
i
i

“thesis” — 2017/1/23 — 0:17 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ENABLING POWER-AWARENESS FOR

MULTI-TENANT SYSTEMS

Doctoral Dissertation of:
Matteo Ferroni

Supervisor:
Prof. Marco Domenico Santambrogio
Tutor:
Prof. Donatella Sciuto
The Chair of the Doctoral Program:
Prof. Andrea Bonarini

2016 – Cycle XXIX

i
i

“thesis” — 2017/1/23 — 0:17 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page I — #3 i
i

i
i

i
i

Abstract

POWER consumption has become a major concern for almost every dig-
ital system: from the smallest embedded devices to the biggest data
centers, energy and power budgets are always constraining the per-

formance of the system. Moreover, the actual power consumption of these
systems is strongly affected by their current "working regime" (e.g., from
idle to heavy-load conditions, with all the shades in between), which de-
pends on the guest applications they host, as well as on the external interac-
tions these are subject to. It is then difficult to make accurate predictions on
the power consumed by the whole system over time, when it is subject to
constantly changing operating conditions: a self-aware and goal-oriented
approach to resource allocation may then improve the instantaneous per-
formance of the system, but still the definition of energy saving policies
remains not trivial as far as the system is not really able to learn from expe-
rience in real world scenarios.

In this context, this thesis proposes a holistic power modeling framework
that a wide range of energy and power constrained systems can use to pro-
file their energy and power consumption. Starting from the preliminary ex-
perience developed on power consumption models for mobile devices dur-
ing my M.Sc. thesis, I designed a general methodology that can be tailored
on the actual systems features, extracting a specific power model able to de-
scribe and predict the future behavior of the observed entity. This method-
ology is meant to be provided in an “as-a-service” fashion: at first, the
target system is instrumented to collect power metrics and workload statis-
tics in its real usage context; then, the collected measurements are sent to a

I

i
i

“thesis” — 2017/1/23 — 0:17 — page II — #4 i
i

i
i

i
i

remote server, where data is processed using well known techniques (e.g.,
Principal Components Analysis, Markov Decision Chains, ARX models,
etc.); finally, an accurate power model is built as a function of the metrics
monitored on the instrumented system. The generalized approach has been
validated in the context of power consumption models for multi-tenant vir-
tualized infrastructures, outperforming results from the state of the art.

Finally, the experience developed on power consumption models for
server infrastructures led me to the design of a power-aware and QoS-
aware orchestrator for multi-tenant systems. On the one hand, I propose
a performance-aware power capping orchestrator in a virtualized environ-
ment, that aims at maximizing performance under a power cap. On the
other hand, I bring the same concepts into a different approach to multi-
tenancy, i.e., containerization, thus moving the first steps towards power-
awareness for Docker containers orchestration, laying the basis for further
research work.

II

i
i

“thesis” — 2017/1/23 — 0:17 — page III — #5 i
i

i
i

i
i

Contents

1 Introduction 1
1.1 Context and problems definition 1
1.2 Proposed approach and requirements 3
1.3 Thesis outline: a journey towards power-awareness 5

2 Preliminary steps: power models for Android devices 9
2.1 Introduction . 9
2.2 Related work . 12

2.2.1 External measurements 12
2.2.2 Internal measurements 13
2.2.3 Energy-related variables observation 13

2.3 Problem definition . 15
2.4 The proposed methodology 18

2.4.1 Hardware model estimation 19
2.4.2 User model estimation 20
2.4.3 Discharge curves/traces prediction 21

2.5 Implementation . 22
2.6 Experimental results . 26

2.6.1 Power model estimation 26
2.6.2 Energy consumption of the mobile application 29

2.7 Final remarks . 33

3 Generalization: Model and Analysis of Resource Consumption (MARC) 35
3.1 Introduction . 35

III

i
i

“thesis” — 2017/1/23 — 0:17 — page IV — #6 i
i

i
i

i
i

Contents

3.2 The resource consumption problem 37
3.3 Methodology generalization 41

3.3.1 PHASE1: Data conditioning 43
3.3.2 PHASE2: Modeling 46
3.3.3 PHASE3: Simulation 51

3.4 Implementation . 55
3.4.1 Parallelism requirement 55
3.4.2 Distribution requirement 56
3.4.3 “As a service” requirement 56
3.4.4 Implementation details 58

3.5 Validation . 60
3.5.1 Simulator . 60
3.5.2 Regression testing: power models for Android devices 70

3.6 Final remarks . 71

4 Towards power-awareness for the Xen Hypervisor: virtual guests
monitoring 75
4.1 Introduction . 75
4.2 Proposed approach and requirements 77
4.3 Implementation . 78

4.3.1 Xen kernel instrumentation 79
4.3.2 XeMPower daemon 80
4.3.3 XeMPower command line interface 81

4.4 Use Case: per-domain CPU power attribution 81
4.5 Experimental results . 82

4.5.1 Experimental setup and test cases 83
4.5.2 Results and discussion 84

4.6 Related work . 85
4.7 Final remarks . 87

5 Modeling power consumption in multi-tenant virtualized systems 89
5.1 Introduction . 89
5.2 Motivational example . 91
5.3 Proposed methodology . 94

5.3.1 Overview . 94
5.3.2 System benchmarking 96
5.3.3 Working regimes identification 97
5.3.4 Working regimes classification 97
5.3.5 Power models generation 100

5.4 Experimental Evaluation 101

IV

i
i

“thesis” — 2017/1/23 — 0:17 — page V — #7 i
i

i
i

i
i

Contents

5.4.1 Objectives . 101
5.4.2 Experimental setup 103
5.4.3 Models and results generation 105

5.5 Experimental results . 105
5.5.1 Model performance 106
5.5.2 Model portability 109
5.5.3 Consolidation evaluation 110

5.6 Related work . 114
5.7 Final remarks . 115

6 Maximizing performance under a power cap: a hybrid hardware-
software approach 117
6.1 Introduction . 117
6.2 Related work . 118
6.3 System design and implementation 119

6.3.1 Observe . 121
6.3.2 Decide . 121
6.3.3 Act . 122

6.4 Experimental results . 124
6.5 Final remarks . 126

7 Moving forward: containerization, challenges and opportunities 129
7.1 Introduction . 129
7.2 Proposed methodology . 130

7.2.1 Resource control step 131
7.2.2 Resource partitioning step 133

7.3 Implementation . 135
7.3.1 Observe . 135
7.3.2 Decide . 135
7.3.3 Act . 137

7.4 Experimental results . 139
7.4.1 Power capping precision 140
7.4.2 Impact on the benchmarks performance 140

7.5 Final remarks . 141

8 Conclusion and future work 145

Bibliography 147

V

i
i

“thesis” — 2017/1/23 — 0:17 — page VI — #8 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 1 — #9 i
i

i
i

i
i

CHAPTER1
Introduction

1.1 Context and problems definition

Power consumption has become a major concern for almost every digital
system: from the smallest embedded devices to the biggest data centers,
energy and power budgets are always constraining the performance of the
system.

On the one hand, this is the case of battery-powered devices like smart-
phones and tablets: these have brought a disruptive change in the way we
work and live [31] [27], as they allow the user to surf the Web, take pic-
tures, track sport performance and health status using the same embedded
device. Unfortunately, their batteries have to be small and lightweight, as
the device has to be portable, but this of course constrains their potentials.
Moreover, once the hardware has been designed and produced to deal with
those constraints, any further energy optimization is left to the runtime,
from the firmware to the application, throughout the whole software stack.

On the other hand, power consumption remains an open issue also in
those contexts that do not involve batteries: for instance, data centers providers
aim to reduce it as much as possible to decrease operating costs and to im-
prove system reliability. Even though the performance-per-watt ratio has

1

i
i

“thesis” — 2017/1/23 — 0:17 — page 2 — #10 i
i

i
i

i
i

Chapter 1. Introduction

been constantly rising, the total power drawn is hardly decreasing and re-
cent trends suggest that the cost of the energy consumed by a server during
its lifetime will probably exceed the hardware cost in the near future [20].
Given the strong correlation with live operating costs, power consumption
consolidation through applications colocation and migration becomes crit-
ical for the Cloud Computing paradigm, which delivers computing services
as a utility in a “pay-as-you-go” manner [16].

These systems share an important characteristic: their actual power con-
sumption is strongly affected by their current “working regime”, from idle
to heavy-load conditions, with all the shades in between. This depends on
the guest applications they host, as well as on the external interactions these
are subject to.

In the case of a mobile device, its usage is often spiky (e.g., check
emails, make a fast phone call, quickly take a picture, etc. [52]) and its
battery is highly influenced by its internal hardware state (e.g., which net-
work connectivity interface is turned on, which sensors are being moni-
tored and at which sampling frequency, etc.) and by external conditions
(e.g., wireless network signal strength in a certain location [32]). More-
over, we can not disregard the user’s behavior, as extensively discussed in
the literature [89, 151].

For what concern data centers, virtualization allows multiple tenant ap-
plications to share physical resources while fulfilling needs for Quality of
Service (QoS), security, and strong isolation [10, 99, 141]. It provides a
clean separation of software development concerns from the underlying
hardware platform, fostering heterogeneity from both the virtual tenants
and the underlying infrastructure. On the one hand, virtual tenants may
be intrinsically different from one another due to different workload lim-
itations (i.e., they can be memory-bound, I/O-bound and/or CPU-bound)
and evolving load patterns (e.g., algorithmic phases). On the other hand,
each physical host may exhibit different performance and power charac-
teristics from other hosts (even supposedly identical ones), given the same
configuration of tenants. It is easy to see how a virtualization infrastructure
requires sophisticated approaches to resource allocation and accounting, a
requirement that can quickly become intractable as the number of virtual
tenants per host increases [140].

Even though these use cases are quite different from multiple perspec-
tives (e.g., computational purposes, domain fields, target users and so on),
it is easy to notice what they have in common: they need to deal with (1)
hardware heterogeneity, (2) software multi-tenancy and (3) input variability
over time. Given this context, it is difficult to make accurate predictions on

2

i
i

“thesis” — 2017/1/23 — 0:17 — page 3 — #11 i
i

i
i

i
i

1.2. Proposed approach and requirements

the power consumed by the whole system over time, as it is subject to con-
stantly changing operating conditions: under this perspective, any attempt
to optimize these system then becomes far from trivial.

The aforementioned scenarios will be extensively discussed throughout
this thesis work, addressing the following two questions:

A. how much power is a system going to consume, given certain working
conditions?

B. is it possible to control a system to consume less power, still satisfying
its functional requirements?

An important aspect we need to face is the fact that heterogeneity, multi-
tenancy and time variability make a comprehensive profiling of these sys-
tems unfeasible: in fact, it is not reasonable to explore all the possible sys-
tem’s “working regimes” before the final deployment of the system, given
the huge number of hardware features available, the possible combination
of concurrently running application, together with their input fluctuations.

However, we can tackle these uncertainties starting from the following
simple but significant assumption: the system will probably behave in the
future as it did in the past. This suggests that the system can learn from ex-
perience, trying to improve its performance in its real working conditions,
as presented in the next sections.

1.2 Proposed approach and requirements

A preliminary analysis of the context leads to the following outcomes:

A. the best strategy is to observe the behavior of the system at runtime,
during its real working conditions;

B. we can then learn from the experience which are the variables that
mostly affect the system’s power consumption;

C. this knowledge can then be used to decide what to do and actuate the
best strategy with respect to performance goals and power constraints.

These steps must be performed in automation throughout the whole lifetime
of the system.

In literature, this approach is known with the name of (O)bserve-(D)ecide-
(A)ct (ODA) [80] control loop: here, we introduce an additional (L)earn-
ing phase to decouple the knowledge learnt (i.e., self-awareness) and the
decision phase (i.e., self-expression). The architecture style can then be

3

i
i

“thesis” — 2017/1/23 — 0:17 — page 4 — #12 i
i

i
i

i
i

Chapter 1. Introduction

described as an OLDA control loop, as suggested in other works as [54].
The same approach is often called MAPE-K [93], where the (K)nowledge
component is shared by the (M)onitor, (A)nalyser, (P)lanner and (E)xecutor
components. The O and A components in ODA are equivalent to M and E
components in MAPE-K respectively, while analysis and planning tasks are
subsumed in the Decide component. As these formulations are equivalent,
the next chapters will refer to one or the other indistinctly.

In this thesis work, I want to exploit this approach to enable power-
awareness for a wide range of autonomous agents, relying on the following:

definition: a system is power-aware when it is aware of how much
power a certain behavior will be consuming, given a certain work-
ing condition.

On the one hand, in the context of battery-powered systems like smart-
phones and tablets, it is important to predict how long the battery will last
in order to avoid energy waste and achieve both short-term objectives (e.g.,
find the fastest route while driving to the office in the morning) and long-
run ones (e.g., make an important phone calls in the evening). On the other
hand, in a multi-tenant virtualized server, it may be important to precisely
estimate how much each tenant is contributing to the actual system power
consumption, in order to limit it, still guaranteeing the performance require-
ments of the other tenants.

Given the research opportunities in the field, this work proposes a holis-
tic power modeling framework that a wide range of energy and power con-
strained systems can use to learn and predict their energy and power con-
sumption. I designed a general methodology that can be tailored on the
actual systems features, extracting a specific power model able to describe
and predict the future behavior of the observed entity.

This methodology is meant to be provided in an as-a-service fashion: at
first, the target system is instrumented to collect power metrics and work-
load statistics in its real usage context (Observe phase); then, the collected
measurements are sent to a remote server, where data is processed using
well known techniques (e.g., Principal Components Analysis, Markov De-
cision Chains, ARX models, etc., Learning phase); finally, an accurate
power model is built as a function of the metrics monitored on the instru-
mented system. This information will support a power-aware Operating
System (OS) in the estimation of the best tradeoff between global perfor-
mance and power consumption (Decide and Act phases), still providing the
required QoS to the guests applications towards an adaptive and power-
aware multi-tenant system.

Each phase has its own requirements and trade-offs:

4

i
i

“thesis” — 2017/1/23 — 0:17 — page 5 — #13 i
i

i
i

i
i

1.3. Thesis outline: a journey towards power-awareness

A. accuracy and precision are strong requirements when monitoring a
system in its real working conditions; however, the overhead intro-
duced should be as low as possible;

B. the analysis performed on the acquired data must produce precise
models of its behavior, but the computation required to build the model
should not be in charge of the system itself; this is the reason why we
aim at defining a model-a-service approach, thus leaving the burden
of models’ estimations to a more specialized and efficient third-party;

C. finally, the actuation on the system’s knobs should be effective, thus
leading to a more efficient system configuration, still considering the
performance of the tenant applications.

These requirements will be discussed throughout the whole thesis, while
the next section gives an overview of the entire work.

1.3 Thesis outline: a journey towards power-awareness

I moved my first steps in the field of power-aware systems with my M.Sc.
thesis: it consisted in the MPower project, a mobile application able to pre-
dict how long the battery of a smartphone is going to last, given the current
hardware configuration of the device (i.e., CPU utilization, LCD brightness,
WiFi state, and so on) [27,58,120]. Chapter 2 gives a brief overview of the
previous work, as it is necessary to lay the basis for this thesis, then focus-
ing on the novel contributions developed during my first year of Ph.D.: (1)
the formal description of the improvements on the power model estimation
methodology for mobile device, taking into account both the device mod-
eling and the user behavior; (2) an extensive experimental campaign, that
allowed to compare the predictions obtained by the MPower application
with the ones provided by the Android L OS; (3) a set of “in–lab” experi-
mental tests to assess the negligible overhead introduced by the monitoring
application.

Chapter 3 discusses how it is possible to generalize the same concepts
towards a comprehensive and general methodology: the observed system
does not need to be a smartphone but it could be a generic system, i.e., an
“agent”, that wants to become power-aware or, in a wider sense, “resource-
aware”. The generalized data-driven methodology for resource consump-
tion modeling has then been implemented into MARC, a Cloud-service
platform designed to Model and Analyze Resource Consumption trends
(MARC), supporting a “Model-as-a-Service” paradigm. In order to validate

5

i
i

“thesis” — 2017/1/23 — 0:17 — page 6 — #14 i
i

i
i

i
i

Chapter 1. Introduction

the proposed methodology, a custom simulator has been set up to generate
a wide spectrum of controlled resource consumption traces: this allowed to
verify the correctness of the framework from a general and comprehensive
point of view. Moreover, regression tests show how it is able to reproduce
the same precision of the results obtained in Chapter 2, thus showing how
the MPower methodology has been generalized and abstracted consistently.
Then, the following chapters show how this generalization allows to bring
power-awareness into a completely different context: power consumption
models for virtual machines in a multi-tenant virtualized system.

As already discussed in this chapter, the first step is to observe the be-
havior of the system at runtime, during its real working conditions: Chap-
ter 4 describes the design and the implementation that lead to XeMPower,
a lightweight monitoring solution for the Xen hypervisor. It precisely ac-
counts hardware events to guest workloads, enabling attribution of CPU
power consumption to individual tenants. Results show that XeMPower in-
troduces negligible overhead in power consumption, aiming to be a refer-
ence design to monitor power-aware virtualized environments.

The approach to power consumption attribution presented in Chapter 4
is trivial, as it represents a mere example to show the tool’s potential. Chap-
ter 5 then presents how to improve power-awareness, using XeMPower and
MARC to build data-driven power consumption models for multi-tenant vir-
tualized infrastructures. Results show a modeling relative error of around
2% on average, and under 4% in almost all the cases and on different work-
load classes, outperforming previous research in the field. Moreover, the
chapter discusses model portability across similar architectures, showing
how they can be also used to evaluate tenants colocation in a multi-tenant
infrastructure.

Up to now, we just focused on power modeling. However, in order
to thoroughly explore the topic, workloads’ performances needs to be in-
cluded in the loop. The last two chapters will then explore how a power-
aware system should plan future decisions and execute the best actions with
respect to performance goals and power constraints, i.e., the last two steps
of the OLDA control loop introduced in Section 1.2.

Chapter 6 presents XeMPUPiL, a performance-aware power capping
orchestrator for the Xen hypervisor: it implements a hybrid hardware-
software power capping solution, based on the PUPiL [163] control loop,
that aims at maximizing the performance of a workload under a power cap.
XeMPUPiL has been validated with just one guest application running at
a time: this condition may not be very common in a real production envi-
ronment, where multiple guests may be hosted on the same node, each one

6

i
i

“thesis” — 2017/1/23 — 0:17 — page 7 — #15 i
i

i
i

i
i

1.3. Thesis outline: a journey towards power-awareness

with different performance requirements.
In order to tackle these issues, a smart resource manager must be put in

place to deal with resource allocation, power constraints and performance
requirements. These issues are addressed in Chapter 7, that discusses pre-
liminary results and opportunities of containerization, i.e., a different ap-
proach to multi-tenancy: the proposed solution is called DockerCap and
represents the first step towards power-awareness and QoS-awareness for
Docker container orchestration, laying the basis for further research work.
These and other future works are discussed in Chapter 8, thus concluding
this thesis work.

Most of this work has been part of a collaboration between Politecnico
di Milano and the University of California, Berkeley (CA, USA), and it has
been supported by a HiPEAC collaboration grant that I won on my second
year of Ph.D.

7

i
i

“thesis” — 2017/1/23 — 0:17 — page 8 — #16 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 9 — #17 i
i

i
i

i
i

CHAPTER2
Preliminary steps: power models for

Android devices

2.1 Introduction

Smartphones and tablets have brought a disruptive change in the way we
work and live [31] [27]: we can now surf the Web, take pictures, track
sport performance and health status using the same embedded device. Even
though dozens of brand new devices are released every year [64], all of
them have to deal with a limited energy budget: their batteries have to be
small and lightweight, as the device has to be portable, but this of course
constrains their capacity. Once the hardware has been designed and pro-
duced to deal with those constraints, any further energy optimization is
left to the developers, from the firmware to the application, throughout the
whole software stack.

Many energy saving solutions have been explored in the field: some
of them involve the display (e.g., dimming the screen brightness, reduc-
ing the frame rate or the resolution, etc.), while others involve the network
connectivity (e.g., limiting the amount of background data transmitted) or
the applications running (e.g., revoking wakelocks for background applica-

9

i
i

“thesis” — 2017/1/23 — 0:17 — page 10 — #18 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

tions), and so on. However, all these solutions often set some constraints on
the functionalities of the system, thus introducing a new important trade-
off between energy optimization and the features provided to the user, the
last stakeholder that comes into play: from her point of view, the device
should not save energy regardless the context, but it has to provide all the
functionalities she needs until she can recharge its battery again. This is the
reason why it is important to know exactly how the battery drains given a
certain usage of the device, in order to save energy with respect to both the
users current needs and final goals: therefore, an accurate power model of
the device is fundamental to predict its energy behavior over time.

Many attempts have been made in the field, trying to create accurate
power models describing the discharge level as a function of the time,
and they all have to deal with the tradeoff between the precision and the
flexibility of the power modeling methodology. On the one hand, most of
them provides solutions for a controlled environment and for a single de-
vice [14, 30, 128, 135, 143, 165]. Therefore, they hardly generalize to the
wide variety of devices currently available on the Market. On the other
hand, it is possible to provide a more flexible methodology, performing the
estimations on the device itself in its real world condition: an interesting
contribution is provided by Google within the last Android release, code-
name Lollipop, as they introduced a prediction of the battery lifetime given
the current level of charge and the recent activity of the smartphone. These
prediction may be accurate under the assumption that the system will be-
have in the same way as it did in the last short period of time, but it is not
the case of a mobile device: its usage is often spiky (e.g., check emails,
make a fast phone call, quickly take a picture, etc. [52]) and its battery is
highly influenced by its internal hardware state (e.g., which network con-
nectivity interface is turned on, which sensors are being monitored and at
which sampling frequency, etc.) and by external conditions (e.g., wireless
network signal strength in a certain location [32]). Other solutions take into
account the user’s behavior [89, 151], using real data to build a customized
power model. These solutions overcome the single device modeling limi-
tation and are more flexible, but they do not consider device specific power
consumption (for instance, different devices may behave differently, even
if they are used by the same person).

In order to mitigate this tradeoff, this chapter presents a data-driven
methodology for power modeling in the mobile devices’ context, able to
provide a good precision in prediction while it generalizes to a wide range
of devices. This technique is able to both estimate the hardware compo-
nents power consumption and model the users’ behavior by basing on the

10

i
i

“thesis” — 2017/1/23 — 0:17 — page 11 — #19 i
i

i
i

i
i

2.1. Introduction

measurements coming from sensors embedded in the device’s in its real
usage context to learn how its battery behaves under different conditions.
Since the model is built directly on data coming from each specific device,
it guarantees a high level flexibility w.r.t. new devices and new OS versions
and may apply to the burden of devices currently available on the market.

To validate the proposed methodology, I implemented MPower, a real
system supporting a huge variety of devices running the Android OS, as
it provides data through a set of system APIs common to all release and
devices. The system is composed of a mobile application, implementing a
low power logger, and a remote server, where the main computations are
offloaded: this is done not to consume additional power on the devices, as
suggested by the common cloud based Software-as-a-Service patterns). 1

The proposed methodology aims to be as little invasive as possible, both for
the user and the device. Finally, the system makes use of these power mod-
els to make predictions of the Time-To-Live (TTL) (in terms of minutes,
not just in term of remaining battery percentage) of every observed device
under certain conditions: this is an important information for the user, as it
allows her to choose how to use her device, with respect to her current and
future needs.

This chapter summarizes the most recent and final developments of the
ideas presented in [27,58,120]. In [27] we just presented the concept at the
beginning of its development, while in [120] we described the preliminary
results obtained on a limited set of devices and in [58] we presented the
part of the methodology taking into account only the device modeling. The
novel contributions presented in this chapter are:

• the formal description of the improvement of the power model estima-
tion methodology for mobile device, taking into account both the de-
vice modeling and the user behavior, by means of a set of parametrized
linear model and an Hidden Markov Models (HMM) techniques, re-
spectively;

• an extensive experimental campaign performed on 600 devices data
coming from the aforementioned Android App, from which the model
was estimated and where we asses its effectiveness compared with the
one embedded in the Android L OS release;

• “in–lab” tests have been performed to show how the implemented log-
ging application does not affect the energy behavior of the observed
mobile devices.

1The application is available for free on the Google Play Store (https://play.google.com/store/
apps/details?id=org.morphone.mpower)

11

https://play.google.com/store/apps/ details?id=org.morphone.mpower
https://play.google.com/store/apps/ details?id=org.morphone.mpower

i
i

“thesis” — 2017/1/23 — 0:17 — page 12 — #20 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

The chapter is structured as follows: Section 2.2 provides the analysis
of the state of the art about power models for mobile devices; Section 2.3
gives a bird’s-eye view of the proposed methodology, stating some funda-
mental concepts; Section 2.4 presents the theoretical background on which
the power model is based; Section 2.5 discusses the most remarkable im-
plementation details of the developed logging system; Section 2.6 presents
results on the accuracy of the produced power models and on the efficiency
of the logging application; Section 2.7 provides some final remarks.

2.2 Related work

Several power modeling methodologies for mobile devices have been pro-
posed in literature and used as a support for smart power management sys-
tems or to compare power performances of different devices. In this sec-
tion, I provide a brief overview of the most noteworthy approaches, while
an interested reader may find a thorough discussion in [57].

I propose a categorization based on the approach used to observe the sys-
tem, since it affects different features of the model (e.g., the modeling the-
ory that can be exploited, the level of detail achievable, the degree of adap-
tivity to changes in the working conditions and over time, etc.). I identified
three big families of methodologies that build power models: using ex-
ternal measurement (Section 2.2.1), internal measurement (Section 2.2.2)
or by relying on power-related variables available through software APIs
(Section 2.2.3).

2.2.1 External measurements

External measurements provide an accurate inspection of the mobile device
with predetermined and controlled conditions [14, 30, 135, 143]. Usually,
they are performed by replacing the battery with an external power supply
able to profile the energy consumption. Despite the precision of the mea-
surements (generally, the estimation error is under 2%), the main problem
with this method is the lack of flexibility. In fact nowadays there is a great
variety of mobile devices, each one of them with a different hardware/-
software configuration, thus it is unpractical to generate an offline power
consumption model for each of them [110]. Moreover, this analysis does
not evolve with the running life of the device. On the other hand, these
kind studies help understanding the breakdown structure of mobile de-
vices power consumption. For instance, from the pioneering studies in [30]
emerged that the majority of power consumption can be attributed to the
GSM module and the display (including the LCD panel and touchscreen),

12

i
i

“thesis” — 2017/1/23 — 0:17 — page 13 — #21 i
i

i
i

i
i

2.2. Related work

the graphics accelerator/driver, and the screen backlight, while other sub-
systems showed negligible power consumption.

2.2.2 Internal measurements

The second approach takes into account measurements provided by inter-
faces already available on a specific device or OS, e.g., the Advanced Con-
figuration and Power Interface (ACPI) or the Nokia energy profiler. It is
slightly more flexible than the first one [48,69,97,155] and allows to gather
precise information about the battery status (e.g., voltage, current and tem-
perature), whose precision is determined only by the available internal sen-
sors sensitivity. However, these models are not fully portable: not every
Android-powered devices can take advantage of these power models, be-
cause they may be unable to provide the required low level physical sen-
sors, e.g., most of the Motorola and Samsung devices do not provide current
and temperature sensors. Nonetheless, one of the most famous work in this
area is PowerBooter [164], where each component is analyzed separately,
using external tools. Interestingly, their studies concluded that the power
consumption of major component affects the system independently, e.g.,
the device power consumption when 3G and WiFi are active is the sum of
3G and WiFi contributions. They also noticed that different devices does
not share the same power model, which justifies the development of device-
customized power models. Their method was modified to be able to create
a power model based on data coming from sensors within each device and
the results indicate that the power model built with PowerBooter is accu-
rate within 4.1% of measured values for 10-second intervals. However, this
model presents two main limitations: it has to know beforehand the dis-
charge curve of each device and the application requires root privileges to
be run. With this second measurement methodology, it is possible to obtain
models with error from the 5% [164] to the 10% [155].

2.2.3 Energy-related variables observation

The third possible approach (the one we adopted) relies on important energy-
related variables to estimate the battery discharge curve and the correspon-
dent Times-To-Live (TTLs). The energy related data are accessed by means
of OS Application Programming Interfaces (APIs), thus having some limi-
tations in terms of precision, but allowing these power models to be applied
on every device. Even if many works follows this paradigm, at the best of
my knowledge, the methodology proposed in this chapter is the first pub-
lic available methodology (and application) actually working on the large

13

i
i

“thesis” — 2017/1/23 — 0:17 — page 14 — #22 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

variety of the Android ecosystem.
Xiao et al. [157] present a methodology for building a system-level

power model, without requiring laboratory measurements. They develop
a linear regression model with non-negative coefficients, describing the
aggregate power consumption of the processors, the wireless network in-
terface and the display. They discovered that a linear regression model
is sufficient to model the relation between the variables they choose and
the power consumption. To estimate the model, they used five different
workloads: idle with different brightness levels, audio/video players, au-
dio/video recorders, file download/upload at different network data rates,
and data streaming. The power estimation, based on their model, exhibits
a median error of 2.62% in real mobile internet services. Moreover, they
provide a model independent from usage scenarios providing reasonable
accuracy for runtime estimation. Differently from the work proposed here,
in [157] a single device has been used to build the model. Moreover, they
built one single model for all the configurations, without taking into con-
sideration that the discharge curves presents are influenced by the device
configurations. Finally, they used measurements gathered in a controlled
environment: this is an important point since, as already mentioned, the
environment of mobile devices cannot be fairly reproduced in laboratory.

In [165], a context-aware system to accurately predict the battery life-
time is proposed. The energy consumption of each system component is
considered dependent on its operational state and the amount of time the
component remains in that state. As a consequence, the system power con-
sumption is modeled as the sum of the system components. Data about
the discharge rate were collected in several system contexts, where a single
system context is a combination of CPU utilization, LCD brightness, WiFi
state, IO idle rate and volume of transferred data. Multiple linear regression
technique was used to build a model able to describe the battery discharge
rate, based on the system component states. The system was tested using
only a single device, i.e., a HTC G1 smartphone, running the Android OS.
The generated model predicted the battery remaining lifetime with a rela-
tive error of 10%.

In [128], Pathak et al. propose a new power modeling approach based
on tracing system calls of the applications. Their scheme consists of a
Finite State Machine (FSM), to model the power states, and state transi-
tions. Some of the states have constant power consumption, to describe
non-utilization power consumption, while other states leverage a Linear
Regression (LR) model (the second major component of the model) to
capture the power consumption due to system calls generating workload.

14

i
i

“thesis” — 2017/1/23 — 0:17 — page 15 — #23 i
i

i
i

i
i

2.3. Problem definition

Moreover, a testing application is used to systematically uncover the FSM
transition rules. Tests were performed on a HTC Touch Pro and a HTC
TyTn 2, powered by Windows Mobile 6, and an HTC Magic running An-
droid. This new approach improves the accuracy of fine-grained energy
estimation compared to utilization-based model. Indeed, their model have
a 80th percentile error of less than 10% estimating the power consumption
over time of a generic application execution that lasted 50ms, while the
utilization-based model have an error that varies between 16% and 52%.
The whole application error, with 1 sec granularity, varies between 0.2%
and 3.6%, compared to the error 3.5-20.3% given by utilization-based mod-
els.

Finally, the last and most significant contribution is provided by Google,
that introduced a suite of enhancements to boost smartphones’ battery life
within the Android Lollipop release, developed in 2014.2 One of the most
anticipated features of this release was the ability of the operating system
to provide a prediction of how long a certain level of battery charge will
last, i.e., what we previously defined as TTL. An example of this feature is
provided in Figure 2.1. Even though other applications with the same goal
(i.e., TTL prediction) are available on the Google Play store [7, 8, 66, 131],
none of them provides information about its precision in the TTL estimation
or details about the modeling methodology.

On the contrary, we believe that the aforementioned feature of Android
Lollipop has been inspired by the already cited work of [164], then ex-
tended and made available inside the Android OS. As this approach is sim-
ilar to the one proposed in this thesis and it is the most recent and official
solution to the problem of power models for mobile devices, I decided to
consider the results provided by Android Lollipop as a baseline to compare
our methodology with. Nonetheless, I still want to stress that our system
provides more flexibility, as it is designed to work on all the available An-
droid devices, giving the possibility to support already existing devices, and
it is able to consider the users’ habits too, as discussed in the next sections.

2.3 Problem definition

As discussed in Section 2.2, the vast majority of the existing methodologies
makes use of measurements performed on a limited number of devices un-
der a controlled environment, thus leading to non extendible power model-
ing techniques. Conversely, this chapter aims at designing a system which:

2An exaustive description of the android lollipop release can be found at http://www.android.com/
versions/lollipop-5-0/

15

http://www.android.com/versions/lollipop-5-0/
http://www.android.com/versions/lollipop-5-0/

i
i

“thesis” — 2017/1/23 — 0:17 — page 16 — #24 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Figure 2.1: TTL prediction in Android Lollipop

• is able to estimate power models in the most flexible way while having
a reasonable precision for energy saving purposes;

• is able to adapt to the behavior of each different user;

• does not depend either on the mobile device model or OS;

• does not influence the power behavior of the device itself.

Most of the devices available on the market provide instantaneous infor-
mation about their state and the variable influencing their power discharge
by resorting to a set of built–in sensors. By relying on these data it is pos-
sible to monitor the power discharge of the device, as well as to adapt to
changes occurring on the hardware (e.g., caused by a degradation of the
battery or the physical components) or the user behavior (e.g., as soon as
she modifies her daily routine). Given a minimum amount of sensor, com-
mon to all devices, it is possible to gather these information to design a
general purpose methodology for power estimation. Thus the only assump-
tion required to develop the proposed methodology is the availability of a
set of features providing information on the power state and discharge of
the device. 3

3The choice of the set of feature considered is out of the scope of this chapter. While for applicative purposes
one can refer to [30] for the ones most influencing the power state of a device, for a more theoretical point of
view one can refer to [11].

16

i
i

“thesis” — 2017/1/23 — 0:17 — page 17 — #25 i
i

i
i

i
i

2.3. Problem definition

The problem of predicting the power discharge on a set of F mobile
devices is here formulated as the estimation of a set of unknown dynamic
processes {P1, . . . ,PF}, each of which is a dynamic process corresponding
to a single device. We assume to have a dataset coming from the each one
of the aforementioned dynamic process Pi:

ZN = {zt = (x(t), y(t))}t∈T

where x(t) is the set of the measurement provided by sensors at time t,
y(t) ∈ R is the energy discharge in a given time interval (t − 1, t), T =
{t1, . . . , tN} is the set of the time instant when samples are available and
N = |T | is the cardinality of the dataset. Starting from this dataset, we
want to estimate a predictive model for the power discharge of the device
which takes into account the hardware drain and user behavior.

We can logically distinguish among two different kind of measurements
x(t) available for power estimation purposes: the one which determines the
“working regime” of the device and controllable by the user/by the soft-
ware, and those which are related to the interaction of the device with the
environment, which can not be directly modified. Based on this distinction,
we introduce the following definition:

working regime: vector of the states of some of the device compo-
nents:

c = (c1, . . . , cS),

where c ∈ C ⊂ RS , S ∈ N is the dimension of the regime space C.

Intuitively, a working regime c gives information on the state of a set of
modules in the device. For instance, let us consider a very simplified device
with only three components: a screen, a CPU and a WiFi module; a working
regime is c1 = {screen = ON; cpu = 300MhZ; WiFi = OFF}, while another
one is c2 = {screen = ON; cpu = 200MhZ; WiFi = ON}.

All the other information is here considered as the exogenous input of
the dynamic process. Thus the dataset ZN can be seen as:

ZN = {zt = (c(t), u(t), y(t))}t∈T

where c(t) is the working regime at time instant t and u(t) = (u1(t), . . . , uH(t)) ∈
U ⊂ RH , being H ∈ N the dimension of the input space U . We would like
to remark that by relying on a data-driven methodology, we are able to
model only behaviors that has been observed in the past and explain only
dynamics in the input we observe in past. From now on, for sake of con-
cision, we will identify the set of working regimes C with the set of those

17

i
i

“thesis” — 2017/1/23 — 0:17 — page 18 — #26 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

working regimes which has been experienced in the past history of the de-
vice and the set of the input U as the set of those input which has been
experienced in the past. At last, for modeling purposes, we consider that
mild assumption that the input u generated by the real usage of the device
are persistently exciting.

2.4 The proposed methodology

In this section, we formalize the process of building a power model for mo-
bile device based on data ZN provided by single device. A twofold goal is
here required: estimate the model for each dynamic process Pi correspond-
ing to a working regime c and estimate the transition model of working
regimes c ∈ C. While the former model is taking into account the power
consumption of a specific hardware status of the device, the latter is able
to provide an approximation of the user behavior, since each change in the
working regime corresponds to an action of the user or the software.

The high level description of the procedure for the power model esti-
mation is provided in Algorithm 1. The process starts by dividing data
corresponding to each regime c, after that a Multiple-Input-Single-Output
(MISO) linear time-invariant model Mc is estimated for each working
regime and added to the overall model M. This way it is possible to ap-
proximate the energy behavior of the device. Since in the simulation of the
modelMc we are not provided with the values of the input u(t), we also
compute an estimated value for the input ūc in working regime c, which
will be used to approximate the real input. Once a model Mc has been
estimated for each working regime, we provide a model for how the work-
ing regimes are changing over time by means of a HMM H regulating the
transition among working regimes c ∈ C.

Algorithm 1 High level algorithm

Input: Dataset ZN ;
Output: Hardware model , Transition model Dataset ZN ;
Set M = ∅;
for regime c ∈ C do

Extract data Zc corresponding to c from ZN ;
Compute a MISO modelMc;
Compute the average value for the input ūc from Zc;
Add the new modelMc to M;

end for
Compute the transition modelH among working regimes c ∈ C by relying on data ZN ;

18

i
i

“thesis” — 2017/1/23 — 0:17 — page 19 — #27 i
i

i
i

i
i

2.4. The proposed methodology

2.4.1 Hardware model estimation

Here we consider the indexed set of the working regimes C = {c1, . . . , c|C|}
as the different modes Pc1 , . . . ,Pc|C| of a single process P . The decompo-
sition of the process P is here also motivated by the fact that we are willing
to remove, as much as possible, any source of unnecessary non-linearity
from the estimation procedure. Given a fixed working regime c̄ ∈ C, con-
sidered modelMc estimation either MISO linear time-invariant predictive
models [105], Extreme Learning Machines [82], Reservoir Computing Net-
works [87]. For sake of simplicity, we describe the procedure with the
prediction function of an Autoregressive with Exogenous variables (ARX)
model [105]:

ŷ(t|αc̄) = αT
c̄ (y(t−1), . . . , y(t−na), φ1(u(t−nk)), . . . , φnb(u(t−nk−nb+1))),

where na ∈ N and nb ∈ N are the orders for the autoregressive and ex-
ogenous part of the prediction function, respectively, nk ∈ N is the delay
order, φi : R→ R are base function on input u(t), αc̄ ∈ Rp is the parameter
vector estimated from the data and p = na + nb · H is the dimension of
the parameter vector. The introduction of the base function φi(·) allows to
manage the residual non-linearity present in each process Pc̄. We would
like to point out that, despite this model is nonlinear w.r.t the input u(t), it
is linear w.r.t. the parameters αc̄. This modeling choice is due to theoret-
ical results which allows to characterize the distribution of the parameter
vectors, thus providing a tool for model comparison both among different
working regimes and different devices. More specifically, by relying on the
system identification theory [105] we are able to say that, if we consider
equally long batches ZM to compute an estimate α̃c̄ of the optimal param-
eter vector αo in the family of the approximating functions, we have that
asymptotically (when M →∞):

√
MΣ−1

M (α̃c̄ − αo) ∼ N (0, Ip) (2.1)

where ΣM is a properly defined covariance matrix and Ip is the identity
matrix with order p. Since the parameter vector distribution is known, we
could perform statistical tests (in the specific multivariate normal distri-
bution hypothesis tests [117]) to compare different regimes and different
mobile devices.

We now want to focus on the problem of estimation of working regime c
parameter vector α̃c̄. A closed form solution to this problem is provided by
the Least Square method which, given a dataset Z c̄

M = {(u, y) ∈ ZN , z =
(c, u, y) s.t. c = c̄},M ∈ N, provides an estimation of the optimal (i.e., the

19

i
i

“thesis” — 2017/1/23 — 0:17 — page 20 — #28 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

one minimizing the mean square error) parameter vector as:

α̃c̄ =
(
ΦTΦ

)−1
Φy

where j-th row of the matrix Φ is Φj = (y(j− 1), . . . , y(j−na), φ1(u(j−
nk))φnb(u(j − nk − nb + 1))), j ∈ {t1, . . . , tM}, y = (y(t1), . . . , y(tM))
is the battery level and {t1, . . . , tM} are the time instants corresponding to
samples in ZM,c̄ defined as a sequence of M consecutive samples from ZN

where we have the same working regime c̄. The estimation of the matrix Φ
would then require the knowledge of M consecutive measurements, which
is hardly possible due to the non-consecutiveness of the data retrieved by
the logging system (this problem is better described in Section 2.5). How-
ever, once the rows of the features matrix Φj are computed from a sequence
of data ZL ⊂ ZM , with L ≥ max (na, nb+ nk), we may sample randomly
M of those rows to built the features matrix Φ. This procedure overcomes
the problem of missing data, since we only need batches of L�M consec-
utive data to build Φj . Indeed, by relying on the aforementioned procedure,
we are able to sample only well conditioned features matrix Φ, i.e., not
containing highly correlated input. 4 The adopted procedure allows to ob-
tain a set of parameter vectors {α̃(1)

c̄ , . . . , α̃
(Qc̄)
c̄ }, each of which has been

estimated on a M independent samples, thus following the distribution in
Equation (2.1). Finally, the parameters we use for estimation are computed
by taking the average over each parameter vectors set, i.e., for each working
regime c we have:

ᾱc =
1

Qc̄

Qc̄∑
q=1

α̃
(q)
c̄ .

2.4.2 User model estimation

Once a model is estimated for each working regime c ∈ C, the transi-
tion occurring during the daytime among different working regimes is here
modeled by means of a HMM modeling approach. A HMM is a statisti-
cal model represented by a tuple (S,A, λ), where S = s1, . . . , s|C| is the
set of the possible states, A is the transition matrix which specifies the
probability to move from one state to another, given the current state, i.e.,
[A]ij = aij = P (sj|si) and λ is the initial probability distribution over
the states set S. In our case, each state corresponds to a working regime
si = ci, ci ∈ C and the initial probability distribution is deterministic, since

4Other viable solutions could consider techniques based on Tikhonov regularization [147].

20

i
i

“thesis” — 2017/1/23 — 0:17 — page 21 — #29 i
i

i
i

i
i

2.4. The proposed methodology

we know the working regime cinit of the device at the beginning of each
prediction period.

To estimate the transition matrix A, we consider data from ZN and we
estimate the transition by computing:

nij = |{t s.t. (ci, u(t), y(t)) ∈ ZN ∧ (cj, u(t+ 1), y(t+ 1)) ∈ ZN}|

i.e., the number of times the working regime changes from ci to cj . The
estimated transition probabilities are:

aij =
nij∑|C|
i=1 nij

.

Thanks to the estimated HMM, we are able to simulate a sequence of work-
ing regimes G = (cinit, ci1 , . . .) of arbitrary length. The presented model
is valid as long as the Markovian assumption holds, i.e., if the transition
model is time-invariant (see [25] for more details). If it does not hold, we
should analyze the longest period where it holds and train a HMM for each
of these time periods, for instance by computing the transition matrix over
different time period and by checking their similarity 5

2.4.3 Discharge curves/traces prediction

After the estimation process has been performed, the model for the hard-
ware M, the user behavior model H and the mean inputs ūc are available
to perform a prediction of the discharge process on the device. We are then
able to simulate the entire discharge curve of a mobile device, given an
initial working regime cinit and an initial battery level yinit.

Once the parameter is computed, if we consider a working regime c we
may predict the battery level at a time instant t by starting from yinit and
iteratively using:

ŷ(t|αc̄) = αT
c̄ (y(t− 1), . . . , y(t− na), φ1(ū), . . . , φnb(ū))),

by resorting to the computed average input ū. However, this procedure
does not incorporate a mechanism to switch from a working regime to an-
other. In the following sections, the previously developed methodology is
extended to consider also this possibility.

At last, by relying on the estimated set of models M, we are able to
simulate the system in the state corresponding to parameter αci according
to the sequence G. We will stop simulating the system as soon as the bat-
tery level reaches 0, i.e., the mobile device is completely discharged. This

5The experimental analysis of the Markovian assumption on real data will be provided in Section 2.6.

21

i
i

“thesis” — 2017/1/23 — 0:17 — page 22 — #30 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Figure 2.2: Mobile application different screenshots: (A) learning stage, (B) TTL
prediction and (C) device state constraint selection.

methodology provides a prediction of the battery level at each time instant
and, as a byproduct, it also gives an estimation of the TTL of the device
too.

2.5 Implementation

Two main phases are needed to generate the power models defined in this
chapter: a observe phase and a learn phase. These have been discussed
in Section 1.2, highlighting their requirements and trade-offs. This section
discusses how they have been implemented in the current use case scenario.

To achieve high adaptability and minimum impact to the usage context
during the data gathering phase, I implemented a client application that logs
information about the Android device it is installed on, to which we refer
as the mobile app, optimized to save as much energy as possible but still
able to adapt to different working conditions. I then decided to perform
the computation phase on a remote server, in order not to waste energy on
the mobile device itself: this is a common pattern to adopt while designing
distributed systems composed of energy-constrained nodes.

The interaction flow between the mobile app and the remote server is
briefly described as follows. After the identification of the user and the de-
vice by means of a pseudo-authentication [119] mechanism (based on the

22

i
i

“thesis” — 2017/1/23 — 0:17 — page 23 — #31 i
i

i
i

i
i

2.5. Implementation

Google OAuth2 protocol), the mobile application starts collecting and stor-
ing data about the device’s energy consumption (e.g., battery level) and its
internal status (e.g., CPU frequency, screen brightness and so on). Once a
certain amount of data has been locally collected, a log file is compressed
and encrypted6 before being sent to the remote server. As soon as enough
information has been gathered (usually 2-4 days of continuous usage of
the device), the model computation process is performed on the server by
means of the statistical learning approach discussed in Section 2.4. As
far as no power model is available (the application is in learning phase),
a message inviting the user to wait is shown (Figure 2.2.A). As soon as
the power model has been computed, the mobile app retrieves it from the
remote server and the estimated TTL for the current working regime is fi-
nally provided to the user (Figure 2.2.B), which may eventually choose a
different device working regime to achieve the corresponding TTL (Fig-
ure 2.2.C). In order to reach a huge ecosystem of different mobile devices,
the proposed application has been developed in Java using the standard An-
droid SDK and it is currently available for free on the Google Play Store:
it can then be easily installed (i.e., no device rooting is required) and it is
compatible with almost any Android device.

Given the context of this work, energy efficiency is of course the re-
quirement that constrained the most the design and the implementation of
the application. On the one hand, I wanted to introduce no power consump-
tion related to data transmission: information is sent only when the device
is plugged into an external power source and connected to a WiFi network,
not to consume battery power and to avoid unnecessary 3G/4G data trans-
fer too. On the other hand, no computation is performed on the device:
it actually retrieves from the server a lookup table containing the precom-
puted TTLs for each battery level (from 0% to 100%) and for each observed
working regime, produced by means of the power model estimated for the
specific device. This technique is energy efficient, since providing the cur-
rent battery TTL boils down to a simple query on the lookup table instead
of requiring a simulation of the power model.

Then, the same data collecting phase had to be the most unobtrusive as
possible from an energy point of view, but custom and hardware-specific
solutions are in contrast with the high compatibility requirement stated be-
fore. Things are made difficult by the fact that modern mobile devices have
several hardware sensors which can be used to get information about their
internal and external environment. Generally, the operating system imple-
ments an Hardware Abstract Layer (HAL) for every hardware platform it

6The encryption is performed using a secret token exchanged during the first authentication

23

i
i

“thesis” — 2017/1/23 — 0:17 — page 24 — #32 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Table 2.1: Data gathered from the device.

Screen Battery CPU(s) Mobile
is on on charge max freq. state
brightness mode temperature min freq. activity
brightness value voltage current freq. net type
width percentage max scaling freq. signal strength
height technology min scaling freq. tx bytes
refresh rate health governor rx bytes
orientation usage call state

cpu id airplane mode
WiFi Audio Bluetooth GPS
is on music active is on is on
is connected speaker on state status
signal strength music volume
link speed ring volume

can run on. Even if the Android OS already provides a HAL and some
best practice to access power related information [65], the implementation
of the proposed logging infrastructure is not trivial, given the high hard-
ware and software fragmentation of the Android ecosystem [70, 71]. In
fact, different devices and even different OS versions have partially differ-
ent Hardware Abstract Layers (HALs) and APIs. Moreover, each hardware
information has to be retrieved sparingly, since each reading operation con-
sumes additional energy [167]. In such a context, I developed an highly
optimized Sense Library, i.e., a set of Java classes meant to provide a single
access point to the device hardware information. The Sense Library encap-
sulates all the logic needed to support different Android versions, follow-
ing the Android best practices for an effective, efficient and maintainable
source code. To save as much energy as possible, these libraries implement
a cache layer whenever possible: they record the status of the underlying
hardware and update it only when it changes, providing a “cached” value to
the caller (i.e., the logger daemon) instead of continuously polling the state
of the device to gather state information. The cached value is updated with
an asynchronous approach by means of Android Intents, Intent Filters and
BroadcastReceivers. The hardware features that can be accessed by means
of the Sense Library are: screen, battery, CPUs, Audio, mobile connection
(3G/4G), Wi-Fi, Bluetooth and GPS connections. Table 2.1 lists all the
data gathered for each device component. The source code of this library is
released under the GNU LGPL license: it can be downloaded from [122],
while documentation and an extended description is available on [123].

The sampling frequency of the monitoring activity is then a crucial as-

24

i
i

“thesis” — 2017/1/23 — 0:17 — page 25 — #33 i
i

i
i

i
i

2.5. Implementation

pect from an energetic point of view. On the one hand, the higher is the
frequency, the more accurate is the information about the device status and
its battery discharge curve estimation, thus providing uniform information
to increase the effectiveness of the computed power models. On the other
hand, a high sample frequency would impact on the device battery life be-
cause of the power consumed to access sensors’ data [167], even if this
effect is mitigated by the aforementioned Sense Library. I then developed
an Android Service, called LogService, which automatically starts as soon
as the device is turned on and retrieves the status of the device through the
aforementioned Sense Libraries. To provide a good adaptability to different
working conditions, it is meant to be restarted if killed: this may happen as
soon as Android needs to free resources for applications with a higher pri-
ority [111]. The logged data are stored in a plain text file using the JSON
representation 7, which provides enough flexibility to support devices with
different hardware features (e.g., an higher number of CPU cores).

Following the idea presented in [164], I decided to log the device status
every 10 seconds. This is an upper bound from the power model perspective
since choosing higher time intervals might cause a loss of information about
system dynamics (e.g., the user turning on the screen for a limited amount
of time, a small data transfer operation). More details about this choice are
presented in Section 2.6.

Another notable design choice regards the use of wakelocks: on the one
hand, this software mechanism prevents Android from killing our service
during the logging period, while, on the other hand, such a solution influ-
ences the system behavior, i.e., it forces the operating system to stay awake
until the lock has been released, thus potentially implying an unnecessary
energy consumption. Therefore, we avoided the acquisition of a wakelock
except for the exact logging instant: it is acquired and quickly released as
soon as the atomic operation is completed. As a consequence, we allow
the Android system to fall into a deep sleep: in such an operating mode,
all the running services are suspended, thus the mobile app does not log
any data. This is the reason why we have discontinuous registrations of the
system behavior, since the mobile app is resumed only when the system
leaves this low power mode: again, the energy efficiency and adaptability
requirements lead me to deal with the missing data problem in the power
modeling phase.

7The JSON structure of the log file is available on [123]

25

i
i

“thesis” — 2017/1/23 — 0:17 — page 26 — #34 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

2.6 Experimental results

This section analyzes if the requirements defined in Section 1.2 are met by
the proposed methodology and its implementation, for what concerns the
current use case scenario: on the one hand, the analysis performed on the
acquired data must produce precise models of the system’s behavior, while,
on the other hand, the overhead introduced on the mobile devices should
be as low as possible.

2.6.1 Power model estimation

Experimental Setting D1

Since the goal of the proposed system is to build precise power models
for real-world mobile devices, this section wants to provide evidence on
how every specific model M produced is effective in predicting the specific
device’s energy behavior. Data has been collected from about 600 devices
which are continuously sending data to our server: this set is composed of
more than 30 different devices models, which are mainly Samsung, HTC
and LG. The 75% of the data were used for training, while the remaining
was saved for validation purposes.

The linear time-invariant ARX model family has been used to satisfy
the assumption required by the methodology described in Section 2.4. The
ARX orders and the input variables have been selected by basing on the
validation error and exploring models with na = {0, . . . , 3} and nb =
{1, . . . , 5}, using as input variables u(t) CPU frequency and screen bright-
ness (25% of the training set was used for model selection). After this
phase, batches of M = 100 samples (selected as described in Section 2.4)
were extracted and used to compute the parameter vectors αcs. For each
training batch, the parameter vector has been computed through a non-
positive least square algorithm8, which guarantees to reach the least square
solution under the constraint of having only negative parameters. A model
with only negative coefficients has been chosen since, within this context,
if a variable increases its value we expect an higher discharge rate, e.g. the
more the screen brightness is high, the more the battery level will drain. At
last, in a real scenario, no information about the future value of the uncon-
trollable inputs u is available; hence, estimated average values are used for
prediction purpose of future inputs.

Three different models have been considered for the HMM transition,
by considering different assumption on the Markov property: this allowed

8This algorithm is a trivial modification of the non-negative least square presented in [100].

26

i
i

“thesis” — 2017/1/23 — 0:17 — page 27 — #35 i
i

i
i

i
i

2.6. Experimental results

me to deal with potentially different behaviors (i.e., different transition ma-
trices) of the same user in different moments of her daily routine. In the first
hourly model HM we assume that the Markov assumption is true for each
hour slot in the day (e.g., the user’s behavior is constant, for instance, from
1.00pm to 1.59pm); we can then partition the data and estimate different
transition matrices Ah for each hour of the day, i.e., h ∈ {1, . . . , 24}). In
the single model SM , I assume a single transition model A, thus assuming
the Markov assumption holds for the whole dataset. At last, I considered a
dynamic model DM , where we identify the longest period of the day where
the estimated transition matrices are reasonably similar; the similarity is
computed by considering a threshold on distance induced by the Frobenius
norm computed on the difference of two matrices. The previously defined
models are compared with the one without any transition M , i.e., where the
working regime is considered constant and equal to cinit during the whole
discharge.

The performance of the proposed methodology have been evaluated us-
ing the following figures of merit:

• the mean square error of the value of the battery level, i.e.,
mse =

∑
t∈T

|y(t)−ŷ(t|ᾱc)|
|T |

• the mean square error on the slope of the discharge curve, i.e.,
mpe =

∑
t∈T

tan |γ̂(t)−γ(t)|
|T |

where γ̂(t) is the slope of the discharge curve induced by the approximated
model at time t, γ(t) is the slope of the real discharge curve at time t and
T is the set of time instants in which the prediction is performed. The
average value ē and the standard deviation s are provided over the possible
realizations (since H is a probabilistic model) for each one of the figure of
merit considered, as well as the percentage of improvement I% w.r.t. the
basic model M .

The performance have been also analyzed on different prediction times.
I considered at first the performance on the totality of the testing set TOT ,
then I also consider the prediction of discharge curves from where the total
discharge was between 30% and 50% (30D), between 50% and 80% (50D)
and more than 80% (80D), to evaluate the capabilities of the considered
methods with tasks with increasing difficulty (i.e., larger time windows).

Results for D1

The experimental results are provided in Table 2.2. It is possible to see that
the introduction of a transition model is able to improve the performance of

27

i
i

“thesis” — 2017/1/23 — 0:17 — page 28 — #36 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Table 2.2: Results for different models without transition model M , with hourly
transition model HT , with single transition model SM and dynamically chosen one

DM (average values are reported ± standard deviations).

M SM HM DM
I% ē± s I% ē± s I% ē± s

TOT mse 11,1 4,4 % 10, 61± 0, 065 3,42 % 10, 72± 0, 0075 3,6 % 10, 7± 0, 014
mpe 8,1 4 % 7, 77± 0, 078 0,86 % 8, 03± 0, 004 0,74 % 8, 04± 0, 0047

30D mse 7,42 2,29 % 7, 25± 0, 023 2,69 % 7, 22± 0, 0082 2,69 % 7, 22± 0, 013
mpe 8,09 5,56 % 7, 64± 0, 086 2,1 % 7, 92± 0, 0073 1,97 % 7, 93± 0, 0066

50D mse 15,04 9,9 % 13, 55± 0, 24 4,58 % 14, 35± 0, 021 4,85 % 14, 31± 0, 021
mpe 8,31 4,33 % 7, 95± 0, 07 1,08 % 8, 22± 0, 0049 1,2 % 8, 21± 0, 0064

80D mse 19,2 13,75 % 16, 56± 0, 51 4,375 % 18, 36± 0, 026 5 % 18, 24± 0, 029
mpe 8 3,25 % 7, 74± 0, 05 0,625 % 7, 95± 0, 0053 0,875 % 7, 93± 0, 006

the power estimation methodology, both in terms of mse and mpe. While
the single model SM has the highest performance in terms of mpe, it has
also standard deviations of the errors one order of magnitude greater than
HM and DM , thus it may provide more variable results than the others.
While for short discharge curves 30D we have slightly better results for
the HM and DM in terms of mse, for the longer discharge curves 50D
and 80D we have evidently better performance by the SM . This would
suggest to use a DM in the case of a low values for the initial battery
level yinit (favored on HM due to its potential lower complexity) and SM
for longer discharge curves. Moreover, these results strengthen the idea
that the Markov assumption is holding for the whole day in the setting we
considered.

Experimental setting D2

In this second experimental setting, I want to compare the predictions pro-
vided by the proposed power modeling methodology with the ones pro-
vided by Android Lollipop [63].

Unfortunately, at the time of writing, no official Android API is provided
to monitor the TTL predictions of Android Lollipop, strongly limiting this
experimental setup. An additional mobile application has then been im-
plemented to gather this information as follows: it records a screenshot of
the display each 10 minutes, until the complete discharge of the battery;
then, the obtained images are processed with an OCR application to ex-
tract the TTL information that Android Lollipop shows on the screen of
the monitored devices. This operation has been performed on 4 different
devices owned by 4 different users, for a total of 20 complete discharge
curves produced as the sequences of predictions extracted by the OCR al-

28

i
i

“thesis” — 2017/1/23 — 0:17 — page 29 — #37 i
i

i
i

i
i

2.6. Experimental results

Table 2.3: Results given from the comparison the proposed system with different transition
matrix schemes SM , HM , DM and Android Lollipop AL.

AL SM HM DM
I% ē± s I% ē± s I% ē± s

mse 118.59± 24.22 9.84 % 16.76± 10.76 9.89% 16.75± 10.69 9.86 % 16.75± 11.22

mpe 7.08± 4.89 15.81% 5.96± 1.96 16.80% 5.89± 1.85 19.49% 5.7± 2.08

gorithm. Again, this has been performed on devices in their real operating
conditions.

Results on D2

Results for the experiments comparing the proposed methodology with An-
droid Lollipop estimations are presented in Table 2.3. It is possible to see
that all the proposed transition models present an improvement w.r.t. the
estimations provided by Android Lollipop, both in terms of mse and mpe.
While the improvement in terms of mse is almost the same over the differ-
ent transition models, slightly better results can be achieved using multiple
transitions models for different hours of the day if we consider the mse
metric.

These results finally show how a data-driven power model is able to pro-
vide a better prediction of the energy behavior of a mobile device in its real
usage context, thus validating the proposed power modeling methodology.
Moreover, the model can be retrained and updated when its prediction error
starts increasing and new data is available for the mobile device.

2.6.2 Energy consumption of the mobile application

In this last section, I want to show how the implemented power-aware log-
ging application has a negligible impact on the device’s power consump-
tion. The procedure proposed here consists in comparing the average power
consumption of the device in two different testing conditions, to see if any
significant difference can be observed: on the one hand, I measured the
power consumption of the device with a stock Android OS installation (i.e.,
without the proposed monitoring application), while, on the other hand, I
repeated the same measurements with the logging application installed on
the same device.

29

i
i

“thesis” — 2017/1/23 — 0:17 — page 30 — #38 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Experimental setting D3

To obtain comparable results, the environmental conditions should be main-
tained as much as possible unaltered during the experiment (e.g., in dif-
ferent locations the mobile network signal strength may be different, thus
affecting the consumption of the mobile network hardware module), while
the discharge curve of the device’s battery has to be sampled with a rea-
sonable accuracy. I used the Monsoon Power Monitor [83] and its related
software, since it provides a robust and reliable solution to measure the cur-
rent drained (mA) or the power consumed (W) by any device that can be
powered by a 4.5 V battery (or less), with a maximum current of 3 A. How-
ever, I had to wire the Monsoon to the device, thus I was able to perform
only in-lab experiments. The target device for these tests is a Samsung
Galaxy SIII, since is the most common device in our dataset of real users
provided by our logging application and, thus, is somehow representative
of a wide range of devices.

For the whole duration of the tests, the device was left in an idle configu-
ration: this represents the case in which the user is not interacting with her
smartphone. Display is left off, like Wi-Fi, GPS and Bluetooth network in-
terfaces, while the mobile data connection (over the 3G network) has been
left enabled. This configuration has been chosen to reduce as much as pos-
sible any additional contribution to the power consumption caused by other
applications. We then considered three different conditions: the first one
is the idle configuration without the logging application installed (IDLE),
the second with the logging application installed (LOGGING10) and a
third condition with the logging application installed and a logging fre-
quency of 1Hz (LOGGING1)9. In this set of experiments, we considered
the third condition (LOGGING1) to explore the trade-off between infor-
mation accuracy and overhead introduced, in terms of power consump-
tion. The measurements have been performed with a sampling frequency
of 5KHz, lasted 5 minutes, recording around a million and a half samples
for each test and were repeated over 30 independent run for every testing
condition. An example of the results of the measurements is presented in
Figure 2.3.

Even tough the most possible conservative settings have been consid-
ered, it is possible to notice some sporadic peaks around 50 mA and, in rare
occasions, up to 300 mA, while normally the current drained was around 5
mA. The average number of peaks was approximately the same in all the

9Please note that the application released on the Google Play Store has a logging frequency of 1/10 Hz, i.e.,
the condition LOGGING10.

30

i
i

“thesis” — 2017/1/23 — 0:17 — page 31 — #39 i
i

i
i

i
i

2.6. Experimental results

C
ur

re
nt

 (m
illi

Am
pe

re
)

1

10

100

Time (s)
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

(a) Idle
C

ur
re

nt
 (m

illi
Am

pe
re

)

1

10

100

Time (s)
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

(b) Logging

Figure 2.3: Sample of instantaneous power consumption with and without the logging
application: original data.

C
ur

re
nt

 (m
illi

Am
pe

re
)

1

10

100

Time (s)
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

(a) Idle

C
ur

re
nt

 (m
illi

Am
pe

re
)

1

10

100

Time (s)
5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

(b) Logging

Figure 2.4: Sample of instantaneous power consumption with and without the logging
application: filtered data. The red line represents the threshold corresponding to the

95th percentile of the idle data.

31

i
i

“thesis” — 2017/1/23 — 0:17 — page 32 — #40 i
i

i
i

i
i

Chapter 2. Preliminary steps: power models for Android devices

Table 2.4: Pvalues for the statistical tests between different configurations.

IDLE vs. MPOWER10 IDLE vs. MPOWER10

T1 0.6264 0.0431
T2 0.3132 0.0215

tests performed. We think that these spikes are relative to the stock Android
OS, thus not dependent on the logging application. To mitigate the effect
of these peaks we filtered data above the 95th percentile, measured on idle
data. The result of this filtering is shown in Figure 2.4.

I finally computed the mean current drained for each run and I performed
a statistical hypothesis test for two populations with same unknown vari-
ance [117] for two different hypothesis tests:

T1 :=

H0 : the mean power consumption is the same in the two

testing conditions
H1 : the mean power consumption is different in the two

testing conditions

T2 :=

H0 : the mean power consumption when the logger is installed

is less or equal than the case in which it is not present
H1 : the mean power consumption when the logger is installed

is greater than the case in which it is not present

The assumption that both populations related to tests with and without the
logging application have same variance is here reasonable, as we are ob-
serving the same discharge phenomenon.

Results on D3

Results of the tests are presented in Table 2.4. These statistical tests showed
no strong evidence (do not refuse H0 with high confidence) of a greater
power consumption due to the presence of our logger LOGGING10, thus
proving the negligible impact of our application on the device’s energy be-
havior. In the case we considered measurements coming from LOGGING1,
the statistical tests showed strong evidence (accept H1 with high confi-
dence) that a higher sampling frequency would have affected the power
consumption of the device.

32

i
i

“thesis” — 2017/1/23 — 0:17 — page 33 — #41 i
i

i
i

i
i

2.7. Final remarks

2.7 Final remarks

This chapter presented a preliminary data-driven methodology for power
modeling in the mobile devices’ context, able to both estimate the hardware
components power consumption and model the users’ behavior. This is
done starting from the measurements coming the device in its real usage
context, to learn how its battery behaves under different conditions.

The MPower mobile application implements a low power logger (mon-
itoring phase), offloading models computation to a remote server (analysis
phase). Then, the application makes use of these power models to make
predictions of the TTL (in terms of minutes, not just in term of remain-
ing battery percentage) of the device under certain conditions: this is an
important information for the user, as it allows her to choose how to use
her device, with respect to her current and future needs (plan and execute
phases). In this context, the final decision on how and when save battery
life is left to the user, that becomes part of the OLDA loop: however, we can
bring power-awareness one step further, as discussed in the next chapters.

33

i
i

“thesis” — 2017/1/23 — 0:17 — page 34 — #42 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 35 — #43 i
i

i
i

i
i

CHAPTER3
Generalization: Model and Analysis of

Resource Consumption (MARC)

3.1 Introduction

The experience developed on power models for Android devices, described
in Chapter 2, can be brought to a wider set of power-constrained systems.
Even though the same Android OS can run on a plethora of different plat-
forms and embedded devices, the proposed methodology can be extended
to deal with a generic system, hereafter called “agent”, that wants to be-
come “power-aware” or, in a wider sense, “resource-aware”: in fact, ev-
ery agent that aims to be autonomous must be endowed with the necessary
tools to measure and learn how its actions affect the surrounding environ-
ment and the resources available in the system.

Many recent works that exploit autonomous agents highlight how re-
source modeling is fundamental in many decision making processes, as
resources are often the main constraint agents need to consider when eval-
uating adaptation strategies. For example, [50] and [103] succeeded in
supporting adaptation inside a Cloud environment, exploiting the agent
model; nevertheless they assume the models to be known a priori. [50]

35

i
i

“thesis” — 2017/1/23 — 0:17 — page 36 — #44 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

identified this shortcoming and suggested a data-driven methodology, based
on statistical models, to remove such a limitation. An even more explicit
call for precise resource modeling methodologies is found in [76], where
the authors assumes that a resource consumption model is available for
every metric presented for characterizing and testing the elasticity of an
Infrastructure-as-a-Service (IaaS) platform.

It is then clear how modeling techniques have to be put in place if we
want the agents to be able to gaze beyond their sensors and to be adap-
tive, i.e., to become always better at reaching their goals by learning from
past experience [107]. Unfortunately, data mining and machine learning
techniques are usually complex and computationally intensive, thus mak-
ing their integration with agents far from trivial.

Given the opportunities in the field, the main contributions of this chap-
ter are twofolds: (1) I propose a general methodology to model resource
consumption trends and (2) I implemented it into MARC, a Cloud-service
platform that produces Models-as-a-Service, thus relieving self-aware agents
from the burden of building their custom modeling framework.

After an extensive exploration of different types of resources and their
consumption trends, I realized that the phenomenon itself can be described
independently from the specific application fields. The proposed methodol-
ogy then tackles the resource modeling problem relying on three fundamen-
tal pillars: (1) generality, (2) extensibility and (3) precision. As of (1), we
want to avoid any field-specific assumption, apart from the ones that are in-
trinsic to resource consumption. Then, we need to define integration points
where our methodology can be extended to include different modeling tech-
niques (e.g., the ones proposed in recent works as [152] and [126]), thus
ensuring (2). These first two goals usually increase the level of abstraction,
paying wider applicability with longer computation time to obtain precise
results; in order to guarantee a reasonable level of (3), the methodology can
be tuned to produce coarse-grained results quickly or more precise results
in a wider time span. In order to meet these three requirements, I tackle
the modeling problem with the same solid mathematical techniques intro-
duced in the previous chapter, i.e., ARX models, Discrete Markov Models
(DMM) and Time Series analysis, specifically combined to produce a much
more complex and detailed characterization of the modeled trend.

The methodology has then been implemented into MARC, a platform
designed to Model and Analyze Resource Consumption trends (MARC).
Any self-aware agent can simply send a raw dataset to this service, together
with additional metadata on the system’s working regime; MARC will then
provide the agent with model’s parameters estimated on the input dataset,

36

i
i

“thesis” — 2017/1/23 — 0:17 — page 37 — #45 i
i

i
i

i
i

3.2. The resource consumption problem

allowing it to have a better understanding on how its resources are depleted.
This approach then perfectly fits the Learning stage of any OLDA loop, i.e.,
a runtime control loop that is emerging as the principal solution to agents’
life cycle definition. For example, recent works as [21, 62, 168] would be
able to remove many of their stricter assumptions by simply relying on
MARC, without any severe modification.

The proposed platform has been developed with the scalability require-
ment in mind: models computation parallelism and distribution is backed
by functional programming and the actor-based design of MARC. More-
over, a centralized approach to model generation allows knowledge shar-
ing and reuse: in fact, when an agent requests a model for a certain phe-
nomenon, the platform can take advantage of previously cached informa-
tion that another agent of the same ecosystems may have requested previ-
ously. This implicitly increases agents cooperation: the more agents use
our platform, the bigger this shared knowledge becomes.

All the MARC source code has been released open source 1 and it aims
to be a reference for future work in the field of autonomous agents and
self-aware systems.

This chapter is organized as follows: Section 3.2 introduces the resource
consumption problem, giving a hint on how we want to tackle it; Section 3.3
gives a complete overview of the proposed methodology, from the high
level flow to theoretical considerations; Section 3.4 presents the system
design, together with the most relevant implementation details; results that
validate the proposed methodology are then discussed in Section 3.5, while
Section 3.6 points out future directions and opportunities.

3.2 The resource consumption problem

Resource consumption is the main focus of this chapter. We define a re-
source as an asset, either material or immaterial, subject to finite availabil-
ity, that has to be exploited by a process to function effectively. It can be the
energy stored in a battery, the capacity of a subway station, or even time:
in all these cases, it is fundamental to notice how a resource is limited in
availability.

The subject directly relating with a resource has been specialized into
a process, i.e., a systematic sequence of well-defined operations that are
performed to transform resources into products. This very broad definition
states that a process is just a systematic transformation of resources into

1Source code available at: https://bitbucket.org/paperblindauthor/2017-powermodels

37

i
i

“thesis” — 2017/1/23 — 0:17 — page 38 — #46 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

some resulting outcome; indeed, the adjective “systematic” is crucial for
our entire definition structure.

Apart from the process concept, that defines what is enacting on a re-
source, utilization is another critical term to be clarified within our specific
context: it is the trend at which a process transforms a resource into a prod-
uct. It represents the concept that bridges resources to their availability.
Then, the generic concept of budget, defined as the amount of resource that
its owner is willing to make available to a specific process, helps us to spe-
cialize utilization into consumption. We thus define consumption as the
trend at witch a process reduces its resources’ budget to obtain a product.

Even though a plethora of highly specialized techniques have been pro-
posed to model resource consumption in different specific fields of ap-
plication, there is still a lack of generalization of these efforts towards a
unified methodology. The goals of this chapter are then: (1) the study and
the evaluation of an approach to resource consumption modeling, built on
top of the best techniques validated in the state of the art, and (2) its imple-
mentation in a distributed, Cloud-ready platform to enable an as-a-Service
interaction.

The problem of analyzing and modeling resource consumption is a com-
posite one. In this section, we want to highlight the features that different
consumption trends have in commons. Figure 3.1 presents two different
use cases: on the one hand, Figure 3.1a shows the discharge of the battery
of a smartphone, while, on the other hand, Figure 3.1b shows the energy
budget allocated to a virtual machine over time. In the first case, we deal
with a naturally constrained resource, i.e., the amount of energy that can be
stored in the battery, while the second case consists in a budgeted resource,
i.e., we have a total amount of energy that can be consumed in a certain
time span.

Even if the whole consumption trend in both the plots in Figure 3.1 is
far from being linear, there are wide sections in which the behaviour can be
easily approximated using a linear trend. If we consider, for instance, the
power plot (dashed blue) in Figure 3.2b, it is evident that the process can
be subdivided in sub-processes having almost constant power consumption.
This suggests to model each of these sections with a different consumption
model.

Then, we can see how the process is switching from one linear section to
another: as this happens, we experience a sudden slope change on the con-
sumption trend (e.g., see Figure 3.2b). We then need to devise a methodol-
ogy to predict these events, in order to combine the different consumption
models identified for each sub-process.

38

i
i

“thesis” — 2017/1/23 — 0:17 — page 39 — #47 i
i

i
i

i
i

3.2. The resource consumption problem

Traced Battery Level
Battery Discharge

B
at

te
ry

 L
ev

el

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Time
32.000s 34.000s 36.000s 38.000s 40.000s

(a) Discharge of a smartphone - Naturally constrained resource

Traced Power
Energy Consumed

Energy Budget

E
ne

rg
y

2kJ

4kJ

6kJ

8kJ

10kJ

12kJ

14kJ

16kJ

18kJ

20kJ

22kJ

24kJ

26kJ

28kJ

30kJ

32kJ

Pow
er

2W

4W

6W

8W

10W

12W

14W

16W

18W

20W

22W

24W

26W

28W

30W

Time
0s 200s 400s 600s 800s 1000s 1200s

(b) Energy consumption of a virtual machine - Budgeted resource

Figure 3.1: Different resource consumption behaviours

39

i
i

“thesis” — 2017/1/23 — 0:17 — page 40 — #48 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

Traced Power
Energy Consumption

Energy Budget

E
ne

rg
y

2kJ

4kJ

6kJ

8kJ

10kJ

12kJ

14kJ

16kJ

18kJ

20kJ

22kJ

24kJ

26kJ

28kJ

30kJ

32kJ

Pow
er

2W

4W

6W

8W

10W

12W

14W

16W

18W

20W

22W

24W

26W

28W

30W

Time
0s 200s 400s 600s 800s 1000s 1200s

(a) Highlighted linear sections

Traced Power
Energy Consumption
Linear Approximation
Linear Approximation

Sudden slope change

E
ne

rg
y

2kJ

4kJ

6kJ

8kJ

10kJ

12kJ

14kJ

16kJ

18kJ

20kJ

22kJ

24kJ

26kJ

28kJ

30kJ

32kJ

Pow
er

2W

4W

6W

8W

10W

12W

14W

16W

18W

20W

22W

24W

26W

28W

30W

Time
0s 200s 400s 600s 800s 1000s 1200s

(b) Highlighted sudden slope change

Figure 3.2: Piece-wise linearity of a generic resource consumption trend

40

i
i

“thesis” — 2017/1/23 — 0:17 — page 41 — #49 i
i

i
i

i
i

3.3. Methodology generalization

Traced Battery Level
Battery Discharge

B
at

te
ry

 L
ev

el

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Time
32.000s 34.000s 36.000s 38.000s 40.000s

Figure 3.3: Highlighted local deviation from linearity

Finally, a local amount of non-linear behaviour still remains inside each
model of the sub-process, as shown for instance in Figure 3.3. Even if these
deviations cause a negligible error for an important part of consumption
trends, this component cannot be simply ignored in some “noisy” cases.
A methodology to identify and predict this residual non-linearity is then
needed.

The combination of these three observations lead to the generation of
a piece-wise linear model of the phenomenon: we observed that it is a
behaviour that is shared by the vast majority of the engineering processes,
which usually rely on different, well-defined, phases. A formal definition
of the proposed approach, as well as some details on the system design and
implementation, are provided in the next section.

3.3 Methodology generalization

The proposed methodology is essentially a non linear workflow from raw
consumption traces to valuable resource consumption models, and repre-
sents a generalization of the approach proposed in Section 2.4.

Before describing this flow, it is important to stress the definition of
some fundamental terms:

41

i
i

“thesis” — 2017/1/23 — 0:17 — page 42 — #50 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

Modelling

PHASE2B
User Modelling

PHASE2A
Process Modelling

PHASE1
Data Conditioning

Preprocessing

Data Manipulation

Feature Selection

PHASE3
Simulation

Model Simulation

PHASE2C
Environment Modelling

Figure 3.4: MARC workflow block diagram

Process: a systematic sequence of well-defined operations that are
performed to transform resources into products.

User: short for resource’s user, the entity – either a human or
another agent – that is deciding on what and how the process im-
plemented by the system has to produce, thus impacting on the re-
source consumption trend.

Environment: the group of conditions that influence both the pro-
cess and the user but that can not be controlled by either of them.

Working regime: an identifiable working regime where either pro-
cess, the user or the environment presents a set of steady properties
characterizing its behaviour.

These terms will be referenced with a very context-specific meaning through-
out the whole chapter.

Figure 3.4 lays out the high level structure of our methodology in three
main phases. The first phase – PHASE1: Data Conditioning – is in charge
of cleaning the raw traces in order to maximize the accuracy that the subse-
quent phases can achieve, e.g., by dealing with missing or corrupted sam-
ples, excluding non interesting features, and so on.

Once the data set has been properly conditioned, it is ready to go through
the modeling processes required to extract knowledge from raw traces.
These are gathered in the second macro-phase – PHASE2: Modeling. We
consider this a macro-phase as it is composed of three independent mod-
eling sub-phases, one for each aspects of a generic resource consumption
trend: first of all, PHASE2A produces a set of models representing the char-
acteristics that are intrinsic to the process itself, building a sort of “finger-
print” of the resource consumption trend in different working regimes, i.e.,
the different sections with linear behaviour identified in Section 3.2; then,

42

i
i

“thesis” — 2017/1/23 — 0:17 — page 43 — #51 i
i

i
i

i
i

3.3. Methodology generalization

PHASE2B is in charge of modeling how the user behaves with respect to the
resource under study by capturing how it acts on the controllable knobs of
the process, causing those sudden slope changes identified in the previous
section; finally, PHASE2C models the environment in which the process
takes place, by capturing the noise it causes, Iidentified in Section 3.2.

The modeling workflow then concludes with a last phase – PHASE3:
Simulation – that gathers all the models produced, combining them to es-
timate how they jointly contribute to the description of the resource con-
sumption trend under study.

Each phase of the MARC methodology can be seen as a black-box with
well-defined input and output interfaces. Every phase produces three out-
comes: (1) a result, (2) a mathematical performance report and (3) a com-
putational performance report. The first consists in the actual output ex-
pected by the phase, e.g., the whole cleaned data set, the slopes of the
sections with linear behaviour, and so on. Then, the second comprises ad-
ditional metrics that are useful to understand the quality of the result (e.g.,
the number of samples discarded or edited by the cleaning process, the
modeling errors, etc.). Finally, the last one gives a feedback on the compu-
tational effort required by the phase. It is easy to see how both (2) and (3)
are interesting to understand and balance the trade-off between precision
and timeliness of (1).

The following sub-sections provide some details on each different phase,
explaining how the three pillars of generality, extensibility and precision,
introduced in Section 3.1, are met.

3.3.1 PHASE1: Data conditioning

The Data Conditioning phase is the one that mostly influences in practice
the quality of the results produced by the entire methodology. In fact, it
conducts all the tasks that are preparatory for the data mining steps – viz.,
selection, preprocessing and transformation. As widely shown in the state
of the art, these tasks are fundamental when dealing with real-world data
that may be noisy, inconsistent and incomplete.

Input The input of this phase is the raw data set, defined as the s×f matrix

X =

x11 x12 . . . x1f

x21 x22 . . . x2f

...
...

xs1 xs2 . . . xsf

 (3.1)

43

i
i

“thesis” — 2017/1/23 — 0:17 — page 44 — #52 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

where each row represents a sample xi, i.e., the representation of the state
of the system in a certain time instant, while each column represents a fea-
ture, i.e., a single aspect of the system state; each cell is defined as feature
f ’s value at time instant t. It is fundamental that one feature represents
time – feature ft – and one feature represents the resource to be modeled –
feature fr.

Each feature f is defined by a set of properties:

• Label: it is a string used as unique identifier for the feature;

• Type: it describes how the feature values must be treated; a value can
be:

– Instantaneous if it represents a continue punctual state variable
(e.g., the mobile signal level or the electrical power absorbed by
a server),

– Categorical if it represents a variable with a finite countable set
(e.g., the type of network connection),

– Cumulative if it represents a continue integral state variable (e.g.,
the bytes transferred over the network since system boot or the
electrical energy absorbed by a server);

• Monotony: it describes whether the feature has a predefined monotony
(either ascendant or descendant) or not;

• Bounds: the lower and the upper bounds of the domain of the feature
(for non-categorical features, they can be either real values or ±∞).

The main goal of this phase is to condition the input data set in order
to obtain a cleaner one that can be suitable for modeling purposes. Since
cleaning requirements can be tightly related to each specific application
model, the aim of this phase is to provide set of highly configurable and
optional steps that can be selectively applied depending on the specific use
case. These steps can be grouped in three subsequent tasks, divided by the
scope on which each one enacts its conditioning operations:

A. Preprocessing: cleaning tasks at sample-level scope;

B. Data Manipulation: highly specialized tasks at dataset-level scope;

C. Feature Selection: synthesis and exclusion at feature-level scope.

On the one hand, the most common preprocessing tasks we identi-
fied and implemented revolves around coherency correction and incoher-
ent sample elimination (e.g., to filter out out-of-bounds values), as well as

44

i
i

“thesis” — 2017/1/23 — 0:17 — page 45 — #53 i
i

i
i

i
i

3.3. Methodology generalization

domain granularity reduction, to reduce the number of values a feature can
take. These preprocessing rules are determined manually, once per appli-
cation domain: for instance embedded devices’ data will probably need a
different treatment with respect to servers’ traces.

On the other hand, all the operations that require a full data set scope are
defined as data manipulation tasks. The definition of these tasks is very
broad and open to future extensions, as it is deeply related to each single
specific application field.

Finally, feature selection operations are meant to edit and choose the
features that better represent the system’s state.

As introduced in Section 3.2 different consumption slopes are related to
different phases of the process we want to model. At first, we need to un-
derstand which are the “clusters” in which these slopes can be efficiently
grouped: in order to accomplish this, we use a mono-dimensional inter-
val generation algorithm, that may rely, for instance, on a Kernel Density
Estimation (KDE) analysis [136], a non-parametric statistical method to es-
timate the probability density function of a sampled random variable. This
algorithm takes the derivative of fr as input – this represents all the local
slopes for every sample – and returns a set of intervals grouping effectively
the slopes in our data set. Each interval identified by this step represents a
working regime of the process behaviour. A comprehensive example will
be provided on a real use case in Section 5.3.

Then, we need to identify the features that better determine the current
working regime: this can be accomplished exploiting a classification algo-
rithm, such as ReliefF [98], a heuristic, distance measure based, supervised
classification algorithm that presents a good trade-off between time com-
plexity and accuracy [38]. Again, Section 5.3 will provide additional details
on how to exploit this algorithm in a real context.

Once we know which are the features that can better identify different
classes of slopes, we can generate synthetic features based on some combi-
nation of the ones originally present in the dataset: this operation is known
as features fusion. Our methodology requires to specify a set:

F = {ff | ff : {xi} → R} (3.2)

of fusion rules, that computes the value of the synthetic features for every
sample. For each fusion rule, it is also necessary to define the characteristics
of the resulting synthetic feature, exactly as the original ones.

Of course, it is also important to define a procedure that helps in reduc-
ing the number of features that will be crunched by the modeling phases.

45

i
i

“thesis” — 2017/1/23 — 0:17 — page 46 — #54 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

This can be easily achieved exploiting a an algorithm like Principal Compo-
nent Analysis (PCA), then excluding useless features from further analyses.

Before moving on to the modeling phases, it is important to understand
what output this phase produces and highlight how its structure is compliant
with our three main goals of generality, extensibility and precision.

Output The output of this phase is fairly simple to describe:

• Result: the result of this phase are the conditioned data set and the
new set of features’ definitions. The output data set can be defined as
the ss× ff matrix

X̂ =

x̂1,1 x̂1,2 . . . x̂1,ff

x̂2,1 x̂2,2 . . . x̂2,ff

...
...

x̂ss,1 x̂ss,2 . . . x̂ss,ff

 (3.3)

where

– ss is the number of samples that survived preprocessing and data
manipulation, plus the ones potentially added by this last one;
∗ rows represent all those samples x̂i;

– ff is the number of the features that survived the exclusion pro-
cedures, plus the synthetic ones added through the fusion rules;
∗ columns represent all those features.

It is of course fundamental that the features representing time – fea-
ture ft – and the resource to be modeled – feature fr have not been
excluded by the feature selection tasks.

• Mathematical Performance Report: this report precisely accounts
how many samples have been excluded due to incoherence and out-
of-bound eliminations, as how many samples have been added, mod-
ified and removed by each data manipulation operation. This allows
the user to quickly identify: on the one hand, highly corrupted unsat-
isfactory data sets and, on the other hand, if rules or operations are too
restrictive for the case study.

3.3.2 PHASE2: Modeling

The Modeling macro-phase is the core component of the entire MARC
methodology, and it revolves around the concept of working regime, i.e.,

46

i
i

“thesis” — 2017/1/23 — 0:17 — page 47 — #55 i
i

i
i

i
i

3.3. Methodology generalization

an operational state of the modeled system identified by a set of steady
properties characterizing its behaviour.

Along with the working regime concept, we need to categorize each
different input feature as follows:

Working regime features: the working regime features fc are a
subset of the data set features that, for each combination of their
values, identifies a different working regime.

Exogenous features: all the data set features fex apart from: the
time feature ft , the output feature fr and all the working regime
features fc.

Controllable features: all the exogenous features fctrl that reflect
direct actions performed by the user.

Uncontrollable features: All the exogenous features fuc that are
not controllable features fctrl.

The next sub-sections discuss how these concepts are used to model the
piece-wise linear behaviour we are considering in all its three contributions,
i.e., the process, the user and the environment.

PHASE2A: Process Modelling

Within this phase, a single model is produced for every working regime of
the system and no remarkable distinction is sought within the same working
regime.

Input The input of this phase is the cleaned data set X̂ coming from
PHASE1 (Section 3.3.1). The data set is time sorted and split into batches
– one for each joint value of the working regime features fcA; the fcA fea-
tures are then removed from every batch, as they are just used to identify
the current working regime.

We decided to exploit a regression modeling technique as it is widely
used in many different works in multiple application fields [12, 23, 90, 145,
149, 150, 153] due to its generality and simplicity. In fact, it is capable
of capturing many different real-world behaviours and processes where the
output of a system has a clear dependency on some observable inputs (or
even the previous output itself). Moreover, regression models gained a huge
importance in the last decades as they offer the possibility to derive a very
simple Maximum Likelihood Estimator for its parameters vector [26], al-
lowing to easily derive the regression model directly from sampled inputs.

47

i
i

“thesis” — 2017/1/23 — 0:17 — page 48 — #56 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

For each batch, an ARX model is computed with the domain-specific
auto-regressive (ar) and exogenous (ex) lags configured: a lag is the length
of the time window in which we seek for correlation.

Output The goal of this phase is to provide a description of the process
characteristics.

• Result: for each batch, the result reports the ARX models’ parameters
(i.e., the “alphas”) for the fr output feature from regression lag 1 to
ar, and for the n fucs exogenous variables from regressive lag 0 to ex.
These alphas can be used to estimate at runtime the value of the fr
output feature, given the recent past values of fr and the present and
recent past values of all the fucs, by computing the formula:

fr(t) = αr,1fr(t− 1) + . . . + αr,arfr(t− ar) +

+ αuc,1,0fuc,1(t) + . . . + αuc,1,exfuc,1(t− ex) + (3.4)
+ . . . +

+ αuc,n,0fuc,n(t) + . . . + αuc,n,exfuc,n(t− ex).

• Mathematical Performance Report: for each batch, this report ac-
counts for the Mean Square Error (MSE) obtained computing the re-
spective ARX model , as well as its square root, known as Root Mean
Square Error (RMSE), a reliable measure that indicates the mean devi-
ation by excess or defect that the output value estimated by the model
has with respect to the real output value.

PHASE2B: User Modeling

This phase aims at producing a model able to predict sudden slope changes.
In this context, we define the user as the entity – either a human or another
agent – that is deciding when and how the process makes a transition be-
tween one working regime and another.

Input This phase receives a slightly modified version of the clean data
set X̂ produced by PHASE1, containing only the time feature ft and the
working regime features fcfg,B: in fact, only controllable features fctrl can
be manipulated by the user.

This phase relies on a theoretical model called DMM [25]. A DMM can
be represented as the tuple < S, A, λ >, where

• S represents the set of all the possible states of the model; in our case,
a state is direct synonym of working regime;

48

i
i

“thesis” — 2017/1/23 — 0:17 — page 49 — #57 i
i

i
i

i
i

3.3. Methodology generalization

• A is the adjacency matrix, representing the probability for the user
to change from one working regime to another; this probability is es-
timated using

P (A → B) =
#{t ∈ T | t = A→ B}

#T
(3.5)

where A → B is the transition from working regime A to B and T
represents the trace’s transitions set, i.e., the ordered set of transitions
obtained comparing two subsequent samples in X̂;

• λ is the initial state from which the chain has to be built.

In order to build our DMM, we divide the time sorted input into peri-
ods, i.e., time spans that show the same repetitive user behaviour. Every
period is then sliced in b > 0 time bands, where b is a domain-specific
parameter that can be tuned accordingly with the user’s speed. Data of ev-
ery corresponding band are joined, obtaining b batches. For each batch, all
the observed working regimes are considered as states of a DMM and the
whole batch data set is used to estimate the probability of jumping from
one state to another, thus determining the DMM adjacency matrix.

Then, the following step aims at reducing b, i.e., the number of DMMs
obtained, to the minimum number possible without decreasing the preci-
sion of the whole model. This is done by comparing neighbouring bands,
accounting the similarities among their respective adjacency matrices. If
their distance2 is below a defined threshold, the bands are merged (cliqued)
and a new adjacency matrix is computed. This is repeated until no neigh-
bouring bands result to be similar enough to trigger another merge.

Output The output of this phase is a model describing how the user changes
its behaviour during a repetitive period in time

• Result: for each time band, the initial and final time of the band (rel-
ative to the starting point within the period) and the most probable
Markov Chain starting from every traced working regime.

• Mathematical Performance Report: this report includes the dis-
tances between neighbouring time bands and the cliques tree (i.e., a
tree representing how the initial b bands have been recursively cliqued);
these are both necessary for tuning the b number of bands and the
threshold for triggering similarity cliquing.

2Many definitions of distance between matrices can be given, in this case we are referring to a Mahalanobis
distance [108]

49

i
i

“thesis” — 2017/1/23 — 0:17 — page 50 — #58 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

PHASE2C: Environment Modeling

With this phase, we want to produce a model able to predict the “noise”
from the system’s environment that causes local non-linear behaviours, as
discussed in Section 3.2. The environment is usually not well represented
by the features of the data set; we split it in two common use cases:

• Steady Environment: the environment surrounding the system is steady,
i.e., it has a single pattern that introduces “noise” in the system; in
this trivial case, it is usually sufficient to define an empty working
regime, assuming that a catch-all model can well represent the situa-
tion. Although this approach is suitable for simple “noise” patterns,
a non-empty working regime is still needed if the user influences the
environment, altering its behaviour; in this case, the PHASE2C work-
ing regimes will be a subset of the PHASE2B or PHASE2A working
regimes.

• Dynamic Environment: in this situation, the environment surround-
ing the system is dynamic, i.e., it has variable “noise” patterns that
emerge in different situations; this is the most complex case and usu-
ally requires some sort of extra instrumentation sampling additional
features to identify the different contexts in which the system is im-
mersed into.

Input As the others, this phase receives a slightly modified version of the
clean data set X̂ produced by PHASE1. The input of this phase is again
batched according to the defined working regime (similarly to what has
been described for PHASE2A). Moreover, it only contains all the exogenous
features fex that appear in PHASE2A model: as we exclude the controllable
features fctrl, we are explicitly neglecting the impact of the environment on
the user. This is reasonable given the definition we gave for the user model:
in fact, the user model implicitly accounts also for the consequences the
environment causes on the user itself.

The goal of this phase is to produce a signal generator for every exoge-
nous feature fex: these generators should be able to mimic the trends of
the real environment and consist in software modules that encapsulates a
model of the environmental “noise”. For example, the simplest model of a
“noise” is a constant signal generator that emits f ex, the mean value of fex
over the current batch.

Many types of signal generators can be proposed, e.g., exploiting the
representation of the fex empirical distribution or even resorting to more ad-
vanced time series analysis techniques. However, we experimentally evalu-

50

i
i

“thesis” — 2017/1/23 — 0:17 — page 51 — #59 i
i

i
i

i
i

3.3. Methodology generalization

ft f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 fr

Cfg 2A

Cfg 2B

(a) Minimal working regime

ft f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 fr

Cfg 2A

Cfg 2B Cfg 2C

(b) Disjoint working regime

ft f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 fr

Cfg 2A

Cfg 2B Cfg 2C

(c) Interdependant working regime

ft f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 fr

Cfg 2A

Cfg 2B Cfg 2C

fcrtl fuc

(d) Suggested working regime

Figure 3.5: All the different possible organization of PHASE2 phases’ working regimes

ated that even a simple constant signal generator is sufficient to obtain good
quality simulations of the system, as discussed in Section 3.5.

Output The output of this phase are the signal generators able to generate
a time series for each respective environmental “noise”.

• Result: for each working regime, a set of signal generators is pro-
vided, one generator for each exogenous feature fex;

• Mathematical Performance Report: this report includes, for each
working regime, the distribution (quartiles), mean and standard devi-
ation for each exogenous feature fex.

3.3.3 PHASE3: Simulation

PHASE3 is the phase in charge of delivering a unified information about
the modeled resource consumption trends. This is achieved by simulating
the evolution of the system, exploiting the models generated so far. The
simulation starts and stops according to domain-specific initial and final
conditions.

This phase is highly coupled with the working regimes defined through-
out PHASE2. The minimal working regime that allows a correct simulation

51

i
i

“thesis” — 2017/1/23 — 0:17 — page 52 — #60 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

of the resource consumption trends is shown in Figure 3.5a. In this work-
ing regime we have only one fcfg,A feature for PHASE2A and this is also
the only fcfg,B feature for PHASE2B. This would make PHASE3 useless:
in fact, in a mono-regime case, no simulation is required to understand
how the entire system behaves. Thus, since we are focusing on the entire
methodology, the mono-regime case is here ignored.

An example on how the working regimes would mutually be set for
a real case study is shown in Figure 3.5b and Figure 3.5c. In both the
examples we have

Cfg2B ⊆ Cfg2A,

Cfg2C ⊆ Cfg2A.
(3.6)

where Cfg2A, Cfg2B, Cfg2C are the sets containing the features fcfg
for, respectively, PHASE2A, PHASE2B and PHASE2C. This condition is
required in order to have a description of the process’s behaviour in ev-
ery environmental condition and for every user’s behaviour. Moreover, in
Figure 3.5c we show that

Cfg2B ∩ Cfg2C 6= ∅ (3.7)

can be accepted, in the case of a relation between the environment and the
user.

Finally, in Figure 3.5d, we show how controllable features fctrl and
uncontrollable features fuc should be split among the different working
regimes. More precisely, fctrls should be all part of Cfg2B, as they iden-
tify the variables of the system on which the user can directly operate.

Input The input of this phase is composed by:

A. PHASE2A models, i.e., a set of ARX models, one for each PHASE2A
working regime, representing the intrinsic process characteristics;

B. PHASE2B models, i.e., a set of DMM, representing the evolving be-
haviour of the user in all the different time bands;

C. PHASE2Cmodels, i.e., multiple sets of signal generators, one for each
PHASE2C working regime, each one composed of one signal genera-
tor for each PHASE2A exogenous feature fex.

Give the aforementioned description of the input of this phase, it is clear
how PHASE2A and PHASE2C are tightly coupled. In fact, it is important
to remind that, in order to obtain a prediction of the fr output feature’s
value from the PHASE2A model, a value for every fex exogenous feature is

52

i
i

“thesis” — 2017/1/23 — 0:17 — page 53 — #61 i
i

i
i

i
i

3.3. Methodology generalization

User independent
Simulation Full Simulation

Process Models

Environment
Models

User Models

Figure 3.6: The simulation flow, from the models of PHASE2A, PHASE2C (on the left)
and PHASE2B (in the middle), to the unified resource consumption trends (on the

right).

required; these values are supplied by the signal generators created by the
PHASE2C. Given this interdependence, the PHASE3 workflow is divided
into two hierarchical simulation steps, shown in the block diagram in Fig-
ure 3.6: a User independent simulation and a User-driven full simulation.

User independent simulation

In this step, the process models and the environment models are combined
in order to obtain a set of resource consumption trends, one for each work-
ing regime of the PHASE2B.

This combination is obtained by taking each process’s model and, start-
ing from the initial conditions, using it to predict step by step the evolution
of the fr resource consumption trend, until the final conditions specified
by the users are met. In order to compute the next value of fr, the current
state of every fex is needed. These values are supplied by all the signal
generators produced by the PHASE2C modeling process.

When all the simulations have reached their final states, two consump-

53

i
i

“thesis” — 2017/1/23 — 0:17 — page 54 — #62 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

tion trend matrices are computed:

T discharge =

t100%-99%,cfg2A1 t100%-99%,cfg2A2 . . . t100%-99%,cfg2Ak

t99%-98%,cfg2A1 t99%-98%,cfg2A2 . . . t99%-98%,cfg2Ak

...
...

t1%-0%,cfg2A1 t1%-0%,cfg2B2 . . . t1%-0%,cfg2Ak

(3.8)

T charge =

t99%-100%,cfg2A1 t99%-100%,cfg2A2 . . . t99%-100%,cfg2Ak

t98%-99%,cfg2A1 t98%-99%,cfg2A2 . . . t98%-99%,cfg2Ak

...
...

t0%-1%,cfg2A1 t0%-1%,cfg2A2 . . . t0%-1%,cfg2Ak

(3.9)

where ta%-b%,cfg2Ah are the ticks required for the resource to go from the a%
to the b% of its budget3, when the system is in the cgf2Ah PHASE2Awork-
ing regime. These matrices are trivially obtained by sampling the obtained
simulations.

For the first time in our methodology so far, the concepts of charge and
discharge appear, specializing the generic consumption trend. This hap-
pens because, if the chosen working regimes match the properties detailed
throughout this chapter, some of them will cause the resource to be dis-
charged while the others will cause a charge. Finally, T discharge and T charge

simulation matrices are passed to the subsequent phase.

User-driven full simulation

This final step of the MARC methodology deals with the generation of a
final and unified description of the modeled resource consumption trend.

We first need to compute a new version of both T discharge and T charge

coming from the previous step, according to:

∆ =

(
(b% − a%)× budget

ta%-b%,cfg2Ah

)
a%-b%,cfg2Bh

(3.10)

where cfg2Bh is the restriction of cfg2Ah to only the f features in Cfg2B.
If multiple restrictions result in having the same cfg2Bh, every ta%-b%,cfg2Ah

will be averaged following the same process described in the previous step;
then, the resulting averaged matrix will be used for ∆charge and ∆discharge

3for a definition of resource budget refer to Section 3.2

54

i
i

“thesis” — 2017/1/23 — 0:17 — page 55 — #63 i
i

i
i

i
i

3.4. Implementation

computation. After the computation of ∆charge and ∆discharge, we perform
a recursive simulation of the user models, i.e. each Markov chain obtained
as result of PHASE2B.

Output The output of this phase is made by all the estimated times required
for charging or discharging the resource budget

• Result: for each PHASE2B working regime, the estimated time for
charging and discharging the resource between the initial and final
conditions specified by the user.

These two simulation steps conclude the proposed methodology, com-
bining the models of the process, the user and the environment that PHASE2
produced separately, into a single comprehensive model.

3.4 Implementation

The proposed methodology drove the implementation of MARC, a scal-
able platform that generates models and insights on resource consumption
trends. This section presents some details on how the architecture has been
implemented to achieve the requirements of (1) high parallelism and (2)
high distribution of the computation, providing the service with an (3) as-
a-service interaction paradigm.

3.4.1 Parallelism requirement

Parallelism is the first requirement of our implementation. In order to tackle
the common issues that come along with parallel processing, we chose to
follow the functional paradigm throughout the implementation of the entire
business logic of our platform. More specifically, precautions for mutual
exclusion and against race conditions are not required thanks to immutabil-
ity, that enforces that two parallel tasks will only access shared values for
read operations – alter operations are, in fact, denied; synchronization is
implicitly enforced by data-availability, as functional programming allows
to define a computation from the initial input to the final output as a data
flow.

We decided to use the Scala programming language [127], as it offers
a wide range of advantages that are collateral to functionality: compiled
to Java Virtual Machine (JVM) bytecode, highly concise code, strong type
safety and support for other paradigms.

55

i
i

“thesis” — 2017/1/23 — 0:17 — page 56 — #64 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

3.4.2 Distribution requirement

Algorithm distribution is a deeply intricate problem [37, 146], involving
issues ranging from communication and synchronization to fault tolerance
and replication. We tackle these issues organizing the entire distribution
logic following the actor model. Each actor is a component devoted to very
narrow and precise task, and communicates with other actors only through
a set of messages: this isolation constitutes a good structure for enabling
distribution. Then, message routing and dispatching over the network are
implemented defining a naming structure and resolving policies.

We decided to employ the Typesafe Akka framework [15], that is char-
acterized by simple concurrency and distribution, high performance, re-
siliency by design, decentralization and extensibility.

3.4.3 “As a service” requirement

The MARC platform is meant to be used in a service aggregation process, to
enable reasoning and self-awareness for autonomous agents and systems.
We then designed each module of our platform to expose REpresentational
State Transfer (REST) interfaces for both system’s clients and other inter-
nal modules: this software architecture [59] is meant to ensure resource
identification (using Uniform Resource Identifier (URI)) and manipulation
through uniform representations and self-descriptive messages.

Moreover, a RESTful service must be:

• Stateless: this is guaranteed by the functional paradigm used to de-
velop the business logic of each MARC module;

• Cacheable: this is guaranteed by the “whiteboard approach” that
MARC exploits to allow phases to communicate with each other. This
functionality, implemented on top of multiple Redis No-SQL databases
[134], allows to cache inter-phases results along the way.

In order to avoid useless computations and allow future changes in the
inter-dependencies among the modules, a “backward activation” pattern
has been put in place.

Starting from the ENTRYPOINT module, that is in charge of receiving
the computation requests from the outside world, the requests are sent back
through the workflow, starting from the phase producing the result desired
by the client. In fact, the client is not forced to require only the complete
execution of the methodology, but can also request a partial result (e.g.,
only the process model from PHASE2A). This pattern, combined with the
caching mechanism, also solves the problem of duplicated computation that

56

i
i

“thesis” — 2017/1/23 — 0:17 — page 57 — #65 i
i

i
i

i
i

3.4. Implementation

PHASE3PHASE2A

WHITEBOARD

PHASE2C

PHASE1

Akka

Redis

Docker
PHASE2B

Figure 3.7: Backward activation structure: requests are sent back through the workflow,
starting from the phase producing the result desired by the client.

a backward activation may cause when propagating the dependencies from
the PHASE2 phases back to the PHASE1 module.

This caching mechanism is part of the CommunicationActor logic:
it constitutes the joining link between the backbone infrastructure – in
charge of dispatching the requests and the result by employing the back-
ward activation mechanism – and each phase’s internal logic – encapsulated
starting from the InternalWorker.

The CommunicationActor is in charge of handling the life-cycle
of a specific computation, tracking its state and possible malfunctioning
behaviours. The life-cycle evolution is briefly described as follows:

• Init State: in this state the CommunicationActor is in the phase’s
LoadBalancer pool and is ready to be configured to accept a new
incoming computation request.

• Ready State: after having received the working regime for an incom-
ing computation, the CommunicationActor waits in this state for
receiving a computation request from the backward activation flow.

• Preamble State: a computation has been requested, thus the
CommunicationActor checks if the results are already present in

57

i
i

“thesis” — 2017/1/23 — 0:17 — page 58 — #66 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

the cache.

• Wait State: in this state, the CommunicationActor is waiting for
previous phases – triggered through backward activation – to compute
their results.

• Computation State: the CommunicationActor instantiates an
InternalWorker that will carry out the phase-specific computa-
tion.

3.4.4 Implementation details

In this section, we detail how some implementation issues have been tack-
led, solved or at least mitigated.

Computational performance

The functional paradigm and the actor model enable a high level of par-
allelism and distribution. However, we had to show some cares on some
performance critical parts of the business logic.

On the one hand, the lack of indexed loops (e.g., for loops) in a func-
tional language is mitigated by advanced operations based on the “map-
reduce” pattern. When this is not sufficient, recursive functions must be
employed, thus leading to JVM heap “explosion”: the Scala compiler is
able to detect some form of problematic tail-recursive functions and com-
pile them in order to avoid that problematic behaviour; however, we had to
manually restructure a good amount of them to prevent heap explosion.

On the other hand, we had to deal with a potential parallel slowdown
related to an explosion of the number of actors in the system: in fact, when
the number of actors grows dramatically, message routing and balancers/-
collectors become two important bottlenecks of the system, saturating the
speed-up trend that happens at the beginning with an increasing number of
actors. As a consequence, we studied and developed an auto-scaling mech-
anism that, based on throughput metrics, automatically scales up the size of
the pool of available actors in the system without triggering the aforemen-
tioned degradation effect.

Memory management

Another significant issue that affects functional programming revolves around
garbage collection. In fact, any operation that in a traditional object-oriented
language would lead to data modification, in a functional language causes
the creation of a new object representing the result of the edit operation.

58

i
i

“thesis” — 2017/1/23 — 0:17 — page 59 — #67 i
i

i
i

i
i

3.4. Implementation

This leads to at least two main problems: on the one hand, it requires to
clone the object in memory4, thus involving sensible delays if the original
object is huge; on the other hand, repetitive editing (e.g., on collection iter-
ations) can lead to a huge amount of clones being allocated in memory but
becoming not referenced almost instantly.

In order to mitigate these problems, we chose to use the most effec-
tive Garbage Collector (GC) for the functional case, i.e., G1GC: it is highly
parallel and optimized for long complex iterations – the case of almost all
the manipulation primitives offered by Scala. Moreover, we inserted multi-
ple hints for the GC in the code where a conspicuous amount of objects is
about to become useless – this usually happens at the end of every MARC
phase. These hints then cause the GC to be triggered early enough to avoid
memory saturation.

Finally, we fine-tuned the balance between young and old generations,
two different categories of objects that the GC maintains and treats differ-
ently. This tuning process is required to balance the trade off between fast
allocation – more young generation objects – and finer garbage collection
– less young generation object. In the case of Scala, where it is highly im-
probable that an object would last in memory enough to be transferred to
the old generation, it is better to unbalance the trade off towards the first
solution.

Reliability

The MARC platform implements the “let-it-crash” paradigm: every piece
of code is aware that something may go wrong along the way and, when it
happens, the system must be able to remain up and running. We then al-
lowed every actor to generate, receive or relay a special ThrowsException
message that carries the description of what went wrong. After its gener-
ation, this message climbs up the actors invocation tree and either reaches
the root actor in the infrastructure or it gets intercepted by an intermediate
actor that is able to solve the situation: in the first case, the computation
of that specific phase is stopped and the infrastructure deallocates all the
actors waiting for it, while, in the second case, the crash is just masked to
the client.

Moreover, we introduced timeout management on every operation im-
plemented in the system, as suggested in [37]. This is achieved by setting a
timeout on every state of the CommunicationActor; if a timeout trig-
gers, the infrastructure signals it to the client and deallocates all the actors

4In some cases the Scala compiler can understand such critical situation and avoid cloning.

59

i
i

“thesis” — 2017/1/23 — 0:17 — page 60 — #68 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

that were waiting for the expired computation.
Finally, the same timeouts are also used to avoid useless recomputations.

In fact, when a computation is triggered by backward activation, the results
of a phase are maintained available directly from the actor for a reasonable
amount of time: if more than one phase is waiting for the same results,
these are distributed as soon as they are available.

Communication

We chose to use the JavaScript Object Notation (JSON) format for both the
inter-phase and the client-facing communication, as it is more lightweight
than XML. In order to guarantee type safety, we exploited Rapture [130], a
library that allows to handle JSON objects in a type safe manner, as well as
a fast on-demand serialization/deserialization.

Even though the JSON format is optimal for end-to-end communica-
tions, it may be excessively prolix for internal data representation. We then
compress it using the LZ4 algorithm in a Base64 stream, achieving a com-
pression rate over 98%.

3.5 Validation

This section discusses the set of experimental results that support the pro-
posed methodology, assessing the correctness, the validity and the robust-
ness of its implementation into the MARC platform.

More precisely, two different experimental settings are here presented,
with different goals: on the one hand, I generated synthetic and controlled
traces with different patterns; on the other hand, I reproduced the results
obtained in Section 2.6.1, thus showing how the general methodology per-
forms at least as well as the ad-hoc modeling solution.

3.5.1 Simulator

In this section, we present a variegated set of simulations that show the
pros and cons of the MARC methodology in a completely abstract and gen-
eral validation process. We show that, under reasonable assumptions, the
MARC methodology produces correct estimates of resource consumption
trends and that, in case a precise enough estimation can not be produced,
this issue can be highlighted by exploiting an extensive set of collateral
figures of merit (e.g., the spectral conditioning numbers).

60

i
i

“thesis” — 2017/1/23 — 0:17 — page 61 — #69 i
i

i
i

i
i

3.5. Validation

Parameters of the synthetic traces

Before testing and evaluating MARC on real applicative scenarios, I built
a Discrete Event Simulator that is able to generate synthetic traces of an
abstract system, according to these characteristics:

• Number of components: the system can be composed by one or more
components – this is usually related to the number of features in the
data set;

• Component’s impact: each component can sum different contribu-
tions to the modeled resource consumption – these are usually related
to the process’s behaviour modeled in PHASE2A as follows:

– Linear: the contribution is a linear combination of the exogenous
input of the component (e.g., the impact of the screen brightness
level on the battery depletion in a smartphone [58]);

– n-Polynomial: the contribution is either sub-linear or super-linear
with respect to the exogenous inputs of the component (e.g., the
impact of voltage on dynamic power in a MOS integrated cir-
cuit [161]);

– Exponential: the contribution quickly diverges (e.g., the impact
of number of new nodes to process on the time for a clique prob-
lem solver [92]);

• Component’s behaviour: each component could be in a different
state in a different moment in time, and each of these states can be
characterized by a different impact on the resource – usually each state
corresponds to a PHASE2B configuration;

• Components coupling: when two or more components are in a de-
fined set of states, their contribution to the resource consumption can
be diminished (positive coupling, e.g., bluetooth and Wi-Fi radio on
at the same time have an impact on battery depletion that is lower
than the sum of their separate consumptions) or augmented (negative
coupling, e.g., two cores computing two highly synchronized tasks
consume more than the sum of the same two computing independent
tasks);

• Exogenous signals: different signals of different order of magnitudes
can be applied to the input of each component: Constant, Square
wave, Triangular wave, Random (Uniform, Poissonian, Gaussian),
etc;

61

i
i

“thesis” — 2017/1/23 — 0:17 — page 62 — #70 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

Table 3.1: Error metrics used in the Simulation case study. Notice that n is the number of
samples in the trace under study, Yi and Ŷi are respectively the sample output value and
its estimation, while p is the number of model parameters, αi and α̂i are respectively
the model parameter and its estimation.

name symbol formula

Mean Square Error MSE 1
n

∑n
i=1(Ŷi − Yi)

2

α Percent Error α: err% 1
p

∑p
i=1(α̂i − αi)× 100

• Noise: the entire sampling process can be affected by a Gaussian
white noise, with the following characteristics:

– Low level noise: a noise that, in mean and standard deviation, is
less then or comparable to the dynamic of the original signal;

– High level noise: a noise that, in mean and standard deviation,
is orders of magnitude greater than the dynamic of the original
signal;

• Sampling procedure imperfection: even in the absence of noise on
the signals, the sampling procedure itself presents imperfections, such
as:

– Time drifts: the sampling rate is not stable;

– Missing data: the procedure randomly fails to acquire either
some values of or the entire sample.

Given that the number of possible combinations of the aforementioned
characteristics is too high, the next sub-sections present a selection of the
evaluations conducted that is sufficient to show the correctness, validity and
robustness of the MARC approach. Error metrics we used throughout this
case study are summarized in Table 3.1.

Synthetic traces: Mono component - Different impacts

This first batch of simulations is aimed to verify the basic behaviour of the
MARC methodology while modeling a system based on the three aforemen-
tioned impact relations: linear, polynomial and exponential.

The resource consumption trends related to these three different situa-
tions are shown in Figure 3.8: in Figure 3.8a we see the plot of the exoge-
nous signal that stimulates the component, while Figure 3.8b-d show the
resource consumption trends for different component impacts.

62

i
i

“thesis” — 2017/1/23 — 0:17 — page 63 — #71 i
i

i
i

i
i

3.5. Validation

Linear
0.5-Polynomial
2-Polynomial
3-Polynomial
Exponential
Exogenous

(a)

(b)

(c)

(d)

E
xo

ge
no

us
 s

ig
na

l

0

5

10

R
es

ou
rc

e
co

ns
um

pt
io

n

900

950

1000

R
es

ou
rc

e
co

ns
um

pt
io

n

−3000

−2000

−1000

0

1000

R
es

ou
rc

e
co

ns
um

pt
io

n

−2×109

−1×109

0

Time

0s 2s 4s 6s 8s 10s 12s 14s 16s 18s 20s

Figure 3.8: Compared impacts on the resource consumption trends of a system based on
three different impact relations: linear (b), polynomial (c) and exponential (d), with
the exogenous signal reported in (a).

63

i
i

“thesis” — 2017/1/23 — 0:17 — page 64 — #72 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

Table 3.2: Simulation results: this table shows, for different impacts of the only compo-
nent present in the simulation and different input signals, the MSE and the relative
estimation error over the models αs (α: err%). For both the metrics, the nearer the
values to zero the better the model.

Constant signal Triangular wave signal
MSE α: err% MSE α: err%

y = αx
single state 2.26× 10−26 0% 3.18× 10−28 0%

multiple states 2.71× 10−25 0% 1.04× 10−25 0%

y = α
√
x single state 1.82× 10−29 0% 9.83× 10−2 68%

multiple states 1.50× 10−26 0% 3.67× 10−2 66%

y = αx2 single state 1.76× 10−26 0% 5.92× 101 -772%

multiple states 4.27× 10−26 0% 1.51× 101 -833%

y = αx3 single state 4.91× 10−32 0% 1.03× 104 -7,278%

multiple states 1.55× 10−26 0% 2.93× 103 -7,869%

y = α · 10x single state 7.42× 10−27 -900% 6.43× 1016 -4,347,498,491%

multiple states 8.41× 10−24 -900% 2.13× 1016 -4,189,333,130%

Table 3.2 shows the modeling MSE and the average relative error on
the α parameters of the ARX models. We report the two more interesting
batches of simulations with respect to the exogenous input signals. These
results confirm the correctness of our methodology and platform. In fact,
the MSE and the relative α estimation errors are almost null in the linear
case, and in all the polynomial cases with a constant exogenous signal. For
polynomial impacts, the error grows together with the distance of the poly-
nomial grade from 1. Moreover, the error is consistent in monotonicity:
if the impact is sub-linear, the estimation error is positive (i.e., the model
underestimates it), whereas, if the impact is super-linear the estimation er-
ror is negative and grows, in absolute value, together with the grade of the
impact.

Then, these results show how an exponential impact can not be mod-
eled by our methodology, as expected and already made explicit in Sec-
tion 3.3.2; however, such impacts are usually characteristic of transient
states and these are out of the scope of this work.

64

i
i

“thesis” — 2017/1/23 — 0:17 — page 65 — #73 i
i

i
i

i
i

3.5. Validation

Table 3.3: Simulation results: this table shows, for different impacts of one of the com-
ponents present in the simulation and different input signals, the Mean Square Error
(MSE) and the relative estimation error over the models αs (α: err%). For both the
metrics, the nearer the values to zero the better the model.

Constant signals Triangular wave signals
MSE α: err% MSE α: err%

y = α1x1 +

α2x2 2.20×10−21 38% 2.16×10−21 0%
α2
√
x2 1.40×10−21 76% 4.00× 10−2 42%

α2x
2
2 2.36×10−21 -472% 4.15× 104 -10,876%

α2x
3
2 1.85×10−19 -5,574% 3.19× 108 -766,637%

Synthetic traces: Multi component - Different impacts

In this second batch of simulations, our aim is to test a more realistic case,
in which the system is composed by different components, each one char-
acterized by its own behaviour and impact on the resource consumption
trend, stimulated by a dedicated exogenous signal, independent from the
other signals.

Table 3.3 reports the modeling MSE and the average relative error on
the αs estimation. We report the two more interesting batches of simula-
tions with respect to the exogenous input signals. These results confirm
the correctness of our methodology with respect to complex systems and
maintains the same positive characteristics that have been described in Sec-
tion 3.5.1.

It is important to notice the discrepancy between the MSE and the rel-
ative error for the “Constant signals” case. While these data alone can be
confusing, a more clear picture is given when considering also the spectral
conditioning numbers related to the PHASE2A ARX models generation.
In case of constant signals, the available data are not sufficient to correctly
understand the impacts of components on the resource consumption; Chart
3.9 clearly shows that in the constant case the data are ill-conditioned, thus
generating a model that shows high sensitivity to any alteration of the pa-
rameters, even if it is correct for the specific case – the MSE is negligible,
anyway. This means that the generated model is affected by overfitting.

It is important, in a multi component situation, to keep into account also
possible coupling impacts. We modified the simulation presented in the first
row of Table 3.3 (i.e., a two-component system, each one with linear im-
pact on the resource consumption) in order to include coupling impact for
specific combinations of states. Table 3.4 shows the results of this batch of
simulations. Briefly, for the constant signals case is evident that the model

65

i
i

“thesis” — 2017/1/23 — 0:17 — page 66 — #74 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

1.0×1019

1.5×1019

2.0×1019

2.5×1019

3.0×1019

1.0×105

1.5×105

2.0×105

2.5×105

3.0×105

Constant signals Triangular wave signals

86,000

87,000

88,000

89,000

90,000

91,000

Figure 3.9: Spectral conditioning number distributions

Table 3.4: Simulation results: this table shows, for different coupling impacts between
components, the MSE and the relative estimation error over the models αs (α: err%).
For both the metrics, the nearer the values to zero the better the model.

Constant signals Triangular wave signals
MSE α: err% MSE α: err%

linear coupling impact
6.68×
10−03 38% 1.70×

10−21 -26%

quadratic coupling impact
1.96×
10−21 32% 3.99×10−2 -63%

is not able to generalize, as stated before and expected. By looking at the
more realistic triangular wave signals case, the results for the linear cou-
pling impact clearly show that our methodology is able to tackle coupling
phenomena without increasing its modelling error: the MSEs are almost
identical between the coupled and non-coupled case, while the estimation
relative error increases, as expected, because the model has no component
to represent the coupling effect, thus, it has to distribute this contribution
among the coupled components. Moreover, even if non-linear coupling im-
pacts cause greater errors than linear ones, this error is similar to the one
introduced by non-linear component impacts and, as such, can be tackled
by defining a more precise working regime for PHASE2A (as discussed in

66

i
i

“thesis” — 2017/1/23 — 0:17 — page 67 — #75 i
i

i
i

i
i

3.5. Validation

Table 3.5: Simulation results: this table shows the Mean Square Errors measuring how
different levels of noise can impact on the model precision in a multi-component situa-
tion. The lower MSE the better the model

y2 = α2x2

+
LNOISE HNOISE

y1 = α1x1 +
LNOISE 4.04× 10−1 1.68× 10−21

HNOISE 1.69× 10−21 6.13× 100

Section 3.3.2).

Synthetic traces: The noise impact

The system under study can be affected by noise: this may alter unpre-
dictably the relationships that connect the exogenous inputs to the impact
of the components on the resource consumption trend, but can also affect
the sampling procedure itself, by mainly causing drifts in the sampling pe-
riod and corruption of sampled data.

Since the noise characteristics can be extremely variegated, we defined
two classes of noise that we use in our simulations:

HNOISE ∼ N (0, σ), σ � σsignal (3.11)
LNOISE ∼ N (0, σ), σ ' σsignal (3.12)

We have then modified the simulations described in Section 3.5.1 in order
to perturb the impacts of each one of the components with each class of
noise defined.

Table 3.5 shows the results of one of the simulation made, that is:

• Number of components: 2

• Exogenous signals:

– Component 1: Triangular wave signal with period equals to 7
ticks and amplitude equals to 10;

– Component 2: Triangular wave signal with period equals to 11
ticks and amplitude equals to 100;

In this simulation, component 1 is much less important in determining the
resource consumption trend – on average its contribution is lower than the
one of component 2 by two orders of magnitude.

67

i
i

“thesis” — 2017/1/23 — 0:17 — page 68 — #76 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

High noise Theoretical Low noise

F
ea

tu
re

 v
al

ue
s

−5

−4

−3

−2

−1

0

1

2

3

4

5

6

7

Time

0s 5s 10s 15s 20s 25s 30s 35s 40s 45s 50s

(a)

Theoretical sampling time Real sampling time

0

5

10

15

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35 40 45 50 55 60

(b)

Figure 3.10: Impact of noise on: (a) the system under study with two different levels of
noise: HNOISE in red, LNOISE in blue (no noise in green) and (b) on the sampling

procedure - sampling period drifts shown in red
.
68

i
i

“thesis” — 2017/1/23 — 0:17 — page 69 — #77 i
i

i
i

i
i

3.5. Validation

Worst case scenario

mean coverage 25.83%
mean square error 9.31

output relative error

full scale range 0.01%
mean value 0.34%
median value 0.34%

MSEs distribution

Table 3.6: “Realistic” simulation results: on the left, the figures of merit characterizing
the models produced by the simulation; on the right, the box plot of the distribution
of the MSEs obtained from multiple simulation (the lower whisker is not visible). The
mean coverage indicates for how many samples we had a model to estimate them (the
higher the better). The output relative error compares the Root Mean Square Error to
values representing the output distribution (the lower the better).

Table 3.5 shows the results of this simulation batch: we can see that
the MSE dramatically increases only in situations where an HNOISE is
involved. This is not, anyway, a flaw of the methodology itself; in fact,
given the definition of HNOISE, this noise is able to completely mask the
original signal dynamics, and, as such, features representing this messed-
up signal should be excluded because non representative (this insight can
be obtained in the feature selection phase).

Synthetic traces: a “realistic” simulation

In this paragraph we discuss the results obtained from a batch of simula-
tions that, from our point of view, can represent the worst case scenario that
may be submitted to the MARC platform.

This scenario is obtained from the LNOISE-LNOISE simulation already
presented in this section, plus random sampling period drifts and data cor-
ruption (random samples get lost), without extending the simulation dura-
tion to compensate in any manner.

Table 3.6 reports the most interesting figures of merit that characterize

69

i
i

“thesis” — 2017/1/23 — 0:17 — page 70 — #78 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

36%

4%

6%
6% 4%

44%

Samsung
Motorola

Sony Xperia
Nexus

LG
Others

Figure 3.11: Devices distribution by manufacturer, from the MPower database

this batch of simulations. For the first time, we introduce the concept of
coverage, i.e., the percentage of the samples for which a model is available.
In all the previous simulations, the coverage was always equal to 100%, but,
as we introduce corruption and drifts, MARC is no more able to compute a
model for every working regime. Nevertheless, when a model is available,
its MSE is negligible; this is more evident by looking also at the relative
errors listed in Table 3.6, that show how distant the model estimated values
are from the real ones. If we consider the full dynamic of the resource
consumption trend, our error is 0.01%; with respect to the central values of
the same trend it grows to 0.34%; both these errors are negligible.

With this last realistic example, we finally showed the goodness and
correctness of the MARC methodology and implementation, meaning that
it is able to produce interesting insights and to extract valuable knowledge
from a non-trivial data set.

3.5.2 Regression testing: power models for Android devices

The main goal of this last section is to verify that the MARC methodology
can reproduce the results obtained by the methodology proposed in Chap-
ter 2.

It is important to note that data used for this purpose are not exactly
the same employed in Section 2.6.1, as the data set available at the time of
these tests is more than twice bigger, while part of the original data is not

70

i
i

“thesis” — 2017/1/23 — 0:17 — page 71 — #79 i
i

i
i

i
i

3.6. Final remarks

available anymore. These tests then focused on 50 devices with an MPower
model available and the following features:

• Trace size: we chose devices with traces of different sizes, ranging
from 6,500 to 1,274,327, that is the maximum size currently available;

• Device type: there are traces coming from both smartphones and
tablets; we chose traces from both of them;

• Device model: there are traces coming from more than 600 differ-
ent models, with deeply different technical specification; we chose
50 devices that represent a similar distribution of this diversity (Fig-
ure 3.11).

• Trace quality: the MPower logging process can be strongly unreli-
able because of its power efficiency; this may lead to traces that are
highly corrupted (missing samples, missing values, etc.); we chose 50
devices both from the ones with high quality traces and the ones that
presented an highly noisy behavior.

Figure 3.12 shows in green that we have obtained the same MSE distri-
butions as the one reported in Section 2.6.1, with the label “Old”. However,
we obtained these results by considering only the devices that were present
in the MPower database at the time of the study.

Considering the whole set of devices, the MSE distribution, shown in
red, changes drastically. This difference in the results is caused by the data
that have been added after we performed our first study: in fact, these data
are related to newer versions of the Android OS, that introduced profound
variation in the exposed APIs – leading to greater data corruption – and in
the energy management policies – leading to highly fragmented traces.

However, these results show how we are able to reproduce the same
precision of the results obtained in Section 2.6.1, thus showing how the
MPower methodology has been generalized and abstracted consistently,
even if it would require a logger application update in order to produce
comparable results on new data.

3.6 Final remarks

This chapter discussed how it is possible to generalize the same concepts
learnt from Chapter 2 towards a general methodology: the observed sys-
tem does not need to be a smartphone but it could be a generic system,
i.e., an “agent”, that wants to become power-aware or, in a wider sense,

71

i
i

“thesis” — 2017/1/23 — 0:17 — page 72 — #80 i
i

i
i

i
i

Chapter 3. Generalization: Model and Analysis of Resource Consumption
(MARC)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

9.000

10.000

11.000

12.000

13.000

14.000

MPower Old Data Set Current Data Set

Figure 3.12: MPower MSE distributions

72

i
i

“thesis” — 2017/1/23 — 0:17 — page 73 — #81 i
i

i
i

i
i

3.6. Final remarks

“resource-aware”, of course without disregarding domain-specific assump-
tions on features and applications.

The generalized data-driven methodology for resource consumption mod-
eling has then been implemented into MARC, a Cloud-service platform
designed to Model and Analyze Resource Consumption trends (MARC),
supporting a “Model-as-a-Service” paradigm. In order to validate the pro-
posed methodology, a custom simulator has been set up to generate a wide
spectrum of controlled resource consumption traces: this allowed to verify
the correctness of the framework from a general and comprehensive point
of view. Moreover, it was able to reproduce the same precision of the results
obtained in Section 2.6.1, thus showing how the MPower methodology has
been generalized and abstracted consistently.

The next chapters will show how this generalization allows to bring
power-awareness into a completely different context: power consumption
models for virtual machines in a multi-tenant virtualized infrastructure.

73

i
i

“thesis” — 2017/1/23 — 0:17 — page 74 — #82 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 75 — #83 i
i

i
i

i
i

CHAPTER4
Towards power-awareness for the Xen
Hypervisor: virtual guests monitoring

4.1 Introduction

In the last few years, embedded systems have experienced a shift from
microcontrollers to the adoption of multi-core processors, as these have
become cheaper, smaller, and less power-hungry. This shift brings two
advantages: (1) multiple embedded applications can be consolidated on
the same System-on-Chip (SoC), improving the overall resource utiliza-
tion, and (2) some applications can exploit concurrency and parallelism to
obtain better performance.

These enabled the disruptive changes that smartphones and tablets brought
in the way we work and live, as discussed in Chapter 2. However, “end-
user” devices are not the only ones affected by this remarkable shift: multi-
core processors empower a wide range of application fields, like auto-
motive, Internet TV and other embedded use cases like low-power mi-
croservers for lightweight scale-out workloads [2, 84].

In the context of embedded systems, hardware-assisted and software vir-
tualization technologies have been developed to allow colocated applica-

75

i
i

“thesis” — 2017/1/23 — 0:17 — page 76 — #84 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

tions to share physical resources while having strong security and isola-
tion [137, 141, 156].

Those technologies seek to offer a stable and predictable execution envi-
ronment to make it easier for embedded applications to meet different QoS
requirements.

The virtualized runtime can be a full-fledged guest OS or more suitable
to embedded systems, a light-weight OS (e.g., [96, 148]), customized for
a specific application. Applications executing in such runtimes generally
have different performance objectives, such as: hard and soft deadlines,
and peak throughput. Moreover, they are often different from one another
in terms of workload limitations (i.e., memory-bound, I/O-bound, or CPU-
bound) and evolving load patterns (e.g., algorithmic phases).

Unfortunately, this high heterogeneity comes at a price: The isolation
between simultaneously resident applications, enforced by virtualization,
shifts the burden of optimization from developers to the hypervisor itself
because only a privileged arbiter can thoroughly observe what happens on
the bare metal. Hence, it becomes clear that a smart online monitoring strat-
egy is necessary to accurately observe and model applications’ behavior to
guarantee requirements and optimize physical resources utilization.

Since power consumption is currently a key technological limitation [75],
recent works propose approaches to optimizing power [40], while main-
taining Service Level Agreements (SLAs) with each hosted guest. Again,
these approaches have an essential need for precise and thorough observa-
tion of both hardware and guests’ behavior over time. Lacking appropriate
tools, many of these approaches employ custom monitoring solutions or
rely on outdated tools that do not provide support for the latest hardware
monitoring features. Often, these ad-hoc approaches overlook the impact
of measurements on the overall system’s behavior.

Seeking to fill the gap, this chapter proposes XeMPower, a lightweight
hardware and resource monitoring solution for the Xen hypervisor [17]. It
is meant to be agnostic to the hosted applications, and results show it incurs
negligible power consumption overhead. XeMPower has been released as
open source,1 and it aims to be a reference design for future works in the
field of virtualized systems.

To prove its effectiveness, we present a use case in which XeMPower
precisely accounts hardware events to virtual guests, enabling real-time at-
tribution of CPU power consumption to each guest or “domain”.2 XeM-
Power starts with socket-level energy measurements through the Intel Run-

1 Available at: https://bitbucket.org/necst/xempower-4.6
2 Adopting Xen terminology, the remainder of this chapter will refer to virtual guests as domains.

76

https://bitbucket.org/necst/xempower-4.6

i
i

“thesis” — 2017/1/23 — 0:17 — page 77 — #85 i
i

i
i

i
i

4.2. Proposed approach and requirements

ning Average Power Limit (RAPL) interface [138], and then utilizes a
performance-counter-driven model to account for the proportional uses of
energy by simultaneously resident domains over time. This proportional
attribution of power is XeMPower’s secret sauce – the contribution is eval-
uated by measuring a subset of architectural performance counters related
to each domain, but regardless of the physical core.

The chapter is organized as follows. Section 4.2 presents an overview
of XeMPower. Section 4.3 details the implementation of the tool, while
Section 4.4 shows how to attribute power to each domain. Next, Sec-
tion 4.5 investigates the performance overhead of XeMPower while Sec-
tion 4.6 presents the related work and Section 4.7 concludes.

4.2 Proposed approach and requirements

XeMPower is a lightweight monitoring solution for Xen, that perfectly fit
the Observe phase of the OLDA loop discussed in Section 1.2. It is de-
signed to: 1) provide precise attribution of hardware events to virtual ten-
ants, 2) be agnostic to the mapping between virtual and physical resources,
hosted applications and scheduling policies, and 3) add negligible over-
head.

The proposed approach uses hypervisor-level instrumentation to moni-
tor every context switch between domains. More precisely, the monitoring
flow proceeds as follows:

(A) At each context switch and before the domain chosen by the scheduler
starts running on a CPU, we begin counting the hardware events of
interest. From that moment the configured Performance Monitoring
Counter (PMC) registers in the CPU store the counts associated with
the domain that is about to run.

(B) At the next context switch, the PMC values are read from the registers
and accounted to the domain that was running. The counters are then
cleared for the next domain to run.

(C) Steps A and B are performed at every context switch on every sys-
tem’s CPU (i.e., physical core or hardware thread). The reason is that
each domain may have multiple virtual CPUs (VCPUs). Socket-level
energy measurements are also read (via Intel RAPL interface) at each
context switch.

(D) Finally, the PMC values are aggregated by domain and finally reported
or used for other estimations (e.g., power consumption per domain).

77

i
i

“thesis” — 2017/1/23 — 0:17 — page 78 — #86 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

X
e
M

P
o

w
e
r

C
L
I

A1

1

B1

A2

2

B2

A1

1

B1

A3

3

B3

A2

2

1

A1

Core 0 Core N

T
im

e B2

…

… …

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

c
o
n
te

xt
sw

itc
h

X
e
M

P
o

w
e
r

D
a
e
m

o
n B2

B2

B1

B1

B3

B2

B2

B1

B1

B3

Xen Kernel Dom0

Hardware events per core,
energy per socket

…

Figure 4.1: Monitoring flow of XeMPower.

Figure 4.1 illustrates the monitoring flow described above. Steps A and
B for domains 1, 2, and 3 are shown at every context switch on the left
side of the figure. On the right side, steps C and D are performed by the
XeMPower daemon and Command Line Interface (CLI) program, both in
Dom0.

Steps A and B allow to meet the first requirement (precise event attribu-
tion), while the second requirement (being agnostic) is satisfied by steps C
and D. Regarding the third requirement of low overhead, Section 4.5 empir-
ically confirms that XeMPower meets this requirement, while the technical
aspects enabling that are discussed in Section 4.3.

4.3 Implementation

XeMPower implementation is inspired by XenMon [68], a performance
monitoring tool for Xen. Unlike XeMPower and other works discussed in

78

i
i

“thesis” — 2017/1/23 — 0:17 — page 79 — #87 i
i

i
i

i
i

4.3. Implementation

Section 4.6, XenMon does not collect PMC reads. Nevertheless, since Xen-
Mon’s authors report a maximum overhead of 1-2%, their implementation
approach was an interesting starting point for this work and a reasonable
baseline to compare the overhead with.

XeMPower operates at two levels (see Figure 4.1). At the first level,
PMC reads are collected inside the Xen kernel and then aggregated by the
XeMPower daemon running in Dom0, while at the second level, a CLI pro-
gram reports aggregated values. In this section, I describe implementation
details of the components forming the proposed toolchain, as these will be a
reference for the community that may adopt the tool for further researches.

4.3.1 Xen kernel instrumentation

Xen runs a separate scheduler instance on each CPU, and each scheduler in-
stance has its own queue containing runnable VCPUs of domains [33]. Xen
kernel’s schedule() function3 preempts the currently running VCPU
(scheduler-independent), chooses the VCPU that will run next (scheduler-
dependent), and then makes the chosen VCPU run (scheduler-independent).
Hence, this function is a suitable place to incorporate the steps A and B pre-
sented in Section 4.2.

Even though there are libraries and APIs (e.g., PAPI [29]) that give de-
velopers access to hardware events independently from the underlying ar-
chitecture, I decided to directly use RDMSR and WRMSR assembly instruc-
tions to set the count of desired hardware events as well as read and clear
the CPU’s PMC. The reason is that these operations are performed at every
context switch and we want the overhead to be as low as possible at the
kernel level, in terms of execution time and memory footprint. We then ac-
cept the trade off and tie the current implementation to the Intel instruction
set; however, other architectures (e.g., ARM and AMD) can be supported
by modifying the registers addresses at compile time.

The current XeMPower implementation only counts architectural per-
formance monitoring events. I made that decision because these events
have consistent visible behavior across processor implementations [6]. More-
over, previous work shows that they are the most significant metrics to cor-
relate CPU power consumption [162], which is the focus of our motivating
use case in Section 4.4. Since the available PMCs are limited (e.g., 8 per
core and 4 per hardware thread on Intel Sandy Bridge 2nd Gen processors),
we map some monitoring events onto 4 PMCs and others are counted us-
ing auxiliary fixed-function counters. Table 4.1 summarizes the monitored

3Source code: xen/common/schedule.c

79

i
i

“thesis” — 2017/1/23 — 0:17 — page 80 — #88 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

Table 4.1: Monitored hardware events [6]

Event Mask Mnemonic Register mapping

Instruction Retired IA32_FIXED_CTR0
UnHalted Core Cycles IA32_FIXED_CTR1
UnHalted Reference Cycles IA32_FIXED_CTR2
LLC Reference IA32_PMC0
LLC Misses IA32_PMC1
Branch Instruction Retired IA32_PMC2
Branch Misses Retired IA32_PMC3

events and their register mapping.
Regarding power monitoring, Intel RAPL interface provides dedicated

read-only registers that can be accessed like standard PMCs. These are
available since Sandy Bridge 2nd generation processors and provide CPU
power measurements with a time granularity of 1ms approximately. XeM-
Power currently samples the register MSR_PKG_ENERGY_STATUS, which
accumulates the actual energy consumption (in Joules) of the whole pro-
cessor package; the average power consumption is then easily obtained as
energy/time for the time window considered. For the moment, I decided
not to sample the other RAPL power planes (related to on-chip DRAM and
“uncore" devices) because their availability varies across different proces-
sors.

Finally, we need to expose the collected data to a higher level. For that,
I use xentrace [33], a lightweight trace capturing facility present in Xen
that can record events at arbitrary control points in the hypervisor. Every
trace record is tagged with the ID of the scheduled domain and its current
VCPU, as well as a timestamp to be able to later reconstruct the trace flow.

4.3.2 XeMPower daemon

The stream of trace records produced by xentrace flows from the Xen
kernel to the XeMPower daemon running in Dom0 (see Figure 4.1). The
daemon, a user-space program written in C, receives the records and per-
forms aggregation operations on them. Note that the xentrace user-
space tool is not involved here, as it can produce a very large amount of
data that may potentially cause intense disk writes. XeMPower daemon di-
rectly accesses xentrace memory buffers, to avoid any additional access
to disk.

I defined two bitmasks, TRC_POWER_PMC and TRC_POWER_RAPL, to
differentiate trace records with PMC and RAPL events in the xentrace

80

i
i

“thesis” — 2017/1/23 — 0:17 — page 81 — #89 i
i

i
i

i
i

4.4. Use Case: per-domain CPU power attribution

buffers (one per hardware thread). These buffers are constantly monitored
by the XeMPower daemon – when a new record arrives, a callback function
is invoked to process and store it.

The XeMPower daemon performs aggregations in three stream process-
ing stages. First, records are grouped in tumbling windows with a config-
urable time interval. Second, in each tumbling window an aggregation is
performed per hardware event. In this stage, the deamon also stores the
difference between the values of the RAPL energy counter at the beginning
and the end of the tumbling window. Finally, in each tumbling window
and for each hardware event PMCs are collated per domain. Note that after
aggregating the records the notions of physical and virtual CPUs disappear,
bringing about a hardware-agnostic data structure.

The XeMPower daemon allocates a shared memory region to store a
configurable number of tumbling windows in a circular buffer. Processes
other than the daemon can only read from the region. Shared access to
the tumbling windows allows multiple front-end applications to read and
display different statistics from the same data. The tumbling window time
interval, the capacity of the circular buffer of tumbling windows, and other
configuration parameters can be specified at compilation time. Currently,
the default value for the tumbling window interval is 100 ms and the cir-
cular buffer’s capacity is 100. These values are used in our experiments
reported in Section 4.5.

4.3.3 XeMPower command line interface

XeMPower CLI is a basic command line tool written in Python. It periodi-
cally scans the tumbling windows produced by the XeMPower deamon (in
the shared memory region), and performs aggregations in two time inter-
vals: every second and every 10 seconds. It is also in charge of convert-
ing the RAPL counter values into energy consumption values (in Joules).
The conversion factor is given by the MSR_RAPL_POWER_UNIT register,
which is architecture-specific and can be read once when the XeMPower
deamon is started. The socket power consumption is then obtained as the
ratio of the energy consumption and the considered time interval. XeM-
Power CLI is designed to show live statistics on console or to log them into
a file for a later processing.

4.4 Use Case: per-domain CPU power attribution

As a first motivating use case for the tool, this section describes how XeM-
Power can perform per-domain attribution of CPU power consumption.

81

i
i

“thesis” — 2017/1/23 — 0:17 — page 82 — #90 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

Zhai et al. [162] examined multiple metrics (such as instruction counts,
and last-level-cache references and misses) in a wide range of microbench-
marks, including a busy-loop benchmark (high instruction issue rate), a
pointer chasing benchmark (high cache miss rate), a CPU and memory in-
tensive benchmark (to mimic virus behavior), and a set of bubble-up bench-
marks that incur adjustable amounts of pressure on the memory systems.
They concluded that non-halted cycle is the best metric to correlate power
consumption (linear correlation coefficient above 0.95). Such high correla-
tion suggests that the higher the rate of non-halted cycles for a domain is,
the more CPU power the domain consumes.

I then decided to use this result along with the data produced by XeM-
Power. The approach is simple:

A. For each tumbling window, XeMPower CLI calculates the power con-
sumed by the whole socket, while XeMPower daemon calculates the
total number of non-halted cycles (one of the PMC traced).

B. Since we have the number of non-halted cycles per domain, I esti-
mate the percentage of non-halted cycles for each domain over the
total number of non-halted cycles. This percentage is adopted as the
contribution of each domain to the whole CPU power consumption.

C. Finally, XeMPower splits the socket power consumption proportion-
ally to the estimated contributions for each domain.

The proposed approach works well even when CPU power states (i.e., C-
states and P-states) are enabled. XeMPower is not affected by CPU voltage
and frequency scaling, as it continues to measure the actual socket power
consumption and to trace and account hardware events consistently.

Note that this is just an example of how XeMPower enables online attri-
bution of coarse-grained measurements to multiple tenants on a virtualized
environment, thanks to per-domain accounting of hardware events.

4.5 Experimental results

XeMPower aims to be the tool of choice for any computing system de-
manding precise and thorough monitoring of hardware events attributed to
domains in Xen. Since the tool is meant to continuously provide statis-
tics at run-time, one of its key requirements is to add negligible overhead
to the monitored system. Therefore, this section empirically shows that
XeMPower monitoring components incur very low overhead under differ-
ent configurations and workload conditions. Here I define the overhead

82

i
i

“thesis” — 2017/1/23 — 0:17 — page 83 — #91 i
i

i
i

i
i

4.5. Experimental results

metric as the difference in the system’s power consumption while using
XeMPower versus an off-the-shelf Xen 4.6 installation.

4.5.1 Experimental setup and test cases

The test platform is a machine equipped with a 2.8-GHz quad-core Intel
Xeon E5-1410 processor (4 hardware threads) and 32GB of RAM. I used
a Watts up? PRO meter [44] to independently monitor the entire machine’s
power consumption without being influenced by the system configuration
in use.

Experiments were conducted under three system configurations: 1) the
baseline configuration uses off-the-shelf Xen 4.4, 2) the patched configu-
ration uses Xen modified as described in Section 4.3 without running the
XeMPower daemon, and 3) the monitoring configuration is the same as the
patched configuration but with the XeMPower daemon actually running and
reporting statistics to an attached console. In all three configurations we as-
sign a single virtual CPU (VCPU) and 4GB of RAM to Dom0, and also
dedicate physical core 0 to it. Dedicating core 0 to Dom0, besides adher-
ing to Xen best practices [4], results in that any computational overhead
introduced by XeMPower monitoring phase in Dom0 can be measured as
an increment in power consumption on core 0 and in the whole system.

Four runtime scenarios are considered: an idle scenario in which the
system only runs Dom0, and the running-n scenarios, where n = {1, 2, 3}
indicates the number of guest domains in addition to Dom0. Each guest
domain repeatedly runs a multi-threaded compute-bound microbenchmark4

on three VCPUs and uses a stripped-down Linux 3.14 as the guest OS. The
idea in the running-n scenarios is to stress the system with an increasing
number of CPU-intensive tenant applications, thus increasing the amount
of data traced by the Xen kernel and collected in Dom0.

Finally, two test cases are defined for the running-n scenarios. In the
pinned-VCPU case, each guest domain has each VCPU assigned to a ded-
icated physical CPU. In the unpinned-VCPU case, on the other hand, the
guest domains are assigned VCPUs with no physical mapping (i.e., VCPUs
can migrate between physical CPUs). The idea is to increase the number of
context switches and thereby the amount of traces reported to Dom0.

4CoEVP, a simplified proxy material science application from the ExMatEx Center. It is available at
https://github.com/exmatex/CoEVP.

83

i
i

“thesis” — 2017/1/23 — 0:17 — page 84 — #92 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

Table 4.2: Mean power consumption (µ), in Watts, for the pinned-VCPU test case,
scenarios idle and running-{1,2,3}, and configurations baseline (b), patched (p), and
monitoring (m). Mean power values are reported with their 95% confidence interval.

baseline (µb) patched (µp) monitoring (µm)
idle 34.10 ± 0.05 33.72 ± 0.05 33.83 ± 0.05
running-1 56.03 ± 0.09 56.07 ± 0.11 56.19 ± 0.08
running-2 66.14 ± 0.11 66.30 ± 0.06 66.56 ± 0.09
running-3 74.62 ± 0.07 74.60 ± 0.11 74.88 ± 0.29

Table 4.3: Mean power consumption (µ), in Watts, for the unpinned-VCPU test case,
scenarios idle and running-{1,2,3}, and configurations baseline (b), patched (p), and
monitoring (m). Mean power values are reported with their 95% confidence interval.

baseline (µb) patched (µp) monitoring (µm)
idle 34.32 ± 0.30 34.14 ± 0.08 34.19 ± 0.05
running-1 70.82 ± 0.10 71.20 ± 0.09 70.78 ± 0.10
running-2 72.99 ± 0.09 73.55 ± 0.12 73.17 ± 0.10
running-3 73.68 ± 1.09 74.67 ± 0.27 74.10 ± 0.09

4.5.2 Results and discussion

We now want to compare the power that our test platform consumes for the
different scenarios and test cases under the baseline (b), patched (p), and
monitoring (m) configurations. Under each configuration, the idle scenario
and the running-1,2,3 scenarios are run, with and without VCPUs pinned
to dedicated physical CPUs (i.e., pinned-VCPU and unpinned-VCPU test
cases). The system’s mean power consumption (µ) is reported in Watts over
a 60-second interval. I performed a set of 40 independent experiments for
each [test case, scenario, configuration] combination.

Table 4.2 and Table 4.3 present the system’s mean power consumption
for the pinned-VCPU and unpinned-VCPU test cases, respectively, across
the considered scenarios and configurations. Empirical mean power values
are reported with their 95% confidence interval.

At a glance, we can see how measurements are pretty close. However,
given the limited accuracy of the power meter, some of them may seem
misleading, e.g., the mean power consumption of the baseline case some-
times is higher than the others. This is the reason why we estimate an upper
bound ε for the maximum overhead by performing the following hypothesis
test [117]:

T (µ) :=

{
H0 : µ ≥ ε+ µb

H1 : µ < ε+ µb,

84

i
i

“thesis” — 2017/1/23 — 0:17 — page 85 — #93 i
i

i
i

i
i

4.6. Related work

Table 4.4: Estimated upper bound ε for the power consumption overhead, in Watts,
across the considered test cases and scenarios under the patch (p) and monitoring (m)
configurations. Parenthetical values are the percentage overheads with respect to the

mean power consumption.

µ = µp µ = µm

pinned

idle <0.01 (<0.02 %) <0.01 (<0.02 %)
running-1 0.08 (0.14 %) 0.19 (0.34 %)
running-2 0.19 (0.28 %) 0.45 (0.67 %)
running-3 0.01 (0.01 %) 0.34 (0.45 %)

unpinned

idle <0.01 (<0.02 %) <0.01 (<0.02 %)
running-1 0.44 (0.61 %) 0.02 (0.02 %)
running-2 0.61 (0.83 %) 0.23 (0.31 %)
running-3 1.18 (1.58 %) 0.60 (0.81 %)

where a rejection of the null hypothesis H0 means that there is strong sta-
tistical evidence that the power consumption overhead is lower than ε (or
equivalently, the mean µ is lower than the baseline mean µb increased by ε).
We compute ε for the considered test cases and scenarios, ensuring average
values of power consumption (µ) with confidence α = 5%.

Table 4.4 shows the values of ε across the considered test cases and sce-
narios for the patched and monitoring configurations. The values in paren-
thesis represent the percentage overheads relative to the mean power con-
sumption (i.e., µp and µm, respectively). These results indicate (with con-
fidence α = 5%) that XeMPower introduces an overhead not greater than
1.18W (1.58%), observed for the [unpinned-VCPU, running-3, patched]
case. In all the other cases, the overhead is less than 1W, and less than 1%
in relative terms.

This is a satisfactory result when compared to a maximum overhead
of 1-2% observed for XenMon [68], which I adopted as a reference point
for the XeMPower implementation. This overhead can then be considered a
negligible and reasonable price to pay, given the high-precision information
that XeMPower can provide at runtime.

4.6 Related work

Performance monitoring and profiling has always been crucial in every
computing system over the last 30 years [67]. The need for a constant mon-
itoring solution has then grown, especially in virtualization environments,
where the same hardware is shared between multiple tenants. Unfortu-
nately, every monitoring tool is affected by a tradeoff between accuracy

85

i
i

“thesis” — 2017/1/23 — 0:17 — page 86 — #94 i
i

i
i

i
i

Chapter 4. Towards power-awareness for the Xen Hypervisor: virtual
guests monitoring

and overhead; the effective implementation of these systems is then far
from trivial. In the literature, this problem has been tackled with two differ-
ent approaches: code instrumentation and performance counter monitoring.

Code instrumentation solutions, as Valgrind [124] and IgProf [51], in-
ject extra code in the applications at compile time and/or runtime, allowing
complex analysis, e.g., on memory and cache accesses. These tools are ex-
cellent for an initial analysis of errors and inefficiencies in programs, but are
not suitable for performing runtime analysis in production, as the overhead
introduced is often high [124].

Performance counter tools, on the other hand, focus on sampling sys-
tem’s events at different granularity (e.g., thread level, process level, set of
processors, or the entire systems). These tools provide information on hard-
ware utilization that may not be closely related to the application domain,
but their overhead can be tuned accordingly to the actual needs [114]. They
differ in functionality, data granularity, level of abstraction, and interfaces
they rely on.

Low-level performance counter libraries do not hide architecture-specific
event types from the user and lie directly on the hardware. Perf [5] and
OProfile [102] are the most popular tools available; they make use of kernel
modules to access different categories of events: hardware events, software
events (context switches or minor faults), and tracepoint events (disk I/O
and TCP events).

Higher-level libraries (e.g., PAPI [29]) hide micro-architecture event
types behind a uniform API. They support event multiplexing to compen-
sate for the limited number of performance counter registers that can be
monitored at a time: only a subset of the desired event sets is monitored
during subsections of a program’s execution, then results are scaled to sta-
tistically estimate rates for the entire program.

In addition, some works in the literature focus on PMC virtualization
[114, 125, 158], providing low-level metrics to virtual tenants. As XeM-
Power, all these solutions require to patch Xen Hypervisor’s kernel to im-
plement operations that require privileged access, such as reprogramming
counters or setting up interrupt handlers.

In the context of Xen, the most common solution is Xenoprof [114], a
system-wide statistical profiling toolkit based on OProfile and specifically
crafted for the hypervisor. It is a valid solution to profile a standard work-
load running in Dom0 or other domains in active mode (i.e., the domain
itself collects its own hardware event counters). However, when profiling
in passive mode (i.e., the domain is treated as a “black box"), the results in-
dicate which domain is running at sample time but do not delve more deeply

86

i
i

“thesis” — 2017/1/23 — 0:17 — page 87 — #95 i
i

i
i

i
i

4.7. Final remarks

into what is being executed. Therefore, it does not satisfy the requirement
of being agnostic to hosted applications.

Another interesting tool is Perfctr-Xen [125]. It supports performance
counter virtualization in Xen for: (1) paravirtualized guest kernels, using
hypercalls to communicate performance counter configuration changes to
the hypervisor; (2) fully-virtualized guest kernels, using the “save-and-
restore" approach for all registers; and (3) a hybrid approach that offers
a tradeoff between the first two. Similar to XeMPower, Perfctr-Xen re-
programs the Performance Monitoring Unit (PMU) configuration registers
(e.g., event selectors) at every context switch. Although this tool is good
for workload profiling inside a domain, it is not designed as a centralized
runtime monitoring solution.

4.7 Final remarks

This chapter described the design and the implementation that led to XeM-
Power, a lightweight monitoring solution for the Xen hypervisor. It pre-
cisely accounts hardware events to guest workloads, enabling attribution of
CPU power consumption to individual tenants. Results show that XeM-
Power introduces negligible overhead in power consumption, thus fitting
the Observe phase of the OLDA loop discussed in Section 1.2.

The presented approach to power consumption attribution to domains
is very simple, as it represents a mere example to show the tool’s poten-
tial. The next chapter will present how to improve power-awareness, using
XeMPower and MARC to build data-driven power models for virtualized
guests.

87

i
i

“thesis” — 2017/1/23 — 0:17 — page 88 — #96 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 89 — #97 i
i

i
i

i
i

CHAPTER5
Modeling power consumption in
multi-tenant virtualized systems

5.1 Introduction

As already introduced in the previous chapter, virtualization has become
an extremely important tool for organizing computer systems [73, 115]. It
provides a clean separation of software development concerns from the un-
derlying hardware platform, allowing multiple guest applications to share
physical resources while fulfilling needs for QoS, security, and strong iso-
lation [10, 99, 141].

Hardware-assisted and software virtualization technologies have been
developed for a wide range of platforms, from embedded systems to work-
stations and servers. As already stressed, power consumption remains an
open issue for all of them, also in those contexts that do not involve bat-
teries: for instance, data centers providers aim to reduce it as much as pos-
sible to decrease operating costs and to improve system reliability. Even
though the performance-per-watt ratio has been constantly rising, the total
power drawn is hardly decreasing and recent trends suggest that the cost
of the energy consumed by a server during its lifetime will probably ex-

89

i
i

“thesis” — 2017/1/23 — 0:17 — page 90 — #98 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

ceed the hardware cost in the near future [20]. Given the strong correlation
with live operating costs, power consumption consolidation through appli-
cations colocation and migration becomes critical for the Cloud Computing
paradigm, which delivers computing services as a utility in a “pay-as-you-
go” manner [16].

Much recent work [40,41] focuses on the problem of power optimization
under performance constraints, defined in terms of Service Level Agree-
ments (SLAs) between the service provider and the tenant. For most of
these approaches, an accurate model of tenants’ behavior is a first step to
guaranteeing tenants’ requirements and optimizing physical resource uti-
lization.

This chapter shows how it is possible to employ the generalized method-
ology described in Chapter 3 to build power models for multi-tenant vir-
tualized systems. The basic idea remains to tackle the complexity that
comes from heterogeneity identifying the working regimes of the system,
and building a model for each of them. This is different from the typical
approach in the literature, which uses static assumptions about hardware
components to attempt to build a single comprehensive model of the be-
havior of the system [20].

The input of the model consists in a set of hardware event traces, which
represent the link between hardware utilization and the overall power con-
sumption, i.e., the output of the model: these can be easily collected using
XeMPower, presented in the previous chapter. Again, the proposed ap-
proach is completely data-driven, because no knowledge about the internal
components of the system is required.

I demonstrate the accuracy of the methodology with experiments in a
multi-tenant virtualized infrastructure based on the Xen hypervisor [17].
Results show a relative error of 2% on average, and under 4% in most cases,
which is more accurate than previous results in the literature [20, 23, 160].
Results also show that the same model can be exploited to make predic-
tions about the impact of power consumption when migrating a domain to
a different hardware platform, with little loss in accuracy.

Finally, the last section shows how these power models can be used
to produce a metric of power efficiency that makes it possible to compare
different colocations of tenants, as long as there exists a runtime monitoring
system that is able to attribute hardware events to each domain: this is
the case of XeMPower as extensively discussed in Chapter 4. A cluster-
level scheduler could use that metric to evaluate which particular colocation
leads to better consolidation from a power consumption perspective.

All the code developed to build the power models, script the tests and

90

i
i

“thesis” — 2017/1/23 — 0:17 — page 91 — #99 i
i

i
i

i
i

5.2. Motivational example

Table 5.1: RMSE and mean relative error obtained building ARX models using 3 different
input features sets from the State of Art: Class A, Class B and Class C. Workload types:
(a) idle, (b) weak I/O intensive, (c) memory intensive, (d) CPU intensive and (e) strong
I/O intensive.

Workload Class A Class B Class C

RMSE
Relative

error RMSE
Relative

error RMSE
Relative

error

(a) ± 17.63 W 35.56% ± 16.44 W 32% ± 17.68 W 35%
(b) ± 4.7 W 9.4% ± 5.86 W 11.7% ± 7.17 W 14%
(c) ± 19.11 W 38% ± 34.54 W 70% ± 18.7 W 37%
(d) ± 0.44 W 0.08% ± 0.6W W 1.2% ± 0.42 W 0.08%
(e) ± 2.98 W 5.9% ± 38.57 W 77% ± 3.29 W 6.5%

average ± 8.97 W 17.79% ± 19.20 W 38.38% ± 9.45 W 18.52%

validate the approach has been released open source 1 and it aims to be a
reference for future work in the field of virtualized, power-aware systems.

The chapter is organized as follows: Section 5.2 presents a prelimi-
nary exploration on how different workload patterns impact on power con-
sumption, baring the limitations of the most common power modeling ap-
proaches; Section 5.3 gives a complete overview of the proposed approach,
from the high level flow to the most relevant implementation details; Sec-
tion 5.4 provides a comprehensive description of which experiments have
been conducted to validate our methodology and how, while results are
discussed in Section 5.5. Finally, Section 5.6 discusses related work and
Section 5.7 concludes.

5.2 Motivational example

In order to be effective, consolidation techniques need to estimate the im-
pact of a workload on the power consumption of the system. As many
works in the field show how the impact on the overall power consumption
is highly related to the workload hosted [23, 145, 160], I started this analy-
sis with an exploration on how workload heterogeneity impacts on power
consumption.

A synthetic benchmark has been built to reproduces a sequence of work-
loads with different characteristics, thus simulating a job composed of dif-
ferent phases:

1All source code, scripts, inputs, and patches are available at: https://bitbucket.org/paperblindauthor/2017-
powermodels

91

i
i

“thesis” — 2017/1/23 — 0:17 — page 92 — #100 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

A. IDLE phase: the benchmark has not started yet;

B. I/O Load phase: the benchmark loads a great amount of data into the
main memory (I/O intensive task);

C. MEM Preparation phase: the benchmark prepares the data just loaded
to be processed (memory intensive task);

D. CPU Computation phase: the benchmark runs an intensive compu-
tation on the prepared data (CPU intensive task);

E. I/O Store phase: the benchmark stores the results into persistent stor-
age (I/O intensive task);

F. IDLE phase: the benchmark terminates.

Figure 5.1 shows an example of the power trace obtained from the power
meter connected to the server (equipped with a 2.8-GHz quad-core Intel
Xeon E5-1410 processor and 32GB of RAM), while the synthetic bench-
mark was running. Different phases are reported with different colors, thus
highlighting strong differences of power consumption between different
workload classes 2.

The experiment has been repeated multiple times, exploiting architec-
tural Performance Monitoring Counters (PMCs) to collect traces of hard-
ware events. These traces represent low level metrics of hardware utiliza-
tion and have been extensively used in literature to build power models [20].
Since the preliminary work of [23], some works uses hardware events as
input of a linear model to explain the behavior of a generic workload [53],
while others realized that such a simple model is not enough to tackle more
complex scenarios [45]; further works introduce the concept of “intensive-
ness”, thus using different linear or ARX models for different classes of
workload [145, 160].

Inspired by these contributions, we built a different ARX model for each
prevalent “intensity” we observed in the aforementioned synthetic bench-
mark, thus identifying 5 different working states of the system: (a) idle, (b)
weak I/O intensive task, (c) memory intensive task, (d) CPU intensive task
and (e) strong I/O intensive task.

Then, we resorted to the literature to choose the subset of hardware
events that better correlates with power consumption [23,160], thus choos-
ing the following 4 events: INST_RET, UNHALTED_CLOCK_CYCLES,
LLC_REF, LLC_MISS. In order to find the most satisfactory subset of

2The same figure has been used in Chapter 3, while discussing the resource consumption problem.

92

i
i

“thesis” — 2017/1/23 — 0:17 — page 93 — #101 i
i

i
i

i
i

5.2. Motivational example

Traced Power
Energy Consumption

Energy Budget
E

ne
rg

y

2kJ

4kJ

6kJ

8kJ

10kJ

12kJ

14kJ

16kJ

18kJ

20kJ

22kJ

24kJ

26kJ

28kJ

30kJ

32kJ

Pow
er

2W

4W

6W

8W

10W

12W

14W

16W

18W

20W

22W

24W

26W

28W

30W

Time
0s 200s 400s 600s 800s 1000s 1200s

Figure 5.1: Example of a power trace obtained by running a workload that goes through
the following phases: (a) idle, (b) weak I/O intensive task, (c) memory intensive task,

(d) CPU intensive task and (e) strong I/O intensive task

input features for these preliminary models, we computed all the 24 − 1
combinations of these events. The better performing and most interesting
subsets were used to build the following classes of models:

A. Class A:
input ∈ {INST_RET, UNHALTED_CLOCK_CYCLES,
LLC_REF, LLC_MISS}

B. Class B:
input ∈ {INST_RET, UNHALTED_CLOCK_CYCLES,
LLC_REF}

C. Class C:
input ∈ {UNHALTED_CLOCK_CYCLES, LLC_REF}

We built a model for each combination: <Model Class, Working State>,
thus reporting results on models performances, in terms of RMSE and rel-
ative error, in Table 5.1.

These preliminary results led us to the following outcomes: (1) we ob-
served a good correlation between hardware events and system power con-
sumption, as extensively discussed in literature; it is then reasonable to use
them to build power models, even though (2) a single ARX model is not

93

i
i

“thesis” — 2017/1/23 — 0:17 — page 94 — #102 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

able to achieve good modeling performance with different workload types
(e.g., CPU intensive, memory intensive, weak and strong I/O intensive).
However, (3) the hypothesis of the existence of different working states
still holds, as showed in Figure 5.1.

5.3 Proposed methodology

5.3.1 Overview

Starting from the outcomes of Section 5.2, this section discusses how to
tackle the modeling complexity through working regimes identification.
Figure 5.2 gives an overview of the steps of the modeling pipeline:

A. at first, we stress the hardware with a representative set of benchmarks.
These have to cover the highest number of computational patterns in
order to observe the different working regimes that characterize the
system;

B. then, we need a data-driven approach to regimes identification, since
results in Section 5.2 show how the definition of “prevalent intensity”
proposed in the literature may lead to dramatic performance dispar-
ities while modeling different situations. We propose an approach a
posteriori, that aims at identifying regimes from the observed power
trace using a clustering technique;

C. once we identified a set of regimes, we need to correlate them with
input hardware metrics, thus training a regime classifier. This will
then be used a priori to identify the right regime at runtime;

D. finally, an ARX model is built for each working regime classified.
These models, used in conjunction with the classifier, constitute the
final power model of the whole system, as showed in Figure 5.3.

At runtime, we account for a certain rate of hardware events to the specific
domain; these triggers the classifier, that chooses the right power model for
the regime identified; finally, hardware events are given in input to the right
power model, that is finally used to estimate the actual power consumption
P̂single of the system.

This section continues with some theoretical details on the techniques
adopted, as well as some insights on how they have been implemented to
produce the results we present in the last sections to validate the proposed
methodology.

94

i
i

“thesis” — 2017/1/23 — 0:17 — page 95 — #103 i
i

i
i

i
i

5.3. Proposed methodology

5

Characterize
the system

using intensive
benchmarks

Identify
working
regimes

Train
a classifier based

on hardware
events

Build
a power model

per each
working regime

Power Modeling Flow

Figure 5.2: Overview of the power models generation procedure

2

Characterize the system
using intensive benchmarks

Identify working regimes

Train a classifier based
on hardware events

build a power model
per each working regime

Hardware
Events

classifier
Working
Regime
(WR)

Set of Power Models
(PM)

PM for WR1

PM for WR2

PM for WRn

…

Power
Consumption

Estimation

System Power Model

Figure 5.3: Overview of how the final power model of the system is composed

95

i
i

“thesis” — 2017/1/23 — 0:17 — page 96 — #104 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

NPB BT

NPB CG

NPB DC

NPB EP

NPB FT

NPB LU

NPB SP

NPB UA

Cachebench

IOzone

Traced power Energy consumption

E
ne

rg
y

0J

20kJ

40kJ

60kJ

80kJ

100kJ

120kJ

140kJ

160kJ

180kJ

200kJ

220kJ

240kJ

P
ow

er

25W

30W

35W

40W

45W

50W

55W

60W

65W

70W

75W

Time

0s 500s 1000s 1500s 2000s 2500s 3000s 3500s 4000s

Figure 5.4: Example of a power-energy trace obtained running the chosen benchmarks
on a low-range server machine

5.3.2 System benchmarking

We introduce a set of micro-benchmarks to stimulate the hardware, nar-
rowing down to single aspects (e.g., CPU performances, memory latency,
etc.), thus producing all the different regimes of power consumption of the
physical machine.

We chose the NAS Parallel Benchmarks (NPB) benchmark suite [46],
that has proven its ability to stress the greatest part of the characteristics of
CPU and RAM with a mix of 8 highly targeted benchmarks [160], together
with Cachebench [118] and IOzone [85] to stress the bandwidth and the
latency of cache hierarchies and I/O hardware by transferring large streams
of data. A sample run is showed in Figure 5.4.

No benchmark stresses any kind of network capability: in a virtual-
ized environment, we realized that network can be effectively benchmarked
only if some newly discovered and rarely available expedients are in place
(multi-queue NICs with tenants direct access to a dedicated queue, no NAT-
ting, specialized and modified privileged drivers, etc.). Without these en-

96

i
i

“thesis” — 2017/1/23 — 0:17 — page 97 — #105 i
i

i
i

i
i

5.3. Proposed methodology

hancements, any benchmark would measure only the hypervisor’s over-
head in handling virtual networking, instead of the real impact of virtual
networking itself [55].

5.3.3 Working regimes identification

The goal of this section is to identify a reasonable number of working
regimes over the power traces obtained in Section 5.3.2. We then need
to split a mono-dimensional data set into intervals. A simple though mean-
ingful procedure is: (1) estimate the distribution from which the data set
has been sampled, (2) find all the local minima of the estimated probability
density function and (3) split the data set into intervals using local minima
as boundaries. The rationale behind this procedure is that each obtained
interval will contain highly “packed” values, thus pointing out the presence
of a steady state (i.e., a working regime) of the system that lies inside that
interval.

We then resort to a class of algorithms and procedures for monodimen-
sional interval generation: these derive from the specialization of the more
general clustering algorithms to the subcase of mono-dimensional data sets.
The clustering is then applied on a single feature in the entire data set, i.e.,
the range of power consumption values. We chose to use a simple though
extremely powerful technique based on KDE [136], a non-parametric sta-
tistical method to estimate the probability density function of a sampled
random variable.

To help the reader understand how this technique fulfils the task of work-
ing regimes identification, we: (1) passed the power trace through KDE,
obtaining the associated probability density function as in Figure 5.5; (2)
identified two local minima at 42W and 57W; (3) split the data set into 3
intervals using the two local minima identified (bottom of Figure 5.5).

5.3.4 Working regimes classification

Once we identified the values of power that delimit each regime, we need
to infer this classification directly from the input features, i.e., hardware
events collected during the experiments. For this purpose, we use Reli-
efF [98], a heuristic, distance measure based, supervised classification al-
gorithm that presents a good trade-off between time complexity and accu-
racy [38].

Figure 5.6a shows the weights computed by a first round of ReliefF for
each input feature. Features names, i.e., hardware events codes, are omitted

97

i
i

“thesis” — 2017/1/23 — 0:17 — page 98 — #106 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

1

Pr
ob

ab
ilit

y
de

ns
ity

0

0,005

0,010

0,015

0,020

0,025

0,030

0,035

0,040

0,045

0,050

0,055

0,060

0,065

0,070

Power
10W 20W 30W 40W 50W 60W 70W 80W 90W

Class 0 Class 1 Class 2
0W 42W 57W +∞W

Figure 5.5: Example of power distribution through KDE analysis; local minima identify
classes of power consumption

98

i
i

“thesis” — 2017/1/23 — 0:17 — page 99 — #107 i
i

i
i

i
i

5.3. Proposed methodology

W
ei
gh
ts

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,10

0,11

0,12

0,13

0,14

0,15

0,16

Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

(a) ReliefF results for each input feature; a highest weight indicates a more important feature for
classification

CLASS 0
CLASS 1
CLASS 2

P
ro

ba
bi

lit
y

de
ns

ity

0

5×10
−11

10×10
−11

15×10
−11

20×10
−11

25×10
−11

30×10
−11

35×10
−11

40×10
−11

45×10
−11

50×10
−11

55×10
−11

60×10
−11

PMC values

0 2×109 4×109 6×109 8×109

(b) Probability distribution of the values of Feature 2 for each class, with the range of uncertainty
highlighted

Figure 5.6: First iteration of the ReliefF algorithm on the current example: Feature 2
(i.e., INST_RET hardware event) represents a good candidate feature but it is not

enough to perform a good classification per se
99

i
i

“thesis” — 2017/1/23 — 0:17 — page 100 — #108 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

Table 5.2: Final ruleset for the regimes classifier for the current example

INST_RET MEM_LOAD_
UOPS_RET_L1_HIT

CLASS 0 [0, 1.235× 109]

CLASS 1
[3.61× 109, 5.58× 109)

(1.235× 109, 3.61× 109) [2.36362× 108, 5.672× 108]

CLASS 2
[5.58× 109, +∞)

(1.235× 109, 3.61× 109) [0, 2.36362× 108) ∪
(5.672× 108, +∞)

to improve readability, as this is meant to be a mere example to help the
reader understand the proposed methodology.

Feature 2, that corresponds to the event: INST_RET, presents the high-
est weight, thus being the more important feature for classification. How-
ever, this feature alone seems not always sufficient to discriminate among
the three classes identified: Figure 5.6b, that shows the probability distribu-
tion of the values of this feature for each different class reconstructed using
KDE, highlights how there exists at least a range of values for this event for
which it is not possible to perform a good classification.

This uncertainty can be solved with another iteration of ReliefF on the
remaining features considering just the range of uncertainty: as we remove
Feature 2, we have that Feature 25 (i.e., hardware event: MEM_LOAD_UOPS
_RET_L1_HIT) can help to obtain a good discrimination among the un-
certain classes when Feature 2 is not enough to perform an accurate classi-
fication.

This process can be repeated multiple times, until enough features have
been chosen to guarantee good classification performance. For each chosen
feature, we have as outcome a range of PMC values, that can be used to
identify each different working regime of the system a priori. Table 5.2
shows the outcome for the example discussed in this section.

5.3.5 Power models generation

Once we obtained the ruleset that defines a classifier for the working regimes
of the system, we can build a power model for each regime, as discussed in
Chapter 3.

We start from raw data recorded during the execution of the benchmarks
described in Section 5.3.2. These data consist in a time series of power
measurements and counters of hardware events related to the last time in-
terval: the former represent the output feature fr, while the latter ones are

100

i
i

“thesis” — 2017/1/23 — 0:17 — page 101 — #109 i
i

i
i

i
i

5.4. Experimental Evaluation

the exogenous input features fx of the model. The classifier allows to split
the dataset into batches, i.e., a group of samples that relates to the same
regime. The training set for each model is then obtained grouping together
batches of the same regime.

At first, raw traces are conditioned: Model Analysis for Resource Con-
sumption (MARC)’s PHASE1 coherency correction was exploited to cor-
rect some data inconsistencies, such as counter overflows; moreover, we
translated the classifiers into feature fusion rules, labeling each sample with
a working regime identifier; then, we configured MARC’s PHASE2A to
generate an ARX(0,1) model for each working regime; finally, MARC’s
PHASE3PREwas exploited to evaluate power models produced by PHASE2A,
given different initial conditions. As a bottom line, thanks to the many
mathematical performance metrics exported by MARC, we had no need to
further implement any accessory script for data analysis.

For the case study under analysis, we explored different values of ar
and ex lags and we found out that a lag of 1 step for the auto-regressive
component and a lag of 0 steps for the exogenous input generally lead to
the best modeling performance. We are then implicitly assuming that the
power consumption of the system is highly dominated and depends almost
entirely on the actual system load.

5.4 Experimental Evaluation

5.4.1 Objectives

The experimental evaluation discussed in this section has three main goals:
(1) assess the precision of the power modeling methodology, (2) explore the
performance of a model on different hardware platforms and (3) show how
the proposed models can be exploited to help a scheduler evaluate a colo-
cation with respect to another one in terms of power efficiency, towards a
more effective consolidation on the server farm. The following paragraphs
highlight some important details on these goals that has to be kept into
consideration through the rest of the chapter.

Model performance

The same methodology can be used to produce two different types of mod-
els: generic and specific.

On the one hand, the generic model is produced using of a set of micro-
benchmarks as discussed in Section 5.3.2. This model is bounded to the

101

i
i

“thesis” — 2017/1/23 — 0:17 — page 102 — #110 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

physical machine and can be employed to make predictions on a generic
workload that has never been hosted and monitored beforehand.

On the other hand, the specific model, makes use of a classifier that has
been built ad-hoc for the specific workload. This generally leads to a lower
missclassification of the working regimes of the system, where misclassifi-
cation is defined as the fraction of samples that the classifier categorizes in
a wrong working regime. Even though we experienced that a high misclas-
sification may not influence the performance of a model, a low misclassifi-
cation always leads to an improvement of the performance of the model. Of
course, the drawback of a specific model is the need for a training dataset
to build the specific classifier: we then need to observe the execution of the
workload on the physical machine to collect execution traces.

At first, results aim to measure the precision of each generic model built
(one for each physical machine considered). Then, we want to measure
how a specific power model built for a single tenant can improve the per-
formance of the generic model.

Model portability

As tenant migration is a common practice in a cloud computing infrastruc-
ture, model portability from one physical machine to another is a desired
feature. We then want to measure the error we face when we try to exploit
a generic model of a machine to make prediction on power consumption on
different machines. This could be the case of new servers that has just been
added to the cluster.

Consolidation evaluation

We finally want to show how the power models produced can be used to
evaluate the power efficiency of a specific colocation of tenants, to which
we will refer to as colocation configuration. A colocation configuration
defines a certain amount of resources given to each tenant: it may or may
not share the same socket with other tenants, or even the same physical
core, etc.

Given a certain resource allocation, we observe a certain rate of hard-
ware events accounted to each specific domain: these can be used as input
of a power model to estimate at runtime the power consumption P̂single(i)
of the same tenant i if it were running in isolation on another physical ma-
chine. The same estimation P̂single(i) can be obtained of for each tenant
running in the system. Then, the total power consumption that would be
required to run the same k tenants on isolation on different machines can

102

i
i

“thesis” — 2017/1/23 — 0:17 — page 103 — #111 i
i

i
i

i
i

5.4. Experimental Evaluation

be estimated as follows:

P̂single =
k∑

i=1

P̂single(i) (5.1)

If we compare P̂single with the real power consumption Pcolocation measured
on the system with the current colocation configuration c, we can infer a
metric to evaluate the improvement on power efficiency as follows:

improvementc =
P̂single − Pcolocation

Pcolocation

(5.2)

With k > 1, this metric will always be greater than zero, as each P̂single(i)
considers the base power of the physical machine while tenants colocation
allows to distribute that power overhead on multiple tenants. Then, this
metric is interesting when comparing different colocation configurations c,
to identify the ones that allow a better power consolidation.

5.4.2 Experimental setup

In order to achieve the aforementioned goals, we need to explore different
system configurations to explore how heterogeneity impacts on power con-
sumption in a multi-tenant cloud computing infrastructure. We can define
at least 3 levels of heterogeneity: (1) hardware-level, i.e., the specific hard-
ware platform analyzed, (2) workload-level, i.e., the specific workload type
considered, and (3) colocation-level, i.e., the number of different workloads
concurrently sharing the same resources. As an exhaustive exploration of
all the combinations of these levels of heterogeneity may be unfeasible, we
now try to set some assumption to cover a reasonable amount of experi-
ments to prove the validity of the methodology proposed in Section 5.3.

Hardware setup

For what concerns hardware heterogeneity, it is quite common that different
physical machines take part in the same cluster, as new families of servers
are released every year and the replacement of old machines on a server
farm is performed gradually. Moreover, server platforms may be configured
differently in terms of number of processors, amount of memory available
and so on. Thus, our experiments have been conducted on the following 3
physical machines:

A. WRK a Dell OptiPlex 990, equipped with one Intel Core i7-2600 @
3.40GHz and 8GB DDR3 RAM; this represents an old, but still quite
common general purpose machine;

103

i
i

“thesis” — 2017/1/23 — 0:17 — page 104 — #112 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

B. SRV1 a Dell PowerEdge T320, equipped with one Intel Xeon CPU
E5-1410 @ 2.80GHz and 16GB DDR3 RAM; this represents a recent
low-range server machine;

C. SRV2 a Dell PowerEdge T630, equipped with two Intel Xeon E5-
2650 v3 @ 2.3GHz and 128GB RAM DDR4; this represents a recent
mid-range server machine;

Experiments have been performed with and without Simultaneous Multi-
Threading (SMT) enabled. Intel TurboBoost has been left disabled in all
our tests, as it tends to cause unpredictable behaviors [9, 106].

Moreover, we do not want to assume to have the same power measure-
ment sources available over the whole cluster: we may have measurements
at different granularities, e.g., rack-level, server-level or even socket-level
power measurements, and with a different sampling frequency. Our exper-
imental setup makes use of 2 different sources:

A. Intel RAPL interface: a set of Model Specific Registers (MSRs) that
Intel provides on its processors (since Sandy Bridge 2nd generation
[138]) to get CPU power measurements with a time granularity of
1ms approximately; more specifically, we are interested in the PKG
MSRs, i.e., the ones related to the whole socket power consumption;

B. WattsUp power meter an external power meter [44] that is meant to
be placed between the power source and the machine; it logs power
consumption every 1s approximately.

Workload setup

Two virtual CPUs are assigned to each domain, that runs a minimal Debian
distribution. These vCPUs are pinned onto two physical cores, in order
to improve performance stability and to limit scheduling overheads. Each
virtual tenant hosts a single workload.

A workload can be classified by its predominant behavior, that may fall
in one of the following 3 coarse-grained workload categories: (1) CPU-
intensive, (2) memory-intensive and (3) I/O-intensive. Even though no
real-world application fits exactly one and only one of these categories,
we chose some representative benchmarks that are widely adopted in cloud
environments and we group them by predominant observed behavior:

A. two compute-intensive algorithms like Support Vector Machines (SVM)
and PageRank implemented on Apache Spark, a fast and general en-
gine for big data processing [61], and a stress benchmark for Redis,
an in-memory data structure store [134];

104

i
i

“thesis” — 2017/1/23 — 0:17 — page 105 — #113 i
i

i
i

i
i

5.5. Experimental results

B. two representative benchmarks for MySQL [36] and Cassandra [60],
to stress a SQL and a NoSQL DataBase Management System (DBMS);

C. a last benchmark on FFmpeg [35], an audio-video processing tool
suite.

Colocation setup

Our last experiments involved the colocation of multiple workloads on the
same system. For both single socket and dual socket machines, we run
an increasing number of tenants up to the maximum number that could be
placed without assigning the same physical core to different workloads. We
evaluated both the colocation of homogeneous tenant, thus running multiple
instances of the same workload, as well as of heterogeneous tenants, i.e.,
tenants that present predominant behaviors that fall into different workload
categories.

5.4.3 Models and results generation

Given the large amount of experiments that can be conducted, we produced
a set of scripts to automate the tests, collect data, build power models and
assess their precision. This subsection gives an idea of the tests structure,
while scripts have been released open-source and can be downloaded from
the same repository linked at the beginning of this chapter. This allows
researchers to reproduce the same results and enables performance com-
parison with works in the fields.

Each script starts setting the system in the most clean and stable state
possible. Depending on the testing configuration to be examined within
the current experiment, the script launches a set of domains hosting the
workloads of interest. In order to deal with workloads’ settling periods, we
wait for 60 seconds between each workload activation. The same happens
on workload deactivations.

5.5 Experimental results

This section discusses all the aspects presented in Section 5.4. Before going
through the analysis of the obtained results, it is important to notice that on
WRK we explored only a subset of the realistic benchmarks we selected for
validating this work. This is due to the limited computational capabilities
offered by the WRK machine, which is far from being a representative of
a cluster node – i.e., highly distributed environment to which Cassandra,
PageRank and SVM belong.

105

i
i

“thesis” — 2017/1/23 — 0:17 — page 106 — #114 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

20.67%

11.67%

21.23%

18.33%

18.99%

12.50%

23.46%

16.67%

7.14%

30.89%

7.69%

30.89%

2.79%

2.48%

2.30%

2.79%

49.24%

2.50%

22.35%

29%

3.30%

5.41%

27%

2.30%

27.62%

0.00%

5.60%

18.03%

4.92%

4.70%

SMT enabled
SMT disabled

M
YS

Q
L

SRV2

SRV1

WRK

R
ED

IS

SRV2

SRV1

WRK

FF
M

PE
G

SRV2

SRV1

WRK

C
AS

SA
N

D
R

A

SRV2

SRV1

PA
G

ER
AN

K

SRV2

SRV1

SV
M

SRV2

SRV1

Percentage
0 10 20 30 40 50

Missclassification - General models

Figure 5.7: Misclassification results of the general model for different workloads, hard-
ware features and platforms (lower is better)

5.5.1 Model performance

Figure 5.7 shows an evaluation of the misclassification metric for each
benchmark and for each hardware platform analyzed, using the general
model. Misclassification percentage is reported both with SMT enabled
and disabled. In the vast majority of the cases, we observe fairly similar
results within each benchmark, apart from two outstanding situations.

The first one, FFMPEG on SRV1 with SMT enabled, reports a misclas-
sification rate of almost 50%; this is related to some design choices taken
while defining the classifiers for this work. The SRV1 classifier shows its
greatest weakness in labeling Class 1 samples. This limitation could be
easily mitigated by leveraging another PMC for better tuning the classifier

106

i
i

“thesis” — 2017/1/23 — 0:17 — page 107 — #115 i
i

i
i

i
i

5.5. Experimental results

20.67%

18.44%
21.23%

20.46%

18.99%

17.32%
23.46%

22.58%

7.14%

2.20%
7.69%

2.20%

2.79%

0.00%
2.79%

0.00%

22.35%

1.68%
5.41%

2.16%

SMT enabled
SMT disabled

27.62%

4.97%
18.03%

0.55%

M
YS

Q
L

General

Specific

R
ED

IS

General

Specific

FF
M

PE
G

General

Specific

C
AS

SA
N

D
R

A

General

Specific

PA
G

ER
AN

K

General

Specific

SV
M

General

Specific

Percentage
0 5 10 15 20 25 30

Missclassification - General vs. Specific (SRV2)

Figure 5.8: Missclassification results of the specific model compared with the general one
for different workloads and hardware features on SRV2 (lower is better)

rules as explained in Section 5.3.4. However, we deliberately decided to
use the same number of PMCs for every classifier for two reasons: (1) to
have better comparability among different results and (2) to implement a
technique advisable in real-world environments, where the generation of
the classifier is the same on all the machines.

The other outlier, MySQL on SRV1 with SMT disabled, clearly shows
that even a general classifier is able to perform virtually perfectly in some
cases. We suppose that workloads with almost perfect classification are
the ones that show better affinity with the hardware platform they run on,
meaning that they behave as expected when analyzing the machines from a
workload-agnostic point of view.

Moreover, we want to show how a specific model can improve working
regimes classification. Figure 5.8 compares misclassification obtained for
general and specific models for each benchmark and with both SMT en-
abled and disabled on SRV2. Similar results have been obtained on all the
hardware platforms considered and are not reported here due to space lim-

107

i
i

“thesis” — 2017/1/23 — 0:17 — page 108 — #116 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

0.62%

2.43%

0.81%

2.23%

0.49%

2.26%

0.85%

2.01%

0.85%

3.11%

0.77%

3.11%

0.23%

1.96%

1.04%

0.20%

1.74%

8.31%

1.46%

2.85%

1.46%

1.84%

9.13%

0.11%

0.01%

1.87%

7.73%

0.03%

3.62%

0.33%

SMT enabled
SMT disabled

M
YS

Q
L

SRV2

SRV1

WRK

R
ED

IS

SRV2

SRV1

WRK

FF
M

PE
G

SRV2

SRV1

WRK

C
AS

SA
N

D
R

A

SRV2

SRV1

PA
G

ER
AN

K

SRV2

SRV1

SV
M

SRV2

SRV1

Watt
0 1 2 3 4 5

Power Models RMSE and Relative Error

Figure 5.9: Power models performances, in terms of RMSE and relative error, for different
workloads, hardware features and platforms (lower is better)

itations. As expected, specific models perform better than general ones in
all the explored configurations. It is worth noticing that FFMPEG, which
showed very poor results with some of the generic models, is almost per-
fectly classified with a specific one. This is related to the fact that this and
other similar workloads usually work on a very stable and definite regime,
which might not be identified correctly during a generic classifier training.
Using the same methodology but targeting these workloads specifically al-
lows to build extremely good classifiers that can overcome the limitations
of generic ones.

Finally, the last results aim to measure the estimation error of the power
models built using the proposed methodology. For each benchmark and for
each hardware platform considered, Figure 5.9 shows the RMSE evaluated

108

i
i

“thesis” — 2017/1/23 — 0:17 — page 109 — #117 i
i

i
i

i
i

5.5. Experimental results

Table 5.3: Model portability RMSE (Watts) with MYSQL workload

Train \Test WRK SRV1 SRV2
WRK 0.13 1.15
SRV1 17.83 1.81 17.15
SRV2 3.84 0.30

Table 5.4: Model portability RMSE (Watts) with the REDIS workload

Train \Test WRK SRV1 SRV2
WRK 0.58 1.42
SRV1 0.22 1.42 2.39
SRV2 9.33 1.45

Table 5.5: Model portability RMSE (Watts) with the FFMPEG workload

Train \Test WRK SRV1 SRV2
WRK 3.32 0.85
SRV1 3.34 0.86 0.76
SRV2 0.98 0.20

with SMT enabled and disabled, respectively. The length of the bars rep-
resents the RMSE (in Watts), while the mean percentage error is reported
on top of the bars. The mean percentage error is evaluated with respect to
the range of the dynamic power of the machine, obtained as peak power
minus base power. This error metric has been reported as it is a common
and stable metric to compare these results with the ones proposed in the
literature. Results show how the proposed methodology guarantees good
modeling performance in all the cases, as:

A. RMSE is around 1W on average and under 2W in almost all the cases;
only three results present a worse behavior, that is still under the rea-
sonable limit of 5W;

B. relative error is around 2% on average and under 4% in almost all the
cases; still, the three worse results present an error that is fairly under
10%.

These results then generally outperform the ones obtained in literature [20,
23, 160], even in the worst cases.

5.5.2 Model portability

Model portability results for MySQL, Redis and FFMPEG are showed in
Table 5.3, Table 5.4 and Table 5.5 3. Cells contain the RMSE evaluated

3Due to space limitation, we are not reporting the Cassandra, SVM and PageRank results, as they cannot be
analyzed on the complete set of hardware platforms considered in this work.

109

i
i

“thesis” — 2017/1/23 — 0:17 — page 110 — #118 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

using the general models of the platform of the corresponding row on a
benchmark executed on the platform specified in the corresponding column.

As expected, the best results are reported on the main diagonals, as these
models are built stressing the specific platform, thus being highly dependent
on the underlying hardware. However, these results show how it is possible
to use the model of a machine to predict the power consumption of a work-
load on another “similar” machine (in terms of hardware specifications), for
which a power model has not been built yet. In this context, two platforms
are considered similar if, for instance, the processor’s microarchitecture is
the same (e.g., it is the case of WRK and SRV1, both based on Intel Sandy
Bridge 2nd generation microarchitecture) or the processor’s model is the
same (e.g., both SRV1 and SRV2 are equipped with an Intel Xeon proces-
sor, even though they are based on a different microarchitecture). It is then
more reasonable that similar machines present a similar power behavior:
this is the reason why we are not interested in exploring model portability
between WRK and SRV2.

Moreover, a comparison between modeling errors gives a metric to de-
termine energetic similarity of two machines with respect to the specific
workload under exam. For example, central rows in Table 5.3, Table 5.4
and Table 5.5 show how SRV2 and WRK present an almost identical behav-
ior when running MySQL while SRV2 is more efficient than WRK when
running REDIS. This information can be very useful to balance power con-
sumption in a cluster even when nodes are not identical.

5.5.3 Consolidation evaluation

In this section, we discuss some colocation configurations that present in-
teresting trends in power consumption scalability through consolidation.
Using the metric we defined in Section 5.4.1, a scheduler would be able to
evaluate which colocation configurations are worth exploring according to
its specific power saving policies. As we want to analyze only the results
produced on server platforms, we avoid discussing colocation on WRK.

Figure 5.10 shows a colocation analysis on SRV1. Power measurements
are provided by the external power meter. Due to hardware limitations,
only two workloads can be colocated together. As expected, most of the
colocations have an improvement metric around 1: this means that, at least,
any colocation would allow to save roughly the power consumption of one
dedicated machine running one of the workloads.

Moreover, we can see how there are some colocations that are more
power efficient than others, such as MYSQL+MYSQL or SVM+CASSANDRA.

110

i
i

“thesis” — 2017/1/23 — 0:17 — page 111 — #119 i
i

i
i

i
i

5.5. Experimental results

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

CASSANDRA+CASSANDRA

FFMPEG+CASSANDRA

FFMPEG+MYSQL

FFMPEG+PAGERANK

FFMPEG+REDIS

FFMPEG+SVM

FFMPEG+FFMPEG

MYSQL+MYSQL

PAGERANK+CASSANDRA

PAGERANK+MYSQL

REDIS+CASSANDRA

REDIS+MYSQL

REDIS+REDIS

SVM+CASSANDRA

SVM+MYSQL

SVM+SVM

Figure 5.10: Improvement metrics for different colocations on SRV1 (higher is better)

A configuration like SVM+CASSANDRA, for instance, is efficient because
these two workloads have completely orthogonal needs: the former is dom-
inated by CPU performance while the latter mainly stresses the memory;
colocating them would allow a scheduler to avoid having an unbalanced
resource utilization, splitting the fixed cost of base power among non inter-
fering tasks.

Figure 5.11 shows a similar analysis on SRV2, which can host more
workloads even on one single socket. It is worth noticing how the SVM+CASSANDRA
colocation, that was one of the best achievable on SRV1 (improvement of
1.6), turns out to be one of the worst performing in this case (improvement
around 1), if compared to other colocations: a scheduler could then colocate
these two workloads if deployed on SRV1 and separate them if deployed
on SRV2.

Last results aim to exploit both the socket of SRV2. As the number
of colocations possible increases exponentially, we grouped homogeneous
workloads in Figure 5.12 and heterogeneous workloads in Figure 5.13.

Starting from Figure 5.12, we notice how increasing the number of colo-
cated workloads often leads to a greater power efficiency. However, each
workload shows its own specific marginal power saving. For example, colo-
cating an increasing number of CASSANDRA instances is more efficient

111

i
i

“thesis” — 2017/1/23 — 0:17 — page 112 — #120 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

FFMPEG+SVM
PAGERANK+SVM

CASSANDRA+FFMPEG

REDIS+SVM

PAGERANK+REDIS

CASSANDRA+SVM

2 x FFMPEG

2 x REDIS

2 x CASSANDRA

CASSANDRA+MYSQL

MYSQL+PAGERANK

3 x FFMPEG
3 x REDIS

2 x CASSANDRA + MYSQL
CASSANDRA + 2 x MYSQL

CASSANDRA+FFMPEG+SVM

3 x CASSANDRA

PAGERANK+REDIS+SVM

3 x PAGE_RANK

3 x MYSQL

4 x SVM

PAGERANK + REDIS + 2 x
SVM

4 x REDIS

4 x FFMPEG

4 x CASSANDRA
2 x CASSANDRA + 2 x MYSQL

Figure 5.11: Improvement metrics for different single-socket colocations on SRV2
(higher is better)

than doing the same with FFMPEG instances.
For what concerns heterogeneous colocations in Figure 5.13 4, we notice

how a good balance of homogeneous subsets in an heterogeneous coloca-
tion seems a key factor to achieve good power savings. This is the case
of 2C+3F+M and C+4F+M: they both are colocations of 6 tenants picked
from three workload types; colocating more FFMPEG tenants leads the im-
provement factor to rise sensibly from 6 to 8. However, another 6 tenants
colocation like 3F+P+R+S presents an improvement factor around 5, high-
lighting again how the choice of the colocated workloads is critical.

Finally, a comparison between Figure 5.12 and Figure 5.13 shows how
heterogeneity is fundamental to reach the highest efficiency possible. For
instance, a colocation of 6 homogeneous tenants like 6xFFMPEG achieves
a lower improvement with respect to a similar colocation like C+4F+M (i.e.,
6 with respect to 8).

In all the cases discussed, as well as in all the others that can be explored,
a scheduler is not supposed to understand the behavior of the workload: it
can just rely on the improvement metric, treating tenants as “black boxes”.

4In these last results, workloads’ names are replaced by their initial letter to improve chart readability.

112

i
i

“thesis” — 2017/1/23 — 0:17 — page 113 — #121 i
i

i
i

i
i

5.5. Experimental results

0
1
2
3
4
5
6
7
8
9

10
2 x CASSANDRA

3 x CASSANDRA
4 x CASSANDRA

6 x CASSANDRA

7 x CASSANDRA

8 x CASSANDRA

8 x SVM

8 x PAGE_RANK

2 x REDIS

3 x REDIS

4 x REDIS

5 x REDIS

6 x REDIS
7 x REDIS8 x REDIS

3 x MYSQL

4 x MYSQL

6 x MYSQL

7 x MYSQL

8 x MYSQL

2 x FFMPEG

3 x FFMPEG

4 x FFMPEG

5 x FFMPEG

6 x FFMPEG

7 x FFMPEG
8 x FFMPEG

Figure 5.12: Improvement metrics for different multi-socket homogeneous colocations on
SRV2 (higher is better)

0

1

2

3

4

5

6

7

8

9
F + S

P + S
F + M

C + F

C + S

M + P

F + P + S

M + P + S

C + F + M

C + F + S

2 x C + F + M

C + F + M + S

C + P + R + S

3 x F + S

C + C + M + S

F + P + R + S

F + M + P + S

2 x F + P + R + S

C + 3 x F + M

C + F + M + P + S
C + M + P + R + S

F + P + R + 2 x S
M + P + R + 2 x S

3 x F + P + S
2 x C + M + P + S

2 x C + 2 x F + M

2 x C + F + 2 x M

3 x F + P + R + S

C + 4 x F + M

2 x C + 2 x M + P + S

2 x F + P + R + 2 x S

2 x C + 2 x F + 2 x M

4 x F + P + S

2 x C + 3 x F + M

C + M + P + R + 2 x S

4 x F + P + R + S

2 x C + 2 x M + P + R + S

2 x C + 3 x F + 2 x M

3 x F + P + R + 2 x S

C + 4 x F + 2 x M

C + 2 x M + P + R + 2 x S

2 x C + 4 x F + 2 x M
2 x C + 2 x M + P + R + 2 x S

4 x F + P + R + 2 x S

Figure 5.13: Improvement metrics for different multi-socket heterogeneous colocations
on SRV2 (higher is better)

113

i
i

“thesis” — 2017/1/23 — 0:17 — page 114 — #122 i
i

i
i

i
i

Chapter 5. Modeling power consumption in multi-tenant virtualized
systems

5.6 Related work

There is a solid state of the art regarding how to build power models for
physical machines.

Studies in this field started around 2007 with the influential work by W.
Lloyd Bircher and Lizy K. John [23]. In this work, the authors’ aim was to
model the power consumption of a physical machine and not only of the mi-
croprocessor, like all the previous studies in the field [19, 24, 86, 101, 104].
Using a subset of the embryonic PMC of the Intel Pentium IV processor,
they managed to obtain linear regression models of the energy consump-
tion caused by each subsystem, with less than 10% of relative error. Most
important, this early work foresaw the necessity for power accounting over
virtual tenants.

Few years later, the rising research community on Cloud Computing
started producing interesting methodologies to solve this issue. In 2009,
A. Kansal et al. proposed Joulemeter [90]. The main driver that pushed
the authors in developing this power metering tool was that, in traditional
systems, the visibility of the OS on the workloads had always been ex-
ploited to “make automated and manual power management decisions”,
but, with the isolation property enforced by virtual machines, this visibil-
ity got disrupted. The authors pioneered resource usage to energy inference
methodology, obtaining models for each hardware subsystem by using only
software performance counters offered by the hypervisor, with an absolute
error of 5W. However, the main caveat this work presents is the non auto-
matic generation of the power models, undermining the replicability of the
study on different machines and architectures.

A more recent and complete study on Virtual Machine (VM) power
modelling is “iMeter: An integrated VM power model based on perfor-
mance profiling” by H. Yang et al. [160], one of the first works to present an
highly systematic approach at any stage of the development. The proposed
methodology is composed by the following steps: (1) benchmark selec-
tion, where the authors used the NASA Parallel Benchmark suite [46, 145]
plus IOzone [85] and Cachebench [118] to stress various workloads of each
VM; (2) PMCs trickle-down selection, necessary for reducing the solution
space; (3) collection of a measurement baseline, consisting in the physical
machine to be stimulated by various VMs; (4) performance counters sys-
tematic selection, exploiting PCA and varimax rotation for further model
order reduction; (5) modeling, leveraging support vector regression; (6)
evaluation, where a hierarchical clustering is applied in order to assimilate
similar conditions. With this methodology, the authors were able to reach

114

i
i

“thesis” — 2017/1/23 — 0:17 — page 115 — #123 i
i

i
i

i
i

5.7. Final remarks

a relative error of about 5%. In this work, we showed how to improve the
modeling performance through working regimes identification, thus rais-
ing the bar in the field of power modeling methodologies for multi-tenant
server infrastructures.

5.7 Final remarks

This chapter discussed how XeMPower and MARC have been exploited to
build data-driven power consumption models for multi-tenant server infras-
tructures. Results show a modeling relative error of around 2% on average,
and under 4% in almost all the cases and on different workload classes,
outperforming previous research in the field. Moreover, model portability
across similar architectures has been explored, showing how the proposed
models can be also used to evaluate tenants colocation in a multi-tenant
infrastructure.

Up to now, this thesis work explicitly focused on power modeling. How-
ever, in order to thoroughly explore the topic, workloads’ performances
needs to be included in the loop. The last chapters will then explore how a
power-aware system should plan future decisions and execute the best ac-
tions with respect to performance goals and power constraints, i.e., the last
two steps of the OLDA control loop introduced in Section 1.2.

115

i
i

“thesis” — 2017/1/23 — 0:17 — page 116 — #124 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 117 — #125 i
i

i
i

i
i

CHAPTER6
Maximizing performance under a power

cap: a hybrid hardware-software approach

6.1 Introduction

Previous chapters already discussed how virtualization technologies fos-
ter hardware heterogeneity and software multi-tenancy, and the subsequent
implications that these have on power consumption.

This chapter discusses the need to control and limit the power consump-
tion of a system, i.e., the need to set a power cap, and its implications on
the guest applications. This need can be obvious for battery-powered de-
vices, that have to deal with limited energy budgets, as their batteries need
to be small and lightweight. However, the same need is present also in
those contexts that do not involve batteries, to decrease operating costs and
to improve system reliability. For instance, even modern data centers need
to deal with power caps: given the huge density of servers, the power grid
may not be able to supply enough energy to run all of them at their peak
performance.

To face the need for power capping, Intel introduced the RAPL interface
since its second generation of Sandy Bridge processors [39]: this interface

117

i
i

“thesis” — 2017/1/23 — 0:17 — page 118 — #126 i
i

i
i

i
i

Chapter 6. Maximizing performance under a power cap: a hybrid
hardware-software approach

enforces a strong and precise limit on the power consumption of a pro-
cessor, i.e., the component that contributes the most on the dynamic power
consumption of a common workstation [159]. RAPL uses Dynamic Voltage
and Frequency Scaling (DVFS) techniques to guarantee the desired power
cap but is not aware of the impacts that these have on the performances of
the hosted applications. Of course, these performances need to be maxi-
mized even when a power cap is enforced: we want to find the most power
efficient hardware configuration under a certain power cap, thus maximiz-
ing the performance-per-watt ratio. In order to accomplish our goal, a uni-
form metric of performance has to be defined, as well as a smart orches-
tration policy to guarantee the stability of the system as soon as its runtime
conditions change.

In this chapter, I propose XeMPUPiL, a hybrid hardware and software
power capping orchestrator for the Xen hypervisor, based on the PUPiL
control loop [163], that aims at maximizing the performance of a workload
under a power cap. The main contributions are the following:

A. I propose a observe phase that takes into account a generic perfor-
mance metric for all the hosted tenants, avoiding any instrumentation
of the workloads;

B. I improved the decision phase of PUPiL, to deal with the resources
available in a multi-tenant virtualized environment;

C. I implemented a new Actuation phase, to support all the knobs that
Xen provides to control the resources assigned to each tenant.

The chapter is organized as follows: Section 6.2 discusses some related
work, while Section 6.3 presents the proposed approach and some imple-
mentation details; preliminary results are detailed in Section 6.4, finally
drawing some conclusions in Section 6.5.

6.2 Related work

Several works in the literature propose different approaches to both per-
formance maximization under a power cap and power consumption min-
imization under performance constraints. For instance, some of them ex-
ploit DVFS techniques and try to pack together similar threads [34], while
others try to minimize the times the cores go into idle states, in order to
save the power spent in going from an idle state back to an active one [94].
Most of these works aims at reducing costs in data centers [81, 112, 142]
or to increase battery life in power-constrained devices [58, 95, 116], while

118

i
i

“thesis” — 2017/1/23 — 0:17 — page 119 — #127 i
i

i
i

i
i

6.3. System design and implementation

the main focus of this chapter is performance maximization under a strict
power cap.

A remarkable work with the same goal is PUPiL, a framework that aims
to minimize and to maximize respectively the concept of timeliness and
efficiency: timeliness is intended as the ability of the system in enforcing
a new cap, while efficiency is meant as the performance delivered by the
applications under a fixed power cap [163]. In order to achieve these goals,
PUPiL exploits both hardware (i.e., the Intel RAPL interface) and software
(i.e., resource partitioning and allocation) techniques.

Even though the approach proposed by PUPiL is effective, we can iden-
tify two non-negligible limitations of the proposed solution: first, the appli-
cations running on the system need to be instrumented with the Heartbeat
framework [77, 78], in order to provide a uniform metric of throughput to
the decision phase; second, the tool is meant to work with applications run-
ning bare-metal on Linux. Both these conditions might not be met in the
context of a multi-tenant virtualized environment, in which a virtualization
layer allows the execution of multiple workloads and ensures isolation to
each of them. This is the case of the Xen hypervisor, that runs directly as
an abstraction layer between the hardware and the hosted virtual machines,
called domains in the Xen terminology. In this context, the high isolation
of each tenant, seen as a black box, makes any instrumentation of the code
of the hosted applications not feasible in a real production environment.

In the following sections, I want to extend the current implementation
of PUPiL1 to make it work in a virtualized environment based on the Xen
hypervisor, without requiring any instrumentation of the guest workloads.

6.3 System design and implementation

XeMPUPiL is a hybrid hardware and software power capping orchestrator
for the Xen hypervisor. It is hybrid as it makes use of the RAPL hardware
interface to set a strict limit on the processor’s power consumption, while
a software-level OLDA loop structure performs an exploration of the avail-
able resource allocations, to find the most power efficient one for the run-
ning workload. Of course, the innovation does not lie in the exploitation
of the well-known loop structure, but in the adoption of an hybrid power
capping approach in a virtualized environment.

An overview of the system is presented in Figure 6.1: in this chapter, we
do not distinguish between Learn and Decide, as the focus here is not in the
former but in the latter. Each different phase of the loop needs to interact

1All source code, scripts, inputs, and patches are available at: https://github.com/PUPiL2015/PUPIL.git

119

i
i

“thesis” — 2017/1/23 — 0:17 — page 120 — #128 i
i

i
i

i
i

Chapter 6. Maximizing performance under a power cap: a hybrid
hardware-software approach

Figure 6.1: Overview of the proposed approach

with different tools throughout all the layers of the stack: some tools are
available in Dom0, while other APIs are provided by specific hypercalls to
the Xen hypervisor, that allows XeMPUPiL to set the domains configura-
tions and guarantees a controlled access to the underlying hardware.

In more detail, a brief description to the high-level flow is here given:

• XeMPUPiL observes the power consumption of the system and a set
of hardware events of interest for each running domain;

• the traced events are then used as metrics of performance, in order to
decide which hardware configuration is the most power efficient for
the current workload;

• finally, the actuation phase sets the system to the best configuration
found, to maximize the performance under the desired power cap en-
forced through the RAPL interface.

In this section, we present the design and the implementation of the
three phases, describing the limitations faced while working in a virtualized
environment.

120

i
i

“thesis” — 2017/1/23 — 0:17 — page 121 — #129 i
i

i
i

i
i

6.3. System design and implementation

6.3.1 Observe

This first phase is in charge of monitoring the system and the hosted do-
mains, gathering all the information needed by the subsequent decide phase.

As stated in the previous sections, we need to choose a uniform metric
of performance without any instrumentation of the guest workloads: each
domain remains a black box to the hypervisor, as well as by the other do-
mains (e.g., Dom0 itself). We decided to use hardware event counters as
low level metrics of performance, exploiting the Intel PMU to monitor the
number of Instruction Retired (IR) accounted to each domain in a certain
time window. Among all the available hardware events that can be mon-
itored, we chose to count the IR events on purpose, because these give
an insight on how many micro-instructions were completely executed (i.e.,
that successfully reached the end of the pipeline) between two samples of
the counter, thus representing a reasonable indicator of performance, as the
same manufacturer suggests in [1].

In order to monitor these hardware events, we exploited the same XeM-
Power tool described in Chapter 4, configured to provide XeMPUPiL the
amount of IR counted for each running domain over the last second: more
details on how we use this rate are provided in the following section.

6.3.2 Decide

The decision phase is similar to the one implemented in PUPiL. The major
changes are in how we evaluate the metrics gathered in the previous phase
and in how we assign the physical resources to each virtual domain.

The evaluation criterion is based on the average IR rate measured over a
certain time window: this allows the workload to adapt to the actual config-
uration in that time window before a new decision is taken. The comparison
of the two IR rates highlights which one makes the workload perform bet-
ter, thus discarding the worse one.

Once the configuration has been chosen, the second part of the decision
phase begins: it concerns the allocation of resources to each domain. I
chose to work at a core-level granularity: on the one hand, each domain
owns a set virtual CPUs (vCPUs), while, on the other hand, we have a
set of physical CPUs (pCPU) present on the machine. Each vCPU can be
mapped on a pCPU for a certain amount of time, while it may happen that
multiple vCPUs can be mapped on the same pCPU.

We wanted our allocation policy to be as fair as possible, covering the
whole set of pCPUs if possible; given a workload with M virtual resources

121

i
i

“thesis” — 2017/1/23 — 0:17 — page 122 — #130 i
i

i
i

i
i

Chapter 6. Maximizing performance under a power cap: a hybrid
hardware-software approach

and an assignment of N physical resources, to each pCPUi we assign:

vCPUs(i) =

M −

i∑
j=0

vCPUs(j)

N − i

(6.1)

where i is an integer between 0 and N − 1, i.e., it spans over the set of
pCPUs.

6.3.3 Act

The act phase essentially consists in: (1) setting the desired power cap and
(2) actuating the selected resource configuration.

On the one hand, I decided to implement the same hardware technique
proposed by PUPiL to set the power cap, i.e., exploiting the Intel RAPL
interface. This provides a fast and strict response to power oscillations,
harshly cutting the frequency and the voltage of the whole CPU socket, ig-
noring the performance of the applications actually running on the system.

On the other hand, we had to support the knobs made available by the
hypervisor to assign resources to each domain. This second step allows a
fine tuning of the resources to improve domains’ performance, but it is of
course slower than the hardware actuation in responding to power varia-
tions.

This is the reason why we use both the approaches to provide a fast
response, still trying to find the best resource allocation to maximize the
performance of each domain under the power cap.

Hardware power cap

A bare metal operating system can easily access the RAPL interface to set a
power cap on the system by writing data into the right Model Specific Reg-
ister (MSR) of the processor. The two registers of interest to our purposes
are MSR_RAPL_POWER_UNIT and MSR_PKG_RAPL_POWER_LIMIT:
the former contains processor-specific time, energy and power units, used
to scale each value read or written on the RAPL MSR, in order to obtain a
valid power or energy measure; the latter can be written to set a limit on the
power consumption of the whole CPU socket.

In a virtualized environment, these registers are not directly accessible
by the virtual domains, even from the privileged tenant Dom0. However,

122

i
i

“thesis” — 2017/1/23 — 0:17 — page 123 — #131 i
i

i
i

i
i

6.3. System design and implementation

this limitation can be overcome by invoking custom hypercalls that can
directly access the underlying hardware. To the best of my knowledge,
the Xen hypervisor does not natively support specific hypercalls to interact
with the RAPL interface: as a consequence, I implemented our custom
hypercalls to this purpose. In order to be generic enough, I implemented
two hypercalls: "xempower_rdmsr" and "xempower_wrmsr". The
first one allows to read, while the second one allows to write a specified
MSR from Dom0.

Each hypercall needs to be declared inside the kernel of the hypervisor,
that runs bare metal on the hardware. The kernel keeps track of the list
of hypercalls available and the input parameters they accept. For each of
them, a callback function has to be declared and implemented to be acces-
sible by the kernel at runtime: our implementation makes use of two Xen
build-in functions to safely read and write MSR registers, i.e., wrms_safe
and rdmsr_safe; these raise exceptions if something goes wrong in ac-
cessing the registers, avoiding errors and faults to undermine the kernel
stability.

We then implemented our own CLI tools to access these hypercalls from
Dom0: xempower_RaplSetPower to set and xempower_RaplPower
Monitor to read the power consumption of the socket. Arguments (e.g.,
the desired value of power cap and the power consumption measured) are
passed through the whole stack using a set of buffers that allow a fast and
safe communication between different hierarchical protection domains [91]
(i.e. ring0 for Xen and ring3 for Dom0). The CLI tools are in charge of
performing some checks on the input parameters, as well as of instantiating
and invoking the Xen command interface to launch the hypercalls.

Software resource management

The current implementation of XeMPUPiL exploits two tools provided by
the Xen hypervisor to tune the performance and assign resources to do-
mains.

The first one is the cpupool tool: this is part of the Xen xl CLI and allows
to cluster the physical CPUs in different pools. Once a pool is declared, it is
possible to create a domain that uses that pool: a new scheduler is instanti-
ated in order to manage the pool. It will then schedule the domain’s vCPUs
only on the pCPUs that are part of that cluster. Our approach exploits this
tool to assign more pCPUs to a domain at runtime: as a new resource allo-
cation is chosen by the decide phase, we increase or decrease the number of
pCPUs in the pool and pin the domain’s vCPUs to these, to increase work-
load stability. The domain still has the same amount of virtual resources,

123

i
i

“thesis” — 2017/1/23 — 0:17 — page 124 — #132 i
i

i
i

i
i

Chapter 6. Maximizing performance under a power cap: a hybrid
hardware-software approach

that XeMPUPiL distributed over the maximum number of physical ones
available, potentially causing more vCPUs to be time-multiplexed on the
same core.

The second tool supported is xenpm: this allows to set a maximum and
minimum frequency for each pCPU. After a first evaluation, we decide to
leave the actuation of the core frequencies out of the decision phase, as it
may interfere with the actuation made by RAPL.

6.4 Experimental results

The goals of our experiments are twofold: (1) we want to show how the
metric of performance we propose in this chapter behaves when subject to
a power limit and (2) that XeMPUPiL is able to maximize that metric given
a certain power limit.

Tests have been performed on a system equipped with a 2.8-GHz quad-
core Intel Xeon E5-1410 processor (4 hardware threads, TurboBoost and
HyperThreading disabled) with 32GB RAM. The system runs the Xen hy-
pervisor version 4.4, with a paravirtualized instance of Ubuntu 14.04 as
Dom0, pinned on the first core and with 4GB of RAM.

We set up three distinct paravirtualized domains, each of those running
one of the following four different microbenchmarks, each one represent-
ing a different computational class, able to stress the performance of the
system:

A. NPB3.3 Embarrassingly Parallel (EP), a CPU-bound benchmark;

B. IOzone, an IO-bound benchmark;

C. cachebench, a memory-bound benchmark;

D. NPB3.3 Block Tri-Diagonal solver (BT), a mixed-class benchmark.

EP generates pairs of Gaussian random deviates: this is quite typical of
many Monte Carlo simulation applications [46]. IOzone is a filesystem
benchmark tool, generating and measuring a variety of different file oper-
ations [85]. Cachebench is designed to test memory and cache bandwidth
performance [3]. BT is a pseudo application, more specifically a Block Tri-
diagonal solver [46]. Experiments have been repeated multiple times, to
improve the accuracy of the results.

Our first set of experiments aims to show how the number of IR over a
certain time window decreases as the power cap becomes stricter. We run
each benchmark in a domain with three virtual CPUs assigned and pinned

124

i
i

“thesis” — 2017/1/23 — 0:17 — page 125 — #133 i
i

i
i

i
i

6.4. Experimental results

0

0.2

0.4

0.6

0.8

1.0

NO RAPL
RAPL 40
RAPL 30
RAPL 20

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0

0.2

0.4

0.6

0.8

1.0

EP cachebench IOzone BT

Figure 6.2: Benchmarks’ performance normalized with respect to NO RAPL, under dif-
ferent power caps

on the three available physical CPUs, to avoid interferences and to maxi-
mize resource utilization. We repeated the tests in four different scenarios,
namely:

A. NO RAPL, as no power limit was set;

B. RAPL 40, as a 40W power limit is set (using RAPL);

C. RAPL 30, as a 30W power limit is set (using RAPL);

D. RAPL 20, as a 20W power limit is set (using RAPL);

We chose 40W and 20W as the maximum and minimum power caps as
we observed that, in an idle state, the entire socket consumes around 17W,
while the maximum power consumption we reached was around 43W. The
comparison between the performance of each single benchmark under dif-
ferent power caps is shown in Figure 6.2, where the Y-axis reports the per-
formance expressed as the average IR over a time window of 5 seconds. All
the results have been normalized with respect to the performance obtained
under the NO RAPL condition: as expected, the chosen metric is a reason-
able indicator of the performance of the application and decreases with a
stricter power cap. More in details, with CPU-bound benchmarks (i.e., EP
and BT) the difference are greater than in benchmarks where the bottleneck
are IO and memory accesses: in these cases, the performance degradation
is less significant between different power caps.

125

i
i

“thesis” — 2017/1/23 — 0:17 — page 126 — #134 i
i

i
i

i
i

Chapter 6. Maximizing performance under a power cap: a hybrid
hardware-software approach

The second set of experiments is meant to achieve our second goal: we
want to compare the performance of the workloads when XeMPUPiL per-
forms its resource allocation in the same scenarios described above, i.e.,
under a power cap of 40W, 30W and 20W respectively. Results, normal-
ized with respect to the ones obtained in the NO RAPL configuration, are
shown in Figures 6.3a-c.

XeMPUPiL is able to achieve higher performance under the same power
cap in all the scenario and for all the benchmarks: this is due to the deci-
sion of assigning in a smart way all the possible domain’s vCPUs on fewer
pCPUs than the available ones. However an exception to this trend is rep-
resented by the EP benchmark, where in any case the performance gets
better for the same benchmark with a cap of 20W, as the framework redis-
tributes the virtual resources over just two physical cores, thus obtaining a
configuration that is more power efficient.

As mentioned before it is interesting to note how the performance achieved
in case of the IO-bound, the memory-bound and the mixed benchmark are
even better than the ones achieved by the NO RAPL experiment: for IO-
zone and cachebench, XeMPUPiL converged to a configuration with just
one core assigned to the domain, while two cores have been assigned to the
BT benchmark. These assignments are more power efficient, as they reduce
memory and IO contention for non strictly CPU-bound workloads.

6.5 Final remarks

This chapter presented some preliminary results and opportunities towards
a performance-aware power capping orchestrator for the Xen hypervisor.
The proposed approach is a hybrid hardware-software power capping solu-
tion, based on the PUPiL control loop, that aims at maximizing the perfor-
mance of a workload under a power cap.

At the moment, XeMPUPiL has been validated with only one guest ap-
plication running at a time: this condition may not be very common in a
real production environment, where multiple guests may be hosted on the
same node, each one with different performance requirements. In order to
tackle these issues, a smart resource manager must be put in place to deal
with resource allocation, power constraints and performance requirements,
as discussed in the next chapter.

126

i
i

“thesis” — 2017/1/23 — 0:17 — page 127 — #135 i
i

i
i

i
i

6.5. Final remarks

0

0.5

1.0

PUPiL 40
RAPL 40

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

(a)

0

0.5

1.0

PUPiL 30
RAPL 30

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

(b)

0

0.5

1.0

PUPiL 20
RAPL 20

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

0

0.5

1.0

EP cachebench IOzone BT

(c)

Figure 6.3: Benchmarks performance normalized with respect to NO RAPL under a cap
of 40W (a), 30W (b) and 20W (c), imposed by RAPL and by XeMPUPiL

127

i
i

“thesis” — 2017/1/23 — 0:17 — page 128 — #136 i
i

i
i

i
i

i
i

“thesis” — 2017/1/23 — 0:17 — page 129 — #137 i
i

i
i

i
i

CHAPTER7
Moving forward: containerization,

challenges and opportunities

7.1 Introduction

The need to control and limit the power consumption of a system has al-
ready been introduced in Chapter 6, as well as its implications on the per-
formances of the guest applications and related work in the field. This
chapter introduces priority policies and QoS requirements, exploring a new
approach to software multi-tenancy: containerization.

Docker [47] and containerization techniques are becoming a remark-
able trend towards a simpler deployment and migration of applications in a
multi-tenant and heterogeneous ecosystem: this then helps to overcome is-
sues related to applications isolation and portability, but still does not fulfill
the lack of a smart resource manager, able to deal with resource allocation,
power constraints and performance requirements.

This chapter presents DockerCap, a power-aware orchestrator for multi-
tenant containerized systems. DockerCap is able to satisfy a constraint on
the maximum power consumed by the node, i.e., a power cap; moreover, it
supports the definition of different resource allocation policies to guarantee

129

i
i

“thesis” — 2017/1/23 — 0:17 — page 130 — #138 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Figure 7.1: Architecture of DockerCap

the performances of the containers while meeting the desired power cap.
Results are compared with the state of the art solution provided by Intel
RAPL interface. Moreover, DockerCap is able to control the performance
of the containers and even guarantee Service Level Agreements (SLA) con-
straints: this is something that a completely hardware solution like the one
implemented by RAPL is not able to handle.

This chapter is organized as follows: Section 7.2 presents DockerCap,
providing an high level overview of the components, while Section 7.3 dis-
cusses the details of the implementation of the system; then, Section 7.4
presents the experimental setup, discussing the results obtained, while Sec-
tion 7.5 concludes and describes future work in the field.

7.2 Proposed methodology

This section gives an overview of the proposed methodology, along with
a high level description of the control steps performed by DockerCap to
enforce performance requirements and the SLA of each container.

The architecture of DockerCap is based on the ODA loop structure widely
described throughout the whole thesis: a bird’s-eye view is represented in

130

i
i

“thesis” — 2017/1/23 — 0:17 — page 131 — #139 i
i

i
i

i
i

7.2. Proposed methodology

Figure 7.1. It is interesting to note how the Learning phase here is implicit:
it is performed only once in the current prototype, as discussed in Sec-
tion 7.2.1: since that phase has been widely discussed in previous chapters,
no additional discussion will be held in this chapter.

In this context, the observe phase continuously monitors the power con-
sumption of the system, retrieving this information from the power source
available. The choice of the power source is crucial in the control loop,
since its precision and sampling frequency influence the performance of
the controller. Then, the decide phase produces the new allocation of re-
sources that will be assigned to each container. The whole decision process
is divided in two distinct steps: the choice of the allocation of resources
that meets the power cap (i.e., resource control step) and the partitioning of
the resources assigned to each container (i.e., resource partitioning step).
Finally, in the act phase, DockerCap performs the actual resources alloca-
tion, using the information obtained from the decide phase; of course, the
actual implementation strongly depends on the nature of the resource un-
der control. Once the actuation has been performed, DockerCap waits for
a reasonably small amount of time (tunable, depending on the timing con-
stants of the system under control) to allow the system to reach a stable
state before the next iteration of the ODA loop.

The way in which resources are partitioned across the running containers
depends only on the decision policy adopted. In the following sections, the
adoption of three different policies is analyzed, comparing them with the
performance obtained using RAPL, the hardware power capping solution
provided by Intel on recent processors.

7.2.1 Resource control step

The main goal of this step is to find the right amount of resources that will
not exceed the power cap, still guaranteeing the highest throughput possible
to all the containers. Therefore, we introduced a PI Controller to control
the resource assignment, as in Figure 7.2.

In order to work properly, the controller needs to know the power-resource
model of the physical machine, i.e., the relation between its power con-
sumption and the amount of allocated resources in a given time window.

This relation can be modeled using an ARX model, as proposed in other
works in the field [79,144,154]: here is where the MARC modeling method-
ology comes into play, as extensively discussed in Chapter 5, to estimate
the parameters of (7.1), where r(k) represents the amount of resources al-
located at time k, while p(k) and p(k+1) represent the power consumption

131

i
i

“thesis” — 2017/1/23 — 0:17 — page 132 — #140 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Figure 7.2: Schema of the PI controller adopted

at time k and k + 1, respectively:

p(k + 1) = a · p(k) + b · r(k) (7.1)

In this work, the controlled resource is the CPU quota assigned to each
container. Nevertheless, the same approach is general enough to deal with
multiple resources, if we consider r(k) as a vector and we treat the problem
as a MISO system.

We obtained the model parameters through MARC, using a cpu-bound
benchmark to stress the processor of the machine. In the current prototype,
the model is not updated during the lifetime of the system; however, con-
tinuous learning can be easily integrated, given the “as-a-service” nature of
the MARC infrastructure.

Once we have an estimation for the model’s parameters, we can apply
the Z-transform [109] to equation (7.1) and obtain the equation (7.2) in the
frequency domain:

z · P (z) = a · P (z) + b ·R(z) (7.2)

From this equation, we derive the system transfer function S(z):

S(z) =
P (z)

R(z)
=

b

z − a
(7.3)

The PI Controller C(z) has then been introduced in a feedback loop with
S(z), as shown in Figure 7.2, in order to control the amount of resources
needed to meet the power cap. The transfer function of the feedback loop
L(z) is then obtained as follows:

L(z) =
C(z) · S(z)

1 + C(z) · S(z)
,

1− p

z − p
, p ∈ (0, 1) (7.4)

I used a first-order transfer function with a single pole in p. As in equation
(7.4), the value of p should be chosen in the interval (0, 1), to ensure the
asymptotic stability of the system.

132

i
i

“thesis” — 2017/1/23 — 0:17 — page 133 — #141 i
i

i
i

i
i

7.2. Proposed methodology

From equations (7.3) and (7.4), we obtain the transfer function of the
controller C(z), as follows:

C(z) =
(1− p) · (z − a)

b · (z − 1)
,

R(z)

E(z)
(7.5)

The input of the controller is the error: e(k) = p̄− p(k), with E(z) still in
the frequency domain and p̄ as the reference power cap.

Finally, applying the inverse Z-transform and a time shift, we obtain the
equation:

r(k) = r(k − 1) +
1− p

b
· (e(k)− a · e(k − 1)) (7.6)

The controller will use it to estimate the value of r(k), given the current
error e(k).

7.2.2 Resource partitioning step

Once the power constraint is met, we can partition the amount of CPU
quota Q across each distinct container. In order to do so, I developed three
policies: these policies take into account different aspects of the contain-
ers, with different impacts on performance. Here I propose an high level
overview of those policies, while Section 7.4 analyzes their impact.

The Fair resource partitioning policy assigns the same amount of CPU
quota to all the containers, as in equation (7.7), where C is the set of all the
containers:

qc =
Q

|C|
∀c ∈ C (7.7)

The Priority-aware resource partitioning policy splits the CPU quota Q
based on a priority assigned to each container, as in equation (7.8), where
wc is the weight associated to the priority of the container:

qc = Q · wc∑
∀i∈C

wi

∀c ∈ C (7.8)

The Throughput-aware resource partitioning policy partitions the CPU
quota considering the requirements of each container in terms of both its
SLA and priority. We define the SLA of a container in terms of completion
time of the hosted workload; in this context, we assume that the more re-
sources are given to a container, the faster it will be to complete its tasks,
with a fixed input size. In order to understand the relation between com-
pletion time and resources, we built a resource-time model offline: again,

133

i
i

“thesis” — 2017/1/23 — 0:17 — page 134 — #142 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Figure 7.3: Relationship between CPU quota and completion time for different PARSEC
benchmarks

the need for a learning phase is fundamental to tackle the complexity of
this use case. This information can then be used at runtime, to predict the
completion time of a container, with a certain resource allocation.

Figure 7.3 shows the actual relationship between the CPU quota and the
completion time of the most common workload of the PARSEC [22] bench-
mark suite. This relationship is well explained by equation (7.9), where tc
is the time to complete the workload of the container c, qc is the CPU quota
assigned to the container c and Kc is the constant we obtained with a re-
gression on the tests performed, with a fixed input size. To obtain the data
to produce those models, we perform multiple run of the benchmarks in
distinct cpu quota configuration.

tc · qc ≈ Kc ∀c ∈ C (7.9)

All the models obtained from the workloads of the PARSEC benchmark
suite have minimum R2 coefficient [49] of 97.54%, thus showing how this
model fits well the real behavior of the workload.

The average throughput Tc of each container can then be expressed as in
equation (7.10), where Ic is the input size of the container c.

134

i
i

“thesis” — 2017/1/23 — 0:17 — page 135 — #143 i
i

i
i

i
i

7.3. Implementation

Tc =
Ic
tc
≈ Ic · qc

Kc

∀c ∈ C (7.10)

The SLA requirement can be finally expressed as a target throughput:
Tslac . Thus, from equation (7.11), we can find the minimum quota to be
assigned to meet the specific constraint:

qc =
Tslac ·Kc

Ic
∀c ∈ C (7.11)

This policy will then allocate the minimum amount of resources that
satisfies the SLA of each container, ordered by priority.

7.3 Implementation

DockerCap is modular by design: the distinct phases of the Observe-Decide-
Act (ODA) loop have been decoupled and implemented, fully available
open source1, in three different components: the Observe Component, the
Decide Component and the Act Component. This section goes through
some implementation details for each one of them.

7.3.1 Observe

We developed two distinct interfaces to support measurements from the In-
tel RAPL interface [39] and from an external WattsUp power meter [44].
Each power source supports different logging frequencies: for instance,
RAPL provides measurements every 1ms approximately, while the WattsUp
power meter logs power consumption every 1s approximately. Whenever
a sample is read from the source, it is added into the ObserveQueue, as
in Figure 7.1: this allows to fully decoupling the observe and the decide
components.

7.3.2 Decide

The Decide Component takes the samples from the Observe Component
as input and provides the resource allocation for the Act Component, if an
actuation is needed to guarantee the power cap. When a power sample in
the queue is greater than the power cap (plus a tuneable level of tolerance),
the component starts the decision phase. The constraints on the resources
are relaxed as soon as the power consumption goes below the power refer-
ence. The decision is computed each time the Decide Component fetches

1All the source code of DockerCap can be found here: https://bitbucket.org/necst/dockercap-euc

135

i
i

“thesis” — 2017/1/23 — 0:17 — page 136 — #144 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

a power sample from the queue, which depends on the frequency at which
the Observe Component provides the samples.

As discussed in Section 7.2, the decision process is divided in two steps,
the resource control and the resource partitioning: each of them is decou-
pled from the other, to guarantee the modularity of the system. The resource
control phase consists in a PI controller that implements the computations
discussed in Section 7.2.1. The actual implementation of DockerCap sup-
ports only the CPU quota of the single Docker container, i.e., the amount
of time that the processes inside a container can use during one scheduling
period of the CPU. The resource partitioning phase, instead, implements
three distinct policies, as follows.

Fair resource partitioning

This policy is a trivial implementation of the Equation (7.7); a high level
description of the algorithm is provided in Algorithm 2.

Algorithm 2 Fair resource partitioning

1: procedure PARTITION(Q, containers)
2: count← length(containers)
3: for c ∈ containers do
4: quotac ← Q

count
5: end for
6: return quota
7: end procedure

Priority-aware resource partitioning

As already introduced, this policy relies on information about the priori-
ties of each container, that can be stored in a configuration file. For what
concerns model parameters, these have been estimated once, but the sys-
tem can be easily extended to continuously learn them as the environment
evolves.

The current implementation of DockerCap supports three categories of
priorities: high, low and best effort, each one associated to a specific weight
wc. When DockerCap detects a new running container, it tries to determine
its priority. If it is known, the system assigns the respective priority weight
(high or low), otherwise the system will assign the lowest priority (best
effort) to it. A high level description of the algorithm is provided in Algo-
rithm 3.

136

i
i

“thesis” — 2017/1/23 — 0:17 — page 137 — #145 i
i

i
i

i
i

7.3. Implementation

Algorithm 3 Priority-aware resource partitioning

1: procedure PARTITION(Q, containers)
2: weights← priority_weights(containers)
3: for c ∈ containers do
4: quotac ← Q · weightc∑

∀i∈C wi

5: end for
6: return quota
7: end procedure

Throughput-aware resource partitioning

This last policy combines the priority associated to a container with estima-
tions about its throughput. Each container has a corresponding constraint
SLAc, that represents the SLA of the specific container, and a parameter
Kc that represents the parameter of the time-quota model trained in Sec-
tion 7.2.2.

A high level description of the algorithm is provided in Algorithm 4.
It starts assigning a minimum value of quota to all the running containers,
regardless their priority. Then, from the higher to the lower priority, it tries
to assign the amount of CPU quota needed to satisfy the container’s SLA. If
we have not enough resources, it performs a fair resource allocation only on
those containers with the highest priority and then terminates. Otherwise,
it repeats the same procedure with the lower priority containers.

Then, once both high and low priority containers are covered, it per-
forms a fair resource allocation on the best effort containers. At the end of
the algorithm, it performs a leftover assignment to assign all the remaining
CPU quota to all the containers, following the priority order again. This
final step is performed as there may be some categories not covered yet if
the algorithm does not assign all the available quota.

7.3.3 Act

The Act Component performs the actuation of the decisions taken by the
Decide Component. As for the Observe Component, it supports any generic
resource that provides an abstraction to its specific implementation through
a shared interface.

We developed an interface to perform the updates of the CPU quota
of the single container through CGroups [113]. CGroups are an interface
provided by the Linux kernel to manage specific resources of tasks (i.e.
processes) through a hierarchical structure of directories. Each subsystem
(i.e resource manager) is represented by a hierarchy and each task is part of

137

i
i

“thesis” — 2017/1/23 — 0:17 — page 138 — #146 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Algorithm 4 Throughput-aware resource partitioning

1: procedure PARTITION(Q, containers)
2: quota← baseline_assignment(containers)
3: for c ∈ high_priority do
4: quotac ← min_quota(SLAc,Kc)
5: end for
6: if

∑
∀i∈C quotai > Q then

7: for c ∈ high_priority do
8: quotac ← Fair_partition(Q)
9: end for

10: return quota
11: end if
12: for c ∈ low_priority do
13: quotac ← min_quota(SLAc,Kc)
14: end for
15: if

∑
∀i∈C quotai > Q then

16: for c ∈ low_priority do
17: quotac ← Fair_partition(Q)
18: end for
19: return quota
20: end if
21: for c ∈ best_effort do
22: quotac ← Fair_partition(Q)
23: end for
24: quota← assign_leftover(Q)
25: return quota
26: end procedure

138

i
i

“thesis” — 2017/1/23 — 0:17 — page 139 — #147 i
i

i
i

i
i

7.4. Experimental results

a single cgroup inside a subsystem; all the tasks in the same cgroup share
the same property. Moreover, at one time there may be multiple active
hierarchies in the system.

Docker exploits CGroups to manage its containers: for each subsys-
tem, Docker creates a cgroup that contains all the processes of the con-
tainer, hence all the tasks inside that cgroup have the same constraints on
resources. The Act Component automatically detects the cgroup of the con-
tainer by its runtime id and performs the actuation on the resource by writ-
ing on the proper files of the subsystem. File access is managed through an
interface that wraps the file writing as a simple resource update.

7.4 Experimental results

In this Section we compare the performance of DockerCap along with the
three control policies, analyzing:

A. its precision with respect to different desired power caps;

B. its ability to partition the resources with a priority scheme and to guar-
antee a SLA on the performance of a container.

We also compare our solution with respect to the performance of RAPL,
the current state of the art solution for power capping. We perform our
tests on a server equipped with a 2.8-GHz quad-core Intel Xeon E5-1410
processor (4 hardware threads) and 32GB of RAM. The machine runs an
Ubuntu 14.04 with the Linux kernel 3.19.0-42 and Docker 1.9.0.

In order to compare all the proposed policies with RAPL, we chose three
distinct benchmark from the PARSEC benchmark suite [22], each one rep-
resenting a reasonable workload for the cloud computing context [28,166]:

A. dedup, a compression benchmark;

B. x264, a video streams encoding benchmark;

C. fluidanimate, it simulates an incompressible fluid for interactive ani-
mation purpose by solving the Navier-Stokes equation [129].

We set up a container for every benchmark, assigning a priority and a
constraint to each of them. Moreover, we choose as sampling time in the
Observe Component 1s.

139

i
i

“thesis” — 2017/1/23 — 0:17 — page 140 — #148 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Figure 7.4: Tukey boxplot of the mean power consumption under a power cap of 30W

7.4.1 Power capping precision

Here we want to analyze how the controlled system behaves when Docker-
Cap enforces a power cap, expressed in terms of mean power consumption.
We performed multiple distinct runs of the group of workloads for each
controlling policy of DockerCap and RAPL, our performance reference.
From each run, we got a time series of power data, that we used to compute
the mean power consumption for each run. Figure 7.4 shows the power
consumption distribution of each policy, using a box plot for each distinct
policy.

As expected, the results show that we are able to achieve an average
power consumption very close to the desired power cap, even if our soft-
ware approach is not as fast as the hardware approach implemented by Intel
RAPL.

7.4.2 Impact on the benchmarks performance

In this Section, we want to analyze the performance of each benchmark un-
der a power cap. As in the previous analysis, we compared our performance
with the state of the art solution RAPL. We performed multiple runs of each
controlling policies, including RAPL: for each run, we acquired the Time
to completion (TTC) of each container, given the same fixed input. We

140

i
i

“thesis” — 2017/1/23 — 0:17 — page 141 — #149 i
i

i
i

i
i

7.5. Final remarks

adopted the TTC as a performance metric because we want to have a met-
ric that gives us a direct view on the performance of the workload without
the need of instrumenting our containers to extract domain-specific perfor-
mance metrics. As each workload processes a specific fixed-size input (i.e.
native [22]), it is trivial to obtain the throughput of the workload through
equation (7.10). Moreover, with TTC, we have a unified performance met-
ric for all the different types of workload, thus making the performances of
the containers comparable between distinct workload.

We now want to show how our software-level power capping orches-
trator is effective in controlling the performances of the containers under a
power cap.

Figure 7.5 compares the performance of the Fair policy with respect
to RAPL, as both ignore the actual workloads running on the machine.
The results show that our Fair approach performs better than RAPL under
lower power caps for each distinct benchmark, considering our processor
with TDP of 80W. Instead, we have results that are comparable with a high
power cap and two out of three benchmarks perform worse.

Then, we want to explore the performance of the other two proposed
policies under different power caps, as in Figure 7.6. For what concerns the
Priority partitioning, we assigned a high priority to fluidanimate (i.e., the
one with the longest TTC), while low and best effort priorities are assigned
to x264 and dedup, respectively. The results show how it is possible to
find the right mix of quotas to obtain a distinct performance pattern of the
workloads with respect to the Fair partitioning, still guaranteeing the same
power cap.

Finally, the same Figure 7.6 allows to compare the Fair partitioning pol-
icy with the Throughput one. We used the same priorities of the Priority
partitioning policy, setting a constraint of 400s on the TTC of fluidanimate.
Results show how, under a cap of 40W and 30W, all the solutions stay under
the time constraint, while under a stricter power cap of 20W, the Through-
put partitioning policy penalizes the other two containers to permit our high
priority workload to satisfy its time constraints.

7.5 Final remarks

This chapter concludes our journey towards power-awareness, exploring
how a power-aware system can plan future decisions and execute the best
actions with respect to performance goals and power constraints, thanks to
the OLDA control loop introduced in Section 1.2. Moreover, it explores op-
portunities provided by containerization, i.e., a different approach to multi-

141

i
i

“thesis” — 2017/1/23 — 0:17 — page 142 — #150 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

Figure 7.5: Comparison of the TTCs obtained using RAPL and the Fair partitioning policy

142

i
i

“thesis” — 2017/1/23 — 0:17 — page 143 — #151 i
i

i
i

i
i

7.5. Final remarks

Figure 7.6: Comparison of the TTCs obtained using the three proposed policies. Priority
and Throughput policies explicitly target an improvement on the TTCs of the fluidani-
mate benchmark

143

i
i

“thesis” — 2017/1/23 — 0:17 — page 144 — #152 i
i

i
i

i
i

Chapter 7. Moving forward: containerization, challenges and opportunities

tenancy.
The current implementation still suffers of oscillations around the power

cap. Those variations lead to peaks in the power consumption of the sys-
tem, making our software-level power capping solution less stable than the
RAPL one. The main reason of this issue could be due to the offline estima-
tion of the parameter of the model: a possible solution to this issue could
be the adoption of techniques that learn the parameters of the model at
runtime, like Recursive Least Squares (RLS) [72] or a Kalman Filter [88].
Furthermore, the current solution only involves the PARSEC benchmark
suite [22], characterized by multi-threaded workloads that scale well with
the available cores. This may not be true for other types of workloads, thus
leaving room for future work in the field of power-awareness and QoS-
awareness for Docker container orchestration.

144

i
i

“thesis” — 2017/1/23 — 0:17 — page 145 — #153 i
i

i
i

i
i

CHAPTER8
Conclusion and future work

This chapter concludes our journey towards power-awareness for multi-
tenant systems, from mobile devices to data centers. These two scenarios
have been widely discussed throughout this thesis work, addressing the fol-
lowing questions:

A. how much power is a system going to consume, given certain working
conditions?

B. is it possible to control a system to consume less power, still satisfying
its functional requirements?

For what concerns mobile devices, the first question has been addressed
in Chapter 2, presenting the novel contributions developed during my first
year of Ph.D. on the MPower project. Then, Chapter 3 discussed how it
is possible to generalize the same concepts towards a comprehensive and
general methodology for power consumption modeling, codename MARC:
this has been validated in Chapter 5 to answer the first question in the con-
text of multi-tenant virtualized infrastructures, enabled by XeMPower, the
lightweight monitoring tool for the Xen hypervisor presented in Chapter 4.

The experience developed on power consumption models for server in-
frastructures led me to the design of a power-aware and QoS-aware orches-

145

i
i

“thesis” — 2017/1/23 — 0:17 — page 146 — #154 i
i

i
i

i
i

Chapter 8. Conclusion and future work

trator for multi-tenant systems, thus tackling the second question in the last
two chapters. The same XeMPower tool represented the starting point in the
development of XeMPUPiL, a performance-aware power capping orches-
trator for Xen that aims at maximizing the performance of a workload under
a power cap, as discussed in Chapter 6. Finally, I brought the same concepts
into a different approach to multi-tenancy, i.e., containerization: Chapter 7
presented DockerCap, moving the first step towards power-awareness and
QoS-awareness for Docker container orchestration.

Current limitations and future work of each step of this journey have
already been discussed at the end of every chapter, in each “Final re-
marks” section. In a more broader and comprehensive vision, future direc-
tions revolve around the development of hybrid orchestration approaches:
the idea is to combine hardware-level (e.g., the Intel RAPL interface) and
OS-level (e.g., resource allocation) power management techniques with
application-level load-shedding policies. This will allow to embrace perfor-
mance bounds and achieve graceful services degradation in favor of other
system-level requirements: this research is left for the next journey, towards
a complete collaborative and power-aware multi-tenant system.

146

i
i

“thesis” — 2017/1/23 — 0:17 — page 147 — #155 i
i

i
i

i
i

Bibliography

[1] Clockticks per instructions retired (cpi). https://software.intel.com/en-us/
node/544403. Accessed: 2016-06-01.

[2] The embedded and automotive team within the xen project. https://www.
xenproject.org/developers/teams/embedded-and-automotive.html.
Accessed: 2016-09-17.

[3] Openbenchmarking.org. https://openbenchmarking.org/test/pts/
cachebench. Accessed: 2016-06-01.

[4] Tuning Xen for performance. http://wiki.xenproject.org/wiki/Tuning_
Xen_for_Performance. Accessed: 2015-11-19.

[5] The unofficial linux perf events web-page. http://web.eece.maine.edu/
~vweaver/projects/perf_events/. Accessed: 2015-11-13.

[6] Intel 64 and IA-32 Architectures Software Developer’s Manual, volume B. 2015. 19-2.

[7] Hisahisabanbi App. Battery chart. https://play.google.com/store/apps/
details?id=net.hisahisabanbi.btchart, december 2013.

[8] 3C Portal. Battery monitor widget. https://play.google.com/store/apps/
details?id=ccc71.bmw, december 2013.

[9] Bilge Acun, Phil Miller, and Laxmikant V. Kale. Variation among processors under turbo
boost in hpc systems. In Proceedings of the 2016 International Conference on Supercomput-
ing, ICS ’16, pages 6:1–6:12, New York, NY, USA, 2016. ACM.

[10] Ishtiaq Ali and Natarajan Meghanathan. Virtual machines and networks-installation, perfor-
mance study, advantages and virtualization options. arXiv preprint arXiv:1105.0061, 2011.

[11] Ethem Alpaydin. Introduction to machine learning. The MIT Press, Cambridge, MA, 2004.

[12] Aijun An, Christine Chan, Ning Shan, Nick Cercone, and Wojciech Ziarko. Applying knowl-
edge discovery to predict water-supply consumption. IEEE Expert, 12(4):72–78, 1997.

[13] Vlasia Anagnostopoulou, Susmit Biswas, Heba Saadeldeen, Ricardo Bianchini, Tao Yang,
Diana Franklin, and Frederic T Chong. Power-aware resource allocation for cpu-and memory-
intense internet services. In Energy Efficient Data Centers, pages 69–80. Springer, 2012.

147

https://software.intel.com/en-us/node/544403
https://software.intel.com/en-us/node/544403
https://www.xenproject.org/developers/teams/embedded-and-automotive.html
https://www.xenproject.org/developers/teams/embedded-and-automotive.html
https://openbenchmarking.org/test/pts/cachebench
https://openbenchmarking.org/test/pts/cachebench
http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
http://wiki.xenproject.org/wiki/Tuning_Xen_for_Performance
http://web.eece.maine.edu/~vweaver/projects/perf_events/
http://web.eece.maine.edu/~vweaver/projects/perf_events/
https://play.google.com/store/apps/details?id=net.hisahisabanbi.btchart
https://play.google.com/store/apps/details?id=net.hisahisabanbi.btchart
https://play.google.com/store/apps/details?id=ccc71.bmw
https://play.google.com/store/apps/details?id=ccc71.bmw

i
i

“thesis” — 2017/1/23 — 0:17 — page 148 — #156 i
i

i
i

i
i

Bibliography

[14] Manish Anand, Edmund B. Nightingale, and Jason Flinn. Ghosts in the machine: interfaces
for better power management. In Proceedings of the 2nd international conference on Mobile
systems, applications, and services, MobiSys ’04, pages 23–35, New York, NY, USA, 2004.
ACM.

[15] Apache. Akka framework, 2016.

[16] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy H Katz, Andrew
Konwinski, Gunho Lee, David A Patterson, Ariel Rabkin, Ion Stoica, et al. Above the clouds:
A berkeley view of cloud computing. 2009.

[17] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In 19th ACM
Symposium on Operating Systems Principles, pages 164–177, 2003.

[18] Davide B Bartolini, Filippo Sironi, Donatella Sciuto, and Marco D Santambrogio. Automated
fine-grained cpu provisioning for virtual machines. ACM Transactions on Architecture and
Code Optimization (TACO), 11(3):27, 2014.

[19] Frank Bellosa. The benefits of event: driven energy accounting in power-sensitive systems.
In Proceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC:
new challenges for the operating system, pages 37–42. ACM, 2000.

[20] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee, Albert Zomaya, et al. A taxon-
omy and survey of energy-efficient data centers and cloud computing systems. Advances in
computers, 82(2):47–111, 2011.

[21] Andreas Bergen, Nina Taherimakhsousi, and Hausi A Müller. Adaptive management of
energy consumption using adaptive runtime models. In Proceedings of the 10th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Systems, pages
120–126. IEEE Press, 2015.

[22] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The parsec benchmark
suite: Characterization and architectural implications. In Proceedings of the 17th interna-
tional conference on Parallel architectures and compilation techniques, pages 72–81. ACM,
2008.

[23] W Lloyd Bircher and Lizy K John. Complete system power estimation: A trickle-down
approach based on performance events. In Performance Analysis of Systems & Software,
2007. ISPASS 2007. IEEE International Symposium on, pages 158–168. IEEE, 2007.

[24] William Lloyd Bircher, Madhavi Valluri, Jason Law, and Lizy K John. Runtime identification
of microprocessor energy saving opportunities. In ISLPED’05. Proceedings of the 2005 In-
ternational Symposium on Low Power Electronics and Design, 2005., pages 275–280. IEEE,
2005.

[25] Christopher M Bishop et al. Pattern recognition and machine learning, volume 1. springer
New York, 2006.

[26] Sergio Bittanti. Teoria della Predizione e del Filtraggio. Pitagora, 2002.

[27] A Bonetto, M Ferroni, D Matteo, AA Nacci, M Mazzucchelli, D Sciuto, and MD Santam-
brogio. Mpower: towards an adaptive power management system for mobile devices. In
Computational Science and Engineering (CSE), 2012 IEEE 15th International Conference
on, pages 318–325. IEEE, 2012.

[28] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pages 13–16. ACM, 2012.

148

i
i

“thesis” — 2017/1/23 — 0:17 — page 149 — #157 i
i

i
i

i
i

Bibliography

[29] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A portable programming inter-
face for performance evaluation on modern processors. Int. J. High Perform. Comput. Appl.,
14(3):189–204, August 2000.

[30] Aaron Carroll and Gernot Heiser. An analysis of power consumption in a smartphone. In Pro-
ceedings of the 2010 USENIX conference on USENIX annual technical conference, USENIX-
ATC’10, pages 21–21, Berkeley, CA, USA, 2010. USENIX Association.

[31] A. Charlesworth. The ascent of smartphone. Engineering & Technology, 4(3):32–33, 2009.

[32] Guanling Chen, David Kotz, et al. A survey of context-aware mobile computing research.
Technical report, Technical Report TR2000-381, Dept. of Computer Science, Dartmouth Col-
lege, 2000.

[33] David Chisnall. The Definitive Guide to the Xen Hypervisor. Prentice Hall Press, Upper
Saddle River, NJ, USA, first edition, 2007.

[34] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda. Pack & cap: adaptive
dvfs and thread packing under power caps. In Proceedings of the 44th annual IEEE/ACM
international symposium on microarchitecture, pages 175–185. ACM, 2011.

[35] FFmpeg Community. Ffmpeg. https://trac.ffmpeg.org/wiki/Null. Accessed:
2016-08-09.

[36] Oracle Corporation. Mysql benchmark tool. https://dev.mysql.com/downloads/
benchmarks.html. Accessed: 2016-08-09.

[37] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems: concepts and
design. pearson education, 2005.

[38] Manoranjan Dash and Huan Liu. Feature selection for classification. Intelligent data analysis,
1(3):131–156, 1997.

[39] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian Le. Rapl:
memory power estimation and capping. In Low-Power Electronics and Design (ISLPED),
2010 ACM/IEEE International Symposium on, pages 189–194. IEEE, 2010.

[40] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware scheduling for heteroge-
neous datacenters. In 18th ACM Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, pages 77–88, 2013.

[41] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and qos-aware clus-
ter management. In 19th ACM Int’l Conference on Architectural Support for Programming
Languages and Operating Systems, pages 127–144, 2014.

[42] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee, Thomas F Wenisch, and Ricardo
Bianchini. Multiscale: memory system dvfs with multiple memory controllers. In Proceed-
ings of the 2012 ACM/IEEE international symposium on Low power electronics and design,
pages 297–302. ACM, 2012.

[43] Qingyuan Deng, David Meisner, Arup Bhattacharjee, Thomas F Wenisch, and Ricardo Bian-
chini. Coscale: Coordinating cpu and memory system dvfs in server systems. In Microarchi-
tecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pages 143–154.
IEEE, 2012.

[44] Electronic Educational Devices. Watts up? plug load meters. https://www.
wattsupmeters.com/secure/products.php?pn=0&wai=0&more=2. Ac-
cessed: 2016-08-07.

[45] Gaurav Dhiman, Kresimir Mihic, and Tajana Rosing. A system for online power prediction in
virtualized environments using gaussian mixture models. In Design Automation Conference
(DAC), 2010 47th ACM/IEEE, pages 807–812. IEEE, 2010.

149

https://trac.ffmpeg.org/wiki/Null
https://dev.mysql.com/downloads/benchmarks.html
https://dev.mysql.com/downloads/benchmarks.html
https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0&more=2
https://www.wattsupmeters.com/secure/products.php?pn=0&wai=0&more=2

i
i

“thesis” — 2017/1/23 — 0:17 — page 150 — #158 i
i

i
i

i
i

Bibliography

[46] NASA Advanced Supercomputing Division. Nas parallel benchmarks (npb). http://www.
nas.nasa.gov/publications/npb.html, 2016.

[47] Docker. Docker - build, ship, and run any app, anywhere, 2013.

[48] Mian Dong and Lin Zhong. Self-constructive high-rate system energy modeling for battery-
powered mobile systems. In Proceedings of the 9th international conference on Mobile sys-
tems, applications, and services, MobiSys ’11, pages 335–348, New York, NY, USA, 2011.
ACM.

[49] Norman R Draper and Harry Smith. Applied regression analysis. John Wiley & Sons, 2014.

[50] Naeem Esfahani, Eric Yuan, Kyle R Canavera, and Sam Malek. Inferring software compo-
nent interaction dependencies for adaptation support. ACM Transactions on Autonomous and
Adaptive Systems (TAAS), 10(4):26, 2016.

[51] Giulio Eulisse and Lassi Tuura. Igprof profiling tool. 2005.

[52] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lymberopoulos, Ramesh Govin-
dan, and Deborah Estrin. Diversity in smartphone usage. In Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services, pages 179–194. ACM, 2010.

[53] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power provisioning for a
warehouse-sized computer. In ACM SIGARCH Computer Architecture News, volume 35,
pages 13–23. ACM, 2007.

[54] Funmilade Faniyi, Peter R Lewis, Rami Bahsoon, and Xin Yao. Architecting self-aware
software systems. In Software Architecture (WICSA), 2014 IEEE/IFIP Conference on, pages
91–94. IEEE, 2014.

[55] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated performance
comparison of virtual machines and linux containers. In Performance Analysis of Systems and
Software (ISPASS), 2015 IEEE International Symposium On, pages 171–172. IEEE, 2015.

[56] Wes Felter, Karthick Rajamani, Tom Keller, and Cosmin Rusu. A performance-conserving
approach for reducing peak power consumption in server systems. In Proceedings of the 19th
annual international conference on Supercomputing, pages 293–302. ACM, 2005.

[57] M. Ferroni, A. Cazzola, F. Trovo, D. Sciuto, and M.D. Santambrogio. On power and energy
consumption modeling for smart mobile devices. In Embedded and Ubiquitous Computing
(EUC), 2014 12th IEEE International Conference on, pages 273–280, Aug 2014.

[58] Matteo Ferroni, Andrea Cazzola, Domenico Matteo, Alessandro Antonio Nacci, Donatella
Sciuto, and Marco Domenico Santambrogio. Mpower: gain back your android battery life!
In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous computing adjunct
publication, pages 171–174. ACM, 2013.

[59] Roy Thomas Fielding. Architectural styles and the design of network-based software archi-
tectures. PhD thesis, University of California, Irvine, 2000.

[60] Apache Foundation. Apache cassandra. http://cassandra.apache.org/. Ac-
cessed: 2016-08-09.

[61] Apache Foundation. Benchmark suite for apache spark. https://github.com/
SparkTC/spark-bench. Accessed: 2016-08-09.

[62] Jesús García-galán, Liliana Pasquale, Pablo Trinidad, and Antonio Ruiz-Cortés. User-centric
adaptation analysis of multi-tenant services. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 10(4):24, 2016.

[63] Gartner. Gartner says worldwide smartphone sales grew 3.9 percent in first quarter of 2016.
http://www.gartner.com/newsroom/id/3323017.

150

http://www.nas.nasa.gov/publications/npb.html
http://www.nas.nasa.gov/publications/npb.html
http://cassandra.apache.org/
https://github.com/SparkTC/spark-bench
https://github.com/SparkTC/spark-bench
http://www.gartner.com/newsroom/id/3323017

i
i

“thesis” — 2017/1/23 — 0:17 — page 151 — #159 i
i

i
i

i
i

Bibliography

[64] Google. Android 5.0, lollipop. https://www.android.com/intl/it_it/
versions/lollipop-5-0/.

[65] Google. Power profiles for android, december 2013.

[66] Google Play Store. Battery notify,prediction lite. https://play.google.
com/store/apps/details?id=com.fred.BatteryPredictionLite, decem-
ber 2013.

[67] Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof: A call graph execution
profiler. 17(6):120–126, 1982.

[68] Diwaker Gupta, Rob Gardner, and Ludmila Cherkasova. Xenmon: QoS monitoring and
performance profiling tool. Hewlett-Packard Labs, Tech. Rep. HPL-2005-187, 2005.

[69] Selim Gurun and Chandra Krintz. A run-time, feedback-based energy estimation model for
embedded devices. In Proceedings of the 4th international conference on Hardware/software
codesign and system synthesis, CODES+ISSS ’06, pages 28–33, New York, NY, USA, 2006.
ACM.

[70] Hyung Kil Ham and Young Bom Park. Mobile application compatibility test system design
for android fragmentation. In Software Engineering, Business Continuity, and Education,
pages 314–320. Springer, 2011.

[71] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni Stroulia.
Understanding android fragmentation with topic analysis of vendor-specific bugs. In Reverse
Engineering (WCRE), 2012 19th Working Conference on, pages 83–92. IEEE, 2012.

[72] Monson H Hayes. Statistical digital signal processing and modeling. John Wiley & Sons,
2009.

[73] Gernot Heiser. The role of virtualization in embedded systems. In Proceedings of the 1st
workshop on Isolation and integration in embedded systems, pages 11–16. ACM, 2008.

[74] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M Tilbury. Feedback control of
computing systems. John Wiley & Sons, 2004.

[75] Jorg Henkel, Heba Khdr, Santiago Pagani, and Muhammad Shafique. New trends in dark
silicon. In 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),, pages 1–6, 2015.

[76] Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda. Bungee: an
elasticity benchmark for self-adaptive iaas cloud environments. In Proceedings of the 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 46–56. IEEE Press, 2015.

[77] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant
Agarwal. Application heartbeats: A generic interface for expressing performance goals and
progress in self-tuning systems. In 4th Workshop on Statistical and Machine learning ap-
proaches to ARchitecture and compilaTion (SMART), 2010.

[78] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant Agar-
wal. Application heartbeats for software performance and health. Technical report, August
2009.

[79] Henry Hoffmann and Martina Maggio. Pcp: A generalized approach to optimizing perfor-
mance under power constraints through resource management. In 11th International Confer-
ence on Autonomic Computing (ICAC 14), pages 241–247, 2014.

[80] Henry Hoffmann, Martina Maggio, Marco D Santambrogio, Alberto Leva, and Anant Agar-
wal. Seec: A framework for self-aware computing. 2010.

[81] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu. Dynamic voltage scaling in multitier web
servers with end-to-end delay control. In Computers, IEEE Transactions. IEEE, 2007.

151

https://www.android.com/intl/it_it/versions/lollipop-5-0/
https://www.android.com/intl/it_it/versions/lollipop-5-0/
https://play.google.com/store/apps/details?id=com.fred.BatteryPredictionLite
https://play.google.com/store/apps/details?id=com.fred.BatteryPredictionLite

i
i

“thesis” — 2017/1/23 — 0:17 — page 152 — #160 i
i

i
i

i
i

Bibliography

[82] Guang-Bin Huang, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme learning machine: theory
and applications. Neurocomputing, 70(1):489–501, 2006.

[83] Monsoon Solutions Inc. Monsoon power monitor. https://www.msoon.com/
LabEquipment/PowerMonitor/, 2015.05.29.

[84] Intel. Flexible, low power microservers for lightweight scale-out workloads. Technical report,
White paper, Intel Corporation, 2013.

[85] IOzone.org. Iozone filesystem benchmark. http://www.iozone.org, 2007.

[86] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end processors:
Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, page 93. IEEE Computer Society, 2003.

[87] Herbert Jaeger and Harald Haas. Harnessing nonlinearity: Predicting chaotic systems and
saving energy in wireless communication. Science, 304(5667):78–80, 2004.

[88] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems. Journal
of basic Engineering, 82(1):35–45, 1960.

[89] Joon-Myung Kang, Sin seok Seo, and James Won-Ki Hong. Personalized battery lifetime
prediction for mobile devices based on usage patterns. Journal of Computing Science and
Engineering, 5(4):338–345, 2011.

[90] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A Bhattacharya. Virtual ma-
chine power metering and provisioning. In Proceedings of the 1st ACM symposium on Cloud
computing, pages 39–50. ACM, 2010.

[91] Paul Karger and Andrew Herbert. An augmented capability architecture to support lattice
security and traceability of access. In IEEE Symposium on Security and Privacy, 1984.

[92] Richard M Karp. Reducibility among combinatorial problems. Springer, 1972.

[93] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[94] David H. K. Kim, Connor Imes, and Henry Hoffmann. Racing and pacing to idle: Theoretical
and empirical analysis of energy optimization heuristics. In International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2013.

[95] M. Kim, M. O. Stehr, C. Talcott, N. Dutt, and N. Venkatasubramanian. xtune: A formal
methodology for crosslayer tuning of mobile embedded systems. In ACM Trans. Embed.
Comput. Syst. 11.4. ACM, 2013.

[96] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and Vlad
Zolotarov. OSv: optimizing the operating system for virtual machines. In USENIX Annual
Technical Conference, pages 61–72, 2014.

[97] Mikkel Baun Kjærgaard and Henrik Blunck. Unsupervised Power Profiling for Mobile De-
vices. In Proceedings of the 8th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services (Mobiquitous 2011). Springer, 2011.

[98] Igor Kononenko. Estimating attributes: analysis and extensions of relief. In Machine Learn-
ing: ECML-94, pages 171–182. Springer, 1994.

[99] Rakesh Kumar and Shilpi Charu. Comparison between cloud computing, grid computing,
cluster computing and virtualization.

[100] Charles L Lawson and Richard J Hanson. Solving least squares problems, volume 15. SIAM,
1995.

152

https://www.msoon.com/LabEquipment/PowerMonitor/
https://www.msoon.com/LabEquipment/PowerMonitor/
http://www.iozone.org

i
i

“thesis” — 2017/1/23 — 0:17 — page 153 — #161 i
i

i
i

i
i

Bibliography

[101] K-J Lee and Kevin Skadron. Using performance counters for runtime temperature sensing in
high-performance processors. In 19th IEEE International Parallel and Distributed Processing
Symposium, pages 8–pp. IEEE, 2005.

[102] John Levon and Philippe Elie. Oprofile: A system profiler for Linux, 2004.

[103] Chao Li, Rui Wang, Depei Qian, and Tao Li. Managing server clusters on renewable energy
mix. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 11(1):1, 2016.

[104] Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating system power
consumption. In ACM SIGMETRICS Performance Evaluation Review, volume 31, pages
160–171. ACM, 2003.

[105] Lennart Ljung. System identification. Wiley Online Library, 1999.

[106] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos
Kozyrakis. Heracles: improving resource efficiency at scale. In ACM SIGARCH Computer
Architecture News, volume 43, pages 450–462. ACM, 2015.

[107] Pattie Maes. Modeling adaptive autonomous agents. Artificial life, 1(1_2):135–162, 1993.

[108] P. C. Mahalanobis. On the generalised distance in statistics. In Proceedings National Institute
of Science, India, volume 2, pages 49–55, April 1936.

[109] Pierre Simon marquis de Laplace. Théorie analytique des probabilités. V. Courcier, 1820.

[110] John C. McCullough, Yuvraj Agarwal, Jaideep Chandrashekar, Sathyanarayan Kuppuswamy,
Alex C. Snoeren, and Rajesh K. Gupta. Evaluating the effectiveness of model-based power
characterization. Proceedings of the 2011 USENIX conference on USENIX annual technical
conference, pages 12–12, 2011.

[111] Reto Meier. Professional Android 4 Application Development. Wrox, 3rd edition, May 2012.

[112] David Meisner, Christopher M Sadler, Luiz André Barroso, Wolf-Dietrich Weber, and
Thomas F Wenisch. Power management of online data-intensive services. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on, pages 319–330. IEEE,
2011.

[113] Paul Menage, P Jackson, and C Lameter. Cgroups. Available on-line at: http://www.
mjmwired. net/kernel/Documentation/cgroups. txt, 2008.

[114] Aravind Menon, Jose Renato Santos, Yoshio Turner, G John Janakiraman, and Willy
Zwaenepoel. Diagnosing performance overheads in the Xen virtual machine environment. In
1st ACM/USENIX Int’l Conference on Virtual Execution Environments, pages 13–23, 2005.

[115] Mark F Mergen, Volkmar Uhlig, Orran Krieger, and Jimi Xenidis. Virtualization for high-
performance computing. ACM SIGOPS Operating Systems Review, 40(2):8–11, 2006.

[116] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim, N. Dutt, R. Gupta, A. Nicolau, S. Shukla,
and N. Venkatasubramanian. A cross-layer approach for power performance optimization in
distributed mobile systems. In International Parallel & Distributed Processing Symposium
(IPDPS). IEEE, 2005.

[117] Douglas C Montgomery and George C Runger. Applied statistics and probability for engi-
neers. Wiley. com, 2010.

[118] Philip J. Mucci. Cachebench. http://www.weblearn.hs-bremen.de/risse/
RST/WS06/x86_SUN/Sourcen/LLCBench/www/cachebench.html, 2007.

[119] P Murukutla. Single sign on for cloud. Computing Sciences (ICCS), pages 176 – 179, 2012.

[120] AA Nacci, Francesco Trovò, Federico Maggi, Matteo Ferroni, Andrea Cazzola, Donatella
Sciuto, and Marco D Santambrogio. Adaptive and flexible smartphone power modeling.
Mobile Networks and Applications, 18(5):600–609, 2013.

153

http://www.weblearn.hs-bremen.de/risse/RST/WS06/x86_SUN/Sourcen/LLCBench/www/cachebench.html
http://www.weblearn.hs-bremen.de/risse/RST/WS06/x86_SUN/Sourcen/LLCBench/www/cachebench.html

i
i

“thesis” — 2017/1/23 — 0:17 — page 154 — #162 i
i

i
i

i
i

Bibliography

[121] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power management in virtu-
alized enterprise systems. In ACM SIGOPS Operating Systems Review, volume 41, pages
265–278. ACM, 2007.

[122] NECST-Laboratory. Mpower sense library source code, december 2013.

[123] NECST-Laboratory. Mpower technical reports, december 2013.

[124] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight dynamic bi-
nary instrumentation. In 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 89–100, 2007.

[125] Ruslan Nikolaev and Godmar Back. Perfctr-Xen: a framework for performance counter vir-
tualization. 46(7):15–26, 2011.

[126] Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. Towards an autonomic
auto-scaling prediction system for cloud resource provisioning. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2015 IEEE/ACM 10th International Sympo-
sium on, pages 35–45. IEEE, 2015.

[127] Martin Odersky, Lex Spoon, and Bill Venners. Programming in scala. Artima Inc, 2008.

[128] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. Fine-grained
power modeling for smartphones using system call tracing. In Proceedings of the sixth con-
ference on Computer systems, EuroSys ’11, pages 153–168, New York, NY, USA, 2011.
ACM.

[129] D. Pnueli and C. Gutfinger. Fluid Mechanics. Cambridge University Press, 1992.

[130] Jon Pretty. Rapture, 2014.

[131] Qualcomm. Snapdragon batteryguru. https://play.google.com/store/apps/
details?id=com.xiam.snapdragon.app, december 2013.

[132] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar, Zhikui Wang, and Xiaoyun
Zhu. No power struggles: Coordinated multi-level power management for the data center. In
ACM SIGARCH Computer Architecture News, volume 36, pages 48–59. ACM, 2008.

[133] Krishna K Rangan, Gu-Yeon Wei, and David Brooks. Thread motion: fine-grained power
management for multi-core systems. In ACM SIGARCH Computer Architecture News, vol-
ume 37, pages 302–313. ACM, 2009.

[134] Redislab. Redis, 2009.

[135] Andrew Colin Rice and Simon Hay. Decomposing power measurements for mobile devices.
In PerCom, pages 70–78. IEEE Computer Society, 2010.

[136] Murray Rosenblatt et al. Remarks on some nonparametric estimates of a density function.
The Annals of Mathematical Statistics, 27(3):832–837, 1956.

[137] Daniel Rossier. EmbeddedXen: A revisited architecture of the Xen hypervisor to support
ARM-based embedded virtualization. White paper, Switzerland, 2012.

[138] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Doron Rajwan, and Eliezer Weiss-
mann. Power-management architecture of the intel microarchitecture code-named sandy
bridge. IEEE Micro, (2):20–27, 2012.

[139] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive software: Landscape and research chal-
lenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2):14, 2009.

[140] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM Eu-
ropean Conference on Computer Systems, pages 351–364. ACM, 2013.

154

https://play.google.com/store/apps/details?id=com.xiam.snapdragon.app
https://play.google.com/store/apps/details?id=com.xiam.snapdragon.app

i
i

“thesis” — 2017/1/23 — 0:17 — page 155 — #163 i
i

i
i

i
i

Bibliography

[141] Amir Ali Semnanian, Jeffrey Pham, Burkhard Englert, and Xiaolong Wu. Virtualization
technology and its impact on computer hardware architecture. In Eighth Int’l Conference on
Information Technology: New Generations (ITNG), pages 719–724. IEEE, 2011.

[142] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, and Z. Chen. Power containers: An os
facility for finegrained power and energy management on multicore servers. In IEEE 3rd In-
ternational Conference on Cyber-Physical Systems, Networks, and Applications. IEEE, 2015.

[143] Alex Shye, Benjamin Scholbrock, and Gokhan Memik. Into the wild: studying real user
activity patterns to guide power optimizations for mobile architectures. In Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages
168–178, New York, NY, USA, 2009. ACM.

[144] Filippo Sironi, Martina Maggio, Riccardo Cattaneo, Giovanni F Del Nero, Donatella Sciuto,
and Marco D Santambrogio. Thermos: System support for dynamic thermal management of
chip multi-processors. In Parallel Architectures and Compilation Techniques (PACT), 2013
22nd International Conference on, pages 41–50. IEEE, 2013.

[145] Ibrahim Takouna, Wesam Dawoud, and Christoph Meinel. Accurate mutlicore processor
power models for power-aware resource management. In Dependable, Autonomic and Secure
Computing (DASC), 2011 IEEE Ninth International Conference on, pages 419–426. IEEE,
2011.

[146] Andrew S Tanenbaum and Maarten Van Steen. Distributed systems: principles and
paradigms, volume 2. Prentice hall Englewood Cliffs, 2002.

[147] Andrey Nikolayevich Tikhonov. On the stability of inverse problems. In Dokl. Akad. Nauk
SSSR, volume 39, pages 195–198, 1943.

[148] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William Jannen, Jitin
John, Harry A Kalodner, Vrushali Kulkarni, Daniela Oliveira, and Donald E Porter. Cooper-
ation and security isolation of library OSes for multi-process applications. In 9th European
Conference on Computer Systems, 2014.

[149] Geoffrey KF Tso and Kelvin KW Yau. Predicting electricity energy consumption: A com-
parison of regression analysis, decision tree and neural networks. Energy, 32(9):1761–1768,
2007.

[150] Narseo Vallina-Rodriguez and Jon Crowcroft. Energy management techniques in modern
mobile handsets. Communications Surveys & Tutorials, IEEE, 15(1):179–198, 2013.

[151] Narseo Vallina-Rodriguez, Pan Hui, Jon Crowcroft, and Andrew Rice. Exhausting battery
statistics: understanding the energy demands on mobile handsets. In Proceedings of the sec-
ond ACM SIGCOMM workshop on Networking, systems, and applications on mobile hand-
helds, MobiHeld ’10, pages 9–14, New York, NY, USA, 2010. ACM.

[152] Jóakim von Kistowski, Nikolas Herbst, Daniel Zoller, Samuel Kounev, and Andreas Hotho.
Modeling and extracting load intensity profiles. In Software Engineering for Adaptive and
Self-Managing Systems (SEAMS), 2015 IEEE/ACM 10th International Symposium on, pages
109–119. IEEE, 2015.

[153] Micha Vor Dem Berge, Georges Da Costa, Mateusz Jarus, Ariel Oleksiak, Wojciech Piatek,
and Eugen Volk. Modeling data center building blocks for energy-efficiency and thermal
simulations. In Energy-Efficient Data Centers, pages 66–82. Springer, 2014.

[154] Xiaorui Wang, Ming Chen, and Xing Fu. Mimo power control for high-density servers in
an enclosure. Parallel and Distributed Systems, IEEE Transactions on, 21(10):1412–1426,
2010.

[155] Ye Wen, Rich Wolski, and Chandra Krintz. Online prediction of battery lifetime for embedded
and mobile devices. In IN PROCEEDINGS OF PACS, page 2004, 2003.

155

i
i

“thesis” — 2017/1/23 — 0:17 — page 156 — #164 i
i

i
i

i
i

Bibliography

[156] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. RT-Xen: Towards real-time
hypervisor scheduling in Xen. In 2011 IEEE Int’l Conference on Embedded Software, pages
39–48, 2011.

[157] Yu Xiao, Rijubrata Bhaumik, Zhirong Yang, Matti Siekkinen, Petri Savolainen, and Antti Yla-
Jaaski. A system-level model for runtime power estimation on mobile devices. In Proceedings
of the 2010 IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l
Conference on Cyber, Physical and Social Computing, GREENCOM-CPSCOM ’10, pages
27–34, Washington, DC, USA, 2010. IEEE Computer Society.

[158] Xia Xie, Haiou Jiang, Hai Jin, Wenzhi Cao, Pingpeng Yuan, and Laurence Tianruo Yang.
Metis: a profiling toolkit based on the virtualization of hardware performance counters.
Human-centric Computing and Information Sciences, 2(1):1–15, 2012.

[159] C. Xu, Z. Zhao, H. Wang, and J. Liu. On the interplay between network traffic and energy
consumption in virtualized environment: An empirical study. In 2014 IEEE 7th International
Conference on Cloud Computing, pages 392–399, June 2014.

[160] Hailong Yang, Qi Zhao, Zhongzhi Luan, and Depei Qian. imeter: An integrated vm power
model based on performance profiling. Future Generation Computer Systems, 36:267–286,
2014.

[161] F. Zappa. Elettronica. Semiconduttori, diodi e transistori, amplificatori, convertitori DAC e
ADC. Esculapio, 2008.

[162] Yan Zhai, Xiao Zhang, Stephane Eranian, Lingjia Tang, and Jason Mars. Happy:
Hyperthread-aware power profiling dynamically. In USENIX Annual Technical Conference,
pages 211–217, 2014.

[163] Huazhe Zhang and Henry Hoffmann. Maximizing performance under a power cap: A com-
parison of hardware, software, and hybrid techniques. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

[164] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert P. Dick, Zhuoqing Mor-
ley Mao, and Lei Yang. Accurate online power estimation and automatic battery behavior
based power model generation for smartphones. In Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, CODES/ISSS
’10, pages 105–114, New York, NY, USA, 2010. ACM.

[165] Xia Zhao, Yao Guo, Qing Feng, and Xiangqun Chen. A system context-aware approach for
battery lifetime prediction in smart phones. In Proceedings of the 2011 ACM Symposium on
Applied Computing, SAC ’11, pages 641–646, New York, NY, USA, 2011. ACM.

[166] Jiang Zhu, Douglas S Chan, Mythili Suryanarayana Prabhu, Prem Natarajan, Hao Hu, and
Flavio Bonomi. Improving web sites performance using edge servers in fog computing ar-
chitecture. In Service Oriented System Engineering (SOSE), 2013 IEEE 7th International
Symposium on, pages 320–323. IEEE, 2013.

[167] Zhenyun Zhuang, Kyu-Han Kim, and Jatinder Pal Singh. Improving energy efficiency of lo-
cation sensing on smartphones. In Proceedings of the 8th international conference on Mobile
systems, applications, and services, pages 315–330. ACM, 2010.

[168] Parisa Zoghi, Mark Shtern, Marin Litoiu, and Hamoun Ghanbari. Designing adaptive appli-
cations deployed on cloud environments. ACM Transactions on Autonomous and Adaptive
Systems (TAAS), 10(4):25, 2016.

156

	Introduction
	Context and problems definition
	Proposed approach and requirements
	Thesis outline: a journey towards power-awareness

	Preliminary steps: power models for Android devices
	Introduction
	Related work
	External measurements
	Internal measurements
	Energy-related variables observation

	Problem definition
	The proposed methodology
	Hardware model estimation
	User model estimation
	Discharge curves/traces prediction

	Implementation
	Experimental results
	Power model estimation
	Energy consumption of the mobile application

	Final remarks

	Generalization: Model and Analysis of Resource Consumption (MARC)
	Introduction
	The resource consumption problem
	Methodology generalization
	PHASE1: Data conditioning
	PHASE2: Modeling
	PHASE3: Simulation

	Implementation
	Parallelism requirement
	Distribution requirement
	``As a service'' requirement
	Implementation details

	Validation
	Simulator
	Regression testing: power models for Android devices

	Final remarks

	Towards power-awareness for the Xen Hypervisor: virtual guests monitoring
	Introduction
	Proposed approach and requirements
	Implementation
	Xen kernel instrumentation
	XeMPower daemon
	XeMPower command line interface

	Use Case: per-domain CPU power attribution
	Experimental results
	Experimental setup and test cases
	Results and discussion

	Related work
	Final remarks

	Modeling power consumption in multi-tenant virtualized systems
	Introduction
	Motivational example
	Proposed methodology
	Overview
	System benchmarking
	Working regimes identification
	Working regimes classification
	Power models generation

	Experimental Evaluation
	Objectives
	Experimental setup
	Models and results generation

	Experimental results
	Model performance
	Model portability
	Consolidation evaluation

	Related work
	Final remarks

	Maximizing performance under a power cap: a hybrid hardware-software approach
	Introduction
	Related work
	System design and implementation
	Observe
	Decide
	Act

	Experimental results
	Final remarks

	Moving forward: containerization, challenges and opportunities
	Introduction
	Proposed methodology
	Resource control step
	Resource partitioning step

	Implementation
	Observe
	Decide
	Act

	Experimental results
	Power capping precision
	Impact on the benchmarks performance

	Final remarks

	Conclusion and future work
	Bibliography

