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Abstract

In this Ph.D. thesis, the micro-structural behaviour of a Nickel-based alloy is discussed.
The work aims to provide a description of the stress-strain field along grains and grain
boundaries with finite element crystal plasticity simulations using an open source soft-
ware, Warp3D. The results are then compared with those obtained with digital image
correlation to evaluate the prediction of the numerical solutions. After a brief introduc-
tion to the work, a general overview of the literature on the two main topics of the thesis,
analyses of micro-mechanical behaviour and crack closure measurements, is provided.
Focusing on work that aims to describe the overall behaviour of the material and the
local answer at the grain scale by means of crystal plasticity codes. Following, a study
of the tensile mechanical behaviour is discussed. Both single crystals at room temper-
ature and a polycrystalline structure at high temperature are taken into account. In this
section the crystal plasticity model parameters are identified on single crystal tests and
are then applied to the polycrystalline case. The following step of the work focused
on room temperature cyclic behaviour aiming to describe a ratcheting test. The work
then moved to the topic of fracture mechanics. The first step of this study is related
to numerical simulations of fatigue crack growth in single crystal specimens, then the
analyses moved on the emulation of crack’s effects inside polycrystalline media. The
discussion of those sections concerns the irreversibility generated during the propaga-
tion of the crack: the results are compared with experiments in terms of crack opening
level and extension of the plastic zone at the crack tip.
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Nomenclature

A,m - Paris law’s coefficients

C - Elastic stiffness matrix
C0 - Elastic stiffness matrix in the reference frame

D0, T0 - Empirical parameters for temperature dependent shear modulus

D - Symmetric component of the velocity gradient

D̄p - Plastic component ofD in the intermediate configuration

E - Young’s modulus

F - Deformation gradient

F e - Elastic component of the deformation gradient

F p - Plastic component of the deformation gradient

HW - Work generated by the applied stress

I - Unit matrix

K(s) - Constant that characterize the material rate sensitivity on the s-th slip sys-
tem
L - Velocity gradient

Lp - Plastic component of the velocity gradient

Lnotch - Notch length

N - Number of cycles

QG - Rotation matrix for the grain

Re - Elastic rotation
Rnotch - Notch radius

Si - Scale factor for the i-th component of the Mechanical Threshold Stress model
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T - Temperature

U - Stress range reduction factor

V e - Elastic stretching

W - Skew component of the velocity gradient

W̄ p - Plastic component ofW in the intermediate configuration

Y - Geometric factor
a - Crack length

b - Magnitude of the Burgers vector

bs - Direction of the s-th slip system

xp - Coordinates of a point in the intermediate configuration

X - Coordinates of a point in the reference configuration

x - Coordinates of a point in the current configuration

g0,i - normalized activation energy for the i-th component of the Mechanical
Threshold Stress model
i = 1 : mi - Number of thermal components for the Mechanical Threshold Stress
Model

k - Boltzman constant

k0 - Parameter that accounts of hardening deriving from geometrical necessary
dislocations

k1 - Parameter that accounts for dislocation generation

k2 - Parameter that accounts for material recovering during plastic straining

mSF - Schmid factor of the grain

n - Exponent of the slip rate, characterize the material rate sensitivity

ns - Normal of the s-th slip system

nslip - Number of slip systems

p, q - Statistical constants that characterize the shape of the energy obstacle profile

pi, qi - Statistical constants that characterize the shape of the energy obstacle
profile for the i-th component of the Mechanical Threshold Stress model

qGij
- ij component of QG

r - Radial distance from the tip

rp - Plastic zone radius

r(s) - Threshold that accounts for isotropic hardening

s - s-th slip system

w - Specimen width
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t - Unrotated Cauchy stress

ṫ - Unrotated Cauchy stress rate

∆σ - Stress range

∆σeff - Effective stress range

∆εyy - Axial strain difference

∆G0 - Gibbs free energy of activation range

∆K - Stress intensity factor range

∆Keff - Effective stress intensity factor range

∆KI,eff - Mode I effective stress intensity factor range

Γ - Sum of the magnitude of the slips

Γc - Sum of the magnitude of the slips at yielding

α - Nye tensor

χ(s) - Back-stress on the s-th slip plane that accounts for kinematic hardening

∂y - Small displacement

η - Dislocation interaction constant

γ - Shear

γ̇0 - Reference slip rate

γ̇s - Slip rate along the s-th slip system

ε̇0 - Reference strain rate

ε̇p - Plastic strain rate

εp - Accumulated plastic strain

εyy - Vertical strain

λ(s) - Linear dislocation density along s-th slip plane

µ - Shear modulus

µ0 - Reference value of the shear modulus

ν - Poisson’s ratio

ρf - Dislocation density

ρ - Necessary dislocation density

σ - Cauchy stress

σ̇ - Cauchy stress rate

˙̆σ - Green-Naghdi objective stress rate
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σremote - Remote applied stress

σmax - Maximum applied stress

σmin - Minimum applied stress

σop - Crack opening stress

τ̄ - Slip system strength component that accounts for work hardening

τ̃ - Slip system strength

τ̃ ∗ - Generic slip system strength

τ̃i - Slip system strength for the i-th component in Mechanical Threshold Stress
model

τ̂ ∗ - Generic threshold stress value of the slip system

τ̂i - Saturation strength for the i-th component of the Mechanical Threshold Stress
model

τa - Athermal component of the slip system strength

τ (s) - Resolved shear stress on the s-th slip plane

τ̂v - Mechanical Threshold Stress model’s saturation strength for work hardening

τ̂y - Mechanical Threshold Stress model’s saturation strength for yield stress

τ
(s)
λ - Saturation strength of the s-th slip system related to geometrical necessary

dislocations

τremote - Shear stress related to the remote applied stress

ϑ0 - Initial slope of the work hardening

ξ - Elastic strain

ξ̇ - Elastic strain rate
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CHAPTER1
Introduction

This first chapter aims to give an introduction on the motivation that led to this thesis
work, before describing it in the following chapters. Then an overview of the literature
models for the main topics of this thesis is included: crystal plasticity finite element
simulation and crack closure simulation.

1.1 Thesis Motivation

Nickel based super-alloys are currently used in gas turbine and aero engines thanks
to their excellent mechanical and chemical properties at elevated temperatures [1–3].
Components like turbine blades, which are usually made out of single crystals, require
high fatigue and creep properties since they undergo extreme mechanical loads and
high temperatures over long time, this makes Ni-based alloy the main considerable op-
tion for those kind of applications. Same goes for polycrystalline media that thanks to
their excellent resistance to high temperature and corrosion are preferable for compo-
nents that work in harsh environments, like combustion chamber of gas turbine. The
description of this materials micro-structural behaviour through finite element models,
which account for crystal plasticity, may help in their design and application.

The micro-structure of materials strongly influences phenomena like strain concen-
tration, local damage, crack propagation et al. Fig. 1.1 shows an example of an electron
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backscatter diffraction (EBSD) image taken from a Haynes 230 sample. On the micro
scale this Ni-based alloy, as other structural metals, consists of an aggregation of crys-
talline grains. Each of those has a different orientation of the atomic lattice, which
means each grain gives a different answer under mechanical and thermal loads. In
Fig. 1.1 each color indicates a different grain with a different lattice orientation. The
interfaces separating the grains are the grain boundaries.

Figure 1.1: Example of an EBSD conducted on a Haynes 230 specimen.

Literature shows many works on crystal plasticity simulations [4] in both single
crystal and polycrystalline media, but they usually rely on experiments only for macro-
scopic answer; the local anisotropic behaviour is not directly compared with the one
obtained from the experiment itself. This real local behaviour can be evaluated by the
digital image correlation technique [5] which is been widely applied in the past years
with good results and improving resolution to study strain localization and crack prop-
agation [6, 7]. The link between local experiment observation and the crystal plasticity
finite element results is still an open field which can be used to corroborate models and
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acquire information about the micro scale that an experiment alone cannot reach.
This thesis aim to apply the crystal plasticity code embedded in Warp3D [8] (an

open source software) to reproduce and study further the micro-structural behaviour of
a Ni-based super-alloy, Haynes 230. Experiments and their results will be discussed
as a start for the model development and as a comparison for the simulation results on
the micro scale. A physically-based theory of crystal plasticity simulate the material
answer, to an applied load, on the grains scale. Detailed crystal plasticity simulations
on single crystal and polycrystalline specimens, considering various type of tests (ten-
sile, ratcheting and crack propagation), will be discussed. The numerical results will
be compared with the experimental data on macro-scale and micro-scale. These com-
parisons between the local prediction of the model and the DIC results will be used as
a reference to validate Warp3D crystal plasticity model.

The result of this research is the evaluation of the prediction capabilities of the crys-
tal plasticity code adopted: whether it simulates cyclic loadings or crack propagation.
Since the outcome of the simulation leads to a good description of the experiments, the
application of this model may reveal itself useful for both crack nucleation prediction
and crack propagation. In the first case may predicts where the crack would nucleate,
due to stress and strains intensifications. In the second case, with an existing crack,
determine which are the driving forces that make it propagates.

1.2 Haynes 230

The thesis will focus on the analysis, for both experiments and simulations, of a nickel-
based super-alloy, Haynes 230 [9]. It is a solution strengthened alloy, which exhibits
high resistance to corrosion, oxidation and creep: those characteristics makes it a good
choice for application in aerospace and energy industries (gas turbines and combustion
chamber). Its high temperature properties are granted by the addition of chromium,
tungsten and molybdenum; Table 1.1 shows Haynes 230 chemical composition.

Table 1.1: Chemical composition (%wt) of Haynes 230.

Al B C Co Cr Cu Fe La Mn

0.35 0.005 0.1 0.16 22.14 0.04 1.14 0.015 0.5

Mo Ni P S Si Ti W Zr

1.25 59.5 0.005 0.002 0.49 0.01 14.25 0.01

Many studies focused their attention on Haynes 230 in both its single crystal and
polycrystalline forms, and its characterization is still a work in progress. High oxida-
tion resistance at high temperature was demonstrated in [10–14], while fatigue crack
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growth at room and high temperature concerned the studies of [15], registering a crack
growth resistance decreasing with the temperature. Finally the mechanical behaviour
was studied at room and various high temperature in [16–18].

Micro-structurally Haynes 230 is an FCC material in its lattice and consists of a
collection of grains. Each grain can be considered as a metal crystal, a structure of
atoms organized in a regular and repeated pattern, the lattice. The properties of each
grain depends on its orientation, which can be defined as the lattice relative rotation
with respect to a reference coordinates system. The representation of the rotation can be
done considering the Euler angles: Considering the Bunge convention [19], a sequence
of three angles (φ1 , Θ , φ2) defines the rotation along X3, then about X1 and finally
around the rotated X3 (see Fig. 1.2). Fig. 1.1 is the result of an Electron Backscatter

X1 

X3 

X2 

X1 

X2 

= X3 

φ1 

X1 

X3 

X2 

X1 

X2 

X3 

X2 

X1 = 

θ 

X1 

X3 

X2 

X1 

X2 

X3 

X2 

X1 

X2 

X3 = 

φ2 

Figure 1.2: Euler angles sequence for Bunge convention.

Diffraction analysis [20] conducted on a Haynes 230 specimen. Each grain generally
has a different orientation and its properties are affected by that, implying that at the
grain scale the material exhibits inhomogeneous properties. The grain boundaries can
be treated as different material interfaces where strong stress and strain gradients can
generate as a result of the mismatching orientation. The local inhomogeneity derives
from the single crystal anisotropy itself (the grains separately can be treated as single
crystals), which can be decomposed in an elastic anisotropy (cubic anisotropy for FCC
materials) and a plastic one. The nature of plastic deformation at grain scale is related
to the motion/slip of dislocations (defects in the atomic lattice) along a certain number
of lattice’s allowed slip systems. The slip system is defined by the combination of a
lattice plane and a direction on that plane. The slip system geometry directly depends
on the category of atomic lattice: FCC metals have 12 slip systems (Table 1.2), each
one is a combination of a close-packed plane and a close-packed direction, see Fig.
1.3 [21, 22].
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Figure 1.3: FCC lattice scheme, evidence on (111) slip plane.

Table 1.2: Possible slip systems in a FCC lattice.

Slip System Slip Plane Slip Direction Slip System Slip Plane Slip Direction

1 (1 1 1) [1̄ 0 1] 7 (1̄ 1 1) [1 0 1]

2 (1 1 1) [1̄ 1 0] 8 (1̄ 1 1) [1 1 0]

3 (1 1 1) [0 1̄ 1] 9 (1̄ 1 1) [0 1̄ 1]

4 (1̄ 1̄ 1) [0 1 1] 10 (1 1̄ 1) [0 1 1]

5 (1̄ 1̄ 1) [1̄ 1 0] 11 (1 1̄ 1) [1 1 0]

6 (1̄ 1̄ 1) [1 0 1] 12 (1 1̄ 1) [1̄ 0 1]

1.3 Crystal Plasticity Modeling - Literature Review

With the increasing capabilities of processors computational efficiency, numerical sim-
ulations which are able to realistically describe the micro-structure behaviour have been
strongly developed [8, 23, 24]. The idea is to establish a multi-scale model which goes
from a complex components to its atomic levels, going through steps where crystal
plasticity has a main role (Fig. 1.4). This means that Crystal Plasticity Finite Element
(CPFE) methods have evolved to create a link between the corroborated theoretical
studies on micro-structural mechanics and the continuum field of deformation theo-
ries. The evolution of CPFE method from the first simulation by Pierce, Asaro and
Needleman in 1982 [25], where they characterized the local answer of a single crystal
considering only two slip systems, brought to the possibility to account for FCC mod-
els (12 slip systems) [26], BCC models (up to 48 slip systems) [27] and HCP models
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Figure 1.4: Logical flow from a component [9] to atoms going throughout the various length

scale in material analysis.

(12 slip systems) [28, 29]. Most of the works in this field relies on the hypothesis that
dislocation motion is the main vector for plastic deformation in metals, later on other
mechanisms were introduced as competing phenomena for CP plastic deformation, for
example: martensite formation [30] and mechanical twinning [31].

Finally CPFE simulation can be applied on both microscopic and macroscopic
scale. Example of small scale applications (see Fig. 1.5) are related to: grain me-
chanics (considering grain boundaries effects) [4, 32] and its effect on the macroscopic
scale [33, 34]; damage prediction [35]; life prediction [36]; simulation of micro me-
chanical experiments [37]. In the specific, Fig. 1.5, shows the results of: Musienko
et Al. [4], where strain accumulates along grains and grain boundaries in a tensile test
of a random generated polycrystalline reference volume; Zhang et Al. [36], where the
local behaviour of the material is studied for low cycle fatigue varying the number of
grains inside a polycrystalline reference volume element. Many products nowadays,
especially in micro-electro mechanical systems, has dimensions so reduced that are of
the same order of the grain scale and so CP formulation can help in their study and
design.

This tools may be of appreciable aid when they are used to achieve some knowledge
in the following fields:
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(a)

(b)

Figure 1.5: a) Stress and plastic strain accumulation in a polycrystalline structure after a

tensile test [4]; b) Cyclic stress strain answer of different polycrystalline RVE containing

different numbers and size of grains [36].

• Micro-mechanics behaviour, for example the study of the localization of defor-
mation due to incompatibilities between neighbours grains;

• Industrial components, for example those components that have a size comparable
with those of the heterogeneities;

• Prediction of the properties of heterogeneous materials, this kind of estimations
usually relies on the definition of some kind of reference volume element;

• Simulation of local damage process, on the local scale the damage is lead by the

7



Chapter 1. Introduction

maximum stress-strain concentration which can be found in certain critical point
within the heterogeneous micro-structure.

The model used in CPFE relies for the kinematics of the lattice on the multiplica-
tive decomposition of the deformation gradient originally proposed by Lee [38] and
summarized like in Fig. 1.6:

Figure 1.6: Multiplicative decomposition for the deformation gradient used in CP modeling.

F = F e F p (1.1)

with F representing the deformation gradient which can be decomposed in its elastic
(F e) and plastic (F p) components. The plastic deformation evolves as [25]:

Ḟ p = L̄p F p (1.2)

L̄p is the plastic velocity gradient and, under the hypothesis that the leading deforma-
tion process is the dislocation slip, can be formulated as:

L̄p =

nslip∑
s=1

γ̇(s)
(
b(s) ⊗ n(s)

)
(1.3)

where b(s) and n(s) are, respectively, the unit vector for slip direction and normal to the
slip plane of the s-th slip system; γ̇(s) is the shear rate on the same system (nslip is the
number of active slip systems). A more extensive description of the kinematics will be
discussed in section 2.1.
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The description of the shear rate γ̇(s) as a function of the external stresses relies on
the definition of constitutive equations. In fact the kinematics describe the geometrical
feature of anisotropy of crystal mechanics, the constitutive law aims to capture the
physics of material behaviour.

The constitutive models can be summarized in two macro categories: the phe-
nomenological constitutive models and the physically based one.

Phenomenological constitutive models

Are mostly based on the critical resolved shear stress τ (s), and the γ̇(s) flow rule can be
written as [24]:

γ̇(s) =

〈∣∣τ (s) − χ(s)
∣∣− r(s)

K(s)

〉n

sign
(
τ (s) − χ(s)

)
(1.4)

K(s) and n are related to the rate sensitivity of the shear rate. In Eq. (1.4) two hardening
variables appear for the s-th slip plane: r(s) for the isotropic hardening and χ(s) which
is an back-stress associated with the kinematic hardening. Kinematic hardening at the
level of grains indirectly describes the possible formation of dislocation structures, es-
pecially under cyclic loading. A drawback of this model is that the material state is
primarily described by the critical resolved shear stress, without considering the lattice
defect population [39].

Physically based constitutive models

Rely on internal variables for the flow rule definition and work under the hypothesis
that for plasticity the most important variable is the dislocation density, as dislocation
are carrier of plastic deformation [40]. The results in terms of overall answer do no
differ significantly from those obtained with phenomenological models [23].

This dislocation density based constitutive modeling [41] to reproduce viscoplastic
behaviour of crystalline material relies on Kocks and Mecking work [42], and it has
been proven capable to give a reliable description of the materials mechanical response.
The shear rate can be defined as:

γ̇(s) =
γ̇0

τ̃ ∗

∣∣∣∣τ (s)τ̃ ∗
∣∣∣∣n−1 τ (s) (1.5)

where γ̇0 is a reference shear rate; τ (s) is the resolved shear stress; n is the exponent of
the shear rate which accounts for rate sensitivity; τ̃ ∗ is a generic slip system strength.
The definition of τ̃ ∗ relies on the introduction of a suitable equation of the kinematics
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response, adopted by Kocks, incorporates an Arrhenius type formulation of the follow-
ing type [43] to describe the plastic strain rate:

ε̇p = ε̇0 exp

[
−∆G0

kbT

(
1−

(
τ̃ ∗

τ̂ ∗

)p)q]
(1.6)

where ∆G0 is the value for the Gibbs free energy of activation; p and q are fitting pa-
rameters; k is the Boltzman constant; b is the magnitude of the Burgers vector; T is the
temperature; ε̇0 is a reference strain rate; τ̂ ∗ is a general threshold strength. As plastic
deformation proceed, a separate equation, which incorporates eq. (1.6), is needed to
describe the evolution of τ̃ :

τ̃ ∗ = f (ε̇p, T ) (1.7)

In section 2.2 will be discussed the adopted model for this thesis simulations, based on
Kocks works.

1.4 Crack Closure Overview

In high cycle fatigue, when plastic strains affects only a small region of material, ahead
of the crack tip, crack growth rate (da/dN ) is related to the stress intensity factor range
∆K through Paris equation [44]:

da
dN

= A (∆K)m (1.8)

Experimental campaigns [45], showed a primary influence of the load ratio on the ma-
terial constants (A and m): higher load ratios bring to higher crack growth rates. In
1970, Elber [46] observed that the crack stays closed for part of the loading cycle, even
if the applied stress is tensile. Since this can not be explained with elasticity theory it
implies that this is a phenomena related to the plastic strains acting at the crack tip. Dur-
ing crack propagation a plastic zone emanates from crack tip, and along crack flanks a
plastic wake is generated (Fig. 1.7): this zone, characterized by residual compressive
stresses, is the one responsible for crack closure, implying that the crack opens when
the tensile stress overcomes this residual stress state. Then, Elber, considering only the
∆K part which overcome the crack-closure effects, was able to remove the load ratio
dependency. This led to the definition of a parameter able to capture the crack growth
rates, the effective stress intensity factor range (∆Keff), which considers that crack clo-
sure has a main role in crack propagation. Also other phenomena [47], roughness and
oxidation within them, have influences on crack closure, and play significant role in
near-threshold region or specific load condition.

In literature various numerical approach that aims to capture crack closure can be
found, whether they consider homogeneous media or crystals.
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Monotonic Plastic 
Zone 

Cyclic Plastic 
Zone 

Cyclic Plastic Wake 

Monotonic Plastic Wake 

Crack closure 

Figure 1.7: Plastic wake definition for both cyclic and monotonic crack advancements.

FE analysis on crack closure requires a mesh with an initial crack, then the model
is remotely loaded in traction. Most models consider constant amplitude loading, the
load is cycled between the minimum and the maximum applied stresses. During this
cyclic loading the crack is advanced with some computational features leading to the
formation of the plastic wake behind the crack tip.

Starting from this background many authors analysed this kind of models first with
2D and then with 3D simulations. Since the model has to capture the plastic zones near
the crack tip, a mesh refinement scheme was studied in [48–50]: McClung el al. [51,52]
performed this kind of study on a M(T) geometry finding out that the mesh dimensions
should take into account the extension of the forward plastic zone in the crack planes:

∆a

rp
≤ 0.05 (1.9)

where ∆a is the crack advancement, usually corresponding to the mesh dimension, and
rp is the plastic radius ahead of crack tip.

Once the mesh dimension has been defined the study of the crack growth has to
consider that the crack opening load typically increases with the crack growth until a
stabilized value [53]: the crack has to advance completely through the initial plastic
zone to reach stabilization. The crack advancement requires a changing in the bound-
ary condition, here the main issue to pay attention is the problem of interpenetration of
crack flanks at the minimum load, this has to be prevented. It can be achieved by chang-
ing the stiffness of spring elements attached to the crack surface [54], by removing or
imposing crack surface nodal constrains [50] or by contact elements [55].

Then a scheme for the crack advancement has to be considered: the common ap-
proach is to release, according to the chosen features, the crack tip node advancing the
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crack of a length equal to the element size. The main issue discussed in literature for
this step is how and when to perform this release: at maximum load [51, 56], at mini-
mum load [51,54], every cycle [56] or every second cycle [53]. Some of those approach
may lead to convergence problems, especially with release at maximum load.

For 2D models a distinction between plane stress and plane strain has to be done
since they strongly influence the plastic deformation around the crack tip. Many studies
[51, 57, 58] stated that the opening level in plane strain is lower then in plane stress.

Following this last point, 3D geometry has to consider that the crack opening value
vary along the crack front (ideally the external surface is in a plane stress condition and
the mid plane is in a plane strain one), bringing to different growing rates along the
front under cyclic loading, thus to a non-uniform crack front. For simplicity this shape
evolution is neglected and the crack front is extended uniformly during FE analysis.
Following the initial work of Chermahini [62], Dodds et al. [59, 63, 64] performed
finite element analyses on various specimen geometry and loading ratio, showing the
influence of crack opening along the entire crack front (Fig. 1.8-a).

Finally it should be noted that when the crack is small compared to the grain size,
plastic deformation is no longer isotropic and homogeneous, then constitutive crys-
tal plasticity formulation are needed. In literature, different crystal plasticity codes
have been proposed, with the aim to describe crack nucleation in polycrystalline ag-
gregates [65]. The formulation of crystal plasticity is due to the work of Taylor, Rice,
Hill, Asaro and Needleman [66–69]: starting from experimental observation, in these
models, inelastic strain is computed as a function of slip occurring in particular crystal-
lographic planes. An initial application of crystal plasticity to the study of plastic zone
in single crystal was presented in [70], following the study presented in [71] and [72]
for single crystal C(T) specimen under single load ramp gave the first comparison with
experiments. A study of fatigue crack closure with CP formulation on polycrystalline
aggregates was conducted by Gall et al. [48, 73], then also Potirniche in [60] studied
short crack propagation through a grain boundary in Aluminium (Fig. 1.8-b). Recently,
a different approach based on cohesive elements has been proposed for the study of a
Ni-based super-alloy single crystal [74] and re-meshing technique has been applied in
a short fatigue crack propagation under mixed mode loadings [61] (Fig. 1.8-c).
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(a)

(b)

(c)

Figure 1.8: a) Variation of the opening level throughout the thickness during crack propaga-

tion [59]; b) Grain boundary effect on the crack tip plastic zone as a function of the applied

load with respect to the resolved shear stress [60]; c) Mixed mode crack propagation in a

single crystal and plastic wake generation [61].
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1.5 Structure Of The Thesis

Following this introductory chapter the thesis is divided as:
Chapter 2: Crystal Plasticity Code: a description of the model implemented in the

adopted software is provided: the kinematics of crystals and the definition of the slip
systems hardening rule are discussed.

Chapter 3: Tensile Mechanical Behaviour: the tensile behaviour is studied at first
on single crystal specimens at room temperature in order to evaluate the crystal plastic-
ity model parameters. Then the study shifts on the simulation of a polycrystalline high
temperature tensile test, focusing on various modeling techniques, like the introduction
of carbides in the crystals matrix, and making a comparison with an experiment con-
ducted with digital image correlation, which identifies the real strain localization along
the grains.

Chapter 4: Simulation of a Ratcheting Test: the cyclic behaviour of the material
at room temperature is studied considering a ratcheting test. The simulations aims to
capture strain localizations accumulating cycle after cycle and that have been observed
experimentally by digital image correlation.

Chapter 5: Fatigue Crack Growth in Single Crystals: fatigue crack growth is in-
vestigated in single crystals simulating crack advancement by means of node release
technique. The simulations aim to capture the extension of the strain field and the crack
opening levels, both measured experimentally by digital image correlation.

Chapter 6: Fatigue Crack Growth in Polycrystalline Media: fatigue crack growth
is investigated on polycrystalline specimens. At first a test with a non-propagating
crack is analyzed to compare simulation predictions in extension of the plastic zone
with experimental results. Then random generated crystal structures are considered to
simulate crack propagation. Their results aim to give a good estimation of the opening
levels observed with the experiments.
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CHAPTER2

Crystal Plasticity Code

On grain scale, plasticity evolves as dislocation slip along a finite number of slip sys-
tems, a number that depends on the crystalline structure of the material. Models that
represent this micro scale plastic deformation are techniques like discrete dislocation
and atomistic simulations, and continuum theory like crystal plasticity. Finite ele-
ment can incorporate CP as it is a continuum theory of plastic deformation with an
anisotropic flow rule. This definition classifies CP as a meso-scale theory of deforma-
tion which represents the deformation on the micro-scale as an average of the effective
dislocation motion [68]: this imposes a limitation on the phenomena that the model can
reproduce, it won’t be able to describe the total dislocation field, the dislocation pile
ups and the persistent slip bands.

In this Chapter a background on the kinematics of crystal deformation and the
adopted slip system work hardening model will be discussed. The crystal plasticity
finite element model adopted for this Thesis simulations refers to the one implemented
in Warp3D finite element software [8].
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Reference Intermediate 

Rotated Current 

F p 

R e 

I+ξ 

F = F e F p 

Figure 2.1: Kinematic decomposition of the deformation gradient following the standard se-

quence of configurations [21]. Vectors b and n follows the notation of each configuration.

2.1 Crystal Kinematics Of Deformation

The kinematics of a crystal are a combination of dislocation slip, lattice rotation and
elastic stretch [21]. Fig. 2.1 illustrates the multiplicative decomposition [38] of the
deformation gradient. Starting from the reference configuration, where no loads are
applied and the crystal orientations are those measured (by EBSD for example), the
application of a load leads to a deformation of the lattice to the current configuration.
This deformation con be expanded considering two intermediate steps, plastic defor-
mation and elastic deformation: during plastic deformation, which involves dislocation
motion, the lattice axes do not rotate; during elastic deformation both lattice rotation
and elastic distortion occur. The deformation gradient can be written as:

dx = F dX (2.1)

F = F eF p (2.2)

where x and X defines the points, respectively, in current and in reference coordinate
systems; F is the deformation gradient which can be decomposed in its elastic (F e)

16



2.1. Crystal Kinematics Of Deformation

and its plastic (F p) components. Eq. (2.1) can be rewritten as:

F =
dx
dX

=
dxp

dX
dx
dxp

(2.3)

where xp defines the points in the intermediate coordinate system. From eq. (2.3)
follows the definition of F p = dxp/dX and F e = dx/dxp: the total deformation
follows a defined sequence having first the plastic deformation and then the elastic one.
The elastic part account for lattice rotation and stretching, the plastic for permanent
deformation. Considering the plastic gradient for one slip system in the intermediate
reference system, it is possible to evaluate the formulation forF p on the s-th slip system
when a shear γ(s) is applied:

up(s)

= γ(s)
(
n̄(s)X

)
b̄(s) = γ(s)b̄(s) ⊗ n̄(s)X (2.4)

F p = I +
∂u

∂X
F p(s)

= I + b̄(s) ⊗ n̄(s)γ(s) (2.5)

where up(s) is the plastic displacement on the s-th slip system; b̄(s) and n̄(s) are,
respectively, the unit vector in the slip direction and the unit normal vector in the slip
plane of the s-th system (see Fig. 2.2) and in the intermediate configuration. Going

ns!
bs!

Plane <111>! 1 0 0!

0 1 0!

0 0 1!

Figure 2.2: Lattice structure of an FCC material, with focus on <111> slip plane and its slip

b(s) and normal n(s) directions.

back to eq. (2.2) and considering F e = V eRe, the elastic deformation gradient is here
decomposed in its components of stretching (V e) and rotation (Re), it is possible to
write:

F = F e F p = V eRe F p = (I + ξ) Re F p (2.6)
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In eq. (2.6) the stretching is written as (I + ξ), where I is the unit matrix and ξ is a
small elastic strain; under high plastic strain condition, elastic strain can be considered
small so that ||ξ|| � 1. Considering eq. (2.6), it is possible to define the velocity
gradient L in the current configuration (see Fig. 2.1) as:

L = Ḟ F−1 = Ḟ e F e−1
+ F e Ḟ p F p−1

F e−1
= Ḟ e F e−1

+ F e L̄p F e−1 (2.7)

L̄p = Ḟ p F p−1 is defined as a constitutive tensor, which represents the plastic velocity
gradient with respect to the intermediate configuration. Eq. (2.7), considering Eq. (2.6)
and neglecting the quadratic terms in ξ and ξ̇, may be rearranged as:

L = ṘeReT
+ ξ̇ + ṘeReT

ξ − ξṘeReT
+ReL̄pReT

+ ξReL̄pReT −ReL̄pReT
ξ (2.8)

Expressing L = D + W [23] as the sum of the skew W = 1/2
(
L − LT

)
and the

symmetricD = 1/2
(
L + LT

)
components, the following relations can be derived:

D = ξ̇ + ξṘeReT − ṘeReT
ξ + ReD̄pReT

+ ξReW̄ pReT − ReW̄ pReT
ξ (2.9)

W = ṘeReT
+ ReW̄ pReT

+ ξReD̄pReT − ReD̄pReT
ξ (2.10)

D̄p and W̄ p can be obtained from the plastic velocity gradient. Considering a single
crystal and assuming that all the plastic straining is correlated to the slip on slip planes,
L̄p can be expressed as an additive decomposition of plastic shear deformation in a
lattice frame [75], modifying eq. (2.5) (using ṅ(s) = ḃ(s) = 0 and n(s) · b(s) = 0):

L̄p =

nslip∑
s=1

γ̇(s)
(
b̄(s) ⊗ n̄(s)

)
(2.11)

In eq. (2.11) b̄(s) and n̄(s) are related to the intermediate configuration and γ̇(s) is the
slip rate along each slip system. L̄p can be decomposed into its skew and symmetric
components [25]:

D̄p =

nslip∑
s=1

γ̇(s)
(
b̄(s) ⊗ n̄(s)

)
sym(

b̄(s) ⊗ n̄(s)
)

sym =
1

2

(
b̄(s) ⊗ n̄(s) + n̄(s) ⊗ b̄(s)

) (2.12)

W̄ p =

nslip∑
s=1

γ̇(s)
(
b̄(s) ⊗ n̄(s)

)
asym(

b̄(s) ⊗ n̄(s)
)

asym =
1

2

(
b̄(s) ⊗ n̄(s) − n̄(s) ⊗ b̄(s)

) (2.13)

Considering eq. (2.9), under the hypothesis of small elastic strains, it is possible to
introduce the relationship: C ξ̇ = σ̇, with σ̇ as the Cauchy stress rate and C as the
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2.1. Crystal Kinematics Of Deformation

elastic stiffness tensor. For FCC and BCC crystals the elastic anisotropic stiffness ma-
trix can be written with cubic symmetry [76]. The constitutive law for such a material
can be characterized by 3 material constants:

[σ] =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


[ε]

C11 =
E (1− ν)

(1− ν − 2ν2)
C12 =

Eν

(1− ν − 2ν2)
C44 = µ (2.14)

Young’s modulus (E), Poisson’s ratio (ν) and the shear modulus (µ).
Considering the definition C ξ̇ = σ̇, Eq. (2.9) can be modified as:

C : D = σ̇ + σṘeReT − ṘeReT
σ +C :

(
ReD̄pReT

)
+ σReW̄ pReT −ReW̄ pReT

σ

(2.15)
and from eq. (2.15) can be derived the Green-Naghdi objective stress rate [77]:

˙̆σ = σ̇ + σṘeReT − ṘeReT
σ = C :

(
D −ReD̄pReT

)
− σReW̄ pReT

+ReW̄ pReT
σ

(2.16)
The CP finite element code implemented in Warp3D integrate the Green-Naghdi strain
rate to incorporate finite strains and rotations. In the intermediate coordinate system
eq. (2.16) can be written as:

ṫ = C0

(
D − D̄p

)
+ ReW̄ pReT

t − tReW̄ pReT

(2.17)

it integrates this rate of the unrotated Cauchy stress (ṫ = ReT ˙̆σRe) as a function of
D, the unrotated rate of deformation. C0 is the anisotropic stiffness matrix for the
crystal system in the reference frame.

Finally the slip rate in eq. (2.11)-(2.12)-(2.13) is taken as a power law on a reference
strain rate, the resolved shear stress and slip system strength. In the considered model
the slip system hardening is isotropic; all slip systems have the same strength. The
relation for the slip rate is:

γ̇(s) =
γ̇0

τ̃

∣∣∣∣τ (s)τ̃
∣∣∣∣n−1 τ (s) (2.18)

with γ̇0 as the reference slip rate, τ̃ as the slip system strength and τ (s) as the resolved
shear stress on the slip system s. In eq. (2.18) a relationship for the slip system strength
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Chapter 2. Crystal Plasticity Code

is still missing. A constitutive model to describe it has to be defined. The model used
to describe the material hardening is a physically based one; it relies on dislocation
density to describe plastic deformations [35].

The adopted model is the mechanical threshold stress [78] and will be illustrated in
the following section.

2.2 Mechanical Threshold Stress Model

The Mechanical Threshold Stress (MTS) model is an isotropic scalar model that pre-
dicts flow stress as a function of strain rate, temperature and current state. It has been
used successfully in the analysis of various materials [79–83]. The adoption of the MTS
model for crystal structures that relies on slip systems hardening has its foundation in
the macroscopic theory of work hardening presented in [84]: since the dislocation mo-
tion is governed by shear stresses, the MTS model will be written in terms of "τ"
instead of the usual "σ" (the conversion between the Kirchhoff stress and the Cauchy
one is obtained considering the Jacobian: τ = Jσ [85]).

As anticipated in section 1.3, this model relies on the study of Mecking and Kocks
[39] and is a physically based constitutive model, focusing on dislocation motion as
the main reason for plastic deformation. In this context, the work done by the resolved
shear stress on some increment of slip corresponds to the energy that the dislocations
require to overcome energy barriers, represented by obstacles that opposes their mo-
tion. Some example of obstacles can be: grain boundaries, solute atoms, interphases
and other dislocations. Associated with their motion, dislocation have kinetic energy
(which can be related to the strain rate) and thermal energy (which can be related to
the material temperature): both those energy may help the dislocation to overcome the
opposing obstacles.

The MTS model starts from these thermodynamic consideration and brings to an
expression for the flow shear along a slip system. The mechanical threshold strength
is defined as the flow shear stress at 0K and is separated in an athermal component τ̂a
and thermal components τ̃i:

τ̃ (T, ε̇p) = τ̂a +

mi∑
i=1

τ̃i (2.19)

τ̂a characterizes the rate-independent interaction with thermal barriers (it is a constant);
τ̃i are the i-th thermal components of the MTS model which characterize the interaction
of dislocations with obstacles where strain rate and thermal activation assist to over-
come the obstacles [43] (it is a variable depending on internal constants); i = 1 : mi

identifies the number of thermal components to be used for the model. The flow stress
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2.2. Mechanical Threshold Stress Model

for all the slip systems of a single crystal is expressed as:

τ̃ (T, ε̇p) = τ̂a +
µ (T )

µ0

mi∑
i=1

Si (T, ε̇p) τ̂i (2.20)

where Si are scale factors for the i-th component, τ̂i are constants that defines the satu-
ration strength of the i-th component and µ/µ0 accounts for the temperature dependent
elastic properties of the material:

µ (T ) = µ0 −
D0

exp
(
T0
T

)
− 1

(2.21)

µ0 is a reference value for the shear modulus and T0 and D0 are empirical constants.
Kocks, Argon and Ashby [84] express the scale factor in terms of an energy barrier

to be overcome by a combination of energy associated with the applied stress and the
free activation energy associated with slip thermodynamics and kinetics. In thermally
activated glide, interactions with short obstacles are described using the energy form
given in [43], as an Arrhenius type form:

ε̇p = ε̇0 exp

(
−∆G0

kT

)
(2.22)

where k is the Boltzman constant; T is the temperature; ∆G0 is the Gibbs free ac-
tivation energy; ε̇0 is a reference strain rate assumed independent by the temperature
and the stress state [86]; ε̇p can be evaluated as ε̇p =

√
2
3
D : D. Eq. (2.22) can be

rearranged to obtain an expression for ∆G0 as:

∆G0 = kT ln

(
ε̇0
ε̇p

)
(2.23)

A functional form, suggested in [84], to relate ∆G0 with τ relies on some assumption
about the shape of the energy barriers opposing the dislocation motion. Fig. 2.3-a
shows a generic profile of the energy barrier, divided in the total work area, generated
by the applied stress (HW = bτ̃δy where τ̃ is the flow shear and δy is a small displace-
ment), and the total free energy area provided by thermal activation. The description of
the shape of the i-th energy profile can be reduced to [84]:

∆G0,i = g0,iµb
3

{
1−

(
τ̃i
τ̂i

)pi}qi
(2.24)

where g0,i is the normalized activation energy; pi and qi are statistical constants which
characterize the shape of the i-th energy obstacle profile (see Fig. 2.3-b); τ̂i is a scalar
representing the strength of the i-th component of eq. (2.20). Rearranging eq. (2.22)
and eq. (2.24) it is possible to obtain:

τ̃i = Si (T, ε̇p) τ̂i =

{
1−

[
k T

g0,i µ b3
ln

(
ε̇0,i
ε̇p

)] 1
qi

} 1
pi

τ̂i (2.25)
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Figure 2.3: a) Generic energy profile showing contributions of work and free (thermal ac-

tivation) energy [84];b) Short range profile [84] described by an equation of the type

∆G0,i ∝ (1− (τ̃∗/τ̂∗)pi)qi , similarly to eq. (2.24).

this give a final definition for the i-th scale factor Si:

Si (T, ε̇p) =

{
1−

[
k T

g0,i µ b3
ln

(
ε̇0,i
ε̇p

)] 1
qi

} 1
pi

(2.26)

To complete the work hardening model of eq. (2.20), two terms of the type shown in
eq. (2.25) are considered, mi = 2, one representing all intrinsic barrier to dislocation
motion and one all work hardening. This general form reproduces the behaviour shown
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2.2. Mechanical Threshold Stress Model

in Fig. 2.4, considering the initial strength to dislocation motion (yielding) and the
subsequent increasing due to dislocation hardening [78]. The slip system strength that
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Figure 2.4: Schematic of the MTS hardening model: graphical definition of the major parame-

ters describing it.

eq. (2.18) requires (deriving from eq. (2.20)) has the following expression:

τ̃ (T, ε̇p) = τ̂a + τ̃y (T, ε̇p)
µ

µ0

+ τ̄ (τ̃v (T, ε̇p))
µ

µ0

(2.27)

τ̄ is the term that accounts for work hardening: a process that sees a balance between
dislocations generation and recovery, a mechanism where stresses are high enough
to assist dislocations pass the obstacles. Considering [84, 87] the law for dislocation
density over shear strain for the s-th slip system can be expressed as:

∂ρ
(s)
f

∂γ(s)
= k1

√
ρ
(s)
f − k2 (T, ε̇p) ρ

(s)
f (2.28)

k1 keeps track of dislocation generation and k2 of the recovery as a thermal activation
process. Taking into account the Bailey-Hirsh [88] relation which governs the flow
stress in materials:

τ̄ (s) = µηb

√
ρ
(s)
f (2.29)

where µ is the shear modulus, b is the magnitude of the Burgers vector and η a dislo-
cation interaction constant. Considering the evolution of τ̄ (s) with the dislocation slip,
eq. (2.29) becomes:

∂τ̄ (s)

∂γ(s)
= ηµb

∂

∂γ(s)

(√
ρ
(s)
f

)
=

ηµb

2
√
ρ
(s)
f

∂ρ
(s)
f

∂γ(s)
(2.30)
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Combining eq. (2.30) with eq. (2.28) and eq. (2.29), the result is:

∂τ̄ (s)

∂γ(s)
= k1

ηµb

2
− k2

τ̄ (s)

2
(2.31)

A definition for k1 and k2 makes them function of ϑ0 (Fig. 2.4), which characterizes
the initial slope of the stress-plastic strain curve [8]:

k1 =
2ϑ0

ηµb
k2 =

2ϑ0

τ̃v
(2.32)

τ̃v is defined as the temperature and rate dependent work hardening saturation strength.
Substituting eq. (2.32) in eq. (2.33) the following linear Voce law is derived:

τ̄ (s)

γ(s)
= ϑ0

(
1− τ̄

τ̃v

)
(2.33)

Eq. (2.33) then can be written as a differential of time over all the slip systems and gets
the formulation:

˙̄τ = ϑ0

[
1 − τ̄

τ̃v

] nslip∑
s=1

γ̇(s) (2.34)

∑nslip

s=1 γ̇
(s) represents the accumulated plastic strain rate. Following those definition,

the terms that follows the Arrhenius type formulation (eq. (2.25)) are:

τ̃y = Sy (T, ε̇p) τ̂y τ̃v = Sv (T, ε̇p) τ̂v

Eq. (2.34) can be expanded even further accounting for geometrically necessary
dislocations [89, 90] and evaluate the Nye tensor (α) [91] and the linear dislocation
density along a slip plane (λ(s)):

α = −∇× F e−1

λ(s) =
√

(αn̄(s)) : (αn̄(s)) (2.35)

Defining a term which accounts for this geometric dislocations [89]:

τ
(s)
λ =

k0
k1
η µλ(s) (2.36)

where k0 is a parameter characterizing stage IV of the work hardening [92]. Including
this term in eq. (2.34), it can be modified in the following formulation:

˙̄τ =

nslip∑
s=1

ϑ0

[
1 − τ̄

τ̃v
+
τ
(s)
λ

τ̄

]
γ̇(s) (2.37)

τ
(s)
λ influences the work hardening plastic deformation (for low deformation its value

is very small, so it practically affects only the final stage of the work hardening which
has a nearly constant hardening slope).
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2.3 Conclusions

After the analysis of the model, the parameters which have to be identified to simulate
the material behaviour are summarized in Table 2.1.

Table 2.1: Material parameters required to completely define the material in CPFE simula-

tions.

Property Description

E Young’s modulus

ν Poisson’s ratio

µ0 Shear modulus

b Burgers Vector

k Boltzman constant

n exponent of the slip rate

τ̂a Athermal slip resistance

τ̂y MTS strength for intrinsic barrier (yield)

g0,y Normalized activation energy for intrinsic barriers

qy Shape coefficient for intrinsic barriers

py Shape coefficient for intrinsic barriers

ε0,y Strain rate sensitivity for intrinsic barriers

τ̂v MTS strength for work hardening

g0,v Normalized activation energy for work hardening

qv Shape coefficient for work hardening

pv Shape coefficient for work hardening

ε0,v Strain rate sensitivity for work hardening

ϑ0 Initial hardening slope

k0 Geometric hardening parameter

25





CHAPTER3
Tensile Mechanical Behaviour

This chapter gives an estimation of the crystal plasticity model parameters for Haynes
230. First a brief description of the experimental tests carried out is provided, with
reference to the study conducted by Pataky et al. [18] for a high temperature tensile
test. Then, starting from room temperature tensile tests conducted on single crystals, the
parameters for the CP model were estimated. Finally these parameters were accurately
updated to simulate an high temperature tensile test conducted on a polycrystalline
specimen [93].

3.1 Experiments

The experimental procedure has its foundation in the DIC technique. It was adopted
for measuring global and local displacements for both single crystal and polycrystalline
specimen.

Single Crystal Tests

The single crystal specimens were grown using the Bridgman technique [94] and their
orientations were verified using EBSD: the three tested specimens were oriented with
the [001], [011], [111] directions along the loading direction. Dog-bone tension speci-
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Figure 3.1: Schematics of the single crystal specimens (a) and the polycrystalline one (b).

mens (Fig. 3.1-a), designed for single crystal tests, were electrical discharge machined
(EDM) with a parallel length of 9 mm long, a width of 3 mm, and a thickness of ap-
proximately 1 mm. The specimens were mechanically polished to a mirror finish, and
then the speckle pattern was airbrushed onto each specimen using black paint. Mono-
tonic tension experiments were performed in a servo-hydraulic load frame capturing
deformation images in-situ at a rate of 15 fps until failure. DIC images were captured
with a field of view of 2.9 mm by 2.6 mm with a resolution of 2.2 µm/pixel. A spatial
resolution of 178 µm was used for determining the strain field as defined in [95].

The results in terms of σ-ε curves for the three oriented specimens are summarized
in Fig. 3.2, in comparison with the monotonic curves for a room and an high tempera-
ture polycrystalline specimens.

Polycrystalline Tests

The polycrystalline specimen was wide enough to accommodate induction heating coils
as the experiment was performed at 700oC. The specimen dimensions were 25 mm
parallel length, width of 4 mm and thickness of 2.38 mm (see Fig. 3.1-b). EBSD was
performed on an area of 0.5 mm by 2 mm before the experiment. DIC images were
captured ex-situ with an optical microscope to improve spatial resolution. Due to this,
the experiment is an interrupted monotonic tension experiment. Full detail can be found
in [18]. The results in terms of σ-ε are reported in Fig. 3.3-a, while Fig.s 3.3-b-c-d show
the DIC results associated with the unloading condition they belong.
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Figure 3.2: Summary of the tensile tests curve on Haynes 230 specimens, single crystal and

polycrystalline experiments.

Figure 3.3: Experimental tensile test at 700oC [18] with focus on the tensile curve (a) and the

three unloadings where the DIC was performed: (a) 1.22%, (b) 1.59%, (c) 2.51%.
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3.2 Modeling of Single Crystal Tensile Tests

To perform the FE simulations, it is necessary for the material parameters to be identi-
fied; the analysis of single crystal experiments allowed an iterative optimization. After
determining the constants it was possible to study and reproduce one of the single crys-
tal tests local behaviour.

3.2.1 Crystal Plasticity Model - Identification of parameters

[001] 
[011] 
[111] 

[340] 
[100] 

[211] 
[430] 

[030] 
[011] 

Loading 
Direction 

(a)

σ[001] 

(b)

σ[011] 

(c)

σ[111] 

(d)

Figure 3.4: Single Crystal models setup and results: (a) Cubic RVE for single crystal tensile

tests analyses with details about the crystal coordinate systems. Comparison between sim-

ulations and experiments for specimens with loading direction along: (b) [001]; (c) [011];

(d) [111].

To simulate the single crystal experimental stress-strain curves, a cubic representa-
tive volume was adopted with load orientations along the [001], [011] and [111] direc-
tions. The simulations were carried out considering a cubic geometry of 1x1x1 mm and
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3.2. Modeling of Single Crystal Tensile Tests

1000 hexahedral linear elements (see Fig. 3.4). Each element was associated with the
Euler angles corresponding to the specimen’s orientation. In order to reproduce the dis-
placement controlled tensile test, the load was applied as a displacement along the face
perpendicular to the desired crystal direction, while the opposing face was displacement
constrained along the load direction. This modeling which considers reference volume
elements (RVEs) had the main purpose to evaluate the overall behaviour in terms of
tensile curve for the three crystals. The comparison between the stress-strain curves
of the three simulations and the experiments, Fig. 3.4(b-c-d), showed a good agree-
ment, especially on the [001] and [111] oriented specimens. Several model parameters
were identified following the results of those simulations (Table 3.1); others were taken
according to literature [79–81].

Table 3.1: Material parameters for crystal plasticity simulation of Haynes 230 single crystals.

Property Description Fitting/Literature Value

E Young’s modulus Fitted 218 GPa

ν Poisson’s ratio Fitted 0.33

µ0 Shear modulus Fitted 89.5 GPa

b Burgers Vector Literature [80] 3.5E − 7 mm

τ̂a Athermal slip resistance Literature [8] 0 MPa

τ̂y MTS strength for intrinsic barrier (yield) Fitted 130 MPa

g0,y Normalized activation energy for intrinsic barriers Literature [80] 0.37

qy Shape coefficient for intrinsic barriers Literature [78] 1.5

py Shape coefficient for intrinsic barriers Literature [78] 1.5

ε0,y Strain rate sensitivity for intrinsic barriers Literature [79] 1E9 s−1

τ̂v MTS strength for work hardening Fitted 80 MPa

g0,v Normalized activation energy for work hardening Literature [80] 1.6

qv Shape coefficient for work hardening Literature [78] 0.667

pv Shape coefficient for work hardening Literature [78] 1.2

ε0,v Strain rate sensitivity for work hardening Literature [79] 1E7 s−1

ϑ0 Initial hardening slope Fitted 110 MPa

k0 Geometric hardening parameter Fitted 1

3.2.2 Strain Localization Analysis In [011] Oriented Specimen

In [011] oriented specimen high strain localization bands were detected by DIC. Hence,
a second model was developed with the sole purpose to reproduce the local behaviour
captured in the [011] test: accumulation along 39o inclined bands, Fig. 3.5. A single
crystal plate was modeled, as shown in Fig. 3.5-a: the geometry consists of a plate
(3x3x1 mm), corresponding to the central section of the dog-bone specimen. It was
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[100] 

[030] 

(a)

(b)

Figure 3.5: [011] single crystal oriented specimen: (a) simulation geometry scheme; (b) results

in terms of strain localization, (b) left is the experiment and right is the simulation.

modeled using an average element size of 40 µm. The load was applied as a displace-
ment along the face (3x1 mm) parallel to the [011] direction, the opposing face was
displacement constrained. The two localizations were compared, Fig. 3.5-b, consid-
ering the experimental overall strain where the DIC was performed, 4.9%. The model
showed strain accumulation along 40.1o direction, which is comparable with the 39o of
the experiment.

Further analyses were done with the aim to evaluate which is the effect of choosing
different reference volume elements, selected from the plate, especially on the predicted
tensile curve. Considering Fig. 3.6-a, which explains where different starting points
for increasing RVEs were picked (the RVEs grows from a 1 element to full plate, with
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volumes that goes from 7e-4 mm3 to the full volume of the plate), it is possible to
evaluate the stress-strain monotonic curve for all of the chosen volumes. The results
of this analysis are shown in Fig. 3.6 where Fig. 3.6-b shows all the RVEs results.
Fig. 3.6-c compare the experimental result with the upper and lower bounds obtained
from the RVEs. Concluding, even considering different reference volumes elements
the experimental curve is still not completely matched.
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Figure 3.6: Analysis of [011] simulation tensile curve varying the RVE on the modeled plate:

(a) RVEs and location of the starting points on the map of Fig. 3.5; (b) experimental results

in comparison with the curve from all the RVEs; (c) experimental results in comparison with

the upper and lower bounds coming from the RVEs .
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3.3 High Temperature Simulation

Having identified the parameters of the crystal plasticity model by analyzing the single
crystal results, it was possible to analyze a polycrystalline specimen. The simulation
emulated a specimen that undergoes a tensile test at 700oC and with the strain field
measured via high resolution ex-situ DIC [18]. To account for the test at high tempera-
ture some parameters were tuned according to the experimental stress-strain curve, the
modified parameters are recorded in Tab. 3.2.

Table 3.2: Material parameters for crystal plasticity simulation of Haynes 230 polycrystalline

high temperature specimen.

Property Description Fitting/Literature Value

E Young’s modulus Fitted 201 GPa

µ0 Shear modulus Fitted 84 GPa

τ̂y MTS strength for intrinsic barrier (yield) Fitted 128 MPa

τ̂v MTS strength for work hardening Fitted 40 MPa

ϑ0 Initial hardening slope Fitted 225 MPa

3.3.1 Model Definition

The geometry of the finite element model was defined by the DIC area of interest.
Starting from the EBSD of the full area where the DIC was performed, Fig. 3.7, three
smaller areas were extracted as shown in the picture. The choice of those three area
was made according to the experimental strain localizations of Fig. 3.3.

111 

101 001 

Area	
  A	
  

Area	
  B	
  

Area	
  C	
  

Figure 3.7: EBSD of the whole specimen and definition of the sub-areas A, B and C.
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Then these three areas were modeled starting from the EBSD data, which provided
both grains geometry and the Euler angles belonging to each grain. The extracted
areas of Fig. 3.8 are compared with their FE models. The three areas dimensions are
respectively, 354 µm by 291 µm (Area A), 204 µm by 229 µm (Area B) and 277 µm
by 234 µm (Area C).

Figure 3.8: Comparison between the sub-models EBSD and the geometry created for the FE

analyses, with emphasis on their dimensions and the mesh adopted for each of them: (a) and

(b) refers to area A; (c) and (d) to area B; (e) and (f) to area C.

Each model was created with linear hexahedral elements with an average size of
3.5 µm; the three areas count respectively, 134 grains and 46000 elements (Area A),
78 grains and 24000 elements (Area B) and 108 grains and 26500 elements (Area C).
The adoption of 3.5 µm elements derived from a mesh convergence evaluation: below
this dimension no differences in results were detected. The models were 5 elements
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thick (20 µm), thus each one can be considered in plane stress. Finally Fig. 3.9 shows
a schematic of the loading and constraints (the schematization in the picture is referred
to Area C, but it is the same for A and B as well): to simulate the tensile experiment,
a displacement was applied to the nodes of the upper face (see the models of Fig.
3.9), while a double symmetry was applied as in the picture. The double symmetry
was chosen after trying different constraint conditions, this grants a stability of the
solution and there are no out of plane displacement (no shear or rotation of the whole
model); it was preferred to a triple symmetry (constraining also in z direction) since the
simulations brought to the same results on the free surface and in addition maintained
the plane stress hypothesis of the model.
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Figure 3.9: Loading scheme for the polycrystalline specimens explained considering area C

model.

3.3.2 Comparison With Experimental Results

Following the experimental results as shown in Fig. 3.3, the simulations were carried
out on the 3 areas considering the three subsequent unloadings, resulting in overall
residual strains of 1.22%, 1.59% and 2.51%.

Fig. 3.10 shows a comparison between the stress strain curves from the experiment,
measured with DIC, and those extracted from the models. Global strain and stresses
were obtained from the models through a volume average over the elements. A good
agreement is observed between the models and the experiment. This output pointed out
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Figure 3.10: HT polycrystalline simulation: comparison between the experimental stress-strain

curve and the FE analysis of the 3 models.

that the models, despite the difference in surfaces extensions, contained enough grains
to be able to describe the experimental global behaviour. After discussing the overall
results, for the following analysis only the first one (1.22%) will be considered; it was
taken as a reference to compare the simulations and the results on the micro-scale level.

Fig. 3.11 shows a summary of the results after unloading, matching experiments
with the models. The comparison showed where the strains localize along the grains,
in both the real medium and the simulated one. This type of simulations was able
to capture several grains activation and strain accumulations along bands, but many
mismatches were also detected. This pointed out that this type of modeling, based
only on the EBSD angles, was not able to describe all the effects that contribute to
strain localization, like the presence of incongruent particles. In fact in Haynes 230
the presence of inclusions like carbides is very high like shown in [17], so the next
step of the models concerned the introduction of several carbides in the polycrystalline
matrices.
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Chapter 3. Tensile Mechanical Behaviour

Figure 3.11: HT polycrystalline simulation: strain localization in the three considered areas.

(a), (c), (e) are DIC results and (b), (d), (f) are the simulations. Can be compared consider-

ing that: (a) and (b) refers to area A; (c) and (d) to area B; (e) and (f) to area C.

3.3.3 Analysis Of The Effects Of Carbides

The introduction of carbides in the model of area A and B (Fig. 3.8) was done follow-
ing the identification of some carbides within the cited surfaces. The dimension of the
carbides to be included in the matrix was the key feature for their selection: no carbides
with a dimension lower than about 1.5 µm were chosen. Fig. 3.12 shows where the
carbides of the two selected areas were detected and embedded in the models. The
carbides were modeled as purely elastic materials [96], with an elastic modulus much
higher than the one of the crystals. The outcome of these simulations revealed that the
inclusion of carbides influenced only the local answer of the material, while the stress
strain curves were consistent with those showed in Fig. 3.10. The local strain intensi-
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3.3. High Temperature Simulation

Figure 3.12: HT polycrystalline simulation: carbides position with reference on the EBSD

maps of area A (a) and B (b).

fication, due to the carbides, reported in Fig. 3.13, enhanced the approximation of the
experiment, helping to obtain a better description of the deformation that accumulates
along grains and grain boundaries.

Figure 3.13: HT polycrystalline simulation: comparison of the strain localization considering

the effects of carbides on two of the selected areas: (a)-DIC and (b)-SIM refers to area A;

(c)-DIC and (d)-SIM to area B.
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Chapter 3. Tensile Mechanical Behaviour

(a) (b)

Figure 3.14: Histogram comparison between simulation and experimental strain distribution

across area A and B: (a) area A; (b) area B.

An analysis of the strain distribution, Fig. 3.14, was then made as a further compari-
son with the experiment through strain levels histograms. For consistency, the numbers
of strain values sampled with DIC and FE models had to be the same. For area A, the
DIC showed a majority of values around the average while the simulation showed a
plateau. Area B simulation instead showed a trend comparable with the one coming
from the experiment, despite having a difference of 0.2% in the average strain. The
difference can be associated with the fact that the model was loaded to reproduce the
global behaviour of the whole specimen (see Fig. 3.3 and Fig. 3.8), measured over the
entire DIC area of interest, while locally the DIC on area B registered a lower mean
cumulated strain.

Then, analyses were done investigating line scans across the selected surfaces. Fig.
3.15 shows, for models A and B, the comparison between 3 datasets: the experiment,
the simulations without carbides and the simulation with carbides. It can be observed
that the three curves, in both models, are similar in terms of trends and magnitudes.
The trends were well captured with the first simulations (those without carbides), con-
sidering peaks and valleys, and improved by the introduction of carbides.

Further analyses had the objective to evaluate the stress localization close to several
of the introduced carbides. Those investigations involved the identification of the slip
planes were the shear stress has its maximum magnitude close to the carbide. This
analysis was pursued following the scheme presented by Gall in [97,98]. Starting from
the definition of all the slip systems in the reference coordinate frames (see Tab. 1.2),
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3.3. High Temperature Simulation

(a) (b)

Figure 3.15: Line scans along an arc AB considering the same position on DIC, simulation

without carbides and simulation with carbides: (a) area A; (b) area B.

the rotation matrices that have to be applied to the stress tensor, to obtain it on the slip
planes, could be evaluated. Considering the Euler angles (in the Kocks convention),
named (e1, e2, e3), the rotation matrix for the considered grain (QG) can be evaluated
as:

[QG] =


qG11 qG12 qG13

qG21 qG22 qG23

qG31 qG32 qG33

 (3.1)

where its components can be evaluated as follows:

qG11 = − sin (e1) sin (e3)− cos (e1) cos (e3) cos (e2)

qG12 = cos (e1) sin (e3)− sin (e1) cos (e3) cos (e2)

qG13 = cos (e3) sin (e2)

qG21 = sin (e1) cos (e3)− cos (e1) sin (e3) cos (e2)

qG22 = − cos (e1) cos (e3)− sin (e1) sin (e3) cos (e2)

qG23 = sin (e3) sin (e2)

qG31 = cos (e1) sin (e2)

qG32 = sin (e1) sin (e2)

qG33 = cos (e2)

After defining QG, the slip systems normal and direction can be projected in the grain’s
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reference system as:

n
(s)
G = [QG]n(s)T (3.2)

b
(s)
G = [QG] b(s)

T

(3.3)

(a)

(b)

Figure 3.16: Maximum local shear stress around several carbides introduced in the polycrys-

talline matrix: (a) carbides embedded in area A; (b) carbides embedded in area B.

the third direction l(s)Grain is the cross product of n(s)
Grain and b(s)Grain. From these defini-

tions is possible to calculate the rotation matrices for each slip system as:

[R](s) =
[
b
(s)T

Grain n
(s)T

Grain l
(s)T

Grain

]
(3.4)

Then the rotated stress tensor can be evaluated as:

[σ](s) = [R](s) [σ] [R](s)
T

(3.5)
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Finally from [σ](s) the shear stress on each slip plane can be extracted, it corresponds
to σ(s)

13 component. Fig. 3.16 summarizes the results for some of the carbides identified
on area A and B. These pictures show the stress field around the carbides and the slip
plane that sees it. From these analyses it is possible to observe that not all the introduced
carbides lead to high shear stresses but some of those brought to a shear that locally
exceeds the yielding value (around 130 MPa).

3.3.4 Stress Field And Dislocation Density

The investigation then moved on the analysis of results that require constitutive equa-
tions and can not be obtained with DIC, more precisely stress field and geometrically
necessary dislocations maps.

Figure 3.17: HT polycrystalline simulation: stress fields along the loading direction. (a) and

(c) are the stress field at maximum stress before the unload ((a) refers to area A and (c) to

B); (b) and (d) are the residual stress field at 0 load applied and residual strain of 1.22%

((b) refers to area A and (d) to B).
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Fig. 3.17 shows the stress along the remote loading direction for Area A and B;
shown are the stress fields at maximum applied stress and at the unloading, where the
residual stresses can be evaluated. From the stress tensor obtained by the simulation it
is possible to evaluate the local shear stress along slip traces. Considering now only the
model concerning Area B, slip traces were identified for two grains [99,100]: activated
slip systems were identified by detecting the highest strain accumulation orientations.
Considering the stress tensor at the maximum peak of the remote applied stress, before
the first unloading, it was possible to evaluate the local shear stress along the identi-
fied traces. These results were then compared with the value of the externally applied
resolved shear stresses, Fig. 3.18, obtained with the Schmid law [101]:

τremote = mSF · σremote (3.6)

where this shear stress is evaluated from the remote applied stress multiplied by the
Schmid factor (mSF) of the grain. This value is usually considered constant in the
application of energy models for crack nucleation [102]. Fig. 3.18 shows that the
constant values coming from Eq. (3.6) and the local shear stress are comparable and of
the same order, agreeing with the hypothesis of Sangid et al. [102].

Figure 3.18: Shear stresses variation along two identified slip traces and comparison with the

Schmid law.

Finally, since the adopted model provides the Nye tensor as an output [8], it was pos-
sible to determine the necessary dislocation density map through the relationship [35]:

ρb = ||α|| =
√
α : α (3.7)

This quantity, in Fig. 3.19 for both area A and B, indicates the regions of high plas-
tic strain incompatibility, where large densities of necessary dislocations developed to

44



3.4. Conclusions

maintain the compatibility throughout the model.

Figure 3.19: Dislocation density maps at 1.22% residual average strain for area A (a) and area

B (b).

3.4 Conclusions

The models of this chapter allowed the description and the study of how the localization
of strains acts on local scale level.

The global behaviour was well captured by the approximation of the stress-strain
curves, for single crystals and polycrystalline models. In the study of the high tempera-
ture test, three models were created by assembling grains, different in sizes, dimensions
and numbers. The interaction of the grains, each one can be considered locally as an
anisotropic system, was able to reproduce the global behaviour of a specimen that on
the macro-scale can be seen as homogeneous and isotropic. This result was accom-
plished since the models consisted of enough grains with as many orientation as needed
to create a representative polycrystalline aggregate.

Finally the strain accumulations, on local scale, showed good agreements in terms
of active grains. The introduction of carbides improved upon the description of the
residual strain field, showing that they have a significant role inside the material.

The last result is related to the overall tensile curve reproduced by the models.
Specifically, when the model is reloaded it was observed that the material changes from
elastic to plastic behaviour before reaching the previous peak load. Thus there is strain
accumulation within one unloading/reloading cycle. This capability of the CP model
will be investigated more in detail in Chapter 4, where a cyclic test at room temperature
is taken into account.
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CHAPTER4
Simulation Of A Ratcheting Test

This chapter focuses on the application of the crystal plasticity code to a ratcheting test,
to see the capabilities in predicting strain accumulation under cyclic loads. Ratcheting
is the progressive accumulation of plastic deformation cycle by cycle, and is not easy to
simulate it accurately. Despite this fact models able to describe ratcheting are required
in design and life assessment of components subjected to cyclic loadings with non-zero
mean stress. Most of the models in literature rely on nonlinear kinematic hardening for
continuum plasticity, defined starting from the work of Armstrong and Frederick [103],
a definition that was proven necessary to predict life due to ratcheting fatigue. One of
the major drawbacks of these model is that they predict good agreement on the macro
scale, neglecting the link to the material microstructure. Their prediction can be con-
sidered as an average over many polycrystalline grains and is not able to capture the
effective damage occurring at micro-level due to stress/strain intensifications. Another
drawback of the models is linked to their applicability, for complex phenomena like
ratcheting they are limited to special cases: most of the models were developed phe-
nomenologically based on macroscopic experimental results [104].

Some authors [105, 106] provided results on simulations of ratcheting tests with
crystal plasticity codes. Their analyses showed attempts in reproducing the local be-
haviour of a reference volume element, generated by statistical informations acquired
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Chapter 4. Simulation Of A Ratcheting Test

by EBSD, under cyclic loads. The results gave a fine approximation of the overall be-
haviour with a room of improvement for a better description. Furthermore, these stud-
ies pointed out the necessity to develop crack nucleation models that account for local
damage, high plastic strain localization are potential sites for micro-crack initiation.
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Figure 4.1: Comparison of two different lot of Haynes 230.

The material used for this chapter’s experiments comes from a second lot of Haynes
230, which exhibits a different behaviour at room temperature if compared with the one
analyzed in Chapter 3 (see Fig. 4.1). These differences, in yield stresses, 400 MPa vs
353 MPa, and in the work hardening slopes, require the identification of different pa-
rameters able to describe the new behaviour. In opposition with the procedure adopted
in Chapter 3, the evaluation of the CP model parameters is carried out by the analysis
of one tensile test conducted on a polycrystalline specimen, and not by the analysis of
single crystals.

Then, with the new parameters, a ratcheting simulation of a polycrystalline aggre-
gate is performed, considering both the overall behaviour and the effects of the number
of cycles, focusing on the increasing of strain concentration across grains and grain
boundaries.

4.1 Experimental Procedure

In this section, two experiments conducted on polycrystalline specimens are described:
one tensile test that will be used as a feedback for the identification of the CP model
parameters; one ratcheting test to verify the prediction of the model on strain accumu-
lation during cyclic loadings.
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Figure 4.2: Dog-bone specimen geometry adopted for tensile and ratcheting tests.

The geometry of both specimens is schematized in Fig. 4.2. The two specimens
have a dog-bone shape with parallel length of 10 mm, width of 3 mm and a thickness
of 1.5 mm. At first they were mirror polished to perform EBSD analyses, necessary to
create the models for the simulations. To constraint the area where EBSD has to work,
the specimens were marked in the center of one face by Vickers micro-indentation. The
markers were located in order to approximately describe a square of edge 0.6 mm.

(a) (b)

Figure 4.3: EBSD scan of the specimens selected for (a) tensile and (b) ratcheting tests. The

EBSD analysis was performed with the axial/loading direction of the specimens oriented

along the horizontal.
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The results of these scans are shown in Fig. 4.3, where map (a) refers to the spec-
imen used for the tensile test, counting 706 grains, and map (b) to the ratcheting test,
537 grains. The EBSD was performed with the specimen bended, which means that
the loading direction is horizontal (in Fig. 4.3) and not vertical like in Chapter 3. Ex-
situ high-resolution DIC was used for strain measurement. In order to perform it, the
marked areas were prepared. A speckle pattern suitable for high resolution DIC was
applied on the surfaces. Images were captured at first, before testing the specimens,
out of the load frame by means of a Carl Zeiss Axio Cam A1 optical microscope, with
a resolution of: 0.34 µm/pixel (magnification of 100x) for the tensile test and 0.17
µm/pixel for the ratcheting test (magnification of 200x). Then, the tested specimens
followed the same procedure of capturing images after the test, to perform correlations
and obtain details about the strain field. The resulting strain field were then overlapped
by the grain boundaries frames obtained by the EBSD using the markers as a reference.

Figure 4.4: Testing machine: DEBEN micro-testing machine 5kN dual leadscrew

Both tests were carried out on a Deben micro-testing machine (Fig. 4.4). This
electric testing machine is able to perform tests within a load range of 5 kN.

4.1.1 Tensile Test

The tensile test was performed in displacement control, the average deformation was
measured by low magnification DIC instead of using an extensometer, which due to
the dimensions was not applicable to the specimen. The specimen went through a
loading/unloading tensile test, reaching a deformation of 5.05 % at peak load and then,
after the unloading, the residual average deformation was 4.74 %. The specimen was
then analyzed under an optical microscope (with a magnification of 100x) to capture
the images which have to be correlated with the reference one to obtain the strain field.
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4.1. Experimental Procedure

This procedure allowed the evaluation of strain accumulation along grains and grain
boundaries. From the procedure of the test, the outcome of this DIC investigation is
the residual strain field at the end of the test. The results of the tensile experiments are
summarized in Fig. 4.5: (a) is the monotonic curve, (b) is the strain field measured on
the area where the EBSD was performed.
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Figure 4.5: Room temperature polycrystalline tensile test, experimental results: (a) monotonic

curve; (b) ex-situ high resolution DIC.

4.1.2 Ratcheting Test

The second dog-bone specimen was cycled in load control with a nominal applied stress
range of ∆σ = 495 MPa and a load ratio of R = -0.1. The specimen was cycled between
the maximum load of 450 MPa and the minimum load of -45 MPa.
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Figure 4.6: Ratcheting test loading history and definition of the load instant when the ex-situ

DIC was performed

For DIC analyses the residual strains were registered after 1 cycle and 10 cycles:
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the test was put on hold and the specimen was inspected under an optical microscope
at a magnification of 200x. The stops followed the logic reproduced in Fig. 4.6, mean-
ing that the specimen was removed when the test passed through the 0 load after the
minimum valley.

The ratcheting test curves measured during the test for the first and the tenth cycles
are shown in Fig. 4.7-a, and put in comparison with the tensile test in Fig. 4.7-b: the
comparison shows a small variation in the yielding.
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Figure 4.7: Stress-strain results for ratcheting test: (a) first and tenth cycles; (b) comparison

between ratcheting and tensile curves.

(a) (b)

Figure 4.8: Measured strain localization during ratcheting experiment: (a) after 1 cycle, (b)

after 10 cycles.

The correlation of the images, with respect to the reference condition of un-tested
specimen, allowed to the residual strain field identification and its intensification at
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various hot spots. Fig 4.8 summarizes the 2 results (a) after the first cycle and (b)
after 10 cycles. The comparison between the two deformation fields showed the grains
whose activated slip planes saw an increasing in strain magnitude during the ten cycles
test.

4.2 Parameters Identification

The identifications followed the iterative procedure of trial and error with the main ob-
jective of reproducing the tensile curve of Fig. 4.5-a. The evaluation of the constants
for the model followed the idea of Chapter 3, with the main difference that here the es-
timation was done modeling a polycrystalline aggregate instead of three single crystals.

Figure 4.9: Room temperature polycrystalline tensile test model: definition of constraints and

applied load.

The finite element model was created to simulate the specimen with microstructure
shown in Fig. 4.3-a. The geometry of the generated model is shown in Fig. 4.9, where
grains shape was reproduced from the information derived from the EBSD scan. Then
each grain was reproduced assigning to the elements, that reproduce its geometry, the
informations about the crystallographic orientations. The entire model counts about
102000 linear hexahedral elements over a volume of surface 0.722 mm by 0.702 mm
with a thickness of 0.08 mm. The simulation of the tensile test was carried out by
imposing displacement to the right surface of the volume (the loading direction of the
specimen lays on the horizontal direction) and a double symmetry on the other two
surfaces, as in the picture (this approach in the model follows that of Chapter 3).

The simulation was carried out with the main objective of capturing the overall
stress strain behaviour of the material, and the parameters were modified according to
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Figure 4.10: Room temperature polycrystalline tensile test, numerical results: (a) monotonic

curve; (b) strain field obtained with the simulation.

the best fit of the experimental curve. The localizations were investigated to capture
the local strain field and compare it with the residual deformations observed with DIC.
The fitting of the tensile curve pursued by this simulation was made considering the
parameters of Tab. 4.1, that produce the results of Fig. 4.10. In Fig. 4.10-a it is
possible to observe an excellent agreement between the predicted tensile test curve
and the experimental one; Fig. 4.10-b shows that the prediction, if compared with

Table 4.1: Material parameters for the second lot of Haynes 230.

Property Description Value

E Young’s modulus 195 GPa

ν Poisson’s ratio 0.33

µ0 Shear modulus 80 GPa

b Burgers Vector 3.5E − 7 mm

τ̂a Athermal slip resistence 0 MPa

τ̂y MTS strength for intrinsic barrier (yield) 119.8 MPa

g0,y Normalized activation energy for intrinsic barriers 2.37

qy Shape coefficient for intrinsic barriers 1.8

py Shape coefficient for intrinsic barriers 0.9

ε0,y Strain rate sensitivity for intrinsic barriers 1E10 s−1

τ̂v MTS strength for work hardening 65 MPa

g0,v Normalized activation energy for work hardening 1.6

qv Shape coefficient for work hardening 0.34

pv Shape coefficient for work hardening 0.5

ε0,v Strain rate sensitivity for work hardening 1E7 s−1

ϑ0 Initial hardening slope 24000 MPa

k0 Geometric hardening parameter 5
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Fig. 4.5-b, leaks on some grains while on other is able to capture the activation and the
magnitude of the localized deformation. Considering Tab. 4.1, the main difference with
Tab. 3.1 is in ϑ0 parameter. The new value is higher and it had been chosen in order to
have a more accurate description of the first part of the tensile curve. A choice made
considering that the ratcheting test was cycled close to the yielding of the material.

Figure 4.11: Histogram comparison of the strain fields detected by DIC and simulation for

room temperature tensile test.

Further analysis of the agreeability between the localization of the experiment and
the simulation can be derived by the histogram of the strains. Fig. 4.11 shows a rea-
sonable capacity of the model to capture the trend of the strain distribution along the
analyzed area, with a good approximation of the mean value, 4.83% for the experiment
and 5.04% for the simulation. The simulation distribution has higher occurrences along
the tails, which implies that the frequency around the mean value is lower than the one
observed by DIC.

4.3 Ratcheting Model

The simulation of the ratcheting test required the definition of the model starting from
the EBSD of Fig. 4.5-b.

The model of Fig. 4.12 reproduces the outcome of the EBSD, and, as the previous
model, each elements contains the information about the euler angles of the grain it
represents. The ratcheting model counts 111000 linear hexahedral elements, contained
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Figure 4.12: Room temperature polycrystalline ratcheting test model: definition on constraints

and applied load.

in a volume of 0.703 mm by 0.731 mm by 0.08 mm (thickness). A double symmetry
was modeled by the constrains, as in the figure, and the load was applied coupling the
displacements of the free surface perpendicular to the loading direction (horizontal) to
those of the node where the force is applied.
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Figure 4.13: Matching between experimental and simulated stress-strain curve for the ratchet-

ing test.

The prediction on the stress-strain curve, Fig. 4.13, shows an excellent agreement
with the test, capturing both the measured cycles (first and tenth). As for the strain
localizations shown in Fig. 4.14, the agreement is good on several of the hot spots
identified by the experiment, with a good estimation of the reached strain peaks.
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(a) (b)

Figure 4.14: Ratcheting simulation, strain localization detected: (a) after 1 cycle, (b) after 10

cycles.

4.4 Conclusions

In this chapter the parameters for the crystal plasticity model were estimated from a
polycrystalline tensile test (polycrystal specimen are usually less expensive than sin-
gle crystal one) and a good agreement was observed on the comparison between the
experimental monotonic curve and the simulated one.

Further applications of the crystal plasticity code concerned the simulation of a
ratcheting test. The results pointed out a good capability in capturing both the overall
behaviour of the test and the strain localization/accumulation with cyclic loadings.

Eventually, the possibility to apply the CPFE simulation to predict the cyclic be-
haviour may lead to the implementation of a model which accounts for crack nucle-
ation, like the one proposed by Sangid [102].
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CHAPTER5
Fatigue Crack Growth In Single Crystals

The topic of this chapter deals with the analysis of crack propagation in single crystal
specimens, with the aim to provide a more accurate understanding of crack growth
mechanisms in grains. In the first part a discussion of the experimental procedure is
reported together with crack growth measurements: DIC was used for determining
closure levels and the cyclic plastic region at the crack tip.

The following sections, provide a comparison between experimental results and
numerical ones, obtained with CPFE models. At first the single crystal medium is
analyzed performing simulations on quasi-static crack models, to provide an initial
assessment of the plastic zone; then crack closure is studied by implementing a node
release technique to consider crack advancement.

5.1 Experimental Setup: Single Crystal Crack Growth

The tests were performed in order to study the displacement field around the crack tip,
hence the strain localization, and obtain a measure of the crack opening levels. These
analyses required the use of the DIC technique.

Single crystals were obtained from seeds, adopting the Bridgman technique [94]
in vacuum: its initial orientation was determined using EBSD. The two tested speci-
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mens had [001] and [111] orientations along the loading direction. Single edge notch
specimens were chosen to complete the experiments: notches were made by electrical
discharge machining (EDM). The specimens nominal dimensions are registered in Fig.
5.1: a width of 3 mm, a parallel length of 8 mm and a notch length of 0.5 mm. The
nominal thickness of 1mm was indeed 1.09 mm for the [001] specimen and 1.3 mm for
the [111].
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m
 

1 mm 
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Extensometer 

Figure 5.1: Geometry of the single crystal specimen with details of the notch and position of

the virtual extensometers.

The specimens were mirror polished to apply the speckle pattern, using black paint,
for DIC analysis. The tests were performed with a cyclic frequency of 5 Hz on a servo
hydraulic load frame with a load ratio R equal to 0.05. Specimen [111] was loaded
with ∆σ = 181 MPa, while [001], which exhibits a lower yield stress (see Fig. 3.4),
was loaded with ∆σ = 133 MPa. Once a crack was observed, measurements were
performed every 4 seconds, to get enough pictures to characterize the fatigue load cycle.
The displacement field around the tip was characterized with DIC. The correlations
were made considering a reference image at the minimum load, it means that all the
displacements were calculated with respect to the fully closed crack configuration. The
strain field was computed from DIC measured displacements: Lagrange strain tensor
equations were employed to calculate strains.

In order to measure crack opening loads, a series of 2 points extensometers were
placed along the crack flanks (see Fig. 5.1. This feature tracks the relative displacement
of 2 points belonging to the opposite face of the crack. The opening was evaluated by
placing the digital extensometers perpendicular to the crack plane and by considering
the difference in crack tip displacements.

For [001], where the crack propagates horizontal under mode I, only the vertical
displacement was considered. For [111], where the crack propagates on a inclined plane
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under mixed mode (I+II), both horizontal and vertical displacements were measured.
Fig. 5.2 shows a summary of the DIC results for the 2 specimens. More detailed
descriptions are recorded in [13, 107]

(a) (b)

Figure 5.2: Crack opening level measured experimentally for (a) [001] and (b) [111] oriented

single crystal specimens [13].

5.2 Single Crystal Models

The single crystal analyses were performed at first considering a quasi-static crack un-
der the effective applied load (defined as the load range between the instant the crack is
fully open and the maximum applied load) to obtain a first approximation of the plastic
zone ahead of the crack tip [107] . Then a crack propagation model was implemented
for the [001] oriented specimen to have a better comparison with the experimental re-
sults. The crack propagation model for the [111] direction is still under development.

5.2.1 Quasi-Static Crack Analysis

An first assessment of crack tip plastic zone was obtained by considering the crack
as stationary, neglecting the effects of plastic wake during crack propagation. The
definition of the models for [001] and [111] specimens is depicted in Fig. 5.3: in Fig.
5.3-a are showed the crystal direction that were used for the simulations and in purple
are the plane where the crack propagates (cyans are the slip planes); in Fig. 5.3-b
the dog-bone specimen used for the 2 simulations is reproduced, with evidence on the
geometry of the two cracks embedded. [001] model has a crack of 0.955 mm under
mode I, [111] specimen has a crack of 1.6 mm under mode I+II.

The models were constrained to fully reproduce experimental conditions: an con-
strains neglected all displacements of the bottom face, whereas the force was applied,
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(a)
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Displacement 
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(b)

Figure 5.3: Schematization of the single crystal specimens: (a) identification of the crack

planes [13]; (b) geometry of the models used for the quasi-static simulations with details

of crack extension for the two specimens.

through a coupling constraint, on the upper surface of the model. In order to accurately
describe the strain field ahead of the crack tip, 8-node 3D isoparametric elements with
an in-plane dimension of 1% of the model thickness was employed during the analysis.

A first assessment of the crack propagation direction was made with models without
crack; they were loaded with nominal stress ranges of 133 MPa for [001] and 181 MPa
for [111], obtaining the results of Fig. 5.4, which shows strains accumulations along
directions that are related to those depicted in Fig. 5.3.

The quasi-static models were developed neglecting the effects of crack growth and
closure. The applied load was modified with respect in order to keep the crack always
open and to apply the experimentally measured effective stress intensity factor range.
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Strain [%
] !
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Figure 5.4: Assessment of the capabilities of the CP model in predicting crack propagation

directions from the notch for [001] and [111] oriented specimens.

For the two models, the load range was taken between opening in mode I and maximum
load, as reported in Fig. 5.5-a.

DIC does not provide an absolute measurement of strains. All the strains are eval-
uated with respect to a reference image taken at minimum load. Therefore the experi-
mental strain field represents the difference between the strains at the maximum peaks
and at the minimum. Thus, a comparison between FEM and DIC is only possible if
the difference between the strains computed at the peak and at the opening stress is
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Figure 5.5: Strain field saturation in quasi-static analysis for the [001] oriented specimen with

a crack of 0.955 mm [107]. (a) loading history of the quasi-static model considering 6

cycles. (b) Strain field contours (strains are in percentage) for each cycle to analyze results

saturation.
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considered. In Fig. 5.5-b, the evolution of axial strain difference, ∆εyy, during six con-
secutive cycles is reported for [001] specimen (this six cycles are those coming from
Fig. 5.5-a, the strains differences are between point 4 and 3 for the first cycle, 6 and
5 for the second and so on for the others); a major difference between the first and the
following cycles is observed, whereas saturation is achieved after the fifth cycle.

Figure 5.6: Comparison between the extension of the plastic zones measured experimentally,

for [001] and [111] specimens, and those evaluated by the quasi-static simulations.

Finally, a comparison between experimental and numerical results is reported in
Fig. 5.6, it shows that the extension of the plastic zones is quite different, whereas a
good agreement in terms of band orientation is obtained. These observations leads to
the conclusion that the quasi-static models cannot fully represent the fatigue cracks: the
assumption of neglecting the plastic wake, and the subsequent crack closure effect, is
the main limit of this models, since no irreversibility and strain accumulation ahead of
the crack tip are modeled during fatigue crack growth.

5.2.2 Crack Propagation Model For [001] Oriented Specimen

The results of the quasi-static analysis can be summarized in the capabilities of the CP
model to capture the slip angles where the crack may propagate and in a first estimation
of the number of cycles necessary to reach strain field saturation. Those informations
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were employed to develop an enhanced model, in which the effects due to crack growth
were taken into account.
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Figure 5.7: Node release technique: (a) definition of the plane where the crack propagates; (b)

procedure for node release with redistribution of the reaction forces between the nodes of

the remaining ligament.

The crack propagation is realized via a node release technique. It consists in releas-
ing, during a pre-defined load cycle, all the nodes belonging to the current crack front.
The instant node release can occur before or after the maximum peak or after the mini-
mum load [51]. Accordingly, the crack is advanced uniformly over the thickness during
the simulation, by an amount equal to the element size. Fig. 5.7 shows a schematic of
the definition of the plane where the crack belong (Fig. 5.7-a) and advancement of the
crack when the nodal constraint is released at the maximum peak (Fig. 5.7-b): when
the constraint is released its reaction forces go to 0 and stresses/strains are redistributed
to the nodes that are still on the material ligament. To avoid numerical error the redis-
tribution of the loads is not instantaneous but takes some steps to be accomplished.

The simulation was performed implementing a small precrack emanating from the

65



Chapter 5. Fatigue Crack Growth In Single Crystals

notch. This transition crack removes the influence of the notch field from the stress
intensity factor: this small crack was estimated as 0.13

√
LnotchRnotch (where Lnotch and

Rnotch are notch length and its radius) [108]. Accordingly, a precrack of 30 µm was
included in the model at the notch root.

As defined, the crack propagates by a quantity equal to the in-plane element size,
this dimension was taken equal to 0.01 mm: this values comes the relationship, pro-
vided by McClung et al. [51], between element size (∆a) and the plastic radius (rp),
which states ∆a/rp ≤ 0.05. A further mesh refinement was made to evaluate mesh
size effects, considering 0.005 mm elements, but no significative difference was ob-
served: thus for computational time the model with element dimensions of 0.01 mm
was preferred. Fig. 5.8 shows a close up of the mesh along the crack region for the
specimen, where the crack propagation was considered till reaching a length of 0.95
mm, close to the quasi-static model one. In the same picture, the loading direction and
the constraints applied to the model are displayed: to reduce computational times, two
symmetries were considered, meaning that only one quarter of the specimen was mod-
eled. Symmetries were modeled constraining displacements along the direction normal
to the symmetry plane, and a coupling constraint was applied to the upper surface to
impose the remote load.

The simulation keeps track of the cyclic loading of the experiment, a stress range of
∆σ = 133 MPa with a load ratio R=0.05 was applied. The loading cycle was studied
to be able to capture the opening effect and to grant a good redistribution of stresses
and strains at the crack tip when the node release occurs. Considering the load cycle
in Fig. 5.8, it refers to the node release at maximum load. The small increments at the
beginning of the cycle were necessary to provide better resolution in order to detect the
opening load. Another step refinement involves the instants immediately after the peak
load, where the node was released: this feature is necessary to have full redistribution
of the reaction forces acting on the released nodes. Finally, another step refinement was
placed in the last part of the cycle, to avoid numerical error during crack flanks contact.

Following the saturation results showed in Fig. 5.5-b, three different node release
strategy were considered: a node release every cycle, every two cycles and every five
cycles (the shape of the loading cycle stays the same as described before, also for the
cycles where node release does not occur). From this simulation it was possible to
obtain strain field saturation even for this case. To reproduce the experimental results,
observed in section 5.1, it was necessary to compute the difference between the strains
registered at maximum and minimum load. Fig. 5.9 shows the range of the vertical
strain registered at the end of the simulation for the three node release strategies: the
analysis of the saturation of the strain field contours pointed out that in the node release
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Figure 5.8: Model for crack propagation in [001] single crystal: model loading conditions and

symmetry constraints; definition of the crack and the nodes which are released during the

simulation; details of the load cycle for node release after the maximum load.
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Figure 5.9: Effect of the node release strategy on the strain field measured at a crack length of

0.95 mm: the comparison relies on contours with strains expressed in %.

models the saturation is reached in less cycles than those observed in Fig. 5.5 for
stationary crack. Accordingly, the differences between the results with a node release
every cycle and every 5 cycles are negligible in terms of strain field range.

Crack opening levels were calculated following the procedure described in [109,
110] and depicted in Fig. 5.10-a: here the ratio between the vertical displacement at the
second node behind the crack tip and the maximum displacement of this node was plot-
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Figure 5.10: Crack closure measurements in the numerical model. (a) Numerical criterion for

the determination of the opening level from finite element analysis [109, 110]; (b) compari-

son between experimental and numerical results considering the three node release strategy;

(c) analysis of the COD through the thickness of the specimen for the releasing strategy every

5 cycles.

ted against the applied stress. The crack is assumed to be open when the ratio was equal
to 1.5% [109]. It was found out that crack opening levels for the 0.955 mm long crack
depend on the number of cycles between each release: release every cycle predicts an
opening at 19.5% of the peak stress, every two cycles at 18.5% and every five cycles
at 17.8%. The difference between the model with an advancement every cycle and the
one that considered crack propagation every 5 cycles was lower than 10%, meaning
that a good estimate of crack opening levels can be obtained even with a model that
considers a limited number of cycles between two node releases, as reported in Fig.
5.10-b. In this picture a good agreement between experimental and FEM opening re-
sults is observed in terms of stress reduction factor U = ∆σeff/∆σ = σmax − σop/∆σ
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for increasing values of crack length. In this formulation ∆σeff is the effective stress
range evaluated as the difference between the maximum applied stress σmax and the
opening stress σop. Following [59] the COD levels are evaluated in the thickness, Fig
5.10-c shows the variation of the opening level from the central section of the model to
the surface: according to the literature the COD values decrease from the external sur-
face (plane stress condition) till reaching the minimum values at the central/symmetry
surface (ideally in plane strain condition) where the crack is considered as being always
open.

Strain [%] !
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A! B! C!
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Figure 5.11: Plastic wake for [001] specimen when the crack is 0.7, 0.9 and 0.95 mm long.

(a-c) total strain field at the peak stress of the fatigue cycle; (d-f) remote stresses against

vertical displacements measured at the second node behind crack tip.

The attention was then shifted on the study of the capabilities of the model to de-
scribe the plastic wake extension and its effect on σop, as reported in Fig. 5.11, where
the results of the model with the precrack and a node release every 5 cycles are reported.
In Fig. 5.11-a,b,c the peak strain fields (no difference with the reference condition was
made) for three different crack lengths (0.7 mm, 0.9 mm and 0.95 mm) are shown: it
can be observed that the crack tip plastic zone is increasing during the propagation.
Then a link between the opening values and the augmentation of the hysteretic be-
haviour of the material was evaluated, the remote applied stress is plotted against the
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displacement at a node behind crack tip (as in Fig. 5.10-a). This plots are summarized
in Fig. 5.11-d,e,f where the hysteresis loop is increasing going from the smaller crack
length to the final one; the opening level that can be estimated from these plots are
comparable with the one showed in Fig. 5.10-b.
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Figure 5.12: Comparison between experimental and numerical results for [001] single crystal

crack propagation at a crack length of 0.95 mm, considering the model with a node release

every 5 cycles: (a) experimental strain field; (b) numerical strain field; (c) comparison

between experimental and numerical vertical displacement fields (contours are in µm).

Finally a summary of the results achieved by the simulations is recorded in Fig.
5.12, the results here are depicted for the case of node release every 5 cycles. Fig.s
5.12-a,b compare the strain fields ahead of the crack tip for simulation and experi-
ment: a larger strain concentration is observed at the crack tip, meaning that the strain
accumulation during crack propagation is the main cause for the wrong assessments
provided by the quasi-static simulations. A good agreement and a better understanding
of the capabilities of the numerical model can be observed from Fig. 5.12-c, where the
vertical displacement is compared: hence the model is capable of describing not only
the process zone, but also those points outside the singular region.

The results showed till here consider the crack advancing with node release at max-
imum peak. Considering node release at minimum load, the results, obtained in com-
parison with the previous type of modeling, can be summarized in Fig. 5.13. Here can
be observed that the displacement fields predicted at the crack tip show no differences

70



5.2. Single Crystal Models

a [mm]

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

U
 =

 ∆
σ

e
ff
 /
 ∆

σ

0.5

0.6

0.7

0.8

0.9

1

experiment

node release every cycle

node release every 2 cycles

node release every 5 cycles

(a)

0!

0.25!

-0.25!

0.5!0.75
!1!1.2

5!1.5
!

-0.5!-0.75!
-1!

-1.25!

-1.5!

(b)

Figure 5.13: Effect of the node release at minimum load: (a) opening values for the three node

release strategies and comparison with the experimental results; (b) comparison of vertical

displacements from experiment and simulations with node release at maximum load and

minimum load (contours are in µm).

between the two cases and the COD estimated is still in good agreement with the ex-
perimental results. Comparing the numerical values obtained in Fig. 5.10-b with those
of Fig. 5.13-b, the simulation with node release at minimum load shows a decreas-
ing of the estimated COD by 1-2%; this result is in accordance with those described
in [51, 52].

Effect of the notch on the crack opening

In the study of crack propagation the assumption of considering a small precrack at the
notch was made, to prevent its effects on the first plasticization of the near area. If the
tip of the notch is considered as starting point for crack propagation, the results are not
influenced far from it but close to it the plastic area and the opening values are affected.

Fig 5.14 shows a comparison in terms of total strain field and COD with the previous
analyses: Fig. 5.14-a,b shows a difference in the residual strain region at the beginning
of the propagation, close to the notch, while after a certain crack length there are no
sensible differences. Fig. 5.14-c,d, where crack opening values are put in comparison,
shows a significant difference in the transitory regime before reaching saturation after
the crack reaches about 0.7 mm.
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Figure 5.14: Effects of the notch on the fatigue crack propagation results for [001] single

crystal specimen, considering node release at maximum peak: (a) opening values with notch

effects; (b) opening values without notch effects; (c) total strain field at peak stress with

notch; (d) vertical strain field at peak stress without notch.

Effect of the node release law on the solution

The effect of choosing node release every cycle, every two cycles or every five cycles,
have been previously shown in Fig.s 5.9, 5.10-b and 5.13-b. Fig. 5.9 shows that there
are no sensible differences while depicting the vertical strain range at the crack tip; on
the other hand the opening values showed that the number of cycles has some influence
on them. Considering now the total strain field at crack tip (and not the strain range) of
Fig. 5.15, it can be observed that there are several differences in both the plastic wake
and the extension of the plastic zone at maximum peak.

These differences can be related to the strains that the model accumulate when the
crack is not propagating. Considering Fig. 5.16, the cumulated strain at the crack
tip for a fixed crack length (0.9 mm in this case) can be evaluated as the difference
between two minimum loads which includes all the cycles between two subsequent
node releases (as schematized in Fig. 5.16-a). These results show that the more cycles
a crack sees without propagating the more strains it accumulates at the crack tip; this
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Figure 5.15: Total strain fields at maximum load for three different node release strategies,

considering the pre-cracked model: (a) release every cycle, (b) release every 2 cycles; (c)
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Figure 5.16: Strain accumulations between two node releases in [001] single crystal crack

propagation model. (a) schematic for the evaluation of the cumulated strain between 2

minimum valley for the three node release strategies adopted; (b) cumulated strain when the

nodes are released every cycle; (c) cumulated strain when the nodes are released every 2

cycles; (d) cumulated strain when the nodes are released every 5 cycles

variable accumulation can justify the difference in the predicted plastic wakes and and
plastic zones extensions. Considering Fig. 5.15, the differences between the three strain
fields are related to this effect.
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Application of the results to fatigue life prediction

Numerical results provided an assessment of crack opening levels. These levels, to-
gether with a crack propagation curve obtained with a loading ratio of R = 0.7 can be
used to develop a propagation model to simulate crack advancement in single crystal
specimens. In [14], an experiment on a Haynes 230 SE(B) specimen, a polycrystal, was
carried out to evaluate Haynes 230 crack propagation curve in absence of closure. The
effects of crack closure were eliminated, in these tests, by applying a high stress ratio,
equal to 0.7.

(a) (b)

Figure 5.17: Fatigue life of [001] single crystal specimen. (a) plastic zone around the notch

at the peak stress of the first load ramp; (b) comparison between experimental results and

fatigue life estimation curve based on the adopted numerical model.

In this work, the closure-free propagation curve measured in polycrystal Haynes
230 was employed to assess fatigue life of the single crystal specimen. In order to
remove the effects of the notch on propagation, a numerical simulation was performed
to evaluate the size of the plastic zone generated at the notch during the first load ramp.
The extension of the plastic zone was calculated following Rice’s proposal [70]: an
element was considered yielded when Γ, the sum of the magnitudes of the slips (Γ =∑
| γs |), was greater than 1% Γc, the slip at yielding, calculated as:

Γc =
τ̃(εp=0)

µ0

(5.1)

Numerical results, presented in Fig. 5.17a, show that the plastic zone under monotonic
loading around the notch extends by 180 µm. Accordingly, fatigue life was assessed by
calculating the number of cycles necessary to propagate the crack from an initial defect
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size of 0.68 mm to the final one, measured when the test was ended. An analytical
procedure was implemented: the steps computed in each iteration were the following:

• calculation of the i− th effective stress intensity factor range, ∆KI,eff as:

∆KI,eff = Y U∆σ
√
πa (5.2)

where Y is a geometric factor that accounts for specimen geometry, calculated as
proposed in Eq. (5.3) [111], in which w is specimen width, U is the stress range
reduction factor, calculated as proposed in Eq. (5.4), in which σmax and σmin are,
respectively, the maximum and the minimum applied stress, and σop is the crack
opening stress, calculated by FEM (σop = 17.8% σmax).

Y = 0.265 (1− a/w)4 +
0.857 + 0.265 (a/w)

(1− a/w)3/2
(5.3)

U =
σmax − σop
σmax − σmin

(5.4)

• Calculation of the i− th crack increment as:

dai = A (∆KI,eff )
m · ˆdN, with ˆdN = 1 (5.5)

where A and m are the constants that describe the closure-free propagation curve
presented in [14].

• Crack length update:
ai = ai−1 + dai (5.6)

Fatigue life prediction, obtained considering ∆KI,eff, is represented in Fig. 5.17 by a
black continuous line: the assessment provides good estimates. This means that fatigue
crack growth, for the single crystals analyzed in this work, is driven by the effective
stress intensity factor range and it can be modeled taking into account the effective
crack growth curve measured in polycrystals.

5.3 Conclusions

In this chapter, fatigue crack growth was investigated in Haynes 230 single crystal with
load direction oriented along [001] crystallographic direction. Crack propagation was
characterized experimentally by digital image correlation, the results showed that, in
single crystals, the crack stays open for an high portion of the loading cycle: an average
stress reduction factor U was observed around 0.85 (loading condition: ∆σ = 133 MPa
and R = 0.05).
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Experimental results were then compared with those coming from CPFE analy-
ses. Implementing node-release technique for crack advancement, the numerical results
were able to confirm the experimental results for crack opening levels.

Single crystal experimental results were also confirmed in terms of crack tip strain
fields: excellent agreement was observed both in terms of crack tip plastic zone shape
and extension.

Then, numerical results were employed to develop a crack propagation model based
on the effective stress intensity factor range. It was found out that fatigue crack growth
in single crystal can be described taking into account numerical opening levels and the
effective crack propagation curve measured during polycyrstals testing.
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CHAPTER6
Fatigue Crack Growth In Polycrystalline Medium

This chapter focuses on the study of localization around the crack tip in polycrystalline
aggregates. The simulations will follow two experimental campaigns: the first consid-
ered a quasi-static crack subjected to a tensile load; the second focused on the study
of crack propagation mechanisms under different loading conditions. The specimen
used for the quasi-static experiment came from the lot 2 of Haynes 230, the same of
the specimens studied in Chapter 4, hence the parameters listed in Tab. 4.1 were con-
sidered. The specimens used to study crack growth came from a new Haynes 230 lot
which exhibits different properties than those of Chapters 3 and 4 (see Fig. 6.1).

This new material comes from a different production process: lot 1 and lot 2 came
from laminate sheets, lot 3 came from an extruded bar. Fig. 6.1 shows a comparison
between tensile tests conducted on the 3 lots of the material. This new lot exhibits
an higher yielding than the previous: 510 MPa against 400 MPa for lot 2 and 353
MPa for lot 1.The fact of considering a whole new behaviour for Haynes 230 implied
the necessity to identify a new set of parameters able to describe it. In opposition
with the previous chapter, where the identification of the parameters came from the
analysis of known structures like single crystals and polycrystalline media (inspected
with EBSD for orientations and grains shape), the parameters for the new lot were
identified considering random generated structures (no EBSD was performed for the
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Figure 6.1: Comparison of the tensile curves of the three considered lot of Haynes 230.

reference tensile test of lot 3 in Fig. 6.1).
Finally, with the parameters for lot 3, a polycrystalline simulation of fatigue crack

growth is provided: in this section the phenomenon is studied considering the medium
composed by random generated grains with a crack propagating inside the grains. The
results are then compared with the experiments in terms of estimated crack opening
levels.

6.1 Experimental Procedure

Two experimental procedure were considered: a quasi-static test was conducted on
a pre-cracked specimen to study the strain field generated at the crack tip when the
crack does not propagate; fatigue crack propagation tests were performed under various
loading conditions to study crack growth mechanisms.

6.1.1 Quasi-Static Crack Test In A Polycrystalline Medium

The setup of the test was constructed with the aim to capture, over a wide surface of
the material, the localization of deformation around the crack tip. The geometry of
the specimen (Fig. 6.2) was chosen according to the 4 pins grips for Deben micro-
testing machine. The notch of 0.5 mm was made by electrical discharge machining.
The nominal dimensions of the specimen are 15.5 mm gauge length, a width of 6 mm
and a thickness of 2 mm.

At first the specimen was mirror polished and marked (with micro-indentations) to
border the area where to perform both EBSD and DIC. The area is confined just ahead
of the notch with the marker describing a surface of 1 mm by 0.8 mm. Then the EBSD
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Figure 6.2: Geometry of the specimen used for the quasi-static crack analysis, details of the

area where the EBSD and the DIC were performed.

scan gave the information about grains location, shapes and orientations as shown in
Fig. 6.3.

Figure 6.3: Result of the EBSD scan conducted over the area of interest for the simulation of

the quasi-static crack in a polycrystalline medium.

Since the aim of this chapter is to study the effects of a quasi-static crack, the spec-
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imen was compression pre-cracked to obtain a small crack emanating from the notch,
this brings to a plastic zones lower than those which could be obtained by pre-cracking
in tensile condition. This feature allows to perform the DIC considering that the pre-
cracked condition can be considered as a reference for image correlation. The com-
pressive applied load range was 2700 N (between -3000 N and 300 N), this condition
ensured a plastic radius at the notch of about 100 µm. The outcome of the pre-cracking
procedure is shown in Fig. 6.4, where a 60 µm crack was detected.

Figure 6.4: Specimen area after compression pre-cracking: (a) details of the area where EBSD

was performed; (b) focus on the generated crack.

The specimen was then prepared for ex-situ high-resolution DIC. In order to per-
form it, the marked area was prepared. A speckle pattern suitable for high resolution
DIC was applied on the surfaces. Images were captured out of the load frame by means
of a Carl Zeiss Axio Cam A1 optical microscope, with a resolution of: 0.34 µm/pixel
(magnification of 100x). Then, the tested specimen followed the same procedure of
capturing images after the test, to perform correlations and obtain details about the
strain field. The resulting strain field were then overlapped by the grain boundaries
frames obtained by the EBSD using the markers as a reference.

Finally the test was done following the loading path of Fig. 6.5, where two load/un-
load steps were applied with objective stress intensity factors of 10 MPa

√
m at first and

20 MPa
√

m then. The image correlation, to determine the strain field around the crack
tip, was made by considering the strain range between points 2 and 1: ∆ε = ε2 − ε1;
this means to consider the strain cumulated by the second load/unload.

The result of this correlation is shown in Fig. 6.6, From this DIC analysis a 40 µm
secondary crack which was not visible in Fig. 6.4 can be identified, emanating from
the notch and located on its left side; thus it will be included in the following models.
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Figure 6.5: Experimental loading history applied for the study of the material behaviour in

presence of a quasi-static crack.

Figure 6.6: Strain field obtained by DIC for the study of a quasi-static crack in a polycrystalline

medium.

6.1.2 Fatigue Crack Propagation Test In Polycrystalline Medium

Fatigue crack growth experiments were performed on single edge dog-bone specimens.
Notches were made by EDM with a geometry shown in Fig. 6.7. The specimen surface
preparation followed the single crystal procedure in order to obtain a suitable speckle
pattern for DIC. Specimens were cyclically loaded at two different load ratio with the
load shown in Tab. 6.1.

As for the single crystals, the COD was measured by means of virtual extensome-
ters: since on the polycrystals the crack propagates under mode I only, the vertical
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Table 6.1: Loading levels for fatigue crack growth test in polycrystalline specimens.

∆σ Load Ratio n. of specimen tested

140 0.1 1

180 0.1 1

240 -1 1
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Figure 6.7: Specimen geometry for the fatigue crack propagation tests conducted on polycrys-

talline material (a); results of the experiments in terms of crack opening levels.

displacement was measured. Fig. 6.7-b shows a summary of the COD results for the
experiments: to compare all the load ratio on the same plot, the opening is considered
in terms of stress reduction factor U:

U =
∆σeff

∆σ
=

σmax − σop

σmax − σmin
(6.1)

More details about the experimental campaign can be found in [14]

6.2 Simulation Of A Quasi-Static Crack In A Polycrystalline Media

The construction of the model required some simplifications:

1. the area modeled by crystal plasticity material is confined around the notch and
reproduces the EBSD scan informations (Fig. 6.3);

2. the remaining volume of the specimen is modeled as purely elastic: its main
purpose is to transfer the displacement field generated by the loading condition
to the CP area. This hypothesis is acceptable since the plastic deformations are
confined around the notch;

82
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3. the geometry of the grains in the thickness was considered columnar;

4. the cracks were modeled as uniform through the thickness.

Figure 6.8: Model of the quasi-static crack experiment: Definition of loading condition and

constraints.

The obtained model is the one showed in Fig. 6.8. Fig 6.8 shows loading and con-
straint configuration: the load was applied as a force to one node whose displacements
were coupled to those of all the nodes belonging to the loaded surface; the opposing
face of the specimen was fully constrained in displacement. Fig. 6.8 shows also the
detail of the CP area modeled and the applied mesh, here grains geometry and orienta-
tions derive from the EBSD. The model in the CP area, counts about 1230 grains; they
were modeled by 235000 linear hexahedral elements enhanced with the information
about the orientation of the grain they belong.

The loading procedure followed the scheme of Fig. 6.5, a first step at 10 MPa
√

m
and a second at 20 MPa

√
m. To have an idea of the differences on the strain field

generated by one or two cracks, two simulations were carried out: one considering
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only the 60 µm crack and one considering both 60 and 40 µm cracks. Fig. 6.9 shows
the outcome of the two simulations: (a) with one crack, (b) with two cracks.

(a)

(b)

Figure 6.9: Study of a quasi-static crack in a polycrystalline medium: strain fields in the load-

ing direction obtained by the numerical simulation of models considering (a) one crack (b)

two crack through the thickness.
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The comparison of the two simulations gave an estimation of the area of influence of
the secondary crack. It affects only the right side of the notch, the left side is unchanged
in the two simulations. Moreover, its area of influence is highly confined in 5-6 grains.
Far from its field of influence the strains localization remain unchanged.

The main result coming from the simulation, if compared with DIC (Fig. 6.6), is the
agreement with the extension of the strain filed. In addition, most of the grains with ac-
tive slip systems are reproduced. The main difference with DIC is the presence of high
concentrated strains at the crack tips. This feature may be related to the assumption of
considering the crack extended flat through the thickness, while in reality compression
pre-cracking involves surface regions of the specimen.

Starting from this observation a model where the two cracks were extended in the
specimen thickness for only 30 µm (an assumption) was created. This new model,
embedding two surface cracks, was then simulated following the loading cycles adopted
for the previous.

Figure 6.10: Study of a quasi-static crack in a polycrystalline medium: strain field in the

loading direction obtained by the numerical simulation of two surface cracks.

The result of this last simulation, Fig. 6.10 pointed out the vanishing of the high
concentration at the crack tip and several differences in the active grains. The strain
field remains approximately similar to itself even if the strains magnitude is highly
decreased. This last model pointed out the necessity to know the real crack front and
extension to be able to have the most reasonable estimation of the localization occurring
through the grains.
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Chapter 6. Fatigue Crack Growth In Polycrystalline Medium

6.3 Simulation Of Fatigue Crack Growth In A Polycrystalline Medium

The simulations for crack propagation in polycrystalline media were carried out con-
sidering random generated crystalline structures. This assumption was required by the
absence of an EBSD analysis on the tested specimens. Thus the numerical results and
the experiments were compared only in terms of opening level values.

6.3.1 Analysis Of Random Generated Structures

The identification of the parameters followed the same steps of the previous chapters,
an iterative evaluation of the overall behaviour with the aim to reproduce the monotonic
curve obtained with the tensile test.
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Figure 6.11: Random generated polycrystalline model for tensile simulation. (a) schematics of

the model with loadings and constraints; (b) Two possible orientation maps for the study of

the tensile behaviour of the material.

Fig. 6.11 displays the model used for this section: the main feature is the simpli-
fication of the grain boundaries by considering rectangular shaped ones. The adopted
model consist of 365 grains contained in an area of 1 mm by 1.2 mm, with an average
grain size of 60 µm (this grain dimension will be referred as Medium Grain, later will
be considered smaller grains). The model counts 62840 hexahedral linear elements,
distributed over 5 layers in the thickness which measures 80 µm. The model shows a
double symmetry dictated by the constrains and was displacement loaded along y di-
rection (see Fig. 6.11). For the parameters investigation, different sets of orientation for
each grain were taken into account (Fig. 6.11 shows an example of two different EBSD
resulting from the random generated orientations for the grains) while the geometry of
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6.3. Simulation Of Fatigue Crack Growth In A Polycrystalline Medium

the grains was kept the same. Six different orientation maps were considered to evalu-
ate if significant differences may occur in the approximation of the tensile curve. These
simulations were used to the estimate the parameters of Tab. 6.3, with a prediction on
the tensile test behaviour as shown in Fig. 6.12.

Table 6.2: Material parameters for the third lot of Haynes 230.

Property Description Value

E Young’s modulus 180 GPa

ν Poisson’s ratio 0.33

µ0 Shear modulus 92 GPa

b Burgers Vector 3.5E − 7 mm

τ̂a Athermal slip resistence 0 MPa

τ̂y MTS strength for intrinsic barrier (yield) 215 MPa

g0,y Normalized activation energy for intrinsic barriers 0.37

qy Shape coefficient for intrinsic barriers 1

py Shape coefficient for intrinsic barriers 1.5

ε0,y Strain rate sensitivity for intrinsic barriers 1E9 s−1

τ̂v MTS strength for work hardening 100 MPa

g0,v Normalized activation energy for work hardening 0.5

qv Shape coefficient for work hardening 0.9

pv Shape coefficient for work hardening 1.0

ε0,v Strain rate sensitivity for work hardening 1E7 s−1

ϑ0 Initial hardening slope 282 MPa

k0 Geometric hardening parameter 2
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Figure 6.12: Random generated polycrystalline tensile results: (a) strain localization for the

first set of grains orientation; (b) strain localization for the second set of grains orientation;

(c) comparison between the overall behaviour of all the simulations and the experiment.

The same figure shows also two outcomes of the strain localization for 2 of the 6
models considered, showing that different orientations, but the same grain shape, may
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lead to completely different solutions in terms of concentration of deformations.
Before moving to the analysis of the crack propagation, it would be helpful to con-

sider how the shape of the grains and their dimension may affect the results.

Grain Boundaries Shape

The assumption made in this section is to consider rectangular grain boundaries instead
of the usual smooth shape. The effects of this hypothesis can be evaluated consider-
ing 2 models: the first with smooth grains and the other with squared grains. Both
models contained the same number of grains (about 120), with the same orientations.
Those two models were simulated under a monotonic loading to capture any possible
difference.

Figure 6.13: Randomly generated polycrystal: evaluation of the implication of considering

squared grain boundaries. (a) orientations map for grains with smooth boundaries; (b)

strain field localization for the model considering smooth grain boundaries; (c) orientations

map for grains with squared boundaries; (d) strain field localization for the model consid-

ering squared grain boundaries; (e) comparison of the overall behaviour of the two types of

grain models.

Fig. 6.13 shows the two models and the results obtained by their simulations. It
can be noticed that both produce the same results not only on the overall behaviour of
the tensile test, but also in strain localization. In fact no difference can be detected in
the actives grains or in stain concentrations. These results led to the conclusions that
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the assumption of considering squared grains is acceptable and can be applied in the
following analyses.

Grains Dimensions

The last part of this section aims to evaluate if the dimension of the grains may have an
effect on the predicted tensile curve. The models investigated till now were considering
an average grain size of 60 µm, the new model was created reducing the dimension to
an average grain size of 40 µm.

Figure 6.14: Randomly generated polycrystal: grain size reduction effects. (a) grains map; (b)

strain field localization; (c) comparison between the overall behaviour of the simulations

and the experiment.

Fig. 6.14-a shows the new map of grains, modeled over a surface of 1 mm by
1.2 mm (as the previous models), which consists of 60570 hexahedral linear elements
distributed over 5 layers in the thickness (the thickness is 80 µm). Different grain
orientations were considered, 3 in this case, and the results obtained simulating the
tensile test are summarized in Fig. 6.14-b,c. From the results it was observed that the
overall behaviour is well captured, as it was in Fig. 6.12 for the models with average
grain size of 60 µm.

Finally for crack propagation analysis both grain sizes models will be considered,
to see if they may have any effect in predicting crack opening levels.

6.3.2 Crack Propagation In Random Polycrystalline Structures

The simulation of crack propagation in a random generated polycrystalline matrix un-
der mode I loading, required some assumptions:

1. the specimens were modeled with a double symmetry, so only one quarter of the
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real specimen was modeled, and the crack propagates along a symmetry plane;

2. the grains were extended in the thickness as columnar;

3. the presence of the crack localizes the plastic deformation in a small area ahead
of the crack tip, meaning that only that area can be modeled with elements de-
scribed by CP constitutive equation. The remaining volume of the specimen was
modeled as purely elastic with the only aim to transfer the displacement field at
the boundary of the grains region;

4. the region containing the grains was located far from the notch, with the crack
that starts to propagate from the boundary of the CP area: this allow to neglect
the effects of the notch and its inclusion in the geometry of the model can be
avoided.

Crack advancement 

Crack advancement 

y!

z!
x!

z symmetry!

y symmetry!

Applied Load!

Figure 6.15: Crack propagation model for random generated polycrystalline structure: model

loading condition and symmetry constraint; identification of the volume modeled with CP

type elements; definition of the two possible polycrystalline maps where the crack propa-

gates.

Following these simplifications, the model of Fig. 6.15 was created: in this figure
the two adopted maps for the simulation are shown. As it can be seen the areas which
contain the grains have dimensions of 0.6 mm by 1 mm, where the first counts 182
grains and the second one 425 grains. The crack starts with a length of 1.75 mm and
advances with node release technique every two cycles by steps of 10 µm, which is the
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dimension of the elements along the crack front (see section 5.2 for more details on
node release technique). The crack was propagated till reaching the final length of 2.23
mm. The evaluation of the COD was made at three discrete crack length: 1.84 mm,
1.97 mm and 2.23 mm.

Table 6.3: Results of the polycrystalline crack growth simulations in terms of σop as a function

of: loading condition, model and crack length.

Loading condition Model Opening for a = 1.84 mm Opening for a = 1.97 mm Opening for a = 2.23 mm

∆σ = 140 MPa, R = 0.1 182 grains - angle set 1 59 MPa 68.5 MPa 67.8 MPa

∆σ = 140 MPa, R = 0.1 182 grains - angle set 2 49 MPa 66.4 MPa 60 MPa

∆σ = 140 MPa, R = 0.1 182 grains - angle set 3 47.1 MPa 73.4 MPa 61.8 MPa

∆σ = 140 MPa, R = 0.1 425 grains - angle set 1 46.7 MPa 66.1 MPa 59.3 MPa

∆σ = 180 MPa, R = 0.1 182 grains - angle set 1 56 MPa 82.4 MPa 79.6 MPa

∆σ = 240 MPa, R = -1 182 grains - angle set 1 72.2 MPa 79.7 MPa 79.2 MPa

As shown in Tab. 6.1, the experiments on polycrystals were performed with two
loading ratios and three stress ranges: 1) ∆σ = 140 MPa at R = 0.1; 2) ∆σ = 180 MPa
at R = 0.1; 3) ∆σ = 240 MPa at R = -1. Simulations were done to have predictions
for the three cases and the results in terms of opening stress value (σop) are registered
for the three crack lengths in Tab. 6.3. For the first loading condition, four simulations
were performed: 3 with the model containing 182 grains and 1 with the one containing
425 grains. Since the results of this four simulations were close enough, it was possible
to assume the possibility to perform the analysis at the 2 remaining load levels with the
model with bigger grains. This justifies the single values for the second and the third
loading condition in Tab. 6.3.

Considering now the mean values for each level, the stress reduction factor U can
be estimated as 0.68 for loading case 1, 0.71 for case 2 and 0.34 for case 3. These
three constant values can be compared with the experimental results, this comparison
is shown in Fig. 6.16. The outline of this figure is that the models were able to capture
the experimental results even without exactly reproducing the local microstructures.

Further details on the simulations can be obtained considering stresses and strains
localization. Fig. 6.17-a,b show an example of the residual strain fields at the end of
crack propagation for both small and big grains: it is possible to observe that along
crack flanks there is a no uniform accumulation, strains concentrate on the active slip
planes over several grains. Then Fig. 6.17-c,d represent the stress field at the end
of the simulation, showing the extension of the plastic wake that generated from the
2.23 mm crack propagation. Those two results have no direct correspondence with the
experiments, since real grains geometry and orientations are unknown.

The models considered till here rely on the adopted CP code, to establish a com-
parison with simulations that adopt established material constitutive equations, the

91



Chapter 6. Fatigue Crack Growth In Polycrystalline Medium

a [mm]

1 1.5 2 2.5 3

U
 =

 ∆
σ

e
ff
 /

 ∆
σ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EXP - ∆σ = 140 MPa - R=0.1

EXP - ∆σ = 180 MPa - R=0.1

EXP - ∆σ = 240 MPa - R=-1

CP - ∆σ = 140 MPa - R=0.1

CP - ∆σ = 180 MPa - R=0.1

CP - ∆σ = 240 MPa - R=-1

Figure 6.16: Polycrystalline medium: comparison between the experimental opening level and

those predicted by the simulations.

(a) (b)

(c) (d)

Figure 6.17: Residual strains and stresses after crack propagation in randomly generated poly-

crystals. Model with 182 grains: (a) strain field, (c) stress field. Model with 425 grains: (b)

strain field, (d) stress field.
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ABAQUS plasticity model was taken into account [112]. The parameters were esti-
mated from LCF tests performed at various ∆ε and load ratios, obtaining the constants
of Tab. 6.4: only the kinematic parameters were taken into account avoiding the def-
inition of the cyclic hardening parameters, doing so the stabilized hysteresis cycle is
immediately reached.

Table 6.4: Parameters for ABAQUS combined plasticity model.

E [MPa] ν σ|0 C1 [MPa] γ1 C2 [MPa] γ2

200470 0.3 179 323959 5000 65654 1000

C3 [MPa] γ3 C4 [MPa] γ4 Q∞ [MPa] b

64904 333 9938 1 0 0
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Figure 6.18: validation of the parameters of Tab. 6.4 in comparison with experimental LCF

stabilized cycles for: (a) εa = 0.75% at R = -1 and (b) εa = 0.5% at R = 0.

Fig. 6.18 shows the results of the parameters identification with simulations of the
stabilized cycles for two loading conditions (εa = 0.75% at R = -1 and εa = 0.5% at
R = 0) considering the model as a cubic RVE of 1000 hexahedral linear elements, the
load was applied as a cyclic displacement. To simulate crack propagation the same
geometry was adopted of the previous models (see Fig. 6.15) under the same loading
and constraint conditions. In Fig. 6.19 the opening levels are registered obtained for
the three loadings and the map of the residual strains at the end of the propagation for
the ∆σ = 140 MPa and R = 0.1 case. The opening values (in terms of U) predicted by
ABAQUS are higher if compared with the crystal plasticity ones. This can be attributed
to the residual strain localizations which for the grains occur on critical planes while in
the other model is homogeneously distributed along the crack flank.
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Figure 6.19: Comparison between the CP estimated values and the ABAQUS model ones: (a)

Crack opening prediction; (b-c) comparison between the residual strain fields, (b) CP and

(c) ABAQUS.

6.4 Conclusions

This chapter applied crystal plasticity code at first to predict the extension of the resid-
ual plastic zone in presence of a non-propagating crack and then to estimate the crack
opening levels with a fatigue crack growth simulation. The results of the quasi-static
simulation showed a good agreement with the experiment proving that the crystal plas-
ticity code is able to describe the strain localization across a wide number of grains in
presence of a singularity like a crack. It also pointed out that some of the assumptions
in constructing the model are acceptable: the definition of a crystal plasticity volume
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embedded in an elastic matrix; the extension of the grains as columnar in the thickness.
The same assumptions were considered for the crack growth model.

The construction of the crack propagation model required at first the identification
of new parameters. The adoption of random generated structures allowed the identifi-
cation of crystal plasticity model parameters. In addition the hypothesis of modeling
the grains with squared boundaries was proven to be acceptable. For the crack growth
simulations the comparison with the experiments was possible only in terms of crack
opening levels, since the adopted crystals structures were randomly generated. The re-
sults showed an excellent agreement with the tests, being able to predict the opening
under various loading conditions.

The last comparison is between the predicted opening levels for single crystal and
polycrystal. The single crystal results, under loading condition of ∆σ = 133 MPa and
R = 0.05, predicted a stress reduction factor U = 0.85. The polycrystal results, for the
closest loading condition (∆σ = 140 MPa and R = 0.1), predicted a stress reduction
factor U = 0.68. These results implies that in polycrystals the crack stays closed for an
higher portion of the loading cycle.
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CHAPTER7
Concluding Remarks

The continuous need to improve the knowledge on material behaviour and provide
more reliable models to correctly predict stresses and deformations inside a compo-
nent, requires the adoption of numerical models along experimental procedures. This
work presented the adoption of an open source crystal plasticity finite element code
(Warp3D) to the study of a Ni-based super-alloy, Haynes 230. Its predictions were
compared with the results coming from DIC in the study of phenomena at different
length scales.

Chapter 3 described the first procedure adopted in estimating CP model parameters,
starting from single crystal tests and then applying them to a polycrystalline simula-
tion. The results obtained by the simulation of a 700oC tensile test revealed an ex-
cellent agreement between the overall behaviour of 3 polycrystalline models and the
experiment. As for the description of the strain field, the primary analyses had proven
a good agreement which was improved by the introduction of carbides inclusion in the
polycrystalline matrix.

Chapter 4 described the construction of a model to predict ratcheting in a polycrys-
talline medium. In this chapter a second procedure adopted in estimating the crystal
plasticity parameters was also illustrated, which relies in the analysis of a polycrys-
talline tensile test conducted at room temperature. Then, with the new set of parame-
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ters, the attention moved to the study of the material behaviour under repeated loads.
The prediction of the localization of strains for a 10 cycles ratcheting test revealed a
good agreement both in the identification of grains activation and in accumulation of
local deformations with increasing number of cycles.

Chapter 5 introduced the topic of fatigue crack growth simulations focusing on sin-
gle crystals specimens. The results were able to accurately describe the strain localiza-
tion and the displacement field at the crack tip. In addition the evaluation of the crack
opening provided an excellent agreement with experimental measurements. Finally, the
application of the results to a model for crack propagation based on the effective stress
intensity factor range showed that fatigue crack growth in single crystal may be derived
starting from polycrystalline data.

Chapter 6 provided a first assessment on the description of the strain field deriving
from a quasi-static crack in a polycrystalline medium. This simulation provided good
results in identifying the extension of the plastic zone. It also pointed out that for a most
accurate description of the local behaviour a correct knowledge of the crack shape is
needed. Then numerical simulations of fatigue crack growth in polycrystalline speci-
mens were done considering random generated structures. At first the third approach
to identify crystal plasticity material parameters was investigated: the fitting of the ex-
perimental tensile curve was done by means of simulations of random generated grains
structures. Following, a model for crack growth in a polycrystalline media was imple-
mented. The comparison between the crack opening levels measured experimentally
and the numerical solution showed excellent prediction capabilities.

Further developments, starting from the obtained results, could be in the applica-
tion of the crystal plasticity simulations to crack nucleation models based on energetic
approach. Then, once a crack is detected, the crack propagation can be studied deriv-
ing its driving forces from the simulations (the models had proven high capabilities in
predicting opening levels).

Other improvements can be related to the modeling features, most of the presented
models rely on the definition of columnar grains along the thickness. The definition
of real grain shapes in the thickness may provide improvements in the identification of
strain localization. If the real grains shape can’t be modeled, statistical definition of the
grains, starting from the superficial EBSD, may be implemented, such modeling has
already proven good capabilities in [113].
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