
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

Low cost Human Motion Tracking System

via Infrared(IR) sensor array

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Supervisor:

Prof. Andrea Bonarini

Student:

Yuting Wang, matricola 822471

Anno Accademico 2016-2017

Figure 1: The Robot used in this project

Abstract

Robots are used more and more to take a relevant part in people’s life. To-

gether with the explosion and improving of daily life services and manufac-

turing demands, human-following robots are used in numerous applications.

In recent times, some robots are found their place also in therapeutic pro-

cesses.

This project is aimed at the development of an innovative sensor system to

support a robot in following a person. To achieve this, a people detector

using an infrared sensor array has been implemented. The result of this

detector is sent to a tracking algorithm using thresholding segmentation

and a proportional controller to control the robot. This system can make

the robot follow a person that walks in front of it.

Keywords: People detection; People tracking; Infrared sensor array; Human-

following robot

I

Sommario

I robot sono sempre più usati per avere una parte rilevante nella vita delle

persone. Con l’esplosione e il continuo miglioramento dei servizi per la vita

di tutti i giorni e le richieste nelle applicazioni industriali, robot in grado

di seguire le persone sono usati in molte applicazioni. Recentemente, sono

stati impiegati anche in applicazioni terapeutiche.

Questo progetto aveva lo scopo di sviluppare un sistema sensoriale innova-

tivo per supportare il robot nell’inseguimento di una persona. Per ottenere

questo, è stato implementato un rilevatore di persone basato su una ma-

trice di sensori infrarossi. Il risultato di questo sistema viene mandato a un

algoritmo di inseguimento che usa una segmentazione a soglia e un control-

lore proporzionale per controllare il robot nell’inseguimento. Questo sistema

permette al robot di inseguire una persona che cammina di fronte a sé.

Parole chiave: Rilevamento di persone; Tracciamento di persone; Matrice

di sensori infrarossi; Robot per l’inseguimento di persone

III

Acknowledgement

First of all, I would like to thank my supervisor, Professor Andrea Bonarini,

for his guidance throughout my research, for his help to make this project

possible and for his valuable feedbacks during the project. Professor Bonar-

ini has always been patient and encouraging with great advice.

Thanks also go to my friends, lab mates and the department faculty and

staff for making my time at Politecnico di Milano be a great experience.

Finally, thanks to my mother and father for their encouragement patience

and love.

V

Contents

Abstract I

Sommario III

Acknowledgement V

1 Introduction 11

1.1 Problem statement . 11

1.2 Assumptions and delimitations 12

1.3 Outline . 13

2 Background Knowledge 15

2.1 Infrared (IR) sensor array . 15

2.2 Target detection and tracking 18

2.2.1 Object segmentation 18

2.2.2 Movement detection using background subtraction . . 19

2.2.3 Movement detection using optical flow 20

2.2.4 Thermal image based human detection 21

2.2.5 Object tracking . 21

2.3 Raspberry Pi . 22

2.4 Robot Operative System(ROS) 24

2.4.1 Overview . 24

2.4.2 Nodes . 24

3 Sensor Platform 27

3.1 Selection of IR Sensor . 27

3.2 Melexis MLX90621 . 28

3.2.1 Field of View . 29

3.3 Hardware setup . 31

3.3.1 Pin definition and description of MLX90621 31

3.3.2 GPIO layout of Raspberry Pi 31

1

3.3.3 Hardware Setup . 32

3.4 Principle of Operation and Calculation 34

3.4.1 Principle of operation 34

3.4.2 Temperature Calculation 35

3.4.3 Temperature Storage 38

4 Wheeled Robot Platform 41

4.1 Types of Wheeled Robots . 41

4.2 Types of Robot Wheels . 42

4.3 Wheel Control Theory . 43

4.3.1 Omni-wheel Design: 3 Wheels vs. 4 Wheels 43

4.3.2 Holonomic and Non-Holonomic Drive 45

4.3.3 Kinematic Model . 45

4.4 Rapid Robot Prototyping framework (Nova Core) 49

4.5 Hardware Setup . 51

5 Method and Implementation 53

5.1 Overall Algorithm . 53

5.2 Initialization . 54

5.3 Human Detection and Movement Estimation 56

5.3.1 Human Detection . 56

5.3.2 Movement Estimation 58

5.3.3 Position Information Publish 61

5.4 Target Tracking and Following 63

5.4.1 Thermal Image Based Servoing 63

5.4.2 Comparison With Background Subtraction 66

5.4.3 Control Theory . 68

5.4.4 Human Following . 74

5.4.5 Interruption Check . 77

6 Experiments and Results 81

6.1 Effect of Clothes . 82

6.2 Effect of Distance . 82

6.3 Effect of Intrude . 85

6.4 Effect of Room Temperature 87

6.5 Summary of Results . 88

7 Conclusion and Future work 89

7.1 Conclusion . 89

7.2 Future Work . 90

2

Reference 91

A Installation of Ubuntu Mate and ROS 93

B Temperature Calculation Code Example (C++) 95

C Human Detection Node Code Example (Python) 111

D Control Theory Code Example 117

E Glossary 121

3

4

List of Figures

1 The Robot used in this project 3

2.1 Example of Image Segmentation By using Thresholding . . . 19

2.2 The production and detection of optic flow 20

2.3 The Raspberry Pi 3 board . 22

2.4 The Raspberry Pi’s core-components 23

2.5 Illustration of communication using topics or services 24

3.1 Example of Omron D6T series thermal sensor and Panasonic

Infrared array sensor Grid-EYE (AMG88) 28

3.2 Structure of MLX90621 . 29

3.3 Field Of View Diagram . 30

3.4 Field of View measurement 30

3.5 PIN description of MLX90621 31

3.6 Raspberry Pi3 GPIO Header 31

3.7 Circuit diagram of IR sensor node 32

3.8 I2C addresses of MLX90621 detected by RPi 33

3.9 Operation block diagram . 34

3.10 Calculation part block diagram 35

3.11 Pixel position in the whole FOV 38

4.1 Standard wheel . 42

4.2 Ball wheel . 42

4.3 Omni wheel . 42

4.4 Configuration of three wheeled robot 44

4.5 Frictions . 47

4.7 A Nova Core hardware module, with components from the

reference design highlighted 49

4.6 Architecture of a balancing robot developed with the Nova

Core framework . 50

4.8 Hardware Set-up of the wheel-platform 51

5

4.9 Hardware implementation . 51

5.1 Organization of the algorithm 54

5.2 Flowchart for the Publisher Node 55

5.3 Eligible target definition . 57

5.4 An example shows contour changing as the target person

moving . 59

5.5 The therapist enters the vision field 59

5.6 The therapist approaches the target person 60

5.7 An Intrude is generated and created confusion 60

5.8 An Intrude is generated and created confusion 60

5.9 An Intrude is generated and created confusion 60

5.10 Flowchart of the Publisher Node 62

5.11 TowerPro SG90 . 63

5.12 Pin diagram of SG90 . 63

5.13 PWM period of SG90 . 63

5.14 servo motor connection . 65

5.15 First-frame background reference 67

5.16 A small leftward translation-movement 67

5.17 A big leftward translation-movement 67

5.18 A distance-movement moves closer to the robot 68

5.19 A distance-movement moves further to the robot 68

5.20 Proportional control diagram 68

5.21 MATLAB-Simulink Diagram to show the effect of P control

on second order plant . 69

5.22 Output of the closed loop system with only P control, Kp=5 70

5.23 Error of the closed loop system with only P control, Kp=5 . . 70

5.24 Output of the closed loop system with only P control, Kp=10 70

5.25 Error of the closed loop system with only P control, Kp=10 . 71

5.26 Output of the closed loop system with only P control, Kp=20 71

5.27 Error of the closed loop system with only P control, Kp=20 . 71

5.28 Output of the closed loop system with only P control, Kp=100 72

5.29 Error of the closed loop system with only P control, Kp=100 72

5.30 Diagram of the relevant parameter 73

5.31 Diagram of the relevant parameter 73

5.32 Bang-bang control diagram 74

5.33 The therapist caused an Intrude 76

5.34 The confusion is still exist after the therapist passed as the

target also moves during the waiting time. 76

5.35 Diagram of velocity control 77

6

5.36 Circuit diagram of a push button 78

5.37 Diagram of the swiching between 4 states 79

6.1 Color map ”JET” . 81

6.2 Target person wears white summer clothes 82

6.3 Target person wears black summer clothes 82

6.4 Target person wears heavy coat 82

6.5 Target person wearing white summer cloths stands at a dis-

tance of 0.5 m . 83

6.6 Target person wearing white summer cloths stands at a dis-

tance of 1.0 m . 83

6.7 Target person wearing white summer cloths stands at a dis-

tance of 1.5 m . 83

6.8 Target person wearing white summer cloths stands at a dis-

tance of 2.0 m . 83

6.9 Target person wearing black summer cloths stands at a dis-

tance of 0.5 m . 84

6.10 Target person wearing black summer cloths stands at a dis-

tance of 1.0 m . 84

6.11 Target person wearing black summer cloths stands at a dis-

tance of 1.5 m . 84

6.12 Target person wearing black summer cloths stands at a dis-

tance of 2.0 m . 84

6.13 Target person wearing black summer cloths stands at a dis-

tance of 2.5 m . 84

6.14 A person intrudes into the vision field from right side 85

6.15 The person moves towards the target 85

6.16 Intrude is generated . 86

6.17 Keep the last result before ”Intrude” and wait. 86

6.18 Problem occurs if the ”Intrude” stays a long time. 86

6.19 Searching for target again . 86

6.20 Back to normal tracking . 87

6.21 Room Temperature: 25◦C . 87

6.22 Room Temperature: 27◦C . 87

6.23 Room Temperature: 29◦C . 88

6.24 Room Temperature: 30◦C . 88

7

8

List of Tables

3.1 Some important characteristics of different IR sensor 27

3.2 Melexis MLX90621 specification 29

3.3 PIN description of MLX90621 31

3.4 Constants’ values at different resolution settings 36

5.1 Duty Ratio of SG90 servo motor 64

9

10

Chapter 1

Introduction

For a list of all the ways

technology has failed to

improve the quality of life,

please press three.

Alice Kahn

Robotics is today a quickly evolving world. There are more and more tasks

in the world which are done by robots. Robots are used in many fields

to assist humans in different tasks. During the last decade, the robotics

community interest in social robotics has grown greatly. [3]. Specifically, re-

habilitation robotics constitutes an emerging area of research, where the aim

is to include robotics technology in the time-consuming and labour-intensive

therapeutic process. Research find that robotic therapy may complement

other treatment approaches by reducing motor impairment in persons with

moderate to severe chronic impairments [5]. The robot in this project is

aiming to accompany children with neurodevelopmental disorders, includ-

ing, and mainly focusing on, children with motor impairments, during the

therapy.

1.1 Problem statement

This thesis work deals with the issues related to developing a low-cost and

relatively reliable ”person following” behaviour that allows the robot to

accompany a human. Once the target person is detected, the robot attempts

to drive directly towards the person’s location and keep a certain distance

with the person.

Most of the systems for detecting and tracking people on a mobile robot

use either range sensors such as laser scanners [6] and [10], or a colour camera

as the primary sensor.

Approaches based on laser scans usually try to detect the legs of a person.

However, leg detection in a two-dimensional scan at a fixed height does not

provide very robust features for discriminating between people and other

moving or fixed objects, so that false positive classifications may occur.

A visual sensor provides richer information, and methods for people de-

tection in colour images that extract features such as skin colour, motion

and depth information have been used on mobile robots. Many of these ap-

proaches assume that people are close to the robot and face toward it so that

methods based on skin colour and face detection can be applied. All meth-

ods for detecting and tracking people in colour images on a moving platform

face similar problems, and their performance depends heavily on the cur-

rent light conditions, viewing angle, distance to persons, and variability of

appearance of people in the image.

Thermal vision overcomes some of the problems related to colour vision

sensors, since humans have a distinctive thermal profile compared to non-

living objects, and the sensor data does not depend on light conditions. The

primary requirement of this research has been to investigate the realization

of a human tracking system based on low-cost sensing devices. Therefore, we

chose low-cost IR sensor array instead of thermal vision camera. This type of

sensors is finding a great number of applications in human-robot interaction,

among others that of gesture recognition in cars. Their application in service

and assistive robotics also brings the advantage of exploiting the possibility

of some analysis of body configuration, without challenging privacy issues,

since no specific person can be recognized through the analysis of this type

of images.

1.2 Assumptions and delimitations

Our system only works in the following conditions:

• The robot only moves on a planar ground and in an indoor environ-

ment.

• The temperature of the environment is strictly below 30 degrees Cel-

sius. The best environment temperature should be stable around 25

degrees Celsius.

12

• The target person wears light summer clothes with exposed arms and

neck to be better distinguished from the environment.

1.3 Outline

The thesis consists of seven chapters.

In chapter 2 related background knowledge is described. Firstly, a brief

introduction to infrared sensor array, Raspberry Pi and Robot Operative

System (ROS) is given. Secondly, we provide an overview of people detection

and tracking algorithms.

Chapter 3 presents the components of the sensor platform and explains

the calculating process of temperature seen by the IR sensor.

Chapter 4 introduces and compares some common robot platforms and

discusses the kinematic theory of the robot platform we used in this project.

In Chapter 5, a theoretical analysis and design of the proposed solution

is undertaken.

Experimental results are presented in Chapter 6, together with an anal-

ysis of the system limitations.

Chapter 7 provides conclusions and recommendations for future ap-

proaches, based on the findings of this study.

13

14

Chapter 2

Background Knowledge

I do think, in time, people will have,

sort of, relationships with certain kinds of robots

- not every robot, but certain kinds of robots

- where they might feel that it is a sort of friendship,

but it’s going to be of a robot-human kind.

Cynthia Breazeal

2.1 Infrared (IR) sensor array

A sensor array is a group of sensors, usually deployed in a certain geometry

pattern, used for collecting and processing electromagnetic or acoustic sig-

nals. Infrared (IR) sensor array, namely, consists of a number of thermopile

sensor elements included in a sensor chip.

Infrared sensor: An infrared sensor is an electronic instrument which is

used to sense certain characteristics of its surroundings by either emitting

and/or detecting infrared radiation. Infrared sensors are also capable of

measuring the heat being emitted by an object and detecting motion.

Infrared Radiation Theory: Infrared waves are not visible to the hu-

man eye. In the electromagnetic spectrum, infrared radiation can be found

between the visible and microwave regions. The infrared waves typically

have wavelengths between 0.75 and 1000µm.

The wavelength region which ranges from 0.75 to 3µm is known as the

near infrared regions. The region between 3 and 6µm is known as the mid-

infrared and infrared radiation which has a wavelength greater higher than

6µm is known as far infrared.

Infrared technology finds applications in many everyday products. For

instance, television sets use an infrared detector to get the signals sent from

a remote control. The key benefits of infrared sensors include their low

power requirements, their simple circuitry and their portable features.

The Working Principle of Infrared Sensors: All objects which have

a temperature greater than absolute zero (0 Kelvin) possess thermal energy

and are sources of infrared radiation as a result. Infrared sensors typically

use infrared lasers and LEDs with specific infrared wavelengths as sources.

Optical components are used to converge or focus the infrared radiation.

In order to limit spectral response, band-pass filters can be used. Next,

infrared detectors are used in order to detect the radiation which has been

focused.

Types of Infrared Sensors: Infrared (IR) sensors fall into two main

categories, thermal and photon:

Photon:In this class of detectors the radiation is absorbed within the

material by interaction with electrons. The observed electrical output sig-

nal results from the changed electronic energy distribution. The photon

detectors show a selective wavelength dependence of the response per unit

incident radiation power. They exhibit both perfect signal-to-noise perfor-

mance and a very fast response. But to achieve this, the photon detectors

require cryogenic cooling. Cooling requirements are the main obstacle to the

more widespread use of IR systems based on semiconductor photo detectors

making them bulky, heavy, expensive and inconvenient to use.

Thermal:Thermal infrared detectors are distinguished by the advan-

tages of a wide wavelength response, no requirement for cooling, high-

temperature stability, high signal-to-noise ratio and low cost. Thermal sen-

sors are differentiated between pyroelectric and thermopiles:

• Pyroelectric Sensors: Here the heat radiation collected by the py-

roelectrical material generates a static voltage signal across the crys-

talline material. Under constant illumination, however, the signal de-

clines, and this makes a periodical refresh necessary. Pyroelectric de-

tectors are applicable for mass production. They have slowly found yet

their way into the consumer market through applications in burglar

alarm systems and automatic light switches. Pyroelectric detectors

are used in high performance gas analyzers, flame detection devices

and scientific instrumentation. On the other hand, for static temper-

ature measurements one still needs a relatively expensive setup which

16

includes mechanical parts.

• Thermopile Sensors: The Seebeck effect describes the electric cur-

rent in a closed circuit composed of two dissimilar materials when

their junctions are maintained at different temperatures. This phe-

nomenon is applied extensively to temperature measurement by wire

thermocouples. The thermopiles or thermocolumn comprises a series

of thermoelements, each element being a thin wire made of two materi-

als of different thermal activity. When a temperature difference occurs

between the two ends of a wire, an electrical tension (thermotension)

develops. The hot junctions are concentrated on a very thin common

absorbing area, while the cold junctions are located on a surrounding

heat sink with high thermal mass.

Modern semiconductor technology makes it possible to produce thermopile

sensors consisting of hundreds of thermocouples on an area of several square

millimetres. Such a sensor is extremely sensitive, shows a very fast response

time and due to its smallness, and it is additionally inexpensive because

of the employment of semiconductor mass production means and of pho-

tolithography.

Many applications are being developed, such as thermography, human

detection, night vision, and so on. Quantification of energy allows users to

determine the temperature and thermal behaviour of objects. Infrared ther-

mal sensing and imaging instruments make it possible to measure and map

surface temperature and thermal distribution passively and non-intrusively.

MLX90621 Family: The traditional thermopile sensor is provided with

a shielding cap with filters infrared radiation for transmission, blocking the

rest. For instance, visible light may be blocked by a silicon filter, which

lets substantially solely IR radiation pass. The shielding cap is typically

thermally isolated from the sensing element, for instance by leaving a spatial

gap of air or vacuum between the cap and the sensing element. The IR

radiation is then collected by the sensing element, which heats up due to

the collected energy. The heating results in a temperature change. This

temperature change is detected by the hot contact of a thermocouple. The

difference of temperature between the sensing element (hot contact) and a

reference (a cold contact in the case of thermocouples) produces a readable

electrical voltage signal. Hence the measurement value of the voltage is a

value representative for the temperature of the heat source.

The hot contact is attached to a membrane which absorbs the infrared

radiation and the cold contact is attached to the bulk matrix of the de-

17

vice. Several factors contribute to errors in the measurement. The sensing

element may receive parasitic signals from sources other than the object

of interest. The increase of the reference temperature may also affect the

measurement. In case of thermocouples, the bulk reference temperature

may increase (for instance, due to environmental conditions) and create an

offset, thus diminishing the accuracy of the measurement.

To reduce the offset the MLX90621 family comprises a first substrate,

an active primary sensing element and a cap with a window allowing IR

radiation to reach the active sensing element. The sensing element com-

prises a thermocouple with its could junction attached to the first reference

substrate. An additional passive secondary detector is allowed to receive

IR radiation from the first reference substrate, so the offset is compensated

by substracting the signal of the additional detector from the signal of the

active sensing element. [[8]] A further discussion about offset compensation

during temperature calculation is presented in Chapter 3.

2.2 Target detection and tracking

Target detection and tracking are the most fundamental tasks in computer

vision. Target detection is the process of detecting the instances of a certain

class of objects (e.g., humans, cars) in signal prints, typically images and

video. Target tracking is the process of locating moving objects in different

frames of a video while maintaining the correct identities.

Target detection and tracking are usually coupled together to locate the

objects of interest through the video. We need to first detect the target

in each video frame, and then track them across different frames. In this

dissertation, we focus on the object class of human.

2.2.1 Object segmentation

Object segmentation is also an important task in computer vision. Object

Segmentation is the process of delineating the target object from the image.

Human segmentation can benefit many computer vision applications, such

as motion analysis, body tracking, and person recognition. In this disserta-

tion, we also adopted the basic theory of object segmentation, which will be

described in detail in a later chapter.

Segmentation techniques are either contextual or non-contextual. The

latter takes no account of spatial relationships between features in an image,

18

and group pixels together on the basis of some global attribute, e.g. grey

level or colour. Contextual techniques additionally exploit these relation-

ships, e.g. group together pixels with similar grey levels and close spatial

locations.

We choose the easiest non-contextual thresholding in the project. With

a single threshold, it transforms a greyscale or colour image into a binary

image considered as a binary region map. The binary map contains two

possibly disjoint regions, one of them containing pixels with input data

values smaller than a threshold and another relating to the input values

that are at or above the threshold (figure 2.1). The former and latter regions

are usually labelled with zero (0) and non-zero (1) labels, respectively. The

segmentation depends on image property being thresholded and on how the

threshold is chosen.

(a) Original (b) Greyscale (c) Segmentation

Figure 2.1: Example of Image Segmentation By using Thresholding

2.2.2 Movement detection using background subtraction

Background subtraction is a widely used approach for detecting moving ob-

jects in videos from static cameras. The rationale in the approach is that of

detecting the moving objects from the difference between the current frame

and a reference frame, often called The ”background image”, or ”background

model” [9]. Movement detection is a lot more difficult with a moving camera,

as all the scene is moving. The background image, which is a representation

of the scene with no moving objects, thus have to be kept regularly updated

so as to adapt to the varying luminance conditions and geometry settings.

19

2.2.3 Movement detection using optical flow

Optic flow is defined as the change of structured light in the image, e.g.,

on the retina or the camera’s sensor, due to a relative motion between the

eyeball or camera and the scene. Figure 2.2a shows the shift of two visual

features (star and hexagon) on a plane and their angular displacements on

the surface of the eyeball. Figure 2.2b shows three frames, which show the

movement of the silhouette of a head. The optic flow is depicted as the

correspondence of contour pixels between frame 1 and 2 as well as frame

2 and 3. For methods estimating flow, the challenge is to find the point

correspondence for each pixel in the image, not only the contour pixels.

Figure 2.2: The production and detection of optic flow

The optical flow describes the direction and time rate of pixels in a

time sequence of two consequent images. A two dimensional velocity vector,

carrying information on the direction and the velocity of motion is assigned

to each pixel in a given place of the picture. By estimating optical flow

between video frames, we can measure the velocities of objects in the video.

The method based on optical flow is complex, quantitative use of the

data will also require quantitative predictions of accuracy, thus resulting in

20

high memory requirements, in-turn resulting in high cost.

2.2.4 Thermal image based human detection

Any object whose temperature is above absolute zero Kelvin emits radiation

at a particular rate and with a distribution of wavelengths. This wavelength

distribution is dependent on the temperature of the object and its spectral

emissivity. The spectral emissivity, which can also be considered as the

radiation efficiency at a given wavelength, is in turn characterized by the

radiation emission efficiency based on whether the body is a black body,

grey body, or a selective radiator. Around room temperature, the typical

emissions for a solid matter are maximal in the long wave infrared region of

the electromagnetic spectrum (7µm to 14µm).

Only limited visual information can be captured by CCD cameras under

poor lighting and weather conditions. Meanwhile, the brightness intensities

of thermal images are representatives of the temperatures of object surface

points. Pedestrians typically emit more heat than background objects, such

as trees, road, etc. Image regions containing pedestrians or other ”hot”

objects will be brighter than the background. Hence theoretically, infrared

thermal images can be a reliable source for human detection at night-time

and in bad weather conditions. Thermal images, compared to visible images,

lack several features, such as color and texture information, which plays a

vital role for human detection and classification. The most discriminative

and distinctive features of human beings from the background lie in their

contours.

2.2.5 Object tracking

Tracking can be defined as the problem of estimation of the trajectory of

an object in the image plane as it moves around a scene. In other words, a

tracker assigns consistent labels to the tracked objects in different frames of

a video. Additionally, depending on the tracking domain, a tracker can also

provide object-centric information, such as orientation, area, or shape of an

object. Tracking objects can be a complex activity due to:

• loss of information caused by projection of the 3D world on a 2D image,

• noise in images,

• complex object motion,

21

Figure 2.3: The Raspberry Pi 3 board

• scene illumination changes, and

• real-time processing requirements.

In this project, we try the best to overcome these complexities. The

usage of IR sensor solved the illumination problem. We consider the child

to be tracked is always very close by, and that is the closest person to the

robot, thus the noise in the thermal image is negligible compared with the

target. The algorithm is based on the simple proportional control to reduce

the calculation.

2.3 Raspberry Pi

Raspberry Pi is a small, powerful, cheap, hackable and education-oriented

computer board introduced in 2012. It operates in the same way as a stan-

dard PC, requiring a keyboard for command entry, a display unit and a

power supply. This credit card-sized affordable computer with good per-

formance is perfect platform for interfacing with many devices. The vast

majority of the system’s components - its central and graphics processing

units, audio and communications hardware along with 512 MB memory

chip, are built onto single component. The Raspberry Pi board shown in

Figure ?? and in Figure 2.4 contains essential (processor, graphics chip,

program memory - RAM) and other optional devices (various interfaces and

connectors for peripherals). The processor of Raspberry Pi is a 32 bit, 700

MHz System on a chip, which is build on the ARM11 architecture. SD

Flash memory serves as a hard drive to Raspberry Pi’s processor. The unit

is powered via the micro USB connector while Internet connectivity may be

via an Ethernet/LAN cable or via a USB dongle.

22

Figure 2.4: The Raspberry Pi’s core-components

The Raspberry Pi, like any other computer, uses an operating system.

The official operating system for Raspberry Pi is a version of Linux Debian,

followed by a list of operating systems also supported. With the release of

the Raspberry Pi 3 and its ARM Cortex-A53 based BCM2837 processor, it

is now possible to run Ubuntu directly on the Raspberry Pi.

Ubuntu Linux is chosen as the operating system in this thesis project

since it is the officially claimed as the operating system supporting ROS,

the system we selected to implement robotic functionalities.

Python is the preferred language for Raspberry Pi. In order to better

support C programming, we also needed to install a C library called bcm2835

library. It provides access to GPIO and other IO functions on the Broadcom

BCM 2835 chip, as used in the RaspberryPi, allowing access to the GPIO

pins on the 26 pin IDE plug on the RPi board so that it is possible to control

and interface with various external devices.

It provides functions for reading digital inputs and setting digital out-

puts, using SPI and I2C, which is the most important usage in the project.

Another important library is OpenCV, which is an image and video

processing library with bindings in C++, C, Python and Java. OpenCV

is used for all sorts of image and video analysis, like facial recognition and

detection, photo editing, advanced robotic vision, and a whole lot more. The

23

python-OpenCV library is used in this thesis project for image processing.

2.4 Robot Operative System(ROS)

2.4.1 Overview

The Robot Operating System was first developed on 2008, by a group of

engineers and scientists from Willow Garage as a new kind of Operative

system fully oriented to robotics, that also tries to follow the trends and

updates in hardware and software day to day (Willow Garage, 2013). ROS

is completely open source (BSD) and free to use, change, and commercialize

upon. ROS was chosen as the main Operative system to be used during this

thesis project.

As ROS is organized on Stacks and packages, during this thesis work

rosserial is the mainly used package. Rosserial is a protocol for wrapping

standard ROS serialized messages and multiplexing multiple topics and ser-

vices over a character device such as a serial port or network socket. In this

project, rosserial sets the communication between the detection system and

the tracking motion.

2.4.2 Nodes

Figure 2.5: Illustration of communication using topics or services

A ROS node is a process that performs computation. Nodes are combined

together into a graph and communicate with one another using streaming

topics, RPC services, and the Parameter Server. These nodes are meant to

operate at a fine-grained scale; a robot control system will usually comprise

24

many nodes. To put it simply, A node is an executable that uses ROS to

communicate with other nodes.

We use two nodes in this thesis work, a publisher and a subscriber. A

publisher (”talker”) node broadcasts messages to a topic while a subscriber

(”listener”) receives messages from a topic.

Topics are named buses over which nodes exchange messages. Topics

have anonymous publish/subscribe semantics, which decouples the produc-

tion of information from its consumption. In general, nodes are not aware

of who they are communicating with. Instead, nodes that are interested in

data, subscribe to the relevant topic; nodes that generate data publish to

the relevant topic. There can be multiple publishers and subscribers to the

same topic.

A message is a simple data structure, comprising typed fields. Standard

primitive types (integer, floating point, boolean, etc.) are supported, as are

arrays of primitive types. Msg files are simple text files for specifying the

data structure of a message.

25

26

Chapter 3

Sensor Platform

You could claim that moving from pixelated perception, where the robot looks

at sensor data, to understanding and predicting the environment is a Holy

Grail of artificial intelligence.

Sebsatian Thrun

3.1 Selection of IR Sensor

Sensor selection means meeting requirements. The list of requirements

should be exhaustive, involve the user, working environment and costing.

To meet the requirements we need to spend some time just to sort and iden-

tify the different IR sensors in the market and find one that would be the

best for our application (detecting and tracking an object).

In this section, we are going to compare 4 different IR sensors: Omron

D6TL-06, Omron D6T-8L-06, Panasonic AMG8832 and Melexis MLX90620.

Table3.1 displays some important characteristics of these sensors.

Model pixel Field of View Accuracy Frame Rate

D6T-44L-06 4×4 44.2◦ × 45.7◦ ±1.5◦C 4FPS

D6T-8L-06 1×8 62.8◦ × 6.0◦ ±1.5◦C 4FPS

AMG8832 8×8 60◦ × 60◦ ±3.0◦C 1 to 10FPS

MLX90621 16×4 120◦ × 30◦ ±1.0◦C 0.5 to 512FPS

Table 3.1: Some important characteristics of different IR sensor

MLX90621 has the best frame rate among all the 4 sensors. However,

we do not need a very high frame rate, 4 FPS compared with the human

(a) Omron D6T (b) AMG88

Figure 3.1: Example of Omron D6T series thermal sensor and Panasonic Infrared array

sensor Grid-EYE (AMG88)

walk speed is an acceptable frame rate. The pixel numbers directly affects

the resolution: the more pixels we have, the better resolution we obtain.

AMG8832 and MLX90621 both have the maximum pixels (64 pixels). We

will discuss in the next section the reason why we choose MLX90621, mostly

for its Field Of View (FOV).

There are some other factors not mentioned in the table: temperature

measurement range, supply voltage and costing. A brief explanation of them

is given below:

• Temperature measurement range: each sensor has a wide tem-

perature measurement range, covers the expected room temperature

and human body temperature.

• Supply voltage:Raspberry Pi could provide either 5.0 V or 3.3 V sup-

ply voltage. Thus all the sensors could meet the requirement directly

or with a simple circuit.

• Costing:all the 4 sensors are low-cost sensor. There is no much dif-

ference between the prices.

3.2 Melexis MLX90621

The IR sensor used in this project is Melexis MLX90621. The MLX90621

has improved considerably on speed and temperature resolution (x4) com-

pared to the previous generation products. This exciting high speed product

updates and further broadens the application potential of low cost thermal

imaging. It contains 64 IR pixels with dedicated low noise chopper stabi-

lized amplifier and fast ADC integrated. A PTAT (Proportional To Absolute

Temperature) sensor is integrated to measure the ambient temperature of

the chip. The outputs of both IR and PTAT sensors are stored in internal

RAM and are accessible through I2C (Figure 3.2)

28

Parameter Details

Supply Voltage 2.6V

Number of thermopiles 16 × 4

NETD 0.20K RMS @4Hz refresh rate

Field Of View 120◦ × 25◦, 60◦ × 16◦, 40◦ × 10◦

Programmable Frame Rate 0.5Hz...512Hz

Operating Temperature Range -40...+85◦C

Storage Temperature Range -40...+125◦C

Table 3.2: Melexis MLX90621 specification

The device specifications are shown in Table3.2.

Figure 3.2: Structure of MLX90621

3.2.1 Field of View

Field of View (FOV) is defined as the solid angle through which a detector

is sensitive to radiation. (Figure 3.3)

29

Figure 3.3: Field Of View Diagram

As shown in Table 3.2, there are three options of Field of View(FOV).

Due to our application conditions, the height of the robot is fixed and also

the variation of height of the target (since they are humans) is negligible

compared to the sphere of movement. As long as we considered only the

horizontal movement in our project, the height of the target became a less

important parameter. Thus, the horizontal direction (x direction) is much

more important than the vertical direction (y direction). Considering also

the sensitivity of the specified FOV, as shown in Figure 3.4, in order that

more pixels could have a better sensitivity in the X direction, 120◦ × 25◦ is

the best choice for our application.

Figure 3.4: Field of View measurement

30

3.3 Hardware setup

3.3.1 Pin definition and description of MLX90621

Figure 3.5: PIN description of MLX90621

Pin Name Function

SCL Serial clock input for 2 wire commnications protocol

SDA Digital input / output 2 wire communications protocol

VDD External supply voltage

VSS Ground

Table 3.3: PIN description of MLX90621

3.3.2 GPIO layout of Raspberry Pi

The Raspberry Pi offers up its GPIO over a standard male header on the

board, along the top edge. We are using Raspberry Pi3 in this thesis project,

which contains 40 pins.(Figure 3.2)

Figure 3.6: Raspberry Pi3 GPIO Header

These pins are a physical interface between the Pi and the outside world.

Of the 40 pins, 26 are GPIO pins and the others are power or ground

pins(plus two ID EEPROM pins)

31

When programming the GPIO pins there are two different ways to refer

to them: GPIO numbering and physical numbering. GPIO numbering are

the GPIO pins as the computer sees them. The numbers don’t make any

sense to humans, they jump about all over the place, so there is no easy way

to remember them. The other way to refer to the pins is by simply counting

across and down from pin 1 at the top left(nearest to the SD card). This is

physical numbering and it looks like as shown in Figure 3.6.

3.3.3 Hardware Setup

The IR sensor node consists of the following hardware parts.

• Raspberry Pi3

• Melexis MLX90621 IR array

• Rectifier 1N4001

Figure 3.3 is the circuit diagram of the IR sensor board. The IR sensor

array MLX90621 is connected to the Raspberry pi through I2C. I2C is a

two wire bus, the connections are called SDA (Serial Data) and SCL (Serial

Clock). Each I2C bus has one or more masters (the Raspberry Pi here) and

one or more slave devices(the MLX90621 here). With I2C, every device has

an address that each communication must be prefaced with. The IR sensor

array defaults to an address of 50, 51, 52, 53, 54, 55, 56, 57 and 60.

Figure 3.7: Circuit diagram of IR sensor node

32

As the preferred operating voltage of the sensor is 2.6V, it’s prudent to

connect a small rectifier diode in series with the positive power offered by

Raspberry Pi(3.3V) (a 1n4001 works nicely.)

After enabled the I2C drivers on the Raspberry Pi, we could now detect

the chip with the command:

sudo i2cdetect -y 1

Once the command is executed, a grid of dashes with numbers where

any i2c device is detected would be shown in the terminal. (Figure 3.8)

Figure 3.8: I2C addresses of MLX90621 detected by RPi

33

3.4 Principle of Operation and Calculation

3.4.1 Principle of operation

Figure 3.9: Operation block diagram

34

The output of all IR sensors and absolute temperature sensors is scanned

according to the programmed refresh rate. Using their output data as well

as calibration constants written in EEPROM the absolute chip temperature

and object temperature, ’seen’ by each pixel can be calculated. For this

goal several sequential calculations must be done according to Figure 3.9

Operation block diagram.

The Power On Reset(POR at the beginning) is connected to the VDD

supply. The device will start approximately 5ms after the POR release.

After the POR is released the external MCU must execute an initializa-

tion process. For the sake of brevity, the part of initialization and reading

measurement data (RAM data) will not be covered here. In the next section,

the part of temperature calculation will be introduced in detail.

3.4.2 Temperature Calculation

Figure 3.10: Calculation part block diagram

The array consists of 64 IR sensors (also called pixels). Each pixel is iden-

tified with its row and column position as Pix(i,j) where i is its row number

(from 0 to 3) and j is its column number (from 0 to 15).

35

ConfigRegister PTAT data VTH(25) KT1 KT2

00 0x0CFB 3323.750 10.69189 0.00144

01 0x19F7 6647.500 21.38379 0.00288

10 0x33EF 13295.000 42.76758 0.00577

11 0x67DE 26590.000 85.53516 0.01153

Table 3.4: Constants’ values at different resolution settings

The output signal of the IR sensors is relative to the cold junction tem-

perature. That is why we need first to calculate the absolute chip tempera-

ture Ta(sensor temperature), by using the following formular:

Ta =
−KT1 +

2

√
K2

T1 − 4KT2[VTH(25)− PTAT data]

2KT2
+ 25, [◦C]

Constants VTH(25), KT1, KT2 and PTAT data are related to the maximum

resolution set in the configuration register (ConfigRegister), as shown in

table3.4

Afterwards, the temperature seen by each pixel can be calculated by

using the formula:

TO(i,j) =
4

√
VIR(i.j)COMPENSATED

αcomp(i,j) ∗ (1−Ks4) + Sx(i.j)
+ Tak4 − 273.15, [◦C]

Where:

VIR(i,j)COMPENSATED is the parasitic free IR compensated signal

αcomp(i,j) is the compensated sensitivity coefficient for each pixel

Ks4 is the compensation factor for the sensitivity

Tak4 = (Ta + 273.15)4 where Ta is the ambient temperature

Sx(i,j) = Ks4 ∗ 4

√
αcomp(i,j)

3 ∗ VIR(i,j)COMPENSATED + αcomp(i,j)
4 ∗ Tak4

VIR(i,j)COMPENSATED is a combination of 3 different kinds of compensa-

tions, which are offset compensation, thermal gradient compensation(TGC)

and emissivity compensation.

Offset compensation: The nonuniformity (NU) noise in IR sensor array,

which is due to pixel-to-pixel variation in the detectors’ response, can con-

siderably degrade the quality of IR images since it results in a fixed-pattern

noise (FPN) that is superimposed on the true image.

One blind infrared radiation detector having a radiation responsive el-

ement is provided and shielded from infrared radiation of the scene. The

36

blind infrared radiation detector provides a proportional electrical signal in

response to infrared radiation incident thereto [11]. The blind infrared radi-

ation detector is configured to provide a signal indicating thermal distortion

of the infrared radiation detector array, thus to reduce fixed pattern noise.

The compensation formula is shown below:

VIR(i,j)OffsetCompensated = VIR(i,j) − (Ai(i,j) +Bi(i,j) ∗ (Ta − Ta0)) (3.1)

Where:

VIR(i,j) is an individual pixel IR data readout (RAM read)

Ai(ij) is an individual pixel offset restored from the EEPROM using

the formula: Ai(i,j) =
Acommon+δAi(i,j)∗2

δAiscale

23−ConfigReg[5:4]
. Acommon is the minimum

offset value, δAi(i,j) is the difference between the individual offset and the

minimum value, δAiscale is the scaling coefficent. All these three parameters

are stored in the EEPREOM.

Bi()i,j is an individual pixel offset slope coefficent.

Ta is the ambient temperature calculated before

Ta0 = 25◦C is a constant

Thermal gradient compensation (TGC): used to compensate the er-

rors due to “thermoelectric effects”.

Thermoelectric Effects: errors occur when more than one type of metal

is used in the construction of the sensing element and associated body and

wiring. When more than one metal is used, the different metals can pro-

duce a Seebeck voltage that would lead to a temperature gradient along the

sensing element and associated wires.

VIR(i,j)TGCCompensated = VIR(i,j) OffsetCompensated−TCG∗VIRcpOffsetConpensated

(3.2)

Where:

VIRcpOffsetConpensated is the offset compensated IR signal of the thermal

gradient compensation pixel.

TGC = TGCEEPROM
32 , TGCEEPROM is a coefficient stored at EEPROM.

Emissivity compensation According to the Stefan-Boltzmann Law, the

emissive power of a blackbody is Eb = σT 4, where

σ = 5.10670× 10−8 W

m2
K4

37

and the temperature is measured in Kelvin. Accordingly, for a non-blackbody,

the emissive power is Eb = εσT 4, where ε is the emissivity of the surface

being considered.

If emissivity is not taken into account, the surface temperature of an

object may appear to be emitting more radiation than it really is, due to

the addition of reflective radiation for instance. This can give an incorrect

perception of the emissive power or temperature of that surface. This can be

especially true for an IR sensor that has been calibrated to a nearly standard

blackbody surface. The simple correction that is commonly made, dividing

the measured temperature by the target emissivity, is shown blow:

VIR(i,j)COMPENSATED
=

VIR(i,j)TGCCompensated

ε
(3.3)

For the sake of simplicity, all the unmentioned parameters default to scale

coefficients or scaled values stored into EEPROM as either two’s complement

value or unsigned value, thus we will not further introduce their calculation

formulas in detail.

3.4.3 Temperature Storage

Figure 3.11: Pixel position in the whole FOV

38

We created an unsigned array and stored all 64 calculated temperature into

it. Note, here we stored the temperature value as Kelvin hundredths of

degree.

unsigned shor t temperatures Int [6 4] ;

t emperatures Int [x]=(unsigned shor t) ((to +273 .15)∗100 .0) ;

These data would be used in the image process for human detection and

tracking. In order to protect the integrity of the 64 values (one frame), we

make a FIFO file each time we have a new frame and unlink it at the end

of this frame. A ”FIFO” is a special file type that permits independent

processes to communicate. One process opens the FIFO file for writing, and

another for reading, after which data can flow as with the usual anonymous

pipe in shells or elsewhere. Unlink a file means that, if no processes have

that file open, it is deleted.

char mlxFifo [] = ”/var /run/mlx90621 . sock ” ;

char mlxFifo [] = ”/var /run/mlx90621 . sock ” ;

mkf i fo (mlxFifo , 0666) ;

i f ((fd=open (mlxFifo , $OWRONLY|O CREAT$))==−1)

{ p r i n t f (”Open Error ”) ; }
wr i t e (fd , temperaturesInt , s izeof (temperatures Int)) ;

c l o s e (fd) ;

un l ink (mlxFifo) ;

39

40

Chapter 4

Wheeled Robot Platform

There are three types of land-based robots, wheeled robots, tracked robots

and leg-robots. The wheeled ones are by far the most popular mobile robots

due to the following advantages:

• Usually low-cost compared to other method

• Simple design and construction

• Abundance of choice

4.1 Types of Wheeled Robots

Wheeled robots can use any number of wheels to navigate, with minimum

of one to maximum of whatever the number we choose to fit specifications.

Single wheel robots are highly unstable and require extreme engineering

and design techniques. Two wheeled robots might sound simpler than one

wheeled robot but are still harder to balance and keep upright. Usually, the

center of gravity of these robots is kept above the wheel axis and the wheels

are attached parallel to each other.

Three wheeled robots are easier to build compared to the previous two.

These robots do not require any specialized balancing algorithms and this

is why they are the preferred choice for a beginner. They can either be

differentially steered or can use a tricycle approach. The wheels are normally

arranged in a triangular manner and are hence balanced.

Four wheels are more efficient compared to three or two wheels. The

first two of the four wheels can be used to steer and the next two to drive

the robot. Balancing a four wheeled robot is never an issue.

The main disadvantage compared to a three wheeled robot is the extra

cost of the fourth wheel and an extra motor to drive it.

Another disadvantage is the need to keep the 4 wheels all on the ground,

which requires suspensions.

More wheels are not really required since this would add additional cost

for wheels, motors, additional power, additional computation and complex

design. The only exception concerns the movement of heavy weights.

4.2 Types of Robot Wheels

There are different kinds of wheels to choose from, for a Wheeled Mobile

Robot (WMR).

Figure 4.1: Standard wheel

Figure 4.2: Ball wheel

Figure 4.3: Omni wheel

Standard wheel has two degree of freedom and

can traverse Front or Reverse. The center of the

wheel is fixed to the robot chassis. The angle be-

tween the robot chassis and wheel plane is con-

stant.

Orientable wheels are mounted to a fork which

holds the wheel in place. Orientable wheels are

normally used to balance a robot and rarely used

to drive a robot in a configuration called synchro-

drive.

Ball wheels contain a spherical metal or nylon

ball (or any hard spherical material these days)

positioned within a holder. The ball has 360◦ of

freedom and is normally used to balance a robot.

The disadvantage is that these wheels may have

high friction and require power to push. They are

also not suitable for uneven, dusty, and greasy

surfaces. Ball wheels are also generally referred

to as ”castor ball wheels”.

The best choice for a robot that requires multi-

directional movement. Omni wheels are nor-

mal wheels with passive wheels (rollers) attached

around the circumference of the center wheel.

Omni wheels can move in any direction and ex-

hibits low resistance when they move in any di-

rection. The small wheels are attached in such a

42

way that the axis of the small wheels are perpendicular to the axis of the

bigger center wheel which makes the wheel to rotate even parallel to its own

axis.

4.3 Wheel Control Theory

In the previous section we have seen the different types of wheels and their

arrangements. Since omni wheels have smaller wheels attached perpendicu-

lar to the circumference of another bigger wheel, they allow wheels to move

in any direction instantly. The major advantage is that they do not need

to move in any direction without changing the orientation. We chose omni

wheeled platform in this thesis project.

4.3.1 Omni-wheel Design: 3 Wheels vs. 4 Wheels

Generally Omni wheeled robots use either a three wheeled platform or a

four wheeled platform.

3-wheel design: A three wheel design offers greater traction as any re-

active force is distributed through only three points and the robot is well

balanced even on uneven terrain. This design also reduces an additional

wheel compared to a 4 wheeled robot which makes it cost effective (omni

wheels are expensive).

4-wheel design: In 4 wheel design, 4 Omni wheels are attached at 90◦ to

each other. This means any two wheels are parallel to each other and other

two wheels perpendicular. The first and the major benefit is the simplified

calculation. Since there are two pairs of wheels, each pair requires only one

calculation and all four wheels require only two calculations.

But a four-wheeled Omni robot does not balance on irregular terrain and

also not all four wheels are guaranteed to stay on the same plane. Additional

wheel also calls for an extra cost. Since Omni wheels are a combination of

many wheels / rollers into one, there is a greater resistance to rotation

which leads to greater loss of energy compared with three-wheeled Omni

robot, when not driving parallel to a pair of wheels.

43

Figure 4.4: Configuration of three wheeled robot

We decided to use 3-wheeled Omni robot platform during our project be-

cause of the low-cost and simpler mechanics. Figure4.4 present the configu-

ration of the three wheeled robot, as well as all axis and relevant forces and

velocities of the robotic system, detailed as follows:

• x, y, θ - Robot’s position (x,y) and θ angle to the defined front of

robot;

• d[m] - Distance between wheels and center robot;

• v0, v1, v2[m/s] - Wheels linear velocity;

• ω0, ω1, ω2[rad/s] - Wheels angular velocity;

• f0, f1, f2[N] - Wheels traction force;

• T0, T1, T2[Nm] - Wheels traction torque;

• V, Vn[m/s] - Robot linear velocity;

• ω[rad/s] - Robot angular velocity;

• FV , FVn [N] - Robot traction force along V and Vn;

• T [Nm] - Robot torque (respects to ω).

44

4.3.2 Holonomic and Non-Holonomic Drive

Non-Holonomic Drive: If the controllable degree of freedom is less than

the total degrees of freedom, then it is known as non-holonomic drive. A car

has three degrees of freedom; i.e. its position in two axes and its orienta-

tion. However, there are only two controllable degrees of freedom which are

acceleration (or braking) and turning angly of steering wheel. This makes it

difficult for the driver to turn the car in any direction (unless the car skids

or slides).

Holonomic Drive: Holonomic refers to the relationship between control-

lable and total degrees of freedom of a robot. If the controllable degree of

freedom is equal to total degrees of freedom, them the robot is said to be

Holonomic. A robot built on omni-wheels which is used in this project is a

good example of holonomic drives as it can freely move in any direction and

the controllable degrees of freedom is equal to total degrees of freedom.

4.3.3 Kinematic Model

In order to find motion models for a surface vehicle, the pose of the ve-

hicle must be identified as (x, y, θ) and associated velocities are vx(t) =
dx(t)
dt , vy(t) = dy(t)

dt , ω(t) = dθ(t)
dt . The following test uses the notation pre-

sented in Figure4.4, where the defined ”front” also defines the v direction

and its orthogonal vn direction.

Equation (4.1) allows the transformation from linear velocities vx and vy
on the static(world) axis to linear velocities V and Vn on the robot’s axis.V (t)

Vn(t)

ω(t)

 =

 cos(θ(t)) sin(θ(t)) 0

−sin(θ(t)) cos(θ(t)) 0

0 0 1

 ·

vx(t)vy(t)

ω(t)

 (4.1)

WWheels’ velocities v0, v1 and v2 are related with robot’s velocities V ,

Vn and ω as described by Equation(4.2).v0(t)v1(t)

v2(t)

 =

−sin(π/3) cos(π/3) d

0 −1 d

sin(π/3) cos(π/3) d

 ·

V (t)

Vn(t)

ω(t)

 (4.2)

Applying the inverse kinematics is possible to obtain the equations that

determine the robot’s velocities related with the wheels velocities. Solving

for V , Vn and ω, the following can be found:

V (t) = (

√
3

3
) · (v2(t)− v0(t)) (4.3)

45

Vn(t) = (
1

3
) · (v2(t) + v0(t))− (

2

3
) · v1(t) (4.4)

ω(t) = (
1

3 · d
) · (v0(t) + v1(t) + v2(t)) (4.5)

The dynamical equations relative to the accelerations can be described

in the following relations:

M · dV (t)

dt
=

∑
FV (t)− FBV (t)− FCV (t) (4.6)

M · dVn(t)

dt
=

∑
FVn(t)− FBVn(t)− FCVn(t) (4.7)

J · dω(t)
dt

=
∑

T (t)− TBw(t)− TCω(t) (4.8)

Where the following parameters relate to the robot are:

• M [Kg]−Mass;

• J [kgm2] - Inertia moment;

• FBV , FBVn [N] - Viscous friction forces V and Vn;

• TBω[Nm] - Viscous friction torque with respect to the robot’s rotation

axis;

• FCV , FCVn [N] - Coulomb frictions forces along V and Vn;

• TCω[Nm] - Coulomb friction torque with respect to robot’s rotation

axis.

Viscous friction forces are proportional to robot’s velocities, see Figure4.5(a),

and such as:

FBV (t) = Bc · V (t) (4.9)

FBVn(t) = BVn · Vn(t) (4.10)

TBω(t) = Bω · ω(t) (4.11)

46

(a) Viscous friction (b) Coulomb friction

Figure 4.5: Frictions

Where the following parameters relate to the robot as follows:

• BV , BVn [N/(m/s)] - Viscous friction coefficients for directions V and

Vn;

• Bω[Mn/(rad/s)] - Viscous friction coefficient to ω

The Coulomb friction forces are constant in amplitude, see Figure4.5(b)

FCV (t) = CV · sign(v(t)) (4.12)

FCVn(t) = CCV · sign(Vn(t)) (4.13)

TCω(t) = Cω · sign(ω(t)) (4.14)

where the following parameters relate to the robot as follows:

• CV , CVn [N] - Coulomb friction coefficient for directions V and Vn;

• Cω[Nm] - Coulomb friction coefficient for ω

The relationship between the traction forces and rotation torque of the

robot with the traction froces on the wheels is described by the following

equations: ∑
FV (t) = (f2(t)− f0(t)) · sin(

π

3
) (4.15)∑

FVn(t) = −f1(t) + (f2(t) + f0(t)) · cos(
π

3
) (4.16)∑

T (t) = (f0(t) + f1(t) + f2(t)) · d (4.17)

47

The traction force on each wheel is estimated by traction torque, which

can be determined using the motor current, as described in the following

equations:

fj(t) =
Tj(t)

r
(4.18)

Tj(t) = 1 ·Kt · ij(t) (4.19)

where:

• 1 - Gearbox reduction;

• r [m] - Wheel radius;

• Kt[Nm/A] - Motor torque constant;

• ij [A] - Motor current (j=motor number).

48

4.4 Rapid Robot Prototyping framework (Nova

Core)

Nova Core (Rapid Robot Prototyping) is a modular HW/SW system, de-

veloped at AIRLab, which enables to assembly the electronics of a robot

in few hours [2]. Each hardware module implements a functionality for a

robot (e.g., motor control, IMU, sensor data collection, wifi, GPS, ...) and

includes an ARM processor that runs a real-time operating system. All

modules are connected via CAN bus on which a real-time protocol has been

implemented (see Figure 4.6 for reference). Modules can also be integrated

in the micro-ROS environment and that can connect them as ROS nodes

to a ROS-based system. Figure 4.7 shows one of Nova Core modules, with

shared components highlighted.

Figure 4.7: A Nova Core hardware module, with components from the reference design

highlighted

The power supply module (PS) is responsible of powering the Nova Core

bus and all connected modules. It sports a switching DC/DC converter,

with a wide range of power inputs and a stable 5 V output, so that it can

be used to power up our Raspberry Pi.

The other important Nova Core module is the DC motor controller board

(DCM), to satisfy one of the most common primary platform requirements:

drive a motor and let the robot move.

The inertial measurement unit module (IMU) allows the measurement

of acceleration, angular velocity, and bearing with respect to the heart mag-

netic field, together with the altitude of a robot.

Proximity module used to interface with proximity sensors. Each module

connects to up 4 sensors. Calibration and data filtering algorithms run on

49

Figure 4.6: Architecture of a balancing robot developed with the Nova Core framework

50

the microcontroller, which produces distance measurements.

4.5 Hardware Setup

(a) Hardware Setup (b) Hardware Structure

Figure 4.8: Hardware Set-up of the wheel-platform

As shown in Figure4.8, the metal plate has a side of 15cm and hexagonal

shape. Wheels of 7cm diameter with connections at L of 4 cm length are

fixed at 3 sides of the hexagon. The cylindrical motors occupy about 6.5cm

of the base. The 3 zones created by the motors are occupied by:

• A battery (colored blue) with dimensions of 154×27×44mm (Turnigy

nano-tech 5000mah 3S 40-80C)

• A block of 3 cards for motors (colored yellow)

The final implementation is shown blow (Figure4.9):

Figure 4.9: Hardware implementation

51

52

Chapter 5

Method and Implementation

Despite all of our technological advances, content creation still requires time,

inspiration, an a certain amount of sweat. There aren’t any shortcuts. You

can’t write a algorithm for it. You can’t predict it. You can’t code it.

Shawn Amos

The main part of this project consisted in the design of an efficient algorithm

to follow people for a robot with an infrared sensor array. As explained in

Chapter 2, an infrared sensor provides temperature data, which are useful

to detect the targeted person and estimate movement. By creating a Pub-

lisher node, the position information of the target is published to the topic

”PositionInfo”. By creating a Subscriber node, the position information of

the target is subscribed and used in the following algorithm.

5.1 Overall Algorithm

In the proposed method, the robot receives messages from the human de-

tection process. At the first frame a person is in the field of view of the

IR sensor array. Then, for the next frames, the tracking algorithm is used

to know from frame to frame where the person is in the frame. Either the

person is detected in the image or the tracker can lose the person. In this

case the tracker goes back to the people detection process.

In this section, the overall algorithm is described. Then, few sections

explain more in details the different steps of the algorithm including the

special cases encountered and how they can be solved.

The algorithm consists of two parts. After the initialization, first the

human detection process finds a target. Then, the main loop runs and tries

to track the target. Figure 5.1 illustrates this.

Figure 5.1: Organization of the algorithm

5.2 Initialization

The first part of the algorithm is the initialization step. At this stage the

IR array sensor is initialed and all the important flags are set to the initial

value, for example:

• Target Exist: flag to estimate if there is a eligible target exist in

the field of view. The initial value is set to ”None”. Once a target is

found, this flag is set to ”1”.

• Intrudew Flag and Intrudex Flag: flags to estimate if there is a

unexpected ”Intrude” (”Intrudew” or ”Intrudex”). The initial value

is set to ”None” respectively until a ”Intrude” is detected.

• Intrudew count and Intrudex count: when a ”Intrude” occurs,

the ”Intrude counter” starts to count the frame until the ”Intrude”

finished or reached the maximum waiting time. The counters are set

to ”0” as initial value.

• y target: set to None as initial value to estimate if it is the first time

we enter the main loop. Once the frame appeals, the ”y target” get a

value.

• Positioninfo.flag: the flag shows the robot condition. The initial

value is set to ”0” (Stop state).

54

Figure 5.2: Flowchart for the Publisher Node

55

5.3 Human Detection and Movement Estimation

As shown in Figure5.2, the Publisher node deals with the questions of ”where

is the target person” and ”where does this person go”, respectively. These

two classes of questions are closely related, but have clearly different objec-

tives.

5.3.1 Human Detection

As first step, we need to get the temperature data from the FIFO file

(mlx90621.sock), which we have described in Chapter 3. At the very be-

ginning, it is reasonable that we consider there is no target person. Thus

we create a flag ”Target Exist” and set the default value as ”None” until we

find an eligible target.

At the beginning, we call it ”Target searching” state, namely, we need to

define a proper method to find an eligible target. There are some researches

related to human body tracking using infrared sensor array. [7] developed

a method which localizes heat sources using a far-infrared sensor array. [1]

simply selects a sensor which outputs the highest temperature to localize a

heat source. Thus, it does not consider occlusions nor the effect of other

heat sources.

Firstly considering that our robot would closely follow its target and

keep the distance within one meter, we simply count the total number of

the pixels which see a ”higher temperature”. Although the temperature of

a person is as known 37 degrees centigrade, we still need to pay attention

to some objective factors:

• The normal body temperature (37◦C) as most people think is oral

temperature(by mouth). But the temperature measured by the IR

sensor array is the skin surface temperature that is lower than the oral

temperature.

• It is clear that clothing also affects the amount of IR radiation emitted,

so that the amount and color can make a small difference in sensor

performance.

• The room temperature is around 25◦C

In summary, we define the ”higher temperature” as the temperature above

28 degrees centigrade.

56

Figure 5.3: Eligible target

definition

As we have already introduced in Chapter 1,

the Melexis MLX90621 is a 16×4 Infrared sensor

array. We make following assumptions:

• The robot always tries to keep a distance

within 1.0 meter with the target.

• The robot always tries to keep the target in

the middle of FOV (Field of View).

• The robot mainly enrolled in the therapy for

children around 10 years old. The average

shoulder to shoulder width of a 10 years old

children is 11.25 inches (28.575 cm)[4]. We

use 30 cm for simplicity.

• The diameter of the IR sensor is negligible

compared to 30 cm.

As shown in Figure 5.3, a is the angle corre-

sponding to our eligible target mapping on the FOV of the sensor (equivalent

to a point):

tan(
a

2
) =

15cm

0.5m

a ≈ 33.3◦

In chapter 2, Figure 3.4 shows the diagram of FOV. The total visual

angular along x axis (16 columns in total) is 120◦, namely, 7.5◦ per pixel.

Thus 33.3◦ is equivalent to 4 columns (4×4=16 pixels). Considering the pos-

sible floating range and the decreasing resolution with distance, we want to

set a low limitation during the “Target Searching” state, we use 3 columns

(3×4=12 pixels) instead of 4 columns. (Code of process are presented be-

low).

f i f o=open(’ / var /run/mlx90621 . sock ’ , ’ r ’)

Target Ex i s t=None

while Target Ex i s t i s None :

i r r aw=f i f o . read ()

i r tr immed=i r raw [0 : 1 2 8]

i r=np . f rombuf f e r (ir tr immed , np . u int16)

T30=0

for p i x e l in i r :

i f p ixe l >30315:

57

T30=T30+1

i f T30<12:

Target Ex i s t=None

else :

Target Ex i s t=1

5.3.2 Movement Estimation

Once we have located our target, the next step is to estimate the movement

of the target. In order to do this, we first have to arrange the 64 temperature

numbers we obtained from the FIFO file to a ”16×4” array (one frame).

i r=i r . reshape ((1 6 , 4)) [: : −1 , : : −1]

i r=img a s f l o a t (i r)

p2 , p98=np . p e r c e n t i l e (i r , (2 , 9 8))

i r=exposure . r e s c a l e i n t e n s i t y (i r , i n range=(p2 , p98))

We compute the 2nd and 98th percentiles of array elements respectively

and then normalize the intensity levels to the range from the 2nd percentile

(p2) to the 98th percentile (p98). After this process, the array becomes a

set of numbers from 0 to 1. So that we can easily map it to a grey-scale

image array.

Image segmentation: As we have mentioned in chapter 2, we choose the

simplest non-contextual thresholding in the project. With a single threshold,

it transforms our greyscale image array into a binary image considered as a

binary region map. The binary map contains two possibly disjoint regions,

one of them containing pixels with input data values smaller than a threshold

and another relating to the input values that are at or above the threshold.

The former and latter regions are usually labeled with zero (0) and non-

zero (1) labels, respectively. The threshold is chosen depending on the high

temperature we defined before for the human body.

Contour Tracing: Also known as border following or boundary following;

contour tracing is a technique that is applied to digital images in order to

extract their boundary. The boundary of a given pattern P, is the set of

border pixels of P. The contour is the only thing we know about the feature

of our target in this project and to be used in the movement estimation. To

better understand, an example is shown in Figure 5.4.

58

Figure 5.4: An example shows contour changing as the target person moving

Under our assumed condition, there is only one child with the therapist

in the therapy room. In other words, there are maximum two persons in the

room that can be detected by the robot. As we have no other information

to do human identification, the default target is the biggest contour, i.e the

one who is closer to the robot.

OpenCV offers the function boundingRect(), which calculates the mini-

mal up-right bounding rectangle as the contour for the specified point set.

There are two useful features we could extract from the contour: 1. the top-

left coordinate of the rectangle; 2.its width. These two simple features are

two important dependents for our movement estimation. The top-left coor-

dinate expresses the horizontal movement. The width expresses the change

of distance.

Intrude: We set 2 flags (Intrudew flag and Intrudex flag) to check if over-

lapping occurs. “Intrude” is defined as a big change either of the width of

the contour (target w) or the top-left coordinate of the rectangle (target x).

This double check uses to avoid the confusion caused by the passed ther-

apist. Confusion means that the robot can not distinguish between the

target and the intruder. An example of an Intrude is given below. The

therapist enters the field of view from left and passes through the target

person. In Figure5.5 the therapist first enters the vision field of the robot,

but it is negligible compared to the target.

Figure 5.5: The therapist enters the vision field

59

As shown in Figure5.6, the therapist approaches to the target, and be-

comes comparable with the target, but not big enough to cause a confusion.

Figure 5.6: The therapist approaches the target person

In Figure5.7, as the therapist gets closer to the target and the robot, a

confusion is created due to the emergence of another eligible target. As we

defined before, it is an ”Intrude x”.

Figure 5.7: An Intrude is generated and created confusion

Figure5.8 shows the overlap condition of the therapist and the target

person. Thus an ”Intrude w” is created.

Figure 5.8: An Intrude is generated and created confusion

In Figure5.9, the therapist passed by the target person and the Intrude

is vanished.

Figure 5.9: An Intrude is generated and created confusion

60

We make an assumption that the average walking speed for a normal

adult is about 1 meter per second and for a 10 years old child is around 0.8

meter per second. 3 second is enough for the therapy to walk out of the vision

field of the robot or make a distinguished distance between the child and

the therapy. Once we found there is a ”Intrude”, we set the corresponding

flag ”Intrude w” or ”Intrude x” 1 and keep the former position data. We

waited for 2 second to see if the ”Intrude” disappear. We use two Frame

Counters (Intrudew count and Intrudex count) to estimate the maximum

waiting time. The Frame Rate is 0.08s, thus we wait for maximum 40 new

frames. After 40 new frames if the ”Intrude” still presents, we assume the

robot lost the target and goes back to the ”Target Searching” state.

5.3.3 Position Information Publish

After all the calculations and processes above, we obtain the position in-

formation of our target. The position information contains 3 values: the

middle coordinates of the contour, the width of the contour and the state

flag. Our Publish Node (Talker) then send a message included these values

to the topic ”PositionInfo”.

State Flag: PositionInfo.flag Contains the state of the tracking pro-

cess. When we are in the ”Target Searching” state, we set PositionInfo.flag

to 2; If there is a ”Intrude” Exist, we set the flag to 1; Or we are following

the target, the flag is set to 0.

Figure5.10 shows a detailed flowchart of the Talker with it’s important

Initialized values.

61

Figure 5.10: Flowchart of the Publisher Node

62

5.4 Target Tracking and Following

In the previous sections, two parts of the project have been presented. The

first one is to process the temperature data and convert to a thermal image.

The second one is to detect the target person in the image and estimate

movement. This section explains how to track the person’s position in the

image and how to move the mobile base to follow the target.

5.4.1 Thermal Image Based Servoing

In this section, we use feedback information extracted from IR sensor array

to control a DC servo motor.

Figure 5.11: TowerPro SG90

Figure 5.12: Pin diagram of SG90

Figure 5.13: PWM period of SG90

A servo motor is a combination of DC

motor, position control system and gears.

Servos have many applications in the mod-

ern world and with that, they are available

in different shapes and sizes. We will be us-

ing SG90 Servo Motor (Figure 5.11) in this

section, it is one of the popular and cheap-

est one. SG90 is a 180 degree servo. So with

this servo we can position the axis from 0-

180 degrees.

A servo motor mainly has three wires,

one is for positive voltage, another is for

ground and last one is for position setting.

The red wire is connected to power, brown

wire is connected to ground and yellow wire

(or white) is connected to signal, as shown

in Figure 5.12.

The frequency of PWM (Pulse Width

Modulated) signal can vary based on type

of servo motor. For SG90 the frequency of

PWM signal is 50Hz (Figure 5.13). Once

the frequency is selected, the other impor-

tant thing here is the DUTY RATIO of the PWM signal.

The position of the servo motor is set by the length of a pulse. The

servo expects to receive a pulse at least every 20 milliseconds. If that pulse

is high for 0.8 millisecond, the servo angle will be at position 0 (0◦); if

it is 1.5 milliseconds, it will be at its center position (90◦); and if it is 2.2

milliseconds, it will be at position 2 (180◦). The table below shows the Servo

63

Position for that particular Duty Ratio. We can get any angle in between

by choosing the value accordingly.

POSITION DUTY RATIO

0◦ 4

30◦ 4.5

90◦ 7.5

150◦ 10.5

180◦ 11

Table 5.1: Duty Ratio of SG90 servo motor

There are two pins on the Pi that is capable of producing pulses in this

way (GPIO pin 12 and pin 18). We choose pin 12 to be connected to the

control pin of the servo. The power to the servo is provided by pin 1 of Pi,

which provided 5V. Servos require 4.8-6V DC power to the motor, but the

signal level (pulse output) can be 3.3V, which is how its OK to just connect

the signal line directly to the GPIO output of the Pi. Figure 5.14 shows the

pin connection of Raspberry pi and servo motor. The 1kΩ resistor is not

essential, but it does protect the GPIO pin from unexpectedly high currents

in the control signal, which could occur if a fault developed on the servo.

The codes below shows the initialization of pin 12:

servoPIN18 = 12

GPIO. setmode (GPIO.BOARD)

GPIO. setup (servoPIN18 , GPIO.OUT)

p18= GPIO.PWM(servoPIN18 , 50)

The function GPIO.setmode set up GPIO numbering schemes.As the

main GPIO header of the Raspberry Pi shown in Chapter 3, there are 40

pins in total. The top left pin (as we look at this photo) is called pin 1, the

one to the right of it is pin 2. So the next row is 3, 4 etc. and on down to

25, 26. This is how pin headers are numbered. The slightly confusing part

is that each pin also has a name, according to what it does. In RPi.GPIO

we can use either pin numbers (BOARD) or the Broadcom GPIO numbers

(BCM).

ang le = f l o a t (9 0 . 0)

p18 . s t a r t (setAngle (ang le))

The codes above set the start point at 90◦, the center position. As we

know, p18.start(Duty Cycle) function used to start PWM signal generation.

We define a function setAngle() to convert angle to Duty Ratio.

64

Figure 5.14: servo motor connection

de f setAngle (ang le) :

mode = f l o a t (7 . 5)

i f (ang le >= 0) and (ang le <= 180) :

mode = 4 .5 + (angle −30.0)/20.0

e l s e :

mode = 7 .5

re turn mode

At the ”Target Searching” state, we added the following code to search

the target. When there is no eligible target in the FOV, the motor starts to

rotate and tries to find the target.

i f T30 < 8 :

Target Ex i s t = None

i f ang le >= 10 :

ang le = angle−10

e l s e :

ang le = angle +170

p18 . ChangeDutyCycle (setAngle (ang le))

e l s e :

Target Ex i s t = 1

Once there is an eligible target enters the FOV, the motor starts to follow

65

the target and tries to keep the target in the middle of the FOV. The code

is shown below:

i f middle > 550 . 0 :

i f ang le < 170 :

ang le = angle + 10

e l s e :

ang le = 180

p18 . ChangeDutyCycle (setAngle (ang le))

Target Ex i s t = None

i f middle < 450 . 0 :

i f ang le > 10 :

ang le = angle − 10

e l s e :

ang le = 0

p18 . ChangeDutyCycle (setAngle (ang le))

Target Ex i s t = None

e l s e :

cont inue

5.4.2 Comparison With Background Subtraction

A common approach to identifying the moving objects is background sub-

traction, where each frame is compared against a reference or background

model. Pixels in the current frame that deviate significantly from the back-

ground are considered to be moving objects. In this section, we will make

a comparison with background subtraction and explain the reason why we

did not choose it.

Background modeling is at the heart of any background subtraction al-

gorithm. Much research has been devoted to developing a background model

that is robust against environmental changes in the background, but sensi-

tive enough to identify all moving objects of interest. par In our project,

the only reference is the 64 temperature values we captured for each frame.

As shown in the previous section, we transfer the temperature values into a

image array.

For a mobile robot, the background is always changing, one can hardly

have a precise background model and make a background subtraction. Con-

sidering the unicity of the dependent feature, it is reasonable to simplify

the process, and make background modeling possible. We choose the back-

ground reference as the pixels below the threshold temperature.

66

Figure 5.15: First-frame background reference

First-frame subtraction: the first frame is considered as the frame when

an eligible target is first detected. For example, Figure 5.15 below is the

background reference, the red pixels are the detected target. Our target is

always distinguished clearly with respect to the background in the assumed

operating environment.

We classify the movement into translation-movement and distance-movement.

Translation-movement is defined as the target move to left and right while

keeping the same distance from the robot. The distance-movement is defined

as the target moves further or closer to the robot without translation.

Figure 5.16 and Figure 5.17 show a leftward translation-movement:

Figure 5.16: A small leftward translation-movement

Figure 5.17: A big leftward translation-movement

Figure 5.18 and Figure 5.19 show a distance-movement:

67

Figure 5.18: A distance-movement moves closer to the robot

Figure 5.19: A distance-movement moves further to the robot

In the reality, the movement of the target is always the combination of

the distance-movement and the translation-movement. But the decoupling

of the two movements makes the control algorithm easier. We could also as-

sume the linear velocity and the angle velocity of the robot as two separately

controlled uncorrelated variables.

5.4.3 Control Theory

Proportional controller amplifies the error as show in the block diagram

below (Figure 5.20):

Figure 5.20: Proportional control diagram

So the actuating signal is proportional to the error. In a proportional

controller, steady state error (SSE) tends to depend inversely upon the pro-

portional gain, so, if the gain is larger, the error goes down. In this system,

SSE is given by the expression:

SSE =
1

1 +KpG(0)

68

As the proportional gain, Kp, grows, the SSE becomes smaller. As we in-

crease the proportional gain, it provides smaller amplitude and phase mar-

gin, faster dynamics satisfying wider frequency band and larger sensitivity

to the noise. Namely, larger proportional gain results produce larger changes

in response to the error, and thus affects the speed at which the controller

can respond to changes in the system. However, despite the reduction, pro-

portional control can never manage to eliminate the steady state error of

the system.

First order plants do not have natural oscillations. Proportional control

is easy to implement for these systems, and we could set a large Kp to

improve the system performance without worrying. However, the situation

is different for higher order plants. An example shows a second order plant,

with an input x(t) = 5u(t) (Figure 5.21).

Figure 5.21: MATLAB-Simulink Diagram to show the effect of P control on second

order plant

69

For Kp=5,

Figure 5.22: Output of the closed loop system with only P control, Kp=5

Figure 5.23: Error of the closed loop system with only P control, Kp=5

Steady State Error=SSE = 3.5. Percent Overshoot=43.4%

For Kp=10,

Figure 5.24: Output of the closed loop system with only P control, Kp=10

70

Figure 5.25: Error of the closed loop system with only P control, Kp=10

Steady State Error=SSE = 2.7. Percent Overshoot=47.83%

For Kp=20,

Figure 5.26: Output of the closed loop system with only P control, Kp=20

Figure 5.27: Error of the closed loop system with only P control, Kp=20

71

Steady State Error=SSE = 1.9. Percent Overshoot=54.84%

For Kp=100,

Figure 5.28: Output of the closed loop system with only P control, Kp=100

Figure 5.29: Error of the closed loop system with only P control, Kp=100

Steady State Error=SSE = 0.5. Percent Overshoot=66.67%

Transfer function: A Transfer Function is the ratio of the output of a

system to the input of a system, in the Laplace domain considering its initial

conditions and equilibrium point to be zero. The input of our system is the

variation of the detected width (δm) and middle coordinate (δW) of the

target, the output is the linear velocity (v) and the angular velocity (ω).[
v

ω

]
=

[
G1(s) 0

0 G2(s)

][
δm

δW

]
To derive G1(s), we define θ as the change of the angle value, the corre-

sponding arc length and chord length are, respectively, l and L; the radius

is R. (Figure 5.30)

72

Figure 5.30: Diagram of the relevant parameter

{

ω = dθ
dt

l = θ ∗R
L = 2Rsin θ

2

δm = L ∗ k

−→ dδm

dt
= 2k ∗R ∗ ωcosωt

2
(5.1)

The Laplace transform is: (Note, to simplify, we assume that ω inside the

cosωt2 is a constant.)

δm(s) = 2kr
ω(s)

s2 + (ω
2

4)

To derive the transfer function G2(s), we define m is the width of the

target (arm to arm), d is the distance from the target to the sensor, θ is

the corresponding angle which directly related to the detected width on the

thermal image. (Figure 5.31)

Figure 5.31: Diagram of the relevant parameter

m = 2d ∗ tan θ
2 ≈ θ ∗ d

θ
120◦ = W

16[pixels]

−→ m = 7.5w ∗ d (5.2)

We assume in two different frames, we have (W1, d1) and (W2, d2), we make

a simple subtraction and obtain the following equation:

δW = W1 −W2 =
m

7.5
∗ δd

d1 ∗ d2

73

To simplify, we now assume d1 ∗ d2 is a constant, on both side we make the

derivative of time:

dδW

dt
=

m

7.5 ∗ d1 ∗ d2
dδd

dt
=

m

7.5 ∗ d1 ∗ d2
v(t)

After Laplace transform, we obtain:

δW (s) =
m

7.5 ∗ d1 ∗ d2
1

s
v(s)

Since the assumption of d1∗d2 = constant is not correct, d1∗d2 is also time-

dependent. In conclusion, neither G1(s) nor G2(s) are first order plants.

Thus, we need to be careful with proportional control to avoid system oscil-

lation.

From the example above, it is obvious that with a larger Kp, we reduce

the Steady State Error, but increase the overshoot and the system starts

oscillating before the steady state. To prevent the large overshoot, we could

choose a smaller Kp, and set a limitation on output. In order to prevent

the oscillation, we could set an ”acceptable error range”. The ”acceptable

error range” is a set by two threshold values. We modified the proportional

control use the theory of bang-bang control for reference. The block diagram

of bang-bang control is reported below (Figure 5.32):

Figure 5.32: Bang-bang control diagram

As middle range we consider the columns from the 9th (low threshold)

to the 11th (high threshold). When the middle point of the detected target

contour is out of the middle range, the proportional control starts. When

the middle point is inside the middle range, the proportional control stops.

5.4.4 Human Following

At the end of ”Movement Estimation”, the ”Human Following” Node re-

ceives the data about the detected person: width of bounding rectangular,

middle coordinate of the bounding rectangular and the state flag. Decide

the reaction of the robot and send the velocity to the topic ”cmd vel”, so

74

that the Node of the Robot Platform could receive the message and exe-

cute the command. Note, the ”Human Following” Node here is not only a

Publisher, but also a Subscriber.

The main loop can be subdivided in four steps:

• First the Listener roughly judge the Robot state basing on the received

position flag.

• Analyse the received width of the contour and the middle coordinate

of the contour, make a decision on the velocity.

• Send the velocity value to the topic ”cmd vel”

• The wheeled platform receives the velocity message and executes the

command.

We defined four States: stop, searching, focusing and following. Next we

will discuss the four states in detail.

stop: Every time we receive a ”PositionInfo.flag” equals 0, the robot,

switches to state ”stop”, namely, both the liner velocity (cmd msg.linear.x)

and the angular velocity (cmd msg.angular.z) are set to zero, the robot

stops. State ”stop” exist under three conditions:

• The initial value of ”PositionInfo.flag” is ”0”. It is obvious that the

robot stops at the moment when it starts.

• Every time an ”Intrude” appeals, the ”PositionInfo.flag” is set to ”0”,

the robot stops due to the confusion caused by the ”Intrude”.

• When the target person is in the proper middle area of the robot vision

field, the robot stops.

searching: Every time we receive a ”PositionInfo.flag” equals ”2”, means

we lost the target. Thus we start searching the target. There are two

conditions we defined of ”lost target”:

• The start moment of the robot, the ”Target Exist” flag is initialized to

”None”. If there is not a eligible target in the vision view, we consider

it as ”lost target”.

• Once an ”Intrude” appears, the robot enters the ”stop” state and

waits. If the person who caused the ”Intrude” stays a long time in

the vision field, the ”Intrude flag” can not be eliminated; we consider

75

it as ”lost target”. We consider it as ”lost target” also when other

conditions hold, e.g. the target person moves to another place while

the person caused ”Intrude” moving, as shown in Figure 5.33 and

Figure 5.34.

Figure 5.33: The therapist caused an Intrude

The therapist enters the vision field and has an comparable ”hot range” as

the target person. The ”Intrudex flag” is set to ”1” due to the big change

on the top-left coordinate of the contour.

Figure 5.34: The confusion is still exist after the therapist passed as the target also

moves during the waiting time.

The therapist walks to a further position while the target person moves to

a new position, the big change on the top-left coordinate of the contour is

still exist. The ”Intrudex flag” is not eliminated even the therapist is not

an ”Intrude” any more.

Under the first condition, the target person is not in the first frame but

it is reasonable to assume the target person is not far from the robot, within

1 meter.

Under the second condition, considered within 2 seconds, the target per-

son will not go too far away from the robot, we assume it is also within 1

meter.

Thus, during the ”searching” state, we only set a angular velocity to

make the robot turn around, in order to find the target person.

focusing and following: Position-Flag is ”1”, focusing is related to an-

gular velocity and following is related to linear velocity. As we mentioned

76

before, we consider that the angular velocity and the linear velocity are two

decoupled manipulated variables, the corresponding control variables are the

middle coordinate and the width, respectively. Which means, the change

of the middle coordinate is used to control the angular velocity while the

change of the width used to control the linear velocity. (Figure 5.35)

Figure 5.35: Diagram of velocity control

angularvelocityω = δm ∗Kp1

linearvelocityv = δw ∗Kp2

Where,

• δm = targetm−400, target m is the received middle coordinate of the

target.

• δw = targetw − 300, target w is the received width of the target.

Note, we multiplied 50 both on the column and the row during the

thermal image conversion. Thus the middle coordinate is 8 ∗ 50 = 400 and

the minimal acceptable width is 6 ∗ 50 = 300.

Figure 5.37 at end of this chapter shows the switching principle of the 4

states.

5.4.5 Interruption Check

During the debugging, we connect the Raspberry Pi with a keyboard and a

screen to directly perceive the executing process. We use the keyboard to

make an interruption in order to stop the main loop. Once we start testing

the robot in real situations, there is no keyboard to stop the program, we

77

Figure 5.36: Circuit diagram of a push button

needed to add an interrupt button to do the same work. Figure 5.36 shows

the circuit diagram of the interrupt button.

• Connect Pin 37 (GPIO 25) of the Raspberry Pi to one pin of the push

button and one lead of the resistor.

• Connect the other end of the resistor to Pin 17 (3.3V) on Raspberry

Pi.

• Connect the other pin of the push button to the ground.

Once the button is pressed, we receive a level jump at Pin 37, the main

loop of the ”target detection” process stops and a ”stop” flag is send to the

”human following” process.

i nput va lue = GPIO. input (37)

i f key == ord (’ q ’) or input va lue == False :

Po s i t i o n In f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

cv2 . destroyAllWindows ()

78

Figure 5.37: Diagram of the swiching between 4 states

79

80

Chapter 6

Experiments and Results

In this section, we created some experiments to test the algorithm and the

effect of different aspects. To be better understand, we convert the tem-

perature array into a color image. The color map we used to convert the

temperature array to image is ”JET” (Figure6.1). Thus the red range means

the higher temperature detected (e.g., target person), the blue range means

the lower temperature detected (e.g., background). The detected target

range is marked in black frame.

Figure 6.1: Color map ”JET”

6.1 Effect of Clothes

The amount and color of clothing can make a small difference in sensor

performance. Because clothing affects the amount of IR radiation emitted

by the human body, it changes the differential between human body and

ambient temperatures. With comparison of Figure 6.2 and Figure 6.3, the

effect of color is minor compare to the ambient temperature.

Figure 6.2: Target person wears white summer clothes

Figure 6.3: Target person wears black summer clothes

Figure 6.4 shows the condition when the target person is wearing winter

coat. The sensor could hard distinguish the person from the background.

Figure 6.4: Target person wears heavy coat

6.2 Effect of Distance

The best IR sensors have a nominal sensing distance that can range from 2

to 12 meters, depending on the model. This distance specification does not

necessarily represent the farthest distance the sensor can detect. Instead,

it is the maximum distance at which sensing is guaranteed. In this section,

82

we compare the obtained image when the target person stands at different

distance from the IR sensor. Figure 6.5 to Figure 6.8 is the target person

wearing white summer clothes, and the width of the target person (arm to

arm) is 45 cm.

Figure 6.5: Target person wearing white summer cloths stands at a distance of 0.5 m

Figure 6.6: Target person wearing white summer cloths stands at a distance of 1.0 m

Figure 6.7: Target person wearing white summer cloths stands at a distance of 1.5 m

Figure 6.8: Target person wearing white summer cloths stands at a distance of 2.0 m

Figure6.9 to Figure6.13 is the target person wearing black summer clothes,

and the width of the target person (arm to arm) is 50 cm.

83

Figure 6.9: Target person wearing black summer cloths stands at a distance of 0.5 m

Figure 6.10: Target person wearing black summer cloths stands at a distance of 1.0 m

Figure 6.11: Target person wearing black summer cloths stands at a distance of 1.5 m

Figure 6.12: Target person wearing black summer cloths stands at a distance of 2.0 m

Figure 6.13: Target person wearing black summer cloths stands at a distance of 2.5 m

84

It is clear that as the distance increases, the resolution of the detected

person decreases. And the effect of the color of clothes becomes greater after

the distance increases over 1.5 m. The sensor is not able to estimate the

distance changing of the target person wearing black clothes from Figure 6.11

to Figure 6.13

6.3 Effect of Intrude

In this section, the “Intrude” situation is tested by adding a moving person

into the vision field. This person enters from right side (Figure6.14) and

moves towards the target (Figure6.15). The person stops at the left side of

the target and waits for a couple of seconds, causing confusion (Figure6.16).

Then the person exits the vision field slowly. The confusion vanished after

the maximum waiting time of “Intrude”. The robot searches the target

again and goes back to normal “human-following” process.

Figure 6.14: A person intrudes into the vision field from right side

The Target person is in the middle range of the thermal image. The pedes-

trian enters from right side. From the red color range we could figure out it

is not hot enough compare to the target person. Thus it is still negligible.

Figure 6.15: The person moves towards the target

As the pedestrian approaches the target person, the noise increases.

85

Figure 6.16: Intrude is generated

Figure 6.17: Keep the last result before ”Intrude” and wait.

When the pedestrian and the target person overlapped in the thermal image,

there is an big change of the width. An ”Intrude” generated, we keep the

former contour and wait.

Figure 6.18: Problem occurs if the ”Intrude” stays a long time.

The pedestrian stays for a long time and exceed the maximum waiting time

of ”Intrude”. The ”target detection” process consider that the target is lost

and starts to find the new target. Since the pedestrian and the target person

overlapped in the thermal image, a mistake occurs.

Figure 6.19: Searching for target again

86

Figure 6.20: Back to normal tracking

After the pedestrian exits the vision field, there is another ”Intrude” flag

generated because of the big change on the width. And after the maximum

waiting time the ”target detection” process searches again the target and

goes back to normal ”human tracking” process again.

6.4 Effect of Room Temperature

In this section, the results of ”human detection” under different room tem-

perature conditions are given.

Figure 6.21: Room Temperature: 25◦C

When the room temperature is 25◦C, the target person and the background

are clearly distinguished and form a sharp contrast.

Figure 6.22: Room Temperature: 27◦C

As the room temperature increases to 27◦C, the target person and the back-

ground are still distinguished, but the contrast is less sharp than before.

87

Figure 6.23: Room Temperature: 29◦C

When the room temperature reaches 29◦C, noise appears in the thermal

image. The target person can not be clearly distinguished from the back-

ground.

Figure 6.24: Room Temperature: 30◦C

As the room temperature further increases, the noise increases. In conclu-

sion, we suggest that the room temperature should be around 25◦C.

6.5 Summary of Results

The robot is able to follow a person in a room without many other hot

sources when the person walks slowly. The temperature acquisition process

is the mainly determinant of the Frame Rate. If it is not set correctly,

problems will occur in the following steps. The human detection process has

some problems to detect a person that is wearing heavy clothes or a person

that is very far. This involves that the user has to wear summer clothes

and can not be further than 1.5 meter to the robot. The main problem of

the human following process appears when another person enters the vision

region and stays a long time. When this happens, the robot will receive an

overlapping region of high temperature range, and finally considers there is

only one person that stands close to the robot.

88

Chapter 7

Conclusion and Future work

7.1 Conclusion

In this paper, we have presented the design of control and IR sensor array

based algorithm to detect and track people in indoor spaces from a mobile,

holonomic platform. Traditional approaches to human-following typically

involve a colour camera or a infrared camera, but this work aimed at a low-

cost and reduced calculation approach for a specialized working environment

condition (therapeutic room). This work has answered the following research

questions.

• Is is possible to detect a person by using only a low-cost IR sensor

array?

• Is it possible to follow a target person when the only information we

have is the temperature range of the target person?

• If they are possible, are there any limitations of the algorithm?

This work presented that under an proper room temperature and without

extra people walking around, the IR sensor array is able to detect a target

person within 2 meters. Experimental results have shown that the target

person must wear summer clothes and he/she is better detected with exposed

arms or legs. The robot is able to follow the target person when the target

person walks slowly.

We have implemented complete hardware and software setup to achieve

the goal. The hardware setup includes infrared sensor platform and 3-omni

wheels platform. The developed software includes mainly three parts: the

first part calculates the temperature data and converts it to the thermal

image. The second part consists in collecting data in order to obtain the

position information of the target person. The third part performs the

analysis of the collected position data in order to compute correlated angular

velocity and linear velocity of the robot.

7.2 Future Work

Although the goals were accomplished, the approach detailed in this thesis

presents some aspects that can be implemented as future work.

First, by the time the project is finished, the new Melexis MLX90640

comes out, which is a low cost 32×24 pixels IR array. 768 FIR pixels could

greatly improve the resolution of thermal image.

Second, depth information is not provided by using only a simple IR

array. Lack of depth information could cause confusions when the target

person is not facing the robot but looking sideways. The change of the

width will be considered as a change of distance. By adding Kinect could

provide us depth array to improve the accuracy of tracking.

Third, the algorithm sets strict limitations on working environment. Es-

pecially on the presentation of extra people, the algorithm can not distin-

guish the target person and the intruder if they are both close to the robot.

By adding a camera could provide facial recognition when confusion is gen-

erated to make sure, we always follow the same target person.

Finally, obstacle avoidance could also be added by using ultrasonic sen-

sors, which is much cheaper than other range data sensors.

90

Bibliography

[1] Björn F Andresen and Marija Strojnik. Infrared position sensitive de-

tecter (irpsd). In Infrared Technology and Applications XXIII. SPIE,

1997.

[2] Andrea Bonarini, Matteo Matteucci, Martino Migliavacca, and Davide

Rizzi. R2p: An open source hardware and software modular approach

to robot prototyping. Robotics and Autonomous Systems, 62(7):1073–

1084, 2014.

[3] Tech Collaborative. From internet to robotics, 2009.

[4] Terence Dwyer, James F Sallis, Leigh Blizzard, Ross Lazarus, and Kim-

berlie Dean. Relation of academic performance to physical activity and

fitness in children. Pediatric Exercise Science, 13(3):225–237, 2001.

[5] Susan E Fasoli, Hermano I Krebs, Joel Stein, Walter R Frontera, and

Neville Hogan. Effects of robotic therapy on motor impairment and

recovery in chronic stroke. Archives of physical medicine and rehabili-

tation, 84(4):477–482, 2003.

[6] Ajo Fod, Andrew Howard, and MAJ Mataric. A laser-based people

tracker. In Robotics and Automation, 2002. Proceedings. ICRA’02.

IEEE International Conference on, volume 3, pages 3024–3029. IEEE,

2002.

[7] Takashi Hosono, Tomokazu Takahashi, Daisuke Deguchi, Ichiro Ide, Hi-

roshi Murase, Tomoyoshi Aizawa, and Masato Kawade. Human track-

ing using a far-infrared sensor array and a thermo-spatial sensitive his-

togram. In Asian Conference on Computer Vision, pages 262–274.

Springer, 2014.

[8] V. KASSOVSKI, L. BUYDENS, and S. Maddalena. Infrared sensor

with sensor temperature compensation, February 23 2016. US Patent

9,267,847.

91

92 Chapter 7. Conclusion and Future work

[9] Massimo Piccardi. Background subtraction techniques: a review. In

Systems, man and cybernetics, 2004 IEEE international conference on,

volume 4, pages 3099–3104. IEEE, 2004.

[10] Dirk Schulz, Wolfram Burgard, Dieter Fox, and Armin B Cremers. Peo-

ple tracking with mobile robots using sample-based joint probabilistic

data association filters. The International Journal of Robotics Research,

22(2):99–116, 2003.

[11] T.S. Villani. Uncooled ir detector array having improved temperature

stability and reduced fixed pattern noise, June 24 2003. US Patent

6,583,416.

Appendix A

Installation of Ubuntu Mate

and ROS

Install Ubuntu Mate on the SD card by following the instructions at

https : // ubuntu−mate . org / raspberry−pi /

Take care of using an SD card with sufficient capacity for Ubuntu and ROS;

at least 16 GB are suggested.

In order to install ROS Kinetic, which supports only Wily (Ubuntu 15.10),

Xenial (Ubuntu 16.04), we first setup the computer to accept software from

packages ros.org.

sudo sh −c ’ echo ”deb http :// packages . ro s . org / ros /ubuntu

\$ (l s b \ r e l e a s e −sc) main” > / e tc /apt/ sourc e s . l i s t . d/ ros−l a t e s t . l i s t ’

Set up keys

sudo apt−key dav −−keyse rve r

hkp :// ha . pool . sks−key s e rve r s . net : 80

−−recv−key 421C365BD9FF1

F717815A3895523BAEEB01FA116

Make your Debian package index is up-to-date before installation.

sudo apt−get update

Desktop-Full Install: ROS, rqt, rviz, robot-generic libraries, 2D/3D simula-

tors, navigation and 2D/3D perception

sudo apt−get i n s t a l l ros−k in e t i c−desktop− f u l l

Initialize rosdep to easily install system dependencies for source that is re-

quired to run some core components in ROS.

94 Appendix A. Installation of Ubuntu Mate and ROS

sudo rosdep i n i t

rosdep update

Environment setup: It is convenient if the ROS environment variables are

automatically added to bash session every time a new shell is launched.

echo ” source /opt/ ros / k i n e t i c / setup . bash” >> ˜/ . bashrc

source ˜/ . bashrc

Getting rosinstall

sudo apt−get i n s t a l l python−r o s i n s t a l l

Appendix B

Temperature Calculation

Code Example (C++)

#include < f c n t l . h>

#include <s t d i o . h>

#include <s t d l i b . h>

#include <sys / s t a t . h>

#include <sys / types . h>

#include <sys / time . h>

#include <uni s td . h>

#include <getopt . h>

#include <math . h>

#include <s i g n a l . h>

#include <bcm2835 . h>

#define VERSION ” 0 . 1 . 0 ”

#define EXIT FAILURE 1

char ∗xmalloc () ;

char ∗ x r e a l l o c () ;

char ∗xstrdup () ;

f loat temperatures [6 4] ;

unsigned short temperatures Int [6 4] ;

stat ic int usage (int s t a tu s) ;

/∗ The name the program was run with , s t r i p p e d o f any l e ad in g path . ∗/
char ∗program name ;

96 Appendix B. Temperature Calculation Code Example (C++)

/∗ g e t o p t l o n g re turn codes ∗/
enum {DUMMYCODE=129

} ;

/∗ Option f l a g s and v a r i a b l e s ∗/

stat ic struct opt ion const l ong op t i on s [] =

{
{” help ” , no argument , 0 , ’h ’ } ,
{” ve r s i on ” , no argument , 0 , ’V ’ } ,
{NULL, 0 , NULL, 0}

} ;

stat ic int decode sw i t che s (int argc , char ∗∗ argv) ;

int mlx90621 in i t () ;

int mlx90621 read eeprom () ;

int mlx90621 wr i t e con f i g (unsigned char ∗ l sb , unsigned char ∗msb) ;

int mlx90621 read con f i g (unsigned char ∗ l sb , unsigned char ∗msb) ;

int mlx90621 wr i te t r im (char t) ;

char mlx90621 read tr im () ;

int mlx90621 por () ;

int mlx90621 s e t r e f r e sh hz (int hz) ;

int mlx90621 ptat () ;

int mlx90621 cp () ;

f loat mlx90621 ta () ;

int mlx90621 i r r ead () ;

char EEPROM[2 5 6] ;

char i r p i x e l s [1 2 8] ;

char mlxFifo [] = ”/var /run/mlx90621 . sock ” ;

void g o t s i g i n t (int s i g) {
unl ink (mlxFifo) ;

bcm2835 i2c end () ;

e x i t (0) ;

}

main (int argc , char ∗∗ argv)

97

{
s i g n a l (SIGINT , g o t s i g i n t) ;

int fd ;

mkf i fo (mlxFifo , 0666) ;

int x ;

int i , j ;

f loat ta ;

int v i r ;

int vcp ;

int acommon ;

int d e l t a a i ;

int d e l t a a i s c a l e ;

f loat ep s i l o n ;

f loat a i ;

f loat bi ;

f loat v i r o f f c omp ;

f loat acp ;

f loat bcp ;

f loat vcp of f comp ;

f loat tgc ;

f loat v i r tgc comp ;

f loat vir compensated ;

f loat ksta ;

int b i s c a l e ;

int alpha0 ;

int a l pha0 s c a l e ;

int de l t a a l pha ;

int d e l t a a l p h a s c a l e ;

f loat alpha ;

f loat alphacp ;

f loat alpha comp ;

int k s s c a l e ;

f loat ks ;

f loat tak ;

f loat sx ;

f loat to ;

program name = argv [0] ;

98 Appendix B. Temperature Calculation Code Example (C++)

i = decode sw i t che s (argc , argv) ;

p r i n t f (”\n”) ;

i f (mlx90621 in i t ()) {
p r i n t f (”OK, MLX90621 i n i t \n”) ;

} else {
p r i n t f (”MLX90621 i n i t f a i l e d !\n”) ;
e x i t (1) ;

}
ta = mlx90621 ta () ;

// I f c a l i b r a t i o n f a i l s then TA w i l l be WAY too high .

// check and r e i n i t i a l i z e i f t h a t happens

while (ta > 350)

{
p r i n t f (”Ta out o f bounds ! Max i s 350 , read ing : %4.8 f C\n” , ta) ;

// out o f bounds , r e s e t and check again

mlx90621 in i t () ;

ta = mlx90621 ta () ;

u s l e ep (10000) ;

}

p r i n t f (”Ta = %f C %f F\n\n” , ta , ta ∗ (9 . 0 / 5 . 0) + 3 2 . 0) ;

/∗ To ca l c parameters ∗/
unsigned char c on f i g l s b , conf ig msb ;

i f (! mlx90621 read con f i g (&con f i g l s b , &conf ig msb)) return 0 ;

f loat c o n f i g r g ;

c o n f i g r g =c o n f i g l s b & 0b00110000 ;

c o n f i g r g = pow(2 , (3 . 0 − c o n f i g r g)) ;

vcp = mlx90621 cp () ;

e p s i l o n = ((EEPROM[0 xE5] << 8) | EEPROM[0 xE4]) / 32768 . 0 ;

acommon = (EEPROM[0xD1] << 8) | EEPROM[0xD0] ;

i f (acommon>32767) acommon=acommon−65536;

d e l t a a i s c a l e = EEPROM[0xD9] & 0b11110000 ;

b i s c a l e = EEPROM[0xD9] & 0b00001111 ;

alpha0 = (EEPROM[0 xE1] << 8) | EEPROM[0 xE0] ;

a l pha0 s c a l e = EEPROM[0 xE2] ;

d e l t a a l pha = EEPROM[0 x80 + x] ;

99

d e l t a a l p h a s c a l e = EEPROM[0 xE3] ;

/∗ do the work ∗/
do {

/∗ POR/Brown Out f l a g ∗/

while (! mlx90621 por) {
s l e e p (1) ;

mlx90620 in i t () ;

}

i f (! mlx90621 i r r ead ()) e x i t (0) ;

for (i = 0 ; i < 4 ; i++){
for (j = 0 ; j < 16 ; j++){

x = ((j ∗ 4) + i) ; /∗ index ∗/

/∗ OFFSET compensation v ir , vcp ∗/
v i r = (i r p i x e l s [x∗2+1] << 8) | i r p i x e l s [x ∗ 2] ;
i f (v i r >32767) v i r=vir −65536;

d e l t a a i = (signed char)EEPROM[x] ;

a i=(acommon+d e l t a a i ∗pow(2 , d e l t a a i s c a l e))/ c o n f i g r g ;

b i = EEPROM[0 x40 + x] ;

i f (bi >127) b i=bi −256;

b i = bi / (pow(2 , b i s c a l e)∗ c o n f i g r g) ;

v i r o f f c omp = v i r − (a i + bi ∗ (ta − 2 5 . 0)) ;

acp = (EEPROM[0xD4] << 8) | EEPROM[0xD3] ;

i f (acp>32768) acp=acp−65536;

acp = acp / c on f i g r g ;

bcp = EEPROM[0xD5] ;

i f (bcp>127) bcp=bcp−256;

bcp = bcp / (pow(2 , b i s c a l e)∗ c o n f i g r g) ;

vcp of f comp = vcp − (acp + bcp ∗ (ta − 2 5 . 0)) ;

/∗ Thermal Gradient Compensation t g c ∗/
tgc = EEPROM[0xD8] ;

i f (tgc >127) tgc=tgc −256;

tgc = tgc / 3 2 . 0 ;

v i r tgc comp = v i r o f f c omp − tgc ∗ vcp of f comp ;

// p r i n t f (” v i r t g c comp = %f \n” , v i r t g c comp) ;

100Appendix B. Temperature Calculation Code Example (C++)

/∗ Emis s i v i t y compensation ∗/
vir compensated = vi r tgc comp / ep s i l o n ;

/∗ Ca l cu l a t i n g alpha comp ∗/
ksta=((EEPROM[0 xE7]<<8)|EEPROM[0 xE6]) ;

i f (ksta >127) ksta=ksta −256;

ksta = ksta / 1048576 .0 ;

alpha=(alpha0 /pow(2 , a l pha0 s c a l e)

+de l t a a l pha /pow(2 , d e l t a a l p h a s c a l e))/ c o n f i g r g ;

alphacp=(EEPROM[0xD7]<<8)|EEPROM[0xD6] ;

alphacp=alphacp /(pow(2 , a l pha0 s c a l e)∗ c o n f i g r g) ;

alpha comp=(1+ksta ∗(ta −25 .0))∗ (alpha−tgc ∗ alphacp) ;

/∗Ca l cu l a t i n g Ks∗/
k s s c a l e = EEPROM[0xC0] & 0b00001111 ;

ks = EEPROM[0xC4] ;

i f (ks>127) ks=ks−256;

ks = ks / pow(2 , k s s c a l e +8);

/∗Ca l cu l a t i on o f to ∗/
tak = pow((ta +273 .15) , 4) ;

sx=ks∗pow((pow(alpha comp , 3)∗ vir compensated

+pow(alpha comp , 4)∗ tak) , 0 . 2 5) ;

to=pow(vir compensated

/(alpha comp∗(1−ks ∗273.15)+ sx)+tak ,0 . 25) −273 .15 ;

temperatures Int [x] = (unsigned short) ((to + 273 .15) ∗ 100 . 0) ;

// g i v e back as Kelv in (hundtred ths o f degree)

temperatures [x] = to ;

}
}

i f ((fd = open (mlxFifo , OWRONLY | OCREAT)) == −1) {
p r i n t f (”Open Error ”) ;

e x i t (1) ;

}

wr i t e (fd , temperaturesInt , s izeof (temperatures Int)) ;

c l o s e (fd) ;

101

p r i n t f (”Updated Temperatures !\n”) ;
u s l e ep (10000) ;

} while (1) ;

un l ink (mlxFifo) ;

e x i t (0) ;

}

/∗ I n i t ∗/

int

mlx90621 in i t ()

{
i f (! bcm2835 in i t ()) return 0 ;

bcm2835 i2c beg in () ;

bcm2835 i2c se t baudrate (25000) ;

// s l e e p 5ms per da ta shee t

us l e ep (5000) ;

i f (! mlx90621 read eeprom ())

return 0 ;

i f (! mlx90621 wr i te t r im (EEPROM[0 xF7]))

return 0 ;

i f (! m lx90621 wr i t e con f i g (&EEPROM[0 xF5] , &EEPROM[0 xF6]))

return 0 ;

m lx90621 s e t r e f r e sh hz (16) ;

unsigned char l sb , msb ;

mlx90621 read con f i g (&lsb , &msb) ;

return 1 ;

}

/∗ Read the whole EEPROM ∗/

int

mlx90621 read eeprom ()

{

102Appendix B. Temperature Calculation Code Example (C++)

const unsigned char read eeprom [] = {
0x00 // command

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x50) ;

i f (

b cm2835 i 2 c wr i t e r e ad r s (

(char ∗)&read eeprom , 1 , EEPROM, 256)

== BCM2835 I2C REASON OK

) return 1 ;

return 0 ;

}

/∗ Write dev i c e con f i g u r a t i on va lue ∗/

int

mlx90621 wr i t e con f i g (unsigned char ∗ l sb , unsigned char ∗msb)

{
unsigned char l s b che ck = l sb [0] − 0x55 ;

unsigned char msb check = msb [0] − 0x55 ;

unsigned char wr i t e c o n f i g [] = {
0x03 , // command

l sb check ,

l s b [0] ,

msb check ,

msb [0]

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

bcm2835 i2c wr i te ((const char ∗)&wr i t e c on f i g , 5)

== BCM2835 I2C REASON OK

) return 1 ;

return 0 ;

}

103

/∗ Reading con f i g u r a t i on ∗/

int

mlx90621 read con f i g (unsigned char ∗ l sb , unsigned char ∗msb)

{
unsigned char c on f i g [2] ;

const unsigned char r e ad c on f i g [] = {
0x02 , // command

0x92 , // s t a r t address

0x00 , // address s t ep

0x01 // number o f reads

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

! b cm2835 i 2 c wr i t e r e ad r s ((char ∗)& read con f i g , 4 , con f i g , 2)

== BCM2835 I2C REASON OK

) return 0 ;

∗ l s b = con f i g [0] ;

∗msb = con f i g [1] ;

return 1 ;

}

/∗ Write the o s c i l l a t o r trimming va lue ∗/

int

mlx90621 wr i te t r im (char t)

{
unsigned char tr im [] = {

0x00 , // MSB

t // LSB

} ;
unsigned char t r im che ck l s b = trim [1] − 0xAA;

unsigned char tr im check msb = trim [0] − 0xAA;

unsigned char wr i t e t r im [] = {

104Appendix B. Temperature Calculation Code Example (C++)

0x04 , // command

t r im check l sb ,

tr im [1] ,

tr im check msb ,

tr im [0]

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

bcm2835 i2c wr i te ((char ∗)&wr i t e t r im , 5)

== BCM2835 I2C REASON OK

) return 1 ;

return 0 ;

}

/∗ Read o s c i l l a t o r trimming r e g i s t e r ∗/

char

mlx90621 read tr im ()

{
unsigned char t r im byte s [2] ;

const unsigned char read tr im [] = {
0x02 , // command

0x93 , // s t a r t address

0x00 , // address s t ep

0x01 // number o f reads

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

b cm2835 i 2 c wr i t e r e ad r s ((char ∗)& read tr im , 4 , t r im bytes , 2)

== BCM2835 I2C REASON OK

) return 1 ;

return t r im byte s [0] ;

}

105

/∗ Return POR/Brown−out f l a g ∗/

int

mlx90621 por ()

{
unsigned char c on f i g l s b , conf ig msb ;

mlx90621 read con f i g (&con f i g l s b , &conf ig msb) ;

return ((conf ig msb & 0x04) == 0x04) ;

}

/∗ Set IR Refresh ra t e ∗/

int

mlx90621 s e t r e f r e sh hz (int hz)

{
char r a t e b i t s ;

switch (hz) {
case 512 :

r a t e b i t s = 0b0000 ;

break ;

case 256 :

r a t e b i t s = 0b0110 ;

break ;

case 128 :

r a t e b i t s = 0b0111 ;

break ;

case 64 :

r a t e b i t s = 0b1000 ;

break ;

case 32 :

r a t e b i t s = 0b1001 ;

break ;

case 16 :

r a t e b i t s = 0b1010 ;

break ;

case 8 :

r a t e b i t s = 0b1011 ;

break ;

106Appendix B. Temperature Calculation Code Example (C++)

case 4 :

r a t e b i t s = 0b1100 ;

break ;

case 2 :

r a t e b i t s = 0b1101 ;

break ;

case 1 :

r a t e b i t s = 0b1110 ; // d e f a u l t

break ;

case 0 :

r a t e b i t s = 0b1111 ; // 0.5 Hz

break ;

default :

r a t e b i t s = 0b1110 ;

}

unsigned char c on f i g l s b , conf ig msb ;

i f (! mlx90621 read con f i g (&con f i g l s b , &conf ig msb))

return 0 ;

c o n f i g l s b = r a t e b i t s ;

i f (! m lx90621 wr i t e con f i g (&c on f i g l s b , &conf ig msb))

return 0 ;

return 1 ;

}

/∗ Return PTAT (Propor t iona l To Abso lu te Temperature) ∗/

int

mlx90621 ptat ()

{
int ptat ;

unsigned char pta t by t e s [2] ;

const unsigned char r ead pta t [] = {
0x02 , // command

0x40 , // s t a r t address

0x00 , // address s t ep

0x01 // number o f reads

} ;

107

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

! b cm2835 i 2 c wr i t e r e ad r s ((char ∗)
&read ptat , 4 , (char ∗)&ptat bytes , 2)

== BCM2835 I2C REASON OK

) return 0 ;

ptat = (pta t by t e s [1] << 8) | pta t by t e s [0] ;

return ptat ;

}

/∗ Compensation p i x e l read ∗/

int

mlx90621 cp ()

{
int cp ;

signed char VCP BYTES [2] ;

const unsigned char compensa t i on p ixe l r ead [] = {
0x02 , // command

0x41 , // s t a r t address

0x00 , // address s t ep

0x01 // number o f reads

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

! b cm2835 i 2 c wr i t e r e ad r s ((char∗)
&compensat ion p ixe l r ead , 4 , (char∗)&VCP BYTES, 2)

== BCM2835 I2C REASON OK

) return 0 ;

cp = (VCP BYTES[1] << 8) | VCP BYTES [0] ;

return cp ;

}

108Appendix B. Temperature Calculation Code Example (C++)

/∗ c a l c u l a t i o n o f a b s o l u t e ch ip temperature ∗/

f loat

mlx90621 ta ()

{
int ptat = mlx90621 ptat () ;

unsigned char c on f i g l s b , conf ig msb ;

i f (! mlx90621 read con f i g (&con f i g l s b , &conf ig msb))

return 0 ;

f loat c o n f i g r g ;

c o n f i g r g =c o n f i g l s b & 0b00110000 ;

c o n f i g r g = pow(2 , (3 − c o n f i g r g)) ;

f loat vth = ((EEPROM[0xDB] << 8) | EEPROM[0xDA]) ;

i f (vth > 32767) vth = vth − 65536 ;

vth= vth/ c o n f i g r g ;

f loat kt1 = ((EEPROM[0xDD] << 8) | EEPROM[0xDC]) ;

int tem kt1 = EEPROM[0xD2] & 0b11110000 ;

tem kt1 = tem kt1 >> 4 ;

tem kt1 = pow(2 , tem kt1)∗ c o n f i g r g ;

kt1 = kt1/ tem kt1 ;

f loat kt2 = ((EEPROM[0xDF] << 8) | EEPROM[0xDE]) ;

int tem kt2 = EEPROM[0xD2] & 0b00001111 ;

tem kt2 = pow(2 , (tem kt2 + 0x0A))∗ c o n f i g r g ;

kt2 = kt2/ tem kt2 ;

f loat ta=((−kt1+sq r t (kt1∗kt1−(4 ∗ kt2)∗ (vth−ptat))) / (2∗ kt2))+25;

p r i n t f (”%d %f %f %f \n” , ptat , vth , kt1 , kt2) ;

return ta ;

}

/∗ IR data read ∗/

int

mlx90621 i r r ead ()

{
const unsigned char i r who l e f r ame r ead [] = {

0x02 , // command

109

0x00 , // s t a r t address

0x01 , // address s t ep

0x40 // number o f reads

} ;

bcm2835 i2c beg in () ;

bcm2835 i2c setS laveAddress (0 x60) ;

i f (

b cm2835 i 2 c wr i t e r e ad r s ((char ∗)
&i r who l e f r ame read , 4 , i r p i x e l s , 128)

== BCM2835 I2C REASON OK

) return 1 ;

return 0 ;

}

/∗ Set a l l the opt ion f l a g s accord ing to the sw i t ch e s s p e c i f i e d .

Return the index o f the f i r s t non−opt ion argument .

∗/

stat ic int

decode sw i t che s (int argc , char ∗∗ argv)
{

int c ;

while ((c = ge topt l ong (argc , argv ,

”h” /∗ he l p ∗/
”V” , /∗ ve r s i on ∗/
l ong opt i ons , (int ∗) 0)) != EOF)

{
switch (c)

{
case ’V ’ :

p r i n t f (”mlx %s \n” , VERSION) ;

e x i t (0) ;

case ’ h ’ :

usage (0) ;

110Appendix B. Temperature Calculation Code Example (C++)

default :

usage (EXIT FAILURE) ;

}
}

return optind ;

}

stat ic int

usage (int s t a tu s)

{
p r i n t f (”%s − \

\n” , program name) ;

p r i n t f (”Usage : %s [OPTION] . . . [FILE] . . . \ n” , program name) ;

p r i n t f (”\
Options :\n\
−h , −−help d i sp l ay t h i s he lp and ex i t \n\
−V, −−ve r s i on output ve r s i on in fo rmat ion and ex i t \n\

”) ;

e x i t (s t a tu s) ;

}

Appendix C

Human Detection Node

Code Example (Python)

#!/usr /bin /env python

l i c e n s e removed f o r b r ev i ty

#import rospy to wr i t e a ro s Node

import rospy

import r e l a t e d l i b r a r i e s

import time

import math

import numpy as np

import subproces s

import os , sys

import skimage

from skimage import io , exposure , transform , img a s f l o a t , img as ubyte

from time import s l e e p

import cv2

import RPi .GPIO as GPIO

from b e g i n n e r t u t o r i a l s . msg import I n tL i s t

from std msgs .msg import Int32

I n i t i a l i z a t i o n o f important va lue s and f l a g s

GPIO. setmode (GPIO.BOARD)

GPIO. setup (37 ,GPIO. IN)

f i f o= open (’/ var /run/mlx90621 . sock ’ , ’ r ’)

Target Ex i s t = None

In t rudew f l ag = None

In t r ud ex f l a g = None

Intrudew count= 0

112Appendix C. Human Detection Node Code Example (Python)

Intrudex count= 0

y ta r g e t = None

x t a r g e t = 0

w target = 0

In f oPub l i sh e r = rospy . Pub l i sher (’ Info ’ , In tL i s t , qu eue s i z e = 10)

rospy . i n i t n od e (’ IRSensorPubl i sher ’ , anonymous=True)

Po s i t i o n In f o = In tL i s t ()

Po s i t i o n In f o . f l a g = 0

Po s i t i o n In f o .w = 800

Po s i t i o n In f o .m = 800

#update loop

whi l e not rospy . i s shutdown () :

whi l e Target Ex i s t i s None :

s l e e p (0 . 0 8)

i r r aw= f i f o . read ()

i r tr immed= i r raw [0 : 1 2 8]

i r= np . f rombuf f e r (ir tr immed , np . u int16)

check i f the re i s a person by check ing how many p i x e l s over 28 degree

T30 = 0

f o r p i x e l in i r :

i f p ixe l >30315:

T30 = T30+1

i f T30 < 8 :

Target Ex i s t = None

i f Intrudew count==0 or Intrudex count==0:

Po s i t i o n I n f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

Intrudew count = None

Intrudex count = None

stop count = 0

e l s e :

s top count = stop count+1

i f s top count ==20:

Po s i t i o n I n f o . f l a g = 2

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

s top count = 0

e l s e :

Target Ex i s t = 1

Po s i t i o n I n f o . f l a g = 1

113

#An e l i g i b l e t a r g e t i s found .

s l e e p (0 . 0 6)

i r r aw= f i f o . read ()

i r tr immed= i r raw [0 : 1 2 8]

i r= np . f rombuf f e r (ir tr immed , np . u int16)

i r= i r . reshape ((1 6 , 4)) [: : −1 , : : −1]

i r= img a s f l o a t (i r)

p2 , p80 , p98 = np . p e r c e n t i l e (i r , (2 , 80 , 98))

th = np . u int8 (p80 ∗ 255)

i f p2 == p98 :

p r i n t (’ p2 = p98 ’)

e l s e :

i r = exposure . r e s c a l e i n t e n s i t y (i r , i n range=(p2 , p98))

Convert to c o l o r image

rgba img = i r ∗ 255 .0

rgba img = rgba img . astype (np . u int8)

rgba img = np . rot90 (rgba img , 3)

rgb img = cv2 . applyColorMap (rgba img , cv2 .COLORMAP JET)

thresh = cv2 . th r e sho ld (rgba img , th , 255 , cv2 .THRESH BINARY) [1]

row , c o l=rgba img . shape [: 2]

rgb img=cv2 . r e s i z e (rgb img , (50∗ co l , 50∗ row) ,

i n t e r p o l a t i o n = cv2 . INTER LINEAR)

rgba img=cv2 . r e s i z e (rgba img , (50∗ co l , 50∗ row) ,

i n t e r p o l a t i o n = cv2 . INTER LINEAR)

thresh=cv2 . r e s i z e (thresh , (50∗ co l , 50∗ row) ,

i n t e r p o l a t i o n = cv2 . INTER LINEAR)

i f Target Ex i s t == 1 :

f i nd contours

(image , cnts ,) = cv2 . f indContours (thresh . copy () ,

cv2 .RETR EXTERNAL, cv2 .CHAIN APPROX SIMPLE)

xs = np . z e ro s (10 , dtype = np . u int16)

ys = np . z e ro s (10 , dtype = np . u int16)

ws = np . z e ro s (10 , dtype = np . u int16)

hs = np . z e r o s (10 , dtype = np . u int16)

de l t a = np . z e ro s (10 , dtype = np . u int16)

Area = np . z e r o s (10 , dtype = np . u int16)

i = 0

loop over the contours

f o r c in cnts :

114Appendix C. Human Detection Node Code Example (Python)

i f the contour i s too small , i gno r e i t

i f cv2 . contourArea (c) < 1500 :

cont inue

For contours l a r g e enough , we j u s t choose the b i gg e s t one

e l s e :

Area [i] = cv2 . contourArea (c)

(x , y ,w, h) = cv2 . boundingRect (c)

xs [i] = np . u int16 (x)

ys [i] = np . u int16 (y)

ws [i] = np . u int16 (w)

hs [i] = np . u int16 (h)

i = i + 1

now we choose the b i gg e s t contour and draw the r e c t ang l e

index = np . argmax (Area)

i f (abs (np . f l o a t (x t a r g e t) − np . f l o a t (xs [index])) < 200)

or (y t a r g e t == None) :

I n t r ud ex f l a g = None

i f (abs (np . f l o a t (ws [index]) − np . f l o a t (w target)) < 200)

or (y t a r g e t == None) :

In t rudew f l ag = None

x t a r g e t = xs [index]

y t a r g e t = ys [index]

w target = ws [index]

h t a r g e t = hs [index]

e l s e :

x t a r g e t = xs [index]

y t a r g e t = ys [index]

h t a r g e t = hs [index]

i f In t rudew f l ag == None :

In t rudew f l ag = 1

Intrudew count = 1

e l s e :

i f Intrudew count < 40 :

Intrudew count = Intrudew count + 1

e l s e :

In t rudew f l ag = None

Intrudew count = 0

y ta r g e t = None

x t a r g e t = 0

w target = 0

115

Target Ex i s t = None

Po s i t i o n I n f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

cont inue

e l s e :

i f I n t r ud ex f l a g == None :

I n t r ud ex f l a g = 1

Intrudex count = 1

e l s e :

i f Intrudex count < 40 :

Intrudex count = Intrudex count + 1

e l s e :

I n t r ud ex f l a g = None

Intrudex count = 0

y ta r g e t = None

x t a r g e t = 0

w target = 0

Target Ex i s t = None

Po s i t i o n I n f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

cont inue

Draw the contour r e c t ang l e and d i sp l ay the thermal image

cv2 . r e c t ang l e (rgb img , (x ta rge t , y t a r g e t) ,

(x t a r g e t+w target , y t a r g e t+h ta rg e t) , (0 , 0 , 0) , 2)

cv2 . imshow (’ Thresh ’ , thresh)

cv2 . imshow (’ gray ’ , rgba img)

cv2 . imshow (’ t rack ing ’ , rgb img)

Compute the important c h a r a c t e r i s t c s o f the contour

temp m = np . array ([np . f l o a t (w target /2 + x ta r g e t)])

temp w = np . array ([w target])

Po s i t i o n In f o .m = in t (np . a s s c a l a r (temp m))

Po s i t i o n In f o .w = np . a s s c a l a r (temp w)

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

p r i n t (”m=”+s t r (Po s i t i o n I n f o .m) ,”w=”+s t r (Po s i t i o n In f o .w))

i f an i n t e r r up t i on happens , break from the loop

key = cv2 . waitKey (1) & 0xFF

input va lue = GPIO. input (37)

i f key == ord (’ q ’) or input va lue == True :

Po s i t i o n I n f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

116Appendix C. Human Detection Node Code Example (Python)

cv2 . destroyAllWindows ()

p r i n t (’ Waiting . . . ’)

wait u n t i l the button pres sed again

s l e e p (1)

input va lue = GPIO. input (37)

whi l e input va lue == False :

Po s i t i o n I n f o . f l a g = 0

In f oPub l i sh e r . pub l i sh (Po s i t i o n In f o)

input va lue = GPIO. input (37)

#GPIO. wa i t f o r edg e (37 ,GPIO.RISING)

Target Ex i s t = None

In t rudew f l ag = None

In t r ud ex f l a g = None

Intrudew count= 0

Intrudex count= 0

y ta r g e t = None

x t a r g e t = 0

w target = 0

Po s i t i o n I n f o . f l a g = 0

Po s i t i o n I n f o .w = 800

Po s i t i o n I n f o .m = 800

cont inue

break

e l s e :

cont inue

cv2 . destroyAllWindows ()

p r i n t (’ C los ing . . . ’)

f i f o . c l o s e ()

Appendix D

Control Theory Code

Example

#include <ro s / ros . h>

#include <geometry msgs/Twist . h>

#include ” b e g i n n e r t u t o r i a l s / I n tL i s t . h”

#include <s t d l i b . h>

enum State

{
stop , search ing , f ocus ing , f o l l ow i n g

} ;
State s t a t e ;

int width ;

int middle ;

void pos i t i onCa l l ba ck (const b e g i n n e r t u t o r i a l s : : I n tL i s t& pos i t i on msg)

{

i f (pos i t i on msg . f l a g == 0)

{
s t a t e = stop ;

}
else i f (pos i t i on msg . f l a g == 2)

{
s t a t e = sea r ch ing ;

}
else i f (pos i t i on msg . f l a g == 4)

{

118 Appendix D. Control Theory Code Example

e x i t (0) ;

}
else

{
width = int (pos i t i on msg .w) ;

middle = int (pos i t i on msg .m) ;

i f (middle<350 | | middle>450)

{
s t a t e = fo cu s i ng ;

}
else

s t a t e = f o l l ow i ng ;

}
}

void s topState (geometry msgs : : Twist& cmd msg)

{
cmd msg . l i n e a r . x = 0 ;

cmd msg . angular . z = 0 ;

}

void s ea r ch ingS ta t e (geometry msgs : : Twist& cmd msg)

{
cmd msg . l i n e a r . x = 0 ;

cmd msg . angular . z = 1 . 0 ;

}

void f o cu s i ngS ta t e (geometry msgs : : Twist& cmd msg)

{
f loat Delta m = middle ∗1 .0 − 400 . 0 ;

f loat angular = −0.005∗Delta m ;

i f (angular <−1.0)

{ angular = −1.0;}
i f (angular >1.0)

{ angular =1.0;}
cmd msg . angular . z = angular ;

cmd msg . l i n e a r . x = 0 ;

}

119

void f o l l ow i ngS t a t e (geometry msgs : : Twist& cmd msg)

{

i f (width<=400 && width>300)

{
cmd msg . l i n e a r . x = 0 ;

cmd msg . angular . z = 0 ;

}
else

{
f loat Delta w = width ∗1 .0 − 350 . 0 ;

f loat v e l o c i t y = −0.004∗Delta w ;

i f (v e l o c i t y <−1.0)

{ v e l o c i t y =−1.0;}
i f (v e l o c i t y >1.0)

{ v e l o c i t y =1.0;}
cmd msg . l i n e a r . x = v e l o c i t y ;

cmd msg . angular . z = 0 ;

}
}

void s t a t eTran s i t i on (geometry msgs : : Twist& cmd msg)

{

switch (s t a t e)

{
case stop :

s topState (cmd msg) ;

break ;

case s ea r ch ing :

s ea r ch ingS ta t e (cmd msg) ;

break ;

case f o l l ow i ng :

f o l l ow i ngS t a t e (cmd msg) ;

break ;

case f o cu s i ng :

f o cu s i ngS ta t e (cmd msg) ;

break ;

}
}

120 Appendix D. Control Theory Code Example

int main (int argc , char ∗∗ argv)
{

ro s : : i n i t (argc , argv , ” t ra t egy ”) ;

ro s : : NodeHandle n ;

ro s : : Rate ra t e (1 7) ;

ro s : : Subsc r ibe r sub=n . sub s c r i b e (” In f o ” ,10 , po s i t i onCa l l back) ;

ro s : : Pub l i sher cmd pub=n . adve r t i s e<geometry msgs : : Twist>

(”/ cmd vel ” , 5) ;

geometry msgs : : Twist cmd msg ;

while (ro s : : ok ())

{
ro s : : spinOnce () ;

s t a t eTran s i t i on (cmd msg) ;

cmd pub . pub l i sh (cmd msg) ;

r a t e . s l e e p () ;

}
return 0 ;

}

Appendix E

Glossary

ADC Analog to Digital Converter. 20

BSD Berkeley Software Distribution. 24

CCD Charge Coupled Device. 21

DCM DC Motor controller board. 49

FIFO First In, First Out. 41, 56-58

FOV Field Of View. 28-30. 38, 57, 65-66

FPN Fixed-Pattern Noise. 36

GPIO General Purpose Input Output. 23, 31, 32, 64, 78

I2C Inter-Integrated Circuit. 23, 28, 32, 33

IMU Inertial Measurement Unit. 49

MCU Microprogrammed Control Unit. 35

NETD Noise Equivalent Temperature Difference. 29

PTAT Proportional To Absolute Temperature. 28, 36

POR Power On Reset. 35

PS Power Supply. 49

PWM Pulse Width Modulation. 63, 64

RAM Random Access Memory. 22

ROS Robot Operative System. 23-25, 49

RPC Remote Procedure Call. 24

SCL Serial Clock Input. 31, 32

SDA Serial Data. 31, 32

SPI Serial Peripheral Interface. 23

SSE Steady State Error. 68-72

TGC Thermal Gradient Compensation. 36, 37

WMR Wheeled Mobile Robot. 42

