the method to three murine datasets, two obtained for the tran-
scription factor Myc, and one for p53.

• MycER0h (Sabò et al. (2014)): murine 3T9 fibroblasts expressing a
conditionally active Myc-oestrogen receptor chimera (MycER). This
dataset displays endogeneous levels of Myc in exponentially growing
cells. GEO accession number GSE51011, sample GSM1234508. Dif-
ferentially regulated genes were obtained with respect to the activated
cells (MycER4h): samples GSM1234745-GS1234748 (0h) and GSM1234749-
GSM1234752 (4h).

• MycER4h (Sabò et al. (2014)): same cells as MycER0h. In the particular
setting of fusion of Myc with the Estrogen Receptor (ER) that keeps the
resulting chimeric protein in the cytoplasm, only upon 4-OHT admin-
istration, the chimera can rapidly translocate to the nucleus where Myc
can exert its transcriptional activity. Then in the data collected 4 hours
after the activation of the extra transgenic MycER construct (MycER4h
dataset), the levels of Myc are much higher than in MycER0h, and
the number of ChIP-Seq peaks is massively increased. GEO accession
number GSE51011, sample GSM1234509.

• p53RAD (Tonelli et al. (2015)): murine B-cells exposed to whole-body
ionizing radiation. The treatment causes DNA damage which in turn
causes an activation of the transcription factor p53, which is present
with high concentration in this sample. GEO accession number GSE71180,
sample GSM1828856. Differentially regulated genes were obtained
with respect to non-irradiated cells: samples GSM1828877-GSM1828880

(irradiated cells) and GSM1828869-GSM1828873 (non-irradiated cells).

1.4 some biological insights

We analyze the results of the classification to determine their biological sig-
nificance. In particular, we focused on

• Enrichment of peaks. The enrichment of a peak is computed as

E = log2(np/Np −nI/NI),

where np is the number of reads in the peak, Np the total number of
aligned reads in the experiment, nI the number of reads in the peak
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in the control sample, and NI the total number of aligned reads in the
control sample.

• Genomic location of the peaks. Each peak is annotated considering its
overlap with promoters and genebodies: if a peak has at least a single
nucleotide overlapping with a promoter region (defined as [−2kb, 1kb]
from the transcription start site, or TSS, except for the p53RAD dataset,
where promoters are defined as [−5kb, 2kb]), it is classified as a pro-
moter peak. Otherwise, if it overlaps with a gene body (defined as
TSS+1kb to TES, or transcription end site) it is classified as intragenic.
Finally, if it does not overlap with either feature, we consider a peak
as intergenic. For these analyses, we used the mm9 assembly of the
murine genome and the RefSeq annotation of genes.

• Transcriptional regulation of genes. For all the systems studied here, we
downloaded RNA-Seq data in two conditions, characterized by differ-
ent levels of the transcription factor of interest, and we integrated these
data with ChIP-Seqs of the TF in both conditions. We analysed RNA-
Seq data with the DESeq2 R/Bioconductor package (Love et al. (2014)),
to identify genes whose promoter is bound by the TF of interest, and
that are significantly changed between the two conditions (Benjamini-
Hochberg adjusted p-value smaller than 0.05). Among these genes, we
define as up-regulated those with a fold change greater than 1, and
down-regulated those with fold change lower than -1. All the other
expressed genes are termed non deregulated, or nodeg.

• Motif analysis. For each cluster, we performed an unsupervised motif
discovery to detect motives enriched under the genomic regions cov-
ered by the correspondent peaks. Due to variations in the width of
the peaks, we restricted these analyses to a ±200bp region around the
summit of each peak (±100bp for p53RAD). We considered a random
sample of 1000 peaks for each cluster, and we repeated the analysis
3 times. Then, we searched the position weight matrix obtained with
motif discovery and associated to the TF of interest with the Biostrings
R/Bioconductor package of Pagès et al. (2016) to find their positions in
the sequences spanned by the peaks. The summits of the peaks were
taken from the output of the peak caller MACS (Zhang et al. (2008)).

In the case of Myc, we used DREME (Bailey (2011)) to discover short
and ungapped motives enriched in the DNA sequences of the peaks,
and we recovered its binding motif, called enhancer box, or E-box
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(CACGTG, Figure 1.8A); we also found for the TGA-TCA motif (figure
1.8B) which has been previously associated to jun/fos binding (Gupta
et al. (2007)).

(a) Myc binding motif (E-box) (b) jun/fos binding motif

Figure 1.8: Myc binding motifs as estimated from the MycER0h dataset.

In the case of p53, we performed motif discovery with MEME (Bailey
and Elkan (1994)) on the top 1000 enriched peaks in each cluster, as the
binding motif of this TF is longer (see Figure 1.9) and less frequently
found than in the case of Myc. We found that both cluster display the
p53 binding motif, but with different significance.

Figure 1.9: p53 binding motif as estimated from the p53RAD dataset

1.5 discussion

An example of the results is shown in Figure 1.10, in particular this is re-
ferred to the dataset related to the transcription factor Myc expressed at
physiological levels in 3T9 mouse fibroblasts (MycER0h). Peaks are defined
piling up the fragments obtained by the extension of the reads collected from
the ChIP-Seq experiment with d estimated as Equation (1.1). As previously
introduced, the global distance curve indicates k = 2 as a possible choice
for the classification. Then, focusing on the composition of the clusters ob-
tained, cluster 1 includes around 68% of the 15811 peaks of this dataset and
it is mostly composed by small and irregular shapes, while in cluster 2 peaks
are larger and more regular. This distinction reflects also a different distribu-
tion of the enrichment index of the peaks, with the p-value of the two-sided
z test < e10−16. Moreover, they are differently localized (see Figure 1.11),
as confirmed by the χ2 test for the differences in the locations in the two
clusters, and in particular there is strong evidence to confirm a difference in
the proportion of promoter peaks (χ2 test p-value < 10−16) in the two clus-
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Figure 1.10: Classification of MycER0h peaks: Top left panel: distance within clus-
ters, both with (red line) and without (black line) the alignment of peaks. Top right
panel: the distribution of the enrichment of the peaks in the two clusters. Bottom
panels: examples of peaks belonging to the two clusters, centered around their
summits and aligned with the estimated shift coefficient.

ters. Peaks of the two clusters have also different associations with up and
down regulated genes upon Myc overexpression (χ2 test p-value 2 < 10−13).
There is difference both for down-regulated genes (χ2 test p-value < 10−12)
and for up-regulated genes, even if weaker (χ2 test p-value = 0.00043). To
conclude, focusing on the motif analysis presented in Figure 1.12, we show
in the top panel the results of the motif discovery. In cluster 1, the main
motif detected is TGAsTCA (E-significance between 10−34 and 10−27). The
Myc binding motif, or E-box, instead, is detected with a lower significance.
In cluster 2, the same two motifs are found, but with inverted order of sig-
nificance (E-value < 10−82 for E-box, and between 10−26 and 10−22 for the
TGAGTCA motif). This different prevalence of motifs is confirmed also by
the supervised search of motives, with the E-box significantly more present
in cluster 2, (χ2 test p-value < 10−16) and closer to the summit (z test p-value
< 10−16) with respect to cluster 1; the TGAsTCA motif, instead, is slightly
more present in cluster 2, but equally distant from the summit of the peaks
than in cluster 1.
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Figure 1.11: Genomic location of the MycER0h peaks distinguished in the two clus-
ters. Left panel: genebody, intergenic and promoter distinction of peaks in the two
clusters. Right panel: associations of promoter peaks with up and down regulated
genes upon Myc overexpression.

Several further analyses on this dataset are proposed and fully described
in Supplementary Figures. Briefly, we present

• a comparison with the multivariate clustering pipeline of (Cremona et
al. (2015));

• the results of the functional classification of peaks obtained avoiding
the extension of reads during the piling up procedure;

• the analysis of two other datasets (MycER4h and p53).

Specifically, applying the multivariate clustering pipeline (Cremona et al.
(2015)) to MycER0h, we obtained again two clusters, greatly differing in en-
richment (Supplementary Figures S1.9), as the area and height indices pro-
duce a classification strongly driven by size. In order to increase the focus
on shape, one possibility would be to neglect these two indices in the classifi-
cation: this would result in the identification of a cluster of small and seem-
ingly regular peaks (Supplementary Figure S1.11). The idea of neglecting
the area and the width is reflected in the functional algorithm in the scaling
preprocessing step. In Supplementary Figure S1.2 the results of the classifica-
tion of the MycER0h peaks, once they are scaled to the same area and width,
are presented. Here we highlight the importance of the alignment: the red
global distance line of the k-mean with alignment is far from the black line of
the k-mean without alignment. With the distinction in k = 3 clusters, beside
the regularity, we also detect differences in the symmetry of peaks. However,
the analysis presented in Supplementary Figure S1.3 and S1.4 don’t show
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Figure 1.12: Motif analysis of of the MycER0h peaks distinguished in the two clus-
ters. Top panels: results of the motif discovery performed on the peaks of the two
clusters. Middle panels: presence of the E-box in the two clusters and distance from
the summit of peaks. Bottom panels: presence of the TGAsTCA motif and distance
from summit.
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strong biological consequences of these differences in symmetry. In the two
examples presented here, we globally conclude that the functional analysis
is less related to the magnitude of the peaks and more focused on the shapes
of data, compared to the multivariate classification. Specifically, focusing on
the comparison of the classification via the 5 indices multivariate classifica-
tion and the functional method on non-scaled peaks (Supplementary Figure
S1.10) we notice how the functional classification is less related to the size
of peaks. Comparing, instead, the 3 indices multivariate classification and
the scaled peaks functional classification (Supplementary Figure S1.12), we
detect that the functional classification can isolate fine details on shapes that
are not captured by the multivariate indices.

Moreover, in Figure S1.1 we present the results of the classification of
peaks obtained setting the fragments length equal to the reads length dur-
ing the piling up procedure (d of Equation (1.2.1) is set to 0) noticing that
a wrong estimation of the parameter can cause the definition of too irreg-
ular peaks. We don’t show the extended biological results since we notice
that there is no connection between the classification obtained here and the
biological inspections we introduced.

Finally, we applied the functional algorithm to a similar dataset, where
Myc is overexpressed (MycER4h, Supplementary Figures S1.13), and we ob-
tained a similar classification, where biological effects already observed are
more pronounced (see Supplementary Figures S1.14 and S1.15). After Myc
activation (MycER4h), the number of clusters remains the same, but a consid-
erable number of overlapping peaks shift from the first cluster to the second,
suggesting that the increased concentration of the TF can affect the shape of
the peaks.
To conclude, the functional classification on a different TF (p53) in irradiated
murine splenic B-cells identifies 2 clusters (Supplementary Figure 1.16) char-
acterized by different levels of enrichment, presence of the binding motif
and association to changes in gene expression (Supplementary Figures S1.17

and 1.18).
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1.6 supplementary material
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Supplementary Figure S1.1: Classification of MycER0h peaks with FunChIP. The
coverage of the peaks is defined by the aligned reads, without the extension to the
estimated fragment (equivalent to set l = r in Equation (1.2.1)). Top left panel:
distance within clusters, both with (red line) and without (black line) the alignment
of peaks: in this case, the optimum number of clusters is k = 5 and the alignment
of the peaks introduces a large shift between the two lines. Top right panel: the
enrichment of the clusters are different, as the ANOVA F test has a p-value < 10−16.
Performing pairwise z tests and correcting p-values with the Bonferroni method,
we conclude that pairs of enrichments are significantly different, except for the first
and the second clusters (corrected p-value 0.188). The fourth and fifth clusters also
show a weak significance for differences (corrected p-value 0.0324), while for all
the other couples the p-values are < 10−4. Second and third line panels: examples
of peaks in the five clusters, centered around their summits and aligned with the
estimated shift coefficient. Clusters differ on the width, magnitude and general
shape of peaks.
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Supplementary Figure S1.2: Classification of MycER0h peaks with FunChIP. The
coverage of the peaks is defined by piling up the fragments obtained by the exten-
sion of the reads collected from the ChIP-Seq experiment, with d estimated as in
Equation (1.1). Peaks are then scaled to have the same width and area. Top left
panel: distance within clusters, both with (red line) and without (black line) the
alignment of peaks; in this case, the optimum number of clusters is k = 3 and the
contribution of the alignment is significant. Top right panel: of the peaks in the three
clusters is significantly different, as confirmed by the ANOVA F test; considering
the pair-wise two-sided z-test for the differences in the averages and correcting the
p-values with Bonferroni correction, all p-values are below 10−16. Bottom panels:
examples of peaks in the four clusters, centered around their summits and aligned
with the estimated shift coefficient. Cluster 2 is composed by ∼ 39% of the peaks
and contains the most regular unimodal peaks, while cluster 1 (∼ 28% of peaks)
contains regular data, but with an asymmetry towards the right side. Cluster 3 is
composed by multimodal and irregular peaks.
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Supplementary Figure S1.3: Genomic location of peaks classified as described in
Supplementary Figure S1.2. Both location and regulation of genes are different in
the three clusters: χ2 test for the differences in location has a p-value < 10−16 and
for the regulation < 10−5. Left panel: peaks in cluster 3 seem to be more localized
on promoter regions. The pairwise tests for the promoter regions on the three
clusters, with the multiple correction of the χ2 p-values, confirm a strong evidence
to distinguish cluster 3 from 1 and 2 (the tests to test whether there is a difference
in the classification of promoter peaks have p-values < 10−16), while there is only a
weak difference for cluster 1 and 2 (p-value = 0.035) . Right panel: peaks in cluster
3 tend to be less associated with down-regulated genes upon Myc overexpression.
Comparing the presence of up-regulated genes, we notice that there is no evidence
for any difference in the three clusters: all the pairwise χ2 tests show correct p-
values higher than 0.6; regarding the down-regulated genes, instead, we detect no
significant difference for cluster 1 and 2 (correct χ2 test p-value = 0.249), while
cluster 3 is different both from cluster 1 (p-value < 10−3) and cluster 2 (p-value
< 10−7).
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Supplementary Figure S1.4: Motif analysis of peaks classified as described in Sup-
plementary Figure S1.2. Top panels: results of the motif discovery performed on the
peaks of the two clusters. In cluster 1 and 2, the main motif detected is TGAsTCA
(E-significance between 10−40 and 10−27). The Myc binding motif, or E-box, in-
stead, is detected with a lower significance. In cluster 3, the same two motifs are
found, but with inverted order of significance (E-value < 10−43 for E-box, and be-
tween 10−28 and 10−20 for the TGAGTCA motif). Middle panels: the presence of
the E-box is different in the three clusters (χ2 test p-value < 10−16), and in cluster
3 it is more present and closer to the summit. The F test for the comparison of the
distances in the three clusters shows a p-value of 0.004 and the third cluster is the
responsible for this difference: both the z-test comparing the first and the second
cluster and the one comparing the first and the third show small corrected p-values,
respectively 0.0046 and 0.00045. Bottom panels: the TGAsTCA motif seems to be
slightly more present in cluster 3, but equally distant from the summit of the peaks
than in the other clusters.
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Supplementary Figure S1.5: Classification of MycER0h peaks with FunChIP. The
coverage of the peaks is defined by piling up the fragments obtained by the exten-
sion of the reads collected from the ChIP-Seq experiment, with d estimated as in
Equation (1.1). Top left panel: distance within clusters, both with (red line) and
without (black line) the alignment of peaks; while in the main text we considered
the case k = 2 with alignment, here we discuss the choice k = 3, with alignment.
Top right panel: the enrichment of the peaks in the three clusters is significantly
different, as confirmed by the ANOVA F-test; moreover, considering the pair-wise
two-sided z-test for the differences in the averages and correcting the p-values with
Bonferroni correction, all the p-values are below 10−16. Bottom panels: examples
of peaks belonging to the three clusters, centered around their summits and aligned
with the estimated shift coefficient. Cluster 1 contains ∼ 44% of peaks, which are
small and irregular, cluster 2 contains ∼ 28% of peaks, which are sharper and larger
than those in Cluster 1, but less than those of Cluster 3 (∼ 28% of peaks).
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Supplementary Figure S1.6: Genomic location of peaks classified as described in
Supplementary Figure S1.5. Top panel: peaks in the clusters have different locations
(χ2 test p-value < 10−16). The proportion of peaks on promoter regions is different
in all the three clusters (all the pairwise χ2 tests to test whether there is a difference
in the classification of promoter peaks have p-value < 10−9. Bottom left panel:
the presence of regulated genes upon Myc overexpression is different in the three
clusters (χ2 test considering in the three clusters up, down and nodeg has a p-value
< 10−16). Moreover pairwise tests for the presence of down regulated genes show
corrected p-value < 10−4 for all the couples of clusters, regarding up-regulated
genes, instead, there is strong evidence only for a difference in cluster 3 and 1, with
a corrected p-value < 10−5, while for the other two comparisons the evidence is
weaker: for cluster 1 and 2 the p-value = 0.024 and for cluster 2 and 3 the p-value
= 0.051. Bottom right panel: the logarithm of the fold change of up-regulated
genes is on average slightly different in the three clusters, but it does not reach high
significancy (ANOVA F test p-value 0.065).

32



●

Cluster 1

0

e−35 < Eval < e−24

●

Cluster 2

0

0

e−47 < Eval < e−43

●

Cluster 3

0

0

e−107 < Eval < e−98

e−15 < Eval < e−10

0

e−30 < Eval < e−24

0

e−30 < Eval < e−29

6949 6036 2826

0.00

0.25

0.50

0.75

1.00

1 2 3
Cluster

F
ra

ct
io

n

ebox
FALSE
TRUE

Presence of CACGTG motif
independence chisq test, p−value < 2.2e−16

0

50

100

150

200

1 2 3
cluster

eb
ox

Distance of CACGTG from summit
ANOVA F test, p−value <2e−16

di
st

an
ce

 (b
p)

6949 6036 2826

0.00

0.25

0.50

0.75

1.00

1 2 3
Cluster

F
ra

ct
io

n

motif
FALSE
TRUE

Presence of TGAsTCA motif
independence chisq test, p−value < 4.1e−6

0

50

100

150

200

1 2 3
cluster

eb
ox

Distance of TGAsTCA from summit
ANOVA F test, p−value = 0.27

di
st

an
ce

 (b
p)

Supplementary Figure S1.7: Motif analysis of peaks classified as described in Sup-
plementary Figure S1.5. Top panels: results of the motif discovery performed on
the peaks of the three clusters. In cluster 1, the main motif detected is TGACTCA
or TGAGTCA (E-significance between 10−35 and 10−24). The Myc binding motif,
or E-box, instead, is detected with a lower significance. In cluster 2 and 3, the same
two motifs are found, but with inverted order of significance. We notice that the
significance of the Myc binding motif is increasing with the increase of the regular-
ity of peaks, from cluster 1 to cluster 3, while the TGACTCA has almost constant
significance: E-value ' 10−30. Middle panels: the E-box is present in different pro-
portions in the three clusters , (χ2 test p-value < 10−16) and their average distance
from the summit is different (ANOVA F test p-value < 10−16). All the pairwise
tests for these differences have a Bonferroni corrected p-value lower than 10−6. Bot-
tom panels: the TGAsTCA motif has slightly different presence in the three clusters,
but no differences in the distances from summit are evident.
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Supplementary Figure S1.8: Comparison between the classifications obtained with
FunChIP on the MycER0h dataset with k = 2 (Figure 1.10) and k = 3 (Supplemen-
tary Figure S1.5), respectively. We notice that cluster 1 in the k = 3 case is entirely
included in cluster 1 in the k = 2 case, as cluster 3 for k = 3 is included in cluster
2 for k = 2. The remaining cluster for k = 3 is equally split between the two clus-
ter of k = 2, confirming that the extra cluster introduced for k = 3 mostly gather
intermediate shapes between the two clusters obtained for k = 2.
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Supplementary Figure S1.9: Classification of MycER0h peaks with the multivari-
ate algorithm presented in Cremona et al. (2015). Top left panel: distance within
clusters; in this case, the optimum number of clusters is k = 2. Top right panel: dis-
tribution of the enrichment of the peaks in the two clusters, on average higher for
cluster 2 (two-sided z-test p-value < 10−16). Bottom panels: examples of peaks be-
longing to the two clusters, aligned around their summits. Cluster 1 contains ∼ 90%
of peaks, which are on average small and little enriched, while cluster 2 contains
the higher and wider peaks (about ∼ 10% of the total).
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Supplementary Figure S1.10: Comparison between the classification obtained with
the multivariate method with 5 shape indices (Supplementary Figure S1.9) and that
obtained with FunChIP (no scaling, reads extended in according to Equation (1.1),
Figure 1.10). The second multivariate cluster, which is composed by wider and
higher peaks, is almost included in the second cluster of FunChIP, composed by
regular and well defined peaks, whereas the first multivariate cluster, composed by
small peaks, includes all the elements of the first clusterof FunChIP (composed by
small and irregular peaks), and part of the second cluster of FunChIP. We conclude
that the functional classification focuses more on the regularity of the peaks instead
of their size.
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Supplementary Figure S1.11: Classification of MycER0h peaks with the multivari-
ate algorithm presented in Cremona et al. (2015), removing 2 of the 5 indices (the
area and the width of peaks). This classification should be more focused on the
shape of peaks, rather than on their size. Top left panel: distance within clusters; in
this case, the optimum number of clusters is k = 2. Top right panel: the distribution
of the enrichment of the peaks in the two clusters, on average higher for cluster
2, is similar to what observed in Supplementary Figure S1.9, although the differ-
ence is less marked (two-sided z-test p-value < 10−16). Bottom panels: examples
of peaks belonging to the two clusters, aligned around their summits. Cluster 1

contains ∼ 85% of peaks, which are now small and regular, while cluster 2 contains
the higher and less regular peaks (about ∼ 15% of the total).
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Supplementary Figure S1.12: Comparison between the classification obtained with
the multivariate method with 3 shape indices (Supplementary Figure S1.11) and that
obtained with FunChIP (scaling of peaks, reads extended in according to Equation
(1.1), Supplementary Figure S1.2). The two classifications should be less sensitive
to the magnitude of peaks. The second multivariate cluster, composed by large and
irregular peaks is almost included in the third cluster of FunChIP, composed by
multimodal and irregular peaks, whereas the first multivariate cluster, composed
by small and regular peaks, is scattered in the three clusters FunChIP. We conclude
that the multivariate classification, based on a representation of the peak with only
3 parameters does not capture the fine details of the shape of peaks, like the small
asymmetry identified in cluster 1 with FunChIP (Supplementary Figure S1.2).
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Supplementary Figure S1.13: Classification of MycER4h peaks with FunChIP. The
coverage of the peaks is defined by piling up the fragments obtained by the exten-
sion of the reads collected from the ChIP-Seq experiment, with d estimated as in
Equation (1.1). Top left panel: distance within clusters, both with (red line) and
without (black line) the alignment of peaks; as in the main text Figure, the contri-
bution of the alignment is modest, but it is still present. As for the main analysis
we focus on k = 2, to compare the results with the MycER0h dataset, even if also
the classification with k = 3 could be an interesting analysis. Top right panel: the
enrichment of the peaks in the two clusters is on average higher for cluster 2 (two-
sided z-test p-value < 10−16). Middle panels: examples of peaks belonging to the
two clusters, aligned around their summits. Cluster 1 contains ∼ 74% of peaks,
which are small and narrow, while cluster 2 contains the higher and wider peaks.
Bottom panel: analysis of common regions in the MycER0h and MycER4h dataset.
The 15811 regions of peaks of MycER0h and the 31760 regions of peaks of MycER4h
are analyzed together to select the common regions: the ones overlapping at least
for one base pair of the genome. We isolate 11130 regions and here we plot the clus-
ter they belong to. We see how some of the small and irregular peaks of MycER0h
(Cluster 1) increasing the expression level of Myc (MycER4h) become part of the
set of well defined and sharp peaks (Cluster 2). Cluster 2 of MycER0h, instead,
becomes almost completely part of the Cluster 2 of MycER4h. 39
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Supplementary Figure S1.14: Genomic location of peaks classified as described in
Supplementary Figure S1.13. Left panel: peaks have different locations in the two
clusters (χ2 test p-value < 10−16) and in particular, in cluster 2 peaks are more
localized on promoter regions (χ2 test to test whether there is a difference in the
classification of promoter peaks has a p-value < 10−16). Right panel: there is a
difference in the regulation of peaks in the two clusters (χ2 test p-value < 10−16);
peaks in cluster 1 tend to be more associated with up-regulated genes upon Myc
overexpression.
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Supplementary Figure S1.15: Motif analysis of peaks classified as described in
Supplementary Figure S1.13. Top panels: results of the motif discovery performed
on the peaks of the two clusters. In the first cluster, the main motif detected is
TGAsTCA (E-significance between 10−39 and 10−30). The Myc binding motif, or E-
box, instead, is detected with a lower significance. In cluster 2, the same two motifs
are found, but with inverted order of significance (E-value < 10−56 for E-box, and
between 10−24 and 10−20 for the TGAGTCA motif). Middle panels: the E-box is
overall less present than in the peaks of MycER0h, yet significantly more present in
cluster 2, (χ2 test p-value < 10−16) and closer to the summit (z test p-value < 10−16)
than in cluster 1. Bottom panels: the TGAsTCA motif is slightly more present in
cluster 2, but equally distant from the summit of the peaks than in cluster 1.
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Supplementary Figure S1.16: Classification of p53ER peaks with FunChIP. The cov-
erage of the peaks is defined by piling up the fragments obtained by the extension of
the reads collected from the ChIP-Seq experiment, with d estimated as in Equation
(1.1). Top left panel: distance within clusters: in this case, the optimum number of
clusters is k = 2 and the contribution of the alignment is very small. Top right panel:
the enrichment of the peaks in the two clusters is on average higher for cluster 2

(two-sided z-test p-value < 10−16). Bottom panels: examples of peaks belonging to
the two clusters, aligned around their summits. Cluster 1 contains ∼ 60% of peaks,
which are small and irregular, while cluster 2 contains the higher and well defined
peaks.
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Supplementary Figure S1.17: Genomic location of peaks classified as described in
Supplementary Figure S1.16. Top panel: peaks of different clusters are differently
localized (χ2 test p-value < 10−16), in particular there is strong evidence to confirm
that there is difference for the two clusters in the location on intergenic and pro-
moter regions (both χ2 to test whether there is a difference in the classification of
intergenic and promoter peaks have p-values < 10−16), while there is no difference
in the proportion of peaks localized on genebody regions (χ2 p-value = 0.104) .
Bottom left panel: there is difference in the association of peaks of the two clusters
to up and down regulated genes with respect to non irradiated cells, where p53 is
expressed at much lower levels (χ2 test p-value < 10−16). Cluster 2 is more associ-
ated to up-regulated genes with respect to cluster 1. Bottom right panel: the fold
changes of up- and down-regulated genes are different for genes having peak of
cluster 2 on their promoters (both z test p-values ∼ 10−4).
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Supplementary Figure S1.18: Motif analysis of peaks classified as described in
Supplementary Figure S1.16. Top panels: results of the motif discovery performed
on the peaks of the two clusters. Both cluster display the p53 typical motif, but the
significance is higher for cluster 2 (E-value ∼ 10−73 for cluster 1 and < 10−100 for
cluster 2). Bottom panels: the p53 binding motif is significantly more present in
cluster 2 (χ2 test p-value < 10−16) and closer to the summit (z test p-value < 10−6)
than in cluster 1.
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2
H E T E R O G E N E T Y O F C O G N I T I V E D E C L I N E I N

D E M E N T I A : TA K I N G I N T O A C C O U N T VA R I A B L E
T I M E - Z E R O S E V E R I T Y

2.1 introduction

Long-term models of the progression of dementia are critically important
for understanding prognosis, disease etiology, patient heterogeneity and the
optimal design of trials. However, it is challenging to study cognitive decline
due to short-term infrequent follow-up of individuals in existing studies and
heterogeneity of decline. Additionally, individuals are recruited to studies at
different ages, with different underlying diseases and at different times rela-
tive to disease onset. To date, two main methods have been used to develop
models of cognitive decline: clustering approaches and disease progression
score approaches.

An advantage of clustering approaches is that they naturally deal with
heterogeneity, including unmeasured factors. A state of the art cluster-
ing approach used to model dementia progression is the Latent Class Mix-
ture Model (LCMM). For example, to study trajectories of cognitive decline
Wilkosz et al. (2009) fit a LCMM of quadratic trajectories to longitudinal
Mini-Mental State Examination (MMSE) scores, with time zero set to be the
date of the first assessment. This revealed six trajectories of cognitive decline
in Alzheimer’s disease (AD), of which the fastest declining had a greater
number of patients with psychotic symptoms. However, many of these tra-
jectories appear to differ only in their intercept, i.e. an individuals score at
first visit. In other words, different clusters can represent differences in ei-
ther progression or in disease stage at first presentation.
More recently, Proust-Lima et al. (2015) have used a spline LCMM to model
decline in MMSE, with date at 65th birthday used as time zero. These models
are used to generate four clusters, whose relation to the risk of developing
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dementia is demonstrated. This analysis also leads to some trajectories that
differ mostly in MMSE score at age 65, i.e. there exists groups of individuals
who progress similarly but at an older age. In other words, existing cluster-
ing approaches generate trajectory models that are strongly confounded by
MMSE score at time zero, independentely from how it is defined.

Disease progression score methods, instead, take an other approach, essen-
tially using the longitudinal data itself to estimate time since disease onset
(Yang et al. (2011), Jedynak et al. (2012)). For example, they assume that cog-
nitive decline can be divided into two linear sections, representing normal
decline and accelerated decline due to dementia respectively. The change
point at which they meet is learned from the data. However, the assumption
of linearity before and after the change point is probably unrealistic and
potentially bias the results.

Rather than use a change point model, other researchers have assumed
sigmoidal (i.e. logistic) or exponential trajectories of cognitive decline, with
individual offsets (a random effect) used to align each individual to the tra-
jectory model (Yang et al. (2011), Jedynak et al. (2012)). These models have
been used to study the temporal relationship of different biomarkers, lead-
ing to models that are only partially consistent with the theoretical model of
Clifford et al. (2013). Neither of these approaches has been used to develop
a clustering approach to help identify risk factors affecting rates of cognitive
decline.

A method that combines the clustering approach with the identification of
the initial point of the disease progression could theoretically solve the prob-
lem of confounding score at time zero. Gaffney and Smyth (2004), Sangalli
et al. (2010) and Kiddle et al. (2010) have demonstrated the importance of
considering alignment in clustering procedures: their simulations show that
if misalignment is present, clustering alone incorrectly groups observations.
However, these methods depend on densely sampled regular timepoints and
none have been designed to work with short-term follow-up relative to long-
term progression.

In this study we combine the benefits of clustering and disease progres-
sion score approaches to study long-term cognitive decline in datasets with
infrequent and irregular time points.
For example, cohort studies such as Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) of Mueller et al. (2005) and clinical trials such as those in the
Coalition Against Major Diseases (CAMD) of Neville et al. (2015) have rela-
tively short-term follow-up over months or a few years, while the course of
cognitive decline in individual patients can take a decade or more (Wilkosz

46



et al. (2009)). We apply a novel method, called Temporal Clustering, which
combines the benefits of clustering and an inferred time zero to improve the
analysis of longitudinal heterogeneity. Further, we compare the ability of
Temporal Clustering and LCMMs to generate clusters that are related to
AD risk factors. To our knowledge this is the second application of such a
method to study disease progression (Huopaniemi et al. (2014)); but it is the
first attempt to use this type of approach to study cognitive decline. All anal-
yses are done with open source code, available on to the GitHub repository
of Kiddle (2016), to allow our work to be verified and extended by others.

This chapter is organized as follows. In Section 2.2 we present the clas-
sification method that, beside classifying patients, identifies the individual
offsets. In Section 2.3 we describe the composition of the global dataset we
will examine. In Section 2.4 we present some simulation studies and in Sec-
tion 2.5 we illustrate the application of the classification method to the real
dataset, with the biological inspection of the results. Finally in Section 2.6
some global considerations on the results and on further developments are
presented.

2.2 methods

The classification method we propose in this work is the Temporal Clustering
method. For this method a parametrized trajectory curve (φ(t;θ)) for the
MMSE is supplied, where t is time and θ is a vector of trajectory parameters.

For this application we first used a three parameter sigmoidal trajectory,
based on the assumptions of Clifford et al. (2013):

φ(t;θ) :=
θ1

1+ exp(−θ2t)
+ θ3;

then we found that a two parameter exponential decline curve fits equally
well

φ(t;θ) := θ1 − exp(θ2t),

and we therefore use this for inference since it requires fewer parameters.
Here, θ1 represents the maximum MMSE of the trajectory model and θ2 is
an exponential decline rate.

Given a dataset containing information on individuals i ∈ {1, 2, . . . ,N},
the set of time points at which individual i has been observed is denoted
τi := (τi1, . . . , τi#TP(i)). The longitudinal univariate observations of the
MMSE score for individual i at time t are given by xi(t), which is only
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Algorithm 2: Temporal Clustering
Choose number of clusters K.

1. First fix θ̂ by estimating it across all individuals by minimizing with
respect to θ the following equation

loss(θ) =
N∑
i=1

‖xi(τi) −φ(τi + δi;θ)‖22 (2.1)

2. Estimate the optimal offset for each individual i as:

δ̂i = argmin
δ
‖xi(τi) −φ(τi + δ; θ̂)‖22 (2.2)

3. Randomly assign each individual to a cluster,
i.e. sample c(i) for all i randomly with replacement from {1, . . . ,K}.

4. Repeat the following steps up to convergence, defined as no change in
c(i).

a. For each cluster k, minimise Equation (2.1) with respect to
θk−1 = θ

k
2 (θ1 is constant and equal for all the clusters) using

only data from individuals for whom c(i) = k:

loss(θk2) =
∑

i:c(i)=k

‖xi(τi) −φ(τi + δi; θk2)‖22

b. For each cluster k and individual i, use θk to estimate the
individual offsets {δ̂ki (θ

k),k = 1 : . . . ,K} and the the local loss
associated to each cluster k:

local loss(i, δ̂ki ,θk) = ‖xi(τi) −φ(τi + δ̂ki ; θ̂
k
)‖22. (2.3)

Then, reassign each individual i to the cluster k ′i which results in
the smallest local loss:

c(i)← k ′i = arg min
k=1:K

local loss(i, δ̂ki ,θk)

.
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observed for t ∈ τi. The φ(t;θ) parametrized trajectory, along with an
individual’s offset δi, is believed to explain the data, i.e. xi(t) ≈ φ(t+ δi;θ).
And then the estimated Disease Time D̂T at time t for the individual i is:
D̂T(i, t) := t+ δi.

The Temporal Clustering model estimates the trajectory parameters θk

for each cluster k, and the offsets δi for each individual i. These offsets are
used to shift time points to better align individuals to cluster trajectories,
i.e. φ(t+ δi;θk) is the expected MMSE score at time point t for individual
i in cluster k. The introduction of this shift coefficient allows to estimate a
common starting point of the cognitive decline of patients, without fixing it
as the first clinical exam or as a specific year of age.

Using the exponential decline trajectory, the offset δ̂i for an individual
i is an estimate of the time between first MMSE assessment and the time
at which their MMSE score reached one MMSE point below the maximum
MMSE of the model, i.e. an MMSE of θ1 − 1.

A simplifying assumption of Temporal Clustering is that the baseline pa-
rameter θ1 takes the same values across all clusters, this was found to be
necessary to get good performance and provide identifiability given short
follow-up, as we present in Section 2.4.

The Temporal Clustering algorithm (presented in Algorithm 2) is based
on K-means, a commonly used clustering algorithm. K-means finds clusters
by initially allocating all individuals to K clusters at random, and then iter-
ating two steps until the model converges. In K-means the step a. involves
calculating a mean point over all cluster members, and step b. involves
re-allocating individuals to the cluster whose mean they are closest to.

The introduction of the estimation of the individual offset δ̂i at each iter-
ation of the K-mean algorithm allows to consider the registration problem
simultaneously with clustering, as proposed by Sangalli et al. (2010). The
difference between the K-mean alignment algorithm and Temporal Cluster-
ing is that rather than calculating cluster means in Step a., as the functional
mean or medoid, Temporal Clustering infers trajectory parameters θ̂

k
for

each cluster k, along with individual offsets δ̂i.
This iterates with cluster re-assignment of Step b. until convergence.

In this study, for simplicity, we seek to split individuals into a groups of
slower and relatively faster decliners (i.e. we fix the total number of cluster
at K = 2). A discrimination score is then calculated to assess the relative
quality of fit of each individual’s data to their assigned versus unassigned
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cluster. It consists of the absolute value of the difference of local loss of
Equation (2.3) for assigned cluster c(i), and closest other cluster

Di = |local loss(i, δ̂c(i)i ,θc(i)) − min
k6=c(i)

local loss(i, δ̂ki ,θk)| (2.4)

2.3 definition of a global dataset

We combine data including time series of MMSE from three prospective
cohort studies

• Alzheimer’s Disease Neuroimaging Initiative -ADNI- database (Mueller
et al. (2005)) is launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary goal
of ADNI is to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease.
For up-to-date information, see http://www.adni-info.org.

• Australian Imaging, Biomarkers and Lifestyle Flagship Study of Age-
ing -AIBL- (Ellis et al. (2009)) is a study launched in 2006 to discover
which biomarkers, cognitive characteristics, health and lifestyle factors
determine subsequent development of symptomatic Alzheimer’s Dis-
ease.
For up-to-date information, see http://www.aibl.csiro.au/adni/index.html.

• the Coalition Against Major Diseases -CAMD- database of Neville et
al. (2015) is launched in 2008 and provides data only for the placebo
arm of AD trials. It provides no further information about the tri-
als or individuals diagnosis at first visit. To ensure sufficient follow-
up, we only used data from the two longest running clinic trials in
the CAMD database (C-1013 and C-1014). The coalition is formed
by the Critical Path Institute in collaboration with the Engelberg Cen-
ter for Health Care Reform at the Brookings Institution and brings
together patient groups, biopharmaceutical companies, and scientists
from academia, the U.S. Food and Drug Administration (FDA), the
European Medicines Agency (EMA), the National Institute of Neuro-
logical Disorders and Stroke (NINDS), and the National Institute on
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Aging (NIA).
For up-to-date information, see http://c-path.org/programs/camd/.

These three studies are combined to make a large dataset, all with short
follow-ups, but with a lot of variability in baseline cognitive ability. They
could be combined as MMSE was recorded consistently across all studies.
Individuals are classified as having Normal Cognition (NC), Mild Cognitive
Impairment (MCI) or Alzheimer’s disease (AD). In CAMD diagnoses are
not given, but they can be inferred based on MMSE in the way suggested in
Tombaugh and McIntyre (1992). For all datasets we only extracted data for
individuals with more than one time point containing non-missing data.

For ADNI and AIBL, genomic DNA was extracted from whole blood with
APOE genotyped using either TaqMan probes for Single Nucleotide Poly-
morphisms (rs429358, rs7412) or the Hha1 restriction enzyme, and assessed
using Polymerase Chain Reaction (Frisoni et al. (2007), Gupta et al. (2015)).
Levels of total Tau in cerebrospinal fluid from ADNI participants are also
measured using the xMAP Luminex platform.

2.4 a simulation study

We performed simulations based on the combined cohort structure of ADNI
and AIBL datasets, i.e. with the same number of individuals, similar time
points and with longitudinal MMSE data resembling the real data.

Two types of simulation study are performed, a disease time estimation
simulation (equivalent to K = 1) and a Temporal Clustering simulation (i.e.
K = 2). The accuracy of clustering was assessed using the Adjusted Rand
Index (ARI) of Rand (1971), which takes values from zero (i.e. no better
than chance) to one (i.e. perfect clustering). ARI was calculated using the R
package mclust (Fraley and Raftery (2002)).

First, vectors of true δ are uniformly sampled from an interval chosen to
generate visually plausible data. The interval chosen depended on the value
of true θ2 and is summarized in Table 2.1.

To generate time points, simulated individuals are randomly assigned the
time points of a real individual τ in such a way that the last time point
would have MMSE > 0 (before error was added).

Data are, then, generated based on our model, i.e.

xi(τ
i) = φ(τi + δi;θ) + εiτi , (2.5)

where εiτi ∼ N(0, 1.5) i.i.d..
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θ2 × 104 Minimum δ× 103 Maximum δ× 103
1 10 30

3 0 10

5 0 6

6 0 5

7 0 4

8 0 3.5
9 -1 3.5
10 -1.5 3

Table 2.1: Table of delta ranges used to simulate data. Range used depended on θ2.

For all the simulations true θ1 is set to 29. For both the disease time
estimation and Temporal Clustering simulations a range of five θ2 is used to
test the methods sensitivity to this parameter. For each θ2 100 simulations
are performed. For the disease time estimation we use θ2 × 104 = 1, 3, 5, 7

and 9. For the Temporal Clustering simulation we use for the two clusters
θ12 × 104 = 5, 3, 5, 6, 8 , and θ12 × 104 = 5, 1, 1, 10, 10.

The simulation with θ12 = θ22 = 5× 104 is used to test what would have
happened if there was only one cluster, but the user attempted to find two.
This simulation is only used to study trajectory parameter estimation, and is
not used in the clustering accuracy calculations as the cluster labels would
have been meaningless.

To study the impact of various biases we investigate three different data
transformations that led to progressively more realistic and biased data in
the disease time estimation simulation . The first transformation simulates a
floor effect by rounding the few cases where MMSE < 0 , due to the addition
of noise, up to zero. The second also rounds each xi(t) to its nearest integer,
as MMSE can only take integer values. The third additionally imposes a
ceiling of MMSE = 30, the maximum score from the real MMSE test, i.e.
all xi > 30 are set to 30. For the Temporal Clustering simulation we only
generate simulated data with all three of these transformations applied.

In a simulation the disease time estimation approach works best with a
δ range of ±20, 000 or ±50, 000 days (Supplementary Figures S2.1 - S2.2),
especially when the true rate parameter is low (e.g. θ1 = 1× 10−4; Supple-
mentary Figures S2.1A and S2.2A). This result is reasonable given the slow
decline of the disease; MMSE can take decades to decrease significantly.

In a two-cluster simulation the fixed baseline is better than the separate
baseline version of Temporal Clustering at avoiding unrealistic θ1 estimates,
i.e. θ1 > 30 (Supplementary Figure S2.3). In cases where accurate rate

52



estimation is the priority, it could make sense to use the separate baseline
version, but the fixed baseline version is preferred here as it leads to trajec-
tory parameters being interpretable, i.e. within realistic bounds.
After using simulated data to choose default values for Temporal Cluster-
ing parameters, we then used it to assess clustering accuracy, i.e. to assess
whether Temporal Clustering could accurately distinguish between a slower
and faster group of cognitive decliners. With no filter applied, the clustering
result was only slightly better than would be expected by chance (ARI 0.12;
Figure 2.1).

Clustering accuracy increased as individuals are filtered out on the basis
of the discrimination score of Equation (2.4), as presented in Figure 2.1. A
tradeoff can clearly be seen where the more stringent the filter (i.e. the higher
the threshold) the higher the clustering accuracy and the lower the number
of individuals left after filtering. For this reason we select a discrimination
score threshold of 2, which led to a median clustering accuracy (ARI) of 0.31

but retained over half the individuals (median 54%). A much more stringent
threshold of 10 led to a clustering accuracy (ARI) of 0.80, but retained fewer
than a fifth of individuals on average.

The most obvious characteristics of simulated individuals removed by a
discrimination score filter of 2 are that they have higher MMSE scores at first
visit and/or less than a year of follow-up. This makes the classification for
these individuals hard to be performed: not sufficient informations on the
cognitive decline of patients have been collected.

2.5 real case studies

2.5.1 Temporal Clustering to distinguish between faster and slower decliners

We next seek to use Temporal Clustering (K = 2) to summarize cognitive
decline in the combined cohort. Before the discrimination score filter is ap-
plied, the classification resulted in one slowly declining cluster containing
1, 335 individuals and another which declined faster and contained 1, 077
individuals. The estimated maximum MMSE (θ̂1) of the model was 30. The
trajectory of the faster declining cluster takes approximately 15 years to go
from an MMSE of 29 to 0, which fits well with LCMM trajectories learned
from AD patients by Wilkosz et al. (2009), whereas the more slowly declin-
ing trajectory is estimated to take approximately 60 years. An example of the
clustering results is shown in Figure 2.2 where also the estimated trajectories
of the fast and slow decliners are plotted.
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Figure 2.1: Boxplots of simulation study examining the effect of a discrimination
score filter on the accuracy of Temporal Clustering cluster assignment, and number
of individuals left after the filter is applied. Discrimination score is measure of rela-
tive goodness of fit of each individual to their assigned cluster. Clustering accuracy
is measured in Adjusted Rand Index (ARI). Boxplots are over 100 simulations of
four different choices of θ12 and θ22.
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Figure 2.2: Left panel: plot of a subset of longitudinal MMSE measurements of
a random subset of 400 data. Colors correspond to the final classification via the
Temporal Clustering algorithm. Right panel: MMSE measurements aligned with
the estimated individual offset. Lines corresponds to the parametrized trajectory
estimated for the two clusters..

As our simulation study suggests, we filter out individuals for whom we
do not have sufficient confidence in cluster assignment (i.e. those with a
discrimination score < 2). This results in the removal of 31% of individuals,
leaving 969 members (73%) of the slowly declining cluster and 688 mem-
bers (64%) of the faster declining cluster. As in the simulation study, the
filter removes a greater number of individuals with higher MMSE at first
visit or individuals with very short follow up, presumably as the differences
between clusters at that stage are more subtle.

We examined diagnosis at last visit just for individuals in ADNI1 or AIBL
who remained after the filter, as these were the only cohorts with diagnos-
tic information provided (instead of inferred). Approximately half of these
individuals in the slow declining cluster had AD at last visit (99/191), in
comparison to ∼ 80% (236/301) in the faster declining cluster.

2.5.2 Association between AD risk factors and AD-like cognitive decline

We next seek to use the filtered Temporal Clustering results to identify risk
factors distinguishing the two clusters. Higher MMSE at first visit is associ-
ated with membership of the faster declining cluster (log odds ratio (LOD)
of Edwards (1963) for 10 point increase = 0.54, p-value = 1.7 ×10−3). Focus-
ing on the subset of individuals with APOE data, we show a positive and
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dose dependent association between the number of APOE ε4 alleles and
membership of the faster declining cluster (1 allele LOD = 0.67, p-value =
1.3 ×10−3; 2 alleles LOD = 0.81, p-value = 7.8× 10−3). Finally, we find an
association between the fast declining cluster and the level of cerebrospinal
fluid tau at first visit in ADNI (LOD for 100 pg/ml increase = 0.84, p-value
= 0.014). Results are consistent when no filter is used and the global dataset
is considered, see Table 2.2.

Moreover, we wish to compare the results of Temporal Clustering and
LCMM. Specifically, we analyze which approach produced clusters with
higher associations to known AD risk factors (APOE and Tau). To make the
comparison more straightforward, this is performed on Temporal Cluster-
ing results before filtering, and on LCMM models without any co-variates.
A synthesis of this comparison is shown in Table 2.2. To make it a fairer
comparison for LCMM we used two different choices of time zero (first visit
and 50th birthday) and both raw and normalized MMSE (normMMSE), as
suggested in the original papers.

Because Temporal Clustering infers a time zero, we would expect by design
its clusters to be less affected by MMSE at first visit than approaches like
LCMM that do not. This is indeed the case, confounding of unfiltered Tem-
poral Clustering clusters by MMSE at first visit is at least three-fold lower in
absolute terms than that achieved by LCMM (LOD for a 10 point change =
0.5 for Temporal Clustering versus -1.6 or -10 for LCMM, Table 2.2). Indeed,
MMSE at first visit is by far the most significant predictor of LCMM cluster
membership in all cases. The biggest difference in the association of risk
factors with unfiltered clusters was for APOE, especially the significance of
the association of a single APOE ε4 allele with cluster membership (p-value
= 1.1 ×10−5 for Temporal Clustering versus 0.62 or 0.013 for LCMM).

Overall LCMM cluster membership only has a clear relationship with AD
risk factors when MMSE was normalized, which resulted in a large differ-
ence in MMSE at first visit between the clusters. In contrast Temporal Clus-
tering cluster membership has a clear relationship to AD risk factors, and a
lower difference in MMSE at first visit, with and without a discrimination
score filter.

2.6 discussion

We have introduced a new method - Temporal Clustering - that can model
cognitive decline by combining an estimated individual offset with cluster-
ing on that new time-scale. We show that this leads to clusters that are less
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Method Time zero Variable Risk factor N LOD SE p-value
TC Inferred MMSE MMSE first visit 2399 0.5 0.14 4.6 ×10−4
TC Inferred MMSE 1 APOE e4 1049 0.61 0.14 1.1 ×10−5
TC Inferred MMSE 2 APOE e4 1049 0.84 0.23 3.6 ×10−4
TC Inferred MMSE CSF tau 407 0.77 0.24 0.0012

LCMM First visit MMSE MMSE first visit 2399 -1.6 0.23 1.3 ×10−11
LCMM First visit MMSE 1 APOE e4 1049 0.4 0.33 0.22

LCMM First visit MMSE 2 APOE e4 1049 0.64 0.41 0.12

LCMM First visit MMSE CSF tau 407 0.38 0.4 0.35

LCMM Age 50yrs MMSE MMSE first visit 2399 -1.7 0.25 3.5 ×10−12
LCMM Age 50yrs MMSE 1 APOE e4 1049 0.17 0.34 0.62

LCMM Age 50yrs MMSE 2 APOE e4 1049 0.31 0.45 0.49

LCMM Age 50yrs MMSE CSF tau 407 0.49 0.4 0.21

LCMM First visit normMMSE MMSE first visit 2399 -10 0.72 5.0 ×10−48
LCMM First visit normMMSE 1 APOE e4 1049 0.68 0.27 0.013

LCMM First visit normMMSE 2 APOE e4 1049 1.1 0.36 0.0017

LCMM First visit normMMSE CSF tau 407 1.2 0.37 0.0015

LCMM Age 50yrs normMMSE MMSE first visit 2399 -10 0.7 3.7 ×10−47
LCMM Age 50yrs normMMSE 1 APOE e4 1049 0.62 0.27 0.022

LCMM Age 50yrs normMMSE 2 APOE e4 1049 1.1 0.35 0.0028

LCMM Age 50yrs normMMSE CSF tau 407 1.1 0.36 0.0023

Table 2.2: Table summarising logistic regression analysis, comparing cluster mem-
bership to AD risk factors for Temporal Clustering (TC) and LCMM. Four different
LCMM models have been run, combining one of two choice for time zero with the
choice to use raw MMSE or normalized MMSE (normMMSE). Each line refers to
a different logistic regression analysis to better cater for missing risk factor data,
except for APOE for each clustering method, which were modelled together. Signs
for LOD have been swapped when appropriate to allow appropriate comparisons,
as signs depend on cluster labels which can be swapped arbitrarily. MMSE at first
visit is coded in units of ten and cerebrospinal fluid tau is coded in units of 100

pg/ml.
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influenced by MMSE at first visit, which we believe makes it easier to iden-
tify risk factors of cognitive decline. To this end we show a dose-dependent
enrichment of APOE ε4 carriers in the faster declining (i.e. AD-like) cluster,
a difference that is more significant than for clusters produced by LCMM
approaches on this dataset.

There is some inconsistency in the literature about the relationship be-
tween APOE ε4 and the rate of cognitive decline. Some studies in non-
demented individuals have found no relationship, e.g. Maria et al. (2002).
However, the majority of studies have either found a modest relationship
(e.g. Albrecht et al. (2015), Christensen et al. (2008), Gui et al. (2014), Car-
rasquillo et al. (2015)), or one that depends on other factors such as amyloid
beta by Lim et al. (2015), alcohol by Downer et al. (2013) and body mass by
Rajan et al. (2014). The inconsistency of these studies may be explained by
cohort differences and/or the strong methodological challenges of the study
of cognitive decline of Weuve et al. (2015).

In the field of cluster analysis determination of the optimal number of
clusters is known to be tricky. For example, Bauer and Curran (2003) have
argued that the optimal number of clusters in a model do not necessarily
respond to the number of ‘real’ subgroups in an application. Instead, they
argue that clusters can equally well be interpreted as having no meaning be-
yond being a convenient summary of non-gaussian distributions. Therefore
in this study, for simplicity, we have generated models with just two clusters
(K = 2). By comparing cerebrospinal fluid tau and APOE genotype between
clusters we showed that it is plausible that clusters summarize genuine het-
erogeneity.

Some assumptions have been considered in the definition of Temporal
Clustering, including symmetric and independent distribution of errors, as
implied by the use of least squares estimation. Moreover, the bounded na-
ture of MMSE, which takes a minimum of zero and a maximum of 30, means
that the true distribution cannot be symmetric. In addition to this, Temporal
Clustering assumes that data is missing completely at random, a stronger
and less realistic assumption than the missing at random assumption of
mixed models. However, even with these limitations it is encouraging that
reasonable clustering accuracy was achieved in the simulation study after fil-
tering for discrimination score, especially as we explicitly simulated missing
data due to death.

While simulations show the effectiveness of Temporal Clustering at esti-
mating cluster membership, they also show biased estimation of trajectory
parameters, especially for clusters with a slow rate of decline (right panels
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of Supplementary Figure S2.3). Reducing this bias could be useful in its
own right, but may also improve the assignment of individuals to clusters.
This bias can be due to overfitting of the individual offsets δi, which can be
reduced in the future by penalizing unrealistic offsets. Alternatively it can
be due to the mixture of between and within individual progression in the
model, and the large extrapolation beyond the length of follow-up available
(from ∼ 2 years to 10 or even 50 years). Therefore, it is hard to know whether
the ∼ 65 year trajectory of the slowly declining cluster truly reflects within-
individual change, or is an artefact of the model. This could be tested in a
datasets with longer individual follow-up.

Despite the biased estimation of trajectory parameters, the more slowly
declining cluster is still striking. From a clinical point of view this trajectory
appears to decline too slowly to represent AD. Backing this up is the fact that
it does include a higher proportion of individuals with Normal Condition or
Mild Cognitive Impairment at last visit. However, the fact that around half of
this cluster have a diagnosis of AD at last visit could suggest a problem with
the model, perhaps motivating additional clusters. A less likely alternative
hypothesis would be that individuals with a diagnosis of AD in the slowly
declining cluster are misdiagnosed.

An advantage of mixed or random change point models over Temporal
Clustering is that co-variates can be explicitly modeled, rather than consid-
ered post-hoc. Extending Temporal Clustering to consider co-variates could
allow it to have more flexibility in the baseline of the model, this could get
around the current crude assumption that the maximum MMSE in a lifetime
is the same for all individuals.

A limitation of this study is the use of MMSE to measure cognitive decline.
MMSE is acknowledged to have ceiling and floor effects and to be relatively
insensitive to cognitive change before Mild Cognitive Impairment of Proust-
Lima et al. (2007). We concentrated on MMSE within this study as it is
one of the most widely collected measures of cognitive ability in dementia.
For example, longitudinal MMSE data is available for thousands of patients
at the South London and Maudsley NHS Foundation Trust, where it has
been extracted from Electronic Health Records from routine care by Perera
et al. (2014). However, the method should be easily generalisable to other
measures of cognitive ability.

In conclusion, we have demonstrated that it is possible to model cognitive
decline using a combination of clustering and inference of individual offsets.
This reduces, but does not eliminate, the effect of baseline MMSE on cluster
assignment. Finally, we demonstrated a relationship between clusters and
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known AD risk factors. We believe that Temporal Clustering and future
extensions will be useful for studying progression of dementia biomarkers.
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2.7 supplementary material

(a) Alignment simulation 1 (b) Alignment simulation 2

(c) Alignment simulation 3 (d) Alignment simulation 4

(e) Alignment simulation 5

Supplementary Figure S 2.1: Grouped boxplots showing θ1 estimates from the
disease time estimation simulation. Five simulations each use a fixed true θ, with
the true θ1 indicated by dashed red lines. Each simulation differs only in the true
value of θ2: (A) 0.0001, (B) 0.0003, (C) 0.0005, (D) 0.0007 and (E) 0.0009. Simulations
are based on the combined cohort, i.e. time points, number of samples and visual
appearance. For alignment three different δ ranges were used: ± 10000, 20000 or
50000. Three versions of each dataset we generated, each with an increasing amount
of bias and plausibility. Bias 1 = Real valued data, but with simulated death (i.e.
MMSE < 0 removed). Bias 2 = Integer rounded data with simulated death. Bias 3

= Integer rounded data with simulated death and a ceiling effect (MMSE > 30 set
to 30). Outliers excluded in plot for clarity: (B) 2 points ∼ 28, (D) 4 points > 30.5
excluded and (E) 1 point > 30.5 excluded.

61



(a) Alignment simulation 1 (b) Alignment simulation 2

(c) Alignment simulation 3 (d) Alignment simulation 4

(e) Alignment simulation 5

Supplementary Figure S 2.2: Grouped boxplots showing θ2 estimates from the
disease time estimation simulation. Five simulations each use a different fixed true
θ. Each simulation differs only in the true value of θ2, indicated by dashed red
lines, as in Supplementary Figure S2.1. Simulations are based on the combined
cohort, i.e. time points, number of samples and visual appearance. For alignment
three different δ delta ranges were used: ± 10000, 20000 or 50000. Three versions of
each dataset we generated, each with an increasing amount of bias and plausibility.
Bias 1 = Real valued data, but with simulated death (i.e. MMSE < 0 removed). Bias
2 = Integer rounded data with simulated death. Bias 3 = Integer rounded data with
simulated death and a ceiling effect (MMSE > 30 set to 30). Outliers excluded in
plot for clarity: (B) 2 points > 0.00032, (D) 4 points ∼ 0.0006 excluded and (E) 10

point < 0.00085 excluded.
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(a) Temporal clustering (K = 2) simulation - θ1 estimates

(b) Temporal clustering (K = 2) simulation - θ2 estimates

Supplementary Figure S2.3: Grouped boxplots showing the result of a simulation
study of temporal clustering (K = 2). Each simulation differs only in the true
value of θ12 and θ22. The results for each simulation are separated by dashed lines.
Simulations are based on the combined cohort, i.e. time points, number of samples
and visual appearance. True θ are indicated in red lines. Results are shown for
both fixed and separate baseline versions of Temporal Clustering. As discussed in
Section 2.4 the unfixed baseline lead to unrealistic estimates of the θ1 parameter
(θ1 > 30) and then this scenario is omitted in the following analyses.
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Part II

F U N C T I O N A L L I N E A R M O D E L S





... we have been exploring the variability of a functional variable with-
out asking how much of its variation is explainable by other variables.
It is now time to consider the use of covariates... does the shape of the
mean annual precipitation depend on which climate zone the station is?
We need to see if the data reject the null hypothesis that there is no differ-
ence. And if this happens, then we want to characterize the differences
in functional terms.

Ramsay and Silverman (2005)

This is how Ramsay and Silverman present the need for a model which
takes into account the functional structure of outcomes with respect to cat-
egorical, or more broadly, scalar predictors. This is just one of the possi-
ble settings for functional linear models: responses, as well as covariates,
can be either functions or scalar; but in this work we just focus on the
Function-on-Scalar regression problem. Specifically, given a set of functions
y1(t), . . . ,yN(t) ∈ H, where H a general Hilbert Space, and the correspon-
dent set of predictors x1, . . . xN ∈ RI we aim to estimate the functional influ-
ence β1(t), . . . ,β(t)I of the predictors on the functional outcomes, expressed
as

y(t) =

I∑
i=1

βi(t)xi + ε(t),

where ε(t) is a random noise. The key aspects of the analysis of functional
linear models are the detection of the true set of relevant predictors among
the ones introduced and the estimation of the contribution of these relevant
predictors. Besides Ramsay and Silverman (2005), there are few recent works
on the solution of Function-on-Scalar regression problems: Chen et al. (2016),
for example, propose to combine functional least squares with a sparsity in-
ducing penalty and to use a pre-whitening technique to exploit the within
curve dependence. However, their method is computationally expensive
and cannot be applied when the number of predictors, I, is greater than the
sample size, N. Moreover, Barber et al. (2016) and Fan and Reimherr (2016)
propose efficient methods to estimate the coefficients and induce sparsity in
the model, with the introduction of a LASSO penalty; the second approach
achieves also the functional oracle property, making the LASSO bias asymp-
totically negligible. In the model we propose here we firstly aim to identify
the predictors, as the other methods do, but we then aim to control the
smoothness level of the estimated coefficients. In the high dimensional set-
ting (I >> N) of genomic studies, in fact, the detection of the subset (possibly
small) of the really effective predictors and the estimation of their influence
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in such a way that the coefficients are smooth enough to be easily inter-
pretable plays a key role.

In this Part we propose an innovative method to deal with variable selec-
tion and smoothing in high dimensional Function-on-Scalar regression with
two applications to genomic data. This method is based on the solution of a
LASSO penalty problem with the introduction of specific Hilbert spaces for
the estimated parameters β̂(t). It is fully described in Chapter 3, where an
application related to the influence of Single Nucleotide Polymorphysms on
children affected by asthma is also presented. Moreover, a further real case
study is introduced in Chapter 4. It is related to the identification of possible
connections between the growth curves of children and the composition of
their microbiomes.

Functional Linear Adaptive Mixed Estimation

In Chapter 3 we propose a method, called FLAME, to exploit simultaneously
the smoothness of the estimation and the variable selection. None of the pre-
viously introduced Function-on-Scalar regression techniques fully exploits
the smoothness of the underlying parameters. FLAME, instead achieves
these two goals. Specifically, the coefficients are embedded in an Hilbert
space, K which can be different from the space of the data. Here we choose
a Reproducing Kernel Hilbert Space, so that the identification of a proper
kernel allows us to tune the smoothness of the estimators or their particular
structure, as periodicity. Then, the estimation is based on a Lasso penaliza-
tion to guarantee variable selection; the algorithm is based on a coordinate
descent method and it is efficiently coded to guarantee computational power.
In this chapter we present a global overview of the method, its properties
with asymptotic theory and simulations to highlight its effectiveness over
existing methods. Finally, an application is illustrated: it focuses on the in-
spection of the influence of Single Nucleotide Polymorphysms (SNP) on the
lung development of children affected by asthma. A SNP is a variation in a
single nucleotide that occurs at a specific position in the genome. Here we
isolate a set of 10.000 SNPs and we aim to detect which of them influence the
lung capacity of children and how their influence is expressed during time.
We isolate some SNP and in particular a polymorphysm on the MACROD2

gene which was not detected by other methods, but with a relevant biologi-
cal interest, since it has already been connected with the asthma disease.
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This Chapter is part of an already submitted work developed with Profes-
sor Matthew Reimherr from the Statistics Department of Penn State Univer-
sity and codes are available on the flm R package (that will be soon avail-
able on CRAN). The method, due to its sparsity inducing estimation, fits
very well the genomic data requirements, but also finance or geosciences
can provide interesting dataset to estimate the smooth impact of covariates
on rough longitudinal measurements.

Microbiome and growth crurves

In Chapter 4 we apply the FLAME methodology previously introduced
to connect the infant weight gain with the child and mother microbiome.
Specifically, rapid infant weight gain has recently been associated with child-
hood obesity across the lifecourse (Monteiro and Victora (2005)). Moreover
the microbiome is emerging as a causative environmental factor to the de-
velopment of obesity (Hartstra et al. (2014)) and several studies have shown
characteristic disturbances in obese adult and adolescent microbiomes when
compared to normal weight peers. However, less is known about the estab-
lishment of the microbiome in early life and the effects of this early micro-
biome on weight. Therefore, we investigated the relationship between infant
weight gain and gut and oral microbiome composition at age of 2 years. We
collected data on the growth of children in their first years of age and three
microbiome samples, one from the mother and two from children at their
2 years of age. With these data we aim to identify the impact of these mi-
crobiomes on the growth of children, computed as the ratio between weight
and height. We identify the set of relevant bacteria in the three samples
and analyze their impact on the growth curves of young children, isolating
some bacteria of the Firmicutes and Bacteroidetes phyla causing an incre-
ment of the weight/height curve. This is a joint ongoing work with Professor
Francesca Chiaromonte, Professor Matthew Reimherr from the Statistics De-
partment of Penn State University, Professor Kateryna Makova, her Biology
Lab at Penn State University and the Galaxy (Afgan et al. (2016)) team.
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3
F L A M E : S I M U LTA N E O U S VA R I A B L E S E L E C T I O N A N D

S M O O T H I N G F O R H I G H D I M E N S I O N A L
F U N C T I O N - O N - S C A L A R R E G R E S S I O N

3.1 introduction

High-dimensional regression and functional data analysis are currently cen-
tral research areas in statistics and machine learning. The rising interest in
both areas reflects the difficult realities of big data that many scientists are
now facing in their work. Increasingly complex studies and data gathering
technologies require sophisticated methods which are at the same time math-
ematically sound, computationally efficient, and practically interpretable.
This work concerns a new approach for function-on-scalar regression when
the number of predictors is much larger than than number of statistical units.
Such data is especially motivated by genetic studies where one encounters
large numbers of scalar predictors. Such studies are also now increasingly
likely to contain sophisticated phenotypic measurements that are suitable
for functional data analysis. Our methodology simultaneously exploits the
smoothness of the underlying data and functional parameters, as well as the
sparsity of the genetic effects. For short, we call this framework FLAME, for
Functional Linear Adaptive Mixed Estimation. The mixed here refers to the
mixing of functional norms to simultaneously select significant predictors
and smooth their corresponding effect on the functional outcome.

Currently, very little work has been done in this area, but there are several
key recent papers which have made substantial in roads into this problem.
For scalar-on-function regression, there are a few recent works Matsui and
Konishi (2011), Lian (2013), Gertheiss et al. (2013), Fan et al. (2015), but
this is the opposite of the problem we consider here. For funtion-on-scalar
regression, Chen et al. (2016) propose to combine functional least squares
with a sparsity inducing penalty. There they take the penalty to be the group
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minimax concave penalty, MCP Zhang (2010). In addition, the authors use a
pre-whitening technique to fully exploit the within curve dependence. Un-
fortunately, the method is computationally expensive and cannot be applied
when the number of predictors, I, is greater than the sample size N, mean-
ing that it cannot be applied to our intended high-dimensional applications.
As we shall see in Section 3.3.2, the pre-whitening can also be counter pro-
ductive when working with densely sampled functional data. Barber et al.
(2016), instead, propose the function-on-scalar lasso, FSL, which also adds
a penalty onto the functional least squares. In their approach they assume
the data and parameters are from an arbitrary Hilbert space, but to induce
sparsity the penalty is taken to be a type of induced `1 norm on the product
space of Hilbert spaces where the parameters and data lie. Their approach
is computationally efficient since it is a convex optimization problem, and
achieves optimal rates of convergence for the parameter estimates even when
the number of predictors, I, is much larger than the sample size N (I � N).
However, the method, like traditional lasso, does not achieve the functional
oracle property due to a non-negligible asymptotic bias. To that end, in a fol-
low up paper Fan and Reimherr (2016) develop an adaptive version, AFSL,
which achieves what we call here the strong functional oracle property, which
we discuss in further detail in Section 3.2.4. Furthermore, this method can
be implemented at nearly the same computational cost as FSL.

No previous methods specifically control the smoothing of the parameter
estimates; they focus primarily on selecting the important predictors. To
that end, our proposed work selects and simultaneously smooths the esti-
mates. To accomplish this, we assume that while the data may live in an
arbitrary Hilbert space, the parameters live in a smaller subspace which is
a reproducing kernel Hilbert space, RKHS. By choosing different kernels
for the space, one can exploit different assumptions about the parameters,
especially smoothness and periodicity. We then translate these ideas into
a penalized functional least squares problem. As we shall see in Section
3.3, this approach not only smoothes the parameter estimates, it uses the
assumed underlying smoothness of the parameters to assist in the variable
selection. Thus, not only our estimates are more likely to be interpretable,
but they can also outperform previous methods in terms of variable selec-
tion when the parameters are sufficiently smooth or if they have some other
structure than can be exploited such as periodicity (see Section 3.3.2).

In addition to introducing and outlining our proposed methodology, we
present an asymptotic justification for our method including convergence
rates and an oracle property. We also establish a very fast computational
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framework for implementing the discussed methods, which is currently
faster than both the FSL and AFSL implementations. This framework is
part of an accompanying R package, flm, whose backend is written in C++,
meaning that researchers may readily use these methods in their own work.

This chapter is organized as follows. In Section 3.2.1 we outline several
important concepts from FDA and Reproducing Kernel Hilbert Spaces as
well as the modeling assumptions on the data. In Section 3.2.3 we detail our
approach presenting the coordinate descent algorithm which allows FLAME
to be computed very efficiently. In Section 3.2.4 we present asymptotic the-
ory, and in Section 3.3 we present numerical simulations to compare FLAME
with previous methods and, then, in Section 3.4 we present an application
to a longitudinal genetic association study.

3.2 methods

3.2.1 Functional linear models and RKHS

Our theory holds quite generally for data from an arbitrary real separable
Hilbert space. In this way, our methodology is quite broad covering typical
spaces such as L2[0, 1], as well as product spaces, Sobolev spaces, etc. Then
let H be a real separable Hilbert space, with norm ‖ · ‖H, while let K be a
compact linear operator from H→H. We assume that it is positive definite
and self-adjoint:

〈Kx, x〉 > 0 〈Kx,y〉 = 〈x,Ky〉.

The spectral theorem Dunford and Schwartz (1963) implies that we can de-
compose K as

K =

∞∑
i=1

θivi ⊗ vi,

where θ1 > θ2 > · · · > 0 are the ordered eigenvalues and vi ∈ H are the
corresponding eigenfunctions. The eigenfunctions {vi} form an orthonormal
basis in H. The tensor product x⊗ y is used to denote the operator (x⊗
y)(h) := 〈y,h〉x. Then we define a subspace of H, denoted K, as follows:

K :=

{
h ∈H :

∞∑
i=1

〈h, vi〉2

θi
= 〈K−1h,h〉 <∞} .
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If we equip K with the norm ‖h‖K = ‖K−1/2h‖H then this space is also an
Hilbert space. Here it is understood that 0/0 = 0. When H is L2[0, 1] and the
kernel of K is a bivariate function, i.e. K(t, s), then K is also a reproducing
kernel Hilbert space (Berlinet and Thomas-Agnan (2011)).

Focusing on the linear regression model, we now make the following mod-
eling assumption about the response functions, Yn ∈ H, and the predictors
Xn,i ∈ R.

Assumption 1 Let Y1, . . . , YN be elements of H, satisfying the functional linear
model

Yn =

I∑
i=1

Xn,iβ
?
i + εn,

where X = {Xn,i} ∈ RN×I is the deterministic design matrix with standardized
columns, and εn are i.i.d. Gaussian random elements of H with mean function 0
and covariance operator C. We furthermore assume that there exists 0 6 I0 6 I
such that only β?

1, . . . ,β?
I0

are nonzero. This means that, for notational simplicity,
the first I0 of the predictors are significant in the model. We will use the notation
X = (X1 X2) to partition the predictors into the significant predictors, X1, and the
null predictors X2.

Note that any Gaussian process in H has necessarily a mean function in H

and a covariance operator C which is compact, symmetric, and positive def-
inite (Laha and Rohatgi (1979)). In our theory, the normality is only used
to derive functional concentration inequalities. These inequalities determine
the rate at which I can grow with N. When the errors are Gaussian, I can
grow exponentially fast relative to N and the assumptions (as given in As-
sumption 2) are easier to be interpreted. Our arguments can be readily
generalized to the non-normal case, but the rates will change and the as-
sumptions will be more complicated, we thus do not pursue that direction
presently.

3.2.2 FLAME: the choice of the kernel

The FLAME target function is given by

L(β) =
1

2N

N∑
n=1

||Yn−X
>
nβ||

2
H +λ

I∑
i=1

ω̃i||βi||K =
1

2N
||Y−Xβ||2H +λ

I∑
i=1

ω̃i||βi||K,
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with Y ∈HN, X ∈ RN×I and Xn = X(n,·) ∈ RI, β ∈ KI. Throughout, we use
notation such as HN to denote product spaces. For the sake of simplicity,
we abuse notation a bit by letting ‖ · ‖H also denote the induced Hilbert
space norm on product spaces such as HN. There at least a few data driven
ways one can choose the weights ω̃i. One way would be to use marginal
regressions to get initial parameter estimates, then the weights would be
one over the norms of those estimates (Huang et al. (2008)). Another option
is to run FSL first and then use its corresponding estimates. This has the
advantage of also dramatically reducing the dimension of the problem, and
is the approach we take for developing our asymptotic theory in Section
3.2.4. Lastly, one could first run the nonadaptive version of FLAME (i.e. with
ω̃ ≡ 1) to obtain preliminary estimates, β̃i, and then compute the weights
as ω̃i = ‖β̂i,N‖−1K . This is the approach we take for our empirical work in
Section 3.3. Our reasoning is that we wanted a more pure comparison of the
different methods to analyze their performances. Since all of the functional
methods, except FSL, utilize a preliminary run to different degrees, opening
the door to mixing and matching would create a huge number of potential
options, which is beyond the scope of this work.

In our approach we use the norm ‖ · ‖K to both induce sparsity and smooth
the parameter estimates. Previous approaches have focused only on one or
the other. Furthermore, by allowing for a general K, we provide a frame-
work which is very flexible and can accommodate a variety of underlying
assumptions about the parameters, such as periodicity and boundary con-
ditions. The purpose of the data driven weights is to penalize “smaller”
parameters more, and thus not shrink the larger ones as much. This allows
the estimator to be asymptotically unbiased and achieve an oracle property.
We now discuss several examples of popular kernels.

Example 1 (Sobelev Space) Consider H = L2(D), where D is a compact subset
of Rd. Define K to be the subset of functions in L2(D) that have up to and including
mth order derivatives that are also in L2(D). A family of norms can be defined on
K as

‖x‖2K =
∑

|α|6m

1

σ2α

∫
D

|x(α)(s)|2 ds.
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Here α is a d-dimensional vector of integers whose sum is less than or equal to m,
while the σα are nonzero weights. Equipped with this norm, K is an RKHS if and
only if m > d/2. In the case where D = [0, 1] and m = 1, we have that

K(t, s) =

 σ
sinh(σ) cosh(σ(1− s)) cosh(σt) t 6 s

σ
sinh(σ) cosh(σ(1− t)) cosh(σs) t > s

.

One can then numerically solve for the eigenfunctions and eigenvalues of K. These
details can be found on Berlinet and Thomas-Agnan (2011).

Example 2 (Gaussian Kernel) Let H = L2(D), then the Gaussian kernel is
given by

K(s, s ′) = exp
{
−σ|s − s ′|2

}
.

While the Sobelev spaces contain functions which are differentiable up to a given
order, the space K here contains functions which are infinitely differentiable. When
used in FLAME, such a kernel will produce very smooth estimates.

Example 3 (Exponential Kernel) The exponential kernel is on the other end of
the “smoothness” spectrum compared to the Gaussian kernel. In this case we have

K(s, s ′) = exp
{
−σ|s − s ′|

}
.

This seemingly minor adjustment to the power in the exponent produces a space con-
sisting of continuous functions which need not be differentiable. Using this kernel
will produce substantially rougher FLAME estimates than the Gaussian kernel. In
practice, they will also be a bit rougher than the Sobolev kernel as well.

Example 4 (Periodic Kernel) A very useful feature of working with an RKHS
is that one can incorporate structures such as periodicity and boundary conditions
into the parameter estimates. This may be useful, for example, when the domain rep-
resents time over the course of a year. In that case, one might expect the parameters
to be periodic. In this case one may use the periodic kernel with period p = 1 for
yearly periodicity, p = 1/2 for semestral periodicity, or p = 1/4 for seasonal. The
periodic kernel with period p is defined as

K(s, s ′) = σ2 exp
{
−2/σ sin2

(
π|s − s ′|
p

)}
.

More general boundary conditions can be worked into Sobelev spaces and norms,
but we refrain from printing the details here, since we will not explore them in our

76



simulations. An interested reader is referred to, for example, Section 4 of Chapter 7
in Berlinet and Thomas-Agnan (2011) who list many examples of kernels that can
work in different structures.

3.2.3 FLAME: implementation and computational details

In this section we develop a coordinate descent algorithm for quickly finding
the FLAME estimator. These methods are implemented in an accompanying
R package flm. The computationally intensive functions in this package are
coded in c++, so the methodology can be computed very quickly even for
very large datasets.

The algorithm is based on utilizing functional subgradients so that, at each
step, individual parameter estimates can be updated very quickly in a nearly
closed form. An interested reader is referred to Boyd and Vandenberghe
(2004) Bauschke and Combettes (2011) Barbu and Precupanu (2012) Shor
(2012) for more details on subgradients and subdifferentials. Subgradients
generalize derivatives (in this case Fréchet derivatives) to convex functionals
(mappings from H to R) which are not necessarily differentiable. At any
point where the functional is differentiable, the two notions coincide, but
subgradients are well defined much more broadly to convex functionals that
need not be differentiable. Let f : H → R be a convex functional. We say
that h ∈H is a subgradient of f at x ∈H if for all y ∈H we have

f(x+ y) − f(x) > 〈h,y〉.

We denote by ∂f(x) the collection of all subgradients of f at x, called the
subdifferential. Trivially, x is a minimizer of f if and only if 0 ∈ ∂f(x). We
show in the Appendix that the subgradient for FLAME is given by

∂

∂βi
Lλ(β) = −

1

N

N∑
n=1

Xn,iK(Yn−X>nβ) + λω̃i

||βi||
−1
K βi, βi 6= 0

{h ∈ K : ||h||K 6 1}, βi = 0
.

(3.1)
At each step of the coordinate descent we can use (3.1) to update our esti-
mates. In particular, suppose that β̂ is our current estimate and we aim to
update the ith coordinate, β̂i. The least squares estimator would be

β̌i =
1

N

N∑
n=1

Xn,iEn where En = Yn −
∑
j6=i

Xn,jβ̂j.
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We can then express the subgradient as

∂

∂βi
L(β) = −K(β̌) +K(βi) + λωi

||βi||
−1
K βi, βi 6= 0

{h ∈ K : ||h||K 6 1}, βi = 0
.

We can immediately observe that

||K(β̌i)||K 6 λωi ⇒ β̂i = 0. (3.2)

Note this also indicates a useful starting point for the algorithm; if we take

λ = max
i=1,...,I

{ω−1
i ‖N

−1
∑

XniK(Yn)‖K}, (3.3)

then the solution will always be β̂i = 0. When β̂i 6= 0, we can solve for it in
a nearly closed form. In particular, we have

−K(β̌i) +K(β̂i) +
λωi

||β̂i||K
β̂i = 0 ⇒ β̂i =

(
K+

λωi

‖β̂i‖K

I

)−1

K(β̌i). (3.4)

The only unknown quantity at this point is ‖β̂i‖K. Unfortunately, its expres-
sion does not have a closed form solution (unlike FLS or AFSL). However,
if we take the K-norm of the expression in (3.4) we arrive at the following
equation that can be solved numerically

1 =

∞∑
j=1

θj〈β̌i, vj〉2

(θj||β̂i||K + λωi)2
.

Our coordinate descent algorithm therefore proceeds iteratively, defining a
sequence of β(t) for t = 1, . . . , T which converges to the desired approxima-
tion β̂. We set the maximum number of iterations T and a stopping criteria
based on the improvement in the estimation of the β coefficients (i.e. the
K-norm of the increment should be higher than a fixed tolerance).

Regarding the weights, ω̃i, we run the algorithm twice. The first one (the
non-adaptive step) is run with weights set to 1, and the second time (adaptive
step) we take ω̃j = ‖β̂j,N‖−1K with ‖β̂j,N‖K the norm of the β estimated in
the non-adaptive step. In particular, the adaptive step is run to improve the es-
timation of the meaningful predictors and then the algorithm is run only on
the non-zero predictors isolated in the non-adaptive step. These steps must be
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run for a sequence of λ and we have to identify a proper λ which maximizes
some selection criterion; we choose λ to minimize the cross validation error,
once we have isolated a training and a test set (randomly sampled as the
25% of the whole data set).

The complete schema of the algorithm is presented in Figure 3.1.

We mention two features we have built into the code which help increase
its computational efficiency. The first is a warm start which means when
moving to the next λ value, we use the previous β̂ as the initial value for
β. Since λ usually changes very little with each step, this means that the
new β̂ can be computed very quickly (usually with just a few iterations). In
this way, one can obtain the solutions for an entire sequence of λ with only
marginally more computation time than with a single λ. The second feature
is what we call a kill switch. This allows the user to set the maximum size for
the number of predictors selected by the model. When the algorithm moves
past this threshold, the algorithm is stopped. In certain applications, one
can make a good guess as to the maximum number of predictors that could
conceivably be selected by the model. In these settings, this bound can be
used for the kill switch. For example, in genetic studies, even with hundreds
of thousands of predictors, it is usually safe to assume far fewer than say 100

SNPs, will actually be selected (usually the number is far less than 100). The
algorithm slows down as more predictors enter the model, thus this has the
potential to provide a substantial computational savings.

Lastly, all functional data methods of this type require some preprocessing
of the raw data into functional units. This is now a fairly well developed
step and a more detailed discussion can be found in Horváth and Kokoszka
(2012). In short, we utilize a penalized cubic bsplines expansion, where the
penalty is chosen by generalized cross validation. The number of bsplines
in our simulations and application is taken to be 100 so that the smoothing
is determined entirely by the penalty. In FSL and AFSL one would then
commonly rotate to the FPCA basis so that less that 100 basis functions can
be used, thus gaining computational efficiency. For FLAME, we instead use
the eigenfunctions of the kernel K, which we compute numerically on a fine
grid. This allows us to quickly compute both H norms and K norms. We
choose the number of basis functions, J, so that

J∑
j=1

θj > 0.99
∞∑
j=1

θj,
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Algorithm 3: FLAME

Data: X,Y, I0,pcv, kernel (vj, θj), for j = 1 : J;
I = dim(X)[1] begin Non-Adaptive step

ωNA ← (1, . . . , 1) ;
ΛNA ← (λmax

NA, . . . , λmin
NA) ;

for λ ∈ ΛNA do
Update B← Coordinate descent(λ, X,Y,ωNA) ;
if #zeros(B) > I0 then

ΛNA ← (λmax
NA, . . . , λ) ;

Break;
end

end
(BNA, λNA)← Cross validation(ΛNA, X,Y,pcv) ;
S0 ← indices of the non-zeros columns of B ;

end
begin Adaptive step

ωA ← 1/‖BNA[, S0]‖K ;
ΛA ← (λmax

A , . . . , λmin
A ) ;

for λ ∈ ΛA do
Update B← Coordinate descent(λ, X[, S0],Y,ωA) ;
if #zeros(B) > I0 then

ΛA ← (λmax
A , . . . , λ) ;

Break;
end

end
(B, λA)← Cross validation(ΛA, X[, S0],Y,pcv) ;

end

Figure 3.1: Schema of the FLAME estimation: X is the design matrix, Y is the set
of response functions y(t) on the J eigenfunctions of the kernel, I0 the kill switch
parameter: the maximum number of non zero components to be identified, pcv
the proportion of the data to define the training-set and λmax and λmin defined as
presented in Section 3.2.3.
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where θj are the eigenvalues of the kernel K. This formulation is similar to
explaining 99% of the variability in FPCA. We use such a high mark because
dimension reduction is not our goal; we aim to approximate the data nearly
exactly.

3.2.4 FLAME: theoretical properties

In this section we provide several theoretical properties of FLAME. While
this theory provides a strong justification for using FLAME, there are still
several interesting theoretical questions which remain open and will be dis-
cussed below. We begin by making the following assumption concerning the
various terms in the model. Very similar assumptions can also be found in
Fan and Reimherr (2016).

Assumption 2 The regression problem satisfies the following.

1. Minimum Signal: Let bN = mini∈S ‖K(β?
i )‖K, then we assume the lower

bounded

b2N �
I20 log(I)
N

.

2. Tuning Parameter: The tuning parameter λ satisfies the following lower and
upper bounds

I
1/2
0 log(I)
N

<< λ <<
bN√
I0
√
N

.

3. Design Matrix: Let Σ̂11 = N−1X>1 X1, be the design matrix for only the true
predictors. We assume the minimum eigenvalue σmin(Σ̂11) and maximum
eigenvalue σmax(Σ̂11) satisfy:

1

ν1
6 σmin(Σ̂11) 6 σmax(Σ̂11) 6 ν1.

4. Irrepresentable Condition Let Σ̂21 = N−1X>2 X1, be the cross covariance
between the null and true predictors. We assume that

‖Σ̂21Σ̂−1
11 ‖op 6 φ < 1

with φ a fixed scalar and ‖ · ‖op the operator norm.

The first assumption is called minimum signal condition and indicates the
minimum magnitude (of the signals) required for detecting the relevant pre-
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dictors. Notice that this condition is placed on β? relative to K, which means
that if K wipes out a signal, the algorithm will not be able to detect it. The
second condition concerns the rate for λ, and takes a fairly familiar form
Barber et al. (2016); Fan and Reimherr (2016). Since our FLAME formulation
normalizes the sum of squares by N, the λ needs to tend to zero. The lower
bound indicates that it cannot go to zero too quickly, otherwise one cannot
guarantee that all of the null predictors are dropped. Conversely, the upper
bound actually indicates two things, first if λ goes to zero too slowly then
some of the significant predictors may also be dropped. Second, the upper
bound on λ also ensures the bias is asymptotically negligible for establish-
ing an oracle property. The third condition on the design matrix simply says
that the design matrix for the true predictors must be well behaved. This
ensures that the oracle estimate as well as the FLAME estimate are well be-
haved when restricted to the set of true predictors. The last condition is
interpreted as requiring that the true predictors and the null predictors are
not too correlated. This condition is essentially necessary to obtain an oracle
property, as in Zhao and Yu (2006).

Under these conditions, we can now state our primary theorem, which
states that FLAME recovers the true support with probability tending to 1,
and that its projections are asymptotically normal.

Theorem 1 If the regression problem satisfies Assumptions 1 and 2, the solution of
the FLAME problem, β̂, asymptotically

1. has the same support of the true solution of the regression problem

P(β̂
s
= β?)→ 1,

2. and is equivalent to the Oracle estimator in the sense that, for any sequence
hn = {hi,n} ∈ KI that satisfies ‖hn‖K 6 M1 and

∑
‖C1/2hi,n‖2H >

M2 > 0 we have
√
N〈β̂−β?,hn〉

σn

D→ N(0, 1) where σ2n =
∑
i∈S

∑
j∈S

Σ̂−1
11;ij〈C

1/2hi,C1/2hj〉.

The first part of the theorem is a fairly standard result; we are showing that
our method is variable selection consistent. The second result shows that the
estimators are consistent and asymptotically normal, but there is a serious
caveats to this, namely the projections are normal only when projected onto
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an element of K, not H. If the Yn were finite dimensional, then the two
would be equivalent, but not in the functional setting.

In the context of functional data, we call Theorem 1 a week oracle property
because the normality occurs in the week topology (i.e. on projections). Our
next result shows that one can actually obtain a stronger result, namely,
that FLAME and oracle estimates are asymptotically equivalent in the strong
topology. For this reason, we say that the following theorem is a strong oracle
property. First let us define the oracle estimate, namely

β̂O = {(X>1 X1)−1X>1 Y, 0},

where 0 a vector of zero functions of length I− I0.

Theorem 2 Suppose Assumptions 1 and 2 are satisfied, but that I0 is fixed. Fur-
thermore, assume there exists a δ > 0 and a constant 0 < B < ∞ such that for all
i ∈ S ∞∑

j=1

〈β?
i , vj〉2

θ1+δj

6 B <∞.

If λ is such that

λ� bN

N1/2[1+1/(1+δ)]
,

then one also has that √
N‖β̂− β̂O‖H = oP(1).

Notice that we have introduced slightly stronger assumptions to achieve a
strong oracle property. In particular, we needed a more explicit assumption
on the rate at which the coordinates of β? decrease. If δ = 0 this simply
implies that β? is in K. Lastly, we require a tighter control of the λ which
depends on how quickly the coordinates of β? decrease. If the coordinates
actually terminate (i.e. are zero) at a certain point or if they decrease expo-
nentially fast, then our assumption on λ is the same as before. The assump-
tion that I0 is fixed allows us to simplify the results. Using our techniques it
is possible to allow I0 to grow, but we would need additional assumptions
on the behavior of the trace of the errors with respect to the {vi} basis, and
so do not pursue it here.

We believe that our results can be tightened, especially the additional as-
sumptions needed to achieve Theorem 2. Maybe the major obstacle is ob-
taining a good control of ‖β̂‖K. This quantity shows up when updating via
coordinate descent and when trying to control the bias of the FLAME esti-
mate. However, unlike FSL, we do not have an explicit expression for this

83



quantity in terms of the least squares estimator. If one can obtain a tighter
control of this quantity, it should be easier to relax the assumptions of The-
orem 2. Lastly, it might be interesting to study the asymptotic properties of
β̂ under the K norm, instead of the H norm. For example, it might be of
interest to study the estimated derivatives of the parameters. However, since
this is a much stronger norm, clearly additional assumptions will be needed.
Furthermore, the oracle estimate would not be the least squares estimator as
this need not even live in the space K. We thus believe there are many open
and exciting questions concerning the behaviors of such functional estima-
tors and their necessary assumptions.

3.3 simulation studies

In this section we introduce several simulation schemes to analyze the per-
formances of FLAME with different RKHS (Section 3.3.1) and to compare
this method with AFSL and MCP (Section 3.3.2). For all simulations we as-
sume data in L2[0, 1]. The kernels we consider are three popular kernels, the
Exponential, the Sobolev, and the Gaussian. Moreover, for the specific case
of Section 3.3.2 we introduce the periodic kernel. In Figure 3.2, the first four
eigenfunctions associated to the Exponential, the Sobolev, and the Gaussian
kernel are plotted and the explained variance is shown. These three kernels
show different structure and complexity; in Section 3.3.1 the consequences
of the different smoothness levels required to functions embedded in these
kernels are presented.

All simulations used 100 runs on a Intel quad-core i7 desktop with 8GB of
ram with the vecLib linear algebra library of R and measured in terms of:

• computational time: median of the computational time (sec.) of the runs.

• number of true positive predictors: average number of correctly non-zero
predictors identified (i.e. #{i : β?

i 6= 0∧ β̂i 6= 0}).

• number of false positive predictors: average number of wrongly identified
non-zero predictors (i.e. #{i : β?

i = 0∧ β̂i 6= 0}).

• prediction error: average of the prediction error, both for data and deriva-
tives,∑N
n=1 ‖ Xnβ? − Xnβ̂ ‖L2 and

∑N
n=1 ‖ Xnβ?′ − Xnβ̂′ ‖L2
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Figure 3.2: Representation of the first four eigenfunctions for each kernel with dif-
ferent σ. From the left: the Exponential, the Sobolev and the Gaussian kernel. The
legend at the top of each panel denotes proportion of the explained variability for
each eigenfunction.

3.3.1 Comparison between different kernels

In this section we compare the performance of FLAME using different ker-
nels. We show how the variation of the kernel can influence the identifica-
tion of the number of correctly identified predictors and the prediction error.
Two high-dimensional simulation settings are introduced: with rough and
smooth β? coefficients.

The simulations consist of the random generation of a sample of size N =

500 and I = 1000 predictors, with I0 = 10 significant ones. The predictor
matrix X is the standardized version of a matrix randomly sampled from aN
dimension Gaussian distribution with 0 average and covariance ΣX = 1. For
the rough case, the true coefficients β?(t) are sampled from a Matérn process
with 0 average and parameters (ν = 2.5, range = 1/4,σ2 = 1), while for the
smooth setting the range parameter of the Matérn process is set to 1 and ν is
set to 3.5. In Figure 3.3 an example of the true coefficients in the two settings

85



0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

Example of smooth coefficients

t

β(
t)

 

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

Example of rough coefficients

t

β(
t)

 

Figure 3.3: Example of 10 β? coefficients for the smooth (left panel) and rough
(right panel) simulation setting.

is shown. The outcomes, Yn(t), are obtained as the sum of the contribution
of all the predictors and a random noise, a 0-mean Matérn process with
parameters (ν = 1.5, range = 1/4,σ2 = 1). Functions are sampled on an
evenly spaced grid between 0 and 1 with m = 50 points.

For these simulations the kill switch parameter is set to 2I0 = 20 and λ

spans a logarithmic equispaced 100-point gird from λmax of Equation (3.3)
to rλλmax with rλ = 0.01 for the rough case and rλ = 0.001 for the smooth
setting. A summary of the result is shown in Figure 3.4 for the rough case
and in Figure 3.5 for the smooth case.

Focusing on the rough setting we notice that the Gaussian kernel always
performs worse than other kernels in terms of prediction error both for data
and derivatives: it imposes on the functions a structure (infinitely differ-
entiable) they don’t possess. Moreover, increasing the σ parameter of the
kernels, which results in a rougher estimates, reduces the prediction error
and more true non zeros predictors are identified. In fact, with a too strong
smoothness level, imposed by the Gaussian kernel or by a small value for
the σ parameter, some true predictors are forced to be zero throughout the
domain, reducing the number of true positives and increasing the prediction
error. The rough structure of the parameters allows to all the methods pre-
sented to avoid the identification of non significant predictors and to keep
the number of False Positive at zero.

A slightly different behavior can be observed in the smooth case. The
performance of the Gaussian kernel, while still worse, is now much closer in
performance to the other two kernels. The strange behavior of the prediction
error of derivatives for the gaussian and the exponential kernel is due to
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Figure 3.4: Summary of the simulations varying kernel for the rough case. From the
left, the prediction error, the prediction error on derivatives, and the number of true
and false positive predictors. We can notice that in all the simulations the number
of False Positive estimated predictors is 0. No extra parameters are estimated with
FLAME, while the number of True Positive predictors increases with the roughness
level of the kernel.

an instability in the estimation of the derivatives of the eigenfunctions of
these kernels at the boundaries of the time domain (not shown here). The
number of False Positive predictors in this setting is different from zero (but
it remains on average smaller than one per simulation).

A final remark regarding the high dimensional setting is the computa-
tional cost of the estimation and variable selection procedure. As presented
in Table 3.1, the computational time is almost invariant with respect to the
kernel and parameter, while increasing the smoothness level of the predic-
tors increases the computational time. In the next section we present how
FLAME is competitive compared to previous methods.
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Figure 3.5: Summary of the simulations varying kernel for the smooth case. From
the left, the prediction error, the prediction error on derivatives, and the number of
true and false positive predictors.

3.3.2 Comparison with previous methods

The high dimensional setting

In this section we apply AFLS to the simulation setting we’ve introduced
in Section 3.3.1 and in Table 3.2 we present the results of AFSL estimation
in terms of prediction error, computation time and number of predictors
identified (True Positive and False Positive).

A great advantage of FLAME is the reduction of the computation time:
FLAME takes much less than AFSL to run and it also achieves better statisti-
cal performance. Mainly in the rough case, the Exponential and the Sobolev
kernel (with σ > 1) perform better in terms of prediction error on data,
derivatives and in the number of true positive and false positive predictors.

The small dimensional setting

In this section we reduce the simulation size to make the application of
MCP possible; this method is suitable just for N > I schemes. We present
the results of FLAME, MCP, and AFSL with the same rough and smooth
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FLAME
Kernel

σ Gaus. Sob. Exp.
0.5 29.30 30.75 41.14

1 21.64 36.62 48.17

2 28.87 43.92 58.67

4 32.34 39.14 61.48

8 32.61 42.99 47.29

16 33.67 42.59 39.95

32 35.47 33.47 40.83

FLAME
Kernel

σ Gaus. Sob. Exp.
0.5 80.38 85.81 95.00

1 77.67 81.33 94.66

2 72.23 87.59 97.95

4 66.69 76.18 91.18

8 58.46 79.12 99.08

16 61.14 80.36 92.98

32 63.23 70.22 69.97

Table 3.1: Median time for the simulations varying kernel for the rough (left panel)
and smooth case (right panel).

prediction error prediction error der. True Positive False Positive Time (sec.)
rough setting 352.51 4664.2 9.92 0.08 1031.01

smooth setting 95.43 382.17 9.64 0.41 812.24

Table 3.2: AFSL results for the rough and smooth high-dimensional simulation
setting. Prediction error, computation time and number of correctly and wrongly
identified predictors are presented. This results have to be compared with Figure
3.4 and 3.5 for the estimation and with Table 3.1 for the computational efficiency.

settings introduced in Section 3.3.1, but with N = 50, I = 20 and I0 = 5.
Moreover, we focus on the number of points per curve m to detect whether
these three methods are affected by m. For FLAME we focus on the Sobolev
kernel with σ = 8, since, from Section 3.3.1, it is shown to be a suitable
kernel for both these two settings.

In Figure 3.6 and 3.7 the results for the three methods varying m are
shown. We notice that both FLAME and AFSL estimations are almost in-
variant with respect to m, while MCP is strongly affected by variations of
m, becoming very unreliable when the number of points per curve is large.
However, if the number of points is small, MCP performs better than FLAME
and AFSL in terms of prediction error and selecting true predictors, mainly
in the smooth setting, but still has often trouble in terms of false positives.
Focusing on the computational efficiency presented in Table 3.3, we notice
that FALME and AFSL are comparable, with the well known higher effi-
ciency of FLAME in the rough case with respect to the smooth, and they
both are almost invariant with the change of m. They globally perform sig-
nificantly better than MCP, which in addition becomes slower and slower
with the increase of m. The difference in the efficiency of FLAME and AFSL
is due to the method used to solve the problem: the coordinate descent
method of FLAME is faster than ADMM of AFSL in the high dimensional
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Figure 3.6: Summary of the simulations varying the method for the rough case.
From the left, the prediction error, the prediction error on derivatives, and the num-
ber of true and false positive predictors.

setting since it is not based on matrix algebra operations, while in the small
setting both coordinate descent and ADMM are efficient.

The periodic setting

In this section we focus on a distinctive feature of FLAME: the possibility
of adapting the choice of the kernel to the prior knowledge on the data.
For example in Figure 3.8 we plot several periodic coefficients β?. When
using FLAME with a periodic kernel, the resulting estimates will also be
periodic. In Figure 3.9, for example, the eigenfunctions of the periodic kernel

m MCP FLAME AFSL
15 36.00 12.90 7.34

20 32.20 12.56 7.20

50 92.35 13.00 7.28

100 126.58 12.08 7.15

200 377.36 13.95 6.54

m MCP FLAME AFSL
15 12.84 76.85 7.75

20 13.89 60.39 6.92

50 66.30 45.106 8.11

100 139.86 92.57 7.00

200 221.36 85.45 6.14

Table 3.3: Median time (sec.) for the simulations varying method for the rough (left
panel) and smooth case (right panel) in the small dimensional setting.
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Figure 3.7: Summary of the simulations varying the method for the smooth case.
From the left, the prediction error, the prediction error on derivatives, and the num-
ber of true and false positive predictors.

with period 1/2 are shown. This kernel is general enough to be used for
the estimations in a simulation setting where β? functions are sampled as
periodic functions with period varying in {1/2, 1/4, 1/8}. AFSL and MCP, on
the contrary, don’t allow this characterizations of the coefficients.

The design matrix X is the standardized realization of a multivariate nor-
mal distribution with 0 average and identity covariance structure and the
errors are sampled from a Matérn process with parameter (ν = 1.5, range =

1/4,σ2 = 1). The aim is to compare the results of FLAME, MCP, and AFSL.
In this particular case, a kernel with period {1/2} allows FLAME to esti-
mate all the predictors identifying also their periodicity. MCP and AFSL, in
contrast, are estimated in the general L2 space, without any further specifi-
cations. In Table 3.4 we present a summary of the average results across 100

replications for the three methods where we see a fairly dramatic increase in
statistical performance for FLAME. An example of the estimates produced
by the different methods, based on β? from Figure 3.8, is given in Figure
3.10, where we see a again a fairly dramatic advantage when using FLAME.
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Figure 3.8: Example of 5 β? peri-
odic coefficients, two have period
0.5, two 0.25 and one 0.125.
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Figure 3.9: First four eigenfunc-
tions of the periodic kernel with
period 0.5. Correspondent ex-
plained variability is shown in
the top legend

prediction error prediction error der. True Positive False Positive Time
FLAME 24.99 666.15 4.93 0.03 25.99

MCP 162.24 4055.37 5 5 924.98

AFSL 54.54 2081.90 4.87 0.53 8.04

Table 3.4: Comparison of the results of the three methods on simulations in the
periodic setting. Average prediction error on data, derivatives, average number of
true positive, false positive and the median computational time are shown.

3.4 a real case study : camp

In this section we present the application of FLAME to a large genetic
dataset collected from The Childhood Asthma Management Program Re-
search Group (1999). The Childhood Asthma Management Project, CAMP,
is a longitudinal trial to analyze the longterm impacts of several daily treat-
ments on children with asthma. It includes 439 Caucasian children, ages
5-12, affected by asthma and monitored for 4 years. These data are freely
available from the dbGaP, Study Accession phs000166.v2.p1 (dbGaP (2009)).

Genotypic informations consists of approximately 670, 000 SNPs with mi-
nor allele frequency larger than 5%. We first apply a screening tool from
Chu et al. (2016) to isolate a subset of I = 10, 000 SNPs, on which we apply
FLAME. The focus of our analysis is, then, the detection of the significant
SNPs among these 10, 000.
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Figure 3.10: Example of the estimation of the functions of Figure 3.8 with, from the
left, MCP, FLAME and AFSL.

Each child is given one of three treatments: Budesonide, Nedocromil, or
a placebo. We account for age at the beginning of the study and gender. To
quantify the lung strength of children we consider 16 longitudinal measure-
ments of the Forced Expiratory Volume in one second (FEV1), a common
proxy for lung strength. The lung capacity is the response function of our
linear model and we convert it into a functional data object with a cubic
Bspline basis projection with penalty on the second derivative and smooth-
ing parameter chosen via generalized cross-validation.

As a first preprocessing step we remove the influence of gender, age, and
treatment from FEV1 and then we apply FLAME to evaluate the impact of
the SNPs to the residual functions shown in Figure 3.11. In Figure 3.12 the
FLAME estimation is presented; for this analysis we use the Sobolev kernel
with σ = 8, a 200 points grid for λ with the ratio rλ = 0.01. We identify the
presence of 12 significant SNPs, 9 with a positive effect in the lung develop-
ment and 3 (rs2206980, rs2041420 and rs953044) with a negative contribution.
In Table 3.5 the list of the identified SNPs with the comparison with the ones
identified by AFSL: we notice that FLAME identifies two more SNPs, one
with positive effect (rs722490) and one with negative effect (rs2041420).

To introduce a further comparison with AFSL we identify a test (made up
by 80% of data) and a training set to compute the prediction error of data
as
∑N
n=1 ‖ Yn − Xnβ̂ ‖L2 . We replicate this analysis 10 times to present a

robust conclusion. The average prediction error for FLAME is 0.200, while
for AFSL is 0.205. Moreover, measuring the computational time we have
for FLAME a median of 172.01 sec. and for AFSL 365.07 sec. showing the
great advantage of FLAME in terms of computational time, with also a little
improvement in term of prediction error.
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Figure 3.12: Coefficients of the
influent SNPs detected and esti-
mated by FLAME.

SNP
chr name

AFSL FLAME

1 rs1875650 + +
2 rs953044 - -
5 rs1368183 + +
6 rs7751381 + +
6 rs2206980 - -
7 rs17372029 + +
8 rs1540897 + +
8 rs4734250 + +
10 rs4752250 + +
11 rs722490 +
15 rs2019435 + +
20 rs2041420 -

Table 3.5: List of the identified SNPs with AFSL and FLAME. + identifies the SNPs
with positive effect and - the SNPs with negative effect, empty cells identify non
detected SNPs. Informations on the chromosome location of SNPs and further
details can be found in the ALFRED database (Rajeevan et al. (1999)).
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As a last point, the SNP selected by FLAME but not by AFSL, rs2041420, is
located on the gene MACROD2. This gene has been associated with a num-
ber of negative health outcomes including Autism, Celiac disease, Crohn’s
disease, and Parkinson’s disease (http://www.gwascentral.org). It has also
been linked to FEV1 and lung development Repapi et al. (2010); Strachan et
al. (2007). However, neither of these previous studies were based on CAMP,
and therefore helps validate this finding.
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3.5 supplementay material : proofs

3.5.1 The Subgradient Equation for FLAME

Before deriving (3.1) we state the following Lemma which can found in any
of the discussed references on convex analysis.

Lemma 1 Let f1 : H → R be f2 : H → R be two convex functionals over a real
separable Hilbert space H. Then we have the following.

1. If the Fréchet derivative of f1 exists at a point x ∈H, then the subdifferential
of f1 at x consists of single point which is the derivative of f1 at x.

2. The subdifferential of f1 + f2 is the sum of their respective subdifferentials:
∂(f1 + f2) = ∂f1 + ∂f2. Where the sum is understood as Minkowski sum
between two sets.

We now state two lemmas from Fan and Reimherr (2016)

Lemma 2 1. Consider the functional f(x) = ‖x‖2H. Then f is convex and ev-
erywhere differentiable with

∂f(x) = 2x.

2. Consider the functional f(x) = ‖x‖H. Then f is convex and differentiable
when x 6= 0 in which case

∂f(x) = ‖x‖−1H x x 6= 0.

When x = 0 we have

∂f(0) = {x ∈H : ‖x‖ 6 1}.

We now derive the FLAME subgradient equations. First, we rewrite them
using a common norm:

Lλ(β) =
1

2N
‖K1/2(Y − Xβ)‖2K + λ

I∑
i=1

ω̃i‖βi‖K.
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So Lλ is a convex function from KI → R. Here it is also understood that
K1/2(Y) is applied coordinate wise to each function. Since K is a real sepa-
rable Hilbert space we have by Lemma 2.1 and the chain rule that

∂

∂βi

1

2N
‖K1/2(Y − Xβ)‖2K =

1

N

N∑
n=1

Xn,i(K
1/2(Y − Xβ)).

By Lemma 2.2 we have that

∂

∂βi
λ
∑
j=1

ω̃j‖βj‖K = λω̃j

‖βj‖−1K βj βj 6= 0

{h ∈H : ‖h‖K 6 1} βj = 0
.

Applying Lemma 1 we can combine the two subdifferentials to obtain (3.1).

3.5.2 The week oracle property: Theorem 1.1

The following two lemmas follow from Barber et al. (2016).

Lemma 3 If Assumption 2 holds, the FSL estimate β̃, computed with all the weights
set to 1, satisfies

supı∈S‖β
?
i − β̃i‖H = OP(r

1/2
N ) where rN =

log(I)I0
N

.

Lemma 4 Let X be an H valued Gaussian process with mean zero and covariance
operator C. Then we have the bound

P
{
‖X‖2H > ‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t} 6 exp(−t)

where ‖C‖1 the sum of the eigenvalues of C, ‖C‖22 the sum of the squared eigenval-
ues and ‖C‖∞ the largest one.

Corollary 1 Given the Gaussian process X, with zero mean and covariance operator
C, and given the kernel operator K (represented by the eigenvalues θj: θ1 > θ2 >
. . . > 0, and the eigenvectors vj which define an orthogonal basis for H and K), we
can prove that

P
{
‖K(X)‖2K > θ1(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)} 6 exp(−t)
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Proof From the definition of the K and H norm we obtain that

‖K(X)‖2K =

∞∑
j=1

〈θjX, vj〉2

θj
=

∞∑
j=1

θj〈X, vj〉2 6 θ1
∞∑
j=1

〈X, vj〉2 = θ1‖X‖2H

Then, since from Lemma 4 we have that

P(‖X‖H < f(C, t)) > 1− exp(−t)

with f(C, t) = ‖C‖1 + 2‖C‖2
√
t+ 2‖C‖∞t.

we prove the statement

P(‖K(X)‖K < θ1f(C, t)) > 1−exp(−t) ⇒ P (‖K(X)‖K > θ1f(C, t)) 6 exp(−t)

�

We begin by partitioning the set of the estimated parameters into Ŝ and
ŜC where

Ŝ =
{
i ∈ {1, . . . , I} : β̂i 6= 0

}
.

Our aim for this section is then to prove that, with high probability, S = Ŝ,
that is β̂ has S as support.

Suppose, for the moment, that Ŝ = S, then from the subgradient equation
(3.1) we have that

X>1 K
(
Y − X1β̂1

)
= λs̃1 where s̃1 =

{
Nω̃iβ̂i‖β̂i‖−1K : i ∈ S

}
, (3.5)

and β̂1 = {β̂i : i ∈ S} is the estimate of the non-zero predictors. This then
implies that

K(β̂1) =
(

X>1 X1
)−1 (

X>1 K(Y) − λs̃1
)
= K(β?

1)+
(

X>1 X1
)−1 (

X>1 K(ε) − λs̃1
)

.

To prove that β? and β̂ have the same support (S = Ŝ) we have to verify the
following.

• If i ∈ S, β̂1
s
= β?

1, i.e. the true non-zero predictors are correctly identi-
fied. This condition can be also written as

‖K(β?
i ) −K(β̂i)‖K < ‖K(β?

i )‖K. (3.6)

98



• If i /∈ S, β̂i is set to zero, so that the zero predictors are correctly
detected. That means∥∥∥∥ 1NX>i K

(
Y − X1β̂1

)∥∥∥∥
K

< λω̃i (3.7)

To achieve a better definition of (3.6) and (3.7) we introduce the definition of
Y and find, for all i ∈ S

‖K(β?
i ) −K(β̂i)‖K < ‖K(β?

i )‖K ⇒
∥∥∥e>i [N−1Σ̂−1

11 (X
>
1 K(ε) − λs̃1)

]∥∥∥
K
< ‖K(β?

i )‖K

with ei a I-size vector with all zero coefficient but the ith which is 1 and Σ̂11
the estimated covariance matrix of X1: Σ̂11 = N−1X>1 X1. While, for all i /∈ S∥∥∥∥ 1NX>i K

(
Y − X1β̂1

)∥∥∥∥
K

< λω̃i ⇒
∥∥∥X>i N

−1
[
HK(ε) + λX1(X>1 X1)−1s̃1

]∥∥∥
K
< λω̃i

with H = (I− X1(X>1 X1)−1X>1 ).
Considering the event

{
S = Ŝ

}
, we observe that{

S 6= Ŝ
}
⊂ B1 ∪B1 ∪B3 ∪B4

with

B1 =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K >
‖K(β?

i )‖K

2
: for some i ∈ S

}
B2 =

{
λ

N
‖e>i Σ̂−1

11 s̃1‖K >
‖K(β?

i )‖K

2
: for some i ∈ S

}
B3 =

{
1

N
‖X>i HK(ε)‖K >

λω̃i
2

: for some i /∈ S

}
B4 =

{
1

N2
‖X>i X1Σ̂−1

11 s̃1‖K >
ω̃i
2

: for some i /∈ S

}
.

We will show that with N increasing P(Bl) → 0 for l = 1, . . . 4 and then
P(Ŝ 6= S) → 0.

Step 1: P(B1)→ 0 Given

B1 =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K >
‖K(β?

i )‖K

2
: for some i ∈ S

}
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we notice that B1 = ∪i∈SAi where

Ai =

{
1

N
‖e>i Σ̂−1

11 X>1 K(ε)‖K >
‖K(β?

i )‖K

2

}
=

{
1

N2
‖e>i Σ̂−1

11 X>1 K(ε)‖2K >
‖K(β?

i )‖2K
4

}
and we have that P(B1) 6

∑
i∈S P(Ai). For each i we have that

1

N2
‖e>i Σ̂−1

11 X>1 K(ε)‖2K = ‖K(Ti)‖2K

where Ti = N−1e>i Σ̂
−1
11 X>1 ε is a Gaussian process (in H) with zero mean and

covariance operator CT

CT = N−1e>i Σ̂
−1
11 X>1 X1

(
Σ̂−1
11

)>
eiN

−1C

= N−1e>i Σ̂
−1
11NΣ̂11Σ̂

−1
11 eiN

−1C = N−1e>i Σ̂
−1
11 eiC.

Recall C the covariance operator of the error process ε. From Corollary 1 we
have that

P
{
‖K(Ti)‖2K > θ1N−1e>i Σ̂

−1
11 ei(‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t)} 6 exp(−t).

Define t̃ such that

‖K(β?
i )‖2K
4

> θ1N
−1e>i Σ̂

−1
11 ei

(
‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃)

so then

P(Ai) = P

(
‖K(Ti)‖K >

‖K(β?
i )‖K

2

)
6 P

(
‖K(Ti)‖2K >

‖K(β?
i )‖2K
4

)
6 P

(
‖K(Ti)‖2K > θ1N−1e>i Σ̂

−1
11 ei

(
‖C‖1 + 2‖C‖2

√
t̃+ 2‖C‖∞t̃))

6 exp (−t̃)

We can define a constant c such that(
‖C‖1 + 2‖C‖2

√
t+ 2‖C‖∞t) 6 ct
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so that t̃ can satisfy the simpler inequality

‖K(β?
i )‖2K
4

>
1

N
θ1e
>
i Σ̂

−1
11 eict̃.

Recall bN = mini∈S ‖K(β?
i )‖K, so then

b2N
4
>
‖K(β?

i )‖2K
4

>
1

N
θ1e
>
i Σ̂

−1
11 eict̃.

From Assumption 2.3
e>i Σ̂

−1
11 ei 6 ν1

then t̃ s.t.

t̃ 6
Nb2N
4θ1ν1c

and so, taking t equal to the upper bound we have that

P(Ai) 6 exp
(
−
Nb2N
4θ1ν1c

)
And, coming back to the statement on B1, we can apply Assumption 2.1 to
conclude that

P(B1) 6
∑
i∈S

P(Ai) 6 I0 exp
(
−
Nb2N
4ν1θ1c

)
= exp

(
−
Nb2N
4θ1ν1c

+ log(I0)
)
→ 0.

Step 2: P(B2)→ 0 Recall that

B2 =

{
λ

N
‖e>i Σ̂−1

11 s̃1‖K >
‖K(β?

i )‖K

2
: for some i ∈ S

}
with s̃1 =

{
Nω̃iβ̂i‖β̂i‖−1K i ∈ S

}
. The K norm of s̃1 is given by

‖s̃1‖2K =
∑
i∈S

N2ω̃i
2 ‖β̂i‖2K
‖β̂i‖2K

= N2
∑
i∈S

ω̃2i = N
2

(∑
i∈S

ω2i +
∑
i∈S

(ω̃2i −ω
2
i )

)
,
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where w̃i = ‖β̃i‖−1H is computed using FSL and wi = ‖β?
i‖

−1
H . Since the

β̃i are consistent in H (uniformly in i) we can apply the reverse triangle
inequality several times to arrive at

|ω̃2i −ω
2
i | 6

‖β?
i − β̃i‖H

‖β?
i‖3H

(2+ oP(1)),

where the oP(1) again holds uniformly across i ∈ S. From the definition of
bN = mini∈S ‖K(β?

i )‖K we have that for all i ∈ S

bN 6 ‖K(β?
i )‖K 6 θ

1/2
1 ‖β?

i‖H

and moreover from the definition of the rate rN of Lemma (3), uniformly in
i

‖β?
i − β̃i‖H 6 supi∈S‖β

?
i − β̃i‖H = OP(r

1/2
N ).

Then, uniformly in i ∈ S

|ω̃2i −ω
2
i | 6

2

‖β?
i‖2H

θ
1/2
1

bN
‖β?
i − β̃i‖H 6

θ
1/2
1

bN
OP(r

1/2
N )ω2i .

By Assumption 2, r1/2N /bN → 0, and so we conclude

‖s̃1‖2K 6 N2

(∑
i∈S

ω2i

)
(1+ op(1)) = N

2

(∑
i∈S

1

‖β?
i‖2H

)
(1+ op(1))

6 N2
I0θ

2
1

b2N
(1+ op(1)). (3.8)

Then for the original object we have for each i ∈ S

λ

N

‖e>i Σ̂
−1
11 s̃1‖K

‖K(β?
i )‖K

6
λ

N

‖e>i Σ̂
−1
11 ‖ ‖s̃1‖K

‖K(β?
i )‖K

with ‖e>i Σ̂
−1
11 ‖ 6 ‖ei‖‖Σ̂

−1
11 ‖op 6 ν1 form Assumption 2 and in the end

λ

N

‖e>i Σ̂
−1
11 ‖ ‖s̃1‖K

‖K(β?
i )‖K

6
λν1
√
I0N

NbNbN
(1+ op(1))→ 0.
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Step 3 From the previous definition of B3:

B3 =

{
1

N
‖X>i HK(ε)‖K >

λω̃i
2

: for some i /∈ S

}
we define Ai s.t. for i /∈ S

Ai =

{
1

N
‖X>i HK(ε)‖K >

λω̃i
2

}
and B3 = ∪i/∈SAi. We can define the gaussian process XiHε, which has
zero mean and as covariance operator X>i HH

>XiC = X>i HXiC, since H is
symmetric and idempotent, with C the covariance operator of the zero mean
gaussian process ε. Moreover, since we have that supi/∈S ‖β̃i‖H = OP

(
r
1/2
N

)
we can notice that ω̃i 6 1/ supi/∈S(‖β̃i‖H) and then

Ai ⊆
{
OP

(
r
1/2
N

)
‖X>i HK(ε)‖K >

Nλ

2

}
.

Then for any ε > 0 we can find a T = T(ε) > 0 s.t.

P(Ai) 6
ε

2(I− I0)
+ P

(
‖X>i HK(ε)‖K >

Nλ

2Tr
1/2
N

)
.

As we discussed before, to apply Corollary 1, we need to detect t̃ s.t.

X>i HXi(‖C‖1 + 2‖C‖2
√
t̃+ 2‖C‖∞t̃) 6

(
Nλ

2Tr
1/2
N

)2
. (3.9)

Focusing on the left side of the inequality we know that

X>i HXi(‖C‖1 + 2‖C‖2
√
t̃+ 2‖C‖∞t̃) 6 Nt̃c.

Since H is a projection matrix we have

XiHXi =
N∑
t=1

(
N∑
n=1

Xi,nHn,t

)2
=

N∑
t=1

1 = N,
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and again there exists a constant c such that ∀t, ct > (‖C‖1 + 2‖C‖2
√
t +

2‖C‖∞t), so we define t̃:

t̃cN 6

(
Nλ

2Tr
1/2
N

)2
⇒ t̃ =

λ2N

4T2crN
.

Applying corollary 1 we have

P

(
‖X>i HK(ε)‖K >

Nλ

2Tr
1/2
N

)
6 exp

(
−

λ2N

4T2crN

)
6 exp

(
−
I0 log2(I)
N4T2crN

)

and then we can compute the probability of B3

P(B3) 6
∑
i/∈S

P(Ai) 6 (I− I0) exp

(
−
I0 log2(I)
4NT2crN

)
+
ε

2

6 exp

(
−
I0 log2(I)
4NT2crN

+ log(I− I0)

)
+
ε

2
.

Since rN << (I0 log2(I))/N, we can take N large enough to make the first
term smaller then ε/2 and have the convergence of the probability to 0.

Step 4 Recall that B4 is defined as

B4 =

{
1

N2
‖X>i X1Σ̂−1

11 s̃1‖K >
ω̃i
2

: for some i /∈ S

}
.

Recall from (3.8)

‖s̃1‖2K 6 N2θ21
I0

b2N
(1+ op(1)),

as well as
sup
i/∈S

ω̃i
−1 = OP(r

1/2
N ).

The irrepresentable condition implies

∀i /∈ S, ‖X>i X1Σ̂−1
11 ‖op 6 ‖Σ̂21Σ̂

−1
11 ‖op 6 φ < 1.
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Then we consider the inequality of B4 for a fixed i /∈ S

2‖X>i X1Σ̂−1
11 s̃1‖K

N2ω̃i
6
2‖X>i X1Σ̂−1

11 ‖op‖s̃1‖K

N2ω̃i
6
2φr

1/2
N I

1/2
0 θ1

NbN
OP(1)→ 0,

which finishes Step 4 and completes the proof.

3.5.3 The week oracle property: Theorem 1.2

Let hn = {hi,n} ∈ KI be a bounded sequence: ‖hn‖K < M1. We will show
that

√
N〈hn, β̂−β?〉H

σn

D→ N(0, 1) where σ2n =

I0∑
i=1

I0∑
i=1

Σ̂−1
11;ij〈hi,n,Chj,n〉,

assuming that the hi,n are chosen such that
∑
i∈S〈C1/2hi,C1/2hi〉 >M2 >

0 for some fixed M2. Recall that the oracle estimator is

β̂S
O = (X>1 X1)−1X>1 Y and β̂O = {β̂S

O, 0},

where 0 here is the zero function in KI−I0 . Since we assume that the Y are
Gaussian, we have that

√
N〈hn, β̂O −β?

1〉H ∼ N(0,σ2n).

By Assumption 2.3 we have that

σ2n > ν
−1
1

∑
i∈S
〈C1/2hi,C1/2hi〉 > ν1M2,

and so is bounded from below, so we need only to show that

√
N〈hn, β̂O − β̂1〉H = oP(1).
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From equation 3.5, when Ŝ = S we have that

√
N〈h, β̂O − β̂〉H =

√
Nλ〈(X>1 X1)−1K−1(s̃1),hSn〉H

=
λ√
N
〈Σ−1
11 K

−1/2(s̃1),K−1/2hSn〉

6
λ√
N
‖Σ−1
11 K

−1/2(s̃1)‖H‖hn‖K.

Applying Assumption 2.3 we have that

λ√
N
‖Σ−1
11 K

−1/2(s̃1)‖H‖hn‖K 6
λ√
Nν1

‖s̃1‖K‖hn‖K.

From the equation (3.8) we have

‖s̃1‖K 6

√
I0N

bN
(1+ op(1))

and then

|
√
N〈h, β̂O − β̂1〉H| 6

λ
√
I0
√
N‖hn‖K

ν1bN
(1+ oP(1)) = oP(1),

by Assumption 2. Since P
(
Ŝ = S

)
→ 1 the proof is complete.

3.5.4 The strong oracle property: Theorem 2

We begin by partitioning the problem into two pieces:

N‖β̂− β̂O‖2 = N
I∑
i=1

‖β̂i − β̂O;i‖2

= N

I∑
i=1

J∑
i=1

〈β̂− β̂O, ei ⊗ vj〉2 (3.10)

+N

I∑
i=1

∞∑
i=J+1

〈β̂− β̂O, ei ⊗ vj〉2. (3.11)
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Bounding (3.10) follows the similar arguments as in the proof of 1.2, namely

〈β̂− β̂O, ei ⊗ vj〉2 =
λ2

N2θj
〈Σ̂−1
11 K

−1/2(s̃1), ei ⊗ vj〉2 6
λ2

N2θjν
2
1

〈K−1/2(s̃1), ei ⊗ vj〉2.

This gives the bound

N

I∑
i=1

J∑
i=1

〈β̂− β̂O, vj〉2 6
λ2

θJν
2
1N
‖s̃1‖2K 6

λ2NI0

θJν
2
1b
2
N

(1+ oP(1)).

Turning to the second term, we express β̂ using a different form. Notice that
we can write

s̃1 = Λβ̂1,

where Λ is a diagonal matrix of the terms {Nw̃i‖β̂i‖−1K }. We therefore have
that

X>1 K(Y) − (X>1 X1)K(β̂) − λΛβ̂1 = 0

We can re-express this equation as

β̂O − β̂1 + λ(X>1 X1)−1ΛK−1(β̂1) = 0⇒ β̂1 = (I+ λ(X>1 X1)−1ΛK−1)−1β̂O.

The above shrinks (all operators above are positive definite) every coordinate
of β̂O to obtain β̂1 and thus we have that

N

∞∑
j=J+1

∞∑
i=1

〈β̂− β̂O, ei ⊗ vj〉2 6 4N
∞∑

j=J+1

∞∑
i=1

〈β̂O, ei ⊗ vj〉2.

We compute the expected value

E〈β̂O, ei ⊗ vj〉2 = 〈β?, ei ⊗ vj〉2 + (X>1 X1)−1i,i 〈Cvj, vj〉.

This implies that

4N

∞∑
j=J+1

∞∑
i=1

〈β̂O, ei ⊗ vj〉2 =

= OP(1)N

 I∑
i=1

∞∑
j=J+1

〈β?, ei ⊗ vj〉2 +
I∑
i=1

∞∑
j=J+1

(X>1 X1)−1i,i 〈Cvj, vj〉

 .
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Which can be bounded by

OP(1)

[
NI0θ

1+δ
J B2 +

I0
ν1
o(1)

]
,

as long as J→∞, since C is a trace class operator.
To ensure both (3.10) and (3.11) go to zero, we require that J is such that

Nθ1+δJ → 0 and
λ2N

θJb
2
N

→ 0.

So we need to be able to choose J such that

θJ � N−1/(1+δ) and θJ �
λ2N

b2N
.

This is possible if

λ2N

b2N
� N−1/(1+δ) ⇔ λ� bN

N1/2[1+1/(1+δ)]
,

as desired.
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4
M I C R O B I O M E A N D G R O W T H C R U RV E S : S T O O L A N D

B U C C A L M I C R O B I O M E S I N F L U E N C E G R O W T H C U RV E S
O F C H I L D R E N

4.1 introduction

Due to the increasing number of young children already meeting criteria of
overweight, as presented by Ogden et al. (2014), many studies have been
recently carried on to analyze the obesity risk for children. In particular,
several works highlight strong connections between early childhood weight
gain and increased later risk of overweight (Fisch et al. (1975) and Whitaker
et al. (1997)), but no early prevention interventions have been conducted
(Hesketh and Campbell (2010)). The Intervention Nurses Start Infants Grow-
ing on Healthy Trajectories (INSIGHT) of Paul et al. (2014) is a controlled
trial to evaluate the effectiveness of early intervention to prevent rapid in-
fant weight gain. The study follows families from the early pregnancy at
least up to the end of the second year of age of the first born child. Par-
ents are taught how to maintain a responsive feeding and healthy education.
Children are followed in their first 3 years and monitored by nurses four
times in their first year of age and annually by the experts of the clinical re-
search center. Data collected during this follow up are divided into different
categories: “Anthropometrics and Biological Specimens”, “Child behavior”,
“Parenting”, “Maternal Psychosocial Variables and behavior”, “Family Con-
text” and “Background, Demographics and Covariates”. The analysis we
present in this chapter focus on the “Anthropometrics and Biological Spec-
imens” subset of data and in particular on the periodic measurements of
weight and height of children, on their stool and buccal microbiome and
on the saliva microbiome of the mother. Several studies have already been
presented to identify connections between microbiome and overweight con-
ditions (Ley et al. (2007), Kalliomäki et al. (2008), Koleva et al. (2015)); but
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Figure 4.1: Venn Diagram of the microbiome data collected for the 151 children
sample

the novelty of our approach is the consideration of the longitudinal measure
of the growth of children combined with the analysis of the oral microbiome.

This chapter is organized as follow. In Section 4.2 we present the methods
used to preprocess growth curves, as well as the microbiome data, while
in Section 4.3 we introduce apply functional linear models to these data
and finally in Section 4.4 preliminary results and further developments are
presented.

4.2 processing of data

In this Section we present the dataset we use. For each of the n = 1, . . . ,N =

151 children we collect measurements on their growth in the first 2 or 3

years of age and some microbiome data (collected during the 2 years of age
visit). Regarding the growth, we have 6 measurements for the height and
the weight of children in their first 2 years of age and for some of them
(∼ 20%) an additional measurement at around 3 years of age. Giving that
we are considering young children, the BMI is not a suitable measure to
analyze their growth. Thus we consider as response yn(t) the ratio between
weight [kg] and height [m], as proposed by the W.H.O. (1948). Focusing
on the microbiome, for each child we collect the complete microbiome at
least for one of the following samples: the stool of the child (Child Stool
sample), the saliva of the child (Child Buccal sample) and the saliva of the
mother (Mother Buccal sample). The three microbiome sets are collected at
the Genus level, a taxonomic rank above Species and below Family. Given
that not all the children have all the data for the three microbiomes, as we
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can see from Figure 4.1, and since the three microbiomes have intrinsically
different structures, we decide to take the analysis separately for the three
sets.

In the next sections we focus on the preliminary analysis on the growth
measurements (Section 4.2.1) and on the microbiome (Section 4.2.2 and 4.2.3)
to present the data we consider in the further regression analyses.

4.2.1 The growth curves

A classical approach (Ramsay and Silverman (2005)) to define the function
y(t) from a set of observations (tj,yj) is the representation of y(t) as a linear
combination of a known (and well defined) set of functions s1(t), . . . , sP(t),
called basis:

y(t) =

P∑
p=1

γpsp(t),

where P is the dimension of the basis and γp are the coefficients of the linear
combination. The most common choice of basis for non-periodic data (as
in our case of height and weight measurements) is the spline basis, since
it guarantees a sufficient regularity level, maintaining easy expression and
computational efficiency. Classically we focus on the B-spline basis, intro-
duced by Boor (2001) which has the advantage to be well conditioned and
with an explicit recursive formula (Cox de Boor formula of Boor (2001)).

In the particular case of the longitudinal measurement of the growth index,
the setting is very sparse (7 measurements in the first 3 years of age) and
many patients don’t even have the measurements for the last year/years
of follow up. Thus, we decide to tighten the grid of the measurements
and extend the domain of the functions yn(t) with a Functional Principal
Component approach, proposed by Chen et al. (2016) and Yao et al. (2005).
This approach is very efficient to take advantage of the total set of data
aiming to infer the missing points and tighten the originally sparse grid
of measurements. Moreover, given that less than 20% of children have a
measurement at their 3 years of age, we focus only in the first two years
of follow up. A further analysis could be the selection of patients with
measurements on the all 3 years to inspect whether the microbiome changes
its influence in the third year of life of the child. To conclude, once we
have selected the measurements of the weight/height ratio in the first two
years of life, we can define the growth curves as functions of the L2 space
considering the following approach:

111



●

●

●

●
●

0 5 10 15 20 25

6
8

10
12

14

time (month)

gr
ow

th
 in

de
x 

[k
g/

m
]

0 5 10 15 20 25

6
8

10
12

14
16

time (month)

gr
ow

th
 in

de
x 

[k
g/

m
]

●

●

●
● ●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

● ●
●

●

●

●

● ●
●

●

●

●

●

●
●

Definition of growth curves

Figure 4.2: Smoothing of the growth curves. Left panel: an example of smoothing
for a patient, red points are the original measurements, black crosses the tightened
set estimated via FPCA and the solid line is the final smoothed function. Right
panel: a set of 10 patients, the points are the original measurements and the solid
lines are the final curves estimated.

1. apply the Functional Principal Component approach described in Chen
et al. (2016) and Yao et al. (2005) (and implemented in the refund R
package of Huang et al. (2016)) to tighten the grid, estimate points
out of the domain and then improve the smoothing we are going to
perform with splines.

2. apply to this new tightened set of observations the spline approxima-
tion with the definition of the cubic B-spline basis with evenly spaced
knots.

An example of this procedure is shown in the left panel of Figure 4.2 where
the red dark points are the observed values of a randomly selected child,
the black crosses are the points introduced with the FPCA approach (in
step 1.) and the solid line is the final spline approximation. In the right
panel, instead, the original measurements of 10 children are plotted and the
correspondent final splines are drawn.

Finally, the smoothed curves are registered to isolate and remove the
phase variability. The registration is performed with continuous warping
functions hn ∈ W, where W is chosen as the set of spline functions repre-
sented by a 10 elements cubic B-spline basis with evenly knots. Moreover,
to keep the time domain invariant, the hn are bounded at the extremes:
hn(0) = 0 and hn(T) = T ∀n. Specifically, here we align the derivatives of
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Figure 4.3: Registration procedure. Left panel: original growth curves. Central
panel: Warping functions estimated to minimize the distance between the registered
derivatives and the mean derivative. Right panel: final set of registered curves.

the curves and then compute the registered functions. In Figure 4.3 the origi-
nal functions are presented together with the optimal warping functions and
the resulting registered curves.

4.2.2 The α-diversities of the microbiome data

For each of the three sets of microbiome, we collected the measurements of
the abundances of bacteria in the sample. These data are collected at the
Genus level and they consist of I = 1, 055 bacteria. As proposed by Heltshe
and Forrester (1983), the global composition of the microbiome of each child
can play a key role in the microbiome analysis. This global composition
should be analyzed taking into account both the richness of the microbiome,
i.e. the number of different Genera present, and the eveness of the micro-
biome, i.e. the relative abundance of each Genus. The α-diversity measure-
ments are a quantification of this global structure and have been recently
connected to overweight condition. Specifically, diversity of the microbiome
seems to be lower in obese individuals when compared to normal-weight
individuals (see for example Ursell et al. (2012)). To quantify the α-diversity
we here consider the Inverse Simpson Index, as proposed by Simpson (1949).
Given a set of T abundances s1, . . . , sT at the Genus level, saying Q the total
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number of abundances Q =
∑T
t=1 si, the Simpson Index, known also as the

Hunter-Gaston index, is computed as

S =

∑T
t=1 ti(1− ti)

Q(Q− 1)
;

this index takes into account both the richness and the evenness of the abun-
dances. S takes small values in datasets of high diversity, while it assumes
large values in datasets of low diversities and this counterintuitive character-
istics leads to the introduction of new α-diversity indices. These are obtained
as transformations of S, but are characterized by an increasing value, follow-
ing the higher diversity. For example, we can introduce the Inverse Simpson
Index 1/S, or the Gini-Simpson index 1− S. In the further analyses we will
focus on the Inverse Simpson Index

α-diversity =
1

S

that has 1 as lowest value and the higher the index is, the greater the diversity
is.

4.2.3 The microbiome abundances

Beside considering the global composition of the abundances of the Inverse
Simpson Index, we can also present analyses on the whole set of Genus
level abundances. Before considering them in the next regression steps, we
present a new pipeline to treat this original set, merging the abundances to
remove their sparse and correlated structure. This procedure aims to identify
and treat the sparsity structure of the abundances (thicking procedure) and
their correlations (liaising procedure). These two steps are carried on taking
into account the Phylogenetic structure of the Genera collected.

The analysis here is referred to the Child Buccal sample, but the same
pipeline has been applied unchanged also to the other two samples (de-
tails are presented in Supplementary Figures: Supplementary Figure S4.3,
S4.4 for the Child Stool sample and Supplementary Figure S4.5, S4.6 for the
Mother Buccal sample).
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Figure 4.4: Boxpolot of 10 abundances for the Child Buccal sample. The red line is
the threshold imposed for the definition of negligible abundances. In this plot only
Microbacterium is considered as relevant. All the other samples are present in a
negligible proportion of data.

The thicking procedure

From a visual inspection of data, we notice that many of the collected abun-
dances have negligible level (close to 0 for many children); thus forcing us
to treat these data separately. We consider a level as negligible if the abun-
dance assumes a small value (lower than a fixed threshold -e.g. 5-) for more
than 90% of the samples. In Figure 4.4 an example of the distribution of
10 abundances in the Child Buccal sample is shown. In this subset just the
Microbacterium is considered as relevant and kept for the following analysis.
In Figure 4.5 the Phylogeny tree of the 1, 055 bacteria is shown; red points
indicate the negligible abundances, while green points are the non negligible
ones. The proportion of negligible abundances is very high ∼ 0.89 (∼ 0.87 for
the Child Stool sample and ∼ 0.88 for the Mother Buccal); then a method to
remove this sparsity structure and then thick the sample is necessary.

Specifically, considering the Phylogenic informations we have on the gen-
era of the bacteria, we group the non significant abundances following their
Phylogenetic structure: the abundances are summed together considering
the Phylogenetic relationship. Basically, the merging procedure consists of
two steps: the first influences only the deeper level of the tree, trying to
merge, i.e. sum, all possible brothers without affecting the other levels of
the Phylogeny; the second step affects also the deeper levels allowing the
possibility of merging bacteria even if their are connected with branches of
length two or three or don’t belong to the deeper level of the tree.
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Figure 4.5: Phylogeny of the bacteria recorded for the Child Buccal sample. Red
points are the bacteria to be neglected and green to be kept. As we can notice from
the prevalence of red points, only 11% of abundances have non negligible value.
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In Figure 4.6 an example of the thicking procedure on a subtree extracted
from the original Phylogeny with the Child Buccal abundances is shown. In
Table 4.1 a detail of the number of bacteria (or sets of bacteria) present in the
three samples after the thicking procedure is presented.

The liaising procedure

Once we have the tree correspondent to the thicken abundances, we need to
consider their correlation structure. Computing their pairwise correlation
we notice that some of the abundances have high correlation (yellow points
of Supplementary Figure S4.1 have correlation higher than 0.7) and these
abundances are mainly close in the Phylogeny. Then, we consider to average
the highly correlated abundances which are also close in the Phylogeny. We
propose an iterative procedure that follows the Phylogenetic structure of the
abundances and whether it detects an high correlated pair of abundances, it
merges them computing their average. As for the previous merging in Table
4.1, the size of the samples after the liaising procedure is shown. To maintain
the possibility of comparing the abundances, after each averaging step abun-
dances are standardized. In Supplementary Figure S4.2 the final correlation
plot is shown; the number of high correlated abundances is significantly de-
creased, even if some high correlated pairs are still present, but not directly
connected in the Phylogeny. Computing the minimum and maximum eigen-
values σ of the correlation matrices obtained, we get σmin = 5.3 10−5 and
σmax = 17.29 for the Child Buccal sample, σmin = 1.3 10−4 and σmax = 11.86
for the Child Stool sample and σmin = 1.1 10−4 and σmax = 16.69 for the
Mother Buccal sample. These results allow this new dataset to be used as
set of predictors for the next regression analyses.

Finally, in Figure 4.7 the final tree for the Child Buccal sample after the
thicking and liaising procedure is shown and in Annex Table 1 the ID codifi-
cation of the abundances or of the groups obtained after the merging proce-
dure is presented.

4.3 the influence of microbiome on the growth of children

In the next sections we present two separate analyses on the influence of the
microbiome on the growth curves. Specifically, we refer to the influence of
the α-diversities (Section 4.3.1), but also to the influence of the whole set of
merged Genus level abundances (Section 4.3.2) proposing some regression
models.

117
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(a) Original subtree.

Bacteroides+BF311+X5 7N15

Candidatus Azobacteroides

Dysgonomonas

Paludibacter

Parabacteroides

Porphyromonas

Tannerella

Prevotella

Rikenella+PW3+Blvii28+AF12

Odoribacter+Butyricimonas

Paraprevotella+CF231+YRC22

[Prevotella]

BE24

(b) Subtree after the first merging step.

Bacteroides+BF311+X5 7N15

Candidatus Azobacteroides

Dysgonomonas

Paludibacter

Parabacteroides

Porphyromonas

Tannerella

Prevotella+Rikenella+PW3+Blvii28+AF12

Odoribacter+Butyricimonas+BE24

Paraprevotella+CF231+YRC22

[Prevotella]

(c) Subtree after the second merging step.

Figure 4.6: thicking procedure of the subtree of panel (A). Red names correspond to
negligible abundances in the Child Buccal sample; green names to non negligible.
In panels (B) and (C) the two thicking steps are presented and abundances summed
are named adding a + to connect the two original abundances. At the end of the
thicking procedure all the abundances have non negligible level, as shown by the
green names in panel (C).
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Figure 4.7: Phylogenetic tree for the Child Buccal sample, after the application of
the thicking and liaising procedure. Names and group IDs are listed in Annex Table
1.

Sample
Child Buccal Child Stool Mother Buccal

Initial non negligible Abundances 118 134 131

After thicking procedure 137 149 147

After liaising procedure 106 103 108

Table 4.1: Number of abundances in the three samples. Specifically the initial num-
ber of non negligible abundances, the number of abundances after the thicking pro-
cedure and the final number after the liaising procedure are shown.
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4.3.1 The influence of α-diversities on the growth curves

As a preliminary analysis we consider children at 2 years of age and we
classify them in terms of growth index as below or above average. We focus
on this specific time point since it is when the microbiome samples have
been collected. We aim to identify whether the α-diversities are connected
to the growth condition at this specific point. In Figure 4.8 we present the
box plot of the α-diversities dividing children as above and below average
at 2 years.
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Figure 4.8: Boxplot of the α-diversities in above and below average 2 years aged
children for the Child Buccal, Child Stool and Mother Buccal dataset.
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Testing the differences in the averages of the two populations (two-sided
z-tests) we obtain high significance to claim that the average of the Child
Buccal α-diversity is different in the two populations (p-value 0.0136), while
no evidence confirms this difference for the Child Stool and Mother Buccal
sample (p-values 0.2827 and 0.5904). Given the evidence for the influence of
the α-diversities to the growth of children at this specific time point, we now
aim to inspect their time-dependent influence. We don’t focus any more on
the measurements of the growth index at 2 years of age, but on their longi-
tudinal dimension. We apply the Function-on-Linear regression estimation
proposed by Ramsay and Silverman (2005), with the penalty term set to 0,
to quantify the time-dependent effect of the α-diversities on growth curves.
In Figure 4.9 we present the estimation of the regression coefficients for the
three separate analyses. The dotted curves indicate plus and minus 2 esti-
mated standard errors for the estimation. There is high evidence to confirm
that the α-diversity of the Child Buccal dataset is related to the growth of
children: an increase of the diversity reflects a growth index below aver-
age during the whole time domain. Moreover, computing on this sample
the p-value to test the significancy of the estimated coefficients with the
L2 norm-test presented by Horváth and Kokoszka (2012), we obtain 0.005.
This confirms the connection between the Child Buccal α-diversity and the
growth curves of children. Regarding the Child Stool and Mother Buccal
sample, instead, the two bands include the value 0 for all time domain, and
the p-values are respectively, 0.73 and 0.28; then we cannot prove the con-
nection between growth and this two samples of α-diversities. However, the
trends confirm the visual inspection of the box-plots, with a positive effect of
the Child Stool α-diversity, i.e. an increasing diversity is connected to above
average children, and a negative effect of Mother Buccal α-diversity, i.e. an
increasing diversity is connected to below average children.

4.3.2 The influence of abundances on the growth curves

In this section we apply the FLAME method introduced in Chapter 3 to iso-
late the influence of the Genus level abundances on the growth curves. The
three microbiomes are analyzed separately and the three regression results
are presented in Figure 4.11.

Detailing the procedure, in Figure 4.10 the growth curves are presented in
their original registered version and once the point-wise mean has been sub-
tracted; we apply regression to de-trended curves to detect bacteria which
cause an increment/decrement of the growth index of children with respect
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Figure 4.9: Estimation of the functional coefficients associated to the three α-
diversity samples performed as presented by Ramsay and Silverman (2005). Bands
are computed pointwise as mean ±2 standard deviation. To improve the visual rep-
resentation of the result, plots are associated to an estimation with the smoothing
regression parameter λ = 1.

to the average. FLAME is run with the Sobolev kernel and the smoothing
parameter σ = 8. The grid for λ is a 200 points grid (or 500 for the Child
Buccal microbiome) going from the λmax that sets all the coefficients to zero,
as it is defined in the original method, up to rλ · λmax, with rλ = 0.001. The
plot of the final regression coefficients estimated by FLAME for the three
microbiome samples are shown in Figure 4.11.
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Figure 4.10: Growth curves. Left panel: original data after the smoothing procedure
of Section 4.2.1. Right panel: residual from the point-wise mean.

To validate the regression analysis we compute a R2 index to highlight the
proportion of variability explained by the model:

R2 = 1−

∑N
n=1 ‖yn − ŷn‖2L2∑N
n=1 ‖yn − ȳN‖2L2

where y1, . . . ,yN ∈H are the growth curves, ŷ1, . . . , ŷN ∈H are the curves
fitted with FLAME and ȳN is the empirical mean. We obtain R2 = 0.11 for
the Child Buccal sample; R2 = 0.32 for the Child Stool sample and R2 = 0.08
for the Mother Buccal sample and these results confirm the possibility of
explaining a relevant part of the variability of the growth curves with the
microbiome. To compute an unbiased version of the R2 (R2cv), i.e. not af-
fected by the use of the same set of data for both the estimation and the
computation of the error, we divided the dataset into two balanced parti-
tions and used one part as training set to estimate the model and the other
as test set. Defining the first half of the dataset as the training set and the
second half as the test set, we get for the Child Stool sample R2cv = 0.055
and R2cv = 0.013 for the Child Buccal sample. Regarding the Mother Buccal
sample, instead, the introduction of the predictors does not improve the esti-
mation obtained with the simple average in the cross-validated setting. This
preliminary result confirms that both the Stool and the Buccal microbiome
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Figure 4.11: FLAME estimation for the Child Buccal, Child Stool and Mother Buccal
dataset. Only significant coefficients detected by FLAME are plotted.

of the Child, if analyzed as the global set of abundances at the Genus level,
influence the growth curves of children.

4.4 discussion

Focusing on the Child Stool microbiome, many articles have already high-
lighted the relationship between the composition of the microbiome and the
predisposition to obesity. Turnbaugh et al. (2006), for example, focus on
the Phylum Bacteroidetes and the Phylum Firmicutes showing how a vari-
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ation of the abundances of these Phyla in the stool microbiome of adults
can be related to obesity. Specifically, they conclude that an increasing abun-
dance of the Firmicutes bacteria, related to a decreasing abundance of the
Bacteroidetes Phylum, can be related to obesity. However, the intestinal mi-
crobiome of the first years of age of children is very different from the one of
the adults and few studies focused on these data (Arrieta et al. (2014)). More-
over, the study we are introducing here is focused on the abundances at the
Genus level, not at the Phylum (or at Class) level as in the main paper on
the effects of the microbiome on the phenotypical expression of individuals.

In this preliminary analysis we detect a relationship between the micro-
biome and the overweight condition of children: the presence above the av-
erage of a set of 5 bacteria of the Flavobacteriales Class of the Bacteroidetes
is related to a ratio weight/height above average. Recent studies have con-
firmed that the presence of the Phylum of Bacteroidetes in the microbiome
stool of children can be related to the high fiber intake that maximizes the
metabolic energy extraction from ingested plant polysaccharides. Focusing
on the Firmicutes, instead, literature highlight that the increasing level of
this Phylum of bacteria in adults is related to an increasing obesity level. In
the analysis we carry on here we notice that in children some Genera are
related to an increase of the ratio weight/height, but some of them (Dorea,
Dethiosulfatibacter and Helcococus) are related to a weight ratio under the
average. Finally, the Atopobium Genus, beloging to the Actinobacteria Phy-
lum, is linked to an obesity level greater than average. This bacteria, like the
Bacteroidetes Phylum, is related to the digestion of fibers and polysaccha-
rides.

In this work we analyze also the oral microbiome of both child and mum,
trying to detect the set of bacteria in the saliva microbiome which influence
the growth of children. As we presented before, in literature many analyses
have been conducted to detect the influence of the gut microbiome in the
growth of children, but very few tried to link the composition of the oral
microbiome to the growth of individuals. In this chapter we report some
results to define the connection between oral microbiome and the growth
index of children in their first years. A first relevant aspect is detected from
the α-diversity analysis: we notice that an increasing diversity in the micro-
biome is connected to a under average growth index throughout the whole
time domain of interest, and significantly affects the growth of children in
the second year of life. A second aspect derives from the analyses of the in-
fluence of the Genus abundances: the preliminary result we have presented
shows that both in Mother and Child microbiome, a presence above average
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of the Firmicutes Phylum group Anaerovibrio + Anaeromusa + Acidaminococ-
cus + BSV43 is connected to a reduction of the growth index throughout the
considered time domain. On the contrary, regarding the Child microbiome,
the presence of the Odornobacter Genus, belonging to the Bacteroidetes Phy-
lum, produces an increment in the growth index.

The analyses we have presented in this chapter are the first preliminary
results from the INSIGHT study. Nevertheless, we still have to deep-dive on
this in order to include many further details, as for example the diet infor-
mations we have collected during the follow-up of patients or the antibiotic
exposure in early life. Moreover, we are planning to analyze metabolomics
data from the Nuclear Magnetic Resonance spectroscopy analysis (Bernstein
et al. (1957)) of the Stool sample to enrich our analysis.
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4.5 supplementary material
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Supplementary Figure S 4.1: Original correlation structure for the abundances of
the Child Buccal sample. Names of the abundances are omitted and syntetized with
numberic IDs; for the correspondance of the IDs with the names see Annex Table
1. We can notice that some abundances close in the Phylogeny have correlation
higher than the threshold and then a merging procedure is needed to make the
linear regression model applicable.
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Supplementary Figure S 4.2: Final correlation structure for the abundances. Aver-
aged samples are named with the original IDs connected by &. After the merging
procedure the majority of the abundances with correlations above the threshold
have been removed. Some still have correlation above 0.7, but cannot be merged
since they are not directly connected on the tree.
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Supplementary Figure S 4.3: Original correlation structure for the abundances of
the Child Stool sample. Names of the abundances are omitted and synthesized with
numerical IDs; for the correspondence of the IDs with the names see Annex Table
2. Yellow points represent the correlations above the threshold of 0.7.
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Supplementary Figure S 4.4: Final correlation structure for the abundances of the
Child Stool sample. Averaged samples are named with the original IDs connected
by &. As for the Child Buccal sample there are still some abundances with correla-
tion higher than 0.7, but are not merges since they are not close in the Phylogeny.
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Supplementary Figure S 4.5: Original correlation structure for the abundances of
the Mother Buccal sample. Names of the abundances are omitted and synthesize
with numerical IDs; for the correspondence of the IDs with the names see Annex Ta-
ble 3. As for the previous cases yellow points represent high correlated abundaces.
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Supplementary Figure S 4.6: Final correlation structure for the abundances of the
Mother Buccal sample. Averaged samples are named with the original IDs con-
nected by &. Still there are some high correlated abundances which are not merged
since they are not Phylogenetically directly linked.
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Figure 4.7: Phylogenetic tree for the Child Stool sample, after the application of the
thicking and liaising procedure. Names and group IDs are listed in Annex Table 2.
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C O N C L U S I O N S

In this work we have inspected some genomical and, more in general, biolog-
ical applications with the advanced statistical techniques of functional data
analysis, trying to combine the high dimensional setting of the genomic area
with the complex structure of functional data. Specifically, we have provided
new and advanced, but still computationally efficient, methods and we have
converted them into user friendly and publicly available codes to allow other
scientists to employ them, but also make fruitful improvements. Temporal
clustering, FunChIP and FLAME have induced several biological insights, al-
lowing to identify slower and faster decliners within Alzheimer’s sufferers,
or to relate ChIP-seq profiles to genomic locations and motif detection, or to
detect a new SNP connected to lung underdevelopment of children or even
to identify some Genus level abundances of the stool and buccal microbiome
affecting the child’s growth. However, many further developments can be
carried on, both from the application point of view and from the statistical
methodology aspect.

Focusing on further applications, we will investigate some developments
for FunChIP, for Temporal clustering and for the microbiome project.
As for FunChIP, we aim to apply it not only to profiles of transcription fac-
tors, but also to new data like histone marks that are deposited on small
regions of the genome, as promoters or enhancers (i.e. the histone marks
H3K4me1, H3K4me3 or H3K27ac). Specifically, we want to inspect the
presence of different shapes and their biological connections. Moreover,
we aim to better investigate the connection between genomic locations and
peak shapes, for example downsampling the MycER0h sample, to identify
whether the shape of peaks remains invariant as well as the classification of
genomic regions.
Focusing on Temporal Clustering, instead, we aim to generalize this method
to other measures of cognitive ability, identifying the proper parametrization
of these new longitudinal measurements.
As regards the microbiome application of the INSIGHT study, we are going
to inspect, beside the microbiome effects, the influence of other covariates (re-
lated for example to ”Child behavior”, ”Parenting”, and ”Family context”)
on the growth curves. These additional covariates can be treated indepen-
dently from the the microbiome sets, or we can generalize FLAME to deal
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with the mixed effects on the functional outcome.
Finally as regards the FLAME method, we aim to focus on many more ap-
plications, not only related to the biological area, but also to finance or geo-
science, fileds characterized by high dimensionality, sparsity and complexity
of data, as well as genomic. In fact, data collected from finance and geo-
science are often very rough, but underlying parameters are believed to be
very smooth, making FLAME an excellent candidate for the analysis.

Focusing on the methodological improvements, instead, we are planning
to inspect more the LASSO penalty term of FLAME. For example, we can
consider to mix the FLAME penalty with the classical Functional LASSO
penalty, to identify whether the F-LASSO can control the shrinkage and a
RKHS penalty can control the smoothing. Or, more in general, we can con-
sider the possibility of introducing an elastic-net penalty to combine the
LASSO and the ridge. Specifically, we aim to identify how these variations
can affect both parameter selection and estimation.

To conclude, relevant insights on the genomic field have been uncovered.
Nevertheless, the same methodologies could be applied in other areas of
genomic, as well as in other fields, which show data with similar character-
istics. At the same time, utilized methods could be further probed to deeply
investigate their theoretical framework and their computational efficiency.



A P P E N D I C E S
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A
F U N C H I P : A F U N C T I O N A L D ATA A N A LY S I S

A P P R O A C H T O C L U S T E R C H I P - S E Q P E A K S A C C O R D I N G
T O T H E I R S H A P E S

library(FunChIP)

a.1 introduction

The FunChIP package provides a set of methods for the GRanges class of the
package GenomicRanges to cluster ChIP-Seq peaks according to their shapes,
starting from a bam file containing the aligned reads and a GRanges object
with the corresponding enriched regions.

a.2 input and preprocessing

ChIP-Seq enriched regions are provided by the user in a GRanges object
GR. The user must provide the bam file containing the reads aligned on the
positive and negative strands of the DNA. From the bam file we can compute,
for each region of the GRanges (let N be the total number of regions), the
base-level coverage separately for positive and negative reads. These two
count vectors are used to estimate the distance dpn between positive and
negative reads and then the total length of the fragments of the ChIP-Seq
experiment d. In particular, we assume that the positive and negative counts
measure the same signal, shifted by dpn, as they are computed from the
two ends of the sequencing fragments. The global length of the fragment is
the sum between the length of the reads of the bam file, r1, and the distance
between the positive and negative coverage dpn

d = dpn + r.

1 If in the bam file multiple length are present, r is estimated as the average length.
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The function compute fragments length computes, from the GRanges object
and the bam file, the estimated length of the fragments. Given a range for
dpn: [dmin;dmax], the optimum distance dpn is

dpn = argminδ∈[dmin:dmax]

N∑
n=1

D(fn+, fδn−),

where fn+ is the positive coverage function of the n-th region, and fδn− is
the negative coverage of the n th region, shifted by δ. The distance D is the
square of the L2 distance between the coverages, normalized by the width
of the region. The definition of the L2 distance is detailed in Section A.4.

# load the GRanges object associated to the ChIP -Seq experiment

on the transcription factor c-Myc in murine cells

data(GR100)

# name of the .bam file (the

# .bam.bai index file must also be present)

bamf <- system.file("extdata", "test.bam",

package="FunChIP", mustWork=TRUE)

# compute d

d <- compute_fragments_length(GR , bamf , min.d = 0, max.d = 300)

> estimated distance positive - negative read 148

> estimated read length 51

d

> 199

In Figure A.1 the distance function is shown varying the parameter δ, and
the minimum value dpn is computed.

Once we have correctly identified the fragment length we can compute the
final coverage function to obtain the shape of the peaks. The pileup peak

method for the GRanges class uses the bam file to compute the base-level cov-
erage on these regions, once the reads are extended up to their final length
d. pileup peak adds to the GRanges a counts metadata column, containing
for each region a vector with length equal to the width of the region storing
the coverage function.

# each peak of the GRanges object is associated to the

correspondent coverage function

peaks <- pileup_peak(GR , bamf , d = d)
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Figure A.1: Identification of d: optimal value of dpn is shown. It is the minimum
of the global distance function.

Additional information can be found in the help page of the pileup peak

method.

a.3 smoothing

The counts metadata is approximated by a combination of splines to guaran-
tee the smoothness and regularity needed for further analysis, as described
in the following Sections.
The preprocessing steps carried out in the smooth peak method are the fol-
lowing:

• Removal of the background and extension. In ChIP-Seq experiments, peaks
may have an additive noisy background, and the removal of this back-
ground is mandatory to compare different peaks. The background is
estimated as a constant value ”raising” the peak and equal to the mini-
mum value the coverage assumes. Consequently, once the background
has been removed, each peak has zero as minimum value, thus allow-
ing the peak to be indefinitely extended with zeros, if necessary. In
Section A.4, how this choice affects the algorithm will be discussed.

• Smoothing. In order to be regular enough to computed derivatives, a
peak has to be transformed in a suitable functional object, as described
in Section A.4. The smoothing of the count vector c is performed
through the projection of c on a cubic B-spline basis Φ = {φ1, . . . φK}
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with a penalization on the second derivative as proposed by Ramsay
and Silverman (2005). The result is a spline approximation of the data,
which is continuous on the whole domain, together with its first order
derivatives. Moreover, the penalization on the second derivative allows
to control the global regularity of the function avoiding over-fitting
and a consequent noisy spline definition. The spline approximation
s =
∑K
k=1 θkφk of the count vector c = {cj} is defined minimizing

S(λ) =

n∑
j=1

[
cj − s(xj)

]2
+ λ

∫[
s ′′(x)

]2
dx,

with xj being the relative genomic coordinate the counts. The multi-
plying coefficient λ quantifies the penalization on the second derivative
and is chosen through the Generalized Cross Validation criteria. For
each peak i the GCVi index is computed with a leave-one-out cross
validation

GCVi =

(
n

n− df(λ)

)(
SSEi

n− df(λ)

)
and then it is summed on the whole data set to obtain the global GCV .
The number of degrees of freedom df(λ) is automatically computed
from the definition of the basis Φ.
The error SSEi can be computed either on the data (SSE0i ) or on the
derivatives (SSE1i ), to control the regularity of the function or the regu-
larity of the derivatives, respectively:

SSE0i =

√√√√ n∑
j=1

(
cj − s(xj)

)2 or SSE1i =

√√√√n−1∑
j=1

(
∇cj − s ′(xj)

)2,

with ∇cj being the finite-difference approximation of the derivative
of the counts vector c for the data i: c = c(i), while s ′(xi) is the
evaluation of the first derivative s ′ = s ′(i) on the genomic coordinates.
For further details on the spline definition see the spline function of
the fda package Ramsay et al. (2014).

• Scaling of the peaks. This optional preprocessing step makes all the
curves having the same width and area. In particular all the abscissa
grid are scaled to become equal to the smallest grid throughout the
data, while y−values are scaled to make areas of all the curves equal
to 1.
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Figure A.2: The Generalized Cross Validation index computed on data (left), and
on the derivatives (right), as a function of λ.

The smooth peak method approximates the counts metadata by removing
the background, computing the spline and potentially defining the scaled
approximation. Focusing on the spline approximation, smooth peak auto-
matically chooses the optimal λ parameter according to the GCV criteria;
the user can decide whether to consider the data or the derivatives to com-
pute the SSE.

# the method smooth_peak removes the background and defines the

spline approximation from the previously computed peaks with

lambda estimated from the GCV on derivatives. The method

spans a non -uniform grid for lambda from 10^-4 to 10^12. (

the grid is uniform for log10(lambda) )

peaks.smooth <- smooth_peak(peaks , lambda = 10^( -4:12),

subsample.data = 50,

GCV.derivatives = TRUE ,

plot.GCV = TRUE , rescale = FALSE )

In Figure A.2, the plot of the GCV for both data and derivatives is shown.
From this Figure we see that the optimum value of λ, which minimizes the
GCV for the derivatives, is also associated to a small value of the GCV for
the data thus supporting the automatic choice.

# the automatic choice is lambda = 10^6

peaks.smooth <- smooth_peak(peaks , lambda = 10^6,

plot.GCV = FALSE)

# mantaining this choice of lambda smooth_peak can also define

the scaled approximation of the spline
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peaks.smooth.scaled <- smooth_peak(peaks , lambda = 10^6,

plot.GCV = FALSE , rescale = TRUE)

Now the GRanges object contains, besides counts, 5 new metadata columns
with the spline approximation evaluated on the base-level grid, its deriva-
tives, the width of the spline and the new starting and ending points (see
Figure A.8). For a more detailed description of the metadata columns, see
the help page of the smooth peak method.

With the introduction of the smoothing, counts at the edges of the peak are
connected with regularity to 0, and therefore new values different from zeros
may be introduced. In order to maintain regularity, the grid is extended up
to the new boundaries.

Adding to smooth peak the option rescale = TRUE the method, beside
the 5 metadata columns previously introduced, returns 2 more metadata
columns with the scaled approximation of the spline and its derivatives.

Once the spline approximation is defined, the summit of the smoothed
peak (or even of the scaled peak), i.e. of its spline approximation, can be
detected. The summit will be used to initialize the peak alignment proce-
dure, described in Section A.4, and it can either be a user-defined parameter,
stored in a vector of the same length of the GR, or automatically computed
as the maximum height of the spline. The summit is stored in the new
metadata column summit spline. If the rescale option is set to TRUE the
summit of the scaled approximation is also returned in the metadata colum
summit spline rescaled.

# peaks.summit identifies the maximum point of the smoothed peaks

peaks.summit <- summit_peak(peaks.smooth)

# peaks.summit can identify also the maximum point of the scaled

approximation

peaks.summit.scaled <- summit_peak(peaks.smooth.scaled ,

rescale = TRUE)

a.4 the k-mean alignment algorithm and the cluster peak

method

The k-mean alignment algorithm is an efficient method to classify functional
data allowing for general transformation of abscissae Sangalli et al. (2010);
this general method is implemented in the package Parodi et al. (2015) and
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Figure A.3: Alignment procedure. Representation of two smoothed peaks. In the
left panel they are not aligned, while in the right panel they are aligned with an
integer shift.

various applications to real dataset are introduced in Sangalli et al. (2014),
Bernardi et al. (2014), Patriarca et al. (2014).

In particular, given

• a set of curves s1, . . . , sn,

• the number of clusters K,

• a distance function d(si, sj) between two curves si and sj, as for exam-
ple the integral of the difference si − sj,

• a family of warping functions W to transform the abscissae of the
curves and therefore align the peaks. Generally, W is the set of shifts
or dilations or affine transformations (shift + dilation),

the algorithm, is an iterative procedure to split the curves into K clusters. The
introduction of the warping function h ∈W allows each curve to be shifted,
dilated, or both, to define the minimum distance between curves. The new
curve s ◦ h has the same values of s, but its abscissa grid is modified.

For example, in Figure A.3 two peaks are presented: in the left panel, they
are not aligned, while the right panel shows the effects of alignment; the
transformation of the abscissae (shift transformation) makes the two peaks
more similar, and the distance d is not anymore affected by artificial phase
distance. The code generating Figure A.3 calls cluster peak and plot peak,
which are described in Section A.4.2 and Section A.5.

145



For the specific case of ChIP-Seq data, the admitted warping functions for
the k-mean alignment algorithm (in the cluster peak method), are integer
shifts:

W = {h : h(t) = t+ q with q ∈ Z} . (A.1)

In other words, with this choice, peaks can be shifted by integer values in
the alignment procedure of the algorithm.

In the cluster peak method the distance between two curves s1 and s2 is
defined as

d(s1, s2) = (1−α)d0(s1, s2) +αwd1(s1, s2) =

= (1−α) ‖se1 − se2‖p +αw ‖(se1) ′ − (se2)
′‖p, (A.2)

where

• ‖f‖p is the p norm of f. In particular, for p = 0, ‖ · ‖p is the L∞ norm

‖f‖0 = ‖f‖L∞ = max
x∈U

|f(x)|,

with U being the domain of f.
For p = 1, ‖ · ‖p is the L1 norm

‖f‖1 = ‖f‖L1 =
∫
U

|f(x)|dx.

And for p = 2, ‖ · ‖p is the L2 norm

‖f‖2 = ‖f‖L2 =
∫
U

(f(x))2 dx.

• se1 and se2 are the functions s1 and s2 extended with zeros where not
defined, after their backgrounds have been removed (see Section A.2).
The distance function is computed on the union of the domains of s1
and s2 (U); s1 and s2 need to be extended to cover the whole U.

• α ∈ [0, 1] is a coefficient tuning the contributions of the norm of the
data and the norm of the derivatives. If α = 0, the distance is computed
on the data, while if α = 1 it is based on the derivatives. Intermediate
values balance these two contributions: increasing the relevance given
to the derivatives emphasizes the shapes of the peaks, while data are
more related to the height.
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• w is a weight coefficient, essential to make the norm of the data and of
the derivatives comparable. It can be user defined or computed inside
the cluster peak method. A suggestion for computing the weight w
is given in Section A.4.1.

a.4.1 Definition of weight in the distance function

If not provided, the method cluster peak defines w as

w = median
(
d0(si, sj)
d1(si, sj)

)
where d0(i, j) = ‖sei − sej ‖p and d1(i, j) = ‖(se1) ′ − (se2)

′‖p. These matrices
can be automatically computed with the distance peak function.

# compute the weight from the first 10 peaks

dist_matrix <- distance_peak(peaks.summit)

# dist matrix contains the two matrices d_0(i,j) and d_1(i,j),

used to compute w

ratio_norm <- dist_matrix$dist_matrix_d0 /

dist_matrix$dist_matrix_d1
ratio_norm_upper_tri <- ratio_norm[upper.tri(ratio_norm)]

# suggestion: use the median as weight

w <- median(ratio_norm_upper_tri)

a.4.2 The cluster peak method

The two main characteristics of the k-mean alignment algorithm used in
FunChIP are the distance function d (defined in Equation (A.2)), used to
compute the distance between curves, and the set of warping functions W

(defined in Equation (A.1)) considered for the alignment. The cluster peak

method applies the k-mean alignment algorithm with these specifications
to the set of peaks stored in the GRanges object. In particular, the parame-
ters weight2, alpha and p define the distance used in the algorithm, while
t.max sets the maximum shift of each peak in each iteration (in this par-
ticular case, q of Equation (A.1) does not vary in the whole Z but q ∈

2 weight can be also set to NULL and it will be automatically computed as specified in Section
A.4.1. To save computational time, it is generally computed on a random sub-sample of data,
whose size is set by the subsample.weight parameter.
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{−t.max · |U|, . . . ,+t.max · |U|}, with |U| being the maximum width of the
spline approximation of the peaks.

Given a GRanges GR containing the metadata columns computed from the
smooth peak method, cluster peak applies the k-mean alignment algorithm
for all the values of k between 1 and n.clust (parameter of the function).

The algorithm can be run in parallel, setting to TRUE the parallel argu-
ment of the method and providing the number of cores num.cores. With
these settings, the different applications of the algorithm, corresponding to
different numbers of clusters, are executed in parallel.

As detailed in the help, the cluster peak method has 2 outputs:

• The GRanges object, updated with new metadata columns associated to
the classification. In particular, in the general case of classification with
and without alignment, columns with information on the clustering of
the peaks (cluster shift and cluster NOshift), the corresponding
shifts (coef shift) and the distances from the template of the clusters
(dist shift and dist NOshift) are added.

• The graph of the global distance within clusters3 as a function of the
number of clusters (if plot.graph.k = TRUE). This plot can be used
to identify the optimal number of clusters of the partition of the data
set and the effect of the alignment procedure. In particular, if shift =

NULL, the algorithm is run both with and without alignment and two
trend lines are plotted: the black line corresponds to the global dis-
tance without the shift, and the red line corresponds to the distance
obtained with alignment. If shift is set to TRUE or FALSE, just one type
of algorithm is run and the correspondent curve is plotted. For each
trend line, this graph allows the identification of the optimal value of
the number of clusters: for this value, the distance significantly de-
creases with respect to the lower values of k, and negligibly increases
with respect to higher values of k (elbow in the line). The gap between
the red and the black line, instead, shows the decrease of the distance
when the shift is introduced.

It is relevant to point out that the algorithm can be run both on the original
data and on the scaled peaks, depending on the focus of the analysis. The
logic paramter rescale allows the user to choose.

# classification of the smooth peaks in different numbers of

clusters , from 1 ( no distinction , only shift ) to 6.

3 sum over all the peaks of the distance of each peak from the corresponding template.
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Figure A.4: Global distance within clusters. Global distance of the peaks form the
corresponding template, as a function of the number of clusters k. In the left panel
the graph for the original spline approximation, while in the right panel restuls are
relative to the scaled approximation.

# here the analysis is run on the spline approximation without

scaling

peaks.cluster <- cluster_peak(peaks.summit , parallel = FALSE ,

seeds =1:6, n.clust = 1:6,

shift = NULL , weight = 1,

alpha = 1, p = 2,

t.max = 2, plot.graph.k = TRUE ,

verbose = FALSE)

# here the analysis is run on the spline approximation with

scaling

peaks.cluster.scaled <- cluster_peak(peaks.summit.scaled ,

parallel = FALSE ,

seeds =1:6, n.clust = 1:6,

shift = NULL , weight = 1,

alpha = 1, p = 2, t.max = 2,

plot.graph.k = TRUE ,

verbose = FALSE , rescale = TRUE)

The particular case of k-mean alignment with k = 1 clusters can be used to
highlight the effects of the alignment of the peaks: no grouping is performed,
just the shifts are computed. Therefore, the decrease of the global distance
is solely due to a change of the abscissae of the functions, as Figure A.3
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shows. Moreover, focusing for exemple on the first panel of Figure A.4, we
can deduce that, for this case

• the alignment can effectively decrease the distance, for exemple for
k = 6, the gap between red and black line is significant;

• the alignment may change the optimal k: looking at the black line, one
would have chosen k = 4, while the red line suggests k = 3 is the best
choice. With the introduction of the shifts, data which are originally
different becomes more similar and therefore one less cluster is needed;
it has to be noted that the distance obtained with k = 3 and alignment
is very similar to the one obtained with k = 4 and no alignment.

Therefore, for this case, one possible classification is the one associated
to k = 3 with shift. On the contray for the scaled peaks the value of k we
can identify as crucial is k = 2 and shift is relevant since it reduces a lot the
global distance. The results for this specific number of clusters can then be
selected with the choose k method:

# select the results for k = 3 with alignment

peaks.classified.short <- choose_k(peaks.cluster , k = 3,

shift = TRUE , cleaning = TRUE)

peaks.classified.extended <- choose_k(peaks.cluster , k = 3,

shift = TRUE , cleaning = FALSE)

# and for the scaled version for k =2 and alignment

peaks.classified.scaled.short <- choose_k(peaks.cluster.scaled ,

k = 2, shift = TRUE ,

cleaning = TRUE)

peaks.classified.scaled.extended <-choose_k(peaks.cluster.scaled ,

k = 2, shift = TRUE ,

cleaning = FALSE)

The choose k method allows, respectively, to remove all the metadata
columns computed by FunChIP and obtain a GRanges equivalent to the initial
one, with an extra the metadata column cluster containing the classification
labels (cleaning = TRUE), or a GRanges retaining all the details of the pre-
possessing and clustering (all the previously described metadata columns),
with the extra column cluster (cleaning = FALSE).
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Figure A.5: Representation of 10 original peaks as raw counts (no smoothing)
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Figure A.6: In the left panel, the smoothed representation of the 10 peaks is shown,
while in the right panel the same peaks are centered around their summits.

a.5 visualization of the peaks

The plot peak method is a very flexible function for displaying ChIP-Seq
peaks. In particular, it allows to plot the raw counts obtained by the method
pileup peak , as in Figure A.5.

It can also plot smoothed peaks, possibly centered around the summit, as
in Figure A.6, or scaled as in Figure A.7 and centerd.

From the comparison of Figure A.6 and Figure A.7 it is clear how the
scaling affects the shape of splines. Now peaks are no more related to the
magnitude, but just to their shapes.

Moreover, plotting both raw counts and spline is also possible: Figure A.8
shows a single peak in its raw and smoothed version. This representation is
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Figure A.7: In the left panel, the 10 scaled peaks are shown, while in the right panel
the same peaks are centered around their summits.
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Figure A.8: Plot of the original read coverage of a peak and its smoothing (spline
approximation), centered around the summit.

useful to check the accuracy of the smoothing and, if needed, manually set
the λ parameter of the spline approximation.

Finally, the plot peak method allows to plot the results of the clustering
via the k-mean alignment. In Figure A.9 and Figure A.10, smoothed and
scaled peaks are divided into the three clusters and plotted with the optimal
shift obtained with the alignment.
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Figure A.9: Peaks divided in the three clusters: the same spline-smoothed peaks
are plotted in grey, and for each panel the peaks in the corresponding cluster are
colored to show their different shapes. Peaks are aligned with the shift coefficients
obtained by the k-mean alignment algorithm.
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Figure A.10: Scaled peaks divided in the three clusters: The same spline-smoothed
scaled peaks are plotted in grey, and for each panel the peaks in the corresponding
cluster are colored to show their different shapes. Peaks are aligned with the shift
coefficients obtained by the k-mean alignment algorithm.

153





B
F L M : F L A M E E S T I M AT I O N F O R H I G H D I M E N S I O N A L

F U N C T I O N O N S C A L A R R E G R E S S I O N

library(flm)

b.1 introduction

The flm package provides an efficient tool to deal with Function-on-Scalar
regression problems, mainly when the number of predictors I is much larger
than the number of statistical units N. The main function of flm is FLAME that
detects the set of significant predictrs and estimates their coefficients with
the FLAME method. FLAME, functional linear adaptive mixed estimation is a
methodology that simultaneously exploits the smoothness of the functional
parameters as well as the sparsity of the predictors.

The Function-on-Scalar regression problem that FLAME aims to solve is

Yn =

I∑
i=1

Xn,iβ
?
i + εn,

where Y1, . . . , YN are independent random elements of a general Hilbert
space H, X = {Xn,i} ∈ RN×I is a deterministic design matrix with standard-
ized columns and εn are i.i.d. Gaussian random elements of H such that εn
have 0 mean and covariance operator C.

Then, given the response functions and the predictors, the function FLAME

can automatically identify the significant predictors and define the coeffi-
cients in a proper Reproducing Kernel Hilbert Space.

In Section B.2 and B.3 the detailed procedure of the estimation, from
the definition of the kernel, using the functions generation kernel and
generation kernel periodic, to the solution of the Function-on-Scalar re-
gression problem of the estimation beta function, with some details on the
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algorithm implementation. In Section B.4, instead, an example of an auto-
matic usage of the package through the introduction of the FLAME function.

b.2 defintion of the kernel

The main advantage of FLAME is the possibility of controlling the smooth-
ness of the parameter estimates with the definition of a proper Reproducing
Kernel Hilbert Space.

flm has two functions to define different RKHSs: generation kernel and
generation kernel periodic define eigenvalues θj, eigenfunctions vj and
their derivatives of a kernel K. Then K is, for the spectral theorem of Dunford
and Schwartz (1963)

K =

∞∑
j=1

θjvj ⊗ vj

The kernel we examine in this package are the Sobolev, the Exponential,
the Gaussian (Section B.2.1) and the Periodic kernel (Section B.2.2).

b.2.1 Exponential, Sobolev and Gaussian kernel

The generation kernel function allows the user to define the Exponential,
the Sobolev and the Gaussian kernel.

Here an explicit definition of the three kernels:

• Sobelev kernel: Consider H = L2(D), where D is a compact subset of
Rd. We can define K to be the subset of functions in L2(D) that have
up to and including mth order derivatives that are also in L2(D). In
this package we limit our analysis tom = 1 and d = 1. Then, we define
a family of norms on K as

‖x‖2K =

∫
D

|x(s)|2 ds+
1

σ

∫
D

|x′(s)|2 ds;

here the σ parameter controls the influence of the H1 norm and then
the smoothness of the eigenfunctions. Increasing σ the smoothness
level decreases. Equipped with this norm, K is an RKHS if and only
if m > d/2, as in our case of one-dimensional functions (d = 1) in H1
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(m = 1). The kernel cannot always be written down explicitly, but in
the case where D = [0, 1] and m = 1, we have that

K(t, s) =

 σ
sinh(σ) cosh(σ(1− s)) cosh(σt) t 6 s

σ
sinh(σ) cosh(σ(1− t)) cosh(σs) t > s

.

Then we can numerically solve the equation to isolate the eigenfunc-
tions and the eigenvalues of K as the sobolev kernel function does.
This function is implicitly called in generation kernel. Details on the
Sobolev kernel can be found in Berlinet and Thomas-Agnan (2011).

• Gaussian Kernel Let H = L2(D), with D a compact subset of Rd ∀d.
The Gaussian kernel if d = 1 is given by

K(s, s′) = exp
{
−σ|s− s′|2

}
.

While the Sobolev spaces contain functions which are differentiable
up to a given order, the space K here contains functions which are
infinitely differentiable. When used in FLAME, such a kernel produces
very smooth estimates. As for the Sobolev kernel, the smoothness
level of the kernel is controlled by the σ parameter. Increasing σ the
smoothness level is reduced and FLAME get a more rough estimates.
The definition of the kernel function is coded in the kernlab R package
of Karatzoglou et al. (2004).

• Exponential Kernel: The exponential kernel is on the other end of
the “smoothness” spectrum compared to the Gaussian kernel. In the
one-dimensional case we have

K(s, s′) = exp
{
−σ|s− s ′|

}
.

This seemingly minor adjustment to the power in the exponent pro-
duces a space consisting of continuous functions which need not to
be differentiable. Using this kernel produces substantially rougher
FLAME estimates than the Gaussian kernel. They are also a bit rougher
than the Sobolev kernel as well. As for the previous kernels, the
smoothness parameter σ tunes the regularity level of the FLAME es-
timations. And as for the Gaussian kernel the kernlab R package of
Karatzoglou et al. (2004) provides an explicit definition of the kernel
matrix.
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The generation kernel function, then, allows the user to define the eigen-
functions and eigenvalues of these three different kernels, once the time do-
main is defined in the domain argument. The type kernel parameter defines
the type of kernel: 'exponential', 'sobolev' and 'gaussian' are the three
possible choices; the param kernel argument, instead, is the σ parameter
tuning the regularity level. The number of eigenfunctions vj (which define
the basis functions of the RKHS) is chosen as

J∑
j=1

θj > thres
∞∑
j=1

θj.

where the thres parameter is an input of the generation kernel function
and θj are the eigenvalues of the kernel.

In the following chunk an example of definition of Sobolev kernel with
σ = 8 and in Figure B.1 the first four eigenfunctions and their derivatives,
with the correspondent ratio of explained variability θj/

∑
j θj.

type_kernel <- "sobolev"

param_kernel <- 8

M <- 50

T_domain <- seq(0, 1, length = M) # time point grid.

thres <- 0.99 # thresold for the eigenvalues.

kernel_here <- generation_kernel(type = type_kernel ,

param = param_kernel ,

domain = T_domain ,

thres = 0.99,

return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- kernel_here$eigenvect
derivatives <- kernel_here$derivatives

b.2.2 Periodic kernel

A very useful feature of working with an RKHS is that one can also include
periodicity and boundary conditions into the parameter estimates, using the
generation kernel periodic function, for example, the user can define a
kernel with a fixed periodicity p and a smoothing parameter σ. If you have
yearly measurements with seasonal or semestral periodicity, for example,
you may use the periodic kernel with period p = 1/4 or p = 1/2.
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Figure B.1: Plot of the first 4 eigenfunctions (left panel) and derivatives (right panel)
of the Sobolev kernel with parameter σ = 8. The correspondent explained variance
is on the top of the plot.

The kernel for period p on a one dimensional domain is defined as

K(s, s′) = σ2 exp
{
−2/σ sin2

(
π|s− s ′|

p

)}
.

In the following chunk an example of definition of periodic kernel with
period = 1/2 and in Figure B.2 the first four eigenfunctions and their deriva-
tives, with the correspondent ratio of explained variability.

param_kernel <- 8

M <- 50

T_domain <- seq(0, 1, length = M)

kernel_here <- generation_kernel_periodic(period = 1/2,

param = param_kernel ,

domain = T_domain ,

thres = 1-10^{-16},

return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- kernel_here$eigenvect
derivatives <- kernel_here$derivatives
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Figure B.2: Plot of the first 4 eigenfunctions (left panel) and erivatives (right panel)
of the periodic kernel with period p = 1/2. The correspondent explained variance
is on the top of the plot.

b.3 flame estimation

In this section we define an example of generation of data for a Function-on-
Scalar linear model (Section B.3.1), we present the kernel for the estimation
(Section B.3.2) and an outline of the FLAME method (Section B.3.3) with an
analysis of the results (Section B.3.4).

b.3.1 Generation of data

We define an high-dimensional setting simulation with N = 500 and I =

1000 to highlight both the efficiency of FLAME in the estimation and in
variable selection. Only I0 = 10 predictors, in fact, are meaningful for the
response, the others have null effect on the Y’s.

The predictor matrix X is the standardized version of a matrix randomly
sampled from a N dimension Gaussian distribution with 0 average and co-
variance C. The true coefficients β?(t) are sampled from a Matèrn process
with 0 average and parameters (ν = 2.5, range = 1/4,σ2 = 1).

Observations y(t) are, then, obtained as the sum of the contribution of all
the predictors and a random noise, a 0-mean Matèrn process with param-
eters (ν = 1.5, range = 1/4,σ2 = 1). Functions are sampled on a m = 50

points grid.
The Matèrn covariance operator is defined in the covMaterniso function.
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In Figure B.3 the plot of the coefficients β∗(t), 20 random errors ε(t) and
the correspondent response functions Y(t).

N <- 500 # number of data

I <- 1000 # number of predictors

I0 <- 10 # number of non -zero predictors

set.seed (16589)

# definition of the time domain

m <- 50 # total number of points

T_domain <- seq(0, 1, length = m) # time points , length = m

M_integ <- length(T_domain)/diff(range(T_domain)) # coefficient

for the computation of the integrals

# definition of the design matrix X, in this specific case the

covariance matrix C is the identity matrix

mu_x <- rep(0, I)

C <- diag(I)

X <- mvrnorm(n=N, mu=mu_x, Sigma=C)

X <- scale(X) # normalization

# definition of the coefficients

nu_beta <- 2.5

range <-1/4

variance <- 1

hyp <- c(log(range), log(variance)/2) # set of parameters for the

M a t r n Covariance operator of beta

mu_beta <- rep(0,m) # mean of the beta

Sig_beta <- covMaterniso (2*nu_beta , hyp , T_domain)

beta <- mvrnorm(mu=mu_beta , Sigma=Sig_beta , n=I0) # generation of

the I0 significant coefficients

# definition of the randomerrors

nu_eps <- 1.5

mu_eps <- rep(0, m)

Sig_eps <- covMaterniso (2*nu_eps , hyp , T_domain)

eps <- mvrnorm(mu=mu_eps , Sigma=Sig_eps , n=N) # generation of the

N random errors

I_X <- sort(sample (1:I, I0)) # index of the I0 significant

predictors
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Figure B.3: Random generation of data. From the left, 10 coefficients β?(t), 20

random errors ε(t) and the correspondent 20 response functions Yn(t)

Y_true <- X[,I_X] %*% beta

Y_full <- X[,I_X] %*% beta + eps # Y_n observations

b.3.2 Defintion of the kernel and projection

For this simulation we choose as kernel the Sobolev kernel with σ = 8 and
a threshold for the eigenvalues 0.99. The eigenfunctions of the kernel are
an orthogonal basis both for the space H and for K; then for the follow-
ing estimation we can project the Yn(t) functions on that basis with the
projection basis function.

# defintion of the kernel

type_kernel <- "sobolev"

param_kernel <- 8

m <- 50

T_domain <- seq(0, 1, length = m) # time domain

thres <- 0.99

kernel_here <- generation_kernel(type = type_kernel ,

param = param_kernel ,

domain = T_domain ,

thres = 0.99,

return.derivatives = TRUE)

eigenval <- kernel_here$eigenval
eigenvect <- kernel_here$eigenvect
derivatives <- kernel_here$derivatives

# preojection on the kernel basis of y and beta
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Y_matrix <- projection_basis(Y_full , eigenvect , M_integ)

B_true <- projection_basis(beta , eigenvect , M_integ)

matrix_beta_true_full <- matrix(0, dim(B_true)[1], I)

matrix_beta_true_full[, I_X] <- B_true

Given the definition of the derivatives of the eigenfunctions of the ker-
nel (returned by the generation kernel function), we can also define the
derivatives of the true coefficients β? and of the responses.

B_true_der <- t(kernel_here$derivatives %*% B_true)

Y_true_der <- X[,I_X] %*% B_true_der

b.3.3 The FLAME method

The function estimation beta allows the user to compute the FLAME es-
timation. The back-end of this function is written in c++ (and available in
the FLAME functions cpp.cpp function), so that the computation is efficient
also in the high dimensional setting.

The function mainly consist of a coordinate-descent algorithm to define
the FLAME estimation minimizing the target function

L(β) =
1

2N

N∑
n=1

‖Yn −Xnβ‖2H + λ

I∑
i=1

ω̃i‖βi‖K =

=
1

2N
‖Y − Xβ‖2H + λ

I∑
i=1

ω̃i‖βi‖K

with Y ∈HN, X ∈ RN×I and Xn = X(n,·) ∈ RI, β ∈ KI. Throughout, we use
notation such as HN to denote product spaces. For the sake of simplicity, we
abuse notation by letting ‖ · ‖H also denote the induced Hilbert space norm
on product spaces such as HN.

The ω̃i parameters are used to balance the contribution of the differ-
ent coefficients and to make the LASSO estimator unbiased. The function
estimation beta has the estimation of ω̃i as first objective. The coordinate-
descent algorithm, in fact is run twice. The first one, the non adaptive step, is
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run defining as 1 all the weights ω̃i and the second one, the adaptive step, is
run, to obtain an unbiased estimator, with

ω̃i =
1

‖β̂1i ‖K

,

where β̂1i are the estimated coefficient of the non-adaptive step.
A key parameter for the estimation is λ, used to balance the prediction

error ||Y − Xβ||2H and the smoothness level of the estimations
∑I
i=1 ω̃i||βi||K.

The two steps of the algorithm are both run on a grid of λ and the best
value is chosen with a cross-validation criteria, selecting a training set, made
up by the proportion test set percent of the data, and the remaining test
set. The estimation beta function automatically defines the grid for the λ
parameter in the two runs as a logarithmic evenly gird from a maximum
value, λmax

λmax = max
i=1,...,I

ω−1
i ‖N

−1
∑

XinK(Y n)‖K

to the minimum value ratio lambda ·λmax. The user, beside the ratio lambda

parameter can also define the length of the grid, in the number lambda pa-
rameter.

Focusing on the coordinate-descent method. It is based on the subgradient
equation

∂

∂βi
L(β) = −

1

N

N∑
n=1

Xn,iK(Yn −X>nβ) + λω̃i

||βi||
−1
K βi, βi 6= 0

{h ∈ K : ||h||K 6 1}, βi = 0
.

= −K(β̃) +K(βi) + λωi

||βi||
−1
K βi, βi 6= 0

{h ∈ K : ||h||K 6 1}, βi = 0
.

with β̃ the least squares estimator β̃i = 1
N

∑N
n=1 Xn,iEn where En is the

residual En = Yn−
∑
j6=i Xn,jβ̂j and it is updated at each iteration. From the

subgradient equation we can also detect the meaning of the maximum value
for λ: λmax, in fact, is the minimum value of λ for which all the predictors
are guaranteed to have 0 coefficient. For all i

‖K(β̃i‖K 6 λωi

FLAME <- estimation_beta(X = X,
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Y = Y_matrix ,

eigenval = eigenval ,

NoI = 10,

thres = 0.1,

number_non_zeros = I0*2,

ratio_lambda = 0.01,

number_lambda = 100,

proportion_training_set = 0.75,

verbose = FALSE)

Moreover we present two features we have included in the algorithm to
increase the computational efficiency. The first is a warm start which means
that when moving to the next λ in the grid, we use the previous β̂ as initial
estimation and, due to the small changes in λ, this means that the new β̂ can
be computed very quickly. The second feature is the kill switch parameter.
This allows the user to set the maximum number of significant predictors to
be selected by the model: when the algorithm moves past this threshold, the
algorithm is stopped.

The estimation beta function automatically performs all this steps and
returns both the final result after the adaptive step and the intermediate result,
just after the non adaptive step.

To directly access to the coordinate descent method and perform man-
ually the estimation, for example fixing a specific value for λ, a specific
set of weights or a specific starting point for the estimated β, the user
can run the defintion beta function, the one that is implicitly called in
estimation beta.

We can notice that the estimation beta function returns as the estimation
of the coefficients β̂ the matrix of their projection on the kernel basis. The
function projection domain allows to compute the estimation on the time
domain and then to represent the results, as in Figure B.4. Here we show a
comparison with the true simulated β? functions.

beta_on_time_grid <- projection_domain(FLAME$beta , eigenvect)

y_on_grid_estimated <- X %*% beta_on_time_grid

b.3.4 Analysis of the results

To analyze the result of this simulation, first of all we detect the relevant
predictors isolated by FLAME and we compare them with the true ones.
We notice that FLAME correctly isolates the I0 = 10 relevant predictors,
without any false positive predictor added.
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Figure B.4: In the left panel the plot of the simulated β? coefficients, while in the
right panel the FLAME coefficients β̂ are shown.

I_X # list of the true non zero predictors

> 18 97 287 297 433 527 642 709 901 934

FLAME$predictors # list of the estimated non zero predictors

> 18 97 287 297 433 527 642 709 901 934

true_positives <- length(which(I_X %in% FLAME$predictors))
true_positives # number of significant predictors correctly

identified

> 10

false_positives <- length(which(!(FLAME$predictors %in% I_X)))

false_positives # number of non significant predictors wrongly

picked by the algorithm

> 0

Then we introduce a short analysis of the result computing:

• the prediction error on data

N∑
n=1

‖ Xnβ∗ − Xnβ̂ ‖L2 ,

• the prediction error on derivatives

N∑
n=1

‖ Xnβ∗′ − Xnβ̂′ ‖L2 ,
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• the K-norm of the error in the prediction of the β coefficients

I∑
i=1

‖β∗i − β̂i‖K.

This last error can be easily computed with the norm matrix K func-
tion.

beta_der_on_grid_estimated <- kernel_here$derivatives \%*\% FLAME$
beta

prediction_error - sum(apply(Y_true - y_on_grid_estimated , 1,

function(x) {

sqrt ((2 * sum(x^2)-x[1]^2-x[length(x)]^2)/(M_integ *2)) }

))

prediction_error

> 218.4826

estimated_y_der_grid <- X %*% t(beta_der_on_grid_estimated)

prediction_error_der <- sum(apply(Y_true_der - estimated_y_der_

grid , 1, function(x) {

sqrt ((2 * sum(x^2)-x[1]^2-x[length(x)]^2)/(M_integ *2)) }

))

prediction_error_der

> 2687.767

norm_K_beta <- sum(norm_matrix_K(matrix_beta_true_full - FLAME$
beta , eigenval)^2)

norm_K_beta

> 0.76914

b.4 the automatic usage of flame for function-on-scalar re-

gression problems

In this final Section we present the FLAME function that allows the user a
direct solution of the regression problem. From an fd object, or a point-wise
evaluation of the response functions and the set of predictors, the function
automatically detects the significant predictors and computes the estima-
tion. It is possible to provide the kernel, choosing among "exponential",
"gaussian", "sobolev" and "periodic" and fixing the smoothness param-
eter. Here an example of estimation with the predictors provided as an fd
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object. The y(t) of Section B.3.1 are represented as their projection on a
20 elements cubic Bspline basis and then also the estimated coefficients are
returned as an fd object.

class(Y_fd)

estimation_auto <- FLAME(Y_fd , # fd object for the response

X, # predictors matrix

number_non_zeros = 20)

# default choice for the kernel is Sobolev with sigma = 8,

names(estimation_auto)

> "beta" "predictors"

class(estimation_auto$beta)
> "fd"

estimation_auto$predictors
> 18 97 287 297 433 527 642 709 901 934
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L I S T O F G R O U P E D A B U N D A N C E S F O R T H E T H R E E

M I C R O B I O M E S A M P L E S O F C H A P T E R 4

ID Child Buccal Microbiome: Genus level names
1 Actinomyces + Actinobaculum + Arcanobacterium + Candidatus Ancillula + Mobiluncus + N09 + Trueperella + Varibaculum

+ Actinopolyspora + Saccharothrix + Lentzea + Kibdelosporangium + Actinokineospora + Actinoalloteichus + Georgenia +
Brevibacterium + Demequina + Cellulomonas + Actinotalea

2 Corynebacterium + Cryptosporangium + Dermabacter + Brachybacterium + Dermacoccus + Dermatophilus + Dietzia +
Frankia + Modestobacter + Geodermatophilus + Blastococcus + Glycomyces

3 Gordonia + Tetrasphaera + Terracoccus + Serinicoccus + Phycicoccus + Kytococcus + Knoellia + Janibacter + Arsenicicoccus
+ Jonesia + Kineosporia + Kineococcus

4 Microbacterium + Leucobacter + Frigoribacterium + Curtobacterium + Cryocola + Cryobacterium + Clavibacter + Candi-
datus Rhodoluna + Candidatus Aquiluna + Agromyces + Agrococcus + Mycetocola + Pseudoclavibacter + Rathayibacter +
Salinibacterium

5 Kocuria + Citricoccus + Arthrobacter + Microbispora
6 Micrococcus + Nesterenkonia + Renibacterium
7 Rothia + Sinomonas + Zhihengliuella
8 Mycobacterium + Virgisporangium + Verrucosispora + Solwaraspora + Pilimelia + Dactylosporangium + Couchioplanes +

Catellatospora + Actinoplanes + Actinocatenispora + Rhodococcus + Nocardia + Propionicimonas + Pimelobacter + Nocar-
dioides + Kribbella + Friedmanniella + Aeromicrobium + Actinopolymorpha + Streptomonospora + Prauseria + Nocardiopsis
+ Xylanimicrobium + Promicromonospora + Cellulosimicrobium

9 Propionibacterium + Microlunatus + Luteococcus + Tessaracoccus + Thermobispora + Saccharopolyspora + Saccha-
romonospora + Pseudonocardia + Prauserella + Jiangella + Amycolatopsis + Actinomycetospora + Rarobacter + Sanguibacter
+ Sporichthya

10 Streptomyces + Kitasatospora + Streptosporangium + Nonomuraea + Actinomadura + Actinocorallia + Actinoallomurus +
Tsukamurella + Williamsia + Yaniella

11 Bifidobacterium + Alloscardovia + Bombiscardovia + Gardnerella + Scardovia
12 Atopobium + Adlercreutzia + Collinsella + Coriobacterium + Eggerthella + Slackia + Candidatus Microthrix + Iamia + Fer-

rimicrobium + Nitriliruptor + Euzebya + Rubrobacter + Solirubrobacter + Patulibacter + Conexibacter
13 Bacteroides + BF311 + X5 7N15

14 Candidatus Azobacteroides
15 Dysgonomonas
16 Paludibacter
17 Parabacteroides
18 Porphyromonas
19 Tannerella
20 Prevotella + Rikenella + PW3 + Blvii28 + AF12

21 Odoribacter + Butyricimonas + BE24

22 Paraprevotella + CF231 + YRC22

23 [Prevotella]
24 Roseivirga + Reichenbachiella + Persicobacter + JTB248 + Fulvivirga + Flexithrix + Flexibacter + Flammeovirga + Sporocy-

tophaga + Spirosoma + Runella + Rudanella + Rhodocytophaga + Pontibacter + Microscilla + Leadbetterella + Hymenobac-
ter + Flectobacillus + Emticicia + Dyadobacter + Cytophaga + Adhaeribacter + Ucs1325 + SGUS912 + SC3-56 + Candida-
tus Cardinium + Candidatus Amoebophilus

25 Capnocytophaga + Arenibacter + Aquimarina + Aequorivita + Cellulophaga + Wandonia + Owenweeksia + Fluviicola +
Cryomorpha + Crocinitomix + Brumimicrobium + Blattabacterium

26 Flavobacterium + Gelidibacter + Gillisia + Gramella + Kordia + Lacinutrix + Leeuwenhoekiella + Lutimonas + Maribacter
+ Mesonia + Muricauda + Myroides + Polaribacter + Psychroflexus + Psychroserpens + Robiginitalea + Salegentibacter +
Salinimicrobium + Sediminicola + Tenacibaculum + Ulvibacter + Winogradskyella + Zhouia + Zobellia

27 Chryseobacterium
28 - G1 Cloacibacterium + Elizabethkingia + Ornithobacterium + Riemerella
29 - G1 Wautersiella + Weeksella
30 KSA1 + Balneola + Salisaeta + Salinibacter + Rubricoccus + Rhodothermus + Sphingobacterium + Pedobacter + Olivibacter

+ Saprospira + Lewinella + Haliscomenobacter + Segetibacter + Sediminibacterium + Niabella + Flavisolibacter + Flavihu-
mibacter + Chitinophaga
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ID Child Buccal Microbiome: Genus level names
31 Synechococcus + Prochlorococcus + Thermosynechococcus + Acaryochloris + Pseudanabaena + Prochlorothrix + Leptolyng-

bya + Halomicronema + Arthronema + Symploca + Planktothrix + Planktothricoides + Phormidium + Oscillatoria + Micro-
coleus + Geitlerinema + Chroococcidiopsis + Spirulina + Prochloron + Microcystis + Cyanothece + Chroococcus + Rivularia
+ Calothrix + Nostoc + Gloeotrichia + Dolichospermum + Cylindrospermopsis + Anabaenopsis + Anabaena + Gloeobacter +
Thermobaculum + Thermogemmatispora + FFCH10602 + Dehalogenimonas + Dehalococcoides + Roseiflexus + Kouleothrix
+ Candidatus Chlorothrix + Chloronema + Chloroflexus + Caldilinea + Ardenscatena + WCHB1-05 + T78 + SHD-231 + SHD-
14 + Longilinea + C1 B004 + Anaerolinea + Ignavibacterium + Prosthecochloris + Waddlia + Candidatus Rhabdochlamydia
+ Parachlamydia + Candidatus Protochlamydia + LCP-26 + Caldithrix + Caldisericum + Fimbriimonas + Chthonomonas
+ CL0-1 + Armatimonas + Hydrogenobaculum + Candidatus Chloracidobacterium + Bryobacter + Candidatus Solibacter +
Geothrix + Candidatus Koribacter + Edaphobacter + Acidobacterium + Methanobrevibacter + Mucispirillum + Geovibrio +
Flexistipes + Deferribacter + Elusimicrobium + Fibrobacteres-2 + Fibrobacter + Candidatus Scalindua + Candidatus Jettenia
+ Candidatus Brocadia + Planctomyces + Pirellula + A17 + Isosphaera + Gemmata + Candidatus Acetothermum + Thermod-
esulfovibrio + LCP-6 + HB118 + GOUTA19 + DCE29 + Candidatus Magnetoovum + Candidatus Magnetobacterium + BD2-6
+ Leptospirillum + Nitrospira + JG37-AG-70 + Candidatus Methylomirabilis + Lentisphaera + Gemmatimonas

32 Anoxybacillus + Anaerobacillus + Alkalibacillus
33 Bacillus
34 Geobacillus + Lentibacillus + Marinibacillus + Marinococcus + Natronobacillus + Oceanobacillus + Pontibacillus + Salimicro-

bium + Terribacillus + Thalassobacillus
35 Virgibacillus
36 Ammoniphilus + Aneurinibacillus + Brevibacillus + Cohnella
37 Paenibacillus
38 Lysinibacillus + Kurthia + Paenisporosarcina + Planococcus + Planomicrobium + Rummeliibacillus + Solibacillus +

Sporosarcina + Ureibacillus + Viridibacillus + Pasteuria + Brochothrix + Kyrpidia + Alicyclobacillus + Sporolactobacillus
+ Pullulanibacillus + Thermicanus + Exiguobacterium + Thermoactinomyces + Shimazuella + Planifilum + Laceyella

39 Jeotgalicoccus + Macrococcus + Salinicoccus
40 Staphylococcus
41 Gemella + Turicibacter
42 - G2 Abiotrophia
43 Aerococcus
44 Alkalibacterium
45 Alloiococcus
46 - G2 Facklamia + Marinilactibacillus
47 Desemzia + Carnobacterium
48 Granulicatella
49 Trichococcus
50 Enterococcus
51 Tetragenococcus + Vagococcus
52 Lactobacillus + Pediococcus
53 Weissella + Leuconostoc + Fructobacillus
54 Lactococcus
55 Streptococcus
56 - G3 Clostridium + Clostridiisalibacter + Candidatus Arthromitus + Caminicella + Caloranaerobacter + Caloramator + Caldanaero-

cella + Alkaliphilus + X02d06 + Geosporobacter Thermotalea + Natronincola Anaerovirgula + Oxobacter + Proteiniclasticum
+ SMB53 + Sarcina + Thermoanaerobacterium + Thermohalobacter + Tindallia Anoxynatronum + Christensenella + Caldico-
probacter + Dehalobacterium

57 Pseudoramibacter Eubacterium + Garciella + Anaerofustis + Alkalibacter + Acetobacterium + Lutispora + Gracilibacter +
Heliorestis

58 - G4 Anaerostipes
59 - G4 Blautia
60 - G4 Butyrivibrio
61 Catonella
62 - G4 Coprococcus
63 - G4 Dorea + Epulopiscium + Lachnobacterium
64 - G4 Lachnospira
65 Moryella
66 Oribacterium + Pseudobutyrivibrio
67 - G4 Roseburia + Shuttleworthia
68 - G4 [Ruminococcus]
69 Desulfosporosinus + Desulfitobacter + Dehalobacter Syntrophobotulus
70 Desulfotomaculum + Desulfotomaculum Desulfovirgula + Desulfurispora + Niigata-25 + Pelotomaculum + Peptococcus +

Sporotomaculum + WCHB1-84 + rc4-4
71 - G5 Faecalibacterium + Ethanoligenens + Anaerotruncus + Anaerofilum
72 - G5 Oscillospira
73 Ruminococcus
74 Anaerovibrio + Anaeromusa + Acidaminococcus + BSV43

172



ID Child Buccal Microbiome: Genus level names
75 Dialister + G07 + Megamonas
76 Megasphaera + Mitsuokella + Pectinatus + Pelosinus
77 Phascolarctobacterium + Propionispora + Schwartzia
78 Selenomonas + Sporomusa + Succiniclasticum + Thermosinus
79 Veillonella + vadinHB04

80 - G3 WH1-8 + NP25 + Guggenheimella + Fusibacter + Acidaminobacter + Syntrophomonas + Symbiobacterium + YNPFFP6 +
Sulfobacillus + Tepidibacter + Peptostreptococcus + Filifactor + Mogibacterium + Anaerovorax

81 Anaerococcus + X1 68 + Dethiosulfatibacter + Finegoldia + GW-34 + Gallicola + Helcococcus
82 Parvimonas + Peptoniphilus + Sedimentibacter + Sporanaerobacter + Tepidimicrobium + Tissierella Soehngenia +

WAL 1855D + ecb11 + ph2

83 Natroniella + Halanaerobacter + Acetohalobium + Halanaerobium + Natranaerobius + Candidatus Contubernalis + KF-
Gitt2-16 + Dethiobacter + Anaerobranca + A55 D21 + Thermodesulfobium + Coprothermobacter + Thermovenabulum +
Thermoanaerobacter + Thermacetogenium + Moorella + Caldanaerobacter + Caldicellulosiruptor

84 Bulleidia + Allobaculum + Catenibacterium + Coprobacillus + Erysipelothrix + Holdemania + L7A E11 + PSB-M-3 + RFN20

+ Sharpea + [Eubacterium] + cc 115 + p-75-a5

85 Cetobacterium
86 Fusobacterium + Propionigenium + Psychrilyobacter + u114

87 Leptotrichia
88 - G6 Sneathia
89 - G6 Streptobacillus
90 Rhodoplanes + Rhodobium + Pedomicrobium + Parvibaculum + Hyphomicrobium + Devosia + Cohaesibacter + Pseu-

dochrobactrum + Ochrobactrum + Nitrobacter + Bradyrhizobium + Bosea + Balneimonas + Afipia + Methylocella + Chela-
tococcus + Beijerinckia + Bartonella + Martelella + Fulvimarina + Aurantimonas + Methylobacterium + Pleomorphomonas
+ Methylosinus + Methylopila + Phyllobacterium + Nitratireductor + Mesorhizobium + Defluvibacter + Chelativorans +
Aminobacter + Sinorhizobium + Shinella + Rhizobium + Kaistia + Candidatus Liberibacter + Agrobacterium + Afifella +
Xanthobacter + Labrys + Blastochloris + Azorhizobium + Thalassospira + Phenylobacterium + Mycoplana + Caulobacter
+ Brevundimonas + Asticcacaulis + Thalassobius + Shimia + Sagittula + Ruegeria + Rubellimicrobium + Rhodovulum +
Rhodobacter + Rhodobaca + Phaeobacter + Paracoccus + Octadecabacter + Nautella + Marivita + Loktanella + Dinoroseobac-
ter + Antarctobacter + Anaerospora + Amaricoccus + Oceanicaulis + Maricaulis + Hyphomonas + Hirschia

91 Telmatospirillum + Skermanella + Roseospira + Rhodovibrio + Rhodospirillum + Phaeospirillum + Novispirillum + Nisaea +
Magnetospirillum + Inquilinus + Azospirillum + Swaminathania + Roseomonas + Roseococcus + Gluconobacter + Acidocella
+ Acidisphaera + Acidiphilium + Acetobacter + Wolbachia + Rickettsia + Neorickettsia + Ehrlichia + Candidatus Neoehrlichia
+ Anaplasma + Zymomonas + Sphingopyxis + Sphingomonas + Sphingobium + Novosphingobium + Kaistobacter + Blas-
tomonas + Lutibacterium + Erythrobacter

92 - G7 Achromobacter + Denitrobacter + Oligella + Pigmentiphaga
93 - G7 Sutterella + Tetrathiobacter
94 Burkholderia + Candidatus Glomeribacter
95 Lautropia + Pandoraea + Salinispora
96 - G7 Aquabacterium + Alicycliphilus + Acidovorax + Comamonas + Curvibacter
97 - G7 Delftia + Diaphorobacter + Giesbergeria + Hydrogenophaga + Hylemonella + Lampropedia + Leptothrix
98 - G7 Limnobacter + Limnohabitans + Methylibium + Paucibacter + Pelomonas + Polaromonas + RS62 + Ramlibacter + Rhodoferax

+ Roseateles + Rubrivivax + Schlegelella + Simplicispira + Tepidimonas + Thiomonas + Variovorax + Verminephrobacter +
Xenophilus

99 - G8 Janthinobacterium + Herminiimonas + Herbaspirillum + Cupriavidus + Collimonas
100 Oxalobacter + Polynucleobacter
101 - G8 Ralstonia
102 Conchiformibius + Chromobacterium + Aquitalea + Deefgea
103 Eikenella
104 Kingella + Microvirgula
105 Neisseria + Vitreoscilla + Vogesella
106 Nitrosovibrio + Nitrosospira + Methylotenera + Methylobacillus + Thiobacillus + Gallionella + Procabacter
107 TS34 + Sulfuritalea + Sterolibacterium + Rhodocyclus + Propionivibrio + Methyloversatilis + KD1-23 + K82 + Hy-

drogenophilus + Dok59 + Denitratisoma + Dechloromonas + Candidatus Accumulibacter + C39 + Azovibrio + Azospira
+ Azoarcus + Thauera + Uliginosibacterium + Z-35 + Zoogloea + Thiobacter + Candidatus Tremblaya

108 Lawsonia + Desulfovibrio + Bilophila + Desulfonatronum + Desulfomicrobium + Desulfovermiculus + Desulfonauticus +
Desulfonatronovibrio + Nitrospina + Desulfotalea + Desulforhopalus + Desulfocapsa + Desulfobulbus + Desulfotignum +
Desulfosarcina + Desulfofrigus + Desulfococcus + Desulfobacter + Desulfarculus + Bdellovibrio + Bacteriovorax + Desul-
furella + Pelobacter + Geobacter + Desulfuromonas + Sorangium + Chondromyces + Plesiocystis + Myxococcus + Corallo-
coccus + Anaeromyxobacter + Haliangium + Cystobacter + Syntrophobacter + Desulfacinum + Syntrophus + Smithella +
Desulfomonile + Desulfobacca + Geothermobacterium + Candidatus Entotheonella

109 Campylobacter + Arcobacter + Sulfurospirillum + Sulfurimonas + Sulfuricurvum + Helicobacter + Flexispira + Caminibacter
+ Mariprofundus

110 - G9 Succinivibrio + Ruminobacter + Anaerobiospirillum + Tolumonas + Oceanisphaera + Oceanimonas + Acidithiobacillus
111 HTCC2207 + HB2-32-21 + Glaciecola + Cellvibrio + Candidatus Endobugula + BD2-13 + Alteromonas + Agarivorans +

Marinimicrobium
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ID Child Buccal Microbiome: Genus level names
112 Marinobacter + Microbulbifer + ND137 + Spongiibacter + Umboniibacter + ZD0117 + nsmpVI18

113 Congregibacter + Moritella + Pseudidiomarina + Idiomarina + HTCC + Ferrimonas + Thalassomonas + Colwellia + Psy-
chromonas + Shewanella + Rheinheimera + Alishewanella

114 Cardiobacterium
115 - G9 Thiovirga + Thiofaba + Halothiobacillus + Thiorhodospira + Thioalkalivibrio + Methylonatrum + Halorhodospira + Ectoth-

iorhodospira + Thiorhodococcus + Thiocystis + Thiococcus + Thiocapsa + Nitrosococcus + Marichromatium + Halochro-
matium + Chromatium + Allochromatium + Methylomonas + Methylomicrobium + Methylocaldum + Crenothrix + Tatlockia
+ Legionella + Francisella + Rickettsiella + Coxiella + Aquicella

116 - G9 Candidatus Blochmannia + Buchnera + Brenneria + Arsenophonus + Candidatus Hamiltonella + Candidatus Phlomobacter
+ Candidatus Regiella + Citrobacter + Dickeya + Edwardsiella + Enterobacter

117 - G9 Erwinia + Gluconacetobacter
118 - G9 Klebsiella
119 - G9 Morganella + Photorhabdus + Plesiomonas + Proteus + Providencia
120 - G9 Salmonella
121 - G9 Serratia + Sodalis + Trabulsiella + Yersinia
122 - G9 Candidatus Portiera + Chromohalobacter + Cobetia + Haererehalobacter
123 - G9 Halomonas + Kushneria
124 - G9 Oleispira + Oleibacter + Oceanospirillum + Nitrincola + Neptunomonas + Marinomonas + Marinobacterium + Amphritea +

Hahella + Alcanivorax + Saccharospirillum + Reinekea + ML110J-20

125 Actinobacillus
126 Aggregatibacter + Avibacterium + Bibersteinia + Chelonobacter + Gallibacterium
127 Haemophilus + Mannheimia + Pasteurella
128 Acinetobacter + Alkanindiges
129 - G10 Enhydrobacter
130 - G10 Moraxella + Perlucidibaca
131 - G10 Psychrobacter
132 Pseudomonas + Azorhizophilus + Azomonas
133 Pseudoalteromonas
134 Vibrio + Salinivibrio + Photobacterium + Enterovibrio + Aliivibrio
135 Stenotrophomonas + Rhodanobacter + Pseudoxanthomonas + Lysobacter + Luteimonas + Luteibacter + Ignatzschineria

+ Dyella + Dokdonella + Arenimonas + Aquimonas + Thermomonas + Wohlfahrtiimonas + Xanthomonas + Xylella +
Steroidobacter + Nevskia + Hydrocarboniphaga + Thiothrix + Thioploca + Leucothrix + E8 + Cocleimonas + CF-26 + Beg-
giatoa + B46 + Thiomicrospira + Thioalkalimicrobium + Piscirickettsia + Methylophaga + Thiohalorhabdus + Salinisphaera +
Marinicella

136 E6 + vadinCA02 + Thermoanaerovibrio + Cloacibacillus + Candidatus Tammella + TG5 + Pyramidobacter + PD-UASB-13 +
HA73 + Aminobacterium + Anaerobaculum + Aminiphilus + SJA-88 + Turneriella + Leptospira + Leptonema + Brachyspira
+ Spironema + Borrelia + za29 + Treponema + Spirochaeta + X31d11 + Sphaerochaeta + so4B24 + ZA3312c + SargSea-
WGS + SHAG537 + SGSH944 + Arctic95A-2 + Mycoplasma + Candidatus Hepatoplasma + Mesoplasma + Entomoplasma +
Asteroleplasma + Anaeroplasma + Candidatus Phytoplasma + Acholeplasma + Thermotoga + Thermosipho + SC103 + S1 +
Petrotoga + Kosmotoga + Geotoga + Fervidobacterium + AUTHM297

137 Akkermansia + Luteolibacter + Persicirhabdus + Prosthecobacter + Rubritalea + Verrucomicrobium + Pelagicoccus + Cerasic-
occus + Puniceicoccus + MB11C04 + Coraliomargarita + Opitutus + LP2A + Candidatus Methylacidiphilum + Pedosphaera
+ heteroC45 4W + OR-59 + Ellin506 + DA101 + Chthoniobacter + Candidatus Xiphinematobacter + W5 + W22 + BHB21 +
Vulcanithermus + Thermus + Meiothermus + Truepera + GBI-58 + B-42 + R18-435 + Deinococcus + Deinobacterium + CM44

Annex Table 1: List of the grouped abundances of the Child Buccal samples.
All abundances have non negligible values in the sample. G indicates the
group formed after the merging procedure to remove correlations.
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1 - G1 Actinomyces + Actinobaculum + Arcanobacterium + Candidatus Ancillula + Mobiluncus + N09 + Trueperella + Varibaculum

+ Actinopolyspora + Saccharothrix + Lentzea + Kibdelosporangium + Actinokineospora + Actinoalloteichus + Georgenia +
Brevibacterium + Demequina + Cellulomonas + Actinotalea

2 - G1 Corynebacterium + Cryptosporangium + Dermabacter + Brachybacterium + Dermacoccus + Dermatophilus + Dietzia +
Frankia + Modestobacter + Geodermatophilus + Blastococcus + Glycomyces + Gordonia + Tetrasphaera + Terracoccus +
Serinicoccus + Phycicoccus + Kytococcus + Knoellia + Janibacter + Arsenicicoccus + Jonesia + Kineosporia + Kineococcus

3 - G1 Microbacterium + Leucobacter + Frigoribacterium + Curtobacterium + Cryocola + Cryobacterium + Clavibacter + Candi-
datus Rhodoluna + Candidatus Aquiluna + Agromyces + Agrococcus + Mycetocola + Pseudoclavibacter + Rathayibacter +
Salinibacterium

4 - G2 Kocuria + Citricoccus + Arthrobacter + Microbispora
5 - G2 Micrococcus + Nesterenkonia + Renibacterium
6 Rothia + Sinomonas + Zhihengliuella
7 - G1 Rhodococcus + Nocardia + Mycobacterium + Virgisporangium + Verrucosispora + Solwaraspora + Pilimelia + Dactylospo-

rangium + Couchioplanes + Catellatospora + Actinoplanes + Actinocatenispora + Propionicimonas + Pimelobacter + Nocar-
dioides + Kribbella + Friedmanniella + Aeromicrobium + Actinopolymorpha + Streptomonospora + Prauseria + Nocardiopsis
+ Xylanimicrobium + Promicromonospora + Cellulosimicrobium

8 - G1 Propionibacterium + Microlunatus + Luteococcus + Tessaracoccus + Thermobispora + Saccharopolyspora + Saccha-
romonospora + Pseudonocardia + Prauserella + Jiangella + Amycolatopsis + Actinomycetospora + Rarobacter + Sanguibacter
+ Sporichthya

9 - G1 Streptomyces + Kitasatospora + Streptosporangium + Nonomuraea + Actinomadura + Actinocorallia + Actinoallomurus +
Tsukamurella + Williamsia + Yaniella

10 - G3 Bifidobacterium + Alloscardovia + Bombiscardovia
11 - G3 Gardnerella + Scardovia
12 Adlercreutzia
13 Atopobium
14 Collinsella + Coriobacterium
15 Eggerthella + Slackia + Solirubrobacter + Patulibacter + Conexibacter + Rubrobacter + Nitriliruptor + Euzebya + Candida-

tus Microthrix + Iamia + Ferrimicrobium
16 X5 7N15 + BF311

17 Bacteroides
18 Candidatus Azobacteroides
19 Dysgonomonas
20 Paludibacter
21 Parabacteroides
22 Porphyromonas
23 Tannerella
24 Prevotella
25 - G4 AF12 + Blvii28

26 - G4 PW3

27 - G4 Rikenella
28 Odoribacter + Butyricimonas + BE24

29 Paraprevotella + CF231

30 YRC22

31 [Prevotella]
32 Capnocytophaga + Arenibacter + Aquimarina + Aequorivita + Cellulophaga
33 Flavobacterium + Gelidibacter + Gillisia + Gramella + Kordia + Lacinutrix + Leeuwenhoekiella + Lutimonas + Maribacter

+ Mesonia + Muricauda + Myroides + Polaribacter + Psychroflexus + Psychroserpens + Robiginitalea + Salegentibacter +
Salinimicrobium + Sediminicola + Tenacibaculum + Ulvibacter + Winogradskyella + Zhouia + Zobellia

34 Elizabethkingia + Cloacibacterium + Chryseobacterium + Ornithobacterium + Riemerella + Wautersiella + Weeksella + Wan-
donia + Owenweeksia + Fluviicola + Cryomorpha + Crocinitomix + Brumimicrobium + Blattabacterium

35 Salinibacter + Rubricoccus + Rhodothermus + Salisaeta + KSA1 + Balneola + Sphingobacterium + Pedobacter + Olivibacter
+ Ucs1325 + SGUS912 + SC3-56 + Candidatus Cardinium + Candidatus Amoebophilus + Roseivirga + Reichenbachiella +
Persicobacter + JTB248 + Fulvivirga + Flexithrix + Flexibacter + Flammeovirga + Sporocytophaga + Spirosoma + Runella
+ Rudanella + Rhodocytophaga + Pontibacter + Microscilla + Leadbetterella + Hymenobacter + Flectobacillus + Emticicia
+ Dyadobacter + Cytophaga + Adhaeribacter + Saprospira + Lewinella + Haliscomenobacter + Segetibacter + Sediminibac-
terium + Niabella + Flavisolibacter + Flavihumibacter + Chitinophaga
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36 Synechococcus + Prochlorococcus + Thermosynechococcus + Acaryochloris + Pseudanabaena + Prochlorothrix + Leptolyng-

bya + Halomicronema + Arthronema + Symploca + Planktothrix + Planktothricoides + Phormidium + Oscillatoria + Micro-
coleus + Geitlerinema + Chroococcidiopsis + Spirulina + Prochloron + Microcystis + Cyanothece + Chroococcus + Rivularia
+ Calothrix + Nostoc + Gloeotrichia + Dolichospermum + Cylindrospermopsis + Anabaenopsis + Anabaena + Gloeobacter +
Thermobaculum + Thermogemmatispora + FFCH10602 + Dehalogenimonas + Dehalococcoides + Roseiflexus + Kouleothrix
+ Candidatus Chlorothrix + Chloronema + Chloroflexus + Caldilinea + Ardenscatena + WCHB1-05 + T78 + SHD-231 + SHD-
14 + Longilinea + C1 B004 + Anaerolinea + Ignavibacterium + Prosthecochloris + Waddlia + Candidatus Rhabdochlamydia
+ Parachlamydia + Candidatus Protochlamydia + LCP-26 + Caldithrix + Caldisericum + Fimbriimonas + Chthonomonas
+ CL0-1 + Armatimonas + Hydrogenobaculum + Candidatus Chloracidobacterium + Bryobacter + Candidatus Solibacter +
Geothrix + Candidatus Koribacter + Edaphobacter + Acidobacterium + Methanobrevibacter + Mucispirillum + Geovibrio +
Flexistipes + Deferribacter + Elusimicrobium + Fibrobacteres-2 + Fibrobacter

37 - G5 Anoxybacillus + Anaerobacillus + Alkalibacillus
38 - G5 Bacillus + Geobacillus + Lentibacillus + Marinibacillus + Marinococcus + Natronobacillus + Oceanobacillus + Pontibacillus +

Salimicrobium + Terribacillus + Thalassobacillus + Virgibacillus
39 - G5 Paenibacillus + Cohnella + Brevibacillus + Aneurinibacillus + Ammoniphilus + Brochothrix + Kyrpidia + Alicyclobacillus +

Pasteuria + Viridibacillus + Ureibacillus + Sporosarcina + Solibacillus + Rummeliibacillus + Planomicrobium + Planococcus
+ Paenisporosarcina + Lysinibacillus + Kurthia + Sporolactobacillus + Pullulanibacillus

40 - G5 Staphylococcus + Salinicoccus + Macrococcus + Jeotgalicoccus + Thermoactinomyces + Shimazuella + Planifilum + Laceyella
+ Exiguobacterium + Thermicanus

41 - G5 Gemella
42 - G6 Alloiococcus + Alkalibacterium + Aerococcus + Abiotrophia + Facklamia + Marinilactibacillus
43 - G6 Granulicatella + Desemzia + Carnobacterium + Trichococcus
44 - G6 Enterococcus + Tetragenococcus + Vagococcus
45 Lactobacillus + Pediococcus + Weissella + Leuconostoc + Fructobacillus
46 Lactococcus
47 Streptococcus
48 Turicibacter
49 Christensenella + Caldicoprobacter
50 Caloramator + Caldanaerocella + Alkaliphilus + X02d06 + Caloranaerobacter + Caminicella + Candidatus Arthromitus
51 Clostridiisalibacter
52 - G7 Clostridium + Geosporobacter Thermotalea + Natronincola Anaerovirgula + Oxobacter
53 Proteiniclasticum + SMB53

54 - G7 Sarcina + Thermoanaerobacterium + Thermohalobacter + Tindallia Anoxynatronum
55 Dehalobacterium
56 Anaerofustis + Alkalibacter + Acetobacterium + Garciella
57 Pseudoramibacter Eubacterium
58 Gracilibacter + Lutispora + Heliorestis
59 Anaerostipes
60 - G8 Blautia
61 Butyrivibrio + Catonella
62 - G8 Coprococcus
63 Dorea
64 Epulopiscium
65 Lachnobacterium
66 Lachnospira
67 - G8 Moryella
68 Oribacterium
69 - G8 Pseudobutyrivibrio
70 - G8 Roseburia
71 - G8 Shuttleworthia
72 [Ruminococcus]
73 Desulfitobacter + Dehalobacter Syntrophobotulus
74 Desulfosporosinus
75 Desulfotomaculum + Desulfotomaculum Desulfovirgula + Desulfurispora + Niigata-25 + Pelotomaculum + Peptococcus +

Sporotomaculum + WCHB1-84 + rc4-4
76 Peptostreptococcus + Filifactor + Tepidibacter
77 Anaerotruncus + Anaerofilum
78 Ethanoligenens
79 Faecalibacterium
80 Oscillospira
81 Ruminococcus
82 Symbiobacterium + YNPFFP6 + Sulfobacillus + Syntrophomonas
83 - G9 Acidaminococcus + Anaeromusa
84 Anaerovibrio + BSV43

85 Dialister + G07

176



ID Child Stool Microbiome: Genus level names
86 - G9 Megamonas
87 Megasphaera + Mitsuokella + Pectinatus + Pelosinus
88 Phascolarctobacterium + Propionispora + Schwartzia
89 Selenomonas + Sporomusa
90 Succiniclasticum + Thermosinus
91 Veillonella + vadinHB04

92 Acidaminobacter
93 Fusibacter + Guggenheimella + NP25 + WH1-8
94 Mogibacterium + Anaerovorax + Thermodesulfobium + Coprothermobacter + Thermovenabulum + Thermoanaerobacter +

Thermacetogenium + Moorella + Caldanaerobacter + Caldicellulosiruptor + Natranaerobius + Candidatus Contubernalis +
KF-Gitt2-16 + Dethiobacter + Anaerobranca + A55 D21 + Natroniella + Halanaerobacter + Acetohalobium + Halanaerobium

95 - G10 X1 68

96 - G10 Anaerococcus
97 Dethiosulfatibacter
98 - G10 Finegoldia + GW-34 + Gallicola
99 Helcococcus
100 - G10 Parvimonas
101 Peptoniphilus
102 - G10 Sedimentibacter + Sporanaerobacter + Tepidimicrobium + Tissierella Soehngenia + WAL 1855D + ecb11 + ph2

103 - G11 Allobaculum
104 - G11 Bulleidia
105 Catenibacterium
106 - G11 Coprobacillus + Erysipelothrix
107 Holdemania + L7A E11 + PSB-M-3
108 - G11 RFN20

109 Sharpea
110 [Eubacterium] + cc 115 + p-75-a5

111 Fusobacterium + Cetobacterium + Propionigenium + Psychrilyobacter + u114

112 Leptotrichia + Sneathia + Streptobacillus
113 Xanthobacter + Labrys + Blastochloris + Azorhizobium + Afifella + Sinorhizobium + Shinella + Rhizobium + Kaistia + Candi-

datus Liberibacter + Agrobacterium + Phyllobacterium + Nitratireductor + Mesorhizobium + Defluvibacter + Chelativorans
+ Aminobacter + Pleomorphomonas + Methylosinus + Methylopila + Methylobacterium + Rhodoplanes + Rhodobium +
Pedomicrobium + Parvibaculum + Hyphomicrobium + Devosia + Cohaesibacter + Pseudochrobactrum + Ochrobactrum +
Nitrobacter + Bradyrhizobium + Bosea + Balneimonas + Afipia + Methylocella + Chelatococcus + Beijerinckia + Bartonella
+ Martelella + Fulvimarina + Aurantimonas + Thalassospira + Phenylobacterium + Mycoplana + Caulobacter + Brevundi-
monas + Asticcacaulis + Thalassobius + Shimia + Sagittula + Ruegeria + Rubellimicrobium + Rhodovulum + Rhodobacter
+ Rhodobaca + Phaeobacter + Paracoccus + Octadecabacter + Nautella + Marivita + Loktanella + Dinoroseobacter + Antarc-
tobacter + Anaerospora + Amaricoccus + Oceanicaulis + Maricaulis + Hyphomonas + Hirschia + Telmatospirillum + Sker-
manella + Roseospira + Rhodovibrio + Rhodospirillum + Phaeospirillum + Novispirillum + Nisaea + Magnetospirillum +
Inquilinus + Azospirillum + Swaminathania + Roseomonas + Roseococcus + Gluconobacter + Acidocella + Acidisphaera +
Acidiphilium + Acetobacter + Wolbachia + Rickettsia + Neorickettsia + Ehrlichia + Candidatus Neoehrlichia + Anaplasma +
Zymomonas + Sphingopyxis + Sphingomonas + Sphingobium + Novosphingobium + Kaistobacter + Blastomonas + Lutibac-
terium + Erythrobacter

114 Sutterella + Pigmentiphaga + Oligella + Denitrobacter + Achromobacter + Tetrathiobacter
115 Lautropia + Candidatus Glomeribacter + Burkholderia + Pandoraea + Salinispora
116 Comamonas + Aquabacterium + Alicycliphilus + Acidovorax + Curvibacter + Delftia + Diaphorobacter + Giesbergeria +

Hydrogenophaga + Hylemonella + Lampropedia + Leptothrix + Limnobacter + Limnohabitans + Methylibium + Paucibacter
+ Pelomonas + Polaromonas + RS62 + Ramlibacter + Rhodoferax + Roseateles + Rubrivivax + Schlegelella + Simplicispira +
Tepidimonas + Thiomonas + Variovorax + Verminephrobacter + Xenophilus

117 Oxalobacter + Janthinobacterium + Herminiimonas + Herbaspirillum + Cupriavidus + Collimonas + Polynucleobacter +
Ralstonia

118 Neisseria + Microvirgula + Kingella + Eikenella + Deefgea + Conchiformibius + Chromobacterium + Aquitalea + Vitre-
oscilla + Vogesella + Methylotenera + Methylobacillus + Thiobacillus + Gallionella + Nitrosovibrio + Nitrosospira + Pro-
cabacter + Zoogloea + Z-35 + Uliginosibacterium + Thauera + TS34 + Sulfuritalea + Sterolibacterium + Rhodocyclus +
Propionivibrio + Methyloversatilis + KD1-23 + K82 + Hydrogenophilus + Dok59 + Denitratisoma + Dechloromonas + Candi-
datus Accumulibacter + C39 + Azovibrio + Azospira + Azoarcus + Thiobacter + Candidatus Tremblaya

119 Bilophila + Desulfonatronum + Desulfomicrobium + Desulfovermiculus + Desulfonauticus + Desulfonatronovibrio
120 Desulfovibrio + Lawsonia
121 Pelobacter + Geobacter + Desulfuromonas + Desulfurella + Nitrospina + Desulfotalea + Desulforhopalus + Desulfocapsa

+ Desulfobulbus + Desulfotignum + Desulfosarcina + Desulfofrigus + Desulfococcus + Desulfobacter + Desulfarculus +
Bdellovibrio + Bacteriovorax + Sorangium + Chondromyces + Plesiocystis + Myxococcus + Corallococcus + Anaeromyxobac-
ter + Haliangium + Cystobacter + Syntrophobacter + Desulfacinum + Syntrophus + Smithella + Desulfomonile + Desulfobacca
+ Geothermobacterium + Candidatus Entotheonella

122 Campylobacter + Arcobacter + Sulfurospirillum + Sulfurimonas + Sulfuricurvum + Helicobacter + Flexispira + Caminibacter
+ Mariprofundus
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123 - G12 Shewanella + Psychromonas + Congregibacter + Moritella + Pseudidiomarina + Idiomarina + HTCC + Ferrimonas + Thalas-

somonas + Colwellia + nsmpVI18 + ZD0117 + Umboniibacter + Spongiibacter + ND137 + Microbulbifer + Marinobacter +
Marinimicrobium + HTCC2207 + HB2-32-21 + Glaciecola + Cellvibrio + Candidatus Endobugula + BD2-13 + Alteromonas +
Agarivorans + Rheinheimera + Alishewanella + Succinivibrio + Ruminobacter + Anaerobiospirillum + Tolumonas + Oceanis-
phaera + Oceanimonas + Acidithiobacillus + Cardiobacterium + Thiovirga + Thiofaba + Halothiobacillus + Thiorhodospira
+ Thioalkalivibrio + Methylonatrum + Halorhodospira + Ectothiorhodospira + Thiorhodococcus + Thiocystis + Thiococcus +
Thiocapsa + Nitrosococcus + Marichromatium + Halochromatium + Chromatium + Allochromatium

124 - G13 Candidatus Blochmannia + Buchnera + Brenneria + Arsenophonus + Candidatus Hamiltonella + Candidatus Phlomobacter
125 - G13 Candidatus Regiella
126 - G13 Citrobacter + Dickeya + Edwardsiella + Enterobacter
127 - G13 Erwinia
128 - G13 Gluconacetobacter
129 - G13 Klebsiella
130 - G13 Morganella
131 - G13 Photorhabdus
132 - G13 Plesiomonas
133 Proteus + Providencia
134 - G13 Salmonella
135 - G13 Serratia
136 - G13 Sodalis
137 - G13 Trabulsiella
138 - G13 Yersinia
139 - G12 Kushneria + Halomonas + Haererehalobacter + Cobetia + Chromohalobacter + Candidatus Portiera + Hahella + Alcanivorax

+ Oleispira + Oleibacter + Oceanospirillum + Nitrincola + Neptunomonas + Marinomonas + Marinobacterium + Amphritea +
Saccharospirillum + Reinekea + ML110J-20 + Methylomonas + Methylomicrobium + Methylocaldum + Crenothrix + Tatlockia
+ Legionella + Francisella + Rickettsiella + Coxiella + Aquicella

140 Actinobacillus
141 - G14 Aggregatibacter + Avibacterium + Bibersteinia + Chelonobacter + Gallibacterium
142 - G14 Haemophilus + Mannheimia + Pasteurella
143 Acinetobacter + Alkanindiges + Enhydrobacter
144 Moraxella + Perlucidibaca + Psychrobacter
145 Pseudomonas + Azorhizophilus + Azomonas
146 - G12 Vibrio + Salinivibrio + Photobacterium + Enterovibrio + Aliivibrio + Pseudoalteromonas + Thiothrix + Thioploca + Leucothrix

+ E8 + Cocleimonas + CF-26 + Beggiatoa + B46 + Thiomicrospira + Thioalkalimicrobium + Piscirickettsia + Methylophaga +
Thiohalorhabdus + Salinisphaera

147 - G12 Stenotrophomonas + Rhodanobacter + Pseudoxanthomonas + Lysobacter + Luteimonas + Luteibacter + Ignatzschineria
+ Dyella + Dokdonella + Arenimonas + Aquimonas + Thermomonas + Wohlfahrtiimonas + Xanthomonas + Xylella +
Steroidobacter + Nevskia + Hydrocarboniphaga + Marinicella

148 SJA-88 + Turneriella + Leptospira + Leptonema + Brachyspira + Spironema + Borrelia + za29 + Treponema + Spirochaeta +
X31d11 + Sphaerochaeta + so4B24 + ZA3312c + SargSea-WGS + SHAG537 + SGSH944 + Arctic95A-2 + Candidatus Scalindua
+ Candidatus Jettenia + Candidatus Brocadia + Planctomyces + Pirellula + A17 + Isosphaera + Gemmata + Candida-
tus Acetothermum + Thermodesulfovibrio + LCP-6 + HB118 + GOUTA19 + DCE29 + Candidatus Magnetoovum + Candida-
tus Magnetobacterium + BD2-6 + Leptospirillum + Nitrospira + JG37-AG-70 + Candidatus Methylomirabilis + Lentisphaera +
Gemmatimonas + E6 + vadinCA02 + Thermoanaerovibrio + Cloacibacillus + Candidatus Tammella + TG5 + Pyramidobacter
+ PD-UASB-13 + HA73 + Aminobacterium + Anaerobaculum + Aminiphilus + Mycoplasma + Candidatus Hepatoplasma +
Mesoplasma + Entomoplasma + Asteroleplasma + Anaeroplasma + Candidatus Phytoplasma + Acholeplasma + Thermotoga
+ Thermosipho + SC103 + S1 + Petrotoga + Kosmotoga + Geotoga + Fervidobacterium + AUTHM297

149 Akkermansia + Luteolibacter + Persicirhabdus + Prosthecobacter + Rubritalea + Verrucomicrobium + Pelagicoccus + Cerasic-
occus + Puniceicoccus + MB11C04 + Coraliomargarita + Opitutus + LP2A + Candidatus Methylacidiphilum + Pedosphaera
+ heteroC45 4W + OR-59 + Ellin506 + DA101 + Chthoniobacter + Candidatus Xiphinematobacter + W5 + W22 + BHB21 +
Vulcanithermus + Thermus + Meiothermus + Truepera + GBI-58 + B-42 + R18-435 + Deinococcus + Deinobacterium + CM44

Annex Table 2: List of the grouped abundances of the Child Stool samples.
All abundances have non negligible values in the sample. G indicates the
group formed after the merging procedure to remove correlations.
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1 Actinomyces + Actinobaculum + Arcanobacterium + Candidatus Ancillula + Mobiluncus + N09 + Trueperella + Varibaculum

+ Actinopolyspora + Saccharothrix + Lentzea + Kibdelosporangium + Actinokineospora + Actinoalloteichus + Georgenia +
Brevibacterium + Demequina + Cellulomonas + Actinotalea

2 Corynebacterium + Cryptosporangium + Dermabacter + Brachybacterium + Dermacoccus + Dermatophilus + Dietzia +
Frankia + Modestobacter + Geodermatophilus + Blastococcus + Glycomyces

3 Gordonia + Tetrasphaera + Terracoccus + Serinicoccus + Phycicoccus + Kytococcus + Knoellia + Janibacter + Arsenicicoccus
+ Jonesia + Kineosporia + Kineococcus

4 Microbacterium + Leucobacter + Frigoribacterium + Curtobacterium + Cryocola + Cryobacterium + Clavibacter + Candi-
datus Rhodoluna + Candidatus Aquiluna + Agromyces + Agrococcus + Mycetocola + Pseudoclavibacter + Rathayibacter +
Salinibacterium

5 - G1 Arthrobacter + Citricoccus
6 Kocuria + Microbispora
7 - G1 Micrococcus + Nesterenkonia + Renibacterium
8 - G1 Rothia + Sinomonas + Zhihengliuella
9 Verrucosispora + Solwaraspora + Pilimelia + Dactylosporangium + Couchioplanes + Catellatospora + Actinoplanes +

Actinocatenispora + Virgisporangium + Mycobacterium
10 Rhodococcus + Nocardia + Propionicimonas + Pimelobacter + Nocardioides + Kribbella + Friedmanniella + Aeromicrobium

+ Actinopolymorpha + Streptomonospora + Prauseria + Nocardiopsis + Xylanimicrobium + Promicromonospora + Cellu-
losimicrobium

11 Propionibacterium + Microlunatus + Luteococcus + Tessaracoccus + Thermobispora + Saccharopolyspora + Saccha-
romonospora + Pseudonocardia + Prauserella + Jiangella + Amycolatopsis + Actinomycetospora + Rarobacter + Sanguibacter
+ Sporichthya

12 Streptomyces + Kitasatospora + Streptosporangium + Nonomuraea + Actinomadura + Actinocorallia + Actinoallomurus +
Tsukamurella + Williamsia + Yaniella

13 Bifidobacterium + Alloscardovia + Bombiscardovia + Gardnerella
14 Scardovia
15 Atopobium + Adlercreutzia + Collinsella + Coriobacterium + Eggerthella + Slackia + Candidatus Microthrix + Iamia + Fer-

rimicrobium + Nitriliruptor + Euzebya + Rubrobacter + Solirubrobacter + Patulibacter + Conexibacter
16 Bacteroides + BF311 + X5 7N15

17 Candidatus Azobacteroides + Dysgonomonas
18 - G2 Paludibacter
19 Parabacteroides
20 Porphyromonas
21 - G2 Tannerella
22 Prevotella + Rikenella + PW3 + Blvii28 + AF12 + Odoribacter + Butyricimonas + BE24

23 YRC22 + Paraprevotella + CF231

24 [Prevotella]
25 Roseivirga + Reichenbachiella + Persicobacter + JTB248 + Fulvivirga + Flexithrix + Flexibacter + Flammeovirga + Sporocy-

tophaga + Spirosoma + Runella + Rudanella + Rhodocytophaga + Pontibacter + Microscilla + Leadbetterella + Hymenobac-
ter + Flectobacillus + Emticicia + Dyadobacter + Cytophaga + Adhaeribacter + Ucs1325 + SGUS912 + SC3-56 + Candida-
tus Cardinium + Candidatus Amoebophilus

26 Capnocytophaga + Arenibacter + Aquimarina + Aequorivita + Cellulophaga + Flavobacterium + Gelidibacter + Gillisia +
Gramella + Kordia + Lacinutrix + Leeuwenhoekiella + Lutimonas + Maribacter + Mesonia + Muricauda + Myroides + Polarib-
acter + Psychroflexus + Psychroserpens + Robiginitalea + Salegentibacter + Salinimicrobium + Sediminicola + Tenacibaculum
+ Ulvibacter + Winogradskyella + Zhouia + Zobellia + Wandonia + Owenweeksia + Fluviicola + Cryomorpha + Crocinitomix
+ Brumimicrobium + Blattabacterium

27 - G3 Chryseobacterium
28 - G3 Cloacibacterium + Elizabethkingia + Ornithobacterium + Riemerella
29 - G3 Wautersiella + Weeksella
30 Salinibacter + Rubricoccus + Rhodothermus + Salisaeta + KSA1 + Balneola + Sphingobacterium + Pedobacter + Olivibacter

+ Saprospira + Lewinella + Haliscomenobacter + Segetibacter + Sediminibacterium + Niabella + Flavisolibacter + Flavihu-
mibacter + Chitinophaga
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31 Synechococcus + Prochlorococcus + Thermosynechococcus + Acaryochloris + Pseudanabaena + Prochlorothrix + Leptolyng-

bya + Halomicronema + Arthronema + Symploca + Planktothrix + Planktothricoides + Phormidium + Oscillatoria + Micro-
coleus + Geitlerinema + Chroococcidiopsis + Spirulina + Prochloron + Microcystis + Cyanothece + Chroococcus + Rivularia
+ Calothrix + Nostoc + Gloeotrichia + Dolichospermum + Cylindrospermopsis + Anabaenopsis + Anabaena + Gloeobacter +
Thermobaculum + Thermogemmatispora + FFCH10602 + Dehalogenimonas + Dehalococcoides + Roseiflexus + Kouleothrix
+ Candidatus Chlorothrix + Chloronema + Chloroflexus + Caldilinea + Ardenscatena + WCHB1-05 + T78 + SHD-231 + SHD-
14 + Longilinea + C1 B004 + Anaerolinea + Ignavibacterium + Prosthecochloris + Waddlia + Candidatus Rhabdochlamydia
+ Parachlamydia + Candidatus Protochlamydia + LCP-26 + Caldithrix + Caldisericum + Fimbriimonas + Chthonomonas
+ CL0-1 + Armatimonas + Hydrogenobaculum + Candidatus Chloracidobacterium + Bryobacter + Candidatus Solibacter +
Geothrix + Candidatus Koribacter + Edaphobacter + Acidobacterium + Methanobrevibacter + Mucispirillum + Geovibrio +
Flexistipes + Deferribacter + Elusimicrobium + Fibrobacteres-2 + Fibrobacter + Candidatus Scalindua + Candidatus Jettenia
+ Candidatus Brocadia + Planctomyces + Pirellula + A17 + Isosphaera + Gemmata + Candidatus Acetothermum + Thermod-
esulfovibrio + LCP-6 + HB118 + GOUTA19 + DCE29 + Candidatus Magnetoovum + Candidatus Magnetobacterium + BD2-6
+ Leptospirillum + Nitrospira + JG37-AG-70 + Candidatus Methylomirabilis + Lentisphaera + Gemmatimonas

32 Anoxybacillus + Anaerobacillus + Alkalibacillus
33 - G4 Bacillus
34 - G4 Geobacillus + Lentibacillus + Marinibacillus + Marinococcus + Natronobacillus + Oceanobacillus + Pontibacillus + Salimicro-

bium + Terribacillus + Thalassobacillus
35 Virgibacillus
36 Ammoniphilus + Aneurinibacillus + Brevibacillus + Cohnella
37 Paenibacillus
38 Lysinibacillus + Kurthia + Paenisporosarcina + Planococcus + Planomicrobium + Rummeliibacillus + Solibacillus +

Sporosarcina + Ureibacillus + Viridibacillus + Pasteuria + Brochothrix + Kyrpidia + Alicyclobacillus + Sporolactobacillus
+ Pullulanibacillus + Thermicanus + Exiguobacterium + Thermoactinomyces + Shimazuella + Planifilum + Laceyella

39 Jeotgalicoccus + Macrococcus + Salinicoccus
40 Staphylococcus
41 Gemella + Turicibacter
42 Abiotrophia
43 Aerococcus
44 Alkalibacterium
45 - G5 Alloiococcus
46 - G5 Facklamia + Marinilactibacillus
47 Desemzia + Carnobacterium
48 Granulicatella
49 Trichococcus
50 Enterococcus
51 Tetragenococcus + Vagococcus
52 Lactobacillus + Pediococcus
53 Weissella + Leuconostoc + Fructobacillus
54 Lactococcus
55 Streptococcus
56 - G6 Clostridium + Clostridiisalibacter + Candidatus Arthromitus + Caminicella + Caloranaerobacter + Caloramator + Caldanaero-

cella + Alkaliphilus + X02d06 + Geosporobacter Thermotalea + Natronincola Anaerovirgula + Oxobacter + Proteiniclasticum
+ SMB53 + Sarcina + Thermoanaerobacterium + Thermohalobacter + Tindallia Anoxynatronum + Christensenella + Caldico-
probacter + Dehalobacterium

57 Alkalibacter + Acetobacterium + Anaerofustis + Garciella + Pseudoramibacter Eubacterium + Lutispora + Gracilibacter +
Heliorestis

58 - G7 Blautia + Anaerostipes
59 Butyrivibrio
60 Catonella
61 - G7 Coprococcus
62 - G7 Dorea + Epulopiscium + Lachnobacterium
63 Lachnospira
64 Moryella
65 Oribacterium + Pseudobutyrivibrio
66 - G7 Roseburia + Shuttleworthia
67 - G7 [Ruminococcus]
68 Desulfosporosinus + Desulfitobacter + Dehalobacter Syntrophobotulus
69 Desulfotomaculum + Desulfotomaculum Desulfovirgula + Desulfurispora + Niigata-25 + Pelotomaculum
70 Peptococcus + Sporotomaculum + WCHB1-84 + rc4-4
71 Filifactor
72 Peptostreptococcus + Tepidibacter
73 Faecalibacterium + Ethanoligenens + Anaerotruncus + Anaerofilum
74 Oscillospira
75 Ruminococcus
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76 Anaerovibrio + Anaeromusa + Acidaminococcus + BSV43

77 Dialister + G07 + Megamonas
78 Megasphaera + Mitsuokella + Pectinatus + Pelosinus
79 Phascolarctobacterium + Propionispora
80 Schwartzia
81 Selenomonas + Sporomusa + Succiniclasticum + Thermosinus
82 Veillonella + vadinHB04

83 - G6 WH1-8 + NP25 + Guggenheimella + Fusibacter + Acidaminobacter + Syntrophomonas + Symbiobacterium + YNPFFP6 +
Sulfobacillus

84 Mogibacterium + Anaerovorax
85 Anaerococcus + X1 68 + Dethiosulfatibacter + Finegoldia + GW-34 + Gallicola + Helcococcus
86 Parvimonas
87 Peptoniphilus + Sedimentibacter + Sporanaerobacter + Tepidimicrobium + Tissierella Soehngenia + WAL 1855D + ecb11 +

ph2

88 Natroniella + Halanaerobacter + Acetohalobium + Halanaerobium + Natranaerobius + Candidatus Contubernalis + KF-
Gitt2-16 + Dethiobacter + Anaerobranca + A55 D21 + Thermodesulfobium + Coprothermobacter + Thermovenabulum +
Thermoanaerobacter + Thermacetogenium + Moorella + Caldanaerobacter + Caldicellulosiruptor

89 Bulleidia + Allobaculum + Catenibacterium + Coprobacillus + Erysipelothrix + Holdemania + L7A E11 + PSB-M-3 + RFN20

+ Sharpea + [Eubacterium] + cc 115 + p-75-a5

90 Cetobacterium
91 Fusobacterium + Propionigenium + Psychrilyobacter + u114

92 Leptotrichia + Sneathia + Streptobacillus
93 Rhodoplanes + Rhodobium + Pedomicrobium + Parvibaculum + Hyphomicrobium + Devosia + Cohaesibacter + Pseu-

dochrobactrum + Ochrobactrum + Nitrobacter + Bradyrhizobium + Bosea + Balneimonas + Afipia + Methylocella + Chela-
tococcus + Beijerinckia + Bartonella + Martelella + Fulvimarina + Aurantimonas + Methylobacterium + Pleomorphomonas
+ Methylosinus + Methylopila + Phyllobacterium + Nitratireductor + Mesorhizobium + Defluvibacter + Chelativorans +
Aminobacter + Sinorhizobium + Shinella + Rhizobium + Kaistia + Candidatus Liberibacter + Agrobacterium + Afifella +
Xanthobacter + Labrys + Blastochloris + Azorhizobium + Thalassospira + Phenylobacterium + Mycoplana + Caulobacter
+ Brevundimonas + Asticcacaulis + Thalassobius + Shimia + Sagittula + Ruegeria + Rubellimicrobium + Rhodovulum +
Rhodobacter + Rhodobaca + Phaeobacter + Paracoccus + Octadecabacter + Nautella + Marivita + Loktanella + Dinoroseobac-
ter + Antarctobacter + Anaerospora + Amaricoccus + Oceanicaulis + Maricaulis + Hyphomonas + Hirschia

94 Rhodovibrio + Rhodospirillum + Phaeospirillum + Novispirillum + Nisaea + Magnetospirillum + Inquilinus + Azospirillum +
Roseospira + Skermanella + Telmatospirillum + Swaminathania + Roseomonas + Roseococcus + Gluconobacter + Acidocella
+ Acidisphaera + Acidiphilium + Acetobacter + Wolbachia + Rickettsia + Neorickettsia + Ehrlichia + Candidatus Neoehrlichia
+ Anaplasma + Zymomonas + Sphingopyxis + Sphingomonas + Sphingobium + Novosphingobium + Kaistobacter + Blas-
tomonas + Lutibacterium + Erythrobacter

95 - G8 Sutterella + Pigmentiphaga + Oligella + Denitrobacter + Achromobacter + Tetrathiobacter
96 - G8 Burkholderia + Candidatus Glomeribacter
97 - G8 Lautropia + Pandoraea + Salinispora
98 - G8 Aquabacterium + Alicycliphilus + Acidovorax + Comamonas + Curvibacter + Delftia + Diaphorobacter + Giesbergeria +

Hydrogenophaga + Hylemonella + Lampropedia + Leptothrix + Limnobacter + Limnohabitans + Methylibium + Paucibacter
+ Pelomonas + Polaromonas + RS62 + Ramlibacter + Rhodoferax + Roseateles + Rubrivivax + Schlegelella + Simplicispira +
Tepidimonas + Thiomonas + Variovorax + Verminephrobacter + Xenophilus

99 Janthinobacterium + Herminiimonas + Herbaspirillum + Cupriavidus + Collimonas + Oxalobacter + Polynucleobacter
100 Ralstonia
101 - G9 Conchiformibius + Chromobacterium + Aquitalea + Deefgea
102 Eikenella
103 Kingella + Microvirgula
104 - G9 Neisseria + Vitreoscilla + Vogesella
105 Nitrosovibrio + Nitrosospira + Methylotenera + Methylobacillus + Thiobacillus + Gallionella + Procabacter
106 TS34 + Sulfuritalea + Sterolibacterium + Rhodocyclus + Propionivibrio + Methyloversatilis + KD1-23 + K82 + Hy-

drogenophilus + Dok59 + Denitratisoma + Dechloromonas + Candidatus Accumulibacter + C39 + Azovibrio + Azospira
+ Azoarcus + Thauera + Uliginosibacterium + Z-35 + Zoogloea + Thiobacter + Candidatus Tremblaya

107 Lawsonia + Desulfovibrio + Bilophila + Desulfonatronum + Desulfomicrobium + Desulfovermiculus + Desulfonauticus +
Desulfonatronovibrio + Nitrospina + Desulfotalea + Desulforhopalus + Desulfocapsa + Desulfobulbus + Desulfotignum +
Desulfosarcina + Desulfofrigus + Desulfococcus + Desulfobacter + Desulfarculus + Bdellovibrio + Bacteriovorax + Desul-
furella + Pelobacter + Geobacter + Desulfuromonas + Sorangium + Chondromyces + Plesiocystis + Myxococcus + Corallo-
coccus + Anaeromyxobacter + Haliangium + Cystobacter + Syntrophobacter + Desulfacinum + Syntrophus + Smithella +
Desulfomonile + Desulfobacca + Geothermobacterium + Candidatus Entotheonella

108 Campylobacter + Arcobacter + Sulfurospirillum + Sulfurimonas + Sulfuricurvum + Helicobacter + Flexispira + Caminibacter
+ Mariprofundus

109 - G10 Succinivibrio + Ruminobacter + Anaerobiospirillum + Tolumonas + Oceanisphaera + Oceanimonas + Acidithiobacillus
110 - G10 Marinobacter + Marinimicrobium + HTCC2207 + HB2-32-21 + Glaciecola + Cellvibrio + Candidatus Endobugula + BD2-13

+ Alteromonas + Agarivorans + Microbulbifer + ND137 + Spongiibacter + Umboniibacter + ZD0117 + nsmpVI18 + Thalas-
somonas + Colwellia + Ferrimonas + HTCC + Pseudidiomarina + Idiomarina + Moritella
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111 - G10 Congregibacter + Psychromonas + Shewanella + Rheinheimera + Alishewanella
112 Cardiobacterium + Thiovirga + Thiofaba + Halothiobacillus + Thiorhodospira + Thioalkalivibrio + Methylonatrum + Halorho-

dospira + Ectothiorhodospira + Thiorhodococcus + Thiocystis + Thiococcus + Thiocapsa + Nitrosococcus + Marichromatium
+ Halochromatium + Chromatium + Allochromatium

113 - G10 Candidatus Blochmannia + Buchnera + Brenneria + Arsenophonus + Candidatus Hamiltonella + Candidatus Phlomobacter
114 - G10 Candidatus Regiella
115 - G10 Citrobacter + Dickeya + Edwardsiella + Enterobacter
116 - G10 Erwinia
117 - G10 Gluconacetobacter
118 - G10 Klebsiella
119 - G10 Morganella
120 - G10 Photorhabdus
121 - G10 Plesiomonas
122 - G10 Proteus + Providencia
123 - G10 Salmonella
124 - G10 Serratia
125 - G10 Sodalis
126 - G10 Trabulsiella
127 - G10 Yersinia
128 - G10 Methylomonas + Methylomicrobium + Methylocaldum + Crenothrix + Tatlockia + Legionella + Francisella + Rickettsiella +

Coxiella + Aquicella
129 - G10 Cobetia + Chromohalobacter + Candidatus Portiera + Haererehalobacter
130 - G10 Halomonas + Kushneria
131 - G10 Oleispira + Oleibacter + Oceanospirillum + Nitrincola + Neptunomonas + Marinomonas + Marinobacterium + Amphritea +

Hahella + Alcanivorax + Saccharospirillum + Reinekea + ML110J-20

132 Actinobacillus
133 Aggregatibacter
134 Avibacterium + Bibersteinia
135 Chelonobacter + Gallibacterium
136 Haemophilus + Mannheimia + Pasteurella
137 Acinetobacter + Alkanindiges
138 Enhydrobacter
139 Moraxella + Perlucidibaca + Psychrobacter
140 Pseudomonas + Azorhizophilus + Azomonas
141 - G10 Pseudoalteromonas
142 - G10 Vibrio + Salinivibrio + Photobacterium + Enterovibrio + Aliivibrio
143 - G10 Stenotrophomonas + Rhodanobacter + Pseudoxanthomonas + Lysobacter + Luteimonas + Luteibacter + Ignatzschineria

+ Dyella + Dokdonella + Arenimonas + Aquimonas + Thermomonas + Wohlfahrtiimonas + Xanthomonas + Xylella +
Steroidobacter + Nevskia + Hydrocarboniphaga + Thiothrix + Thioploca + Leucothrix + E8 + Cocleimonas + CF-26 + Beg-
giatoa + B46 + Thiomicrospira + Thioalkalimicrobium + Piscirickettsia + Methylophaga + Thiohalorhabdus + Salinisphaera +
Marinicella

144 - G11 Treponema + Spirochaeta + X31d11 + za29 + Sphaerochaeta + Spironema + Borrelia + Brachyspira + SJA-88 + Turneriella +
Leptospira + Leptonema + so4B24 + ZA3312c + SargSea-WGS + SHAG537 + SGSH944 + Arctic95A-2

145 - G11 TG5 + Pyramidobacter + PD-UASB-13 + HA73 + Aminobacterium + Anaerobaculum + Aminiphilus + vadinCA02 + Ther-
moanaerovibrio + Cloacibacillus + Candidatus Tammella + E6

146 Mycoplasma + Candidatus Hepatoplasma + Mesoplasma + Entomoplasma + Asteroleplasma + Anaeroplasma + Candida-
tus Phytoplasma + Acholeplasma + Thermotoga + Thermosipho + SC103 + S1 + Petrotoga + Kosmotoga + Geotoga + Fervi-
dobacterium + AUTHM297

147 Akkermansia + Luteolibacter + Persicirhabdus + Prosthecobacter + Rubritalea + Verrucomicrobium + Pelagicoccus + Cerasic-
occus + Puniceicoccus + MB11C04 + Coraliomargarita + Opitutus + LP2A + Candidatus Methylacidiphilum + Pedosphaera
+ heteroC45 4W + OR-59 + Ellin506 + DA101 + Chthoniobacter + Candidatus Xiphinematobacter + W5 + W22 + BHB21 +
Vulcanithermus + Thermus + Meiothermus + Truepera + GBI-58 + B-42 + R18-435 + Deinococcus + Deinobacterium + CM44

Annex Table 3: List of the grouped abundances of the Mother Buccal samples.
All abundances have non negligible values in the sample. G indicates the
group formed after the merging procedure to remove correlations.
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