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Abstract

THE problem of transforming the energy sector towards more sustainable alterna-
tives in a cost-effective way is complex and multi-faceted. Five sets of questions
related to energy innovation, both on the supply and the demand side, needed

or helpful for a successful climate-constrained strategy, are explored in this thesis. An-
swers tackle the problem from different angles and are elaborated through a variety of
quantitative tools, resulting in both generalizable novel approaches and specific policy-
relevant insights.

The thesis demonstrates the feasibility and usefulness of different combinations
of techniques, including integrated assessment modelling with endogenous technical
change, global sensitivity analysis, decomposition scenario techniques, experts’ elic-
itations, approximate dynamic programming and energy data analytics. As decisions
are informed by increasingly complicated models and always larger datasets, priority is
given to keeping a clear understanding of the robustness of findings, especially as our
empirical or probabilistic knowledge of uncertain inputs change.

Climate policy makers, clean energy investors and power operators will find relevant
insights on optimal clean energy R&D investment portfolios, best R&D risk-hedging
strategies, and smart-meter potential for emission reductions. The contribution of this
Ph.D. thesis lies at the intersection of these topics, exploring sensitivities of emissions
and abatement costs to uncertain technological and economic factors, proposing opti-
mal clean energy R&D investment portfolios under different climate policy contexts
and degrees of uncertainty, and exploring new venues of energy conservation possibil-
ities from behavioral interventions. The combination of novel and robust methodolo-
gies will hopefully be of inspiration for the design of improved strategies to prepare the
ground for future stringent climate stabilization.
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CHAPTER1
Overview

1.1 Policy and research context

In September 2013, the Intergovernmental Panel on Climate Change (IPCC) released
the first part of its Fifth Assessment Report (AR5), which is considered the result of
the largest and most rigorous process of peer review conducted in any scientific field in
history. Three main points emerge from this work (Stocker, Qin, and Platner, 2013):

1. the recent observed changes in the climate system are unequivocal and unprece-
dented over decades to millennia (e.g. atmosphere and ocean has warmed, cover-
age of snow and ice has diminished, sea level has risen, and the concentrations of
greenhouse gases (GHGs) have increased);

2. the likelihood for human influence to be the dominant cause of these and other
climatic changes is now estimated to be greater than 95% (a figure 5% bigger than
the one obtained 6 years ago in the previous assessment);

3. limiting climate change to avoid irreversible consequences with sufficient prob-
ability (e.g. limiting temperature increase to 2°C with respect to the levels be-
fore the Industrial Revolution) will require substantial and sustained reductions of
greenhouse gas emissions.

As the scientific community develops clearer prospects on the global risks that cur-
rent rates of climate change may pose to human welfare, policy-makers are faced with
the responsibility to either hedge against these risks today, or adopt a wait-and-see
approach. While governments started to acknowledge anthropogenic climate change
and the need for action 20 years ago with the first Earth Summit conference, a certain
inertia followed from the expectations of strong economic repercussions along with
emissions mitigation, especially at the deep levels required for limiting warming to
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Chapter 1. Overview

safe thresholds. According to the climate scientists, global atmospheric temperature
increase should not exceed two degrees Celsius with respect to pre-industrial levels in
order to avoid irreversible climate damages. This would require a comprehensive inter-
national agreement as the one envisioned in the UN Climate Change Conference held
in Durban in 2011.

An important step forward in international climate policy negotiations occurred in
December 2015 in Paris, at the 21st 21st Conference of the parties (COP) of the United
Nations Framework Convention on Climate Change (UNFCCC). Representatives of
180 countries stated their commitments to reduce their carbon emissions (Intended Na-
tionally Determined Contributions, or INDCs). As a result of the conference, the so-
called Paris Agreement was finally produced and adopted, with the ultimate objective
of preventing dangerous anthropogenic interference of the climate system. In quantita-
tive terms, the goal is to limit global warming to less than two degrees Celsius, with an
even more stringent proposal than the one elaborated in Durban. As of October 2016,
191 Parties signed the Agreement, and 74 Parties ratified it. With the ratification stage,
countries signal their intent to be legally bound to the terms of the international treaty.

How to turn these century-long future ambitious goals in decisions for today? Cli-
mate scientists and economists help informing these decisions by resorting to so called
Integrated Assessment Models (IAMs). IAMs have been proved to be a useful tool in
exploring the possibility space of future sustainable energy systems, and identifying the
most-effective options, as extensively reported in the mitigation chapters on assessing
transformation pathways of the AR5 (L. Clarke et al., 2014). These models employ
numerical optimization or simulation methods to provide economic assessments of cli-
mate change policies, and propose ideal pathways to decarbonize our economies. These
pathways usually envisage a deep and potentially very costly transformation of the en-
ergy system, which is the main source of anthropogenic GHG emissions, one of the
main driver of recent global warming according to IPCC.

Two key strategies emerge from the research of this and previous studies, if we want
to contain the cost of decarbonization: improving energy efficiency, and reducing the
costs of low-carbon technologies. Both of these strategies involve some form of innova-
tion, either in producing or consuming energy. Including innovation in the quantitative
assessment of climate policy options has been challenging, especially considering un-
certainty in future technological change and socio-economic contexts, complexity of
interactions between economic-energy sectors and between regions, unoptimal behav-
ioral aspects of energy demand, current fragmented national policy commitments and
future stringent environmental constraints.

The contribution of this Ph.D. thesis lies at the intersection of these topics, exploring
sensitivities of emissions and abatement costs to uncertain technological and economic
factors, proposing optimal clean energy R&D investment portfolios under different cli-
mate policy contexts and degrees of uncertainty, and exploring new venues of energy
conservation possibilities from behavioral interventions.

2



1.2. Objectives

1.2 Objectives

The chapters composing this thesis address five sets of questions related to energy in-
novation, both on the supply and the demand side, needed or helpful for a successful
climate-constrained strategy.

First, we explore how different assumptions on energy intensity improvements and
low-carbon technologies, along with other socio-economic factors, affect long-term
projected CO2 emissions from energy combustion with and without climate regulation.
Baseline emissions, i.e. in the absence of climate policies, are one of the most impor-
tant determinant of mitigation policy cost assessment. Different uncertainties around
the drivers of future baseline emissions, and potentially complex interactions among
them, make unclear which driver might be the most significant. Going beyond the cur-
rent sensitivity analysis literature, we use a novel scenario decomposition scheme with
an ensemble of six state-of-the-art complex IAMs, and apply it to the recently devel-
oped framework of future alternative narratives called Shared Socio-economic Path-
ways (SSPs).

As reducing energy demand turns out to be one of the factors contributing the most
to avoiding unconstrained carbon atmospheric pollution, we focus on the potential ben-
efits of new technologies, like smart meters, in reducing residential power consumption.
Information feedback on the amount of electricity consumed, provided with adequate
frequency, may overcome the lack of knowledge and/or salience required for optimal
behavior. What is the potential energy conservation effect of information feedback on
power consumption in the residential sector? This question is still debated in the liter-
ature. Earlier optimistic estimates are as high as 20%, while most recent studies with
more representative samples provide a more realistic large-scale conservation effect of
3-5%. We focus on a pilot project involving the delivery of an in-home display for
real-time power consumption feedback to thousands of households in Italy. We ana-
lyze the resulting high-resolution consumption dataset drawing from both statistics and
machine learning literature. We try to identify the impact of such an in-home device,
both in terms of quantity of reduced energy, persistence of this effect, and shifting in
preferences of daily consumption patterns.

When dealing with highly constrained carbon emissions, the capacity to provide
gradual or breakthrough innovation in low-carbon alternatives to traditional fossil fuels
energy production is essential. In the hypothesis of a post-2020 global commitment to
the objective of limiting the average global surface temperature increase of 2°C above
the pre-industrial average by the end of this century with sufficient probability, what are
the clean energy R&D investment needs to comply cost-effectively with such a target?
Specifically, we focus on two channels of innovation, a gradual one directed to improve
energy efficiency, and a breakthrough one meant to support the decarbonization of the
non-electric sector. Furthermore, we investigate the potential lack of R&D efforts in the
current short-term climate policy scenario, being dominated by fragmented and mod-
est emission reduction pledges. The risk is a technological lock-in in carbon-intensive
technologies, with cleaner alternatives not mature enough when a deep transition of the
energy system will be unavoidable. What if national pledges are replaced by a con-
certed international R&D programme? We contribute to the literature by optimizing
clean energy R&D investments under realistic climate policy scenarios, and explor-
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ing alternative R&D-based policy instruments potentially better suited at preparing the
ground for future stringent climate stabilization.

When using economy-energy-climate models, due to their computational complex-
ity, it is common to treat uncertainty only in discrete terms, analyzing a finite numbers
of alternatives. Nonetheless, the design of optimal energy R&D portfolios also rely on
our understanding of the extent to which technology assumptions drive model results
when changing in a continuous space. How this uncertainty propagates in different
IAMs in shaping emissions and abatement efforts under different climate scenarios?
We systematically explore a set of relevant low-carbon technological cost dimensions
as recently elicited by leading experts. The main goal is to identify the most/least
important input parameters in determining crucial model outcomes, like cumulative
emissions or climate policy costs, both individually and interactively. We also ana-
lyze the sign and magnitude of the relation between outcomes and varying cost inputs,
with computationally parsimonious techniques borrowed from the sensitivity analysis
literature.

The ultimate challenge is to introduce uncertainty endogenously in a coupled IAM
and R&D portfolio problem. Efforts in innovation of clean energy technologies are
risky, and deciding how to allocate the scarce funds available ideally mean to account
for these risks also in the decision-making process. Given experts’ probabilistic judg-
ments on the uncertain effectiveness of R&D in reducing future technological costs,
we identify optimal clean energy R&D investments, with welfare calculated through
a complex IAM. We explore the robustness of the result to different limited budgets,
risk-aversion preferences, and crowding out assumptions.

Despite the policy relevance of the topics covered, the research also have important
methodological implications. Deep uncertainty related to the effectiveness of R&D
investments on technical change, the complexity of a comprehensive integrated mod-
elling of the energy sector and the economy, and the large dimensions of available
datasets to be mined for evaluating innovative demand-side power conservation mea-
sures, provide room for innovating the quantitative treatment of such issues.

Answering to these questions could be beneficial both for integrated assessment
modellists and decision-makers. These latter, including climate policy makers, clean
energy investors and power operators, will find relevant insights on optimal R&D port-
folios, best R&D risk-hedging strategies, and smart-meter potential for emission re-
ductions. The combination of novel and robust methodologies with complex models,
as well as the attention to transparency of assumptions, will hopefully be of inspiration
for the design of improved strategies to solve the climate change mitigation puzzle.
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1.3 Methods

Each set of questions presented in the previous section will be addressed with a com-
bination of mathematical tools. Some tools, like climate-energy-economy models or
experts’ elicitation, are common to several chapters. Some others, like Approximate
Dynamic Programming or K-Means clustering, are specific to the needs of the question
they try to answer.

1.3.1 Integrated Assessment Models

With the exception of one strictly empirical question, proper pursuit of the objectives of
this thesis involves a quantitative model for the climate-energy-economy nexus. IAMs
represent a good compromise between complexity and completeness. The goal of IAMs
is to inform climate policy decisions and identify ideal pathways to decarbonize our
economies. IPCC, among other international institutions, heavily rely on IAMs to ex-
plore the possibility space of future sustainable energy systems, and identify the most-
effective options, both in terms of mitigation and adaptation to climate change. IAMs
employ either optimization or simulation methods to model with different detail a cer-
tain number of sectors of the economy and the environment. Specific modelling focus
is commonly directed to energy production, energy consumption, land use, and atmo-
spheric pollution from greenhouse gases (GHGs). They usually have a century-long
time resolution, and a global spatial coverage, with different regional disaggregations.

Among the available IAMs, preferential attention was given to the World Induced
Technical Change Hybrid Model (WITCH) developed within FEEM’s Sustainable De-
velopment research programme (Bosetti, Carraro, Galeotti, et al., 2006; Bosetti, Tavoni,
et al., 2009; Emmerling et al., 2016). Its fairly rich technological and economical de-
scription, and its distinctive features of modelling strategic interactions across regions
and endogenous clean energy innovation, make it a good candidate for answering sev-
eral of the above questions.

WITCH divides the worldwide economy into 13 regions, whose main macroeco-
nomic variables are represented through a top-down inter-temporal optimal growth
structure, while the energy sector is detailed in a bottom-up fashion. The different re-
gions behave as forward-looking agents optimizing their welfare in a non-cooperative
game-theoretic set-up, where actions interrelate through several externalities: GHG
emissions, dependence on exhaustible natural resources, trade of oil and carbon per-
mits, and technological R&D spillovers.

In the sensitivity analyses that follow, an ensemble of IAMs, encompassing different
modeling paradigms, is used. These other models are described in the individual chap-
ters, and were operated by other authors who provided the corresponding data for the
joint analysis. The difference between the models are both structural and parametrical.
While an harmonization process tried to minimize the second source of variation for
the sake of comparability in the sensitivity exercises, the remaining differences are key
to assess the robustness of the findings with respect to different model specifications.

IAMs and Endogenous innovation

Endogenous innovation is not a common trait in the IAMs community. In Carraro,
Gerlagh, and Zwaan (2003) and Grubb, Carraro, and Schellnhuber (2006) we find inter-
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esting overviews of how different innovation modelling approaches developed through
history in the context of global energy-economy models applied to climate change. A
first generations of these models (roughly from the late 1980s to the mid 1990s) ex-
ploited a series of exogenous assumptions for technical change. In the early 1990s,
top-down modeling of energy demand started to be combined with bottom-up model-
ing of energy supply, still relying on essentially exogenous assumptions about both. In
all these modeling studies, the costs of deep emission reductions were almost entirely
dependent on the assumptions about AEEI and low-carbon technology costs. Yet, the-
oretical and empirical studies were already demonstrating that technology would itself
be modified by climate policy. From around the mid 1990s, the top-down modeling
community began to incorporate both explicit knowledge functions using accumulated
R&D, and learning-by-doing equations. Also the bottom-up community began endog-
enizing technical change through learning-curves-explicit functions of how scale might
be associated with cost reductions into their analyses.

Starting from these approaches, WITCH brings further sophistications. In its basic
formulation, it includes international R&D spillovers, crowding out effects between dif-
ferent R&D investments, two-factor learning curves, and backstop technologies, mak-
ing the implications between climate policies and R&D efforts more subtle. While
already used for the purpose of analyzing this relationship (Bosetti, Carraro, Massetti,
et al., 2008), in the following chapters new policy elements are considered. For ex-
ample, when finding the clean-energy strategy for 2 degrees, specific regional policy
realism and new alternative short-term R&D-based policies are introduced.

IAMs and uncertain technical change

A further element of complication is given by the deep uncertainty of technical change,
which has started to be included in the models, despite the many challenges it entails
(L. E. Clarke and Weyant, 2002). While outside the climate change literature the the-
ory of investment under uncertainty and the real option literature has been extensively
applied to study R&D investments, only few works explored the intrinsic uncertainty
of innovation in the context of climate change.

Baker and Shittu, 2008 provide a broad picture of the literature linking uncertainty
with endogenous technical change, and highlight how the joint modelling of the two
has important quantitative and qualitative impacts on optimal climate change technol-
ogy policy. The three primary questions emerging from their study are: how much
should be invested in climate R&D, how R&D should be allocated among possible re-
search projects, and how the presence of endogenous technical change impacts optimal
emissions. Including uncertainty seems to have several impacts on optimal R&D in-
vestments: it can lead to much higher investments, it can reinforce the substitability
between R&D and near term abatement, and it can affect the degree of diversification.

In this context, it is common to treat uncertainty withing a simple analytical frame-
work, with inputs derived from the output of IAMs. Following this approach, G. J.
Blanford, 2009 try to capture the essential elements underlying the relationship be-
tween R&D investment and research outcomes. The valuations of potential research
outcomes are determined by the markets in which they will diffuse. This is achieved
by running an energy-economy model (MERGE, a model for evaluating regional and
global effects of GHG reduction policies) in a variety of technology scenarios, rep-
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resenting outcomes of alternative R&D programs. Building on top of this a simple
decision model linking R&D investment to a probability distribution over alternative
outcomes, it is possible to calculate optimal portfolios.

WITCH was already used in similar ways by Bosetti and Tavoni, 2009. The au-
thors develop a simple analytical model, with two time periods and two technologies,
which mimicks a social planner who minimizes costs by choosing optimal abatement
and innovation efforts consistently with a given environmental target. Uncertainty is in-
troduced by modeling the R&D outcome on the abatement cost of a carbon-free break-
through technology (backstop) as uncertain. A stochastic version of WITCH is devised
to account for such uncertainty.

In this thesis, for the optimal R&D portfolio under uncertainty we consider a wider
space of possibilities for the effectiveness of R&D. Solving the resulting stochastic
program is made possible thanks to the Approximate Dynamic Programming approach
mentioned below.

1.3.2 Experts’ elicitation

Experts’ elicitation has been used in several research fields to come up with educated
probabilistic descriptions of very uncertain parameters, with little historical or experi-
mental data, like new technologies cost reduction rates.

For the optimal R&D portfolio questions, distributions of costs were estimated from
the data collected by the ICARUS project (Bosetti, Catenacci, et al., 2011). Leading
experts from the academic world, the private sector, and international institutions took
part in a survey designed to collect information on the role of RD&D investments in
8 carbon-free technologies, with respect to lowering future costs of these technologies
and assessing the potential for their deployment. While the survey questioned the ex-
perts only on a limited amount of RD&D budgets for each technology, the results are
used to fit a continuum of R&D budget scenarios, which allows to look for optimal
budget allocations.

The work on sensitivity to technology costs leverages on the combined efforts of the
ICARUS survey with the elicitations carried out independently by researchers at UMass
Amherst and Harvard. Although surveys varied considerably across groups, they were
all carried out by means of structured protocols, in order to minimize potential biases
and overconfidence issues.

1.3.3 Approximate Dynamic Programming

Handling multiple technologies and continuous distributions in an optimal portfolio
problem under uncertainty leads to an analytically intractable problem, whose size in-
crease exponentially with the number of random variables considered. If we have also
to wait tens of minutes, or even hours, for the solution of one instance of a complex
model like WITCH for each welfare evaluation needed, the "curse of dimensionality"
becomes soon intractable.

In a different context of climate change economics research, Cai, Judd, and Lontzek,
2013 show an interesting approach, called Approximate Dynamic Programming, to ac-
count for uncertainty in IAMs. The authors jointly model the uncertain elements of
catastrophic climate change damages and annual economic productivity within a dy-
namic stochastic general equilibrium version of a widely accepted IAM. The problem
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is solved within the framework of dynamic programming, where the value function
given by the solution of the original model is approximated with a finitely parameter-
ized collection of functions.

Approximate dynamic programming is used here to evaluate optimal near-term in-
novation investment strategies for multiple technologies under continuous distributions
of future learning rates and without sacrificing the use of a model like WITCH. The
optimal R&D portfolio problem is cast as a usual two-stage stochastic program, under
two important assumptions. First, the choice of near-term R&D investments in the first
stage (from 2010 to 2030) have negligible repercussions on the economy and energy
production mix in this first stage. Second, the uncertainty on technological change in
the second stage does not impact the first stage objective function. Given this inde-
pendency between the two stages, it is possible to replace the evaluation of the second
stage value function with the evaluation of a surrogate function representing WITCH
model welfare output. In particular, a polynomial can be fit for (potentially thousands)
of technology costs realizations, and then used in place of the actual model. This way,
the portfolio problem becomes computationally tractable.

1.3.4 Sensitivity analysis

A problem with IAMs is that it is virtually impossible to have a direct or thorough
understanding of the relationship between the endogenous and exogenous variables. As
Risbey et al. (2005) wrote, climate scientists and decision-makers are exposed to the
risk of drawing conclusions without a full appreciation of the model behavior and of
the most critical assumptions. As decision-support models become more sophisticated,
sensitivity analysis will increase in relevance (Saltelli, 2002). In this thesis, we consider
two types of sensitivity analysis.

First, we employ a recently developed scenario decomposition algorithm (E. Bor-
gonovo, 2010) to understand the impact of different socio-economic and technological
factors on long-term projected CO2 emissions. Three scenarios (one central and two
alternative) are considered, characterized by three different configurations of a set of
inputs. A scenario protocol is designed in such a way that when deviating from the
central scenario, it is possible to attribute the observed change in output to changes in
each of the inputs. Given that inputs do not act in isolation, it is interesting to have in-
formation also on the impact of joint input changes. This is done by changing the factor
of interest from a reference to an alternative value, as well as changing all of the other
factors except the one of interest. The first set of model runs provides the individual
effect. The second - with a change in sign - gives us the total effect of that same factor,
i.e. an effect that contains both the individual and interaction effects. The interaction
effect includes all the interactions of one factor with all the other factors and is equal to
the difference between individual and total effects. Thank to this technique, it is possi-
ble to obtain interaction effects with a parsimonious number of model evaluations, an
important feature given the complexity of the models involved in the study.

Second, given the distributions of projected future cost and efficiency technology
parameters, and configuring them as input of an IAM accordingly, it is possible to build
an input-output dataset usable for a post-processing or given data logic sensitivity ap-
proach (Plischke, Emanuele Borgonovo, and Smith, 2013). In particular, the following
two insights are considered:

8



1.3. Methods

1. key-uncertainty drivers, which are identified thanks to global sensitivity indica-
tors that measure the separation between the unconditional and conditional model
output distribution (e.g. the more important the uncertainty of the input, the more
the variance of the output will drop when the input is fixed);

2. sign of change, expressing the output of interest as a function of a single input,
obtained through conditional expectations on all the other inputs (e.g. this allows
to see whether increasing this single input also increases the output, in a first-order
approximation where we average on the values that the other inputs may take).

Both sensitivity analyses, as mentioned before, consider an ensemble of IAMs. This
corroborates the findings against the structural uncertainty inherently present in inte-
grated assessment modelling.

1.3.5 Energy data analytics

Given the dataset of high frequency electricity consumption data for a large sample
of households, where in-home displays were installed for tracking and notifying en-
ergy consumption levels to household members, we want to evaluate the impact of the
display. We adopt two different methodologies.

First, a classical OLS regression is used to estimate the average power conservation
effect of the in-home display (Houde et al., 2013). The gradual phase-in design of
the experiment is exploited to compensate for the absence of external control group
data, so that households who haven’t received the displays yet act as counter-factual
for those who already received it. If we were to look only at conditional averages of
consumption between those with and without an in-home display over time, we would
risk to attribute to the display the merit of an already decreasing trend in demand.

Second, a small set of representative daily load curves normalized to daily con-
sumption (i.e. load shapes) are identified using K-Means clustering (Kwac, Flora, and
Rajagopal, 2014). While originally used in the context of static load profiling, this
technique is applied for detecting behavioral changes. In particular, a distribution of
preferences for representative load shapes for each household, calculated as frequen-
cies of occurrence, is built before and after the delivery of the display to understand
whether any shift in preferences took place.
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1.4 Overall structure

The research undertaken in each chapter gravitates around one main question: where to
innovate the energy sector for supporting effective climate change mitigation policies?
As we aim for a transformation on both the way we consume and produce energy,
we can classify innovation options between those related to energy demand and those
related to energy supply.

How should we transform the energy sector for supporting 
cost-effective climate change mitigation policies?

ENERGY DEMAND ENERGY SUPPLY
What is the role of energy intensity improvements 
in determining future baseline emissions?

Sensitivity of projected long-term CO2 emissions 
across the Shared Socio-economic Pathways

 CHAPTER 2

What is the role of future uncertain technical 
change in emissions and mitigation costs?

Sensitivity to Energy Technology Costs: a 
multi-model comparison analysis 

How does optimal clean energy R&D portfolio 
change when fully accounting for uncertainty?

Optimal Clean Energy R&D Investments 
Under Uncertainty 

 CHAPTER 5

 CHAPTER 6

What is the mitigation potential of residential 
power demand response, given the availability of 
new technologies for tracking consumption?

Real-time feedback on electricity consumption: 
evidence from a field experiment in Italy 

 CHAPTER 3

How much clean energy R&D is required for a 
2°C  climate policy?

The clean energy R&D strategy for 2°C 
 CHAPTER 4

Figure 1.1: Overarching structure of chapters and related main questions.

Starting with the energy-demand side, chapter 2 investigates the role of energy ef-
ficiency improvements in affecting baseline emissions. The analysis takes also into
account interactions with changes in other important factors across meaningful future
scenario alternatives. As reduction of energy intensity turns out to be among the key
drivers of unconstrained CO2 emissions, it is worth exploring what mitigation options
are available in this sector due to innovative technologies. Chapter 3 casts some light
on the potential of energy conservation from the digitalization of the residential power
sector. Smart-meters, consumption tracking devices and demand response programmes
resulting from this information are becoming more and more common among utilities
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R&D agenda. In particular, we focus on the impact evaluation of a real-time feedback
in-home display deployed in Italy. Passing from a microeconomic to a macroeconomic
perspective, Chapter 4 quantifies optimal public R&D expenditures in energy efficiency
improvements compatible with an ambitious 2 degrees climate stabilization target. This
channel of innovation is juxtaposed with one in a breakthrough clean non-electric tech-
nology. This starts our exploration of the innovation possibilities in the energy supply
side. Chapter 5 involves a wider set of technologies subject to potential future R&D
attention, and questions the role of their future uncertain progress in emissions and mit-
igation costs. Chapter 6 concludes by considering the joint problem of finding optimal
R&D investments and the uncertain technical change resulting from them.
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Figure 1.2: Summary of features included in the research of each chapter.
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1.5 Chapters

1.5.1 Sensitivity of projected long-term CO2 emissions across the Shared Socio-
economic Pathways

Scenarios, showing future greenhouse gas emissions in the absence of climate reg-
ulation are needed to estimate climate impacts and the mitigation efforts required for
climate stabilization. Recently, the Shared Socio-economic Pathways (SSPs) have been
introduced to describe alternative social, economic and technical narratives, spanning a
wide range of plausible futures (Riahi et al., 2016). In particular, this work focuses on
the first 3 SSPs, which, if they were to be located in a mitigation versus adaptation chal-
lenge space, would belong to the main diagonal. Here we assume that SSP scenarios
are implemented by changing model inputs belonging to one of 5 categories: popula-
tion, GDP per capita, energy intensity improvements, fossil fuels availability and low
carbon energy technology development.

We aim at assessing the sensitivities of future CO2 emissions from fossil fuels and
industry over the next decades to these key drivers characterizing the SSPs. We focus
on energy-related emissions given their predominant role in future GHG atmospheric
concentrations (which are in turn directly related to changes in relevant climate vari-
ables), and their ease of comparability the differently structured models.

A recently developed decomposition algorithm (E. Borgonovo, 2010) allows us to
parsimoniously compute both the direct and total effect of each of these drivers on
cumulative emissions. This method involves changing the factor of interest from a ref-
erence to an alternative value, as well as changing all of the other factors except the one
of interest. The resulting scenario protocol, for a total of 46 scenarios, is implemented
by six state-of-the-art integrated assessment models (IAMs) with different structural
characteristics.

The results of this multi-model, global sensitivity analysis reveals that the SSP as-
sumptions about energy intensity and economic growth are by far the most important
determinants of future CO2 emissions from energy combustion, both with and without
a climate policy. Interaction terms between parameters are shown to be important deter-
minants of the total sensitivities. For example, assumptions of higher sustainability are
synergistic with the availability of higher wealth per person, leading to a lower emis-
sion increase than the one produced by the same increase in income in a less sustainable
scenario. Neglecting these interactions may lead to over- or under-estimations of the
effects of factors when analyzed individually. Looking at the full century, fossil fuels
availability become slightly more important, while the contribution from low carbon
technologies availability and the population factor remain marginal.

Results are conditional to the width of uncertainty spanned by SSP story-lines (e.g.
the expected limited variation in population in demographic porojections in general up
to 2050 reduces automatically its impact), the specific modelling choices in implement-
ing the story-lines and the different modelling responses. The ranking is also affected
by the fact that individual impacts of input groups can be dampened or reinforced when
these are varied together. Nonetheless, the top two drivers in the ranking tend to remain
so across models, over different time horizons, and with or without a carbon price.
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1.5.2 Real-time feedback on electricity consumption: Evidence from a field ex-
periment in Italy

Smart meters offer the potential to help consumers optimize energy consumption pat-
terns. However, mixed evidence exists on their effectiveness in reducing energy con-
sumption and especially on leveling off the daily peaks of electricity load curves. Here,
we assess the role of real time feedback on electricity consumption on a large scale trial
in Italy. We use a combined approach of standard regressions and machine learning
techniques on high frequency data.

Enel Info+ is a kit distributed by Enel (the largest electricity company in Italy) to
thousands of households in the province of Isernia, as part of a project on customer
engagement and demand response. The main interaction with Enel Info+ occurs via
an in-home display, informing users about instantaneous consumption, as well as daily,
weekly and monthly summaries. Three datasets were collected for three samples of
households involved. The Client sample contains those who adhered to the initiative
and had the in-home display active at the end of the test period, in December 2014. We
focus only on domestic resident consumers with a 3kW or 4.5kW power contract. The
Survey sample is a subset of Client households that agreed to provide further informa-
tion on the family and dwelling characteristics. The Curves sample is another subset
of Client households, for whom it was possible to obtain readings of energy consumed
every 15 minutes.

We begin by assessing the impact of the in-home display on average power conser-
vation effect. Impact is usually evaluated against a counterfactual consumption, in this
context the hypothetical one of those who already received the display if they hadn’t
received it. Ideally, a control group is sampled to provide such counterfactual. We do
not have access to the latter, since the company did not ask for informed consent and
refused to give us private information. As an alternative we exploit the gradual phase-in
of the experiment, building the counterfactual on the basis of the consumption of those
who haven’t received the display yet at any point in time. We cast the impact evaluation
problem as an OLS regression, either in a pooled, fixed effects or diff-in-diff setting,
considering the different samples mentioned above, along with their different sets of
available variables.

High-frequency data of the Curves sample can be used to assess not only changes
in overall electricity consumption, but also in shifts of consumption throughout the
day. We rely on a K-Means clustering algorithm to find a limited set of prototypical
days of consumption pattern. After having identified these representative patterns, their
frequencies of occurrence are calculated for each client, distinguishing the days before
and after the arrival of the in-home display. If any behavioral change happened in the
patterns of daily consumption due to the in-home display, this should be reflected in the
before-after difference of such vectors.

Results indicate that real-time feedback can moderately decrease electricity con-
sumption (by 1-2% on average), but that it is does not promote load shifting throughout
the day. We find evidence of significant household heterogeneity. Such a small aver-
age conservation effect can have several explanations. The in-home display alone did
not provide any monetary incentive or direct message promoting energy conservation,
which are documented to be more effective means than information feedback alone.
The geographical area of interest is relatively mountainous, with a climate not requir-
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ing air conditioning. Heating on the other side is rarely done via electricity. Power
demand is mostly related to lighting and other low-consumption appliances, making it
harder to save more energy.

Several limits and specificities of the experiment constraint the generalizability of
the results to a wider population sample. In particular, families participating in the trial
are more numerous than the population average, even though consumption per capita is
in line with the official statistics of the municipality.

1.5.3 The clean energy R&D strategy for 2°C

After describing the challenge for the economy and the energy systems to stabilize the
climate to non-dangerous levels, the R&D investment gap is quantified for what can
be considered as first-best settings, where mitigation action, even if fragmented, starts
immediately, and global cooperation starts in 2020 or in 2030. Then, R&D figures
are analyzed in a class of second-best scenarios, in order to see if other sub-optimal
policies, where the regional emission reduction efforts of the Copenhagen pledges are
replaced by high energy R&D investments and global cooperation is delayed up to
2030, could constitute viable cost-effective alternatives.

We implemented these scenarios in the WITCH model, accounting for two channels
of endogenous technical change. One type of formulation of technical change affects
the investment costs of an alternative, carbon-free technology in the non-electric sector.
This ‘backstop’ zero-emission fuel can be thought of as an advanced biofuel mitigation
option whose costs are currently much higher (e.g. 10 times) than oil, due to lacking of
sufficient knowledge. With sufficient R&D and physical investments, the low carbon
backstop can become a viable substitute to low carbon fossils. The externality nature of
the backstop innovation process is modelled via international spillovers of knowledge
and experience across countries and time. The other main channel of technical change
in WITCH is about energy savings. Energy efficiency is modelled through improve-
ments in the productivity of the energy input in the production of the final good sector,
via a constant elasticity of substitution production function. Innovation in this case is
subject only to knowledge externalities through a single factor learning curve.

We find that in order to attain 2°C with sufficiently high probability, a strong decar-
bonisation of the energy system is required, and mitigation actions call for an increased
financing in climate R&D. We quantify the global climate mitigation R&D investment
needs for attaining 2°C is approximately 1 USD Trillion cumulatively over the period
2010-2030, and 1.6 USD Trillions in the period 2030-2050. The investments would be
initially concentrated in the industrialized countries, but would balance off with those
of developing economies after 2030. The largest share of investments would be con-
centrated for the development of low carbon alternative fuels, though energy efficiency
investments would also play an important (and growing) role. We find that focusing on
an international clean energy R&D effort slightly underperforms a continuation of the
fragmented mitigation effort outlined by the Copenhagen pledges for the sake of cli-
mate stabilization, but it might prevent a potential lock-in to current carbon-intensive
energy technologies. An exclusive focus on R&D at the expenses of mitigation is how-
ever incompatible with climate stabilization if maintained for too long. Specifically,
R&D deals to 2030 and 2040 do not attain 2°C with likely (e.g. 450ppm-eq) and as
likely as not (e.g. 500ppm-eq) probabilities respectively.
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1.5.4 Sensitivity to Energy Technology Costs: A Multi-model comparison analy-
sis

In this chapter we use the output of multiple expert elicitation surveys on the future
cost of key low-carbon technologies and use it as input of three Integrated Assessment
models, GCAM, MARKAL_US and WITCH.

We focus our attention on the following technologies (and metrics): solar power
(levelized cost of electricity), nuclear power (overnight capital cost), biofuels (cost and
conversion efficiency), bioelectricity (cost and conversion efficiency) and carbon cap-
ture and storage (CCS) (capital cost and energy penalty). By harmonizing and aggre-
gating the data across experts and across surveys, we obtain eight probability distribu-
tions representing the values of these uncertain metrics. We generate 740 scenarios,
representing combinations of technology performances drawn from these eight cost
distributions. Each model is then set up to implement the assumptions of the 740 sce-
narios. The 740 runs are repeated for three policy scenarios: a baseline scenario where
no climate policy is in place, and two climate policy scenarios where global emissions
(US emissions for MARKAL-US) are constrained, in line with scenarios imposing a
radiative forcing of 2.6 and 4.5 W/m2 by 2100.

By means of this large set of simulations, we aim to assess the implications of these
subjective distributions of technological costs over key model outputs. In particular, we
inspect two sensitivity insights: key-uncertainty drivers and sign of change. Regarding
the former, we use three global sensitivity measures, each considering a different prop-
erty of the influence of model uncertain inputs distributions on model output distribu-
tion. Regarding the latter, we rely on the first order effects of the functional ANOVA
expansion of the model output, representing the expected variation of the output as a
function of each individual model input.

We are then able to detect what sources of technology uncertainty are more influ-
ential, how this differs across models, and whether and how results are affected by
the time horizon, the metric considered or the stringency of the climate policy. In un-
constrained emission scenarios, low-carbon technologies have to compete with fossil
fuels without accounting for the social cost of emissions. As such, within the range
of future technology performances considered in this analysis, the cost of nuclear en-
ergy is shown to dominate all others in affecting future emissions. Although different
models imply different variations in baseline emissions, the predominance of nuclear
energy cost as the main source of variation across models is a robust result. The vari-
ability across models in the magnitude of this effect reflects, in turn, the existence of
structural model differences that affect the speed and ease of technology replacements.
Climate-constrained scenarios, and in particular scenarios aiming at a stringent target
such as RCP 2.6, stress the relevance, in addition to that of nuclear energy, of biofu-
els, as they represent the main source of decarbonization of the transportation sector,
and bioenergy, since the latter can be coupled with CCS to produce negative emissions.
The ranking of the different parameters for their uncertainty importance changes across
models, while it is robust for each individual model to changes in the cost metrics and
in the stringency of the climate scenario.
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1.5.5 Optimal Clean Energy R&D Investments Under Uncertainty

In this chapter we evaluate optimal near-term innovation investments portfolios in so-
lar, biofuels, bioelectricity and personal electric vehicles battery technologies under
uncertainty in the learning rates of these technologies. The integrated techno-economic
assessment of the WITCH model is combined with a recent expert elicitation on ex-
pectations of future costs for the above-mentioned technologies (the ICARUS project).
This survey could focus only on a limited amount of R&D budgets for each technology,
while in our framework we want to be able to search for the optimal budget allocation
in a continuum of possibilities.

We cast this optimization problem as a two-stage stochastic program. Optimal near-
term public R&D investments maximizes the sum of two terms: the present discounted
value of future utility over the near-term (first stage), which decreases deterministi-
cally with R&D investments; and the net present value of future (second-stage) wel-
fare, which depends on the uncertain realizations of future costs, as the benefits of
R&D investments materialize with uncertain effectiveness. We link R&D investments
and future cost of technologies through a one-factor learning curve, where costs with
knowledge capital stock conditionally to a given learning rate. The uncertain effec-
tiveness of R&D investments is described by treating the learning rates as stochastic
parameters. Optimal energy R&D investments trade off the benefits of shifting dis-
tributions of future costs towards the lower end, with the burden on today utility of
sustaining such investments.

Thanks to the application of Approximate Dynamic Programming, it is possible to
keep the IAM complexity intact, while endogenously accounting for uncertainty in the
R&D strategy problem. In particular, we build an approximating continuous function of
the WITCH regional welfare response to future costs realizations over ranges consistent
with experts’ expectations. Ten samples are pick along each of the four technological
cost dimensions, for a total of 10,000 runs of WITCH. The resulting welfare outputs
are fit to a Chebysev interpolating polynomial function, with input costs as variable
arguments.

Focusing on Europe and its near-term climate policy commitments, we find that bat-
teries in personal transportation dominate the optimal public R&D portfolio both with
and without uncertainty. Several reasons may justify this result. First, the model future
utility is much more sensitive to changes in future costs of batteries than in all the other
costs. The non-electric sector, and in particular the personal transport sector, is tradi-
tionally considered one of the most difficult and expensive to decarbonize. Through
electrification of vehicles, Europe can benefit from all the efforts already diffused in
supporting clean power generation also for reducing transport emissions. Its stringent
climate policy commitments can then be achieved at contained costs. Such an electrifi-
cation is possible only with an adequate battery technology in place, which requires a
considerable amount of R&D from the status quo. Second, the probabilistic distribution
of future battery costs seems to have more inertia to investments upscaling with respect
to other technologies. Finally, batteries has received a marginal attention in terms of
European R&D funds in the recent past, making the initial cost quite high.
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While uncertainty seems to have a minor effect on the shares of the portfolio, its
role is clear in doubling the level of optimal battery R&D investments with respect to a
certainty-equivalent case. A precautionary mechanism emerges from the optimization,
where the risks of low learning in batteries are strongly hedged against by increased
investments.

The resulting ranking across technologies is robust to changes in risk-aversion, R&D
budget limitation and assumptions on crowding out of other investments. This results
suggest an important upscaling of R&D efforts compared to the recent past.
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1.6 Conclusions

We think studying how we should bring innovative changes in the way we produce
and consume energy under sustainable concerns is an actual and relevant point in the
research agenda for supporting climate change mitigation policies. The output of this
thesis is hopefully of use to both the policy and the research world, as well as indus-
tries involved in the innovation of clean energy technologies and energy conservation
services.

In a multi-model sensitivity analysis, we show that the assumptions about energy
intensity improvements, along with per capita income, appear to be the most influential
factor in explaining the projected change in future cumulative CO2 emissions. Results
are conditional to the width of uncertainty spanned by the Shared Socio-Economic
pathways SSP story-lines, which have been recently introduced to describe plausible
alternative social, economic and technical narratives.

One innovative way of improving energy intensity consists in leveraging on the mas-
sive future deployment of smart meters, both for power and heat end uses. In-home
displays communicating with smart meters might provide to consumers the missing
knowledge or salience needed for optimal consumption behavior, potentially promot-
ing energy conservation. Nonetheless, an empirical study on a field experiment in Italy
brought evidence that consumption quantity feedback alone has a minor conservation
effect. Changing inefficient life-style, or appliances, might require deeper behavioral
interventions, for example providing targeted suggestions at the appliance level, or re-
sorting to other economic, moral or social-norm-based incentives. Still, even a 1%
reduction, if brought to a large-scale may matter to the power industry.

Gradual innovation in energy efficiency improvements might also be crucial, along
with breakthrough innovation in low-carbon technologies, especially if we want to pur-
sue ambitious climate stabilization goals like the 2 degree one. The gap between op-
timal energy R&D investments of a world with stringent climate concerns and current
Copenhagen commitments lies in the order of $30 billions per year for the first half of
the century. This projected effort asked to clean energy investors is 3 to 6 times the
total annual amount of R&D, averaged in the period 2005-2010, spent by almost all
of the OECD (and global) R&D spending in that period. These figures roughly dou-
ble when considering the second half of the century. A short-term international clean
energy R&D effort might be preferred to a continuation of the current fragmented mit-
igation effort for the sake of climate stabilization after 2020, if legislators value the
future enough and prefer to avoid a potential carbon lock-in. These policy findings are
already quoted in the chapter "Assessing Transformation Pathways" of the last IPCC
report on mitigation, discussing optimal rates of clean energy R&D expenditures to
stabilize GHG concentrations.

In one of the first integrated assessment model comparison to look at an extensive
sensitivity analysis of technology costs, we tried to understand how the uncertainty in
future technical change may affect models results. Across three different models, the
uncertainty in future cost of nuclear is shown to dominate in affecting future baseline
emissions, while biofuels and bioenergy costs, in addition to nuclear ones, determine
abatement costs the most in climate constrained scenarios. Since climate policy costs
are found to be mostly sensitive to the possibility of very cheap or very costly nu-
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clear options, the importance of exploring advanced nuclear possibilities, as well as of
better understanding the social acceptability of such technology, cannot be neglected
by energy R&D investors and policy makers alike. This will be crucial not only for
the climate policy maker who intends to minimize policy costs, but also for the one
who wants to reduce the uncertainty surrounding those costs. The same considerations
hold for fuels and electricity produced from biomass. In this case, the appetite for
research in these technologies, while hindered by potential concerns of economic com-
petition with food production, may be supported by the key role of this technologies
in reaching stringent climate targets, related in particular to the possibility of achieving
negative emissions. Beyond policy implications, this type of analysis emphasizes the
importance of underlying assumptions of IAMs, and helps improving the reliability and
transparency of these models.

As uncertainty plays an important role in innovation decision-making, we proposed
one way of including this element endogenously in the optimization problem of a com-
plex IAM used for climate policy assessment. Due to the additional computational
burden and to the limited data availability on distributions of future costs, we focus on
a smaller set of promising low-carbon technologies, and consider the R&D investments
only for Europe in a "Copenhagen world". The resulting optimal R&D allocation is
dominated by the sector of batteries for personal electric vehicles. Batteries seem to
have a great potential in supporting the required decarbonization, and are characterized
by low expected learning rates that need to be hedged against. Compared to the past, a
significant upscaling of investments is suggested: 10-fold for the total budget and 100-
fold concerning batteries, with half of the up-scaling due to the inclusion of uncertainty.
The share of batteries in the portfolio is robust to different assumptions of risk-aversion,
R&D budget limitation and crowding-out effects. These results remark the importance
of taking R&D investments actions in the imminent decades to pave the way for a more
cost-effective transition to a low-carbon future, especially when considering the risky
nature of these investments.

Why considering so many topics and methods at once? The problem of innovating
the energy sector towards more sustainable alternatives in a cost-effective way is com-
plex and multi-faceted. The solution to this problem asks for increasingly complicated
decision-support models. As models grow in size and complexity, it is important to
keep a clear understanding of the robustness and dynamics of their outputs, as critical
uncertain inputs and parameters may and will change from our current empirical evalu-
ations. Along with size and complexity, also the computation burden increases, with a
necessary attention to approaching the problem in parsimonious ways. Hence the ben-
efits of being able to operate a varied toolkit of methods and tackling the problem from
different angles, which can concur in synergy to provide part of the answers sought
with a certain urgency by climate policy stakeholders.
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1.7 Future work

Several inputs could be taken from this work to expand the agenda for future mod-
elling and experimental research at the intersection of innovation and climate change
mitigation.

The relevance of energy intensity in determining baseline emissions goes together
with the recognition of the currently limited capability to model energy demand by
IAMs, making it a focus of priority for future model development. Including current
and future empirical works on energy demand response through behavioral interven-
tions in such models would augment the set of options available for designing optimal
mitigation strategies. Welfare implications of these behavioral levers in an integrated
assessment framework are still largely unexplored.

On the R&D side, further investigations could be performed on the policy instru-
ments that governments can implement to realize the idea of R&D cooperation (e.g.
multilateral financing programs like the Clean Technology Fund). As the policy con-
text evolves, with the Paris agreement and with those to come, more empirical and
modelling work is needed to keep policy realism updated in the model, as well as to
validate parameters related clean energy innovation, as new evidence unfold and new
technologies become more mature.

The sensitivities performed were done focusing either on broad techno-economic as-
sumptions, or on specific technology cost and efficiency parameters. In the perspective
of further unpacking the black boxes that IAMs are becoming, it would be interest-
ing to augment the space explored, ideally combining both type of parameters in one
sensitivity. A greater number of sampled scenarios would enable a deeper understand-
ing of sensitivities of individual factors, and could allow for a better exploration of the
synergies across pairs of inputs.

Finally, it would be desirable to evaluate the optimal R&D portfolio under uncer-
tainty for a wider set of technologies and climate policies. Also, one important ingredi-
ent could be added to the current formulation, which is the game across multiple regions
and the interplay between uncertainty and the strategic interactions which would occur
in terms of international knowledge spillovers.
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CHAPTER2
Sensitivity of projected long-term CO2 emissions

across the Shared Socio-economic Pathways1

2.1 Motivation and contribution

Counter-factual or baseline scenarios - that is scenarios mimicking what would hap-
pen in the absence of climate regulation - play a crucial role in the scientific analysis of
climate change, but they also increasingly matter in the political debate. Long term pro-
jections of socio-economic and emission scenarios are needed to be able to assess future
climate change, and its physical and economic impacts. Emission reduction policies,
including several of the Nationally Determined Contributions (NDCs) are expressed as
emission reductions relatively to a baseline projection. Moreover, baseline emissions
are one of the most important drivers of mitigation policy cost assessment (Blanford,
Rose, and Massimo Tavoni, 2012; Edenhofer et al., 2014; Stern, Pezzey, and Lambie,
2012): the higher the expectations of future emissions in the absence of climate policy,
the greater the mitigation effort for a given climate target, which translates in higher
policy costs and technological transformation requirements.

Several emission scenarios have been generated by the research community over
the years. The IPCC Special Report on Emission Scenarios (Nakicenovic et al., 2000)
described scenarios (SRES) which have been used since the third IPCC assessment re-
port. SRES have been very influential, accumulating almost 3000 citations (according
to Google Scholar). However, by now the SRES (published in 2000) are outdated. A

1This chapter is drawn from an early draft of the paper "Sensitivity of projected long-term CO2 emissions across the Shared
Socio-economic Pathways" by G. Marangoni, M. Tavoni, V. Bosetti, E. Borgonovo, P. Capros, O. Fricko, D. Gernaat, C. Guiv-
arch, P. Havlik, D. Huppmann, N. Johnson, P. Karkatsoulis, I. Keppo, V. Krey, E. Ó Broin, J. Price, and D. P. van Vuuren, to
be published in Nature Climate Change. P. Capros and P. Karkatsoulis provided results for the GEM-E3 model. O. Fricko, P.
Havlik, D. Huppmann, N. Johnson and V. Krey provided results for the MESSAGE model. D. Gernaat and D.P. van Vuuren pro-
vided results for the IMAGE model. C. Guivarch and E. O Broin provided results for the IMACLIM model. I. Keppo and J. Price
provided results for the TIAM-UCL model.
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new set of future scenario narratives has been recently developed to be used as base-
line scenarios. These scenarios, called Shared Socio-economic development Pathways
SSPs (O’Neill, Kriegler, Riahi, et al., 2013), describe five future evolutions of the world
spanning different challenges to mitigation and adaptation. A set of process-based2

have interpreted and implemented the SSPs storylines, generating new long term pro-
jections of GHG emissions scenarios (Fricko et al., 2016; Fujimori et al., 2016; D. P. v.
Vuuren, Elke Stehfest, et al., 2016).

Building baseline scenarios is a daunting task as it requires projecting forward mul-
tiple factors driving emissions and accounting for the large uncertainties characterizing
them. To date the research community has relied on multi-scenario and multi-model
comparisons to help quantifying the uncertainties surrounding baseline scenarios. As
no single model projection nor individual scenario will likely be exactly true, it is ex-
tremely useful to gauge the relative importance of drivers of these scenarios and al-
locate research efforts to strategically minimize uncertainties. In such exercise, it is
worth also to design additional scenarios that are not necessarily self-consistent with
the narratives of the original ones, but still may bring important insights on surprises
and risks we might want to hedge against. However, limited attention has been given
to the understanding of the sensitivity of projected emissions to the underlying drivers
that together define a specific narrative. The aim of this paper is to fill this gap by us-
ing a suite of integrated assessment models to systematically decompose the individual
and combined influence of each driver on GHG emissions in a multi-model perspective.
Varying just one factor at a time (OFAT) only allows for the computation of the individ-
ual effects of a particular factor change. A more refined methodology is employed here
to also capture non-linearities and interactions across factors at limited computational
cost.

IAMs have been subjected to sensitivity analyses in the past. However, most of
these analyses have focused on either a small set of models, or focused on individual
sensitivities. Nordhaus (2008) assessed the sensitivity of the social cost of carbon and
GHG emissions to 8 exogenous inputs in the DICE model, a simple and one of the
most popular IAMs. D. P. v. Vuuren, Vries, et al. (2008) explored the uncertainty of
baseline emissions as the result of the uncertainty of several inputs conditionally to
story-based scenarios. Differently from this work, the authors consider only one model
and focus on SRES instead of SSPs. Kriegler, Mouratiadou, et al. (2016) and Gilling-
ham et al. (2015) provide some recent multi-model sensitivity analyses, focusing on
direct OFAT impacts alone. Anderson et al. (2014) and Butler et al. (2014) provide a
large-scale model diagnostic evaluation that explicitly accounts for the parametric inter-
actions and dependencies between DICE coupled climate and economic components.
Valentina Bosetti et al. (2015) carry out one of the few multi-model global sensitivity
study focusing on costs of low carbon technologies. Rozenberg et al. (2013), using the
IMACLIM-R IAM, questioned the definition of SSPs and identified energy efficiency,
equity and convergence as the most important factors in explaining future differences
in challenges to climate change adaptation and mitigation. We go beyond the exist-
ing literature by focusing on the SSPs in a multi-model, global sensitivity comparison
exercise.

2As opposed to stylized, reduced-form approaches of another class of IAMs, often used for cost-benefit analyses.
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2.2 Approach

The SSP framework has identified five main narratives, which span the mitigation and
adaptation challenges space (Figure 2.3 in the SI). In this paper we focus on the di-
agonal scenarios, namely SSP1, SSP2 and SSP3. These three scenarios represent low,
intermediate, and high challenges to both mitigation and adaptation. Our variable of
interest is the cumulative CO2 emissions from fossil fuels and industry over the next
decades, a good proxy for changes in relevant climate variables, such as global average
temperature (Allen et al., 2009; Matthews et al., 2009). We focus on energy-related
emissions given their predominant role in future GHG atmospheric concentrations, and
their ease of comparability across the differently structured models. Six IAMs have
participated in the study: GEM-E3-ICCS (Capros et al., 2013), IMAGE (E. Stehfest
et al., 2014), IMACLIM (Waisman et al., 2012), MESSAGE-GLOBIOM (Fricko et al.,
2016), TIAM-UCL (Anandarajah et al., 2011) and WITCH-GLOBIOM (Emmerling
et al., 2016).

These models have previously contributed to major scientific and policy evaluations
such as the IPCC 5th assessment report (Change, 2015) and the Impact Assessments
of the EU energy and climate policies. The ensemble of models includes computable
general equilibrium models with detailed representation of economics sectors, tech-
nology rich models, as well as hybrid models, thus collectively encompassing different
modeling paradigms (see SI for details). Three of the six models (IMAGE, MESSAGE-
GLOBIOM and WITCH-GLOBIOM) have been directly involved in the SSP process,
and two of them were selected as ’marker’ models, i.e. providing a preferred quan-
tification for a selected SSP (Fricko et al., 2016; D. P. v. Vuuren, Elke Stehfest, et al.,
2016).

SSPs narratives differ in many regards. SSP1 can be described as a scenario with
low population growth, high economic growth, high energy efficiency improvements,
low fossil fuels availability and high preference for renewable energy. SSP3 has a
specular characterization, with SSP2 lying in the middle. Some of these aspects in-
clude variables which have been precisely quantified, such as population, and economic
growth. Other variables - such as household preferences, technical progress, or tech-
nology availability - have been more qualitatively defined. In order to implement our
analysis, we consider five main factors: population (POP), GDP per capita (GDPPC),
energy intensity improvements (END), fossil fuels availability (FF) and low carbon
energy technology development (LC). The resulting quantification of key emissions
drivers and their comparison with the SSP markers are shown in Figure 2.13.

3In the SI, Figure 2.5 further expands the decomposition of the SSPs as quantified by the marker models, Figure 2.6 shows emis-
sions time profiles across SSPs, with differences with SSP2 highlighted in Figure 2.7, while more details on the implementation
by the models of this study can be found in Table 2.2.
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Figure 2.1: Decomposition of CO2 emissions from Fossil Fuel and Industry for the 3 SSP scenarios,
as implemented by the set of SSP marker models (in color) and by models involved in this sensitivity
analysis (in gray). First row: yearly world population. Second row: yearly world GDP (PPP) per
capita. Third row: yearly world primary energy supply per unit of GDP (PPP). Fourth row: yearly
world CO2 FFI emissions per unit of primary energy supplied. Thicker lines are means across
models.

Given this setup, we have designed a scenario protocol such that when deviating
from the central SSP2 case to either SSP1 or SSP3 it is possible to attribute the ob-
served change in output to changes in each of these five groups of inputs. Since we
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are interested in determining also the relevance of parameter interactions, we employ a
recently developed scenario decomposition algorithm (Borgonovo, 2010). The method
is illustrated in Figure 2.4 in the SI, and involves changing the factor of interest from a
reference to an alternative value, as well as changing all of the other factors except the
one of interest. The first set of model runs provides the individual effect. The second
- with a change in sign - gives us the total effect of that same factor, i.e. an effect that
contains both the individual effect and the interaction effect. The interaction effect con-
tains all the interactions of the factor at with all the other factors and is the difference
between the individual and total effects. We coordinated the work in such a way that the
six IAMs ran exactly on the same grid of points. The full matrix of scenarios is reported
in Table 2.3 in the SI. The design has been chosen to obtain interaction effects with a
parsimonious number of model evaluations, an important feature given the complexity
of the models involved in the study.

Each of the six IAMs ran the 23 required scenarios for the no climate policy case (re-
ferred to as BASE), as well as another 23 scenarios for the climate policy case (referred
to as CPRICE). The climate policy scenarios assume a global carbon price starting in
the year 2020, equal to 30$/tCO2eq, and rising at a fixed rate of 5% per year. This is one
of the diagnostic carbon prices recommended by the Integrated Assessment Modeling
Consortium (IAMC). Running both cases allows us to test whether the key parameters
driving emissions are the same with and without a mitigation policy.

2.3 Methods

2.3.1 Socio-economic pathways.

The narratives behind the SSP scenarios are explained qualitatively in O’Neill, Kriegler,
Ebi, et al. (2015). In particular, this work focuses just on the first 3 SSPs, which, if they
were to be located in a mitigation versus adaptation challenge space, would belong to
the main diagonal. Here we assume that SSP scenarios are implemented by changing
model inputs belonging to one of 5 categories, described below. Differences between
SSP1 and SSP3 choices are highlighted, assuming that SSP2 lies somewhere in the
middle (see Figure 2.3 in SI).

• POP: refers to assumptions on regional population over the century. Estimates
have been developed by the International Institute for Applied Systems Analysis
(IIASA) at country level (KC and Lutz, 2014). SSP1 has lower global population
growth, while in SSP3 the growth is low in industrialized and high in developing
countries, with resulting globally higher levels.

• GDPPC: refers to assumptions on regional income per capita over the century.
These are obtained by dividing the GDP level projections obtained with the ENV-Growth
model by OECD specialists for the SSP scenarios (Dellink et al., 2015) with the
population levels above. SSP1 features favorable economic growth, while SSP3
economy is weakened by international fragmentation.

• END: refers to assumptions on energy intensity. Qualitatively, SSP1 features a
fast phase-out of traditional fuels, modest service demands and low energy inten-
sity of services and industry due to improved resource efficiency. SSP3 goes in
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the opposite direction, with continued reliance on traditional fuels, high service
demands and high energy intensity of services. Quantitatively, levels of world
final energy demand per unit of GDP were aligned across models and scenarios
with the same END assumptions.

• FF: refers to assumptions on fossil fuels availability. Qualitatively, SSP1 features
a fast decrease in fossil fuel dependency, reluctance to use unconventional fossil
resources, slow extraction technology improvements and no trade barriers. SSP3
instead involves supportive policies to the production of both conventional and
non-conventional fossil fuels, with a medium to high development of extraction
technology, partially counterbalanced by high trade barriers and support of en-
ergy security goals. Quantitatively, levels of world fossil primary energy per unit
of primary energy were aligned across models and scenarios with the same FF
assumptions.

• LC: refers to assumptions on low-carbon energy technologies availability. Qual-
itatively, SSP1 features high development and high social acceptance of non-
biomass renewables, specifically wind and solar technologies, along with a medium
development and low social acceptance of nuclear. On the other side, SSP3 in-
volves low development and medium social acceptance of non-biomass renew-
ables, along with low to medium development and high social acceptance of nu-
clear. Quantitatively, levels of world renewables and nuclear primary energy per
unit of primary energy were aligned across models and scenarios with the same
LC assumptions.

Elements related to land use and CCS are left out from this analysis. The assumption
is to leave them unchanged at their SSP2 levels. Thus, in principle a scenario with all
5 input categories at level 1 may slightly differ in terms of fossil fuels CO2 emissions
from an SSP1 scenario with its comprehensive implementation.

2.3.2 Design of Experiment and Finite Change Decomposition

In this analysis, we are dealing with M models, where each model, in principle, has its
own input space and input-output mapping. Then, we write y = hm(x), y : Xm 7→ Ym,
where Xm ⊆ Rnm , and Ym ⊆ Rqm are the model input space and model output spaces,
and nm and qm the number of model inputs and model outputs of modelm, respectively.
To illustrate the method, let us focus on a single model output y ∈ R, e.g. global
cumulative fossil fuels and industry CO2 emissions in the period 2010-2050, which is
computed by all models and for all values of x ∈ Xm,m = 1, 2, ...,M .

To find a common ground, we identify a scenario space, i.e. a space with setups
implementable across models in a consistent way. We describe such scenario space by
discrete vectors z = [z1, z2, . . . , zn] ∈ {0, 1}n. Each component zi is a scenario feature,
which is model-independent, and can be either at its nominal value (i.e. 0) or deviate
to an alternative value (i.e. 1). Here, the scenario features are POP, GDPPC, END,
FF and LC. Nominal levels correspond to SSP2 assumptions, while alternative levels
correspond to either SSP1 or SSP3 assumptions. Then, a map is needed to translate
these common scenarios to implementable model inputs combinations. We denote this
function through tm(·) : 0, 1N 7→ χm for each model. That is x = tm(z). Hence, we
can associate each scenario z with a model response ym = hm(tm(z)) = gm(z).
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When moving from the nominal scenario z0 = [0, . . . , 0] to its alternative counter-
part z1 = [1, . . . , 1], we observe a finite change in the output ∆y = gm(z1)− gm(z0).
To understand the contributions of the i-th scenario feature zi to this change, we exploit
the link between Placket-Burmann design of experiments and finite change decompo-
sition (Borgonovo, 2010). Dropping the model index m for brevity, we have:

∆y = g(z1)− g(z0) =
n∑
i=1

∆ig +
n∑
i<j

∆i,jg + · · ·+ ∆1,2,...,ng (2.1)

where:

• ∆ig = g([z0
1 , z

0
2 , . . . , z

0
i−1, z

1
i , z

0
i+1, . . . , z

0
n]) − g(z0) is the observed change in

output due to the individual change in the i-th scenario input;

• ∆i,jg = g([z0
1 , z

0
2 , . . . , z

0
i−1, z

1
i , z

0
i+1, . . . , z

0
j−1, z

1
j , z

0
j+1, . . . , z

0
n]) − ∆ig − ∆jg −

g(z0) is the change in output due to the simultaneous change in scenario inputs i
and j net of the sum of the individual effects of i and j;

• and likewise for higher order terms such as ∆i,j,kg.

One then summarizes the individual, interaction and total effect of each model input
in the following sensitivity indices:

• φ1
l = ∆lg and its normalized version Φ1

l = φIl
∆y will be referred to as the individual

effect of input l;

• φTi = ∑n
k=1

∑
i∈i1,i2,...,ik;i1<...<ik ∆i1,...,ikg and its normalized version Φi = φTi

∆y
will be referred to as the total effect of input i, including all the finite changes
terms involving that input;

• φIi = φTl − φ1
l will be referred to as the interaction effect of input i, and will be

equal to the sum of all contributions to ∆y involving a change in model input i.

The number of interacting terms determining the total effect is exponential in the
number of inputs (equal to 2n − 1, in principle). Nonetheless, a shortcut exists to
evaluate the total effects with a number of evaluations of y (and thus runs of a model)
linear in the number of inputs. This depends on the fact that total effects can be also
calculated as (ibid.):

φTi = g(z1)− g([z1
1 , z

1
2 , . . . , z

1
i−1, z

0
i , z

1
i+1, . . . , z

1
n]) (2.2)

Then, it is possible to compute all φ1
i , φ

T
i and φIi at 2n + 1 model evaluations. This

design motivates the table of runs of each model (see Supplementary Table 1).

2.3.3 Integrated Assessment Models.

The sensitivity analysis was repeated with six renowned global climate-energy-economy
models. This provides useful information on how robust the results are to model uncer-
tainty. The six models considered are briefly described below.
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• GEM-E3-ICCS is a computable general equilibrium model that puts emphasis
on: i) the analysis of market instruments for energy-related environmental policy,
such as taxes, subsidies, regulations, emission permits etc., at a degree of detail
that is sufficient for national, sectoral and World-wide policy evaluation; ii) the
assessment of distributional consequences of programmes and policies, including
social equity, employment and cohesion for less developed regions.

• IMACLIM is a recursive dynamics hybrid model, combining a general equilib-
rium approach with technology explicit modules. It is intended to study the in-
teractions between energy systems and the economy, to assess the feasibility of
low carbon development strategies and the transition pathway towards low carbon
future.

• IMAGE is a recursive dynamics model that can be described as a geographically
explicit assessment, integrated assessment simulation model, focusing on a de-
tailed representation of relevant processes with respect to human use of energy,
land and water in relation to relevant environmental processes. The model aims 1)
to analyze interactions between human development and the natural environment
to gain better insight into the processes of global environmental change; 2) to
identify response strategies to global environmental change based on assessment
of options and 3) to indicate key interlinkages and associated levels of uncertainty
in processes of global environmental change.

• MESSAGE-GLOBIOM 1.0 integrates the energy-engineering model MESSAGE
and the land-use model GLOBIOM into a consistent integrated assessment frame-
work. To account for general equilibrium effect MESSAGE-GLOBIOM also soft-
links to the aggregated macro-economic model MACRO.

• TIAM-UCL is an energy systems focused partial equilibrium model. It uses the
TIMES modelling platform, extended with a stylized representation of non-energy
emissions and a simple climate module. Scenario based simulations maximize
the total discounted sum of consumer and supplier surplus over the model hori-
zon, while taking into account the constraints (e.g. energy demand to be fulfilled,
availability of energy resources, etc.).

• WITCH-GLOBIOM is a hybrid economic optimal growth model, including a
bottom-up energy sector and a simple climate model, embedded in a game the-
oretic setup. It evaluates the impacts of climate policies on global and regional
economic systems and provides information on the optimal responses of these
economies to climate change. It also considers the positive externalities from
learning-by-doing and learning-by-researching in the energy-related technologi-
cal change.

2.3.4 Climate policies.

The sensitivity analysis is performed twice, one for each of the following climate poli-
cies.

• BASE: global carbon price equal to 0.
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• CPRICE: global carbon price equal to 30 US$2005/tCO2eq in 2040, starting in
2020 and increasing at 5%/yr.

2.4 Results

The main results of the decomposition analysis of emissions for the no climate policy
case and the first half of the century are shown in Figure 2.2. The left hand side panel
reports results when moving all scenarios drivers from the parameterization of the SSP2
scenario, the "middle of the road", to those of SSP1, the more sustainable scenario. The
overall reduction in emissions is 12% on average across the models. GDP per capita
and energy intensity improvement (END in Figure 2.2) appear to be the most important
drivers, with an absolute median impact on emissions of 5% (full model range: 3 to
8%) and 10% (6 to 18%), respectively. These two factors have opposite sign and thus
partly offset each other. SSP1 is assumed to be a wealthier, but more efficient world
than SSP2. Low availability of fossil fuels resources (FF) and high deployment of low-
carbon technologies (LC) contribute in lowering SSP1 emissions with respect to those
of SSP2 by 2% (-0.1 to 8%) and 2% (-1.9 to 6%), respectively. Assumptions about
population appear to have the lowest impact on emissions to 2050 across all models,
with a median reduction of 1%. Although this might appear surprising, one has to bear
in mind that population assumptions across SSPs tend to diverge gradually over time,
and differences are more visible especially mid-century, as shown in Figure 2.1.

The chart reports both individual and interaction effects that sum up to the total ef-
fect. The interaction effect can either amplify or dampen the changes resulting from
individual effects. The assumptions of higher sustainability in SSP1 are synergistic
with the availability of higher wealth per person, leading to a lower emission increase
than the one produced by the same increase in income in the less sustainable SSP2
scenario. As a result, the median impact of larger income per capita on emissions is
reduced from 8% - had we changed the factor in isolation - to 5%. For other parame-
ters, the direction of individual and interaction effects is less clear-cut, showing model
dependent behaviors.

The right hand side panel of Figure 2.2 reports results when moving all scenarios
drivers from SSP2 to the more challenging world of SSP3. In general, emissions are
higher in SSP3 than in SSP2, in line with the SSP3 narrative, and changes are bigger
than in the movement between SSP2 and SSP1, although the magnitude is model depen-
dent. The decomposition allows us to appreciate which drivers amplify this divergence.
Again, income and energy efficiency emerge as key determinants. The magnitude of
these two drivers is even larger than for the SSP1 case. When moving from SSP2 to
SSP3, specularly to the SSP1 case, we find that interaction effects amplify the emission
reductions associated to the GDP decrease, and mitigate the increase in emissions as-
sociated to higher energy end use. On the one hand, income reduction in a more energy
and fossil intensive economy leads to a larger drop in emissions. On the other hand,
lower efficiency in a poorer world yield a smaller increase in emissions. Absolute levels
of cumulative emissions and total effects in GtCO2 can be found in Figure 2.8 in the SI.

Table 2.1 provides a robustness test over different time horizons (e.g. till the end
of the century) and under the carbon price case. Overall, results hold across scenarios.
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Figure 2.2: Generalized tornado plot of cumulative CO2 emissions (2010-2050) change from SSP2
to either SSP1 (left) or SSP3 (right) without climate policies, for each of the 6 IAMs. TOTAL refers
to total emission changes, and the rows below show emission changes for each of the five factors.
Individual effects are reported with transparent thicker bars, total effects with solid thinner bars
and interaction effects with striped bars.

In the medium term, i.e. up to 2050, the results shown in Figure 2.2 are confirmed in
the case of the carbon price policy. Looking at the full century, fossil fuels availability
become slightly more important, while the contribution from low carbon technologies
availability and the population factor remain marginal. Full tornado plots with single
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model values are reported in Figure 2.9 (CPRICE 2050) and 2.11 (BASE 2090) in the
SI, with further highlighted in Figure 2.10 and 2.12 also in the SI.

Deviation SSP2→ SSP1

Year 2010-2050 2010-2090

Policy BASE CPRICE BASE CPRICE

Input

TOTAL -12 [-20,-5] -9 [-17,-0] -21 [-28,-15] -13 [-21,-3]

END -10 [-18,-6] -8 [-18,-6] -17 [-30,-7] -19 [-33,-6]

GDPPC 5 [3,8] 5 [4,7] 9 [6,13] 7 [6,13]

FF -2 [-8,0] -1 [-7,1] -3 [-16,0] -0 [-12,2]

LC -2 [-6,2] -0 [-6,2] -2 [-11,3] 2 [-3,4]

POP -1 [-2,-0] -1 [-2,-0] -3 [-8,-1] -4 [-5,-1]

Deviation 2 -> 3

Year 2010-2050 2010-2090

Policy BASE CPRICE BASE CPRICE

Input

TOTAL 13 [-3,31] 8 [-5,31] 9 [4,31] 6 [-13,50]

END 9 [2,29] 7 [2,30] 18 [4,39] 11 [4,52]

GDPPC -9 [-21,-3] -9 [-20,-3] -30 [-57,-23] -24 [-65,-16]

FF 4 [-0,8] 2 [-1,6] 12 [-0,15] 1 [-0,6]

LC 2 [0,6] 2 [0,6] 3 [2,7] 1 [-2,8]

POP -0 [-1,1] 0 [-2,1] 1 [-3,5] 3 [-3,7]

Table 2.1: Median percentage change in cumulative CO2 fossil fuels emissions from SSP2 base scenario
under 4 configuration (BASE or CPRICE, cumulative to 2050 or 2090). Model ranges are in brackets.

2.5 Conclusions

Overall, this analysis has shown that the assumptions about energy demand and per
capita income underlying the SSPs appear to be the most influential factors in explain-
ing the projected change in future cumulative CO2 emissions. Results are conditional to
the width of uncertainty spanned by SSP story-lines (e.g. the expected limited variation
in population in demographic projections in general up to 2050 reduces automatically
its impact), the specific modelling choices in implementing the story-lines and the dif-
ferent modelling responses. The ranking is also affected by the fact that individual
impacts of input groups can be dampened or reinforced when these are varied together.

Further research is needed to cast light on the mechanics of interactions and on
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the correlations between deviations from means and specific models characteristics.
Expanding the analysis to additional factors, such as land use emissions, could also
provide additional insights, especially in stringent mitigation scenarios. Assessments
aiming at quantifying uncertainty, exploring surprise scenarios (Lempert, 2007), and
design hedging strategies in the face of both parametric and model uncertainty (Drouet,
V. Bosetti, and M. Tavoni, 2015) are needed to inform climate policy, including the
upcoming reports of the IPCC. Such efforts, along with those undertaken in this paper,
can provide important insights in the nascent literature on IAMs diagnostics (Kriegler,
Petermann, et al., 2015). In addition to unpacking model results, it can also provide
guidance in terms of research directions: our results on energy intensity together with
the recognition of the currently limited capability to model energy demand (Wilson et
al., 2012) indicates this a focus of priority for future model development.
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2.A Appendix

2.A.1 Supplementary Figures

Figure 2.3: Diagram of SSP scenarios in the mitigation/adaptation challenges space.

Figure 2.4: Logic underlying the scenario protocol design for decomposition analysis. Left: a given
input xi (e.g. POP) among the k considered (i.e. the 5 factors) is moved from a reference level x0

(i.e. SSP2) to an alternative level x1 (i.e. SSP1 or SSP3). The difference in outputs yields the indi-
vidual effect ~Φ1

i of that input on the output. Right: all parameters but one input xi are moved to the
alternative level from the reference level. With a change in sign, the difference in outputs ~Φi1 yields
the total effect ΦTi . The different between total and individual effects are the interactions.
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Figure 2.5: CO2 emissions from Fossil Fuel and Industry with potential drivers as quantified by the 5
SSP marker models and reported in the SSP online database. First row: yearly CO2 FFI emissions
throughout the century. Second row: yearly world population (left); yearly GDP (PPP) per capita
(right). Third row: yearly final energy per unit of GDP (PPP) (left); yearly primary energy over
final energy (right). Fourth row: yearly share of primary oil, coal and gas supply over all primary
energy supply (left); yearly CO2 FFI emissions per unit of primary fossil supply (right).
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Figure 2.6: CO2 emissions from Fossil Fuel and Industry across BASE SSP1, SSP2, SSP3 scenarios,
as implemented in this exercise.
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Figure 2.10: Total and interaction effects on cumulative CO2 FFI till 2050, when moving from BASE
to CPRICE case, for each model. Average effects across models are on the left of each subplot.
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Remark for MESSAGE-GLOBIOM in Table 2.2. In all scenario variants ex-
plored in this global sensitivity analysis, the GLOBIOM land-use representation from
SSP2 has been used. As a result, only SSP2 BASE is consistent with the SSP imple-
mentation of MESSAGE-GLOBIOM while SSP1 and SSP3 are by design deviating
from the official SSP implementations as documented in Fricko et al., 2016 and Riahi
et al., 2016. While the internal consistency of the SSPs is affected by this approach, a
systematic comparison of these scenarios with the original SSP implementation show
that impacts on overall fossil fuel use in baseline scenarios is very modest and also the
resulting changes in fossil fuel and industrial CO2 emissions, the primary variable of in-
terest in this study, are small (some 2% by 2100). By contrast quite significant impacts
on biomass use are observed for two reasons, (i) the traditional biomass potential is
factored into the cheapest category and when pairing this with higher/lower traditional
biomass demand the remaining biomass for commercial applications change, and (ii) in
particular in the long run the demographic effect and the resulting difference in pressure
on land are quite significant in the SSPs.
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Scenario # Scenario Name POP GDPPC END FF LC

1 SSP2_BASE 2 2 2 2 2

2 SSP2_POP1 1 2 2 2 2

3 SSP2_GDPPC1 2 1 2 2 2

4 SSP2_END1 2 2 1 2 2

5 SSP2_FF1 2 2 2 1 2

6 SSP2_LC1 2 2 2 2 1

7 SSP2_POP3 3 2 2 2 2

8 SSP2_GDPPC3 2 3 2 2 2

9 SSP2_END3 2 2 3 2 2

10 SSP2_FF3 2 2 2 3 2

11 SSP2_LC3 2 2 2 2 3

12 SSP1_BASE 1 1 1 1 1

13 SSP1_POP2 2 1 1 1 1

14 SSP1_GDPPC2 1 2 1 1 1

15 SSP1_END2 1 1 2 1 1

16 SSP1_FF2 1 1 1 2 1

17 SSP1_LC2 1 1 1 1 2

18 SSP3_BASE 3 3 3 3 3

19 SSP3_POP2 2 3 3 3 3

20 SSP3_GDPPC2 3 2 3 3 3

21 SSP3_END2 3 3 2 3 3

22 SSP3_FF2 3 3 3 2 3

23 SSP3_LC2 3 3 3 3 2

Table 2.3: Names and details of the scenarios needed for the decomposition analysis and implemented
by modellers. Each number under an input column refers to the SSP base scenario from which the
setup for that input is taken.
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CHAPTER3
Real-time feedback on electricity consumption: Ev-

idence from a field experiment in Italy1

3.1 Introduction

Europe has set ambitious policy targets for energy and climate, with the aim of devel-
oping a sustainable, low-carbon society. Existing policy packages such as the 20-20-
20 objectives for year 2020, and new policy objectives, such as the 2030 energy and
climate strategy, have emphasized a variety of proposed tools. These include carbon
pricing, incentives to renewable and other low-carbon energy, as well energy efficiency
measures. These policies pushed together with the liberalization of the EU electricity
markets, are having profound repercussions on the energy industry. While our energy
supply systems undergo a necessary transition towards lower carbon-emitting alterna-
tives, power utilities are also considering the potential coming from the demand side.
Utilities do no longer provide electricity or gas alone, but are now providers of energy
services, aimed at improving customer experience.

Power consumers, by changing inefficient behavior and/or appliances, can reduce
their energy consumption, as well as the need for potentially costly and carbon-intensive
on-peak production, and for investments in networks and plants to sustain future peak
demands. Since power consumers are often unaware of their precise consumption lev-
els over time, one way of engaging them is via frequent information feedback on their
consumption. Thanks to the increasing deployment of smart meters, i.e. electronic de-
vices that record consumption of electric energy sub-hourly for monitoring and billing
purposes, real-time feedback is now a viable and affordable option. Smart meters are
indeed being deployed at a very fast rate, with almost 200 million devices operational

1This chapter is drawn from the paper "Real-time feedback on electricity consumption: Evidence from a field experiment in
Italy" by G. Marangoni and M. Tavoni, to be submitted.
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in the EU. Such technology has the capability of registering and communicating energy
consumption at a high temporal resolution (e.g. 15 minutes or less), thus enabling to
empower consumers with a on hand grasp of their energy bills.

Policy makers have promoted information programs, claiming their high potential
and cost effectiveness for energy conservation. The rationale for this policy intervention
is that users are often unaware of their energy footprint, either because of the high costs
of acquiring this information, or because of behavioral factors such as limited attention,
present bias and limited salience (Allcott and Mullainathan, 2010). However, critics
remain due to mixed empirical findings.

This paper aims to contribute to this literature, trying to understand how much
real-time feedback of power consumption can promote energy conservation behaviors,
specifically in the residential sector. We use an original dataset coming from a pilot
project carried out by a major energy utility in Italy. The high-frequency dataset allows
us to also address the issue of load shifting, namely the redistribution of electricity
consumption throughout the day. This is a major policy and economic issue, given
the hardly storable nature of electricity and the increased share of intermittent energy
sources, such as wind and solar power, in the electricity mix.

3.2 Real time electricity feedback project

In 2011 Enel Distribuzione S.p.A. (the largest electricity company in Italy, and one of
the largest in Europe) started a 3-years-long pilot project in the area of Isernia (mid-
south Italy) to test new smart-grid-related technologies and inform future network re-
structuring plans. One part of the project dealt with customer engagement for demand
response. In this context, a kit called "Enel Info+" was distributed to thousands of end
users to enable active participation by making people aware of how much electricity
was being consumed.

The main interaction with "Enel Info+" occurs via a display installed in the house
informing users about instantaneous consumption, as well as daily, weekly and monthly
summaries (Figure 3.1). The display also provides information about the current billing
slot (days are partitioned in 3 billing periods, peak (F1), intermediate (F2) and off peak
(F3)) and the time at which the next slot will enter into force. If users enter information
about their billing tariffs, they also get feedback on monetary expenditures. Users can
set goals, and are also warned by an acoustic signal whether their power consumption
exceeds the contractual obligation (set at 3kW for most of the customers).

54



3.3. Relation to the Literature

Figure 3.1: Features of the in-home display for real-time power consumption information feedback,
distributed by Enel Distribuzione S.p.a. to households in the province of Isernia.

The display was distributed for free to residents of Isernia city and surrounding
municipalities. The company focused on this area for technical reasons related to the
feasibility of high-frequency consumption data measurement and transmission. The
display was not randomly allocated: it was first distributed outside the city, and subse-
quently in the city. The company advertised this opportunity through media campaigns.
They faced initial difficulties in recruiting sufficient candidatures, possibly for concerns
about privacy or simply lack of knowledge. They subsequently intensified the promo-
tional campaign, by hosting meetings with the local population in schools and other
public spaces. This had the effect of increasing participation quite rapidly. Overall, the
trial was not carried out according to the golden rules of randomized controlled trials.
The design is subject to possible self selection which can hinder the external validity
of the programme impact. Nonetheless, the trial provides useful information on energy
consumption behavior, and is the first one carried out in Italy on a large sample. We
discuss more in detail below the measures we have taken to try to mitigate the imperfect
(from a research stand point) implementation.

3.3 Relation to the Literature

People’s perceptions of energy consumption can have significant discrepancies with
reality (Attari et al., 2010). In particular, low-energy activities tend to be overestimated
and high-energy activities tend to be largely underestimated. This justifies the potential
for information feedback programmes.

Several field experiments have been conducted to study the causal impact of such
programmes. Regarding relative average consumption reductions, two recent papers
performed a meta-analysis of the many available studies. We refer to these given the
large literature on the topic. Karlin, Zinger, and Ford, 2015 consider 42 studies with an
effect size on power consumption ranging from -8% to above 20%. Their meta-model
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estimate an overall reduction between 4% and 12%, depending on different aggregation
schemes. Several treatment variables moderate this relationship, including frequency
of feedback, medium, comparison message, duration, and combination with other in-
terventions (e.g., goal, incentive). Feedbacks turn out to be more effective especially
when combined with goal-setting or external incentive interventions, and is somewhat
brief (e.g., less than 3 months) or quite long (e.g., longer than 1 year). McKerracher
and Torriti, 2013 come up with more conservative estimates in their meta-analysis. Es-
pecially focusing on the lower estimates of more recent studies with larger sample sizes
and more representative sample selection and recruitment methods, the authors argue
that a realistic, large-scale conservation effect from feedback is in the range of 3-5%.
These estimates are significantly lower than what suggested in earlier studies, but are
supposed to be more robust, given the very large sample sizes of recent trials. It should
be remarked that even if relative reductions do not appear to be large, they are in fact
considered very significant from the industry view point. If these results are gener-
alizable, given the large share of energy consumed in the residential and commercial
sector, they can go a long way in improving energy efficiency, especially in the light of
the very low price elasticities observed in residential energy.

Houde et al., 2013 take advantage of hourly data from a long-lasting real-time feed-
back field experiment and look also into time-of-day reduction effects and persistence
of the effect over time. In this case, access to feedback leads to an average reduction in
household electricity consumption of 5.7%, persisting for up to four weeks. The largest
reductions were observed initially at all times of the day but as time passes, morning
and evening intervals show larger reductions. No particular demographics, housing and
psychological variable seemed to explain the heterogeneity in treatment effects.

Availability of hourly consumption data can provide further insights on how people
behave. Machine learning, and in particular clustering, has been applied in the past
to better understand patterns of consumption. Although several approaches are docu-
mented (Wang et al., 2015), some are of more immediate application and interpretation,
like the one by Kwac, Flora, and Rajagopal, 2014, focusing on the direct clustering of
normalized load shapes. These methods have been used in the context of static load pro-
filing, and are not yet exploited, to the best of my knowledge, for detecting behavioral
changes.

This work tries to combine the classical regression approach, as in (Houde et al.,
2013), with a machine learning approach, as in (Kwac, Flora, and Rajagopal, 2014), to
better understand if and how power consumption behavior changed concurrently with
the installation of in-home displays providing real-time feedback in a sample of Italian
households.

3.4 Methods

The "Enel Info+" kit, containing the in-home display used for consumption feedback
testing, was distributed by Enel to thousands of households in the province of Iser-
nia in Italy. Recruitment occurred on a voluntary basis, and was supported through
several initiatives. Between June and September 2012, Enel promoted the kit through
informational days at schools, mass marketing, and collaborations with public authori-
ties and institutions. The official recruitment started in November 2012, while friendly
tests were running since August. Among those who adhered to the initiative, only a
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sub-sample, which will be called the "Client" sample, had the in-home display still ac-
tive at the end of the test period, namely December 2014. For each of these clients,
Enel provided monthly energy consumption data between January 2012 and December
2014, divided per billing time slot 2. Extra information is available for each of these
clients, like contractual power and municipality at the moment of joining the program,
as well as date of delivery and version of the display. For the sake of this analysis,
we focus only on domestic resident consumers with a 3kW or 4.5kW power contract.
We exclude non-resident or non-domestic clients, who may have very different patterns
of consumption. With "Survey" sample, we denote a subset of "Client" households
that agreed to provide also information on the demographics of family members, the
number of appliances available in the house, and some characteristics of the dwelling.

For another subset of the "Client" households, which will be referred to as the
"Curves" sample, it was possible to obtain higher frequency readings of energy con-
sumed, i.e. every 15 minutes, at least for a fraction of the full 3 years span. The col-
lected load curves are re-sampled to 1-hour time steps for the purposes of this analysis.
To filter outliers on the higher end, we assume that electricity can be withdrawn at most
with power exceeding 10% the contractual value. Hourly readings exceeding 3.3kWh
or 4.95kWh are thus removed for 3kW or 4.5kW contracts households respectively.
These thresholds represent the same power levels above which service would generally
be discontinued after a while. Still, only a tiny fraction of observations exceed these
extremes, corresponding to around 99.999% quantiles of their respective datasets. A
slightly more restrictive threshold is assumed on the lower end, removing data below
the 0.1% quantile (i.e. 4Wh). This should filter very low readings which might corre-
spond to either faulty sensors, blackouts or empty houses, i.e. not interesting cases for
the analysis. Gaps up to 2 hours of missing data are interpolated linearly from available
values. Days remaining with missing points after this interpolation are removed.

Table 3.1 reports the main variables available for the "Client", "Curves" and "Sur-
vey" samples, along with some summary statistics. Table 3.2 compares part of these
variables, conditionally to each sample, with 2012 statistics at the province, region
("Molise") and national ("Italia"). The "Client" and "Curves" samples can be com-
pared only on the basis of 2012 average yearly consumption. Households who joined
and stick to the experiment seem to have consumed much more than the average fam-
ily in Isernia in 2012, both when considering the estimate from ISTAT of 1973 kWh
and the one from TERNA of 2248 kWh (not reported in the table). Both average and
standard deviation of consumption across households do not change much between the
sub-samples considered. When looking at survey data, we observe that the program
involved families with above-average number of members and rooms in the house.
Ownership of washers, dryers, dishwashers, electric boilers is also above the regional
average, while the presence of air conditioning is more marginal. This holds also when
considering the intersection of the "Survey" and "Curves" samples. Thus, it appears that
the sample of our analysis is not fully representative, pointing to selection bias. The
bias was not apparently driven by higher per capita energy consumption: this matches
quite well the official statistics of the Isernia municipality. However, families partic-

2Time of use is classified by Enel into 3 categories: F1 (on-peak), from Monday to Friday 8am-7pm, national holidays excluded;
F2 (intermediate), from Monday to Friday 7am-8am and 7pm-11pm, plus Saturday 7am-11pm; F3 (off-peak), on Saturday 11pm-
7am, Sunday and national holidays. Depending on the contract, different time slots may have different prices, with the most
popular billing having a higher price for F1 and a lower price both for F2 and F3.
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ipating in the trial are more numerous, with 3.2 persons per family as opposed to the
population average of 2.4. Following discussion with Enel, this might be attributed to
the campaigns the company did in schools to help getting the programme going, which
apparently were the most successful ones.

Table 3.1: The different datasets collected during the experiment.

Main Variables Summary statistics

Client dataset 1834 households

Date of delivery of the display 2012 (2%); 2013 (66%); 2014 (32%)

Version of the display I (27%); II (73%)

Municipality Isernia (63%); Other (37%)

Contractual power 3kW (94%); 4.5kW (6%)

Monthly energy consumption divided
by billing time slots in 2012-2014

Total Yearly Avg. (Std.): 2814 (1103) kWh in 2012,
2739 (1069) kWh in 2013, 2614 (998) kWh in 2014

Survey dataset 804 households

Number of family members <3 (26%); 3 (26%); 4 (37%); >4 (10%)

Age of family members Head of family, age class: 18-30 (3%); 31-50 (37%); 51+
(54%)

Sex of family members Head of family, sex: Male (85%); Female (14%)

Number of TVs per HH 1 (27%); 2 (31%); 3 (23%); >3 (18%)

Number of fridges/freezers per HH <2 (32%); 2 (56%); >2 (12%)

Number of ovens/stoves/microwaves
per HH

1 (39%); 2 (40%); >2 (16%)

Number of washers/dryers per HH 0 (1%); 1 (84%); >1 (15%)

Number of ACs per HH 0 (81%); 1 (14%); >1 (5%)

Number of boilers per HH 0 (86%); >0 (14%)

Number of heaters per HH 0 (78%); 1 (21%); >1 (2%)

Number of rooms 3 (6%); 4 (13%); 5 (26%); 6 (55%)

Load curves dataset 966 households

15min time-step energy consumption On median, tracked: 62% over 3 years; 456 days before
display; 194 days after display
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Table 3.2: Comparison of variables between different sub-samples from this study and official histori-
cal statistics for year 2012.

Client Curves Survey Survey
+
Curves

Isernia Molise Italia

Number of HHs 1834 966 804 439 36563 131059 25872613

Avg. Domestic Power Con-
sumption in 2012 [kWh/HH]

2814
(1103)

2715
(1046)

2831
(1076)

2772
(1069)

1973 2299

Avg. Domestic Power Con-
sumption in 2012 [kWh/-
Capita]

960
(515)

992
(574)

954 1186

Avg. Number of Family Mem-
bers

3.3
(1.2)

3.2
(1.2)

2.4 2.4 2.3

% Females in Families 49.1
(22.0)

49.4
(23.3)

51.0 51.2 51.5

Avg. Age 42.1
(15.6)

44.4
(16.6)

44.9 43.8

Avg. Number of Rooms per
HH

5.3
(0.9)

5.3
(0.9)

4.6 4.5 4.2

% HHs w/ Fridge 99.4 98.9 99.8 99.6

% HHs w/ Washer 99.0 98.9 98.1 96.2

% HHs w/ Dishwasher 62.3 61.7 35.9 39.3

% HHs w/ Freezer 65.4 64.5 25.8 25.3

% HHs w/ Dryer 12.4 11.4 3.0 3.3

% HHs w/ Electric Boiler 13.8 14.4 8.6 13.6

% HHs w/ Air Conditioning 18.9 18.7 23.5 28.0

Hourly The "Curves" dataset appears to have a log-normal distribution (see Figure
3.2), in agreement with the literature (Kwac, Flora, and Rajagopal, 2014). It includes
966 households and 26304 time periods, for a total of 14,805,000 non-null observations
(i.e. ~60% of all client-hour combinations).
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Figure 3.2: Distribution of hourly power consumption is well approximated by a log-normal distribu-
tion.

3.4.1 Regression of daily consumption

Let us begin by assessing the impact of the in-home display on average power conser-
vation effect. If we were to look only at conditional averages of consumption between
those with and without an in-home display over time, we would risk to attribute to the
display the merit of an already decreasing trend in demand (~3% reduction per year in
2013 and 2014, based on ISTAT and TERNA data). Hence it is important to rely on
some other identification strategies.

Impact is usually evaluated against a counterfactual consumption, in this context the
hypothetical one of those who already received the display if they hadn’t received it.
Ideally, a control group is sampled to provide such counterfactual. We do not have
access to the latter, since the company did not ask for informed consent and refused to
give us private information. As an alternative we exploit the gradual phase-in of the
experiment, building the counterfactual on the basis of the consumption of those who
haven’t received the display yet at any point in time. Figure 3.3 shows how clients
progressively received the display. Although our identification strategy is not ideal,
recent research seems to indicate that high frequency data can be used to estimate causal
effects in non-experimental research designs3

3See for example, David Rapson work entitled ’Can high-frequency data and non-experimental research designs recover causal
effects? Validation using an electricity usage experiment’, with Katrina Jessoe and Douglas Miller, presented at 2015 AERE
(http://aere.org/summer/documents/AERESummerConference2015Program.pdf)
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Figure 3.3: Number of observed clients with and without display at each month in the 3 years of the
experiment.

We can cast the impact evaluation problem as an OLS regression, either in a pooled,
fixed effects or diff-in-diff setting. Observations are defined over the set of households
and timestamps, which both depend on the sample considered. Timestamps can be
represented either (month, year) pairs with low-frequency monthly (LF) datasets, or
(day, month, year) triplets with the high-frequency (HF) dataset. The independent vari-
able is log of daily power consumption, obtained by dividing monthly levels, or when
available resampling high-frequency data. In the diff-in-diff case, we consider the per-
centage variation in consumption from one month to the same month in the previous
year. As dependent variables, we pick several subsets of the following variables:

• presence of the display (either 0=no display yet, or 1=display received);

• day of the week (from 0=Monday to 6=Sunday, only for high-frequency data);

• month (from 0=January to 11=December);

• year (from 0=2012 to 2=2014);

• municipality of the household;

• household fixed effect;

• time fixed effect (from Jan 2012 to Dec 2014 for LF data, and from 1st Jan 2012
to 31st Dec 2015 for HF data);

• survey variables (family size, average age and sex ownership; appliance owner-
ship; number of rooms in dwelling);

• weather variables (average temperature, both in linear and squared terms).
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Aliases and features of the models selected for estimation are reported in table 3.3.

Table 3.3: Models used for estimating the impact of having a display on daily power consumption levels.

Model name Pooled
OLS

HH
FE

HH
FE +
Temp

HH FE
+ Time
FE

Diff-
in-
Diff

HH FE +
Time FE
F1

Pooled OLS
+ Survey
SURVEY

HH FE +
Time FE
SURVEY

HH FE +
Time FE
LOAD

HH FE + Day
(HF) + Temp
LOAD

HH FE +
Time (HF)
FE LOAD

Sample

Client x x x x x x

Survey x x

Curves x x x

Dependent variable

log(daily consumption from
monthly data)

x x x x x x x

log(daily on-peak con-
sumption from monthly
data)

x

log(daily consumption from
high-freq data)

x x

% change in daily consump-
tion from last year (from
monthly data)

x

Independent variables

Display received x x x x x x x x x x x

Municipality x x

Year dummies x x x x x

Month dummies x x x x x

Weekday dummies x

Avg. Temp. + (Avg.
Temp.)2

x x

HH fixed effects x x x x x x x x x

Month/Year fixed effects x x x x x

Day/Month/Year fixed
effects

x

Survey variables x

Intervals of confidence for the coefficients are consistently estimated with the so-
called cluster-robust covariance estimator, treating each individual as a cluster.

Regressions imply a comparison at each time period between the sets of house-
holds with and without an in-home display. If the characteristics of these two sets of
households are different, the regression may be biased. Thus, we also applied the same
models focusing only on central observations (in the period from 2013-05 to 2014-
04), where these characteristics are more balanced (see Figures 3.10 and 3.11 in the
Appendix). In this case, we suppress municipality and year-related variables, as ob-
servations are not enough to provide a valid estimation accounting for these further
dimensions.

3.4.2 Clustering of load shapes

High frequency data can be used to assess not only changes in overall electricity con-
sumption, but also in shifts of consumption throughout the day. Reallocating electricity
from high peak periods to off peak ones can yield significant economic and environ-
mental benefits, especially in countries - such as Italy - characterized by high penetra-
tion of intermittent renewable energy sources. We normalize load curves with hourly
resolution by the total daily consumption. Such load shapes represent how households
allocate their daily budget of consumption over hours.

We rely on K-Means (MacQueen, 1967), one of the most popular non-hierarchical
statistical clustering algorithm, to find prototypical load shapes (or centroids). These
represents prototypical days of consumption pattern. The algorithm aims to choose
centroids that minimize inertia, i.e. the sum over clusters of the sum of squared dis-
tances from a centroid to all members of its cluster. While K-means always converge,
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it may converge to a local minimum, potentially depending on the initialization of the
centroids. To alleviate the problem, the computation is done several times (namely 36),
with a re-initialization scheme called "k-means++", with provably better results than
random initialization (Arthur and Vassilvitskii, 2007).

K-Means needs an exogenously provided number of clusters to operate. We focus
on a range between 8 and 20, spanning reasonable and manageable numbers of proto-
typical load shapes, already used in the literature (Räsänen and Kolehmainen, 2009).
We look at how inertia improves by increasing the number of clusters, and search for a
discontinuity in the derivative of such relationship.

After having identified the centroids, frequencies of occurrence of centroids are cal-
culated for each client, distinguishing the days before and after the arrival of the in-
home display. 70 days of data are required to build such frequency vectors. If any
behavioral change happened in the patterns of daily consumption due to the in-home
display, this should be reflected in the before-after difference of such vectors.

3.5 Results

3.5.1 Regression of daily consumption

The coefficient of primary interest in the regressions of this analysis is the one related to
having received a display. This coefficient represents the average percentage increase
in consumption due to the presence of an in-home display (Figure 3.4).
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Figure 3.4: Percentage increase in daily power consumption attributed to having received the in-home
display.
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The estimated effect has the expected direction. Although small, it is almost al-
ways statistically significant across models, and the magnitude is in line with the most
recent studies. It is not significant for the pooled OLS, which is also the model with
potentially greater bias. Focusing on the load curves sample, the effect seems greater.
In general, the load curves sample may represent households with higher consumption
per capita in the first place, hence with more options to reduce consumption (Table
3.2). In the models based on HF data, uncertainty ranges shrunk considerably thanks to
the abundance of observations. If we restrict our analysis to observations in the central
period, we obtain comparable levels or power reduction attributable to the display, with
a decrease in statistical significance for most models (see Figure 3.12 in the Appendix).

Such a small average conservation effect can have several explanations. The in-
home display alone did not provide any monetary incentive or direct message promot-
ing energy conservation, which are documented to be more effective means than in-
formation feedback alone. The geographical area of interest is relatively mountainous,
with a climate not requiring air conditioning. Heating on the other side is rarely done
via electricity. Power demand is mostly related to lighting and other low-consumption
appliances, making it harder to save more energy. Nonetheless, even a 1% reduction, if
brought to a large-scale may matter to the power industry.

A question which recurs in this literature is how long the effect of feedback lasts
over time. With this regard, we do not find a clear decreasing trend in effectiveness
of the display as months pass by. For some models and sub-samples, reduction in
consumption halves after 6 months of having the display (e.g. with HH and time fixed
effects focusing on the survey sample), while for other models the effect is the same as
in the first month (e.g. with e.g. with HH and time fixed effects focusing on the load
curves sample). Overall, on average declining trend in reduction is observable, but it is
not statistically significant.

3.5.2 Clustering of load shapes

Figure 3.6 shows how clustering accuracy, as measured by inertia, improves as the
number of clusters increase. We pick 14 as the number of centroids to be used on the
following analyses, in correspondence with the first local maximum of the derivative.
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Figure 3.5: Effect of display over time.

8 10 12 14 16 18 20
# of clusters

6500

7000

7500

8000

8500

in
er

tia

8 10 12 14 16 18 20
# of clusters

260

240

220

200

180

160

140

120

100

80

de
lta

 in
er

tia
 / 

de
lta

 #
 o

f c
lu

st
er

s

Figure 3.6: Inertia as a function of number of clusters used in K-Means (on the left), and derivative of
the same graph (on the right).

The 14 centroids representing prototypical days are shown in Figure 3.7. Clus-
ters are sorted by the number of actual load shapes they represent (as shown under N.
CURVES in the graphs). Shapes are clearly separated by the characteristics of their
peaks, i.e. their relative height and hour of occurrence.
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Figure 3.7: Prototypical load shapes resulting from the K-Means clustering. Primary and secondary
peaks are described in each subplot, in terms of % level and hour of occurrence.

For each client, frequencies of occurrence of centroids are calculated for the days
before and after the arrival of the in-home display. If there was a common trend in
behavioral change due to the in-home display, we should see a significant change in
such frequencies, moving away from some representative shape towards another one.
As shown in Figure 3.8, this is not emerging from the data. The average behavior of the
sampled clients, as coded in these vectors of frequencies, does not change significantly
conditionally on having or not a display.
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Figure 3.8: Frequencies of occurrence of centroids, averaged across clients, to which load shapes
before and after the in-home display arrival are clustered. Black vertical bars represent confidence
interval for the means.
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Nonetheless, if we plot the change in frequencies before and after the delivery of
the in-home display for each client, a wide heterogeneity emerges (Figure 3.9). Most
households seem to have maintained stable consumption patterns over time, as indi-
cated by the mass of the distributions of frequency gravitating around 0. Still, several
households exhibit much more flexibility in consumption, as shown by the long tails
of some of the 14 distributions. Overall, the in-home display was not consistently able
to provide the incentives required for an average visible shift of peaks over time, but
it did work for a subset of the population. This results is consistent with the literature
emphasizing the high heterogeneity of households and days.
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Figure 3.9: Changes in frequencies of occurrence of centroids, to which load shapes before and after
the in-home display arrival are clustered. Each household corresponds to a series of 14 points, one
per cluster.

3.6 Conclusions

Daily behavior of residential power consumption can be modelled as a two-step pro-
cess: first a daily budget of energy is decided, and then an allocation of consumption
over hours is chosen from a finite set of prototypical profiles. How does a real-time in-
formation feedback device affect this process? We tried to address this policy-relevant
question using data from a recent large-scale trial carried out in Italy.

According to our estimates, an average reduction in daily power consumption of
1.7% can be attributed to such device, even though with marginal statistical signifi-
cance. This is in line with more recent experimental studies on the topic.
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Average hourly power consumption behavior, measured in terms of distributions of
preferences for representative load shapes by each user, seems to remain unchanged
before and after the arrival of the display. Nonetheless, a wide heterogeneity has yet to
be explained.

Further data on the households would be useful to try to segment the analysis in
meaningful groups, identifying those customers for which information feedback led
to either significantly lower consumption levels or significantly different consumption
habits.

Consumption data at the appliance level would provide invaluable information on
behavior and behavioral change, even though at the cost of increasing computational
tractability.

Results are specific to the group involved in the study, and are not easily generaliz-
able to the wider population. The trial was carried out in an area of the country with
lower than average per capita energy consumption, as well as income, allowing for
more limited adjustments and investments. On the other hand, the sample households
appear to have more family members than average, possibly young children. Future
better experimental designs will also help to avoid issues of sample representativeness
and absence of control group.

All these potential steps for further research could lead to a better understanding of
how such interventions perform at large-scale, and whom these interventions could be
most beneficial for.
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(a) Client dataset.
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(b) Survey dataset.
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(c) Load dataset.

Figure 3.10: Comparison of average daily power consumption in 2012 between households with and
without an in-home display for each month of the experiment time horizon. Households belong
either to the Client (a), Survey (b) or Load (c) dataset. The average across households is given with
a bootstrapped confidence interval.
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Figure 3.11: Comparison of survey variables between households with and without an in-home display
for each month of the experiment time horizon. Averages across households are bootstrapped.
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Figure 3.12: Percentage increase in daily power consumption attributable to having received the
in-home display, focusing only on observations belonging to the central period from 2013-05 to
2014-04.
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CHAPTER4
The clean energy R&D strategy for 2°C1

4.1 Introduction

The purpose of this paper is to assess the role of R&D investments in clean energy
technologies under the objective of limiting the average global surface temperature in-
crease of 2°C above the pre-industrial average by the end of this century with sufficient
probability. 2°C is considered an important signpost for the scientific community as
well as for the climate policy debate. The international community has recognized
this threshold as the long term goal for the negotiation process which was initiated in
Durban, and more recently moved forward in Doha, and which is supposed to lead to a
global agreement after 2020. While governments started to acknowledge anthropogenic
climate change and the need for action 20 years ago with the first Earth Summit con-
ference, several obstacles have made implementing such a goal very challenging. One
of the most important concerns for action is that mitigating emissions, especially at
the deep levels required to meet the 2°C objective, could have serious economic reper-
cussions, given that currently available low carbon technologies are costlier than fossil
fuel alternatives. A successful climate policy will thus require significant improvement
of existing technologies, and invention of new alternatives which can help to reduce
energy consumption and emissions at contained costs. Although innovation2 has been
emphasized by many governments in their climate agendas, especially in Europe, the
literature that has assessed the clean energy R&D gap remains limited.

The objective of this paper is in line with the main purpose of the LIMITS special
issue it belongs to: contributing to a better understanding of the implications of a 2°C
stabilization. In order to provide quantitative answers to the problem at hand, this and

1This chapter is based on the paper "The clean energy R&D strategy for 2°C" by G. Marangoni and M. Tavoni, published in
Climate Change Econonomics 05, 1440003 (2014), http://dx.doi.org/10.1142/S201000781440003X.

2While innovation is a broad topic, in this paper we will be referring to its R&D component.
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most of the other works of the special issue rely on so-called Integrated Assessment
Models (IAMs). This family of models is increasingly common in the field of climate
policy analysis, since they provide fairly complete descriptions of the problems that
climate policy makers are called to decide upon, and present them with sets of possible
least-cost solutions. Further information on the broader results obtained with the mod-
els involved in the LIMITS comparison exercise can be found in the overview papers of
this same special issue (Kriegler et al., and Tavoni et al., this issue). For a focus on how
investments related to clean energy technologies are expected to be allocated under a
2°C target, the reader is invited to refer to McCollum et al. in this special issue.

The literature based on multi-model ensembles has indicated that a huge transfor-
mation on the way we produce and demand energy, as well as we use and manage land
resources, will be required if we want to meet the climatic constraint of 2°C (Calvin
et al., 2012; Clarke et al., 2009; Kriegler et al., this issue). This transformation would
require emission reductions rates which exceed by far what has been observed histor-
ically. Currently available technologies have the potential to initiate the road towards
decarbonization (Pacala and Socolow, 2004). Yet, ultimately, groundbreaking techno-
logical innovation will be needed to avoid excessive economic losses. Integrated assess-
ment models have indeed shown that technology availability plays a major role on the
feasibility and costs of facing the challenge of 2°C (Krey and Clarke, 2011; Kriegler et
al., Submitted). The literature thus confirms a deep link between the chances of achiev-
ing a low carbon world and the ability to improve the performance of currently known
technologies, as well as to create new technologies altogether.

Several policies have been put into place in recent years as a way to promote the
development of renewables, with the hope that this would have led to the creation of
an industry and would have ultimately profited the manufacturing base they supported.
However, incentivizing the installation of currently existing technologies does not nec-
essarily provide the best economic answer (Borenstein, 2012); on the other hand, sub-
sidizing research and development is justified by the innovation market failures arising
from property rights protection and knowledge spillovers (Geroski, 1995). Thus, a fun-
damental research question in the field of climate economics is to what extent climate
stabilization can be achieved by just focusing on setting the right carbon price, or by
considering also policies aimed at fostering innovation (Jaffe et al., 2005, 2003).

A related question to setting the right levels of R&D subsidies is the assessment of
the R&D investments gaps that we need to bridge to get to 2°C. Despite the policy rele-
vance of this topic, only a handful of modeling studies have looked into this issue. This
can be partly attributed to the complexity of the topic of technical change, an uncer-
tain process which is difficult to model. Surprisingly, however, these studies (Blanford,
2009; Bosetti et al., 2011, 2008; IEA, 2010; Margolis and Kammen, 1999; Nemet and
Kammen, 2007; Popp, 2006) tend to agree on a series of important results. First, R&D
plays a fundamental role on the costs and feasibility of climate stabilization policies.
Second, the gap in R&D investments between a Business as Usual and a climate policy
scenario is substantial, in the order of 50 USD3 Billions per year.

A further research question pertains to the role of innovation policies in case of frag-
mented cooperation on climate. Given the difficulties in reaching an inclusive agree-
ment on emissions reductions among the major emitters, it is natural to wonder whether

3All monetary values in this paper are given in 2005 US dollars using market exchange rates.
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focusing on a technology and innovation agreement could offer better prospects and a
more efficient outcome than continuing with a set of uncoordinated efforts to reduce
CO2 emissions (De Coninck et al., 2008; Newell, 2008).

This paper aims at contributing on the latter two lines of research, and thus improv-
ing the understanding of the role of innovation and R&D in the clean energy sector.
Our study relies on the integrated assessment model WITCH (see next section). The
originality of this article is twofold. First, the clean energy R&D gap is quantified
with specific reference to the 2°C objective. To this end, we use the set of scenarios
developed in the LIMITS project which combines short term policy realism with two
different probabilities of meeting 2°C in 2100. The climate outcome of all scenarios
has been tested using the probabilistic version of a medium complexity climate model
(MAGICC), ensuring that the exceedance probability remains within specified ranges
(see Kriegler et al., this issue). Second, we work out the implications of an alterna-
tive climate policy agreement based on a concerted international R&D programme. We
refer to this policy setting as the ‘RD-deal’. This agreement is meant to replace the
current fragmented emission reductions pledges in the near-term with near-term high
R&D efforts. International technology innovation policies have been widely discussed
as alternatives to binding emission reduction targets, but have been rarely assessed by
the IAM community.

The paper is organized as follows. We briefly discuss the main features of the
WITCH model, and then present the study design. We show the implications of 2°C
policies on the transformation of the energy system, and quantify the size and the re-
gional distribution of the R&D investments needed to comply with it. We then assess
the R&D climate agreement in relation to the feasibility of the 2°C objective. Finally,
we summarize our conclusions.

4.2 Technical change in WITCH

WITCH (World Induced Technical Change Hybrid Model) is an energy-economy-climate
model developed within FEEM’s Sustainable Development research programme (Bosetti
et al. 2006, 2009). The model divides the worldwide economy into 13 regions, whose
main macroeconomic variables are represented through a top-down inter-temporal op-
timal growth structure. This approach is complemented with a compact description of
the energy sector, which details the energy production, and provides the energy input
for the economic module and the resulting emissions input for the climate module. The
endogenous representation of R&D diffusion and innovation processes constitute a dis-
tinguishing feature of WITCH, allowing to describe how R&D investments in energy
efficiency and carbon free technologies integrate the currently available mitigation op-
tions. The different regions can either behave as forward-looking agents optimizing
their welfare in a non-cooperative, simultaneous, open membership game with full in-
formation, or be subject to a global social welfare planner in order to find a cooperative
first-best optimal solution. In this game-theoretic set-up, regional strategic actions in-
terrelate through GHG emissions, dependence on exhaustible natural resources, trade
of oil and carbon permits, and technological R&D spillovers.

For this paper, two channels of endogenous technical change are accounted for in
the model. Their characteristics are summarized and compared in 4.1. One type of
formulation of technical change affects the investment costs of an alternative, carbon-
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free technology in the non-electric sector. This ‘backstop’ zero-emission fuel can be
thought of as an advanced biofuel mitigation option whose costs are currently much
higher (e.g. 10 times) than oil, due to lacking of sufficient knowledge for transforming
cellulose into ethanol. With sufficient R&D and physical investments, the low carbon
backstop can become a viable substitute to low carbon fossils. However, we also impose
a global constraint on the resource base which can be used to produce the low carbon
fuel, as a way to mimic the limitation of land use which can be devoted to growing
the bio-feedstock. The global cap is fixed at 150 EJ/yr, in line with available estimates
of bioenergy crop potential (see Calvin et. Al, this issue, for a detailed discussion of
bioenergy). Thus, although at times we refer to this unnamed technology to as back-
stop in the paper, its implementation in the model provides a realistic representation
of the technology as a bioenergy-based low carbon fuel. While the climate mitigation
literature mentions also bioenergy-based systems capable of removing carbon from the
atmosphere, by means of carbon capture devices, no negative emissions are envisaged
through our backstop technology.

The externality nature of the backstop innovation process is modelled via interna-
tional spillovers of knowledge and experience across countries and time. In each coun-
try, the productivity of this low carbon technology depend on the region’s stock of
energy R&D and on the global cumulative installed capacity, two proxies for knowl-
edge and experience respectively. This is modelled via two factor learning curves. The
regional R&D stock depends on domestic investments, previous domestic knowledge
stock, and foreign knowledge stock through international spillovers. The spillover term
for knowledge depends on the interaction between the countries’ absorptive capacity,
and the distance of each region from the technology frontier. On the other hand, there
are complete spillovers of experience across countries.

The other main channel of technical change in WITCH is about energy savings.
Following Popp (2006), energy efficiency is modelled through improvements in the
productivity of the energy input in the production of the final good sector, via a con-
stant elasticity of substitution (CES) production function. Differently from the previous
case, innovation is now subject only to knowledge externalities through a single factor
learning curve. The knowledge stock depends on domestic and foreign R&D invest-
ments in a similar way than the one used for the backstop, with the only difference that
the new additions to the stock of knowledge depend also on the previous domestic stock
of knowledge.

Further details for both innovation formulations can be found in (Bosetti et al., 2011)
and at www.witchmodel.org. The most relevant equations are reported for convenience
in the Appendix.
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Table 4.1: The two channels of innovation in WITCH.

Energy Efficiency Carbon-free Advanced Biofuels (Back-
stop)

Technological implica-
tions of the innovation

Introducing new energy-saving equip-
ment and devices in any of the energy
end-use sectors (buildings, industry,
and transport).

Introducing advanced carbon-free
biofuels as a primary energy supply
for non-electric energy end-use sectors
(mainly transport).

Economic implications
of the innovation

Increasing overall energy efficiency of
output.

Reducing the costs of carbon-free
non-electric energy supplies.

Integration in the
model

As a substitute for energy supply in
producing energy services.

As a substitute fuel for oil in meeting
the non-electric energy demand.

Technical change
drivers

1. Domestic & foreign investments in
R&D.

1. Domestic & foreign investments in
R&D.

2. Domestic & foreign experience
(i.e. amount of advanced fuels already
used).

Diffusion limitation Implicit in the constant elasticity of
substitution (CES) production function
structure.

Explicit through expansion and total
resource constraints.

Knowledge to actual
technical change delay

None. 10 years lag.

References in the
literature

Jones (1995) for the knowledge formu-
lation, Popp (2002) for the empirical
estimation of the parameters, and Popp
(2004) for the integration as a CES.

Kouvaritakis et al. (2000) for the
knowledge formulation, Bosetti et al.
(2009) for further references on the
empirical estimation and modeling,
Calvin et al. (this issue) for cumulative
deployment potential estimates.

When elaborating on regional results, we will be referring to the 13 native regions of
WITCH, which are: USA, OLDEURO (Old Europe), NEWEURO (New Europe), CA-
JAZ (Canada, Japan, New Zealand), KOSAU (Korea, South Africa, Australia), CHINA
(including Taiwan), INDIA, SASIA (South Asia), EASIA (South East Asia), LACA
(Latin America, Mexico and Caribbean), MENA (Middle East and North Africa), SSA
(Sub-Saharan Africa excl. South Africa) and TE (Transition Economies). For the
sake of brevity, also the following aggregations will be used: EUROPE (OLDEURO
+ NEWEURO), OTHER-OECD (KOSAU+CAJAZ), OTHER-ASIA (SASIA+EASIA),
and MEA (MENA+SSA).

A distinctive feature of WITCH is the ability to assess the optimal response to cli-
mate policies either in a competitive or in a cooperative setting. In the latter, a social
planner chooses the optimal financial efforts to allocate in innovation and mitigation,
in a way that welfare is maximized conjunctly with the achievement of a given climatic
target. This type of optimization can be regarded as a useful benchmark for evaluating
the consequences of internalizing the set of externalities which are taken into account
in the WITCH model, namely: GHG emissions, dependence on exhaustible natural re-
sources, and technological R&D spillovers. A particular advantage of this setting lies
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in the ability of estimating the economic benefits of a cooperative world, where clas-
sic climate policy instruments are replaced by sets of policy instruments that promote
coordinated efforts in achieving the desired climatic targets.

As one could expect, full cooperation scenarios lead to lower consumption losses
and higher accumulation of R&D backstop investments compared to the non-cooperative
corresponding cases. The results obtained in the context of this paper with the cooper-
ative settings are not reported here, as they are in line with previous studies with this
same model (Bosetti et al., 2011), and with the aforementioned literature on R&D sub-
sidies. For the sake of this paper, it is only worth mentioning that cooperation not only
affects the global picture (with a general increase of investments), but also the regional
contributions to innovation (with a more prominent role for developing countries).

4.3 Study design

To assess the role of energy innovation in decarbonizing the energy system, the 2°
degrees target was translated into a set of significant scenarios implementable by the
WITCH model. Most of the scenarios we consider here were defined in the context
of LIMITS, whose purpose is to explore the implications on feasibility and costs of
different policy assumptions, i.e. the probability of achieving the 2° degrees target, the
timing and stringency of global and regional mitigation action, and the distribution of
regional costs. Further details on the whole scenario framework adopted for this study,
as well as on how the economy and the energy system of different IAMs respond to the
different scenarios assumptions, can be found in the two overview papers by Kriegler
et al. and Tavoni et al. in this issue.

Besides the standard LIMITS scenarios, we have run three additional scenarios to
address the specific questions under investigation. Specifically, we have assessed ‘sec-
ond best’ policy scenarios in which no agreement is achieved on emission reduction
policies, but in which countries decide to cooperate on R&D by investing at the optimal
levels consistent with their stabilization objective, either 450 ppm-eq or 500 ppm-eq.

Table 4.2 reports a brief description for all of the scenarios used in this study. The
last row shows the ones which are additional to the LIMITS study protocol.
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Table 4.2: List of scenarios used in this study, along with their description.

Scenario Description

Base No climate policy, either global or regional, is in place.

RefPol Regions are subject to 2020 targets that represent the lower end (or lower if
more plausible) of their (or of their neighboring regional leaders) Copenhagen
pledges. The stringency level of 2020 regional targets is extended until the end
of the century by using average GHG emissions intensity improvements per
year as a proxy.

StrPol Like RefPol, but the more stringent end of their (or of their neighboring re-
gional leaders) Copenhagen pledges are taken into account, and extended until
the end of the century.

RefPol-450 Regions apply the RefPol policy package up to 2020, then a globally-
harmonized carbon tax is adopted so that the concentration of GHGs reaches
450ppm-eq in 2100, with overshoot allowed. This corresponds to a likely to
very likely (>70%) chance of reaching the 2 °C target.

RefPol-500 Like RefPol-450, but with an as likely as not (~50%) chance of reaching the 2
°C target, and with the concentration of GHGs reaching 500ppm-eq in 2100.

RefPol2030-500 Like RefPol-500, but with global commitment delayed till 2030.

RD-deal-450 RD-
deal2030-500

These scenarios correspond to those with the same names where RD-deal is
replaced with RefPol. In the near-term, carbon emission mitigation pledges
are removed from the corresponding RefPol policy packages, while energy
R&D is fixed at the optimal level. Afterwards, a globally-harmonized carbon
tax is adopted so that the concentration of GHGs reaches the levels of the
corresponding scenarios.

In the next sections, after describing the challenge for the economy and the en-
ergy systems to stabilize the climate to non-dangerous levels, the R&D investment gap
is quantified for what can be considered as first-best settings, where mitigation action,
even if fragmented, starts immediately, and global cooperation starts in 2020 or in 2030.
Then, R&D figures are analyzed in a class of second-best scenarios, in order to see if
other sub-optimal policies, where the regional emission reduction efforts of the Copen-
hagen pledges are replaced by high energy R&D investments and global cooperation is
delayed up to 2030, could constitute viable cost-effective alternatives.

4.4 Challenges of stabilization to 2° degrees

A world without any climate policy is expected by WITCH to be a world with a tem-
perature in 2100 of 4° degrees above the pre-industrial levels, which is likely to imply
serious ecological, social and economic consequences. More than 60% of yearly global
GHG emissions are related to CO2 emissions resulting from the burning of fossil fuels
for energy related purposes, which are supposed to increase in the baseline on average
by 1.3% per year. Population and global economy are also supposed to increase, at
an average rate of 0.4% and 2.4% per year respectively, while global energy intensity
levels are expected to decrease at an average rate of 1.4% per year. On one side, this
implies an improvement of carbon intensity over the century, due to the expected diffu-
sion of more efficient energy systems around the world. On the other side, countries are
expected to show an increase in the average carbon emissions per capita, representing
the worldwide claim for better living standards met by a fossil based energy system.
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(a) Emission profiles for a subset of LIMITS scenarios. (b) Cumulative emissions over the century decomposed
by regions.

Figure 4.1: Emissions, over time and cumulated, for a subset of LIMITS scenarios.

Looking at the regional emission contributions, the largest emitter is expected to be
with wide margin China, with almost 30% of the total cumulated GHG emissions of
the century. Following with 10.4%, 9.8% and 9.3% we find India, USA and LACA,
respectively. Europe (6.7%) places itself in the middle of the list, after TE (8%) and
MENA (7.6%). When considering emissions growth rates, India distinguishes itself
with its average rate of 2.1%, followed by China and MENA, both at 1.5%, concurrent
with double growth rate figures for GDP.

If regional economies were able to respect a weak fragmented commitment to cli-
mate mitigation, as foresighted in the RefPol scenario, cumulated GHG emissions over
the century could be reduced by about one third. A further 10% could be abated with
a more stringent fragmented commitment (as in StrPol). The rate of carbon intensity
reduction varies across regions, according to explicit targets set after 2020. Focusing on
the RefPol case, for some regions like MEA, OTHER-ASIA and LACA, the baseline
carbon intensity profile already meets the assumed pledge. For other regions, this target
involves a binding constraint on emissions, pushing the transformation towards a less
carbon intensive energy system. This transition is further elicited by explicit targets on
the amount of renewable energy over the total final or electrical energy production after
2020, and of wind and nuclear capacity installed by

1. Again, China happens to be one of the most significant players,

with huge reductions in emissions and a significant slowdown of GDP. Of the 780
GTonC reduced from baseline in the RefPol, 322 (~41%) are to be attributed to China,
more than what OECD countries together are supposed to mitigate (269 GTonC). This
impacts its GDP with a yearly 2.9% loss with respect to the baseline, on average over
the century, a rate which is above the average of 1% that is globally experienced. The
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countries with the highest losses are CAJAZ, TE and KOSAU, with yearly average GDP
losses of 3.3%, 3.2% and 2.2% respectively. The carbon intensity rate improvements
these regions are asked to provide on average are between 1 to 3 times those of the Base
scenario.

A substantial decarbonization of the economy is required if more ambitious emis-
sions targets are to be imposed, namely those where GHG concentrations reach 450ppm-
eq and 500ppm-eq in 2100. This implies deep changes both in the electric and in the
non-electric energy production sectors. Concerning the former, the reduction of carbon
emissions is achieved in four ways: i) decreasing the power demand through efficiency
improvements and economy contraction; ii) limiting the use of fossil fuels, partially
switching to expensive technologies of carbon capture and storage (CCS); iii) increas-
ing the diffusion of renewable energy sources; iv) enforcing the role of nuclear power,
as a consequence of the reduction in the use of the base-load fossil technologies, and
the limitations in the share of wind and solar power supply due to their intermittency
issues4.

Fossils cover around two thirds of the present world electric demand. In the Base
scenario, this quota slightly increases over the century mostly at the expense of renew-
ables, decreasing from 20% to 12%, while nuclear slightly decline from 14% to 12%.
In the moderate Copenhagen scenarios, instead, fossil fuels are progressively substi-
tuted, especially in the second part of the century, mainly by nuclear and renewables:
in 2100, nuclear settles around 20%, renewables take 25% of the power share, while
fossils decrease accordingly. It is interesting to note that the role of CCS technolo-
gies grows considerably with the stringency of the climatic policy. Even if they only
appear in the last decades of the century in the RefPol and StrPol cases, their share
amounts to 13% and 22% in 2100. In the more stringent stabilization scenarios, finally,
a complete decarbonization of the power sector takes place over the century: fossil fuel
power supplies constantly decline, and need to be fully combined with CCS technolo-
gies. The diffusion of renewables is extensive: biomass plants reach 20% of the share,
almost all of them with CCS, while wind and solar plants rise to 20%, capped by the
aforementioned intermittency-related system integration constraints. In absolute terms,
2100 electricity consumption decreases by 23%, 32%, 49% and 50% in the considered
scenarios (RefPol, StrPol, RefPol-500 and RefPol-450) with respect to the correspond-
ing Base value. These reductions complement the transition to a less carbon intensive
power system in meeting the emissions targets.

A strong decarbonization is recognizable also when looking at the overall energy
sector. Again, energy efficiency improvements allow for equal levels of GDP given
smaller final energy amounts. Jointly with a shrink of the economy forecasted by the
model to meet the various targets, these effects determine a considerable decline in the
absolute demand: in 2100, it is 12 ÷ 25% lower than the Base case in the Copenhagen
scenarios, while it is more than halved in the stabilization. Besides demand reduction,
significant impacts of the policies under study can be seen in the share of fossil fuels and
renewables in global primary energy supply, demonstrating a progressive transfer of
production quotas from the former to the latter. Nonetheless, one of the most important
factor in assisting the regional mitigation actions remains the diffusion of the carbon-

4The penetration of intermittent renewables in the electric system is limited by: penalty costs dependent on the share of
intermittent renewables in the power mix; equations ensuring the presence of flexible generation options, like coal and gas plants,
to adequately compensate for the intermittency of wind and solar supplies.
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free backstop in the non-electric sector. While this technology does not enter in the
baseline, it turns out to be very reactive to the stringency of the climatic policy when
one is imposed. At the end of the century, the 25%-32% of the non-electric demand
is satisfied by the backstop in the fragmented cases, whereas the share rises to 72% in
the stabilization ones. In the latter scenarios, a complete switch from oil to advanced
carbon-free biofuels is envisioned by the model by 2090.

The diffusion of the backstop, along with the energy efficiency improvements, is
an essential part of the optimal model response to the ambitious targets under investi-
gation. The huge reductions in energy demand would not be economically reasonable
without adequate investments in energy efficiency improvements. Furthermore, if the
transportation energy demand and the decarbonization requirements are to be jointly
met, replacing oil with carbon-free alternatives becomes essential for the levels of strin-
gency under consideration. The deployment of these two mitigation strategies would
not be possible without specific investments in R&D, which will be explored in detail
in the following sections.

4.5 The R&D gap for 2°C

In this section we quantify the R&D investments which are optimal for the set of 2°C
compatible scenarios outlined in the previous sections. As described above, the WITCH
model features two types of R&D investments that can improve the economic efficiency
of the energy system. The first aims at compensating the need for final energy by
increasing the energy efficiency of the whole energy sector. A second type involves the
deployment of a non-electric carbon-free technology.

Figure 4.2: Optimal innovation investments in response to different climate policy scenarios.

It is interesting to note that the model promotes a certain level of innovation effort
already in the baseline case, where no particular climate policy is in place. This is
related to the economic benefit of reducing the cost of the energy production by sav-
ing energy, but does not involve investing in carbon-free fuels given that no price is
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attached to CO2, and that fossil fuels are assumed to be relatively available throughout
the century. Regarding the impact of climate policies on R&D, as shown by Figure 4.2,
investment cumulative levels increase both over time and in the stringency of the cli-
mate policy. RefPol2030-500 shows a lower effort in the near term, similar to RefPol5.
In the medium term, the avoided initial investments are fully recovered, bringing the
overall cumulative amount to a level comparable with the RefPol-500 scenario.

The increase in investments due to the stringency of the climatic policy is not equal
in the two sectors, as the non-electric carbon free R&D appears to be much more sen-
sitive to the climate policy stringency. This is due to the fact that energy efficiency
R&D is carried out already in significant quantity in the Base case, because of the ris-
ing cost of the energy production factor. Further investments provide smaller benefits,
due to the assumption of decreasing returns. On the other hand, carbon-free R&D is
particularly valuable in the presence of the climate policies, since it provides a carbon
free alternative in a sector which is notoriously difficult to decarbonizes, namely the
transportation sector.

Overall, Figure 4.2 indicates that the global R&D investment needs for attaining
2°C is approximately 1 USD Trillion in the period 2010-2030, and 1.6 USD Trillions
in the period 2030-2050, if we consider RefPol-450 and RefPol-500 as our benchmark
scenarios. Depending on the desired climatic target and on the near-term stringency of
commitment, we can also quantify the gap between the optimal corresponding R&D
investments efforts and the business-as-usual case. As no advancement is done in clean
non-electric technologies, the global R&D gap to the no-policy baseline on average
ranges from 30 (RefPol) to 58 (RefPol-450) USD Billions per year, up to 2050. These
figures roughly double when considering the second half of the century in the same
setting. The estimates reported above are consistent with previous studies with the
same model (Bosetti et al., 2009), and more recent studies conducted by IEA (IEA,
2010), which establish the current annual public RD&D spending shortfall between 40
to 90 USD Billions. This projected additional effort asked to clean energy investors
is 3 to 6 times the total annual amount of RD&D, averaged in the period 2005-2010,
spent by IEA member states, which account for almost all of the OECD, and most of
the global, R&D spending in that period (IEA, 2011). Cumulatively, between 1990 and
2010, the same countries invested about 220 USD Billions, less than half of the amount
WITCH suggests to be optimally invested by OECD countries for the next 2 decades
consistently with the 2°C target.

In relative terms, even if today R&D investments represent a small percentage of the
world GDP (around 0.02%), it is clear from our results that most stringent scenarios
will definitely benefit from increasing this share, and especially from doing so in the
early near-term. This is what has been consistently found in the considered framework,
where investments relative to GDP peak at around 2020 at 0.1%, and then gently de-
cline to 0.05% towards the end of the century, as the return on investments decrease.
For comparison, the level of investments in capital of wind and solar electric plants in
2020 is about 0.17%, and peaks before 2020 to 0.23% (RefPol) - 0.35% (StrPol) when
imposing the constraints following from the Copenhagen pledges, and declines to 0.1%

5Even if one would expect that the 2010-2030 cumulative investments of RefPol2030-500 should be exactly the same of the
RefPol, in period 2030 investments of the delayed scenario are let free to deviate from the RefPol, otherwise also the next period
would be mostly fixed. This also applies to scenarios with a delay up to 2020, in which case investments are let free from period
2020.
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at the end of the century. Further characterization of the R&D dynamics can be gained
by inspecting the regional distribution of the R&D investments. This is illustrated first
for the efficiency case in Figure 4.3. The chart highlights a rather constant allocation
of regional contributions across time and scenarios. While China among non-OECD
regions is the one that increases its share the most over time, the coverage of efficiency
R&D investments by OECD countries remains dominant, fluctuating around 80%. The
reason for this dynamics depends on the fact that the current energy intensity is con-
siderably lower in industrialized countries, which use more efficient technologies and
have a less energy intensive economic production6. As a result, further improvement
in energy saving technologies must be fostered by inventive activities (in this model
dependent on R&D investments), whereas - in emerging economies - there are more
opportunities for reducing energy intensity by adopting more efficient technologies and
shifting the production structure towards a more capital intensive one.

More diversity in terms of regional R&D schedules is evident when focusing on
the regional shares of backstop investments (Figure 4.4). The chart shows that the
more stringent the climate target, the higher the share of investments in non-OECD
countries. This is due to the fact that, for climate stabilization policies, the majority of
the mitigation effort happens in the developing countries (see Tavoni et al., this issue).
For the policy more compatible with 2°C (the 450ppm-eq case), R&D investments
in low carbon fuels in the next 20 years are shown to be evenly balanced between
industrialized and developing economies. This equal regional split consolidates in the
medium term (2030 to 2050) for all scenarios.

Figure 4.3: Regional shares of cumulative R&D investments in energy efficiency for the near and
medium terms.

6In WITCH, GDP is measured in MER. Using the PPP metrics, instead, might weaken this effect, by reducing the energy
intensity gap between industrialized and developing economies.
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Figure 4.4: Regional shares of cumulative R&D investments in carbon free fuel for the near and
medium terms.

Still focusing on the non-electric sector, it is useful to assess the consequences of
the R&D investments by comparing the resulting backstop price with the price of oil,
which is its main market competitor. In 2010, the carbon-free fuel is assumed to enter
the energy scene with a price 13 times the price of oil. Thanks to the R&D efforts, its
unit cost decreases at an average rate of 4-6%/yr to 2050, depending on the scenario
and on the region. Simultaneously, oil price increases with its increasing cumulative
extraction, in such a way that the two prices meet between 2025 and 2035, depending
on the scenario. After that point, the backstop provides an alternative cheaper than oil
for the rest of the century to the non-electric (mainly transport) energy needs.

4.6 Assessing the chances of an R&D deal to get us to 2° degrees

In the previous section, the optimal energy R&D response as proposed by the WITCH
model was studied in the context of a set of idealized scenarios. These scenarios as-
sume a policy commitment by all the regions, albeit fragmented and not particularly
ambitious till 2025. However, the current state of international negotiations is domi-
nated by huge uncertainties, and it is possible that a global consensus might not emerge
under the Durban action platform negotiation round. The aim of this section is to ana-
lyze alternative policy designs which target innovation rather than emission reductions
in the short term.

We thus consider two additional scenarios, based on an R&D based policy which
might provide a trade-off between the inertia of regional political systems to seriously
commit to climate change policies and the willingness to limit the GDP loss in view
of a long-term acceptable climatic target. In these scenarios, called RD-Deal-450 and
RD-deal2030-500, countries replace the fragmented commitment to reduce emissions
till 2025 or 2035, respectively, with an agreement to cooperate on energy R&D. Specif-
ically, investments in both energy efficiency and low carbon technologies R&D are set
to the optimal levels. Optimal levels are computed from first best runs in which full
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cooperation starts already in 2015. Thus, these R&D policies are assumed to enter into
force already in 2015. After this initial period, where no mitigation action happens and
only accumulation of energy R&D knowledge is enforced7, a globally harmonized car-
bon tax ensures that a carbon budget compatible with 450 or 500 ppm-eq respectively
is met. The RD-deal-450 thus mimics a policy case in which, at the UNFCCC confer-
ence of parties in 2015 in Paris, countries decide to immediately adopt R&D investment
objectives - maybe because of difficulties in agreeing upon short term emission reduc-
tion targets - for a transition period of 10 years, after which they decide to cooperate
on the objective of achieving 2°C with high probability. The RD-deal2030-500 case
mimics a case of prolonged difficulties in setting emission reduction objectives, and in
which countries decide instead to focus on R&D cooperation for 20 years (e.g. from
2015 to 2035), and to cooperate afterwards. These two cases are direct counterparts
of the RefPol-450 and RefPol-2030-500, against which they will be compared in what
follows.

We also tried to run scenarios with a procrastinated agreement on R&D, but found
that the 2°C could not be met8. Specifically, we have found that R&D deals to 2030 and
2040 are incompatible with attaining 2°C with likely (e.g. 450ppm-eq) and as likely as
not (e.g. 500ppm-eq) probabilities respectively. This is an important result by itself,
which shows a fundamental trade-off between investing for better future technologies
and locking in currently dirty ones. The R&D agreement sets the right incentives for
the first issue, but not for the second; as a result, carbon intensive capital is continued to
be built while climate R&D investments are carried out. Due to the long term nature of
energy investments, the RD deal - if carried out for too long - jeopardizes the chances
of meeting the stringent carbon budget consistent with 2°C, even if it provides a more
favorable technological future9.

We begin our investigation of the R&D policy deals on the levels of investments
in R&D. These are shown in Figure 4.5 for the two R&D deal scenario, and their re-
spective Durban Action platform LIMITS scenarios. For energy efficiency (left panel),
the chart shows that R&D investments are below the optimal levels (at which the RD
deal scenario are set by design) till the time of inception of full cooperation on climate
mitigation (2020 or 2030). For R&D aimed at making carbon free fuel competitive,
investments are lower than optimal before full cooperation, but higher afterwards, in
an effort to compensate the missed opportunity of starting to abate earlier. Investments
eventually align between the RD deal and the Durban Action scenarios, as expected
since in the long term the objective to collectively reduce emissions dominates the cli-
mate action strategy. The timing of investments is different between energy efficiency
and decarbonization; for the former, investments continue to increase over time, since
they represent continuous and gradual improvements in energy efficiency enhancing

7As detailed in Kriegler et al., this issue, beyond carbon emission constraints, the reference policy has explicit regional targets
on the amount of renewable energy over the total final or electrical energy production after 2020, and of wind and nuclear capacity
installed by 2020. These targets are retained in the RD deal scenarios, allowing for a more direct comparison with the corre-
sponding RefPol ones. We also run the RD deal cases without these technology pledges, and we found negligible impacts on the
results. Thus, in this framework it is appropriate to solely focus on the distinction between early mitigation and early innovation
commitments.

8The model could not find a feasible solution to these programmes.
9It should be remarked that in this version of the model we don’t feature R&D processes for innovative CO2 absorbing tech-

nologies such as Direct Air Capture (DAC). Allowing for such an option could potentially provide additional leverage to the R&D
deal, as more negative emissions can be done later in the century, though it would also increase the chances of exceeding the
temperature target. For a discussion about the impact of DAC for climate stabilization in the WITCH model, see Chen and Tavoni
(2013).
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technologies. For the latter, investments peak and then revert to a common optimal
level of investments. The initial peak, which would be even more notable if measured
in share of GDP, is needed to bring down the cost of the breakthrough technology, so
as to make it competitive with fossil alternatives. Once this happens, investments are
somewhat reduced, though only to a limited extent, since the stock of knowledge needs
to be maintained to keep the low carbon alternative in the market.

Figure 4.5: Time profile of the annual global investments in energy R&D in second-best scenarios.

Policy-efficiency considerations can be formulated by looking at Figure 4.6, which
allows comparing the costs of the policies under discussion, assuming as a measure
of cost the GDP loss with respect to the base case. The chart shows that till 2050
(left panel), policy costs are essentially identical for the 450 scenarios. This is rea-
sonable since the two policies differ only in the strategies to 2020. For the 500 cases
in which we assumed that full cooperation is enforced only after 2030 (precisely in
2035), the difference between the two scenarios is more clear. The R&D deal cases is
as expected cheaper in the short term, since R&D investments are cheaper than actual
mitigation measures, albeit at a reference policy levels10. The higher initial costs in the
RefPol2030-500 are due to the partial cooperation on the Copenhagen commitments,
which are assumed to be achieved independently for all regions with no opportunity to
trade emission reductions. This leads to a diversity of regional carbon prices, with an as-
sociated efficiency loss. Over time, though, the RD-deal2030-500 policy turns out to be
more expensive, due to the higher abatement needed to comply with the given concen-
tration target (500ppm-eq) and the lower abatement carried out before 2030. Looking

10If measured in Consumption losses rather than GDP losses, policy costs for the R&D deal scenario would be higher in 2020
and 2035, due to the crowding out of consumption. On the other hand, in 2030 the opposite would hold, since by then R&D
investments in the RefPol2030 case is higher than the ones in the RD-deal scenario, as shown in Figure 4.5.
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(a) Period 2020-2050. (b) Period 2050-2100.

Figure 4.6: Time profile of the world GDP loss in second-best scenarios expressed as a percentage
with respect to the GDP of the Base case.

beyond 2050 (right panel), the cost difference persists in the 500 cases, whereas it re-
mains negligible –or even changes sign- for the 450 scenarios. If policy costs are looked
in terms of net present values over the whole century, the RD-deal policy marginally
underperforms the Copenhagen commitments for discount rates up to 8%.

While excessive emissions due to delayed mitigation makes the RD-Deal worse off,
such a policy may still be beneficial on the long term with respect to a potential carbon
lock-in of the energy system. By investing more in R&D, more advanced technologies
are available, and the energy system is capable of faster and deeper rates of decar-
bonization than what would be possible in a less innovative future. This is confirmed
both in terms of emissions per unit of GDP and emissions per unit of final energy. These
indicators decrease in the second part of the century by at least 5% and 2% respectively
in the RD-deal2030-500 scenario with respect to the RefPol2030-500 case. Also final
energy per unit of GDP benefits from the RD-deal, with a relative decrease between 1%
and 3% in the second half of the century with respect to its counterpart.

Thus, two main points emerge from our results. If there is willingness to commit
to a stringent global climate policy rather quickly (e.g. after 2020), then the actions
undertaken before than - be them either some mild fragmented mitigation or a collab-
orative international R&D programme - do not have a major economic impact once
full cooperation is enacted. In the very long term (after 2060), the R&D deal strategy
might be actually preferable, since it would allow for more deployment of advanced
technologies. If on the other hand the international community opts for deferring global
action to post 2030, then a strategy focusing on R&D would be preferable (in economic
terms) till 2035, and worse after then. The ultimate choice between an agreement on
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innovation as opposed to a fragmented mitigation action would thus depend on the time
preferences of the legislators, as well as on their aversion to a potential lock-in to a set
of economically and environmentally suboptimal technologies. In both cases, however,
delaying cooperation increases policy costs.

4.7 Conclusions

This paper has tried to provide some answers to two key questions related to the inter-
play between climate change mitigation and clean energy innovation policies. 1. What
are the clean energy R&D investment needs to get to 2°C? 2. In the short term, is
an international agreement on R&D better suited at preparing the ground for climate
stabilization than continuing with fragmented and moderate emission reduction mea-
sures? Both questions are of high policy relevance for the Durban negotiation process
which is assessed in the LIMITS special issue, to which this paper contributes. To
our knowledge, both questions have not been yet addressed with the tools of integrated
assessment modeling.

We have tackled these policy relevant questions by means of the WITCH integrated
assessment model, which features endogenous technical change and multiple externali-
ties. We have run a set of Durban Action Platform scenarios, integrating them with two
additional ones based on a clean energy R&D climate deal, meant to replace early emis-
sion reduction Copenhagen commitments with early high R&D investments efforts. A
series of key findings emerge.

1. We find that in order to attain 2°C with sufficiently high probability, a strong
decarbonization of the energy system is required, and mitigation actions call for
an increased financing in climate R&D. We quantify the global climate mitigation
R&D investment needs for attaining 2°C is approximately 1 USD Trillion cumula-
tively over the period 2010-2030, and 1.6 USD Trillions in the period 2030-2050.

2. The investments would be initially concentrated in the industrialized countries,
but would balance off with those of developing economies after 2030. The largest
share of investments would be concentrated for the development of low carbon al-
ternative fuels, though energy efficiency investments would also play an important
(and growing) role.

3. We find that focusing on an international clean energy R&D effort slightly un-
derperforms a continuation of the fragmented mitigation effort outlined by the
Copenhagen pledges for the sake of climate stabilization. Nonetheless, the actual
ranking between fragmented mitigation or R&D investments in the short term de-
pends on the time preference of the legislators, and on their aversion to a potential
carbon lock-in.

4. An exclusive focus on R&D at the expenses of mitigation is however incompatible
with climate stabilization if maintained for too long. Specifically, R&D deals to
2030 and 2040 do not attain 2°C with likely (e.g. 450ppm-eq) and as likely as not
(e.g. 500ppm-eq) probabilities respectively.

These considerations lead to some direct policy implications. If the chances of get-
ting to a global climate agreement before 2030 remain slim (as they appear to be today),
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then one could consider shifting the focus of short term policy from emission reduction
targets towards an R&D investment objective, if the latter has better chances of being
legislated. This policy shift would not significantly affect the ultimate objective of cli-
mate stabilization, which in any case requires full cooperation on emission reductions
no later than 2030. An agreement on R&D and innovation might have more political
capital given the current debate on competitiveness, and has been proposed in the past
as way out of the backlog of climate negotiations (De Coninck et al., 2008b; Newell,
2008b). Actual experiences in the field of climate, such as the ‘Asia-Pacific Partnership
on Clean Development and Climate (APP)’, have not yielded significant results, but the
same can be claimed for some emissions reductions programs. A refocus towards inno-
vation could generate a risk of ‘policy lock-in’, which for the case of R&D we showed
would eventually jeopardize the chances of meeting climate stabilization. However,
the study has clearly highlighted the importance of dedicating significant investments
- either by means of specific R&D policies or indirectly by the incentives induced by
carbon pricing - to innovating for energy efficiency and decarbonization. These in-
vestments - of the order of 50 USD Billions per year - are an essential pre-requisite
for meeting the huge transformation of energy and land use required by climate sta-
bilization. The effectiveness of these investments remains conditional to the need of
achieving a comprehensive agreement on GHGs mitigation by 2030, if the 2°C target
is to be met.

This analysis is limited by the assumptions embedded in the specific model which
we have used. The multi model ensembles carried out by the modeling community
over the past few years, of which LIMITS represents an important contribution, has
invariably shown that models differ widely in terms of results, for many key variables.
Thus, single model assessments should be taken with care. Moreover, the difficulty
of understanding and representing the process of technical change poses considerable
challenges for the modelers involved in the type of analysis presented in this paper.
More work, both on empirical and modeling sides, is needed to improve our grasp of
climate innovation, and our ability to represent it as a result. Hopefully, more mod-
eling papers and more multi model ensembles will address the fundamental issue of
innovation and climate in the future.
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Table 4.3: Parameter values for the R&D equations.

Energy Efficiency Carbon-free Advanced
Biofuels (Backstop)

r (Learning-by-researching index) 0.20 0.20

s (Learning-by-doing index) n.a. 0.15

a (average) 0.04 1.00

b 0.18 0.85

c (average) 0.39 n.a.

d 0.15 0.15

δ (Depreciation of knowledge capital) 5% 5%

Regional initial stock of knowledge (OECD) [USD
Billions]

(average) 20 0.5

Regional initial stock of knowledge (Non-OECD)
[USD Billions]

(average) 1 0.5

World initial stock of experience [TWh] n.a. 278
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CHAPTER5
Sensitivity to Energy Technology Costs: A Multi-

model comparison analysis1

5.1 Introduction

Future costs of low-carbon technological options are a key factor in determining cli-
mate policy costs and feasibility. The recent Fifth Assessment report of the IPCC WG
III (IPCC, 2014) stresses the relevance of assumptions concerning the availability and
costs of future technologies in shaping the range of policy costs. This has long been
recognized within the Integrated Assessment modeling (IAM) community (Edmonds
et al., 2012), and the quantitative analysis of the future availability/cost of carbon-free
and low-carbon technologies has been at the center of a growing literature. The most
commonly adopted approach relies on the use of an IAM and the running of climate-
constrained scenarios with and without the availability of key energy technologies, in
order to assess the increase in climate mitigation costs/carbon prices under each alter-
native. A few studies have comprehensively analyzed the impact of advances in future
energy technologies on the cost of greenhouse gas mitigation by means of sensitivity
analysis and using an individual model (McJeon et al. 2011; Lemoine and McJeon,
2013; Rogelj et al. 2012, Anadón et al. 2014.). In parallel to these pioneering works,
a set of modeling comparison analyses has been performed. We recall the Energy
Modelling Forum (EMF) 27 (Kriegler, 2014) and the Assessment of Climate Change
Mitigation Pathways and Evaluation of the Robustness of Mitigation Cost Estimates
(AMPERE) Project (Riahi, 2013). The latter studies are characterized by selected sen-
sitivity analyses to extreme technology realizations and a focus on robust results across

1This chapter is based on the paper "Sensitivity to Energy Technology Costs: A Multi-model comparison analysis" by V.
Bosetti, G. Marangoni, E. Borgonovo, L. D. Anadon, R. Barron, H. C. McJeon, S. Politis and P. Friley, published in Energy Pol-
icy, 80 (May 2015): 244-263, http://dx.doi.org/10.1016/j.enpol.2014.12.012. R. Barron and Haewon C. McJeon provided the
results for the GCAM model. S. Politis and P. Friley provided the results for the MARKAL US model.
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models. The findings that emerged from these and other studies, as summarized in the
IPCC latest assessment report are that: (a) Carbon Dioxide Removal (CDR) technolo-
gies, which can be used to generate negative emissions, are the most critical class of
technologies, as they allow a modification in the time path of the emissions constraint
(the possibility of negative emissions by the end of the century would allow postponing
peak emissions later in the century); (b) bioenergy coupled with CCS would have a
central role, and the unavailability of either component of this technology would result
in an increase in policy costs between 18% and 300%, depending on the stringency
of the climate scenario analyzed and whether the limitation of technology availability
concerns bioenergy or CCS. Assumptions about the availability of other low-carbon
energy technologies also matter (for example, the availability of low-cost renewables,
CCS alone, and nuclear power), although their impact on mitigation costs are typically
less pronounced.

In this study, by building on this existing knowledge, we use a different approach
to evaluate the extent to which uncertainty about future technology costs in key energy
technologies translates to different model outcomes. Instead of switching on and off
one technology at a time (or in combination) in various models, we explore the space of
future technological costs and other parameters, parameterized by using a set of expert
elicitation surveys. In particular, we take stock of extensive efforts that have been car-
ried out independently by researchers at UMass Amherst, Harvard, and FEEM . Each
of these groups collected the opinions of leading experts from the academic world, the
private sector, and international institutions on the probabilistic distribution of future
costs of the most promising clean energy technologies, conditionally to different levels
of R&D efforts. The technologies include liquid biofuels, electricity from biomass, car-
bon capture (CCS), nuclear power, and solar photovoltaic (PV) power. All surveys were
carried out by means of structured protocols aiming at minimizing potential biases and
overconfidence that can characterized experts elicitations(Morgan, 2014). Although
different groups carried out surveys covering the same set of technologies, each group
worked independently, and thus asked questions using different formats, looking at dif-
ferent endpoints and cost metrics. Therefore, the effort of harmonizing the data across
surveys has represented a complex endeavor which is fully described in Baker et al.
(2014a). The resulting estimates span a wide array of uncertainties including those that
might be related to different methodology employed to collect the data from experts.

By using this data we can explore differences in the sensitivity of various models to
parameter uncertainty as expressed by a vast collection of recently elicited subjective
expert judgments.

This is important per se, as it permits us to systematically explore the technological
cost dimension as defined by experts (rather than only exploring the extremes of the
cost space). In order to do so, we employ a combination of global sensitivity measure-
ments and estimation methods that allow us to address in depth key questions about the
behavior of the alternative models. In particular, we obtain quantitative insights about
whether key-uncertainty drivers are the same across models and whether this is robust
across alternative output of models (as for example cumulative emissions or technology
penetration).

Aside the modeling insights, this analysis is also an essential step toward the design
of optimal energy R&D portfolios as described in (Baker et al. 2014b), because it
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improves our understanding of the extent to which technology assumptions drive results
as well as of what other parameters affect differences across models.

This paper is structured as follows: the next section provides a general overview
of the experimental protocol and the methodology used to assess the sensitivity of the
models, and in addition it introduces the integrated assessment models used and the
ways in which they have been modified to incorporate the information coming from the
expert elicitation surveys. Section 3 presents the main sensitivity results, while Section
4 states our conclusions.

5.2 Methods

Our objective is to assess the implications of changes in the future costs and perfor-
mance parameters of a few key energy technologies in relation to important macro-
economic and global environmental metrics. We set out using as an input to integrated
assessment models the results from the aggregated expert elicitations data described in
(Baker et al, 2014a).

In this section we present methodological details on the technology input specifica-
tions, the sampling strategy, the models used, the explored climate policy scenarios, and
the metrics adopted for the evaluation of the sensitivity across models and technologies.

5.2.1 Technology input specifications

In the present analysis we focus our attention on the following technologies (and met-
rics): solar power (levelized cost of electricity), nuclear power (overnight capital cost),
biofuels (cost and conversion efficiency), bioelectricity (cost and conversion efficiency)
and carbon capture and storage (CCS) (capital cost and energy penalty). By harmoniz-
ing and aggregating the data across experts and across surveys by means of the process
described in (Baker, 2014a), we obtain eight probability distributions representing the
values of these uncertain metrics (summary statistics for the distributions are reported
in Table 5.1). We generate 740 scenarios, representing combinations of technology
performances drawn from these eight cost distributions. Each model is then set up to
implement the assumptions of the 740 scenarios.

Table 5.1: Importance Sampling Distributions.

Quantities Distribution Units Min Median Max Mean St. dev

Solar LCOE LogUniform $/KWh 0.02 0.09 0.45 0.14 0.12

Nuclear LogUniform $/KW 385 1534 5728 2017 1489

Biofuels cost LogUniform $/GGE 0.22 1.57 10.56 2.56 2.54

Biofuels efficiency Uniform % 19 52 85 52 19

Bio-electricity cost LogUniform $/KWh 0.01 0.04 0.23 0.06 0.06

Bio-electricity efficiency Uniform % 7 47 85 47 22

CCS cost Uniform $/KW 5 2019 3920 2006 1142

CCS energy penalty Uniform % 0 22 43 22 12
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5.2.2 Sampling method to define model runs and policy scenarios

Instead of sampling the cost or parameter values space by means of an equally distanced
sample, we use importance sampling (Glynn and Iglehart, 1989). Importance sampling
has generally been used as a version of Monte Carlo-type analysis, when the area of
interest in the distributions of cost and performance has a very low probability. In
our case this is relevant because, for example, very low nuclear costs (which are also
associated with low probabilities of occurrence) are expected to have a large impact on
societal and environmental outcomes in the models, in particular in climate constrained
scenarios which are at the heart of our analysis. In other words, if we had sampled
randomly, we might not have had enough runs covering the part of the technology cost
distribution of interest2.

Each of the 740 runs is repeated for three policy scenarios: a baseline scenario where
no climate policy is in place, and two climate policy scenarios where global emissions
(US emissions for MARKAL-US) are constrained. The two constrained scenarios are
in line with two of the four representative concentration pathways (RCPs) developed
for the modeling experiments of the climate modeling community and spanning the
range of radiative forcing values3 for the year 2100 from 2.6 to 8.5 W/m2 (International
Institute for Applied Systems Analysis 2009, RCP Database). In particular, models
run with emissions caps in line with scenarios imposing a radiative forcing of 2.6 and
4.5 W/m2 by 2100. In our experiment when-flexibility on emission reduction is not
allowed, that is, the constraint on emissions is not only on the carbon budget but also
on the emissions time profile (this allows greater comparability across models). The cap
on emissions is however global and can be efficiently allocated across countries, except
for MARKAL-US, where the cap is for the US only and is derived by the emission
cap obtained for the US from the GCAM model. Each of the runs assumes immediate
learning: i.e. full anticipation of the realization of technology costs/parameters in 2030
between 2010 and 2030. For the subsequent years we assume that additional learning
will take place, but for each run this additional learning will be a function of the actual
realization of the parameter and the assumed maximum learning rate, $β,$ following
the asymptotic rule below:

xi,t = xi,2005 + xi,t′ − xi,2005

1− β +
(

1− β
t−2005
t′−t

)
(5.1)

where xi,t is the cost (or efficiency level) for technology i at time t, t’ is the period for
which information on cost/efficiency was elicited (namely 2030) and β is the maximum
additional technological change beyond t’, which we assume to be 20% (i.e., 80%
of cost reduction occurs before 2030 and is in accordance with the realization from
the elicited distribution. The remainder of 20% cost reduction occurs after 2030). In
addition, we assume that the evolution of cost and performance parameters after 2030 is

2Importance sampling allows us to sample from a different distribution, and renormalize back to the actual distribution of
interest. We use it here as in the portfolio analysis discussed in Baker et al. 2014b to limit the number of times we ran the three
IAMs. Since we have four alternative distributions of technology costs and performance (one for each of the teams that conducted
the elicitations—UMass, FEEM and Harvard—plus the combined distribution) and three to five possible R&D portfolios (as we
consider three levels of R&D for each of the five technologies), the number of runs needed to capture the impact of technology
uncertainty on model outputs in the IAMs would have been exceedingly large. Thus, we defined an “importance distribution”
that defined the IAM runs. There is only one importance distribution, rather than 4 (for each team) * 35 (for each possible R&D
portfolio).

3When reporting radiative forcing values, it is assumed that they include the forcing of greenhouse gases and other forcing
agents, but do not include direct impacts of land use (albedo) or the forcing of mineral dust.
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capped by a floor (ceiling) value for cost (efficiency) which is the minimum (maximum)
provided with the sampling statistics.

5.2.3 Description of models and implementation

We assess the implications of the judgments of experts on the future cost of key energy
technologies by using three integrated assessment models: GCAM, MARKAL-US and
WITCH.

The difference between the three models can be clustered in two groups:

1. Structural differences: i.e. WITCH and MARKAL_US are solve through in-
tertemporal optimization with perfect foresight; GCAM is a recursive dynamic
simulation model. WITCH aggregates technologies via a constant elasticity of
substitution functions, whereas in GCAM the aggregation is linear but the cost of
technologies has a logistic distribution; system integration and flexibility is mod-
elled in different ways in the three models considered. GCAM and MARKAL-US
are more detailed in their descriptions of technologies, while WITCH describes in
greater detail the macro-economy component; MARKAL-US describes the US,
while GCAM and WITCH have a global coverage.

2. Parametrical: future costs and performance of technologies varies across models,
as parameters controlling for technology adoption. Some of these key parameters
were varied in a uniform way as an input to each simulations, but other parameters
exist and influence the dynamics of the models in different way (an example could
be the cost of capital or the cost of nuclear waste management).

We did our best to harmonize the second source of variation (see the Appendix) in
order to emphasize as much as possible the implication of the first source of variation
(as an example the assumptions on nuclear waste management cost in WITCH were
moderated in order to be comparable with those in GCAM).

However, the distinction between sources of difference in the first and second group
is not as clear cut as one might like and differences across models’ results presented
later will certainly include part of both.

These differences are key to the main purpose of this paper, namely that of assessing
the robustness of findings with respect to different model specifications. The research
groups involved in this work performed a thorough comparison of the models. In the
Appendix we provide the synthesizing result of this comparison effort. Because of
the existing structural differences, implementation of the sampling strategy had to be
model specific. Details on how costs and efficiency parameters were implemented are
also provided at the end of each model description in the Appendix.

5.2.4 Comparison methodology and sensitivity methods

Each of the 740 model runs carried out for the various technology cost combinations
constitute an uncertainty analysis (Helton, 1993). Thus, from the corresponding model
input-output datasets it is possible to obtain an examination of the statistical properties
of the output distribution. The analyst then obtains an indication about how much
variability in the output of each model is induced by uncertainty in the same model
inputs.
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To augment these insights, we make use of the post-processing or given data logic
(Lewandowski, Cooke, & Duintjer Tebbens, 2007; Elmar Plischke, Borgonovo, &
Smith, 2013). This type of approach to sensitivity analysis uses the results of Monte
Carlo simulations to extract additional information that can help the analyst to obtain
additional insights about the input-output mapping. In particular, we inspect the fol-
lowing two insights (Anderson, Borgonovo, Galeotti, & Roson, 2014):

1. Key-uncertainty drivers

2. Sign of change

In sensitivity analysis jargon, these two types of insights are referred to as “sensi-
tivity settings” (Andrea Saltelli, 2002). In our case, the methods used to investigate the
two families of questions above need to be probabilistic because we not only are test-
ing for deterministic changes of parameters’ values but we have subjective probabilistic
information about these parameters. As regards the key-uncertainty drivers setting, we
use global sensitivity methods (Emanuele Borgonovo, 2006; A Saltelli et al., 2008).
The setup is as follows. The relationship that binds the model inputs (x) to the model
output (y) is regarded as a generic mapping of the form

y = g(x), g : ΩX → R (5.2)

with and Ωk ⊆ Rk denoting the number of model inputs. To illustrate, in our case,
we have k=8, ΩX is Cartesian product of the eight ranges displayed in Table 5.1, g is
the input-output mapping in WITCH, GCAM and MARKAL_US.

Evaluation of key-uncertainty drivers

As for the key-uncertainty drivers setting, we adopt the three global sensitivity measures
synthetically illustrated in Table 5.2 [for a more detailed overviews the reader is referred
to (Anderson et al., 2014; A Saltelli, Ratto, Tarantola, & Campolongo, 2005)].

Table 5.2: Sensitivity measures used in this work for the identification of key-drivers.

Sensitivity Measure Equation

Variance-Based ηi = V[E[Y |xi]]
V[Y ] = V[Y ]−E[V[Y |xi]]

V[Y ]

Density-Based δi = 1
2 E[
∫

ΩY
| fY (y)− fY |Xi

(y) | dy]

CDF-based βKUi = E
{

supy | FY (y)− F(Y |Xi=xi)(y) | + supy | F(Y |Xi=xi)(y)− FY (y) |
}

These sensitivity measures are statistics of the form (E Borgonovo, Hazen, & Plis-
chke, 2014):

ξi = E
[
s
{
FY (y), FY |Xi(y)

}]
(5.3)

where s
{
FY (y), FY |Xi(y)

}
is some form of separation measurement between the

unconditional FY (y) and conditional model output distribution FY |Xi(y) [we refer to
(Glick, 1975) on the concept of separation measurement].

Variance-based sensitivity measures (second row in Table 5.2) quantify the separa-
tion as expected variance reduction. In particular, the sensitivity measure is Pearson’s
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correlation ratio (Lewandowski et al., 2007; Pearson, 1905). Thus, according to ηi
the most important model input is the one that, when fixed, reduces the model out-
put variance the most. Density-based importance measures (third row in Table 5.2),
identify the most important model input as the one that shifts the model output density
the most (E. Borgonovo, 2007). The CDF-based sensitivity measure in the last row of
Table 5.2 quantifies the influence of model input Xi through the Kuiper distance on cu-
mulative distribution functions [see (Tygert, 2010) for properties of the Kuiper metrics
and(Baucells & Borgonovo, 2013) for properties of the sensitivity measure in the fourth
row of Table 5.2]. It should be noted that all these sensitivity measures are normalized
between zero and unity.

The rationale for using a combination of sensitivity measures is as follows. Each
sensitivity measure considers a different property of the model output distribution.
Thus, if a model input is deemed irrelevant by all the measures, then we can have
greater confidence that its influence is low. Second, each sensitivity measure has lim-
itations. For instance, in using variance based sensitivity measures one is exposed to
the risk of deeming a model input uninfluential when, indeed, Y is dependent on it
(see the example in (Elmar Plischke et al., 2013)). Conversely, density and CDF-based
sensitivity measures are null if and only if Y is independent of X , avoiding such risk.

Evaluation of sign of change

As for sign of change, we rely on the first order effects of the functional ANOVA
expansion of the model output. The rationale is explained in (Anderson et al., 2014), to
which we refer for further details and mathematical aspects. We limit ourselves here to
the following observations on the underlying intuition. Assuming that the multivariate
mapping as in eq. is integrable, we can expand it in the form

g(x) = g0 +
n∑
i=1

gi(xi) +
n∑
i<j

gi,j(xi, xj) + . . .+ g1,2,...,n(x1, x2, . . . , xn) (5.4)

where the terms in eq. 5.4 have the following meaning. g0 is the mean value of y.
gi(xi) is the individual effect of xi, namely, the expected behavior of g as a function of
xi alone. In formulae,

g(xi) = E[g(x)|Xi = xi]− g0 =
∫
. . .
∫
g(x)

n∏
s=1,s 6=i

dFs − g0 (5.5)

that is, is the conditional expectation of g given xi, from which the mean value of
g is subtracted. Note that in eq. 5.5 g is integrated over all variables but xi. The sec-
ond order terms gi,j(xi, xj) account for the residual effects of the interactions of the
corresponding model inputs, and so on. These terms are obtained through conditional
expectations followed by proper orthogonalization, see (Rabitz & Aliş, 1999). By de-
termining sign of change, we mean a generalization of the comparative statics question
of (Samuelson, 1947): it is hoped to formulate qualitative restrictions on slopes, curva-
tures, . . . (Samuelson, 1947). That is, we are interested in studying whether, on average,
the variation in a model input leads to an increase or decrease in the model output. The
literature has ascertained that, under uncertainty, this answer can be gained by consid-
ering the first order effects of the functional ANOVA expansion. In fact, it is proven in
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(Beccacece & Borgonovo, 2011) that these effects retain the monotonicity of the orig-
inal input-output mapping. To clarify, if g is increasing in xi, then gi(xi) is increasing,
see (Anderson et al., 2014) for further details.

Finally, a note on the estimation. All sensitivity measures and functional ANOVA
effects are obtained by using a post-processing logic (Lewandowski et al., 2007). A
set of methods has been examined by the authors. For variance-based, we used the
COSI method of (E Plischke, 2012) the given-data estimator of (Elmar Plischke et
al., 2013), the cut-HDMR estimator of (Ziehn & Tomlin, 2009), as well as a recent
smoothing spline estimation subroutine4. For first order effect interpolation, we also
used the smoothing spline ANOVA metamodel of (Ratto, Pagano, & Young, 2007).
For density- and CDF-based sensitivity measures, we used the given-data estimators of
(Elmar Plischke et al., 2013) and (Baucells & Borgonovo, 2013).

In the next Section, a selected subset of the numerical results obtained is presented
and discussed.

5.3 Discussion of Results

5.3.1 Baseline Scenario

In a baseline scenario, the model output on which it is most interesting to assess the
effects of technology performance are fossil fuel emissions. Effects on GDP would also
be relevant, as the future cost of energy technologies does affect the pace of growth,
but we abstain from this type of analysis as it is not possible to perform it with all
three models: GDP does not change in response to technology performance parameters
changes in the GCAM model. As MARKAL_US has a US focus, we will compare
results from MARKAL_US with those emerging from the WITCH model for the US
region.

Figure 5.1 reports the global (left hand side panel) and US (right hand side panel)
emissions spanned by the runs performed with the GCAM and WITCH, MARKAL_US
and WITCH (reporting the US region only) models, respectively. In addition, for the
sake of comparison, we also report the RCP 2.6 and 4.5 global fossil fuel emissions
that we impose on the models for the climate-constrained runs described later.

4By W. Becker, personal communication to the authors, and available at http://ipsc.jrc.ec.europa.eu/?id=756.
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Figure 5.1: Global (left panel) and US (right panel) carbon dioxide emissions from Fossil Fuel com-
bustion and Industrial processes (FFI). Different colors correspond to different policies, where the
light color encompasses the minimum-maximum range, and the darker one encompasses the 25%-
75% quantiles range. This color convention is adopted throughout the paper in all the time-series
figures.

When looking at global numbers, it is interesting to note how the GCAM model
spans a much wider range of variations in baseline emissions, both at the extreme and
for the 25th-75th percentiles (darker shaded area). In GCAM, for some extreme real-
izations of cost and efficiency parameters, emissions remain almost at their 2015 levels
throughout the century. For some other combinations they double by 2100. Conversely,
the WITCH model is much less sensitive to cost and efficiency variations considered
in this exercise and, in average, emissions grow more by the end of the century, even
under the most optimistic realization of parameters. This difference in the response to
energy costs realization, as will be unpacked even more in later discussions, mainly
hinges on the structural set up differences between the WITCH model, that overall
entails slower and more costly technological adoption and evolution, and the GCAM
model. Looking at the right hand panel of Figure 5.1 we can immediately notice the
difference between WITCH and MARKAL_US: though the magnitude of the variation
is roughly the same, the timing is different. Indeed, both models are solved through
intertemporal optimization, but in the WITCH model the anticipation effect allows for
larger short term adjustments than are allowed for in the MARKAL_US model.

Figure 5.2 portrays the extent changes in baseline emissions, both in sign and mag-
nitude, are attributable, in a first order approximation, to the individual variations of
each input. This type of analysis casts light on the sign of change setting discussed in
the methods section. The lines in Figure 5.2 are the first order effects of the functional
ANOVA expansion of g(x) obtained through numerical interpolation. These lines repre-
sent the expected variation of output y (in this case cumulative emissions) as a function
of each individual model input. The top panels in Figure 5.2 show that the capital
cost of nuclear energy is the factor that, when varying in the assigned range, influences
the output of both GCAM and WITCH the most. In particular, WITCH reacts almost
linearly to changes in the capital cost of nuclear energy, while the reaction in GCAM
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is non-linear, with a higher rate of change in the low-nuclear energy cost region. As
before, the smaller extent of the reaction in WITCH can be explained by the model
structure itself which is based on constant elasticity of substitution nested functions to
mimic the energy sector (a detailed description of each of the three models is provided
in the Appendix). Such a structure is inherently less flexible and implies slower pace of
technological shifts than that of models, as for example the GCAM model, that assume
other functional relations among technologies, as for example linear aggregation across
technologies (see Kriegler et al., 2014 for a comparative analysis and classification of
alternative model types). In addition, WITCH includes a constraint on the flexibility
of the energy sector technological mix that penalizes excessive penetration of low flex-
ibility technologies (i.e. renewables as well as base load technologies as for example
nuclear) versus high flexibility ones (i.e. gas power plants) (Sullivan et al., 2013). A
further potential difference between the WITCH and GCAM models is in the way nu-
clear waste management cost are treated (in WITCH nuclear waste management costs
increase with the world cumulated capacity of nuclear capital installed to mimic some
sort of saturation effect). However, as the objective of the analysis is to look deeply into
model structures and how they might affect models’ reactions to input parameter vari-
ations, assumptions about nuclear waste management costs were harmonization across
the two models.

Notwithstanding these differences, the direction of change is clear; an increase in
nuclear energy costs increases baseline emissions both in WITCH and GCAM5.

In addition, in the GCAM model, bioelectricity efficiency and non-energy costs (and
biofuels, to a lesser extent) do play a role in shaping emissions, in particular for high
cost (low efficiency) realizations.

The lower panel of Figure 5.2 reports a similar analysis but with a US focus. Within
this single region as well, the cost of nuclear energy is again the main player for
WITCH. For MARKAL_US, an effect is registered for nuclear energy at the extremes
of its variation ranges. However, MARKAL_US, while producing an emission varia-
tion range comparable to that of the WITCH model for the US (see Figure 5.1, right
hand side panel), displays a very low sensitivity to individual changes in technology
costs and efficiency values. The almost horizontal shape of the first order effects and
the very overlapped curves practically indicate that the model inputs play the effects of
numerical noise, when considered individually. Indeed, the MARKAL_US baseline in-
cludes a number of assumptions and policies, in the form of additional constraints, that
contribute to a less clear sensitivity to technology costs and efficiency levels when con-
sidered as individual determinants of the model output. Conversely, these constraints
increase the interaction effects, as confirmed shortly when considering the sensitivity
measures in Table 5.2. Let us describe in detail what these constraints are. First of all,
the inclusion of state level renewable portfolio standards (RPS) and wind generation
tax credits in MARKAL_US lead to a higher level of renewable generation already
by 2020, and independently on the technological performance realization. Addition-
ally, the assumed ability to apply for a second 20-year life extension for nuclear power
plants and the assumption that fossil steam plants do not have fixed retirement sched-
ules (instead the retirements are determined endogenously) also limits the potential
market for new technologies. Furthermore, the inclusion of the renewable fuel standard

5The slightly oscillatory behavior is mainly due to the smoothing method adopted and the finite sample size.
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(a) Global.

(b) US.

Figure 5.2: First order effects of the functional ANOVA expansion for the 8 model inputs on global
(upper panels) and US (lower panels) cumulative FFI CO2 emissions over the century, according to
a functional ANOVA expansion. The realizations of each input are ordered on the x-axis from their
min (=0) to their max (=1).

(RFS), as legislated by the Energy Independence and Security act of 2007, requires
36 billion U.S. gallons of biofuels by 2022. Hence, while biomass-based fuels gain
market share versus petroleum-based fuels in MARKAL_US, biomass-based power
generation is relatively disadvantaged by other fuels in the electric generation market
in MARKAL_US.

Figure 5.3 reports the ranking of the different parameters for their uncertainty impor-
tance. It can immediately be seen that for both GCAM and, to a lesser extent, WITCH
nuclear capital costs are, as expected, the key-drivers. The three uncertainty importance
indicators tend to agree on their ranking, especially for the first three positions, which
are the most relevant for the analysis.

In the lower inset of Figure 5.3 a similar set of indicators with a focus on the
US is displayed for WITCH and MARKAL_US. The latter shows an almost uniform
sensitivity to the model inputs, as well as an almost null value for the first order
variance-based sensitivity indices. However, distance-based sensitivity measures dis-
play a non-null value. This combination indicates that individual effects are negligible
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(a) Global.

(b) US.

Figure 5.3: Ranking of uncertainty drivers for global (upper panels) and US (lower panels) cumulative
FFI CO2 emissions over the century (over the half century for the US metric). Inputs on the x-axis
are ordered from most important to least important, according to a density-based measure. In other
colors also CDF- and Variance-based indicators are reported.

in MARKAL_US, and that the relevance of model inputs is mainly due to their inter-
actions. As noted before, this is likely to be caused by the inclusion of a number of
concurrent policies and constraints in the baseline.
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5.3.2 Climate Constrained Scenarios

Let us now move on to the analysis that includes a constraint on global emissions in
line with a 4.5 and a 2.6 RCP scenario. The first and most straightforward output to
study is the cost of CO2 abatement policy as a share of baseline GDP. Policy costs are
measured in slightly different ways in different models (for MARKAL_US only the
price of carbon is available and will be discussed below). In WITCH policy costs are
measured as the difference in global consumption in the policy case versus the baseline.
In GCAM, as GDP is exogenous and independent of the climate policy, the policy
cost is measured in the reduction of social surplus, i.e. the area under the marginal
abatement cost curve. In both cases costs are discounted at 5% and reported as share
of GDP. Although these two metrics are not entirely comparable, as a matter of fact
they are typically used for relative effort comparisons across models (see for example
Clarke, 2009). In particular here, as we are interested in the relative effect of each
technology performance rather than on the estimates of climate policy costs per se,
it seems appropriate to compare these two metrics. The two models produce fairly
comparable cost estimates for the 4.5 RCP scenarios, while they vary widely for the
2.6RCP scenario (see Figure 5.4).

Figure 5.4: Abatement costs of the two implemented climate policies as percentage of Base GDP. For
GCAM, absolute costs are expressed as the area under the MAC curve. In WITCH they correspond
to consumption losses.

Notably, WITCH reports much higher costs and a much larger variation in cost
realizations associated with the range of technology performance. Figure 5.5 shows
that the models appear to respond monotonically to changes in the technological cost
and efficiency space. Visually, we can also appreciate that the first order effect analysis
shows a dominance of the nuclear cost realization for GCAM, while biofuels stand out
in WITCH.

The dominant technology, though different across the two models, tends to be robust
across mitigation targets (upper and lower insets in Figure 5.5). This is an important
insight that comes from a multi-model comparison. It suggests that what could be con-
sidered as a robust response for a single model becomes less clearcut when including
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(a) Global.

(b) US.

Figure 5.5: First order effects of the functional ANOVA expansion of discounted abatement costs for
the RCP 4.5 (upper two panels) and RCP 2.6 (lower two panels) policies, using a discount rate of
5%.

several models in the analysis. Obviously, the climate policy cost metric is sensitive to
the choice of the discount rate. We also perform the ANOVA analysis for policy cost
metrics computed with different discount rates. Although we are not reporting them,
results are extremely robust for this additional layer of sensitivity analysis: the first two
positions of the ranking do not vary for a wide range of discount rates (as low as 0%, i.e.
costs are aggregated undiscounted). This is also true if we consider a different metric
altogether, that is if we consider carbon prices. This is shown in Figure 5.6 for the 2.6
RCP scenario, where we can also include the results for the MARKAL_US model.
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Figure 5.6: Ranking of uncertainty drivers of Carbon Prices for the RCP 2.6 policy.

To appreciate how the uncertainty in technology costs propagates in the shadow
price of carbon before 2050, the full time series of carbon prices for the different mod-
els and for both the climate constrained scenarios considered are reported in Figure 5.7.
Despite the structural differences across the models, several similarities can be identi-
fied: under the less stringent (RCP4.5) climate scenarios model tend to agree on the
median level of the carbon price; uncertainty increases over time; the min-max bands
for the two scenarios do not overlap; and the near-term growth rates in the stringent
(RCP2.6) scenario are similar.

Figure 5.7: Price of carbon up to 2050 for each of the models in the climate constrained scenarios.
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Another common result across models is that both policy costs and carbon prices
are more sensitive to technological performance realization, and are so earlier in time,
under scenario 2.6 RCP than 4.5 RCP. While in the latter case just a few advanced tech-
nologies are sufficient to reach the target, the feasibility and costs of the former scenario
rely greatly on the availability of a wider portfolio of cheap and efficient technologies.
Notwithstanding these similarities, models’ structural difference account for the huge
variation in the extent and timing of the sensitivity as discussed previously.

Finally, in Figure 5.8 we show the results of different technology penetrations under
the different technology performance realizations. This shows, from a different angle,
that GCAM results are more sensitive to technology performance than those of WITCH.
At the lowest cost and highest efficiency, GCAM results indicate that renewable and
nuclear energies can take up to 60% and 75% of the world’s electricity supply in 2090,
respectively. In comparison, WITCH results show smaller variance. For instance, at
the lowest solar costs considered, the renewables’ share of electricity does not exceed
20%, while nuclear energy does not take more than 60% of the power production mix.
These differences bring forward the fundamental structural differences in the model
architecture. Given sufficiently low prices, GCAM’s flexible structure allows solar,
nuclear, or CCS energy to saturate the electricity market. For instance, at $385/kW
capital cost of nuclear energy, GCAM allows most electricity markets to be dominated
by nuclear energy within a few decades. Conversely, at the very unlikely extreme of
$5727/kW there are virtually no new nuclear plants being built in the future. Such
built-in flexibility of the architecture results in a lower cost of abatement, as well as a
large sensitivity to either extremes of the technology costs.

On the other hand, WITCH results indicate a more limited role of each technology.
For instance, the market penetration of renewables in WITCH is less sensitive to the
cost, because of strictly binding constraint on grid-integration of intermittent renew-
ables (the constraint on the flexibility of the power generation fleet mentioned early).
Similarly, nuclear power generation is constrained in WITCH for a variety of reasons,
as the built in flexibility constraint. As we have already mentioned, the greater presence
of renewables requires more flexibility in the mix, which is not conveniently provided
by nuclear power plants. Hence, instances when both solar and nuclear technologies
realization are low cost are not necessarily particularly favorable.

CCS technologies are key to the decarbonization implied by the climate policy sce-
narios under consideration. Under the RCP 2.6 in particular, with both GCAM and
WITCH the minimum level of carbon stored is a considerable 2-3 GtC by the end of
the century (notice how this differ from many multi model analysis set up where CCS
is considered fully unavailable in the worst case scenario). In WITCH storage of car-
bon is performed basically independently of its cost and variation is really modest (as
said all low carbon technologies are basically required in the mix to comply with these
climate targets). In GCAM the deployment of CCS is much more sensitive to the vector
of cost realization as more substitution with other technologies is possible.

5.4 Conclusions

This paper investigates the impact that technology assumptions have on a set of alter-
native environmental and economic metrics across models by means of a well-defined
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Figure 5.8: Distributions of three key technology penetrations under the two climate policies and the
baseline scenarios considered. Upper panels: Carbon dioxide captured & stored from fossil fu-
els and biomass plants with CCS Middle Panels: Wind and solar electricity production over total
power production. Bottom panels: Nuclear power production as a share of total power production.

framework taken from the sensitivity analysis literature. This effort is extremely im-
portant for improving the usability of models to support policy making. First, because
this type of exercise helps unpack the model structure and address the “black box” cri-
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tique by means of showing the drivers in operation. In addition, given that different
metrics might be of interest to policy makers, depending on the focus of the policy
under consideration, we explore sensitivity of different types of output of Integrated
Assessment models, rather than concentrating on the sole objective function (or policy
cost metric). This exercise is also extremely important from the viewpoint of modelers,
who can better understand what is driving the results of their complex models and, as
a consequence, focus their modelling and calibration efforts where it is more crucial in
terms of model responses.

In unconstrained emission scenarios, low-carbon technologies have to compete with
fossil fuels without accounting for the social cost of emissions. As such, within the
range of future technology performances considered in the present analysis, the cost of
nuclear energy is shown to dominate all others in affecting future emissions. Although
different models imply different variations in baseline emissions, the predominance of
nuclear energy cost as the main source of variation across models is a robust result. The
variability across models in the magnitude of this effect reflects, in turn, the existence of
structural model differences that affect the speed and ease of technology replacements.

Climate-constrained scenarios, and in particular scenarios aiming at a stringent tar-
get such as RCP 2.6, stress the relevance, in addition to that of nuclear energy, of bio-
fuels, as they represent the main source of decarbonization of the transportation sector,
and bioenergy, since the latter can be coupled with CCS to produce negative emissions.
The ranking of the different parameters for their uncertainty importance changes across
models, while it is robust for each individual model to changes in the cost metrics and
in the stringency of the climate scenario.

Some key policy implications may be drawn out of these results. Since climate pol-
icy costs are found to be mostly sensitive to the possibility of very cheap or very costly
nuclear options, the importance of exploring advanced nuclear possibilities, as well as
of better understanding the social acceptability of such technology, cannot be neglected
by energy R&D investors and policy makers alike. This will be crucial not only for the
climate policy maker who intends to minimize policy costs, but also for the one who
wants to reduce the uncertainty surrounding those costs. The same considerations hold
for fuels and electricity produced from biomass. In this case, the appetite for research
in these technologies, while hindered by potential concerns of economic competition
with food production, may be supported by the key role of this technologies in reach-
ing stringent climate targets, related in particular to the possibility of achieving negative
emissions.

Looking at available statistics for the United States, a certain attention to nuclear
development is already reflected in recent R&D spending, with around 1 billion USD
yearly allocated to nuclear over a total R&D budget of 5 and 6.5 billions in 2010 and
2011 respectively (IEA RD&D Database). Moving to biofuels, these figures show a
marked drop between 2010 and 2011, decreasing from 0.8 to 0.3 billion USD spent in
related R&D. This may denote a need to strengthen the R&D efforts in this direction,
potentially combined with a synergistic development in technologies like CCS, in order
to avoid ruling out technologies that may make a big difference in future. Developing
the models to include other technologies, like advanced energy storage solutions, and
introducing important synergies, like the one between storage and solar generation,
may increase the role of technologies which were assessed to have minor roles in this
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analysis, like solar.
A further important policy insight that we gain from the MARKAL_US model is

that the existence of a complex system of energy policies, which might aim at different
objectives and might be designed as independent, but which end up interacting and
overlapping, might make the energy system reacting in unexpected ways to the potential
improvement of the performance of a single technology.

Regarding the methodology, several lessons may be learned from the analysis per-
formed in the present paper, which allow for potential improvements in similar future
exercises. In particular, a finer resolution in the sampling would enable a deeper under-
standing of the mechanisms involved in a models such as MARKAL_US. Results show
that a key role is played by the way and extent models mimic technological adoption
and penetration, transition costs and inertia, thus calling for a new set of expert elicita-
tions covering better these topics. Furthermore, the sampling design could account for
an analysis of interactions, thus allowing the investigation of potential synergies across
pairs of inputs. Nonetheless, the results obtained so far may already inform an initial
screening of relevant parameters to be considered in similar sensitivity analyses.
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5.A Appendix

5.A.1 IAMs Description

GCAM 2.1 Model

1. Overview

The Global Change Assessment Model (GCAM) is a global integrated assessment
model of energy, economy, land-use, and climate. GCAM is originated from the
Edmonds and Reilly model (Edmonds & Reilly 1983, Edmonds & Reilly, 1983).

In this paper, we use the standard release of GCAM 2.1 with elicited technolo-
gies specifically modified to reflect the common assumptions on the future tech-
nology performances. GCAM is an open-source model6 primarily developed
and maintained at the Joint Global Change Research Institute. The full docu-
mentation of the model is available at GCAM wiki page (available at http:
//wiki.umd.edu/gcam/).), and the following description is a summary of
the wiki documentation.

GCAM is a long-term global model with particular emphasis on the representation
of human dimensions of the Earth system. GCAM integrates representations of
the global economy, energy systems, agriculture and land use, with representation
of terrestrial and ocean carbon cycles, a suite of coupled gas-cycle and climate
models.

The climate and physical atmosphere in GCAM is represented by the Model for
the Assessment of Greenhouse-Gas Induced Climate Change (MAGICC) version
5.3 (Wigley and Raper, 2002). The emission trajectories of greenhouse gases are
modeled in GCAM’s energy and land-use components.

The global economy of GCAM is represented in 14 geopolitical regions, explic-
itly linked through international trade in energy commodities, agricultural and
forest products, and other goods such as emissions permits. The scale of eco-
nomic activity is driven by population size, age and gender, and labor productivity
that determine economic output in each region. The energy and land-use market
equilibrium is established in each period by solving for a set of market-clearing
prices for all energy and agricultural good markets. This equilibrium is dynamic-
recursively solved for every 5 years over 2005-2100.

6GCAM Source Code and Data (available at http://www.globalchange.umd.edu/models/gcam/).

119

http://wiki.umd.edu/gcam/
http://wiki.umd.edu/gcam/
http://www.globalchange.umd.edu/models/gcam/


Chapter 5. Sensitivity to Energy Technology Costs: A Multi-model comparison
analysis

Figure 5.9: Overview of the GCAM model.

GCAM combines representations of the global economy, energy systems, agri-
culture and land use, with representation of terrestrial and ocean carbon cycles, a
suite of coupled gas-cycle and climate models.

Source: Wise et al. 2009.

2. Modeling energy system

In GCAM, the energy system represents processes of energy resource extrac-
tion, transformation, and delivery, ultimately producing services demanded by end
users. Resources are classified as either depletable or renewable; in either case,
the extraction costs of a given resource are assumed to increase as economically
attractive resources are employed, but are also subject to technological progress
which can lower extraction costs for a given resource grade. In each time period,
the market prices of energy goods and services, including fossil fuel resources, are
determined within the market equilibrium.

Fossil fuel energy is produced from a graded, regionally disaggregated depletable
resource base. Renewable energy forms are also disaggregated by region, and
resource grade; however, by their nature the resource is not consumed by use.
Primary energy forms can be transformed into final energy products, including
electricity, processed gas products, refined liquids, and so on.

Energy transformation sectors convert resources initially into fuels consumed by
other energy transformation sectors, and ultimately into goods and services con-
sumed by end users. Multiple technologies compete for market share; shares are
allocated among competing technologies using a logit choice formulation (Clarke
& Edmonds, 1993). The cost of a technology in any period depends on two key
exogenous input parameters—the non-energy cost and the efficiency of energy
transformation—as well as the prices of the fuels it consumes. The non-energy
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cost represents all fixed and variable costs incurred over the lifetime of the equip-
ment (except for fuel costs), expressed per unit of output. For example, a gas-fired
electricity plant incurs a range of costs associated with construction (a capital
cost) and annual operations and maintenance. The efficiency of a technology de-
termines the amount of fuel required to produce each unit of output. The prices
of fuels are calculated endogenously in each time period based on supplies, de-
mands, and resource depletion. The depletion of economically available energy
resources are explicitly tracked throughout the modeling period.

3. Modeling CO2 emissions

GCAM tracks 16 different greenhouse gases, aerosols and short-lived species.
Fossil fuel CO2 emissions are modeled according to the following method:

(a) The total emission in the base year is calibrated to the Carbon Dioxide Infor-
mation Analysis Center (CDIAC) database (Boden et al,

i. The fossil fuel consumption in the base year is calibrated to

the International Energy Agency (IEA) Energy Balances Database 2007.

(b) The average emission coefficients are derived from the ratio of the total emis-
sion and the total fuel consumption for each fuel (Coal, Oil, and Gas).

(c) These emission coefficients are applied to each sector in the base year.

(d) For future periods, GCAM solves for market shares of each fuel in each sec-
tor, and the emissions are calculated by the product of emission coefficients
and the fuel consumption in each sector.

4. Modeling key TEAM Technologies

Capital costs, fuel costs, and other non-energy costs are amortized to yield the
levelized cost of electricity (LCOE) for each technology. Multiple technologies
compete for market share; shares are allocated among competing technologies
using a logit choice formulation (Clarke & Edmonds, 1993).

Renewables integration is limited to 30% of grid capacity, at which point each
additional unit of renewable power requires either an equivalent unit of gas0fired
backup or battery backup. Fuel costs are determined endogenously by the model.
The cost of biomass is endogenously determined by the land-use module. CCS is
available for all fuel types starting in the year 2020. The additional capital cost
and the additional fuel requirement is amortized and added to the standard pow-
erplants powered by fossil fuel or biomass. CO2 storage can also be treated as a
finite geographically distributed resource in GCAM. In this mode GCAM distin-
guishes five candidate geologic storage reservoirs types: (i) On-shore deep saline
formations; (ii) Off-shore deep saline formations; (iii) Depleted oil fields; (iv) De-
pleted gas fields; (v) Unminable coal deposits. Each type of reservoir is associated
with a cost of storage ranging from $0.036/tCO2 to $100/tCO2, depending on the
difficulty of access (http://wiki.umd.edu/gcam).

All non-energy inputs evolve according to the learning equation presented in the
paper, where the 2005 value is chosen in consistency with the previous 2005 cali-
bration of the model and are summarized in the table below. Nuclear capital cost
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and CCS additional capital cost are amortized assuming 15% FCR and 90% ca-
pacity factor. Solar LCOE, and bioelectricity and biofuel additional capital cost
do not require any conversion as they’re already elicited in levelized costs. Effi-
ciencies are converted from HHV to LHV. See (Baron et al. 2014) for a detailed
discussion of the conversion process. A fixed fee of 1 mill/kWhr (0.1 cent/k-
Whr) is charged to nuclear electricity generated for the development and eventual
disposal of spent fuel in Yucca Mountain. We apply a fixed cost for waste dis-
posal based on the US disposal fee and utilize a range of assumptions for the
potential availability of repository capacity. Uranium supply curve is an upwards
sloping curve documented in (http://wiki.umd.edu/gcam). At moderate
levels of nuclear deployment, they cost of uranium is around $100/kg (about 0.3
cents/kWh), but as more nuclear power is deployed, it could drive up the cost of
uranium to $250/kG or more.

Table 5.3: Summary of TEAM Technologies characteristics in GCAM.

Technology 2005 value Unit

Bio-electricity efficiency 38.29 %HHV

Bio-electricity non-energy cost 0.0511 2010$/KWh

Biofuels efficiency 44.76 %HHV

Biofuels non-energy cost 0.91 2010$/GGE

CCS additional capital cost 3353.05 2010$/KW

CCS energy penalty 42.8 %

Nuclear capital cost 2859.89 2010$/kW

Solar LCOE 0.592 2010$/KWh

WITCH Model

1. Overview

WITCH (www.witchmodel.org) consists of a dynamic global model that integrates
in a unified framework the most important elements of climate change. The econ-
omy is modeled through an inter-temporal optimal growth model which captures
the long term economic growth dynamics. A compact representation of the energy
sector is fully integrated (hard linked) with the rest of the economy so that energy
investments and resources are chosen optimally, together with the other macroe-
conomic variables. Land use mitigation options are available through a soft link
with a land use and forestry model (GLOBIOM). A climate model (MAGICC6) is
used to compute the future climate. Climate change impacts the economic output
through a damage function, depending also on the rate of investments in adapta-
tion. This allows accounting for the complete dynamic of climate change mitiga-
tion and adaptation/./

WITCH represents the world in a number (currently 13) of representative na-
tive regions (or coalitions of regions); for each it generates optimal mitigation
and adaptation strategies for the long term (2005 to 2100), as a result of a maxi-
mization process in which the welfare of each region (or coalition of regions) is
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chosen strategically and simultaneously to other regions. This makes it possible
to capture regional free-riding behaviors and strategic interaction induced by the
presence of global externalities. In this game-theoretic set-up, regional strategic
actions interrelate through GHG emissions, dependence on exhaustible natural re-
sources, trade of oil and carbon permits, and technological R&D spillovers. The
endogenous representations of R&D diffusion and innovation processes constitute
a distinguishing feature of WITCH, allowing to describe how R&D investments
in energy efficiency and carbon free technologies integrate the currently available
mitigation options. The model features multiple externalities, both on the climate
and the innovation side. The technology externality is modelled via international
spillovers of knowledge and experience across countries and time. This formula-
tion of technical change affects both decarbonization as well as energy savings.
Figure 5.10 provides an overview of the key features of WITCH.

Figure 5.10: Overview of the WITCH model.

Each of the model native regions solves a dynamic optimization problem with
respect to the key economic, energy and climate variables. Regions interact over
climate, technology and resource externalities, modeling the strategic dimension
of the climate change policy problem.

2. Modeling energy system
In WITCH, the energy sector is fully integrated with the rest of the economy. It
is distinguished in an electric sector, a transportation sector, and an aggregated
non-electric (industry and residential) sectors. The energy sector is described by a
production function that aggregates different factors at various levels and with as-
sociated elasticities of substitution. All the main energy carriers and technologies
are included.
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Natural gas is used in the industry and residential sector as well as for generating
electricity. Gas power is available with and without carbon capture and storage.
WITCH also tracks methane emitted in the non-energy sector. The marginal price
of natural gas, along with the other energy carriers, is determined by cumulative
global extraction and available resources. Gas is traded among the 13 regions,
which can buy or sell it from a common pool (e.g. bilateral trade across each
region couple is not accounted for).

3. Modeling Greenhouse gas emissions

The model represents greenhouse gases emissions either directly (for CO2) or
via exogenous assumptions (for the other gases). Mitigation can happen through
technology substitution or storage, direct reduction via Marginal Abatement Cost
Curves (MAC) or end of pipe via Emission Factors. Emissions are fed to the
MAGICC6 climate model, which calculates all the climate outcome.

4. Modeling key TEAM Technologies

Capital costs for power plants appear directly in the capital update equations,
where they translate investments in new capacity additions, which cumulate with
previous depreciated capital. While part of them is influenced by learning-by-
research endogenous processes in a standard WITCH setup, for this exercise all
of them are enforced exogenously. Given this setting, nuclear capital costs can be
input in a straightforward way. For the sake of harmonizing the models the most
according to the TEAM protocol, the modelling of nuclear was further simpli-
fied by assuming constant nuclear waste management unit costs, which normally
increase with world cumulated nuclear capacity

Since LCOEs are an output of the model, resulting from the assumptions on capital
costs, depreciation rates, interest rates, and load factors, these are first translated
in corresponding capital costs, and then input to the model. In the case of solar
LCOEs, these will affect both PV and CSP capital cost, considering an extra 20%
cost for the latter. The same approach is used in the case of bio-electricity non-
energy costs, affecting the capital cost of both traditional and new IGCC+CCS
biomass power plants. Here, the extra capital cost of the more expansive CCS
plants is directly given from the CCS capital cost input. CCS capital cost is also
included in the capital cost of IGCC+CCS coal plants.

Another type of parameters that appears directly in the structure of the model
is the efficiency of power technologies, which translates primary energy con-
sumed into power produced. Thus, the bio-electricity efficiency input can be ac-
counted directly for traditional and new biomass plants. In the case of CCS energy
penalty, this input affect in an inversely proportional way the original efficiencies
of IGCC+CSS plants, fueled either by coal or biomass.

Finally, biofuels non-energy costs are combined additively with average unit biomass
costs to determine average unit price paid for advanced biofuels. Similarly to what
was done for nuclear, in this exercise the learning-by-researching and learning-by-
doing dynamics, which normally determine advanced biofuels, are replaced by ex-
ogenous assumptions consistent with the sampled biofuels costs. The efficiency,
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as in the case of the CCS energy penalty input, is accounted multiplicatively, so
that a 50% efficiency entails a doubling of the unit price.

All these inputs evolve according to the learning equation presented in the paper,
where the 2005 value is chosen in consistency with the previous 2005 calibration
of the model and are summarized in Table 5.4 below.

Table 5.4: Summary of TEAM Technologies characteristics in WITCH.

Technology 2005 value Unit

Bio-electricity efficiency 19.0 %

Bio-electricity non-energy cost 0.2 $/KWh

Biofuels efficiency 31.5 %

Biofuels non-energy cost 10.6 $/GGE

CCS additional capital cost 3781.2 $/KW

CCS energy penalty 42.8 %

Nuclear capital cost 4250.9 $/KW

Solar LCOE 0.335 $/KWh

Regarding biofuels, WITCH just distinguishes between traditional and advanced
biofuels. For this exercise, we took the maximum value of the range for the non-
fuel cost of biofuels, and associate it just to the advanced category of biofuels, be-
ing the one that is more likely subject to potentially breakthrough learning rates.
Using these assumptions, resulting prices are more consistent with the usual ad-
vanced biofuel prices of the standard version of the model.

BNL Multi-region MARKAL_US model

1. Introduction

The BNL Multi-Region US MARKAL model (US MRM) is a 10 region model
of the US energy system designed using the MARKet ALlocation (MARKAL)
framework. MARKAL-based models are partial equilibrium models that incor-
porate a description of the physical energy system (Fishbone and Abilock, 1981,
Hamilton et al. 1992). They are thus bottom-up models and are typically solved
as cost-minimization problems. MARKAL models are currently used in around
70 countries around the world to analyze a wide array of issues such as environ-
mental policy, energy policy, subsidy and tax regimes, efficacy of R&D programs
and associated benefits, assessment of energy efficiency programs, energy market
forecasts and many more (ETSAP, 2010).

MARKAL has been developed by the Energy Technology Systems Analysis Pro-
gram (ETSAP) for over 30 years. ETSAP is an Implementing Agreement of the
International Energy Agency (IEA), first established in 1976. It functions as a
consortium of member country teams and invited teams that actively cooperate to
establish, maintain, and expand a consistent set of analytic tools.

BNL has been involved in ETSAP and the development and application of MARKAL
models since the beginning in the 70s and has continually kept a set of models
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that have been applied to energy technology and policy issues. This document
describes the latest incarnation of BNL’s main US analytical tool, the BNL Multi-
Region US MARKAL model (US MRM).

2. Reference energy system

MARKAL models represent the components of the physical energy system. At the
heart of any MARKAL model is a technology database which holds the definition
of a set of energy resource, conversion and end-use technologies. These energy
technologies are assigned properties and attributes such as fuel consumed and
produced, conversion efficiency, investment and operating costs etc.

The model structure can best be illustrated by a Reference Energy System (RES),
which is a flow chart that shows how energy flows through the energy infrastruc-
ture as represented in the model. The RES thus show how the components of
the energy system are linked together in a flow network where the technologies
form the nodes and energy carriers represent the links (arrows). This is illustrated
in Figure 5.11, which shows an aggregated energy system representative of most
MARKAL models.

Figure 5.11: Overview of the MARKAL_US Energy System.

By representing individual technologies, MARKAL provides a bottom-up ap-
proach to study the energy system. The whole energy system, from resource
extraction to service demand, is included, which allows for full “well-to-wheel”
comparison of technology options.

3. Objective function
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MARKAL models are generally solved as a cost minimization problem where
future states of the energy system are determined by identifying the most cost-
effective pattern of resource use and technology deployment over time (Loulou
et al. 2004). The MARKAL objective is thus to minimize the total cost of the
system, discounted over the planning horizon. Each year, the total cost includes
the following elements:

• Annualized investments in technologies;
• Fixed and variable annual Operation and Maintenance (O&M) costs of tech-

nologies;
• Cost of exogenous energy and material imports and domestic resource pro-

duction (e.g., mining);
• Revenue from exogenous energy and material exports;
• Fuel and material delivery costs;
• Welfare loss resulting from reduced end-use demands;
• Taxes and subsidies associated with energy sources, technologies, and emis-

sions.

MARKAL models are demand driven, which means that, for any feasible solu-
tion, exogenously specified energy service demands are met. The model then de-
termines the least cost configuration of capital stock and utilization rates that will
meet these demands over the full projection period. This is done while obeying
a set of user-defined constraints, such as natural resource availability, technology
and capital availability, environmental limitations.
The model is dynamic, meaning that the capital stock in any period is equal to the
capital stock in the preceding period plus/minus any additions or retirements. The
model thus keeps track of capital stock, and the solution in one period is directly
linked to the solution for other periods.
Optimization is inter-temporal, which means that the optimization is performed
for all periods concurrently, implicitly giving decision-makers foresight.

4. Technology data Since the US MRM is a bottom-up model that individually rep-
resents thousands of energy technologies the data requirements are substantial.
Costs and performance characteristics for all technologies are needed as well as
information on policy, regulation, resource constraints, environmental constraints,
expansion and growth constraints.
The main source of technology data for the US MRM is the EIA. Much of the
relevant information is published annually as part of the AEO and the associated
NEMS documentation. Other information was gathered from the residential, com-
mercial and manufacturing energy consumption surveys, the annual coal, natural
gas and petroleum annual reports, the refinery report and the electricity genera-
tor database. A range of other sources, too numerous to include here, have been
consulted as well.
Like electricity prices the prices for liquid fuels are determined by the interaction
of the technologies that produce them as well as the cost of the input feedstocks.
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Liquid fuels however, are not subject to time-of-use pricing and capacity mar-
kets which makes the price formation process less complex than for electricity.
Marginal cost pricing is still used and most fuels will be priced at the crude oil
price plus a cost of upgrading the crude oil (refinery margin) to the fuel in ques-
tion. Alternative fuels such as corn ethanol, biodiesel or other advanced bio- and
synthetic fuels are also available and will impact the pricing of marketed fuels.

5. Modeling key TEAM Technologies
The technologies in MARKAL that correspond to the technology classes as de-
scribed in table 1, which are sensitized in terms of cost and performance parame-
ters, include for solar power all centralized solar pv, for bioelectricity the biomass
integrated gasification combined cycle power plants with and without carbon cap-
ture and sequestration (CCS), for nuclear the currently available light water re-
actors as well as the generation III/ III+ reactors and for biofuels the biomass to
liquids fuel plants. Furthermore, the additional capital and energy cost sensitivity
for carbon capture is also applied to coal integrated gasification combined cycle
and natural gas combined cycle power plants with CCS.
In order to harmonize the input data sample with MARKAL’s default input param-
eters all cost data for each sensitized technology had to be converted to investment
cost, a total cost of investment for new capacity. Of particular interest are solar
power and bio-electricity as their investment cost calculation requires factoring in
the capacity factor and the charge rate for each technology; while for solar power,
investment cost is also adjusted for the available investment tax credit, as currently
set at 10%. Nuclear power investment cost is calculated as the product of the
overnight capital cost with the technology’s capital interest factor. All investment
costs are the regionally adjusted by a cost multiplier. For the coal and gas power
plants with CCS the price premium for the carbon capture is applied on top of the
investment cost of the model’s corresponding baseline technology without CCS.
Efficiency is a direct input for MARKAL technologies, therefore the integration
of the data sample in the model only required the proportional adjustment of the
carbon emission factors for each technology. Finally the CCS energy penalty was
applied as an incremental efficiency penalty for all relevant technologies.

Table 5.5: Summary of TEAM Technologies characteristics in MARKAL_US.

Technology Start Year Efficiency Cost Units

Biomass to Liquids 2015 69.80% 1.297 (non-energy) 2010$/GGE

Biomass to Liquids with CCS 2015 60.40% 1.516 (non-energy) 2010$/GGE

Biomas IGCC 2025 25.30% 0.0486 (non-energy) 2010$/KWh

Biomas IGCC with CCS 2025 22.70% 0.0559 (non-energy) 2010$/KWh

Solar PV 2015 N/A 0.294 (LCOE) (2010 US) $/KWh

Gen III Nuclear LWR capital cost 2020 N/A 1650.36 (Capital) (2010 US) $/KW
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CHAPTER6
Optimal Clean Energy R&D Investments Under Un-

certainty1

6.1 Introduction

A successful climate change mitigation strategy will require significant improvements
of existing technologies, and the introduction in the market of alternatives currently
available only in the lab, to reduce energy consumption and energy carbon intensity at
acceptable costs. Applying deterministic approaches, researchers have been developing
complex Integrated Assessment Models (IAMs) to inform this type of decisions, and
identify ideal decarbonization pathways (Clarke et al., 2014; Marangoni and Tavoni,
2014). Experience with these models has shown that technology availability plays a ma-
jor role on the feasibility and costs of facing the challenge of stringent climatic targets
(Kriegler, Weyant, et al., 2014). Nonetheless, technological change is highly uncer-
tain and capital intensive, requiring risky efforts in research and development (R&D),
thus a more appropriate approach should account for this source of uncertainty. The
fact that these efforts may or may not lead to a technological breakthroughs has impor-
tant implications when considering energy R&D investment strategies for a low-carbon
future.

Previous literature has already highlighted how the joint modelling of endogenous
technical change and uncertainty has important quantitative and qualitative impacts on
optimal technological climate change policies (Baker and Shittu, 2008). When account-
ing for the uncertain effectiveness of R&D investments results can drastically differ
from their deterministic counterparts, both in terms of magnitude as well as in terms
of composition. In addition to this, a large literature on energy technologies expert

1This chapter is drawn from the paper "Optimal Clean Energy R&D Investments Under Uncertainty" by G. Marangoni, G. De
Maere and V. Bosetti, to be submitted.
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elicitation (Anadón et al., 2012; Baker, Bosetti, et al., 2015; Chan et al., 2011; Nemet,
Anadon, and Verdolini, 2016) emphasizes the significant uncertainty that experts attach
to R&D investments, as well as the huge disagreement across experts. This uncertainty
cannot be neglected, especially considering the significant impact of future technologi-
cal costs on the implementation of stringent climate policies (Bosetti, Marangoni, et al.,
2015).

So far, the most common approach has been that of including uncertainty within a
simple analytical framework, with inputs derived from the output of IAMs. G. J. Blan-
ford, 2009 captures the essential elements underlying the relationship between R&D
investment and research outcomes, where the latter are assessed by running an IAM
(MERGE, Manne, Mendelsohn, and Richels, 1995) in a variety of technology scenar-
ios, representing outcomes of alternative R&D programs. Optimal portfolios are then
calculated by linking R&D investments to a probability distribution over alternative out-
comes. In a similar way, Bosetti and Tavoni, 2009 develop a simple analytical model,
with two time periods and two technologies, which mimicks a social planner who min-
imizes costs by choosing optimal abatement and innovation efforts consistently with a
given environmental target. Uncertainty is introduced by modeling the R&D outcome
on the abatement cost of a carbon-free breakthrough technology (backstop) as uncer-
tain. A stochastic version of WITCH is devised to account for such uncertainty, but
only two states of nature for the effectiveness of R&D in a single technology can be
introduced mantaining the model computationally tractable.

The need to consider problems with multiple technologies, coupled with more com-
plex IAMs, has spurred researchers to find new ways to overcome the resulting "curse
of dimensionality". In a recent study, Baker, Olaleye, and Reis, 2015 consider four sets
of probabilistic distributions, related to different elicitation teams of experts, condi-
tional to three funding levels per set, and five technologies. Furthermore, the economic
interactions of technologies are estimated through a large IAM. To alleviate the com-
putational burden, the authors use importance sampling. A single sampling distribution
is derived from all the available ones, and the resulting set of samples is run through
the IAM. The sampled output is then used to evaluate alternative portfolios.

In a different context of climate change economics research, Cai, Judd, and Lontzek,
2013 show an application of an alternative approach, Approximate Dynamic Program-
ming, to account for uncertainty in a IAM. The authors jointly model the uncertain
elements of catastrophic climate change damages and annual economic productivity
within a dynamic stochastic general equilibrium version of a widely accepted IAM.
The problem is solved within the framework of dynamic programming, where the value
function given by the solution of the original model is approximated with a finitely pa-
rameterized collection of functions.

In this paper, we employ the approximate dynamic programming algorithm pro-
posed by ibid. that allows us to keep the complexity of the IAM results intact and, at
the same time, to account for the uncertain effectiveness of R&D efforts in four low-
carbon innovative technologies. To compute the value function we use a fairly complex
IAM (WITCH). In order to quantify the intrinsic uncertainty concerning learning rates,
costs and efficiency parameters, we resort to recent expert elicitations (Bosetti, Cate-
nacci, et al., 2011). To provide novel and robust insights on the optimal portfolio of
clean energy R&D investments, we perform a set of experiments.

130



6.2. Optimal R&D Portfolio Problem

First, we define the optimal level and composition of a public R&D portfolio of
investments in four key clean energy technologies, given experts’ judgments on their
future probabilistic costs, the potential economical and technological implications of
such costs (as modelled by a complex IAM), and the uncertain effect of R&D invest-
ments on costs.

Second, we study how the portfolio composition changes when considering different
limits on the RD&D budget, different risk-aversion preferences, and different assump-
tions about the characteristics of the R&D program.

While providing policy relevant results, the main goal of the paper is that of intro-
ducing a fairly general method that can be easily adapted to use alternative IAMs, or a
collection of them, to approximate the value function, as well as different expert elic-
itations or historical based data to inform the probabilistic relationship between R&D
and the future evolution of technological costs.

6.2 Optimal R&D Portfolio Problem

The problem of finding near-term R&D investments IT1 = I = [I1, . . . , In] in n tech-
nologies that maximize social welfare π under uncertain effectiveness of R&D can be
formulated as a two-stage stochastic program. This can be schematically described as:

max π = UT1(IT1) + E [UT2(IT1 ,λ)] . (6.1)

The first part of the objective function UT1(IT1) is the welfare over the first period
T1. This term decreases deterministically with the expenditure in R&D I , as the re-
sulting benefits are assumed to materialize only after the first stage. The second part
of the objective function UT2(IT1 ,λ) models the welfare associated with the stream of
consumption in the second period, given the realization of future technological costs.
This term increases with the expenditures in R&D I done in the first period, as costs
are reduced with the cumulated level of knowledge, and more wealth can be generated.
Nonetheless, benefits depend on the realization of the effectiveness of the R&D invest-
ments. This uncertain effectiveness can be conceptualized by introducing stochastic
learning rates λ = [λ1, . . . , λn] affecting how knowledge turns into cost reductions
(Gritsevskyi and Nakićenovi, 2000). Optimal R&D investments then should be chosen
by the policy maker trading off the benefits of shifting the distributions of future costs
towards the lower end, with the burden of sustaining today those investments.

In order to approach the problem of Eq. (6.1), two elements are necessary (Baker,
Olaleye, and Reis, 2015). The first is the quantification of the stochastic relationship
between R&D investments and their effect on future technological performance (i.e.
the distribution of learning rate, λ); the second relates to the calculation of the stream
of benefits associated to the various realizations of technological costs and efficiency
parameters.

This paper shows how the framework just described can be implemented to support
today public R&D investment decisions in clean energy technologies for a low-carbon.
Both empirical analyses of past R&D program effectiveness (Wiesenthal et al., 2012)
and expert elicitations (Morgan, Henrion, and Small, 1992) can be used to quantify
the probabilistic relationship between R&D investments and their effectiveness. Here,
we use data coming from an expert elicitation regarding the future cost and efficiency
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of key energy technologies and how these parameters might be affected by changes in
the R&D efforts (Bosetti, Catenacci, et al., 2011). We focus on the impact of R&D
investments on future costs of four technologies related to low-carbon energy supply:

• the cost of electricity produced with solar technologies;

• the production cost of liquid biofuels;

• the module cost of batteries for light-duty vehicles;

• the cost of electricity produced with biomass.

To quantify future welfare implications of different techno-economic-climatic sce-
narios, the scientific community typically resorts to integrated assessment models (IAMs).
Here, we employ WITCH (World Induced Technical Change Hybrid Model), a general
equilibrium IAM that can project forward the societal implications of energy technol-
ogy costs (Bosetti, Carraro, et al., 2006; Bosetti, Tavoni, et al., 2009; Emmerling et al.,
2016). The space of possible future cost realizations is sampled to provide a discrete set
of input configurations for WITCH. The simulations yield a set of economic outcomes
which are then used to approximate a continuous value function.

The choice of WITCH among the many existing IAMs was mainly driven by its
fairly rich technological and economical description, and by its numerous previous ap-
plications to the study of endogenous innovation in the energy system (Bosetti and
Tavoni, 2009; Marangoni and Tavoni, 2014). The model divides the worldwide econ-
omy into 13 regions, whose main macroeconomic variables are represented through a
top-down inter-temporal optimal growth structure, while the energy sector is detailed in
a bottom-up fashion. The different regions behave as forward-looking agents optimiz-
ing their welfare in a non-cooperative game-theoretic set-up. Actions of each agent in-
terrelate through several externalities, like dependence on exhaustible natural resources
and trade of oil. While the focus of this paper is on the EU15+EFTA region, economic
scenarios involve assumptions and optimization for all the other regions. For our appli-
cation to be policy relevant, we assume that countries represented in the model optimize
welfare whilst obeying to a lenient climate change policy, in line to recent UNFCCC
negotiated targets2.

6.3 Two-stage stochastic program

The first stage decision concerns which technologies to promote by investing a dedi-
cated amount in R&D during the period 2010-2030. This is before the realization of the
effectiveness of this R&D investment in 2030. In this first stage, the decision maker al-
locates a time-invariant R&D budget Ij , yearly between 2010 and 2030, for each of the
J modelled technology j ∈ J = {j1, ..., jJ}. R&D expenditures reduce available con-
sumption of final good Qt in period t ∈ T1 = {2010, 2015, 2020, 2025} by subtraction
from a counterfactual consumption level Q̄t without R&D:

2We assume that countries will pursue similar levels of climate mitigation strigency for the rest of the century. This target
entails an expected increase in global average temperature of around 2.8°C above pre-industrial levels by the end of the century.
The probability of the temperature increase to exceed 2°C, the threshold commonly considered as safe by the scientific community
to avoid irreversible climate changes, is very high (88%-97%, Kriegler, Tavoni, et al., 2013). While climate policy makers will
hopefully commit to stronger and more coordinated actions in the future, the stringent pledges we consider here reflect realistic
national near-term efforts, also in line with the commitment shown by the latest Intended Nationally Determined Contributions
(INDCs) circulated in the COP21 in Paris.
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Qt = Q̄t − r
∑
j

Ij t ∈ T1 (6.2)

Public investments in energy R&D crowd out investments in other R&D, which
have a social rate of return r times higher than that of private investments. It is as-
sumed that 1 dollar of Ij costs r = 4 dollars otherwise usable for direct consumption
or private investments (Popp, 2004). Reference consumption Q̄t is a baseline counter-
factual calculated by the integrated assessment model WITCH, assuming no explicit
R&D expenditures and median cost realizations after 2030 for the technologies in J .
Any repercussion of I on the economy other than the one in Eq. (6.2) is assumed to be
negligible. This is reasonable as R&D investments constitute a tiny fraction of overall
GDP, and benefits from R&D may take some time to materialize, in this case a couple
of decades. t is defined on a discretized time horizon of periods of T∆ = 5 years. Over
this time horizon, knowledge in each technology j builds up according to the usual
capital law of motion. Starting from an initial value K0,j , the R&D stock in period t is
given by a fraction (1− δR)T∆ of the stock in the previous period, plus the flow of new
ideas due to T∆ years of investments:

Kj,t+T∆ = Kj,t(1− δR)T∆ + T∆Ij. (6.3)

The initial R&D stock K0,j in 2010 is estimated from IEA, 2015, applying the same
cumulation dynamics to historical R&D budgets, separately for each region. Yearly
obsolescence of R&D δR is assumed to be 5% for all technologies.

The link between knowledge accumulated in the first stage K = [K1, ..., KJ ] by
2030, and the cost C = [C1, ..., CJ ] in 2030, follows a one-factor learning curve. In
particular, the cost C can be thought as the sum of a floor cost Cf with the initial cost
C0 scaled according to the upscaling in stock of knowledge K over time, and to a
learning rate λ = [λ1, ..., λJ ]:

C(ω) = Cf +C0

(
K

K0

)−λ(ω)

. (6.4)

λ is assumed to be revealed in 2030 according to the realization ω = [ω1, ..., ωJ ].
This parameter drives the uncertainty of the problem of choosing investments today.
Omitting the dependency of λ on ω for brevity, optimal investments I maximize the
following utility function:

U(I,λ) := UT1(I) + E [UT2(I,λ)] (6.5)

UT1(I) :=
∑
t∈T1

Ft(Qt(I))

UT2(I,λ) := V (C(I,λ))
In the first part of the objective functionUT1(I), utility at time t is a concave function

Ft increasing with consumption Qt, and decreasing with |I|. A constant relative risk
aversion equal to the inverse of the elasticity of intertemporal substitution η is implied.
The dependency of Ft on time is due to changing levels of population Lt and discount
factor βt3.

3In period t, utility is multiplied by a standard geometric discount factor βt = 1/(1 + ρ)t−2005, with pure rate of time
preference ρ equal to 1%. The specific expression we consider for UT1 is

∑
t∈T1

Ltβt/(1− η)((Qt(
∑

j
Ij)/Lt)1−η − 1)
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The second part of the objective function UT2(I,λ(ω)), represents future welfare
from 2030 till the end of the time horizon (2150 in WITCH). It depends on future cost
C, which in turn depends on the knowledge accumulated till then and on the actual
sample outcomes ω of the stochastic learning parameter λ = [λ1, ..., λJ ]. This function
is implemented via the WITCH model by observing the economic and energy-related
consequences of changing cost assumptions C.

Multiple technologies and continuous distributions for λ lead to an intractable prob-
lem if any change in I or λ (hence in C) needs to be propagated into the solution of
a new instance of a complex integrated assessment model like WITCH. We adopt an
Approximate Dynamic Programming (ADP) approach (Cai, Judd, and Lontzek, 2013)
by substituting V (·) with an approximating function much easier to calculate. This re-
placement, along with the assumption that uncertainty on technological change in the
second stage does not impact the first stage objective function UT1(I), makes the R&D
portfolio problem numerically solvable in reasonable times. Finally, the expectation
in Eq. (6.5) is translated into an average over 1000 scenarios for λ, obtained via latin
hypercube sampling of its distribution.

To show that the problem is well formulated and has a unique solution, we would
need to prove that the utility is strictly concave. In section 6.A.1 in the appendix we
study and provide proof of concavity in the case of one technology. The case for multi-
ple technologies is treated only numerically, as the intuition behind the well-posedness
of the problem would be obscured by the required cumbersome analytical derivation.

The optimization problem slightly changes to accomodate for different risk-aversion
preferences. As section 6.A.2 in the appendix illustrates, the problem turns into the
following minimization:

min
∑
t∈T1

Gt(Qt(I)) + E
[
(H(C(I,λ)))

1−α
1−η

] 1−η
1−α

(6.6)

for some appropriate functions Gt and H (related to utility in T1 and T2 respec-
tively). This formulation allows the risk-aversion parameter α to be made explicit and
independent from the the inverse of the elasticity of intertemporal substitution η.

6.3.1 Learning rate estimation

Since we are considering relatively novel technologies, with scarce historical data and
high potential for improvement, extrapolating historical trends may be inadequate to
represent their future behaviors. We rely instead on expert elicitation to assess proba-
bilistic distributions of future costs. Distributions are estimated from the data collected
by the ICARUS project (Bosetti, Catenacci, et al., 2011). For this project, leading ex-
perts from the academic world, the private sector, and international institutions took
part in a survey designed to collect probabilistic information on the role of R&D in-
vestments in lowering costs and increasing penetration of 8 carbon-free technologies.
The survey could focus only on a limited amount of R&D budgets for each technology.
In our framework we want to be able to search for the optimal budget allocation in a
continuum of possibilities. This is possible by introducing and calibrating a particular
model for technical change, like the single-factor learning model considered here (Eq.
(6.4)). Then, uncertainty is assumed to lie exclusively in the learning rate λ.
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The goal is to translate cost distributions, given by the experts, into distributions of
learning rates. Let the random variable Cs be the cost in 2030 of one technology under
an R&D scenario s, chosen among 3 future R&D budget scenarios (representing an
increase of 0%, 50% and 100% with respect to baseline levels). The ensemble of ex-
perts predictions is summarized intoN samples ofCj,s cumulative distribution function
(CDF). By inverting Eq. (6.4), N samples for λs CDF are obtained. If the one-factor
model with uncertain learning perfectly represented reality, these CDF would overlap,
as learning rate (hence its CDF) does not depend on the scenario: while investments do
affect costs, they should be independent from the learning rates according to Eq. (6.4).
Taking the mean across s of λs empirical distributions and fitting a Weibull distribu-
tion, we identify a parametric description of the uncertain learning rates. Using Eq.
(6.4) again, a parametric description of the uncertain costs as a function of investments
can be derived. The details of these calculations are reported in Algorithm 1, while a
graphical representation of both empirical and fitted CDFs can be found in Figure 6.1.

6.3.2 Value function interpolation

In order to apply the Approximate Dynamic Programming paradigm, we need to con-
struct the value function, i.e. a continuous function approximating the WITCH regional
welfare response to technological costC in the space of interest. We start by evaluating
WITCH on a representitive discrete subset of costs combinations. The extreme of the
ranges of this space are reported in Table 6.1 under the min and max cost columns. Cur-
rent cost C0,j , used until 2030, is just below the maximum value. Costs are assumed to
reveal themselves in 2030, and are obtaining by sampling a value in the ranges. After-
wards, they decay autonomously a further 20% by 2060, and then they remain constant.
Floor cost Cf,j , appearing in the learning equation (6.4), is slightly above the minimum
value of the range. The margins from extreme values, especially on the lower end, keep
the R&D portfolio program away from extreme boundary behaviors.

Table 6.1: Table summarizing minimum, maximum, current and floor costs of the four considered
technologies.

Technology j Unit Min cost Floor cost Current Max cost

(Cm,j) (Cf,j) cost (C0,j) (CM,j)

Solar cUSD/kWh 2 3 27.8 28

Biofuels USD/lge 0.05 0.08 2.98 3

Batteries USD/kWh 50 75 1019 1025

Bioelectricity cUSD/kWh 3 4.5 24.9 25

We follow the methodology presented by Cai, Judd, and Lontzek, 2013 and con-
struct the value function based on Hermite approximation, including both the Lagrange
data and the slope information. To do so, ten samples are picked along each of the cost
dimension according to a Chebysev nodal formula4, which is known to provide greater

4The i-th sample cost for technology j is chosen as: C(i)
j = Cm,j+CM,j

2 + CM,j−Cm,j

2 cos
(
π i−0.5

10

)
.
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Algorithm 1
1: procedure FIT(k0, δ, I, cF ,Ci,s,EMPCDF(Ci,s),FITCDFx)

k0 ← R&D capital in start year

δ ← Yearly depreciation rate of R&D capital

I← Yearly baseline R&D investment

cF ← Floor cost

Ci,s ← Cost sample i under R&D scenario s

EMPCDF(Ci,s)← Empirical CDF of Ci,s according to experts

FITCDFx ← CDF w/ parameters x for LbR rates, to be fit to EMPCDF

2: for s← {1, 1.5, 2} do . 3 R&D baseline investment multiplier scenarios

3: K2010,s ← k0

4: for t← {2011, ..., 2030} do

5: Kt,s ← K1−δ
t−1,s + sI . Capital accumulation

6: end for

7: Rs ← K2030,s/K2010,s . Ratio over intial capital

8: for i← index sample in empirical CDF from experts do

9: Li,s ← −
log ((Ci,s − cF ) /c0)

log Rs
. Invert 1-factor learning curve

to obtain sample LbR rates

10: end for

11: EMPCDF(Li,s)← 1− EMPCDF(Ci,s) . EMPCDF(Li,s) =

Prob(LbR rate ≤ given LbR rate)=

= Prob(Cost ≥ given Cost)=

= 1 - Prob(Cost ≤ given Cost) =

= 1 - EMPCDF(Ci,s)

12: end for

13: x← arg minx
∑
i,s (FITCDFx(Li,s)− EMPCDF(Li,s))2

14: return x

15: end procedure
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Figure 6.1: Left column: empirical CDFs of 2030 costs as elicited from experts, one technology for
each row and one R&D budget for each color. Middle column: corresponding learning rate distri-
butions, according to the one-factor learning curve model, plus a Weibull fit of the mean empirical
CDF. Right column: empirical CDFs of costs along with their fitted versions, for the 3 original
R&D budgets plus an extra one.
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accuracy for polynomial interpolation.
As we study in this paper the impact on four different technology, a total of ten thou-

sands runs of WITCH is required to performed the approximation. The exact procedure
is described in section 6.A.3 in the appendix.

6.4 Results

With our model we run two scenarios: "Stochastic", where the optimal portfolio pro-
gram is solved assuming that the learning rate λ is sampled from its fitted Weibull
distribution, and "Certainty equivalent", where λ is set to the mean value of its distri-
bution. The "Stochastic" scenario is also run for different values of the crowding out
factor r, the risk-aversion parameter α, and the total allowable budget (max∑i I i).

Figure 6.2 compares yearly public R&D investments per technology under the two
simulated scenario with actual historical data on energy R&D (labelled "Historical").
The latter come from averaging 2010 to 2014 R&D investment flows reported by IEA in
the relevant technological categories (IEA, 2015). Also for the estimation of the initial
R&D capital, values in the period 2010-2014 were averaged, as a way to incorporate
in the model the most recent available information. Results from both optimization
runs imply a stark break with past trends, both in terms of total R&D expenditures (left
hand side panel) and in terms of composition of the portfolio (right hand side panel).
The "Certainty equivalent" case implies an optimal future budget 24 times higher than
the historical 2010-2014 average of 485 million USD. Uncertainty seems to duplicate
optimal R&D efforts, for a total of 22.7 billion USD. In increasing order, the three
budgets constitute the 0.3%, 8% and 16% of the GDP in 2010 for the EU15+EFTA
region. While GDP is estimated to grow in the first-stage, the fixed yearly "Stochastic"
budget would remain above 10% of the overall economic output.

A clear break with history happens also in terms of shares. The biggest part of
recent European R&D investments was devoted to solar technologies, with biofuels
in the second place, followed by bioelectricity and eventually batteries for personal
transport. Our stochastic solution suggests a quite different scenario, where batteries
dominate the portfolio with a share greater than 80% in the stochastic case, and similar
in the deterministic. This is equivalent to an upscaling of two orders of magnitude in
batteries R&D investments, with respect to current efforts. A minor role is played by
other technologies, with different rankings depending on whether the full distribution
is taken into account or not. In particular, shares in the "Certainty equivalent" case are
75%, 13%, 9% and 3% for battery, solar, biofuels and bioelectricity respectively. In
the "Stochastic" case, biofuels are cut out of the budget, with their share mostly redis-
tributed in favor of battery (85%). Among power technologies, a minor shift occurs in
favor of bioelectricity (4%) to the detriment of solar (11%).

Several reasons may justify these results. First, the expected net present value of
future welfare is much more sensitive to changes in future costs of batteries than in all
the other costs (see Figure 6.6). The non-electric sector, and in particular the personal
transport sector, is traditionally considered one of the most difficult and expensive to
decarbonize (Bosetti, Marangoni, et al., 2015; Luderer et al., 2011). Through electri-
fication of vehicles, Europe can spread the benefit from the efforts already diffused in
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Figure 6.2: R&D portfolio composition. Left-hand side reports yearly R&D investments per tech-
nology for the two scenarios and the historical 2010-2014 average as reported in the IEA RD&D
Database. Right-hand side shows the percentage of total R&D investments in each of the four
technologies.

supporting clean power generation also to transport emissions. Europe’s determined
contribution can then be achieved at contained costs. Such an electrification is possi-
ble only with an adequate battery technology in place, which requires a considerable
increase in the R&D from the status quo. Second, according to the experts’ judg-
ment, the probabilistic distribution of future battery costs seems to be less sensitive to
an upscaling in investments when compared to other technologies. As reported in the
last column of Figure 6.1, a ten-fold increase in battery investments gives the smallest
change in the cumulative distribution function of 2030 costs. Finally, batteries has re-
ceived a marginal attention in terms of European R&D funds in the recent past, making
the initial cost quite high. It is important to remark that the scope of our analysis is lim-
ited to public R&D expenditures in Europe. By doing so, we are potentially neglecting
spillovers of innovation from the private sectors, and from the R&D efforts in other
counties. This might lead to an over-estimation of optimal regional public R&D needs,
which could partially justify the deviation from historical trends.

Comparing the "Stochastic" and "Certainty equivalent" solutions we can grasp the
effect of accounting for uncertainty in the optimal response. While uncertainty seems
to have a minor effect on the shares of the portfolio, its role is clear in the upscaling of
battery investment levels. A precautionary mechanism emerges from the optimization,
where the risks of low learning in batteries are strongly hedged against by increased
investments. This is done to the detriment of the biofuel sector, which would receive
almost no investments. Biofuels and batteries are potentially substitutes in decarboniz-
ing the transport sector, and having greater expected learning rates with a lower impact
on utility function makes biofuels fall behind in the R&D competition for budget.

Next, we report results for different sensitivity tests aimed at understanding the ro-
bustness of the optimal stochastic solution to reasonable changes in key components of
the model. As discussed in Section 6.3, we employ the assumption that 1 USD of pub-
lic investments in energy R&D crowds out r dollars of investments in other R&D, with
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a nominal value of 4 (Popp, 2004). Figure 6.3 shows how results change in response to
different crowding out factor assumptions. As r decreases, opportunity costs of energy
R&D investments are lower, hence greater energy R&D budgets can be optimally allo-
cated, and more so again in the battery sector. Increasing r, on the other side, increases
the social cost of energy R&D investments, which become less attractive. Going from
r = 2 to r = 6 means to cut more than half of the investments. A slight convexity
makes this behavior marginally decreasing towards greater r values. We remark that
the concern about energy R&D crowding out other forms of R&D might be minimal
according to some empirical evidence (Popp and Newell, 2009), so that r is more likely
gravitating towards 2 rather than 6.
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Figure 6.3: Sensitivity to different crowding-out assumptions of the optimal R&D portfolio under un-
certainty. Results are presented both in terms of yearly absolute investments levels (left-hand side)
and corresponding shares (right-hand side).

Another important parameter is the one affecting the decision maker propensity to
avoid risk. In the nominal solution we assumed the relative risk aversion parameter α
to be equal to the inverse of the elasticity of intertemporal substitution η = 1.5. Empir-
ical estimates of α from observed trade behavior can be in the 10-20 range. Figure 6.4
shows the impact of increasing α on the optimal solution of the stochastic problem, us-
ing the modified utility derived in Section 6.A.2. Greater risk aversion justifies greater
R&D investments, and the additional budget is directed towards battery. As discussed
previously, the model is particularly sensitive to the uncertain learning rate of batteries,
and reducing the uncertainty of the problem involves mostly reducing the uncertainty
in batteries future cost realizations. Total and battery investments increase linearly in
α, with an average 0.3% gained per added unit of α.

Finally, it may be the case that the actual budget for energy R&D will be limited
by other constraints, not explicitly modelled in this work. Current budget deficits and
other financial constraints might impose a total energy R&D budget way smaller than
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Figure 6.4: Sensitivity to different risk aversion assumptions of the optimal R&D portfolio under un-
certainty. Results are presented both in terms of yearly absolute investments levels (left-hand side)
and corresponding shares (right-hand side).

the optimal one. Figure 6.5 illustrates the change in R&D allocation when the total
R&D budget is constrained. The constraint is expressed as a fraction of the total R&D
budget that would be otherwise optimal. Along with total investments, also the lev-
els of the individual technology budgets scale proportionally, excepted for the smallest
fractions. As the available total R&D funds shrink, and eventually get to 10% of the
unconstrained ones, battery R&D becomes less predominant in the portfolio. Given
constrained total budget, the model tends to reallocate efforts more equally across tech-
nology. Lower investments in other technologies make lower realizations of the learn-
ing rates more likely, and the model starts to hedge against these. This is true for solar
and bioelectricity, while biofuels would need further to emerge in the portfolio.
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Figure 6.5: Sensitivity to different total budget limitations of the optimal R&D portfolio under uncer-
tainty. Results are presented both in terms of yearly absolute investments levels (left-hand side) and
corresponding shares (right-hand side).
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6.5 Conclusions

This paper copes with the problem of including uncertainty endogenously in the op-
timization problem of a complex Integrated Assessment Model used for climate pol-
icy assessment. In our case, the decision variables of interest are energy R&D pub-
lic investments to be allocated across 4 key low-carbon technologies in the near-term.
Uncertainty affects the learning rate that will make these investments more or less ef-
fective in decreasing 2030 costs of these technologies. The problem is framed as a
two-stage stochastic program: in the first stage (before 2030), a stock of knowledge
is built through yearly R&D investments, decided for each technology; in the second
stage (after 2030), learning rates will reveal themselves, and so will costs in 2030 and
beyond, depending on the realization of the learning rates and on the cumulated stock
of knowledge. The utility resulting from these costs is evaluated through the WITCH
model. To make the problem computationally tractable, we successfully applied the
Approximate Dynamic Programming paradigm by replacing WITCH value function
with a surrogate function interpolated from 10000 instance of the model, evaluated at
different points in the cost space.

The scope of this analysis is limited to Europe, as the estimation of learning rates
distributions is limited to the expectations of European experts on future costs con-
ditional to different R&D scenarios. Nonetheless, WITCH solves the economy and
determines the operation of the energy sector at a global scale, so that the European
value function in the stochastic program accounts for world-wide strategic interactions
and climate policy commitments. We decided to portrait a realistic future scenario,
where countries adhere to a stringent interpretation of their Copenhagen pledges, given
the recent progress in climate negotiations obtained in Paris.

In this framework, we find the optimal R&D portfolio to be dominated by the sector
of batteries for personal electric vehicles. Batteries seem to have a great potential in
supporting the required decarbonisation, and low learning rates that need to be hedged
against. Compared to the past, a significant upscaling of investments is suggested: 10-
fold for the total budget and 100-fold concerning batteries. The share of batteries is
robust to different assumptions of risk-aversion, R&D budget limitation and crowding-
out effects.

Several further improvements could follow this study. As a first application of the
methodology introduced in this paper, the number of technologies is limited to four,
and only one climate policy is considered. In the future, these dimensions could be
augmented. Investment decisions could be extended to all WITCH regions in the form
of a Nash game. Other models beyond WITCH could be involved in a similar exercise
to provide a further layer of robustness check to the analysis. Nonetheless, the main
merit of this paper remains to prove that the suggested methodology can be successfully
applied to a fairly complex IAM for informing robust optimal clean energy innovation
policies, and could similarly applied in many other contexts.
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6.A Appendix

6.A.1 Solution existence and uniqueness for one technology

The problem of maximizing Eq. (6.5) has a unique solution if utility is strictly concave.
For simplicity, we consider analytically only the case with one technology, i.e. J = 1.
Let consider UT1(I). Its first and second derivatives are:

∂UT1(I)
∂I

= ∂

∂I

∑
t∈T1

Ltβt/(1− η)((Q0t − rI)/Lt)1−η − 1) (6.7)

=
∑
t∈T1

−rβt((Q0t − rI)/Lt)−η (6.8)

∂2UT1(I)
∂I2 = ∂

∂I

∑
t∈T1

−rβt((Q0t − rI)/Lt)−η (6.9)

=
∑
t∈T1

−r
2ηβt
Lt

((Q0t − rI)/Lt)−η−1 (6.10)

All parameters have positive values, so that UT1(I) is decreasing (U ′T1 < 0) with a
strictly concave behavior (U ′′T1 < 0).

Let consider UT2(I), assuming λ fixed.

∂UT2(I)
∂I

= ∂V (C(I))
∂I

= ∂V (C)
∂C

∂C(I)
∂I

(6.11)

The cost C depends on investments in R&D I via one-factor learning and cumula-
tion of R&D capital euqations:

C(I) = Cf + C0

(
K(I)
K0

)−λ
(6.12)

K(I) = K0(1− δR)2030−2005 + ∆T I
∑

t=2010,...,2030
(1− δR)t−2010. (6.13)

Renaming positive constants to yield a form as compact as possible, Eq. (6.11)
becomes:

∂UT2(I)
∂I

= V ′(C) ∂
∂I

[cf + c0(∆a + ∆bI)−λ] (6.14)

= V ′(C)[−∆c(∆d + I)−λ−1] (6.15)

V (C) is decreasing (V ′(C) < 0), so that UT2(I) results increasing in I (U ′T2 > 0).
Regarding the second derivative:

∂2UT2(I)
∂I2 = ∂

∂I
V ′(C)[−∆c(∆d + I)−λ−1] (6.16)

= V ′′(C)[−∆c(∆d + I)−λ−1] + V ′(C)[∆c(λ+ 1)(∆d + I)−λ−2] (6.17)

This is the sum of two negative terms, as V (C) is convex (V ′′(C) > 0), and decreasing
with C (V ′(C) < 0). UT2 is thus strictly concave in I . and the maximization problem
is well posed.
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6.A.2 Risk aversion derivation

So far, we made implicit assumptions on the risk aversion of the decision maker. We
introduce an explicit parameterization of risk preferences following Epstein and Zin,
1989. Let consider first a recursive utility Vt at time t, defined as a constant elasticity
of substitution (CES) production function of Qt/lt and of utility at time t+ 1:

Vt =
(

(1− γt)
(
Qt

lt

)1−η
+ γtV

1−η
t+1

) 1
1−η

(6.18)

If we raise Vt to the power (1 − η) and unfold the recursion starting from the first
period, replacing for brevity years {2005, 2010, 2015, . . . } with their integer indices
{1, 2, 3, . . . }, we obtain:

W̄1 = V 1−η
1 = (1− γ1)

(
Q1

l1

)1−η
+ γ1(1− γ2)

(
Q2

l2

)1−η
(6.19)

+ γ1γ2(1− γ3)
(
Q3

l3

)1−η
+ ... (6.20)

= (1− γ1)
(
Q1

l1

)1−η
+ Γ1(1− γ2)

(
Q2

l2

)1−η
+ Γ2(1− γ3)

(
Q3

l3

)1−η
+ ...

(6.21)

= θ1

(
Q1

l1

)1−η
+ θ2

(
Q2

l2

)1−η
+ θ3

(
Q3

l3

)1−η
+ ... (6.22)

which is related by an affine transformation to a scaled version W̃1 of WITCH utility
W1, obtained dividing by the sum of population levels over the finite time horizon of
the model L := ∑

t lt:

W̃1 = 1
L
W1 = W̄1 −

∑
t θt

1− η (6.23)

The need to introduce a scaled version of W1 comes from the CES requirements on γt
to be less than one. New coefficients are related to each other and to WITCH ones by:

θt = βtlt
L

(6.24)

γt = 1−∑t′≤t θt′

1−∑t′′≤t−1 θt′′
(6.25)

Γt =
∏
t′≤t

γt′ = 1−
∑
t′≤t

θt′ (6.26)

with the last equation due to the telescoping nature of the product of γt. In particular,
the following For η = 1.5, maximizing W1 (i.e. solving WITCH) is equivalent to
maximizing W̃1, or minimizing W̄1, or maximizing V1 = W̄

1/(1−η)
1 . The advantage

of thinking in terms of Vt is that a simple transform can be applied to future utility in
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Eq. (6.18) to make the Epstein-Zin risk preference parameter α explicit:

Vt =
(

(1− γt)
(
Qt

lt

)1−η
+ γtE

[
V 1−α
t+1

] 1−η
1−α

) 1
1−η

(6.27)

=
(1− γt)

(
Qt

lt

)1−η
+ γtE

[(
V 1−η
t+1

) 1−α
1−η
] 1−η

1−α

 1
1−η

(6.28)

=
(1− γt)

(
Qt

lt

)1−η
+ γtE

[(
W̄t+1

) 1−α
1−η
] 1−η

1−α

 1
1−η

(6.29)

Unfolding the recursion above for our stochastic program, the expectation operator only
appears only after the first 5 periods, when utility starts to be affected by uncertainty:

V 1−η
1 =

∑
t∈{1,...,5}

θt

(
Qt

lt

)1−η
+ Γ5E

[(
W̄6

) 1−α
1−η
] 1−η

1−α
(6.30)

We want to link W̄6 with WITCH utility after-2030 W6:

W6

L
= 1

1− η

(θ6

(
Q6

l6

)1−η
+ θ7

(
Q7

l7

)1−η
+ ...

)
−
∑
t≥6

θt

 (6.31)

W̄6 = (1− γ6)
(
Q6

l6

)1−η
+ γ6(1− γ7)

(
Q7

l7

)1−η
+ ... (6.32)

= 1
Γ5

(
θ6

(
Q6

l6

)1−η
+ θ7

(
Q7

l7

)1−η
+ ...

)
(6.33)

= 1
Γ5

(1− η)W6

L
+
∑
t≥6

θt

 (6.34)

Maximizing W1 in the risk aversion formulation is thus equivalent to the problem of:

min
∑

t∈{1,...,5}
θt

(
Qt

lt

)1−η
+ Γ5E


 1

Γ5

(1− η)W6

L
+
∑
t≥6

θt


1−α
1−η


1−η
1−α

(6.35)

6.A.3 Hermite interpolation of the value function

Let i = [i1, ..., iJ ] be the index of a single cost/welfare sample. After running the
model, we collect all welfare samples W (i):

W (i) := V (Ci) =
∑

t∈{2030,2035,...}
Ltβt/(1− η)((Qt(C(i))/Lt)1−η − 1) (6.36)

along with first derivatives ∂W/∂Cj|C(i) , obtained from the marginals of the equations
that input 2030 costs into the model. Next, we choose a polynomial of degreem defined
in the normalized cost space U = [−1, 1]J to fit the welfare data points. Let l =
[l1, ..., lJ ] be a vector of integers such that

∑
j lj = m, and Ṽ (X) = al

∏
j(Xj)lj ,X =
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[X1, ..., XJ ] ∈ U our polynomial function. The interpolation problem is casted in the
form:

min
al

∑
i

(
Ṽ (X(i))−W (i)

)2
+
∑
j

γj

(
∂Ṽ (X)
∂Xj

∣∣∣∣
X(i)
− ∂W

∂Cj

∂Cj
∂Xj

∣∣∣∣
X(i),C(i)

)2

(6.37)

s.t. X
(i)
j = −1 + 2

C
(i)
j − Cm,j

CM,j − Cm,j
j ∈ J (6.38)

The function to be minimized is a weighted sum of the error both in absolute and
derivative terms, the latter being done with respect to all technologies. An affine trans-
formation mapsX into C, while the γj balances differences in units.

Both absolute levels and curvatures of the actual WITCH value function can be
well replicated with a polynomial of degree 4 (Figure 6.6). Looking at bidimensional
slices of the function, it turns out that the greatest impact is given by changing the cost
of battery, followed by biofuels. Changing the cost of solar and bioelectricity seems
to yield minor effects. These results are consistent with the expected challanges of
decarbonizing the non-electrical sector, and underline the crucial impact of technical
change supporting this decarbonization.
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Figure 6.6: Bidimensional slices of WITCH 2030-onwards utility as a function of the 4 costs consid-
ered. A fitted polynomial of degree 4 is evaluated and plotted in color along each cost dimension,
with the other costs either at maximum, minimum, or middle level. Actual values from WITCH are
plotted in black. The segment around each sample brings information about actual partial deriva-
tives.
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