
POLITECNICO DI MILANO

Scuola di Ingegneria dell’Informazione

Polo Territoriale di Como

Road Traffic Engineering for
Improved Campus Mobility

Master thesis in Computer Science
by

Michele José Imperiali d’Afflitto

Supervisor:
Prof. Piero Fraternali

Academic Year 2015-2016

This work is subject to the Creative Commons Licence

Abstract

Road Traffic Engineering for Improved
Campus Mobility

Michele José IMPERIALI d’AFFLITTO

Master in Computer Science
Politecnico di Milano - Polo Territoriale di Como

Academic Year: 2015-2016

Promoter: Prof. Piero Fraternali

This work has been carried out during an exchange program in the University
of Liège, in Belgium.

Accessing the University of Liège (ULg) without a car is not optimal. Park-
ing spots are a scarce resource. Moving from one building to another with public
transportation is unpractical. Distances are too large to travel by foot. Biking is
not really an option, because few secured parking spots and charging stations for
electric bikes are available.

The goal of this thesis is to ease accessing, leaving, and moving around the uni-
versity, by leveraging the empty space in the fleet of cars of the University members.

Practically, this means we want to create an ergonomic system to offer empty
seats and to ask for lifts, to, from, and between ULg locations. This system should
thus, from the end-user point of view, be available on smart-phones. Offers and
demands should be centralised and re-dispatched in a smart way to propose simple
and efficient combinations to end-users, and in real-time.

This work consists in the development of an Android application providing car-
pooling functionalities, enhancing the back-end system developed in the context of

iii

another project[1], authored by PhD student Thibaut Cuvelier, who implemented a
first version of a website providing basic matching between drivers and passengers,
based on a static graph including the most important towns around the University.

iv

Acknowledgements

Firstly, I would like to express my sincere gratitude to my promoter Prof. Piero
Fraternali for the continuous support during my work and for his patience.

I would also like to thank my family: my mum and Massimo, my dad and
Irene, my brothers and sisters for supporting me spiritually throughout my entire
academic journey and my life in general.

I must also mention my uncle Franco, a really special person, who has always
been next to me and supported me, especially during these last two years of master
abroad.

And above all I would really like to express my deepest thank you to all my
friends and especially to my girlfriend Daniela, who has been next to me during
every moment and has always supported me with patience and love.

This work is the result of all the support I received throughout my career as a
student and I will never thank everybody enough for it.

v

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Previous Work . 1
1.2 Project Requirements . 2
1.3 Setting Up the Environment . 2

2 Architecture and Technology 5
2.1 Django Backend . 5
2.2 Tastypie API . 6

2.2.1 Requests Authentication . 7
2.2.2 Communication with API 8
2.2.3 Data Serialisation with Gson 10

2.3 External Services: Google APIs . 10
2.4 Registration Mechanism and Automatic Login 11
2.5 Ride-Demand: Matching Algorithm 12

2.5.1 Market Research . 12
2.5.2 How It Works . 13
2.5.3 Geopy . 14

2.6 Real-Time Notifications . 14
2.7 Connectivity Monitoring . 17
2.8 Errors Handling . 17
2.9 Localisation . 19

3 App Structure 21
3.1 Introduction . 21
3.2 Activity Package . 21

3.2.1 Activities Hierarchy . 23

vi

3.3 Adapter Package . 23
3.4 Data Package . 23

4 Use Cases 27
4.1 Introduction . 27
4.2 Registration and Login . 28
4.3 Driver Mode . 28

4.3.1 Add new rides . 29
4.3.2 Find potential passengers 30
4.3.3 Submit Feedback . 32

4.4 Passenger Mode . 33
4.4.1 Ask lift . 34
4.4.2 Find potential drivers . 34

4.5 User Profile . 35

5 Conclusions 37
5.1 Final Result . 37
5.2 Future works and Improvements 37

5.2.1 GPS Functionality . 38
5.2.2 Payment System . 38
5.2.3 JUnit Testing . 38

6 Appendices 39
6.1 Data Model . 40

6.1.1 User . 40
6.1.2 Preference . 40
6.1.3 Vehicle . 40
6.1.4 Device . 41
6.1.5 Trip . 41
6.1.6 Ride . 41
6.1.7 Ride Status . 42
6.1.8 Demand . 42
6.1.9 Tolerance . 42
6.1.10 Graph . 42
6.1.11 Node . 42
6.1.12 Edge . 43
6.1.13 Path . 43
6.1.14 Passengership . 43

6.2 Code Snippets . 44
6.2.1 Authenticator class . 44
6.2.2 Connectivity receiver . 45

6.3 API Calls . 46

vii

6.3.1 Node API . 47
6.3.2 User API . 47
6.3.3 Ride API . 50
6.3.4 Demand API . 54
6.3.5 Passengership API . 58

Bibliography 59

viii

List of Tables

2.1 Authorisation Classes . 7
2.2 Application HTTP requests . 9
2.3 Application notifications . 16
2.4 Custom exceptions . 18
3.1 Application custom adapters . 24
6.1 All nodes request - Optional parameters 47
6.2 User Registration - Exceptions . 48
6.3 Ride Registration - Exceptions . 50
6.4 Ride request - Optional parameters 50
6.5 All rides request - Optional parameters 51
6.6 Delete Ride - Exceptions . 51
6.7 Potential passengers request - Optional parameters 52
6.8 Get Potential Passengers - Exceptions 52
6.9 Confirm Passenger - Exceptions 53
6.10 Confirm Driver - Exceptions . 53
6.11 Reject Match - Exceptions . 54
6.12 Propose Ride - Exceptions . 55
6.13 Leave Ride - Exceptions . 55
6.14 Get demand request - Optional parameters 56
6.15 Delete Demand - Exceptions . 56
6.16 Potential drivers request - Optional parameters 57
6.17 Potential Drivers - Exceptions . 57
6.18 Feedback - Exceptions . 58

ix

List of Figures

2.1 Car On The Hill - The Android app logo 6
2.2 HTTP requests hierarchy . 8
2.3 Google Cloud Messaging - Architecture 15
3.1 Android application code structure 22
3.2 Activities hierarchy sub-schema 25
4.1 Register and login views . 29
4.2 Main driver views . 30
4.3 Add new ride views . 31
4.4 Find potential passengers . 32
4.5 Ratings . 33
4.6 Passenger main views . 34
4.7 User profile management . 35
6.1 API classes hierarchy . 46

x

Chapter 1

Introduction

1.1 Previous Work

My thesis work is the continuation of another project, authored by PhD Thibaut
Cuvelier, who implemented a carpooling website, based on a static graph of the
main towns around the University of Liège.

The website is called CarOnTheHill1 and, after registration, it allows the user
to be either a driver or a passenger.

In driver mode users can create new rides and find potential passengers which
are statically matched based on the ride path. In passenger mode, users can create
ride requests and await to be accepted by a potential driver.

The main limitation of this first version was its static graph architecture, caus-
ing the impossibility for end users to define routes with addresses different from
the ones that were used to pre-populate the application database. Secondly, for a
carpooling application the number one requirement is to be easily accessible from
smart-phones, possibly through an ad hoc application.

1The name CarOnTheHill originates from the fact that the majority of the faculties of ULg
University reside on a hill, in the town of Sart-Tilman, in the South of Liège.

1

1 – Introduction

1.2 Project Requirements
Starting from what had been developed by Thibaut Cuvelier, I was asked to work
on an Android application, being able to reuse most of the logic put in place for
the website, using a predefined set of API calls, eventually to be enriched.

During the first weeks of my thesis I spent most of the time to understand the
overall application structure and to get confident with the used frameworks. As it
is the case for every work based on somebody else’s strategic and technological deci-
sions, it took quite a while to be confident with the code and its overall functioning.

Together with my belgian promoter, Prof. Laurent Mathy, we agreed to first
work on the development of an Android application retracing the existing website.
Then we would have focused on new functionalities.

This first version of the Android application allowed a user to register, using
the academic email, and then either add new rides or ask for a lift. Since the graph
used by the application at this stage was static and pre-defined, users were forced
to select origin and destinations of their rides from a limited list of nodes and the
matching between demand and offer was done by an algorithm traversing all nodes
of a given ride path, and checking for related pending requests.

1.3 Setting Up the Environment
To be able to work on my laptop I was offered a virtual machine emulating the
actual server. This is created and configured using Vagrant[2], a very straightfor-
ward solution to develop local environments.

The real server resides on a subdomain (called kaiss) of Montefiore webserver2.

To speed up the setup process I wrote two very basic batch scripts to launch the
virtual machine and to open a separate terminal to be used for database operations.

Throughout my work I was able to use great software which really helped me
focusing on the actual code writing. For code changes tracking I used SourceTree[3],
pushing the latest version of my work to a GitLab directory hosted on Montefiore

2The Montefiore Institute is the department of Electrical Engineering and Computer Science
of the Faculty of Applied Sciences of the University of Liège, Belgium. It was founded in 1883
and is named after Georges Montefiore-Levi.

2

1.3 – Setting Up the Environment

server. For the back-end, written in Python, I used IntelliJ software PyCharm[4].
Finally, for the development of the actual Android application I used Android
Studio[5].

3

4

Chapter 2

Architecture and Technology

This chapter contains the main technological aspects of my work. The project I
have worked at consists of two parts:

• Android application, representing the core product for the end user;

• Django[6] back-end, implementing all the main functionalities used by the
application.

The communication between the Android application and the Django back-end
occurs through an ad hoc API, implemented using Tastypie[8]. Android application
and back-end exchange JSON data which is serialised and deserialised using the
Gson Java library[7].

2.1 Django Backend
As previously stated, the backend of my thesis is developed using Django, a high
level web framework, on top of which I have implemented the Tastypie API. The
Django backend was already developed when I started working at this project, and
so was a good part of the API, however the newly introduced functionalities forced
me to change quite a bit of the original code.

Currently the backend consists of three main Python files (which are also the
ones I have worked on the most):

• Models: this file contains all the data models that I have also replicated in
the Android application. It also implements the system core functionalities.

5

2 – Architecture and Technology

Figure 2.1: Car On The Hill - The Android app logo

• Resources: this file implements the actual Tastypie API and defines all the
server listening points, that is the URLs using which the Android application
(and any other service) can exchange data with the backend.

• Graph: At the beginning of my work, since the application used a static
graph this file had quite a bit of logic in it. Now it hosts the implementation
of the actual matching algorithm, finding potential drivers or passengers for
demands and rides.

2.2 Tastypie API
The application API has been developed using Tastypie, a web-service API frame-
work for Django, following the RESTful approach[12]. For the purpose of my thesis
I was provided with a first draft of API that I have followed almost entirely. A
detailed list of all implemented API calls is reported in Appendix 6.3.

To better deal with the fetching of related objects, I have used the lazy loading
pattern[13], therefore in some cases I have implemented requests were the user
can specify with ad hoc parameters whether to perform a deep inspection of the
resource or a shallow one. This is for example the case for the request retrieving
ride data for which we are able to specify whether to retrieve the full ride path
information or not.

With Tastypie I was able to define 3 levels of authorisation for the application
resources. These have been implemented by deriving the Tastypie Authorization
class and obtaining 3 classes described in Table 2.1.

6

2.2 – Tastypie API

Class Name Description
UserObjectsOnlyAuthorization Authorisation used to limit read and

write operations only to authenticated
users. This is the minimum level of pro-
tection for the application resources.

DriverObjectsOnlyAuthorization Authorisation used to limit results of
read list operations to objects owned by
the connected user, in driver mode (e.g.
if the connected user wants to get the
list of his rides).

PassengerObjectsOnlyAuthorization Authorisation used to limit results of
read list operations to objects owned by
the connected user, in passenger mode
(e.g. if the connected user wants to get
a list of his lift demands).

Table 2.1: Authorisation Classes

In addition to the authorisation mechanism described above, I put particular
attention in the definition of ad hoc security checks on the backend, making sure
that every API request is allowed and returning descriptive error messages to in-
form the user about eventual unauthorised requests. More details about the API
returned errors are available in Appendix, in section 6.3.

2.2.1 Requests Authentication

The authorisation mechanism used for the communication between Android appli-
cation and server pairs the user credentials to each request. This approach was in
fact preferred to a more modern token-based authentication system. This decision
was taken because the former approach is much simpler to implement than the lat-
ter but it comes indeed with some costs, the biggest one of which is poor scalability.

The Android class implementing the authentication is called Authenticator,
placed in the homonym package. This class is responsible for sending the user
credentials to the server, paired with every HTTP request.

The Authenticator class is very simple and it is implemented using a singleton
pattern. User credentials, once provided through the login form, are encoded using

7

2 – Architecture and Technology

Figure 2.2: HTTP requests hierarchy

the Base64 class1 and stored in the singleton, making them available to every
subsequent API request. The full class code is reported in listing 6.1 in Appendix.

2.2.2 Communication with API
The communication with the Tastypie API is managed through a set of classes,
grouped in the HttpRequests package. These classes are all implemented extending
the AsynkTask class, so to ensure that networking activities are not performed on
the main thread, otherwise risking to freeze the application.

As shown in figure 2.2, the requests all derive from the base abstract class
BaseRequest, which simply takes care of HTTP errors display and holds some
common variables. Worth mentioning the doInBackground function: it performs
a check for existing Internet connection and it has to be overridden by the other
classes to perform the actual HTTP request. Thanks to this implementation mech-
anism no request is sent out if no connection is available, avoiding unpredictable

1Base64 is a group of similar binary-to-text encoding schemes that represent binary
data in an ASCII string format by translating it into a radix-64 representation [...] -
https://en.wikipedia.org/wiki/Base64

8

2.2 – Tastypie API

behaviour of the application.

The class taking care of the actual server response is called ServerResponseObject.
It is in the same package of the other HTTP request classes and, after parsing the
JSON of the server response, prints it in the Android console for debugging pur-
pose. Together with the server data this class also holds the info regarding eventual
error codes and messages.

Each of the request classes parses the JSON of the server response using the
ServerResponseObject class and returns the object to the caller. The details of
each class are reported in table 2.2.

Class Name Description
GetRequest This is the most common HTTP request, used ev-

ery time the application wants to retrieve some data
from the server. This may be returned in an array
format in case of get list requests, or a simple JSON
object. In either case, this class parses the payload
and returns it to the requesting class which then uses
Gson to store the result into the appropriate data
model.

PostRequest This request is used to send data in JSON format to
the server.

DeleteRequest This request is used to delete data from the server.
For each delete request, for security reasons, the
backend carefully verifies if the request comes from
the resource owner.

GetNoDataRequest As its name clearly states this request is a GET re-
quest which however does not produce any data be-
ing returned from the server, but simply an HTTP
code, so it skips all the parsing performed by the
similar GetRequest class.

Table 2.2: Application HTTP requests

The way these classes are used to communicate with the application backend
is by creating new private classes extending the required request. The newly cre-
ated class contains only one overridden method, called onPostExecute, which is
automatically triggered after the completion of the HTTP request and returns an
object of the ServerResponseObject class, representing the server response. The
body of the function contains the code handling the obtained result, eventually

9

2 – Architecture and Technology

parsing the returned JSON using the GsonCustomBuilder class.

2.2.3 Data Serialisation with Gson
As stated in the previous sections all the data exchanged between Android appli-
cation and Tastypie API is in JSON format. This means that once the application
receives some data, it has to parse it for storing it in the correspondent data model.
This is achieved using the Gson Java library which is able to transform data to
and from JSON format seamlessly.

In order to properly handle the serialisation and deserialisation of some data
types, in particular for GregorianCalendar and Status data models, I had to
build a customised Gson builder. For this manner it was sufficient to define ad hoc
classes implementing the conversion from JSON to data type and viceversa and
link them to the custom Gson builder.

Across the application, all the classes are using the custom Gson builder by
retrieving the unique static instance of the GsonCustomBuilder class. Using the
functions toJson and fromJson, the builder is able to automatically identify the
type of serialisation/deserialisation to perform based on each data type it comes
across.

2.3 External Services: Google APIs
The application uses several Google APIs for some of its core features. These are
Google Maps, Google Maps Directions and Google Cloud Messaging.

The maps API is used to display to the driver the set of potential passengers
on a Google map, as shown in figure 4.4a.

Furthermore, since the core of CarOnTheHill application is based on addresses,
it is crucial not to leave the user providing this information unsupervised. The
objective is to deal with a common address representation so to be able to ensure
consistency across the application. With this premise, I have decided to use the
Geocoder Android class to perform address auto completion, returning Address
Java objects upon user selection.

More in details, the Android application communicates with Google Maps when
the user is typing an address for a ride or demand creation. The classes han-
dling the auto-completion and the communication with the Google API are in

10

2.4 – Registration Mechanism and Automatic Login

the geoautocompletion package and the main one is called GeoAutocompletion-
Adapter. Results obtained by this adapter are limited to Belgium and every time
up to five matches are displayed2.

The custom class DelayAutoCompleteTextView inherited from AutoComplete-
TextView makes sure to delay the requests sent to the Google API and eventually
destroys pending ones if a new one is to be sent because the user continues typing.
This is an optimisation which ensures that there is no waste of Google API requests
free quota.

On the other hand, the back-end uses the Google Maps Directions API to com-
pute the shortest driving path between two provided locations. The result is then
stored in the server database as a series of nodes connecting origin to destination.
One advantage of this approach is that further improvements of this project will be
able to use the stored information to implement routing algorithms, for example
to improve traffic in the campus in case of congestion.

The Maps Directions API is also used by the matching algorithm to compute
the shortest path a driver should follow to pick up a given passenger, and check
if he would be able to take him to destination on time (more information on the
algorithm functioning are in section 2.5).

The Google Cloud Messaging API is used for application notifications, described
in details in section 2.6.

2.4 Registration Mechanism and Automatic Lo-
gin

One of the project requirements was to ensure registration only for ULg personnel
since the application is intended for people related to ULg university. To enforce
this requirement, at registration time, an ad hoc regex expression is used to ensure
that the provided email belongs to the ulg.ac.be domain.

To successfully complete the registration, the user is also asked to provide a
username which can be interchangeably used to log in.

2For the implementation of the geo-autocompletion functionality I customised
a very well written tutorial which I found on Google after some research, avail-
able at http://garbtech.co.uk/android-implementing-a-google-maps-search-box-with-
autocompletetextview-and-geocoder-api/

11

2 – Architecture and Technology

When the registration data is sent to the server, the Django back-end checks for
duplicated username and emails, therefore ensuring unique usage.

The automatic login functionality is achieved using the Java SharedPreferences
class. This class always stores the last used username or email and optionally the
password (user has to check the auto-login option upon login). In case of automatic
login enabled, upon the next launch attempt, the app will gather the credentials
from SharedPreferences and will automatically try to perform a GET request of
the user profile data. If the server responds with no error the user is automatically
logged in.

2.5 Ride-Demand: Matching Algorithm
The first version of matching algorithm used by the application to find potential
passengers for newly created rides was very performing. This algorithm, developed
by Thibaut Cuvelier, consisted in traversing the path nodes of a given ride and
for each one, checking if there were associated pending demands (a demand was
associated to the node corresponding to the demand origin).

Such approach was optimal for the old scenario, with a static graph and a
very limited number of nodes. However, when I have moved forward and I have
integrated Google maps into the application, the algorithm was no longer usable
and I had to define another approach.

2.5.1 Market Research
First attempts to design the new matching algorithm showed to the driver a given
number of alternative paths to reach the final destination and for each of those the
number of potential passengers. With this approach the driver could eventually
select the path allowing the biggest number of passengers, however, no freedom
was left to the driver in defining completely new paths to find as many passengers
as possible.

Looking at the way other carpooling applications, such as BlaBlaCar[10], deal
with the problem (from the end user point of view), I have realised that there
was one assumption that I had to change in order to reach the optimal solution.
Indeed, at the beginning of my work, I was always focusing on the actual path
followed by a given driver and, based on that, the application was presenting him
with possible passengers to pick up along the road.

12

2.5 – Ride-Demand: Matching Algorithm

A small market research I have run through 20 respondents, showed that one of
the biggest concerns of a driver using a carpooling application is filling up the car
and share expenses. As long as the original destination is reached at the wanted
time, the driver does not really care about which path to follow.

With this result in mind I have designed my matching algorithm and the core
of my Android application.

2.5.2 How It Works
When a driver creates a ride, the back-end communicates with Google API to find
the quickest path to reach the destination (accepting that it could be different
from what the driver has originally in mind). This information is stored as a list
of nodes in a local graph and used later on to find potential passengers.

When it is time to fill up the car, the driver will have access to a view, with
a map simply showing ride origin and destination and pins identifying potential
passengers. But let’s see more in details how this is done.

Before starting the computation the algorithm performs some automatic filter-
ing of the pending demands, only selecting those with an arrival time which falls
into a time range of 24 hours with respect to the ride start time (such a big time
slot is used for testing purposes but it is reasonable to assume that using a time
range of 3 hours would provide good matches). In other words, being D the set
of pending demands, the filtering selects all demands d satisfying the following
condition:

∀d ∈ D : d.arriv_time ∈ [ride.start_time− 12hrs, ride.start_time + 12hrs]

Once the set of original pending demands is filtered, the matching algorithm
computation starts. The algorithm has 2 nested for cycles, one iterating over the
list of edges of the ride path and one iterating over the list of pre-filtered de-
mands. For every edge the algorithm checks whether the demand origin is within
an acceptable distance from the edge origin or destination (this distance, unless
otherwise stated, defaults to 2 kms). If this is the case, the demand is entered
into a list of potential matches which is then inspected to identify whether also
the demand destination is within the acceptable distance from one of the ride edges.

In other words, as long as origin and destination of a passenger demand are
not too far away from the driver (assumed) riding path, the algorithm identifies
the passenger as potential. Even though the algorithm assumes that the driver is
riding along the shortest path provided by Google (which is not necessarily the one

13

2 – Architecture and Technology

he will follow), the radius used to find potential passengers is a mechanism which
overcomes pretty well this assumption.

This algorithm, with very small modifications is also used to compute potential
drivers for a given passenger. Since the approach is dual to what has been illus-
trated for the driver case, it will not be further described. However, the fact that
the passengers can also dynamically find potential drivers is a big enhancement
compared to the previous version of the application.

2.5.3 Geopy
To compute the distance between two nodes, in the context of the matching al-
gorithm, I have used a python library able to compute distances between geo-
locations. Its name is Geopy[14].

Geopy can calculate geodesic distance between two points using the Vincenty
distance[15], and this is exactly how the matching algorithm checks whether two
geo-locations are close enough.

2.6 Real-Time Notifications
In order to design a helpful application, ready to be used, from the very beginning I
have worked at integrating a notification system which would be able to alert users
about main events such as ride demand being accepted, driver about to leave, etc.

Browsing on Google I realised that a new cross-platform messaging solution
has recently been launched. Its name is Firebase Cloud Messaging[16] (FCM) and
it replaces the previous solution called Google Cloud Messaging[17] (GCM). Af-
ter some research I have eventually realised that little testing has been done for
backends implemented using Django and I therefore had to use the older Google
Cloud Messaging, despite the recommendations from Google to start using the new
solution.

The notification system is very simple and its main steps are shown in figure
2.3. In details these are:

1. First Android device sends sender and application ID to GCM server for
registration.

2. Upon successful registration GCM sever issues a registration ID to the An-
droid device.

14

2.6 – Real-Time Notifications

Figure 2.3: Google Cloud Messaging - Architecture

3. After receiving the registration ID, the device will send it to CarOnTheHill
server.

4. CarOnTheHill server will store registration ID in its database for later usage.

Whenever a push notification is needed, CarOnTheHill server sends a message
to GCM server along with device registration ID (letter a in the picture).

GCM server will deliver that message to the corresponding mobile device using
its registration ID (letter b in the picture).

Notifications are sent in the circumstances listed in table 2.3.

The code in charge of implementing the notifications system is organised in the
notifications package. It consists of 4 classes, but clearly the most interesting
ones are the following:

• MyGcmListenerService: this is the service running in the background which
takes care of reproducing the notification upon reception. In this class I have
implemented the code to handle the different types of notifications.

• RegistrationIntentService: this service registers the user device for push
notifications. This registration is done in background every time the user
performs the login. Initially I thought that a better approach would have

15

2 – Architecture and Technology

Notifications
If a driver proposes a ride to a passenger, the latter is notified and taken
to the demand view, to be able to check the driver profile and eventually
accept the lift.
If a driver accepts or rejects a lift demand the passenger is notified.
If a driver has no more seats available and there are outstanding passen-
gers requests, all these passengers are automatically rejected and noti-
fied.
If a driver leaves, all accepted passengers are notified.
If a driver is asked a lift he is notified and taken to the ride view, to be
able to check the passenger profile and eventually accept the request.
If a driver cancels a ride, all related passengers are notified that the ride
was cancelled (these are either those who had asked a lift to the driver
or to whom the driver had offered a seat).
If a passenger accepts or rejects a lift, the driver is notified.
If a passenger accepts a ride (or a driver accepts a lift request) and he
has other outstanding requests (for the same demand) the related drivers
are informed that the passenger has found a driver.
If a passenger cancels a lift all related drivers are notified that the de-
mand was cancelled (these are either those to whom the passenger had
asked a lift or drivers who offered a seat to the passenger).

Table 2.3: Application notifications

16

2.7 – Connectivity Monitoring

been to do the push notifications registration only once at user registration
time, however in this case only the device with which the user registers would
receive the notifications. This other implementation allows a user to use
multiple devices and still receive the notifications on each one of those.

2.7 Connectivity Monitoring
Developing the application I figured out that one critical point is to make sure
that no HTTP request is attempted if no connection is available. I have already
discussed about how I dealt with such problem in section 2.2.2, however I decided
that I wanted a mechanism being able to be fired real-time in case of dropped
connection, alerting the user about it.

I came up with the class ConnectivityReceiver, a receiver in charge to moni-
tor variations of the Internet connection status (its code is reported in listing 6.2).
Its functioning is very simple: it monitors the Internet connection and, if its status
changes, it triggers a onNextworkConnectionChanged function (with connection
status as parameter), implemented in the main activity class CarOnTheHillActivity.
The function reads the connection status parameter and, in case of absent connec-
tion, takes the user to the login screen alerting him that no connection is currently
available.

2.8 Errors Handling
Error handling throughout the application is performed with a combination of two
mechanisms:

• Custom error messages, displayed using the Toast Android class for popup
management;

• Custom exception classes.

.
Custom exception classes are all grouped in the Exceptions Package. They

are all inheriting RuntimeException and they are equipped with a constructor
accepting a string parameter which is used as error message to be displayed to the
end user. Details about each custom exception and when it is commonly used are
reported in table 2.4.

17

2 – Architecture and Technology

Custom Exception Description
MissingIdException Generally used when an API call is missing the ID

to build the final API URL.
WrongActivityResultId-
Exception

Used when an activity is launched by another one
with the function startActivityForResult and the
result code is unexpected.3

MissingExtraException Across the entire application activities often load
data passed by the previous one through an extra.
This is done to limit the number of HTTP requests
sent to the server. If the extra is not found this cus-
tom exception is used to throw an error.

Table 2.4: Custom exceptions

18

2.9 – Localisation

For what concerns error management on the backend, instead, a custom error
class has been defined in order to send to the application some additional infor-
mation. In particular, the server, in most of the cases, returns a JSON object
containing an error code and a descriptive message about the error cause. In sec-
tion 6.3, dedicated to API calls, it is possible to have additional information on all
the exceptions triggered by the server.

2.9 Localisation
Android Studio offers a very easy way of localising an application. In fact all string
resources can be centralised in one unique XML file which can then be translated
in several languages, providing out of the box localisation.

Throughout the development of the application I was very attentive, never us-
ing hard-coded strings. The result is one XML file of less than 300 lines, written in
English, containing all the text ever used throughout the application. Translating
this file in French or any other language would produce an instantaneous localisa-
tion of CarOnTheHill application.

On the other side, unfortunately the backend is not yet equipped to handle
multi-language functionality. However, currently the only contents coming from
the backend are the location addresses, provided by Google API, and the error
messages, both written in English.

3This approach is used when the activity being launched has to produce some data for the
calling one. Once the called activity has completed its computation it passes the result to the
caller with a request code (the same used by the caller to launch the activity). On resume the
caller checks the returned request code to make sure to understand from which activity the result
is coming from.

19

20

Chapter 3

App Structure

3.1 Introduction
The Android application code is divided into packages to better organise the code
following common coding best practises. In particular, the structure, as we can see
in Figure 3.1 presents 7 main packages.

The main idea behind the organisation of the application code was to follow the
Model-View-Controller (MVC) paradigm[9] as much as possible, even though the
Android logic does not naively support such paradigm. With this goal in mind the
various classes are mainly divided into activities, adapters and models, represent-
ing in order respectively (and with some approximation) the views, the controllers
and the models of the MVC approach.

The following sections try to give additional details of the various Java classes
implemented in the main packages.

3.2 Activity Package
The activity package is the core of the application. It contains all its activities,
that is all its views, also grouped based on whether they regard the driver or the
passenger mode.

With respect to the MVC paradigm, saying that the activity classes represent
the views would not be correct. Indeed in Android the activity classes also carry
on the actual logic of the application (and not simply the final rendering as it is

21

3 – App Structure

Figure 3.1: Android application code structure

supposed to be for a view). Therefore I would rather say that this package contains
a combination of views and controllers.

22

3.3 – Adapter Package

3.2.1 Activities Hierarchy
All the activities are inherited from the base class CarOnTheHillActivity, derived
from AppCompatActivity, as show in Figure 3.2. Using this structure allowed to
centralise common code and variables across all the application activities.

One of the most important parts of this class is that it registers two receivers
used by the application: one to monitor for Internet connectivity (see section 2.7)
and the other which is in charge to handle incoming notifications (see section 2.6).

Other important parts of CarOnTheHillActivity are:

• A static reference to the connected user, so that its data can be accessed
from everywhere in the app;

• The code to eventually hide the action bar or manage its buttons;

• The check for Google Play Services which verifies if the device has the library
installed and if not it prompts the user with a message to download the
library. In fact Google Play Services are required by the application for
features such as Google maps and push notifications.

• A function to display an alert to the user in case of no existing connection.

3.3 Adapter Package
This package contains all custom adapters mainly used to properly represent list
of data models and implement the logic behind them. As for the Activities pack-
age, also the classes belonging to this package cannot be properly defined pure
controllers.

Table 3.1 lists the various adapters, describing their role in the application.

Where applicable the adapters implement the ViewHolder pattern. The
ViewHolder design pattern enables to access each list item view without the need
for the ids look up, saving valuable processor cycles. Specifically, it avoids frequent
call of findViewById() during ListView scrolling, which make it nice and smooth.

3.4 Data Package
This package contains all the classes representing the model in the MVC pattern.
In particular, it contains two sub-packages, one implementing the various data

23

3 – App Structure

Adapter Name Description
PassengerAdapter This adapter deals with the representation of list

of Passengership data models. To provide suf-
ficient information it also retrieves info related to
the demand and the passenger associated to the
Passengership object. Thanks to this adapter
pending matches, that is those still to be accepted
by both parties, can be accepted or rejected using
ad hoc buttons. In case of confirmed matches, this
adapter shows also a button to leave a feedback to
either the passenger or the driver.

RideAdapter This adapter is an abstract class used by other
adapters dealing with Ride data models. It simply
takes care of referencing the layout elements and up-
date the view if a ride is removed from the displayed
list.

RideDriverAdapter This adapter is inherited from RideAdapter and dis-
plays a list or rides (both future and passed) to a
driver. It implements the functions to find potential
passengers and display existing ones. Thanks to this
adapter the driver can also inform he has left or he
can delete a ride.

RidePendingOfferAdapter This adapter is inherited from RideAdapter and dis-
plays a list of rides in a pending state, because they
have been offered to a passenger and the driver is
awaiting for his confirmation. It implements the
functions to confirm or reject the match.

RidePotentialDriverAdapter This adapter is also inherited from RideAdapter and
displays a list of potential rides to a passenger. The
passenger can then decide to ask a ride to the given
driver or not.

DemandAdapter This adapter deals with the representation of a list
of Demand data models (both passed and future).
Using this adapter the passenger can display con-
firmed/pending drivers or find potential ones. He
can also delete the request.

ULGNodesAdapter This adapter is used to represent the list of ULg fac-
ulties in a drop-down list. It also implements a cus-
tom comparator to order the faculties, represented
by Node data models, by name.

ViewPagerAdapter This adapter is used for multi-tabs views.

Table 3.1: Application custom adapters
24

3.4 – Data Package

Figure 3.2: Activities hierarchy sub-schema

models used by the application and the other taking care of all API endpoints,
that is the actual URLs to be used to reach the server.

For a detailed description of these sub-packages please refer respectively to
Appendix 6.1 and 6.3.

25

26

Chapter 4

Use Cases

4.1 Introduction
This chapter focuses on the functionalities of the Android application, highlighting
some of its key features, showing screen-shots and describing typical use cases.

The application design in many circumstances follows what has been done by
BlaBlaCar. In fact, not wanting to reinvent the wheel, with the goal to maximise
user usability, I looked very often at the way this leader of the carpooling industry
designed its Android application and I replicated it for CarOnTheHill.

This is particularly the case for the user profile section, displayed in Figure 4.7a
and the functioning of the activities to ask or create a ride.

27

4 – Use Cases

4.2 Registration and Login
In order to register and use CarOnTheHill it is required to have a ULg email ad-
dress. At registration stage a check is performed over the domain of the provided
email in order to make sure that this requirement is satisfied. Further information
are asked as first and last name, username (also usable to login, instead of the
email) and password.

Automatic checks are performed client side to make sure that only when all
fields are correctly filled the registration button is active and can be pressed. At
this stage another validation is performed, for example to make sure that the two
provided passwords match.

Once the registration is successful the user is redirected to the login page. Here
he will have to enter email or username and password. He can check the option to
be remembered so that next time the application will be launched it will automat-
ically log him in.

After logging in the user can decide to use the application in two different
modes:

• Driver: to create new rides and find potential passengers;

• Passenger: to create ride demands and find potential drivers;

Despite his choice, he will always be able to switch between the two modes,
using the apposite buttons in the action bar.

Furthermore, an ad hoc profile section allows the user to specify preferences or
provide details about the owned vehicle. In the next sections I will review more in
details all these functionalities.

4.3 Driver Mode
Selecting the driver mode, the user will be automatically redirected to the driver
home page from which he can access to existing rides or create new ones.

The existing rides provide info on start and end location of each ride, together
with the departure time and date. They are divided in two tabs:

• Your rides: it displays all future rides. From this tab each ride shows info on
start and end location and departure time together with a set of passengers

28

4.3 – Driver Mode

(a) Registration View (b) Login View

Figure 4.1: Register and login views

associated to the ride. These can be pending, accepted or rejected. Pending
passengers are those who have asked a lift or to whom the driver has offered
one; in both circumstances the other party is supposed to either accept or
reject the offer/demand. Most importantly, the driver can also look for new
potential passengers. Last but not least, with apposite buttons the driver
can inform his passengers he is leaving or he can eventually delete the ride
(if no passengers have been confirmed yet).

• Old rides: it is a list of rides which have passed or flagged as left by the
driver. From this view the driver will be always able to access accepted
passengers info and submit feedback to each one of them.

4.3.1 Add new rides
From the driver home page shown in figure 4.2a the user can add new rides. To
do so he must specify origin and destination, number of free seats and departure
time.

29

4 – Use Cases

(a) Driver Home (b) Driver existing rides

Figure 4.2: Main driver views

The application ensures that at least one end of the ride is one of the ULg
faculties. In this case the user is presented with the list of the faculties which is
hard-coded in the server database.

For generic addresses, instead, the application uses a geo auto-completion mech-
anism, as shown in Figure 4.3b, which uses Google API in order to help the selection
of the address, but most importantly ensure consistency.

4.3.2 Find potential passengers
If a ride does not have any pending passenger demands and the driver wants to
quickly find potential matches he can access to the passengers map, a Google map
view where he can display potential passengers, filtering them based on distance
from the ride path and their arrival tolerance, as displayed in Figure 4.4b.

As shown in Figure 4.4a, the map displays two flags identifying the ride start

30

4.3 – Driver Mode

(a) Add new ride (b) Geo auto-completion for address selec-
tion

Figure 4.3: Add new ride views

and end locations and passengers are identified by pins. The map does not display
only potential passengers but also pending and accepted ones. The difference is
stated by the pin colour: orange for potential, yellow for pending and green for
accepted.

By clicking on the pin the driver can have a detailed description of the passen-
ger demand and, by clicking on this description a new view opens up and the driver
can eventually propose the ride in the case of potential passengers or accept/reject
the request for pending ones.

In both cases the driver will be asked to provide a time at which he is intending
to pick up the passenger.

If the results displayed on the map are not satisfactory the driver can always use
the filters, located in the left hand side slider menu, and try to find more matches,
adjusting their values. The filters are loaded by default with a radius of 2 kms and

31

4 – Use Cases

an arrival tolerance of more or less 5 minutes. For a detailed description of how
the match between ride and demands is performed please refer to section 2.5.

(a) Potential passengers map (b) Potential passengers filters

Figure 4.4: Find potential passengers

4.3.3 Submit Feedback

Once a driver indicates he has left he, and the accepted passengers, will be able to
write each other a feedback. This is a 5-star vote, paired with a small description,
as shown in Figure 4.5a. The application is able to distinguish between a feed-
back obtained as a driver and one obtained as a passenger, therefore each user will
always have two ratings computed by averaging all feedback obtained as a driver
and those obtained as a passenger.

At any moment the user can access to a view displaying the total number of
feedback received and the average rating both as passenger and as driver, as shown
in figure 4.5b.

32

4.4 – Passenger Mode

(a) Write feedback to passenger or driver (b) User ratings summary

Figure 4.5: Ratings

4.4 Passenger Mode
In passenger mode the user can monitor the status of existing demands and create
new ones as shown in figure 4.6b.

The existing demands, following the same approach of the driver rides, are
divided in two tabs:

• Your Demands: it displays info about future demands. For these the
passenger can access to pending drivers, that is drivers who either have offered
a lift or to whom the passenger has asked it. In both cases the other party
is supposed to either accept or reject the demand/offer. The passenger can
also try to find possible drivers without having to wait an offer, as described
in more details in section 4.4.2. Finally, in case of no accepted matches the
demand can also be deleted.

• Old Demands: it contains all past demands. From this view the passenger
will always be able to access to the driver information and write a feedback.

33

4 – Use Cases

(a) Passenger existing demands (b) Ask a lift

Figure 4.6: Passenger main views

4.4.1 Ask lift

In order to ask a lift the passenger has to specify origin and destination, with same
approach illustrated for ride creation (see section 4.3.1), and in addition he has to
specify an arrival tolerance. This is used to determine a time interval during which
the passenger is accepting to reach destination.

4.4.2 Find potential drivers

As described for drivers in section 4.3.2, also the passenger is able to find potential
drivers autonomously. The mechanism is very similar to the one shown for the
driver: the passenger can identify potential drivers by using two available filtering
criteria, the radius, which represents the distance of demand origin and destination
from a driver path (it defaults to 2 kms), and the arrival tolerance, which defaults
to the one specified at demand creation time but can be overwritten here (helpful
for example if the passenger realises that he must allow a bigger tolerance to find
a potential driver).

34

4.5 – User Profile

4.5 User Profile
The user profile view contains a series of information about the user, like prefer-
ences and owned vehicle.

From this page the user can:

• Update his preferences, such as if he likes chatting, listening to music etc.

• Manage his vehicle information (if any), as shown in Figure 4.7b.

(a) User profile (b) Manage vehicle

Figure 4.7: User profile management

This view is also used when a passenger or a driver wants to see additional info
about a given user, an clicks on the user avatar (which for the time being defaults
to a custom image).

35

36

Chapter 5

Conclusions

5.1 Final Result
As a conclusion to my work I can firmly state that I was able to implement an
Android application that answers the need of any person wanting to find a lift or
to fill up his car and go to university. CarOnTheHill is indeed the solution that we
where thinking of when I first met with my belgian promoter, Professor Laurent
Mathy, and my supervisor, PhD student Tom Barbette, discussing about the work
to be done and the project requirements.

The final Android application is the result of lots of thoughts and hard work
trying to keep the code as clean and intuitive as possible, following best practises
and using all the skills and the methods learnt throughout my university career.

Looking at the final result I am also satisfied about the fact that I put significant
effort not only in the actual code but also in the design and user friendliness of the
implemented solution. I did it following my motto which says that no matter how
well your algorithm performs, the world will not use it if it is ugly.

5.2 Future works and Improvements
No matter the effort you make, there will always be something you can do to
improve what you have done, and my thesis is not an exception to this phrase.
Even though I think I managed to implement the most important functionalities,
there are still many other that could improve the usability of the final application.
In this section I try to list some of the most important ones.

37

5 – Conclusions

5.2.1 GPS Functionality
Probably one of the biggest improvements for CarOnTheHill would be allowing the
user to plan the entire trip on the application, looking at possible driving paths,
editing them in order to pick up potential passengers and so further.

The biggest assumption I based my work on was indeed that the driving path
was of secondary importance. What really matters, after origin and destination
have been set, is finding a lift (for the passenger) and fill up the car (for the driver
who wants to share the expenses). This means that if I take a good guess at the
driving path (and the shortest path provided by Google must be good!), then I can
go ahead and find the potential matches, without bothering about the actual path
the driver will take. In other words I am accepting to face scenarios in which the
driver is presented with possible matches which are too far away from his driving
path, which differs considerably form the one computed using Google Maps API.

Integrating a GPS system in the application, for example, the driver could
still inform the passenger on an estimated pick up time, but the GPS could alert
him in real-time that the driver is approaching. Furthermore real-time congestion
algorithms could be implemented to make sure the driver always takes the best
and less crowded path to reach his destination.

5.2.2 Payment System
Integrating a payment system could have been so easy as to compute the fuel spent
to take the passenger from origin to destination and share the expenses by paying
cash, off the platform. Much more interesting solutions would involve the integra-
tion of an actual payment system (exactly like the one used by BlaBlaCar) which
asks in advance to the passenger the payment before lift confirmation.

Despite the fact that the first solution requires very little implementation effort,
I decided to give priority to other functionalities, like the feedback mechanism, and
consequently this does not appear as one of the application features.

5.2.3 JUnit Testing
Unfortunately the application does not come with JUnit testing since the time
required to implement the Android application, change and extend the backend
and document the overall development efforts, forced me to leave it behind.

38

Chapter 6

Appendices

The appendices contain a detailed description of the application data model and
the entire documentation regarding the implemented API. For every available API
call I have reported the URL to be used and the available parameters, followed by
a brief description.

This chapter also contains the code of some interesting classes I have described
in this report.

39

6 – Appendices

6.1 Data Model
The Android application has its own data model which recalls what has been de-
veloped on the server side. This was done in order to optimise the exchange of
information between client and server, using an ad hoc JSON parsing library called
Gson.

In the following subsections I will document in details the data models used by
the Android application and their role.

6.1.1 User
The User class contains all information related to the registered user, obtained
feedback, preferences and eventually vehicle information. More in details, these
info are:

• First and last name,

• ID,

• User-name,

• User preferences, such as smoking, eating, listening to music and chatting,

• Vehicle information,

• Feedback data, such as average driver and passenger rating and total number
of received feedbacks.

6.1.2 Preference
This class handles all user preferences, such as whether the user likes to talk in the
car, listening to music, is ok with eating or smoking in the car. Each preference
has a scale from 0 to 2 and it defaults to neutral (1) unless otherwise specified.

6.1.3 Vehicle
This class contains all information regarding the user vehicle. In particular, the
user can specify:

• Brand,

• Number of seats (including the driver),

• Comfort class, such as basic, normal, luxury, etc.,

40

6.1 – Data Model

• Colour, to ease being recognised,

• Category, such as Economy, 4x4, Cabriolet, etc..

6.1.4 Device
Each user is associated to a device that is stored on the server to trigger push
notifications. This class handles three pieces of data:

• Registration token produced by the GCM server,

• Device ID,

• Device name, which is actually the device model.

6.1.5 Trip
The class Trip handles some information common to rides and demands. Therefore
I have created this base class from which Ride and Demand are then inherited. The
data collected in this class is the following:

• Resource ID and URI,

• The user the trip is associated to (driver in case of a ride and passenger in
case of a demand),

• Origin and destination nodes.

6.1.6 Ride
The Ride class is inherited from Trip and contains the following additional infor-
mation:

• Maximum number of free seats,

• If the ride is forward and backward or not,

• URI of the driver,

• Ride start time and date,

• Whether the ride has left and at what time,

• The ride path,

• A list of pending, confirmed and rejected passengers.

41

6 – Appendices

6.1.7 Ride Status
The status of a ride is managed using this enumeration. This helps identifying if
the ride is potential for a passenger, if it has been proposed by a driver and awaits
passenger confirmation (or viceversa it has been asked by a passenger and awaits
driver confirmation), if it is accepted or rejected.

6.1.8 Demand
This class also is inherited from Trip. The additional information contained is:

• Arrival time and date,

• Arrival tolerance (earlier and later),

• List of pending, accepted and rejected drivers.

6.1.9 Tolerance
This class is used to better deal with tolerance information (and its display) for a
given demand.

6.1.10 Graph
This class stores info about all ULg graph nodes, which are statically saved in the
server database and retrieved the first time the app is launched. It is built using
a singleton pattern and contains an hash map of nodes, for efficient and quick
retrieval.

6.1.11 Node
This class contains the info of a basic node. In particular:

• Latitude and longitude coordinates,

• Address description,

• Whether the node represents a ULg faculty,

• ID and resource URI.

42

6.1 – Data Model

6.1.12 Edge
This class stores the info related to an edge of a given path. It contains:

• Edge origin and destination nodes,

• Length,

• Driving time (according to Google Maps).

6.1.13 Path
This class contains the collection of edges making a ride path, with info on the
total length and time required to reach the destination, according to Google Maps.

6.1.14 Passengership
This class is used to represent matches between demands and rides. It contains
information on the status of the request, whether it came from a passenger or was
directly proposed by the driver and the related feedback. Its fields are:

• The ID of the passenger,

• The resource ID,

• A reference to both ride and demand objects,

• Whether it was proposed by the driver,

• Maximum number of available seats,

• Number of remaining seats,

• Whether the matching has been confirmed by both parties,

• Time at which the driver will pick up the associated passenger,

• The feedback associated to driver and passenger.

43

6 – Appendices

1 public class Authenticator {
2 String base64EncodedCredentials;
3 static final Authenticator singleton = new Authenticator();
4

5 private Authenticator(){}
6

7 /**
8 * Return the unique instance of the cookie
9 * @return the authenticator singleton

10 */
11 public static Authenticator getSingleton(){
12 return singleton;
13 }
14

15 /**
16 * Stores locally the user credentials
17 * @param userName string representing the username
18 * @param password string representing the password
19 */
20 public void setCredentials(String userName, String password) {
21 singleton.base64EncodedCredentials = "Basic " +
22 Base64.encodeToString(
23 (userName + ":" + password).getBytes(),
24 Base64.NO_WRAP);
25 }
26

27 /**
28 * Return the base64 encoding of the user credentials
29 * @return string representing the base64 encoding
30 * of the user credentials
31 */
32 public String getCredentials() {
33 return singleton.base64EncodedCredentials;
34 }
35 }

Listing 6.1: Authenticator class

6.2 Code Snippets
Some of the most interesting classes or code snippets are reported in this section,
showing how some of the main architectural choices have been implemented.

6.2.1 Authenticator class
This class handles the user credentials, to be paired to every request sent to the
server, ensuring the user authentication.

44

6.2 – Code Snippets

1 public class ConnectivityReceiver
2 extends BroadcastReceiver {
3

4 public static ConnectivityReceiverListener connectivityReceiverListener;
5

6 public ConnectivityReceiver() {
7 super();
8 }
9

10 @Override
11 public void onReceive(Context context, Intent arg1) {
12 ConnectivityManager cm = (ConnectivityManager) context
13 .getSystemService(Context.CONNECTIVITY_SERVICE);
14 NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
15 boolean isConnected = activeNetwork != null
16 && activeNetwork.isConnectedOrConnecting();
17

18 if (connectivityReceiverListener != null) {
19 connectivityReceiverListener.onNetworkConnectionChanged(isConnected);
20 }
21 }
22

23 public static boolean isConnected() {
24 ConnectivityManager
25 cm = (ConnectivityManager)

CarOnTheHillActivity.getInstance().getApplicationContext()
26 .getSystemService(Context.CONNECTIVITY_SERVICE);
27 NetworkInfo activeNetwork = cm.getActiveNetworkInfo();
28 return activeNetwork != null
29 && activeNetwork.isConnectedOrConnecting();
30 }
31

32

33 public interface ConnectivityReceiverListener {
34 void onNetworkConnectionChanged(boolean isConnected);
35 }
36 }

Listing 6.2: Connectivity Recevier

6.2.2 Connectivity receiver
This receiver monitors changes of the Internet connection status.

45

6 – Appendices

Figure 6.1: API classes hierarchy

6.3 API Calls

The API was developed using Tastypie, a web-service API framework for Django.
This appendix lists all API calls implemented in the context of the Android appli-
cation.

The API calls are divided among several classes, all inherited from the abstract
class CarOnTheHillAPI, which defines all the API basic endpoints and some com-
monly used functions such as the one to append query parameters to a given
request. The different API classes contain the functions returning the various API
URLs to be used across the application in order to communicate with the server.
The classes structure is displayed in figure 6.1.

Whenever possible the API calls return custom error messages through a JSON
object made of two fields:

• code: the HTTP error code;

• message: the HTTP error message.

The following subsections are used to document in detail every API call with
its expected behaviour.

46

6.3 – API Calls

6.3.1 Node API

This API class handles all requests dealing with graph nodes stored on the server.
It allows some filtering, based on whether we are only interested in retrieving ULg
nodes and also based on latitude and longitude coordinates.

Get node GET api/v1/node/:nodeID/
It allows the connected user to retrieve information about a given graph node. For
more details, check out section 6.1.11.

Get all nodes GET api/v1/node/
It allows the connected user to retrieve information about all nodes stored on the
server. The request allows some filtering based on parameters reported in table 6.1.

Request Parameters
Parameter Description
is_ulg If specified and set to 1, the server will only return

nodes representing ULg faculties
latitude If specified, the server will only return nodes with

the given latitude
longitude If specified, the server will only return nodes with

the given longitude

Table 6.1: All nodes request - Optional parameters

6.3.2 User API

This API class handles all requests regarding user registration, login and profile
info. It also deals with device registration to enable push notifications.

Register User POST api/v1/register/
It allows to register a user providing first and last name, email, username and
password.

In table 6.2 there are all custom errors returned by this API call.

47

6 – Appendices

Exceptions
Code Reason
403 Username already in use.
403 Email already in use.
403 Missing required data.

Table 6.2: User Registration - Exceptions

48

6.3 – API Calls

Get Profile GET api/v1/profile/
It returns information about the connected user (including private info), such as:

• Joined and last login date

• First and last name

• ID and Resource URI

• User-name

• User preferences, such as smoking, eating, listening to music and chatting

• Vehicle information

• Feedback data

Get User GET api/v1/user/:userID/
It returns public information about a given user. Currently there is no distinction
between the data gathered by this call and Get Profile but the two calls are in
place for future enhancements.

Update Profile POST api/v1/profile/update/
It allows the connected user to update his profile info. At this stage the only in-
formation that can be updated are the user preferences and vehicle information.
It accepts as payload a User object model with the updated information.

Register Device POST api/v1/device/register/
It allows the connected user to register his device for push notifications. Cur-
rently it is done automatically in the back-end at user login time. To perform the
registration, the device sends the following information to the server:

• Device name (optional)

• Registration token, obtained by Google Cloud Messaging server

• Device model

Unregister Device POST api/v1/device/unregister/
It allows the connected user to unregister his device and stop push notifications.
The device identifier must be passed as request payload.

49

6 – Appendices

6.3.3 Ride API

This API class deals with all requests related to a ride, that is ride creation and
deletion, finding potential passengers and manage pending requests.

Register ride POST api/v1/ride/register/
It allows the connected driver to register a new ride. The request payload is a Ride
object model.

In table 6.3 there are all custom errors returned by this API call.

Exceptions
Code Reason
403 Missing required data.

Table 6.3: Ride Registration - Exceptions

Get ride GET api/v1/ride/:rideID/
It allows the connected user to get information about an existing ride. Currently
the data can be read by any connected user (not just the object owner).

This request also has optional parameters, as shown in table 6.4 to be used in
order to fully retrieve some related resources, such as the ride path or confirmed,
rejected and pending passengers.

Request Parameters
Parameter Description
full_path By passing the parameter full_path set to 1, the re-

trieved data will contain detailed information about
the ride path, with a full list of nodes.

full_passengership By passing the parameter full_passengership set to
1, the retrieved data will contain detailed informa-
tion about passengers related to the ride and whether
they are confirmed, pending or rejected.

Table 6.4: Ride request - Optional parameters

50

6.3 – API Calls

Get all rides GET api/v1/ride/
It allows the connected user to get a list of all owned rides.

This request also has optional parameters, as shown in table 6.5 to be used in
order to filter the list of rides, for example only getting future ones.

Request Parameters
Parameter Description
start_time_gte If provided, the server will only return rides with a

start time greater than the one specified (datetime
format: YYYY-MM-DDTHH:MM:SS).

start_time_lte If provided, the server will only return rides with
a start time less than the one specified (datetime
format: YYYY-MM-DDTHH:MM:SS).

Table 6.5: All rides request - Optional parameters

Delete ride DELETE api/v1/ride/:rideID/cancel/
It allows the connected user to delete an existing ride. At the moment the appli-
cation does not allow to delete a ride in two occasions:

• If the drive is marked as left;

• If the drive has confirmed passengers;

In table 6.6 there are all custom errors returned by this API call.

Exceptions
Code Reason
404 The ride does not exist.
403 The ride is marked as "has left".
403 The ride has confirmed passengers.

Table 6.6: Delete Ride - Exceptions

Get potential passengers GET api/v1/ride/:rideID/potential_passengers/
It allows the connected driver to find potential passengers for a given ride. Poten-
tial passengers are identified based on two parameters, as reported in table 6.7.

In table 6.8 there are all custom errors returned by this API call.

51

6 – Appendices

Request Parameters
Parameter Description
radius Distance of passenger origin and destination loca-

tions with respect to the ride path (this defaults to 2
kms). The bigger the radius, the more the identified
potential passengers.

tolerance The passenger arrival tolerance. The bigger the tol-
erance, the more the identified potential passengers
(defaults to 10 mins earlier/later).

Table 6.7: Potential passengers request - Optional parameters

Exceptions
Code Reason
403 Ride does not belong to connected user.
403 Cannot find potential passengers for a ride marked

as left.
403 Cannot find potential passengers for a ride which has

passed.
403 Cannot find potential passengers for a ride with no

more free seats.

Table 6.8: Get Potential Passengers - Exceptions

52

6.3 – API Calls

Confirm Passenger POST api/v1/ride/:rideID/confirm_passenger/:passengershipID/
It allows the connected user to confirm a passenger. The request carries a payload
with a datetime object representing the pick up time proposed to the passenger
(labelled pickup_time).

In table 6.9 there are all custom errors returned by this API call.

Exceptions
Code Reason
404 The match the user tried to confirm does not exist.
404 The ride related to the match does not exist.
403 The driver cannot confirm his own offer.
403 The passenger cannot confirm his own request.
403 Cannot confirm a match which has already been con-

firmed.
403 Cannot confirm a match which has been previously

rejected.

Table 6.9: Confirm Passenger - Exceptions

Confirm Driver GET api/v1/ride/:rideID/confirm_driver/:passengershipID/
It allows the connected user to confirm a driver.

In table 6.10 there are all custom errors returned by this API call.

Exceptions
Code Reason
404 The match the user tried to confirm does not exist.
404 The ride related to the match does not exist.
403 The passenger cannot confirm his own request.
403 Cannot confirm a match which has already been con-

firmed.
403 Cannot confirm a match which has been previously

rejected.

Table 6.10: Confirm Driver - Exceptions

53

6 – Appendices

Reject Match GET api/v1/ride/:rideID/reject/:passengershipID/
It allows the connected user to reject a match, that is either a pending lift demand
or a pending ride offer.

In table 6.11 there are all custom errors returned by this API call.

Exceptions
Code Reason
404 The match the user tried to reject does not exist.
404 The ride related to the match does not exist.
403 Cannot reject a match which has already been re-

jected.
403 Cannot reject a match which has been previously

confirmed.

Table 6.11: Reject Match - Exceptions

Offer ride POST api/v1/ride/:rideID/propose/:passengershipID/
It allows the connected driver to propose a ride to a potential passenger and awaits
for his answer. The request carries out a payload with a datetime object repre-
senting the pick up time proposed to the passenger (labelled pickup_time)

In table 6.12 there are all custom errors returned by this API call.

Leave ride GET api/v1/ride/:rideID/leave/

It allows the connected driver to inform he has left and therefore send a push
notification to accepted passengers so they get ready to be picked up.

In table 6.13 there are all custom errors returned by this API call.

6.3.4 Demand API
This API deals with all requests regarding ride demands, that is demand creation
and deletion, finding potential drivers and similar.

Register demand POST api/v1/demand/register/
It allows the connected passenger to register a new lift demand. The request pay-
load is a Demand object model.

54

6.3 – API Calls

Exceptions
Code Reason
404 The demand to which the driver wants to propose

the ride does not exist.
404 The request does not contain a pick up time JSON

payload, or the format is not valid (format must be:
YYYY-MM-DDTHH:MM:SS).

403 Cannot propose a ride to a demand already matched
by another ride.

403 The driver cannot propose a lift more than once to
the same demand.

403 Cannot propose a lift with a ride marked as left.
403 Cannot propose a lift with a ride with passed start

time.
403 Cannot propose a lift if the ride has no more empty

seats.

Table 6.12: Propose Ride - Exceptions

Exceptions
Code Reason
404 The ride does not exist.
403 The ride is already marked as left.

Table 6.13: Leave Ride - Exceptions

55

6 – Appendices

Get demand GET api/v1/demand/:demandID/
It allows the connected user to get information about an existing lift demand. Cur-
rently the data can be read by any connected user (not just the resource owner).

This request also has optional parameters to be used in order to fully retrieve
some related resources, such as confirmed, rejected or pending lift requests or ride
offers, as shown in table 6.14.

Request Parameters
Parameter Description
full_passengership By passing the parameter full_passengership set to

1, the retrieved data will contain detailed informa-
tion about drivers related to the ride and whether
the lift is confirmed, rejected or still pending.

Table 6.14: Get demand request - Optional parameters

Get all demands GET api/v1/demand/
It allows the connected passenger to get a list of all owned ride demands.

Delete demand DELETE api/v1/demand/:demandID/cancel/
It allows the connected passenger to delete an existing demand.

In table 6.15 there are all custom errors returned by this API call.

Exceptions
Code Reason
404 The demand does not exist.
403 Cannot delete a demand already accepted/rejected.

Table 6.15: Delete Demand - Exceptions

Get potential drivers GET api/v1/demand/:demandID/potential_drivers/
It allows the connected passenger to find potential drivers for a given demand.
Potential drivers are identified based on two optional parameters, as reported in
table 6.16.

In table 6.17 there are all custom errors returned by this API call.

56

6.3 – API Calls

Request Parameters
Parameter Description
radius Distance of passenger origin and destination loca-

tions with respect to the ride path (this defaults to 2
kms). The bigger the radius, the more the identified
potential drivers.

tolerance The passenger arrival tolerance. The bigger the tol-
erance, the more the identified potential drivers (de-
faults to the tolerance provided at demand creation
time).

Table 6.16: Potential drivers request - Optional parameters

Exceptions
Code Reason
404 The demand does not exist.
403 Cannot find potential drivers for a demand already

accepted.
403 Cannot find potential drivers for an old demand.

Table 6.17: Potential Drivers - Exceptions

57

6 – Appendices

6.3.5 Passengership API
This API class only implements the request to submit a feedback related to a match.

Submit Feedback POST api/v1/passengership/:passengershipID/feedback/
It allows the connected user to submit a feedback for the driver or passenger asso-
ciated to the given match. The request payload is a Passengership object model.

In table 6.18 there are all custom errors returned by this API call.

Exceptions
Code Reason
403 Missing required data (e.g. the vote or the descrip-

tion).
403 The user has already written a feedback.
403 The user is not allowed to write this feedback.

Table 6.18: Feedback - Exceptions

58

Bibliography

[1] Cuvelier Thibaut, June 2015, Developing a website for ULg carpooling.
http://www.montefiore.ulg.ac.be/~tcuvelier/?page=projects#
car-on-the-hill

[2] Vagrant enables users to create and configure lightweight, reproducible, and
portable development environments.
https://www.vagrantup.com/

[3] SourceTree is a free Git and Mercurial client for Windows or Mac.
https://www.sourcetreeapp.com/

[4] PyCharm is a lightweight IDE for Python with support of Web development
with Django framework.
https://www.jetbrains.com/pycharm/

[5] Android Studio: the official IDE for Android.
https://developer.android.com/studio/index.html

[6] Django: web framework.
https://www.djangoproject.com/

[7] Gson: an open source Java library to serialise and deserialise Java objects to
(and from) JSON.
https://github.com/google/gson

[8] Tastypie: a web-service API framework for Django.
https://django-tastypie.readthedocs.io/

[9] The Model-View-Controller (MVC) design pattern.
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm

[10] BlaBlaCar: market leader in carpooling solutions.
https://www.blablacar.be

[11] Université de Liège: the Wikipedia page.
https://en.wikipedia.org/wiki/University_of_Li%C3%A8ge

[12] Representational state transfer: architectural style of application program-
ming interfaces.
https://en.wikipedia.org/wiki/Representational_state_transfer

[13] Lazy loading: design pattern commonly used in computer programming to

59

http://www.montefiore.ulg.ac.be/~tcuvelier/?page=projects#car-on-the-hill
http://www.montefiore.ulg.ac.be/~tcuvelier/?page=projects#car-on-the-hill
https://www.vagrantup.com/
https://www.sourcetreeapp.com/
https://www.jetbrains.com/pycharm/
https://developer.android.com/studio/index.html
https://www.djangoproject.com/
https://github.com/google/gson
https://django-tastypie.readthedocs.io/
http://www.tutorialspoint.com/design_pattern/mvc_pattern.htm
https://www.blablacar.be
https://en.wikipedia.org/wiki/University_of_Li%C3%A8ge
https://en.wikipedia.org/wiki/Representational_state_transfer

Bibliography

defer initialisation of an object until the point at which it is needed.
https://en.wikipedia.org/wiki/Lazy_loading

[14] Geopy is a Python 2 and 3 client for several popular geocoding web services.
https://pypi.python.org/pypi/geopy

[15] Vincenty’s formulae are two related iterative methods used in geodesy to cal-
culate the distance between two points on the surface of a spheroid.
https://en.wikipedia.org/wiki/Vincenty%27s_formulae

[16] Firebase Cloud Messaging (FCM) is a cross-platform messaging solution that
lets you reliably deliver messages at no cost.
https://firebase.google.com/docs/cloud-messaging/

[17] Google Cloud Messaging (GCM) service handles all aspects of queueing of
messages and delivery to client applications running on target devices.
https://developers.google.com/cloud-messaging/

60

https://en.wikipedia.org/wiki/Lazy_loading
https://pypi.python.org/pypi/geopy
https://en.wikipedia.org/wiki/Vincenty%27s_formulae
https://firebase.google.com/docs/cloud-messaging/
https://developers.google.com/cloud-messaging/

	Abstract
	Acknowledgements
	Introduction
	Previous Work
	Project Requirements
	Setting Up the Environment

	Architecture and Technology
	Django Backend
	Tastypie API
	Requests Authentication
	Communication with API
	Data Serialisation with Gson

	External Services: Google APIs
	Registration Mechanism and Automatic Login
	Ride-Demand: Matching Algorithm
	Market Research
	How It Works
	Geopy

	Real-Time Notifications
	Connectivity Monitoring
	Errors Handling
	Localisation

	App Structure
	Introduction
	Activity Package
	Activities Hierarchy

	Adapter Package
	Data Package

	Use Cases
	Introduction
	Registration and Login
	Driver Mode
	Add new rides
	Find potential passengers
	Submit Feedback

	Passenger Mode
	Ask lift
	Find potential drivers

	User Profile

	Conclusions
	Final Result
	Future works and Improvements
	GPS Functionality
	Payment System
	JUnit Testing

	Appendices
	Data Model
	User
	Preference
	Vehicle
	Device
	Trip
	Ride
	Ride Status
	Demand
	Tolerance
	Graph
	Node
	Edge
	Path
	Passengership

	Code Snippets
	Authenticator class
	Connectivity receiver

	API Calls
	Node API
	User API
	Ride API
	Demand API
	Passengership API

	Bibliography

