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Abstract

Autonomous mobile robots can perform many different tasks to help hu-
mans during their activities or to replace them in hazardous environments
and in simple routine operations.

When we consider indoor tasks, robots have to interact with environ-
ments that are specifically designed for human activities and for interac-
tion between humans, buildings. Buildings are strongly structured environ-
ments that are organized in regular patterns. For instance, rooms typically
have a geometrical structure that is characterized by features, such as walls
perpendicular to the floor and to the ceiling, and by a layout that can be, in
most cases, approximated by a box-like model. In order to increase their
ability to autonomously operate in indoor environments, robots must have
a good understanding of buildings, similarly to that human beings exploit
during their everyday activities. If we consider how people and robots in-
teract with indoor environments, it can be said that people naturally under-
stand and “read" buildings as human-made environments (and act in them
accordingly), and that this is hardly the case for autonomous mobile robots.

One of the most important tools that researchers have developed to ad-
dress a robot’s needs for interacting with an indoor environment are se-
mantic maps. Semantic maps are abstract representations which aim to
represent the meaning of parts of the perceived environment in order to
provide robots a human-like understanding of their surroundings. Seman-
tic maps can be used for describing heterogeneous concepts that can be
useful for robots, such as objects and rooms. In this dissertation, we focus
on a particular type of semantic maps, which identifies rooms, represents
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how rooms are connected, and assigns to each room a semantic label indi-
cating its function, such as ‘corridor’, ‘classroom’, ‘office’, or ‘bathroom’.
Semantic maps are usually build on metric maps, that represent the space
occupation and are particularly useful for tasks such as path planning and
localization.

Typically, the interaction between a robot and its environment is heavily
based on data acquired with perception. Mapping methods usually provide
reliable knowledge only on parts of the environment that have been already
visited. This approach often implies that what has not been seen by the
robot does not exists, adopting, in a sense, a closed world assumption on the
environment. This statement is true considering both semantic and metric
maps. This form of interaction with the environment is radically different
from that of humans, who can easily navigate and comprehend the structure
of buildings even without having seen them before.

The contribution of this thesis moves from the consideration that the
global structure of buildings, which is often neglected when building se-
mantic maps, could be exploited to increase the autonomous abilities of
robots when operating in indoor environments. Our proposed framework
aims at identifying and at overcoming the limitations in standard semantic
mapping methods by starting from two insights on indoor environments. In
first place, we consider an entire floor of a building as a single object, by
identifying relations between different (and potentially unconnected) parts
of the building. This can be done both considering the metric map of the
environment, for example by identifying that rooms in different parts of the
building share one or more walls, and by considering the topology of the
environment, namely how rooms are connected with each other, and for
example observing that parts of the building with a similar function have a
similar structure.

Moreover, we consider each building in relation with other buildings
with the same function. The function of a building is represented by the
main activity that each building is designed for and is captured by the con-
cept of building type. Examples of building types are schools, offices, hos-
pitals, university, shopping malls, and others. The function of a building
imposes its structure, its floor plan, and the structure of its rooms. Each
building, having a precise function, shares some structural features with all
other buildings with the same purpose.

Exploiting these two observations, we provide an analytical model of the
structure of a building that considers altogether all the relations between its
single parts and that considers the features shared by the set of buildings
belonging to the same type. We start from reconstructing the layout of an
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indoor environment from its metric map. The layout can then be used for
obtaining a graph representation the building. In our approach, data from
the metric maps are used in combination with data representing floor plans
of buildings belonging to the same type. Using graph kernels and Monte
Carlo Markov Chains, we provide a method able to generate new instances
of building structures from a set of examples. We outline some possible ap-
plications of our approach, involving reasoning on unknown parts of build-
ings and labelling entire floors of buildings accordingly to their function.
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Sommario

In un prossimo futuro, i robot mobili autonomi potranno aiutarci nelle attiv-
ità quotidiane, sollevarci da compiti svolti in ambienti pericolosi, e svolgere
per noi semplici attività ripetitive.

In particolare, già ora, i robot che operano in ambienti indoor devono
sapersi muovere e interagire con delle strutture appositamente progettate
per l’attività umana e per un uso specifico, gli edifici. Gli edifici sono am-
bienti fortemente strutturati e sono organizzati in una serie di pattern re-
golari. Le stanze, ad esempio, hanno tipicamente una struttura geometrica
caratterizzante, con pareti perpendicolari al pavimento e al soffitto ed un
aspetto che, nella maggior parte dei casi, può essere approssimato da un
box-model, un parallelepipedo. Un robot autonomo deve essere in grado
di capire in maniera efficace l’ambiente in cui si trova, cercando di avere
un comportamento quanto più simile possibile a quello della propria con-
troparte umana. Se consideriamo come le persone vivono all’interno degli
edifici, si può vedere come esse naturalmente riescano a comprendere e leg-
gere gli edifici come costruiti attorno a loro; una considerazione simile non
è invece fattibile quando si parla di robot.

Uno dei metodi più efficaci che un robot ha a disposizione per com-
prendere l’ambiente che lo circonda è la mappa semantica. Una mappa
semantica è una rappresentazione astratta dell’ambiente in cui viene at-
tribuito un significato alle parti dell’ambiente percepite dal robot. Il fine
di una mappa semantica è di fornire al robot la possibilità di comprendere
l’ambiente che lo circonda in maniera simile ad un essere umano. Le infor-
mazioni contenute in una mappa semantica possono essere di diverso tipo, e
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variano in base all’ambiente in cui il robot deve operare (interno o esterno)
e ai compiti che il robot deve svolgere. Una mappa semantica è dunque
una descrizione eterogenea dell’ambiente funzionale all’attività del robot e
contenente indicazioni quali la presenza di oggetti e la tipologia delle sin-
gole stanze. In questo lavoro di tesi, ci concentreremo su una particolare
tipologia di mappa semantica finalizzata ad identificare le stanze presenti
nell’edificio, a capire come sono tra loro connesse e ad assegnare loro una
etichetta semantica indicante la loro funzione, come ‘corridoio’, ‘classe’,
‘ufficio’ o ‘bagno’.‘ Le mappe semantiche sono tipicamente ricavate a par-
tire da mappe metriche, le quali rappresentano lo spazio come occupato o
libero, e che sono particolarmente utili per attività come il path planning e
la localizzazione.

L’interazione tra il robot e l’ambiente in cui opera è solitamente carat-
terizzata dai dati acquisiti mediante i sensori. Di conseguenza, i metodi di
mapping forniscono al robot dei dati e delle informazioni solo su quelle
porzioni dell’ambiente che sono già state visitate dal robot stesso. Questo
approccio implica il fatto che tutto ciò che non è stato già visto dal robot,
di solito non venga considerato affatto. Per un robot, quindi, ciò che non
ha visto è come se non esistesse, adottando, in un certo senso, una closed-
world assumption. Questa considerazione, ugualmente valida per mappe
metriche e mappe semantiche, fa sì che la percezione dell’ambiente da parte
di un robot sia radicalmente diversa da quella di un essere umano, che ri-
esce facilmente a orientarsi e comprendere la struttura di un edificio anche
senza averlo mai visto prima.

Il contributo di questo lavoro di tesi parte dalla considerazione che la
struttura di un edificio, che spesso non viene considerata come una fonte di
informazioni per il mapping semantico, può essere utilizzata per aumentare
l’autonomia e le capacità percettive dei robot quando questi operano in am-
bienti indoor. In particolare, vogliamo proporre di identificare e superare
alcune limitazioni nel corrente stato dell’arte del mapping semantico sfrut-
tando due considerazioni sulla natura stessa degli edifici.

In primo luogo, consideriamo un intero piano di un edificio come un
oggetto unico identificando delle relazioni tra le varie parti che lo compon-
gono, siano anche non direttamente connesse. Questo può essere fatto at-
traverso la mappa metrica, ad esempio identificando come due stanze poste
in parti differenti dello stesso piano condividano una parete, o considerando
la topologia dell’ambiente, ovvero come le stanze sono connesse tra loro,
ad esempio osservando che parti dell’edificio che sono deputate alla stessa
funzione hanno una simile struttura.

In secondo luogo, consideriamo ogni edificio in relazione con l’insieme
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degli edifici aventi la stessa funzione. La funzione di un edificio è l’attività
principale che deve essere svolta al suo interno, per cui è stato concepito
e progettato, e per cui viene usato. Per funzione di un edificio facciamo
riferimento al concetto di tipo edilizio, discusso ed analizzato in architet-
tura. Esempi di tipi edilizi sono l’edilizia scolastica, gli ospedali, le uni-
versità, i centri commerciali, o le abitazioni. La funzione di un edificio
impone quella che è la sua struttura, la sua planimetria, la forma e la dispo-
sizione delle stanze che lo compongono. Ogni edificio, avendo una precisa
funzione, condivide delle proprietà strutturali con tutti quegli altri edifici
appartenenti allo stesso tipo edilizio.

Sfruttando queste due considerazioni, proponiamo un modello analitico
della struttura di un edificio che consideri allo stesso tempo le relazioni tra
le sue singole componenti e che consideri le proprietà che condivide con
l’insieme degli edifici appartenenti allo stesso tipo edilizio. A tale fine, il
primo passo da compiere è la ricostruzione della planimetria dell’edificio
a partire dalla sua mappa metrica. La planimetria può essere usata per ri-
cavare una rappresentazione a grafo dell’edificio. Questa rappresentazione
a grafo viene così sfruttata in combinazione con la mappa metrica e con i
dati ottenuti da altri ambienti appartenenti alla stessa tipologia. Mediante
l’uso di kernel su grafi e di Monte Carlo Markov Chains, proponiamo un
metodo capace di generare nuove istanze di possibili strutture di edifici a
partire da un insieme di esempi. Concludiamo così con un insieme di possi-
bili esempi applicativi del nostro metodo, finalizzati soprattutto ad ottenere
informazioni su porzioni dell’ambiente che non sono state ancora esplorate
dal robot.
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CHAPTER1
Introduction

Understanding the environments in which they operate is an important ca-
pability for autonomous mobile robots. These robots can perform many
different tasks to help humans during their activities or to replace them
in hazardous environments and in routine operations. Examples of these
applications includes house cleaning, patrolling buildings in order to de-
tect anomalies, surveillance, finding victims in search and rescue missions,
helping patients in hospitals, guiding people in museums or in other large
social spaces like malls, and many others. In several of these tasks, robots
are required to operate without any human supervision, especially in envi-
ronments that human beings cannot access, as in rescue settings.

When we consider indoor tasks, robots have to interact with environ-
ments that are specifically designed for human activities and for interac-
tion between humans, buildings. Buildings are strongly structured environ-
ments that are organized in regular patterns. For instance, rooms typically
have a geometrical structure that is characterized by features, such as walls
perpendicular to the floor and to the ceiling, and by a layout that can be, in
most cases, approximated by a box-like model. In order to increase their
ability to autonomously operate in indoor environments, robots must have
a good understanding of buildings, similarly to that human beings exploit
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Chapter 1. Introduction

during their everyday activities. This is even more important when the robot
have not any previous knowledge on the environment in which it operates,
but incrementally acquires data from the the environment while performing
its task. In such a scenario, the robot has to cope with several problems,
mostly due to the inherent uncertainty of perceiving and moving through
the world. Missing and noisy data, faulty sensors, and perception errors can
undermine its functionality. If we consider how people and robots interact
and move within indoor environments, it can be said that people naturally
understand and “read" buildings as human-made environments (and act in
them accordingly), and that this is hardly the case for autonomous mobile
robots.

The standard way the robot use for representing the environments are
metric maps. Metric maps, like grid maps [97], represent the space occu-
pation and are particularly useful for tasks such as path planning. However,
metric maps do not explicitly contain any knowledge about the building
structure, but are limited to a representation of the space occupation. For
example, there usually is no distinction between a cell of the grid occupied
by a wall and a cell occupied by a chair that can be easily moved. Metric
maps can be incrementally built by robots, using SLAM techniques [97].

Semantic maps have been proposed as an abstraction of metric maps
which aim to represent the meaning of parts of the perceived environment.
Semantic maps can be used for describing heterogeneous concepts that can
be useful for robots, such as the nature of objects within the environment
and the kind of activity performed in a room [54]. In this thesis, we focus
on a particular type of semantic map. Specifically, we consider a semantic
map as a representation of the environment that identifies rooms by parti-
tioning the metric map, represents how rooms are connected, and assigns
to each room a semantic label indicating its function, such as ‘corridor’,
‘classroom’, ‘office’, or ‘bathroom’. This form of knowledge can be used
for improving numerous task, from human-robot interaction [22, 71], au-
tonomous cleaning [14], search [8], and (multi)robot exploration [79, 92].

Semantic mapping is usually performed starting from a metric map. As
a consequence, a semantic map represents and provides to the robot only in-
formation about the subset of the environment that has been already visited
by the robot. The main contribution of this work starts from the considera-
tion that the structure of buildings, which is often neglected when building
semantic maps, could be exploited to increase the autonomous abilities of
robots when operating in indoor environments. Following this direction,
we analyse, throughout the elaborate, the concept of structure of a building
under different perspectives, while explorative examples of applications of
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1.1. Understanding indoor environments

such concept to increase the robot’s understandings of its environment are
eventually shown in Chapter 8.

1.1 Understanding indoor environments

Typically, the interaction between a robot and its environment is heavily
based on data acquired with perception. Robots incrementally build maps
by aggregating perceptual data and rely on such maps for the completion
of their tasks. This approach often implies that what has not been seen by
the robot does not exists, adopting, in a sense, a closed world assumption
on the environment. This form of interaction with the environment is rad-
ically different from that of humans. As an example, consider how people
interact with a work place such as an office building. Usually, people do
not need to enter each room of the building to understand which kind of
activity is performed in it; instead, people know and have entered only a
subset of the rooms of a building. In a different setting, such as a multi-
level residential building, people usually can infer that all apartments are
similar. People usually are proactive towards their environments, trying to
comprehend their characteristics, understand their features, and read their
image [61].

In this work we provide a framework that allows autonomous mobile
robots to analyse and reason on the global structure of buildings and their
common features, in order to to make a step towards filling the gap between
how humans and robots interact with the environment they inhabit.

The basic representation we consider is the semantic map of a build-
ing. A semantic map identifies rooms from a partition of the metric map,
represents how rooms are connected, and assigns to each room a seman-
tic label indicating its function, such as ‘corridor’, ‘classroom’, ‘office’ or
‘bathroom’. Our contributions aims at improving standard semantic map-
ping techniques and at overcoming some of their actual limitations. More
precisely, we identify three main limits that affect most of the mainstream
semantic mapping approaches:

• Semantic mapping methods are usually trained and tested on a limited
set of environments. This can potentially undermine the generaliza-
tion of such approaches when applied to different contexts.

• Usually semantic mapping methods provide reliable knowledge only
on parts of the environment that have been already visited. This can
undermine the potential exploitation of semantic knowledge. For ex-
ample, semantic information on the environment has been shown to
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Chapter 1. Introduction

speed up multirobot exploration [79], but semantic information on the
environment is obtained only after the robot has explored it.

• Semantic labels are assigned to parts of the environment often consid-
ering only information acquired directly there or, at most, on a local
neighbour of those parts of environment. No information about the
global structure of the environment is usually considered.

Our proposed framework tries to overcome the above limitations by
starting from two insights on indoor environments that are discussed ex-
tensively in the following chapters.

The first insight is that we consider an entire building as a single object,
by identifying relations between different (and potentially unconnected)
parts of the building. This can be done both by considering the metric map
of the environment, for example by identifying that rooms in different parts
of the building share one or more walls, and by considering the topology of
the environment, namely how rooms are connected with each other, and for
example observing that parts of the building with a similar function have
a similar structure. As an example, if we consider two different corridors
of the same office building, it is probable that they will have a similar lay-
out and that they will be connected with rooms with similar functions (e.g.,
offices) and similar shapes.

The second insight regards the fact that we consider each building in
relation with other buildings with the same function. The function of a
building is represented by the main activity that each building is designed
for and is captured by the concept of building type [84]. Examples of build-
ing types are schools, offices, hospitals, university, shopping malls, and
others. We analyse data sets of buildings belonging to the same building
type, such as schools or offices, in order to identify the features that are
shared between all the buildings of the same type.

Under these two assumptions, we model the structure of a building in
order to consider altogether the relations between the single parts of the
building. Using an analogy, we consider rooms within a building as musical
notes in a score. While each single note has it own meaning by itself (its
pitch), it is only by considering their progression and the relation between
different chords that one can identify the melody and the tonality of a music
score. Similarly, for each room we can consider its function, represented
by its semantic label, and its geometry. But only considering how it is
connected to all the other rooms of the same building we can fully define
its role and function.

We provide an analytical model of the structure of a building by identi-
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1.2. Original contributions

fying some of its features, which are measurable quantities. As an example
we can identify that some rooms are aligned on a same wall, or that two
different parts of a building have the same structure. These features are in-
tended to describe global characteristics of the environment, that cannot be
determined by applying standard local semantic mapping approaches.

The decision of considering the global structure of a building as the
principal target of our analysis leads us to focus on the 2D structure of the
environment. Our general pattern is to derive semantic maps from the seg-
mentation of the environments into rooms using directly input from metric
maps, for example built from data collected by laser range scanners. For
this reason, we do not consider other possible sensors sources that are usu-
ally exploited for semantic categorization of buildings, as the room appear-
ance and the presence of significant objects [77, 78]. This choice, although
radical, allow us to focus on the main goals of this thesis.

Each element of our framework is presented separately in a chapter.At
first we extract automatically the structure and the connectivity of rooms of
a building from metric maps obtained by a robot. We evaluate this extracted
structure against those of similar buildings obtained from data sets. In this
way, we can find relations between parts of the target building and those of
the buildings in the data sets. This knowledge is used for performing classi-
fication tasks on the target building, for semantic mapping, and for enabling
other reasoning tasks such as categorizing an entire building according to
its function (for example, determining if a building in a university campus
is a dorm, a research facility or an administrative office). Finally, we de-
velop an analytical model of the structure of the buildings, which is used
for predicting the structure of unvisited parts of a building.

1.2 Original contributions

The original contributions of this dissertation are listed below.

• We develop a method that extracts the structure of a building from
a metric map acquired by a robot. This task is performed by extract-
ing information about the straight walls that compose the environment
and using this knowledge for segmenting the metric map into a set of
separate rooms. Our setting performs simultaneously layout recon-
struction and room segmentation.

• We introduce the concept of building type from the field of architec-
ture and we show how it can be fruitfully applied to semantic mapping
in robotics in order to increase the generalizability of semantic map-
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ping methods to different heterogeneous sets of environments. We
introduce the concept of structure of buildings and we show how the
structure of a building is a direct consequence of its functionality and
of its building type. Part of this contribution has been presented in [57]
and [59].

• We apply a Statistical Relational Learning tool, kLog [34], for per-
forming semantic mapping by considering all the rooms that form
a semantic map altogether, thus promoting a global approach to se-
mantic mapping. We use this framework for performing novel tasks,
namely building classification, in which we apply a semantic label to
an entire environment representing its function, its building type. Part
of this contribution is presented in [60].

• We develop a model for sampling new instances of buildings given a
set of examples. This model is based on a graph representation of the
buildings that is processed using graph kernels [40]. We show how
sampled graphs have a structure similar to that of real world environ-
ments. Our model is generative and can be adapted for predicting the
possible structure of a partially explored building. Parts of this contri-
bution have been presented in [58].

• We show how reasoning on the structure of buildings can be used
for assess the validity of simulated environments used in robotics. We
present a method for deciding if a simulated environment is similar (or
not) to real world environments. Part of this contribution is presented
in [4].

• We propose two applications of our approach for inferring new knowl-
edge on partially explored environments. This is done by predicting
the layout of a partially explored room and by providing a prediction
of the structure of the corridors of the unseen portion of a partially
explored environments.

All the code and data sets developed for this thesis are available upon
request.

1.3 Document structure

This document is structured as follows.
Chapter 2 introduces and explains relevant approaches for reasoning on

indoor environments that have been presented in the literature on semantic
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mapping, with a particular attention to those methods that perform place
classification. Then, we focus on techniques that perform room segmenta-
tion, to underline the fact that the process of semantic mapping is usually
intertwined with the task of partitioning a map into a set of rooms.

Chapter 3 shows how the structure of a building can be extracted from
its metric map by performing room segmentation and layout reconstruction.
Our method can be applied to input sources that include partially explored
maps, blue prints, and evacuation maps.

In Chapter 4 we introduce the concept of building type and we discuss
how the labeling process usually takes place in the state-of-the-art of se-
mantic mapping. Finally, we discuss the concept of model floor plan as
possible source of knowledge for autonomous mobile robots.

In Chapter 5 we describe the graph representation of environments which
is used in the following chapters. We leverage on the method presented in
Chapter 3 to extract a graph representation of a building, which is given to
a classifier to obtain a semantic map.

In Chapter 6 we use the graph representation of buildings as input for
Statistical Relational Learning techniques. We apply this method for per-
forming semantic mapping and for categorizing buildings according to their
type.

Chapter 7 proposes a method for developing an analytical model of a
building type. This model uses the graph representation of Chapter 5 and
generate (samples) new instances of graphs of buildings belonging to a
building type.

Chapter 8 proposes three applications of the methods introduced in the
previous chapters, two of which involves reasoning on partially explored
environments. The proposed applications are, namely, validation of sim-
ulation worlds, reasoning on the layout of partially explored rooms, and
prediction of the structure of partially explored buildings.

Chapter 9 concludes this dissertation and suggests further directions of
research.
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CHAPTER2
State of the art

Semantic mapping for autonomous mobile robots is the process of building
a representation of the environment which associates spatial concepts with
spatial entities [76]. The goal of semantic mapping is to endow robots with
the capabilities to understand their surroundings in human-centric terms,
by identifying features and symbols that contain meaningful concepts for
humans. This broad definition embraces a great variety of different methods
that a robot could adopt, from using vision to detect the objects placed on
a table to identifying roads, cars, and pedestrian for an autonomous vehicle
driving in a city.

In this thesis we focus on a specific type of semantic mapping task called
place classification. With place classification we intend the task of identify-
ing and labelling all the rooms that compose a building. To each room it is
assigned a semantic label which indicates its function, such as ‘office’, ‘cor-
ridor’, or ‘kitchen’. Ideally, each semantic label should name a room simi-
larly to what a human being would done in the same context. Under these
premises, we focus only on indoor environments, or buildings. In place
classification the map of the building can either be considered as initially
unknown or known to the robot. In the former case, which is called place
categorization, the semantic map is constructed during the exploration of
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the environment. When then the map of the environment is considered as
initially known (the model of the environment is trained on the same envi-
ronment on which is tested) the task is called place recognition, [76].

B
KL

C

SB
S S

Figure 2.1: An example of the various steps of semantic mapping, starting from a met-
ric representation of the environment (on the left), which is segmented into different
rooms. A topological map is a graph which indicates how rooms are connected be-
tween them. A semantic map is obtained by associating each node of the topological
map to a semantic label (on the right), with B indicating a bathroom, C a corridor, S
a bedroom/studio, L a living room, and K a kitchen.

In this work, if not explicitly stated, we refer to a semantic map as the
result of place classification. This form of representation of the environ-
ment usually abstracts from the metric map obtained by (or given to) the
robot and can be useful in several tasks, like when the robot is asked to
interact with humans or to perform tasks which require a proper under-
standing of the environment, such as human-robot communication [22,71],
autonomous cleaning of the environment [14], task planning and alloca-
tion [15]. Semantic knowledge can be used for speeding up search, both
when the environment is considered as known a priori [55, 100] and when
the environment is previously unknown [8, 46]. The task of searching a
specific object by proactively interact within the environment exploiting
semantic information is known as active search. In [45], it is shown how
semantic maps can be used for task planning under uncertain worlds and
with possible task failures. In [23] it is shown how semantic knowledge
could be exploited by robots to assist human activities by gathering and re-
porting up-to-date knowledge about the environment by autonomous navi-
gation towards a waypoint and while dynamically adapting to changes and
new information.

Semantic categorization of places acquired during the exploration of an
unknown building has been proven to improve the exploration performance
for a team of robot [91,92]. In a different setup, a guess on the semantic cat-
egorization of unknown rooms according to their possible size (as ‘smalls’,
‘medium’, or ‘big’ rooms) is shown to further improve the multi-robot ex-
ploration [24, 79].
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The construction of a semantic map intrinsically involves two steps,
namely:

• segmentation of the metric map into rooms,

• semantic classification of rooms assigning them a label.

Semantic mapping is thus highly related to the mapping process, as the
semantic map is usually built on top on a metric map representing the oc-
cupancy of the environment. A metric map is a globally consistent map of
the robot’s operating environment [97]. If the map is not previously known
to the robot, the robot can use its sensor to acquire the map of the envi-
ronment while localizing itself with respect to this map, thus, to determine
its global pose with remarkable accuracy. This problem is called Simul-
taneously Localization and Mapping, or SLAM, and has received a wide
interest in the last decade. While metric maps can be represented either in
2D or in 3D, in this thesis we focus mainly on the two dimensional case.
A typical representation of a 2D metric map of the environment is a grid
map, where the environment is divided into cells, similarly to a matrix [97].
Each cell contains a value which indicates if the cell is free or occupied (or
the corresponding probability).

Segmentation and classification highly depend on how the metric map
is obtained and are intertwined between them. Several approaches have
been proposed in literature, that can be roughly divided into three main
categories, depending on which step is performed first. If segmentation is
performed before classification, as for instance in [32, 38, 39], the metric
map of the robot is divided into separate rooms by identifying narrow pas-
sages such as doors. Each room is then classified using information about
its structure or other sources of knowledge acquired by the robot.

A different approach, that is used in [64, 66], classifies each cell of the
grid map according to the semantic label of the room. This task is usually
performed by directly classifying the sensorial input obtained by the robot,
as laser range scans. Segmentation in this case is obtained later by merging
cells that are classified using the same label.

A third different approach, such the one of [77, 80], segmentation and
classification are performed simultaneously during the mapping process,
for example by identifying doors within the environment as separation be-
tween different rooms.

In this work, we derive semantic maps from the segmentation of the en-
vironment, following the first approach presented. Differently from most
state-of-the-art approaches, we do not perform the segmentation of the en-
vironment directly on the metric map but we perform a further step, called

11



Chapter 2. State of the art

layout reconstruction. By doing layout reconstruction we do not partition
the environment into rooms using the cells of the metric map as primary
source of information but, because they may contain inaccuracies or errors,
we try to reconstruct the actual layout of the individual rooms and the floor
plan of the building. The reconstruction of the layout allows us to introduce
a further degree of abstraction on the metric map, where single rooms are
represented as geometrical concepts.

(a) Initial metric map obtained by
a robot.

(b) Map segmented into rooms. (c) The original layout.

Figure 2.2: An example of the differences between the room segmentation from a metric
map (Figure 2.2b) and the original layout of the building which was used for explo-
ration (Figure 2.2c). Layout reconstruction tries to retrive the layout such as Fig-
ure 2.2c from a metric map as Figure 2.2a.

Another form of representation of the environment strictly related to
the semantic map is the topological map. A topological map abstracts the
structure of the environment from its corresponding metric map, represent-
ing only the connectivity between different parts of the environment. A
topological map is typically a graph, where nodes can be poses of the robot
or, as in our case, different rooms. In our case we consider as edges the fact
that two rooms are connected by a doorway.

The rough outline of the process we use for obtain a semantic map
through this work is thus the following:

• we obtain the metric (grid) map from the robot,

• we reconstruct the layout the building and identify the rooms,

• we construct a topological map of the environment,

• we classify each room according to its function.

An example of the the segmentation of a floor plan into different rooms,
of a topological map and of a semantic map can be seen in Figure2.1.
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In the rest of this chapter we provide a significant (although not exhaus-
tive) sample of semantic mapping systems presented in the literature. The
outline of the chapter is the following. At first we describe more in detail
some state-of-the-art approaches for performing place categorization, fol-
lowing the survey on semantic mapping of [54]. Since mapping is highly
correlated to the identification of rooms, we then continue by analyzing
techniques for performing room segmentation and layout reconstruction,
following the recent survey of [15]. Note that, as segmentation and place
categorization are highly connected tasks, some works are discussed in both
sections under two different perspectives.

2.1 Place classification

This section surveys a significant (although not exhaustive) sample of place
classification systems presented in the literature. For a more exhaustive
review of semantic mapping systems the reader is referred to the survey
of [54], where a detailed taxonomy of all kinds of semantic mapping tech-
niques is proposed. The typical approach performs place classification by
classifying data coming from sensors mounted on robots, like laser range
scanners and cameras. The labeling of an environment is built by incre-
mentally combining information obtained from place classification at each
time step, possibly using a probabilistic framework. Multiple sensors can
be used simultaneously to assign a semantic label to a room; in this case,
their outputs are processed together in a multimodal setting.

The system of [66] classifies a single laser range scan as belonging to
a ‘room’, to a ‘corridor’, or to a ‘hallway’. The classifier is based on Ad-
aBoost and considers both features that are extracted from raw sensor data
(e.g., average beam length) and features that are calculated after approxi-
mating raw data with a polygon (e.g., area of the approximating polygon).
Experimental results show that the system is able to correctly classify scans
taken in environments different of those used for learning the classifier. A
extension of such approach, which uses also features extracted from cam-
eras and obtain a topological map of the environment by grouping together
all adjacent cells in the grid map which share the same label, is presented
in [67]. Another extension of these two methods for classifying trajectory
is introduced in [64].

In [103], a general framework which describes the characteristics of a
semantic mapping robot is presented. The main contribution of the paper is
a multi-layered spatial representation of the environment, in which different
input data and classifiers can be easily integrated. Semantic classification
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of places is performed using laser range scans within an approach similar
to that [66]. A navigation graph and a topological map are built on top of
a line segment-based metric map (in turn, built using data from laser range
scanners and obtained from SLAM). From these maps, using camera data,
object recognition, and an ontology representing knowledge about indoor
environments (e.g., the fact that fridges are usually located in kitchens), a
higher-level map of the environment is constructed, that contains informa-
tion about places and objects.

A similar system which develops a hierarchical semantic map from laser
range scanner and camera data is presented by [39], where the metric map
is segmented into rooms using a fuzzy morphological operator. The seg-
mentation is then refined using a watershed segmentation, from which the
environment topology is extracted. Each room is then classified by anchor-
ing a spatial hierarchy of all the concepts found in the environment within
an ontology-like conceptual hierarchy.

In [38], laser range scans and metric maps are used to describe the occu-
pancy of the environment, while data from cameras are used for describing
its appearance, in order to obtain a semantic map. The grid map is seg-
mented in rooms. The spatial information gathered by the robot sensors
is anchored to a multi-layer ontological semantic model which represents
concepts in the domain and relationd between them. The semantic model
and the anchoring are used to make inferences on other parts of the ob-
served environment.

In [78], the authors present a system which exploits multiple sensors
(laser range scanners and cameras) in order to associate semantic labels to
parts of the environment. Different features (like SIFT or CRFH for camera
images) are extracted from sensory input collected in an environment and
semantic labels obtained using geometrical approximations of laser range
scans using an approach similar to [66]. Three labels describing the en-
vironment are obtained independently using SVMs to classify the features
with three different methods. A final label is calculated by merging the
three labels with a multi-modal approach.

The system presented in [77] uses a probabilistic framework that applies
semantic labels starting from six kinds of environment features (objects,
doorways, room shapes, room size, appearance, and associated spaces).
Data are acquired using both data from laser range scanners (for classify-
ing the shape of each scan, using an approach similar to [66]( and visual
data, for detecting the presence of objects or doorways or for checking each
room appearance). Environmental features, or cues, are classified indepen-
dently using SVMs following the approach of [78]. The semantic map is
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represented as a probabilistic chain graph model that generalizes Bayesian
Networks and Markov Random Fields. The use of a chain graph allows
to account for the uncertainties of the sensory models, to classify a newly
perceived room also according to the label of the rooms that are connected
to it, and to predict the existence of a feature of a certain category (like a
room and its label) in nearby unvisited space, extending the semantic map
accordingly.

In [80], the authors propose a technique for place recognition and clas-
sification from image streams, called PLISS (Place Labeling through Im-
age Sequence Segmentation). Differently from many supervised systems,
PLISS can learn and update place models online and is able to operate even
in the absence of training data.

Another approach, proposed by [49], integrates metric, topological, and
semantic representations with information derived from natural language
descriptors obtained from human users. This is done using a factor graph
formulation of the semantic properties and inferring these properties by
combining natural language descriptions and image- and laser-based scene
classifications. The result is a method that, for instance, can infer from the
sentence “the exit is next to the cafeteria down the hall” the existence and
location of an exit and a cafeteria.

The system in [18] extracts a topological map by partitioning the en-
vironment into a set of open spaces connected by narrow passages. The
partitioning is done using a fuzzy grid map of the emptiness of the envi-
ronment, from which the rooms (assumed to be rectangular) are extracted
using a fuzzy morphological technique.

Authors in [98] describe a method for integrating the robot metric map
with a human representation of the environment. This goal is reached using
a semantic map based on data obtained from a laser range scanner and using
the concept of region and locations, statistically derived from sensor data.
Every room is characterized by features, such as its area, its major and
minor axes, and its eccentricity. These features are used to affix a semantic
label (‘small’, ‘medium size’, or ‘large’) to rooms.

In [36], a topological map of the environment is extracted using Voronoi
Random Fields (VRF). To build this map, a Voronoi graph is extracted from
an occupancy grid map. Each point of the Voronoi graph is a node of a
conditional random field, and the resulting VRF estimates the label (‘room’,
‘doorway’, ‘hallway’, ‘junction’, ‘other’) of each node using features from
both the grid map and the Voronoi graph.

In [75] a dynamic Bayesian mixture model (DBMM) is used for per-
forming multiclass semantic place classification. A DBMM composed of a
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mixture of heterogeneous base classifiers, using geometrical features com-
puted from 2D laser scanner data to classify each scan, thus assigning a
semantic label to the robot trajectory in the environment.

[89] proposes a system for the automatic segmentation of two-dimensional
indoor metric maps into semantic units, evaluating spatial functions based
on features, such as connectivity (number of paths between rooms which
cross a certain area) and functional properties (e.g., the room is a work
place). These spatial functions are represented as energy functions, which
are evaluated over the points of the metric map. A semantic label is then
assigned to each point according to the energy functions. A refinement step
adjusts the semantic labels by evaluating their spatial patterns.

[88] uses logistic regression to classify laser range scan as rooms or
corridors. The system, differently from [66], is able to classify a single
laser scan with different semantic labels. At first, doors are detected using
an heuristic method which identifies gaps within walls. Then, a list of 150
geometrical features is extracted from each laser range scan. Authors shows
how the use of only three selected features can be effective for performing
place classification with a minor degradation in performances, and identify
a trade off between classification accuracy and computational complexity
of the classification.

In all the above approaches, the task of performing place recognition
starts from the environment geometry and shape, i.e., from considering data
coming from 2D laser range scans or from the metric map. This fact is
particularly evident considering how classifiers are trained using 2D data:
datasets obtained directly from robot scans from previous runs are manu-
ally classified by a user, and such classified data are then used for training
the classifiers. A schema summarizing the typical approach to place cate-
gorization using laser range scanners can be seen in Figure 2.3. Different
approaches are used in computer vision, for example, for training classi-
fiers for object recognition or for interpreting the appearance of the rooms,
where the input images can be obtained through other means that the direct
use of a robot (e.g., in [65]).

A recent work that follows this direction is [93], where convolution
networks (ConvNets) are used to build a semantic map using 2.5 million
227 × 227 × 3 pixel images from 205 room categories. Those images are
taken from sources like Google Images, Bing, or Flickr and labeled by hu-
man workers in the dataset PLACES205 from [104]. A semantic category is
assigned to each laser range scan according to the output of the ConvNets
that classifies the image obtained in the same time. If a grid cell of the
metric map is covered by more laser range scans, a probability distribution
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on the category is assigned by considering all the classified laser scans that
cover a single cell and by propagating the class probability.

Figure 2.3: This schema summarizes most semantic mapping approaches. Data from
laser range scanner and from camera are acquired in previous runs of the robot (or
from data sets) and manually classified. A model of the environment is trained on these
data. The map obtained from SLAM is classified using this model.

Moreover, in most of the methods proposed in the literature the asso-
ciation of semantic labels to perceived spaces is performed incrementally
as sensor data are gathered and is often independent of the semantic labels
associated to previously perceived spaces (with some relevant exceptions,
like [77], that consider adjacent spaces). In this sense, we say that these
methods are local, since each space is classified using only local features
associated to the space itself, largely disregarding the structure of the whole
map.

More generally, we can say that the mainstream semantic mapping ap-
proach presents a number of limitations, which can possibly undermine its
application in real-world applications. The first limitation regards the use of
a limited number of (real world) datasets (manually classified by the users)
for training and testing the methods. In most of the proposed methods, ex-
perimental evaluation is conducted only on a limited number of examples,
considering few rooms and using as set of labels only the type of rooms
which are present in the dataset. This can potentially reduce the generaliz-
ability of place classification methods to different and more heterogeneous
settings. We discuss in detail this limitation in Chapter 4, where we present
a deeper analysis of some of the place classification methods introduced
earlier in this chapter.

A second limitation involves the already discussed fact that semantic
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classification of a room mostly relies on features collected within the same
room or in its immediate neighborhood, using a local approach. As a con-
sequence, it is not possible to recognize, using standard place classification
methods, that two different parts of the same building are similar (both in
terms of shape and functionality of the rooms, as in the case of two corri-
dors in two symmetrical wings of the same floor of a building). In Chapters
5 and 6 we discuss how we can use the knowledge obtained on the entire
floor of a building in order to perform place classification and how we can
adapt a relational framework which considers all the rooms of a building
altogether as a tool for semantic mapping.

A third limitation of current place classification approaches is that se-
mantic maps represent knowledge obtained only on the parts of the build-
ings that have already been visited by the robot. Semantic maps can be
used for speeding up multi-robot exploration [79, 91], but almost all of the
methods developed in the state of the art only focus on the parts of the en-
vironment that have already been explored and perceived by the robot, thus
ignoring and not providing any information on the parts of the building that
have not been explored yet. In Chapters 7 and 8 this limitation is discussed
more in detail together with a proposal for going beyond it.

In [7], a different approach is introduced, which is focused on predict-
ing the structure of a building. The authors consider a knowledge base of
38, 000 rooms (representing the MIT and KTH university campuses). Each
floor of the buildings is represented as a graph, where nodes are rooms
labeled according to their function (classrooms, offices, . . . ). The most
frequent patterns of rooms are then extracted using gSpan, a well-known
algorithm for finding the most frequent subgraphs in a set of graphs. Using
this information and given a partial map (graph) of a known portion of a
building, the method predicts both the topology and the labels of unvisited
rooms by identifying the most common subgraphs that partially overlap the
partial map. Differently from the previous methods, that of [7] operates at
an higher level of abstraction, reasoning directly on the rooms contained in
the knowledge base, obtained from blueprints independently from the use
of robots. The task of the proposed method is not to classify the explored
rooms but to infer new knowledge on the nearby unexplored spaces. This
approach is similar to those we present in Chapter 7 However, while [7]
make predictions that consist in identifying the subgraphs (portions of en-
vironment) in the knowledge base that match the part of the environment
already visited and reason on the next room that can be added on the envi-
ronment locally, our approach considers the whole structure of a building,
which are not necessarily limited to parts present in the initial knowledge
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base. We will discuss in more detail this point in Section 8.3.
Another interesting approach, where the use of Statistical Relational

Learning (SRL) techniques in semantic mapping has been pioneered, is
the one by [56], which proposes a method for obtaining semantic maps of
indoor environments using a framework based on a MLN and data-driven
Markov Chain MonteCarlo (MCMC) sampling. Using MCMC, the sys-
tem samples many possible semantic worlds and selects the one that best
fits the sensor data. A semantic world contains not only the segmentation
of the environment into rooms, but also tries to reconstruct a box-model
for each room, thus performing layout reconstruction, and assigns to each
room a label like ‘room’, or ‘corridor’. The MLN evaluates the plausibility
of each sampled semantic world, considering all the rooms (represented as
atoms) at the same time, thus adopting a global approach.

2.2 Room segmentation and layout reconstruction

Automatic analysis of representations of floors of buildings in order to ex-
tract structural information is an interdisciplinary topic addressed in differ-
ent research fields, such as robotics, architecture, computer vision and im-
age analysis. While an exhaustive survey is out of the scope of this section,
we cover a significant sample of methods that perform room segmentation
and layout reconstruction, with a particular focus on methods developed
for mobile robots. Both tasks partition a metric map of a building into a
set of rooms. While room segmentation techniques directly segment the
metric map into rooms, layout reconstruction methods try to retrieve the
blueprint of the building from its map. A comparative example of room
segmentation and layout reconstruction on the same metric map obtained
from SLAM is shown in Figure 2.2 (this example is obtained by hand). The
layout of a building is a geometrical representation of the building’s walls,
rooms, and doorways. Each room is represented either by a polygon (in
2D), a box model or a set of planes (in 3D). A layout of a building thus
represents rooms that compose the building structure without considering
furniture and without noise, missing data, and occlusions which are often
present in a metric map. Layout reconstruction is the task of retrieving
the layout from a metric representation of the environment and can be per-
formed at room or at floor level, starting from 2D grid maps [56] and from
perfectly-aligned 3D point clouds [6, 68].

Room segmentation can be performed either automatically or interac-
tively, exploiting human indications. In this work, we focus on automatic
approaches, which can be online or offline. Online methods incrementally
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partition a (possibly incomplete) metric map while it is built. Offline meth-
ods consider a previously acquired complete metric map of the environ-
ment.

Recently, the authors of [15] presented a survey of room segmenta-
tion techniques for mobile robots. They identify four main room seg-
mentation approaches, namely Voronoi-based partitioning, graph partition-
ing, feature-based segmentation, and morphological segmentation. Ac-
cording to the survey, the most popular approach for room segmentation
is the Voronoi-based partitioning. Given a metric map, the corresponding
Voronoi diagram is composed of points with maximal distance to at least
two points belonging to the closest obstacles. As an example, in [96], au-
thors segment the map using critical points. Critical points are the points of
the Voronoi diagram that are closer to the obstacles than their neighbouring
points, and can be used to identify narrow passages such as doorways. Each
critical point is used to segment the environment into a number of regions,
which are later merged with their adjacent regions according to different
heuristics.

Segmentation using graph partitioning techniques is used in [16], where
a topological map is built incrementally using spectral clustering techniques.
A similar approach, using Normalized Cut [87] for partitioning, is used
in [12, 49].

Feature-based segmentation techniques perform segmentation by iden-
tifying local features of the metric map directly from sensor data, by label-
ing their locations, and by propagating the labels to other locations with a
smoothing process. An example is [64], where an AdaBoost classifier is
applied to a feature vector that describes the shape of a single laser scan.
The labeled scans are used to determine the labels of the cells of a grid
map using an associative Markov network. Adjacent cells with the same
label are considered as a single room. This framework can be combined
with Voronoi segmentation [36]. In [89], a 2D map of an environment is
divided into a set of small units called places. Segmentation and labeling is
performed using an energy maximization framework which finds clusters
of places and their labels such that each label appropriately describes the
functional features of the associated place cluster.

An example of morphological segmentation techniques is that of [18],
where fuzzy-morphological operator is applied to divide areas that are con-
nected by a narrow passages in a fuzzy grid map.

Methods representing the four above approaches for room segmentation
are evaluated and compared in [15]. No method clearly outperforms the
others, although Voronoi-based segmentation techniques appear to be the
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most accurate.
The approach of [20] uses Canny edge transform and Hough line trans-

form are used to extract lines from a grid map. This larger set of lines is
then used for obtaining a scalable grid representation of the environment,
similar to an octo-map and called A-grid, which is eventually used to per-
form segmentation using a technique similar to [18] with or without human
supervision.

Differently from the room segmentation methods that we have presented
so far and that are developed for mobile robots, layout reconstruction meth-
ods are typically developed using perfectly aligned point cloud obtained by
calibrated camera or laser range scanner. We present a list of such methods
by explaining for each one of them what type of representation of the envi-
ronment they require as input and underlining if they have been developed
for robotics

Authors of [6] present a method that performs room segmentation from a
3D point cloud perfectly aligned to a reference system. Points are projected
on the floor plan, in order to find walls as sets of points whose projections
are close to each other. Differently from other state-of-the-art approaches,
walls are identified not considering the occupied space but are induced by
a gap area (an area without points) between two walls (two areas with peak
of points in the projected space). The entire floor is over-segmented us-
ing walls and their projections; each part is used for create a neighbouring
graph. Splitting points between two rooms in the neighbouring graph that
are not induced by a ‘gap-peak-gap’ in the point distribution are merged
obtaining the final segmentation. A similar solution, where the area is seg-
mented in triangular regions that are later merged together can be found
in [99].

In [68], a perfectly aligned 3D point cloud taken in an indoor environ-
ment is projected on a 2D plane for obtaining a representation of each wall
of the environment. Walls are then clustered together using mean-shift, and
each clustered is represented as a single line in the floor plan. A set of poly-
gons, called faces, is identified as intersections between lines. Rooms are
identified by clustering together adjacent faces using Affinity Propagation.
An heuristic is then applied to merge together over-segmented rooms. The
number and the exact location of each room is assumed to be known and is
used for performing clustering.

In [2, 3] a method for performing layout reconstruction from 2D archi-
tectural floor plans is presented. The method recognizes thick and thin
walls and builds a geometrical model of the floor plan. This is done by rec-
ognizing wordings and standard symbols (such as door openings, windows,
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. . . ) that are used in architecture for drawing blueprints. The recognized
symbols are then used to reconstruct the layout.

The approach presented in [56] segments a metric map of an indoor
environment while reconstructing its layout. It uses a framework based
on a Markov Logic Network and data-driven Markov Chain MonteCarlo
(MCMC) sampling. Using MCMC, the system samples many possible se-
mantic worlds (a layout of the environment) and selects the one that best
fits the sensor data. Differently from our contribution of Chapter 3, which
identifies the building structure by analyzing the entire metric map, each
transition from a state to another state in the MCMC is based on local edit
operations on the layout of a single room, ignoring other parts of the build-
ing.

Most of the above methods for reconstructing the layout of a building
use a perfectly-aligned collection of 2D (or 3D) point data, as for example
acquired by laser range scanners. There are also methods for scene un-
derstanding that use visual data to reconstruct the layout of a single room.
In [37] the layout of a room is extracted from a video sequence obtained us-
ing a monocular camera. A set features from the video sequence is used for
monocular V-SLAM, which results into a 3D sparse representation of the
environment, namely a 3D point cloud is extracted. A large set of planes is
fitted to the points, representing all possible candidates for the room layout.
A particle filter updates all the layout candidates and it is used to extract the
final layout of the room.

In [48], the layout of a cluttered room is recovered from extracting
straight lines from images and grouping them according to three mutually
orthogonal vanishing points. Vanishing points are used to generate candi-
dates for the box layout. The more robust box layout estimation is then
selected according to edge-based image features. The box layout represent
the position and shape of each room’s walls, floors and ceiling as a set of
planes and can be retrieved from a single image of a cluttered room. How-
ever, the method focuses on single rooms and it has not been generalized to
consider multiple rooms altogether.
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CHAPTER3
Reconstructing the structure of buildings

In this chapter we propose a method that reconstructs the layout of build-
ings starting from 2D metric maps. The method derives from the metric
map a more abstract representation of the structure of the building in order
to reason on a “clean” and stable knowledge. In this sense, our approach
differs from room segmentation methods presented in Chapter 2, which
are typically applied directly on the metric map, for example by identify-
ing doorways or narrow passages as the features that separate and connect
two rooms. Although often accurate, metric maps are built from data per-
ceived by robots and can be affected by different sources of uncertainty,
such as noisy sensor readings, motion errors, partial or missing data, and
occlusions. Our method approximates the metric map and obtains room
segmentation performance similar to that of the state-of-the-art methods,
while showing more robustness to incomplete data.

The proposed method identifies the representative lines along which the
walls of the building are aligned and uses these lines to segment the area in
smaller parts, called faces, which are finally clustered in rooms. The repre-
sentative lines allow to find regularities between parts of the same building;
for instance, two rooms placed at the opposite sides of the building can
have aligned walls or a long corridor can connect rooms with the same
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shape and lying on the same wall. Our method and can be applied to dif-
ferent input metric maps, either obtained by a robot or received from an
external source: complete grid maps, partial grid maps, evacuation maps,
and blueprints. (An example of an application of our method to partially
explored maps is presented in Chapter 8.)

The outline of the chapter is the following: at first, we illustrate our
method for layout reconstruction, focusing our attention on metric maps
obtained by a robot as input. Then, we evaluate the performance of our
method also by comparing our results to those of standard techniques for
room segmentation. Finally, we illustrate how our method can be extended
with a pre-processing phase to reconstruct the building layout from evacu-
ation maps and floor plans.

3.1 Our method for layout reconstruction

The method we propose in this chapter starts from a metric map, identifies
the walls in it, and uses the walls for segmenting the map into rooms and
for reconstructing the layout of the environment. The method is based on a
number of steps executed sequentially. A sketch of the algorithm is reported
as Algorithm 1. Some of the steps are inspired by the approach of [68] and
detailed in the following with the help of a running example (Figure 3.1).
More precisely, we use the method developed in [68] for dividing the met-
ric map in smaller parts (which are used to identify rooms) using a set of
lines. However, differently from our approach, [68] reconstructs the 3D
layout of a building from 3D complete point clouds aligned and registered
in the same coordinate system and knowing the exact number and location
of rooms.

The starting point is a metric map M representing an indoor environ-
ment, typically a floor of a building. We assume that M is a 2D grid map,
as the one in Figure 4.4a, namely a two-dimensional matrix of cells (pix-
els), each one representing the probability that the corresponding area is
occupied by an obstacle. The metric map M can be obtained from different
sources, such as map building (SLAM) algorithms, floor plans, and evacua-
tion maps, as described in the following. Differently from [68], our method
can be used with partially explored maps (an example of such use is pre-
sented in Chapter 8) and can cope with misaligned laser scans (maps that
are not perfectly aligned are adjusted by our method, as shown in Section
3.2).

The first operation to M is the detection of significative edges using
the Canny edge detection algorithm [19], which partitions the cells of M
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3.1. Our method for layout reconstruction

Input: a grid mapM
Output: the reconstructed layout L
/* Compute features from the map */

M ′ ← CannyEdgeDetection(M)

S ← pHoughLineTransform(M ′)

/* Obtain contour of the map */

M ′′ ← thresholdMap(M, q)

Inner← computeMapContour(M ′′)

/* Create clusters of collinear segments */
C ← meanShiftClustering(S)
C′ ← spatialClustering(C, line_distance)

/* Find faces from representative lines */

lines← getsRepresentativeLines(C′)
F ← findFaces(lines)

/* Compute spatial affinity between faces */
L← computeAffinityMatrix(F )
D ← diag(

∑n
j=1 Li,j)

A← D−1L

/* Remove faces outside border */
for f ∈ F do

if f ∩ Inner = ∅ then
F ← F \ f

end
end

/* Cluster together faces into rooms */
L ← DBSCAN(F,A, ε,minPoints)
return L

Algorithm 1: Our method for layout reconstruction.
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(a) Metric map. (b) Canny edge detection.

(c) Hough line transform. (d) Map contour.

(e) Clustering of line segments. (f) Representative lines and faces.

15 11 12 12 13 14 14 6 6

4 4 4 4 4 4 2 2 2 2 2

5 10 7 9 9 1 1 0 3 3 8

(g) Clustering of faces (h) Reconstructed layout.

Figure 3.1: An example run of our method for layout reconstruction.
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into free space or obstacles. More precisely, for each cell c ∈ M , c is
considered as free space its occupancy probability value is less than minVal
and as an obstacle if its occupancy probability value is more than maxVal. If
the occupancy probability value of a cell c is between minVal and maxVal,
then c is considered as an obstacle only if it is adjacent to another cell
already classified as obstacle (otherwise, c is considered as free space).
The binary metric map resulting from the application of the Canny edge
detection algorithm is called M ′ and an example is shown in Figure3.1b.

The set of edges (obstacle cells) is then processed by a standard prob-
abilistic Hough line transform algorithm [52] to detect the set of line seg-
ments S that approximate the edges in M ′. This well-know algorithm op-
erates by considering lines in the form ρ = x cos(θ) + y sin(θ) and by sum-
ming up the number of obstacle cells ofM ′ that lie on (“hit”) the line corre-
sponding to each combination (ρi, θi). If a combination (ρi, θi) has a num-
ber of hits larger than a threshold, then the line ρi = x cos(θi) + y sin(θi) is
projected on M ′ and the line segments corresponding to obstacles are iden-
tified. The output of the application of the Hough line transform algorithm
is thus a set of line segments S representing the “walls” of the environment.
Figure 3.1c shows such line segments in green.

Then, the contour of the map is obtained using the contour detection
algorithm of [94]. The contour is obtained from the original map M af-
ter the application a threshold q that divides the cells in free or occupied.
Figure3.1d shows in yellow the area inside the map border.

The line segments S identified by the Hough line transform are then
clustered together according to the angular coefficients of their supporting
lines using the mean shift clustering algorithm [25]. The mean shift algo-
rithm iteratively shifts data points P ⊆ Rn to their mean within a neighbor-
hood. At step 0, the cluster centers T 0 coincide with the initial points P .
At step i, the cluster centers T i = {ti} ⊆ Rn are calculated as follows. The
sample mean m(ti) is computed with kernel function K at ti ∈ Rn:

m(ti) =

∑
p∈P K(p− ti)p∑
p∈P K(p− ti)

(3.1)

The cluster center for the next step is changed from ti to m(ti) for all ti ∈
T i. This process continues until max(m(ti) − ti) is sufficiently small. In
our case, the set of data points P is the set of line segments S and the kernel
function used in Equation (3.1) is:
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K1(θ) =


(

1− 1−cos(α−θ)
h

)2

if 1−cos(α−θ)
h

≤ 1

0 otherwise
(3.2)

where θ is the angle of the line segment (data point), α is the angle corre-
sponding to the cluster with center ti, and h is a parameter (set, after some
preliminary tests, to 0.023 in our experiments).

At the end of the angular clustering, we obtain a set of clusters C =
{C1, C2, . . .} such that each Cj ⊆ S and C1 ∪ C2 ∪ . . . = S. Each cluster
represents the set of line segments with similar angular coefficient α.

Next, the line segments belonging to the same angular cluster Cj are
further clustered according to their spatial separation. Consider two line
segments s and s′ belonging to an angular Cj with angular coefficient α
and call l and l′ the lines passing through the middle points of s and s′

and with angular coefficient α. If the distance between the parallel lines
l and l′ is less than a threshold (set, after some initial tests, to 90 cm in
our experiments), then s and s′ are in the same spatial cluster. At the end
of this step, we have a set of clusters C ′ = {C1,1, C1,2, . . . , C2,1, C2,2, . . .},
such that C1 = C1,1 ∪ C1,2 ∪ . . . and C2 = C2,1 ∪ C2,2 ∪ . . ., and so on.
Figure3.1d shows the results of the spatial clustering where line segments
belonging to the same cluster in C ′ are displayed with the same color.

At this point, for each cluster Cj,k, a representative line lj,k that rep-
resents all line segments in Cj,k is determined. The representative line is
computed as the line with angular coefficient equal to that of Cj and that
passes through the median of the set of middle points of the line segments
in Cj,k. Representative lines are used to segment the area of map M ′ in
cells, as shown in Figure3.1f. Each representative line, in red, indicates the
direction of a wall within the building. The intersections between all lines
divide the map into different areas, called faces. Call F the set of faces.

Rooms are determined by grouping together faces. Adjacent faces that
are divided by a wall should belong to different rooms, while adjacent faces
that are divided by edges not corresponding to walls should be grouped to-
gether in the same room. For each pair of faces (f ,f ′) that share a common
edge we compute a weight w(f, f ′). Specifically, given an edge ef,f ′ shared
by two faces f and f ′ (and belonging to the representative line lj,k of a spa-
tial cluster Cj,k), its weight is calculated (as described in [68]) as:

wf,f ′ =
cov(ef,f ′)

len(ef,f ′)

where len(ef,f ′) is the length of ef,f ′ and cov(ef,f ′) is the length of the
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projections, on ef,f ′ , of the line segments in Cj,k. The larger the weight
wf,f ′ , the stronger the hypothesis that there is a wall (obstacle) along ef,f ′
(namely, between faces f and f ′). If an edge is completely covered by
projections of line segments in Cj,k, then its weight is 1. Following the
definition of [68], weighted edges are used to compute an affinity measure
L between all pairs of faces. L is similar to a Laplacian, and its entries Lf,f ′
are defined as follows:

Lf,f ′ =


e−wf,f ′/σ if f 6= f ′ and f and f ′ are adjacent

1 if f = f ′

0 otherwise

From matrix L, a local affinity matrix A is defined as A = D−1L, with
D = diag(

∑n
j=1 Li,j) where n is the number of faces in F . Each element

Af,f ′ indicates an affinity value considering the local connectivity between
faces f and f ′. The matrix A is used as input for DBSCAN [31], which
clusters faces. DBSCAN groups together faces that are close together in
a dense portion of the feature space. For each point (face), it checks if
in its ε-neigbourhood there are at least minPoints points (faces). In our
experiments, we set ε to 0.85 and minPoints to 1.

Before applying DBSCAN, some faces are discarded. Specifically, dis-
carded faces are those called external and such that the area of their in-
tersection with the inner area of M (obtained from the contour) is smaller
than a threshold δ. Remaining faces are called partial if they are adjacent
to an external face via an edge whose weight is less than a threshold (0.2
in our experiments) and internal otherwise. Partial faces cover the area of
rooms that are not fully known according to the data collected in M , as for
example during the exploration of a building. An example of use of partial
faces is provided in Section 8.2.

Then, DBSCAN is applied to internal faces and a set of clusters R =
{F1, F2, . . .} of F is obtained. A room ri is a polygon obtained by merging
together all the faces belonging to the cluster Fi. Figure 3.1g shows the
results of DBSCAN applied to our example map. The number in each
face indicates its cluster Fi. Different clusters are displayed with different
colors. The final reconstructed layout L = {r1, r2, . . .} is finally displayed
in Figure3.1h. Note that it is a “clean” representation of the original grid
map of Figure4.4a.
L represents the building structure but does not convey any information

about the connectivity between rooms. Thus, we integrate our approach
with a method that finds the connectivity between rooms of L. We apply
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(a) Distance Map. (b) Voronoi Diagram. (c) Topological Map.

Figure 3.2: Computation of the topological map from layout

to the original map M a distance transform. Then, we compute a Voronoi
diagram, which is superimposed to the layout L. Connections are stored
in an undirected graph called topological graph. A node in the topological
graph is created for each room of L. If there exists an edge in the Voronoi
diagram between two adjacent faces f and f ′ such that f ∈ Fi and f ′ ∈ Fj ,
Fi 6= Fj , then we add an edge between the two nodes representing ri and
rj . The point where the Voronoi diagram intercepts the edge between f and
f ′ is considered as a doorway.

An example of the method for steps used for obtaining a topological can
be found in Figure3.2.

3.2 Experimental results

In this section we evaluate our method for reconstructing the layout of a
building from a metric map. Our method is implemented in Python and
experiments are run on a single core of an Intel Core i7-3610QM@2.30
GHz CPU with 8 GB RAM. For a single metric map, on average, layout
reconstruction takes approximatively 12 seconds.

A reconstructed layout is expected to present three main characteristics:
(1) all the rooms of the real building (and only them) should be in the lay-
out; (2) the shape of each reconstructed room should match that of its real
counterpart; (3) the connectivity between rooms in the layout should match
the connectivity of rooms in the real building. Evaluation is performed
both visually and quantitatively, comparing the reconstructed layout L and
a ground truth layout Gt. Following the approach of [15] we introduce
two matching functions between rooms in L and in Gt, namely forward
coverage FC and backward coverage BC. FC represents how well the
reconstructed layout L is described by the ground truth layout Gt, while
BC represents how well the ground truth layout Gt is described by the
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(a) Grid map. (b) Reconstructed layout.

(c) Comparison of reconstructed layout (black) and
ground truth (red).

(d) Comparison of grid map and ground truth (red).

Figure 3.3: An example of a layout reconstruction.
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Layout reconstruction
ABC 87.8%± 4.5%
AFC 87.6%± 5.7%

(a) Layout reconstruction accu-
racy on 20 grid maps ob-
tained from gmapping.

no furniture furniture
precision recall precision recall

morph 88.5% ± 9.2% 98.1%±2.4% 90.5%±8.1% 84.6% ± 7.2%
distance 88.4 % ± 9.3% 96.9% ± 2.8% 88.4%±8.5% 76.1%±12.3%
Voronoi 94.8% ± 5.0% 95.0% ± 2.3% 94.5%±5.1% 86.6%±5.2%

feature-based 90.2% ± 8.0% 89.2%±11.8% 87.0%±14.5% 85.5%±7.2%
our method 90.1% ± 6.3% 90.0%±4.1% 94.0% ± 2.2% 89.5% ± 6.2%

(b) Room segmentation accuracy obtained by four state-of-the-art methods (first four data rows, from [15]) and by
our method (last data row).

Table 3.1: Accuracy of layout reconstruction (a) and of room segmentation (b).

reconstructed layout L:

FC : r ∈ L 7→ r′ ∈ Gt

BC : r′ ∈ Gt 7→ r ∈ L
For each room r ∈ L, FC finds the room r′ ∈ Gt that maximally overlaps
r; while for each room r′ ∈ Gt, BC finds the room r ∈ L with the max-
imum overlap with r′. Calling area() a function that computes the area of
a polygon, overlap between a room r ∈ L and a room r′ ∈ Gt is defined
as area(r∩ r′). Matching functions FC and BC are then used for comput-
ing two measures of accuracy called forward accuracy AFC and backward
accuracy ABC :

AFC =

∑
r∈L area(r ∩ FC(r))∑

r∈L area(r)

ABC =

∑
r′∈Gt area(r′ ∩BC(r′))∑

r′∈Gt area(r′)

The number of rooms in L and Gt can be different, due to over- or
under-segmentation. Over-segmentation results in high AFC and low ABC ,
while under-segmentation results into high ABC and low AFC .

We consider 20 grid maps obtained using the gmapping1 algorithm of
1http://wiki.ros.org/gmapping
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ROS2 on data collected by a robot equipped with a laser range scanner
moving in 20 school buildings simulated in Stage3. It is important to point
out that the evaluation is performed by comparing the layouts reconstructed
from the grid maps built by the robot and the real layouts of the simulated
buildings fed to Stage (i.e., the ground truth). This allows us to evaluate
if our layout reconstruction approach is able to cope with noise and errors
introduced in the mapping process. The ground truth represents the actual
blueprint of the environment which is provided to Stage in the form of a
bitmap image of the map. Layout reconstruction accuracy is reported in
Table 3.1a. Our method is able to reconstruct successfully and with good
accuracy the layout of the original buildings. Figure 3.3 presents a grid
map obtained by the robot (Figure 3.3a) in one of the worlds and the cor-
responding layout reconstructed using our method (Figure 3.3b). For this
particular example, we have AFC = 90.1% and ABC = 93.3%. In Fig-
ure 3.3c the reconstructed layout (in black) and the ground truth building
layout (in red) are superimposed. Although the reconstructed layout is gen-
erally accurate, there are small differences in the geometry of rooms, due
to approximations introduced by our method, which result in a slight per-
formance degradation. In Figure 3.3d the grid map and the ground truth
building layout (in red) are superimposed. While the grid map provides a
good representation of the environment, some inaccuracies, such as irreg-
ular gaps between walls, are present. Our method tries to reduce and filter
those inaccuracies in the reconstructed layout.

Figure 3.4 and Figure 3.5 show eight other examples of reconstructed
layouts from grid maps. In all these cases, our method is able to correctly
reconstruct the layout of the environment, coping well with some rotation
errors and gaps between rooms in the metric maps. Few inaccuracies are
introduced, like long corridors split into smaller units, thus producing over-
segmentation. Another error is made sometimes when a there is a small
gap within the building (e.g., due to large wall or a pillar), which is mis-
classified as occupied face. Small rooms, like small closets or deposits,
are sometimes filtered out due to approximation. Overall, our method is
able to successfully reconstruct the environment introducing only a limited
number of small artifacts.

In Table 3.1b we compare our method against four standard room seg-
mentation methods implemented and evaluated in [15] using precision and
recall metrics, which are defined similarly to AFC and ABC :

2http://wiki.ros.org
3http://wiki.ros.org/stage
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Precision =

∑
r∈L area(r ∩ FC(r))/area(r)

|L|

Recall =

∑
r′∈Gt area(r′ ∩BC(r′))/area(r′)

|Gt|
The evaluation is performed on two datasets of 20 metric maps each

originally used in [15], with and without furniture, respectively. When the
dataset with furniture is used, our method uses a threshold-based prepro-
cessing step to remove from the metric maps small groups of occupied
cells, likely representing furniture and not structural elements of the build-
ing (see next section for further details). We stress that that all four ap-
proaches of [15] perform room segmentation directly on the metric map,
while our method uses representative lines and faces, thus introducing some
approximations. An example of the approximations introduced by our
layout reconstructions is displayed in Figure 3.6. Figure 3.6a shows the
Voronoi-based segmentation of the metric map of Figure 4.4a, as reported
in [15]. It can be observed that Voronoi-based methods tend to produce
over-segmentation. In Figure 3.6b we compare our reconstructed layout
(in black) with the real structure of the building (in red). Despite being able
to correctly capture the building layout, for this map we have AFC = 93.6
and ABC = 94.6, due to some visible approximations. In general, the
performance of our room segmentation expressed as precision and recall
is upper-bounded by AFC and ABC . However, looking at Table 3.1b, our
method performs comparably with the others, with a slightly better per-
formance in segmenting metric maps from the dataset with forniture. In
addition, our method computes an high level representation of the metric
map by obtaining the reconstructed layout.

The results presented in this chapter are obtained on complete maps with
a limited amount of inaccuracies and clutter introduced by occlusions, pres-
ence of objects, and partially explored rooms. Regarding maps with occlu-
sions and objects, however, our method can be adapted by introducing some
preprocessing steps for identifying and filtering out frontiers, objects, and
outliers from laser range scans. Knowledge on the shape and position of
walls can be retrieved even from maps of particularly cluttered environ-
ments using vision, with techniques as [37, 48]. Walls that are partially
covered by furniture can be identified using 3D data and then projected in
2D map, as done in [6,68] for perfectly aligned 3D point clouds. However,
such improvements are beyond the scope of this chapter and are left for
further improvements.
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Partially explored maps can be reconstructed with our method. Exam-
ples of the use of the proposed method with maps where some parts of the
rooms are yet not perceived are shown in Chapter 8.

Since our method does not assume a Manhattan world it can be poten-
tially used in non-Manhattan environments, such as those with round walls
or with diagonal walls. However, since in our method walls are approxi-
mated by straight lines, round walls are approximated by a polyline. An
example of this behaviour can be seen in Figure 3.7, where is shown the
reconstruction of a map from [15].

Maps that present a (relatively small level of) unalignment are adjusted
by our method, as can be seen in the last two examples of Figure 3.4 and
in the third example of Figure 3.5. A trade-off exists between the accuracy
of alignment that can be reached by our method and its ability to approx-
imate round walls with polylines. This trade-off can be set by modifying
the parameters of the line segment clustering step, when collinear walls are
clustered together and representative lines are identified. If alignment is
not required, round walls can be effectively approximated by fine-grained
polylines, but this results in the side effect that line segments that are di-
agonal due to alignment problems are not straighten up (and are wrongly
recognized as diagonal walls). Similarly, strong regularization of unaligned
maps results into a coarse approximation of round walls. In all the examples
presented in this chapter we preferred strong alignment over good approxi-
mation of round walls. Note that, since we consider 2D maps, we make the
implicit assumption of having walls perpendicular to floors and ceilings.

3.3 Extracting the layout from floor plans

In this section we explain how the method presented in this chapter can be
adapted to analyze floor plans of buildings. More precisely, we introduce a
series of preprocessing steps on a floor plan for identifying all the possible
information that can be found within it. These steps are illustrated using
the example of the floor plan of Figure 3.8.

Floor plans are highly codified forms of representation showing a scale
view from above of the relationships between rooms, spaces, and other
physical features of a structure. A floor plan can describe a building us-
ing different levels of detail. The simplest type of floor plan, similarly to
a sketch of an environment, represents only walls (and doors as opening
within the the walls). Other features that may be found in a floor plan and
that are usually represented with codified symbols are:

• doors,
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• windows,

• walls’ size,

• stairs or elevators,

• restrooms,

• furnirure,

• location of different type of objects,

• evacuation plans,

• the function of all rooms, typically indicated with a label or with a
brief text description.

The reconstructed layout of a building from a floor plan can be a useful
source of knowledge in robotics, especially when the environment in which
the robot operates is initially unknown to the robot but some knowledge
can be acquired, as in a situation where a team of robot performs search
and rescue operations and an evacuation map of the environment can be
seen on a wall. One of the possible uses of such knowledge is localization,
which usually depends on knowledge of the environment. An example of
a method for such application is that of [102], where a robot can localize
itself using a floor plan instead of a metric map. A reconstructed layout
may introduce some approximations compared to the real shape of the en-
vironment, as explained in the previous section. In [10, 13], it is explained
how partially inaccurate hand-drawn sketch maps can be effectively used
by robots for localization. In principle, using similar approaches, a recon-
structed layout of a building can be used for localization even if slightly
inaccurate.

Another possible application of our method is to automatically obtain
knowledge about indoor environments by automatically segment and re-
construct the layout of many buildings from the set of their floor plans, in a
similar way to what is done in computer vision by collecting large data sets
of classified images. More details of this application are illustrated in the
following chapter.

Finally, a floor plan, if correctly analysed, can provide a series of inter-
esting information about the environment, as shown in the evacuation maps
of Figure 3.8 where the position of every door of the environment, the paths
used for evacuation, and the semantic label of each room are reported.

The preprocessing steps are executed sequentially, and an example of
them is shown in Figure 3.8. In the first step, we identify symbols within
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3.3. Extracting the layout from floor plans

the map using the Template Match algorithm from [85], which finds the
presence of a specific template image, in a target image. In our case we use
as templates a set of architectural symbols representing doors, windows,
fire extinguishers, emergency exits, and others, which have been taken from
several sources like [69, 95]. These symbols are rather codified and stan-
dardized in CAD drawing software programs used to draw blueprints, such
as ArchiCAD.

At first, we identify doors from templates, as shown in Figure 3.9a. The
position of each door is saved for helping during the construction of the
topological map once the layout has been reconstructed (see Section 3.1).
The instances of the door templates in the floor plan are then removed, and
the door-gaps are filled with a black line in order to facilitate segmentation
as shown in Figure 3.9b. Other objects present in the map are then identified
and removed using the same algorithm for template matching, as illustrated
in Figure 3.9c, where a hydrant template is used. If the removal of objects
results in gaps along the the representative lines (obtained as explained in
Section 3.1), the gaps are filled with line segments oriented as the represen-
tative lines. Once each symbol is identified and filtered out of the image, we
identify the text using a standard OCR technique from [90]. The identified
text can be fed to a reasoner in order to obtain a prior on the semantic label
of each room. This can be done, as an example, by transforming text data
into a logic relational representation, similarly to what is done in [38]. A
logical relational representation of semantic maps is presented in Chapter
6. However, this application is beyond the scope of this chapter.

A threshold is then applied to the image of the floor plan, converting it
from gray scale or colors one into a black and white image. An erosion op-
erator is used to filter out some inaccuracies that, may results after removing
the identified templates. An example of these steps, with the identified text
highlighted in blue, can be found in Figure 3.9d.

Text is then removed from the floor plan, obtaining a 2Ds map as the one
of Figure 3.9e, which is then given as input to our method of Section 3.1
for performing layout reconstruction. The final result of the reconstructed
layout of the example map can be seen in Figure3.9f.

The identification of doors and their replacement with black segments to
fill the door gaps highly improve the performance of our method in layout
reconstruction, since it helps in separating cells which belong to different
rooms.

Some results obtained using this framework are presented in Figure 3.10,
in Figure 3.11, and in Figure 3.12. Our method is able to reconstruct the
layout successfully, only adding some minor inaccuracies such as the seg-
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mentation of long corridors into smaller pieces.

3.4 Discussion

In this chapter we have presented a method for reconstructing the layout
of a building given its metric map or its floor plan. Our method identifies
lines that represent walls of the building and uses them to approximate the
shape of the rooms. Experimental results show that our method performs
room segmentation comparably with state-of-the-art methods, but it is able
to cope with metric maps and with evacuation maps provided as input.

In Section 3.3 we presented an extension of our method which allows the
processing floor plans. Standard techniques for image feature detections
can be used to extract and filter out from the floor plan relevant features,
such as doors, objects, and text fragments that indicate rooms functions.
An example of a standard method for feature extraction applied to doors
and text detection is shown in Section 3.3.
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Figure 3.4: Examples of layout reconstructions from metric maps.
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Figure 3.5: Examples of layout reconstructions from metric maps.
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(a) (b)

Figure 3.6: Segmentation by a Voronoi-based approach, from [15] (a) and comparison
between our reconstructed layout (black) and the ground truth layout (red) (b) for the
metric map of Figure 4.4a.

(a) (b)

Figure 3.7: An example run of our method on an environment with round walls taken from
a map used in [15].

Figure 3.8: An floor plan of a school used as evacuation map.
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(a) Doors identification. (b) Doors removal.

(c) Object detection. (d) Text recognition.

(e) Input for layout reconstruction. (f) Reconstructed layout.

Figure 3.9: Example of preprocessing steps for identifying and filtering symbols from an
building floor plan. The initial floor plan is that of Figure 3.8.
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3.4. Discussion

Figure 3.10: Examples of layout reconstructions from floor plans.
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Figure 3.11: Examples of layout reconstructions from floor plans.
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Figure 3.12: Examples of layout reconstructions from floor plans.
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CHAPTER4
Building types

In Chapter 3 we have introduced a method for extracting abstract represen-
tations of environments from metric maps. In this chapter we discuss how
we can reason on these representations by using data sets of floor plans of
buildings categorized accordingly to their function.

Broadly speaking, semantic mapping of indoor environments is a pro-
cess which involves three actors: a robot which categorizes an environment,
an environment to be categorized, and a categorization relation imposed on
the environment by the labels (the actual mapping method). Other factors
involved in this process are the type of sensors the robot is equipped with
the type of features extracted from sensors, how the map is represented
and how the semantic categories (labels) are matched to areas of the metric
map.

Typically, when authors present a new method for performing semantic
mapping, they focus their attention on a subset of these factors, maily on
the mapping method, on the robot, on its sensors, and on the features that
are extracted from the sensors. In this chapter we want to focus on another
factor that characterizes a semantic mapping method, the environment.

Focusing on the environment, we aim to discuss some limitations in
current semantic mapping systems that are hindering their general appli-
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cability and by proposing some solutions for overcoming them. The first
limitation is related to the small number and the large degree of homogene-
ity of the buildings usually employed to train semantic mapping systems.
As a consequence, these systems are at risk of overfitting over specific kinds
of buildings. The second limitation is about the lack of a principled way to
define semantic labels for rooms. We propose an abstract framework for se-
mantic mapping that can move towards a generalization of the application
of state-of-the-art semantic mapping approaches to different contexts and
environments. Attempts to prove a more general semantic mapping frame-
work have been proposed. These consideration are later used in Chapter 6
and Chapter 7 for developing techniques that model indoor environments.

Generalizing with respect to the robot is a topic previously discussed
(e.g., in [77, 103]), and multilevel probabilistic modular frameworks, de-
signed to be easily extendable to different sensorial data and different se-
mantic classifiers, were proposed. In this thesis, we provide a framework
for generalizing with respect to two other elements, the environment and
the labels.

Our framework addresses the first limitation by adopting the ideas of
building type and model floor plan, both taken from architecture, to de-
velop more heterogeneous data sets that help to avoid overfitting and thus
increase the generality of the semantic mapping systems. The second limi-
tation is addressed by proposing a hierarchical labeling approach in which
the top level contains only two labels, ‘ROOM’ and ‘CORRIDOR’, and the
lower levels contain semantic labels that specialize those at the top level
and that are specific for the single buildings. We assess the validity and the
significance of our framework by applying density-based spatial clustering
techniques [43] to some large publicly-available data sets. Our results show
that our framework can obtain more heterogeneous data sets and that the la-
bels ‘ROOM’ and ‘CORRIDOR’ “naturally” emerge from the features used to
describe rooms of different kinds of buildings. We explicitly note that the
original contribution of this chapter is to provide the seed of a framework
in which general semantic mapping systems can be fruitfully developed.

The outline of the chapter is the following. We overview briefly how
buildings are categorized (considering which kind of labels are used to de-
scribe them in literature). Then, we analyse a data set of buildings in order
to identify a context for developing generalizable semantic mapping meth-
ods. We finally propose an abstract labeling schema to describe different
kinds of environments. The content of this chapter is based on the works
of [57, 59]. The proposed labeling schema and the analysis performed on
data sets (which is continued in the next chapter) are used in the following
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[38] 3 3 3

[78] 3 3 3 3 4
[92] 3 3 2 corridor / room
[39] 3 3 3 3 commonsense ontology

[103] 3 3 3 generic framework

[66] 3 3 3 4 room / corridor / hallway /
doorway

[67] 3 3 3 3 6 extension of [66]
[89] 3 3 3 4 room / corridor + others
[77] 3 3 3 11 50-room data set

Table 4.1: Comparison between semantic mapping approaches.

chapters for developing several applications..

4.1 Labeling in semantic mapping

As explained in Chapter 2, the creation of a semantic map is usually based
on an underlying metric map obtained from SLAM. The data contained in
the metric map and acquired by robot sensors inform the construction of
the semantic map. In this context, the most commonly used sensors are
laser range scanners and cameras. This section considers a significant sam-
ple of semantic mapping systems found in literature, trying to dwell on the
methodologies, the sensors, and the labels involved. Table 4.1 summarizes
the main features of these systems. We focus on the sensorial data used as
input and on the semantic labels applied to rooms of buildings. Labels can
be taken from a fixed set/list (column SET) or from a more structured on-
tology (column ONTOLOGY). Sometimes, the semantic labels are specific
for the rooms in the training and testing sets (column SPECIFIC). We also
report the total number of semantic labels used (column NUMBER). For a
detailed description of methods listed in Table 4.1 the reader is referred to
Chapter 2.

All the listed methods use laser range scanners, and most of them rely
also on visual data. In most of the cases, the labels used for semantic map-
ping are those present within the training data set (column SPECIFIC), i.e.,
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no list of general semantic labels is specified in advance
All the works discussed above and listed in Table 4.1 share the fact that

classifiers for labeling rooms are developed, trained, and tested with the
use of data sets collected with runs of robots in real contexts. Given the
difficulty of obtaining these data and the fact that many systems are de-
veloped within research laboratories, only a limited number of buildings
are used as initial source of data. In some cases, the systems are trained
and tested in a single environment. In other situations, only a small num-
ber of buildings (often less than 5) is used. This leads to one of the major
current limitations of semantic mapping systems, namely their inability to
generalize over environments. Given these premises, it is difficult to un-
derstand and assess how these systems will perform in different buildings.
This drawback has been recently recognized, and attention has been given
to generalize semantic mapping systems [29, 77].

Generalization has been attempted along three lines:

1. test the systems on multiple (public) data sets built from real robot
runs [66, 77];

2. use transfer learning techniques, trying to exploit knowledge obtained
in one context to recognize the features of a new, initially unknown,
building [29];

3. increase the size of training data (tens of thousands of rooms rather
than only dozens) by using sources different from data sets collected
with robot runs in real world, for instance data sets built from floor
plans [7].

Although these proposals are contributing effectively to move towards more
general semantic mapping systems, they have not yet reached the full goal.
Using 50-room data sets (like in [77]) instead of 5/10-room data sets is
an improvement, but still a limited one, if the goal is to have a working
system for the countless rooms in the world. The same can be said of using
more data sets: the number of available data sets acquired by real robots
is relatively small, and the total number of rooms per data set is often less
than one hundred. Furthermore, there is an underlying bias: almost all the
data sets are acquired directly by research groups and represent university
buildings or research laboratories. The consequence is that the systems
trained on these data sets have only knowledge of a rather peculiar kind
of environment, university campuses, and little or nothing about the rest of
the world. Using thousands of floor plans, as in [7], can be a useful tool for
generalization, as it allows to collect a huge amount of data with a limited
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effort. In [7], 38, 000 rooms are analysed, a number not comparable to
the other approaches. However, also these data come from two university
campuses (MIT and KTH) that, as all large building complexes, have a
high degree of symmetry, resulting in a redundancy of data and overfitting
of semantic mapping systems that use them for training.

4.2 Generalizing with respect to environments

In this section we discuss how to develop a semantic mapping framework
that is general enough to be used potentially in all indoor environments.
Among other things, this requires data sets covering all kinds of environ-
ments. The main difficulties that emerge for solving the problem of acquir-
ing data sets of all possible kinds of environments can be summarized into
two main topics:

• acquiring data sets with robot runs is difficult and expensive, and

• the types of buildings are countless.

In order to tackle these issues, we developed a data set representing
6000 rooms of indoor environments, belonging to an heterogeneous set of
160 buildings. As source we used blueprints and floor plans of real world
buildings. Each room is associated to a feature vector that describes its ge-
ometry and to a semantic label indicating its function. The set of features
stored in the vector is chosen to mimic the data on the geometry on each
room that a robot exploring an environment could potentially collect using,
as an example, a laser range scanner. The analysis of these data allows us
to try identify some pattern or regularities that can be used for develop-
ing a general semantic mapping systems, without having the overhead of
directly collecting with a robots such data. Specifically, we try to deter-
mine wether or not rooms belonging to building with the same function are
similar among them.

4.2.1 Building types

Our analysis starts with the following insight: at a first glance, it may seem
that every building has its own identity, as it is different in its structure
and conformation from every other one. However, this fact is in disagree-
ment with our daily experience: people can easily orientate themselves and
navigate inside a previously unseen building and they fast adapt to and un-
derstand almost every new indoor environment they enter.
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A building is an artifact created for a specific function, its purpose, be-
cause it is built by people for people who inhabit it. This simple observa-
tion is often neglected when designing mobile robots that operate in indoor
environments. Indeed, these environments are usually treated as natural,
fixed, immutable entities, rather than as cultural products, the result and
summary of centuries of social evolution, as the modern buildings are. As
a consequence, robot designers usually consider the environments in which
the robots move as structured, without fully exploiting the implications of
their structure.

The function of a building imposes its structure, its floor plan, and the
structure of its rooms. Each building, having a precise function, shares
some structural features with all other buildings with the same purpose.
A building type is a set of buildings that have the same function [84]. A
building type can be associated to a model that represents the structural
features shared by buildings belonging to the type.

In architecture, there is a substantial amount of literature enquiring which
are the features of this model well known (as cultural facts) to humans, who
use them for localization and orientation, as done in [61].

An example of how the function of a building imposes its structure can
be seen by observing that multifloor office buildings are usually structured
in the following way: at the ground floor, there are the rooms for public
relations and social spaces, and possibly a canteen and conference rooms;
at the upper floors, there are office rooms for the back-end activities. Note
that, when comparing two school buildings, they are, at an initial sight,
different from each other. However, they share a common model that, for
example, represents the fact that rooms are typically connected in certain
ways. Recognizing this common model helps humans in acting properly in
schools they never entered before.

Let now discuss how data sets relative to a building type can be ob-
tained. Beyond actual collection of data in real buildings, it is also possible
to use another source of data for training semantic mapping systems. Stud-
ies about building types are the analytical moment of architecture [84] and
their actual impact on designing buildings are described in several archi-
tecture type manuals. Although this architectural knowledge is often not
structured, it is discussed with texts, graphics, and sample floor plans of
particularly significant buildings. In the rest of this dissertation we use as
source of knowledge data sets of floor plans of buildings, each one repre-
senting a specific building type.

More specifically, we consider three building typologies: HOUSE (res-
idential buildings and houses), SCHOOL (school buildings), and OFFICE
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4.2. Generalizing with respect to environments

Figure 4.1: An example of a floor plan of a house drawn with AutoCAD (left) and with our
CAD-like software (right). Colors indicate semantic labels (green is corridor, yellow
is small room, red is big room, brown is medium room).

(office buildings and open spaces). These three building types have been
chosen because they are particularly significant in the real world and be-
cause they are usually considered for experimental activities of autonomous
mobile robots.

The data sets have been built as follows. We selected the floor plans
of dozens of buildings belonging to the types HOUSE, SCHOOL, and OF-
FICE from eleven monographic books used for the design and analysis of
buildings in architecture (for example, [74] is one of the books used for the
School building type). In these books, rooms are labeled according to their
function and these labels are assigned by the architects who designed the
buildings. Monographic books on building types contain a selection made
by experts of particularly representative buildings and are used as reference
and as models by architects when developing new buildings. We manually
create CAD-like graphical representations of several floor plans (a general
standard format for such kind of data is required, as the one used in [101]),
extracting information from architectural books and manuals. We then con-
verted these representations in data sets containing rooms labeled accord-
ing to their functions. With this method we can build data sets composed
of thousands of rooms in a relatively quick and easy way. An example of
an entry of a data set obtained with this method is shown in Figure 4.1.

Then, each labeled floor plan is fed into another software program that
automatically extracts the geometry of each room, which is used for com-
puting a set of features representing each room and which are described in
Section 4.2.3. These features and the corresponding label for are used to
create entries to populate the data sets H, S, and O (for HOUSE, SCHOOLS
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and OFFICE respectively). (All the above steps have been manually per-
formed. In practice, a method like the one presented in Chapter 3 can be
used for automatically extract data sets from floor plans without a human
supervision. The main limitation of using a manual approach is that the
automatically reconstructed floor plans have to be classified semantically
by a human supervisor.)

In order to identify if the concept of building type emerges from these
data sets, we assigned to such rooms a set of general semantic labels com-
mon to all three types. These semantic labels contain only a limited amount
of information about the function of the room and about their size. Those
labels indicate either the function of connecting rooms (corridors (C) and
halls (H)) or the size of other rooms (small (S), medium (M) and big room
(B)). We refer to this set of labels as Lgeneral:

Lgeneral = {C, H, S,M, B}
Note that the selected labels are similar to those typically used in state-

of-the-art semantic mapping approaches using only laser range scanners
(e.g., [66] uses ‘corridor’, ‘hall’, and ‘room’ and [98] uses ‘small’, ‘medium
size’, and ‘large’ room).

4.2.2 Model floor plan

Using the concept of building type to create data sets for training and for
testing semantic mapping systems is also interesting from another point of
view. Multifloor buildings present, in almost all cases, strong structural
symmetries at two levels: intra-building symmetry, namely a correlation
between the structure of every floor, and intra-floor plan symmetry, namely
each floor plan is composed of the repetition of a room pattern, as can be
seen in the highly-symmetrical floor plan of Figure 4.2. These recurrent
patterns are a direct consequence of how buildings are designed, because
the structure of a building is studied to be consistent to its functionality. A
standard pattern is a structure that represents the function of the building
and that is replicated across the floors, possibly with some modifications
and adjustments [69]. We call model floor plan this standard pattern, which
represents the implementation of the concept of the building type within
a specific building. Within the field of robotics, and of semantic mapping
in particular, the analysis of a model floor plan can be interesting, since it
can reveal valuable knowledge of the structure of a whole floor and, conse-
quently, of all the other floors of a building. Building data sets composed of
model floor plans can easily improve the variety of data, since each model
floor plan refers to (and is representative of) a different building.
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Figure 4.2: An example of a highly-symmetrical office building. The pattern ‘C’ is an
example of model floor plan that is repeated twice in each ‘B’. In turn, ‘B’ is repeated
in ‘A’, the entire floor plan.

4.2.3 Building type data sets analysis

In this section we want to assess the significance of the concept of building
type as context for developing general semantic mapping methods. In order
to do so we evaluate if a clear difference emerge while considering rooms
belonging to different building type. This is done with the analysis of five
data sets containing approximatively 38, 000 rooms.

The first three data sets are collected as explained in Section 4.2.1 and
represent rooms belonging to a specific building type and using the concept
of model floor plan (all rooms within a data sets come from building of
the same type and come from different model floor plans). The fifth and
much larger data set is obtained from [101] and represents the entire MIT
campus, without any reference to different possible function of buildings
(e.g., dorms or research labs) and without considering the concept of model
floor plan. The MIT data set does not use the concept of modern floor plan
since it is composed by repeated entries, as (a) it contains different floors of
the same building which have an almost identical layout and (b) it contains
floors of different buildings that have been designed in a similar way, by
the same architects, and at the same time. In this sense, we can say that the
MIT data set includes the MIT model floor plans repeated several times.

More precisely the five data sets are:

• H, S, O data sets represent the House, School, and Office building
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types respectively1. These data sets are composed by 1300, 1400, and
2600 rooms, respectively. These data sets are composed of model
floor plans covering about 160 buildings.

• H+S+O, the fourth data set, is the union of the first three data sets.

• MIT data set is composed of the 32, 000 rooms of all the MIT campus
buildings. This data set represents a collection of several building
types that can be find in an university campus, such as dorms, research
facilities, offices, and teaching facilities. Moreover it includes the MIT
model floor plans repeated several times. The number of buildings in
it (∼ 160) is the same as the H+S+O data set, but the MIT data set
has 5× the number of rooms.

These data sets are significantly different from those typically used for rea-
soning about the semantic of an environment, since they are not directly
collected by robots and they are substantially larger. However, rooms are
represented using features similar to those that can be extracted, as instance,
from laser range scanners. In the H, S, and O data sets, every room is rep-
resented by its label L ∈ Lgeneral, a set of geometric features A, d, rt (area,
number of doorways, and the axes ratio rt = M/m of the major axisM and
minor axis m of the room bounding box), and the list of the labels of the
rooms connected to it (for each one of the d doorways, the label of the con-
nected room). Labels have been chosen to cover rooms of different types
(see Section 4.2.1) and are used accordingly to each type: in the S data set,
a M (medium) room is a classroom, while, in the O data set, it is an office.
In the MIT data set every room is represented by its label (from a set of
about 90 labels, e.g., SLPBTH is a dorm room with a private bathroom) and
by the previously described geometric features A, d, rt.

Table 4.2 presents data regarding the geometric features A, d, rt of
rooms in the data sets. The structure of the rooms is different for differ-
ent building types (e.g., the number of doors d in corridors varies between
4.0 and 6.7, and the area of the M rooms is more than twice in schools S,
54.8 m2, than in offices O, 18.5 m2). Unsurprisingly, the standard deviation
increases in H+S+O. The difference between considering data sets H, S,
and O, composed of model floor plans, and a data set that is an instance of a
building type is evident by looking at the MIT data set. Despite having 5×
rooms and 20× labels with respect to H, S, and O data sets combined, the
MIT data set is much more uniform than H, S, and O data set, as clearly
evident by looking at the standard deviation of d and rt. This is a con-

1http://home.deib.polimi.it/luperto/datasets/floorplans
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sequence of the redundancy of the MIT data set, which replicates several
times instances of the same model floor plans.

In order to discover if the concept of building type emerges from the
data, we classify each room in H, S, O according to the label set Lgeneral.
We consider four well-known classification algorithms: rule induction (RI),
multi-layer perceptron (MLP), decision tree (DT), and k-nearest neighbor
(K-NN) [11], in order to compare their performance. These algorithms
have been chosen because they are general and not tailored for the task
of classifying places. In this way, we do not introduce any bias in the
evaluation. All tests are performed using 10-fold cross-validation on the
data set.

With this classification test, we want to discover if we obtain better per-
formance on semantic classification of rooms by considering each room’s
building type or by considering a large knowledge base composed of sev-
eral building types together. A total of 16 classifier are trained, four for
every algorithm using as training set H, S, O and H+S+O. We refer to the
classifiers trained using the building type data sets as ‘type classifier’ and
to the classifiers trained using H+S+O as ‘standard classifiers’.

Figure 6.2 shows the accuracy of classification of the 12 type classifiers
compared with the classification accuracy of the 4 standard classifiers and
Table 4.3 shows the confusion matrices of each building type. The aver-
age (over algorithms) accuracy of the type classifiers is 87.8% (4.9 is the
standard deviation) for building type House, 88.3% (4.8) for building type
School, and 81.6% (4.6) for building type Office. The lower performance
on the Office building type with respect to classifiers trained and tested on
the other two building typologies may be due to a further division that can
be made internally in this category, namely between small offices, located
in mixed office/residential buildings, and large open spaces. By contrast,
standard classifiers have a lower average accuracy of 73.6% (4.7). These
results seem to suggest the effectiveness of using building types in seman-
tic mapping. The performance of the standard classifiers is rather good
because they exploit the several rooms labeled as S and C, whose features
(large number of doors and small area) are similar in all the building typolo-
gies. For all building typologies, the results of the algorithms are similar,
with the RI algorithm performing slightly better than the others over all the
typologies.

To further assess the utility of the idea of building types, we trained a
classifier on a data set and tested it on another data set using different build-
ing types, S and H. We call TRAIN(H) (TRAIN(S)) a classifier trained on
H (S) and TEST(H) (TEST(S)) a classifier tested on H (S). As shown in
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Figure 4.3: Accuracy of classification (average and standard deviation) of the type and
standard classifiers.
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the Table 4.4, the classification accuracy is reduced consistently by mix-
ing the building types in training and testing. This implies that the models
embedded in the types classifiers are actually specific to the corresponding
building type. Classic semantic mapping approaches, not using building
typologies, are implicitly developed for a unique type (e.g., university cam-
pus). Their use for a different type (e.g., houses) may result in a deteriora-
tion of their performance that in our results could reach 50%.

4.2.4 Model floor plan analysis

In order to evaluate the impact of the combined use of the model floor
plan and building type, we now consider the characteristics of rooms in
the MIT data set agains those of H, S, and O. Unfortunately, a direct ap-
plication on the MIT data set of the four classifiers used in the previous
section to evaluate H, S, O is not possible, because some aspects of MIT.
Indeed, MIT contains 90 labels, and throughout the entire data set different
symbols are used to describe a similar concept (e.g., ‘kitchen’ and ‘kitch-
enette’) and the same label is used to indicate a different concept (e.g., a
bathroom in a dorm, with a shower, is very different from a bathroom in a
research lab which usually contains only a toilet and a sink); these differ-
ences make it unfeasible to define a mapping from the labeling schema of
MIT to Lgeneral.

For this reason, we developed a different unsupervised test which is in-
dependent from the set of labels. First, we remove all the labels from the
five data sets described in Section 4.2.3, then, we use use a cluster algo-
rithm (on the same feature vectors representing rooms described in the pre-
vious sections) in order to find out which rooms are considered similar and
grouped together without any bias given by their semantic label. Due to
the nature of the data (multi-dimensionality, many outliers, and complex
cluster shapes), we use density-based spatial clustering, or DBSCAN [43],
as clustering algorithm. We use parameters MinPts = 6 and ε = 3; ε is
selected using a K-distance plot. To display the clustering results, PCA
(Principal Component Analysis) is then performed for displaying data in
a 2D plot. Cluster evaluation is performed both visually and using homo-
geneity and completeness [83] as metrics. Homogeneity is a real-valued
measure (belonging to [0, 1]) of how clusters present a similar distribution
of semantic labels. It is 1 when each cluster contains only elements with a
single label. Completeness is a real-valued measure (belonging to [0, 1]) of
how much the rooms with an identical label are similar between them. It is
1 when all elements with a given label are assigned to the same cluster.
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Figure 4.4(a)-(e) shows the result of DBSCAN clustering on the data
sets. A building type data set presents, approximatively, between 20 and 30
clusters (Figure 4.4(a)-(c)), while merging together the three building types
data set increases the number of clusters (Figure 4.4(d)). This indicates
that rooms of a building type are similar with each other, but different of
rooms of other building types. The number of clusters for the MIT data
set (Figure 4.4(e)) confirms this finding. An interesting observation can be
done on the number of rooms considered as outliers, represented as black
dots in Figure 4.4(a)-(e). In the building type data sets, approximatively
17% of the rooms are considered as outliers. In the MIT data set only the
0.2% of rooms are outliers. However, the distribution of the labels in the
outliers is the same: 75% of the outliers are C (or CORR for the MIT data
set). Moreover, the MIT data set (despite having 90 labels) has a higher
completeness (which, as said, measures intra-rooms similarity) than the
building type data sets (Figure 4.4(f)). The difference in completeness and
in the number of outliers is again a consequence of the fact that the building
type data sets are composed of different model floor plans, thus providing
more variety than the MIT data set.

4.3 Generalizing with respect to labels

As seen in Section 4.1, little attention has been given to define the sets of
labels used in semantic mapping systems. Generally, these systems focus
more on how to label the environments and not much less on the meaning of
these labels. This can be a limit when generalizing beyond single-building
contexts. Semantic mapping approaches often use from 2 to 20 labels (see
Table 4.1). Increasing the amount of data, as in [7], increases the number
of labels. The MIT and KTH campus floor plan data sets used in [7] have
90 and 160 semantic labels, respectively. However, despite both data sets
derive from university campuses, there is not any definite mapping between
their sets of labels. Intuitively, as often argued in papers, labels are intended
to represent the name that human beings give to rooms: but is it always
necessary, for a robot, to know the difference between a corridor and a
vestibule?

We argue for more general semantic labels. While building types deal
with the concept of function of a building, labels concern the function of
rooms, rather independently of the buildings to which they belong. For
example, a corridor is a sort of wildcard room, since it is present in all
environments. However, the structure of a school hallway is very different
from that of an house corridor. Since the function of the two rooms is
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the same, namely to connect other rooms together, in a general semantic
mapping system the label ‘corridor’ should apply in both cases, despite
their major structural differences.

Our proposal is a hierarchical labeling approach structured as following:

• A general, yet minimal, set of labels that are common to all buildings,
regardless of their type: ROOM and CORRIDOR, and

• a schema for specializing with more descriptive labels the concept of
ROOM and CORRIDOR and that depends on the building type.

4.3.1 ROOMs and CORRIDORS

We analyse the data sets of Section 4.2.3 in order to verify whether the
distinction between ROOMs and CORRIDORs is reflected in the data sets.
We consider the H, S, and O data sets and we map C and H rooms onto
CORRIDOR, while S, M, and B rooms are mapped onto ROOM. From the
number of doors d, reported in Table 4.2, it can be seen that almost all
ROOMs have one or two doors, while CORRIDORs have usually more than
four doors. As an example, in the O data set the 98% of the office rooms
(which are the 35% of the total number of rooms) are connected to at least
one corridor and 92% of offices have only one door, confirming the intuition
that there is a distinction between a connecting room like a corridor and a
functional room like an office. When considering the two labels ROOM and
CORRIDOR in the clusters found with DBSCAN for H, S, and O data sets
(Figure 4.4), cluster homogeneity is, on average, 0.71 (which, as mentioned
above, indicates good intra-cluster similarity). High cluster homogeneity
implies that our top-level labels emerge as a characteristic of the data.

Clusters C found by DBSCAN (Figure 4.4) can also be used for semantic
classification of rooms with the following naïve method. We consider a
room R; we assign R to a cluster Ci ∈ C according to the geometrical
features of R using DBSCAN; we then count the number of ROOMs and
CORRIDORs in each cluster Ci and assign to the room R the most frequent
label (either ROOM and CORRIDOR) in Ci. With this simple method the
room classification accuracy using clusters for the H, S, and O data sets is,
on average, 93.5%. This confirms once again that the two top-level labels
ROOM and CORRIDOR can be accurately assigned to rooms only on the
basis of simple geometric features of the rooms themselves.

Recognizing these two different types of rooms can be useful for a robot,
for example for efficient exploration [24,92]. A generic framework capable
of dividing environments in ROOMs and CORRIDORs can be a step towards
semantic mapping generalization.
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4.3.2 Hierarchical labeling schema

While the difference between corridors and rooms can be found easily even
using a small set of features describing each room and across different
building types, it is difficult to obtain a finer categorization of rooms (that
can be applied trough different building types) without considering a higher
amount of data. We propose a framework for specializing the concept of
ROOM and CORRIDOR that is based on each room functionality and that can
be applied to all building types.

At the top level, the labeling schema is called LR/C and contains only
two general categories (labels):

• ROOM: a space in which an activity is performed;

• CORRIDOR: a space used to connect other spaces together.

As we have seen in the previous section, this categorization of rooms can
be easily performed only with a limited amount of data.

In the second set of labels, called LF/C/E/S = {FUNCTIONAL ROOM,
CONNECTION, ENTRANCE, SERVICE ROOM}, CORRIDORs are specialized
in:

• CONNECTION: a space that connects together different spaces within
the same floor, such as corridors or hallways;

• ENTRANCE: a space that connects a floor to other floors or to the
exterior of the building, such as an elevator or a staircase;

and ROOMs are specialized in:

• FUNCTIONAL ROOM: a space in which the core activity of the building
is performed (e.g., a classroom in a school, an office or a meeting room
in an office building);

• SERVICE ROOM: a space used to support the core activities of the
building (e.g., restrooms or kitchens).

This set of labels can be further specialized using specific labels that
indicate the activity performed in each room. We refer to this schema as
Ltype. Ltype is composed by a list of all the possible kinds of room that can
by found in a building type. This set of labels is chosen for each build-
ing type in order to be descriptive enough to represent all possible kinds
of rooms and using building type manuals from architecture as source. An
example of the complete label schema for the building type School (Lschool)
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and Office (Loffice) is provided in Figure 4.5 and is derived from [95]. This
hierarchical labeling schema is used in the following chapters of this disser-
tation. When we use data belonging to different building types altogether
we use LR/C and LF/C/E/S , while when we focus on a specific building
type we use Ltype.

4.4 Discussion

In this chapter we have proposed the seed of a framework for making se-
mantic mapping systems for indoor environments more general. We ad-
dressed two issues that are currently limiting the application of semantic
mapping methods to contexts different from those in which they have been
trained. The first issue is about the large degree of homogeneity shown by
the buildings usually employed to train semantic mapping systems. Starting
from the ideas of building type and model floor plan, we propose a way to
develop more heterogeneous data sets that help avoiding the risk of overfit-
ting and thus increase the generality of the semantic mapping systems. The
second issue is about the lack of a principled way to define semantic labels
for rooms. We propose to use a hierarchical labeling scheme in which the
top level contains only two labels, ROOM and CORRIDOR, which can be
“naturally” related to the geometric features describing the rooms, and the
lower levels contain semantic labels specific for the single building types.
The concept of building type, model floor plan and the hierarchical labeling
schema are extensively used in the following chapters.
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H
H

ou
se

Area a Doorways d rt=M/m
Label % µ σ µ σ µ σ

C 23.9 14.0 11.4 4.0 1.8 3.4 3.6
H 8.0 61.5 25.1 3.3 1.5 1.8 0.8
S 28.0 6.0 2.6 1.0 0.2 1.6 0.6
M 26.3 17.4 4.8 1.3 0.4 2.0 1.0
B 13.7 33.7 7.8 1.8 1.0 1.5 0.4

S
Sc

ho
ol

Area a Doorways d rt=M/m
Label % µ σ µ σ µ σ

C 15.4 36.1 42.2 5.7 3.8 7.4 7.6
H 5.6 205.1 172.9 6.9 4.5 2.0 1.3
S 55.6 10.0 9.7 1.1 0.4 1.6 0.9
M 21.3 54.8 14.8 1.6 0.8 1.3 0.4
B 2.0 102.9 22.3 2.1 0.7 1.7 0.7

O
O

ffi
ce

Area a Doorways d rt=M/m
Label % µ σ µ σ µ σ

C 20.6 30.5 25.7 6.7 4.8 8.1 7.3
H 6.6 106.9 84.5 6.5 3.6 2.4 1.6
S 23.2 4.5 2.3 1.0 0.1 1.3 0.7
M 34.5 18.5 14.4 1.2 0.3 1.9 0.8
B 14.8 31.3 12.2 1.4 0.9 1.9 1.0

H
+S

+O

Area a Doorways d rt=M/m
Label % µ σ µ σ µ σ

C 20.3 26.4 27.9 5.7 4.1 6.5 6.8
H 6.8 110.9 109.2 3.7 3.7 2.2 1.3
S 32.3 7.1 6.9 1.0 0.4 1.5 0.8
M 29.3 24.5 18.9 1.3 0.6 1.8 0.8
B 11.5 35.0 18.0 1.6 0.9 1.8 0.9

M
IT

Area a Doorways d rt=M/m
Label % µ σ µ σ µ σ

SLPBTH 3.15 28.9 17.8 0.8 0.5 1.3 0.4
BATH 3.9 10.4 7.6 1.0 0.4 1.2 0.2
SLEEP 3.5 15.6 6.3 1.0 0.4 1.2 0.1

OFF 27.0 14.3 10.8 1.1 0.6 1.1 0.5
STAIR 5.2 13.9 12.8 1.0 0.6 1.33 0.4

RL LAB 10.2 22.8 35.5 1.0 0.6 1.3 0.5
CORR 17.3 48.7 125.4 6.0 5.9 1.4 0.6
U/M 3.2 29.2 57.2 1.0 0.5 1.4 0.4

Table 4.2: Characteristics of the rooms in the data sets, where % is the percentage of
semantic labels (refer to text for explanations) present in the data set and µ and σ are
the mean and the standard deviation of the corresponding feature, respectively. For
clarity, for the MIT data set, only most recurrent labels (1000+ occurrences, which
cover more than 70% of the rooms) are presented.
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H
H

ou
se

Label C H S M B TP FP
C 92.3 1.2 1.7 3.5 1.3 92.3 7.7
H 3.0 88.0 0.0 0.7 8.2 88.0 12.0
S 3.8 0.3 91.4 4.5 0.0 91.4 8.5
M 3.7 0.4 8.1 83.4 4.3 83.4 16.6
B 1.0 7.1 0.0 5.4 86.5 86.5 13.5

TN 75.7 98.5 96.3 96.0 97.5
FN 24.2 1.5 3.7 3.9 2.5

S
Sc

ho
ol

Label C H S M B TP FP
C 92.0 3.3 4.2 0.3 0.1 92.0 8.0
H 7.4 80.0 1.3 5.2 6.1 80.0 20.0
S 3.1 0.3 94.0 2.6 0.0 94.0 6.0
M 0.6 3.5 6.5 85.5 3.9 85.5 14.5
B 0.0 21.7 2.9 18.8 56.5 56.5 43.5

TN 97.4 98.2 42.4 97.4 98.8
FN 2.6 1.8 57.6 2.6 1.2

O
O

ffi
ce

Label C H S M B TP FP
C 91.9 3.6 0.2 2.6 1.7 91.9 8.1
H 7.8 80.9 0.0 6.5 4.8 80.9 19.1
S 2.0 0.0 92.3 5.4 0.3 92.3 7.7
M 2.6 1.2 5.6 70.9 19.6 70.9 29.1
B 3.6 5.9 0.1 25.3 65.1 65.1 34.8

TN 79.3 98.1 96.8 92.4 90.1
FN 20.7 1.9 3.2 7.6 9.9

H
+S

+O

Label C H S M B TP FP
C 85.7 6.9 2.1 2.8 2.4 85.7 14.2
H 7.9 75.8 1.0 7.1 8.0 75.8 24.1
S 4.0 0.2 75.4 17.6 2.7 75.4 24.6
M 2.3 3.0 11.9 63.3 19.6 63.3 36.7
B 4.6 9.3 3.6 15.8 66.7 66.7 33.3

TN 96.4 96.9 64.7 87.9 91.1
FN 3.6 3.1 35.3 12.1 8.9

Table 4.3: Confusion matrices of the type and the standard classifiers (averaged over
the algorithms), where all numbers are in percentage, rows are true labels, columns
are predicted labels (C ‘corridor’; H ‘hall’; S ‘small room’; M ‘medium room’; B
‘big room’), TP are true positives, FP false positives, TN true negatives, and FN false
negatives.

Algorithm TRAIN(H)/TEST(S) TRAIN(S)/TEST(H)
RI 40.0(3.2) 50.7(2.5)

MLP 35.7(1.1) 56.1(0.5)
DT 43.0(1.8) 53.0(2.2)

K-NN 41.2(0.4) 51.0(0.3)
average 40.0(3.25) 52.7(2.75)

Table 4.4: Classification results obtained by mixing building types for training and testing.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: DBSCAN clustering for the H (a), S (b), O (c), H+S+O (d), and MIT (e)
data sets. Each cluster has a different color. Black dots are rooms not belonging to any
cluster, namely outliers. Completeness and homogeneity of clusters for all data sets
are presented in (f).
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FUNCTIONAL classroom support teachers' 
room laboratory

small admin. 
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Figure 4.5: Labeling schema for SCHOOL and OFFICE building types.
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CHAPTER5
Buildings as graphs

In Chapter 4 we have introduced the concept of building type for reasoning
on specific classes of indoor environments. More precisely, we underlined
how the structure of a building is strictly related to its function via the
concept of building type. In this chapter we analyse how the concept of the
structure of an indoor environment can be represented.

For this purpose we represent the semantic map obtained from floor
plans of building as labeled topological maps. We extract the topological
map using the method from Chapter 3. Labels are manually added using
the labeling schema introduced in Section 4.3. This form of representation
will be used in the following chapters of this thesis.

The outline of this chapter is the following: at first we introduce our
graph representation and a set of metrics for characterize the building struc-
ture. Then we focus and discuss two building types, namely School S and
Office O. We conclude the chapter by illustrating how the building structure
permits to semantically classifying rooms into the basic label set introduce
in Chapter 4 of ROOM or CORRIDOR using the reconstructed layouts of
Chapter 3 as input.
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5.1 Buildings as labeled graphs

Semantic maps are typically used in robotics for tasks requiring requires
knowledge about the connectivity of rooms (i.e., what are the rooms con-
nected to each other) and about the structure of the environment (i.e., how
it is possible to go from room to another, given the fact that these rooms
could be in completely different parts of the building). For these tasks it is
particularly useful to represent the environment as a graph in the form of a
labeled topological map, as explained in Chapter 2. Graphs are an abstract
and compact form of representation of the environment, which is useful for
reasoning, and can be used for representing effectively structured data [30].

Following these considerations, we represent (a floor of) an indoor envi-
ronment as an undirected graph G = (N,E), where each node n ∈ N is a
room and each edge e = (n, n′) ∈ E (with n, n′ ∈ N ) represents a physical
connection between two rooms n and n′ (e.g., a doorway). A semantic label
L(n) taken from a finite set of labels Ltype is assigned to each node n. Se-
mantic labels are specific for the building type and follow the hierarchical
schema explained in Chapter 4. An example of such a graph can be seen in
Figure 5.1, where different colors are used to indicate different labels (see
Figure 5.3c for a palette of the color used for indicating labels).

Figure 5.1: A graph representing the topological structure of a school building superim-
posed to its floor plan. Different colors indicates different types of rooms.
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We use two datasets of floor plans of buildings created by hand from la-
belled floor plans of real buildings relative to two building types, SCHOOL
(S) and OFFICE (O). These two building types are selected because they are
examples of common, large scale, and structured buildings, and are highly
codified by regulations and design guidelines (compared, as example, to
residential buildings which usually present more variety of different possi-
ble structures). Specifically, we use from a graph database G built by hand
from labeled floor plans of 50 schools (GS) and 20 offices (GO) and con-
taining globally about 3500 rooms. Note that these data sets are different
from those used in Chapter 4 for discussing about the concept of building
types. More precisely we use the set of labels described in Section 4.3 and
a superset of the features used in Chapter 4 for representing rooms (more
precisely, an higher number of features is used for describing the room ge-
ometry). Note that data sets are collected manually since, although it is
possible to use the method presented in Chapter 3 to automatically extracts
the building layout, the tasks of labeling each room and of correcting pos-
sible errors in the reconstructed layout are difficult to be automatized.

We define a set of metrics representing structural properties of a graph.
The set of metrics is presented in detail here and will be used in the follow-
ing chapters.

Metrics can be divided in two groups. Those of the first group con-
sider standard graph measures: the number of nodes (nodes), the average
length of a shortest path between each pair of nodes in the graph (path-
length), the maximum distance between two nodes along their shortest path
(diameter), the number of articulation points (art-points; an articulation
point is a node whose removal separates the graph into two distinct com-
ponents), and the degree assortativity (assortativity) [70], which indicates
whether nodes are connected to other nodes with a similar degree (1) or not
(−1):

assortativity =
∑
i,j

DgiDgj
eDgi,Dgj − aDgiaDgj

σaσb

where Dgi and Dgj are the degree of nodes i and j, respectively, eDgi,Dgj
is the fraction of edges between a node with degree Dgi and a node with
degree Dgj , aDgi is the fraction of the edges where at least one node has
a degree of Dgi (aDgj is defined similarly), and σa and σb are the standard
deviations of aDgi and aDgj , respectively.

The second group of metrics measure the centrality of each node in the
graph. Centrality of a node indicates its role within the graph relatively
to the connections between nodes. High centrality values indicate impor-
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tant nodes, whose presence impact greatly in the graph layout, while low
centrality values indicate peripheral nodes. Since centrality is a metric cal-
culated for each node, we compute the average centrality µ and its corre-
sponding standard deviation σ, by averaging over the number of nodes in a
graph. Since in our domain CORRIDOR nodes are usually the most impor-
tant (and thus should result in higher centrality values), while ROOM nodes
are usually connected only to a corridor, the centrality measures are evalu-
ated also separately for these two types of nodes. In the literature there exist
several metrics for computing node’s centrality. We select four centrality
measures among the most used ones.

Betweenness centrality betw-cen for a node n ∈ N of a graph G =
(N,E) is defined as the number of shortest paths between two nodes u 6=
t (6= n) that pass through n:

betw-cen(n) =
∑

u,t∈N,u6=n 6=t

τut(n)

τut

where τut is the total number of shortest paths from u to t and τut(n) ≤ τut
is the number of these paths that pass through n. Closeness centrality
(closn-cen) for a node n is defined according to the shortest distance be-
tween n and all other nodes:

closn-cen(n) =
∑

t∈N\{n}

2−dG(n,t)

where dG(n, t) is the length of the shortest path on G between the nodes n
and t. Eigenvector centrality (eig_cen) assigns a relative score to all nodes
in the graph based on the concept that connections to high-scoring nodes
contribute more to the score of a node than connections to low-scoring
nodes. Is is calculated as:

eig_cen(n) =
1

λ

∑
t∈N

mt,n eig_cen(k)

where λ 6= 0 is a constant and mt,n is the element (t, n) of the adjacency
matrix M of the graph G. Katz centrality (katz) computes the centrality of
a node n based on that of its adjacent nodes:

katz(n) = α
∑
n′∈N

mn′,nkatz(n′) + β

where α e β are constants and mn′,n is the element corresponding to the
(n′, n)-entry in the adjacency matrix M representing G
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(a) (b)

(c)

Figure 5.2: An example of two graphs representing Office buildings and the palette of
colors used for room labels. Note that ROOMs are indicated by small circles while
CORRIDORS are indicated by squares.
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(a) (b)

(c)

Figure 5.3: An example of two graphs representing School buildings and the palette of
colors used for room labels. Note that ROOMs are indicated by small circles while
CORRIDORS are indicated by squares.
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LS LO

nodes 35.24 (18.33) 45.15 (16.22)
nodes R 27.84 (15.05) 34.25 (12.94)
nodes C 7.42 (4.45) 10.90 (4.54)
path-length 3.33 (0.81) 3.51 (0.52)
diameter 6.34 (2.30) 6.9 (1.52)
art-points 8.8 (5.81) 10.65 (3.99)
assortativity -0.51 (0.20) -0.50 (0.13)
betw-cen 0.039 (0.011) 0.0302 (0.013)
betw-cen R 0.005 (0.006) 0.003 (0.003)
betw-cen C 0.181 (0.090) 0.117 (0.044)
closn-cen 0.328 (0.086) 0.245 (0.089)
closn-cen R 0.309 (0.077) 0.246 (0.083)
closn-cen C 0.418 (0.160) 0.311 (0.113)
eig-cen 0.256 (0.078) 0.219 (0.067)
eig-cen R 0.197 (0.062) 0.158 (0.046)
eig-cen C 0.498 (0.181) 0.401 (0.123)
katz-cen 0.181 (0.045) 0.152 (0.031)
katz-cen R 0.166 (0.045) 0.138 (0.032)
katz-cen C 0.241 (0.076) 0.198 (0.031)

Table 5.1: Values of metrics for graphs representing 50 School buildings (S) and 20 Office
buildings (O). Entries report average µ over the graphs and standard deviation σ (in
parenthesis). R means ROOM and C means CORRIDOR.

Table 5.1 shows that, globally, the metrics computed on S are similar
to the ones computed on O. The average path-length is relatively small
(on graph of 40 nodes, there is an average distance of about 3.5 nodes be-
tween two nodes in the graph). assortativity is computed considering only
ROOMs and COORIDORs, and shows that graphs in G are highly disassor-
tative: ROOMs are usually connected to CORRIDORs and not to nodes of
the same category. Another interesting observation is that is the number of
articulation points art-points which is relatively high considering the total
number of nodes. This is because graphs G are planar-graphs (a graph is
called planar if can be drawn without any edge intersection), with a rela-
tively limited number of edges (compared, for example, to random graphs)
and highly disassortative. Considering the centrality value, it can be seen
how CORRIDORS are particularly important within the graph. If we con-
sider the shape of our graphs, most of the buildings in our data sets can be
represented as trees, where leaf node are ROOMs and non-leaf nodes are
CORRIDORs. When graphs are more complex than trees, they can usually
be transformed into trees by selectively removing one or two edges between
two CORRIDORs. An example can be seen in Figure 5.2 and in Figure 5.3
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with four examples of real world buildings. It can be easily seen that the
role of corridors is particular important in all four buildings, and that their
structure is similar to a tree.

5.2 Floor plan data sets

The data sets described in Section 5.1 are those that are used in the follow-
ing of this dissertation. As we pointed out in the previous section, those
data sets are different from the ones used in Chapter 4 for discussing the
concept of building types. The data sets presented here have been obtained
following the insights of Chapter 4 and Section 5.1.

More specifically, these data set (that we use in the following of this dis-
sertation) are relative to two building types, SCHOOL (S) and OFFICE (O).
The SCHOOL data set contains 50 buildings, while OFFICE data set con-
tains 30 buildings; both data sets contain globally about 3500 rooms. (For
some task, as in Section 8.1, we use only a subset of the data sets.) The
two data sets follow the labeling schema of Section 4.3 and are obtained
using the CAD-like tool presented in Section 4.2.1, starting from architec-
ture books. The buildings whose floor plans are in the data sets have been
selected using the concept of model floor plan (Section 4.2.2).

A vector of features Vn is associated to each room n, which describes its
geometrical structure and some features representing the role of the room
within the building structure. In our implementation, the vector Vn is com-
posed of 8 geometrical features, and 3 features representing the structure
of the building. Our geometrical features are a subset of those used in [64]
and are calculated using the bounding polygon P that approximates each
room:

P = {v0, v1, ..., vN−1, vN ≡ v0}

where vi is a vertex of the polygon having coordinates (xi, yi).

Area: the area of the polygon P , given by:

farea =
1

2

N−1∑
i=0

(xiyi+1 − xi+1yi)

Perimeter: the perimeter of the polygon P , given by:
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fperimeter =
N−1∑
i=0

dist(vi, vi+1)

where:

dist(vi, vi+1) =
√

(xi − xi+1)2 + (yi − yi+1)2

The ratio between area and perimeter: the area of P divided by its perime-
ter, defined as:

fAP =
farea

fperimeter

Mean distance between the centroid and the shape boundary:

fmean_shape =
1

N

N−1∑
i=0

dist(vi, c)

where
dist(vi, c) =

√
(xi − cx)2 + (yi − cy)2

given that cx and cy are the coordinates of the centroid c = (cx, cy)
defined as:

cx =
1

6farea

N−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi)

cy =
1

6farea

N−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi)

Form factor: the form factor of polygon P , defined as:

fform_factor =
4πfarea√
fperimeter

Circularity: the circularity of polygon P , defined as:

fcircularity =
f 2
perimeter

farea
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Normalized circularity: the normalized circularity of P , defined as:

fnorm−circularity =
4πfarea
f 2
perimeter

Average normalized distance between the centroid and the shape boundary:
given the previous definitions of centroid and distance from centroid,
it is computed as:

fn_dist_shape =
1

N

N−1∑
i=0

dist(vi, c)

where:

dist(vi, c) =
dist(vi, c)

max
∀i

(dist(vi, c))

In addition, three structural features are considered: the number of doors
d and two centrality measures, closeness and betweenness centrality, intro-
duced in the previous section. Note that this Vn, used in the rest of this
thesis, contains a different set of features than those described in Chapter
4. This feature vector has been chose because it uses geometrical features
from [64] that are broadly adopted in several state-of-the-art semantic map-
ping methods (e.g., [49,77]) and because these geometrical features can be
easily retrieved from our reconstructed layout of Chapter 3.

5.3 Classification of reconstructed layout

In this section we want to evaluate if it is possible to perform semantic
mapping of a building using using only features relative to its structure.
For this purpose, we implement a state-of-the-art ensemble classification
method, Extremely Randomized Tress (Extra-Trees, ET) [42]. This ap-
plication is intended to test the effectiveness of our layout reconstruction
method (Chapter 3) as source of input for place categorization and to dis-
cuss the place categorization performances using some of the global fea-
tures described in the previous section.

Extra-Trees algorithm builds an ensemble, or forest, of unpruned deci-
sion trees using a standard tree-based top-down classification procedures.
Extra-Trees algorithm strongly randomizes on both attributes and cut-point
choices while splitting a node of a tree. The two main differences with other
tree-based ensemble methods are that (a) Extra-Trees algorithm splits nodes
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by choosing cut-points fully at random and (b) it uses the whole learning
sample (rather than a bootstrap replica) to grow the trees. This classification
algorithm is known to be computationally efficient, accurate, and robust for
different classifications tasks. The Extra-Trees algorithm has been selected
since (a) it is a classification method that it is robust with respect to over-
fitting, (b) it performs well in heterogeneous classification tasks and (c) it
provide good classification accuracy. In our setting, Extra-Trees provided a
good balancing between classification accuracy and overfitting if compared
with standard classification approaches such as multi-class SVMs, Deci-
sion Trees, k-NN or other ensemble methods as AdaBoost. Results are not
reported here for the sake of brevity.

As training set for the classifier we use the 50 graphs of SCHOOLS anal-
ysed in the previous section. Room are represented by a the feature vector
Vn as explained in Section 5.2. The classifier is then applied to recon-
structed floor plan layouts of 20 other schools obtained using the method
explained in Chapter 3. The set of features Vn describing each room are ex-
tracted from the geometrical approximation and from the topological map
obtained from the reconstructed layout. Ground truth (the floor plan of
the building manually classified with semantic labels) is used for evaluat-
ing the results. Classification is performed (separately) using the LR/C and
LF/C/E/S labeling schema.

In order to evaluate match of rooms of the reconstructed layout to rooms
of the ground truth layout, we rely on the concept of forward coverage FC
and backward coverage BC introduced in Section 3.2. We call r ∈ R a
room in the reconstructed layout and r′ ∈ Gt a room in the ground truth
layout, we can define an indicator function that compares the labels of two
rooms:

1EQ(r, r′) =

{
1, if room r and room r′ have the same label

0, otherwise

Using this definition, we can now compute two metrics for evaluating
the accuracy of our classifier:

SemanticAccuracyFC: measures how well the semantic map computed from
the reconstructed layout and using ET matches Gt:

SemanticAccuracyFC =

∑
r∈R 1EQ(r, FC(r))

|R|
(5.1)
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SemanticAccuracyBC: measures how well the ground truth semantic map is
described by the reconstructed layout semantic map.

SemanticAccuracyBC =

∑
r∈Gt 1EQ(r′, BC(r′))

|Gt|
(5.2)

The two measures SemanticAccuracyFC and SemanticAccuracyBC are both
necessaries since the reconstructed layout and the ground truth layout can
be potentially different due to reconstruction inaccuracies as over- and under-
segmentation. A room in the ground truth layout can be wrongly rec-
ognized as a set of different rooms in the reconstructed layout (overseg-
mentation) or a room in the reconstructed layout can be composed of sev-
eral rooms in ground truth layout (undersegmentation). As an example, a
long corridor in the ground truth layout can be (wrongly) recognized as a
set of smaller corridors in the reconstructed layout; however if all these
small corridors in the reconstructed layout are correctly classified, both
SemanticAccuracyFC and SemanticAccuracyBC are unaffected by the seg-
mentation error. Table 5.2 shows the results obtained using the two sets of
labels (± standard deviation) considering both SemanticAccuracyFC and
SemanticAccuracyBC . The structure of a building contains enough infor-
mation to recognize whether a room is a ROOM or a CORRIDOR, while a
more detailed classification results in a decrease of performances. In Ta-
ble 5.3 and Table 5.4 it can be seen as, while Extra-Trees can distinguish
with good accuracy between functional rooms F and corridors C using
LF/C/E/S , a higher error rate is present when considering entrance and ser-
vice rooms E and S. Using additional knowledge (e.g., data coming from
laser scan or vision) in a multi-modal framework (as done in [77]) may in-
crease the performance in distinguish between a higher number of classes
of rooms, i.e. using a larger label set.

SemanticAccuracyFC SemanticAccuracyBC
LR/C 97.1% ± 2.1% 96.5% ± 2.5%

LF/C/E/S 76.1% ± 9.1% 77.5% ± 10.5%

Table 5.2: Classification accuracy for School buildings of reconstructed layout (± stan-
dard deviation) on a training data set of 50 schools and on a testing data set of 20
schools.
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F C E S
F 82.3% ± 4.7% 2.8% ± 3.8% 2.2% ± 2.9% 12.7% ± 3.3%
C 1.8% ± 3.1% 94.4% ± 3.8% 2.3% ± 2.5% 1.5% ± 3.2%
E 0.9% ± 2.8% 10.1% ± 15.5% 72% ± 2.2% 17% ± 14.5%
S 5.7% ± 8.1% 12% ± 10.2% 30.3% ± 18.1% 52% ± 8.2%

Table 5.3: Confusion matrix relative to SemanticAccuracyFC with LF/C/E/S .
F C E S

F 96.6% ± 5.9% 0.8% ± 1.5% 1.2% ± 1.3% 1.4% ± 1.7%
C 2.2% ± 4.1% 90.6% ± 11.7% 0.9% ± 1.3% 6.3% ± 8.7%
E 9.2% ± 11.5% 2.2% ± 3% 64.3% ± 18.5% 24.3% ± 17.4%
S 33.9% ± 22.3% 1.1% ± 1.2% 17.6% ± 12.5% 47.4% ± 10.4%

Table 5.4: Confusion matrix relative to SemanticAccuracyBC with LF/C/E/S .

5.4 Discussion

In this chapter we have presented a description of the structure of indoor
buildings which involves the use of a graph (topological map) and met-
rics about the importance of each room within the entire environment (us-
ing centrality measures). Rooms obtained using the layout reconstruction
method of Chapter 3 are successfully classified using these information.
The representation of the structure of environment and the centrality mea-
sures described in the first and second section of this chapter are used in the
rest of this dissertation.
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CHAPTER6
Reasoning on the building structure

In Chapter 5 we have discussed how the concept of building structure can
be represented with a graph and used for semantic mapping. In this chapter
we propose a method for reasoning on the structure of buildings by repre-
senting them as a set of logical relations (as example by considering the
relation ‘connect(r,r′)’ that holds true if there exists a door between two
rooms r and r′). Relations are an expressive formalism that allows us to
represent multiple associations between one or more objects overcoming
the limitations of a propositional representation [30]. As we extensively
discussed in Chapter 2, mainstream approaches for place classification are
characterized by local reasoning, in which the input of the classifiers is a
vector of features that refer to the space being classified or to its neighbour-
hood, following an attribute-value propositional schema. These approaches
have proven effective in classifying single rooms, but they do not naturally
apply to the classification of entire floors of buildings (i.e., assigning them
labels like ‘office’ or ‘school’) since it is difficult to represent the struc-
ture of a building floor as a vector of features, being it better captured by a
graph.

In order to address these limitations, in this thesis we propose an ap-
proach to semantic classification that reasons on the whole structure of
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a (floor of a) building as a single entity by exploiting a relational repre-
sentation of the building structure. Reasoning on such structured data is
performed by exploiting Statistical Relational Learning (SRL) techniques.
In recent years, the field of SRL has developed different techniques (like
Markov Logic Networks [81]) for dealing and reasoning with complex mul-
tirelational data in different settings [41]. The use of these techniques for
semantic classification can enable a form of global reasoning on the struc-
ture of buildings, by considering their recurrent patterns. In particular, we
originally apply to the context of semantic classification a state-of-the-art
SRL algorithm, kLog [34], which is a method based on graph kernels for
logical Entity/Relational structured data. Using kLog, we are able to ef-
fectively perform classification tasks similar to those performed by clas-
sical local methods, like labeling rooms, and also classification tasks that
are not naturally addressed by local methods, because they require reason-
ing on structured knowledge, such as classifying an entire building accord-
ing to its function. In order to evaluate (also quantitatively) our approach,
we compare results obtained with it against those obtained with a standard
attribute-value classification method, namely Extremely Randomized Trees
(Extra-Trees) [42].

Note that, for the sake of simplicity, we assume to consider only one
floor of multi-stores buildings. In this sense, we do not consider explicitly
possible relations between different floors of the same building. However,
this limitation can be overcome by adding other floors of the building to
the training set of the classifiers. If another floor of the same building on
which the algorithm is being tested is used during the training phase of
the classifiers, the similarity of the two structures is used automatically for
classification since the two floors are likely to be highly correlated.

The use of SRL techniques in semantic mapping has been pioneered
by [56]. This approach shares some similarities with that presented in this
chapter, but in our case SRL techniques are used for classification purposes
and not for evaluating a scoring function of a model. The content of this
chapter is based on the work of [60].

6.1 A global reasoning approach

6.1.1 Problem formulation

In this chapter we use the graph representation of indoor environments that
we have introduced in Section 5.1. More precisely, we represent (a floor
of) an indoor environment as an undirected graph G = (N,E), where each
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node n ∈ N is a room and each edge e = (n, n′) ∈ E (with n, n′ ∈
N ) represents a physical connection between two rooms n and n′ (e.g., a
doorway). A semantic label L(n) taken from a finite set of labels L is
assigned to each node n. Each room n is also associated to a vector of
features Vn which describe its geometrical structure. A list and description
of the feature set can be found in Section 5.2.

We use two data sets representing two different building types. Dataset
SCHOOL (S) contains 30 floor plans of school buildings, while data set
OFFICE (O) contains 20 floor plans of office buildings. See Sections 5.1-
5.2 for an analysis of the two data sets.

The semantic classification tasks we address in this thesis are defined as
follows. The first task is place classification. Given a dataset G of labeled
graphs representing buildings of a single building type, a function f() that
scores similarity between labeled graphs, and a query graph Ĝwhose nodes
have associated vectors of features but not labels, the place classification
task consists in finding the labels for the nodes in Ĝ such that f(Ĝ,G) is
maximized.

Loosely speaking, local methods inductively build a model of the rela-
tion between the vectors of features Vn of nodes of graphs in G and the
corresponding labels L(n) and, on the basis of this model, assigns a label
L(n̂) to each node n̂ of Ĝ. Our global method, instead, inductively build a
model of the labeled graphs in G and, on the basis of this model, assigns a
label L(n̂) to each node n̂ of Ĝ.

The second task that we introduce in this thesis is building classification.
Assume to have a dataset G of graphs whose nodes are labeled as before
and such that each graph G ∈ G has also a graph label LG. Given such G,
a function f() as before, and a query graph Ĝ whose nodes are labeled but
whose graph label LĜ is unknown, the building classification task consists
in finding LĜ such that f(Ĝ,G) is maximized. It is intuitive that building
classification tasks involves recognizing recurrent patterns in graphs, which
can be more naturally performed following a global approach.

We use two hierarchically organized semantic labeling schemas to eval-
uate the impact of different sets of labels on semantic classification, fol-
lowing the discussion of Section 4.3. At the top level, we use the labeling
schema LR/C and contains only two general categories, ROOM and CORRI-
DOR. The second set of labels, LF/C/E/S , specialize LR/C :

LF/C/E/S = {FUNCTIONAL ROOM, CONNECTION, ENTRANCE, SERVICE ROOM}
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6.1.2 kLog

We use kLog [34] for performing semantic classification tasks by exploiting
reasoning on the global structure of buildings. kLog input data are multiple
relations between objects (possibly with attributes) represented in the form
of an Entity/Relation knowledge base (E/R KB). This KB is expressed with
a Prolog syntax and is composed of ground atoms under the closed world
assumption. Entities and relations between them are expressed using signa-
tures and roughly correspond to ground atoms listed explicitly (extensional
signatures) and to ground atoms implicitly defined using Prolog definite
clauses (intensional signatures), respectively. Listing 6.1 shows a subset of
the signatures we use, whose meaning is intuitive. Learning and classifica-
tion tasks and queries are also expressed in Prolog syntax in a declarative
way.
signature buildingtype(buildingtype::property)::extensional.
signature space(space_id::self)::extensional.
signature connected(s1::space, s2::space)::extensional.
signature label(space_id::space, label::property)::extensional.
signature area(space_id::space, area::property)::extensional.
signature perimeter(space_id::space, perimeter::property)::extensional.
signature iscorr(room_id::room)::intensional.

Listing 6.1: Examples of kLog signatures.

The label associated to a space is selected from one of the two sets of la-
bels (LR/C or LF/C/E/S), according to the task. Classification is performed
by learning the label(_, _) relation or by learning the buildingtype(_) rela-
tion, according to the task. The former relation associates a label to a room
object, while the latter relation associates a label (the building type) to the
query graph (see Listing 6.1).
interpretation(floor01,buildingtype(school)).
interpretation(floor01,space(s001)).
interpretation(floor01,label(s001,classroom)).
interpretation(floor01,space(s002)).
interpretation(floor01,label(s002,corridor)).
interpretation(floor01,space(s003)).
interpretation(floor01,label(s003,classroom)).
interpretation(floor01,connected(s001,s002)).
interpretation(floor01,connected(s002,s003)).
interpretation(floor01,area(s001,100)).
interpretation(floor01,perimeter(s001,40)).
...

Listing 6.2: Fragment of an interpretation.

kLog learns from interpretations. In our system, a set of instantiated sig-
natures representing a floor of a building is called an interpretation. A frag-
ment of an interpretation (called floor01) representing a floor of a school
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building composed of two classrooms connected by a corridor is reported
in Listing 6.2.

Learning tasks, like binary or multi-class classifications, are performed
in kLog using a Support Vector Machine (SVM) in a kernel space defined
using graph kernels. Graph kernels allow to operate in representative high-
dimensional feature spaces without suffering the high cost of computing the
feature spaces explicitly. Graph kernels used in kLog belong to the family
of R-convolution kernels [40], based on decomposing structured data in
smaller parts. Given a decomposition relation R−1 that extracts from a
graphG one of its possible decompositions in subgraphs {g}, the associated
R-convolution kernel K compares all subgraphs of two graphs G and G′,
while a sub-kernel kt compares all the features t ∈ {1, 2, . . . , T} extracted
from two subgraphs g and g′:

K(G,G′) =
∑

g∈R−1(G), g′∈R−1(G′)

T∑
t=1

kt(g, g
′)

Specifically, in kLog, the Neighborhood Subgraph Pairwise Distance Ker-
nel (NSPDK) is used. NSPDK is extensively described in [28,34]; here we
just introduce the idea. The relation R−1 used by NSPDK extracts from a
graph G all the pairs of neighborhood subgraphs gi and gj of radius r and
centered on all possible pairs of nodes ni and nj that are at a distance d in
the graph (the same happens in G′). The sub-kernel kt in this case depends
on r and d, let call it kr,d, and computes the similarity of all these pairs of
subgraphs:

K(G,G′) =
∑
r

∑
d

∑
gi,gj∈R−1(G)

g′i,g
′
j∈R−1(G′)

kr,d((gi, gj), (g
′
i, g
′
j))

For example, in an office building, the sub-kernel kr,d will assign large
scores to symmetric portions of the building, since the r-neighborhoods of
two symmetric nodes will be similar. In this sense, the use of graph kernels
allow us to explicit capture the similarities between groups of nodes across
a graph and between different graphs.

In kLog, the graph on which the graph kernel is applied is obtained from
the E/R KB using a technique called graphicalization. Each entry found in
the KB is converted into a node of a bipartite undirected graph whose nodes
are ground atoms and edges connect an entity atom to a relationship atom
if the identifier of the former appears as an argument in the latter. The
graphicalization of the example of Listing 6.2 is shown in Figure6.1. Note
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space
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space
s002

space
s003

connected
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corridor

classroom

label

label

label

Figure 6.1: Graphicalization of the Listing 6.2.

that the generated graph embeds information about space connections (as
the original graphs G of our dataset) plus other information (for example
about labels: two spaces with the same label are now connected together
via a label node). NSPDK is then applied to the graphicalized KB and the
similarity results it produces are employed by a standard SVM algorithm
from the LibSVM repository1. Please refer to [34] for further details.

Classic approaches to semantic mapping, as [77], usually represent the
structure of the building using probabilistic graphical models like Bayesian
Networks, Markov Random Fields (MRF) or Chain Graphs (which are a
natural generalization of directed and undirected graphical models). In [77]
a semantic map is represented using a Chain Graph using the following
schema: rooms are represented as nodes in a Markov Random Field, doors
between rooms are represented as connections (potentials) between two
nodes, and features describing each room are represented as a Bayesian
Network. Using kLog we are able to intuitively represent relations between
different (and potentially not connected) parts of the structure of the build-
ing (as an example, that there exists two similar blocks of rooms into two
different wings of the same building), and we are able to easily add or re-
move relations between objects without changing the learning task. More-
over, the conditional independence assumption of Markov Random Fields
(and, consequently, of Chain Graphs) constitutes a structural limitation of
such methods for representing relations between different rooms. As an ex-
ample, using a Chain Graph like that of [77], two rooms that are connected
to the same corridor are considered as independent given the fact that we
know the exact label of the corridor. An explicit representation of all the

1https://www.csie.ntu.edu.tw/c̃jlin/libsvm/
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possible dependencies between nodes using a MRF requires a much more
dense and complex representation. For this reason, while Chain Graphs
and MRFs are a powerful form of representation for representing the se-
mantic map of an indoor environment, their generalization for representing
the entire structure of a floor of a building as a single entity requires a fur-
ther and complex analysis. For this reason, we choose to use a different
formalization of our learning problem using kLog.

6.1.3 Extremely Randomized Trees

In order to compare the reasoning on the whole structure of buildings with
a local approach, we implement a state-of-the-art ensemble classification
method, Extremely Randomized Tress (Extra-Trees) [42], that we have in-
troduced in Section 5.3.

Extra-Trees require an attribute-value representation of each room. Each
room n is thus represented by its features Vn (introduced in Section 5.2),
to which its label L(n) is associated. We also tried to add to Vn other
information using the labels of the rooms that are directly connected to n,
but experimental results are similar. The classification task is performed
similarly as explained in Section 5.3, with the only difference that for this
application we use only one data set of floor plans of buildings, while in
Section 5.3 two data set are used (for ground truth and reconstructed layout
respectively).

Extra-Trees have been selected since, as explained in Section 5.3, pro-
vided a good balancing between classification accuracy, overfitting and ro-
bustness to different classification tasks if compared with standard classi-
fication approaches such as multi-class SVMs, Decision Trees, Bayesian
Networks, k-NN, or other ensemble methods as AdaBoost that have been
used for place classification. More precisely, Extra-Trees are able to pro-
vide good accuracy in different classification tasks on the same domain with
a little adaptation of the training process of the classifier.

In order to test a mixed situation, in which global information is consid-
ered in a local setting, we use a second version of the Extra-Trees algorithm
in which two more features that describe the role of a room n in the graph
representing the building are added to Vn. These two features are related to
centrality, which evaluates the role of each node in the graph as introduced
in Section 5.1: high values of centrality correspond to most important nodes
in the structure of the graph. In our context, centrality can be considered
as a measure of the importance of each room within its floor structure. We
use closeness and betweenness centrality (see Section 5 for their defini-

89



Chapter 6. Reasoning on the building structure

tion). Classification tasks using Extra-Trees algorithm are evaluated both
considering and not considering centrality among the features Vn of a room.

6.2 Experimental evaluation

task dataset labels centrality error (%)
Ex-T S RC 3.74
Ex-T S RC 2.44
kLog S RC 6.82
Ex-T S FCES 35.56
Ex-T S FCES 33.42
kLog S FCES 46.89
Ex-T O RC 7.21
Ex-T O RC 5.12
kLog O RC 7.73
Ex-T O FCES 36.15
Ex-T O FCES 32.80
kLog O FCES 44.92
Ex-T S + O RC 40.00
Ex-T S + O RC 30.00
kLog S + O RC 8.00
Ex-T S + O FCES 5.00
Ex-T S + O FCES 5.00
kLog S + O FCES 8.00

Table 6.1: Results on different learning tasks using kLog and Extra-Trees (Ex-T). Cyan
circles stand for place classification tasks, while blue squares indicate building classi-
fication. S represents the SCHOOL dataset, and O is the OFFICE data set. The labels
column represents the label set used, the centrality column indicates whether centrality
is added (full circle) or not (empty circle) to Vn, while the error column indicates the
classification error with the best performance in bold.

In this section, we experimentally evaluate our global approach to se-
mantic classification (based on kLog) and compare it against a classical
local approach (Extra-Trees) on different tasks. All the results are obtained
performing a leave-one-out cross validation over graphs of the two datasets
relative to OFFICE and SCHOOL building types (see Section 5.2). OFFICE
contains 20 graphs, while we used a subset of 30 graphs from SCHOOL for
satisfying implementation constraints of kLog. Graphs from both data sets
contains about 40 nodes each (see Section 5.1). On a single core of a Intel
Core i7-3610QM@2.30 GHz CPU with 8 GB RAM, all the kLog learning
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tasks discussed below run in less than 20 minutes (for all the datasets com-
bined using cross validation), while Extra-Trees algorithm with a forest of
500 trees take approximatively slightly less then 1 hour for performing the
same tasks.

Evaluation is performed looking at the error rate of classification and
at two curves. ROC (Receiver Operating Characteristic) curves plot the
false positive rate on the x axis against the true positive rate on the y axis.
Precision-recall curves plot the recall of classification on x axis against the
precision of classification on y axis. Both axes goes from 0 to 1 and the
quality of classification is given by the area underlying the curve. Area
equal to 1 means a “perfect classifier" while the line with angle π/4 (area
equal to 0.5) represents the performance of a random classifier.

6.2.1 Place classification

The first learning task mimics the classical task of place classification of
rooms n of an environment, knowing the features Vn obtained from sen-
sor readings, similarly to [64] (see Section 6.1.1). In this setting, we first
consider the top level LR/C labeling schema, asking kLog to classify each
space as ROOM or CORRIDOR (note that discriminating between the two la-
bels is of interest in tasks like exploration [92]). In other words, it performs
a binary classification task for each space in the interpretation representing
Ĝ.

Figure. 6.2 shows the ROC and the precision-recall curves obtained by
kLog for the building types OFFICE and SCHOOL. kLog is able to clas-
sify correctly ROOMs and CORRIDORs, as the large areas under the curves
suggest. However, in both cases, Extra-Trees perform slightly better than
kLog, as shown in Table 6.1. We can explain these results considering that
it is easy to distinguish between ROOMs and CORRIDORs within a specific
building type using only local features (e.g., the number of doors and the
shape, usually squared for rooms and rectangular for corridors). This trend
is confirmed when we use the larger set of labels LF/C/E/S , where the ro-
bustness (due to its randomness) of Extra-Trees outperforms the less flexi-
ble SVM of kLog. It is interesting to point out that the use of global knowl-
edge in form of centrality features improves the results of Extra-Trees.

Overall, our results show that the proposed global approach based on
kLog is able to perform place classification with performance compara-
bly similar to that of a classical attribute-value local approach. Outcomes
of a place classification task performed by kLog could provide a new and
different perspective if integrated within a multi-modal standard semantic
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(a) Classification of spaces using LR/C for OFFICEs.
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(b) Classification of spaces using LR/C for SCHOOLs.

Figure 6.2: Place classification for OFFICEs and SCHOOLs.

mapping approach. For example, it is in principle easy to extend a (proba-
bilistic) framework like that of [77], which assigns labels according to dif-
ferent features derived from camera data, object recognition, and geometry
of the environment (as different potentials), to include also a new potential
based on features returned after global reasoning, which could propose a
new label not based on sensorial data, but on the global structure of the
portion of a building which is currently known.

6.2.2 Building classification

Classifying entire buildings according to their function is a task that is much
less explored in the literature, but that is intuitively expected to require rea-
soning about regularities and patterns of a specific building type. We refer
to this task as building classification: we assume to know the structure, the
geometry, and the room labels of a (floor of a) building, and we ask kLog
and Extra-Trees to perform binary classification, categorizing the function
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Figure 6.3: Building classification in kLog using LR/C .

of the building as OFFICE or SCHOOL (see Section 6.1.1). As input data
we use the datasets (all the interpretations of) OFFICE and SCHOOL com-
bined together. Since Extra-Trees reason only on local data and can classify
only one room at a time, we ask the classifier to label each room accord-
ing to a building type, and then we take the most frequent label to classify
the whole floor. We perform tests using LR/C and LF/C/E/S schemas for
labeling the rooms of the initial interpretations. Using LR/C we assume
that only a limited knowledge on the function of the rooms that a robot has
viewed is available, while using LF/C/E/S we assume to have more detailed
knowledge on the function of the spaces.

Figure6.3 shows the ROC and the precision-recall curves for kLog when
using LR/C . Good results are obtained, showing that, when the task is
the classification of the whole building, reasoning on its global structure
can compensate for a limited amount of information about the functions
of the single spaces. If we compare the kLog results to those obtained us-
ing Extra-Trees (Table 6.1) we can see that kLog outperforms Extra-Trees.
However, using LF/C/E/S , a more informative knowledge on the function
of the spaces (which could be in principle more difficult to obtain and more
error-prone) overshadows the global properties of the environment, allow-
ing Extra-Trees to carry out more accurate classifications. kLog performs
better with the LR/C labeling of rooms, namely when coarse-grained in-
formation about rooms is available. This can happen, for instance, when a
robot can only use data from laser range scanners (which can be enough to
distinguish between rooms and corridors, as shown [66] and we discussed
in Chapter 4) and not data from cameras (which could be used to distinguish
between a more detailed set of labels like LF/C/E/S as done, for example,
in [77]), e.g., due to camera failure.

The ability of classifying whole buildings could be useful for a robot
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moving in large heterogeneous structured environments, like a university
campus, and needs to know whether the floor in which it is currently navi-
gating hosts teaching activities (i.e., it is composed of classrooms and lec-
ture halls) or the administrative section of the campus (i.e., it is composed
of faculty’s offices, reception, . . . ). We further test this ability by using the
publicly available datasets of the MIT campus [7] that we have introduced
in Section 4.2.3. We randomly select a sample of 33 floor plans belonging
to 3 different types of buildings: DORMs, OFFICEs, and RESEARCH LABs,
and we use kLog to perform a (leave-one-out cross validation) classifica-
tion with the original labeling schema of the datasets, obtaining a 93, 94%
accuracy on assigning the correct type to the floor plans, which corresponds
to a very accurate classification.

6.3 Discussion

This chapter has discussed how SRL techniques can be used for reasoning
on the whole structure of buildings, exploiting information on the connec-
tions and on the geometry of rooms, in the context of semantic classifica-
tion of spaces. We compared the performances obtained by kLog with those
obtained by a standard classifier that can be used for performing place clas-
sification, Extra-Trees. The outcomes show that the application of struc-
tured learning methods to semantic classification reasoning on the building
structure is promising, especially when the task requires capturing and rea-
soning on the regularities of buildings and the available information about
room labels is coarse-grained. While semantic classification usually re-
quires knowledge about the environment geometry and appearance, the use
of knowledge about the whole structure of the building could reduce the
amount of such information that is required and that is obtained from sen-
sors. So, our results on the use of kLog suggest a trade-off between knowl-
edge of details of single rooms and knowledge of the whole structure of
a building when performing semantic classification. Our structured learn-
ing method could potentially be integrated in a standard semantic mapping
framework to provide a new perspective on the building structure that can
be used to produce better semantic maps.

In this chapter we have investigated if the use of knowledge on the entire
structure of environments can provide benefits to semantically understand
indoor environments. The results and the insights obtained with this ap-
proach are used in the next chapter for providing an analytical model of the
structure of indoor environments.
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CHAPTER7
Modeling building types

In Chapter 5, we have introduced a graph representation of indoor buildings
which can be used to reason on the building structure. In this chapter, we
use this representation to extract a model of a specific building type from a
set of real floor plans. This model is used for sampling a new set of graphs
representing possible instances of floor plans that have the same structural
characteristics and node labels of a realistic floor plan of a building.

The aim of this framework is to obtain semantic knowledge on the global
structure of a previously unknown (or partially visited) indoor environment
(building). An application of this framework for predicting structural fea-
tures of partially explored buildings is discussed in Chapter 8.

We propose to use a generative method that, following the general pat-
tern of Constructive Machine Learning (CML) [27] is able, starting from
a representative set of buildings, to model their topological structures and
labeling schemas and to sample buildings belonging to the same type. In
CML, the ultimate goal of learning is not to find good models of the data,
but instead to find particular instances of the domain which are likely to
exhibit some desired properties, while selectively sampling from an infinite
or exponentially large domain. Our generative model is based on the graph
representation of indoor environments introduced in Section 5.1.
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Given an initial set of buildings G, our approach segments the graphs
representing these buildings for finding significant subgraphs, which are
then clustered according to their similarity. Similarity between graphs is
calculated using graph kernels, which are the equivalent of kernel methods
for structured data. Kernel methods are the basis of several machine learn-
ing techniques, like, among others, Support Vector Machines (SVM) [26].
In this chapter we use two graph kernels, namely the Weisfeiler-Lehman
Subtree Kernel (KWL) [86] and the Graph Hopper Kernel (KGH) [33],
which are introduced in Section 7.1.

Finally, a new graph representing a predicted building (or a predicted
part of a building) is generated by sampling subgraphs from clusters and
connecting them. The generated graph has similar topological structure
and semantic labeling schema as the graphs representing initial buildings.

Under the CML framework we try to analytically model the concept of
building type (see Chapter 4, Section 4.2.1); this is performed by using our
model for sampling a set of new instances of graphs which are consistent
with the features of a building type. Moreover, our approach, similarly to
that by [7], can be thought as a move from the mainstream room-level per-
spective, modeling the semantic relations between perceived features and
rooms, to a building-level perspective, modeling the connections between
rooms and the structure of buildings. Our approach does not rely on sensor
data acquired by robots, but on a knowledge base of graph-based topologi-
cal structures and labeling schemas of buildings that can be obtained from
previous semantic mapping efforts or, as in our case, from other sources
(like collections of blueprints). It thus relies on a priori knowledge rather
than on incrementally-acquired sensor-based knowledge.

A similar task addressing the problem of sampling new graphs which
possess consistent structure with respect to a given set of input graphs, also
following the Constructive Machine Learning paradigm, is addressed in
a recent paper by [27]. The author develops a graph grammar to learn a
distribution for MonteCarlo Markov chain sampling in a data-driven fash-
ion. Probability estimators are implemented using a one-class Support
Vector Machines graph kernel-based graphs classifier. Differently from
our approach, [27] uses graph grammars to propose the edit operations
which result in the sampling of new graphs, while our method exploits
task-dependent knowledge for place classification on the role and the la-
bel of each node in the graph for guiding the sampling.

One of the main original ideas of this chapter is the use of a two-layered
semantic representation for indoor environments. The first layer is provided
by the graph, the semantic map, representing labeled rooms and their con-
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(a) Original floor plan. (b) Functional areas.

(c) Functional graph.

Figure 7.1: Functional analysis of a research office building floor plan. In Figure 7.1a
the corridors are highlighted in green. In Figure 7.1b the floor plan is segmented in 9
functional parts, one for each corridor. Similar rooms are grouped together with the
corridors to which they are connected to. Each part is a functional area and is colored
according to is function: red means office, blue means research labs, orange means
service rooms such as stairs, elevators, bathrooms, storage rooms, and meeting rooms.
From such a segmentation an abstract graph representation in the form of a functional
graph is derived in Figure 7.1c.
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nections. As said, we segment the floor plans of large structured buildings
in non-overlapping parts. Each one of these parts is expected to be formed
by a group of neighbouring rooms with a similar function (e.g., a clus-
ter of offices, an administrative section, a group of service rooms such as
bathroom, kitchen, and vending machines). We call these parts functional
areas. An example of functional areas can be seen in Figure 7.1. If we ob-
serve the floor plan of the research office building displayed in Figure 7.1a,
we can notice that rooms with a similar function are usually close to each
other and connected to the same corridor (in green). It is thus possible to
separate the floor plan into functional areas, shown with different colors in
Figure 7.1b. In our example, we highlight in red the parts where offices are
located, in blue the parts with research labs, and in orange the parts where
support rooms, such as stairs, vending machines, elevators, or bathrooms,
are located. This representation can be summarized in the graph structure
of Figure 7.1c. Differently from Figure 5.1, in Figure 7.1c each node of the
functional graph represents a functional area (namely a set of connected
rooms that share the same function).The functional graph provides the sec-
ond layer of our representation. The identification of functional areas in-
troduces a new abstract perspective which can be used to reason on the
structure of the buildings, enabling reasoning mechanisms able to predict
the function of unknown parts of buildings and to generate new instances
of buildings, as we show in ur experiments.

The structure of the chapter is the following. In Section 7.1 we overview
the concept of graph kernels by discussing some notable examples that are
used in the following of the chapter. In Section 7.2 we introduce the main
assumptions and the goal of our approach. Section 7.3 describes how our
models of building types are extracted from data. Section 7.4 presents our
sampling mechanism, which employs the model to derive new data. Exper-
imental results are reported in Section 7.5.

7.1 Graph kernels

The task of learning a model of structured data like graphs, as we do in
this chapter, is often complex and requires ad hoc techniques since stan-
dard machine learning techniques cannot be naturally adopted due to the
dimensionality of the data [30]. We make a substantial use of graph kernel
methods, which use a decompositional approach to measure the similar-
ity between two graphs. In this section we provide a general overview on
the concept of graph kernel, as introduced by [47], and we describe the
main graph kernels that we use in this chapter. Among all the possible
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graph kernel families, the general class of convolutional kernels proposed
by [47] represents the guiding principle in kernel design for structured ob-
jects [28, 40]. Convolutional kernels are based on the idea that the seman-
tics of a graph can be captured by a relation R between the graph and its
parts. A graph kernel is then defined as a composition on kernels defined
on different parts of the graph.

Let G = (N,E) ∈ G be a graph and {g1, . . . , gD} one of its decom-
positions into (possibly overlapping) parts (subgraphs). Each part gd in an
element of a countable set Gd, for d = 1, . . . , D, D ≥ 1. Consider a rela-
tion R defined on G1× . . .×GD×G, where R(g1, . . . , gD, G) is true if the
set {g1, g2, . . . , gD} is one of the possible sets of the parts (subgraphs) of G
(i.e., in which G can be decomposed). Given R, we can define the function
R−1 as the decomposition function which, returns the sets of parts of G:
R−1(G) = {g1, . . . , gD : R(g1, . . . , gD, G)}. Consider now any positive
definite kernel function Kd over Gd × Gd, d = 1, . . . , D. For two graphs
G,Q ∈ G, we can define a convolutional or decomposition kernel on graphs
as the function:

K(G,Q) =
∑

g1,...,gD∈R−1(G)
q1,...,qD∈R−1(Q)

D∏
d=1

Kd(gd, qd)

Given a generic graph kernelK, the similarity measure between two graphs
G,Q ∈ G can be defined as the normalized version of the graph kernel:

Knormalized(G,Q) =
K(G,Q)√

K(G,G)K(Q,Q)

In this work we use two instances of convolutional graph kernels: the
Weisfeiler-Lehman Subtree Kernel (KWL) [86] and the Graph Hopper Ker-
nel (KGH) [33]. Several other kernels, such as those by [28], [63], and [51]
have been tested with less convincing results (numerical results are not re-
ported here).

TheKWL belongs to the family of Weisfeiler-Lehman graph kernels [86],
that exploit the Weisfeiler-Lehman test of isomorphism on graphs as a rapid
feature extraction scheme. KWL is implemented as an iterative procedure in
which, at each iteration, the node labels are augmented by concatenating
to the current label of each node the sorted list of labels of its adjacent
nodes. The resulting augmented label list is then compressed into a new,
shorter label list using an hash function. Each graph G is thus mapped to a
sequence of graphs {G0, G1, . . . , Gh} = {(N,E,L0), (N,E,L1),
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Figure 7.2: An example of a d = 2 subtree rooted from node 1.

. . . , (N,E,Lh)}, where Gi and Li are the graph and the label set (one label
per node) after i iterations of the algorithm, respectively, and h is the total
number of iterations. Given any graph kernel Kb called base kernel, KWL

is then computed as:

KWL(G,Q) = Kb(G0, Q0) +Kb(G1, Q1) + . . .+Kb(Gh, Qh)

In our setting we use as base kernel Kb(Gi, Qi) a subtree kernel. It com-
putes all the rooted subtrees of G = (N,E) (a rooted subtree is an acyclic
sub-graph of G with a given depth d and rooted on a node n ∈ N , where
nodes n′ ∈ N can be repeated in different branches of the tree; an example
of a rooted subtree is shown in Figure 7.2). These rooted subtrees are the
outcome of the decomposition R−1. For each iteration i, i = 1, . . . , h, Kb

counts the number of common labels between all the subtrees of Gi and Qi

rooted in two nodes with the same label l∗ ∈ Li. The complexity of KWL is
O(Nhm+N2hn), where N is the total number of graphs, and n and m are
the number of nodes and edges of the graphs respectively (assumed equal
for all graphs for simplicity).

In KGH [33], the decomposition relation R−1 is based on the shortest
path between each pair of nodes:

KGH(G,Q) =
∑

π∈P,π′∈P ′
kp(π, π

′
)

where kp is a kernel defined on paths and P and P ′ are the sets of shortest
paths between all pairs of nodes of G and Q, respectively. The path-kernel
kp is defined on two paths π and π′ as:

kp(π, π
′) =

{∑|π|
j=1 kn(π(j), π′(j)) if |π| = |π′|,

0 else.
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where π(i) = ni indicates the i-th node in the path π = (n1, . . . , n|π|). We
use a linear node kernel kn(ni, nj) that returns 1 if ni and nj have the same
label and 0 otherwise. Total complexity of KGH is O(N2(n2(m + log n +
d + δ2))) where N , n, and m are defined as in KWL, δ is the length of the
longest shortest path, and d is a constant.

7.2 Developing a building type model

As introduced and motivated in Chapter 4, we exploit the concept of build-
ing type, developing specific models for each building type. Reasoning on
buildings of the same type allows to identify their common characteristics,
that can be modeled effectively.

The problem that we address in this thesis is: given set of graphs G
representing floor plans of a given building type, sample a semantic map Ĝ
with a structure similar to that of graphs in G.

We use a data set of semantic maps representing floorplans introduced in
Section 5.1 considering the building type SCHOOL. (In general, our method
can be straightforwardly applied to other building types. We developed and
tested our approach for OFFICEs and the experimental results are similar to
those obtained for SCHOOLs. However, for the sake of space and clarity,
we do not discuss these results here.) Specifically, we start from a graph
database G built by hand from labeled floor plans of 50 real schools (see
Section 5.2) and containing about 2000 rooms.

We use two of the layers of the hierarchical semantic labeling schema
presented in Section 4.3 At the top level, the labeling schema called LR/C
contains only the two general categories ROOM and CORRIDOR. For clarity,
in the following figures, a square is used for CORRIDORs, while a circle is
used for ROOMs, as in Figure 5.1.

In addition, we use a specific labeling schema for the SCHOOL build-
ing type Lschool. The complete set of labels and their color used for plot-
ting regarding the SCHOOL building type and extracted from architectural
sources [69, 95] and are reported in Figure 7.3.

7.3 Creation of the model

7.3.1 Segmentation

Each graphG = (N,E) ∈ G is segmented in smaller, non-overlapping sub-
graphs S = {s1, s2, . . . }, such that, for each si = (Ni, Ei), sj = (Nj, Ej) ∈
S, it holds Ni ∩Nj = ∅ and such that

⋃
si∈S Ni = N . Segmentation is per-
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Figure 7.3: Labeling schema for SCHOOL building type. Colors and shapes indicated for
each label are used through the thesis.

formed by removing some edges, or cuts, c ∈ E from G and aims at identi-
fying the functional areas. Functional areas, as introduced in the beginning
of this chapter, and as exemplified in Figure 7.1, are groups of neighbour-
ing rooms with a similar function within the buildings (i.e., a subgraph),
which are connected to (nearby) corridors. The segmentation step is thus
particularly important in our framework since it should divide each floor of
a building according to the structure of the graph and the function of the
rooms.

Two different unsupervised methods are used for segmentation. The
first method is the Normalized Cut spectral method of [87], or ncut, as
we used in [58]. ncut is a general and context independent segmentation
method that partitions a graph into components of roughly the same size.
Specifically, ncut recursively partitions a graph into two components sa =
(Na, Ea) and sb = (Nb, Eb) based on the magnitude of the eigenvalues
of the Fiedler vector obtained after an ad hoc eigen-decomposition of the
graph adjacency matrix. Each part is then recursively segmented until a
threshold on the normalized-cut measure for each partition is obtained. The
normalized-cut measure is computed as:

normalized-cut(sa, sb) =
Cut(sa, sb)

Assoc(sa, G)
+

Cut(sa, sb)

Assoc(sb, G)

where, called w(u, v) the weight of the edge between the nodes u and v (in
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our setting, w(u, v) = 1; note that w(u, v) = 0 if u and v are not connected
by any edge):

Cut(sa, sb) =
∑

u∈Na,v∈Nb

w(u, v)

and

Assoc(sa, G) =
∑

u∈Na,t∈N

w(u, t)

Similarly for Assoc(sb, G).
The second method (that we refer to as corr) depends on our particular

domain and is based on the distinction between ROOMs and CORRIDORs of
LR/C . It follows the intuition that CORRIDORs are particularly important
nodes for an indoor environment and can be considered as the hubs of the
corresponding graph. Under these premises, corr assigns each ROOM
node to the nearest CORRIDOR node (if there is a tie, the CORRIDOR with
the highest degree is selected). Each edge between two CORRIDOR nodes
or between two ROOM nodes associated to two different CORRIDORs is
considered as a cut c and removed by the segmentation process. This sec-
ond segmentation method, unlike ncut, does not guarantee to produce a
balanced segmentation of the graph; however, in our problem domain, both
segmentation methods perform similarly in terms of number and size of
subgraphs obtained after the segmentation, as shown in the example of Fig-
ure 7.4. A more detailed comparison between the two methods is performed
in Section 7.5.

The results of the segmentation process performed over a graph (seman-
tic map) G can be represented as a graph H = (S, U), where every node
in S is a subgraph s ∈ S and an edge u ∈ U exists between two nodes
si = (Ni, Ei), sj = (Nj, Ej) ∈ S if there is a cut c = (ni, nj) ∈ E between
two nodes ni ∈ Ni and nj ∈ Nj . We refer to the graph H as functional
graph. A pair of G ∈ G and of the associated H ∈ H, where H is the set
of all functional graphs, constitutes a representation of the same building
at two different levels of abstraction , as discussed at the beginning of this
chapter.

7.3.2 Clustering

After all graphs G ∈ G have been segmented, the clustering step is respon-
sible to group together all the subgraphs that have a similar structure, and

103



Chapter 7. Modeling building types

(a) Initial graph G.

(b) ncut. (c) corr.

Figure 7.4: An example of applications of different segmentation methods to a graph G.
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thus to identify the same functional areas over several buildings. All the
subgraphs S` obtained from all the graphs G` in G are now considered alto-
gether: S = S1∪S2∪· · ·∪S|G|. For each pair of subgraphs si, sj an affinity
value φ(si, sj) is computed. Affinity φ(si, sj) measures the similarity be-
tween subgraphs and is computed using one of the graph kernels K (KWL

or KGH), exploiting the fact that each subgraph s = (Ns, Es) is actually a
graph in which each node n ∈ Ns is described by its label Lschool:

φ(si, sj) = K(si, sj)

so φ depends on both the topological structure of si and sj and on the labels
of their nodes.

In order to cluster together similar subgraphs, we use the affinity propa-
gation clustering algorithm [35]. Affinity propagation is a message passing
clustering algorithm which selects a subset of the data as models for their
relevance. Each data element exchanges two kinds of messages with other
data elements indicating how much it consider itself suited to became a
model for the other elements and how much each element is considered
suited to be a model by the other, nearby, elements. These messages are ex-
changed recursively until stable clusters are formed or a maximum number
of iterations is reached. Affinity propagation does not require the number
of clusters as a parameter. A damping factor α between 0 and 1 is used for
smoothing the message update, in order to prevent oscillations and increase
convergence rate to stable clusters. The use of affinity propagation cluster-
ing is a difference what we did in [58] where clustering is performed using
Normalized Cut ncut [87], which sometimes result in a high number of
small clusters and/or in a big cluster containing almost all of the data and
which is experimentally outperformed by affinity propagation (data are not
reported here).

The clustering step outputs a set of clusters C = {C1, C2, . . .} and a
function ψ : S → C that maps each subgraph to its cluster. Given a sub-
graph s, we call C = ψ(s) the cluster to which s belongs. A cluster C is
expected to represent a functional area and the subgraphs in the cluster are
parts of (possibly different) buildings that share the similar structure and
labels. The clustering results are influenced by the way in which the seg-
mentation is performed, by the cluster algorithm, and by the graph kernel
used.

The semantic maps, the functional graphs, and the clusters constitute
the modelM = {G,H, C} for a specific building type constructed starting
from G.
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7.3.3 Segmentation and cluster evaluation

Our segmentation and clustering steps are implemented1 in MATLAB R2015b.
We present here a quantitative evaluation of the models built by our ap-
proach. Within our context, we consider as desirable the presence of the
following features: a high intra-cluster similarity, a low inter-cluster simi-
larity, a limited number of clusters, a number of clusters that is stable with
respect to the increase of the number of graphs in the dataset G, and a sim-
ilar size for each cluster (i.e., the absence of many small clusters with less
than 5 subgraphs).

We empirically find that a damping factor of α = 0.8 for affinity prop-
agation produces clusters with all the desired properties for our data set of
schools. Remember that affinity φ is calculated according to KWL or KGH.
Clusters obtained using KGH present better features than those obtained
with KWL, but at the expense of a longer computing time. KGH features,
computed on shortest paths, capture the structure of the graphs of our do-
main better than the high-dimensional sparse features computed on subtrees
by KWL. Using KWL, we obtain a higher number of clusters (27 and 12 for
KWL and KGH, respectively, using 50 graphs in G that are segmented by
corr into 287 subgraphs) and sometimes it is not able to correctly catego-
rize all subgraphs (resulting in a highly different number of subgraphs per
cluster). On a i7QuadCore Intel 820M 16GB computer, the entire segmen-
tation and clustering steps take less than one minute using KGH and KWL

on G composed of 50 graphs. Note that clustering is performed only once
and clusters are then stored in the modelM for being sampled later. From
now on, we consider only KGH, which performs better than KWL.

Both segmentation methods ncut and corr perform correctly for the
task, producing a partition of each graph G ∈ G in components of approxi-
matively the same size, by removing a limited number of edges. However,
different segmentation methods result in slightly different clusters. ncut
segments 50 graphs into 207 subgraphs, which are then clustered into 17
clusters. corr results in a higher number of subgraphs (287) but in a lower
number of clusters (12).

These findings are shown in Figure 7.5. Figure 7.5a and Figure 7.5c
show intra-cluster similarity and inter-cluster similarity for clusters ob-
tained after segmentation performed with ncut and corr, respectively.
Figures show heat maps. A heat map is a |C| × |C| matrix where cell (i, j)
is light (dark) if subgraphs in Ci are similar to (different from) subgraphs
in Cj . Similarities between subgraphs are computed using graph kernels.

1Code is available upon request.
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(d) Number of subgraphs in clusters using corr.

Figure 7.5: Results of the clustering process for different segmentation algorithms. The
color of a cell (i, j) in the heat map represents if subgraphs in the cluster Ci are, on
average, similar to (light coloro) or different from (dark color) the subgraphs in Cj .
Bar charts have a column for every cluster in C. Heights of the column correspond to
the number of subgraphs belonging to the clusters.
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High intra-cluster similarity results into light diagonal in the map, where
low inter-cluster similarity results in dark cells outside the diagonal. Fig-
ure 7.5b and Figure 7.5d show the number of subgraphs in each cluster for
ncut and corr, respectively. Every column indicates a separate cluster
and the the height of each column represents the corresponding number of
subgraphs.

Differently from corr, ncut guarantees by design that all subgraphs
have a similar size, i.e., that there are no subgraphs containing only one or
two nodes or, on the other side, subgraphs containing most part of the graph.
Actually, using corr, we obtain such undesirable graph partitioning only
in few cases and, due to the particular structure of the buildings, globally
the partitioning results are similar using the two methods (as in the example
of Figure 7.4).

Figure 7.6: An example of thee clusters obtained using corr for segmentation.

Figure 7.6 shows an example of three clusters obtained using CORR.
Similar subgraphs belong to the same cluster while different subgraphs are
placed in different clusters. Figure 7.7 displays all clusters obtained us-
ing respectively ncut (Figure 7.7a) and corr (Figure 7.7b). Similarity
is computed between all subgraphs using KGH obtaining a similarity ma-
trix of size |S| × |S|. This high-dimensional feature space is then reduced
to a two-dimensional one using a t-distributed stochastic neighbor embed-
ding (t-SNE) [62]. t-SNE models each high-dimensional object with a
two-dimensional point in such a way that similar objects are modeled by
nearby points and dissimilar objects are modeled by distant points. Sub-
graphs belonging to the same cluster are shown with the same color. A
legend which indicates the cluster color is shown at bottom left. It can be
clearly seen that, even in a reduced 2-D dimensional space, similar sub-
graphs are effectively clustered together by our approach, while different
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subgraphs are assigned to different clusters. The 2-D dimensional space is
scaled to the range [0, 1].

7.4 Sampling graphs from a building type model

The model M = {G,H, C} obtained in the previous section can be used
for generating new graph samples representing buildings or their parts. For-
mally, we assume that all graphs G in our dataset G follow the same (un-
known) graph probability distribution P that is shared by all the buildings
of the same type. This is reasonable since G refers to buildings of a single
building type. Sampling a new graph from an unknown graph distribution
P is a Constructive Learning Problem (CLP) [28], which can be seen as the
task of sampling a graph from an empirical conditional probability distri-
bution using an adaptive data-driven procedure. The modelM is thus used
to obtain an empirical probability distribution (which approximates P ) for
the set of graphs G using a hierarchical sampling process. The empirical
distribution is modeled by a Markov Chain (MC) and the sampling process
exploits a Monte Carlo Markov Chain (MCMC) [53]. In order to sample a
new graph Ĝ, the sampling process starts from generating its abstract struc-
ture, namely its functional graph Ĥ , adding incrementally more details,
following, in the reverse order, the segmentation and clustering processes
of Section 7.3. Sampling is composed of several subsequent steps δ, each
one modeling an empirical probability distribution Pδ by using a MCMC
method.

In the following of this section, first, a more formal definition of the
sampling problem is given. Then, we introduce the MCMC method that
approximates the empirical probability distributions Pδ for the sampling
steps. Finally, we describe each sampling step.

7.4.1 Generating graphs from empirical distributions

Given a general domain of graphs G and a finite set of example graphs
G ⊆ G, in this section we define the task of sampling a set of graphs Ĝ ⊆ G
using an adaptive data-driven procedure. Let P be the (usually unknown)
probability distribution associated to G. Let Pθ be an approximation of P
parametrized by θ. Following an approach similar to that by [27], define L
as a non-negative convex function that, given two probability distributions
over G, returns zero if the two distributions are identical and positive values
if the two distributions are different (the larger the values the more different

109



Chapter 7. Modeling building types

(a) ncut.

(b) corr.

Figure 7.7: 2D representation of clusters of subgraphs in S using t-SNE [62]. Points are
scaled to the [0, 1] range for plotting.
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the distributions). We can define an instance of the function L as:

L(P, Pθ) = DKL(P‖Pθ) +DKL(Pθ‖P )

where DKL is the Kullback-Leibler divergence:

DKL(P‖Pθ) =
∑
G∈G

P (G) log
P (G)

Pθ

(Similarly for DKL(Pθ‖P ).)
The sampling problem, following the Constructive Machine Learning

paradigm, is to find a parametrization θ∗ that solves the following opti-
mization:

θ∗ = arg min
θ

L(P, Pθ) (7.1)

Since P and Pθ are both unknown and G has a possibly infinite cardinal-
ity, we consider a finite set of examples G ⊆ G, that are drawn according a
probability distribution PG ∼ P . Let Ĝθ be a sample set of graphs randomly
generated according to Pθ and let fG (respectively, fĜθ) be the probability
distribution estimator for the samples in G (respectively, Ĝθ); we can as-
sume:

fG ∼ PG ∼ P

fĜθ ∼ Pθ

Then, finally, we can approximate (7.1) with:

θ∗ = arg min
θ

L(fG, fĜθ) (7.2)

Then, (7.2) returns the solution of our constructive learning problem.
The parametrization θ∗ can be used to model Pθ∗ , in order to sample

from it a new set of graphs Ĝ. Since Pθ∗ is unknown, in the following
section we describe our proposed procedure to obtain fθ∗ starting from an
initial set of data and we show how it can be used for sampling new data.

7.4.2 Monte Carlo Markov Chains

In our particular context, the set of graphs G ⊆ G represents floors of
buildings. In order to drawn samples from a distribution that approximates
P we use a Metropolis Hastings algorithm, a particular type of MCMC
method [53]. This section provides a general description of the method,
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which is applied, with different parameters, in the four steps of our sam-
pling method. The detailed implementation of the method for each step is
described in the following.

Generally speaking, the Metropolis Hastings algorithm is defined by a
transition model T (g → g′) that specifies, for each pair of states g, g′ ∈ G
the probability of going from g to g′ according to a stationary distribution
Π (note that, when graphs in G are intended as states for MCMC we use
the lowercase symbol g):

Π(G = g′) =
∑
g∈G

Π(G = g)T (g → g′)

The transition model T is defined in terms of a proposal transition dis-
tribution T , that generates, using some edit function, successors of a state g
and then selects randomly the next candidate g′ from these successors. We
can either accept the proposal (and move to g′) or reject it (and stay at g),
using a transition probability A(g → g′). Namely,

T (g → g′) = T (g → g′)A(g → g′) g 6= g′

T (g → g) = T (g → g′) +
∑
g 6=g′

T (g → g′)(1− A(g → g′))

The acceptance probability A(g → g′) reduces to:

A(g → g′) = min
(
1,

Π(g′)T (g′ → g)

Π(g)T (g → g′)

)
Since our proposal distributions are (in first approximation) symmetric, we
have that T (g → g′) = T (g′ → g).

Finally, we approximate Π(g) with a data-driven adaptive Boltzmann-
like function b:

Π(g) ∼ b(g) = e−αΓ(g,G) (7.3)

where G is our set of samples, Γ is a cost function that penalizes config-
urations of g that are different from those in G, and α is a user-defined
parameter (which is set to 1 if not indicated differently). For each step of
the sampling process described in the following, a definition of the pro-
posal transition distribution T (also called transition kernel) and of the cost
function Γ will be provided.

The number of iterations of each MCMC is selected in order to have
reasonable chances that the mixing time is reached (i.e., that the transi-
tion model reaches a stationary distribution). We use an heuristic based on
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the observation that multiple chains sampling the same distribution should,
upon convergence, yield similar estimates, as suggested by [53]. This
method uses the observation that different sets of samples collected at dif-
ferent times should, if the mixing time has been reached, show similar vari-
ance in each of the chains. More formally, we run K separate chains for
τ+M steps starting from different starting points. After discarding the first
τ samples from each chain, the convergence is checked (see [53, p. 522-
523] for details). If the mixing time has been reached, then τ is chosen as
the minimum number of iterations, if not τ is increased by a fixed amount
and the test repeated.

7.4.3 Hierarchical sampling

The hierarchical sampling process that creates a new graph Ĝ from a graph
modelM = (G,H, C) is divided in four main steps:

1. cluster configuration sampling;

2. functional graph sampling;

3. subgraphs sampling;

4. node connections sampling.

A running example of these four steps is shown in Fig. 7.8 and used as a
reference in the following.

Cluster configuration sampling

The first step is the cluster configuration sampling that returns the compo-
sition V̂c of the sampled graph Ĝ in terms of how many subgraphs for each
cluster are present in Ĝ. The cluster configuration of each original graph
G ∈ G is a vector:

V G
c = {vG1 , vG2 , . . . , vG|C|}, vGi ∈ N

where vGi represents the number of subgraphs of G (in which G has been
segmented) belonging to the cluster Ci ∈ C.

Using the Metropolis Hastings algorithm, we start from a random initial-
ization of V̂c = {v̂1, v̂2, . . . , v̂|C|} and employ a transition kernel T1 where,
at each step, one component of the vector V̂c is selected at random and in-
creased or decreased by one unit. Values of each v̂i are bounded in the
interval [0,max

G∈G
vi
G].
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Figure 7.8: An example of the sampling steps for generating a graph Ĝ.
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The cost function Γ1 is defined as:

Γ1(V̂c) =
∑
G∈G

dpw(V̂c, Vc
G)

where dpw is the pairwise vector distance. In (7.3), α is set to 0.7 in case of
ncut segmentation and to 0.55 in the case of corr segmentation. After
τ1 = 300 iterations the sampled vector V̂c is considered as final and the
sampling continues with the next step.

In the example of Fig. 7.8, the sampled cluster configuration is:

V̂c = {0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 2}

where |C| = 12, and is graphically represented in Fig. 7.8A.

Functional graph sampling

In the second sampling step, the sampled functional graph Ĥ = (Ŝ, Û) is
computed from the cluster configuration V̂c. Ĥ is obtained creating a node
ŝi for each subgraph indicated by v̂i and sampling an edge û = (ŝi, ŝj)
between two subgraphs ŝi and ŝj that will be later connected.

This step is performed using the Metropolis Hasting algorithm intro-
duced in Section 7.4.2 by selecting a random initialization for the edges of
Ĥ . The transition kernel T2 is symmetric and consist in three moves: ADD
an edge to the graph (randomly selecting the two nodes ŝi and ŝj to be con-
nected), REMOVE an existing edge (selected randomly), and SWAP a node
in an edge ûk (randomly select ûk = (ŝi, ŝj) and replace ŝj with a different
node ŝt, thus transitioning from ûk to û′k = (ŝi, ŝt)). Each move is chosen
using the following probabilities:

PADD = 1− e−λ1
|Ŝ|
|Û|

ε = 1− eλ2
|Û|
|Ŝ|

PREMOVE = (1− PADD)ε

PSWAP = (1− PADD)(1− ε)
where |Ŝ| and |Û | are the number of nodes and edges in Ĥ , respectively,
and λ1 and λ2 are user defined parameters that are set empirically to reduce
the mixing time of the MCMC. In our experiments, λ1 = λ2 = 0.1.

A transition is either accepted or rejected by evaluating a cost function
Γ2:

Γ2(Ĥ) =
∑
Hi∈H

K(Ĥ,Hi)
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where K is a graph kernel. For this step we use KWL as graph kernel, since
it guarantees similar performance but at a significant lower computational
cost than KGH , and the cost function Γ2 should be evaluated once for every
iteration of the MCMC. The total number of iterations τ2 for this step is
selected to be a random number higher than 2000.

In the example of Fig. 7.8, the generated functional graph Ĥ is shown in
Fig. 7.8B, where the numbers indicate the cluster of each subgraph (node
of the functional graph).

Subgraphs sampling

In the third sampling step, a specific subgraph ŝi ∈ Ci for each node of Ĥ
is selected. This is done by picking with uniform probability a subgraph ŝi
from cluster Ci until v̂i subgraphs are sampled from Ci. Note that a cluster
C can contain several repetition of the same subgraph s, due to its repeated
presence in the graphs G. The subgraphs sampling step is performed in a
single step and does not use the MCMC framework.

In the example of Fig. 7.8, the sampled subgraphs are listed in Fig. 7.8C.
Boxes are highlighted using the same colors for nodes in Fig. 7.8A and B,
and the cluster number is shown at the bottom left of each box.

Node connections sampling

The last step is the node connections sampling, where the final semantic
map Ĝ = (N̂ , Ê) is obtained from the functional graph Ĥ = (Ŝ, Û). N̂
is the set of all the nodes of the subgraphs ŝi sampled in the previous step,
while Ê is initialized with all the subgraphs edges (and with no edges be-
tween nodes of different subgraphs). Then, for each edge û = (ŝi, ŝj) ∈ Û
in the functional graph Ĥ an edge e = {n̂k, n̂l} ∈ Ê between two nodes
n̂k ∈ ŝi and n̂l ∈ ŝj should be created. Ideally, this step is the opposite
of the graph segmentation procedure described in Section 7.2, and a new
connection e should be added where a cut c would have been performed
during segmentation.

Adding a connection e is a local edit operation on the graph Ĝ which
results in a global change in the graph’s layout and in its structural prop-
erties. Given a connection û = (ŝi, ŝj) between two subgraphs ŝi and ŝj
defined in the functional graph, call Sû the set of all possible pairs of nodes
belonging to the two subgraphs:

Sû = {(n, n′) : n ∈ ŝi, n′ ∈ ŝj}
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Each pair of nodes in Sû is a potential candidate for adding a connection be-
tween the two subgraphs connected by û in the functional graph Ĥ . Given
a pair of nodes (n, n′) ∈ Sû and the local neighbourhoods of n and n′ in
Ĝ, the function Φ : Sû → [0, 1] represents the probability that a connec-
tion exists between the two nodes. Φ is computed as a product of different
potentials, exploiting the local structure of the neighbours of the nodes:

Φ(n, n′) = Ξ(n, n′) · Λ(n) · Λ(n′) ·Υ(L(n),L(n′))

The first potential, Ξ(n, n), is based on the local neighbourhood of the
candidate edge (n, n′). We define as Nε(e) the ε-neighbourhood of an edge
e = (n, n′), which is a subgraph composed of the edge e, its two nodes n
and n′, and all the nodes and edges that are at distance ε from n or n′ (dis-
tance is the number of hops). Given the set C of all cuts c performed on the
original graphs in G, we compute the set Q of all their 1-neighbourhoods,
Q = {N1(c) : c ∈ C}. The potential Ξ is then computed as:

Ξ(n, n′) =

∑
x∈Q

k(d(N1(n, n′), x), d̄x)∑
x∈Q

∑
y∈Q

k(d(y, x), d̄x)

where d̄x = 1
|Q|
∑
y∈Q

d(x, y), d(x, y) is the distance between two graphs x

and y computed using a graph kernel (KWL in our case), and k is a Gaussian

kernel k(d′, d′′) = e−
‖d′−d′′‖2

2σ2 (σ = 0.5 in our experiments).
The potential Ξ(n, n′) indicates how a connection between two nodes n and
n′ reconstructs a pattern of nodes (centered in n and n′) similar to those of
nodes close to a cut c performed during the segmentation process. In this
sense we want to enforce that the connection of two nodes n and n′ should
add an edge which can be a good candidate for being cut during a graph
segmentation process as those described in Section 7.3. Since in our graphs
(almost) all of the cuts C are performed on edges connecting two CORRI-
DORs (which are connected to a set of leaf-node ROOMs), 1-neighbourhood
subgraphs can be used to effectively describe a cut c. For graphs repre-
senting different data and with an higher number of connections between
nodes, higher ε-neighbourhoods can be used for generalizing the method to
other domains.

The second potential, Λ(n), is based on the preferential attachment prin-
ciple introduced by [9] (and empirically observed in graphs representing in-
door buildings in [7]), which assigns to each node n a probability of having
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a connection that is proportional to its degree D(n):

Λ(n) =
D(n)∑

n′′∈N̄c
D(n′′)

where N̄c is the set of the nodes that appear in a cut c ∈ C. Λ(n′) is
computed similarly.

The third (and last) potential function, Υ(L(n),L′), is evaluated con-
sidering all the cuts in C. Considering the nodes n and n′ and their labels
L(n) and L(n′), Υ calculates the frequency of a cut c ∈ C between two
nodes with the same labels.

The probability Φ(n, n′) is then used to select, for each edge û between
two subgraphs in a functional graph Ĥ , which pair of nodes n, n′ belonging
to the two subgraphs should be connected. This step is performed using the
MCMC algorithm. A transition kernel T4 selects randomly an edge û from
the set Û of the functional graph Ĥ and selects randomly a pair of nodes
from Sû to be connected according to the following probability distribution:

Pconn(n, n′) =
Φ(n, n′)∑

ṅ,ṅ′∈Sû
Φ(ṅ, ṅ′)

The transition obtained with this edit operation is accepted or rejected ac-
cording to a cost function Γ4:

Γ4(Ĝ) =
∑
G∈G

K(Ĝ, G) (7.4)

where K is a graph kernel. For this last step, the MCMC is run for more
than 100 iterations, after starting from a random initialization of the con-
nections between two nodes in Sû for each û ∈ Û computed using Pconn.
We used KWL as graph kernel in (7.4), since it guarantees similar perfor-
mance, but at a significant lower computational cost, than KGH , and the
cost function Γ4 should be evaluated once for each iteration.

In the example of Fig. 7.8, the final sampled semantic map is shown in
Fig. 7.8D. The edges added in the last sampling step are highlighted in red.

7.5 Evaluation of the sampled graphs

In this section, a quantitative evaluation of the results obtained by our
method in sampling new instances of graphs is presented. The proposed

118



7.5. Evaluation of the sampled graphs

G Ĝcorr Ĝncut
nodes 35.24 (18.33) 40.57 (17.73) 39.75 (16.10)
nodes R 27.84 (15.05) 32.3 (14.40) 31.68 (13.72)
nodes C 7.42 (4.45) 8.37 (4.27) 8.07 (3.16)
path-length 3.33 (0.81) 3.43 (0.59) 3.36 (0.55)
diameter 6.34 (2.30) 6.62 (1.73) 6.38 (1.55)
art-points 8.8 (5.81) 10.04 (5.07) 10.10 (4.30)
assortativity -0.51 (0.20) -0.47 (0.14) -0.44 (0.13)
betw-cen 0.039 (0.011) 0.036 (0.013) 0.036 (0.012)
betw-cen R 0.005 (0.006) 0.005 (0.005) 0.006 (0.006)
betw-cen C 0.181 (0.090) 0.160 (0.065) 0.150 (0.051)
closn-cen 0.328 (0.086) 0.309 (0.054) 0.316 (0.057)
closn-cen R 0.309 (0.077) 0.290 (0.048) 0.296 (0.050)
closn-cen C 0.418 (0.160) 0.384 (0.087) 0.393 (0.084)
eig-cen 0.256 (0.078) 0.239 (0.072) 0.241 (0.069)
eig-cen R 0.197 (0.062) 0.177 (0.056) 0.241 (0.053)
eig-cen C 0.498 (0.181) 0.486 (0.159) 0.502 (0.142)
katz-cen 0.181 (0.045) 0.166 (0.043) 0.166 (0.042)
katz-cen R 0.166 (0.045) 0.152 (0.041) 0.159 (0.040)
katz-cen C 0.241 (0.076) 0.222 (0.056) 0.221 (0.051)

Table 7.1: Values of metrics for original graphs G and graphs generated with the pro-
posed approach using corr and ncut segmentation (Ĝcorr and Ĝncut, respectively).
Entries report average µ over the graphs and standard deviation σ (in parenthesis).
R means ROOM and C means CORRIDOR (see Section 4.3 for details on the labeling
schema).

method has been implemented2 in MATLAB R2015b and executed on a
i7QuadCore Intel 820M 16GB computer.

We use G with 50 labeled graphs (representing schools and introduced
in Section 5.2) and we generate 200 sampled graphs Ĝ. We use either
ncut or corr for segmentation and affinity propagation for clustering,
together with KGH . (Ĝcorr and Ĝncut contain 200 graphs each.) Sampling
is performed using KWL. From preliminary tests we observed that the seg-
mentation method used impacts most on sampling (indirectly, via formed
clusters) and, for this reason, we consider both the segmentation methods
in our tests.

To assess the similarity between the original graphs G and the sampled
graphs Ĝ we compare the average µ and standard deviation σ of the metrics
introduced in Section 5.1 for evaluating the graph structure and computed
on both sets. This allows us to check whether the structure of the generated
graphs is consistent with that of the real buildings present in G.

2Code is available upon request.
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graph
kernel

step
1

step
2

step
3

step
4

KWL 10−1 10−1 10−3 10

KGH 10−1 10 10−3 102

Table 7.2: Computing time (order of magnitude, in seconds) for each sampling step. Step
1 indicates cluster configuration sampling, step 2 indicates functional graph sampling,
step 3 indicates subgraphs sampling, and step 4 indicates node connections sampling.
For steps 1, 2, and 4 the time is intended for a single iteration of the MCMC method
explained in Section 7.4. Steps 1 and 3 do not use graph kernels.

Table 7.1 shows that, for all the metrics, the generated graphs Ĝ are
coherent with the original ones in G, in the sense that no statistically sig-
nificant difference can be noticed for all the metrics. The results show that
our method can sample new graphs with a similar structure as the original
ones. Node importance in graphs Ĝ is consistent with the node importance
of the real graphs. It is important to point out that centrality measures are
relative to the entire structure of the graph and are not dependent on any
local pattern nor on single nodes. Similar centrality measures for G and
Ĝ mean that they actually contain similar graphs. Moreover, the different
values of all four centrality metrics (although more evident for betw-cen)
for nodes ROOM and CORRIDOR (with low and high values, respectively)
indicates that also the roles of the nodes are distributed similarly over G and
Ĝ.

Figure 7.9 displays a visual representation of how graphs in G and Ĝ are
distributed, for both segmentation techniques corr and ncut. Using KWL

we compute the similarity between each graph in Ḡ = G ∪ Ĝ, obtaining a∣∣Ḡ∣∣× ∣∣Ḡ∣∣ similarity matrix. Data are reduced to a two-dimensional feature
space using the same feature reduction algorithm illustrated in Section 7.2,
t-SNE. In both Figure 7.9a and Figure 7.9b the sampled graphs (in orange)
and the original ones (in blue) are similarly distributed, thus providing a
visual confirmation that the two graph sets contain similar graphs.

Table 7.2 reports computing times for the sampling of graphs using our
approach. It emerges that node connections sampling is the most expensive
operation, since, for every iteration of the method and for every connection
in the functional graph between two subgraphs ŝi, ŝj , it computes a score
for each possible connections for every possible pair of nodes n̂k ∈ ŝi and
n̂l ∈ ŝj .

Sampling results obtained using ncut as segmentation method are sim-
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(a) corr.

(b) ncut.

Figure 7.9: 2D representation of graph distributions for graph in G (blue) and in Ĝ (or-
ange) using t-SNE. Points are scaled to the [0, 1] range for plotting.
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Figure 7.10: Six graphs representing real world floor plans of schools from G.
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Figure 7.11: Six graphs of Ĝcorr sampled with our method.
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Figure 7.12: Six graphs of Ĝncut sampled with our method.
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ilar to those obtained using corr. However, when the performed task is to
sample new graphs from scratch, it is advisable to use ncut, since it guar-
antees to divide automatically the graph into subgraphs of similar size and
perform cuts on different types of nodes independently of their semantics,
thus providing more variety in the results when reconnecting the nodes.
Segmentation using corr is designed to facilitate the recognition of a sub-
graph by a robot during the exploration of a building, and it should be se-
lected when our method is used to predict the structure of a partially visited
building given a partial semantic map. An example of this application is
provided in the next chapter.

In order to provide also a qualitative evaluation of our sampled graphs,
we report a set of example graphs extracted from data set G, in Figure 7.10
and, for comparison, some sampled graphs randomly selected from Ĝcorr
(Figure 7.11) and from Ĝncut (Figure 7.12). Real floor plan graphs of G
have a similar structure and a similar label set when compared to those in
Ĝcorr and Ĝncut.

7.6 Discussion

This chapter has presented an approach that builds a generative model
of graphs representing the topological structure and the semantic labeling
of indoor environments and that uses the model to create new instances
of (parts of) buildings. The three main steps of the proposed approach,
namely segmentation, clustering, and sampling, are based on the use of
graph kernels to assess similarity between graphs and on a hierarchical
MCMC sampling algorithm. The experimental validation shows that the
generated buildings, although not identical, share many features with the
original buildings used to create the model and, significantly, have similar
structures. The presented method allows us to sample semantic maps struc-
turally similar to those of real world buildings belonging to a building type.
In the next chapter we propose an application of this setting to partially
visited environments.
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CHAPTER8
Applications of the proposed approach

In this thesis we have presented a framework for reasoning on buildings by
considering their structure and by using as source of knowledge data sets
of indoor environments extracted from floor plans of buildings. In Chapter
3 we show how it is possible to reconstruct the layout of indoor environ-
ments from a 2D grid map obtained by a robot. Chapter 4 and Chapter 5
introduce the basic of a framework for reasoning on indoor environments
that considers each building in relation to those with the same function,
its building type, and to that represents the structure of a building using
a graph. In Chapter 6 we show how it is possible to reason on the entire
structure of building by considering it as a single entity using Statistical Re-
lational Learning techniques. In Chapter 7 we propose a generative model
for building types, which is then used for sampling new graphs belonging
to a building type.

In this chapter we try to put together all the above contributions and give
some ideas about their practical employment. The applications described
here are not exhaustive of the possibilities of our approach, but represent a
significant sample of possible uses.

The first application is presented in Section 8.1, where we discuss how
we can assess the validity of simulation tools by reasoning on the structure

127



Chapter 8. Applications of the proposed approach

Figure 8.1: A partially explored map. Pixel are colored accordingly to the probability of
the occupancy of each cell in the grid map. Dark colors correspond to high probability
of occupation. Frontiers are transition between free space (white) and unexplored
space (gray).

of the simulated environments, using the method from Section 6. We focus
our attention on simulated indoor environments, considering whether or not
the structure of a simulated floor plan of an environment is similar to those
of real world environments of the same type.

The second and third applications regard reasoning about partially ex-
plored maps. Robots, during exploration, incrementally build the map of
an initially unknown environment. A partial map is the map known at a
given time to the robot. Exploration is usually performed by selecting and
exploring the more interesting and near frontiers. An example can be seen
in Figure 8.1.

In Section 8.2 we show how we can use our layout reconstruction method
presented in Chapter 3 for roughly predicting the structure of partially ex-
plored rooms. This is done by identifying partially explored rooms and by
using faces and representative lines identified from the maps (see Section
3.1).

Finally, in Section 8.3 we show how we can combine knowledge on
the explored part of a building with knowledge on its building type by ap-
plying the generative model of Chapter 7 to predict the whole structure of
a partially explored building from which we extract a semantic map repre-
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senting the explored portion, which is used as seed for the sampling process
described in Section 7.4.

As said, these three applications are intended to provide preliminary ex-
amples of the possible applications of the approach described in this thesis.

8.1 Evaluation of simulated environments

Simulations are a powerful tool for robotics because, potentially, they pro-
vide the designers of the experiments full control over all the variables of
the settings [5]. This allows researches to tackle specific problems while re-
ducing the sources of uncertainty that are usually present in the real world.
The simulation tools could also be shared and used by many different au-
thors, facilitating comparison and reproducibility of the results. Accurate
modeling of the real-time interaction between robots and environments is
difficult, but some simulation tools have been shown to do it reliably [21],
avoiding the pitfalls of naïve robot simulations highlighted in [50], where
carefully validated simulations with a proper treatment of noise are shown
to overcome these problems.

A simulated experimental setting, in order to provide results that are
generalizable to real world scenarios, has to posses some of the features of
real environments; in other words a simulated experimental setting has to
be representative of a real world experimental setting. We could say that a
particular experimental setting is as representative as much as its features
are close to those of the class of settings where robots can operate. A fea-
ture is a distinctive characteristic of an environment, such as the presence
of a loop of corridors in an indoor environment. The identification of the
features of experimental settings and of the metrics to measure their simi-
larity, which can be used to precisely define representativeness, is a largely
open issue that depends on the specific areas of autonomous robotics. An
analysis of the concept of representativeness applied to robotics can be find
in our work [4], from which part of this section is taken.

While in most simulations, the physical realism of the environment (e.g.,
the precise reproduction of the physical laws) is carefully taken into ac-
count, the structural plausibility (e.g., if the environment “looks like” its
real counterpart) is not considered. This fact reduces the generalizability
and the effectiveness of experimental results obtained with simulation, and
is one of the facts that limit the diffusion of simulations as a valid experi-
mental tool.

The above limitation can be addressed using an approach similar to that
we have introduced in [4]: the design phase of experiments in simulation
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must take in account what the simulated environment represents, why it is
chosen, and how it relates to its real counterparts. Note that a simulated
environment designed starting from real-world representative data sets can
easily satisfy the representativeness requirements.

8.1.1 Simulation in robotics

In order to evaluate how simulations are used in robotics and what kind
of simulated environments are used, we have considered 57 papers labeled
with the keyword ‘SLAM’ in the proceedings of the IEEE International
Conference on Robotics and Automation (ICRA) 20141.

ICRA is one of the main conferences on robotics and, as such, can
be assumed to present a comprehensive picture of the current research
on autonomous robots. Papers about SLAM (Simultaneous Localization
And Mapping) are particularly fit to discuss the degree of representative-
ness of the environments used in experiments, because they show meth-
ods for building representations of physical spaces starting from sensorial
data (both about the world and about the pose of the robots). Papers about
SLAM are well represented at ICRA (as at the other main conferences on
robotics), because the field has been investigated for years and is now con-
sidered mature, having developed a solid background of methods. At the
same time, interesting research is still going on in SLAM, and new methods
and experimental approaches are continuously proposed.

The 57 papers we analyzed are rather heterogeneous and employ differ-
ent robot platforms (wheeled mobile robots, aerial robots, self-driving cars,
. . . ) equipped with a wide range of sensors (RGBD and traditional cameras,
lidar, GPS, . . . ). For our survey, we considered only 55 papers. The two
excluded papers are about the proposal of a data set for benchmarking 3D
SLAM methods based on RGBD cameras [44] and about the comparison
between some SLAM methods and some topography approaches developed
in the XIX Century [1], respectively, and are thus out of the scope of our
investigation.

Table 8.1 reports some of the results we have collected from the 55 pa-
per analysed. Between testing the methods online on real robot platforms
that move in real environments (or on simulated platforms that move in vir-
tual environments) and testing them offline using data previously collected,
there is a clear preference for the second option, which is adopted by 83.6%
of the papers we considered. Although the two are not mutually exclusive,

1Papers are available at http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?
punumber=6895053, while the keywords are shown at https://ras.papercept.net/
conferences/conferences/ICRA14/program/ICRA14_KeywordIndexWeb.html.
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yes (%) no (%)

offline public data sets
46(83.6)

26(47.2)
8(14.6)

28(50.9)
own-collected data sets 35(63.4) 19(34.5)

online real-world
22(40.0)

8(14.5)
33(60.0) 47(85.5)

simulations 15(27.2) 40(72.7)

Table 8.1: Types of experimental settings considered in our sample of ICRA papers: num-
ber of papers and, in parenthesis, the relative percentage (note that a single paper can
consider many settings).

(a) (b) (c)

Figure 8.2: Three examples of non-realistic simulated environments: (a) a loop, (b) a
labyrinth, and (c) a regular grid. White cells are free space, while black cells are
obstacles.

most of the papers (75%) we analyzed tend to adopt only one approach
(either online or offline). In particular, the use of data sets specifically col-
lected for the purpose of the paper is preferred by the surveyed papers over
the use of publicly available data sets in offline evaluation.

In online evaluation, simulations are preferred over real-world exper-
iments. Approximatively the 70% of papers with online evaluation pre-
sented results obtained via simulations.

By looking at the simulated environments used in the sample of papers
we analyzed we can notice the following attitude of the authors towards
simulation settings. Authors acquire and select data sets more on the ba-
sis of convenience than on a careful analysis of the main characteristics of
the environments. When designing simulated environments, authors tend
to select the key features they want to represent and to create simple simu-
lated environments where these features are presented, keeping the rest as
essential as possible.
Examples of this trend include the following situations.
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• If the simulation is intended to test the ability of a SLAM algorithm
to close loops, the environment is a rectangle of four connected corri-
dors, as in Figure 8.2a.

• If the simulation is intended to test the ability of a robot to navigate in
an intricate context, the environment is a labyrinth, as in Figure 8.2b.

• If the simulation is intended to test the behavior of a robot in a large-
scale scenario, a huge Manhattan grid is created and used as environ-
ment, as in Figure 8.2c.

Only in the 21.5% of the papers we surveyed the used simulated envi-
ronments actually represent real environments. In all the other cases, the
simulated environments are synthetically generated, similarly to those pre-
sented in Figure 8.2. In practice, only some real environmental features are
present in otherwise unrealistic contexts (like a table with a manipulator
floating in an empty space, some boxes and wood walls in an empty room,
. . . ). To sum up, from our analysis emerged how the realism of simulated
environments is rarely taken into account during the set up of an experi-
mental setting, where are often preferred synthetic environments with little
resemblance with their real world counterparts.

8.1.2 Validation of simulated worlds

For some topics, including object-recognition, recognition and tracking of
people, and recognition of human movement, simulation could be poorly
representative and real-world data are needed for experimental assessment
of methods. However, there are situations for which the structure of the
environment is more important than the visual details (e.g., the presence of
many rooms and of a large-scale environment is more important than the
quality of textures used for the doors and of the 3D model of a chair). An
example is coordinated multirobot exploration [17, 24].

Figure 8.3 shows two different experimental settings developed for test-
ing multirobot exploration in a USAR (Urban Search and Rescue) scenario.
These environments have been developed for the RoboCup Rescue Simu-
lation Virtual Robot Competition and have been used in the 2012 and 2014
edition of the event, respectively2. The two maps share many features: both
are developed for the same simulation tool (USARSim), both are designed

2Both maps are available, with some details about their usage, the performance obtained in these set-
tings, and rules of the competition, at http://www.robocuprescue.org/wiki/index.php?title=
VRCompetitions.
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A

B
C

(a)

A

B

C

(b)

Figure 8.3: A simulated office building generated using a real world floor plan as source
(a) and a simulated office building generated without using real-world data as inspi-
ration (b). Black line segments are walls, while traversable areas (offices, corridors,
. . . ) are represented with different colors according to the textures used for displaying
them in the simulator.
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for the same purpose (the Virtual Robot Competition), and both represent
the same kind of environment (a floor of an office building).

Nevertheless, the two maps are different, since one is structurally very
similar to a real-world building (Figure 8.3a), while the other one is not
(Figure 8.3b). To highlight this difference consider the shortest paths lead-
ing from one side to the other side of each map, starting from the top-left
corner (A) to two close locations at the bottom-right corner (B) and (C).
The paths in the realistic building of Figure 8.3a are more linear, since an
office building is usually designed to facilitate the movement and the work
of humans. Instead, in Figure 8.3b, the paths from A to B and from A to C
are very complex, with several turns, and follow completely different routes
than the path in Figure 8.3a. In this sense, the first environment (which is
developed by us using real world buildings from OFFICE as source) is more
structurally plausible than the second one (which is developed using an au-
tomatic procedure for creating a layout of a building from combination of a
set of template rooms, as explained in [105]), at least considering modern-
style buildings.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ROC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Precision-Recall

Figure 8.4: Validation of structural realism of simulated worlds using kLog.

In this section we propose a method, based on our SRL approach, to
test if a simulated environment presents the same structural characteristics
of a similar real-world environment. In the context of our approach, this
can be done by evaluating if the topological and geometrical properties of
spaces of a (floor of a) simulated building are coherent to those of (floors
of a) real-world buildings of the same type. In this way, we can assess if a
simulated environment is structurally realistic.

For this purpose we use the same experimental setting and methodology
presented in Chapter 6 and explained in detail in Section 6.1. More pre-
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cisely, we represent the structure of the building using a relational represen-
tation using a Prolog syntax, which is then provided to kLog [34], which
performs classification considering the entire structure of the building as
a single entity. Results are compared with those obtained by a standard
attribute-value classifier which uses a local approach, Extra-Trees. Infor-
mation on the structure of the environment is given to Extra-Trees using the
two centrality measures. See Chapter 6 for more details of this setup.

We build a data set of all the office environments used during the fi-
nals of the 2012 and 2013 editions of the Virtual Robot Competition of
the RoboCup Rescue Simulation League [82], which represent 6 simulated
environments, designed to test the behavior of robots in an Urban Search
and Rescue task. (Note that we removed from the set of RoboCup environ-
ments the one of Figure 8.3a, since it was developed by us.) In kLog and
Extra-Trees, validation of such data set can be represented as a binary clas-
sification of interpretations (similar to a building classification), in which
each interpretation is categorized as a positive instance of OFFICE or as
negative example of an unrealistic simulation, using as input data all the
interpretations of OFFICE and of RoboCup simulated offices combined to-
gether. Since Extra-Trees do not allow structured prediction, we consider
the most frequent label, as for the building classification task (see Section
6.1). Figure 8.4 shows that kLog is always able to distinguish a real-world
office building from an unrealistic office building simulated in the compe-
tition, outperforming Extra-Trees, as shown in Table 8.2. The results of
Figure 8.4 are obtained using the label schema LR/C , but similar results
are obtained using the more descriptive labeling schemas LF/C/E/S . Com-
parison of these results to the ones obtained by Extra-Trees (Table 8.2)
highlights the limitation of using poor semantic information for different
structural data but with similar local features.

These findings suggest that the structural realism of environments used
in the Virtual Robot Competition could be improved in order to make the
transfer of the results from simulation to the real-world easier. More gener-
ally, our system can be used in other situations to distinguish realistic from
unrealistic simulated environments, thus providing a method for validating
their suitability as experimental testbeds.

8.2 Predicting the layout of partially explored rooms

In this section we propose a method for estimating the layout of a partially
explored room, given the rest of the environment.

Our method follows the approach used for reconstructing the layout of
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data set labels centrality error (%)
Ex-T R + O RC 16.67
Ex-T R + O RC 8.33
kLog R + O RC 0.00
Ex-T R + O FCES 8.33
Ex-T R + O FCES 0.00
kLog R + O FCES 0.00

Table 8.2: Results on simulated data set validation using kLog and Extra-Trees (Ex-T).
R represents the ROBOCUP data set, and O is the OFFICE data set. The labels col-
umn represents the label set used, the centrality column indicates whether centrality
is added (full circle) or not (empty circle) to Vn, while the error column indicates the
classification error with the best performance in bold.

an environment explained in Chapter 3 and exploits the insight that build-
ings present similarities and symmetries between different rooms. The
structure of the building is identified by its set of walls. In Section 3.1
we describe how we can identify walls and display them as representative
lines. Our method follows the one presented in Section 3.1 and it is de-
scribed by using the running example in Figure 8.5.

We start from a metric map M representing a partial (grid) map of an
indoor environment, as the one of Figure 8.5a. As explained in Section 3.1
we use Canny Edge detection and Hough Line transform to detect the line
segments present in the map (Figure 8.5b). After the identification of the
contour (Figure 8.5c), we apply our layout reconstruction method obtaining
a set of representative lines and a set of faces F (Figure 8.5d-8.5e).

All faces F are classified as internal, external or partial. Specifically,
faces called external are discarded. External faces are those with an in-
tersection with the inner area of M (obtained from the contour as seen in
Figure 8.5c) smaller than a threshold σ. Remaining faces are called partial
if they are adjacent to an external face via an edge whose weight is less
than a threshold (0.2 in our experiments) and internal otherwise. Partial
faces cover the area of rooms that are not fully known according to the data
collected in M , as for example during the exploration of a building.

After this classification step, faces are clustered together using DB-
SCAN , eventually obtaining the reconstructed layout R.

We classify as partial all the rooms that are composed by at least one
partial face. Using this method we use faces to approximate the layout of
partial rooms by considering all the faces that are assigned to that room as
its layout. Although simple, this method can provide a initial guess of the
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shape of partially explored rooms based both on the grid map and on the
walls identified in other rooms of the environment.

Figure 8.6 and Figure 8.7 shows six examples of layout reconstruction
starting from partial grid maps. Partially explored rooms are identified cor-
rectly and marked in gray in the layout. The faces composing a partial
explored rooms are added to the reconstructed layout, providing a guess of
the unknown room appearance. These results suggest that our method can
be used for predicting the shape of partially seen rooms, on the basis of
the layout reconstructed from of the rest of the building. Information about
the possible shape of partially seen rooms can be valuable for speeding up
exploration and for providing knowledge to predict the semantic label of
rooms before they have been fully explored.

8.3 Predicting the structure of partially explored buildings

As discussed in Section 2.1 of the methods for place classification follow
an approach that starts from the data perceived by the sensors mounted
on-board mobile robots (e.g., laser range scanners and cameras), extracts
some features from these data, and classifies the area from which the data
have been acquired using (supervised) machine learning techniques. This
approach has demonstrated to be very effective in labeling parts of envi-
ronments already visited by the robots, but usually does not address the
problem on inferring new knowledge on the labels and, more generally, on
the structure of unvisited parts of environments (apart from some remark-
able examples, as [77]), which are then considered as completely unknown
until they are visited.

Availability of semantic knowledge about unvisited portions of environ-
ments can be useful for online planning tasks, like exploration and search.
[8] shows how search methods could be improved using a probabilistic
model of the search environment able to perform place classification and
make local predictions on the neighbouring unexplored spaces. [72] shows
how the knowledge of a rough topo-metric graph of the environment im-
proves the exploration performance in an otherwise unknown environment.
In [79] a correct prediction of the labeling of the unexplored parts of an
environment is shown to improve the exploration performance of a team of
robots. Finally, [73] shows that a prediction of the structure of the environ-
ment based on previously acquired maps can be used for better exploring
challenging and repetitive environments by facilitating loop closures.

While the above studies show that an (approximate) knowledge on the
unexplored space is useful for many online planning applications, meth-
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(a) Metric map. (b) Hough edge transform.

(c) Map Contour. (d) Representative lines and faces contour.

(e) Clustering faces using DBSCAN. (f) Reconstructed partial layout.

Figure 8.5: An example run of our method for predicting the layout of partially explored
rooms. Partial rooms are represented in gray.
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Figure 8.6: Examples of layout reconstruction from partial metric maps (partially ex-
plored rooms are in gray).
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Figure 8.7: Examples of layout reconstruction from partial metric maps (partially ex-
plored rooms are in gray).
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ods for obtaining such knowledge are still largely missing. The approach
proposed by [77] and by [8] consists in performing local predictions, i.e.,
probabilistic predictions of the labels of the unvisited rooms directly con-
nected to the places already visited (and already semantically labeled) by a
robot. The approach of [73], instead, proposes a method for predicting the
structure of unknown parts of large environments by matching the explored
part with previously acquired maps of similar environments.

In this section we adapt the generative model presented in Chapter 7 to
the task of predicting the topology and semantic labels of an environment
given those of a set of explored rooms. Although our approach may not
find an exact prediction of the structure of an unknown environment, it is
nevertheless able to capture some of its fundamental structural properties
(that can be useful to perform several tasks, as discussed above).

We envisage a perspective applications of the proposed approach, in
(multirobot) exploration, in which the proposed generative model can be
used to predict the structure and the labeling of the unexplored parts of a
partially known environment, in order to speed up the exploration, for ex-
ample by better coordinating robots [79].

Consider a setting in which an initially unknown (floor of a) building is
being explored by one or more robots. We assume the following setting for
exploration:

1. exploration starts from one of the rooms labeled as ENTRANCE, ELE-
VATOR, or STAIRS;

2. the robots move to the first CORRIDOR room connected to the en-
trance;

3. each room connected to the corridor is explored using a breadth-first
like exploration approach; the semantic map is expanded accordingly
with the correct semantic labels for the explored rooms;

4. after all the rooms connected to the first corridor have been explored
the robots predict the structure of the unexplored part of the building;

5. the robots move to the nearest corridor discovered in step 3, until the
entire building has been explored.

The sampling process depicted in Section 7.2 assumes that no a priori
knowledge about the predicted building is available, but samples a com-
pletely new instance of a building from an empirical distribution. It is easy
to adapt the process to the case in which some initial knowledge is avail-
able.
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Specifically, assume that a portion of a building is known in form of
some subgraphs {s̄1, s̄2, . . .} which are assigned to clusters {C̄1, C̄2, . . .}.
The cluster configuration sampling is thus performed as reported in Sec-
tion 7.4.3, but considering the value of v̂C̄1

relative to C̄1 as bounded in the
interval [1,max

G∈G
(vi

G)]. Similarly, for v̂C̄2
relative to C̄2 and so on. In the

sampling of the functional graph, the known edges between {s̄1, s̄2, . . .}
are not modified. Subgraphs {s̄1, s̄2, . . .} are considered fixed also during
subgraphs sampling. Connection between known and unknown nodes are
also preserved; for instance, if a corridor connected to five rooms has been
explored and only three of them have been already explored, the two edges
connected to the still unknown rooms are preserved and sampled rooms
are connected to them. Finally, in sampling node connections, known con-
nections between nodes of {s̄1, s̄2, . . .} are considered as fixed and are not
modified during this last sampling step.

For this setup we use corr as segmentation method. This allows us
to automatically detect the subgraphs during exploration, since every time
step 3 above is executed the robots have explored a new subgraph (as ex-
plained in Section 7.2), and corr segments the graphs assuming that sub-
graphs are formed by a CORRIDOR and its neighbouring ROOMs. Under
these premises, the structure of the building is predicted every time a new
subgraph is explored. Prediction is tested on the same G composed of 50
graphs (representing school buildings) of Section 7.5 using leave-one-out
(the explored graph used for prediction is removed from the database when
training the clustering model).

In order to show how our approach can be applied for prediction in the
above setting, we present in detail four examples. Given the importance
of corridors for exploration (see, for instance, [79, 92]), we are particularly
interested in predicting the structure of the corridors of the unvisited part of
the environment. For each example, we display the original graph (repre-
senting the environment to be explored), its corridor structure, and the pre-
dicted graph and its corridor structure during an incremental exploration of
the environment. The known (already explored) part of the original graph
is highlighted with a grey overlay.

As a first example, consider the environment of Figure 8.8a, whose
cross-shaped “skeleton” of corridors is shown in Figure 8.8b (refer to Fig-
ure 7.3 for the labels). Figs. 8.9a-8.9b show the predictions after explo-
ration of the initial corridor and of the connected rooms. Figures 8.10-8.12
show three other predictions made after exploration of larger and larger
parts of the environment. As expected, the more the initial knowledge used
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(a) Real environment. (b) Corridor structure.

Figure 8.8: An environment being explored (first example).

for sampling an environment, the more accurate the predictions when com-
pared to the real environment of Figure 8.8. This holds especially for the
corridor “skeleton” of the building, which is correctly predicted to be cross-
shaped.

We also evaluate how well our approach can predict the labels distri-
bution (i.e., the percentage of rooms with a specific label) in the unvisited
part of the environment. Figs. 8.9c, 8.10c, 8.11c, and 8.12c show the labels
distribution of the real graph of Figure 8.8 (in yellow), the average labels
distribution for all the graphs in G (in green), and the predicted labels dis-
tribution at each step (in purple). Ideally, the purple bars should be more
similar to the yellow ones than to the green ones, meaning that our approach
is able to actually predict the distribution of labels for a given environment
and does not simply return a “blind” prediction based on the average of la-
bels distributions of the initial graphs. This is actually the case for the most
relevant labels, especially when the exploration proceeds. For instance, see
the corridors and the classrooms in Figure 8.11c and Figure 8.12c.

The second example, a building with several loops of corridors (two
loops of corridors and a third one closed by a cafeteria), is shown in Fig-
ure 8.13 and in Figures 8.14-8.16. Also in this case, the loops of corridors
that represents the “skeleton” of the environment are predicted correctly
by our approach after step 1 of exploration. The other two examples can
be seen in Figure 8.17 and Figures 8.18-8.19 (third example) and in Fig-
ure 8.20 and Figures 8.21-8.22 (fourth example). Note that all the above
examples (and in several other tests that are not shown here), the prediction
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(a) Predicted semantic graph after step 1. (b) Predicted corridor structure after step 1.
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(c) Labels distribution after step 1.

Figure 8.9: Predictions made after one of four steps of exploration for the environment of
Figure 8.8.
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(a) Predicted semantic graph after step 2. (b) Predicted corridor structure after step 2.
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(c) Labels distribution after step 2.

Figure 8.10: Predictions made after two of four steps of exploration for the environment
of Figure 8.8.

145



Chapter 8. Applications of the proposed approach

(a) Predicted semantic graph after step 3. (b) Predicted corridor structure after step 3.
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(c) Labels distribution after step 3.

Figure 8.11: Predictions made after three of four steps of exploration for the environment
of Figure 8.8.
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8.3. Predicting the structure of partially explored buildings

(a) Predicted semantic graph after step 4. (b) Predicted corridor structure after step 4.
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(c) Labels distribution after step 4.

Figure 8.12: Predictions made after four steps of exploration for the environment of Fig-
ure 8.8.
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(a) Real environment. (b) Corridor structure.

Figure 8.13: An environment being explored (second example).

is not accurate with respect to the exact shape of the unvisited environment,
but nevertheless it captures well the structure of the building. This is sound
with the observation at the core of the idea of building type (see Chapter 4),
namely that every school building is different but all school buildings share
some similarities, which are actually captured by our model and approach.

Note finally that the kind of predictions made with our approach and
discussed in this section cannot be attained with the methods performing
local predictions (recall Chapter 2), because they can only predict the pres-
ence and the labels of nodes adjacent to the known nodes. Moreover, the
predictions obtained with our approach are not limited to be equal to por-
tions of the initial buildings in G (as in [7]), but are new compositions of
the subgraphs of the initial buildings.

8.4 Discussion

In this section we have introduced three applications of our approach in-
volving the validation of simulated environments and inference of new
knowledge from partially explored maps.

These three proposed approach are intended to be indicative examples
of the possible applications of our method and are not an exhaustive dis-
cussion of what can be potentially done with it. This is particularly true
when discussing the possible use of predicted knowledge about partially
explored environments. Although preliminary results are promising, it is
still untested how knowledge on partially visited environment could be used
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8.4. Discussion

(a) Predicted semantic graph after step 1. (b) Predicted corridor structure after step 1.
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(c) Labels distribution after step 1.

Figure 8.14: Predictions made after one of three steps of exploration for the environment
of Figure 8.13.
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Chapter 8. Applications of the proposed approach

(a) Predicted semantic graph after step 2. (b) Predicted corridor structure after step 2.
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(c) Labels distribution after step 2.

Figure 8.15: Predictions made after two of three steps of exploration for the environment
of Figure 8.13.
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8.4. Discussion

(a) Predicted semantic graph after step 3. (b) Predicted corridor structure after step 3.
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(c) Labels distribution after step 3.

Figure 8.16: Predictions made after three of exploration for the environment of Fig-
ure 8.13.
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Chapter 8. Applications of the proposed approach

(a) Real environment. (b) Corridor structure.

Figure 8.17: An environment being explored (third example)

by autonomous mobile robots and what kind of improvements it could pro-
vide. Following this direction, an application of these examples to tasks
such as search, (multi)robot exploration, and evacuation of buildings can
be interesting in order to evaluate their impact. Future works involve test-
ing the presented methods for predicting partially explored maps on real
world robots and include identification and analysis of possibles trade-offs
between prediction and exploration in online applications.
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8.4. Discussion

(a) Predicted semantic graph after step 1. (b) Predicted corridor structure after step 1.
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(c) Labels distribution after step 1.

Figure 8.18: Predictions made after one of two steps of exploration for the environment
of Figure 8.17.
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Chapter 8. Applications of the proposed approach

(a) Predicted semantic graph after step 2. (b) Predicted corridor structure after step 2.
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(c) Labels distribution after step 2.

Figure 8.19: Predictions made after two steps of exploration for the environment of Fig-
ure 8.17.
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8.4. Discussion

(a) Real environment. (b) Corridor structure.

Figure 8.20: An environment being explored (fourth example).
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Chapter 8. Applications of the proposed approach

(a) Predicted semantic graph after step 1. (b) Predicted corridor structure after step 1.
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(c) Labels distribution after step 1.

Figure 8.21: Predictions made after one of two steps of exploration for the environment
of Figure 8.20.
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8.4. Discussion

(a) Predicted semantic graph after step 2. (b) Predicted corridor structure after step 2.
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(c) Labels distribution after step 2.

Figure 8.22: Predictions made after two steps of exploration for the environment of Fig-
ure 8.20.
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CHAPTER9
Conclusion and future works

Understanding the environments in which they operates is a fundamental
ability for autonomous mobile robots.

When we consider indoor tasks, robots have to inhabit environments that
are specifically designed for human activities, namely buildings. Buildings
are strongly structured environments that are organized in regular patterns.

One the ways that have been developed in the last years to enable a
robot to perceive and interact with an indoor environment is to represent it
through a semantic map. In this dissertation, we dealt with semantic maps
that identify rooms, represent how rooms are connected, and assigns to each
room a semantic label indicating its function. Semantic maps are usually
developed incrementally by integrating perceived data, also considering the
metric map obtained from SLAM. This mainstream approach is centered on
the robot perception and often implies that what has not been seen by the
robot does not exists, adopting in a sense, a closed world assumption on
the environment. This form of interaction with the environment is radically
different from that of humans, who can easily navigate and comprehend the
structure of buildings even without having seen them before.

The main contribution of this work aims at modeling and using knowl-
edge about the structure of buildings, which is often neglected when build-
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Chapter 9. Conclusion and future works

ing semantic maps, for increasing the capabilities of robots when interact-
ing within indoor environments. By addressing some current limitations of
the state-of-the-art methods in semantic mapping, our long-term goal is to
make a step towards filling the gap between how humans and robots interact
with the environment they inhabit.

Along the chapters of this thesis, we defined and modeled the concept of
structure of a building following two insights: consider buildings as single
entities, thus performing global reasoning on entire buildings, and consider
the set of buildings with the same function together, in order to identify
common features.

Starting from these premises, at first we have presented a method that
extracts the structure of a building from a metric map acquired by a robots.
This task is performed by extracting information about the straight walls
that compose the environment and using this knowledge for segmenting
the metric map into a set of separate rooms. This knowledge is used to
reconstruct the layout of a building from its metric map. The layout of a
building is an abstract geometrical representation of its floor plan which ap-
proximates the metric map, while reducing possible inaccuracies caused by
SLAM. From the reconstructed layout, we are able to retrive the topological
map of the environment and a feature vector representing the geometrical
characteristics of each room.

We have then introduced the concept of building types as the set of build-
ings which have the same function (Chapter 4). We shown how the structure
of buildings is strongly related to their type, and that rooms belonging to
the same building type are similar between them, while room belonging to
different building types can be very different. Using the concept of model
floor plan we described how it is possible to retrieve useful knowledge for
training semantic mapping algorithms from data sets of floor plans of build-
ings belonging to the same type.

By representing buildings as graphs, we underlined the difference in role
and importance of ROOMs and CORRIDORs, and we applied such findings to
the reconstructed layout (obtained from Chapter 3) for obtaining a semantic
map of the environment.

Using a kLog, a SRL tool, we performed semantic mapping by consider-
ing all the rooms of a building altogether, thus promoting a global approach
(Chapter 6). We used this framework for introducing and performing novel
tasks, namely building classification, in which we apply a semantic label
to an entire environment representing its function, its building type. We
have also shown how reasoning on the structure of buildings can be used to
assess the validity of simulated environments used in robotics and deciding
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if a simulated environment is similar (or not) to real world environments.
Finally, using graph kernels, we developed a model for sampling new

instances of floors of buildings given a set of examples (Chapter 7). Starting
from a data set of graphs representing buildings of a building type, we are
able to identify their common structure and sample new instances of similar
buildings.

We concluded by proposing some applications of our approach for infer-
ring new knowledge on partially explored environments (Chapter 8). This
is done by predicting the layout of a partially explored room and by pro-
viding a prediction of the structure of the corridors of the unseen portion of
partially explored environments.
Possible extensions of the proposed contributions regard a further inves-
tigation on the concept of building structure. The results presented here
are intended to be a step towards building semantic mapping systems that
can potentially be employed in every environment. To reach this ambitious
goal, however, a number of further issues need to be addressed, starting
from collecting data sets comprising even more building types (for exam-
ple, HOSPITALS and MALLS) and to investigate thoroughly the application
and impact of a large data sets representing building types as source of
knowledge for semantic mapping. This could be done, for example, by
integrating in a standard semantic mapping framework knowledge repre-
senting the building structure (as we presented in Chapter 6). Using the
reconstructed layout of Chapter 3, we can derive new sets of relations be-
tween different parts of an environment (e.g., identifying symmetries be-
tween parts of building) and extending of the semantic representation of
buildings to involve multiple relations between nodes, beyond adjacency.
Objects identified using object recognition techniques can be used to en-
rich the relational representation of a building presented in Chapter 6 by
better characterizing each room’s function.

Similarly, it can be interesting to combine our layout reconstruction
method of Chapter 3 with standard room segmentation approaches to inves-
tigate if better performance can be obtained by looking both at the global
structural features and at the local features of the buildings. Moreover, we
would like to carefully assess the performance of our layout segmentation
method in presence of noise and large occlusions in metric maps and to ex-
tend it to 3D point clouds as input data, possibly integrating our representa-
tive lines in 2D with wall candidates identified as planes in 3D. Finally, we
plan to integrate the reconstructed layouts with knowledge obtained from
data sets representing building types and the generative models presented
in Chapter 7 for performing semantic classification of rooms and for better

161



Chapter 9. Conclusion and future works

predicting the layout of partially explored rooms.
Reasoning about unexplored parts of the environment is still a largely

unaddressed issue for autonomous robotics heretofore. In this work we
have introduced a set of preliminary applications of our contributions in
this direction. A comprehensive analysis of the benefits of obtaining (pos-
sibly inaccurate at level of single rooms, but accurate at level of structure)
semantic knowledge about unvisited parts of the environment can provide
useful insights on how to bridge the gap between our understanding of how
human beings and robots interact with indoor environments.
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