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With seven thousand-year-olds, our burden carry.
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Abstract

Novel applications of MEMS technology require devices featuring smaller dimen-
sions. When the dimensions of polycrystalline structures become comparable to
the average grain size or to the fabrication inaccuracies, issues related system per-
formance can be reported for the inertial MEMS. Not only the overall behaviour
of the device turns out to be affected by a large scattering, but also the sensitivity
to imperfections is increased. In this work, a comprehensive study of the physics
underlying system performance at the micro scale is provided. To this aim, a set
of MEMS test devices is fabricated, and the results are analyzed by means of both
analytical and numerical approaches.

The designed experimental campaign is consisted of several on-chip test de-
vices realized by means of common microfabrication techniques. The main goal
of these devices is to investigate the apparent mechanical properties of a polysili-
con micro beam as the fundamental structural component of MEMS applications.
The micro beams feature a width of 2 µm which accommodates, in average, only
3-4 silicon grains. Actuation and sensing are realized using standard electrostatic
methods, similar to those in the commercial applications. The electromechanical
responses of several devices have been recorded showing relatively large scatter-
ings, despite their nominally identical specifications. Such observation can be
due to the differences i) in the material properties of the beams due to their mi-
crostructure (polysilicon morphology), or ii) in the device geometry originated
from fabrication inaccuracies.

In order to investigate the effects of the variations of material properties,
Monte Carlo simulations are employed, taking into account the polysilicon ran-
dom morphology. The results of these simulations demonstrate some degree of
dependency of the electromechanical response on the polysilicon film properties,
but they also show that the large scatterings cannot be explained on material
properties ground only; the fabrication inaccuracies have a key role in the exper-
imentally observed scatterings.

Taking into account both material properties variations and fabrication inac-
curacies, parametric analytical/numerical models are henceforth provided for the
test devices. Dealing with the unknown parameters of the models as determin-
istic or stochastic variables, several parameter estimation techniques are adopted
in this work, including Levenberg Marquardt, genetic algorithm, particle filtering
and transitional Markov chain Monte Carlo (TMCMC). Based on the experimen-
tal measurements, the unknown parameters are successfully estimated for each
specimen.
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Finally, a non-intrusive computation reduction method coupled with the TM-
CMC is used for Bayesian inverse modelling and uncertainty quantification for
this specific test device. The proposed computation reduction method is a syn-
ergy between the proper orthogonal decomposition (POD) and the kriging meta-
modelling. This method constructs a reduced model of a finite element one at
a very low computational effort and high accuracy level, while the TMCMC is a
stochastic method that takes the measurements error into account and provides,
not the value of the unknown parameter, but its probability distribution. The
successful applicability of this method is shown for the actual measurements of
the MEMS test device.
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µm (dashed line), with E1 = E2 = Ē. . . . . . . . . . . . . . . . . . 96

xviii



LIST OF FIGURES

6.3 Evolution of the estimates of (top) O and (bottom) E, at varying
filter initialization. Blue dashed lines: rotational actuation through
VR; orange solid lines: lateral actuation through VL. (a) Specimen
#2, leading to consistent final estimates, and (b) specimen #5,
leading instead to non-consistent results. . . . . . . . . . . . . . . . 97

6.4 Specimen #2, rotational actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of
estimates represented by blue curves in Figure 6.3(a). . . . . . . . 99

6.5 Specimen #2, lateral actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of
estimates represented by orange curves in Figure 6.3(a). . . . . . . 100

6.6 Specimen #5, rotational actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of
estimates represented by blue curves in Figure 6.3(b). . . . . . . . 101

6.7 Specimen #5, lateral actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of
estimates represented by orange curves in Figure 6.3(b). . . . . . . 102

7.1 Initial offset displacement parametrized by u0 and θ0. Displace-
ments not to scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2 RR case, VR =37 V, variation of the device response at varying (a)
overetch O, (b) Young’s modulus E and (c) rotation offset θ0. . . . 112

7.3 LL case, VL =15 V, variation of the device response at varying (a)
overetch O, (b) Young’s modulus E and (c) rotation offset θ0. . . . 113

7.4 Effect of initialization on the estimated parameters: (a) Overetch
O, (b) Young’s modulus E and (c) rotation offset θ0. . . . . . . . . 115

7.5 (a) Convergence of the objective discrepancy function at increasing
generations, and (b) close-up of the plot and best score trend. . . . 116

8.1 Flow chart of operations to be performed in a POD-kriging proce-
dure with k number of unknown parameters, n number of snapshot
(FE simulation based on predefined parameters) and m number of
output quantities from FE model (discretized response curve). . . . 134

8.2 Ilustration of Clenshaw-Crutis sample points distribution in the
case (a) of two dimensional, and (b) of three dimensional problem. 138

8.3 Ilustration of Chebyshev sample points distribution in the case (a)
of two dimensional, and (b) of three dimensional problem. . . . . . 139

8.4 Ilustration of verification points (red circles) along the (a) Clenshaw-
Crutis, and (b) Chebyshev sample points distribution (black dots). 146

xix



LIST OF FIGURES

8.5 Comparison between the output of direct FE model and its POD-
kriging approximation using two different sparse grids; Clenshaw-
Curtis (CC) and Chebyshev (Cheb). . . . . . . . . . . . . . . . . . 147

8.6 Comparison between a FE model output and its POD representa-
tion by the first two prevailing modes. . . . . . . . . . . . . . . . . 148

8.7 TMCMC samples generated from the prior (left hand side) and
posterior (right hand side) PDF of (a) RR case, and (b) LL case
for the specimen #2. . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.8 Contour plot of the posterior PDF and corresponding histograms
of (a) RR case, and (b) LL case for the specimen #2. . . . . . . . 151

8.9 Comparison between the measured response of specimen #2 and
model response using the estimated parameters by TMCMC for (a)
RR case, and (b) LL case. . . . . . . . . . . . . . . . . . . . . . . . 152

8.10 TMCMC samples generated from the prior (left hand side) and
posterior (right hand side) PDF of (a) RR case, and (b) LL case
for the specimen #5. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.11 Contour plot of the posterior PDF and corresponding histograms
of (a) RR case, and (b) LL case for the specimen #5. . . . . . . . 154

8.12 Comparison between the measured response of specimen #5 and
model response using the estimated parameters by TMCMC for (a)
RR case, and (b) LL case. . . . . . . . . . . . . . . . . . . . . . . . 155

xx



List of Tables

2.1 Elastic constants of silicon at room temperature [Brantley, 1973]. . 16

3.1 Geometric dimensions of the device. . . . . . . . . . . . . . . . . . 34

5.1 Elastic constants for comparison cases. . . . . . . . . . . . . . . . . 65
5.2 Estimated distribution for E and G via MC simulations of a 2× 2

(µm)2 SVE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Estimated parameter values through particle filtering. . . . . . . . 103

7.1 Estimated parameters values through GA. . . . . . . . . . . . . . . 117

8.1 Number of sampling points by Smolyak algorithm at different di-
mensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xxi



page intentionally left blank



1
Introduction

1.1 Background and motivation

The advances in the field of integrated circuits and semiconductors in the past

decades not only affected the electronics industry, but also had a direct impact on

the emergence of a wide range of micro-sized devices which we know today as mi-

croelectromechanical systems (MEMS) [Gad-el Hak, 2001]. They greatly benefit

from their small size, short time response, low energy consumption and low cost

due to their mass production techniques. Combining the electronic and structural

components, MEMS have been outperforming the conventional technologies at a

variety of engineering applications like accelerometers, magnetometers, scanners,

pressure sensors and gyroscopes [Hsu, 2008, Choudhary and Iniewski, 2013].

Due to the ever increasing concerns on economical efficiency, environmental

policies and sustainability, there is a great demand for novel sensing solutions (e.g.

low cost and low energy consumption). These incentives have led to additional at-

tention to the potentials of the MEMS applications while imposing stricter design

constraints, such as smaller dimensions, elevated signal-to-noise ratio and lower

energy consumption. To address the aforementioned issues, a greater push towards

ever smaller and novel MEMS devices, featuring innovative fabrication processes

and new materials, is necessary. However, the success of these MEMS devices crit-

ically hinges on how reliable and predictable their performance is [Brand et al.,
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2013].

While these devices offer great potentials, their small dimensions set new chal-

lenges which one does not usually encounter at the macro-size applications. The

miniaturization of the mechanical components may intensify uncertainty issues

on the system performance linked to the mechanical or geometric properties of

the final fabricated devices [Brand et al., 2013]. The small dimensions of minia-

turized devices can be in fact on the same order of fabrication tolerances or the

characteristic length of material heterogeneities (grain size, for instance). There-

fore, improvement of our understanding on the devices’ operational performance

is always needed to design innovative devices [Pantano et al., 2012].

The mentioned issues show the importance of the fundamental understanding

of the physics of MEMS performance in the development of ever smaller devices

to meet the current industry expectations. For this study, experimental meth-

ods are indispensable. Moreover, correct interpretation of experiments requires

a thorough understanding of the underlying theory and therefore they have to

be combined with calculations and analytical forecasting, possibly in a stochastic

framework.

1.2 Objectives and scope

The main objective of this work is to address the issues related to the performance

of MEMS devices when their designed dimensions are decreased. This objective

is met by studying the sources of mechanical uncertainties in MEMS thin films

response through the comparison between experimental tests (with an ad hoc

developed test device) and analytical/numerical simulations, accounting also for

effective parameters estimation techniques. The uncertainties considered here in

this work are collected in two broad groups:

� a) material related, i.e. linked to the intrinsic heterogeneity of the material;

� b) geometric, i.e. due to the limits of the production process, such as

tolerances.

The plan is to study these uncertainties when the the desired dimensions of the

MEMS components are comparable to the material intrinsic length scale (e.g.
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grain size) or to the scale of the fabrication inaccuracies (e.g. fabrication toler-

ances).

Experimental investigations are first carried out by adopting MEMS test de-

vices which feature miniaturized components (on the order of 2 µm). These de-

signed test devices are fabricated using polycrystalline silicon (polysilicon), which

is currently one of the most common materials (along with mono crystalline sili-

con) in the MEMS technology. The experimental set-up performs bending tests

on micro cantilever-like specimens featuring two different lengths. The empha-

sis is put on the simplicity of the device and on conventional actuation/sensing

techniques to simulate commercial MEMS. Different testing configurations (un-

der alternative loading methods) are devised to provide data redundancy, which

is useful for validation purposes. The device allows to study uncertainties related

either to the material properties variations or to the fabrication inaccuracies. The

experimental results, in terms of electromechanical responses of the devices, are

presented for two micro beam lengths to explore the effect of geometry on the

measurements. Due to the presence of the aforementioned uncertainty sources,

experimental responses are not identical, though the specimens for each beam

length are nominally identical. These observations yield experimental evidence

on the significant effects of uncertainty sources on the operational performance

of MEMS devices when their components are miniaturized (to the same order of

fabrication tolerances or the characteristic length of the material heterogeneities).

As far as material related uncertainties are concerned (i.e. uncertainties linked

to the intrinsic heterogeneity of the material), an investigation is conducted on

the possible effects of polysilicon elastic properties variation on the experimental

measurements. First, bilateral bounds on the electromechanical responses are cal-

culated using the maximum variations of polysilicon elastic properties. Then, in

a more detailed statistical study, two sets of Monte Carlo (MC) simulations are

carried out using either a finite element (FE) model or an analytical model. In

the former, the variations in polysilicon morphology are explicitly modelled to be

used in the MC simulations. In the latter, a preliminary study is done on a set

of statistical volume elements (SVEs) of polysilicon to calculate the probability

density functions (PDFs) of their elastic properties. These PDFs are then fed

into the MC simulations using the analytical model. The results of these two sets
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of MC simulations are presented for the two specimen lengths allowing only for

material properties variation and compared to the experimental measurements.

Through this study, it is observed that the uncertainties due to the material prop-

erties variations intensify in the smaller specimens; relevant MEMS performance

issues may arise as the dimensions of their components shrink. Similar exper-

imental evidences at scales comparable to the considered polysilicon grain size

have been only reported in works of another team [Cho and Chasiotis, 2007, Cho

et al., 2005] that, unlike the present on-chip method, uses digital image correlation

(DIC) analysis of atomic force microscopy (AFM) to measure displacement field,

developed in their samples.

The relevant geometric inaccuracies of the test device (i.e. due to the limits of

the production process) are taken into account, instead, through analytical or nu-

merical models. Dealing with unknown parameters as deterministic or stochastic

variables, several parameter estimation methods are adopted in this work, in-

cluding Levenberg Marquardt algorithm, genetic algorithm, particle filtering and

transitional Markov chain Monte Carlo (TMCMC) method. These methods offer

different advantages depending on the way they handle the unknown parameters

(i.e. deterministic or stochastic), on their computational effort demand (i.e. num-

ber of required simulations) and on the way they handle the measurement data

(i.e. on-line or off-line1). To validate the estimations of the unknown param-

eters (related either to material properties or geometry), the model parameters

for each specimen are independently estimated twice, according to two different

sets of measurements, and successfully compared to one another. To the best of

author’s knowledge, the use of the particle filtering and the TMCMC technique

has not been reported when dealing with MEMS applications. These methods,

by allowing for measurement errors to affect the parameter estimation process,

return parameter distributions rather than parameters value only; therefore, they

can be advantageous over the classical algorithms (i.e. least squares minimization)

which do not fully accommodate the possibility that a given set of measured data

can be subjected to the sources of uncertainties [Green and Worden, 2015].

1 The on-line parameter estimation algorithms update the estimates of the parameters of a
model every time new experimental data (e.g. observation) is available during the parameter
estimation operation. On the contrary, in off-line estimation, all the input/output data via
experiments are first collected, and the model parameters are then estimated only once.
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In the above studies, it is also attempted to assemble a novel framework for

Bayesian parameter estimation whose computational effort is kept low by using

model order reduction techniques. Since Bayesian approaches require a large

set of model response evaluations at varying parameters (uncertainties) [Yuen,

2010], a reduced order modelling of the system is envisaged. An efficient syn-

ergy of a proper orthogonal decomposition (POD) method [Sirovich, 1987] and a

kriging metamodel [Sacks et al., 1989a] is adopted, to form a non-intrusive tech-

nique drastically reducing the computational burden of a high-fidelity model and

achieving high speedup. The effectiveness of the POD-kriging approach hinges

on the adopted sampling strategy to train the reduced model. To avoid the well-

known curse of dimensionality1, we employ a sequential sampling strategy based

on Smolyak sparse grids method [Smolyak, 1963]. Beside the huge speedup of

the calculations, POD-kriging can be easily merged into the available computa-

tionally expensive models without any substantial modification. The efficiency

and effectiveness of the proposed framework (i.e. the POD-kriging TMCMC) is

verified via a set of experimental tests. It is shown that the algorithm successfully

i) constructs the relevant reduced model and ii) identifies the parameters complex

distributions based on the measurement data at a low computational cost.

It is worthwhile mentioning that the kriging metamodelling has been already

coupled with the POD for computational reduction in computational fluid dy-

namics (CFD) [Braconnier et al., 2011, Margheri and Sagaut, 2016]. The POD

decreases the cost of constructing kriging metamodel, specially when the high

fidelity model generates many outputs. On the other hand, an adoption of the

kriging-TMCMC is presented in [Angelikopoulos et al., 2015] and successfully

tested in structural dynamics using pseudo-experimental data to obtain param-

eters of a finite element model. In this thesis, the POD-kriging is instead used

along the TMCMC algorithm, and differently from the approach in [Angelikopou-

los et al., 2015, Margheri and Sagaut, 2016], a simpler sequential sampling method

is adopted to construct the POD-kriging model. The capabilities of the proposed

method are demonstrated by parameter identification based on actual experimen-

1 Curse of dimensionality refers to the exponential increase in volume associated with adding
extra dimensions to a mathematical space. In sampling, it implies that the number of required
samples often grows exponentially with the number of unknown parameters.
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tal measurements.

1.3 Organization of the thesis

The investigations are structured in the following chapters.

� Chapter 2 presents a concise overview of the MEMS devices, the fabrica-

tion process adopted in the current work and the mechanical properties of

polysilicon. Accordingly, the existing literature addressing the evidences of

uncertainties in the performance of polysilicon MEMS devices is reviewed.

The chapter finishes with a list of available experimental tests for MEMS

characterization.

� Chapter 3 describes thoroughly the developed test device characteristics

and its operational principles. Two specimen geometries are tested using

ten samples for each one, and the measurements are reported accordingly

in terms of static capacitance change versus the actuation voltage. A great

amount of scattering among the specimens are recorded despite the nomi-

nally identical features of the specimens, which demonstrates the presence

of the uncertainty sources in the devices.

� Chapter 4 outlines the details of the analytical and the numerical models

developed for the test device. Their outputs are compared, showing that,

due to the adopted simplifications, the numerical model yields results in

better agreement with the experimental measurements.

� Chapter 5 presents the overall bounds on the electromechanical response

of the devices, based on the maximum variation of polysilicon mechanical

properties. Next, two sets of Monte Carlo simulations are adopted, to relate

the variations in the polysilicon morphology and grain orientations to the

scatterings observed in the electromechanical responses. It is shown that

the impact of this source of uncertainty (i.e. variations in the mechanical

properties) is intensified for the smaller specimens (which is not often ex-

pected in relatively large structural components with respect to the grain
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size). It is also concluded that the effects of fabrication inaccuracies must

be taken into account to explain the measured data.

� Chapter 6 proposes a particle filtering approach for stochastic parameter

estimation allowing for two prevailing unknown parameters: the Young’s

modulus and a fabrication inaccuracy related term called over-etch. The

sensitivity of the responses to the variation of these two unknown parameters

is firstly investigated and then a particle filter is adopted to estimate their

values for each single specimen, based on the relevant measurements. The

parameter estimation is individually carried out for two measured responses

for each specimen, and the estimated parameters are compared as a cross-

validation test of the consistency of estimated parameters. It is seen that

the particle filter, as an on-line parameter estimation method, is stable in

terms of the estimations in the present problem, but the two parameters are

not sufficient to accommodate the experimentally observed scatterings.

� Chapter 7 takes into account another geometric source of uncertainty in

addition to the previous two, the rotation offset of the specimen. Among re-

maining possible uncertainty sources, the rotation offset is more likely to be

present in the fabricated devices and its effect in the device response can be

important. Unlike the previous chapter, two deterministic and intrinsically

off-line parameter estimation methods, namely a genetic algorithm and the

Levenberg-Marquardt algorithm, are employed. It is shown that, by adding

the third parameter in the formulation, the genetic algorithm can carry out

a successful estimation; a remarkable improvement in the consistency of the

estimated values is also obtained.

� Chapter 8 proposes a framework for a model order reduction and proba-

bilistic parameter estimation technique. First, a comprehensive review on

the available reduction methods is provided and then the adopted POD and

kriging metamodel are explained in detail. Next, a short review of Bayesian

inference methods is addressed and the TMCMC is employed in conjunction

with the opted model order reduction. The exemplary results of the pro-

posed method for the experimental measurements are reported, exhibiting

the capabilities of the POD-kriging TMCMC.
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� Chapter 9 summarizes the achieved results and presents conclusions and

prospects for future work.
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2
MEMS and uncertainties

2.1 Introduction

Dealing with mechanical systems at the micro scale needs special attention due to

the relevant uncertainties. In this regard, we initially provide a brief introduction

to microelectromechanical systems (MEMS) and their common fabrication process

in Section 2.2. Since polysilicon is by far the most widely used structural material

for the deformable components in such systems, the basic mechanical properties of

single crystalline silicon and polycrystalline silicon, also known as polysilicon, are

reviewed in Section 2.3. Thereafter, Section 2.4 provides a list of possible sources

of uncertainties in the MEMS operational performance, and Section 2.5 describes

some standard mechanical characterization techniques at the micro scale available

in the literature. This chapter finishes with some concluding remarks gathered in

Section 2.5.

2.2 MEMS and microfabrication

MEMS technology has been a successful engineering field since late eighties. Nev-

ertheless, the first attempts to develop micro scale systems can be traced back

to 1967 when [Nathanson et al., 1967] proposed first silicon based mechanical

micro-device that never commercialized. It was late seventies when the first suc-
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cessful MEMS were manufactured: gas microchromatographs (1975), inkjet head

printers (1977), micromirrors (1980), and read/write hard disk heads (1981) [Pe-

tersen, 1982]. The MEMS technology experienced a boost only by the end of

nineties when advanced manufacturing methods in microelectronic fabrications

were finally augmented with adaptive manufacturing techniques; complex MEMS

devices at low price and high quality could be then developed. These devices

merge mechanics and electronics either to sense, control, and actuate mechanical

processes at the micro scale, or to be integrated into a macro system to perform

a second task.

Beside the apparent benefits, such as mass production, low price and ease

of integration with other systems due to their small size, MEMS devices offer

advantages linked to a range of unconventional physical phenomena at the small

scales [Gad-el Hak, 2001, see Chapter 2]. Shrinking the size of the devices to

the micro scale, the dominance of physical phenomena alters, as the surface-to-

volume ratio for the systems increases. For instance, the Reynolds number, i.e.

the ratio of inertial forces to viscous ones, will remain low for micro scale machines.

This means that the flow in the microchannels is almost entirely dominated by

laminar flow rather than turbulent flows which exist at the macro scale. Another

evident example occurs in electrostatic applications, where the attraction forces

between opposite charges can be exploited for actuation/sensing purposes in a

MEMS device. Similarly, rapid heat removal may be also realized since head

conduction accelerates where the surface-to-volume ratio increases. These effects

can be advantageous for some applications, while casting limitations for others.

Three major types of micromachining techniques for MEMS fabrication in

industrial context are surface micromachining, bulk micromachining and LIGA

(German acronym for Lithographie, Galvanoformung, Abformung). The first pro-

cess is based on consecutive deposition of layers of different materials (e.g. silicon,

aluminum, nickel or tungsten) on a silicon wafer [Bustillo et al., 1998]. These layers

will be removed or kept selectively through successive stages of microlithography

or etching (either dry or wet). This method does not face a limitation on the

number of material layers; therefore, a complex structure can be realized. It is

a well-established method and can be used repetitively for MEMS production in

large numbers. In contrast to surface machining, in which the structure is made
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from the deposited layer on the substrate, the bulk machining method aims to real-

ize the structure from the substrate by similar removing techniques used in surface

machining. This method is simpler and less expensive than surface machining,

and is more suitable for applications which do not require much complexity and

are price sensitive. In LIGA process, the microlithography, electroplating and

molding processes are combined. First, a X-ray radiation sensitive polymethyl

methacrylate (PMMA) is cast on a substrate, then this layer is selectively ex-

posed to a X-ray radiation through a mask. After the PMMA development, this

patterned layer can be used as polymer mold for electroplating the device on the

substrate. In the final stage, the PMMA layer is removed and the metallic mi-

crostructure will remain. This method allows using materials other than silicon

and is more suitable for applications requiring higher aspect ratio devices than

what is achievable in surface micromachining. However, its use is limited due to

its high cost and the health hazards of X-ray exposure.

In the following, detailed information is provided on the available technique

used in this work to realize the MEMS devices.

2.2.1 ThELMA process

The specific fabrication technique used in this work is slightly different from the

conventional methods explained above. The ThELMA (Thick Epipoly Layer for

Micro Actuators and Accelerometers) developed by STMicroelectronics to realize

silicon based inertial sensors and actuators and allows for structures with large

thicknesses and complex layers [Corigliano et al., 2004]. This process can realize

suspended structures of polycrystalline silicon anchored to the substrate through

very compliant components (springs) and thus capable of moving on a plane par-

allel to the underlying silicon substrate (such as the structure defined in Chapter

3). This process is based on several conventional integrated circuit technology

steps, together with dedicated MEMS operations, like dry etch and sacrificial

layer removal for structure release. Figure 2.1 summarizes the steps involved in

this process. These steps include:
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Si substrate epitaxial polysilicon

epitaxial silicon deposited oxide

doped polysilicon polysilicon seed

thermal oxide contact metallization

(a)

(b)

(d)

(e)

(f)

(h)

(i)

(j)

(g)

(c)

Figure 2.1: Fabrication steps in the ThELMA process. From [Fachin, 2007].

(a) thermal oxidation of substrate: the silicon substrate is covered by a 2.5 µm

thick oxide layer through a thermal process at 1100 ◦C;

(b) deposition and masking of polysilicon: the first polysilicon layer is masked

and doped with phosphorus and attached to the oxide layer by using plasma in

order to act as buried runners. The task of these interconnections is to deliver

the electrical signals from/to the pads located at the exterior part of device;
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(c) deposition of sacrificial oxide layer: an oxide layer is deposited and con-

densed using a Plasma Enhanced Chemical Vapor Deposition (PECVD) process.

The set of this layer and the thermal oxide will be subsequently removed to ac-

commodate a gap spacing between the moving components of the structure and

the substrate;

(d) anchoring to the substrate: a wet etching process with hydrofluoric acid

and controlled by an appropriate mask permits the selective excavation of oxide

layers for necessary contacts with the substrate;

(e) anchoring to the polysilicon runners: the oxide is once again removed

to facilitate the contact with the polysilicon buried runners. In contrast to the

previous step, the dry removal process is carried out using plasma in order to

define vertical profiles with high precision;

(f) deposition of silicon seed crystals: in this step, the silicon seed crystals

(also known as reactors) are deposited to facilitate the growth of polysilicon in

the next step;

(g) growth and doping of the epitaxial polysilicon: the main body of the struc-

ture is formed in this step by growing epitaxial polysilicon. In this step, all the

lower layers are covered and a single crystalline epitaxial silicon is also grown

corresponding to the alignment marks;

(h) masking and deposition of the contact metalization: the contact metaliza-

tion is deposited through appropriate masks on the surface which experiences a

second wet etching;

(i) trench etching: this step consists of masking the epitaxial layer and etching

it by a deep dry etch technique with sulfur hexafluoride acid. The etch depth

reaches to the oxide layer; therefore, the moving components of the structure are

realized.

(j) sacrificial oxide layer removal: finally, the process is concluded by removing

the sacrificial oxide layer by means of a dry etch in vapor phase acid, to avoid

the adhesion phenomenon. Such phenomenon can occur if a liquid acid is used,

creating strong capillary attractive forces which can damage the structure.

Nevertheless, the ThELMA process inherits some technological limitations.

The most evident defect is rooted in the chemical etching process for creating the

trenches. Since a perfect control of etchant is not possible, the epitaxial removal
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is not performed exactly as it is designed. This effect is explained more in details

in the following of this chapter. Another problem which can arise for devices

fabricated by ThELMA process is the developed residual stresses due to the ther-

mal treatments. They are usually of a compressive nature in the polysilicon layer

parallel to the substrate. This issue may result in a lack of planarity of the whole

device, or partial buckling of springs depending on the structure design, anchoring

type and its size [Corigliano et al., 2004].

Since the structural components in ThELMA process are formed from polysil-

icon, it is necessary to review this material in the following of this chapter from a

mechanical point of view.

2.3 Polysilicon elastic properties

Polysilicon has been the material of choice for the MEMS fabrication to date

because of its advantageous electrical/mechanical properties as well as the well-

established fabrication processes for intricately shaped devices [Yagnamurthy et al.,

2015]. Polysilicon is an aggregate of single crystalline silicon grains. Its elastic

properties clearly depend on its constituents behaviour: mechanical properties of

the single grains, their shape and their orientation (i.e. polysilicon morphology).

Though polysilicon is a heterogeneous material, it can be modelled appropriately

as a homogeneous one in the macro or meso scale applications where the structural

details are large compared to the polysilicon grain size [Cho et al., 2005]. These

properties are well characterized either experimentally or numerically by standard

homogenization methods on random samples of polysilicon [Mariani et al., 2011].

At the micro scale, the local behaviour is of interest; therefore, a heterogeneous

model is needed to take into account the behaviour of each silicon crystal and

their granular organization. Therefore, reviewing the elastic properties of single

crystalline is necessary.

2.3.1 Single crystalline silicon properties

The silicon lattice, i.e. the periodic arrangement of the atoms in the crystal, is

formed by diamond-like unit cells, that displays the face-centered cubic structure.

To describe crystal orientation dependent material properties, we need to first
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describe crystal orientations which are described by Miller indices in a format of

three integer triples “hkl”, corresponding to an xyz coordinate system. In partic-

ular, (hkl) and [hkl ] refer to a plane and a direction in the crystal, respectively.

The triple hkl values are the reciprocals of the coordinates of the intercepts on the

xyz axes, multiplied by the lowest common denominator. An upper bar on the

index denotes a negative direction. When referring to directions and angles within

a cubic crystal, the xyz axes are aligned with the 〈100〉 family of directions unless

otherwise specified. The important directions for silicon are shown in Figure 2.2.

Figure 2.2: Miller Indices in a cubic crystal. By convention, the directions [100],
[010] and [001] are the xyz Cartesian axes. From [Hopcroft et al., 2010].

As usual for crystalline materials, silicon displays an anisotropic behaviour,

that can be defined as a function of the crystallographic orientation. Figure 2.3

reports the values for Young’s modulus and Poisson’s ratio as a function of the

orientation in the (100) plane. Due to the present cubic symmetry of the structure,

it is possible to describe the general anisotropic elasticity tensor in the form of

the strain-stress relation Eq. (2.1), fully determined by only three independent
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constants. 

σ1

σ2

σ3

σ4

σ5

σ6


=



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





ε1

ε2

ε3

ε4

ε5

ε6


(2.1)

This formulation holds for a specific Cartesian reference aligned to the silicon

cubic crystal, i.e. when the 〈100〉 directions are the default xyz axes. The three

independent coefficients in the stiffness tensor are reported accordingly in Table

2.1. Having these stiffness coefficients, stress or strain can be obtained by solving

Eq. (2.1).

50

100

150

200

30
�

60
�

90
�

0
�

Young's modulus (GPa)

Y
o
u
n
g
's

 m
o
d
u
lu

s 
(G

P
a)

<110>

<100>

(a)

0.1

0.2

0.3

30
�

60
�

90
�

0
�

Poisson's ratio

P
o

is
s
o

n
's

 r
a
ti

o

<110>

<100>

(b)

Figure 2.3: Variation of linear elastic parameters versus orientation in the silicon
crystal for (100) plane using the coefficients reported in Table 2.1. (a) Young’s
modulus, and (b) Poisson’s ratio.

Table 2.1: Elastic constants of silicon at room temperature [Brantley, 1973].

Parameter Value

c11 165.7 GPa

c12 63.9 GPa

c44 79.6 GPa
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2.3.2 Polycrystalline silicon properties

The main body of the MEMS devices under study are formed through the epi-

taxial growth of silicon grains on a substrate, to ultimately achieve a polysilicon

structure. Though a constitutive model for single crystalline silicon can be ob-

tained as it has been shown in Section 2.3.1, such expression can not be furnished

for polysilicon. Since the grains are sharing (almost) the same growth orientation,

a preferential direction for the reference frame of each grain is therefore achieved,

i.e. direction of the growth which is perpendicular to the substrate. However,

in-plane (perpendicular to the growth direction) orientation of each silicon lattice

is arbitrary. In conclusion, we will suppose that the in-plane x′- and y′-axes of

the local reference for each grain are unique to that grain but the out of plane

z′-axis is shared by all grains (see Figure 2.4).

Figure 2.4: Global and local reference frame.

To model the polysilicon random morphology, a centroidal Voronoi tessella-

tion (CVT) can be used. The advantage of CVT is that it employs a strategy

similar to the actual silicon seed crystals deposition on the substrate and growth

stage as in the ThELMA process [Martini, 2008]. At the growth stage of sili-

con grains, each seed starts to occupy the neighboring space with the same rate

till two neighboring grains reach each other, forming the grain boundaries. Simi-

larly, the CVT algorithm uses a uniform distribution function to generate random
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CHAPTER 2. MEMS AND UNCERTAINTIES

Figure 2.5: Digital realization of epitaxial polysilicon with identical out-of-plane
axis and random in-plane orientation.

seeds on the surface. Then, the domain is divided in polygonal sets, in which the

boundaries are the perpendicular bisectors of the lines joining each two neigh-

boring seeds. Each formed polygon can be then extruded to finalize the three

dimensional columnar grain crystals (see Figure 2.5). A comprehensive review on

properties and implementation of CVT can be found in [Du et al., 1999].

CVT provides the polysilicon grain morphology and then random grain bound-

aries and a random in-plane orientation for each grain can be attributed. The

constitutive law within each grain is described by Eq. (2.1) in the local reference

system (x′,y′,z′). This relation can be stated in the global reference frame (x,y,z)

using the direction cosine matrix, i.e.

N =

 cosx′x cosx′y cosx′z

cosy′x cosy′y cosy′z

cosz′x cosz′y cosz′z

 (2.2)

The elements of this matrix are the cosine of the angle between the two corre-

sponding axes stated in the subscript.
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Let σ′ be the stress tensor in the local reference frame aligned with the grain

crystallographic orientation, and σ its counterpart in the global reference frame.

Theses two are related through

σ′ = Nσ (2.3)

This equation can be reorganized in the Voigt’s notation as

σ′ = Tσ (2.4)

Similarly, it is

ε′ = Tε (2.5)

and T is [Martini, 2008]

T =



c2
x′x c2

x′y c2
x′z 2cx′ycx′z 2cx′xcx′z 2cx′xcx′y

c2
y′x c2

y′y c2
y′z 2cy′ycy′z 2cy′xcy′z 2cy′xcy′y

c2
z′x c2

z′y c2
z′z 2cz′ycz′z 2cz′xcz′z 2cz′xcz′y

cz′xcy′x cz′ycy′y cz′zcy′z cz′ycy′z + cz′zcy′y cz′zcy′x + cz′xcy′z cz′xcy′y + cz′ycy′x

cz′xcx′x cz′ycx′y cz′zcx′z cz′ycx′z + cz′zcx′y cz′zcx′x + cz′xcx′z cz′xcx′y + cz′ycx′x

cy′xcx′x cy′ycx′y cy′zcx′z cx′ycy′z + cx′zcy′y cx′ycy′z + cx′xcy′z cx′xcy′y + cx′ycy′x


(2.6)

where the cosines elements are indicated by ’c’. The relation between stress and

strain in the local reference frame is

σ′ = Clocalε
′ (2.7)

which can be rewritten using Eq. (2.4) and Eq. (2.5) and the orthonormality of

transformation matrix

σ = T−1ClocalTε = Cglobalε (2.8)

This relation will be used in the numerical model developed in Chapter 4 to

transform the stiffness matrix in the local reference frame into the global one and

to assemble a global stiffness matrix.
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2.4 Sources of uncertainties

The constant need for smaller MEMS devices requires miniaturization of the con-

stituent structural components. At the same time, reliability issues related to the

devices’ operation should be addressed for new designs. The challenging issue in

designing such new devices is that the miniaturization appears to aggravate the

performance of the device operation [Brand et al., 2013]. These devices have typi-

cally structural components that deform either for actuation or sensing purposes;

stiffness, thus, represents a key factor to characterize their behaviour. Whether

the operational principle is statical or dynamical, the final performance depends

strongly on how close the actual stiffness of the deformable components is to the

designed one, and this issue turns more critical as the characteristic size of the

components shrinks. The stiffness variation is originated from uncertainties in

the fabricated geometry or in the mechanical properties of the material. The

geometry uncertainties depend strongly on the fabrication process [Hong et al.,

2000, Alper et al., 2008], while uncertainties in mechanical properties can have

intrinsic origins. This is especially the case for the micro-size components made

of polycrystalline materials like polysilicon. This issue is illustrated in Figure 2.6;

the two samples of polysilicon are essentially different in terms of the ratio between

the specimen size and the average grain size. As it has been shown in [Ballarini

et al., 1999], the macroscopically isotropic behavior of polysilicon can be obtained

only by domains that include at least a few tens of grains, see Figure 2.6(a). The

elastic properties for such samples can be computed from homogenization proce-

dures with a high degree of confidence. In contrast, for smaller domains with few

grains (see Figure 2.6(b)), the assumption of in-plane isotropy will not hold any

more and the material must be treated as locally anisotropic. Consequently, the

closed form solutions such as Eq. (2.1) must be replaced deterministically by a

finite element analysis, or statistically by considering probability distributions of

the mechanical properties [Cho and Chasiotis, 2007].

Many of MEMS devices have deformable structures. To ensure the working

efficiency of these devices, a large class of methods have been developed to adjust

the stiffness after fabrication. These methods employ a wide range of physical

phenomena to cope with stiffness variation; some use electrostatic effects to ma-
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(a)

(b)

Figure 2.6: Morphology samples of polysilicon inside specimens. (a) Specimen
with relatively high number of grains, and (b) specimen with relatively low number
of grains.

nipulate the overall system stiffness [Torun et al., 2007]; or, some use mechanical

tuning like changing the effective beam length [Zine-El-Abidine and Yang, 2009];

or, another method is changing the cross section shape and consequently the

second moment of area by activating/deactivating employed piezoelectric layers

[Kawai et al., 2006] and some others take advantage of the axial stressing effect

[Syms, 1998]. A recent review on these methods can be found in [de Laat et al.,

2016]. Nevertheless, these workarounds can influence the electrical and mechani-

cal performance of the designed device. In addition, they require specific tunning

for each application. These techniques may provide solutions to cope with the

existing uncertainties, but there is still a need for an improved understanding of

the origins and the extent of stiffness deviation from the desired value, as the re-

quired degree of miniaturization grows for novel applications. To this goal, reliable

micromechanical characterization methods are necessary.

A wide range of micromechanical tests have been developed in literature using

MEMS technology [Pantano et al., 2012, Zhu and Chang, 2015]. The published

results outline an effective, isotropic polysilicon Young’s modulus on the range of

100-173 GPa, with reported scatterings up to 15% [Corigliano et al., 2010, Gravier

et al., 2009, Kamiya et al., 2007, Sharpe Jr. et al., 2001, Tsuchiya et al., 2005, Oh

et al., 2005, Espinosa et al., 2007]. The difference between the estimated average

values can be explained by the dependence of Young’s modulus on the fabrica-

tion facilities and the deposition techniques that varies from one study to another

[Hopcroft et al., 2010]. On the other hand, some of these studies have reported
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a greater scattering when specimen features a smaller characteristic size [Gravier

et al., 2009, Sharpe Jr. et al., 2001]. This deviation can be due either to measure-

ment errors or to the fact that the number of grains in the specimen is not large

enough to consider the polysilicon film statistically representative [Cho and Chasi-

otis, 2007, Mariani et al., 2011]. As a consequence, the measured Young’s modulus

of polysilicon can feature a large standard deviation [Kanit et al., 2003, Mullen

et al., 1997, Bromley et al., 1999]. It has been shown experimentally in [Cho

and Chasiotis, 2007] that, when the size of components decreases, the effective

behaviour of the specimen can deviate from that described by the isotropy hypoth-

esis. It has been observed that at least a material domain including 15×15 = 225

columnar grains is necessary to ensure a scattering of effective Young’s modulus

lower than 5% [Cho and Chasiotis, 2007]. The same research group in a recent

work [Yagnamurthy et al., 2015] studied polysilicon film tensile test specimens

with varying microstructure and grain size, while keeping the number of grains at

gauge section large enough (gauge length 150 µm, average grain size 285 nm). It

has been reported that the effective Young’s modulus was independent of the film

microstructure and the grain size: this conclusion confirms that the key criterion

to obtain the effective elastic properties is the number of grains in the material

domain rather than the absolute size of grains. A similar numerical study [Reedy

et al., 2011] on tensile test specimens comprising about 50 grains along the gauge

length showed a small ratio of the standard deviation in Young’s modulus to its

average equal to 0.025. Variations in effective material properties can be particu-

larly more pronounced for bending specimens, where a non uniform stress/strain

profile and more sensitivity to the surface effects is expected [Sadeghian et al.,

2009].

An additional source of uncertainties in evaluating the mechanical properties

at the micro scale is the deviations of the specimen dimensions. In bulk mechan-

ical structures, the dimensions of structures are made highly accurate by means

of machining tools with a precision of more than one thousandth of its dimen-

sions. However, in MEMS structures, although the absolute error in fabrication

is smaller than at the macro scale, the relative accuracies are not good [Brand

et al., 2013]. These errors can be manifested in the over-etch [Jang et al., 2012],

i.e. the surplus/dearth of etch with respect to the expected one. According to
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[Xiong et al., 2005], “an etch variation defect is one that the thickness of the device

structure does not meet the design expectation due to the etch variations caused

by fluctuation of temperature, etchant concentration, and other reasons”. Though

the order of such variation is less than 1 µm (depending on the production process

and on the geometry), its relative importance can increase when the components

shrink down to a comparable size. Overall, a variation of 10 % in the geometry

can be expected [Hong et al., 2000] in the conventional MEMS devices. In [Alper

et al., 2008], capacitive gaps (in electrostatic actuation/sensing) of 5.3 and 5.6

µm were reported for a layout value of 5 µm; in [Gad-el Hak, 2001], it was stated

that for a 2 µm thick structural polysilicon, patterned by a wafer stepper and

etched with a reactive-ion etcher, a reasonable estimate for the variation in the

linear dimension of etched features was about 0.2 µm (with 10 % relative toler-

ance). These variations have dominant effects on the bending rigidity of beams,

due to variations of the in-plane thickness, or on the actuation and sensing at

electrostatic mechanisms, due to variations of the gap at capacitors.

In addition to these two primary sources of uncertainty, other uncertainties

may arise due to specific design or fabrication process. These additional uncer-

tainties will be described later in Section 3.5 for the particular device developed

in this work.

2.5 Micromechanical characterization methods

A reliable knowledge of mechanical properties of the MEMS materials is essential

not only for design and fabrication purposes but also to feed the predictive models.

Though standard well-assessed mechanical characterization methods at the macro

scale have been present for a long time, these methods are not transferable to the

MEMS dimension. Therefore, in the last two decades, many techniques have been

developed to investigate the mechanical properties at smaller length scales. This

investigation at these small dimensions is important as to explore the effects of

small length scales and the fabrication process on the mechanical properties of

the materials. The number of these researches is grown exponentially, but still

micro scale material characterization is a challenging issue.

It is worth defining two terms that will be used in this work. Limiting the
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attention to silicon based MEMS, a general classification of test procedures can

be made between off-chip and on-chip devices [Corigliano et al., 2005]. In both

cases, the specimen is generally produced by deposition and etching procedures

(e.g. in ThELMA process). An off-chip testing approach generally resorts to some

sort of external gripping mechanism, load application (actuation) or measurement

sensors. Consequently, the correct alignment of the specimen in the external

mechanism or the gripping mechanism are crucial and must be dealt with extra

attention. On the contrary, on-chip test devices are real MEMS in which actuation

and sensing is performed with the same working principles of MEMS. Therefore,

the experimental conditions are similar to those occurring in conventional MEMS

devices. In the following a list of common tests for MEMS characterization (mostly

for the material properties or fabrication inaccuracies) is discussed in brief as

adopted from [Sharpe, 2008, Pantano et al., 2012, Lucon, 2014].

2.5.1 Tension tests

This is a conventional category of tests which uses the same idea of the macro

scale counterpart. The elastic properties are obtained by fixing (gripping) one

end and applying an increasing tensile load at the other end. This type of tests is

popular at microcharacterization; nevertheless, their realization at the micro scale

(and the nano scale) faces difficulties. For instance, the specimen alignment at the

testing structure is vital to obtain accurate results. Additional issues requiring

high levels of microfabrication techniques include preparation of free standing,

stress free samples and appropriate gripping. Regarding the displacement and

force measurements a wide range of methods has been developed since the con-

ventional solutions are usually not suitable at the micro scale. An example of this

testing method is illustrated in Figure 2.7 where an electro-thermo mechanical

actuator and a set of parallel plate capacitors are adopted for loading and elon-

gation measurement at the specimen, respectively. Despite these difficulties, it

is an effective method when the obtained properties are supposed to be used for

MEMS with component size much larger than the grain size [Yagnamurthy et al.,

2015]. As the length of the specimen decreases, the effects of uncertainties are

intensified and the measured elastic properties can feature large value of standard
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2.5. MICROMECHANICAL CHARACTERIZATION METHODS

Figure 2.7: A tension test configuration taken from [Corigliano et al., 2010]. The
actuator beams expand in their length as they are heated by the electric current,
to pull the specimen, and the induced elongation in the specimen is detected at
the capacitive sensors.

deviations. An extensive list of methods and examples of tension tests can be

found in [Espinosa et al., 2012].

2.5.2 Bending tests

This class is an alternative for tension tests. This test sometimes is preferred over

the tension tests since it can produce larger displacements with smaller forces.

However, the deduction of elastic properties is more complicated; it usually in-

volves solving inverse problems exploiting analytical models. Furthermore, the

specimens are sensitive to the fixing technique which can induce errors in the

measurements; the realization of ideal rigid constraints in a micro scale testing

configuration is a challenging issue. Several configurations have been developed

for bending tests, such as micro beam tests, bulge tests and M-test.

In the micro beam tests, the specimen is a rectangular beam loaded with a

concentrated bending force; the beam can be either a cantilever loaded at the

free end (see Figure 2.8(a)) or clamped-clamped beam loaded at the midspan
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(see Figure 2.8(b)). The elastic properties can be obtained from the analysis of

the collected load-deflection data. The specimen in the bulge test is instead a

membrane which is clamped around its periphery on a supporting frame. The

membrane is deflected by applying a pressure difference on its two surfaces (for

instance by compressed air) and the resulting deflection in the center of the mem-

brane is recorded as a function of the pressure via a laser interferometer. The

elastic properties can be then obtained from the developed biaxial stress/strain

exploiting continuum mechanics models. A layout of this test is demonstrated in

Figure 2.8(c). In the M-test, the specimen can be either a beam or a membrane

which is loaded by an electrostatic force until the onset of instability phenomenon

(i.e. pull-in), see Figure 2.8(d). The mechanical properties could be then linked to

the corresponding voltage (pull-in voltage) using analytical formulae or numerical

simulations of the coupled electromechanical problem.

(a) (b)

(c) (d)

Figure 2.8: Examples of bending test layouts: micro beam test using either (a)
cantilever or (b) clamped-clamped beam, (c) bulge test, and (d) M-test. From
[Pantano et al., 2012].

Another variety of bending based test devices has been realized using on-chip

(see Section 2.5) test devices with integrated specimen. The basics of on-chip

devices are not different from the ones mentioned above, but they benefit from

the fact that they permit the mechanical characterization of the specimen in

conditions almost identical to those found in the commercial applications, thus

avoiding external disturbances coming form off-chip laboratory tests [Corigliano
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et al., 2010]. An example of on-chip test devices is illustrated in Figure 2.9. It

features a central ring connected to the substrate by means of two specimens

and a set rotational electrostatic capacitor arrays for actuation and sensing. By

imposing potential difference at two electrodes of capacitors, a torque will be

applied to the central ring, and therefore, the specimens will be loaded in bending

in the plane parallel to the substrate. A more detailed review of bending tests

can be found in [Pantano et al., 2012].

Figure 2.9: On-chip testing device for in-plane bending configuration using ro-
tational actuators. (a) General view, and (b) details of the bending specimen.
From [Corigliano et al., 2005].

2.5.3 Torsional tests

These tests are mostly employed for measuring the shear modulus and the maxi-

mum shear stress. Another common use of torsional tests is for the study of the

size effects, since they produce strong stress and strain gradients. On-chip de-

vice for this testing configuration is also reported in [Saif and MacDonald, 1998].

Torsional tests have not been extensively used due to several limitations related

to their implementation, e.g. calibration of torquemeter, the detection of tor-

sion angle, and the alignment between the specimen and the torquemeter [Liu

et al., 2012]. An example of this testing configuration is reported in Figure 2.10.

Some other examples of such tests can be found in [Fleck et al., 1994, Walter and
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Kraft, 2011, Chen, 2013]. Although these methods can be effective on measuring

the shear modulus, but deriving the Young’s modulus from their output is not

possible.

Figure 2.10: Schematic diagram of a torsion test apparatus. From [Liu et al.,
2012].

2.5.4 Nanoindentation tests

Nanoindentation is a popular method for microcharacterization of materials due

to the simplicity of sample preparation. However, it requires complex data re-

duction and inverse analysis procedures. In this method, an indenter is pressed

on the surface of the specimen causing a local yielding of the material; when the

indenter is removed, a permanent imprint is produced. The elastic properties of

the material can be evaluated using the load-penetration depth curve. Numerous
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research papers on nanoindentation can be found; several articles have reviewed

the advances of this technique, see e.g. [Cohen and Kalfon-Cohen, 2013, Gib-

son, 2014]. However, this method is heavily effected by the presence of substrate

supporting the specimen (i.e. substrate effect) and usually is less accurate than

the tension tests. It must be noted that the substrate effect is different from the

uncertainties stemmed from specimen or real working conditions of the MEMS

devices (for instance, anchoring condition in micro beam bending test) which are

often present in the commercial MEMS.

2.5.5 Sensitivity Built-In Self-Tests

This kind of test devices is not aimed to characterize a material property but

instead their goal is MEMS performance and reliability testing. Combining new

types of functioning components, exploiting new material layers, and the interac-

tion with the environment can lead to coexistence of deferent unwanted mechanism

which can degrade the performance and reliability of newly designed devices. Dif-

ferent on-chip built-in self-test (BIST) techniques are proposed by researchers to

address this issue. These types of test devices have been recently attracting con-

siderable industrial interest since they help to reduce the cost of reliability tests.

One of simple applications of BIST techniques is to ensure the functionality of

sensors. For example, the mechanism in Figure 2.11(a) includes an electrostatic

actuation/sensing to verify that the suspended mass is moving in response to

the external actuation, or similarly the mechanism in Figure 2.11(b) exhibits a

secondary set of electrodes for ensuring the accelerometer functionality. Another

practice of BIST mechanisms is for characterization of the fabrication process; e.g.

the device in [Xiong et al., 2005] suggests a method to detect three different defects

(stiction, finger height mismatch and over-etch variation) simultaneously, or the

device in [Rocha et al., 2008] allows for identifying the value of the Young’s modu-

lus in addition to the nonideal fabrication effects. Other examples of BIST devices

and techniques can be found in [Mir et al., 2006, Deb and Blanton, 2002, Rama-

doss et al., 2008, Matabosch et al., 2014, Legendre et al., 2013, Balachandran

et al., 2016].
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(a) (b)

Figure 2.11: Examples of basic BIST mechanisms used for testing the functionality
of accelorometers. (a) Piezoresistive accelerometer, and (b) capacitive accelerom-
eter. From [Mir et al., 2006].

2.6 Remarks

As mentioned in Section 2.4, the operational performance of the MEMS devices

can be influenced by the uncertainties related to the mechanical properties and

fabrication process. To address these issues, one might use methods based on

surface inspection of the devices through scanning electron microscopy (SEM)

or laser interferometry [Hanhijrvi et al., 2012, Hart et al., 2000]; these methods

are not only slow to perform but also limited to the devices on open wafers,

while commercial ones are usually packed in order to protect the system from the

environment.

In the next chapter, we introduce an on-chip testing device which uses a bend-

ing mechanism of a cantilever-like beam. Although, the tension tests are the most

accurate of the methods above, we are interested to use the bending configuration

as it is the prevailing mechanism at the deformable components in the MEMS de-

vices. Moreover, an on-chip testing is preferred over an off-chip methodology, since

on-chip test devices exploit the standard microfabricaiton techniques to integrate

actuation and sensing principles with the microsystem, so that the experiment re-

sembles the conditions of the commercial MEMS devices [Corigliano et al., 2010].

Adopting on-chip bending configuration, we aim to assess the uncertainties in the

elastic properties as well as the ones related to the fabrication inaccuracies that
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are present in the real MEMS devices. It is worth noting that we focus on elastic

properties rather than the post elastic ones. The motivation for this choice is

mainly based on the crucial effect of elastic properties on the operational perfor-

mance of MEMS devices as they are designed to work within the elastic regime.
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3
Experimental campaign using on-chip testing

3.1 Introduction

It was mentioned in Section 2.6 that on-chip testing is preferred over off-chip as

it resembles the commercial MEMS devices operational conditions. Therefore, an

on-chip test device whose structural components are fabricated using polysilicon

is introduced in this chapter. The device features a cantilever-like beam (with

different lengths) as specimen and uses a conventional MEMS actuation and sens-

ing technique. The device is capable of performing several testing configurations

providing result redundancy that can be used for cross-validation purposes. Two

beam lengths are adopted for investigations and for each length ten specimens

are tested. Although the specimens for each beam length are nominally identical,

large scattering among the measurements are evident which can be caused by the

presence of uncertainties mentioned in Chapter 2.

This chapter starts with a detailed description of the test device, its opera-

tional principles, and geometric specifications, in Section 3.2. In Section 3.3, the

features of the testing set-up are reported and it is explained how four testing

configurations are devised in one single device. Section 3.4 reports the measured

data for 20 specimens at the four testing configurations. This chapter finishes by

some final remarks on the measurements gathered in Section 3.5.
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3.2 Test device

The test devices developed for this work are produced through the already men-

tioned ThELMA process in Chapter 2 by STMicroelectronics which features epi-

taxial growth of polysilicon with average grain size (in terms of diameter) equal

to 0.5 µm. The SEM image of the top view of the whole structure is reported in

Figure 3.2. The specimen undergoing deformation is a cantilever like beam (see

Figure 3.2 (b)) which is connected to a fixed body of polysilicon called “anchor”

in the figure. The anchor itself is mechanically connected to the substrate. The

micro beam is connected on the other side to a massive 200 µm × 200 µm per-

forated plate denoted as “rotor”. The perforations are incorporated in the design

to facilitate the etching process of the sacrificial oxide layer (see Figure 2.1 (j)).

This step is necessary for complete removal of sacrificial oxide layers to avoid

stiction of the suspended components of the device [Comi et al., 2010]. On the

other hand, the massive rotor is devised to provide the necessary mass allowing

for dynamic tests. The beam’s nominal dimensions are: length l=10 µm or 20

µm, out-of-plane thickness w=22 µm, and width h=2 µm (see Figure 3.1). Fig-

ures 3.2 and 3.3 report the SEM image of length l=20 µm or 10 µm, respectively.

The MEMS devices are placed in a die cavity where a pressure lower than the

ambient one, and nominally equal to 0.35 mbar, has been imposed. These MEMS

are packaged at low pressure so that the device conditions are close to ones of

operational MEMS; for instance at accelerometers where low pressure limits the

fluid (i.e. air) damping to ensure low energy consumption [Comi et al., 2010].

The geometric characteristics of the test device are summarized in Table 3.1.

Table 3.1: Geometric dimensions of the device.

Parameter Value Parameter Value

beam length (l) 20,10 µm initial gap at capacitors (g0) 2 µm

beam width (h) 2 µm a 17 µm

out-of-plane film thickness (w) 22 µm L 200 µm
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Figure 3.1: Schematic view of the specimen (not to scale).
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Figure 3.2: (a) Device geometry with (b) details of the beam region and (c) in
proximity of the lateral stator for beam length equal to 20 µm.
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Figure 3.3: Beam region for beam length equal to 10 µm.

The measurement of the system actuation is realized using a standard elec-

trostatic technique by employing the stators around the rotor. By applying an

electrical potential difference between the stator and the rotor, an attractive force

will be generated to move the rotor toward the stator(s), i.e. the gap between the

rotor and the stator(s) is decreased. Since the devices are capped, a visual investi-

gation of the deformations is not possible; therefore, the capacitance between the

stators and the rotor can be measured. The resulting input-output relationship is

then in the form of capacitance changes versus actuation voltage, or C−V curves.

These measurements can be later transformed into the sought beam deformation

through appropriate (either analytical or numerical) models.

An Agilent 6614C power supply and an Agilent E4980A digital capacimeter

(also known as impedance analyzer) have been used for signal generation and the

capacitance measurements. The capacimeter accuracy is on the order of tens of

aF while the measured change in capacitance are on the order of a few fF, or

hundreds of aF. The capacimeter uses auto-balancing bridge method with an AC

current to characterize the device under test (usually referred as DUT), while a

bias DC signal is used to provide actuation of the system [Okada and Sekino,

2003]. In the experiments, AC signal of 200 mV-1 GHz is superimposed on an

increasing/decreasing DC voltage. The probe station with the micromanipulators

(see Figure 3.4) are located in an unclean room, whose registered temperature
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is about 25 ◦C and the relative humidity is between 50–55%; a glassfrit sealing

assures the closure of the die.

Figure 3.4: Test setup for C − V measurement.

3.3 Testing set-up

Two sets of stators are devised for the testing. One is located on the right side

of the rotor (see Figure 3.2) and is called “lateral” capacitor. Other two stators

located on the top and the bottom sides of the rotor are electrically connected;

they are called “rotational” capacitors as they mainly induce a rotation of the

rotor due to their position. Thus, two alternative set-up configurations, depicted

in Figure 3.5, are possible for the C − V measurements. In the first (see Figure

3.5 (a)), only the capacimeter is used to a maximum DC of 40 V1, for both

actuation and sensing at the same capacitor. The sensing electrodes and moving

mass are connected in the same circuit; consequently the C − V curves increase

monotonically. In the second configuration (see Figure 3.5 (b)), a DC power

supply provides the DC signal at one of the capacitor systems (actuation). The

capacimeter instead measures the change in capacitance at the second capacitance

system. In the latter case, actuation and sensing are realized at two different

capacitances. In this case, an Agilent 6614C power supply allows to reach up to

100 V, and the C − V curves decrease monotonically because the rotor is moving

far from the sensing capacitor. Generally, each point in the curves (either first or

1 Maximum available DC voltage by Agilent E4980A digital capacimeter is 40 V [Okada and
Sekino, 2003].
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Figure 3.5: Details of the experimental setup for using (a) the same capacitors,
or (b) different capacitors for actuation and sensing.

second configurations) has been obtained by averaging 32 actual measurements.

We will use the following convention to indicate the measurement set-up: we

use the character “L” to indicate lateral actuation/sensing, i.e. when a voltage

difference is applied (or the change in capacitance is sensed) between the rotor

and the lateral stators; instead, we adopt the character “R” to indicate rotational

actuation/sensing, i.e. when actuation (sensing) is applied (measured) through

the rotational stators. Henceforth, there are four possible configurations (see Fig-

ure 3.6), labeled with a two character code: RR, RL, LR, LL. In our convention,

the first character refers to the actuation while the second to the sensing; there-

fore, LL means that we actuate and sense along the lateral capacitor, while RL

indicates an actuation is imposed via the top and bottom capacitors (i.e. at the ro-

tational capacitors), and sensing is instead obtained through the lateral capacitor.

Repeated digits measurements (RR, LL) are obtained by using only the digital

capacimeter (limited to a maximum DC voltage of 40 V); different-in-characters

coded measurements (RL, LR or cross ones) are instead related to configurations

made possible by adding the DC power supply.
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Figure 3.6: Experimental configurations: (a) RR (rotational actuation, rotational
sensing), (b) RL (rotational actuation, lateral sensing), (c) LR (lateral actuation,
rotational sensing), (d) LL ( lateral actuation and sensing).

These four testing configurations allow to obtain different experimental mea-

surements from the same device. Therefore, the conclusions formed on the basis

of one set of data can be confronted with those formed based on another set of

data (i.e. another configuration). Such property can be used as a cross-validation

method for the forthcoming analyses.

It is worth noting that the movable components of the system are expected
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to undergo in-plane (shown in Figure 3.2) motions only. This is ensured by i)

electrically grounding the substrate so no bias voltage difference is created be-

tween the substrate and the rotor, and ii) realizing the stators and the rotor at

the same plane1. It is also worthy of notice that, the structure is designed to

be statically determinate to avoid developing major residual stresses due to the

thermal processes (involved in the ThELMA process, see Chapter 2).

3.4 Experimental measurements

In what follows, we gather the results on the basis of the type of actuation: when

the rotational capacitors are biased by DC voltage VR, and when the lateral

capacitor is biased by DC voltage VL. Ten specimens are taken randomly from

the same wafer for each beam length. Each module in the wafer accommodates

different-in-length devices. The responses of these ten different devices, in terms

of change in the capacitance values at increasing applied voltage for the rotational

and lateral cases, are respectively reported in Figures 3.7 and 3.8 for l = 20 µm,

and Figures 3.9 and 3.10 for l = 10 µm.
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Figure 3.7: Experimental results for the device with beam length equal to 20 µm:
(a) RR (rotational actuation, rotational sensing), (b) RL (rotational actuation,
lateral sensing).

1 The self-weight is not an issue in this device because of large up-scaling effect on the strength-
to-weight ratio occurring at the micro sized devices.
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Figure 3.8: Experimental results for the device with beam length equal to 20
µm: (a) LR (lateral actuation, rotational sensing), (b) LL ( lateral actuation and
sensing).

Full loading and unloading measurements have been carried out for each de-

vice; since an excellent repeatability has been observed, without hysteresis along

loading and unloading cycles, only one measurement (loading) curve is reported

for each device. Regarding the ultimate applied voltage, the actuation has been

increased close up to the pull-in instability; since the target of the experimental

campaign is not the assessment of the pull-in instability itself, which can damage

the functionality of the devices by the consequent electrical short-circuit, some de-

vices that have more compliant responses have been actuated up to lower voltage

levels. The same strategy has been also adopted for the lateral actuation.

In the measured capacitance changes, either positive or negative values of the

capacitance change are reported; the first ones appear when actuation and sens-

ing are obtained with the same capacitors (RR or LL configurations), whereas the

second ones in the case of cross capacitors (RL or LR configurations). Positive

values mean that, due to the beam deformation, on the average a reduction of

the gap with respect to the initial one has been induced; on the contrary, neg-

ative values mean that, once again on the average, conductors are moving away

from one another. It can be also seen that the lateral actuation and sensing are

more configurational responsive, as pull-in is approached for values of the applied

voltage VL amounting to around half of those necessary to approach pull-in under
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Figure 3.9: Experimental results for the device with beam length equal to 10
µm:(a) RR (rotational actuation, rotational sensing), (b) RL (rotational actua-
tion, lateral sensing).
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Figure 3.10: Experimental results for the device with beam length equal to 10
µm: (a) LR (lateral actuation, rotational sensing), (b) LL ( lateral actuation and
sensing).
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applied voltage VR, measuring basically the same capacitance change. The effects

of measurement noise are shown at low actuation levels but the measurement to

error ratio improves as the level of actuation rises. This can be particularly seen

in Figure 3.8(a), LR case, where the experimental curves are not smooth and

several dips can be observed. It is worth noting once more, that each data point

of each single curve in these figures are obtained via averaging 32 measurements

to partly remove the random measurement noises.

3.5 Remarks

The measured C − V curves show that the response of the devices is rather scat-

tered. These large scatterings demonstrate the presence of uncertainties men-

tioned earlier in Chapter 2. The uncertainty sources can be related to the dif-

ferences in grain structures or slight geometric differences among the specimens.

These uncertainty sources have been also reported in a recent work, where varia-

tions of the measured Young’s modulus are observed for micro cantilever bending

test made of granular aluminum alloy [Bergers et al., 2014]. Though our study is

on polysilicon, but the underlying phenomena are the similar.

Regarding the test devices in this work, the uncertainties linked to the mi-

cromechanical features of the polysilicon film is probably present since the spec-

imens dimensions are in the same order of the grains average size. In addition

to this source of uncertainty, there are items that can be taken into account to

describe the reported scattering in the measurements. The most important one is

the over-etch (see Chapter 2) that can affect the final layout of the device, such as

the in-plane thickness of the micro beam or the electrostatic gap at the capacitors.

The value of over-etch is dependent on the specific process adopted in the fabrica-

tion of the MEMS and in present work can be up ±0.15 µm. Another candidate

can be initial offset displacement of the central rotor which is prone to changes

due to the fabrication process. This offset can affect the electromechanical; small

rotor transversal displacement (in order of tens of nanometers) or rotation (in

order of 1 milliradian) can be relatively large when the nominal gap in capacitors

is only 2 µm. The over-etch in the ThELMA process is usually assumed to be

homogeneous over the all regions of the device (i.e. constant value of over-etch),
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however slight variations of over-etch value might be present in a device. Another

possible fabrication inaccuracy can be linked to the assumption of planarity of the

rotor. Though the structure is statically determinate and major residual stresses

will not develop in the rotor, the rotor can be slightly out of plane with respect

to the stators due to the fabrication errors at the beam anchor.

The uncertainties mentioned above can be similarly present in the commercial

MEMS devices featuring similar components. In the rest of this work, an effort is

put to address the main sources of uncertainties mentioned above to appropriately

explain the observed scatterings. To this aim, in the next chapter we introduce

two models developed to relate the recorded C − V curves to the mechanical

properties and geometric features of the device.
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Modelling the test device

4.1 Introduction

Based on the experimental measurements carried out in the previous chapter,

several investigations will be pursued in this thesis. Some of these investigations

require models of the test device featuring low computational burden, and some

others require models with specific details which are computationally demanding

to be incorporated. In this chapter, we develop two different models that can

relate the two electrical quantities: actuation voltage and the resultant capaci-

tance changes at the capacitor sets. The first model is analytically derived by use

of the beam theory and thus is computationally affordable. The second model

is numerical and computationally demanding, though it is capable of taking into

account more details of the device, such as the detailed polysilicon morphology.

In the following of this section, the description of the material models for

the specimen are provided. The detailed formulation of the analytical model is

then developed in Section 4.2, allowing for two physical domains: mechanical and

electrical domains. Next, the finite element (FE) modelling of the test device, and

the adopted stochastic strategy for accommodating the polysilicon morphology of

the micro beam is described in Section 4.3. Finally, the features of these two

models are explored in Section 4.4, by comparing their results to the experiments.
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4.1.1 Material model

In order to derive appropriate models explaining the electromechanical behaviour

of the devices, one should first describe the mechanical properties of polysilicon.

A detailed material model description for polysilicon needs to take into account

the generic morphology of silicon grains; so a heterogeneous description is needed.

However, a simple homogeneous model is here first introduced as it turns worth-

while for the upcoming comparative analyses. It should be noted that due to the

relatively small rigidity of the specimen with respect to the rotor, the deformation

is expected to occur only at specimen, and the rotor just experiences a rigid body

motion. So, we here focus on the material model for the specimen only.

Homogeneous case

The specimen (micro cantilever) is made of silicon grains with their crystallo-

graphic orientation statistically distributed rather than deterministically. We

adopt a homogeneous model to investigate the possible bounds on the overall

response. It is possible to define an in-plane isotropic or orthotropic model for

the specimen in two extreme situations.

The isotropic paradigm can be associated to the situation where silicon grains

are relatively small and the beam is composed of many grains. The values of

isotropic model parameters, Young’s modulus E and Poisson’s ratio ν can be

obtained via averaging the analytical Voigt and Reuss bounds on the elastic prop-

erties of silicon as: E = 149.3 GPa, ν = 0.172 [Mariani et al., 2011].

The orthotropic model can be instead associated to two situations: the grains

are relatively large enough to let the beam being composed of a single grain, or

all grains share the same crystallographic orientation. Though these two cases

are unlikely to occur, they are necessary to identify the range of possible response

(also known as interval analysis) [Zhang et al., 2013].

Heterogeneous case

As mentioned earlier, the effective mechanical behaviour of the specimen depends

on the characteristics of each single grain. Therefore, the constitutive behaviour

of the material in the beam can be regarded as a piece-wise function of position
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which varies from one grain to another. The mechanics inside each grain can be

described by an orthotropic material model which depends on its crystallographic

orientation. This behaviour can be expressed in terms of Eq. (2.7) in the local

frame. Taking into account the random silicon crystal orientation, this relation

can be expressed in the global frame through Eq. (2.8). The relevant elastic

coefficients have been reported earlier in Table 2.1. The numerical model in

Section 4.3 can accommodate this description.

4.2 Analytical modelling

4.2.1 Mechanical field

As explained in Section 3, the electrostatic actuation through any of the two sets of

conductors induces a motion of the rotor plate which can be properly assumed to

be an in-plane rigid body motion type, since its rigidity is relatively large with re-

spect to the specimen. In view of this assumption, all the deformation is localized

at the beam connecting the rotor to the substrate. Noting the large dimensions

of rotor with respect to the gap g, the rotation of the rotor is expected to be

within [-0.02 rad 0.01 rad] around the anchor point A (see Figure 3.2) at which

the vertices of rotor get in touch with the capacitor surfaces (counterclockwise

rotation is positive). The actual range of the rotation will be smaller since the

pull-in instability occurs much earlier1. Regarding the set of tests featuring the 20

µm long beam, the shear effects can be neglected and the Euler-Bernoulli beam

theory can be appropriately deployed. This assumption does not hold true for the

beam length 10 µm, featuring a slenderness ratio of l/h = 5 and thus, the Timo-

shenko beam theory is accordingly adopted [Timoshenko and Woinowsky-Krieger,

1959]. In the following, the superscript E and T are used to denote the variables

corresponding to the Euler-Bernoulli and Timoshenko theories, respectively.

Consider the tested micro beam with its length along the coordinate x, its cross

section with area A and moment of inertia I = wh3/12. Due to the mentioned

admissible range of rotor rotation, we assume the deflections and strains at beam

1 The actual rotation range will be shown in Chapter 7 to be approximately [-0.0088 rad 0.0042
rad].
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scale linearly with load. The equations of equilibrium read

dFE(x)

dx
= −q(x) (4.1)

dME(x)

dx
= FE(x) (4.2)

where q is the transverse load and FE and ME denote transversal shearing force

and bending moment of the Euler-Bernoulli beam, respectively. According to the

Euler-Bernoulli beam theory for isotropic elastic materials, the stress resultants

of the beam with Young’s modulus E are given by

FE(x) = −EI d
3uE(x)

dx3
(4.3)

ME(x) = −EI dθ
E(x)

dx
= −EI d

2uE(x)

dx2
(4.4)

uE and θE are, respectively, the Euler-Bernoulli transverse deflection of the beam

neutral axis and the rotation of the cross section of the beam. Eq. (4.4) is derived

under assumption of Euler-Bernoulli kinematics: the cross sections remain plane

and normal to the deflected neutral axis, as shown in Figure 4.1. The governing

equations of Euler-Bernoulli beam can be obtained by substituting Eq. (4.1) and

Eq. (4.2) into Eq. (4.3) and Eq. (4.4) as

EI
d4uE(x)

dx4
= − d

2ME(x)

dx2
= q(x) (4.5)

The mechanical response of the beam end-point x = l due to end-point shear load

FE(l) and moment ME(l) can be calculated from Eq. (4.5) using the boundary

conditions uE(0) = θE(0) = 0 (i.e. constraints at the connection to the anchor)

as {
FE(l)

ME(l)

}
=
EI

l3

[
12 −6l

−6l 4l2

]{
uE(l)

θE(l)

}
(4.6)

Eq. (4.6) can be used to describe the mechanical deflection of the micro beams
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undeformed

Euler-Bernoulli

Timoshenko

Figure 4.1: Deformation of a typical transverse normal line in Euler-Bernoulli and
Timoshenko beam theories. uE and uT denote the transverse deflection (along
z direction) of the beam neutral axis in Euler-Bernoulli and Timoshenko beam
therories, respectively.

with l = 20 µm. However, to correctly describe the mechanical response of the

shorter beams, the Timoshenko beam model should be used. In this model, any

cross section rotation along the beam axis is not anymore equal to the beam

neutral axis rotation, as shown in Figure 4.1, and the stress resultants read

F T (x) = −GAsκs
(
θT (x)− duT (x)

dx

)
(4.7)

MT (x) = −EI dθ
T (x)

dx
(4.8)

whereG stands for the material shear modulus and κs is the shear correction factor

which amounts to 5/6 for rectangular shape cross section. Similarly, substituting

Eq. (4.7) and Eq. (4.8) into the equilibrium equations yields the the following

governing equations for the Timoshenko beam

GAsκs

(
θT (x)− duT (x)

dx

)
= EI

d2θT (x)

dx2
(4.9)
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GAsκs

(
dθT (x)

dx
− d2uT (x)

dx2

)
= q(x) (4.10)

The mechanical response of the beam can be again derived using the present

boundary conditions uT (0) = θT (0) = 0 and expressed as a function of Euler-

Bernoulli counterparts as

uT (x) = uE(x) +
Ωl2

EI

(
ME(x)−ME(0)

)
(4.11)

θT (x) = θE(x) (4.12)

where the shear parameter Ω is defined as

Ω =
E

Gκs

(
l

r

)−2

(4.13)

r =
√
I/As is the radius of gyration and l/r is the slenderness ratio of the beam.

It should be noted that Eq. (4.11) and Eq. (4.12) are derived according to the

assumed boundary conditions and do not generally hold true. Therefore, the

following system of equations can be written to describe the mechanical response

of the end-point of of short micro beams with l = 10 µm

{
F T (l)

MT (l)

}
=
EI

l3

[
12 −6l

−6l 4l2

]{
uT (l)− Ωl3

EI F
T (l)

θT (l)

}
(4.14)

Eq. (4.6) and (4.14) link the load vector {F (l) M(l)}T as the mechanical input to

the mechanical response of the micro beams in terms of the deflection and rotation

of the end-point {u(l) θ(l)}T as the output. Superscript T stands for transpose.

These two quantities then need to be translated to the electrical actuation and

sensing. In the rest of this work, the end-point variables u(l), θ(l), F (l) and M(l)

are simply referred as u, θ, F and M , respectively.
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Figure 4.2: (a) Schematic of the behaviour of the whole test structure in the case
of lateral actuation, and (b) close-up of the deflected micro beam.
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4.2.2 Electrical field

Actuation

As mentioned, the mechanical quantities should be transformed into the electrical

counterparts since the direct output of the experiments are C−V curves. To this

aim, the capacitance per unit area c of the parallel plate capacitor with a gap

space g reads

c =
ε

g
(4.15)

where ε = εrεo, εr is the relative permittivity of the medium, and ε0 is the dielectric

constant in the free space. Accordingly, the potential energy of the capacitance is

E =
1

2
cV 2 (4.16)

By definition, the attraction electrostatic force per unit area is the change in the

potential energy due to changes in the gap space, that is

f =
εV 2

2g2
(4.17)

Assuming that the electrical potential difference between plates remains constant,

the unit attraction force is simply a nonlinear function of the gap space g.

At a constant voltage V , Eq. (4.15) and Eq. (4.17) show that the capacitance

and the electrostatic force are inherently nonlinear functions of the gap space g

in case of parallel plate capacitors. In the following, the values of F and M are

calculated for the rotational and lateral actuations cases separately. In all calcu-

lations, the electric fringe field is neglected. In electrostatic problems involving

unguarded parallel plate capacitors, the inter-conductor electric field departs from

uniformity near the plate edges, and extends into space beyond the conductors.

The departures from ideal uniform field behaviour are often referred to as fringe

field effect [Sloggett et al., 1986]. Thanks to the designed capacitors, we can adopt

parallel plates approximation, large ratio between capacitor length and the gap,

and neglect the fringe field effect.

In rotational actuation, the stators are set to an electrical potential VR, while

the rotor is electrically grounded. Under the assumption of rotation dominated
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motion and negligible effect of lateral displacements on the configuration along the

capacitor surfaces, the gap gR between the conductors of the rotational capacitors

can be expressed as a function of rotation angle given by:

gR = g0 + x1 sin θ (4.18)

where g0 is the initial gap in the absence of any electrostatic actuation, and x1 is

reported in Figure 4.2. Since the rotation angle θ is supposed to be small for any

possible actuation up to pull-in, Eq. (4.18) is assumed to hold true for both the

top and bottom capacitors. For this configuration, the shear force is thus zero,

i.e.

FR = 0 (4.19)

while the bending moment reads

(4.20)

MR = −2

∫ L/2

a

εwV 2
R

2(g0 + x1 sin θ)2
x1dx1

=
εwV 2

R

sin2 θ

(
(g0 + a sin θ) log (g0 + a sin θ) + g0

g0 + a sin θ

−
(
g0 + L

2 sin θ
)

log
(
g0 + L

2 sin θ
)

+ g0

g0 + L
2 sin θ

)
where a and L are the geometric parameters defined in Figure 4.2(a) and w is the

polysilicon layer thickness.

The relevant relations for the lateral actuation case can be similarly derived. In

this second case, the rotor is still electrically grounded, while the stator conductor

of the lateral capacitor is set to an electrical potential VL. Unlike the rotational

case, the gap along the lateral surface of the proof mass is not only a function of

the rotation angle θ but also of the lateral displacement u. Accordingly, the gap

can be written as:

gL = g0 − u− x2 sin θ (4.21)

where the local coordinate axis x2 is shown in Figure 4.2. The shear force and

the bending moment are thus provided by

FL =

∫ L

0

εwV 2
L

2(g0 − u− x2 sin θ)2
dx2 =

εwV 2
LL

2 (g0 − u) (g0 − u− L sin θ)
(4.22)
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and

ML =

∫ L

0

εwV 2
L

2(g0 − u− x2 sin θ)2
x2dx2

=
εwV 2

L

2 sin2 θ

(
g0 − u

g0 − u− L sin θ
+ log (−g0 + u+ L sin θ)− log (−g0 + u)− 1

)
(4.23)

Since sensing, either the rotational or the lateral one, is independent of the adopted

actuation strategy, a discussion is reported next separately.

Sensing

A similar methodology can be adopted for sensing. Neglecting once again the

electric fringe field, the capacitance between the plates is computed through Eq.

(4.15), handling the gap g as a function of the kinematic variables u and θ and

integrating over the surfaces of the capacitors. In the initial configuration with a

gap equal to g0 all around the rotor, values of rotational and lateral capacitances,

respectively, read

CR0 = 2

∫ L/2

a

εw

g0
dx1 = 2

εw(L2 − a)

g0
(4.24)

CL0 =

∫ L

0

εw

g0
dx2 =

εwL

g0
(4.25)

In the displaced configuration they instead amount to

(4.26)
CR = 2

∫ L/2

a

εw

g0 + x1 sin θ
dx1

=
2εw

sin θ

(
log

(
g0 +

L

2
sin θ

)
− log (g0 + a sin θ)

)

(4.27)
CL =

∫ L

0

εw

g0 − u− x2 sin θ
dx2

=
εw

sin θ
(log (−g0 + u)− log (−g0 + u+ L sin θ))

where the same approximations introduced for the actuation have been exploited.
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Analytical modelling is beneficial as it is computationally fast, nonetheless it

suffers from some limitations that can be improved by finite element modelling.

We assumed a homogeneous material in the beam model while the real beam is

made from polysilicon which is a heterogeneous material. Furthermore, the beam

is assumed to be perfectly anchored, but small deformations of anchor is possible

in MEMS application [Lam et al., 2003]. In addition, we assumed equal electrical

fields at top and bottom capacitors. In reality, they are slightly different as the

rotor rotation is not around its center but around its connecting point to the

beam (point “A” in Figure 3.2). To overcome these issues, a finite element model

is further developed.

4.3 Finite element modelling

To model the quasi static behaviour of the device, the coupling between electro-

static and elastic forces needs to be established. As the mechanical deformation

increases due to the electrical actuation, the electrical domain changes accord-

ingly and the space discretization should properly account for these changes. The

technique adopted here belongs to the family of staggered procedures, iterating

between the mechanical and electric fields, transferring the load vectors between

these two domains. The coupled-field finite element (FE) model of the test device

has been elaborated in the commercial code ANSYS Mechanical APDL (Release

15.0). In the two-dimensional model (plane strain assumption; out of plane thick-

ness of the device w is 11 times larger than the beam thickness h), the structural

components are modeled by 6-node, quadratic, triangular elements with displace-

ment degrees of freedom, while the electric domains (air) between the conductors

are modeled by 3-node, linear, triangular elements with both displacement and

voltage degrees of freedom. It is necessary to take the geometric nonlinearities

into account in order to appropriately model the distortions of the narrow gap

between the conductors when the value of actuation voltage approaches pull-in

(which are taken into account analytically through Eq. (4.18) and Eq. (4.21)).

To create the polysilicon morphology at the beam, a phenomenological ap-

proach has been adopted. In the real fabrication procedure, the silicon grains

are first grown on the substrate independent of the final structure features as
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(a)

(b)

Figure 4.3: (a) Layout of the specimen and, (b) Voronoi artificial tessellation used
to reconstruct the micro beam polysilicon morphology, and (magnified) example
of the grain morphology in the micro beam region.
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(a) (b)

Figure 4.4: (a) Adopted model of the geometry and (b) a random grain morphol-
ogy in the micro beam region.
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(a) (b)

Figure 4.5: (a) FE discretization and (b) detail of the mesh in the micro beam
region, accounting for random grain morphology.
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described in Chapter 2. Then the outline of the structure is etched through ap-

propriate masks. As a result, the final device is composed of some whole grains

and some others locating in the device border where they are cut by the etching

process. Similarly, considering the Voronoi tessellation explained in Chapter 2, the

layout of the specimen can be extracted from the tessellation through appropriate

Boolean operations. The area at the two ends of the beam are also considered to

allow for the polysilicon morphology effect in the overall response. This so-called

moving window technique is reported schematically in Figure 4.3. The adopted

model of the device geometry and an example of resulting grains at the beam

(including the two beam ends) are also depicted in Figure 4.4. The corresponding

generated FEs are exemplified in Figure 4.5. It is noted that the mesh size is very

fine at the beam area where the grains are modelled, and large at the rotor where

we expect no deformation to develop. The adopted FE model consists a total

number of 30500 3-node elements at the gaps and around 4800 6-node elements

for l = 20 µm resulting a total number of 75300 nodes. As for l = 10 µm, the el-

ements at the gaps are identical, but the number of structural elements decreases

to 25500, resulting a total number of 62200 nodes. These numbers vary as the

adopted grain morphology changes.

4.4 Results

The models provided in the previous section naturally depend on the geometric

and material parameters. Despite the scattering observed in the experimental

measurements, here we report examples of analytical/numerical predictions using

the nominal design parameters for the geometry and the homogenized isotropic

constitutive model for polysilicon. Figures 4.6 and 4.7 illustrate the C−V curves

of the beam length equal to 20 µm for rotational and the lateral actuation cases,

respectively. Similarly, Figures 4.8 and 4.9 report the results for beam length

equal to 10 µm. These figures compare the analytical/numerical results versus

the experimental measurements.

It is clear from the responses that both the analytical/numerical models can

provide results in agreement with the experimental measurements for the four

testing configurations. The analytical model can model the capacitance changes

59



CHAPTER 4. MODELLING THE TEST DEVICE

at actuation voltage values up to the pull-in, while the numerical model stops

slightly before pull-in voltage. Overall, both the models predict moderately less

capacitance change compared to the measured values. This implies that the mod-

els are either mechanically stiffer or the electrical domain is not representing the

generated field perfectly. This issue can be related to the assumptions adopted to

develop each model. As the numerical model is concerned, the electric fringe field

at the two ends of the capacitors and at the out-of-plane edges has been neglected.

These assumptions have been also used to develop the analytical model. In addi-

tion, in the mechanical part of the analytical model we assumed a perfect anchor

at the beam ends; during bending, the load-displacement behaviour is potentially

affected by the compliance of the anchor which depends on the specific shape, size

and detailed material properties of the anchor (which can be included in a finite

element analysis, for instance) [Lam et al., 2003]. The anchor effect is more evi-

dent when the results are compared for the two beam lengths: by decreasing the

length of the beam from 20 µm to 10 µm the difference between the two models

increases. Therefore, the effect of deformations at the anchors are more evident in

the shorter beams [Lam et al., 2003], suggesting that the developed finite element

model is more appropriate for the shorter beams.

Another important issue that must be noted is the computational effort needed

for these models. A personal computer with an Intel®CoreTM i7 3.00 GHz pro-

cessor is used for the simulations. Computing time for the FE model on this

computer can be up 30 min depending on the beam length and the testing con-

figuration (i.e. RR, RL, LR and LL) considered. On the contrary, the analytical

model is extremely cheaper taking only up to 2 seconds depending on the testing

configuration.

In the rest of this work, we use the developed models to carry out several inves-

tigations to link the experimentally measured scatterings to different uncertainty

sources.
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Figure 4.6: Experimental measurements versus results of numerical and analyt-
ical model for specimen with beam length equal to 20 µm: (a) RR (rotational
actuation, rotational sensing), (b) RL (rotational actuation and lateral sensing).
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Figure 4.7: Experimental measurements versus results of numerical and analytical
model for specimen with beam length equal to 20 µm: (a) LR (lateral actuation,
rotational sensing), (b) LL (lateral actuation and lateral sensing).
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Figure 4.8: Experimental measurements versus results of numerical and analyt-
ical model for specimen with beam length equal to 10 µm: (a) RR (rotational
actuation, rotational sensing), (b) RL (rotational actuation and lateral sensing).
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Figure 4.9: Experimental measurements versus results of numerical and analytical
model for specimen with beam length equal to 10 µm: (a) LR (lateral actuation,
rotational sensing), (b) LL (lateral actuation and lateral sensing).
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5
Mechanically induced uncertainties on the

experimental measurements

5.1 Introduction

In this chapter, we conduct a thorough study on the effects of polysilicon morphol-

ogy on the observed scattering in the experimental measurements. Several sources

of uncertainties may co-exist effecting the response of the devices (see Chapter 3);

therefore, a clear distinction among their individual effects is not obvious. The

sources of uncertainties can be categorized into two groups: ones related to the

variation of the mechanical properties, and ones instead linked to the fabrication

inaccuracies. We focus in this chapter on the former which is not particular to

our device but may exist in any device fabricated from granular materials and

featuring components with characteristic size comparable to the average grain

size.

To this aim, we use the admissible elastic properties of the silicon grains to

establish a set of bounds for the electromechanical response of the tested devices.

These bounds do not take into account the microstructure of polysilicon and pro-

vide only the maximum scattering that could have developed due to the variations

in the polysilicon mechanical properties. In the next step, the effort is put to relate

the details polysilicon microstructural variations to the scatterings of the device

63



CHAPTER 5. MECHANICALLY INDUCED UNCERTAINTIES ON THE EXPERIMENTAL
MEASUREMENTS

response. This is done using two Monte Carlo simulations by adopting either the

analytical model or numerical model developed in Chapter 4. In the former one,

a preliminary Monte Carlo simulation is first employed to derive the probability

density function (PDF) of the effective elastic properties of stochastic samples of

polysilicon morphology. These PDFs are then fed into the analytical model in the

frame of the main Monte Carlo study, to reproduce the C − V curves for each

testing configuration. In the latter, we generate random grains directly at the

specimens to compute the C − V curves. It is observed that the Monte Carlo

simulation using the numerical model yields results in better agreement with the

experimental measurements. Two important conclusions are drawn accordingly:

i) the variation of mechanical properties due to the polysilicon morphology is

more important in the shorter beam, ii) the fabrication inaccuracies induce larger

uncertainties in the electromechanical response.

The chapter starts with reviewing the admissible elastic properties of silicon

in Section 5.2 and then in Section 5.3 the bounds on the C−V curves are derived

using these elastic properties. In Section 5.4, the investigations using Monte

Carlo simulations are introduced. First, Section 5.4.1 addresses the the strategies

adopted to allow for elastic properties variations and then Section 5.4.2 discusses

the convergence of the Monte Carlo simulations. Finally, Section 5.4.3 reports

and discusses the results of the Monte Carlo studies using the analytical and the

numerical models.

5.2 Admissible elastic properties

To study the possible effect of the uncertainties in the mechanical properties of

polysilicon micro beam on the electromechanical response of the devices, one can

assume that the micro beam is composed of fictitious single crystalline silicon,

featuring either the maximum or the minimum effective Young’s modulus along

the beam axis (see Chapter 4). These two conditions are called in this work “stiff”

and “compliant” case, respectively. These two cases feature the longitudinal axis

of the beam aligned with either crystal orientation 〈110〉 or 〈100〉, respectively.

These two situations are reported in Figure 2.3. Accordingly, we have Young’s

modulus E = 130 GPa, shear modulus G = 79.6 GPa and Poisson’s ratio ν = 0.28
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for the compliant case, and after an in-plane rotation of the reference coordinate

system by π/4, we have the stiff case as E = 169 GPa, G = 50.9 GPa and

ν = 0.064. These two sets of values show, respectively, the minimum and the

maximum of the effective mechanical properties of silicon at the silicon plane

(100), see again Figure 2.3.

Another interesting comparison can be also made by using for the overall

elastic properties the mean values between analytical Voigt and Reuss bounds1:

Young’s modulus E =149.3 GPa and Poisson’s ratio ν = 0.172 [Mariani et al.,

2011]. This case is identified here as the “isotropic” case. The elastic properties

of all these cases are gathered in Table 5.1. These cases can be used to either

obtain bounds on the measured response or define a nominal expected response.

In the next section, these cases are discussed.

Table 5.1: Elastic constants for comparison cases.

E (GPa) G (GPa) ν

stiff 169 50.9 0.064

isotropic 149.3 63.7 0.172

compliant 130 79.6 0.28

5.3 Mechanical bounds on the measurement scattering

The measured C − V curves in Chapter 3 are scattered due to the presence of

some sources of uncertainties. It is useful to investigate the maximum effects

that variations in the specimen mechanical properties can have on the electrome-

chanical responses. Figures 5.1 and 5.2 report the response bounds for the beam

length l = 20 µm with rotational and lateral actuation, respectively. Similarly,

Figures 5.3 and 5.4 report the bounds for l = 10 µm. These responses have been

obtained using the mechanical properties in Table 5.1 using the numerical model

introduced in Chapter 4. We use the numerical model since it can provide more

appropriate estimates of the system behaviour (see Chapter 4). It can be seen that

1 Voigt and Reuss approaches are known to provide bilateral bounding for the elastic moduli
of multiphase systems by assuming, respectively, the state of strain and stress to be uniform
inside the corresponding representative volume element.
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Figure 5.1: Experimental responses in terms of capacitance change and acutation
voltage vs numerical bounds obtained by using maximum, minimum and homog-
enized values of E and relevant ν for the devices whose beam length is equal to
20 µm: (a) RR, (b) RL.

the isotropic case shows a moderate agreement with the measured responses. The

bounds instead can cover most of the measured responses at both beam lengths.

If one takes the effects of electric fringe field into account, a slight shift of the

curves toward larger capacitances is expected. The fringe fields at the two ends

of the conductors can contribute in the electrostatic traction force, but its value

is expected to be low due to the long length of the conductors with respect the

gap space (see Section 4.2).

Despite the good coverage of the bounds, some measured data fall out of these

bounds. Nevertheless, the bounds provided by the stiff and compliant cases are

unlikely to happen, as they would imply either that all grains in the micro beam

share the same crystalline orientation or that the beam is formed from one large

single crystal. Such observation clearly shows that the scattering of the responses

cannot be explained only through variations of the mechanical properties of the

polysilicon film.

Though this analysis can give the maximum possible scattering of electrome-

chanical responses due to the variations in the mechanical properties, it fails to

provide a clear understanding of the response probability. In order to get such

insight, statistical studies through Monte Carlo simulations are carried out in
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Figure 5.2: Experimental responses in terms of capacitance change and acutation
voltage vs numerical bounds obtained by using maximum, minimum and homog-
enized values of E and relevant ν for the devices whose beam length is equal to
20 µm: (a) LR, (b) LL.
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Figure 5.3: Experimental responses in terms of capacitance change and acutation
voltage vs numerical bounds obtained by using maximum, minimum and homog-
enized values of E and relevant ν for the devices whose beam length is equal to
10 µm: (a) RR, (b) RL.
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Figure 5.4: Experimental responses in terms of capacitance change and acutation
voltage vs numerical bounds obtained by using maximum, minimum and homog-
enized values of E and relevant ν for the devices whose beam length is equal to
10 µm: (a) LR, (b) LL.

the next section. In the simulations that follow, we investigate the effects of the

variations of polysilicon morphology (including grains orientations) on the elec-

tromechanical response of the devices.

5.4 Monte Carlo simulation allowing for elastic properties varia-

tion

5.4.1 Mechanical properties variations due to the microstructure

In order to have a more precise understanding of the effects of material proper-

ties variations on the observed scattering of the electromechanical responses in

Chapter 3, a Monte Carlo (MC) approach is adopted. The idea behind MC is

to propagate the uncertainties present in the inputs of a nonlinear model to its

output by carrying out a (usually large) number of simulations at varying inputs.

We follow two sets of Monte Carlo simulations adopting either the FE model or

the analytical model of the test device introduced earlier.

The FE model is advantageous because we can explicitly model the polysilicon

morphology. The idea of using the FE model in the Monte Carlo study is to assign
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random polysilicon morphology and grain orientation and obtain the C−V curves

corresponding to that specific polysilicon film at the micro beam. Therefore,

the reconstructed scattering of the C − V curves can be confronted to that of

experimental campaign. In order to use the FE model, we resort to the moving

window technique described in Section 4.3. For each simulation (of Monte Carlo

method), a different morphology with an orientation randomly assigned to each

grain is considered for the specimen and the region around its two ends, see Figure

4.3. A FE discretization is then applied; since several FEs have to be assigned to

each grain, it is easily understood that the method is computationally expensive,

taking also into account the large number of simulations necessary to ensure the

convergence of the Monte Carlo simulations. To overcome the drawback of the

computational burden, in addition to the previously mentioned MC FE-based

model, a MC based on the simple analytical model reported in Chapter 4 has

been also developed.

In the analytical model, the polysilicon grains cannot be reproduced in an

explicit manner; the model accepts the elastic moduli. The MC using this model

is in turn based on the statistics of the elastic properties of polysilicon film, built

on the basis of the method proposed in [Mariani et al., 2011]. This approach, in

fact, is able to numerically characterize the statistics of the overall elastic moduli

of polysilicon with a given morphology. To obtain this result, we focus on an

aggregate of silicon grains within a two-dimensional statistical volume element

(SVE) and generate the polycrystal morphologies using the Voronoi tessellation-

based method. A preliminary MC approach accounts for the stochastic features

of the polysilicon morphology in the SVE, such as the grain boundary geometry

and the crystal lattice orientations of each grain.

Allowing for estimation fluctuations thanks to the just described procedure, we

can obtain bounds on the overall elastic moduli by adopting uniform strain as well

as uniform stress along the boundaries of the SVE. If the SVE has a statistically

representative number of grains (i.e. the SVE contains a larges enough number

of grains), the estimated values for elastic moduli should not depend on the type

of adopted BCs. As such condition is not valid for the problem in hand, using

the uniform strain and stress BCs result in an statistical upper and lower bound,

respectively [Mariani et al., 2011]. The elastic moduli for each SVE are then
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Figure 5.5: Examples of 2 µm × 2 µm SVEs of polysilicon used in the preliminary
MC simulations.

computed with standard FE simulations with these BCs. Overall, 100 random

SVEs are obtained from an artificial Voronoi tessellation featuring an average

silicon grain size (in terms of diameter) equal to 0.5 µm, typical for our MEMS

devices. Examples of these SVEs are shown in Figure 5.5. The SVE side length

is chosen to be 2 µm in accordance with the in-plane width of the micro beam.

The results of this preliminary MC simulations are reported in the form of a

statistical cumulative distribution function (CDF), shown in Figure 5.6 for the

Young’s modulus E and the shear modulus G (inputs of Eq. (4.14)). The analyt-

ical representations of these distributions are established in the form of lognormal

distribution whose probability density function (PDF) reads

f(χ) =
1

χσLN
√

2π
exp

[
− 1

2σ2
LN

(log(χ)− µLN )2

]
(5.1)
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Figure 5.6: Fluctuations of the elastic properties of the SVE due to the polysili-
con morphology: (a) Young’s modulus E, and (b) shear modulus G. Blue lines
correspond to the uniform strain BCs and orange lines correspond to the uniform
stress BCs. Continuous lines show the CDFs of the MC FE simulations; dashed
lines represent the lognormal distribution fits to the corresponding data.

71



CHAPTER 5. MECHANICALLY INDUCED UNCERTAINTIES ON THE EXPERIMENTAL
MEASUREMENTS

Table 5.2: Estimated distribution for E and G via MC simulations of a 2 × 2
(µm)2 SVE.

E (GPa) G (GPa)
uniform strain uniform stress uniform strain uniform stress

mean (GPa) 150.02 148.38 63.36 62.18
standard deviation (GPa) 4.51 4.46 3.26 3.17

µLN 5.01 5.00 4.15 4.13
σLN 0.030 0.301 0.051 0.051

Table 5.2 gathers the PDF parameters of Equation (5.1) for each set of BC and

their statistics in terms of mean and standard deviation. As expected, uniform

strain BC provides an upper bound on the elastic moduli with respect to uniform

stress BC. The standard deviation is instead marginally affected by the type of

BC employed in each set of simulations. The scattering of the estimates can be

described looking at the standard deviations, which are about 3% and 5% of the

mean values for Young’s modulus and shear modulus, respectively. The mean val-

ues of the elastic moduli are varying less than 2%, depending on the type of BCs,

implying that a relatively tight set of bounds is achieved. These PDFs (obtained

via the preliminary MC) show the variations of the elastic properties due to the

polysilicon morphology. Their effect on the scattering of the electromechanical re-

sponse of the devices (i.e. C−V curves) can be next obtained using the analytical

model into another MC study (the main MC).

5.4.2 Convergence of Monte Carlo simulation

When the analytical model is used in the MC, material properties are drawn from

the CDFs depicted in Figure 5.6, obtained through MC simulations of 2 µm ×
2 µm SVEs previously carried out. The C − V curves can then be calculated

at very low computational cost. Therefore, the number of calculations can be

conveniently increased till the convergence of the main MC using this model is

reached and scattering of C − V curves are reproduced.

As for the Monte Carlo simulations using the finite element models (MC FE),

within each MC FE simulation, the polysilicon morphology (i.e. the grain bound-

ary geometry and the in-plane crystalline orientation of each grain) is changed

using a Voronoi tessellation (see Figure 4.4). Unlike the MC using the analytical
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model, it is not convenient to increase the number of simulations excessively to

ensure statistical convergence of MC FE; therefore, a convergence study is carried

out. A number FE models is generated using different polysilicon morphologies

and their C − V curves are calculated. Since the output of the simulations is not

a single scalar, we resort to a single actuation voltage and its response. Figure 5.7

reports the mean value of capacitance change at Vref = 37 V for the RR 20 µm

beam length case versus the number of simulations up to 200. The voltage value

is chosen as it is the smallest final actuation among the ten devices measured

experimentally. Through this choice, we are choosing the largest signal-to-noise

ratio in the recorded measurements. The specimens are not actuated up to the

same maximum actuation voltage, as their pull-in voltages are different and we

have avoided the possible systems failure due to the pull-in instability (see Chap-

ter 3). A set of horizontal dashed lines are plotted in Figure 5.7, representing the

±1% of the difference between the maximum and minimum simulated capacitance

change (within the 200 simulations), centered at the final mean value obtained

after 200 simulations. As the number of simulations increases, the variations of

the mean becomes smaller. Although it can be stated that the convergence has

been obtained around 100 simulations, a cautious total number of 200 numerical

simulations has been carried out for all MC studies in this work.
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Figure 5.7: Dependence of the mean value of the capacitance change at Vref on
the number of simulations in the MC FE analysis.
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5.4.3 Results

To account for the different number of results (i.e. capacitance change versus

different actuation voltages) from numerics and experiments, the results of each

approach are represented together by the CDF of the capacitance change at a

given voltage value. To exemplify the procedure for the RR 20 µm-length case,

in Figure 5.8 we consider, for simplicity, only MC FE and experimental results:

the numerical and experimental C−V curves would appear as depicted in Figure

5.8(a). We fix the maximum reference voltage Vref, namely 37 V in this case,

identified by the vertical continuous line in Figure 5.8(a); then, with respect to

this value we calculate the corresponding capacitance change for each numerical

or experimental curve (this step could be visualized as “moving along the vertical

direction” between the curves along the aforementioned continuous line). Hence, a

CDF for these data can be produced as a function of the change in capacitance; the

unit value of the CDF corresponds, along the abscissae, to the maximum change in

capacitance observed in the (either numerical or experimental) curves, while the

lowest value of the CDF corresponds to the minimum change in capacitance. In

Figure 5.8(b) the CDF for the ten experimental curves at the reference voltage 37

V is indicated by diamonds, while the CDF for the MC simulations is represented

by a continuous curve (as we have 200 data points). The larger spread of the

experimental results is therefore not only evident, but it can be also appreciated

quantitatively.

It is possible to repeat the procedure in correspondence of other voltage values

to follow the evolution of the CDFs: in this work we consider 25%, 50%, 75% of

the reference voltage Vref, as indicated in Figure 5.8(a) via the vertical dashed

lines.

In the following Figures 5.9-5.12 and 5.13-5.16 the four configurations (RR,

RL, LR, LL) are investigated for the two devices whose beam length is 20 µm

and 10 µm, respectively. Given the maximum reference voltage, in each figure

the CDFs for the analytical (dashed lines), MC FE model (continuous line), and

experimental results (diamonds) are presented. Two CDFs are actually shown for

the analytical model, according to the type of BCs adopted for the SVE used to

determine the effective material properties: in blue uniform strain imposed BCs,
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Figure 5.8: MC FE method versus experimental results for rotational actuation
and sensing through VR: (a) electromechanical response at varying voltage, and
(b) capacitance change for VR=37 V; continuous line corresponds the MC FE
method; diamond symbols stand for experimental responses.
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Figure 5.9: Comparisons between analytical, numerical and experimental results
for the device featuring the 20 µm-length beam in the RR configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 37 V.

in orange uniform stress imposed BCs are represented. The grey shaded area

in the graphs and the dotted line show the stiff/compliant case bounds and the

isotropic case (mentioned in Section 5.3) at the specific input voltage, respectively

(see Figures 5.1–5.4).

As already observed, the bounds computed by considering the maximum and

the minimum in-plane effective Young’s modulus (and corresponding values of

Poisson ratio) of the polysilicon can cover most of the measured data, but the

MC results yield a detailed observation on the actual polysilicon morphology ef-

fect. By looking first at the comparison between analytical and MC FE model
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Figure 5.10: Comparisons between analytical, numerical and experimental results
for the device featuring the 20 µm-length beam in the RL configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 37 V.
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Figure 5.11: Comparisons between analytical, numerical and experimental results
for the device featuring the 20 µm-length beam in the LR configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 15.5 V.
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Figure 5.12: Comparisons between analytical, numerical and experimental results
for the device featuring the 20 µm-length beam in the LL configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 15.5 V.
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Figure 5.13: Comparisons between analytical, numerical and experimental results
for the device featuring the 10 µm-length beam in the RR configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 40 V.
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Figure 5.14: Comparisons between analytical, numerical and experimental results
for the device featuring the 10 µm-length beam in the RL configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 40 V.
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Figure 5.15: Comparisons between analytical, numerical and experimental results
for the device featuring the 10 µm-length beam in the LR configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 22.5 V.
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Figure 5.16: Comparisons between analytical, numerical and experimental results
for the device featuring the 10 µm-length beam in the LL configuration. (a) 25%,
(b) 50%, (c) 75%, (d) 100% of the reference maximum voltage Vref = 22.5 V.
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CDFs, it can be observed that the distance between the CDFs rises as the voltage

increases in all the cases. Moreover, the MC FE model CDF corresponds always

to larger changes in capacitance (in absolute term) with respect to the ones ob-

tained by the analytical approach: in other words, lower capacitance change at

the same actuation is due to the lower displacements of the rotor which is linked

to the rigidity of the micro beam. From the mechanical point of view, the ana-

lytical response is therefore stiffer than the purely numerical MC response. This

difference can be mainly linked to two points. First, the assumption of perfect

anchor at the analytical modelling while in the numerical model the elastic field

at the anchor is taken into account. Second, the geometric nonlinearities in the

electrical field between the conductors are handled better in the numerical model,

see Chapter 4.

The MC FE model yields a steeper CDF, i.e. the fluctuation of the change

in capacitance value is limited in comparison with the analytical cases; again,

the analytical CDFs tend to become less steep (and therefore the change in ca-

pacitance values are more spread out) as the voltage increases, see e.g. Figure

5.9. This difference in slope of the curves is lower in the beam length l =10 µm

case; this implies that the statistics of mechanical properties in Figure 5.6 is more

appropriate for the shorter beam. This outcome was expected, since the number

of grains in the l =10 µm beam is lower than in the l =20 µm case; therefore, a

2 µm × 2 µm SVE is more appropriate for the former (recalling that the beam

width is 2 µm). Only a small increase of the distance between analytical and MC

FE model CDFs can be detected by moving from beam length l=20 µm to l=10

µm. The stiffest response corresponds always to the analytical case with imposed

displacement BCs to the SVE; however, for all the considered configurations and

beam lengths, the difference with imposed force BCs is small.

The most interesting observations can be drawn from the comparison with the

experimental data. In all the cases, the most relevant issue is that they appear

rather spread out with respect to the analytical and MC FE results; moreover, the

experimental points mostly represent more compliant responses with respect to

the MC approach (and therefore also with respect to the analytical approaches).

While the number of experiments is limited to ten, this trend is very clear and it

manifests itself from the beginning, at 25% Vref, and does not seem to follow a
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Figure 5.17: Ratio between standard deviations of MC FE model and that of the
measured data for the different experimental configurations.

clear pattern when the voltage increases.

In Figure 5.17, the ratio ρ between the standard deviation of MC FE results

and that of the measured data at the maximum reference voltage Vref for each

configuration, is represented. Since the latter standard deviation is larger, the

ratio is always lower than one and ρ is represented as a percentage. It is very

clear that the spread within the MC FE model results and the experimental data

increases as the length decreases in the considered range. But this increase is

greater for MC FE results with respect to the experimental ones.

One of the most reasonable possibilities to explain this difference in the results

spreading consists into admitting a different beam geometry for the actual devices

(obtained from the same silicon wafer) with respect to the nominal (designed)

geometry. In particular, even small changes in the beam width (nominally set

equal to h=2 µm) largely influence the second moment of area I = wh3/12 in Eq.

(4.11), and they also modify the transversal cross section As. For instance, it is

well known that the production process partially remove the original polysilicon

pattern during the deep reactive-ion etching, and the variability in this so-called

over-etch can be on the order of 0.1÷0.2 µm per side (typically the total over-

85



CHAPTER 5. MECHANICALLY INDUCED UNCERTAINTIES ON THE EXPERIMENTAL
MEASUREMENTS

etch range is set between 0.2÷0.4 µm) [Gad-el Hak, 2001, Hong et al., 2000, Alper

et al., 2008]. The over-etch value is generally assumed to be constant for the single

MEMS and often also for devices placed on the same silicon wafer; however, the

measurements for this MEMS could be even influenced by a variation in the order

of 50 nm in the over-etch (which implies 15% change in the second moment of

area of the beam with width nominally equal 2 µm), impacting not only on the

beam stiffness but also on the initial gap (hence modifying the electromechanical

force). Other geometric effects could influence the results, such as initial position

offset of the beam or imperfections at the anchor (see Section 3.5) or the lack of

symmetry at the rounded corners1 that modify the hypotheses assumed so far for

the boundary conditions.

5.5 Concluding remarks

In this chapter, the effects of variation of the specimen mechanical properties on

the electromechanical response of the test device have been studied. First, by

defining an isotropic case for polysilicon elastic properties, a nominal response

has been derived. Then, bounds on the C − V curves have been established by

adopting the admissible elastic properties of silicon. It has been observed that

most of measured data are located within the bounds. In the next step, two sets

of Monte Carlo simulations have investigated the scattering of C−V curves due to

the variations of polysilicon morphology at the specimen. Comparing the results

of Monte Carlo simulations and experimental measurements, it has been shown

that i) the uncertainties due to the mechanical properties variations intensify for

shorter beams and, ii) the uncertainty sources related to fabrication inaccuracies

must be present in the experiments.

In the next chapter, we take into account two sources of uncertainty in the

analytical model and quantify them based on the recorded data for each single

specimen.

1 The corners at which the beam is connected to either rotor or the anchor, feature a rounded
(or fillet) shape due to imperfect fabrication, see Figure 3.2.
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6
On-line parameter estimation: particle filter

6.1 Introduction

In the previous chapter, we have observed that the experimental scatterings can

not be solely related to the mechanical properties variations and the geometric

inaccuracies must be also allowed for. The analytical model provided in Chapter

4 is purely deterministic. To infer the possible variability of the model parameters

based on the experimental data, particle filtering [Djuric et al., 2003, Doucet et al.,

2000] is here adopted.

The effect of variability of the overall Young’s modulus of the polysilicon film

on the C − V plot is ultimately linked to the flexural rigidity of the tested beam.

In addition to that, we have shown in the previous chapter that we need to

allow for other sources uncertainties. Based on the discussion in Section 3.5, the

next parameter to be considered aside the Young’s modulus can be the over-etch.

Unlike the Young’s modulus, a variation of the over-etch has several consequences.

Firstly, it affects the stiffness of the beam due to the changes of the beam thickness

and therefore the second moment of area. Secondly, it varies the actuation terms

F and M and also the measured capacitances. These terms are linked to the

electrical field formed within the conductors; therefore, changing initial gap g0

between conductors has a direct effect on their values.

Discriminating the two different sources is not easy, due to the coupled elec-
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tromechanical response of the system. By monitoring the input-output relation

at increasing applied voltage, and by simultaneously handling both the sensing

strategies reported before in an on-line fashion, an estimation of the two stochastic

terms is here looked for. The on-line parameter estimation algorithms update the

estimates of the parameters of a model every time new data is available during the

parameter estimation operation. On the contrary, in off-line estimation, all the

input/output data via experiments are first collected and the model parameters

are then estimated. Parameter values estimated using on-line estimation can vary

with time, but parameters estimated using off-line estimation do not.

In this chapter, we adopt a particle filter which belongs to the family of recur-

sive Bayesian inference1 methods, and estimate the two uncertain parameters for

each specimen. It will be seen that the method is stable at parameter inference

process. However, the assumed sources of uncertainties are still not enough to

describe the experimental measurements. In Section 6.2, we review the basics of

recursive Bayesian inference approach which particle filtering belongs to. Section

6.3 highlights the key features of the adopted particle filter. A thorough discus-

sion on the relevant results remarking the important findings is finally deployed

in Section 6.4.

6.2 Recursive Bayesian inference

When measurements may be affected by noise and disturbances, the unknown

parameters of the model can be obtained more appropriately in a statistical ap-

proach: each parameter is treated as a random variable extracted from a statistical

probability distribution rather than a single value (also known as crisp parame-

ter). The process of deducing the properties of these distributions is generally

referred to statistical inference. The methods for the interpretation of the prob-

abilities are broadly divided in two groups: frequentist inference and Bayesian

inference [Congdon, 2014]. The former defines the probability as the limit of fre-

quency of the event’s occurrence in a large number of well defined and random

experiments. This definition of probability narrows down its applicability since

1 Bayesian inference is a statistical method in which the Bayes’ rule is used to update the
probability estimate for a hypothesis as additional information is available.
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6.2. RECURSIVE BAYESIAN INFERENCE

probability can only be assigned to an event whose random experiment is available

[Yuen, 2010]. Bayesian inference instead states the probability as a representation

of an individual’s degree of belief in a statement. Bayesian inference is advanta-

geous over frequentist inference in the handling of the present problem because

it allows a priori information or results of the previous inference to enrich the

current estimate. Since the Bayesian inference includes different approaches and

interpretations, only a practical summary of Bayesian inference is here perused.

A more detailed and classical introduction can be found in [Robert, 2007].

A recursive inference of the hidden system quantities in the Bayesian frame-

work is generally possible when i) a priori information about the observable quan-

tities probability is available, and ii) a correlation exists between observable and

hidden quantities. The Bayes’ rule is then exploited to deduce the probability

distribution of the hidden state variables [Eftekhar Azam and Mariani, 2012].

Returning to the test devices, the analytical model is preferred over the nu-

merical model; this choice is backed by the large number of simulations needed

in recursive Bayesian inference methods (e.g. particle filter) and relatively large

computational demand of the numerical model. The relation between the sought

parameters (i.e. over-etch and Young’s modulus) and the measurement is math-

ematically expressed via a state-space model. As for the parameters, since they

are structure-dependent, they should not vary during the measurement of capac-

itance change at varying loading; anyhow, to allow for model errors induced by

the simplified analytical model of Chapter 4 and to update the estimates from

presumably wrong initial guesses, a fictitious random walk model1 is assumed to

govern their evolution. If parameters are then collected in a state vector x, its

evolution within the interval [tk−1 tk] representing the (time) window between

two successive measurements at increasing actuation voltage (i.e. two successive

actuations), reads:

xk = xk−1 + vxk (6.1)

where vx
k ∼ N(0,Qvx) denotes a zero mean, white Gaussian noise whose covari-

1 Random walk is a stochastic process which describes a path of successive random steps on a
mathematical space and its step size can vary according to specific distribution, e.g. normal
distribution.
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ance must be appropriately adjusted to be in the feasible range of the parameters

and so to attain accurate estimates [Eftekhar Azam et al., 2012]. This term

shows the degree of the accuracy of the model for representing the real observed

problem. In case of dealing with a pseudo-experimental problem, this adjustment

would not be necessary and very small entries of covariance is suitable to allow

for deterministic-like nature of the system evolution equations [Eftekhar Azam,

2014]. The observation equation is derived from the physical model of Chapter 4,

and it is formally written as:

yk = hk(xk) + wk (6.2)

where: yk denotes the capacitance measurements at time tk; hk(.) stands for the

nonlinear relationship between the parameters in xk and the measurements yk;

wk ∼ N(0,Qw) is the measurement noise, again Gaussian with zero mean and

covariance Qw. Generally, the noise can nonlinearly affect the system observation.

But in the present problem, it is linked to the errors stemming from measurement

equipments and not related to level of actuation; therefore, it can be simply added

to the observation equation.

The inference problem can be regarded as the recursive estimation of the

expected value E[xk|y1:k] and/or other statistics of the state vector, conditioned

on the observation of the system. In other words, E[xk|y1:k] in the recursive

framework is the expected values for the unknown parameters of the model (e.g.

Over-etch and Young’s modulus) after observing the system’s response (which

is experimentally measured) up to an actuation voltage corresponding to time

tk. Provided that the initial probability density function (PDF) of the process

p(x0|y0) = p(x0) is known, the goal is to estimate p(xk|y1:k) upon availability

of the conditional PDF p(xk−1|y1:k−1). The problem is often formulated in two

distinct stages of prediction and update: in the prediction stage, the Chapman-

Kolmogorov integral yields a prior of the state PDF at tk [Arulampalam et al.,

2002]:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 (6.3)

while in the update stage, as soon as the latest observation yk becomes available,
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Bayes’ rule allows to correct the PDF through:

p(xk|y1:k) = ςp(yk|xk)p(xk|y1:k−1) (6.4)

where ς is a normalizing constant, which depends on the likelihood function of

the observation process.

The recurrence of Eq. (6.3) and Eq. (6.4) together forms the exact basis for

recursive Bayesian inference; the a prior PDF of the unknown parameters (i.e.

the initial guess on PDF or the result of Eq. (6.3)) can be updated by observing

the system response. With exception of few cases, like linear Gaussian state space

models (Kalman filter) and hidden finite-state space Markov chains (Wohnam

filter), it is not possible to furnish analytical solution of the integral in Eq. (6.3),

since they require the evaluation of complex integrals [Cadini et al., 2009]. In the

next section, an approximation method for this problem is given.

6.3 Particle filtering

To deal with general nonlinear/non-Gaussian problems, sequential Monte Carlo

methods [Doucet and Johansen, 2009] can be resorted for evaluating the Chapman-

Kolmogorov integral. Sequential Monte Carlo methods do not impose any restric-

tion on the posterior density p(xk|yk), and approximate the integrals in Eq. (6.3)

through finite sums, adopting a sequential importance sampling. To this end, the

posterior PDF is represented via Dirac delta functions at a set of discrete sample

points which can be called also particles. Without loss of generality, the posterior

probability of the parameters collected in xk given the measurement vector yk

can then be written as [Capellari et al., 2015, Cadini et al., 2009]:

p(xk|yk) =

∫
p(εk|yk)δ(εk − xk)dεk (6.5)

where δ(.) denotes the Dirac delta function. Assuming that the true posterior

p(xk|yk) is known and can be sampled, an approximate estimate for the posterior

distribution of the parameters can be given by:
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p(xk|yk) ≈
1

Ns

Ns∑
i=1

δ(xk − xik) (6.6)

where xik is a set of Ns random samples drawn from the true posterior PDF

p(xk|yk). However, it is impossible to efficiently extract these samples, as the

goal of the procedure is the definition of the true posterior PDF. Importance

sampling has been introduced as a remedy to this deadlock: an arbitrarily chosen

distribution π(xk|yk), called importance function, is sampled in the absence of the

true a posteriori PDF. An unbiased estimate of p(xk|yk) can then be obtained as:

p(xk|yk) ≈
Ns∑
i=1

ω̃ikδ(xk − xik) (6.7)

where ω̃ik = ωik/
∑Ns

j=1 ω
j
k and the so-called importance weights ωik are approxi-

mated through:

ωik =
p(yk|xik)p(xik)
π(xik|yk)

(6.8)

where p(yk|xik) is the likelihood of the observation. The importance weights can

be updated through:

ωik = ωik−1

p(yk|xik)p(xik|xik−1)

π(xik|xik−1,y1:k)
(6.9)

This recursive formula provides a way to sequentially update the importance

weights, given an appropriate choice of the proposal distribution π(xik|xik−1,y1:k).

Consequently, any expectations of the form E[g(xk)] =
∫
g(xk)p(xk|yk) dxk while

g(.) is any given function, can be approximated by E[g(xk)] ≈
∑Ns

j=1 ω
j
kg(xjk). In

[Doucet, 1997], it was shown that the transition prior distribution p(xj |xj−1) is

the most popular choice for the proposal distribution instead of π(xik|xik−1,y1:k).

Having that, the importance weights are easily updated by simply evaluating the

observation likelihood density π(xk|xk−1) for the sampled particle set, through

[Cadini et al., 2009]:

ωik = ωik−1p(yk|xik) (6.10)

Algorithmic issues may arise as the covariance of the weights always increases
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over time [Doucet et al., 2000]. In practice, after a few iterations all the particles

but one display negligible weights; this issue is referred to as sample degener-

acy [Doucet and Johansen, 2009]. To alleviate sample degeneracy, particle filters

are typically complemented with a sequential importance sampling and resam-

pling stage, see e.g. [Liu et al., 2001]. During the resampling stage, particles

with relatively low probability are deleted and the ones with higher likelihood

are duplicated. An intuitive explanation of this stage is that each xik might be

a solution for the parameter estimation problem while its associated weight ωik
expresses the probability of this solution to be the correct one. The resampling

tends to duplicate the particles with higher probability (weight) and discard the

ones with lower probability (weight); therefore, the resampling stage guides the

particles around the high probability peak/s. Several procedures have been pro-

posed in the literature for resampling, such as: multinomial resampling; stratified

resampling; residual resampling; and systematic resampling. For implementation

and algorithmic details, readers are referred to [Douc et al., 2005].

Using extensive Monte Carlo simulations, it was shown in [Hol et al., 2006]

that, in terms of resampling quality and computational complexity, systematic

resampling is favorable; therefore, in this study the latter resampling scheme is

adopted. Resampling may however cause another issue called sample impoverish-

ment, when few particles with a notable weight are kept while all others with a

negligible weight are abandoned [Li et al., 2012]. In general terms, it can be said

that sample degeneracy is a result of samples being too much distributed (also in

zones with very low probability), instead sample impoverishment is (as a possible

direct negative consequence of resampling) the problem of having the particles too

focused. Sample degeneracy and sample impoverishment are arguably two main

drastic flaws associated with particle filters and importance sampling, which to-

gether provide unsatisfactory particle distributions [Li et al., 2014]. One of the

first remedies for mitigating the impoverishment issue was roughening (also called

jittering [Flury and Shephard, 2009], diffusing [Pantrigo et al., ] or diversifying

[Vadakkepat and Jing, 2006]), which basically adds an independent Gaussian jit-

tering noise with zero mean and constant covariance to the resampled particles.

All these issues motivated the research on the so-called particle distribution op-

timization schemes, such as applications of artificial intelligence methods (e.g.
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particle swarm optimization and genetic algorithms) and machine learning ap-

proaches (e.g. clustering and merging); for a recent review of the state-of-the-art

for the subject, see [Li et al., 2014]. For the current application, it will be seen

in the following that, due to the relatively low number of iterations (i.e. recorded

voltage actuations, every 0.5 V), sample impoverishment does not prevail and

only a resampling stage has been implemented.

The particle filter samples the actual PDF of the unknown parameters by

drawing samples in prediction stage so it can appropriately account for non-

Gaussian densities. It is an on-line strategy as it does not handle all the ex-

perimental information already available and but instead deploy them step by

step starting from zero actuation voltage up to the highest available.

6.4 Parameter estimation: Results

In this section, we first explore the sensitivity of the device response to the two

parameters to be identified, namely the over-etch O and the Young’s modulus E

of the film. Next, the particle filter described earlier is adopted to estimate the

parameter values for each of ten samples. As for the target values Ō and Ē of

parameters, we have assumed: Ō = 0, which means that the real geometry of the

device matches the design one; Ē = 149.3 GPa, which is the average between the

two (upper and lower) bounding estimates of the homogenized polysilicon Young’s

modulus, see [Mariani et al., 2011].

Both O and E affect the stiffness terms in Eq. (4.6) or Eq. (4.14). Specifically,

the over-etch comes into play by changing the width of the beam according to

h∗ = h̄ − 2O; further to that, the over-etch also has a role in actuation and

sensing, since the gap is affected according to g∗0 = ḡ0 + 2O. In these equations,

the starred values represent the actual geometric features of each sample, while

the over-barred ones are the target values (reported in Table 3.1).

For some test structures, see e.g. [Rocha et al., 2008, Mol et al., 2008, Rocha

et al., 2011], the pull-in voltage V pull has been suggested as a possible feature

of the overall structural response providing insights into micromechanical details

of the device, on top of all the over-etch. Figure 6.1 gathers the values of the

voltage corresponding to the pull-in instability in case of either lateral or rotational
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Figure 6.1: Sensitivity of the pull-in voltages V pull
R and V pull

L to a variation of
(left) over-etch O, or (right) polysilicon Young’s modulus E.

actuation. The sensitivity to O and R is numerically assessed by fixing one of

the two parameters at the relevant target value (either Ō or Ē), and changing

the other within the domain O ∈[Omin=-0.15 µm, Omax=0.15 µm] based on the

specifications of the fabrication process or E ∈[Emin=130 GPa, Emax=169 GPa]

based on the admissible values of Young’s modulus for silicon plane (100). It

can be noted once again that the lateral actuation is associated to lower pull-in

voltages; such effect has been also observed in the experimentally measured values,

see Figures 3.7 and 3.8. A variation of the Young’s modulus is shown to affect

the pull-in voltage almost linearly, while the over-etch has a nonlinear impact.

This observation is essential if one aims to characterize the device by using the

pull-in voltage only, since that would require a one-to-one relation between the

varying parameter and V pull [Mol et al., 2008]. This issue is further illustrated

in Figure 6.2: the overall response of the system for two different values of O

leads to very similar values of the pull-in voltage. As it can be seen, although the

same asymptotic response occurs at pull-in instability, the devices feature a much

different capacitance variation in the stable regime. Therefore, the whole response

of the system has to be accounted for to correctly characterize the uncertainties.
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Figure 6.2: Comparison between the electromechanical responses of two devices
respectively featuring O1 = −0.15 µm (solid line) and O2 = 0.15 µm (dashed
line), with E1 = E2 = Ē.

In the filtering procedure, the Young’s modulus and the over-etch are allowed

to vary in the domains mentioned earlier. The extreme values for the Young’s

modulus have been selected according to the range of variation of E for single-

crystalline silicon, see [Hopcroft et al., 2010]; the values for the over-etch have

been instead assumed on the basis of fabrication process specifications.

Since the adopted Bayesian filtering procedure needs to be initialized with a

guess for the handled parameters, coefficients ξO and ξE are introduced to allow

such initialization values Oi and Ei to vary around the target ones Ō and Ē

according to:

Oi = Omin + ξO(Omax −Omin), Ei = Emin + ξE(Emax − Emin) (6.11)

where ξO and ξE then belong to the range [0, 1].

Figure 6.3 shows the evolution of the estimations starting from different initial

guess values Oi and Ei, for two different dice. As far as filtering is concerned,

in the analyses 1000 particles have been adopted and the experimental data have

been fed to the filter every 0.5 V (based on the available measurements). Large

number of particles allow for better degree of precision at solving the involved
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Figure 6.3: Evolution of the estimates of (top) O and (bottom) E, at varying
filter initialization. Blue dashed lines: rotational actuation through VR; orange
solid lines: lateral actuation through VL. (a) Specimen #2, leading to consistent
final estimates, and (b) specimen #5, leading instead to non-consistent results.
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integrals [Cadini et al., 2009]. The process noise covariance matrix Qvx , linked to

the noise term vx
k in Eq. (6.1), has been set as Qvx = diag[σ2

vO
σ2
vE

] so to handle

uncorrelated uncertainties related to the geometry and the film morphology, and

to allow both the parameters to evolve within the a priori defined domain of vari-

ation. The measurement covariance matrix Qw, linked instead to the term wk in

Eq. (6.2), has been set as Qw = diag[σ2
wR

σ2
wL

] to account for the uncertainties

associated to experimental measurements. As far as the results here reported are

concerned, the following values for the process and measurement noise covariances

have been adopted: σ2
vO

= 10−4 µm2, σ2
vE

= 10−3 × Ē2, σ2
wR

= σ2
wL

= 10−3

fF2. These values are adopted to allow for i) the error occurring at analytical

modelling stage, and ii) and small errors stemming from the specific measure-

ment equipments used in Chapter 3. Graphs in Figure 6.3 show results obtained

with the lateral actuation (orange lines) superposed to those obtained with the

rotational actuation (blue lines), although relevant to two different series of filter

runs. It can be seen that, independently of test case and sample considered, the

final estimates of O and E are only marginally affected by the initialization val-

ues; accordingly, the filter is proved to properly handle the information brought

by measurements, without any kind of instability. As the actuation voltage is

increased, the ratio between the response of the device (in terms of capacitance

change) and the measurement errors is also increased (see Figures 3.7 and 3.8); a

more accurate parameter estimation is thus expected. This is somehow reported

in Figure 6.3, since the estimates, starting from different initialization points, first

follow different paths and then all merge to provide the mentioned initialization-

independent solutions. Since the effects of actuation are larger in the lateral case,

the merging of all the curves is shown to happen in this case for smaller values of

the applied voltage.

Parameter estimation has been carried out for all the ten samples of length

20 µm mentioned in Chapter 3, whose C − V plots are reported in Figures 3.7

and 3.8, and the relevant final values of the estimates of O and E are reported in

Table 6.1. Results can be classified into two sets: those featuring final estimations

for the two kinds of actuation matching well each other in the proposed statistical

setting; and those providing rather different estimations with the two types of

actuation, in terms of the two parameters. Graphs in Figure 6.3(a), referring to
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Figure 6.4: Specimen #2, rotational actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of estimates
represented by blue curves in Figure 6.3(a).
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Figure 6.5: Specimen #2, lateral actuation case, ξO = ξE = 0.75: evolution of the
PDFs of (a) O and (b) E corresponding to the evolution of estimates represented
by orange curves in Figure 6.3(a).
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Figure 6.6: Specimen #5, rotational actuation case, ξO = ξE = 0.75: evolution
of the PDFs of (a) O and (b) E corresponding to the evolution of estimates
represented by blue curves in Figure 6.3(b).
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Figure 6.7: Specimen #5, lateral actuation case, ξO = ξE = 0.75: evolution of the
PDFs of (a) O and (b) E corresponding to the evolution of estimates represented
by orange curves in Figure 6.3(b).
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Table 6.1: Estimated parameter values through particle filtering.

O (µm) E (GPa)

Specimen # through VR through VL through VR through VL

1 -0.13 -0.13 138.4 131.8
2 -0.04 0.02 137.4 135.3
3 0.03 -0.09 134.3 151.9
4 -0.12 -0.07 145.7 132.1
5 0.06 -0.13 130.5 164.2
6 0.01 0.00 144.5 166.3
7 -0.14 -0.15 136.5 130.4
8 -0.14 -0.15 140.1 130.1
9 -0.15 -0.15 159.1 130.1
10 -0.15 -0.15 152.8 130.2

specimen #2, are exemplary of an actuation-independent solution, although the

estimations of O are somehow diverging close to pull-in. Graphs in Figure 6.3(b),

referring to specimen #5, show instead the pathological divergence of the two

solutions, in terms of both O and E, once again maximized close to pull-in.

In addition to the average or expected values reported above, further insights

are provided next in terms of evolution of the PDFs of the parameters during the

whole filtering procedure. Figures 6.4 and 6.5 gather the evolution of PDFs of

the parameters for specimen #2 (consistent estimation), with an initialization at

ξO = ξE = 0.75, for the rotational and lateral actuation respectively; these results

correspond to the evolution of averages shown in Figure 6.3(a). As it can be seen,

the parameters show a similar evolution of the PDFs as the actuation voltage

increases up to pull-in, independently of the actuation type. The relatively large

superposition of the PDFs of the estimated parameters at the final stages of the

procedure, as provided by the rotational and lateral actuations, is basically point-

ing towards a common statistical solution for the parameters. On the other hand,

the PDFs of O and E in Figures 6.6 and 6.7, which correspond to specimen #5

(not consistent estimation) and to the same initialization at ξO = ξE = 0.75, show

no superposition with the two types of actuation. Hence, though the procedure

is algorithmically stable for each actuation type, estimates do not conform in a
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statistical sense and so do not offer a unique solution.

Although the filtering procedure has been shown to be robust, some samples

led to different estimates of O and/or E depending on the actuation, or estimates

located at the bounds of the initial variation range. Hence, the adopted model

might not be accurate enough for all the possible situations encountered: while

an effective homogeneous Young’s modulus for the polysilicon beam can be ap-

propriate to describe the overall stiffness of each beam (see [Cho and Chasiotis,

2007, Mariani et al., 2011, Mirzazadeh et al., 2015]). Furthermore, small imper-

fections like e.g. non-zero values of u and θ at no actuation (i.e. for VL = VR = 0),

could lead to a drift or bias in the solution obtained with the particle filter. It has

been also assumed that the beam anchors behave ideally, even if several studies

have shown that deformation at the anchors [Zhong et al., 2013, Frangi et al.,

2013] can induce an additional compliance, and cause discrepancies between the

model and measured responses. Moreover, the assumption of a uniform over-etch

all around the plate and the beam may fail for different dice in a single wafer.

The particle filter is a more useful tool for systems where on-line parameter

estimation methods are needed. However, the measurements have been previously

carried out and the data are available. In the next chapter, we enhance the model

used in this chapter by introducing another source of uncertainty and adopt off-

line parameter estimation methods which handle all available data at once.
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7
Off-line parameter estimation:

Levenberg-Marquardt and genetic algorithm

7.1 Introduction

As observed in the previous chapters, the scattering of the electromechanical re-

sponse must be originated from variations both in the mechanical properties and

the geometry. A model parameter estimation has been carried out for the over-

etch and Young’s modulus through particle filtering and it was shown that the

other sources of uncertainty should be taken into account for more appropriate

estimations. In this chapter, we enrich the analytical model by inserting an-

other geometric uncertainty: initial offset displacement of the rotor. Regarding

the parameter estimation method, unlike the previous chapter where we used a

recursive method, we handle all the experimental data on the system response

concurrently, i.e. off-line parameter estimation. In other words, we first collect

all the available measurements (whole range of the actuation) and estimate the

unknown parameters of the model according to this batch of data. In order to seek

for the correct model parameters for each specimen, we investigate the application

of two standard optimization techniques to minimize the discrepancy between the

model prediction and experimental measurements in terms of the C − V curves.

We choose Levenberg-Marquardt (LM) and genetic algorithm (GA) belonging re-
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spectively to the deterministic or stochastic type of optimization algorithms. The

former type is characterized by the use of deterministic search operators. These

algorithms start from a guess on the solution (i.e. unknown parameters) and it-

eratively determine a direction in the search space (i.e. parameter space) which

minimize the error with respect to the previous solution (i.e. objective function).

The stochastic algorithms, on the other hand, are characterized by dealing with

several points in the parameter space and iteratively examining new points in the

parameter space by random operations on the current points.

Section 7.2 and 7.3 describe the LM and GA algorithms in details, respectively.

In Section 7.4, the third unknown parameter is introduced into the analytical

model. It is shown that the LM algorithm fails at finding the global minimum of

the objective function while the adopted genetic algorithm successfully estimates

the unknown parameters based on the measurements.

7.2 Levenberg-Marquardt algorithm

The LM algorithm is one of the most efficient and popular deterministic algo-

rithms for determining the unknown parameters of multivariate nonlinear func-

tions in least squares problems, particularly when the number of parameters to be

identified is low (typically less than 5) [Rouquette et al., 2007]. In comparison to

the similar methods such as, conjugate gradient and resilient back-propagation,

the LM algorithm shows better convergence1 [Sipos et al., 2012, Kişi and Un-

cuoglu, 2005]. The LM algorithm combines effectively two other deterministic

search methods: the gradient descent (GD) and the Gauss-Newton (GN) method.

When the current solution (typically at the initiation state) is far from the cor-

rect one, the algorithm behaves like the GD method which is slow but highly

convergent. As the estimated parameters marches closer to the correct values,

the algorithm turns to be similar to the GN method which is rapid in convergence

but strongly dependent on the initial conditions.

1 Trust Region method is also available to this aim which is developed based on the LM algo-
rithm [Yuan, 2000] and can exhibit better convergence performance. However, the algorithmic
complexity of this method is much higher than the LM algorithm which explains why the LM
method is more popular [Berghen, 2004].
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The solution of the parameter identification problem is obtained as the dif-

ference between the estimated and the measured response is minimized in a least

squares format. Thus, a functional S (x) is defined

S (x) = ‖h(x)− y‖ (7.1)

where y is the vector collecting the measured response of the system in terms of

the capacitance change corresponding to the increasing actuation voltage, h is the

system response for the parameter vector x and ‖.‖ denotes the Euclidean norm.

In practice, h(x)−y in Eq. (7.1) is a vector collecting the difference between the

measured and predicted capacitance change at different values of actuation voltage

whose length is the number of voltage steps used at experimental measurements.

The LM algorithm offers the following iterative formula to reduce S (x) with

respect to the parameters vector x [Ozisik, 2000]:

xk+1 = xk + [JTJ + λkdiag(JTJ)]−1 [JT(h(x)− y)] (7.2)

where k is the iteration step. The n×m sensitivity matrix J(x) is defined as the

Jacobian of h with respect to the unknown parameters x:

J(x) =


∂h1
∂x1

∂h1
∂x2

· · · ∂h1
∂xm

∂h2
∂x1

∂h2
∂x2

· · · ∂h2
∂xm

...
...

. . .
...

∂hn
∂x1

∂hn
∂x2

· · · ∂hn
∂xm

 (7.3)

where n and m are the number of response measurements (i.e. number of volt-

age steps) and the number of model parameters to be estimated, respectively.

This matrix can be either calculated analytically when possible, or approximated

through finite-difference method. The term λkdiag(JTJ) can be interpreted as

a damping term for fluctuation of the estimations which can be modulated by

the positive scalar λk. This term controls the transition between the GD method

(λk →∞) and the GN method (λk = 0). The LM algorithm is adaptive because

it controls the value of λk during the iterations. This parameter is large at the

beginning of the iterative procedure, resembling the GD method. This is because
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the GD method is advantageous when the current stage is far from the corrected

one (which is often the case at the initialization stage). If the updated parameters

vector x computed from Eq. (7.2) leads a reduction in the value of S (x), the up-

date is accepted and λk can be reduced (typically by a factor of 10) for the next

iteration. Otherwise, Eq. (7.2) will be solved with an increased damping term.

This step will be repeated for increasing values of λk until an acceptable update

for the parameters vector is found.

7.3 Genetic algorithms

Genetic algorithms (GAs) are a stochastic search method widely used for opti-

mization, based mainly on evolutionary ideas of genetics and natural selection.

The general idea of genetic algorithms as simulations of evolution first appeared

in 1967 in Bagley’s Thesis titled “The behavior of adaptive systems which em-

ploy genetic and correlative algorithms” [Bagley, 1967]. These algorithms were

first suggested in the 1970s by John Holland in the United States [Holland, 1975],

and by Ingo Rechenberg in Germany [Rechenberg, 1973]. Based on simplification

of evolutionary theory, GAs work on a populations of candidate solutions, and

employ heuristics such as selection, crossover, and mutation to evolve the popu-

lation’s members over sequential generations. The basic steps behind GAs can be

summarized as following.

1. Generate a random initial population composed of nP candidate solutions.

2. Evaluate the fitness value for each member of the current population using

the objective function.

3. Select the so-called parents i.e. members, based on their fitness value for

reproduction purpose.

4. Pass a number of best parents so-called elite to the next generation popu-

lation.

5. Generate offspring by combining the characteristics of two parents, crossover,

and by applying variations (based on any specific probability distribution)

to a parent or to the newly generated offspring, mutation.
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6. Replace the current population with the newly generated offspring.

7. Perform the steps 2 to 6 until a termination condition is met, such as max-

imum number of generations or minimum change in the value of the best

fitness between two generations.

The initial population should be selected according to the existing prior knowl-

edge of the zones in parameter space with higher probability of solution. In ab-

sence of such information, a general and safe practice is to use a random distribu-

tion of population over the search area to increase the chance of locating the zone

of the solution. Regarding the offspring generation, beside the passing so-called

elite members which hold the best current solution, use of both crossover and

mutation is necessary. The former enables the algorithm to combine the elements

of the best solutions (parents) to generate possibly superior offspring (children)

which is the basic idea behind evolution. The latter instead prevents the loss of

diversity [Holland, 1975] which helps the chance of generating individuals with

better fitness value and locating the correct solution.

In the next section, we adopt these two methods, the LM and the GA, for

estimation of the unknown parameters of the test devices.

7.4 Discussion on the results

The aforementioned optimization methods have been used in a parameter estima-

tion framework. As for the objective function to be minimized, the normalized

discrepancy between the measured capacitance and the model predictions has

been chosen. In this regard, the same idea of cross validation of Chapter 6 has

been employed; the identification process is repeated once for each actuation type,

using both sensing types.

As concluded in the Chapter 6, the model needs to be further enhanced by

considering other sources of uncertainties to better match the experimental data.

In this regard, the next likely parameter to be considered is an initial offset dis-

placement of the central rotor which can heavily affect the system response and

is prone to changes due to the fabrication process. This rotor displacement can
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be parametrized by an initial beam-end deflection u0, and an initial beam-end ro-

tation, θ0, depicted in Figure 7.1. Between the two, the beam-end rotation is the

prominent parameter. The effects of initial beam-end deflection for the rotational

capacitors, both at actuation and sensing, is negligible since u0 can be assumed

to occur in the direction almost parallel to the capacitors and does not change

the gap gR. Since the expected values for u0 are in order of tens of nm and are

relatively small to the gap distance g0=2 µm (see Figure 3.2), such changes do not

also alter the system behaviour at the lateral capacitor accordingly. Therefore, in

the following we take into account the rotation offset value θ0 only. Insertion of

this parameter into the analytical model provided in Chapter 4 is carried out by

a simple modification as θ → θ + θ0.

Figure 7.1: Initial offset displacement parametrized by u0 and θ0. Displacements
not to scale.

Using the three unknown parameters namely, O, E and θ0, the sensitivity of

the response to these parameters is investigated first; for such purpose, one may

observe the capacitance change corresponding to an arbitrary actuation voltage.

The variation range of over-etch and Young’s modulus can be chosen within the

domain O ∈[Omin=-0.15 µm, Omax=0.15 µm] based on the specifications of the

fabrication process or E ∈[Emin=130 GPa, Emax=169 GPa] based on the admis-

sible values of Young’s modulus for silicon plane (100), similar to the analyses in
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Chapter 6. In order to have a physical understanding of the variation range of

rotation offset, we have resorted to the pull-in instability configuration. In a sepa-

rate analysis, the rotation angle corresponding to pull-in instability for rotational

and lateral actuation have been obtained as -0.0088 and 0.0042 rad, respectively

(counterclockwise rotation is positive, see Figure 7.1). These values are calcu-

lated using reference values for over-etch and Young’s modulus, i.e. O=0 µm and

E=149.3 GPa. Taking those calculations into account, the variation range for the

offset has been set as θ0 ∈[θ0min=-0.004 rad, θ0max=0.004 rad].

First, we investigate the effects of the variation of these three parameters on

the response of the system. Figure 7.2 reports the developed capacitance change

at the rotational capacitors when a voltage difference VR = 37 V is applied at

the same capacitors (20µm RR case according to Figure 3.7(a)). As it can be

observed, all the three parameters effectively change the device response. In the

case of over-etch, the capacitance change varies in a strong nonlinear fashion,

while Young’s modulus and the rotation offset have a quasi linear effect. Looking

at the variation of capacitance change, it is also clear that the over-etch and

Young’s modulus exhibit stronger influence. Similar behaviour can be seen in

the response of LL case when a voltage difference VL = 15 V is applied to the

lateral capacitor. The only difference is linked to the direction of the rotation

offset; in the present convention, positive rotation offset decreases the gap between

the rotational capacitors and increases the one between the lateral capacitor, see

Figures 7.2 (c) and 7.3 (c).

Comparing LM and GA method, LM is the first choice, since its computa-

tional burden is typically lower than GA method. The difference is simply due

to the fact that LM is a gradient based method which tries to find the solution

(minima/maxima) by determining the appropriate search direction; therefore, a

lower number of simulations is required. However, this method requires a guess for

the initialization of the algorithm. On the other hand, GA starts with a random

initial population in the absence of a priori statistical knowledge of the solution.

As mentioned above, as the first attempt, the LM method has been adopted

due its lower computational burden. However, such optimization method must

be carried out for different initialization values first to ensure its robustness. We

use the measured capacitance change at both capacitors when actuation voltage
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Figure 7.2: RR case, VR =37 V, variation of the device response at varying (a)
overetch O, (b) Young’s modulus E and (c) rotation offset θ0.
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Figure 7.3: LL case, VL =15 V, variation of the device response at varying (a)
overetch O, (b) Young’s modulus E and (c) rotation offset θ0.
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is applied to the rotational capacitors (RR and RL cases) for specimen #2 of 20

µm micro beam family. The identified results are shown in the maps of Figure 7.4,

where the values of identified parameters O, E and θ0 at the end of the iterative

method are represented as functions of the initialization values Oi and Ei while

keeping the initial guess of rotation offset θ0i to be zero (nominal design values).

Each map derives from a grid of 5×5 initialization points inside the admissible

domain. Similar maps can be derived for pairs of θ0 with either Ei or Oi. It can

be observed from Figure 7.4 that the identification process is heavily dependent

on the initialization values which invalidates the robustness of the method. In

other words, the LM method was not capable of finding the global solution to a

unique optimization problem.

As means to escape from the local minima/maxima, one can impose further

regularity conditions on the functional S (x) i.e.

S (x) = ‖h(x)− y‖+ γ‖x− x0‖ (7.4)

where the vector of the regularization parameters γ > 0 and the vector of a priori

guess on the parameters x0 ∈ [xmin xmax] should be given to the problem.

This type of regularization is known as nonlinear Tikhonov regularization in the

literature [Bissantz et al., 2004]. The regularization parameter defines the rate of

convergence of the iterative procedure toward the a priori guess. This parameter

demonstrates the degree of confidence in the guess. The choice of the a priori guess

is crucial to this method and can be derived from a set of individual experiments

or the expert guess on the unknown parameter. In the present investigation, we

lack such insight into the value of the unknown parameters of the devices. Thus

using such regularization method would be unjustified and is not pursued in this

work.

Thereby, we resort to GAs as a global optimization strategy [Patelli et al.,

2014]. The same scheme of cross-validation has been also adopted in this set of

analyses. Since the sought parameters are independent of the type of actuation,

the parameter estimation procedure can be carried out for the two actuation types

separately, to cross-validate the estimations. The population size to explore the

parameter space (also known as design or search space) is an important factor

114



7.4. DISCUSSION ON THE RESULTS

 E
i
 (GPa)

 O
i (

µm
)

 

 

130 135 140 145 150 155 160 165
0.2

0.25

0.3

0.35

0.4

 O
 (

µm
)

0.26

0.28

0.3

0.32

0.34

0.36

(a)

 E
i
 (GPa)

 O
i (

µm
)

 

 

130 135 140 145 150 155 160 165
0.2

0.25

0.3

0.35

0.4

 E
 (

G
Pa

)

130

131

132

133

134

135

136

137

138

139

(b)

 E
i
 (GPa)

 O
i (

µm
)

 

 

130 135 140 145 150 155 160 165
0.2

0.25

0.3

0.35

0.4

 θ
0 (

ra
d)

−4

−2

0

2

4

6
x 10

−3

(c)

Figure 7.4: Effect of initialization on the estimated parameters: (a) Overetch O,
(b) Young’s modulus E and (c) rotation offset θ0.
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which determines the efficiency of the procedure [Chen et al., 2015, Chen et al.,

2012]. Large population will clearly require numerous evaluations and thus, more

computational effort is needed. On the other hand, assigning a large population

generally is advantageous as it allows a thorough space search and accordingly a

higher chance for finding the true global minima/maxima.
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Figure 7.5: (a) Convergence of the objective discrepancy function at increasing
generations, and (b) close-up of the plot and best score trend.

To estimate the value of the unknown parameters parameters O, E and θ0, a

genetic algorithm with a population of 5000 individuals has been adopted which

converges before 11 generations. The individuals population has been assessed

based on several trials with different populations to ensure the robustness of the

algorithm. Figure 7.5(a) shows the convergence of the genetic algorithm in terms

of the objective function value for the exemplary case of specimen # 2; Figure
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7.5(b) illustrates the close-up view of the bottom part of the Figure 7.5(a) along

with the trend of the best individual score. Each dot in the figures stands for

the objective function value for one individual. The color is assigned so that dark

blue stands for the individual which shows the largest objective function value,

and dark red stands for the best individual at each generation (corresponding

to the smaller objective function value). At the evaluation of first generation

(random spread of individuals within the parameters space), the individuals show

a wide range of values of the objective functions; as the generations advance,

the individuals move to the bottom of the graph concentrating around the best

possible solution. It can be observed that the rate of convergence is relatively

high, since the number of individuals is large; although the convergence of the

algorithm occurs at the 8th generation, the fluctuation in the objective function

after the 4th is quite negligible as for the best solution. However, it is worth noting

that the computation cost for this parameter estimation for each specimen is less

than 30 min on a personal computer with an Intel®CoreTMi7 3.00 GHz processor

thanks to adopting the analytical model.

Table 7.1: Estimated parameters values through GA.

E (GPa) O (µm) θ0 (milliradian)

Specimen # through VR through VL through VR through VL through VR through VL

1 134.6 131.6 -0.10 -0.05 0.08 0.34
2 147.6 137.7 -0.09 -0.02 -0.15 0.07
3 150.8 153.2 -0.09 -0.13 -0.31 -0.30
4 149.5 130.7 -0.12 -0.07 -0.01 -0.05
5 149.5 141.8 -0.09 -0.10 -0.55 -0.56
6 161.5 144.2 -0.07 -0.07 -0.42 -0.85
7 130.3 134.3 -0.10 -0.10 0.07 0.41
8 134.0 130.2 -0.12 -0.06 0.12 0.46
9 131.1 135.5 -0.04 -0.05 0.91 1.00
10 132.2 142.6 -0.06 -0.12 0.52 0.53

mean 142.1 138.2 -0.09 -0.08 0.03 0.10
standard deviation 10.9 7.3 0.03 0.03 0.44 0.56

The parameter estimation procedure based on the GA has been carried out on

each specimen; the relevant estimated parameters are reported in Table 7.1. The

values are categorized under the two actuation types, VR and VL. These values can

be compared one to another to cross-validate the procedure for each specimen.

By inspecting the outcomes, it clearly emerges that the current identification
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attempt has provided better results than those reported in Chapter 6, featuring

more consistency between the two sets of estimated values. The reason behind

this improvement is linked to the third handled unknown parameter, the rotation

offset θ0, which allows to model the scatterings in the initial configuration due to

possible residual stress and/or stress gradient effects. Despite the improvement,

there are still some specimen for which the method was not able to generate

consistent results (e.g. specimens #4 and #6).

More insights into the uncertainties can be obtained through further enhance-

ments, using numerical models instead of the analytical ones. Numerical models,

such as finite element ones, are supposed to provide better results as they can

allow for additional unknown parameters. On the other hand, the use of Bayesian

tools is generally favorable compared to the approaches providing deterministic

estimates (such as the one adopted in this chapter) when the measurement er-

rors have to be properly dealt with. These enhancements, within the frame of a

complete uncertainty quantification scheme, are provided in the next chapter.
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8
Reduced order modelling and off-line Bayesian

parameter estimation

Although the fastest computers can execute millions of operations

in one second they are always too slow. This may seem a paradox, but

the heart of the matter is: the bigger and better computers become, the

larger are the problems scientists and engineers want to solve.

- Arhur Jaffe, Ordering the universe: the role of mathematics, 1984.

8.1 Introduction

Given a complete description of the system, the descriptive models can predict

the behaviour of the system which is generally known as direct or forward prob-

lem. It happens that some parameters (or characteristics) of the physical system

are unknown, but it is sometimes possible to infer them from some observations

on the system’s response; this is instead known as inverse problem which is of-

ten associated with large-scale simulations at varying unknown parameter. When

dealing with complicated physical systems, analytical models might not be avail-

able, the numerical methods such as FE models can instead offer effective and

versatile simulation tools. However, their computational burden is usually much

larger than that of the analytical models. Therefore, employing them in an inverse
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analysis framework can be prohibitive.

Even though, the computation capabilities of computers are increasing and the

computational burden can be divided by exploiting parallel computing architec-

tures, it is usually not sufficient and a more effective solution must be devised. As

for the particular system in this work, the analytical model developed in Chapter

4 shows some limitations when anchor compliance become more significant (which

occurs at shorter beams) or several sources of uncertainties have to be taken into

account, and therefore, FE modeling can be adopted in the parameter estimation

process (which is an inverse problem, in nature). The numerical model provided

in Chapter 4 is a nonlinear coupled-physics model and naturally time consuming

(as confirmed in Chapter 4).

The problem can be treated by reducing drastically the computational effort

needed in FE models by a non-intrusive method based on the proper orthogonal

decomposition (POD) and kriging metamodelling (also known as kriging surro-

gate modelling1). Unlike the intrusive methods which require access to the FE

source code in order to modify it, the non-intrusive methods are simpler and only

need a set of input/output (snapshots) of the FE model regardless of the source

code. This is the main advantage of the non-intrusive approaches that makes

them interesting for dealing with complex multi-physics problems [Fossati and

Habashi, 2013]. In the method adopted here, the time-consuming FE simulations

are carried out once for all, and in the parameter estimation procedure are re-

placed by a new computationally fast model. As for the parameter estimation

method, transitional Markov chain Monte Carlo (TMCMC) has been adopted

to i) deal with the unknown parameters as stochastic variables (in contrast to

genetic algorithms) and also ii) handle all measured data at once in an off-line

format (in contrast to particle filtering). The main goal of this chapter, is rather

than focusing on the test device explored in the previous chapters, to propose

a full practical methodology for uncertain parameter identification in a general

multi-physics nonlinear problem.

This chapter starts with a review of the available computational reduction

methods in the literature in Section 8.2. Two of these methods (i.e. POD based

1 Surrogate models provide an approximation of the input/output map by fitting a set of
data/solutions obtained by numerical simulation [Manzoni et al., 2012].
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model order reduction and surrogate modelling) are next detailed in the rest of

the section to address the computational reduction of nonlinear multi-physics

systems. Section 8.3 describes the basic ideas behind the POD and how it can be

used for model order reduction. Section 8.4 instead gives a review of the available

surrogate models and in specific focuses on kriging method. Section 8.5 provides

the link between these two methods and explains how they can be adopted for

computational reduction. The requirements (i.e. sampling) for constructing this

computationally fast model is also discussed in this section. The TMCMC method

for Baysian parameter estimation (or inverse modelling) developed in [Ching and

Chen, 2007] is introduced in Section 8.6. Utilization of the complete framework

(i.e. POD-kriging TMCMC) is finally exemplified in Section 8.7 by using the FE

model provided in Chapter 4, and based on the experimental data of Chapter 3.

8.2 Methods for computational reduction

The demand for computational engineering and numerical simulations has been

constantly rising during the last decades. Such methods provide the researchers

with virtual testing experiments for response prediction or optimization purposes

at lower cost/time with respect to experimentation. Constant development of

algorithms and computers have always led the application of these methods toward

ever larger and more complicated problems. Currently, the engineering problems

can easily be nonlinear or related to multi-scale and multi-physics phenomena and

involve up to millions of degrees of freedom due to complicated geometries. On

the other hand, novel parallel architecture and the hardware improvements, both

at process and storage capacity, always lag behind the computational demand of

such problems. Computational burden reduction methods offer solutions to these

complicated problems without loosing much accuracy.

A wide range of methods for computational burden reduction have been pro-

posed and, depending on the main idea behind each method and its application,

a different classification can be made. For instance, when the dimensions of the

problem and the material length scale or the load wavelength are far from one

another, a popular approach is the hierarchical multi-scale simulations which are

adopted in different applications such as classical or gradient based homogeniza-
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tion [Geers et al., 2010, Kouznetsova et al., 2002], modeling the response of com-

posites [Stefanou et al., 2015], crack propagation simulation [Oliver et al., 2015]

or wave propagation [Mariani et al., 2009].

Another category is the domain decomposition [Gosselet and Rey, 2006, Fra-

gakis and Papadrakakis, 2003] where the physical domain is divided into sub-

domains, wherein the governing equations are first solved disjointedly and then

coupled together, by enforcing continuity of some kinematic fields or forces, at all

the interfaces between adjacent sub-domains. This technique is naturally advan-

tageous when applied to the solution of problems of large size or characterized

by different physical domains co-existing. Their goal is indeed to significantly

increase the computational efficiency of the numerical simulations as they allow

for i) a sensible reduction of the number of degrees of freedom or ii) relaxing the

time-step constraints encountered with the standard description in an explicit dy-

namic scheme (i.e. Courant condition), for each sub-domain with respect to those

of the whole domain [Confalonieri, 2013]. Such methodology has been adopted

for multi-physics problems [Corigliano et al., 2013], fracture simulations [Con-

falonieri et al., 2014], elastic-plastic structural analysis [Corigliano et al., 2015]

and fluid-solid interaction [Deparis et al., 2004].

Furthermore, there are the model order reduction (MOR) techniques. The

key concept behind these techniques, is to reduce the dimension of the original

algebraic system arising from the discretization of a partial differential equation

problem. Unlike domain decomposition approach where the problem is divided in

several sub-domains, MOR techniques replace large-scale computational models

by simpler ones, still capable of reproducing their essential features, obtained by

projecting the full-order model onto a much smaller subspace spanned by a re-

duced set of bases. As for such basis, the proper orthogonal decomposition (POD)

[Kerschen et al., 2005] is able to provide “ad hoc” basis tailored on the specific

simulation case, thanks to its optimality property (see Section 8.3). This property

efficiently allows to obtain the most dominant components of a solution space with

usually a set of few bases (also known as modes) [Berkooz et al., 1993]. Given

a linear time invariant systems, projection of the full-order system using optimal

basis can be effective and accurate since it is carried out only once. If model order

reduction for a general nonlinear problem or for a parametric model (i.e. para-
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metric model order reduction or PMOR) is instead of concern, such as the present

problem, the procedure features a hidden computational difficulty [Paul-Dubois-

Taine and Amsallem, 2015, Rudnyi and Korvink, 2002, Radermacher and Reese,

2015]. Having calculated the optimal basis (let’s assume the calculated POD basis

is perfectly representing the nonlinear nature of the system), the full-order system

matrices (e.g. stiffness matrix and load vector for a static problem) are projected

on a lower order space to construct the reduced systems. These reduced matrices

should be computed either by use of symbolic manipulation which is not always

feasible, or numerically for each iteration of a nonlinear analysis. That means that

the original full-order system matrices must be accordingly computed at the end

of an iteration to be then reduced by the use of the orthogonal bases for the next

iteration. This step adds a considerable computational burden that overshadows

the advantages of the model reduction, except perhaps for the case when size of

the problem is extremely large.

Here in this work, we adopt a similar technique to that originally presented

in [Ostrowski et al., 2005] for thermal problems and later used in [Buljak and

Maier, 2011] for plasticity. It is a non-intrusive technique and can be easily im-

plemented along with any solver for the full-order model (such as commercial FE

codes) which makes it interesting for industrial applications. It avoids the above

mentioned hurdle by using POD, not to reduce the system matrices, but to op-

timally find the correlation among sampled solutions of the full-order problem

corresponding to a set of assumed values of the parameters (i.e. model parame-

ters or time). The POD produces low-order approximation of the response (for

instance, displacement field); therefore, the arbitrary solution of the full-order can

be expressed as a linear combination of only few basis vectors. As for the MEMS

test devices, the POD can be used to reduce the number of the required outputs

(the measured data points in the C − V curves). If used in an inverse problem

algorithm (or parameter estimation), beside the significant computational gain,

it can also help the stability of the algorithm [Ostrowski et al., 2005]. In the

following, we investigate the proposed approach further in detail.
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8.3 Model order reduction: proper orthogonal decomposition

The main goal behind MOR is to provide the approximation of a physical problem

at a low computational burden without resorting to the common computationally

demanding numerical techniques. Such technique is essentially based on a high-

fidelity, computationally expensive discretization scheme. The choice between the

accuracy of the approximation and the level of computational burden reduction

is the main trade-off in such methods.

In the computational burden reduction techniques, like POD, the attempt is

to project the high-dimensionality problem onto a set of suitable low dimensional

subspaces. The essential components of such techniques are the following.

� High-fidelity discretization technique. As mentioned earlier, the POD tech-

nique is an a posteriori technique, based on some knowledge on the problem

solution. A MOR technique based on POD does not replace completely a

high-fidelity one like the FEM. Generally, we will rely on a numerical model

(e.g. the FE approximation) as the reference discretization method.

� Reduced basis. The main ingredient of MOR is the reduced basis con-

structed from a finite set of high-fidelity solutions (snapshots). The objec-

tive is to find a reduced approximation of the high-fidelity model output as a

linear combination of the basis functions which can be obtained via singular

value decomposition (described in remainder of this section).

� Training/emulating procedure. Firstly, in a training stage, an extensive set

of the high fidelity solutions are gathered in the snapshots database which

is performed off-line once. Then, each subsequent input-output query is

carried out in an emulating stage. Clearly, the reduced problem can be

solved during the emulating stage for any set of parameters not selected in

the training stage. The first stage, involves the expensive computation upon

which the reduced model is supposed to be built.

A general and synthetic introduction to POD technique in view of the re-

duction of a dynamical system (i.e. the first and the most popular application

of this strategy) can be found in [Volkwein, 2011]. We shortly review here the
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main features of the POD necessary to build the model-specific optimal linear

subspace according to an ensemble of model responses (by varying the model

parameters, e.g. boundary conditions, geometric configuration or material prop-

erties). Given a real vector u ∈ Rm, R being the set of real numbers and m

denoting the dimension of vector u, we assume a set of arbitrary orthonormal

bases vector φi ∈ R(i = 1, 2...,m) which satisfies φT
i φj = δij(i, j = 1, 2, ...,m),

where δij is the Kronecker’s delta. The original vector u can then be written as

a linear combination of the bases as

u =

m∑
i=1

φiai = Φa (8.1)

where ai represent the unknown amplitudes of the expansion, also known as

coefficients. These coefficients are gathered in the column vector a, and Φ =

[φ1,φ2, ...,φm] is the bases matrix. A reduction in the computational cost can be

obtained by the following representation

u ≈ û =
r∑
i=1

φiai = Φ̂â (8.2)

where r < m. The reduced bases matrix Φ̂ consists of r columns of Φ, and

the vector â collects the relevant first r entries of a. The computational gain is

related to the degree r, smaller than m. The final objective in POD is to provide

an optimal set of bases able to minimize the sum of the squared projection errors:

min ‖u− û‖ (8.3)

which ‖.‖ represents the L2 norm. The so-called snapshot version of POD intro-

duced by Sirovich [Sirovich, 1987] can address two problems: first, the choice of r

which determines the computational gain and the accuracy of the approximation;

second, the computation of the bases gathered in Φ̂. In practice, the snapshot

vector u is the measurable response of a physical system defined by a set of pa-

rameters space (the vector collecting the displacement field at a given boundary

condition, for instance). Accordingly, n observations of a m-dimensional vector u
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can be collected in the snapshot matrix Um×n as

U = [u1,u2, ...,un] =


u11 u12 · · · u1n

u21 u22 · · · u2n

...
...

. . .
...

um1 um2 · · · umn

 (8.4)

In the literature, several means of computing the POD have been proposed, e.g.

eigensolutions of the sample coviariance matrix, singular value decomposition of

the snapshot matrix and auto-associative neural networks. A review of these

methods can be found in [Kerschen et al., 2005]. Here, we exploit the singular

value decomposition method1 to deal with the snapshot matrix.

For any real matrix, like the snapshot matrix U , there exists a factorization

called the singular value decomposition (SVD) that can be written as [Liang et al.,

2002]:

U = LSRT (8.5)

where Lm×m is an orthonormal matrix whose columns are the left singular vectors

of U ; Sm×n is a pseudo-diagonal and semi-positive definite matrix whose diagonal

entries are the singular values of U ; and Rn×n is an orthonormal matrix whose

columns are the right singular vectors of U . Given

UUT = LS2LT and UTU = RS2RT, (8.6)

where S2 is the pseudo-diagonal matrix having S2
ii on the main diagonal, the

singular values of U are the square root of the eigenvalues of UUT or UTU ;

the left and right singular vectors of U are the eigenvectors of UUT and UTU ,

respectively.

The complete basis set Φ is given by the columns of L, also known as proper

orthogonal modes (POMs) [Eftekhar Azam and Mariani, 2013]. If the singular

1 It is noted that the Karhunen Loéve decomposition (KLD) and principal component analysis
(PCA) are closely connected to the POD-SVD method and the reader is referred to [Wu et al.,
2003, Liang et al., 2002, Feeny and Kappagantu, 1998, Mees et al., 1987] for detailed discussion
on their equivalence.
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values Sii of U are sorted in a decreasing order, and the columns of L and R are

accordingly arranged, the SVD of Eq. (8.5) is such that the first r (for given r)

columns of Φ = L represent the optimal basis subset that fulfills the minimization

problem of Eq. (8.3). The index r can be chosen such that [Braconnier et al.,

2011]

r = inf
k

∑k
i=1 Sii∑m
i=1 Sii

≥ err (8.7)

where err is an arbitrary error threshold. Therefore, we can reproduce the snap-

shot matrix Um×n exactly using the new orthonormal bases Φm×m as

U = ΦA (8.8)

where A is a matrix of coefficient which gathers the vectors ai, i = 1, 2, ..., n.

Eq. (8.8) yields in fact an alternative representation of snapshot matrix in a new

coordinate system given by Φ. To calculate the coefficient matrix A, we can use

the orthogonality condition of the POMs

A = ΦTU (8.9)

Instead, the coefficient vector a for the i-th snapshot vector u reads

ai = ΦTui, i = 1, 2, ..., n (8.10)

The approximation can then be done by

ûi = Φ̂âi, i = 1, 2, ..., n (8.11)

or in a matrix format

Û = Φ̂Â (8.12)

Û and û are the approximation of their original counterparts U and u, respec-

tively.

This approximation expressed by Eq. (8.12) is, strictly speaking, valid only for

the snapshots that have been used to construct the POD basis. As far as a para-

metric model order reduction is concerned, it is necessary to ensure the capability
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to approximate the system response, different from the snapshots. In other words,

we have already obtained the system response collected in the snapshot matrix

corresponding to a given sets of parameters defining the system (i.e. simulated

responses), but we are interested to approximate the system response for any ar-

bitrary combination of the parameters (i.e. unsimulated responses). To this aim,

radial basis functions (RBF) have been adopted in [Ostrowski et al., 2005, Buljak

and Maier, 2011]. In this work recourse is made to a kriging metamodel as an

alternative for RBF as several studies have shown better performance of kriging

metamodelling in terms of accuracy and robustness when dealing with nonlinear

behaviour [Manzoni et al., 2012, Jin et al., 2003, Costa et al., 1999].

8.4 Kriging metamodel

The idea behind the MOR introduced earlier is the assumption that the behaviour

of a system can be well reproduced by a small number of dominant (prevailing)

POMs. To this aim, the POD finds the optimum modes keeping the projection

error as low as possible (see Eq. (8.3)). However, to use such method for a

parametric MOR, we need to establish the nonlinear relationship not only between

the selected training parameter vectors and the corresponding snapshots, but

also between the arbitrary parameters and the unsimulated responses. Kriging

metamodelling offers a suitable technique for such purpose.

Kriging metamodelling belongs to the family of surrogate models [Viana et al.,

2013]. These techniques provide an approximation of the input/output map only,

by fitting a set of data/solutions which are usually obtained from numerical simu-

lations. A plethora of different surrogate models is available. The most commonly

used ones are based on response surface methods or polynomial regression [Box

et al., 1978], radial basis function [Hardy, 1971], neural networks [Ting et al.,

2010], polynomial chaos expansions [Ghanem and Spanos, 2003], or kriging [Sacks

et al., 1989a]. These methods are popular in applications in which computational

burden becomes prohibitively large for the engineering problems, where numerous

and large-scale simulations are required, e.g. optimization algorithms or reliabil-

ity estimation simulations. For more comprehensive lists of such methods and

their applications the reader may refer to [Razavi et al., 2012, Wang and Shan,
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2007, Simpson et al., 2001].

In the jargon of computer experimentation, we aim at substituting a compu-

tationally expensive model called simulator (e.g. FE modelling) by an emulator.

The emulator shares the same input and output spaces of the simulator. Among

different alternatives for surrogate modelling mentioned above, a kriging method

has been chosen in this work due its accuracy, robustness with small training

data and capability of uncertainty prediction [Simpson et al., 2001, Laurenceau

and Sagaut, 2008].

Kriging is a particular emulator that provides a probabilistic response Ŷ (x)

whose variance or spread depends on the quantity of the available knowledge

(simulator results); how many sets of input/output are provided to construct the

emulator. The uncertainty prediction in this method is due to a lack of knowledge

at the specific input parameter x; therefore, it is purely epistemic rather than

aleatory [Dubourg et al., 2011]1. This property of kriging can be used as an error

estimation tool in the prediction process.

Given the relationship M between the input x and the output scalar2 y,

kriging assumes that the output y ≡ M (x) is a sample path from a Gaussian

process Y which needs to be characterized, i.e. its mean and autocovariance func-

tions are unknown. This will be done by using the knowledge of model response

(snapshots) {yi = M (xi), i = 1, ..., n} evaluated at the experimental design points

x = [x1,x2, ...,xn]. The so-called universal kriging model assumes that the Gaus-

sian process has an autocovariance function and is centered around a regression

model (also known as trend) [Dubourg et al., 2011]

Y (x) =
s∑
i=1

βifi(x) + Z(x) = fTβ + Z(x) (8.13)

where fT = [f1(x), ..., fs(x)] are basis functions and β = [β1, ..., βs]
T are regression

1 This distinction between aleatory and epistemic is basically determined by our modelling
choices and availability of uncertainty characterization. The uncertainty should be categorized
as epistemic if it can be evaluated using the existing models. On the other hand, the uncertainty
should be categorized aleatory if this evaluation is not available. For more detailed discussion,
the reader is referred to [Der Kiureghian and Ditlevsen, 2009].

2 Kriging handles the output vector by its entries individually, and not as whole. In other words,
each entry of output vector can be seen as a degree of freedom which is linked to the input
vector through a functional relationship.
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coefficients, and the number of regression functions s is assumed less than or equal

to the number observations n to avoid the problem being under-determined (i.e. it

does not lack equations to explain the unknowns). The second term is a Gaussian

process with zero mean and covariance CZ = σ2
YR(|x−x′|, ξ) with a variance σ2

Y

and a set of parameters ξ, where x and x′ are two points in the parameter space.

The way the data are represented by kriging is critically dependent on the type of

the correlation function R. The parameters ξ, β and σ2
Y will be then determined

upon the choice of correlation and regression functions. The correlation function

can be stated as the generalized exponential model [Sacks et al., 1989b]

R(|x− x′|, ξ) = exp[−
s∑

k=1

ξk|xk − x′k|γ ] (8.14)

with 1 ≤ γ ≤ 2. The function is called general as it can change shape: γ = 1 and

γ = 2 yield the exponential and the Gaussian functions, respectively.

The Gaussian assumption states that the vector formed by the response of the

simulator (true model) Y (i.e. rows of the snapshot matrix U) and the emulator

prediction Y (x) are normally distributed:

{
Y

Y (x)

}
∼ N

({
Fβ

fT(x)β

}
, σ2

Y

{
R r(x)

r(x)T 1

})
(8.15)

where F with its generic terms {Fij = fj(xi), i = 1, ..., n, j = 1, ..., s} and the

correlation matrix R with its terms {Rij = R(xi,xj ; ξ), i, j = 1, ..., n} are defined

with respect to the assumed statistics of the Gaussian process. Similarly, r(x)

is the vector of cross-correlations between the observation points and the desired

prediction point, {ri(x) = R(x,xi; ξ), i = 1, ..., n}.

Consequently, the mean and variance of the conditional distribution of Ŷ (x) =

Y (x) | Y (also known as mean and variance of the kriging predictor), which is

also Gaussian [Dubourg et al., 2011], can be calculated:

µŶ (x) = fT(x)β̂ + r(x)TR−1(Y − F β̂) (8.16)
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σ2
Ŷ

(x) = σ2
Y

(
1− r(x)TR−1r(x) + q(x)T(F TR−1F )−1q(x)

)
(8.17)

where

β̂ = (F TR−1F )−1F TR−1Y (8.18)

is the generalized least squares solution (with respect to R) for the regression

problem

F β̂ ' Y (8.19)

and we introduced

q(x) = F TR−1r(x)− f(x) (8.20)

To obtain the kriging model parameters in practice, the regression and cor-

relation models need to be chosen and then these parameters can be determined

using common available statistical inference techniques, such as the maximum

likelihood estimation (MLE). Based on this technique, given the regression model

f and correlation model R, the likelihood of the simulated data can be calculated

with respect to the unknown parameters, σ2
Y , β̂ and ξ. Eq. (8.18) holds for cal-

culating β̂, and σ2
Y in Eq. (8.17) can be evaluated analytically [Santner et al.,

2013] as

σ2
Y = σ2

Y (ξ) =
1

n

(
Y − F β̂

)T

R−1
(
Y − F β̂

)
(8.21)

The optimal values of ξ can be instead obtained by minimizing the negative log-

likelihood function as

ξ = arg min
(
− logL(Y |β̂, σ2

Y , ξ)
)

(8.22)

where L(Y |β̂, σ2
Y , ξ) is the likelihood of observations gathered in Y = {M (x1),

M (x2), ...,M (xn)}T. Since Y is assumed to be realization of a Gaussian process

(recall basic kriging assumption), the minimization problem in Eq. (8.22) can be

written as following
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ξ = arg min

(
1

2
log(det(R)) +

n

2
log(2πσ2

Ŷ
) +

n

2

)
(8.23)

Several kriging softwares are available to the research community such as

’PErK’ [Santner et al., 2013], ’UQLab’ [Marelli and Sudret, 2014] and ’DACE’

[Lophaven et al., 2002]. In this work, we adopt the latter to derive metamodels

MK for the relevant coefficients of POD rather than directly for the response

(i.e. C − V curves in the MEMS devices problem, for instance) of a high fidelity

model (simulator). Accordingly, the constructing the kriging model can be done

as many times as the number of POMs kept in the POD method, only, and not

as the number of the data points of the response (i.e. C − V data points). In

the next section, it is shown how POD and kriging can form a parametric model

order reduction.

8.5 POD-kriging method for model order reduction

In Section 8.3, the POD method is introduced to construct the optimal orthogonal

bases to be used for approximation of system responses stored in the snapshot

matrix. This matrix can be then properly approximated through Eqs. (8.12) and

(8.7). The order of reduction depends on the level of correlation between the

vectors of the snapshot matrix. If a high level of correlation is present among the

responses, the snapshot matrix can be approximated by a set of few POMs.

However, the final goal is to obtain a parametric MOR, i.e. a reduced model

that can emulate the system response for any arbitrary set of input (belonging

to the parameter domain) and not only the ones used for constructing it. If we

assume that the snapshot matrix is collecting the most important ingredients of

all possible responses, then we only need to establish the relationship between the

reduced vector of coefficients â and the input parameters of the system x:

u(x) ≈ û(x) = Φ̂â(x) (8.24)

This can be properly done using the introduced kriging surrogate. Exploiting the

same simulated responses collected in the snapshot matrix U , the kriging model

MK can be constructed to approximate the elements of the coefficient vector,
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which reads

â(x) ≈ ã(x) = [MK1(x),MK2(x), ...,MKr(x)]T = M̄K(x) (8.25)

So, at the final assembling of the two approximation stages, POD-kriging, a para-

metric reduced model of the system can be obtained as

u(x) ≈ Φ̂M̄K(x) (8.26)

This training process is done once-for-all. The operations that it involves are

accordingly summarized by the flow-chart presented in Figure 8.1. It is worth

noting that the efficiency of this method is critically dependent on the degree of

representativeness of the snapshot matrix, i.e. how much of the physical charac-

teristics of the system are captured with the best possible accuracy. Since the

training stage of POD-kriging is computationally expensive, a thoughtful choice

of the training input parameters (sampling) is necessary to avoid the excessive

number of simulations and to ensure the accuracy of the reduced model. In the

next section, we discuss the alternative methods for the sampling stage and we

adopt an efficient strategy to be coupled with POD-kriging.
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Figure 8.1: Flow chart of operations to be performed in a POD-kriging procedure
with k number of unknown parameters, n number of snapshot (FE simulation
based on predefined parameters) and m number of output quantities from FE
model (discretized response curve).
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8.5.1 Sampling strategy

The POD and the kriging methods both require a set of system responses for the

training stage. In other words, they need a set of the outputs of the FE model

(snapshots) which are the data points forming the C − V curves in the present

problem. Each of these snapshots (C − V curves) is corresponding to a set of

given model parameters (collected in x). This brings two key points: i) the choice

of the snapshots in the parameter space, and ii) the number of proper orthogonal

modes to be kept. The latter was discussed earlier, but the former is a sampling

issue. Generally, the sampling methods can be divided into two groups depend-

ing on the presence of prior knowledge on the behaviour of the function to be

sampled. In the case that the function behaviour with respect to the parame-

ters variations is well studied and known, a preferred distribution pattern can be

chosen; based on the characteristics of the function, providing denser distribution

of sampling points (snapshots) at the the zones of extreme nonlinearity and vice

versa, similar to [Bolzon and Buljak, 2011]. The alternative, i.e. the absence

of such knowledge, is often the case for high-dimensional problems (i.e. several

co-existing uncertain parameters). This issue is addressed in the literature as a

design of computer experiments problem. The first intuitive sampling method

is the uniform sampling. Despite its generality and simplicity, this technique is

practically inapplicable when the problem dimension is high since the dimension

is the exponent of the number of points per space direction (this behaviour is of-

ten called the curse of dimensionality). The random sampling method can be an

alternative, but it also faces difficulties such as low efficiency at higher dimensions

or sampling points close to one another which does not add valuable information.

A popular method is the Latin Hypercube sampling [McKay et al., 2000], which

offers an optimum space filling quality for a predefined number of samples. This

sampling strategy is an a priori one and the number of sampling points should be

set at the beginning. That means one should know from the beginning that how

many sampling points can be adequate to provide an informative snapshots for the

POD-kriging. In the case that the initial sampling is poor, enriching the sample

collection by adding more samples violates the optimum space filling condition of

Latin Hypercube method. The enriching stage causes problems for some other
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methods, like centroidal Voronoi tessellations [Du et al., 1999], where a revision

of an initial distribution of points will be required. Quasi-Monte Carlo methods

such Halton [Halton, 1960] or Sobol [Sobol, 1967] are other popular sampling

techniques which sequentially generate new sample points. They are very effi-

cient on low-dimensionality problems but need special treatments for dimensions

higher than ten [Laurenceau and Sagaut, 2008]. There is another class of tech-

niques which is adaptive and sequential, such as the greedy methods [Maday and

Stamm, 2013, Haasdonk, 2013, Leblond and Sigrist, 2016] or the quad-tree-like

resampling method introduced in [Margheri and Sagaut, 2016, Braconnier et al.,

2011]. They use the information provided by the previous samples (which are

selected by uniform grid or Latin Hypercube, for instance) to locate incremen-

tally the new sample points according to a criterion which is usually related to

the discrepancy between the output of the reduced and the original model at that

point. Consequently, they are numerically more complicated to be implemented

compared to the Latin Hypercube or the random distribution.

In this work, the sampling is done using a predefined set of points, based on the

sparse grid methods of the Smolyak algorithm [Smolyak, 1963], unlike the Monte

Carlo approach where the points are chosen in a statistical manner. The use of

sparse grids has been precedented for kriging sampling in [Margheri and Sagaut,

2014, Axerio et al., 2010]. Since this approach involves only predefined points in

the parameters space, its coupling with a high fidelity model is straight-forward

and only requires simulations at those predefined parameters. The Smolyak algo-

rithm is the extension of the univariate interpolation formula to higher dimensions

using the minimal number of support points. The sparse grid methods are in fact

a special discretization technique, which allows to cope with the curse of dimen-

sionality, so that, by increasing the dimension of the problem, the number of

sampling points does not increase according to a power law. Another important

feature of this technique is rooted in its hierarchical structure [Bank et al., 1988]:

the new sample points are inserted to the initial sample distribution without rear-

rangement of existing points. Therefore, the existing FE solutions can be added

if new points are needed to improve the sampling process. This enriching step is

often necessary because the initial set of sampling points may not be adequate

and more sampling points should be added to the previous collection.
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We use the sequences of two types of sparse grids, Clenshaw-Curtis and Cheby-

shev [Barthelmann et al., 2000], from the toolbox provided by [Klimke, 2007] for

sampling the functions and training the POD-kriging. Depending on the error

between the generated model and the FE model, different levels of the sparse

grids can be sequentially adopted. Examples of this type of grids in the parame-

ter space for two and three dimensional problems are plotted in Fig. 8.2 and Fig.

8.3 up to sequence level 5. Table 8.1 gathers the growing number of sampling

points of this strategy as the dimension of the problem expands. It is important

to note that the increase rate of points is not exponential as it is the case for

uniform sampling. This sequential method is effective for smooth functions with

moderate local gradients. If the considered problem features sharp gradients or

strong discontinuities, an adaptive method can be employed to search samples

more thoroughly from those regions.

Table 8.1: Number of sampling points by Smolyak algorithm at different dimen-
sions.

design space dimension

sampling order 1 2 3 4 5 6 7 8

1 3 5 7 9 11 13 15 17

2 5 13 25 41 61 61 113 145

3 9 29 69 137 241 389 589 849

4 17 65 177 401 801 1457 2465 3937

5 33 145 441 1105 2433 4865 9017 15713

8.6 Transitional Markov chain Monte Carlo simulation

In the previous chapter, we adopted a genetic algorithm to identify the unknown

parameters of the model which belongs to the family of deterministic approaches.

These approaches usually result in a set of crisp parameter estimates (i.e. deal-

ing with the unknown parameters as deterministic variables); in some cases a

covariance matrix is also extracted only to state a confidence interval or error
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Figure 8.2: Ilustration of Clenshaw-Crutis sample points distribution in the case
(a) of two dimensional, and (b) of three dimensional problem.
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Figure 8.3: Ilustration of Chebyshev sample points distribution in the case (a) of
two dimensional, and (b) of three dimensional problem.
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bars on the estimated values. Nonetheless, in the case that predictions of the

model are required for unseen inputs, the predicted outputs are computed using

the parameters only. Such approaches do not consider that the available data are

usually contaminated by the measurement noise and just one prescribed model

cannot accommodate all the measurements, but different model classes need to

be associated. It must be noted that, the particle filter introduced in Chapter 6

is able to address these issues as an on-line method. But when the experimental

observations (measurements) are available prior to the parameter estimation pro-

cess, an off-line method is more advantageous (see Chapter 6). So in what follows,

another approach from the family of Bayesian methods is adopted.

In a Bayesian framework, the parameters are viewed as random variables

rather than deterministic values and can be described by probability distribu-

tions. These distributions can then be regarded as one’s degree of belief about

the value of a certain parameter. The system identification in the Bayesian (like

any other) approach deals with a potentially ill-posed problem, and finding the

global optimal solutions for the model parameters can be challenging. In [Beck

and Katafygiotis, 1998], a study of an unidentifiable case of model updating prob-

lem was carried out and an asymptotic approximation method was successfully

suggested to derive the continuum of the optimal model parameters (parameter

manifolds that are unidentifiable). This approach is not robust when the model

parameters are not very peaked. Besides, stochastic simulation methods can han-

dle more general cases than the asymptotic approximation method. However,

application of many of these methods to the practical Bayesian inverse prob-

lems is often inefficient, for instance, importance sampling is not efficient for

high-dimensional problems [Au and Beck, 2003]. To this aim, another available

stochastic method is the Metropolis-Hastings (MH) algorithm [Metropolis et al.,

1953, Hastings, 1970]. This algorithm is a method to obtain sequences of random

samples (Markov chain samples) from a target PDF. In the MH method, the PDF

of a Markov chain sample simulated at th i-th Markov step tends to the target

PDF as i → inf. However, application of MH algorithm is limited if the target

PDF is multimodal or the problem is high dimensional [Ching and Chen, 2007].

Beck and Au [Beck and Au, 2002] proposed an alternative method to solve the

Bayesian problem, regardless of whether the class of selected models is identifiable
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or not. They introduced a Markov chain Monte Carlo (MCMC) method, avoiding

direct application of the MH algorithm. Their method mixes the MH algorithm

with a concept similar to that used in simulated annealing1 (which is originally

proposed as a probabilistic optimization method [Kirkpatrick, 1984], but can be

used to sample from multimodal PDFs as well). The main idea is to sample not

directly from the target PDF but successively from a series of simpler intermediate

PDFs, in order to adapt to the region of probability concentration of the target

PDF. Using this method, it is shown that Markov chain samples populate the

regions of concentrations in a probabilistically correct manner [Beck and Au,

2002]; nevertheless, it becomes inefficient for high-dimensional problems.

This method was further enhanced in Transitional MCMC or TMCMC [Ching

and Chen, 2007]. TMCMC is applicable for sampling complex posterior distri-

butions, i.e. very peaked, flat, multi-modal and high-dimensionality PDFs. This

method is also capable of evaluating the evidence for the assumed model class,

which is the key point for the Bayesian model selection [Green and Worden, 2015].

Therefore, TMCMC belongs to the family of algorithms that can be used to ad-

dress two levels of inference at the same time: parameter estimation and model

class selection. Other examples of algorithms for two levels inference are: Nested

Sampling [Skilling, 2004], Reversible jump Markov chain Monte Carlo [Green,

1995] and Variational Bayesian inference [Ghahramani et al., 1999]. Another ad-

vantage of The TMCMC algorithm is that it can be properly handled by parallel

processors [Angelikopoulos et al., 2012]. Given these features, TMCMC has re-

ceived a huge attention by the engineering community in different applications

[Goller et al., 2011, Green et al., 2015, Lam et al., 2015, Ortiz et al., 2015, Ching

and Wang, 2016]. In this work, we couple the TMCMC with the POD-kriging

reduced model for parameter estimation purposes.

Though the Bayesian framework is introduced in Chapter 6, it is appropriate

to define the problem once more. Let x ∈ Rnx denote the unknown parameters

of a model class M of an engineering system, and D be the measured data or the

set of observations of that system. The main idea of a Bayesian approach is that,

1 In the jargon of sampling the posterior parameter distribution, simulated annealing has influ-
enced a number of algorithms: Simulated Tempering [Celeux et al., 2000, Marinari and Parisi,
1992], Exchanged Monte Carlo [Hukushima and Nemoto, 1996], TMCMC [Ching and Chen,
2007] and (smooth) Data Annealing [Green, 2015b, Green, 2015a].
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by sequential application of Bayes’ rule, one can firstly sample properly from the

posterior distribution of x conditioned on D and, secondly, assess the probability

of the model structure M conditioned similarly, using

p(x|D,M) =
p(D|x,M)p(x|M)

p(D|M)
(8.27)

and

p(M |D) =
p(D|M)p(M)

p(D)
(8.28)

where

p(D|M) =

∫
p(D|M)p(M) dx (8.29)

is the same normalizing constant 1/ς in Eq. (6.4), which ensures that integral

of Eq. (8.27) is unitary. This is called evidence of M also known as marginal

likelihood and can be used for selecting a model among some proposals. p(x|M)

represents the a priori PDF of x and p(D|x,M) is the likelihood, which describes

the probability of witnessing the data D given the model class M with parameters

x. The a priori PDF of x represents one’s knowledge of the parameters before an

observation is carried out. Basically, Eq. (8.27) converts this a priori knowledge

into a posterior density having observed the data D.

The reconstruction of the posterior parameter distribution is usually done by

a sampling performed by MCMC algorithms. The MCMC involves a random walk

(i.e. succession of random steps) through the probability distribution, favoring

values with higher probability. Repeating this sampling strategy, every point in

the parameter space is hit with a frequency proportional to its probability, i.e. the

stationary distribution of Markov chain is equal to (or at least proportional to)

the target distribution [Green and Worden, 2015]. As mentioned earlier, the MH

algorithm is not efficient at drawing samples from high-dimensionality parameter

space when all the regions of high probability content have to be covered. The

algorithm by Beck and Au [Beck and Au, 2002] proposes a gradual updating of

the model by using the MH algorithm to sample from a sequence of target PDFs.

Each target PDF is a posterior PDF obtained by an increasing fraction of available

data to the inference. This annealing feature helps the target PDF to gradually
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converge from the broad a priori PDF to the final concentrated posterior PDF

[Muto and Beck, 2008]. Rather than using only a part of the data, the TMCMC

takes advantage of a sequence of intermediate PDFs using the entire data set.

The TMCMC algorithm, by circumventing the need to evaluate the marginal

likelihood stated in Eq. (8.29) (like any MCMC method), relies on sampling from

a sequence of N non-normalized intermediate PDFs

pn(x) = p(D|x,M)βnp(x|M), n = 0, ..., N, 0 = β0 < β1 < ... < βN = 1 (8.30)

where the tempering parameter1 βn monotonically increases with n. Consider Ns

samples taken from each intermediate PDF pn(x) (or at initiation stage, taken

from the p(x|M)), which are denoted as x
(n)
k , k = 1, ..., Ns. A technique similar

to importance sampling to generate the next distribution pn+1(x) is then used, by

calculating the importance (or plausibility) weights and normalized importance

weights of each sample with

w(x
(n)
k ) =

pn+1(x
(n)
k )

pn(x
(n)
k )

= p(D|x(n)
k ,M)βn+1−βn (8.31)

and

ŵ(x
(n)
k ) =

w(x
(m)
k )

Ns∑
k

w(x
(n)
k )

(8.32)

respectively. To avoid the degeneracy problem (see Section 6.3), the TMCMC con-

siders each re-sampled value x
(n)
k as the starting point of a Markov chain evolving

with accordance to the MH algorithm. The normalized importance weight calcu-

lated in Eq. (8.32) determines the Markov chain growth. Once the Markov chains

have generated a sufficient number of samples from the intermediate target pn(x),

the process is repeated until the samples from p(x|D,M) are produced.

In this work, the focus is on the first level of inference, i.e. sampling the model

parameter distribution. We use the TMCMC algorithm developed in [Ching and

Chen, 2007] whose algorithmic steps are the following.

1 βn is called tempering parameter due to the conceptual similarities between TMCMC and
simulated annealing approach.
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1. The first intermediate PDF p0(x) is defined as the prior PDF of parameters

p(x|M). It is assumed to be in a form to be sampled to obtain x
(0)
k , k =

1, ..., Ns.

2. The first value of tempering parameter is chosen, such that the coefficient

of variation for p(D|x(0)
k ,M)β1 , k = 1, ..., Ns is equal to a prescribed value.

3. The importance weights w(x
(0)
k ) = p(D|x(0)

k ,M)β1 are calculated for Ns

samples. Accordingly, the sample mean µ(0) =
∑Ns

k=1w(x
(0)
k )x

(0)
k is esti-

mated.

4. Samples, x
(1)
k , k = 1, ..., Ns are generated using MH algorithm. This algo-

rithm draws the k-th sample from a Markov chain that starts with a sam-

ple called leader, denoted by xleader which is equal to one of the samples

x
(0)
i , i = 1, ..., Ns. The probability of xleader to be x

(0)
i is in turn given by

w(x
(0)
i /
∑Ns

j=1w(x
(0)
j )). The MH algorithm is applied using a Gaussian pro-

posal PDF centered at the current sample in i-th chain with the covariance

matrix Σm, i.e. N(x
(0)
i , c2

mΣm). The covariance matrix is given by

Σm =

Ns∑
i

w(x
(0)
i )(x

(0)
i − x

(0))(x
(0)
i − x

(0))T (8.33)

where

x(0) =

Ns∑
j

w(x
(0)
j )x

(0)
j /

Ns∑
l

w(x
(0)
l ) (8.34)

The c2
m is a user selected parameter scaling the covariance matrix and bal-

ance the potential for large MCMC moves with maintaining a reasonable

rejection rate.

5. Step 2 through 4 are repeated until N where βN = 1 and full available data

is plugged into the posterior distribution update.

The TMCMC algorithm can be used to obtain the unknown parameters of

the model based on the measurements (observations). These parameters can be

formulated in a FE model of the physical system. However, since the TMCMC
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algorithm involves many simulations, adopting a time-consuming FE model is

inapplicable, specially if the parameter estimation must be carried out several

times. To this aim, recourse can be made to constructing a fast-computing, robust

and accurate approximation the FE model using the earlier introduced POD-

kriging method, allowing for unknown parameters to be incorporated.

8.7 POD-kriging TMCMC: Application to electromechanical prob-

lem

In this section, we adopt the POD-kriging method to drastically reduce the com-

putation time of the numerical model developed in Chapter 4. This model is able

to predict the electromechanical response (i.e. C − V curves) of the test devices

presented in Chapter 3. The reduction of the computation time is a preliminary

step necessary for parameter estimation approaches such as the TMCMC, where

a huge number of system responses needs to be evaluated varying the model pa-

rameters. In this case, a numerical model such as the FE model is completely

inapplicable. For instance, the FE model of the test devices which can take up

to 30 minutes of computation time (since the problem is multi-DOF and multi-

physics, see Chapter 4) on a personal computer with an Intel®CoreTMi7 3.00 GHz

processor, can be reduced to just few milliseconds1 on the same computer using

the POD-kriging method. Here, we use the TMCMC approach for estimating the

parameters of a reduced model as a simple exemplary case to demonstrate the

effectiveness of the proposed framework.

The FE model of the test device, similar to the analytical model in Chapter 6,

considers the over-etch O and the Young’s modulus E as the input parameters. It

is worth noting that, based on the results of Chapter 6, the measured scattering

cannot be explained simply by considering the variation of these two parameters.

Even though this conclusion has been made using the analytical model, due to

the analogies between the analytical and the FE model models (shown in Chapter

4), the conclusion is likely to hold true. However, we examine the application

of the POD-kriging TMCMC using the numerical model considering these two

1 The reduction in this context regards the emulating stage, rather than the training stage which
is computationally time consuming.
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Figure 8.4: Ilustration of verification points (red circles) along the (a) Clenshaw-
Crutis, and (b) Chebyshev sample points distribution (black dots).

parameters only, aiming at the exemplification of the framework more than to the

actual device characterization.

The snapshot matrix for the POD-kriging reduction has been obtained through

Clenshaw-Curtis and Chebyshev sparse grids up to level 4, which accounts for 65

simulations. The level of sparse grids is chosen based on a test on the accuracy

constructed POD-kriging model. The response of the system for five extra sets

of parameters (i.e. 5 sets of FE simulations), not exploited in training, are used

for verification purposes; the POD-kriging output is compared with that provided

by the corresponding FE direct analysis. Figure 8.4 illustrates these points in

the parameter space sampled by the two types of sparse grids. These verification

points are selected so that they explore different regions of the space while being

different from the training points.

The comparison between the FEM output and that of the POD-kriging ap-

proach can be seen for the LL case in Figure 8.5. The two reduced models are

obtained using 65 training simulations distributed according to Clenshaw-Curtis

and Chebyshev sparse grids. As it can be seen, they perform well at reproducing

the output of the FE model, at a much lower on-line1 computational cost, on

1 In the realm of MOR techniques, the training stage which involves the expensive FE simulations
is often called off-line stage; the cheap calculation reproducing the response by the reduced
model is instead called on-line stage. These two definitions should not be confused with the
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Figure 8.5: Comparison between the output of direct FE model and its POD-
kriging approximation using two different sparse grids; Clenshaw-Curtis (CC)
and Chebyshev (Cheb).
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Figure 8.6: Comparison between a FE model output and its POD representation
by the first two prevailing modes.

the order of few milliseconds. The maximum approximation error between the

reduced models and FE model (i.e. the maximum relative error observed in the

value of the capacitance change predicted by the reduced model with respect to

the FE model output) is 0.08% and 0.29% for Clenshaw-Curtis and Chebyshev

grids, respectively. Both grids perform well at sampling the parameter space;

however, the Clenshaw-Curtis performs slightly better than the Chebyshev grids.

It is worth mentioning that, this observation is limited to the present case and

this verification must be carried out if a new application/problem is of concern.

Regarding the POD stage, the resulting bases matrix Φ of the SVD is trun-

cated by keeping only two first POMs. The truncation error, the ratio between

the sum of the singular values of the kept POMs and the sum of all the singular

values, for both the sparse grids is lower than 1%, which shows the high correla-

tion between columns of the snapshot matrix, i.e. the system responses at varying

terms off-line/on-line in the jargon of system identification.
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the two model parameters. This issue is illustrated in Figure 8.6, where one of

the training FE simulations (whose parameters are O = 0.15 µm and E = 169

GPa) and its POD representation are compared. The two constituent modes of

the POD representation are also presented; the importance of the first mode with

respect to the second mode is visible. Adding extra POMs to this representation

will not add useful information to reproduce the FE responses. Similar behaviour

exists for other values of O and E. Thus, we consider, in all the following simu-

lations, the first two POMs to be fed into the kriging algorithm with the training

points distributed according to the Clenshaw-Curtis sparse grid method, without

sacrificing the accuracy of the electromechanical response.

We construct the reduced model of the device response for the cases RR and

LL, and we estimate the unknown parameters (e.g. O and E) based on one of the

measurements reported in Chapter 3. We select specimen #2 (the same specimen

whose parameter estimation is shown in Figure 6.4 and 6.5) and feed its two

responses to the TMCMC algorithm featuring 10000 samples per each TMCMC

stage. Thanks to the low computational effort associated to the reduced model,

whole parameter estimation process by TMCMC takes up to 9 minutes on a

personal computer with an Intel®CoreTMi7 3.00 GHz processor. The assumed

distribution of the measurement noise is assigned Gaussian, whose covariance is

defined by σ2
R = σ2

L = 10−3 fF2, similar to the analyses in Chapter 6. The a priori

distribution of parameters is considered uniform and samples from the posterior

distribution of the parameters are plotted in Figure 8.7(a) and 8.7(b) for RR

and LL cases, respectively. The joint probability distribution of the estimated

parameters is shown in 8.8(a) and 8.8(b) in more details along side with the

parameters histograms. Comparing the prior and posterior distributions, it is

evident how the samples cluster around the target region.

The joint probability of the parameters gives a complete statistical insight into

the possible correlation between them which can be consistent with the measured

data (i.e. larger values for O correspond to lower values for E and vice versa).

As for reporting the inferred parameters, one might use the mean (or sometimes

the median) of the output distributions as the “best” estimates and then the

covariance would allow one to establish confidence intervals for them. However,

mean and median can be particularly influenced by the presence of outliers and
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Figure 8.7: TMCMC samples generated from the prior (left hand side) and pos-
terior (right hand side) PDF of (a) RR case, and (b) LL case for the specimen
#2.

be entirely misleading in case of multi-modal or heavily skewed distributions. One

might instead adopt the mode (which is the value at which a PDF is maximized,

in other words, the value that appears most often in a set of data) of the posterior

parameter distribution. Therefore, the estimates for the unknown parameters

(in terms of the mode of the PDF) are [O = -0.09 µm, E = 153.3 GPa] and

[O = -0.03 µm, E = 147.1 GPa], respectively from RR and LL measurements.

In comparison to the estimations for the specimen #2 reported in Chapter 6,

the present results show moderately smaller values for O and considerably higher

values for E. The difference in the estimations of E can be mainly related to

the assumption of perfect anchor in the analytical model used in the analyses of

Chapter 6; therefore, the elasticity of anchor is reflected in the smaller values of

E. The anchor elasticity can be easily taken into account by the FE model. The

advantage of POD-kriging is that it allows to reduce the computational effort

of such model so that it can be then plugged into the TMCMC method at an

affordable computation effort and accuracy.

To see the effectiveness of the TMCMC approach, the measured response of

specimen #2 is confronted in Figure 8.9(a) and 8.9(b) with the model response
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Figure 8.8: Contour plot of the posterior PDF and corresponding histograms of
(a) RR case, and (b) LL case for the specimen #2.
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Figure 8.9: Comparison between the measured response of specimen #2 and
model response using the estimated parameters by TMCMC for (a) RR case, and
(b) LL case.

using the mode of the distributions. The estimated values can perfectly reproduce

the measurements for both RR and LL cases. These graphs clearly show that the

TMCMC algorithm using the POD-kriging reduction technique is able to infer

the parameter sets based on the measured data.

Similar to Chapter 6, the results of the parameter estimation process is re-

ported also for specimen #5, in Figure 8.10 and 8.11. It can be seen that the

TMCMC has been again successful at sampling from the posterior PDFs and at

providing the detailed joint probability distribution of the parameters. In the

earlier study using analytical model and particle filtering (Chapter 6), the esti-

mated parameters for this specimen have been non consistent; they have featured

completely different values depending on the actuation type (i.e. lateral or rota-

tional). Using the POD-kriging TMCMC the estimated parameters (in terms of

the mode of the PDFs) are: [O = -0.12µm, E = 153.1 GPa] and [O = -0.04µm,

E = 161.9 GPa], respectively from RR and LL measurements. These estimations

are more consistent with each other compared to the results of Chapter 6. Con-

fronting the experimentally obtained C − V curves for this specimen and those

calculated by the reduced model using these sets of parameters in Figure 8.12, it

can be seen that the TMCMC method has been successful at inferring parameters
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Figure 8.10: TMCMC samples generated from the prior (left hand side) and
posterior (right hand side) PDF of (a) RR case, and (b) LL case for the specimen
#5.

to reproduce the measurements.

It should be noted that the posterior distributions of RR and LL case do not

perfectly superpose (for both specimens); this was expected since the FE model

is not a perfect representation of the actual physical system; therefore, it is not

capable at explaining measured scatterings appropriately. Based on the findings

of Chapter 7, it is expected that by enhancing the FE model through allowing

for other parameters to vary (the rotation offset, in particular), the parameter

estimation procedure yields more consistent results, i.e. the posterior distributions

of RR and LL get closer to one another.
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Figure 8.11: Contour plot of the posterior PDF and corresponding histograms of
(a) RR case, and (b) LL case for the specimen #5.
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Figure 8.12: Comparison between the measured response of specimen #5 and
model response using the estimated parameters by TMCMC for (a) RR case, and
(b) LL case.
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9
Conclusions

9.1 Summary of contributions

The main objective of the current study has been the comprehension of uncer-

tainty origins affecting the MEMS performance when the desired dimensions of

components of MEMS devices are on the order of the material length scale (e.g.

grain size for polycrystalline materials) or of the fabrication tolerances. Such goal

is obtained through the comparison made between the experiments and modelling

results. Moreover, parameter estimation techniques have been developed to help

new MEMS designs. This research contributes mainly to four different research

areas: i) on-chip testing for MEMS devices, ii) investigation into the uncertainties

linked to the material properties at the micro scale, iii) uncertainty assessment

and parameter estimation methods, and iv) reduced order modelling of nonlinear

coupled-field problems which often involves time consuming numerical approaches.

The principal contributions and major findings of this work can be summarized

as follows.

� A simple on-chip test device, featuring micro beams of polysilicon at dif-

ferent lengths, based on standard MEMS fabrication techniques, has been

proposed. Different beam lengths allow to study the effects of geometry

on the variations of device responses which might occur at the micro scale.

The actuation/sensing has been realized using the conventional electrostatic
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method (i.e. capacitors) to resemble the commercial MEMS devices. Four

testing configurations have been incorporated in the design to allow for re-

sult redundancy and to provide a cross-validation scheme for further system

identification purposes. The dimensions of the device components (i.e. the

micro beam width and the capacitor gap) have been designed to be compa-

rable to the grain size and the fabrication tolerances. This permits to exhibit

the effects of uncertainty sources (related either to the material properties

or the geometry) on the electromechanical response of these devices.

� As for the electromechanical response of the devices, a large scattering has

been observed among nominally identical devices. Two sets of Monte Carlo

simulations have been carried out to relate the scattering of the responses

to the random morphology of polysilicon. In these analyses, the measured

responses of two specimens featuring different beam lengths have been con-

sidered, thus highlighting the relation between the geometry of a critical

detail at the grain size length-scale and scatterings in the measurements.

It has been noted that the effects of the material properties variation (due

to the random morphology) on the responses increase as the beam length

decreases. It has been also observed that the role of these uncertainties is

not generally as significant as the fabrication inaccuracies.

� Large scatterings in the electromechanical responses of nominally identical

devices have been observed experimentally. Among the possible uncertainty

sources, the important ones have been analyzed in this work through para-

metric modelling. It has been shown that allowing for variations at i) the

over-etch, ii) the Young’s modulus and iii) the rotational offset at the spec-

imen, the experimental scattering can be properly explained.

� Uncertainty quantification for the MEMS devices, a crucial result in an

industrial context for the development of new MEMS, has been carried out

in this work through parameter estimation methods. The unknown value

of the three parameters has been estimated for each specimen according to

the measurements. To validate this procedure, the parameter estimation has

been individually carried out twice, using two sets of measurements (for each
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specimen). By comparing the results from the two calculations, a reasonable

degree of consistency has been observed for the estimated parameters.

� For these MEMS devices, particle filtering can be used for parameter esti-

mation. This stochastic method takes the measurement errors into account

and provides, rather than a single value for the parameter, the PDF of the

parameters. This approach is often used in on-line parameter estimation

of dynamic systems; it has been shown that this filtering procedure can be

robust and stable in the case of this electromechanical problem.

� As a parameter estimation framework for nonlinear coupled-field systems,

a Bayesian-based approach has been proposed. The transitional Markov

chain Monte Carlo (TMCMC) method is adopted, because not only it takes

the measurement errors into account, but also it is an off-line method which

is a more suitable method for parameter estimation at static problems like

the problem in hand. This stochastic approach is effective at providing the

PDF of high-dimensional or multi-modal unknown parameters. Due to the

large of number of simulations involved in the TMCMC, the strategy to

deal with the computational effort of the physical system parametric model

is crucial. Since analytical modelling is often limited to simple geometries,

a synergy between the proper orthogonal decomposition (POD) and kriging

metamodelling is proposed to reduce the computational burden of numerical

models (e.g. FE model). This approach yields high computing speedup

while maintaining the accuracy of the model reasonably high. The method

can be easily coupled with any high-fidelity model (e.g. commercial codes),

and it has been successfully applied to construct the reduced model of the

FE model of the MEMS device. The use of the POD-kriging has allowed to

obtain a huge computational gain; the original FE model requires up to 30

minutes of computation time, while the POD-kriging model takes just few

milliseconds on the same computer1. The effectiveness of the method has

been demonstrated by proper sampling of the joint probability distributions

of the unknown parameters based on the experimental data.

1 A personal computer with an Intel®CoreTMi7 3.00 GHz processor.
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Finally, it is worth noting several other points. The test device proposed in

this work features a simple geometry and actuation/sensing mechanism. These

characteristics make it applicable for characterization of other fabrication tech-

niques and different materials. Regarding the experimental scatterings observed

in this work, it has been confirmed that considerable attention should be paid

when dealing with polycrystalline components at the same scale of grain size. As

a consequence, even with an ideal fabrication, polycrystalline anisotropy is ex-

pected to be an important issue in nanoelectromechanical systems (NEMS). Be-

cause of their submicron size, their mechanical characteristics must be described

in statistical rather than deterministic terms, as also shown in [Cho and Chasi-

otis, 2007]. Even though the POD-kriging TMCMC has been applied here to a

coupled electromechanical problem only, in the author’s opinion, the application

of this methodology in other engineering problems (e.g. fluid-solid interaction

problems, often characterized by many DOFs and high computational effort) may

bring promising outcomes.

9.2 Suggestions for future research

Based on the work presented in this thesis, several developments can be considered

for further research.

� The size-dependent elastic behaviour of submicron objects has been widely

investigated using higher order elasticity models, e.g. gradient or micropolar

elasticity [Bruggi et al., 2016, Cordero et al., 2015], and also experimentally

(see, for example [Liebold and Müller, 2016, Sadeghian et al., 2009, Agrawal

et al., 2008]). The experimental campaign of this work can be further ex-

tended to different specimen geometries in order to shed more light on these

microstructural effects on the actual system’s response. To this aim, more

samples (with different width or length) can be fabricated and tested to

draw more reliable conclusions.

� A cross-validation scheme has been devised in the test device as an easy and

affordable way to obtain more reliable estimates of the unknown parameters

without damaging the specimens. Such technique can be interesting in an
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industrial context. However, a further investigation can be carried out by

removing the caps of the MEMS devices to confirm the estimated geometric

parameters by visual observation of the actual specimen. Nevertheless, the

removal process may be carried out with much attention so that the device

would not be damaged.

� The POD-kriging reduction method can be further improved by implement-

ing an adaptive and sequential sampling method (similar to the one proposed

in [Braconnier et al., 2011]). Such method can perform the sampling process

in a more robust and more efficient way with respect to the a priori method

used in this work, thanks to its ability to assign more sampling points in

the parameter space. The location of new sampling points must be chosen

according to a criterion which depends on the accuracy of the reduced model

at that location.

� Several classes of FE models can be adopted featuring different uncertainty

sources. The TMCMC approach can be then employed to derive the evi-

dence (normalizing constant in Bayes’ Theorem) of each model in order to

recognize the most suitable one (i.e. second level of Bayesian inference).

Moreover, the Gaussian measurement noise can be considered with an un-

known covariance; in this way, the noise level in the measurements is not

known a priori. This unknown parameter can be subsumed into the uncer-

tain parameters vector, and inferred along with the other parameters (see

[Green and Worden, 2015]).
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