
POLITECNICO DI MILANO 

School of Industrial and Information Engineering 

Master of Science in Automation and Control Engineering 

 

 

 

 

 

 

 

REALIZATION OF INTELLIGENT SYSTEMS FOR THE 

OBSERVATION, IDENTIFICATION AND 

CLASSIFICATION OF GEOSTATIONARY AND LOW 

ORBIT SATELLITES 

 
Advisor: 

Prof. Marco Lovera 

 

Co-Advisors: 

Prof. Roberto Furfaro  

Prof. Pierluigi Di Lizia 

Prof. Vishnu Reddy 

Master Thesis by: 

Simone Bellesia 

Student ID 839322 

 

Academic Year 2015-2016 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



 

 

 

 

 

 

 

 

 

 

 

“Here’s to the crazy ones. The misfits. The rebels. 

The troublemakers. The round pegs in the square 

holes. The ones who see things differently. They’re 

not fond of rules. And they have no respect for the 

status quo. You can quote them, disagree with them, 

glorify or vilify them. About the only thing you can’t 

do is ignore them. Because they change things. They 

push the human race forward. And while some may 

see them as the crazy ones, we see genius. Because 

the people who are crazy enough to think they can 

change the world, are the ones who do”.  

 
To my family 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                  I 

                                                    

 

Statement of Autorship 

 
I declare on oath that I completed this work on my own and that information which has 

been directly or indirectly taken from other sources has been noted as such. Neither this, nor a 

similar work, has been published or presented to an examination committee. 

 

 

 

Tucson, March 18, 2017 

 

 

 

 

 

 

 

 

 

 



II 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                  III 

                                                    

 

Acknowledgements 

 
Gaining an experience in the United States is an opportunity which has always inspired me, 

since I was a child. These five months have been very enriching for me both from the academic 

and the social point of view. This experience helped me a lot to grow as a person. That is the 

reason why, first of all, I would like to thank Prof. Roberto Furfaro, who accepted me at the 

University of Arizona even without knowing me. He has been very kind and welcoming during 

all my stay, other than the fact that he taught me a lot of things and he guided me along all 

this path. According to this I would like to give thanks to Prof. Francesco Topputo, who has 

supported me from the beginning.  

I would like to thank my advisor Prof. Marco Lovera for having made this thesis possible 

and for the interest in my research, and my co-advisor Prof. Pierluigi Di Lizia for his brilliant 

advices and for all the support. They have been very helpful even if far away. Thank you! 

Moreover, I am also very thankful to my second co-advisor in Arizona, Prof. Vishnu Reddy, 

incredible and very affable person, to Dr. Michael Mommert, for the great hospitality during my 

stay in Flagstaff and for the availability, to Prof. Jeffrey Larsen and to Prof. Richard Linares 

for their useful suggestions.  

Furthermore, I would like to thank the friends I met here in Tucson: Remi, Linda, Vishnu, 

Omar, Faisal, Sahand, Ethan and Saheed. They are very friendly guys and they have gladdened 

my stay in a wonderful way. Many thanks also to Federico, Matteo, Andrea and Barbara for 

these amazing two years together at Politecnico di Milano.  

 I would like to give special thanks to my mates here in Arizona: Giulia and Roberto. They 

have been the best mates I could ask for and they made me feel like at home. Love you guys! 

Finally, being abroad and far away could be difficult, but it is not if you know that someone 

is waiting for you in the other side of the world. That is why, last but not least, I would like to 

thank very much my family, who has always supported me in all my choices and whom I love, 

and all my friends, the family I have chosen.    

   

  

 

      

 



IV 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                  V 

                                                    

 

Ringraziamenti  

 
Fare un’esperienza negli Stati Uniti è  un’opportunità  che mi ha sempre ispirato, fin da 

quando ero piccolo. Questi cinque mesi mi hanno arricchito molto sia sotto l’aspetto accademico 

che sotto quello sociale. Questa esperienza mi ha aiutato a crescere come persona. Questa è  la 

ragione per cui, prima di tutto, voglio ringraziare il Prof. Roberto Furfaro, che mi ha accettato 

alla University of Arizona anche senza conoscermi. E’ sempre stato molto gentile e accogliente 

durante tutto il soggiorno, oltre al fatto che mi ha insegnato molte cose e mi ha guidato lungo 

tutto il percorso. A proposito di ciò , vorrei ringraziare il Prof. Francesco Topputo, che mi ha 

supportato fin dall’inizio. 

Voglio ringraziare il mio relatore Prof. Marco Lovera per aver reso possibile questa tesi e per 

l’interesse dimostrato nella mia ricerca, e il mio correlatore Prof. Pierluigi Di Lizia per i suoi 

brillanti consigli e per tutto il supporto. Entrambi sono stati molto utili anche se lontani. Grazie 

mille! 

Inoltre, sono molto riconoscente al mio secondo correlatore in Arizona, Prof. Vishnu Reddy, 

persona incredibile e molto affabile, al Dr. Michael Mommert, per la sua grande ospitalità  

durante il mio soggiorno a Flagstaff e per la disponibilità , al Prof. Jeffrey Larsen e al Prof. 

Richard Linares per i loro utilissimi consigli. 

Inoltre, vorrei ringraziare gli amici che ho incontrato qua a Tucson: Remi, Linda, Vishnu, 

Omar, Faisal, Sahand, Ethan e Saheed. Sono ragazzi molto simpatici e hanno allietato questi 

mesi in modo fantastico. Un sentito ringraziamento anche a Federico, Matteo, Andrea e Barbara 

per questi due anni eccezionali trascorsi insieme al Politecnico di Milano. 

Vorrei riservare un grazie speciale ai miei compagni qua in Arizona: Giulia e Roberto. Sono 

stati i migliori compagni d’avventura che avrei potuto desiderare e mi hanno fatto sentire a casa. 

Vi voglio bene ragazzi! 

Infine, essere all’estero e lontani da casa può  essere difficile, ma non lo è  se sai che c’è  

qualcuno che ti aspetta dall’altra parte del mondo. Per questo motivo, ultimo ma non ultimo, 

vorrei ringraziare la mia famiglia, che mi ha sempre supportato nelle mie scelte e che amo, e 

tutti i miei amici, la famiglia che mi sono scelto. 

 

 



VI 

                                                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                  VII 

                                                    

 

Abstract 

 
Satellites in orbit around Earth are used in many areas and disciplines, including space 

science, navigation, meteorology, climate research, telecommunication and many others. They 

offer a unique resource for collecting scientific data, which lead to unrivalled possibilities for 

research and exploitation, both scientific and commercial. However, in the past decades, with 

the increasing of space activities, the number of space objects orbiting around Earth has 

dramatically increased. The reasons are that more and more countries have achieved a presence 

in space and that there has been a growth in the number of inactive and debris objects. In 

February 2009 a collision occurred between an active Iridium communication satellite and a 

defunct Russian satellite. It happened at an altitude that will ensure a long life for the resultant 

debris cloud. It was a total unexpected accidental collision that catapulted the concept of Space 

Situational Awareness (SSA) to the fore. SSA refers to the ability to view, understand and 

predict the physical location of natural and manmade objects in orbit around the Earth, with 

the objective of increasing knowledge and avoiding collisions. This thesis fits in the field of SSA. 

In particular, the main goal is to study and develop techniques in order to realize intelligent 

systems to observe, identify and classify geostationary and low orbit satellites. Since the subject 

is too wide, only three problems are examined. 

The first task is the realization of an astrometry and photometry pipeline to automatically  

extract information related to the position and the brightness of targets from telescope images. 

Two solutions are presented: a simple solution built “from scratch” and a more complex one 

which makes use of already existing programs available online. The second part investigates how 

to classify the shape/control of an object starting from its light curve through machine learning 

algorithms (especially through a recent method called Extreme Learning Machines). Finally, the 

third problem is associated with sensor management via Q-learning, where the goal is to maintain 

knowledge over a given number of geostationary satellites using a limited number of sensing 

platforms. 

The results are particularly satisfactory. The complex pipeline is shown to perform very good 

with real images depicting satellites. Then, the accuracy of the classification procedure turns out 

to be around 95% and the Extreme Learning Machines present a very fast learning with respect 

to traditional algortihms. Finally, the Q-learning applied to the sensor tasking problem with 3 

satellites works properly.    
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Sommario 

 
I satelliti in orbita intorno alla Terra sono utilizzati in svariate aree e discipline, tra cui la 

scienza spaziale, la navigazione, la meteorologia, le telecomunicazioni e tante altre. Essi offrono 

una risorsa unica per la raccolta di dati scientifici, che porta a opportunità  impareggiabili per 

quanto riguarda la ricerca e possibili utilizzi sia scientifici che commerciali. Tuttavia, negli ultimi 

decenni, con l’aumento delle attività  spaziali, il numero di oggetti in orbita intorno alla Terra 

è  drammaticamente aumentato. Le ragioni sono che sempre più  stati hanno raggiunto una 

presenza nello spazio e che si è  verificata una crescita degli oggetti inattivi e dei detriti. Nel 

Febbraio 2009 è  avvenuta una collisione tra il satellite attivo per la comunicazione Iridium e un 

satellite Russo inattivo, ad un’altitudine che garantirà  una lunga sopravvivenza alla nuvola di 

detriti creata. Si è  trattato di una collisione accidentale totalmente inaspettata che ha portato 

alla ribalta il tema della Space Situational Awareness (SSA). Il termine SSA si riferisce all’abilità  

di osservare, capire e predire la posizione fisica di oggetti naturali o creati dall’uomo in orbita 

intorno alla Terra, con l’obiettivo di aumentare la conoscenza ed evitare collisioni. La tesi rientra 

nell’ambito della SSA. In particolare, l’obiettivo principale è  lo studio e lo sviluppo di tecniche 

per la realizzazione di sistemi intelligenti per osservare, identificare e classificare satelliti 

geostazionari e in orbita bassa. Dato che il tema è  molto vasto, solamente tre problemi sono 

esaminati.  

Il primo compito riguarda la realizzazione di una procedura per l’astrometria e la fotometria 

in modo da estrarre automaticamente informazioni riguardanti la posizione e la luminosità  di 

alcuni oggetti da immagini prese da un telescopio. Vengono presentate due soluzioni: una 

semplice costruita da zero e una più  complessa che utilizza programmi esistenti disponibili in 

rete. La seconda parte studia come classificare la forma/controllo di un oggetto spaziale a partire 

dalla sua curva di luce attraverso algoritmi di machine learning (specialmente attraverso un 

recente metodo chiamato Extreme Learning Machines). Infine, il terzo problema è  associato alla 

gestione di sensori ottici per mezzo del Q-learning, in cui l’obiettivo è  osservare un certo numero 

di satelliti geostazionari usando un limitato numero di sensori.  

I risultati sono particolarmente soddisfacenti. La procedura complessa delineata nella prima 

parte si comporta molto bene con immagini reali che includono satelliti. Successivamente, 

l’accuratezza del procedimento di classificazione risulta essere intorno al 95% e il metodo Extreme 

Learning Machines presenta un apprendimento molto veloce rispetto agli algoritmi tradizionali. 

Infine, il Q-learning applicato al problema sensoristico con 3 satelliti funziona in maniera 

appropriata.       
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Introduction 

 
“The danger of asteroid or comet impact is one of the best reasons for getting 

into space. I’m very fond of quoting my friend Larry Niven: ‘The dinosaurs 

became extinct because they didn’t have a space program. And if we become 

extinct because we don’t have a space program, it’ll serve us right!’” 

(Arthur C. Clarke, Writer, Author and Inventor) 

 

The U.S. Air Force has maintained a catalogue of Space Objects (SOs) since the dawn of 

the space age and the network of sensors that provides the data for this catalogue is called the 

Space Surveillance Network (SSN) [1]. Over the past decades, the number of SOs has 

dramatically increased for two main reasons: the first one is that more and more countries have 

achieved a presence in space, the second one is that there has been a growth in the number of 

inactive and debris objects.  

In addition to this trend, space has become a crucial region during the years. Space-based 

systems are indispensable to many services critical to economy and government functions, 

including those related to security. This dependency will only increase in the future. Any 

shutdown or loss of services from these systems would seriously affect an enormous range of 

commercial and civil activities, including commercial land, air and sea travel, maritime 

navigation, telecommunications, information technology and networks, broadcasting, climate 

monitoring, and so on [2]. It is possible to think about a catastrophic but possible situation: if 

space debris or unknown objects, for some reasons, hit some GPS satellites1, significant problems 

would be caused for the security and the normal operation of the land transports system. This 

is only one of the many examples which can be listed. 

What has been said so far is a great motive for the need to support and invest in the space 

surveillance and this is why a large number of space agencies (especially National Aeronautics 

                                                           

1 A GPS satellite is a satellite used by the NAVSTAR Global Positioning System (GPS). 

The first satellite in the system, Navstar 1, was launched February 22, 1978. The GPS satellite 

constellation is operated by the 50th Space Wing of the U.S. Air Force. The GPS satellites circle 

the Earth at an altitude of about 20,000 km and complete two full orbits every day [3].  
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and Space Administration (NASA) and European Space Agency (ESA)) is devoting a lot of time 

and effort to it. Furthermore, the growth in the number of SOs is stressing the capability of the 

SSN creating a need for new approaches for improving Space Situational Awareness (SSA). For 

example, SSA has become a key mission area for the U.S. Air Force which is tasked with 

collecting tracking data on over 22000 SOs, 1100 of which are active, currently being tracked 

[4]. 

The SSA procedure includes: 

 CATALOG MAINTENANCE. Obviously, there exists a catalogue that 

contains all the information about the known objects. This list tracks the 

position and some orbital knowledge of each object, but it must be updated. 

Indeed, the models used to propagate the state of a body are becoming more 

and more precise, but they cannot take into account everything. There will be, 

then, some unmodeled dynamics that will make the uncertainty on the state 

grow with time and for this reason long term predictions are usually not useful. 

The principal task of this part is, so, keeping the catalogue updated. 

 CLASSIFICATION. Due to the large number of SOs and the limited number 

of sensors available to track them, it is difficult to maintain persistent 

surveillance, and, therefore, there is inherent uncertainty and latency in the 

knowledge of the SO population. Although the amount of light collected from 

these objects is small, information can still be extracted from photometric data 

which can be used to determine shapes and other properties. Light curve data 

are the time-varying sensor wavelength–dependent apparent magnitude of 

energy (e.g., photons) scattered (reflected) off of an object along the line-of-

sight to an observer. For example, based on the photometric data got from the 

object, it is possible to understand its size, attitude, shape and spin control in 

order to improve knowledge over catalogued bodies or to begin to collect 

knowledge over unknown ones.  

 

These are, clearly, good reasons to invest money in the field and to study how to improve 

the actual situation with reasonable and pioneering solutions.  

To support the cause and to bring a contribution, the University of Arizona is, as this 

introduction is written, currently building, under the leadership of Prof. Vishnu Reddy and with 

the help of the students, a telescope which will be operative in the coming years. The idea on 

which this work is based is to study and develop techniques in order to realize intelligent systems 

to observe, identify and classify space objects. In particular, this thesis is focused only on 

geostationary and low orbit satellites.  

Technically, objects in Low-Earth-Orbit (LEO) are at an altitude of between 160 to 2000 

km (99 to 1200 mi) above the Earth’s surface. Any object below this altitude will suffer from 

orbital decay and will rapidly descend into the atmosphere, either burning up or crashing on the 

surface. Objects at this altitude also have an orbital period (i.e., the time it will take them to 
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orbit the Earth once) of between 88 and 127 minutes. The vast majority of missions to space 

over the years, be they crewed or uncrewed, have been to LEO. It is here, indeed, that the 

Earth’s vast array of communications, navigation and military satellites reside. And it is here, 

for example, that the International Space Station (ISS) conducts its operations, which is also 

where the majority of crewed missions today go [5].  

A geostationary satellite, instead, is an Earth-orbiting satellite placed at an altitude of 

approximately 35800 km (22300 mi) directly over the equator, that revolves in the same direction 

the Earth rotates (west to east). An object in such an orbit has an orbital period equal to the 

Earth’s rotational period (one sidereal day) and thus appears motionless, at a fixed position in 

the sky, to ground observers. Communications satellites and weather satellites are often placed 

in geostationary orbits, so that the satellite antennas (located on Earth) that communicate with 

them do not have to rotate to track them, but can be pointed permanently at the position in 

the sky where the satellites are located.  

Everything that is presented in this work is designed for the telescope under development at 

the University of Arizona, but obviously the discussion is totally versatile and can be applied to 

every kind of instrument able to observe the sky. But, as the subject is so extended, the amount 

of work and possible implementations is considerable. That is the reason why this work considers 

only three contents: the realization of an astrometry and photometry pipeline, the classification 

procedure and the sensor tasking problem. 

The project is particularly important since intelligent systems for this purpose have never 

been made. So far, indeed, telescopes have only been used to take images of the sky possibly 

with the aid of some programs which, however, are not able to identify eventual targets or to 

recognize unknown moving objects. The astrometry and photometry solution of each image is 

nowadays made manually using some software (e.g., Astrometrica) which cannot be 

automatized. Hence the need to build some intelligent systems which can solve this job 

automatically. The application of machine learning algorithms, finally, allows to extract 

information directly from the data without any user intervention. Moreover, they are intelligent 

techniques since, after the training, they make the system able to guarantee a satisfactory 

operation in every possible situation.    

  

The thesis is organized as follows. 

The introduction includes the motivation and the organization of the thesis. 

Chapter 1 is intended to be a kind of manual for the realization of an astrometry and 

photometry pipeline. In the first part, a personal simple solution “from scratch” is presented and 

explained. Then, a more complex solution developed by Dr. Mommert, post-doctoral researcher 

at the Department of Physics and Astronomy at Northern Arizona University in Flagstaff, is 

shown. Since it is designed for asteroids, a personal integration is realized in order to work also 

with satellites.  

The second subject of the thesis, the classification procedure, is elucidated in Chapter 2. The 

problem, that is trying to classify objects from their light curve, is faced with machine learning 

http://nau.edu/
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algorithms and, especially, with a new and interesting one, the Extreme Learning Machines 

(ELM). 

Chapter 3 is about the explanation of a sensor tasking and management issue for optical 

space objects tracking. Q-learning, that is an example of reinforcement learning technique, is 

used for the purpose. 

The last Chapter, 4, contains the conclusions of the thesis and provides an insight into future 

works.           
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Chapter 1 

 Pipeline 

 
“The contemplation of celestial things will make a  

man both speak and think more sublimely and  

magnificently when he descends to human affairs.” 

(Marcus Tullius Cicero, Philosopher, Politician and Orator) 

 

This chapter is focused on the realization of an astrometry and photometry pipeline for the 

observation of geostationary and low orbit satellites through a telescope. The sections explains 

in an exhaustive way the main concepts in the interest of creating a kind of manual on the 

argument: at the beginning some basics of astronomy in order to allow the reader to understand 

as much as possible, then a simple personal solution “from scratch” and at the end a working 

and well designed solution which makes use of existing free online programs. 

 

1.1 Problem setting and fundamentals  

In this section the problem to be faced is set and all the fundamentals that are necessary to 

understand its definition and the development of the solution are described. The theory explained 

in this chapter should be sufficient to comprehend also the arguments of the other chapters. 

1.1.1 Definition of the problem 

As the title of this chapter, the main goal is to develop an astrometry and photometry 

pipeline that can be used for the images taken by a telescope. It is then necessary to explain 

better the meaning of these three terms and why they are really important for the realization of 

an intelligent system to observe, identify and classify geostationary and low orbit satellites: 

 ASTROMETRY. Astrometry is the branch of astronomy that involves precise 

measurements of the positions and movements of stars and other celestial bodies. 
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 PHOTOMETRY. Photometry is the science of measurement of light, in terms of its 

perceived brightness to the human eye.  

 PIPELINE. The term pipeline generally refers to the process of data reduction. More 

specifically, it usually refers to a well-established, largely (or entirely) automated 

series of data reduction processes associated with a particular instrument or type of 

data. 

 

Therefore,  in this chapter a solution for this kind of issue is explained: given an image, or a 

set of images, taken by a telescope or by an instrument that is able to observe and take a picture 

of the sky, that includes one or more space objects, obtain their angular coordinates and collect 

information about their brightness and light curve2. In particular, as the title of the thesis, the 

whole discussion concerns geostationary and low orbit satellites. 

1.1.2 Fundamentals  

Once the problem is set, the theoretical fundamentals which this work is based on are 

illustrated. 

1.1.2.1 Keplerian elements 

Seven parameters are necessary to define an orbit of a body (so also of a satellite) about a 

spherically symmetric body [6]. One is the gravitational parameter, generally denoted by the 

symbol 𝜇. There are many ways of representing the other six elements. The two most popular 

are position and velocity (𝑟 and 𝑣) vectors and Keplerian elements. The first ones, also called 

Cartesian elements, are well known, the second ones are represented in Figure 1.1 and are defined 

as follows: Ω is the longitude or right ascension of the ascending node3, or the angle from the 

reference direction to the line where the orbit plane intersects the 𝑥𝑦-plane; 𝜔 is the argument 

of periapsis and is the angle in the orbit plane between the ascending node line and periapsis 

(where the orbit is closest to the center of the central body); 𝜈 is the true anomaly and is the 

angle between periapsis and the object; 𝑖 is the inclination and is the angle between the 𝑥𝑦-plane 

and the orbit plane; the size of the orbit is determined by the semi major axis 𝑎, which is the 

                                                           

2 A light curve is a graph of light intensity of a celestial object as a function of time (generally 

taken in a particular frequency or spectral bandwidth). 

3 The ascending node is the point in an orbit where a body traveling from south to north 

crosses a reference plane, such as the plane of the ecliptic (in the case of a Solar System object) 

or the celestial equator. The opposite point in the orbit, where the body moves from north to 

south across the reference plane, is the descending node [7]. 
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average of the periapsis radius and apoapsis radius; and the final parameter is 𝑒, the eccentricity, 

which determines the shape of the orbit. The mean anomaly 𝑀 may be used in the element set 

instead of 𝜈. To summarize, the Cartesian and the Keplerian elements are: 

 

 

𝑥 =

[
 
 
 
 
 
 
𝜇
𝑟𝑥
𝑟𝑦
𝑟𝑧
𝑣𝑥
𝑣𝑦
𝑣𝑧]
 
 
 
 
 
 

     CARTESIAN ELEMENTS 

 

𝑥 =

[
 
 
 
 
 
 
𝜇
𝑎
𝑖
Ω
𝜔
𝑒
𝑀]
 
 
 
 
 
 

          KEPLERIAN ELEMENTS 

 

 

Figure 1.1: Illustration of the Keplerian elements 
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1.1.2.2 TLE 

As it was said in the previous paragraph, the Keplerian elements are a set of numbers which 

allows satellite tracking programs to calculate a orbital body’s position in space. The Keplerian 

elements of this kind of objects for a given point in time, the epoch, come mainly in two formats, 

either the NASA two-line elements (TLE, also called NORAD TLE) or the AMSAT verbose 

format elements. In this work, only TLE are used. Once these elements are known for a specific 

time, the satellite’s position in space can be predicted using complex mathematical calculations.  

 

Naturally, tracking programs need accurate and recent data in order to generate accurate 

predictions. Space-Track.org is the primary distributor of U.S. Department of Defense (DoD) 

two-line orbital elements and related data, replacing NASA Goddard Space Flight Center’s 

Orbital Information Group (OIG) which permanently ceased operations on 2005 March 31.  

For this project, the TLE are taken from the open website celestrak.org, which relies on the 

Space-Track.org website and in which, depending on the objects, the TLE are updated once or 

twice a day. Indeed, TLE have one problem: they are given for a specific time and the accuracy 

of the position prediction degrades as time goes by. The suggestion is not to use TLE older than 

two weeks for low orbiting satellites and than four-five weeks for high orbiting ones. 

As shown in Figure 1.2, the TLE can include a title line preceding the element data. However, 

the title is not required, as each data line includes a unique object identifier code.  

In the following, an exhaustive explanation of the TLE format is given [8].  

 

1 AAAAAU YYLLLPPP  BBBBB.BBBBBBBB  .CCCCCCCC  DDDDD-D  EEEEE-E F GGGGZ 

2 AAAAA  HHH.HHHH III.IIII JJJJJJJ KKK.KKKK MMM.MMMM NN.NNNNNNNNRRRRRZ 

 

 [1] - Line #1 label 

 [2] - Line #2 label 

 [AAAAA] - Catalogue number assigned sequentially (5-digit integer from 1 to 99999) 

 [U] - Security classification (U = Unclassified) 

 [YYLLLPPP] - International designator (YY = 2-digit launch year; LLL = 3-digit 

sequential launch of the year; PPP = up to 3 letter sequential piece ID for that launch) 

 [BBBBB.BBBBBBBB] - Epoch time -- 2-digit year, followed by 3-digit sequential day 

of the year, followed by the time represented as the fractional portion of one day 

 [.CCCCCCCC] - �̈�/2 drag parameter (rev/day2) -- one half the first time derivative of 

the mean motion. This drag term is used by the SGP orbit propagator. 

Figure 1.2: Example of TLE for the International Space Station, 02/03/17 
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 [DDDDD-D] - �̈�/6 drag parameter (rev/day3) -- one sixth the second time derivative of 

the mean motion. The "-D" is the tens exponent (10-D). This drag term is used by the 

SGP orbit propagator. 

 [EEEEE-E] - Bstar drag parameter (1/Earth radii) -- Pseudo Ballistic Coefficient. The 

"-E" is the tens exponent (10-E). This drag term is used by the SGP4 orbit propagator. 

 [F] - Ephemeris type -- 1-digit integer (zero value uses SGP or SGP4 as provided in the 

project Spacetrack report). 

 [GGGG] - Element set number assigned sequentially (up to a 4-digit integer from 1 to 

9999). This number recycles back to "1" on the update following element set number 

"9999". 

 [HHH.HHHH] - Orbital inclination (from 0 to 180 degrees). 

 [III.IIII] - Right ascension of the ascending node (from 0 to 360 degrees). 

 [JJJJJJJ] - Orbital eccentricity -- there is an implied leading decimal point (between 0.0 

and 1.0). 

 [KKK.KKKK] - Argument of periapsis (from 0 to 360 degrees). 

 [MMM.MMMM] - Mean anomaly (from 0 to 360 degrees). 

 [NN.NNNNNNNN] - Mean motion (revolutions per day). 

 [RRRRR] - Revolution number (up to a 5-digit integer from 1 to 99999). This number 

recycles following revolution number 99999. 

 [Z] - Check sum (1-digit integer). Both lines have a check sum that is computed from 

the sum of all integer characters on that line plus a "1" for each negative (-) sign on 

that line. The check sum is the modulo-10 (or ones digit) of the sum of the digits and 

negative signs. 

1.1.2.3 Reference systems 

A reference system is a sytem with respect to which a certain body or phenomenon is 

measured or some measurements are specified. Obviously, there are plenty of them, each one 

with its rigorous definition. The reference systems used in this paper are explained in the 

following. 

- EARTH-CENTERED, EARTH-FIXED (ECEF) COORDINATE SYSTEM 

ECEF is a geographic coordinate system and Cartesian coordinate system, and is 

sometimes known as a “conventional terrestrial” system. It represents positions as an X, 

Y and Z coordinate with the origin at the Earth’s center of mass. The x-axis extends 

through the intersection of the prime meridian (0º longitude) and the equator (0º 

latitude), the z-axis extends through the north pole (i.e. coincident with the Earth spin 

axis), the y-axis completes the right-handed coordinate system, passing through the 

equator and 90º longitude, as shown in Figure 1.3 [9]. 
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- EARTH-CENTERED INERTIAL (ECI) COORDINATE SYSTEM 

ECI coordinate frames have their origins at the center of mass of the Earth. ECI frames 

are called inertial in contrast to ECEF frames which rotate in inertial space in order to 

remain fixed with respect to the surface of the Earth. The most known are: 

J2000. One commonly used ECI frame is defined with the Earth’s Mean Equator and 

Equinox4 at 12:00 Terrestrial Time on January 1, 2000. The x-axis is aligned with the 

mean equinox. The z-axis is aligned with the Earth’s spin axis or celestial North Pole. 

The y-axis is rotated by 90ºEast about the celestial equator. 

TEME. The ECI frame used for TLE is sometimes called true equator, mean equinox 

(TEME) although it does not use the conventional mean equinox. 

 

 

                                                           

4 The fundamental plane of an astronomical reference system has conventionally been the 

extension of the Earth’s equatorial plane, at some date, to infinity. The equinox is the point at 

which the Sun, in its yearly circuit of the celestial sphere, crosses the equatorial plane moving 

from south to north. The Sun’s apparent yearly motion lies in the ecliptic, the plane of Earth’s 

orbit. The equinox, therefore, is a direction in space along the nodal line defined by the 

intersection of the ecliptic and equatorial planes; equivalently, on the celestial sphere, the 

equinox is at one of the two intersections of the great circles representing these planes. Because 

both of these planes are moving, the coordinate systems that they define must have a date 

associated with them; such a reference system must be therefore specified as “the equator and 

equinox of [some date]” [10].  

Figure 1.3: Illustration of the ECEF coordinate system 
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- SPHERICAL EQUATORIAL COORDINATE SYSTEM  

The equatorial coordinate system is a celestial coordinate system widely used to specify 

the positions of celestial objects. The spherical coordinates are a different definition of 

the ECI coordinates. Indeed, the reference system is the same, but the ECI coordinates 

are rectangular (defined as X, Y and Z), instead the ones described here are spherical. 

Body’s spherical coordinates are often expressed as a pair, right ascension and 

declination. The declination (dec) of an object is its angular distance north or south of 

the equatorial plane. The right ascension (RA), instead, is its angular distance measured 

eastward along the equator from the equinox (Figure 1.4).  

For stars these coordinates do not change with the observer position, but this happens 

for satellites or other relatively close bodies. This can be misleading and not intuitive, 

but the explanation is that RA and dec indicate the positions on the background sky: 

stars can be described by fixed spherical coordinates because they are infinitely far and 

do not move relatively to one another when the position of the observer changes. 

Satellites are much closer, so if the observer moves they will move compared to the star 

background. 

 

1.1.2.4 Telescope images 

Flexible Image Transport System (FITS) is an open standard (based on a specification, the 

“FITS Reference”, publicly available) defining a digital file format useful for storage, transmission 

and processing of scientific and other images. FITS format is currently the most common used 

format in astronomy and there are many software applications for creating and viewing files in 

FITS format and for their conversion from and to other image formats [11]. The success of this 

kind of format is due to the fact that it is designed specifically for scientific data: each FITS file 

consists of a header that carries keyword/value pairs and of an image data block. Furthermore, 

the information relating to the pixels of the images are stored in a very simple way, without any 

Figure 1.4: Illustration of right ascension and declination 
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compression; due to its simplicity it is possible to read a file in FITS format using basic software 

tools. 

All the images made by a telescope used in this paper are in FITS format and the header 

reports important features like: 

- the number of bits used to represent each pixel of the image; 

- the time and Julian date5 of the observation; 

- the exposure time in seconds, which is the length of time when the film or digital sensor 

inside the camera of the telescope is exposed to light; 

- the height and width in pixels of the image; 

- the name, latitude and longitude of the observer; 

- the name of the target (if present); 

- the right ascension and declination of the center of the image; 

- the focal length of the telescope, aperture diameter, pixel scale (defined as arcsec/pixel) 

and field of view (defined in degrees). 

 

1.2 Astrometry and photometry pipeline  

In this section the outline to realize an astrometry and photometry pipeline is drafted and 

all its passages are deeply described, with also examples regarding real images. A final solution, 

realized for geostationary and low orbit satellites, is presented.     

1.2.1 Outline 

The steps to be solved in order to reach the goal are: 

1. OPEN IMAGE  

2. READ THE HEADER 

3. FETCH STAR CATALOGUE(S) (online or local) 

4. PLATE SOLVE THE IMAGE (plate solve, in astronomic language, means to match 

the stars in the image to a given star catalogue) 

5. CHECK TLE PREDICTIONS FOR OBJECTS IN THE FIELD OF VIEW 

6. PLOT PREDICTED POSITIONS ON IMAGE 

7. IDENTIFY MOVING TARGETS  

                                                           

5 The Julian date is the number of elapsed days (and fractions of day) since the beginning 

of a cycle of 7,980 years, invented by Joseph Scaliger in 1583. The purpose of the system is to 

make it easy to compute difference between one calendar date and another calendar date. The 

starting point for the first Julian cycle began on January 1, 4713 B.C. and will end on January 

22, 3268. The following day will begin the first day of the second Julian date period. 
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8. ASTROMETRY AND PHOTOMETRY (obtain real angular coordinates and 

magnitude of the objects) 

1.2.2 Getting started 

Reading the outline defined at the previous paragraph, it is clear that the first two points 

are really straightforward and are well explained in paragraph 1.1.2.4. So, from now on, the 

successive problems are faced. First of all, how to manage and access star catalogues.  

1.2.2.1 Star catalogues  

A star catalogue is an astronomical catalogue that lists stars. There is an incredible large 

number of them which have been produced for different purposes over the years. Star catalogues 

were compiled by many different ancient people, including the Babylonians, Greeks, Chinese, 

Persians and Arabs. Most modern catalogues are available in electronic format and can be freely 

downloaded from space agencies data center.  

There are two main ways to access star catalogues: using programs that query online servers 

which contain a large number of catalogues or using a local copy of the catalogue and reading 

it.  

The first option would obviously lead to more accurate results and it would be easier to use 

since there is the possibility to make the program search inside some very equipped catalogues. 

There are some open source solutions: “scat” is a utility in the WCSTools package (made by the 

Smithsonian Astrophysical Observatory) for finding from a specified catalogue objects which are 

located in a specified region of the sky [12] and “VizieR” is a tool created by the Observatoire 

astronomique de Strasbourg which provides access to the most complete library of published 

astronomical catalogues and data tables available online [13]. But, contrary to what it seems, 

handling these tools in an automated way, as the goal, is not easy at all and secondly this 

procedure is not instructive since it is completely done with the user in the dark. For this reason, 

for the sake of simplicity and clarity, at the beginning the second option is followed. 

The disadvantages of the second option is that it is necessary a local copy of the catalogues 

(which usually are very large files) and managing them is not very easy. Three different 

catalogues are taken into consideration: 

 HIPPARCOS CATALOGUE. The Hipparcos astrometric catalogue contains a lot of 

information (including positions and magnitude) for 118218 stars. It is one of the final 

products of ESA’s Hipparcos satellite mission.  

 TYCHO-2 CATALOGUE. The Tycho-2 astrometric and photometric reference 

catalogue contains information for 2539913 of the brightest stars in the sky. This list is 

a more complete and precise version of Tycho catalogue, which is one of the primary 

products of the ESA’s astrometric satellite, Hipparcos, which collected data for fours 

years, from November 1989 to March 1993. 
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 USNO-B1.0 CATALOGUE. The USNO-B1.0 is a catalogue of 1042618261 objects sorted 

by right ascension in zone catalogues of one tenth of a degree of declination each. The 

data were obtained from various sky surveys during the last 50 years by the Precision 

Measuring Machine (PMM) at the US Naval Observatory in Flagstaff, Arizona. 

 

The first two catalogues can be found as .mat files (the second file is a courtesy of Eran 

Ofek, Weizmann Institute of Science, Israel), so files accessible from MATLAB, the software 

used for this work. The Tycho-2 catalogue, however, is much more complete than the Hipparcos 

one. The third catalogue can be downloaded online but it’s a very large file (almost 70 GB) and 

in this case it is possible to have it by courtesy of Prof. Larsen, United States Naval Academy, 

Annapolis, Maryland. However, it is a binary file and this makes trying to access it from 

MATLAB difficult. These are the reasons why for the purpose of this work the Tycho-2 catalogue 

is used. 

 

Star catalogue Number of objects MATLAB format 

HIPPARCOS 118218  

TYCHO-2 2539913  

USNO-B1.0 1042618261  

 

Table 1.1: Summary of the star catalogues considered 

 

1.2.2.2 Plate solving 

Plate solving is a procedure of image analysis that detects the stars and tries to identify 

them using catalogues of known stars. If the analysis is successful it is possible to calculate with 

extremely high precision the relation between the position of the body in the sky and its position 

in pixels in the image.  

The first step is then to recognize the stars displayed in the image and the only way to do 

it is to find all the bright points in the picture. Certainly, not all the bright points are stars 

(they could be space objects or other things) but at least it is possible to guarantee that all the 

stars are detected. Explained in this way the problem seems easy, but questions arise: what does 

bright point mean? How to recognize at the same time small stars and big ones? How to 

distinguish between two small near stars and a single large star? All these questions are 

important and are faced in this paragraph.  

Starting from the first trouble, what does bright point mean? Initially, it is necessary to 

define the term with respect to which the brightness is evaluated. The easiest and maybe most 

intelligent approach to do it is to consider the brightest point of the image. As it was stated in 

paragraph 1.1.2.4, each pixel of a FITS picture is associated with a number (using a certain 

defined number of bits) that points out its brilliance. So it is possible to fix a percentage (or 
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threshold) and consider as luminous pixels the ones whose brightness is higher than the set 

percentage of the most brilliant pixel. Just to give an example, if the image uses 8 bits to define 

brightness and the most brilliant pixel has a value of 255, with a threshold of 0.9 the pixels with 

an associated value greater than 0.9 ∙ 255 = 229.5 will be recognized as luminous.  

The definition of the threshold is a crucial point: indeed, trotting out the other problems 

listed at the beginning, if a small threshold is chosen then it is probable that a single star will 

be split in several smaller identified stars and if, conversely, a large threshold is chosen then it 

is probable that some stars will be missed. The examples reported in Figures 1.6-1.7 (with 

respectively a threshold of 0.5 and 0.95) applied on the image shown in Figure 1.5 should clarify 

potential doubts. 

 

 

Figure 1.6: Bright points identified in Figure 1.5 with threshold equal to 0.5 

Figure 1.5: Example of sky image taken using a telescope 

MULTIPLE 

DETECTIONS 
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In the examples shown, it happens what was expected.  

The employed algorithm is the following: first of all, the pixels whose brightness is smaller 

that the threshold value (equal to the threshold times the brightness of the most brilliant pixel) 

are considered as full dark (with a value of zero). Then, regions are computed: starting from the 

upper left angle of the image and moving toward right, each point with a value different from 

zero is analyzed. Following the strategy described in Figure 1.8, the program controls if there is 

an existing region nearby. If so, the point belongs to that region, which is propagated to the 

near pixels (not all, only to the one at the same row on the right and the three bottom ones). 

Once the algorithm finishes, the image is divided in regions and the center of each region is a 

bright point to be displayed.   

 

 

The explained algorithm works pretty well, even if there is space for improvements.  

At this point, it is required to match the bright points found before with stars, in order to 

“be oriented” in the sky. Here the star catalogues come into play. There are two methods to do 

Figure 1.7: Bright points identified in Figure 1.5 with threshold equal to 0.95 

 

Figure 1.8: Illustration of the strategy used to divide the image into regions 

MISSED 

STARS 
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it: use the position of the identified points in the image and compare it with star catalogues, or 

just project the star lists on the picture (with a certain transformation) and maximize the 

number of matches. 

The first option is obviously more reliable but, at the same time, is more demanding from 

the implementation and computational point of view. The system of reasoning is the following: 

take each point found with the previous algorithm and convert the corresponding pixel location 

into a unit vector, using the pixel scale which is known thanks to the header file. Then, compute 

the dot product of each couple of vectors, which means to calculate the angle between every two 

points in the image. After that, select from the star catalogue only the stars that are in the field 

of view (maybe a bit larger in order to compensate for possible errors) and compute the angle 

between them as well. At the end, compare the two groups of angles and choose the configuration 

which discloses the greater number of pairings.  

As it was said, this is quite difficult to implement and it could lead to mistakes, especially 

with a narrow field of view since the angles between the stars are small and very close to each 

other.  

The second option, instead, is simpler and does not involve any of the procedures explained 

above, but that does not mean it has to be rejected. Actually, due to its simplicity, this strategy 

is chosen here to make the first simple attempt to realize an astrometry and photometry pipeline. 

The outline is: 
 

1. Project the star catalogue restricted to the field of view into the picture through a 

coordinates transformation (from right ascension and declination, the format of the 

catalogue, to positions in pixels). 

2. Consider testing offsets between the two lists. 

3. Test quality of match. 

4. Select the offset which guarantees the highest number of matches. 

 

The chosen coordinates transformation is a simple linear model. Given the position in pixels 

and RA/dec of the central point and given the pixel scale (both these data can be read in the 

header file), the model is: 

 

{
𝑅𝐴 = 𝑠𝑐𝑎𝑙𝑒𝑅𝐴(𝑥 − 𝑥𝑟𝑒𝑓) + 𝑅𝐴𝑟𝑒𝑓

𝑑𝑒𝑐 = 𝑠𝑐𝑎𝑙𝑒𝑑𝑒𝑐(𝑦 − 𝑦𝑟𝑒𝑓) + 𝑑𝑒𝑐𝑟𝑒𝑓  
                                   (1.1) 

 

where 𝑠𝑐𝑎𝑙𝑒𝑅𝐴 is the pixel scale along the x-axis and 𝑠𝑐𝑎𝑙𝑒𝑑𝑒𝑐 is the pixel scale along the y-axis. 

So, solving the equations expressed in (1.1) to calculate the positions (𝑥, 𝑦) in the image, it is 

possible to obtain: 
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{
𝑥 =

𝑅𝐴−𝑅𝐴𝑟𝑒𝑓

𝑠𝑐𝑎𝑙𝑒𝑅𝐴
+ 𝑥𝑟𝑒𝑓

𝑦 =
𝑑𝑒𝑐−𝑑𝑒𝑐𝑟𝑒𝑓

𝑠𝑐𝑎𝑙𝑒𝑑𝑒𝑐
+ 𝑦𝑟𝑒𝑓 

                                           (1.2) 

 

In order to see how it works, it can be tested with the image shown in Figure 1.9. 

 

The picture shown in Figure 1.9, taken on June 16, 2016, displays as a line the trajectory of 

the OA-6 Cygnus6 spacecraft. Indeed there are two ways to observe a target in the sky: keeping 

the telescope fixed on the body or keeping it fixed on the background. In the first case the stars 

will be represented as lines, in the second case the target will. Therefore, this is an example of 

the second case. The information on the picture is: 

- Size: 965 pixels x 725 pixels 

- Pixel width = 4.5 μm, pixel height = 4.5 μm 

- Focal length = 96.2 mm 

- Rotation = 179.98º 

- Pixel scale = 19.29’’ x 19.29’’ 7 

                                                           

6 Cygnus CRS OA-6, also known as Orbital Sciences CRS Flight 6, is the sixth flight of the 

Orbital ATK unmanned resupply spacecraft Cygnus and its fifth flight to the International 

Space Station under the Commercial Resupply Services contract with NASA. On March 23, 

2016 Cygnus CRS OA-6 was successfully launched by the Atlas V into Low Earth orbit [14]. 

7 ‘ defines arcminutes and ‘’ defines arcseconds, units of angular measurements. 

1º=60’=3600’’. 

Figure 1.9: Example of sky image taken using a telescope 
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- Field of view = 310.3’ x 233.1’    

- Central point: x=457.42, y=332.12, RA=216.088º, dec=-17.111º 

 

As an additional notice, it is necessary to watch out for a possible rotation of the field of 

view, as in this situation. It happens because, as the Earth rotates, celestial objects will appear 

to move in an arc around the celestial pole. Then, if a telescope tracks a celestial object, it will 

remain centered in the eyepiece, but will rotate with respect to time: this is called field rotation. 

In order to remove this phenomenon, once the coordinates transformation is done, a rotation 

around the center of the image has to be added. This can be fulfilled using a rotation matrix. 

Therefore, the final position of each star in the picture is: 

 

[
𝑥𝑓𝑖𝑛𝑎𝑙
𝑦𝑓𝑖𝑛𝑎𝑙

] = 𝑅 ([
𝑥
𝑦] − [

𝑥𝑐𝑒𝑛𝑡𝑒𝑟
𝑦𝑐𝑒𝑛𝑡𝑒𝑟

]) + [
𝑥𝑐𝑒𝑛𝑡𝑒𝑟
𝑦𝑐𝑒𝑛𝑡𝑒𝑟

]                       (1.3) 

 

where 𝑥, 𝑦 are the values obtained with equation (1.2) and 𝑅 is the rotation matrix, computed 

as: 

 

𝑅 = [
𝑐𝑜𝑠𝜗 −𝑠𝑖𝑛𝜗
𝑠𝑖𝑛𝜗 𝑐𝑜𝑠𝜗

]                                       (1.4) 

 

with 𝜗 equal to the rotation angle.  

Applying what has been said so far to Figure 1.9, the result is shown in Figure 1.10, where 

the blue circles are the detections in the image and the red crosses are the projected stars. 

Figure 1.10: Result of the matching process on Figure 1.9 
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The result is really remarkable even without taking into account the offset, probably because 

the information are surprisingly precise. The only issue is an horizontal displacement that 

increases with the distance from the center of the image, probably due to the distorsion of the 

camera and which could be fixed quite easily. Anyway, as illustrated in the previous outline, in 

most of the cases it is required to introduce an offset in order to match the crosses and the circles 

as much as possible.  

But to be fair, the result shown in Figure 1.10 is possible because the picture has a relatively 

large field of view (more than 5 degrees). Trying to do the same with the image exhibited in 

Figure 1.11 (with a small field of view, 62.7’ x 50.2’), different outcomes are achieved (Figure 

1.12).    

   

The reason of this apparent failure shall not be ascribed to wrong equations or other 

theoretical problems because, as it can be seen in Figure 1.12, the few matches are almost perfect. 

The blame must be put on the scarcity of the used catalogue. Indeed, when the field of view is 

small, the density of the stars in the catalogue is not high enough to guarantee a sufficient 

number of references. Therefore, this reveals the need for a more complete catalogue, argument 

that is beyond the requirements for this first simple pipeline attempt.  

 

 

 

 

 

 

 

Figure 1.11: Example of sky image with a small field of view 
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1.2.2.3 TLE propagation   

One of the last steps to do is to check TLE predictions for the object (or objects) tracked in 

the field of view and to plot the predicted position on the image. The idea is to take TLE from 

Celestrak website (https://celestrak.com) and to propagate them until the moment in which the 

picture was taken by the telescope. It’s useful to remember that, for geostationary or low orbit 

satellites, TLE older than 15-20 days with respect to the epoch of the measurement are not 

sufficiently accurate, so in order to have reasonable predictions it is required to use TLE within 

at maximum 10-15 days. 

In order to do this, a MATLAB toolbox from Princeton Satellite Systems is used. The name 

of the toolbox is “Spacecraft Control Toolbox” (SCT, license available by Prof. Furfaro).  

The mentioned toolbox covers an enormous amount of possible applications. For the scope 

of this work, two functions are employed: 

- [x, n, t] = ConvertNORAD(a) 

This routine converts NORAD TLE string (the data format explained in paragraph 

1.1.2.2) into a data structure. 

------ 
Inputs 
------ 
a             (:,1)   Data, file name or string 
 

 

 

Figure 1.12: Result of the matching process on Figure 1.11: in this case it is not satisfactory 
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------- 
Outputs 
------- 
x            (n)  Data structure 
 .satelliteNumber  Object ID 
 .launchYear       Year (part of international designator) 
 .launchNumber     Launch number 
 .launchpiece      Launch piece 
 .epochYear        Two/one digit epoch year 
 .epochDay         Epoch day number 
 .n0Dot            1st Derivative of the Mean Motion (rad/min^2) 
 .n0DDot           2nd Derivative of the Mean Motion 
 .bStar            Adjusted ballistic coefficient 
 .i0               Inclination (rad) 
 .f0               Right Ascension of Ascending Node (rad) 
 .e0               Eccentricity 
 .w0               Argument of Perigee (rad) 
 .M0               Mean Anomaly (rad) 
 .n0               Mean Motion (rad/min) 
The following fields are computed from the element data. 
 .ballisticCoeff   Ballistic coefficient (m2/kg) 
 .julianDate       Epoch Julian date 
 .fullLaunchYear   Four digit launch year 
 .sma              Semi-major axis (km) 

 
n          (1,1)   Number of element sets 

 
t          (3,n)   Time information if present on second line 

 

- [rV, x] = NORAD(dStart, dEnd, nPts, model, pType, file, number) 

This routine propagates the NORAD TLE from dStart to dEnd using the given model 

(this paper makes use of SGP48) and gives as output the positions and velocities of the 

satellite along the path (the number of steps is defined by the parameter nPts). 

------ 
Inputs 
------ 
dStart    (1,1) or (1,:)   Days from Epoch of start or time vector 

(sec) 
dEnd          (1,1)        Days from Epoch of end 
nPts          (1,1)        Number of points 
model         (1,:)        Model type 'SGP', 'SGP4', 'SDP4', 

'SGP8', 'SGD8' 
pType         (1,:)        Either '2d' or '3d' plot, 3d is default 

                                                           

8 SGP4 is a simplified perturbations model used to calculate orbital state vectors of satellites 

and space debris relative to the Earth-centered inertial coordinate system. This model predicts 

the effect of perturbations caused by the Earth’s shape, drag, radiation, and gravitation effects 

from other bodies such as the sun and moon. The SGP4 model has an error ~1 km at epoch and 

grows at ~1-3 km per day [15]. That is why these data are frequently updated by NASA [16].  
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file          (1,:)        File name 
------- 
Outputs 
------- 
rV            (n)     Structure for position and velocity vectors 
                      rV.v    (3,:) 
                      rV.r    (3,:) 
                      rV.name (1,:) 
x             (n)     Structure of NORAD element data 

 

 

In Figures 1.13-1.14 it is possible to see two examples of propagation, where the green cross 

is the position of Tucson (AZ), the yellow circle is the starting point and the blue circle is the 

ending point. In the first case (Figure 1.13) the trajectory of the International Space Station 

(ISS, a low orbit satellite) from February 21, 2017 at 13:18:23 (UTC time) to February 21, 2017 

at 19:24:32 (UTC time) is plotted. The second case (Figure 1.14), instead, illustrates the orbit 

of a geostationary satellite (ECHOSTAR 1) from February 21, 2017 at 02:02:03 (UTC time) to 

February 22, 2017 at 02:02:03 (UTC time): as expected the satellite is almost fixed with respect 

to the Earth and the starting and ending points almost coincide, since the orbital period of 

geostationary satellites is one sidereal day (23 hours, 56 minutes). 

Once this procedure is done, the final position of the satellite (or satellites) to be tracked is 

known. The only thing left is to project this position on the image and find the nearest bright 

point. However, the output of the propagation is in ECI coordinates, but spherical equatorial 

coordinates (RA and dec) are required in order to apply equations (1.2)-(1.3) and compute the 

position in pixels of the satellite. The aforementioned transformation can be implemented with 

the help of the free SPICE toolbox developed by NASA. However, the precise explanation of 

this procedure is delayed to the following section. 
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Figure 1.13: TLE propagation of the International Space Station from February 21, 2017 at 

13:18:23 (UTC time) to February 21, 2017 at 19:24:32 (UTC time) 

Figure 1.14: TLE propagation of ECHOSTAR 1 from February 21, 2017 at 02:02:03 

(UTC time) to February 22, 2017 at 02:02:03 (UTC time) 
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The last step to implement is the photometry part. Photometry is about the computation of 

the flux from a point source, and it is measured by summing all the light recorded from the 

object and dividing it by the number of pixels. After the work done in paragraph 1.2.2.2, the 

requested task is not difficult to accomplish. In fact, the whole picture is divided in several 

objects, each of them composed of pixels with a given intensity. It is then possible to compute 

the intensity of each object summing all the pixels value (Figure 1.15). The flux, then, is obtained 

dividing the intensity by the number of pixels.  

At the end, the relation between flux and magnitude can be obtained relating the flux of the 

detected stars (after the matching procedure) with the magnitude written in the catalogue.   

 

Within this section a simple solution to the astrometry and photometry has been taken and 

it has allowed to know and understand all the required passages and the theory behind. The 

proposed steps are working theoretically but, due to their simplicity, practical results would not 

probably meet the expectations. That is why in the following section a more powerful solution 

is given, which brings to a test with real images. 

1.2.3 Next step: automated professional pipeline 

As it was said at the end of previous section, the simple explained pipeline could work in 

practice but it would need significant improvement, which could take years of work. On the 

other hand, what it has been presented and mentioned so far is not useless: it can be considered 

as a very good starting point to understand more complete programs which can be found on the 

internet and make use of existing and reliable free functions. 

Figure 1.15: Example of objects intensity measured in an image 
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Therefore, in order to realize a procedure that works in practice, it is decided to employ one 

of the few programs freely downloadable online. In particular, the choice falls on the Photometry 

Pipeline9 (PP) developed by Dr. Mommert, post-doctoral researcher at the Department of 

Physics and Astronomy at Northern Arizona University in Flagstaff (AZ), whom the author of 

this work had the privilege and the honour to meet and to work with for a week. During this 

week it was possible to learn the working principles and the ideas behind this automated data 

reduction and analysis pipeline that is currently being used in different observational programs. 

The only problem is that this code is designed for asteroids, so it is necessary to integrate and 

expand it with an original solution for satellites, which is discussed in the next paragraphs.  

1.2.3.1 Photometry Pipeline (PP) 

As the documentation reports, the Photometry Pipeline (PP) is a Python software package 

for automated photometric analysis of imaging data from small to medium-size observatories. It 

uses Source Extractor and SCAMP to register and photometrically calibrate images based on 

catalogues that are available online; photometry is measured using Source Extractor aperture 

photometry. PP has been designed for asteroid observations, but can be used with any kind of 

imaging data [17].  

The code runs only on Linux or Linux-based operating. PP has been tested by the author of 

this work also on a virtual machine in a Windows environment, so there should not be any 

problem related to the compatibility.  

PP can be run in two different modes, providing different levels of user interaction: 

 FULLY AUTOMATED MODE 

It is possible to run PP in a fully automated way just running it locally on all fits 

files in a specified directory, with the code: 

cd directory 
pp_run *fits 

 
         

 SEMI-AUTOMATED MODE 

While pp_run performs all the steps automatically, each of the individual basis 

functions can be called manually, which allows to tweak the analysis process. The 

functions are: 

- pp_prepare(): prepare the input images and implant rough WCS10 information 

into the image header 

                                                           

9 All the code and documentation about this program is available and downloadable from 

GitHub at https://github.com/mommermi/photometrypipeline 

10 WCS stands for World Coordinate System. An elaborate set of FITS conventions has been 

defined to specify the physical, or world, coordinates to be attached to each pixel of an N-

dimensional image. By world coordinates, one means coordinates that serve to locate a 
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- pp_register(): use SCAMP to register all input images (which means to 

transform different sets of data into one coordinate system) based on the 

implanted rough WCS information; different catalogues are tried until all 

images have been registered; this function calls pp_extract() automatically 

- pp_photometry(): derive instrumental magnitudes using a curve-of-growth 

analysis, or a manually provided aperture radius 

- pp_calibrate(): photometrically calibrate instrumental magnitudes and 

create a SQLite database file for each image 

- pp_distill(): extract target information from the photometry databases 

created by the previous task 

 

 All the passages are extensively and accurately taken on in the next paragraphs, starting 

from the two freely available software which are used profusely inside the code: Source Extractor 

and SCAMP. 

 

Source Extractor (SE) 

As explained in previous section, the first step coincides with the identification of the bright 

and interesting points of the image. The Photometry Pipeline developed by Dr. Mommert makes 

use of Source Extractor in order to manage this task (and, later, the photometry part). 

Source Extractor is a program that builds a catalogue of objects from an astronomical image. 

It is used for the automated detection and photometry of sources in FITS image-files. The steps 

of SE are the following (illustrated in Figure 1.16) [18]: 

1. Measure the background and its RMS noise: the parameter called BACK_SIZE 

regulates the estimate. In an area of BACK_SIZE value, the mean and the standard 

deviation (𝜎) of the distribution of pixel values is computed. Then the most deviant 

values are discarded and median and 𝜎 are computed again. This is repeated until 

all the remaining pixel values are within mean ±3𝜎. If 𝜎 dropped with less than 20% 

per iteration, the field is considered not crowded. The value for the background in 

that area is, therefore, the mean in the non-crowded case and 2.5 ∙ median − 1.5 ∙ 

mean in the crowded case (both the mean and the median are the ones computed in 

the last iteration, where the mean is the average and the median is the average of 

                                                           

measurement in some multi-dimensional parameter space. A common example is to specify the 

right ascension and declination on the sky associated with a given pixel location in a celestial 

image. The WCS conventions are defined in a set of formal paper, four of which have been 

officially approved as part of the FITS standard by the IAU-FWG.  
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all the values except the most extreme one). The background map is then a bi-cubic-

spline interpolation over all the areas of size BACK_SIZE, after filtering. 

2. Subtract the estimated background and use the RMS noise to estimate errors. 

3. Find objects (thresholding): the threshold parameters indicate the level from which 

SE should start treating pixels as if they were part of objects, determining 

information from them. In order to be considered as candidate objects, it is required 

that all the pixels are above the threshold, that all the pixels are adjacent to each 

other (either corners or sides in common), that there are more than the minimum 

number of pixels (defined parameter).  

4. Deblend detections (break up detection into different objects): debleding is the part 

of SE where a decision is made whether or not a group of adjacent pixels above the 

threshold is a single object or not. If there is a saddle point in the intensity 

distribution (i.e., there are two peaks in the light distribution distinct enough), the 

object is split in two different ones.   

5. Measure shapes and positions. 

6. Clean: all the detections are checked to see if they would have been detected if their 

neighbors were not there. The contributions of the neighboring objects are so 

computed using particular models or profiles, and they are then subtracted.  

7. Perform photometry: photometry is done on each object by dividing up the intensity 

of the shared pixels. 

8. Classify: all the objects are classified into stars and galaxies (everything non-star) by 

a neural network. 

9. Write an output catalogue with all the objects and their measured parameters 

(ellipticity, size, etc.). 

 

In conclusion, this procedure is a more complex version of the one developed from scratch in 

section 1.2.2. In particular, the background map, deblending and cleaning operations guarantee 

a very good result.  
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SCAMP 

SCAMP (Software for Calibrating AstroMetry and Photometry) is a program that computes 

astrometric projection parameters from source catalogues derived from FITS images. The 

computed solution is expressed according to the WCS standard. One of the main features of 

SCAMP is the compatibility with Source Extractor FITS catalogue format in input, so basically 

in the presented code SCAMP reads Source Extractor catalogues and computes astrometric and 

photometric solutions for any arbitrary sequences of FITS images in a complete automatic way. 

The work can be decomposed into several steps (Figure 1.17) [19]: 

1. Input catalogues (from SE) and headers are read and checked for content. SCAMP 

sorts catalogues by position on the sky (“groups of fields”) as well as astrometric and 

photometric contexts (“instruments”). A field group is an ensemble of overlapping 

exposures in a given part of the sky: field groups are assembled on the basis of the 

relative positioning of fields. To understand the concept of astrometric instrument, 

Figure 1.16: Diagram that shows the principal steps done by SE 
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instead, it is important to realize that in order to derive an accurate astrometric 

solution, it is convenient to isolate contexts within which the instrument behaves in 

a predictable way. In SCAMP two different astrometric instruments may represent 

either two physically distinct devices like two different cameras, or the same device 

operating in two different conditions from the point of view of non-linear astrometric 

distorsions. Photometric instruments, finally, are to photometry what astrometric 

instruments are to astrometry. However, photometric instruments are generally less 

sensitive than astrometric ones, since there are no mechanical effects involved. 

 

 

 

2. A catalogue of astrometric standards (“reference catalogue”) is downloaded from the 

VizieR11 database for every group (or a local file can be provided). Astrometric 

reference catalogues are required in SCAMP to locate precisely the exposures on the 

celestial sphere, and to attach the solution to a standard, well calibrated system. 

SCAMP picks only sources within a certain radius around each group.  

 

                                                           

11 Explanation of VizieR was given in paragraph 1.2.2.1. 

Figure 1.17: Diagram that shows the principal steps done by SCAMP 
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3. The reference catalogues are utilized by a pattern matching procedure to register all 

the input catalogues. Matching is a time-consuming operation and during it four 

parameters are derived. These parameters are corrections to the initial WCS 

information present in the original image headers: the pixel scale, the rotation angle 

and the shifts in right ascension and declination (comparing the projected positions 

for both catalogues). 

4. All the detections and reference sources are cross-matched and an astrometric 

solution is computed (this solution is the result of a minimisation). This operation is 

repeated after clipping the outliers, that obviously alter the precision.    

5. A photometric solution can be computed. The photometric capability of SCAMP 

however is not used in this pipeline because its operation is not totally clear: a do-

it-yourself solution is preferred instead.  

6. Updated astrometric and photometric calibration data are written to external 

headers. 

 

In conclusion, this procedure is very similar to the one explained in section 1.2.2 but of course 

the matching part is quite more complex and guarantees better results. After this step, thanks 

to the matching with the stars in the catalogue, a very precise relationship between the position 

of an object in spherical equatorial coordinates (RA/dec) and the corresponding position in the 

image (pixels) is obtained.  

Aperture radius 

After these two steps, the astrometry part is completed and the photometry part seems really 

straightforward. Indeed, it was already anticipated that the program Source Extractor is used 

to complete the task. But it is true as well that some expedients have to be taken in order to 

increase the precision of the solution and to best exploit the capabilities of Source Extractor. 

The first of these tricks is the definition of the aperture radius. As it was copiously said, the 

computation of the magnitude of an object, that is the computation of the flux derived from it, 

involves the sum of all the pixel values inside a circular aperture with a certain radius around 

the object, the division by the number of pixels and the subtraction of the background 

contribution. Source Extractor can work with different kinds of aperture, manually given or 

automatically calculated. In this solution, an optimal aperture radius is evaluated and given as 

input to Source Extractor. The logic of the choice is the following: the fractional combined flux 

of the target and of the background bodies is calculated together with the SNR (Signal to Noise 

Ratio) for an aperture radius ranging from 2 to 10 pixels. Obviously, the bigger the aperture 

radius, the greater the fractional combined flux (saturating at 100% after a certain value because 

the whole object is included in the circle) but the smaller the SNR (because more background is 

considered). Moreover, the fractional combined flux of the target and of the background bodies 

must differ from each other of 5% at maximum (in particular, the target parameter is always 
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bigger than the one related to background bodies), because otherwise the brightness of the target 

would be underestimated.  

So, in conclusion, the optimal aperture radius is the one for which the fractional combined 

flux of both target and background bodies is above a certain threshold (fixed to 70%) and the 

two fractional combined fluxes are inside an interval of 5%. Finally, the smallest pixel value that 

satisfies these requirements is chosen in order to guarantee the smallest SNR.  

Photometry (calibration) 

From the flux obtained with the aperture photometry explained in the last paragraphs, the 

magnitude is derived with the equation (1.5). 

 

𝑚 = −2.5 log10 𝑓                                              (1.5) 

 

where 𝑓 is the flux. 

However, this is not the real, or apparent, magnitude but is called the instrumental 

magnitude. The instrumental magnitude is defined for a specific telescope in a specific time 

because it depends on the characteristics of the telescope, the atmospheric conditions and many 

other factors. In order to obtain the apparent magnitude from the instrumental one, it is 

necessary to compute the magnitude zeropoint, that is simply an offset. So, at the end, equation 

(1.5) takes the form: 

 

𝑚 = −2.5 log10 𝑓 + 𝑧𝑒𝑟𝑜𝑝𝑜𝑖𝑛𝑡                                     (1.6) 

 

The procedure to derive the magnitude zeropoint is quite easy: 

1. Download a star catalogue from the VizieR database. 

2. Match the stars with the detections found in the image. 

3. Choose some reference stars between the matches (the number must be greater 

than 3, but obviously the greater the better). 

4. Obtain the magnitude zeropoint as the minimization of the sum of the squared 

errors between the catalogue magnitude and the one computed with equation (1.6) 

for each reference star. 

 

Once terminated these steps the apparent magnitude of all the objects inside the picture can 

be calculated and the astrometry and photometry problem is brilliantly solved.  

Obviously, what has been presented so far is valid for one single image as well as for plenty 

of them. 
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Target identification 

The last part is about target identification, that is how to get the position of the target and 

recognize it in the picture. The pipeline developed by Dr. Mommert is devised for asteroids (or 

eventually for other space objects) but not for satellites and that is the reason why a tailored 

solution to be integrated is necessary.  

Dr. Mommert’s solution solves this problem reading the name of the target and the time 

instant from the header file of the image and querying the JPL’s HORIZONS system12 through 

the web interface for the position of the target at that time. After this, the closest detection to 

the predicted position is chosen to perform photometry. As simple as that. But here comes the 

issue. JPL’s HORIZONS system contains information about asteroids and other solar-system 

bodies, but it produces data only for a few satellites, which makes it useless for the purpose of 

this paper.     

The integration of the pipeline, planned with Dr. Mommert, is written in Python language 

(because the Photometry Pipeline is a Python software package) and is reported in Appendix 

A. The way of thinking is quite easy: the program takes as input the target name, the Julian 

date in which the image was taken and the code of the observatory and gives as output the 

target position in spherical equatorial coordinates. Indeed, as explained in paragraph 1.1.2.3, the 

RA/dec coordinates of a satellite change with respect to the position of the observer.   

The first part of the code (lines 59-166) takes TLE from Celestrak website (or, as an 

alternative, takes the TLE provided as optional input) and propagates it until the given time 

instant. For the task, a SGP4 model was used. This is straightforward and it is nothing new, 

but the matter is that the predicted position returned by the model is expressed in ECI 

coordinates and not in spherical equatorial coordinates as the pipeline needs. It means that a 

transformation of coordinates is required. In particular the transformations are two: 

1. The model for TLE propagation gives back ECI TEME coordinates, so the first 

conversion is from ECI TEME coordinates to ECEF coordinates. 

2. The second transformation is from ECEF reference frame to a spherical equatorial 

reference frame (RA/dec).  

 

The first change of coordinates is performed in lines 169-190. In order to do it, it is necessary 

to obtain the Greenwich Mean Sidereal Time (GMST). Therefore, it is useful to introduce the 

concept of GMST and how to find it starting from a Julian date in Universal Time. The sidereal 

time is a direct measure of the Earth’s rotation and it is measured positively in the counter-

                                                           

12 The JPL’s HORIZONS on-line solar system data and ephemeris computation (i.e., position 

at a given time) service provides access to key solar system data and flexible production of highly 

accurate ephemerides for solar system objects (729155 asteroids, 3451 comets, 178 planetary 

satellites, 8 planets, the Sun and other secondary bodies). HORIZONS is provided by the Solar 

System Dynamics Group of the Jet Propulsion Laboratory [20].   
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clockwise direction when viewed from the North pole. Ideally, the observations of a star would 

suffice for determining sidereal time. But the changing in the instantaneous axis of rotation 

causes station locations to continually change. This produces a small difference in the time of 

meridian transits, depending on the star’s declination. Because this effect vanishes at the equator, 

it is better to use stars with small declinations. 

As described in paragraph 1.1.2.3, the equinox is defined to be always on the equator and, 

thus, the sidereal time is designated as the hour angle of the equinox relative to the local 

meridian. Because the equinox is the reference point, the sidereal time associated with the 

Greenwich meridian is termed Greenwich Mean Sidereal Time, 𝜗𝐺𝑀𝑆𝑇.  

The equation (1.7) shows the relation between the GMST expressed in seconds and the 

Julian date expressed in Universal Time [21]. 

 

𝜗𝐺𝑀𝑆𝑇 = 67310.54841 + (876600 ∙ 3600 + 8640184.812866) 𝑇𝑈𝑇1 +             (1.7) 

+ 0.093104 𝑇𝑈𝑇1
2 − 6.2 ∙ 10−6 𝑇𝑈𝑇1

3  

 

where 𝑇𝑈𝑇1 is the number of Julian centuries from a particular epoch (J2000) and is equal to: 

 

𝑇𝑈𝑇1 =
𝐽𝐷−2451545

36525
                                          (1.8) 

 

Then 𝜗𝐺𝑀𝑆𝑇 must be divided by 240 (because 1s = 1/240º) and multiplied by 𝜋/180 in order to 

pass from seconds to radians. At the end, this quantity must be reduced to a result within the 

range [0,2𝜋). 

Once the GMST is computed, the transformation of coordinates can be done with this 

equation [22]: 

 

𝒓𝑬𝑪𝑬𝑭 = 𝑅 𝒓𝑻𝑬𝑴𝑬                                            (1.9) 

 

where 𝑅 is the rotation matrix, given by: 

 

𝑅 = [
cos(𝜗𝐺𝑀𝑆𝑇) sin(𝜗𝐺𝑀𝑆𝑇) 0
−sin(𝜗𝐺𝑀𝑆𝑇) cos(𝜗𝐺𝑀𝑆𝑇) 0

0 0 1

]                               (1.10) 
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Actually, equation (1.9) is a simplified version of the relationship. Indeed, the complete 

version keeps into account also the polar motion13 of the Earth. The computation of the polar-

motion matrix is not easy to obtain and, since the polar motion is a very small effect, the 

improvements would be negligible. For this reason, it is decided to keep the solution as simple 

as possible without losing precision on the result. 

The second conversion (ECEF to RA/dec, lines 192-303) is applied to the coordinates 

obtained previously and is more challenging. In order to achieve this goal, NASA’s Navigation 

and Ancillary Information Facility (NAIF) toolkit called SPICE is used. The SPICE toolkit is a 

large collection of free user-level application program interfaces (APIs), subroutine, functions 

and utility programs. It is offered in many languages (C, FORTRAN, MATLAB, etc.) but, since 

NAIF has not yet implemented a Python version, the Python interface SpiceyPy created by 

Andrew Annex is utilized. It is not an official product but it has been repeatedly vetted and 

tested by users and it is suggested by NAIF itself.  

At the beginning (lines 193-281), the observer location in ECI J2000 reference frame is 

calculated with the aid of the program pinpoint. Pinpoint produces the ephemeris for every kind 

of object that is still or has a constant velocity with respect to a specific reference system. In 

this case, it is used to generate the ephemeris of the observer, starting from its latitude, longitude 

and altitude. These coordinates are obtained starting from the observatory code thanks to the 

list supervised by the Minor Planet Center and available at http://www.minorplanetcenter.net/ 

iau/lists/ObsCodes.html14.  

Then (lines 284-288), the position of the target is converted from ECEF to ECI J2000 

coordinates with the help of SpiceyPy pxform function that returns the matrix that transforms 

position vectors from one specified frame to another at a specific epoch. 

At the end (lines 290-303), the relative position of the target with respect to the observer is 

computed and the RA/dec coordinates are finally obtained with the equations: 

 

𝑅𝐴 = tan−1 (
𝜌(2)

𝜌(1)
)                                              (1.11) 

𝑑𝑒𝑐 =  sin−1 (
𝜌(3)

‖𝜌‖
)                                        (1.12) 

                                                           

13 Polar motion of the Earth is the motion of the Earth’s rotational axis relative to its crust. 

This is measured with respect to the ECEF reference frame and the variation is only a few 

meters. 

14 This list gives the observatory code, longitude (in degrees east of Greenwich) and the 

parallax constants (equal to 𝜌 cos𝜑 and 𝜌 sin𝜑 where 𝜌 is the geocentric distance in Earth radii 

and 𝜑 is the latitude). Knowing them, 𝜌 and 𝜑 can be easily computed. 
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where 𝜌 = [

𝜌(1)
𝜌(2)
𝜌(3)

]  is the relative position between the target and the observer and ‖∙‖ is the L2 

norm. 

In the interest of verifying the accuracy of this solution, it is made a comparison between it 

and the result given by JPL’s HORIZONS system for the few satellites it contains. It turns out 

that the declination is accurate and the right ascension suffers from an average offset of 16𝑠 =

240′′ probably due to some approximations or secondary effects. Adding that value to the result 

given by equation (1.11), the error of the predicted right ascension and declination is never 

higher than 20 arcseconds. This error could be explained by the fact that HORIZONS uses the 

latest GPS-derived timing data, while SPICE uses a fixed value which could be off a fraction of 

a second. However, the result is sufficiently good.  

In conclusion, with this integration the pipeline is able to work also with satellites, as it is 

possible to see in the next section.   

 

1.2.4 Results 

As anticipated in the previous section, the complex developed procedure is tested on a real 

image depicting a satellite, in order to verify its efficiency. The telescope image used for the test 

is shown in Figure 1.18. The image, courtesy of Prof. Vishnu Reddy, was taken on March 5, 

2017 at 2:43:19.7 UTC time from Tucson, Arizona. Its main characteristics are: 

- Focal length of the telescope = 1523.2 mm 

- Aperture diameter of the telescope = 521 mm 

- Field of view = 81.9’ x 81.9’  

- Pixel scale = 2.4’’ x 2.4’’ 

- Exposure time = 2 s 

 

The image represents, almost at its center, the GOES-14 satellite (see Figure 1.19). GOES-

14 is an American weather satellite, which is part of the U.S. National Oceanic and Atmospheric 

Administration (NOAA)’s Geostationary Operational Environment Satellite (GOES) system. It 

was launched on June 27, 2009 and it reached the geostationary orbit on July 7, 2009.   
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Figure 1.18: Test image depicting GOES-14 satellite 

Figure 1.19: Detail of Figure 1.18 showing the position of GOES-14 satellite 

GOES-14 
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As it should be clear now, the first step is the detection of the bright points (called “sources”) 

in the image. In this case, Source Extractor is able to find 1940 sources, which are reduced to 

786 after the deblending and cleaning operations. Then, the matching procedure takes place: 

SCAMP queries the database VizieR for the GAIA catalogue in the portion of the sky centered 

with the image and with a radius that is slightly greater than the field of view (in order to 

compensate for potential errors and offsets). GAIA is one of the biggest star catalogues available; 

it is the first data release of the space observatory Gaia (September 13, 2016) and it contains 

the position and the magnitude of 1142679769 stars. In this case, GAIA retrieves 940 reference 

stars which are matched by SCAMP with the sources extracted before. Although the quality of 

the picture is not perfect, the result of the matching procedure can be noticed in Figure 1.20   

 

After this step, a very precise relationship between the position of an object in spherical 

equatorial coordinates (RA/dec) and the corresponding position in the image (pixels) is obtained. 

Therefore, given the angular coordinates of the GOES-14 satellite obtained with the procedure 

explained in the paragraph entitled “Target identification”, the pipeline is able to identify the 

target in the image. As it can be seen in Figure 1.21, the identification is correct and precise 

(the green cross is the predicted position and the red circle is the real position). For the record, 

the obtained angular position of GOES-14 is 𝑅𝐴 = 100.48045977°, 𝑑𝑒𝑐 = −5.25704468°. 

 

 

 

Figure 1.20: Result of the matching procedure on Figure 1.18 using the GAIA catalogue 
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After the identification part, the program tries to find the optimal aperture radius for the 

photometry, which is the last step. Following the rules described in the paragraph entitled 

“Aperture radius”, in this case an optimal aperture radius of 3.68 pixels is chosen (Figure 1.22).   

 

 

Figure 1.21: GOES-14 identification in Figure 1.18 

Figure 1.22: Study of the optimal aperture radius for Figure 1.18 
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The photometry part is completed with the calibration (i.e., the computation of the 

magnitude zeropoint) and the calculation of the apparent magnitude. For the calibration 

procedure, 17 matched reference stars are taken (Figures 1.23 and Table 1.2) and the magnitude 

zeropoint is obtained minimizing the sum of the squared errors between the catalogue 

magnitudes and the ones computed with equation (1.6). In this case the derived magnitude 

zeropoint is 22.6105 ± 0.0899 (Figure 1.24). 

 

 

 

Finally, after the calibration, the apparent magnitude of the GOES-14 satellite is obtained 

and is equal to 13.677 ± 0.104 (Figure 1.25). 

At the end, it is possible to say that the pipeline is working properly.  

Figure 1.23: Illustration of the 17 matched reference stars used for the computation of 

the magnitude zeropoint 
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Table 1.2: List of the 17 reference stars used for the computation of the magnitude zeropoint. 

Each star is reported with its position, catalogue magnitude, instrumental magnitude and, 

finally, calibrated magnitude 

Figure 1.24: Illustration of the derived magnitude zeropoint 
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Figure 1.25: Illustration of the apparent magnitude of the GOES-14 satellite 
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Chapter 2 

 Object classification 

 
“A breakthrough in machine learning  

would be worth ten Microsofts” 

(Bill Gates, Chairman, Microsoft) 

 

This chapter is focused on the subject called object classification. More precisely, it faces the 

interesting challenge of classifying space objects (in particular their shape and, for active bodies, 

their control) from their light curve, which may come from an astrometry and photometry 

pipeline as explained in the previous chapter. Machine learning techniques are used as tools to 

deal with the problem and great emphasis is given to surprising algorithms recently developed, 

the Extreme Learning Machines (ELM).  

Therefore, the first section defines the problem and presents some previous work, the second 

one gets the reader in the deep world of machine learning, explaining all the techniques utilized, 

and the last section discloses the obtained results. 

 

2.1 Problem setting  

Tracking and characterizing both active and inactive Space Objects (SO) is required for 

protecting space assets (an example of possible classification is shown in Figure 2.1). Moreover, 

characterizing and classifying space debris is critical to understanding the threat they may pose 

to active satellites and manned missions. For this reason, the near-geosynchronous SO population 

is primarily tracked with optical sensors which provide astrometric and photometric 

measurements. Although the amount of light collected from these SOs is small, information can 

still be extracted from photometric data which can be used to determine shapes and other 

properties. Attitude estimation and extraction of other characteristic using light curve data has 

been demonstrated in several articles. 

Indeed, traditional measurement sources for SO tracking, such as radar and optical, have 

been shown to be sensitive to shape, attitude, angular velocity and surface parameters. The 
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state-of-the-art in the literature has been advanced over the past decade and in recent years has 

seen the development of multiple model, nonlinear state estimation and full Bayesian inversion 

approaches for SO characterization. The key shortcoming of approaches in literature is their 

overall computational cost.  

Classification of SOs is a key challenge in Space Situational Awareness (SSA) and has many 

applications. The current state-of-the-art uses physics-based models to process observations and 

then classification is performed by determining which class of models best fits the data. These 

models are computationally expensive to evaluate and with the increase in the number of objects 

being tracked, these approaches are not practical for use on the entire catalogue. In [23], for 

example, a Multiple Model Adaptive Estimation (MMAE) classification approach is used to 

model the dynamics and physics in order to estimate relevant parameters and classify SOs. In 

general, there are a lot of unknown parameters that should be included in the estimation process, 

but the dimensionality in this complex problem does not lend itself to computationally efficient 

solutions.  

Therefore, modern works investigate data-driven classification approaches that are not based 

on models but rather use the observations or data to detect relationships and use these 

relationships for classification. In particular, machine learning, especially in its deep learning 

part, is attracting more and more attention by the scientific community. In fact, recent 

advancements in deep learning have demonstrated ground breaking results across a number of 

domains. Deep learning approaches mimic the function of the brain by learning nonlinear 

hierarchical features from data. [24] investigates Convolutional Neural Networks (CNNs) for 

supervised classification of SO observational data. As opposed to the traditional approaches, [24] 

produces a new way of processing SO observations where quick determinations of SO classes are 

made possible directly from observational data.  

This work considers other machine learning techinques for the purpose of classification. In 

particular, great attention is paid to a new learning algorithm called Extreme Learning Machine 

(ELM). In theory, this algorithm tends to provide good generalization performance at extremely 

fast learning speed.  

The light curve data analysed in this chapter are kindy provided by Prof. Linares, assistant 

professor at University of Minnesota. They are generated by a complex model taking into account 

objects with different shapes and controls (to be precise, by the Ashikhmin-Shirley (AS) model, 

whose description, deeply given in [24], is out of the scope of this thesis). Moreover, from the 

same object different light curves are produced, changing for example the angular velocity of 

rotation and other parameters. The five different classes (debris (passive), rocket body (passive), 

sun pointing payload (active), spin stabilized payload (active) and nadir pointing payload 

(active)), which represent the label of the data, consist of objects with different shapes and 

controls (if they are active). This chapter considers general space objects and not only 

geostationary or low orbit satellites, because the main goal is to demonstrate that machine 

learning algorithms can be used to solve this kind of classification problems. Obviously, what is 

reported in this chapter can be applied to satellites too, with the appropriate amendments.  
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Although the approaches used here are trained with simulated data, once trained these 

models can be applied to real-data classification examples. 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Machine learning  

In order to explain the main concepts of machine learning it is necessary to start 

understanding the definition of learning. Tom M. Mitchell, author of the textbook “Machine 

Learning”, provided a formal definition: “A computer program is said to learn from experience E 

with respect to some class of tasks T and performance measure P if its performance at tasks in 

T, as measured by P, improves with experience E” [25]. 

Machine learning is so defined as the subfield of Artificial Intelligence (AI) and computer 

science that gives machines the ability to learn without being explicitly programmed (Figure 

2.2). The knowledge comes from experience and induction.    

 Figure 2.2: Traditional programming vs machine learning 

Figure 2.1: Example of possible classification procedure 
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Evolved from the study of pattern recognition and computational learning theory in artificial 

intelligence, machine learning explores the study and construction of algorithms that can learn 

from and make predictions on data. Machine learning is becoming widespread in several fields 

like computer vision and robotics, speech recognition, biology and medicine, finance, web search, 

video gaming and space exploration, just to mention but a few. 

Machine learning tasks are typically classified into three broad categories [26]. These are: 

 SUPERVISED LEARNING. The machine is presented with example inputs and 

their desired outputs, given by a supervisor, and the goal is to learn a general rule 

that maps inputs to outputs. 

 UNSUPERVISED LEARNING. No labels are given to the learning algorithm, 

leaving it on its own to find structure in the inputs. Unsupervised learning can be a 

goal in itself (discovering hidden patterns in data) or a means towards an end (feature 

learning). 

 REINFORCEMENT LEARNING. The machine interacts with a dynamic 

environment in which it must perform a certain goal (such as driving a vehicle or 

playing a game against an opponent). The program is provided with feedback in 

terms of rewards and punishments as it navigates its problem space. 

 

This chapter concerns only the supervised part since the objective is to learn relationships 

from data and use these relationships for classification. The reinforcement part, instead, is the 

main concept of chapter 3.  

Supervised learning is the largest, most mature and most widely used sub-field of machine 

learning. Given a training data set including desired outputs, 𝐷 = {< 𝑥, 𝑡 >}, from some unknown 

function 𝑓, the goal is to find a good approximation of 𝑓 that generalizes well on test data. Input 

variables 𝑥 are also called features, predictors or attributes and ouput variables 𝑡 are also called 

targets, responses or labels. If 𝑡 is discrete the problem is named classification (Figure 2.3), 

otherwise if 𝑡 is continuous it is named regression. As the title of the chapter, only classification 

is dealt with hereafter.  

Classification has, at the end, to accomplish the task of assigning the inputs into one of 𝐾 

discrete classes 𝐶𝑘, where 𝑘 = 1,… , 𝐾. There are tens of thousands of classification algorithms, 

hundreds new every year, but they can be easily distinguished according to their representation 

component, which is the way in which they represent knowledge (or the model they use). In the 

following only two examples of this component (neural networks and support vector machines) 

are explained, the ones applied later to the problem at stake.    
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2.2.1 Neural Networks (NN) 

To get started, it is better to explain a type of artificial neuron called perceptron. Perceptrons 

were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by earlier 

work by Warren McCulloch and Walter Pitts. They are a mathematical model of a biological 

neuron. While in actual neurons the dendrite receives electrical signals from the axons of other 

neurons, in the perceptron these electrical signals are represented as numerical values. 

Practically, a perceptron takes several real-valued inputs 𝑥1, 𝑥2, …  and produces a single 

binary output [27]. 

 

In the example shown in Figure 2.4, the perceptron has three inputs, 𝑥1, 𝑥2, 𝑥3. In general it 

could have more or fewer inputs. Rosenblatt proposed a simple rule to compute the output. He 

introduced weights, 𝑤1, 𝑤2, …, real numbers expressing the importance of the respective inputs 

to the output. This models the biological effect for which at the synapses between the dendrite 

and axons, electrical signals are modulated in various amounts. After that, the neuron’s output, 

Figure 2.3: Example of classification applied to leaves 

Figure 2.4: Illustration of a perceptron 
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0 or 1, is determined by whether the weighted sum ∑ 𝑤𝑗𝑥𝑗𝑗  is less than or greater than some 

threshold value. Just like the weights, the threshold is a real number which is a parameter of 

the neuron. To put it in more precise algebraic terms: 

 

𝑜𝑢𝑡𝑝𝑢𝑡 = {
0  𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗  ≤  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗  

1  𝑖𝑓 ∑ 𝑤𝑗𝑥𝑗 >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑗
                           (2.1) 

 

As in biological neural networks, this output is fed to other perceptrons.  

Perceptron is the most simple kind of neuron, because the function which defines the output, 

called activation function, is a step and so the output is just binary. But this is obviously not 

very useful in practice and that is the reason why in common networks other kind of activation 

functions (and so neurons different from perceptrons) are used. Typical and most famous 

activation functions are summarized in Table 2.1.  

 

Name Equation Graph 

UNIT STEP 𝑆(𝑝) = {
0  𝑖𝑓 𝑝 ≤ 0 
1  𝑖𝑓 𝑝 > 0

 

 

LOGISTIC 

(SIGMOID) 

 

 

 

𝑆(𝑝) =
1

1 + 𝑒−𝑝
 

 

 

 
 

HYPERBOLIC  

TANGENT 
𝑆(𝑝) =

𝑒𝑝 − 𝑒−𝑝

𝑒𝑝 + 𝑒−𝑝
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GAUSSIAN 𝑆(𝑝) = 𝑒−𝑝
2
 

 

RECTIFIER 𝑆(𝑝) = {
0  𝑖𝑓 𝑝 < 0
𝑝  𝑖𝑓 𝑝 ≥ 0

 

 

SOFTPLUS 𝑆(𝑝) = ln (1 + 𝑒𝑝) 

 

 

Table 2.1: Summary of the most common used activation functions 

 

Another very important activation function is the softmax, which is a generalization of the 

logistic one, that “squashes” a K-dimensional vector 𝒙 of arbitrary real values to a K-dimensional 

vector 𝑺(𝒙) of real values in the range (0,1) that add up to 1. The function is given by: 

 

𝑆(𝒑)𝑗 =
𝑒
𝑝𝑗

∑ 𝑒𝑝𝑘𝐾
𝑘=1

     for 𝑗 = 1,… ,𝐾                                 (2.2)                         

 

This function is really useful, especially for classification tasks, because it can be used to 

represent a probability distribution over K different possible outcomes. 
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In all the described cases, 𝑝 is equal to the weighted sum of the neuron inputs added to a 

bias: 

 

𝑝 = ∑ 𝑤𝑗𝑥𝑗 + 𝑏𝑗                                              (2.3) 

 

Once defined the concept of neuron, it is obvious that a neuron is not a complete model of 

the human decision-making. But it should seem plausible that a complex network of them could 

make quite subtle decisions. This leads, therefore, to neural networks (Figure 2.5). 

 

As mentioned in Figure 2.5, the leftmost layer is called input layer, and the neurons within 

it are called input neurons. The rightmost or output layer contains the output neurons or, as in 

this case, a single one. The middle layers (one or more) are called hidden layers, since the neurons 

in it are neither inputs nor outputs. If the number of hidden layers is greater than one, the 

network is a deep neural network (DNN) and the relative procedure of learning the mapping 

between inputs and outputs is called deep learning.  

Neural networks where the output from one layer is used as input to the next layer (as the 

one in Figure 2.5) are called feedforward neural networks. This means there are no loops, 

information is always fed forward, never fed back. Only this kind of networks is used in this 

work but for the sake of completeness it is fair to say that there are neural networks in which 

feedback loops are possible. These models are called recurrent neural networks and the basic 

idea is to have neurons which fire for some limited duration of time, before becoming quiescent. 

After the design of the network, obviously it must be trained with a so called learning 

algorithm. For example, in the problem faced in this chapter the network has to learn how to 

divide input data (light curve) into classes. The standard learning algorithm for neural networks 

is backpropagation with gradient descent (or its variant stochastic gradient descent), described 

in next paragraph. 

Figure 2.5: Example of neural network 
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2.2.1.1 Backpropagation and gradient descent 

The scope of these two algorithms, used in conjunction, is to find weights and biases so that  

the output from the network approximates target 𝒕 for all training inputs 𝒙. To quantify how 

well this goal is achieved it is necessary to define a cost function. For backpropagation to work 

the cost function has to satisfy two main assumptions: 

- The cost function 𝐶 can be written as an average over cost functions 𝐶𝑥 for individual 

training examples, 𝒙. 

- The cost function 𝐶 can be written as a function of the outputs from the neural 

network. 

 

There are many possible choices for the cost function, this work employs the quadratic cost 

function, sometimes known as the mean square error or just MSE: 

 

𝐶(𝒘, 𝒃) =
1

2𝑛
∑ ‖𝒕(𝒙𝒊) − 𝒂

𝑳(𝒙𝒊)‖
2

𝑖                                 (2.4) 

 

In equation (2.4) 𝑛 is the total number of training examples, the sum is over individual training 

examples, 𝒙𝒊, 𝒕 = 𝒕(𝒙𝒊) is the corresponding desired output, 𝐿 denotes the number of layers in 

the network and 𝒂𝑳 = 𝒂𝑳(𝒙𝒊) is the vector of actual output from the network when 𝒙𝒊 is the 

input. Obviously, the cost function depends on the weights 𝒘 and on the biases 𝒃. 

Looking at the form of the quadratic cost function, it is possible to realize that 𝐶(𝑤, 𝑏) is 

non-negative, since every term in the sum is non-negative. Furthermore, 𝐶(𝒘, 𝒃) becomes small 

when the output 𝒂𝑳(𝒙𝒊) is approximately equal to the desired one, 𝒕(𝒙𝒊), for all training inputs 

𝒙𝒊. So the training algorithm does a good job if it can find weights and biases so that      

 𝐶(𝒘, 𝒃) ≈ 0 and, by contrast, it’s not doing so well when 𝐶(𝒘, 𝒃) is large. In other words, the 

goal is to find a set of weights and biases which make the cost as small as possible. The most 

common optimization method is the gradient descent (or its variant stochastic gradient descent). 

One way of attacking the problem is to use calculus to try to find the minimum analytically. 

Derivatives could be computed and used to find places where 𝐶 has an extremum. With some 

luck that might work when 𝐶 is a function of just one or a few variables. But it becomes really 

difficult when there are many more variables, as in case of neural networks. Using calculus to 

minimize the cost function just will not work.  

In order to understand the operating mode of the gradient descent it is necessary to think 

about what happens changing by a small amount weights 𝑤𝑖, 𝑖 = 1,… ,𝑊 (with W equal to the 

total number of weights) and biases 𝑏𝑗, 𝑗 = 1,… , 𝐵 (with B equal to the total number of biases). 

Calculus says that the cost function 𝐶 changes as follows: 
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∆𝐶 ≈
𝜕𝐶

𝜕𝑤1
∆𝑤1 +⋯+

𝜕𝐶

𝜕𝑤𝑊
∆𝑤𝑊 +

𝜕𝐶

𝜕𝑏1
∆𝑏1 +⋯+

𝜕𝐶

𝜕𝑏𝐵
∆𝑏𝐵                   (2.5) 

 

where 
𝜕(∙)

𝜕(∙)
 indicates, as common notation, a partial derivative. 

The choices of ∆𝑤𝑖, 𝑖 = 1,… ,𝑊 and ∆𝑏𝑗, 𝑗 = 1,… , 𝐵 should be made in order ∆𝐶 to be 

negative. In this way, 𝐶 is going to decrease step by step. To figure out how to make such a 

choice it helps to define ∆𝒗 to be the vector of changes: 

 

∆𝒗 ≡ (∆𝑤1,… , ∆𝑤𝑊, ∆𝑏1, … , ∆𝑏𝐵)𝑇                                 (2.6) 

 

Then, it is the turn to define the gradient of 𝐶 to be the vector of partial derivatives: 

 

𝛁𝑪 ≡ (
𝜕𝐶

𝜕𝑤1
, … ,

𝜕𝐶

𝜕𝑤𝑊
,
𝜕𝐶

𝜕𝑏1
, … ,

𝜕𝐶

𝜕𝑏𝐵
)
𝑇

                                      (2.7) 

 

With these definitions, the expression (2.5) can be rewritten as 

 

∆𝐶 ≈ 𝛁𝑪 ∙ ∆𝒗                                                  (2.8) 

 

where (∙) defines the dot product between two vectors. 

Equation (2.8) helps explaining why 𝛁𝑪 is called the gradient vector: 𝛁𝑪 indeed relates 

changes in 𝒗 to changes in 𝐶. But what is really exciting about the equation is that it shows 

how to choose ∆𝒗 so as to make ∆𝐶 negative. In particular, suppose to choose 

 

∆𝒗 = −𝜂𝛁𝑪                                                   (2.9) 

 

where 𝜂 is a small, positive parameter (known as the learning rate). Then, equation (2.8) reveals 

that: 

 

∆𝐶 ≈ 𝛁𝑪 ∙ (−𝜂𝛁𝑪) = −𝜂‖𝛁𝑪‖2                                   (2.10) 

 

Because ‖𝛁𝑪‖2 ≥ 0, this guarantees that ∆𝐶 ≤ 0 and so that 𝐶 will always decrease, never 

increase, if the weights and the biases are changed according to the expression (2.9). Writing 

out the gradient descent update rule in terms of components, it is possible to obtain: 

 

𝑤𝑖  → 𝑤𝑖
′ = 𝑤𝑖 − 𝜂

𝜕𝐶

𝜕𝑤𝑖
                                  (2.11) 
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𝑏𝑗  → 𝑏𝑗
′ = 𝑏𝑗 − 𝜂

𝜕𝐶

𝜕𝑏𝑗
                                     (2.12) 

 

By repeatedly applying this update rule it is possible to find a minimum of the cost function, 

moving at each step in the direction opposite with respect to the gradient (Figure 2.6). In other 

words, this is a rule which can be used to learn in a neural network.  

 

In order to make the gradient descent work correctly, it is needed to choose the learning rate 

𝜂 to be small enough so that equation (2.8) is a good approximation. Otherwise, it could be 

possible to end up with Δ𝐶 > 0, which is obviously not desirable. At the same time, 𝜂 cannot be 

too small, since that will make the changes 𝚫𝒗 tiny, and thus the gradient descent algorithm 

will work very slowly. There is so a trade-off. 

Although gradient descent often works extremely well, it can get stuck in local minima. One 

way to try to solve the problem of local minima is to initialize the network in different modes. 

Another way (which can be used in conjuction with multiple initializations) is to slightly modify 

the update rule (2.11) as (same for (2.12)): 

 

𝑤𝑖(𝑡 + 1) → 𝑤𝑖(𝑡 + 2) = 𝑤𝑖(𝑡 + 1) − 𝜂
𝜕𝐶

𝜕𝑤𝑖(𝑡+1)
+ 𝛼(𝑤𝑖(𝑡 + 1) − 𝑤𝑖(𝑡)) −

                                                                  𝜆𝜂𝑤𝑖(𝑡 + 1)                                            (2.13) 

 

where the term 𝛼(𝑤𝑖(𝑡 + 1) − 𝑤𝑖(𝑡)) is called momentum and is used to diminuish the 

fluctuations in weight changes over consecutive iterations (this helps in avoiding local minima).  

Figure 2.6: Illustration of the steps performed by gradient descent  
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The term 𝜆𝜂𝑤𝑖(𝑡 + 1), instead, is called weight decay and penalizes the weight changes (this is 

a regularization15 term). Obviously, here 𝑡 defines the time step. 

There is, however, a problem that is worth mentioning: recalling the expression (2.4) of the 

cost function, 𝐶 can be rewritten as: 

 

𝐶 =
1

𝑛
∑ 𝐶𝒙𝒊𝑖                                          (2.14) 

 

which means that it is an average over costs 𝐶𝒙𝒊 ≡
‖𝒕(𝒙𝒊)−𝒂

𝑳(𝒙𝒊)‖
2

2
 for individual training examples. 

In practice, to compute the gradient 𝛁𝑪 it is necessary to compute the gradients 𝛁𝑪𝒙𝒊 separately 

for each training input, 𝒙𝒊, and then average them: 

 

𝛁𝑪 =
1

𝑛
∑ 𝛁𝑪𝒙𝒊𝑖                                            (2.15) 

 

Unfortunately, when the number of training inputs is very large this can take a long time, and 

learning thus occurs slowly. And here comes a variant of the gradient descent, called stochastic 

gradient descent, which can be used to speed up learning. The idea is to estimate the gradient 

𝛁𝑪 by computing 𝛁𝑪𝒙𝒊 for a small sample of randomly chosen training inputs (or even a single 

one). By averaging over this small sample it turns out that it is possible to get quickly a good 

estimate of the true gradient 𝛁𝑪, and this helps to speed up learning. 

So far, the computation of the gradient of the cost function has been taken for granted. That 

is not a trivial task but fortunately the aforementioned backpropagation comes to the aid. The 

backpropagation algorithm was originally introduced in the 1970s, but its importance was not 

fully appreciated until a famous 1986 paper by David Rumelhart, Geoffrey Hinton and Ronald 

Williams. That paper describes several neural networks where backpropagation works far faster 

than earlier approaches to learning, making it possible to use neural networks to solve problems 

which had previously been insoluble. Today, the backpropagation algorithm is the workhouse of 

learning in neural networks. 

Before listing the theoretical contributions offered by backpropagation, in order not to get 

confused it is important to explain the notation which is used in the following: 

- 𝑤𝑗𝑘
𝑙  will denote the weight for the connection from the 𝑘𝑡ℎ neuron in the (𝑙 − 1)𝑡ℎ layer 

to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer;  

                                                           

15 Regularization is a technique used to avoid the problem of overfitting, which happens 

when the model fits the training data but does not have good predicting performance and 

generalization power. Regularization acts constraining the norm of the coefficients, controlling 

so their growth, their variance and the variance of the output of the network.   
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- 𝑏𝑗
𝑙 will define the bias of the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer; 

- 𝑎𝑗
𝑙 will identify the output of the 𝑗𝑡ℎ  neuron in the 𝑙𝑡ℎ layer. 

 

The equation relating all the previous terms is: 

 

𝑎𝑗
𝑙 = 𝑆(∑ 𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙
𝑘 )                                  (2.16) 

 

where 𝑆(∙) is the activation function. Equation (2.16) can be rewritten in matrix form as:  

 

𝒂𝒍 = 𝑆(𝑊𝑙𝒂𝒍−𝟏 + 𝒃𝒍)                                             (2.17) 

 

where 𝑊𝑙 is the weight matrix for the layer 𝑙 (it means that the element in the 𝑗𝑡ℎ row and 𝑘𝑡ℎ 

column is 𝑤𝑗𝑘
𝑙 ), 𝒂𝒍−𝟏 and 𝒃𝒍 are respectively the output vector and the bias vector for layer  𝑙 − 1 

and 𝑙. 

Backpropragation, whose task is to understand how changing the weights and biases in the 

network changes the cost function, is based on four fundamental equations (reported in the block 

(2.19)). These equations relate three important parameters: the partial derivatives 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  , 

𝜕𝐶

𝜕𝑏𝑗
𝑙 and 

the error in the 𝑗𝑡ℎ neuron of the 𝑙𝑡ℎ layer, 𝛿𝑗
𝑙. This last term is defined as: 

 

𝛿𝑗
𝑙 ≡

𝜕𝐶

𝜕𝑝𝑗
𝑙                                           (2.18) 

   

where 𝑝𝑗
𝑙 is the input of the activation function for the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. As before, 𝜹𝒍 

is used to denote the vector of errors associated with layer 𝑙.  

 

 

 

 

 

 

(2.19) 

 

 

 

 

 

1. 𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿 𝑆′(𝑝𝑗

𝐿)                                   

 

2. 𝛿𝑗
𝑙 = (∑ 𝑤𝑚𝑗

𝑙+1𝛿𝑗
𝑙+1

𝑚 )𝑆′(𝑝𝑗
𝑙) 

 

3. 𝛿𝑗
𝑙 =

𝜕𝐶

𝜕𝑏𝑗
𝑙 

 

4. 𝑎𝑘
𝑙−1𝛿𝑗

𝑙 =
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  
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In block (2.19), 𝑆′(∙) indicates the derivative of the activation function with respect to the 

input 𝑝. These equations could be expressed in matrix form using the Hadamard product16 and 

they could be mathematically demonstrated, but that is out of the scope of this work. The only 

important thing regarding this result is that it allows to compute the error 𝛿𝑗
𝑙 for each neuron 

and the partial derivatives 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙  , 

𝜕𝐶

𝜕𝑏𝑗
𝑙 for each weight and bias, starting from the output layer 

and backpropagating the values towards the input layer (hence the name of the algorithm).  

Although the gradient descent and the backpropagation perform well on simple neural 

networks (with only one hidden layer), they can fail with deep neural networks. The failure can 

be explained by the very probable possibility that the different layers in the deep neural network 

are learning at vastly different speeds. In particular, when later layers in the network are learning 

well, early layers often get stuck during training, learning almost nothing at all. The opposite 

situation (when early layers are learning well and later layers become stuck) is possible too. This 

instability is related to the use of gradient-based learning techniques (as gradient descent) and 

is caused mainly by two problems: the vanishing gradient and the exploding gradient problems. 

The common issue is that the gradient is getting smaller (vanishing) or larger (exploding) as 

moving backward through the hidden layers. This means that neurons in the earlier layers learn, 

respectively, much more slowly or much more fastly than neurons in later layers. More generally, 

it turns out that the gradient in deep neural networks is unstable, tending to either explode or 

vanish in earlier layers. This instability, related also to the derivative of the activation function, 

is a fundamental problem for gradient-based learning in deep neural netoworks and it must kept 

in mind when dealing with these situations.  

There are possible solutions for these issues, even if correct working is not guaranteed. 

Vanishing gradient problem depends principally on the choice of the activation function. For 

example, sigmoid function and hyperbolic tangent function (expressed in Table 2.1) compress 

their input into a very small output range in a very nonlinear fashion. As a result, there are 

large regions of the input space which are mapped to an extremely small range. In these regions 

of the input space, even a large change in the input will produce a small change in the output 

(hence a small gradient). It is possible to avoid this by using activation functions which do not 

have the property of compressing the input space. A popular choice in last years is the rectifier 

function.  

Another solution (explained in details later) which can be adopted is the layer-by-layer 

unsupervised pre-training approach (like autoencoders) in order to improve the weights 

initialization and to reduce the risk of vanishing gradients.    

However, the choice of activation functions which do not limit the output can cause the 

opposite problem, the exploding gradient. A solution used in practice is called gradient clipping 

                                                           

16 The Hadamard product 𝑔 ⨀ ℎ between two vectors 𝑔 and ℎ denotes the elementwise 

product of the two vectors. 
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and lies in keeping the gradient under a certain threshold in order to prevent it from getting too 

large.   

2.2.2 Support Vector Machines (SVM) 

SVM are one of the possible representations of a classification algorithm. Actually, they are 

one of the best methods for classification. They have a long history but they were invented in 

the present form in the late 90’s by Boser, Guyon and Vapnik.  

A support vector machine is a discriminative classifier (inherently binary classifier) formally 

defined by a separating hyperplane. In other words, given labeled training data, the algorithm 

outputs an optimal hyperplane which categorizes new samples. In order to understand the 

meaning of optimal hyperplane, it is useful to give an example. The simple problem is the 

following: for a linearly separable set of 2D-points which belong to one of two classes, find a 

separating straight line [28].  

  

Figure 2.7 shows that there exist multiple lines that offer a solution to the problem, some 

better than others. Indeed, it is reasonable to say that a line is bad if it passes too close to the 

points because it will be noise sensitive and it will not generalize correctly. Therefore, the goal 

should be to find the line passing as far as possible from all points. Then, the operation of the 

SVM algorithm is based on finding the hyperplane that gives the largest minimum distance to 

the training examples. Twice, the distance receives the important name of margin within SVM’s 

theory. Therefore, the optimal separating hyperplane maximizes the margin of the training data.  

In the following a simple but efficient description of the working principles of SVM is given 

[29]. There are two things which must be defined: how to maximize the margin and how to 

decide whether new data belong to one class or to the other (called decision rule). Starting with 

the decision rule and supposing the optimal hyperplane is drawn (Figure 2.8), the first thing to 

do is to build a vector 𝝎 of any length constrained to be perpendicular to the hyperplane. 

Figure 2.7: The problem of finding a separating straight line between two classes of points 
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When an unknown point in the plane needs to be classified (whether it is a circle (+) or a 

square (-)), it is important to understand if that point is on the left or on the right of the 

hyperplane, projecting the vector 𝒖 that defines its position on 𝝎 and so perpendicularly to the 

hyperplane. 

 

 

The decision rule is so easily determined: the unknown data is a + if and only if 

 

𝝎 ∙ 𝒖 + 𝑏 ≥ 0                                                (2.20) 

 

for a vector 𝝎 and a scalar 𝑏 (with 𝝎 perpendicular to the hyperplane), otherwise it is a -.  

In order to find 𝝎 and 𝑏, it is necessary to add more constraints to the problem, demanding 

that: 

 

𝝎 ∙ 𝒙+ + 𝑏 ≥ 1                                              (2.21) 

𝝎 ∙ 𝒙− + 𝑏 ≤ −1                                             (2.22) 

 

for all + samples 𝒙+ and – samples 𝒙− which represent the labeled training data.  

Introducing the variable 𝑦𝑖 such that: 

 

𝑦𝑖 = {
+1   𝑓𝑜𝑟 + 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
−1   𝑓𝑜𝑟 − 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

                                        (2.23) 

 

it is possible to rewrite the equations (2.21)-(2.22) as a single one: 

 

Figure 2.8: Graphical representation of the optimal hyperplane 
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𝑦𝒊(𝝎 ∙ 𝒙𝒊 + 𝑏) − 1 ≥ 0                                           (2.24) 

 

for every sample (positive or negative) 𝒙𝒊.  

Additionally, it can be imposed that: 

 

𝑦𝒊(𝝎 ∙ �̅�𝒊 + 𝒃) − 1 = 0                                          (2.25) 

 

for all the samples 𝒙�̅� on the margin (dashed lines in Figure 2.8). In general, the training examples 

�̅�𝒊 that are closest to the hyperplane are called support vectors (hence the name of the 

algorithm). 

The final goal of SVM, just to remind, is to maximize the margin of the training data. The 

margin can be expressed as: 

 

𝑚𝑎𝑟𝑔𝑖𝑛 = (�̅�+ − �̅�−) ∙
𝝎

‖𝝎‖
                                   (2.26) 

 

where �̅�+ is a + sample on the margin and �̅�− is a – sample on the margin. Inserting equation 

(2.25) in (2.26), the result is: 

 

𝑚𝑎𝑟𝑔𝑖𝑛 =
1−𝑏+1+𝑏

‖𝝎‖
=

2

‖𝝎‖
                                    (2.27) 

 

Maximizing (2.27) is the same as minimizing ‖𝝎‖ which turns out to be equal to minimize 

1

2
‖𝝎‖2, just to make the expression mathematically convenient. The objective function to be 

minimized, 
1

2
‖𝝎‖2, is quadratic and the constraints (2.24) which must be satisfied are linear. 

Therefore, this appears to be a quadratic problem that can be solved with the aid of the 

Lagrangian function, transforming the problem from a constrained to an unconstrained one. The 

general expression of the Lagrangian function is: 

 

𝐿(𝝎, 𝜶, 𝑏) = 𝑓(𝝎) − ∑ 𝛼𝑖𝑔𝑖(𝑖 𝝎, 𝑏)                        (2.28) 

 

where 𝑓(𝝎, 𝑏) is the objective function, 𝑔𝑖(𝝎, 𝑏) are the inequality constraints (2.24) and 𝛼𝑖 are 

called the Lagrange multipliers.  

Given the problem stated above, Karush-Kuhn-Tucker (KKT) conditions for nonlinear 

optimization say that if 𝝎∗, 𝑏∗, 𝜶∗ is a minimum of (2.28), then these conditions must be verified: 
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(2.29) 

 

 

 

 

In particular, the last condition is really interesting: indeed it states that, for each sample, either 

𝑔𝑖(𝝎
∗, 𝑏∗) = 0 (this happens if the sample is on the margin) or 𝛼𝑖

∗ = 0 (this means that its 

multiplier is equal to zero). 

Applying all these theoretical concepts to the problem under consideration, the Lagrangian 

function takes the form: 

 

𝐿(𝝎, 𝜶, 𝑏) =
1

2
‖𝝎‖2 − ∑ 𝛼𝑖[𝑦𝑖(𝝎 ∙ 𝒙𝒊 + 𝑏) − 1]𝑖                    (2.30) 

 

and its derivatives with respect to 𝝎,𝜶, 𝑏 (which must be put equal to zero for condition 1 in 

(2.29)) are: 

 

𝜕𝐿

𝜕𝝎
= 𝝎− ∑ 𝛼𝑖𝑦𝑖𝒙𝒊 = 0𝑖    ⇒  𝝎 = ∑ 𝛼𝑖𝑦𝑖𝒙𝒊𝑖                      (2.31) 

𝜕𝐿

𝜕𝑏
= ∑ 𝛼𝑖𝑦𝑖 = 0𝑖   ⇒  ∑ 𝛼𝑖𝑦𝑖 = 0𝑖                           (2.32) 

𝜕𝐿

𝜕𝜶
=  0  ⇒  𝑏 =

1

𝑁
∑ (𝑦𝑖 − ∑ 𝛼𝑗𝑦𝑗𝒙𝒊

𝑻 ∙ 𝒙𝒋𝑗 )𝑖                       (2.33) 

 

where 𝑁 is the number of samples. This solves the problem in a very intelligent way: in fact, 

due to condition 5 in (2.29), not all the samples should be considered for the computation of 𝝎 

and 𝑏, but only the ones on the margin (support vectors) since for the others the weight 𝛼𝑖 is 

going to be zero. Although the presented algorithm seems surprisingly powerful, so far it can 

work only if the training data are linearly separable. But with a little effort its efficiency can be 

incredibly improved. Indeed, substituting equations (2.31)-(2.32) in (2.30) and doing some 

calculations, the Lagrangian function turns out to be: 

 

𝐿(𝝎, 𝜶, 𝑏) = ∑ 𝛼𝑖𝑖 −
1

2
∑ 𝛼𝑖𝑗 𝛼𝑗𝑦𝑖𝑦𝑗𝒙𝒊

𝑻 ∙ 𝒙𝒋                        (2.34) 

1. ∇𝐿(𝝎∗, 𝜶∗, 𝑏∗) = 0 

 

2. 𝑔𝑖(𝝎∗, 𝑏∗) ≤ 0 

 

3. 𝛼𝑖
∗ ≥ 0 

 

4. 𝛼𝑖
∗𝑔

𝑖
(𝝎∗, 𝑏∗) = 0 
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and the decision rule (2.20) becomes: 

 

∑ 𝛼𝑖𝑦𝑖𝒙𝒊
𝑻 ∙ 𝒖𝑖 + 𝑏 ≥ 0                                     (2.35) 

 

It is clear from equations (2.34)-(2.35) that the Lagrangian function to be minimized and 

the decision rule depend only on the dot product between data. This means that it is possible 

to use the so called kernel trick and apply a transformation to the data projecting them in a 

certain space (even with infinite dimensions) where they are linearly separable. The strength of 

the kernel trick is that it make not indispensable the calculation of the transformation which 

can be sometimes almost impossible. All that is needed is a function, exactly the kernel function, 

defined as: 

 

𝑘: ℝ𝑚 × ℝ𝑚  →  ℝ                                            (2.36) 

 

where 𝑚 is the dimension of the data. The kernel function satisfies the relationship: 

 

𝑘(𝒙𝒊, 𝒙𝒋) = 𝜙(𝒙𝒊)
𝑇 ∙ 𝜙(𝒙𝒋)                                      (2.37) 

 

in which 𝜙(∙) defines the transformation which need not to be known though. 

The most common used kernel functions are: 

 LINEAR KERNEL 

𝑘(𝒙𝒊, 𝒙𝒋) = 𝒙𝒊
𝑻 ∙ 𝒙𝒋                                       (2.38) 

 

 POLYNOMIAL KERNEL  

𝑘(𝒙𝒊, 𝒙𝒋) = (𝒙𝒊
𝑻 ∙ 𝒙𝒋 + 𝑐)

𝑑
                                 (2.39) 

 

 GAUSSIAN KERNEL  

𝑘(𝒙𝒊, 𝒙𝒋) = exp (−𝛾‖𝒙𝒊 −𝒙𝒋‖
2
)                             (2.40) 

  

 HYPERBOLIC TANGENT KERNEL 

𝑘(𝒙𝒊, 𝒙𝒋) = tanh (𝑎𝒙𝒊
𝑻 ∙ 𝒙𝒋+ 𝑐)                             (2.41) 

 

The last surprising aspect to be mentioned is that SVM algorithm always guarantees a 

convex weight optimization problem, and this means that it cannot be stuck in local minima.  
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2.2.3 Extreme Learning Machines (ELM)  

After the illustration of the two main representations for classification algorithms, neural 

networks and SVM, in this paragraph a new and powerful technique is presented (and then 

tested in next section): the Extreme Learning Machines (ELM). Theoretically, ELM are a 

particular kind of feedforward neural networks with a single layer of hidden nodes which do not 

make use of backpropagation as learning algorithm. In fact, backpropagation is a step-by-step 

algorithm; ELM, instead, utilize a distinctive learning algorithm, explained later, which allows 

learning in a single step. Although ELM were originally conceived as feedforward neural network 

with one single hidden layer, their particular training algorithm can be applied to almost every 

kind of neural networks (CNNs [30], Local Receptive Fields NNs [31], Multi-Layer NNs [32],…). 

Even if the main concepts had already been in the scientific community for years, ELM were 

formally described and introduced by Huang in 2004. According to their creators, these models 

are able to produce good generalization performance and learn thousands of times faster than 

networks trained using backpropagation.  

Starting from simple single layer feedforward networks (SLFN, explained in paragraph 2.2.1), 

the universal approximation theorem states that any continuous target function 𝒇(𝒙) can be 

approximated by SLFNs with some kind of hidden nodes and with appropriate parameters. In 

other words, given any small positive value 휀, for SLFNs with enough number of hidden neurons 

(𝐿) it is true that: 

 

‖𝒇𝐿(𝒙) − 𝒇(𝒙)‖ < 휀                                         (2.42)          

 

where 𝒇𝐿(𝒙) is the output of the SLFN. However, the theorem does not touch upon the 

algorithmic learnability of the required parameters. Indeed, in real applications target function 

𝒇 is usually unknown and there is only the hope that it can be approximated by 𝒇𝑳 appropriately. 

As described in paragraph 2.2.1, many learning methods mainly based on gradient descent or 

other iterative approaches have been developed over the past two decades. Backpropagation and 

its variants are the most popular. Although the basic idea is simple and quite efficient, neural 

networks with those learning methods have advantages and disadvantages [33] (Table 2.2). 

PROS CONS 

 Widely used in various applications: 

regression, classification, etc. 

 Usually different learning algorithms 

used in different SLFNs architectures 

 Some parameters have to be tuned 

manually 

 Overfitting 

 Local minima 

 Time-consuming 

 

Table 2.2: Advantages and disadvantages of SLFNs with iterative learning methods 
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Of the five listed in Table 2.2, the main two issues of iterative training methods are local 

minima and the time consumption (obviously due to their iterative nature). And that is what 

ELM do better. The new learning theory on which ELM are based is a learning without iterative 

tuning: if a continuous target function 𝒇(𝒙) can be approximated by SLFNs with adjustable 

hidden nodes, then the hidden node parameters (weights between inputs and hidden layer and 

biases) of such SLFNs need not to be tuned. Indeed, all these hidden node parameters can be 

randomly generated without the knowledge of the training data. That is, using the notation 

introduced in paragraph 2.2.1.1, for any continuous target function 𝒇(𝒙) and any randomly 

generated set {𝑊1, 𝒃𝟏} it is true that: 

 

lim
𝐿→∞

‖𝒇(𝒙) − 𝒇𝑳(𝒙)‖ = 0                                        (2.43) 

 

holds with probability one if 𝑊2, that is the output weight matrix, is chosen to minimize: 

 

‖𝒇(𝒙) − 𝒇𝐿(𝒙)‖                                             (2.44) 

 

Expression (2.44) turns out, after some substitutions, to be equal to: 

 

‖𝐴1𝑊2 − 𝑇‖                                             (2.45) 

 

where 𝑇 is the target matrix and 𝐴1 is the hidden layer output matrix. The least squares solution 

for (2.45) is: 

 

‖𝐴1𝑊2̂ − 𝑇‖ = min
𝑊2

‖𝐴1𝑇𝑊2 − 𝑇‖   →   𝑊2̂ = (𝐴1)+𝑇                (2.46) 

 

where (𝐴1)+ is the Moore-Penrose generalized inverse of hidden layer ouput matrix 𝐴1.  

The three steps of the new training model are therefore very easy: given a training set 𝑍 =

{(𝒙𝒊, 𝒕𝒊)| 𝒙𝒊 ∈ ℝ
𝑛, 𝒕𝒊 ∈ ℝ

𝑚, 𝑖 = 1,… ,𝑁} where 𝑛 is the number of inputs and 𝑚 is the number of 

outputs 

 Generate random hidden node parameters 𝑊1 and 𝒃𝟏 

 Calculate the hidden layer output matrix 𝐴1 

 Calculate the output weight matrix as 𝑊2 = (𝐴1)+𝑇  

 

The fundamental consequences of such result are: 

- Extreme Learning Machine is a simple tuning-free algorithm. 

- The learning speed of ELM is extremely fast. 
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- The hidden node parameters 𝑊1 and 𝒃𝟏 are not only independent of the training data 

but also of each other. 

- Unlike conventional learning methods which must see the training data before generating 

the hidden node parameters, ELM could generate the hidden node parameters before 

seeing the training data. 

- Unlike traditional gradient-based learning algorithms which only work for differentiable 

activation functions, ELM works for all nonlinear piecewise continuous activation 

functions. 

- Unlike traditional gradient-based learning algorithms facing several issues like local 

minima, improper learning rate and overfitting, ELM tends to reach the solution 

straightforward without such trivial issues. 

 

Moreover, it is possible to keep into account also regularization according to the ridge regression 

theory in order to weight the values of 𝑊2 and improve the generalization of the model 

preventing overfitting. The problem now is slightly different from before and the goal is to 

minimize: 

 

‖𝐴1𝑊2 − 𝑇‖ , ‖𝑊2‖                                           (2.47) 

 

The least squares solution for (2.47) based on KKT conditions (explained in paragraph 2.2.2) 

can be written as: 

 

𝑊2 = 𝐴1𝑇 (
𝐼

𝐶
+ 𝐴1𝐴1𝑇)

−1

𝑇                             (2.48) 

 

where 𝐶 is the regularization coefficient and 𝐼 is an identity matrix of proper dimensions.  

Moreover, it is possible to use in this case also the kernel trick. Indeed, one can apply Mercer’s 

conditions for kernels on ELM and define a kernel matrix as follows: 

 

Ω𝐸𝐿𝑀 = 𝐴
1𝐴1𝑇: Ω𝐸𝐿𝑀𝑖,𝑗 = 𝒂

𝟏(𝒙𝒊) ∙ 𝒂
𝟏(𝒙𝒋) = 𝑘(𝒙𝒊, 𝒙𝒋)                      (2.49) 

 

where 𝒂𝟏(𝒙) is the hidden layer output vector for input 𝒙.  

In this way, the output function of the neural network 𝒇(𝒙) = 𝐴1𝑊2, inserting (2.48) 

becomes: 

 

𝒇(𝒙) = 𝐴1𝐴1𝑇 (
𝐼

𝐶
+ 𝐴1𝐴1𝑇)

−1

𝑇 = Ω𝐸𝐿𝑀 (
𝐼

𝐶
+ Ω𝐸𝐿𝑀)

−1

𝑇              (2.50)   
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The output, so, depends only on the kernel matrix. This is a quite powerful result because 

it means that the hidden layer output matrix 𝐴1 need not to be known to users; instead, its 

corresponding kernel (which must satisfy the Mercer’s conditions, like for example the polynomial 

kernel or the Gaussian kernel) is given to users. The number of hidden nodes 𝐿 need not to be 

given either. Moreover, the kernel-based ELM learning algorithm achieves similar or better 

generalization performance, is more stable compared to traditional ELM and it is faster.  

Finally, a solution for using ELM with deep neural networks is presented. Indeed, although 

ELM technique is based on SLFNs it is possible to apply it also to multilayer networks taking 

advantage of the autoencoders idea for unsupervised learning. So far, it has been described the 

application of neural networks to supervised learning, in which there were labeled training 

examples. But if only a set of unlabeled training examples 𝑍 = {𝒙𝒊| 𝒙𝒊 ∈ ℝ
𝑛, 𝑖 = 1,… , 𝑁} is known 

and the targets are, instead, unknown unsupervised learning with neural networks is still 

possible. An autoencoder SLFN (represented in Figure 2.9 for an input sample), in fact, is an 

unsupervised learning algorithm that sets the target values to be equal to the inputs (i.e., it fixes 

 𝒕𝒊 = 𝒙𝒊, 𝑖 = 1,… , 𝑁). The autoencoder tries to learn a function 𝒕(𝒙) = �̂� ≈ 𝒙. In other words, it 

is trying to learn an approximation to the identity function. It seems a particularly trivial 

function to be trying to learn, but by placing constraints on the network, such as by limiting 

the number of hidden units, it is possible to discover interesting structures about the data (the 

so called features, which are essential for doing unsupervised learning).   

Autoencoders are usually trained with backpropagation but, since they are SLFNs, following 

the previous reasoning the ELM technique can be applied to obtain an ELM-based autoencoder 

(ELM-AE). In particular, input data are used as output data and random hidden node 

parameters 𝑊1 and 𝒃𝟏 are chosen to be orthogonal. Orthogonalization, even if not necessary, 

tends to improve ELM-AE’s generalization performance. The problem of computing the output 

weight matrix is really similar to the one studied for basic ELM, the only differences are the 

othogonalization of the hidden node parameters and the substitution of the targets with the 

inputs. The equations, at the end, are: 

 

𝑊1𝑇𝑊1 = 𝐼                                               (2.51) 

𝒃𝟏𝑻𝒃𝟏 = 𝐼                                                (2.52) 

𝑊2 = 𝐴1𝑇 (
𝐼

𝐶
+ 𝐴1𝐴1𝑇)

−1

𝑋                              (2.53) 

 

where 𝑋 = [𝒙𝟏, … , 𝒙𝑵] is the input matrix. 
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Autoencoders can be used for unsupervised learning but, as anticipated in paragraph 2.2.1.1, 

they can be adopted for layer-by-layer unsupervised pre-training approach in deep networks in 

order to improve the weights initialization and to reduce the risk of vanishing gradients. The 

idea is that autoencoders can be “stacked” in a layerwise fashion in order to build a stacked 

autoencoder. Stacked autoencoder is so a neural network consisting of multiple layers of 

autoencoders in which the outputs of each layer are wired to the inputs of the successive layer. 

It is not easy to understand but the concept is that each pair of consecutive layers is considered 

and trained as a single autoencoder. The example described below and represented in Figure 

2.10 should clarify possible doubts.  

Suppose that the network to train has 6 input neurons, 4 neurons in the first hidden layer, 

3 neurons in the second hidden layer and 2 output neurons. The steps to accomplish in order to 

obtain good parameters for the stacked autoencoder are illustrated in Figure 2.10.   

 

 

 

 

Figure 2.9: Structure of an autoencoder 
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Figure 2.10: Steps for the training of stacked autoencoders 
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The application of the ELM technique to multilayer networks is based on the same procedure 

described in Figure 2.10. The only difference is that, instead of considering standard 

autoencoders and train them with backpropagation, ELM-based autoencoders are taken into 

account and trained with ELM method. In other words, each pair of consecutive layer is 

considered and trained as an ELM-AE, choosing random hidden node orthogonal parameters 

and computing the output weight matrix with equation (2.53). The calculated output weights 

will be then used to form the stacked autoencoder (Figure 2.11).   

 

 

2.3 Results 

In this section, all the techniques seen previously are applied to the problem of space object 

classification from light curve data. Accuracies and speeds of the various methods are compared 

and discussed.  

The light curve data kindly provided by Prof. Linares include 50000 labeled samples. Just 

to remind, they are generated by a complex model taking into account objects with different 

shapes and controls (to be precise, by the Ashikhmin-Shirley (AS) model, whose description, 

deeply given in [24], is out of the scope of this thesis). Moreover, from the same object different 

light curves are produced, changing for example the angular velocity of rotation and other 

parameters. The five different classes, which represent the label of the data, consist of objects 

with different shapes and controls.  

Figure 2.11: Steps for the training of ELM-based multilayer networks 
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Each sample is composed by 182 inputs (the apparent magnitude of the space object at 182 

time instants, two examples of different classes are shown in Figures 2.12-2.13) and one output 

(the class of the object). It is useful to remind that the five possibile classes are: debris (passive), 

rocket body (passive), sun pointing payload (active), spin stabilized payload (active) and nadir  

pointing payload (active).   

 

 

 

As said, the inputs represent apparent magnitude at a given time, so they are numbers 

ranging from 9 to 18 approximately. Usually, the first thing to do on inputs is to normalize 

them. Indeed, almost all the classification methods (also neural networks and SVM used later) 

are really sensitive about the format and the range of the inputs.  

Figure 2.12: Example of the apparent magnitude of a space object with respect to time, 

class 4 (spin stabilized payload) 

Figure 2.13: Example of the apparent magnitude of a space object with respect to time, 

class 1 (debris) 



70                                                               CHAPTER 2. OBJECT CLASSIFICATION 

                                                    

Mainly, there exist two kinds of data normalization:  

 STANDARD SCORE (or Z-SCORE) NORMALIZATION. The normalization by 

standard score simply converts the group of data in a frequency distribution such that 

the mean is zero and the standard deviation is 1. Given 𝑐𝑖 , 𝑖 = 1,… ,𝑁 data, the 

normalized data by standard score are defined as: 

 

𝑐�̃� =
𝑐𝑖−𝜇

𝜎
                                       (2.54) 

 

where 𝜇 is the mean: 

 

𝜇 =
1

𝑁
∑ 𝑐𝑖𝑖                                      (2.55) 

 

and 𝜎 is the standard deviation: 

 

𝜎 = √
1

𝑁−1
∑ (𝑐𝑖 − 𝜇)2𝑖                                   (2.56) 

 

 MEDIAN NORMALIZATION. This normalization method simply subtract the median 

from the data. The median of a set of data is the middle value when the values are 

sorted from the lowest to the highest. If the number of values is even, the median is the 

average of the two middle values. So, given 𝑐𝑖 , 𝑖 = 1,… ,𝑁 data, the normalized data by 

median subtraction are defined as: 

 

𝑐�̃� = 𝑐𝑖 −𝑚𝑒𝑑𝑖𝑎𝑛                                     (2.57) 

 

 MIN-MAX NORMALIZATION. In this case the data are scaled from a minimum 

number (m) to a maximum number (M), decided by the user. Given 𝑐𝑖 , 𝑖 = 1,… , 𝑁 data, 

the min-max normalized data are defined as: 

 

𝑐�̃� = 𝑚 +
𝑐𝑖−min

𝑖
𝑐𝑖

max
𝑖
𝑐𝑖−min

𝑖
𝑐𝑖
(𝑀 −𝑚)                     (2.58) 

 

The best normalization method depends on the data to be normalized. For the data handled 

in this section, after some trials, the z-score normalization guarantees the best results. This is 

why in the following that kind of normalization is implicitly used. The 50000 samples are divided 

in 43000 for training and 7000 for testing. When some hyperparameters (i.e., learning rate, 
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regularization, etc.) need to be set, the data are divided in 36000 for training, 7000 for validation 

(and choice of the hyperparameters) and 7000 for testing. 

2.3.1 ELM classifier 

The first adopted classifier is an Extreme Learning Machine. Obviously, it has 182 input 

neurons, a certain number of neurons in the hidden layer and 5 output neurons (the number of 

classes). At the end of the network there is a softmax classifier (see section 2.2) that returns as 

output the probability distribution over the 5 classes. The picked class is the one with the highest 

probability. As explained in paragraph 2.2.3, the training procedure for an ELM is really 

straightforward. The only things to do are: 

 Generate random hidden node parameters 𝑊1 and 𝒃𝟏 

 Set the hyperparameters: number of neurons of the hidden layer, regularization 

coefficient and activation function 

 Compute the ouput weight matrix 𝑊2 with the formula (2.48) 

 

Hidden node parameters 𝑊1 and 𝒃𝟏 are simply chosen uniformly randomly distributed between 

-1 and 1. These initialization is, indeed, proposed by the formal definer of the ELM idea, Huang, 

and it works well.  

The regularization coefficient 𝐶 is set equal to 0.1 (remind that the smaller 𝐶 the bigger the 

regularization effect) in order to try avoiding overfitting and guarantee an acceptable 

generalization property of the network. The number 𝐿 of neurons present in the hidden layer 

and the type of activation function that lead to the best performance are chosen with the 

validation set. The training and testing accuracies for different values of 𝐿 and different 

activation functions are shown in Figures 2.14÷2.19.  

Figure 2.14: Training and testing accuracies of an ELM classifier with Gaussian activation 

function 
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For the Gaussian activation function it is chosen as “best point” the one corresponding with 

10000 hidden neurons, because after that point the testing accuracy is quite the same but the 

the training time is increasing almost exponentially. All the tests presented in this chapter are 

performed on a high performance computer with Xeon Haswell E5-2695 Dual 14-core processors 

and a processor speed of 2.3 GHz. 

 

 

 

 

 

Figure 2.16: Training and testing accuracies of an ELM classifier with unit step activation 

function 

 

Figure 2.15: Training time of an ELM classifier with Gaussian activation function 
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For the unit step activation function it is chosen as “best point” the one corresponding to 

10000 hidden neurons for the same reasons as before.  

 

 

 

 

 

 

 

 

 

Figure 2.17: Training time of an ELM classifier with unit step activation function 

Figure 2.18: Training and testing accuracies of an ELM classifier with sigmoid activation 

function 
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For the sigmoid activation function it is chosen as “best point” the one corresponding with 

12000 hidden neurons always for the same reasons.  

Comparing the results for the three different activation functions, it is possible to notice that 

the sigmoid brings to the worst outcome both in terms of testing accuracy and training time. 

The other two (unit step and Gaussian) are very similar but, even if the unit step allows a lower 

training time, the Gaussian is preferred because the tendency to overfit (visible from the distance 

between the training accuracy and the testing accuracy) is smaller.  

Therefore, the use of a Gaussian activation function and 10000 hidden neurons with the 

testing data produces the following last results for an ELM classifier: 

 Training accuracy: 96.43% 

 Testing accuracy: 93.80% 

 Training time: 724.12 s 

 Testing time: 3.83 s 

 

2.3.2 Multilayer ELM (ML-ELM) classifier 

This classifier is the multilayer version of the previous one (ELM classifier). There is not 

much to say about it, since all the training procedure, based on stacked autoencoder, was clarified 

in paragraph 2.2.3 and depicted in Figure 2.11. Hidden node parameters are simply chosen 

uniformly randomly distributed between -1 and 1. At the end of the network there is a softmax 

classifier.  

So, in principle, the treatise is the same as the ELM classifier, but with more than one hidden 

layers. The validation data for different structures of the network are:  

 

Figure 2.19: Training time of an ELM classifier with sigmoid activation function 
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Figures 2.20-2.21 show the training and testing accuracies and the training time of a two-

layer ML-ELM classifier. Only the sigmoid activation function is presented since in this case it 

allows similar performance to the other kinds of activation functions.  

The result is not surprisingly good: even changing the regularization coefficient and other 

second order parameters, the accuracy is not significantly increasing and is lower than the single 

layer case. At least, the training time is really small. The cause of this outcome can maybe be 

ascribed to the fact that the training data (36000) are not enough to let the autoencoders 

recognize significant features on the data.  

Figure 2.20: Training and testing accuracies of a ML-ELM classifier with sigmoid activation 

function 

Figure 2.21: Training time of a ML-ELM classifier with sigmoid activation function 
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However, as highlighted in Figures 2.20-2.21, the best performance in term of training time 

and testing accuracy is obtained with 6100 neurons in the first hidden layer and 1700 in the 

second one. The results with the testing data are: 

 Training accuracy: 86.34% 

 Testing accuracy: 85.84% 

 Training time: 10.72 s 

 Testing time: 0.26 s 

 

2.3.3 Kernel-based ELM (K-ELM) classifier 

The treatise here is much simpler. Indeed, as underlined in paragraph 2.2.3, neither the 

activation function nor the number of hidden nodes need to be specified. Only the regularization 

parameter 𝐶 (set equal to 0.1 as in the other cases) and the kind of kernel function must be 

decided. The kernel functions that are taken into account are: 

 the linear kernel 

 the polynomial kernel  

 the Gaussian kernel 

 

The efficiency of those kernels is tested on the validation set (Table 2.3) in order to pick the 

most satisfying one and try it finally with the testing set.  

 

 

Table 2.3: Efficiency of different kinds of kernel in K-ELM classifier 

LINEAR KERNEL 

 

Training accuracy: 48.14% 

Validation accuracy: 48.26% 

Training time: 40.19 s 

Testing time: 0.27 s 

POLYNOMIAL KERNEL 

 

Training accuracy: 78.84% 

Validation accuracy: 75.20%  

Training time: 51.59 s 

Testing time: 0.62 s 

with 𝑐 = 0.1 and 𝑑 = 2 

GAUSSIAN KERNEL 

 

Training accuracy: 95.57% 

Validation accuracy: 94.44% 

Training time: 64.99 s 

Testime time: 2.91 s 

with 𝛾 = 1.1 
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As it is clear from Table 2.3, the Gaussian kernel guarantees the best performance. Therefore, 

using it with 𝛾 = 1.1 on the testing data, the following results for a K-ELM classifier are 

produced: 

 Training accuracy: 95.22% 

 Testing accuracy: 93.94% 

 Training time: 58.98 s 

 Testing time: 2.97 s 

 

2.3.4 Backpropagation and gradient descent (BP+GD) classifier 

One of the most famous methods for classification is neural networks trained with 

backpropagation and gradient descent. All the theory which these algorithms are based on was 

deeply explained in paragraph 2.2.1 and the implementation is helped by MATLAB built-in 

functions. The used training algorithm is a resilient backpropagation, whose purpose is to 

eliminate the vanishing gradient problem. At the end of the network, as usual, there is a softmax 

classifier that returns as output the probability distribution over the 5 classes.  

The values of learning rate, momentum coefficient and weight decay are set to standard 

values proposed by MATLAB:  

- Learning rate: 0.01 

- Momentum coefficient: 0.9 

- Weight decay: 1.2 when the weight is increasing, 0.5 when it is decreasing  

 

Therefore, the only things to be decided are the number of hidden nodes and the activation 

function, which are chosen using the validation data. 

 
Figure 2.22: Training and testing accuracies of a BP+GD classifier with sigmoid activation 

function 
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Figures 2.22-2.23 show the training and testing accuracies and the training time for a 

BP+GD classifier with a sigmoid activation function. With other types of activation function 

the outcomes are really similar or even worse. Predictably, the network in this case needs a 

smaller number of hidden neurons than the ELM case. As depicted in Figure 2.22, the accuracy 

increases at the beginning, then it stabilizes and at the end it starts decreasing probably because 

the network is becoming more and more complex and so it can be stuck in local minima.  

As a trade-off between testing accuracy and training time, a network with 700 hidden 

neurons is chosen to be tested with the testing data. The results are:     

 Training accuracy: 95.31% 

 Testing accuracy: 93.63% 

 Training time: 44573.00 s 

 Testing time: 18.62 s 

 

Taking a look at the cost function and its gradient during the test (Figures 2.24-2.25), it is 

possible to understand the working principle of the gradient descent algorithm. Indeed, by 

repeatedly applying the update rule (2.9), it moves at each step in the direction opposite with 

respect to the gradient, trying to find a minimum of the cost function. In this case, both the 

cost function and its gradient are decreasing more and more towards zero, as the expected 

behavior.     

Figure 2.23: Training time of a BP+GD classifier with sigmoid activation function 
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2.3.5 Support Vector Machines (SVM) classifier 

SVM are one of the best methods for classification, mainly because of the easiness of the 

algorithm. However, as anticipated in paragraph 2.2.2, they were originally conceived as binary 

classifiers and in the problem studied in this chapter there are 5 classes. But nothing is lost, 

since there exist two possible solutions: 

 ONE-VS-ALL BINARY CLASSIFIERS. If the data need to be divided in 𝐷 classes, 

the first idea is to build 𝐷 one-vs-all SVM classifiers. This means that for the 𝑖th 

classifier, the positive examples will be the points in class 𝑖, the negative examples will 

Figure 2.24: Step-by-step cost function of a BP+GD classifier 

Figure 2.25: Step-by-step gradient of the cost function in the BP+GD classifier 
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be the points not in class 𝑖. In other words, each classifier is trying to separate one 

class from all the others. After the training of 𝐷 classifiers, a new sample is categorized 

according to the maximum of the scores returned by the classifiers (the score is the left 

hand side of the decision rule (2.20)).  

 ONE-VS-ONE BINARY CLASSIFIERS. The second idea is to build 𝐷(𝐷 − 1)/2 one-

vs-one classifiers. Each classifier tries to learn how to distinguish two different classes 

𝑖 and 𝑗. After the training part, a new sample is categorized using a voting strategy: 

each classifier is consulted and votes for one class. At the end, the class having the 

majority of votes wins.  

 

Both the two abovementioned solutions work pretty well. However, the one-vs-one method 

usually works slightly better than the other if the number of classes is small, even if it is more 

computationally expensive. In this problem there are 5 classes, a small sumber, and that is the 

reason why a one-vs-one solution is adopted. MATLAB built-in functions are used for the 

implementation and 10 binary classifiers are trained.  

The only parameters to be set are the regularization parameter (put equal to 0.1 as in the 

other cases) and the kind of kernel function. This latter is chosen with the aid of the validation 

set (results in Table 2.4). 

 

 

Table 2.4: Efficiency of different kinds of kernel in SVM classifier 

 

Here the choice of the kernel is very easy, since neither the polynomial kernel nor the linear 

one converge. The non convergence is probably due to the fact that the training data are barely 

linearly separable with the transformations caused by those kernels. Applying the Gaussian 

kernel SVM to the testing data produces these final results: 

 Training accuracy: 98.75% 

 Testing accuracy: 96.34% 

 Training time: 21462.00 s 

 Testing time: 33.63 s 

 

GAUSSIAN KERNEL 

 

Training accuracy: 98.75% 

Validation accuracy: 96.00% 

Training time: 20998.00 s 

Testing time: 31.89 s 

POLYNOMIAL KERNEL 
 

No convergence 

LINEAR KERNEL 
 

No convergence 
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2.3.6 Results 

Summarizing, the results obtained with the different learning techniques are reported in 

Table 2.5.  

 

 

Table 2.5: Summary of the results for the object classification problem with different kinds of 

classifiers 

 

As it can be seen in Table 2.5, almost all the classifiers, properly tuned, present the same 

performance capability, except the SVM which is slightly better and the ML-ELM which is 

slightly worse. Moreover, the results show that the object classification problem can be brilliantly 

solved with machine learning algorithms.  

[24] claims an overall accuracy of 99.60% with Convolutional Neural Networks. This is not 

unexpected, since CNN are recognised as very powerful neural networks. However, their training 

is computationally expensive and the required time is surely greater than the one of the 

algorithms examined in this chapter. 

Finally, the most surprising thing is that the ELM learning algorithm is able to guarantee 

similar testing accuracy with respect to standard learning techniques but with much smaller 

ELM CLASSIFIER 

 

Training accuracy: 96.43% 

Testing accuracy: 93.80% 

Training time: 724.12 s 

Testing time: 3.83 s 

ML-ELM CLASSIFIER 

 

Training accuracy: 86.34% 

Testing accuracy: 85.84% 

Training time: 10.72 s 

Testing time: 0.26 s 

K-ELM CLASSIFIER 

 

Training accuracy: 95.22% 

Testing accuracy: 93.94% 

Training time: 58.98 s 

Testing time: 2.97 s 

BP+GD CLASSIFIER 

 

Training accuracy: 95.31% 

Testing accuracy: 93.63% 

Training time: 44573.00 s 

Testing time: 18.62 s 

SVM CLASSIFIER 

 

Training accuracy: 98.75% 

Testing accuracy: 96.34% 

Training time: 21462.00 s 

Testing time: 33.63 s 
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training time. In particular, the K-ELM classifier is more than 750 times faster than BP+GD 

classifier and almost 370 times faster than the SVM classifier. This means that the subject is 

very interesting and certainly in the future it will get more and more attention by the scientific 

community.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3. SENSOR TASKING                                                                          83 

 

 

 

Chapter 3 

 Sensor Tasking  

 
“I believe that at the end of the century the use of words and general  

educated opinion will have altered so much that one will be able  

to speak of machines thinking without expecting to be contradicted”. 

(Alan Turing, Computer Scientist and Mathematician) 

  

In this chapter the problems of catalogue maintenance and sensor tasking are addressed. As 

underlined in the introduction, there exists a catalogue that contains all the information about 

the known objects and this catalogue needs to be updated constantly. However, the network of 

sensors that provides data for this catalogue is limited, while the number of space objects is 

increasing more and more. The solution to this task, then, involves solving a large scale resource 

allocation and management problem. This chapter studies the problem of sensor management 

for space situational awareness via reinforcement learning, where the goal is to maintain 

knowledge over a given number of geostationary satellites (particular subset of SOs) using a 

limited number of sensing platforms. 

In the first section the catalogue maintenance issue is introduced and initially addressed; 

then, in the second part the subject of reinforcement learning (and in particular of Q-learning) 

is illustrated together with its possible implementation. At the end, in the third section, the 

solution and results of the sensor tasking problem are presented. 

 

3.1 Catalogue maintenance  

It should be clear now that the main idea under the catalogue maintenance area of interest 

is to keep the catalogue of space objects updated. This is due to the fact that the known 

information about space objects under surveillance is uncertain, basically because of the 

uncertainty inherently present in the propagation models (explained in paragraph 1.2.2.3).  

The scope of this chapter is to define a way in which one single telescope can track a certain 

number of geostationary satellites in order to keep the uncertainties associated to their position 
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and velocity under a certain threshold. As profusely reminded in the previous chapters, the 

dissertation hereafter concerns only geostationary satellites, but obviously it can be valid for all 

the other bodies.  

The first thing to do in order to accomplish the abovementioned task is to check how many 

and which satellites are visible from the observer place in the moment of the observation. This 

procedure is necessary at the beginning in order to let the telescope know where the objects to 

be observed are approximately located. Only after that, it can decide the sequence of the 

observations. 

The personal program which carries out this job is written in Python and reported in 

Appendix B. The main idea of the code is to propagate the TLE of all the geostationary satellites 

and check whether they are or not inside the viewing cone from the observer place (in Figure 

3.1 example of viewing cone from Tucson (AZ)). Therefore, the function takes as inputs the code 

of the observatory, the semi-opening angle of the viewing cone, the maximum magnitude seen 

by the telescope and optionally a specific Julian date and a TLE file. As a consequence, it gives 

as output the list of visible satellites (with names and positions).         

 

 

At the beginning (lines 88-176) the adopted procedure is the same as the one explained in 

chapter 1 for TLE propagation. That is, the TLE data are taken from the user file (optional 

input) or, if it is not provided, from celestrak.org website.  

Then (lines 178-228) the code gathers information about the position of the observatory. 

Starting from its code given as input and thanks to the list supervised by the Minor Planet 

Figure 3.1: Example of possible viewing cone for a telescope located in Tucson (AZ)  
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Center available at http://www.minorplanetcenter.net/iau/lists/ObsCodes.html, the latitude, 

longitude and altitude of the observatory are computed (in reality the information on the altitude 

is really inaccurate and so it is discarded without introducing any significant error). In order to 

transform the latitude, longitude and altitude in ECEF coordinates which are useful for 

successive purposes, the georec function of the SpiceyPy Python module is used. This function 

converts geodetic coordinates (latitude, longitude and altitude) to rectangular coordinates 

(ECEF), adopting a reference spheroid model specified by the user through the equatorial radius 

and the flattening coefficient17. 

This paper makes use of the wgs72 model, because it seems to be the most commonly used 

in the satellite tracking community and is probably the model behind most TLE data. For this 

choice, the required coefficients are [34]: 

 

𝑟𝑎𝑑𝑖𝑢𝑠 = 6370135 𝑚 

𝑓𝑙𝑎𝑡𝑡𝑒𝑛𝑖𝑛𝑔 = 1/298.26 

 

In lines 231-323 the TLE are propagated until the given Julian date or, if not present, until 

the actual one. The procedure is the same as the one described in chapter 1 in the paragraph 

which talks about target identification. From line 325 on, the interesting and original part of the 

solution takes place. Indeed, once the position of a satellite at a specific time is known, it is 

necessary to realize whether it is visible or not from the observer place. The answer to that 

question is found with the aid of the geometry, checking if the final point is inside the viewing 

cone (with a given opening angle) from the observatory.  

First of all the final position of the satellite is projected onto the axis of the cone, which is 

the line that passes through the center of the Earth and the observer place. Defined 𝐴 as a 

reference point (in this case the center of the Earth), 𝐵 as the position of the observatory and 𝑃 

as the position of the satellite (all with respect to the ECEF frame), the easiest way to do that 

is to project vector 𝐴𝑃̅̅ ̅̅  onto vector 𝐴𝐵̅̅ ̅̅  and then add the resulting vector to point 𝐴: 

 

�̂� = 𝐴 +
𝐴𝑃̅̅ ̅̅ ∙𝐴𝐵̅̅ ̅̅

𝐴𝐵̅̅ ̅̅ ∙𝐴𝐵̅̅ ̅̅
 𝐴𝐵̅̅ ̅̅                                              (3.1) 

       

In equation (3.1) �̂� is the projection of point 𝑃, 𝐴𝑃̅̅ ̅̅  and 𝐴𝐵̅̅ ̅̅  represent the vector respectively 

from 𝐴 to 𝑃 and from 𝐴 to 𝐵 and, as usual, ∙ is the dot product. Then, the distance from 𝐵 to 

�̂� must be computed, which is in practice the height of the cone. Since the points 𝐴, 𝐵 and �̂� 

are aligned, the relationship is simply given by: 

 

                                                           

17 Flattening is a measure of the compression of a sphere along a diameter to form an ellipsoid 

of revolution.  
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖𝐴�̂�̅̅ ̅̅ ‖ − ‖𝐴𝐵̅̅ ̅̅ ‖                                      (3.2) 

 

This distance must be obviously greater than 0, otherwise it would mean that the projected 

point �̂� stays inside the segment that connects the center of the Earth with the observatory. 

But this would make the satellite not visible. Additionally, the dot product 𝐴�̂�̅̅ ̅̅ ∙ 𝐴𝐵̅̅ ̅̅  has to be 

greater than 0 as well in order to demand that �̂� and 𝐵 are located “in the same half from the 

center of the Earth”, necessary condition for the observability.  

After, it is necessary to compare the radius of the cone with the distance between the point 

𝑃 and the axis: if this latter is smaller then the satellite is geographycally visible, otherwise it is 

not. The distance between the point 𝑃 and the axis, with simple trigonometry, turns out to be: 

 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑟𝑎𝑑𝑖𝑎𝑙 = tan(𝛼𝜋/180) ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒                             (3.3) 

 

where 𝛼 is the semi-opening angle of the cone (in degrees) and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is defined by equation 

(3.2).  

As a last effort, however, it is necessary to verify that the objects are actually visible as well 

as geographically visible (lines 355-384). As a matter of fact, a body in the field of view can be 

too faint to be observed by a particular telescope. Indeed, the maximum magnitude that can be 

seen by an ideal telescope is equal to:  

 

𝑚 = 2.7 + 5 log10𝐷                                           (3.4) 

 

where 𝐷 is the aperture diameter in mm. 

So, there is the need to introduce the concepts of optical brightness and visual magnitude. 

The brightness of objects in the visible band is typically described in term of their apparent 

visual magnitude 𝑚𝑣. The magnitude scale is logarithmic and is defined such that a difference 

of five magnitudes equal a factor of 100 in brightness, with the result that one magnitude equals 

a factor of 2.512. Thus, the relative brightness of two objects can be described by their 

magnitudes: 

 

𝐵1

𝐵2
= 10

𝑚2−𝑚1
2.5                                               (3.5) 

 

The original zero magnitude was taken to be the star Vega, dimmer objects have positive 

magnitudes and brighter ones have negative magnitudes. The sun has a magnitude of −26.73, 

the brightest star in the Earth’s night sky (Sirius) is −1.5, the faintest star visible to the eye is 

about +6, and the faintest object detectable by the Hubble Space Telescope is about +30. 
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The visual magnitude of an object in orbit around the Earth can be written as: 

 

𝑚𝑣 = −26.7 − 2.5 log10(𝐴 𝜌𝐹(𝜑)) +  5.0 log10 𝑟)                     (3.6) 

 

where 𝐴 is the object’s cross-sectional area, 𝜌 is its reflection coefficient, 𝑟 is its range (in the 

same unit as 𝐴), 𝜑 is the object’s phase angle and 𝐹 is a function that depends on the object’s 

shape and orientation. The offset −26.7 is the sun’s apparent visual magnitude. 

The phase angle 𝜑 is the angle between the observer and the sun measured from the space 

object, so that a phase angle of 0 degrees means that to the observer the space body and the 

sun are opposite each other in the sky (generally the best circumstance for visual observation) 

and a phase angle of 180 degrees means that the sun is directly behind the object as seen by the 

observer. Concerning the function 𝐹(𝜑), for the sake of simplicity it is possible to consider the 

satellite as a diffuse sphere18 and so: 

 

𝐹(𝜑) =
2

3𝜋2
[(𝜋 − 𝜑) cos𝜑 + sin𝜑]                             (3.7)   

 

However, space objects are not perfect reflectors. A reflectivity (or albedo) of 0.1 is typically 

used in estimating the size of debris objects by optical measurements, although a reflectivity of 

0.2 is more typical for intact spacecraft [35]. 

Applying the theory to the problem in question, 𝐴 is set equal to 2.42𝜋  𝑚2, supposing the 

satellites to be almost circular with an average radius of 2.4 m and 𝜌 equal to 0.2 because 

satellites are considered as intact bodies.  

In order to calculate the phase angle 𝜑, the position of the sun must be known. This is not 

a simple procedure but can be done computing the ecliptic coordinates19 of the sun in its apparent 

motion around the Earth. All the equations presented in the following are from the Astronomical 

Almanac [36]. At the beginning, it is useful to calculate 𝑛, the number of days (positive or 

negative) since the epoch J2000. Given the Julian date 𝐽𝐷, 𝑛 is equal to: 

 

𝑛 = 𝐽𝐷 − 2451545.0                                            (3.8) 

 

The mean longitude of the sun, which is the celestial longitude at which it could be found if 

its apparent orbit were circular and free of perturbations, is: 

                                                           

18 Diffuse reflection is the reflection of light from a surface such that an incident ray is 

reflected at many angles rather than at just one angle as in the case of specular reflection. 

19 The ecliptic coordinate system is a celestial coordinate system commonly used for 

representing the positions and orbits of Solar System objects. 
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𝐿 = 280.460° + 0.9856474°𝑛                                          (3.9) 

 

The mean anomaly (defined in the paragraph 1.1.2.1) of the sun is: 

 

𝑔 = 357.528° + 0.9856003°𝑛                                        (3.10) 

 

Both 𝐿 and 𝑔 must be reduced to the range [0°,360°). Then, the celestial longitude of the 

sun is: 

 

𝜆 = 𝐿 + 1.915° sin 𝑔 + 0.020° sin(2𝑔)                                 (3.11) 

 

Finally, the obliquity of the ecliptic, which means the inclination of Earth’s equator with 

respect to the ecliptic, can be approximated by: 

 

𝜖 = 23.439° − 0.0000004°𝑛                                       (3.12) 

 

Given all these parameters, the distance of the sun from the Earth, in astronomical units, is: 

 

𝑅 = 1.00014 − 0.01671 cos𝑔 − 0.00014 cos(2𝑔)                        (3.13) 

 

and the unit vector pointing to the sun in the ECI frame is: 

 

𝒔𝒊 = [cos 𝜆, cos 𝜖 sin 𝜆 , sin 𝜖 sin 𝜆]                                  (3.14) 

 

The last part of the procedure includes the transformation of the sun unit vector from ECI frame 

to ECEF frame (in the same way as explained in chapter 1, using the SpiceyPy pxform function) 

and the multiplication by the distance of the sun from the Earth in order to get the sun vector. 

Obviously, appropriate changes of measurement units (i.e., from astronomical units to meters, 

etc.) are necessary. Finally, the phase angle 𝜑, angle between the observer and the sun measured 

from the satellite, is computed as: 

 

𝜑 =
𝑆𝑃̅̅̅̅ ∙𝐵𝑃̅̅ ̅̅

‖𝑆𝑃̅̅̅̅ ‖‖𝐵𝑃̅̅ ̅̅ ‖
                                               (3.15) 

  

where 𝑆 is the position of the sun.  

Therefore, it is possible to obtain the function 𝐹(𝜑) with equation (3.7) and then the visual 

magnitude of the satellite with equation (3.6). Only the satellites with a visual magnitude smaller 

than the limit given by the user are included in the set of visible objects. 
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3.2 Reinforcement learning  

Reinforcement learning is an area of machine learning concerned with how software agents 

ought to take actions in an environment so as to maximize some notion of cumulative reward. 

The aspect which makes reinforcement learning different from the other machine learning 

paradigms (supervised and unsupervised learning, illustrated in section 2.2) is that the learner 

is not told which actions to take. There is only a numerical reward signal and the agent must 

discover which actions yield the most reward by trying them. In the most interesting and 

challenging cases, actions may affect not only the immediate reward but also the next situation 

and, through that, all subsequent rewards. These two characteristics (trial-and-error search and 

delayed reward) are the two most important distinguishing features of reinforcement learning. 

Reinforcement learning is fundamental for many different areas (Figure 3.2), which include 

psychology, economics, mathematics, neuroscience, computer science and engineering. In 

particular, for engineering it is a part of the optimal control theory since it is conceived as a way 

of generalizing and extending ideas from optimal control to non-traditional control problems. 

Examples of reinforcement learning problems are: fly stunt manoeuvres in a helicopter, play 

many different Atari games better than humans, control a power station, manage an investment 

portfolio, make a humanoid robot walk, etc. [37] 

 

In order to fully understand the subject of reinforcement learning, it is necessary to introduce 

some basic knowledge: 

 REWARD. A reward 𝑟𝑡 is a scalar feedback signal which indicates how well the agent is 

doing at step 𝑡. The reinforcement learning is based on the reward hypothesis which 

states that all possible goals can be described by the maximization of the expected 

Figure 3.2: Many faces of reinforcement learning 



90                                                                          CHAPTER 3. SENSOR TASKING 

                                                    

cumulative reward (i.e., the return). This means that the agent’s job is to select actions 

to maximize the expected cumulative reward. As a matter of fact, not all the rewards 

are instantaneous, there may exist actions with long term consequences and so with 

delayed rewards. Therefore, the agent should keep in mind that sometimes it is better 

to sacrifice immediate rewards to gain more long term ones. Examples which give credit 

to this last statement are financial investments (may take months to mature), helicopter 

refuelling procedures (might prevent a crash in several hours) and blocks to opponent 

moves (might help winning later).  

 ENVIRONMENT. Everything outside the agent is called the environment. The agent 

and the environment interact continually, the agent selecting actions and the 

environment responding to those actions and presenting new situations (or observations) 

to the agent. More formally, at each step the agent executes the action 𝑎𝑡, receives the 

observation 𝑜𝑡 and the scalar reward 𝑟𝑡, the environment receives the action 𝑎𝑡 and emits 

both the observation 𝑜𝑡 and the scalar reward 𝑟𝑡 (Figure 3.3).    

 

 

 

 HISTORY AND STATE. The history ℎ𝑡 is defined as the sequence of observations, 

actions and rewards up to time 𝑡.  

 

ℎ𝑡 = 𝑜1, 𝑎1, 𝑟1, … , 𝑎𝑡, 𝑜𝑡 , 𝑟𝑡                                        (3.16) 

AGENT 

ENVIRONMENT 

Figure 3.3: Agent-Environment interface 
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Basically, all the facts that happen after time 𝑡 depend on the history (i.e., the agent 

selects actions and the environment selects observations and rewards).  

However, the history can be enormous and so not very manageable. That is the reason 

why the concept of state is introduced. The state 𝑠𝑡 is the information used, separately 

by the agent and the environment, to determine what happens next. Formally, state is 

a function of the history:  

 

𝑠𝑡 = 𝑓(ℎ𝑡)                                                (3.17) 

 

As said, the state is used separately by the agent and the environment. Indeed, there 

exist a state for the environment and a state for the agent. The environment state 𝑠𝑡
𝑒 is 

its private representation and so whatever it uses to produce the next observation and 

reward.  

The agent state 𝑠𝑡
𝑎, instead, is the agent’s internal representation, that is whatever 

information the agent and the reinforcement learning algorithms use to select the next 

action. It can be any function of the history: 

 

𝑠𝑡
𝑎 = 𝑓(ℎ𝑡)                                               (3.18) 

 

Usually, the environment state is not visible to the agent and, even if it is, it may contain 

irrelevant information. The situation in which the environment state is visible to the 

agent is called full observability: 

 

𝑜𝑡 = 𝑠𝑡
𝑎 = 𝑠𝑡

𝑒                                              (3.19) 

 

otherwise, when there is some hidden information, it is the case of partial observability. 

In this last situation, the agent indirectly observes the environment (for example, a robot 

with camera vision is not told its absolute location) and so the agent state is different 

from the environment one. Therefore, the agent must construct its own state 

representation 𝑠𝑡
𝑎.  

Additionally, a state can be defined as Markov if it contains all useful information from 

the history. More formally, a state 𝑠𝑡 is Markov if and only if: 

 

ℙ [𝑠𝑡+1|𝑠𝑡] = ℙ [𝑠𝑡+1|𝑠1, … , 𝑠𝑡]                                (3.20) 

 

This means that the future is independent of the past given the present: so, once the 

state is known, the history may be thrown away because it does not tell anything new.  

 POLICY. A policy 𝜋 defines the agent’s way of behaving at a given time. In other words, 

a policy is a mapping from perceived states of the environment to actions to be taken 
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when in those states. It is the core of a reinforcement learning agent in the sense that it 

alone is sufficient to determine the behavior. The policy can be deterministic: 

 

𝑎 = 𝜋(𝑠)                                               (3.21) 

 

or stochastic: 

 

𝜋(𝑎|𝑠) = ℙ[𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠]                                  (3.22) 

 

 MODEL. In simple words, a model predicts what the environment will do next. The two 

functions used for this purpose are the state transition function 𝒫, which predicts the 

next state given the present state and action: 

 

𝒫𝑠𝑠′
𝑎 = ℙ[𝑠𝑡+1 = 𝑠

′ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                              (3.23) 

 

and the reward function ℛ, which predicts the next immediate reward, given the present 

state and action: 

 

ℛ𝑠
𝑎 = 𝔼 [𝑟𝑡+1 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                                 (3.24) 

 

However, it is not necessary to build a model of the system. Some reinforcement learning 

algorithms, indeed, are model-free. 

 VALUE FUNCTION. Whereas a reward function indicates what is good in an immediate 

sense, a value function specifies what is good in the long run. Roughly speaking, the 

value of a state is the total amount of reward an agent can expect to accumulate over 

the future, starting from that state. For this reason, it is used to evaluate the goodness 

or badness of a state and, therefore, to select actions: 

 

𝑣𝜋(𝑠) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 +⋯ |𝑠𝑡 = 𝑠]                      (3.25) 

 

In the equation (3.25), the term: 

 

𝐺𝑡 = 𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 +⋯ = ∑ 𝛾𝑘𝑟𝑡+𝑘+1

∞
𝑘=0                 (3.26) 

 

is the return, that is the total discounted reward from the time step 𝑡. Moreover,          

0 ≤ 𝛾 ≤ 1 is the so called discount factor and represents the importance in the present 

of future rewards. 𝛾 close to 0 leads to “myopic” evaluations (i.e., future rewards mean 

nothing in the present), 𝛾 close to 1 leads to “far-sighted” evaluations (i.e., future rewards 
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are as important as present rewards). As underlined in equation (3.25), the value function 

of a state obviously depends on the policy 𝜋, since it defines the sequence of actions to 

be taken. 

 

Once the basic ideas of reinforcement learning are set, it is useful to introduce the concept of 

Markov Decision Process (MDP) to understand how reinforcement learning techniques can be 

applied in practice. Markov decision processes formally describe an environment for 

reinforcement learning in which all states are Markov and time is divided into stages. In 

particular, the environment is fully observable (i.e., the current state completely characterises 

the process). Officially, a Markov decision process is a tuple < 𝒮,𝒜,𝒫,ℛ, 𝛾, 𝜇 > where: 

- 𝒮 is a finite set of states, which defines the number of different possible configurations 

- 𝒜 is a finite set of actions which the agent can select 

- 𝒫 is a state transition probability matrix, 𝒫𝑠𝑠′
𝑎   

- ℛ is a reward function, ℛ𝑠
𝑎  

- 𝛾 is the discount factor, 𝛾 ∈ [0,1] 

- 𝜇 is a set of initial probabilities over the states, 𝜇𝑖
0 = ℙ [𝑠0 = 𝑖] for all 𝑖. 

 

The interesting characteristic of MDPs is that they can formalise almost all reinforcement 

learning problems.     

Associating to a MDP a policy 𝜋, which is a distribution over actions given the state, the 

state transition probability matrix and the reward function become dependent on the policy: 

 

𝒫𝜋 = ∑ 𝜋(𝑎|𝑠)𝒫𝑠𝑠′
𝑎

𝑎∈𝒜                                          (3.27) 

ℛ𝜋 = ∑ 𝜋(𝑎|𝑠)ℛ𝑠
𝑎

𝑎∈𝒜                                           (3.28) 

 

Moreover, given a policy 𝜋 it is possible to define the utility of each state (procedure called 

Policy Evaluation) through the state-value function 𝑣𝜋(𝑠) characterized by the equation (3.25). 

For control purposes, however, rather than the value of each state it is easier to consider the 

value of each action in each state. The action-value function 𝑞𝜋(𝑠, 𝑎) is so the expected return 

starting from the state 𝑠, taking action 𝑎 and then following policy 𝜋: 

 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝐺𝑡|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]                                    (3.29) 

 

A fundamental property of 𝑣𝜋(𝑠) and 𝑞𝜋(𝑠, 𝑎) is that they satisfy particular recursive 

relationships. For any policy 𝜋 and any state 𝑠, the state-value function can be decomposed into 

the immediate reward plus the discounted value of the successor state: 
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𝑣𝜋(𝑠) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 +⋯|𝑠𝑡 = 𝑠] 

                                        = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑣𝜋(𝑠𝑡+1)|𝑠𝑡 = 𝑠]                                                                   

= ∑ 𝜋(𝑎|𝑠)(ℛ𝑠
𝑎 + 𝛾∑ 𝒫𝑠𝑠′

𝑎 𝑣𝜋(𝑠
′)𝑠′∈𝒮 )𝑎∈𝒜                 (3.30)   

 

Equation (3.30) is the Bellman expectation equation for 𝑣𝜋. It expresses a relationship 

between the value of a state and the values of its successor states. Figure 3.4 illustrates the path 

from one state to its possible successor states. Each open circle represents a state and each solid 

circle represents a state-action pair. Starting from state 𝑠, the root node at the top, the agent 

could take any of some set of actions. From each of these, the environment could respond with 

one of several next states, 𝑠′, along with a reward, 𝑟. The Bellman equation (3.30) averages over 

all the possibilities, weighting each by its probability of occurring.  

             

Similarly, with the aid of Figure 3.5, the action-value function can be decomposed as: 

 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑟𝑡+2 + 𝛾
2𝑟𝑡+3 +⋯ |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] 

                               = 𝔼𝜋 [𝑟𝑡+1 + 𝛾𝑞𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]  

                               = ℛ𝑠
𝑎 + 𝛾∑ 𝒫𝑠𝑠′

𝑎 𝑣𝜋(𝑠
′)𝑠′∈𝒮  

= ℛ𝑠
𝑎 + 𝛾∑ 𝒫𝑠𝑠′

𝑎  ∑ 𝜋(𝑎′|𝑠′)𝑞𝜋(𝑠
′, 𝑎′)𝑎′∈𝒜𝑠′∈𝒮                    (3.31) 

 

Not surprisingly, equation (3.31) is the Bellman expectation equation for 𝑞𝜋. 

 

Figure 3.4: Representation of the Bellman expectation equation for 𝑣𝜋 
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Solving a reinforcement learning task means, roughly, finding a policy that tries to maximize 

the expected reward. For MDPs, it is possible to precisely define an optimal policy due to the 

fact that the state-value function defines a partial ordering over policies. A policy 𝜋 is defined 

to be better than or equal to a policy 𝜋′ if its expected return is greater than or equal to that of 

𝜋′ for all states. In other words: 

 

𝜋 ≥ 𝜋′   𝑖𝑓   𝑣𝜋(𝑠) ≥ 𝑣𝜋′(𝑠), ∀𝑠 ∈ 𝒮                                 (3.32) 

 

Moreover, for any MDP there always exists at least an optimal optimal policy 𝜋∗ that is 

better than or equal to all the other policies. Although there may be more than one, they share 

the same state-value function, called the optimal state-value function 𝑣∗ and defined as: 

 

𝑣∗(𝑠) = max
𝜋
𝑣𝜋(𝑠)                                           (3.33) 

 

Optimal policies also share the same optimal action-value function 𝑞∗ defined as: 

 

𝑞∗(𝑠, 𝑎) = max
𝜋
𝑞𝜋(𝑠, 𝑎)                                       (3.34) 

 

The optimal value function specifies the best possible performance in the MDP. Therefore, 

only once it is known the MDP can be considered “solved”. An important theoretical result states 

that, for any MDP, there is always a deterministic optimal policy, which for example can be 

found maximizing over 𝑞∗(𝑠, 𝑎): 

 

𝜋∗(𝑎|𝑠) = {
1   𝑖𝑓 𝑎 = 𝑎𝑟𝑔max

𝑎∈𝒜
𝑞∗(𝑠, 𝑎)

0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
                           (3.35) 

Figure 3.5: Representation of the Bellman expectation equation for 𝑞𝜋 
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Because 𝑣∗ and 𝑞∗ are value functions for a policy, they must satisfy the self-consistency 

conditions given by the Bellman equations (3.30)-(3.31). But because they are the optimal value 

functions, the consistency conditions can be written in special forms without reference to any 

specific policy. In particular, the Bellman optimality equation for 𝑣∗ expresses the fact that the 

value of a state under an optimal policy must equal the expected return for the best action from 

that state (Figure 3.6). Formally: 

 

𝑣∗(𝑠) = max
𝑎∈𝒜

𝑞∗(𝑠, 𝑎) 

= max
𝑎∈𝒜

 [ℛ𝑠
𝑎 + 𝛾∑ 𝒫𝑠𝑠′

𝑎  𝑣∗(𝑠
′)𝑠′∈𝒮 ]           (3.36) 

 

 

Based on Figure 3.7, the equivalent Bellman optimality equation for 𝑞∗ is: 

 

𝑞∗(𝑠, 𝑎) =  ℛ𝑠
𝑎 + 𝛾∑𝒫𝑠𝑠′

𝑎 𝑣∗(𝑠
′)

𝑠′∈𝒮

 

= ℛ𝑠
𝑎 + 𝛾∑ 𝒫𝑠𝑠′

𝑎  max
𝑎′∈𝒜

𝑞∗(𝑠
′, 𝑎′)𝑠′∈𝒮                 (3.37) 

 

The Bellman equations (both expectation and optimality) need to be solved. The Bellman 

expectation equations can be expressed concisely in a matrix form and then solved directly. 

However, the disadvantage of this solution is the computational complexity: if the number of 

states in the MDP is high, the problem is unsolvable in reasonable time. That is the reason why 

approximate approaches like dynamic programming, Monte-Carlo or Temporal Difference 

methods are used for this purpose.  

In this chapter, however, the main goal is to control a single telescope in order that it can 

track a certain number of geostationary satellites. Therefore, the optimal policy needs to be 

found and, in order to do that, the Bellman optimality equations for the specific MDP must be 

solved. Unfortunately, the Bellman optimality equations are nonlinear and so there do not exist 

Figure 3.6: Representation of the Bellman optimality equation for 𝑣∗ 
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closed form solutions for the general case. Therefore, it is necessary to use one of the many 

existing iterative solution methods (i.e., dynamic programming or reinforcement learning 

techniques). Since in this case there is no knowledge about the model, the reward function or 

other characteristics of the system, only reinforcement learning techniques can be used. In 

particular, this work makes use of the Q-learning method.   

 

3.2.1 Q-learning 

Q-learning, introduced by Watkins in 1989, is one type of reinforcement learning algorithm 

used to calculate state-action values in a iterative way. It falls under the class of temporal 

difference (TD) algorithms, which suggests that time differences between actions taken and 

rewards received are involved. For this reason, updates are made after every action taken. Q-

learning is important for model-free control, whose purpose is to optimize the value functions of 

an unknown MDP (and so find 𝑣∗ and 𝑞∗). In other words, Q-learning has to answer to this 

question: if an agent is put in a new and unknown environment, how can he understand what 

to do in order to maximize the expected reward?  

There are two different kinds of model-free control techniques: on-policy and off-policy. In 

on-policy methods, the state-action values are iteratively learned at the same time that the 

policy is improved. In other words, the updates to the state-action values depend on the policy. 

In contrast, off-policy methods do not depend on the policy to update the action-value function. 

Q-learning is an off-policy technique. It’s advantageous because with off-policy methods it is 

possible to follow one policy while learning about another. For example with Q-learning, which 

is the best off-policy algorithm, one could always take completely random actions and yet still 

learning about the optimal policy.  

In particular, going into details of Q-learning, the next action is chosen using the behavior 

policy 𝜇 (𝑎𝑡+1 ~ 𝜇(∙ |𝑠𝑡)), but the the alternative successor action is considered (𝑎′ ~ 𝜋(∙ |𝑠𝑡), 

where 𝜋 is the policy to be learned). The value of 𝑄(𝑠𝑡 , 𝑎𝑡) is then updated towards the value of 

the alternative action: 

Figure 3.7: Representation of the Bellman optimality equation for 𝑞∗ 
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𝑄(𝑠𝑡, 𝑎𝑡)  ←  𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄(𝑠𝑡, 𝑎𝑡))                  (3.38) 

 

where 0 < 𝛼 ≤ 1 is the so-called learning rate and 𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎
′) is referred as the target. 

Both behavior (𝜇) and target (𝜋) policies need to be improved. The target policy 𝜋 is greedy 

with respect to 𝑄(𝑠, 𝑎) (i.e., it always selects the action which maximize the action-value 

function): 

 

𝜋(𝑠) = 𝑎𝑟𝑔max
𝑎′

𝑄(𝑠, 𝑎′)                                    (3.39) 

 

The behavior policy 𝜇, instead, can depend on 𝑄(𝑠, 𝑎) or not. A common choice is to make 

𝜇 𝜖-greedy with respect to 𝑄(𝑠, 𝑎) (i.e., it selects the best action the most of the time, but 

sometimes it takes random actions): 

 

𝜇(𝑎|𝑠) = {

𝜖

𝑚
+ 1 − 𝜖     𝑖𝑓 𝑎∗ = 𝑎𝑟𝑔max

𝑎
𝑄(𝑠, 𝑎)

𝜖

𝑚
                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

                    (3.40) 

    

In (3.40), 𝑚 is the number of actions and 𝜖 is a real number ranging from 0 to 1 included. 𝜖 -

greedy strategy is really interesting because it allows a continual exploration of the environment, 

without always trusting the information known at that moment. After (3.39)-(3.40), the Q-

learning target then simplifies to: 

 

𝑟𝑡+1 + 𝛾𝑄(𝑠𝑡+1, 𝑎
′) = 𝑟𝑡+1 +max

𝑎′
𝛾𝑄(𝑠𝑡+1, 𝑎

′)                        (3.41) 

 

and then the update rule (3.38) becomes: 

 

𝑄(𝑠𝑡, 𝑎𝑡)  ←  𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼(𝑟𝑡+1 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎
′) − 𝑄(𝑠𝑡, 𝑎𝑡))              (3.42) 

 

The most important theoretical result concerning Q-learning control is the demonstration of 

its convergence to the optimal action-value function: 

 

𝑄(𝑠, 𝑎)  →   𝑞∗(𝑠, 𝑎)                                         (3.43) 

 

The complete Q-learning algorithm for off-policy control is, finally, reported in Figure 3.8. 
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The update rule (3.42) is tabular, which means that every possible state-action pair is 

updated and inserted in a lookup table. But in most interesting problems, included the one faced 

in this chapter, the state-action space is too large to be stored in a table. The function 𝑄(𝑠, 𝑎), 

so, does not have to be just a lookup table. That is where function approximators come in. In 

this chapter, neural networks (thoroughly described in paragraph 2.2.1) are used to approximate 

the 𝑄(𝑠, 𝑎) function. They accept as inputs a state and an action and give as output the 

corresponding state-action value. Importantly, unlike a lookup table, a neural network also has 

some parameters associated with it (weights and biases). Therefore, the 𝑄 function finally takes 

the form 𝑄(𝑠, 𝑎, 𝜃), where 𝜃 is the vector of parameters. In this situation, instead of iteratively 

updating values in a table, it is necessary to update the 𝜃 parameters of the neural network 

(with one of the many learning algorithms available) so that it learns to provide better estimates 

of state-action values.  

Since the network is not a table, the target used to train it is not computed with expression 

(3.42), but it is simply: 

 

𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑡+1 + 𝛾max
𝑎′

𝑄(𝑠𝑡+1, 𝑎
′)                                (3.44) 

 

for the state-action that just happened.  

As a final note, it is important to specify that equation (3.44) is true except when 𝑠𝑡+1 is a 

terminal state (i.e., the last state in an episode). In that case, the target coincides with the 

reward: 

 

𝑡𝑎𝑟𝑔𝑒𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 = 𝑟𝑡+1                                       (3.45) 

 

 

 

 

Figure 3.8: Q-learning algorithm for off-policy control 
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3.3 Problem setting and solution 

As profusely mentioned, the main goal of this chapter is to address a sensor management 

problem for space situational awareness via reinforcement learning in a simulated environment. 

The objective is to maintain knowledge over a given number of geostationary satellites using a 

single telescope, keeping the uncertainties associated to their position and velocity under a 

certain threshold. In particular, a Q-learning solution is presented.   

3.3.1 Problem statement 

First of all, the problem needs to be set and described as a Markov decision process in order to 

be solved with a reinforcement learning approach. As introduced in section 3.2, a Markov 

decision process is a tuple < 𝒮,𝒜,𝒫, ℛ, 𝛾, 𝜇 > where: 

- 𝒮 is a finite set of states, which defines the number of different possible configurations 

- 𝒜 is a finite set of actions which the agent can select 

- 𝒫 is a state transition probability matrix, 𝒫𝑠𝑠′
𝑎   

- ℛ is a reward function, ℛ𝑠
𝑎  

- 𝛾 is the discount factor, 𝛾 ∈ [0,1] 

- 𝜇 is a set of initial probabilities over the states, 𝜇𝑖
0 = ℙ [𝑠0 = 𝑖] for all 𝑖. 

 

In this case, the agent is obviously a telescope and the environment is a simulated world. 

The six elements needed to define a MDP are specified as: 

 ACTIONS. The possible actions that the agent can take coincide with the decision of 

making an observation of a particular geostationary satellite. The observation of a 

satellite has the consequence of reducing the uncertainties associated with its position 

and velocity. On the contrary, the uncertainties about not observed satellites are 

destined to increase more and more.  

 REWARD FUNCTION. The reward model development is critical to the performance 

of the reinforcement learning policy. The one chosen in this work focuses on rewarding 

the policy’s ability to maintain a given catalogue accuracy.  

 DISCOUNT FACTOR. The discount factor 𝛾 is set to a high value in order to 

considerably take into consideration future rewards.  

 STATES. The Markov decision process requires that all the states 𝒔𝒕 are Markov. This 

assumption implies that the future states depend only on the current state and not on 

the events that occurred before it. For the problem considered here, the state is the 

probability density function of the position and the velocity for each satellite. It is 

assumed that the probability density functions are Gaussian, therefore only the mean 

and the covariance for each satellite are required. This assumption is really helpful 

because it allows to describe the state of the MDP given only the mean 𝒒𝒕 and the 
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covariance 𝑃𝑡 for each satellite. Additionally, in order to reduce the dimensionality of 

the state 𝒔𝒕, not all the terms of the covariance matrix are considered. This work, indeed, 

assumes that the covariance matrix can be captured by the diagonal elements (i.e., the 

variance for each dimension of the satellite state vector). Under these assumptions, the 

state at time 𝑡 can be written as: 

 

𝒔(𝑡) = [(𝒒𝟏(𝑡))𝑇 , … , (𝒒𝑵(𝑡))𝑇 , 𝑑𝑖𝑎𝑔{𝑃1(𝑡)}, … , 𝑑𝑖𝑎𝑔{𝑃𝑁(𝑡)}]𝑇               (3.46) 

 

where 𝑁 is the total number of satellites. 

 INITIAL PROBABILITIES OVER THE STATES. After the definition of the state, at 

the beginning of the experiment the position and velocity of each geostationary satellite 

are chosen randomly within a certain range. Moreover, an initial uncertainty about them 

is defined.  

 STATE TRANSITION PROBABILITY MATRIX. The dynamics of the mean and 

covariance can be studied using the Kalman filter, in particular the version related with 

discrete-time measurements. Indeed, the system can be represented as a continuous-time 

model (the position and the velocity evolve continuously) while measurements are taken 

in a discrete-time fashion. Therefore, the system model and the measurement model are 

given by: 

 

{
𝒒𝑖̇ (𝑡) = 𝒇(𝒒𝑖(𝑡))

𝒛𝑘 = 𝒉(𝒒𝑘
𝑗
) + 𝒗𝑘

         𝒗𝑘~𝒩(0,𝑅𝑘)                             (3.47) 

 

where 𝒇(𝒒𝑖(𝑡)) is a nonlinear dynamics function, 𝒒𝑘
𝑗
= 𝒒𝑗(𝑡𝑘), 𝒉(𝒒𝑘

𝑗
) is the nonlinear 

observation function, 𝑖 indicates the corresponding satellite, 𝑗 defines the satellite 

observed at time 𝑡𝑘 and 𝒗𝑘 is the measurement noise. In this work the process noise is 

neglected. Since the system is nonlinear, an Extended Kalman Filter (EKF) is required. 

The propagation equations of the EKF for the mean and the covariance are: 

 

{
𝒒𝑖̇ (𝑡) = 𝒇 (𝒒𝑖(𝑡))                              

�̇�𝑖(𝑡) = 𝐹𝑖(𝑡)𝑃𝑖(𝑡) + 𝑃𝑖(𝑡)𝐹𝑖(𝑡)𝑇
                                 (3.48) 

 

where 𝐹𝑖(𝑡) is the linearized dynamics matrix of the 𝑖-th satellite and is defined as: 

 

𝐹𝑖(𝑡) =
𝜕𝒇

𝜕𝒒
|
𝒒𝒊(𝑡)

                                           (3.49) 
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With regard to the update equations, once the agent decides to observe one of the 

satellites (for example, the 𝑗-th) its mean and covariance change accordingly to the 

update equations of the EKF: 

 

{
 
 

 
 �̂�

𝑗(𝑡) = 𝒒𝑗(𝑡) + 𝐾𝑗(𝑡) [𝒛𝑘 − 𝒉(𝒒
𝑗(𝑡))]                              

�̂�𝑗(𝑡) = (𝐼 − 𝐾𝑗(𝑡)𝐻𝑗(𝑡))𝑃𝑗(𝑡)                                            

𝐾𝑗(𝑡) = 𝑃𝑗(𝑡)𝐻𝑗(𝑡)𝑇[𝐻𝑗(𝑡)𝑃𝑗(𝑡)𝐻𝑗(𝑡)𝑇 + 𝑅𝑘]
−1
            

                 (3.50) 

 

where 𝐼 is a proper identity matrix, the symbol ^ indicates the updated value and 𝐻𝑗(𝑡) 

is the linearized version of the nonlinear observation function: 

 

𝐻𝑗(𝑡) =
𝜕𝒉

𝜕𝒒
|
𝒒𝒋(𝑡)

                                             (3.51) 

 

Obviously, the mean and the covariance of the not observed satellites do not change.  

 

3.3.2 Q-learning application  

In the following, a possible application of Q-learning to the problem presented so far is 

explained. First of all, it is fair to mention that in [4] Linares and Furfaro propose for the same 

problem a solution based on the actor-critic policy gradient approach. Just to give an idea, the 

actor-critic is a reinforcement learning technique in which there is a critic that estimates the 

action-value function and an actor that computes the policy and updates it in the direction 

suggested by the critic. The results shown in [4] are quite satisfying. The scope of this paragraph 

and the following one is, therefore, to investigate whether a solution based on Q-learning is 

possible or not and, later, to compare the potential results.  

Why Q-learning? First of all, because it is important to study the situation under different 

points of view and find different solutions to be compared. Secondly, lately Q-learning is 

becoming very popular, mainly because of its simplicity. Indeed, while actor-critic methods need 

to maintain two sets of parameters (one for the action-value function and one for the policy) 

and so two different approximators, Q-learning needs only one. The implementation then is 

really straightforward and the only equation to keep in mind is the one reported in (3.42) or the 

equivalent (3.44)-(3.45) if an approximator is used.      



CHAPTER 3. SENSOR TASKING                                                                          103 

 

Moreover, Google DeepMind brought Q-learning to the fore with a paper published in 

Nature20 on February 26, 2015 [39]. Citing the Google DeepMind website [40], the article 

describes a deep reinforcement learning system which combines deep neural networks with 

reinforcement learning at scale for the first time, and is able to master a diverse range of Atari 

2600 games to superhuman level with only the raw pixels and score as inputs. For artificial 

agents to be considered truly intelligent they should excel at a wide variety of tasks that are 

considered challenging for humans. Until that point, it had only been possible to create individual 

algorithms capable of mastering a single specific domain. Google DeepMind showed that a novel 

reinforcement learning agent was able to surpass the overall performance of a professional human 

reference player and all previous agents across a diverse range of 49 game scenarios. The article 

[39] represents the first demonstration of a general-purpose agent that is able to continually 

adapt its behavior without any human intervention, a major technical step forward in the quest 

for general artificial intelligence.  

Therefore, recently, Q-learning, mainly associated with powerful deep convolutional 

networks, has got a lot of attention in control problems (especially in vision-based control and 

autonomous driving). This chapter then performs also the task of presenting an adaptable 

implementation of the Q-learning technique for control purposes.      

The version of Q-learning implemented by Google DeepMind, called Deep Q-Network 

(DQN), and applied also in this chapter, is successful because it introduces two main 

improvements regarding the updates. The updating part of the algorithm is shown in Figure 3.9. 

  

      

                                                           

20 Nature is a weekly international journal publishing the finest peer-reviewed research in all 

fields of science and technology on the basis of its originality, importance, interdisciplinary 

interest, timeless, accessibility, elegance and surprising conclusions [38]. 

Figure 3.9: Update algorithm of Deep Q-Network 
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As it can be read in Figure 3.9, the two improvements that allow surprising results are: 

 EXPERIENCE REPLAY. Experience replay consists in the storing of all the transitions 

state-action-reward-next state (𝑠𝑡, 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1) encountered during the training in a 

memory. At each step, when the neural network parameters need to be updated with 

stochastic gradient descent, a random mini-batch of transitions (e.g., 32 of millions 

stored) is picked from the memory. This is very helpful because it decorrelates the 

trajectories, since it chooses random transitions and not the most recent ones.  

 FIXED Q-TARGETS. The targets for the update of the neural network are computed 

with respect to old parameters which are kept fixed for some time (e.g., 50 episodes) and 

then changed to the new values. This strategy helps the stabilization of the neural 

network.   

 

Before applying Q-learning to the main scenario, it is useful to start with a simpler problem. 

This problem is not very much related to the main one, but it is an example of Q-learning 

application to guidance. Moreover, it should help to understand the operation of Q-learning and 

to test its efficiency.  

Suppose that there is a spacecraft (or a general object) which needs to be guided to a specific 

point. This is a typical guidance problem and it can be solved with Q-learning. In order not to 

complicate the scenario, suppose that the spacecraft can move only in one dimension (i.e., it can 

go right, left or remain still) and that it is equipped with two thrusters which allow only three 

possible accelerations (the measurement unit is not important since it is a simulated 

environment): -1 (i.e., 1 towards left), 0, 1. The destination point is chosen to be the origin of 

the one-dimensional reference system. Q-learning is applied as specified in Figure 3.9, with 

experience replay, fixed targets, deep neural network and stochastic gradient descent. At each 

step, the spacecraft is rewarded with a value that coincides with the distance from the desired 

final point. At the beginning, a certain number of random episodes is run without updating the 

network, in order to collect transitions and fill the memory. Then the learning part starts. In 

each episode, the spacecraft is initialized with a random position and a velocity of +1 or -1. The 

results in term of accuracy (i.e., the percentage of episodes in which the spacecraft reaches the 

desired point) during the training are reported in Figure 3.10.  

As shown in Figure 3.10, the system is really fast in learning: after 100 episodes it is already 

capable of bringing the spacecraft to the final position almost every time. The average accuracy 

using the neural network trained after 5000 episodes is 100%. This is a perfect outcome, but it 

is not surprising because the problem is really easy and the agent has only to decide if going 

right or left. The scenario can be easily modified in order to be more interesting: suppose that 

the goal now is to guide the spacecraft towards a desired point with a final zero velocity. This 

is a more realistic guidance problem and Q-learning performs quite good (Figure 3.11). In this 

case the reward takes into account both the positional displacement and the velocity error. As 

it can be seen, the learning procedure is slower as it takes 1880 episodes to be almost stationary. 

The average accuracy using the neural network trained after 10000 episodes is 85.8%. It is a 
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good result but obviously it can be improved finding better hyperparameters and increasing the 

number of episodes.     

 

 

 

       

 

The previous examples show that Q-learning is very efficient and reliable. Thus, the time 

has come to apply it to the main problem of this chapter: the sensor tasking.  

 

 

Figure 3.10: Accuracy of position guidance with Q-learning 

Figure 3.11: Accuracy of position and velocity guidance with Q-learning 
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3.3.3 Simulation models and results  

In the following, the numerical simulation for satellites tracking and the corresponding Q-

learning implementation are discussed. To show the effectiveness of the proposed ideas, a 

population of geostationary satellites is considered for the training. For the sake of simplicity, 

only two-dimensional motion is studied. The planar equations of motion for a geostationary 

object assuming only two body forces are given by (the dependency on time is implicit from now 

on): 

 

{
�̈� +

𝜇𝑥

𝑑3
= 0

�̈� +
𝜇𝑦

𝑑3
= 0

                                                  (3.52) 

 

where 𝜇 is the Earth’s gravitational constant expressed in 𝑘𝑚3/𝑠2 (equal to 398600.436 𝑘𝑚3/

𝑠2), 𝑑 = ‖𝒅‖ and the position vector is given by 𝒅 = [𝑥, 𝑦]𝑇 and assumed to be in inertial 

coordinates. With regard to the observation model, this work assumes to measure the angle 𝛽 

of the satellite observation. For this reason, the observation model is described as: 

 

𝛽 = atan2(𝑢𝑦, 𝑢𝑥)                                              (3.53) 

 

where 𝒖 = [𝑢𝑥 , 𝑢𝑦]
𝑇
 denotes the position of the satellite relative to the observer in inertial 

coordinates. The observer location is denoted by 𝒅𝒐𝒃𝒔 and the relative position is given by 𝒖 =

𝒅 − 𝒅𝒐𝒃𝒔. It is assumed that the observations are corrupted with a zero-mean white noise process 

with variance equal to 𝜎𝛽
2 = 0.0085 𝑑𝑒𝑔2.  

Just to remind, in this case the states consist of the mean and variance of the position and 

velocity for each satellite: 𝒔(𝑡) = [(𝒒𝟏)𝑇, … , (𝒒𝑵)𝑇, 𝑑𝑖𝑎𝑔{𝑃1}, … , 𝑑𝑖𝑎𝑔{𝑃𝑁}]𝑇. In particular: 

 

(𝒒𝒊)
𝑇
= [𝑥𝑖 , 𝑦𝑖 , �̇�𝑖 , �̇�𝑖]                                           (3.54) 

 

and  

 

𝑑𝑖𝑎𝑔{𝑃𝑖} = [𝑣𝑎𝑟(𝑥𝑖), 𝑣𝑎𝑟(𝑦𝑖), 𝑣𝑎𝑟(�̇�𝑖), 𝑣𝑎𝑟(�̇�𝑖)]                         (3.55) 

 

Then, the system model and the measurement model theoretically defined in (3.47) can be 

written as (the dependency on the specific satellite is not reported): 

 

 

 



CHAPTER 3. SENSOR TASKING                                                                          107 

 

�̇� = [

�̇�
�̇�
�̈�
�̈�

] =

[
 
 
 
 

�̇�
�̇�

−
𝜇𝑥

√𝑥2+𝑦2

−
𝜇𝑦

√𝑥2+𝑦2]
 
 
 
 

= 𝒇(𝒒)                                  (3.56) 

𝒛 = 𝛽 = 𝑎𝑡𝑎𝑛2(𝑥 − 𝑥𝑜𝑏𝑠, 𝑦 − 𝑦𝑜𝑏𝑠) + 𝑣 = 𝒉(𝒒) + 𝑣             𝑣~𝒩(0,0.0085)     (3.57) 

 

Thus, from (3.56) and (3.57) it is possible to obtain the linearized dynamics which are used 

in the EKF propagation and update parts. The matrices are: 

 

𝐹 =
𝜕𝒇

𝜕𝒒
|
𝒒
= [

0
0
𝑝
𝑏

   

0
0
𝑏
𝑐

   

1
0
0
0

   

0
1
0
0

]  

𝑝 =
3𝜇𝑥2√𝑥2+𝑦2−𝜇(√𝑥2+𝑦2)

3

(𝑥2+𝑦2)3
  

𝑏 =
3𝜇𝑥𝑦√𝑥2+𝑦2

(𝑥2+𝑦2)3
  

𝑐 =
3𝜇𝑦2√𝑥2+𝑦2−𝜇(√𝑥2+𝑦2)

3

(𝑥2+𝑦2)3
                                (3.58)   

 

𝐻 =
𝜕𝒉

𝜕𝒒
|
𝒒
= [𝑚    𝑛    0    0]  

𝑚 = −
𝑦−𝑦𝑜𝑏𝑠

(𝑥−𝑥𝑜𝑏𝑠)
2+(𝑦−𝑦𝑜𝑏𝑠)

2  

𝑛 =
𝑥−𝑥𝑜𝑏𝑠

(𝑥−𝑥𝑜𝑏𝑠)
2+(𝑦−𝑦𝑜𝑏𝑠)

2
                                (3.59) 

 

  

The satellites used for the simulation are sampled randomly using orbital elements given by 

𝑎, 𝑒, 𝜔 and 𝑀, which are the semi-major axis, eccentricity, argument of periapsis and mean 

anomaly, respectively (see paragraph 1.1.2.1). Since only the planar motion is involved, just four 

orbital elements are needed. Then, the initial orbital elements state vector is given by 𝒐𝒆 =

[𝑎, 𝑒, 𝜔, 𝑀]𝑇. Random initial elements are sampled from a normal distribution for 𝑎, 𝜔 and 𝑀, 

and uniform distribution for 𝑒. The parameters for the normal distributions are: 𝜇𝑎 = 42164 𝑘𝑚, 

𝜎𝑎 = 100 𝑘𝑚, 𝜇𝜔 = 0°, 𝜎𝜔 = 10°, 𝜇𝑀 = 0° and 𝜎𝑀 = 10°. Here 𝜇 and 𝜎 denote mean and 

standard deviation, respectively. The eccentricity is sampled from a uniform distribution over 

the range 𝑒 𝜖 [0.01, 0.02]. These choices guarantee that the objects are visible to the observer, 

which is assumed to be initially in position 𝒅𝒐𝒃𝒔 = [6378.1363 𝑘𝑚, 0 𝑘𝑚] (on Earth’s surface), 
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and then to rotate with the Earth. A possible initial situation for 3 objects is depicted in Figure 

3.12, where the green cross is the position of the observer, the red crosses represent the satellites 

and the circle is the Earth. 

 

 

 The initial orbital elements for each satellite are so converted into an initial position and 

velocity, which are propagated with equation (3.48) and eventually updated with equation 

(3.50). At the beginning, the uncertainties are set to 100 km in position coordinates and 1 km/s 

in velocity. The measurements are supposed to be taken every 50 seconds, which is reasonable 

for telescopes observing geostationary satellites. Finally, the episodes are run for almost 17 hours.   

The Q-learning, then, is implemented as it was described in paragraph 3.3.2. The deep neural 

network has 3 hidden layers with, respectively, 200, 100 and 50 neurons. As input of the network 

there is the state 𝒔 of the system. The number of output neurons is equal to the number of 

satellites (each output tells the value associated with the observation of a particular satellite 

given the state). The reward function used for this work is given by: 

 

𝑟(𝒒) = {
−1   𝑖𝑓 𝜎 > �̅�
+1   𝑖𝑓 𝜎 < �̅�

                       (3.60) 

 

where 𝜎 = max
𝑖
(
1

2
trace(𝑃𝑖)) and �̅� is defined as the catalogue accuracy threshold, which in this 

work is set to 30 km.  

Figure 3.12: Example of initial setting for the sensor tasking problem 
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In order to update the parameters of the deep neural network a stochastic gradient descent 

algorithm is used. For its implementation, the free MATLAB-based framework LightNet21 is 

employed. The choices for the hyperparameters are: 

 Learning rate: 0.01 

 Weight decay: 0.001 

 Gradient clipping: 5 

 Momentum coefficient: 0.9 

   

The performance of Q-learning applied to the sensor tasking problem with 3 satellites is 

shown in Figures (3.13)÷(3.15).  

 

 

                                                           

21 LightNet is available and downloadable from GitHub at https://github.com/yechengxi/              

LightNet 

 

Figure 3.13: Cumulative reward of the Q-learning sensor tasking with 3 satellites 
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Figure 3.14: Detail of the cost function of the Q-learning sensor tasking with 3 satellites 

 

 

As illustrated in Figures (3.13)÷(3.15), the Q-learning is working properly: the cumulative 

reward is increasing during the training phase, the cost function is approaching zero (the spikes 

are due to the change in the Q-targets) and the application of the trained neural network after 

2000 episodes to new data produces the result shown in Figure (3.15). The system is able to 

reduce the uncertainty 𝜎𝑖 on each satellite under the defined threshold and then maintain an 

almost steady state value. Moreover, the behavior is expected to enhance if a much greater 

number of episodes is considered.  

Figure 3.15: Evolution of the uncertainty with respect to time in Q-learning sensor tasking 

with 3 satellites 
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It should be possible to apply this technique to more complex scenarios, for example one 

with more satellites or one with different kinds of satellites and not only geostationary ones. The 

outcomes should be satisfactory as well.   

Comparing the results with the ones presented in [4] with an actor-critic method, it is clear 

that Q-learning is slower and shows worse convergence properties because of its off-policy nature. 

However, the implementation is very simple and its performance is still good.  
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Chapter 4 

 Conclusions and future works  

 
This thesis studied and developed techniques in order to realize intelligent systems to 

observe, identify and classify space objects. In particular, it was focused on geostationary and 

low orbit satellites, but the discussion could be expanded to every kind of space objects, obviously 

subject to appropriate precautions. The project lied within the context of Space Situational 

Awareness (SSA), which refers to the ability to view, understand and predict the physical 

location of natural and manmade objects in orbit around the Earth, with the objective of 

increasing knowledge and avoiding collisions. The work is particularly important since intelligent 

systems for this purpose have never been made. However, since the idea regards a very wide 

subject, this thesis focused only on 3 main areas: the astrometry and photometry pipeline, the 

object classification and the sensor tasking problem.  

In the first chapter, the task of extracting interesting information from telescope images was 

faced. In particular, a pipeline should be able to obtain the real position of all the bodies inside 

the picture, recognize the target and get brightness data (i.e., light curves) from it. Two solutions 

were presented: a simple one built “from scratch” and a more complex one which made use of 

already existing programs available online. At the end, the latter solution was shown to have a 

great performance on real images depicting satellites: the target was perfectly identified and light 

curves were extracted from it. Future works will be focused on the recognition of unknown 

objects (i.e., the ones which are neither stars nor the target) from images, with resulting data 

acquisition. 

The second chapter was based on the object classification problem. Starting from the light 

curve of a body, the main goal was to classify it with machine learning techniques, which have 

the advantage of learning important features using only labeled training data. In particular, a 

shape/control classification was performed. The considered classic machine learning algorithms 

(neural networks with backpropagation and gradient descent, and support vector machines) 

presented good accuracy in the classification (around 95%), but the lion’s share was taken by 

the surprising and recent techniques called the Extreme Learning Machines (ELM). Indeed, they 

were shown to have a similar performance capability but with an extremely fast learning speed 

(300 to 800 times faster than previous methods). It is reasonable to think that, for this reasons, 
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this kind of algorithms will be used more and more in the time to come. Future works will 

expand the classification task to other features like the constituent material, the dimension or 

the attitude.       

The third chapter, finally, presented results using the Q-learning method to solve the sensor 

tasking and management problem for space situational awareness. The Q-learning solved a 

Markov decision process to determine the optimal tasking to maximize the expected reward. The 

system was simulated for multiple trails during which the deep neural network was updated. 

The simulation case with 3 geostationary satellites was shown to have a good performance since 

it was able to reduce the uncertainty on each satellite under the defined threshold and then 

maintain an almost steady state value. This was an example of application of Q-learning to 

complex problems and it should encourage the implementation of Q-learning in interesting 

modern areas like the vision-based control for self-driving objects (e.g., cars or spacecraft, an 

example of deep learning applied to vision control in self-driving cars is shown in Figure 4.1). 

Future works will consider the multi-sensor tasking problem and analyse the cases where not 

enough observations are available to observe all the satellites. In these cases, the reinforcement 

learning approach should make a decision on which space object should be observed and which 

errors should be allowed to grow.       

 

 

Finally, a physical realization of the ideas described in this thesis, making use of Python 

interfaces with the telescope, will be the main future development.   

 

 

 

 

 

Figure 4.1: Example of deep learning applied to vision control in self-driving cars 
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 Appendix A 

 

1. from spiceypy import *   
2. from math import *   
3. from numpy import *   
4. import os   
5. import re   
6. import glob   
7. import requests   
8. import datetime   
9. import time   
10. from sgp4.earth_gravity import wgs72   
11. from sgp4.io import twoline2rv   
12.    
13. def R2P5(y):   
14.     x=int(y)    
15.     d=y-x   
16.    
17.     if d>=0.5:   
18.         x=x+0.5   
19.     else:   
20.         x=x-0.5   
21.    
22.     return x   
23.    
24. def JD2Date(jd): # obtain a date format from Julian date   
25.     seconds=(jd-R2P5(jd))*86400   
26.    
27.     jd0=int(jd+0.5)   
28.    
29.     if(jd0<2299161):    
30.         c=jd0    
31.     else:   
32.         b=int(((jd0-1867216)-0.25)/36524.25)   
33.         c=jd0+b-int(b/4)+1   
34.      
35.     c=c+1524   
36.    
37.     d=int((c-122.1)/365.25)    
38.     e=365*d + int(d/4)    
39.     f=int((c-e)/30.6001)    
40.    
41.     date=[0,0,0,0,0,0]   
42.     date[1]=f-1-12*int(f/14)   
43.     date[0]=d-4715-int((7 + date[1])/10)    



116                                                                                                     APPENDIX A 

                                                    

44.     date[2]=int(c-e+0.5)-int(30.6001*f)   
45.    
46.     date[3]=int(seconds/3600)   
47.     seconds=seconds - 3600*date[3]   
48.     date[4]=int(seconds/60)   
49.     date[5]=seconds - 60*date[4]   
50.    
51.     if (date[0]<=0):   
52.         date[0]=datetime[0]-1   
53.    
54.     return date   
55.    
56. def Get_RAdec(Julian_Date, satellite_name, observatory_code, TLE_filename=None):  
57.    
58.     # check if there is a TLE_filename or not   
59.     if TLE_filename is None:   
60.            
61.         # delete all previous created files   
62.         filelist=glob.glob('*_TLE.txt')     
63.         for file in filelist:   
64.             os.remove(file)    
65.            
66.         URL='http://www.celestrak.com/NORAD/elements/geo.txt'   
67.    
68.         # the name of the txt file to be created is the date and time   
69.         date_time=time.strftime('%Y-%m-%d-%H-%M-%S')   
70.         file_name=date_time+'_TLE.txt'   
71.    
72.         # get the text from URL   
73.         page=requests.get(URL)   
74.            
75.         # write the text in the txt file defined above   
76.         f=open(file_name,'w')   
77.         f.write(page.text)   
78.         f.close()   
79.    
80.         # save the text in name, line1 and line2 arrays   
81.         with open(file_name) as f:   
82.             for i, l in enumerate(f):   
83.                 pass   
84.    
85.         # i+1 is the number of lines   
86.         # create list of values (lines of name, line1 and line2)   
87.         lines_name=arange(0,i+2,3).tolist()   
88.         lines_1=arange(1,i+2,3).tolist()   
89.         lines_2=arange(2,i+2,3).tolist()   
90.    
91.         mylist=[]   
92.         name=[]   
93.         line1=[]   
94.         line2=[]   
95.    
96.         # read all the lines of the txt file   
97.         with open(file_name) as f:   
98.             mylist_temp = f.read().splitlines()   
99.    
100.         f.close()   
101.    
102.         # modify mylist_temp because has an empty line every 2 lines   
103.         l=0   
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104.         while l*2<len(mylist_temp):   
105.             mylist.append(mylist_temp[l*2])   
106.             l+=1   
107.    
108.         # record lines in lists   
109.         for l in range(len(mylist)-1):   
110.             if l in lines_name:   
111.                 name.append(mylist[l])   
112.             elif l in lines_1:   
113.                 line1.append(mylist[l])   
114.             elif l in lines_2:   
115.                 line2.append(mylist[l])   
116.     else:   
117.         with open(TLE_filename) as f:   
118.             for i, l in enumerate(f):   
119.                 pass   
120.    
121.         # i+1 is the number of lines   
122.         lines_name=arange(0,i+2,3).tolist()   
123.         lines_1=arange(1,i+2,3).tolist()   
124.         lines_2=arange(2,i+2,3).tolist()   
125.    
126.         mylist=[]   
127.         name=[]   
128.         line1=[]   
129.         line2=[]   
130.    
131.         with open(TLE_filename) as f:   
132.             mylist = f.read().splitlines()   
133.    
134.         f.close()   
135.    
136.         for l in range(len(mylist)-1):   
137.             if l in lines_name:   
138.                 name.append(mylist[l])   
139.             elif l in lines_1:   
140.                 line1.append(mylist[l])   
141.             elif l in lines_2:   
142.                 line2.append(mylist[l])   
143.    
144.     # search if there exists the satellite name in the list of names and   
145.     # save the two lines associated   
146.     regex=re.compile('.*('+satellite_name+').*')   
147.     name_total=[]   
148.     TLE_line1=[]   
149.     TLE_line2=[]   
150.     name_total=[m.group(0) for l in name for m in [regex.search(l)] if m]  
151.     name_total=name_total[0]   
152.    
153.     if name_total in name:   
154.         index=name.index(name_total)   
155.         TLE_line1=line1[index]   
156.         TLE_line2=line2[index]       
157.    
158.     # from TLE to actual position and velocity (wgs72 is the reference   
159.     # standard)    
160.     satellite=twoline2rv(TLE_line1,TLE_line2,wgs72)   
161.     date=JD2Date(Julian_Date)   
162.    
163.     # TLE propagation   
164.     pos,vel=satellite.propagate(date[0],date[1],date[2],   
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165.                                 date[3],date[4],date[5])   
166.     position_target_TEME=pos   
167.            
168.     # from TEME to ECEF   
169.     twopi=2.0*pi   
170.     d2r=pi/180.0   
171.    
172.     tut1=(Julian_Date-2451545.0)/36525.0   
173.    
174.     gmst=-6.2e-6*tut1*tut1*tut1+0.093104*tut1*tut1+   
175.     (876600.0*3600.0+8640184.812866)*tut1+   
176.     67310.54841   
177.    
178.     gmst=remainder(gmst*d2r/240.0,twopi)   
179.    
180.     if gmst<0.0:   
181.         gmst=gmst+twopi   
182.    
183.     # build the rotation matrix    
184.     st=[(cos(gmst),sin(gmst),0.0),   
185.         (-sin(gmst),cos(gmst),0.0),   
186.         (0.0,0.0,1.0)]   
187.        
188.     st=array(st)   
189.    
190.     position_target_ecef = dot(st,position_target_TEME)   
191.    
192.     # unload all kernels and clear the kernel pool, set the directory   
193.     spiceypy.kclear()    
194.     os.chdir('/home/simone/Scrivania/ECEF2RAdec/kernels')   
195.    
196.     # load SPICE kernel   
197.     spiceypy.furnsh('/home/simone/Scrivania/ECEF2RAdec/kernels'   
198.                     '/kernel.txt')    
199.    
200.     # read the Julian date   
201.     JulianDate=str(Julian_Date)   
202.     JulianDate='JD'+JulianDate   
203.     tMeas=spiceypy.str2et(JulianDate)   
204.        
205.     # compute observatory latitude, longitude and altitude   
206.     filelist2=glob.glob('Observatories.txt')   
207.     for file in filelist2:   
208.         os.remove(file)   
209.          
210.     URL='http://www.minorplanetcenter.net/iau/lists/ObsCodes.html'   
211.    
212.     file_name='Observatories.txt'   
213.    
214.     # take the list from the website of Minor Planet Center   
215.     page2=requests.get(URL)   
216.        
217.     # write the text in a txt file   
218.     g=open(file_name,'w')   
219.     g.write(page2.text)   
220.     g.close()   
221.            
222.     data=genfromtxt('Observatories.txt',delimiter=[5,8,8,8,50],   
223.                     skip_header=2,skip_footer=1,   
224.                     dtype=('S3',float,float,float,'S50'),   
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225.                     names=('obscode','lon','cos','sin','name'))   
226.        
227.     obs_code=str(observatory_code)   
228.    
229.     # adjust the code if with 1 or 2 digits   
230.     if len(obs_code)==1:   
231.         obs_code='00'+obs_code   
232.     if len(obs_code)==2:   
233.         obs_code='0'+obs_code   
234.    
235.     # collect the information concerning the observatory    
236.     obs=data[data['obscode']==obs_code.encode('utf-8')]    
237.    
238.     # parallax constants   
239.     cosine=obs[0][2]   
240.     sine=obs[0][3]   
241.     observatory_name=obs[0][4]   
242.     long=obs[0][1]*pi/180   
243.    
244.     # compute the latitude in radians   
245.     lat=atan(sine/cosine)   
246.    
247.     # altitude put equal to zero because it cannot be computed   
248.     # from the website   
249.     alt=0   
250.        
251.     objName=observatory_name    
252.     objID=obs_code   
253.     refFrameName='IAU_EARTH'   
254.    
255.     # generate setup file   
256.     f=open('/home/simone/Scrivania/ECEF2RAdec/kernels/'+objName+'.sut',   
257.            'w+')   
258.    
259.     endChar='\n'   
260.    
261.     f.write('\\begindata'+endChar)   
262.     f.write("SITES        =('"+objName+"')"+endChar)   
263.     f.write(objName+'_CENTER = 399 '+endChar)   
264.     f.write(objName+"_FRAME = '"+refFrameName+"'"+endChar)   
265.     f.write(objName+'_IDCODE = '+objID+endChar)   
266.     f.write(objName+'_LATLON =('+str(rad2deg(lat))+','+str(rad2deg(lon))+  
267.             ','+str(alt)+') '+endChar)   
268.     f.write('\\begintext '+endChar)   
269.    
270.     f.close()   
271.    
272.     # run pinpoint   
273.     string='./pinpoint -def '+objName+'.sut '+   
274.     '-pck ./pck00010.tpc -spk '+objName+'.bsp'     
275.     os.system(string)   
276.     spiceypy.furnsh('/home/simone/Scrivania/ECEF2RAdec/kernels/'+   
277.                     objName+'.bsp')   
278.        
279.     xGS=spiceypy.spkezr(objID,tMeas,'J2000','NONE','399')   
280.        
281.     position_obs_eci=xGS[0][0:3]   
282.    
283.     # compute the rotation matrix from ECEF to ECI J2000   
284.     mat=spiceypy.pxform('IAU_EARTH','J2000',tMeas)   
285.    
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286.     mat=array(mat)   
287.    
288.     position_target_eci=dot(mat,position_target_ecef)   
289.    
290.     position_target_eci=array(position_target_eci)   
291.     position_obs_eci=array(position_obs_eci)   
292.            
293.     spiceypy.kclear()   
294.    
295.     # compute the relative position   
296.     rho=position_target_eci-position_obs_eci   
297.    
298.     # calculate RA and dec in degrees   
299.     RA=atan2(rho[1],rho[0])*180/pi   
300.    
301.     dec=asin(rho[2]/linalg.norm(rho))*180/pi   
302.    
303.     return RA,dec   
304.    
305.    
306. RA,dec=Get_RAdec(Julian_Date,satellite_name,observatory_code,TLE_filename 
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 Appendix B 

 

1. import time   
2. import datetime   
3. import pytz   
4. import requests   
5. import glob   
6. import os   
7. import spiceypy   
8. from numpy import *   
9. from math import *   
10. from sgp4.earth_gravity import wgs72    
11. from sgp4.io import twoline2rv    
12.    
13. def Date2JD(datetime):   
14.     datetime[0]=int(datetime[0])   
15.     datetime[1]=int(datetime[1])   
16.     datetime[2]=int(datetime[2])   
17.     datetime[3]=int(datetime[3])   
18.     datetime[4]=int(datetime[4])   
19.     datetime[5]=int(datetime[5])   
20.        
21.     fracday = (datetime[3]+(datetime[4]+datetime[5]/60)/60)/24    
22.    
23.     a = 10000*datetime[0]+100*datetime[1]+datetime[2]+fracday   
24.    
25.     if datetime[1]<=2:   
26.         datetime[1]=datetime[1]+12   
27.         datetime[0]=datetime[0]-1   
28.    
29.     if a<=15821004.1:   
30.         b=-2+int((datetime[0]+4716)/4)-1179   
31.    
32.     else:   
33.         b = int(datetime[0]/400)-int(datetime[0]/100)+int(datetime[0]/4)    
34.    
35.     jd=365*datetime[0]+b+int(30.6001*(datetime[1]+1))+datetime[2]+fracday+   
36.     1720996.5   
37.    
38.     return jd   
39.    
40. def R2P5(y):   
41.     x=int(y)    
42.     d=y-x   
43.    
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44.     if d>=0.5:   
45.         x=x+0.5   
46.     else:   
47.         x=x-0.5   
48.    
49.     return x   
50.    
51. def JD2Date(jd):   
52.     seconds=(jd-R2P5(jd))*86400   
53.    
54.     jd0=int(jd+0.5)   
55.    
56.     if jd0<2299161:    
57.         c=jd0    
58.     else:   
59.         b=int(((jd0-1867216)-0.25)/36524.25)   
60.         c=jd0+b-int(b/4)+1   
61.      
62.     c=c+1524   
63.    
64.     d=int((c-122.1)/365.25)    
65.     e=365*d+int(d/4)    
66.     f=int((c-e)/30.6001)    
67.    
68.     date=[0,0,0,0,0,0]   
69.     date[1]=f-1-12*int(f/14)   
70.     date[0]=d-4715-int((7 + date[1])/10)    
71.     date[2]=int(c-e+0.5)-int(30.6001*f)   
72.    
73.     date[3]=int(seconds/3600)   
74.     seconds=seconds - 3600*date[3]   
75.     date[4]=int(seconds/60)   
76.     date[5]=seconds-60*date[4]   
77.    
78.     if date[0]<=0:   
79.         date[0]=datetime[0]-1   
80.    
81.     return date   
82.    
83.    
84. def Obtain_visible_satellites(observatory_code, alfa, mag_limit,   
85.                               JD=None, TLE_filename=None):    
86.    
87.     # check if there is a TLE_filename or not   
88.     if TLE_filename is None:   
89.    
90.         # delete all previous created files   
91.         filelist=glob.glob('*_TLE.txt')   
92.         for file in filelist:   
93.             os.remove(file)   
94.            
95.         URL='http://www.celestrak.com/NORAD/elements/geo.txt'   
96.    
97.         # the name of the txt file to be created is the date and time   
98.         date_time=time.strftime('%Y-%m-%d-%H-%M-%S')   
99.         file_name=date_time+'_TLE.txt'   
100.    
101.         # get the text from URL   
102.         page=requests.get(URL)   
103.            
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104.         # write the text in the txt file defined above   
105.         f=open(file_name,'w')   
106.         f.write(page.text)   
107.         f.close()   
108.    
109.         # save the text in name, line1 and line2 arrays   
110.         with open(file_name) as f:   
111.             for i, l in enumerate(f):   
112.                 pass   
113.    
114.         # i+1 is the number of lines     
115.         # create list of values (lines of name, line1 and line2)     
116.         lines_name=arange(0,i+2,3).tolist()   
117.         lines_1=arange(1,i+2,3).tolist()   
118.         lines_2=arange(2,i+2,3).tolist()   
119.    
120.         mylist=[]   
121.         name=[]   
122.         line1=[]   
123.         line2=[]   
124.    
125.         # read all the lines of the txt file     
126.         with open(file_name) as f:   
127.             mylist_temp = f.read().splitlines()   
128.    
129.         f.close()   
130.    
131.         # modify mylist_temp because has an empty line every 2 lines   
132.         l=0   
133.         while l*2<len(mylist_temp):   
134.             mylist.append(mylist_temp[l*2])   
135.             l+=1   
136.    
137.         # record lines in lists   
138.         for l in range(len(mylist)-1):   
139.             if l in lines_name:   
140.                 name.append(mylist[l])   
141.             elif l in lines_1:   
142.                 line1.append(mylist[l])   
143.             elif l in lines_2:   
144.                 line2.append(mylist[l])   
145.     else:   
146.         with open(TLE_filename) as f:   
147.             for i, l in enumerate(f):   
148.                 pass   
149.    
150.         # i+1 is the number of lines   
151.         lines_name=arange(0,i+2,3).tolist()   
152.         lines_1=arange(1,i+2,3).tolist()   
153.         lines_2=arange(2,i+2,3).tolist()   
154.    
155.         mylist=[]   
156.         name=[]   
157.         line1=[]   
158.         line2=[]   
159.    
160.         with open(TLE_filename) as f:   
161.             mylist = f.read().splitlines()   
162.    
163.         f.close()   
164.    
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165.         for l in range(len(mylist)-1):   
166.             if l in lines_name:   
167.                 name.append(mylist[l])   
168.             elif l in lines_1:   
169.                 line1.append(mylist[l])   
170.             elif l in lines_2:   
171.                 line2.append(mylist[l])   
172.           
173.     # get the position and velocity of each satellite   
174.     satellite=[]   
175.     for k in range(len(line1)-1):   
176.         satellite.append(twoline2rv(line1[k], line2[k], wgs72))   
177.    
178.     # compute observatory latitude, longitude and altitude   
179.     filelist2=glob.glob('Observatories.txt')   
180.     for file in filelist2:   
181.         os.remove(file)   
182.          
183.     URL='http://www.minorplanetcenter.net/iau/lists/ObsCodes.html'   
184.    
185.     file_name='Observatories.txt'   
186.    
187.     # take the list from the website of Minor Planet Center   
188.     page2=requests.get(URL)   
189.        
190.     # write the text in a txt file   
191.     g=open(file_name,'w')   
192.     g.write(page2.text)   
193.     g.close()   
194.            
195.     data=genfromtxt('Observatories.txt',delimiter=[5,8,8,8,50],   
196.                     skip_header=2,skip_footer=1,   
197.                     dtype=('S3',float,float,float,'S50'),   
198.                     names=('obscode','lon','cos','sin','name'))   
199.        
200.     obs_code=str(observatory_code)   
201.    
202.     # adjust the code if with 1 or 2 digits   
203.     if len(obs_code)==1:   
204.         obs_code='00'+obs_code   
205.     if len(obs_code)==2:   
206.         obs_code='0'+obs_code   
207.    
208.     # collect the information concerning the observatory    
209.     obs=data[data['obscode']==obs_code.encode('utf-8')]    
210.    
211.     # parallax constants   
212.     cosine=obs[0][2]   
213.     sine=obs[0][3]   
214.     observatory_name=obs[0][4]   
215.     long=obs[0][1]*pi/180   
216.    
217.     # compute the latitude in radians   
218.     lat=atan(sine/cosine)   
219.    
220.     # altitude put equal to zero because it cannot be computed   
221.     # from the website   
222.     alt=0   
223.            
224.     # calculation of the ECEF coordinates for the observatory   
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225.     position_obs_ECEF=spiceypy.spiceypy.georec(long,   
226.                                                lat,alt,   
227.                                                6378.135,   
228.                                                1/298.26)   
229.    
230.      
231. # this variable keeps track of the visible satellites   
232.     visible_satellites=[]        
233.    
234.     # check if a Julian Date was given   
235.     if JD is None:   
236.         date_time=time.strftime('%Y-%m-%d-%H-%M-%S')   
237.         year=date_time[0:4]   
238.         month=date_time[5:6]   
239.         day=date_time[8:9]   
240.         hour=date_time[11:12]   
241.         minutes=date_time[14:15]   
242.         seconds=date_time[17:18]   
243.         date=[year,month,day,hour,minutes,seconds]   
244.         JD=Date2JD(date)   
245.    
246.     else:   
247.            
248.         date=JD2Date(JD)   
249.         year=date[0]   
250.         month=date[1]   
251.         day=date[2]   
252.         hour=date[3]   
253.         minutes=date[4]   
254.         seconds=date[5]   
255.    
256.         year=str(year)   
257.         month=str(month)   
258.         day=str(day)   
259.         hour=str(hour)   
260.         minutes=str(minutes)   
261.         seconds=str(seconds)   
262.    
263.         if month[0]==0:   
264.             month=month[1]   
265.         if day[0]==0:   
266.             day=day[1]   
267.         if hour[0]==0:   
268.             hour=hour[1]   
269.         if minutes[0]==0:   
270.             minutes=minutes[1]   
271.         if seconds[0]==0:   
272.             seconds=seconds[1]   
273.    
274.     year=int(year)   
275.     month=int(month)   
276.     day=int(day)   
277.     hour=int(hour)   
278.     minutes=int(minutes)   
279.     seconds=float(seconds)   
280.        
281.     position=[]   
282.     velocity=[]   
283.    
284.     position_satellites_ECEF=[]   
285.     A=array([0,0,0])   
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286.     B=array(position_obs_ECEF)   
287.     proj_point=[]   
288.     F_phi=[]   
289.     mv=[]   
290.     i=0   
291.        
292.      
293. # propagate the TLE    
294.     for k in range(len(satellite)):   
295.         pos,vel = satellite[k].propagate(year,month,day,   
296.                                          hour,minutes,   
297.                                          seconds)   
298.         position.append(pos)   
299.         velocity.append(vel)   
300.    
301.         # change the coordinates from ECI TEME to ECEF    
302.         twopi=2.0*pi   
303.         d2r=pi/180.0   
304.    
305.         tut1=(JD-2451545.0)/36525.0   
306.    
307.         gmst=-6.2e-6*tut1*tut1*tut1+0.093104*tut1*tut1+   
308.         (876600.0*3600.0+8640184.812866)*tut1+   
309.         67310.54841   
310.    
311.         gmst=remainder(gmst*d2r/240.0,twopi)   
312.    
313.         if gmst<0.0:   
314.             gmst=gmst+twopi   
315.    
316.         # build the rotation matrix    
317.         st=[(cos(gmst),sin(gmst),0.0),   
318.             (-sin(gmst),cos(gmst),0.0),   
319.             (0.0,0.0,1.0)]   
320.        
321.         st=array(st)   
322.             
323.         position_satellites_ECEF.append(dot(st,position[k]))   
324.                
325.         P=array(position_satellites_ECEF[k])   
326.    
327.         # check if the satellite is visible    
328.         AP=P-A   
329.         AB=B-A   
330.    
331.         # satellite position projected on the axis from the observatory   
332.         proj_point.append(A+dot(AP,AB)/dot(AB,AB)*AB)    
333.    
334.         # calculate the distance between satellite position and the axis   
335.         diff=proj_point[k]-P   
336.         distance=sqrt(diff[0]**2+diff[1]**2+diff[2]**2)   
337.                                                
338.         obs_norm=sqrt(B[0]**2+B[1]**2+B[2]**2)   
339.    
340.         # compute the distance of the projected point from the center   
341.         # of the Earth and from the Earth's surface   
342.         proj_norm=sqrt(proj_point[k][0]**2+proj_point[k][1]**2+   
343.                        proj_point[k][2]**2)   
344.         distance_tip=proj_norm-obs_norm   
345.    
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346.         # control that the projected point is above the observatory    
347.         if distance_tip<0 or dot(proj_point[k],B)<0:    
348.             pass   
349.    
350.         # check if the satellite is inside the cone   
351.         elif distance<distance_tip*tan(pi*alfa/180):    
352.             i=i+1   
353.    
354.             # check if the satellite is really visible   
355.             rho=0.2   
356.             A=pi*(4.8/2)**2   
357.             dist=(sqrt(P[0]**2+P[1]**2+P[2]**2)-obs_norm)*1000   
358.             n=JD-2451545 
359.             L=remainder(280.460+0.9856474*n,360)   
360.             g=remainder(357.528+0.9856003*n,360) 
361.             lam=L+1.915*sin(g*pi/180)+0.020*sin(2*g*pi/180)  
362.             obOfE=23.439-0.0000004*n 
363.             sLam=sin(lam)   
364.             sun_vector_ECI=[cos(lam),cos(obOfE)*sLam,sin(obOfE)*sLam]   
365.             distance_sun=(1.00014-0.01671*cos(g*pi/180)-0.00014*   
366.                          cos(2*g*pi/180))*149600000 
367.                              
368.             sun_vector=dot(st,sun_vector_ECI)   
369.             sun_vector=array(sun_vector)    
370.             sun_position=sun_vector*distance_sun   
371.             sun=sun_position-P   
372.             observatory=B-P   
373.    
374.             cosine_angle=dot(sun,observatory)/(linalg.norm(sun)*   
375.                                                linalg.norm(observatory))   
376.             phi=arccos(cosine_angle)    
377.    
378.             F_phi.append(2/(3*(pi)**2)*((pi-phi)*cos(phi)+   
379.                                         sin(phi)))   
380.             mv.append(-26.7-2.5*log10(A*rho*F_phi[i-1])+5.0*   
381.                       log10(dist))   
382.             if mv[i-1]<mag_limit:   
383.                 visible_satellites.append([name[k],   
384.                                            position_satellites_ECEF[k]])   
385.            
386.     return visible_satellites        
387.           
388. visible_satellites=Obtain_visible_satellites(observatory_code, alfa,   
389.                                              mag_limit, JD=None,   
390.                                              TLE_filename=None)   
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