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Abstract

NOWADAYS, it is spreading more and more the use of applications that
have a huge amount of data in input with properties not known at de-
sign stage. Computing systems most commonly used to perform this

type of applications take advantage of the High Performance Computing tech-
nology, a very powerful and high speed technology. There are already several
strategies to be applied in order to reduce consumption of these supercomputing
systems, such as the approximate computing or the use of a autotuner to monitor
the consumption of application and dynamically makes decisions about manage-
ment of its resources.

The main objective of this thesis concerns the research and development of
an autotuning strategy for the execution of a program, to be applied in HPC field.
We want to find trade-off solutions between quality of service and performances
in this area, which is a problem that affects both scientific and industrial envi-
ronments. In particular, we want to try to contain within a specified value, the
execution time or the power consumption used by the application. The purpose
consists in being able to realize this trade-off between quality of service and time-
to-solution or energy-to-solution in an automatic and general way, completely
independent from the functional characteristics of the application, and apply it
to applications with execution time and energy consumption not predictable in
advance, but manageable and adaptable dynamically.

The framework developed, Ipazia, realizes the proposed ideas for solving this
particular problem, focusing on the joint use of approximate computing and au-
totuning techniques in a parallel and distributed environment.
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Sommario

AL giorno d’oggi si sta diffondendo sempre più l’utilizzo di applicazioni
caratterizzate da un enorme ammontare di dati in input con proprietà
non note in fase di progetto. I sistemi di calcolo maggiormente usati

per eseguire questo tipo di applicazioni sfruttano la tecnologia High Performance
Computing, una tecnologia molto potente e con elevate prestazioni. Esistono già
diverse strategie da applicare per ridurre i consumi di questi sistemi di super-
calcolo, come il calcolo approssimato o l’uso di un autotuner per monitorare i
consumi di un’applicazione e prendere decisioni dinamicamente sulla sua ges-
tione di risorse.

L’obiettivo principale di questa tesi riguarda la ricerca e lo sviluppo di una
nuova strategia di autotuning per l’esecuzione di un programma, da applicare in
ambito HPC. Si vogliono trovare solutioni trade off tra la qualità di servizio e le
prestazioni in questo ambito, che è un problema che affligge sia gli ambienti sci-
entifici che industriali. In particolare, si vuole cercare di contenere entro un de-
terminato valore, il tempo di esecuzione o la potenza utilizzata dall’applicazione.
Lo scopo consiste nel riuscire a realizzare questo trade off tra la qualità di servizio
e il tempo di soluzione o l’energia di soluzione in modo automatico e generale,
completamente indipendente dalle caratteristiche funzionali dell’ applicazione,
ed utilizzarlo per applicazioni con prestazioni di tempo e di consumo di energia
non prevedibili a priori, ma gestibili ed adattabili in modo dinamico.

Il framework sviluppato, Ipazia, concretizza le idee proposte per la risoluzione
di questo particolare problema, concentrandosi sull’utilizzo congiunto di tec-
niche di calcolo approssimato e autotuning in ambito parallelo e distribuito.
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CHAPTER1
Introduction

1.1 Problem and Motivation

High Performance Computing is the practice of aggregating computing systems
in a way that delivers much higher performance than one could get out of a typ-
ical desktop computer or workstation in order to solve large and complex prob-
lems in science, engineering, or business. Nowadays, as demand for processing
power and speed grows, HPC will likely interest businesses of all sizes, particu-
larly for transaction processing, data warehouses and high performance data an-
alytics. All modern supercomputer architectures depend heavily on parallelism,
and the number of CPUs in large-scale supercomputers increases steadily. HPC
systems operate above a TeraFLOP or 1012 floating-point operations per seconds
and probably they will reach the Exascale level in the following years. Thus the
use of parallel processing and heterogeneous distributed architectures is strictly
needed in order to obtain such high performance in an efficient and quick way.

Optimization performance problem affects many computer science and indus-
trial fields. Since HPC systems are very powerful structures, they are also very
consuming and many current researches are investigating this problem, propos-
ing different types of solutions. Nevertheless, this problem is still far from being
solved. The main optimization areas regard the reduction in the execution time
and the power consumption, while maintaining the highest quality of service

1
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Chapter 1. Introduction

possible.
The difficulty in solving this problem arises from the fact that many HPC ap-

plications have unpredictable behavior as it strongly depends not only on the load
of the input data but also on the characteristics of the inputs themselves. How-
ever, in an HPC application that has to process a very huge amount of data, it is
unfeasible to characterize it by reading all the incoming data before computation
has started. Just thinking about the capacity of HPC to handle and analyze mas-
sive amounts of data at high speed, that can take months using normal computers,
in days or even minutes, and of the ability of HPC systems to run data-intensive
modeling and simulation problems at large scale, at higher resolution and with
more elements.

The purpose of this thesis is to propose a methodology to solve the problem
of unpredictability, at design time, of the characteristics of the data in input, in
HPC applications.

We want to find a way to characterize the workload of an application before
it has started computing it. We want to make target HPC applications flexible
with respect to the characteristics of their workload and the possible introduction
of little noise, and monitor their execution mostly in terms of time and power
consumption.

Our objective consists of giving our contribution to solve the optimization per-
formance problem of HPC applications. We address the problem of both perfor-
mance modeling and performance automatic management. Target applications
must be executed maintaining a certain quality of service. Having the quantity
of one of these performance as an input, we would like to make the application
tunable so that this given value of performance will be satisfied, whatever the
data features of inputs are, and tolerating changes due to the environment. In
particular, we address this problem for applications working in a parallel and
distributed environment, which is the most common field for HPC programs.

Approximate programming is a technique used in contexts in which it is no
more possible to produce precise results in short times or in critical situations.
It can also be applied in the HPC field as a mechanism to reduce the execution
time or power consumption by introducing some level of error. We want to
further investigate this mechanism and apply it in the context described above.
Our purpose is to make the application flexible with respect to performance,
such as latency and power consumption, acting directly on this quantity of error
to introduced.

Experimental results show the behavior of our framework under different lev-
els of noise introduced. In perfect conditions and with low noise level our frame-
work succeeded in maintaining the predefined performance constraint.

2
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1.2 Contribution

We develop a methodology for solving the problem of the unpredictable behav-
ior of HPC applications. In particular, the methodology proposed tries to solve
the problem by suggesting a way to obtain an estimate of the distribution of the
data in input without having to read them all. Through the Montecarlo sam-
pling technique we provide a method for constructing the estimate distribution
of the data in input in terms of probability density functions of each feature that
characterizes each input.

Autotuning is a technique well used in order to satisfy quality of service level
reducing computational costs in terms of latency and power consumption. A
dynamic autotuner leverages application behavior by changing the values of dy-
namic knobs according to application requirements. In order to solve the op-
timization problem, in this thesis we investigate the use of the autotuning in
a proactive way, that is, we apply autotuning techniques in programs that are
not stream-based, and before the actually computation has started. We also use
this mechanism in conjunction with approximate computing techniques, and we
study the behavior of a tunable and approximate application controlled by an
autotuner, in a parallel and distributed environment.

Regarding the performance modeling problem, we provide a mechanism to
automatically construct models to predict the performance trend of the applica-
tion, based on the accuracy level and the characteristics of data in input. Given a
performance constraint in terms of time-to-solution, our approach is able to exe-
cute a parallel application within a predefined time, managing to get the highest
possible quality of service with respect to the time-to-solution given.

We also evaluate different search strategies for better calculating the values
the application needs for satisfying the constraints to which it is subjected. We
take into account cases where it is not possible to use an exhaustive search so-
lution because the search space is too large, or it is really unfeasible. This work
provides a heuristic search strategy that can solve the search problem in less time
that the exhaustive search method.

We develop a strategy to make a distributed application flexible and toler-
ant with respect to its input features and little fluctuations of noise. Therefore,
we introduce a control mechanism that periodically updates the information for
managing the application behavior, at run-time.

The parallel and distributed environment we address, has no shared memory.
Therefore, we select the Message Parsing Interface library as a possible commu-
nication solution for achieving our goals. Through this library we can commu-
nicate with the different processes of the target application and send and receive

3
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Chapter 1. Introduction

information. To make more effective the use of MPI library for the solution we
want to developed, we evaluate several communication strategies, concerning
speed, feasibility and overheads introduced by this mechanism.

Ipazia is the name of the framework developed in order to give our practical
contribution in the directions described above. We evaluate its behavior using
the mARGOt autotuning framework, being developed at the System Architecture
group of Politecnico di Milano.

1.3 Organization of the Thesis

This thesis is structured as follow: in Chapter 2 there is the description of the
background on which this work is based on. It introduces High Performance
Computing concepts, parallel distributed programming and performance model-
ing methods.

Chapter 3 gives an overview on the state-of-the-art regarding methodologies
and techniques developed in this thesis, focusing on the description of the mAR-
GOt autotuner and the last works on proactive control of approximate applica-
tions.

In Chapter 4 we describe the methodology proposed step by step and the logic
structure developed for building Ipazia framework.

In Chapter 5 there is the detailed description of the framework implemented,
in terms of components and behavior.

Chapter 6 contains all the experiments we made in order to validate our pro-
posed methodology and to gather information on the framework behavior.

Chapter 7 contains the conclusions of this work, with the description of both
benefits and limitations, and the list of possible future works that can be done in
order to improve and expand this thesis.

Finally, there is the bibliography.

4
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CHAPTER2
Background

2.1 Introduction

This chapter introduces the most important concepts this thesis is based on. First,
there is a description about High Performance Computing and what are its main
issues, then there is a section about parallel programming and in particular the
use of Message Passing Interface as parallel library. The last section is about
modeling techniques with the R software [13].

2.2 Definition of High Performance Computing Systems

High Performance Computing (HPC) most generally refers to the practice of ag-
gregating computing systems in a way that delivers much higher performance
than one could get out of a typical desktop computer or workstation in order
to solve large and complex problems in science, engineering, or business [14].
Nowadays, as demand for processing power and speed grows, HPC will likely
interest businesses of all sizes, particularly for transaction processing, data ware-
houses and high performance data analytics. HPC systems operate above a Ter-
aFLOP or 1012 floating-point operations per seconds and probably they will
reach the Exascale level in the following years. Thus the use of parallel pro-
cessing and heterogeneous distributed architectures is strictly needed in order to

5
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obtain such high performance in an efficient, reliable and quick way [3].
Cloud Computing with its recent and rapid expansion and development has

grabbed the attention of HPC users and developers in recent years. Cloud Com-
puting attempts to provide HPC-as-a-Service exactly like other forms of services
currently available in the Cloud such as Software-as-a-Service, Platform-as-a-
Service, and Infrastructure-as-a-Service. HPC users may benefit from the Cloud
in different angles such as scalability, resources being on-demand, fast, and in-
expensive. On the other hand, moving HPC applications have a set of challenges
too. One of them is the need of knowing how much energy-time an HPC applica-
tion will consume computing a certain amount of data. Currently, performance
modeling of applications on all levels of a system’s architecture is of utmost
importance, and it is an indispensable guiding principle in HPC [31]. How-
ever many HPC applications process a so huge amount of data that it is very
difficult to truly characterizing the application behavior in terms of quality of
service and power consumption trade-off without having a previous full knowl-
edge of all features of input data, which could not be obtained in the majority
of cases. So researches are moving towards the study of HPC application online
autotuning [46] and one of the main challenges is focused on how to autotune a
distributed heterogeneous application with no shared memory, since, this is the
most common architectural configuration used in HPC systems.

2.2.1 Heterogeneous Multicore Architecture

A heterogeneous architecture can provide significantly higher performance than
a homogeneous chip multiprocessor and can also be beneficial in systems with
multithreaded cores [34]. Figure 2.1 shows a heterogeneous multicore architec-
ture.

The Green500 list [12] of the most energy-efficient supercomputers demon-
strates that heterogeneous systems are better energy efficient than homogeneous
systems.

The top two systems of the Green500 list of November 2016, DGX SAT-
URNV and Piz Daint, both use NVIDIA’s P100 Tesla GPU, which exhibits ex-
cellent energy efficiency, and they both have heterogeneous architectures. They
have a rating of 9.46 and 7.45 GigaFLOPs per Watt, respectively.

6
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2.2. Definition of High Performance Computing Systems

Figure 2.1: Heterogeneous architecture.

2.2.2 Distributed Architecture

A distributed system is a model in which components located on networked
computers communicate and coordinate their actions by passing messages. In
distributed computing, each processor has its own private memory (distributed
memory). Information is exchanged by passing messages between the proces-
sors. Another basic aspect of distributed computing architecture is the method
of communicating and coordinating among concurrent processes. Through var-
ious message passing protocols, processes may communicate directly with one
another, typically in a master/slave relationship.

Reasons for using distributed systems and distributed computing may include:

• The nature of an application may require the use of a communication net-
work that connects several computers. For example data produced in one
physical location and required in another location.

• There are many cases in which the use of a single computer would be possi-
ble in principle, but the use of a distributed system is beneficial for practical
reasons. For example, it may be more cost-efficient to obtain the desired
level of performance by using a cluster of several low-end computers, in
comparison with a single high-end computer. A distributed system can pro-
vide more reliability than a non-distributed system, as there is no single
point of failure. Moreover, a distributed system may be easier to expand
and manage than a monolithic uniprocessor system.

Figure 2.2 shows an example of distributed architecture.
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Chapter 2. Background

Figure 2.2: Distributed architecture.
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2.3. Parallel Distributed Programming

2.3 Parallel Distributed Programming

We speak of parallel computing whenever a number of compute elements (cores)
solve a problem in a cooperative way. All modern supercomputer architectures
depend heavily on parallelism, and the number of CPUs in large-scale supercom-
puters increases steadily.

There are various approaches for parallel programming. The main issue is
that the problem of locating data in a parallel context is very hard. A compiler
would need to consider the whole code, rather than a subroutine at a time. Even
then, results have been disappointing. More productive is the approach where
the user writes mostly a sequential program, but gives some indications about
what computations can be parallelized, and how data should be distributed. An-
notating parallelism of operations explicitly is possible in OpenMP [7]. Such
approaches work best with shared memory. By far the hardest way to program in
parallel, but with the best results in practice, consists of exposing the parallelism
to the programmer and let the programmer manage everything explicitly. This
approach is necessary in the case of distributed memory programming.

2.3.1 Message Passing Interface

Ever since parallel computers hit the HPC market, there was an intense discus-
sion about what should be an appropriate programming model for them. With
logically distributed memory, the only way one processor can exchange informa-
tion with another is through passing information explicitly through the network.

The use of explicit message passing (MP), i.e., communication between pro-
cesses, is the most flexible parallelization method. In a message passing pro-
gram, messages carry data between processes. Those processes could be run-
ning on separate compute nodes, or different cores inside a node, or even on the
same processor core, time-sharing its resources. A message can be as simple
as a single item or even a complicated structure, perhaps scattered all over the
address space. If OpenMP is the most common way to program shared mem-
ory, Message Passing Interface (MPI) is the standard solution for programming
distributed memory [23].

Today, the MPI standard is supported by several free and commercial imple-
mentations and has been extended several times. It contains not only commu-
nication routines, but also facilities for efficient parallel I/O. An MPI library is
regarded as a necessary ingredient in any HPC system installation, and numerous
types of interconnect are supported.

The current MPI standard in version 3.0 defines over 500 functions [31]. An
MPI program consists of autonomous processes, executing their own code, in an
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MIMD style. The codes executed by each process need not to be identical. The
processes communicate via calls to MPI communication primitives. Typically,
each process executes in its own address space, although shared-memory imple-
mentations of MPI are possible [15]. The MPI routines can be divided roughly
in the following categories:

• Process management: This includes querying the parallel environment
and constructing subsets of processors. See Figure 2.3.

Figure 2.3: Launch of 4 MPI processes.

Users can decide how many processors launching and how many resources
give to each of them through the execution instruction.

Run the MPI program using the mpirun or mpiexec command, depend-
ing on the implementation used. The command line syntax is as follows:

> mpirun [ options ] <program> [ <args> ]

A simple call is like that below:

> mpirun -np <num of processes> --host <hostlist>

myprog.out

where

−np <number processes> Specify the number of processes to launch;

−−host <host1,host2,...,hostN> List of hosts on which to invoke processes;

myprog.out is the name of an MPI program.
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2.3. Parallel Distributed Programming

For example:

> mpirun -np 3 --host node1,node2,node3 ./myprog.out

In this case, the default number of slots on each host is one, unless users
explicitly specify otherwise.

mpiexec is a replacement program for the script mpirun, which is part
of the MPICH package. It is used to initialize a parallel job from within
a PBS batch or interactive environment. mpiexec uses the task manager
library of PBS to spawn copies of the executable on the nodes in a Public
Broadcasting Service (PBS) allocation [6].

Reasons to use mpiexec rather than a script (mpirun) or an external
daemon (mpd):

– Starting tasks with the TM interface is much faster than invoking a
separate rsh or ssh once for each process.

– Resources used by the spawned processes are accounted correctly with
mpiexec, and reported in the PBS logs, because all the processes of a
parallel job remain under the control of PBS, unlike when using startup
scripts such as mpirun.

– Tasks that exceed their assigned limits of CPU time, wall-clock time,
memory usage, or disk space are killed cleanly by PBS. It is quite hard
for processes to escape control of the resource manager when using
mpiexec.

– You can use mpiexec to enforce a security policy. If all jobs are re-
quired to startup using mpiexec and the PBS execution environment,
it is not necessary to enable rsh or ssh access to the compute nodes in
the cluster.

To initialize the parallel environment in the application, the first state-
ment should be a call to MPI_Init(). If thread parallelism of
any kind is used together with MPI, the init call must be different:
MPI_Init_thread(<arguments>) initializes MPI context with a
specified level of desired thread support, from a single-threaded applica-
tion to one where multiple threads may call MPI, with no restrictions.

This allows parallel applications to support hybrid parallelization intra- and
inter- nodes, usually using MPI and OpenMP [29] [30].

11



i
i

“thesis” — 2017/4/3 — 10:33 — page 12 — #28 i
i

i
i

i
i

Chapter 2. Background

Upon initialization, MPI sets up the world communicator, which is called
MPI_COMM_WORLD.

A communicator defines a group of MPI processes that can be referred to
by a communicator handle. The MPI_COMM_WORLD handler describes all
processes that have been started as part of the parallel program. If required,
other communicators can be defined as subsets of MPI_COMM_WORLD.
You can also define multiple communicators for the same set of processes,
either duplicating the first one or creating a new one.

Command

int MPI\_Comm\_dup(MPI\_Comm comm,

MPI\_Comm *newcomm)

duplicates the existing communicator comm with associated key values.
For each key value, the respective copy callback function determines the
attribute value associated with this key in the new communicator; one par-
ticular action that copy callback may take is to delete the attribute from the
new communicator. It returns in newcomm a new communicator with the
same group, any copied cached information, but a new context.

When there is no need to copy the group information but you may only
want to add a new reference the command

int MPI\_Comm\_create(MPI\_Comm comm,

MPI\_Group group, MPI\_Comm *newcomm)

can be used. This function creates a new communicator newcomm with
communication group defined by group and a new context. No cached
information propagates from comm to newcomm. The function returns
MPI_COMM_NULL to processes that are not in group. The call is erroneous
if not all group arguments have the same value, or if group is not a subset
of the group associated with comm. Note that the call is to be executed by
all processes in comm, even if they do not belong to the new group. This
call applies only to intra-communicators.

Example of creating a new communicator:

1 / / Cr ea t e new communicator be tween p r o c e s s e s a s s i g n e d t o
2 MPI_COMM_WORLD communica tor
3 MPI_Comm new_comm ;
4 MPI_Group wor ld_group ;
5 MPI_Comm_group ( MPI_COMM_WORLD, &wor ld_group ) ;
6 MPI_Comm_create ( MPI_COMM_WORLD, wor ld_group , &new_comm ) ;
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To retrieve environmental setup information about the number of processes
in the parallel program users must call MPI_Comm_size() and the call
MPI_Comm_rank() serves to determine the unique identifier (rank) of
the calling process. The ranks in a communicator are consecutive, starting
from zero. The call to MPI_Finalize() ends the parallel program and
no MPI process except rank 0 is guaranteed to execute any code beyond it.

Example:

1 / / H e l l o . cpp
2 # i n c l u d e < s t d i o . h>
3 # i n c l u d e <mpi . h>
4
5 i n t main ( i n t argc , char∗∗ a rgv ) {
6 i n t rank , s i z e ;
7
8 M P I _ In i t (& argc , &argv ) ;
9 MPI_Comm_size (MPI_COMM_WORLD, &s i z e ) ;

10 MPI_Comm_rank (MPI_COMM_WORLD, &rank ) ;
11
12 p r i n t f ( " H e l l o World , I am %d of %d \ n " , rank , s i z e ) ;
13
14 M P I _ F i n a l i z e ( ) ;
15 re turn 0 ;
16 }

• Point-to-point communication: This represents a set of calls where two
processes interact. These are mostly variants of the send and receive calls.
See Figure 2.4.

Figure 2.4: Example of message exchange between two processes.

An MPI message is defined as an array of elements of a particular MPI data
type. Data types can either be basic types or derived types, which must
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Chapter 2. Background

be defined by appropriate MPI calls. The reason why MPI needs to know
the data types of messages is that it supports heterogeneous environments
where it may be necessary to do on-the-fly data conversions. For any mes-
sage transfer to proceed, the data types on sender and receiver sides must
match.

The basic MPI function to send a message from one process to another is
through the MPI_Send() call and a message may be received with the
MPI_Recv(). In each of them, there have been appropriate arguments
describing message buffer, number of items to send/receive, MPI data-type
of the single item, destination/source rank, message tag and the communi-
cator.

Example of a simple send/receive communication:

1 i f ( myTaskID ==0) {
2 MPI_Send ( myInfo , 1 , MPI_INT , /∗ t o : ∗ / 1 , /∗ t a g : ∗ / 0 ,
3 MPI_COMM_WORLD) ;
4 } e l s e {
5 MPI_Recv ( myInfo , 1 , MPI_INT , /∗ f rom : ∗ / 0 , /∗ t a g : ∗ / 0 ,
6 /∗ s t a t u s : ∗ / &s t a t u s ,MPI_COMM_WORLD) ;
7 }

MPI has a number of different send modes. These represent different choices
of buffering (where the data is kept until it is received) and synchronization.
Note that "nonblocking" refers only to whether the data buffer is available
for reuse after the call.

– MPI_Send will not return until you can use the send buffer. It may or
may not block (it is allowed to buffer, either on the sender or receiver
side, or to wait for the matching receive).

– MPI_Bsend may buffer. It returns immediately and you can use the
send buffer.

– MPI_Ssend will not return until matching receive posted

– MPI_Rsend may be used only if matching receive already posted.

– MPI_Isend is a nonblocking send. But not necessarily asyn-
chronous. You can not reuse the send buffer until either a successful,
wait/test or you know that the message has been received. Note also
that while the I refers to immediate, there is no performance require-
ment on MPI_Isend. An immediate send must return to the user
without requiring a matching receive at the destination.

14



i
i

“thesis” — 2017/4/3 — 10:33 — page 15 — #31 i
i

i
i

i
i

2.3. Parallel Distributed Programming

– MPI_Ibsend is buffered and nonblocking.

– MPI_Issend is synchronous and nonblocking.

– MPI_Irsend is a MPI_Rsend but nonblocking.

• Collective calls: In these routines, all processors (or the whole of a speci-
fied subset) are involved. See Figure 2.5.

Examples are the broadcast call, where one processor shares its data with
every other processor, or the gather call, where one processor collects data
from all participating processors [23].

Figure 2.5: Four types of collective calls.

2.3.2 Hybrid Parallelization

Modern architectures are often a mix of shared and distributed memory. For
instance, a cluster will be distributed on the level of the nodes, but sockets and
cores on a node will have shared memory. Intuitively it seems clear that a mix of
shared and distributed programming techniques would give code that is optimally
matched to the architecture.

A common setup of clusters uses distributed memory nodes, where each node
contains several sockets that share memory. This suggests using MPI to commu-
nicate between the nodes (inter-node communication) and OpenMP for paral-
lelism on the node (intra-node communication) [29] [30] [35].

In practice this is realized as follows:
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Chapter 2. Background

• On each node a single MPI process is started (rather than one per socket or
core).

• This one MPI process then uses OpenMP (or another threading protocol) to
spawn as many threads as the number of independent sockets or cores on
the node.

• The OpenMP threads can then easily access the same shared memory [23].

2.4 Model Application Behavior

Performance modeling is a very wide area which researches are focused on.
Works in [18] [19] describe automatic mechanisms to generate an empirical
model for a given application pattern, used later to predict top 20 I/O param-
eters that give best performance on HPC systems.

Work [38] instead proposes regression modeling as an efficient way for ac-
curately predicting performance and power for applications executing on any
microprocessor configuration in a large micro-architectural design space. It also
applies statistical modeling and inference. In HPC such approach can be used,
for example, for predicting application performance on a single node, or perfor-
mance of the part of the application running on a single node.

Other works apply machine learning techniques in order to model error and
cost functions, as well described in [50].

In general, all these methods follow more or less the same steps. First, you
must collect training data by executing the programs on a set of representative
parameters and inputs. Then you have to build the model that best fits those data
and validates it. In this work, we choose to use R software to construct our mod-
els [13]. R provides a wide variety of statistical techniques, such as linear and
nonlinear modeling, classical statistical tests, time-series analysis, classification,
clustering and others [51]. One of the most frequent used techniques in statistics
is linear regression [43], used to investigate the potential relationship between
a variable of interest (the response or output variable) and a set of one of more
variables (the independent or input variables). There are flexible facilities in R
for fitting a range of linear models from the simple case of a single variable to
more complex relationships [11]. If we call Y the response variable and X1, X2

... the input variables we have:

Y = f(X1, X2, ...Xk) + ε (2.1)
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There is a functional link on average between output and input variables, rep-
resented by a first component f(X1, X2, ...Xk), which is called systematic com-
ponent. The other component, ε, represents the portion of the response variable
that cannot be traced back to systematic or easily detectable factors but can due
to the case and, more in general, to various causes not taken into account in the
regressive model. This functional link can be represented by a linear function and
so the model associated is called multiple linear regression. It has the following
formulation:

Y = β0 + β1X1 + ...+ βkXk + ε (2.2)

where β0 is the known term, while β1, ..., βk are called regression coefficients
and together with the error variance, are the model parameters to be estimated
on the basis of sample observations.

Several models, nonlinear in appearance, can be linearized by appropriate
transformations of variables. Transformations commonly used applies logarithm
or other similar tricks. When in the model there are input parameters with a grade
more than one, it is called polynomial regression, but the model continues to be
linear in the parameters. The following example shows a parabolic regression
model with only two input variables:

Y = β0 + β12X1
2 + β13X1X2 (2.3)

Notice that it is taken into account the interaction factor between the input
variables (X1X2).

When the parameters are displayed in a different form, we have nonlinear
regression.

In R software, estimation of model parameters can be done by the command
lm(). It has as arguments the symbolic description of the model to be estimate
and the dataframe where there are the variables (values) of the model.

For example in a dataframe with these variables

Fertility Agriculture Examination Education Catholic

Infant.Mortality

we can generate the simplest linear regression in this way:
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> mod<-lm(Fertility ~ Agriculture + Examination +

Education + Catholic + Infant.Mortality, data=swiss)

If data are in a csv file we can load it in a dataframe with the commands

d = read.csv("datamodel.csv")

// create dataframe

df = data.frame(d)

The command summary(mod) shows the result:

> summary(mod)

Call:

lm(formula = Fertility ~ Agriculture + Examination +

Education + Catholic + Infant.Mortality,

data = swiss)

Residuals:

Min 1Q Median 3Q Max

-15.2743 -5.2617 0.5032 4.1198 15.3213

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 66.91518 10.70604 6.250 1.91e-07 ***
Agriculture -0.17211 0.07030 -2.448 0.01873 *
Examination -0.25801 0.25388 -1.016 0.31546

Education -0.87094 0.18303 -4.758 2.43e-05 ***
Catholic 0.10412 0.03526 2.953 0.00519 **
Infant.Mortality 1.07705 0.38172 2.822 0.00734 **
---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’

0.1 ’ ’ 1

Residual standard error: 7.165 on 41 degrees of freedom

Multiple R-squared: 0.7067,Adjusted R-squared: 0.671

F-statistic: 19.76 on 5 and 41 DF, p-value: 5.594e-10
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The simplest way to see if it is a good model is to observe the Adjusted R-
squared. The greater it is, the better is the model. In general a regression model
with an adjusted R-squared above 0.60 is considered a good one.

There are other formulations to try, in order to increase the value of the ad-
justed R-squared, for example the "complete" linear regression model y x1 ∗x2 ∗
... ∗ xn takes into account all the possible interactions between input variables.

Once having constructed a model for the data, we can use it to predict the
response variable. In the command, we have simply specified the model to be
used, the dataframe and the type of interval to be used.

Example:

> predict(mod, swiss, interval="confidence")

fit lwr upr

Courtelary 74.61530 68.88485 80.34574

Delemont 82.50994 77.44342 87.57647

Franches-Mnt 85.91826 79.88753 91.94899

...

A prediction interval is an interval associated with a random variable yet to
be observed, with a specified probability of the random variable lying within the
interval. Prediction intervals can arise in Bayesian or frequentist statistics. A
confidence interval is an interval associated with a parameter and is a frequentist
concept. The parameter is assumed to be non-random but unknown, and the
confidence interval is computed from data. Because the data are random, the
interval is random. A 95% confidence interval will contain the true parameter
with probability 0.95.

In order to have a good regression model, there are some tricks that can be
used: for example, you can construct the model of the log of the response vari-
able if the relationship is not so linear. Otherwise R provides many other func-
tions aimed to construct more precise but complicated models, for example you
can use the glm command for modeling data whose response variable is not
continuous, or with the nls command you can specify a non linear relationship
between variables.
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CHAPTER3
State-of-the-art

3.1 Introduction

This chapter gives an overview on the state-of-the-art regarding methodologies
and techniques developed in this thesis, in particular we describe autotuning
techniques used to satisfy generic application requirements and workloads about
the problem for approximate programs. We present the different autotuning
strategies existing in literature and we focus on the description of the mARGOt
autotuner.

3.2 Tunable Approximate Programs

In this work, we will focus on a particular but increasingly class of programs
that are tunable and use approximate computing techniques in order to trade
off accuracy of results and some performance metrics such as latency or energy
consumption [39].

A tunable application is a program whose behavior in terms of performance
can be influenced by manipulating a set of application parameters, called knobs.
These knobs are domain-specific and can be defined at design time and exposed
to the application, or even extracted at run-time [33].

A set of knob values with which the program can be executed is called Con-
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figuration, because it can be used to address a specific point in a multi-objective
space of application optimization function, in order to configure approximation
and performance aspects of the computation of that application (accuracy, time,
energy...). In general a configuration is chosen as it is the solution of a particular
mono or multi-objective optimization function.

In both embedded and HPC fields, a common type of optimization function
tries to maximize or minimize a particular metric in contrast with another one
with which there is a trade-off, such as maximize accuracy with respect to com-
putational time or energy, or vice versa, minimize time or energy with respect
to general quality of service needed. From now on, we will refer to a general
performance parameter, such as time, energy, as a Metric. Indeed the optimal
configuration could not remain the same during the execution, since there could
be changes in many aspects that will influence the execution at run time, such as
changes in workloads, resources or hardware. An Operating Point is a tuple of a
configuration plus metrics at which the application operates in a particular time
window execution.

In HPC field, it is very important to spend efforts in minimizing time to solu-
tion and energy to solution [24] [44] [48]. This is a concept that must apply to all
phases of the applications, from the start to the end. Generalizing we can refer
to a general metric to solution to minimize(maximize). A metric to solution is
a quantity of that metric referring to the whole computation of the application,
not a single phase. In this work, we try to find a way for maintaining execution
of a general application in a given metric-to-solution constraint and we focus
mainly on knobs used for tuning the level of accuracy of an application that uses
approximate computing techniques.

Approximate computing is a way of reducing energy and time required to
execute applications at the cost of reducing precision [50] [16] [32]. It is more
and more popular since the domains of modern applications are evolving and
they are no longer relegated only to implementations of mathematical functions.
So in many new problem domains, for example in the computer graphics or in
the data mining fields, there is no need to compute a precise output for a given
input but it is sufficient producing an approximated result [21].

In approximate programs, application knobs are mostly used for controlling
and tuning the level of approximation of different components. There exists a
lot of techniques that cover different layers of computer science, ranging from
purely hardware to purely application level [40].

For a matter of portability, the techniques at application level are the most
common. Examples are:
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• Loop Perforation to transform loops to execute a subset of their iterations,
thus having a gain in performance metrics [52].

This technique consists of skipping some iterations based on different strate-
gies regarding the determination of the perforation rate. With Modulo strat-
egy, for example, perforation rate is determined executing or skipping every
n-th iteration the included instruction. This approach is particularly suitable
when there is a uniform distribution of the execution of load and data among
all iterations.

• Data-type precision Another example consists simply of varying the mem-
ory width where a variable is stored, between low and max data-type preci-
sion. For example, in a C++ environment, programmers can switch between
int and float, or between float and double data-types and study the
loss in accuracy and gain in performance.

Another feature of applications we will cover in this work is the unknown
workload in input. With the word "unknown" we are referring to applications
having to process an amount of data with different features per input. This
amount is so huge that applications cannot afford to classify all the features read-
ing first the whole data input, since this wastes too much time.

Data input features are particular features that influence performance metrics.
For example a common data input feature is the length of the data input. If
the application has to compute a vector of double, the time necessary to the
application grows with the length of the vector in input. In a graph problem to
find the shortest path between two graph nodes, data features can be the number
of nodes and the number of arches of the graph in input. The bigger are these
features, the longer time the application needs to find a solution.

Understanding the way data input features influence those metrics is very
important in order to better understand how the application will behave with data
input with different characteristics. This will be better explained in the modeling
construction Section 4.3.

3.3 Autotuning

Autotuning is defined as the task to automatically find the best configuration
satisfying the application requirements. In HPC field, autotuning is a technique
well used in order to satisfy quality of service level reducing computational costs
in terms of latency and power consumption.

In the past, there have been approaches that have assessed application au-
totuning as one of the possible instruments for managing in an efficient way
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computing resources in homogeneous [27] and heterogeneous [41] [20] [36] ar-
chitectures, even when these applications can change as a result of a porting to
another platform. Despite that, the problem is still far from being solved.

Autotuning techniques have been investigated at the System Architecture group
of Politecnico di Milano: there is an autotuning of applications for homogeneous
multi-core architectures [25] which is mostly related to the runtime management
phase; an autotuning for heterogeneous architectures has recently been proposed
in [42]. There are also other studies still developed at Politecnico more focused
on the off-line phase which performs the collection of data of the application
in order to find better configurations and change between them with software
knobs [47].

There are 3 main categories of autotuning techniques:

1. Design-time Autotuning This type of autotuning consists of performing a
design space exploration of performance values of applications at design-
time and finding optimal configurations which the application can be exe-
cuted with and which probably impose a certain trade-off value. But the
configuration chosen off-line could not be longer valid in applications that
might change their requirements at runtime depending on external condi-
tions. Thus a more reactive and self-aware way to compute the optimal
configuration is usually needed.

2. Dynamic Autotuning This category is the most widespread and self-aware
autotuning technique.

Definition 3.3.1. Dynamic autotuning

A technique through which applications can be dynamically adapted to
changing conditions at runtime.

An autotuner leverages application behavior by changing the values of dy-
namic knobs according to application requirements. It also can let the appli-
cation to self-adapt based on a monitoring infrastructure that senses the ex-
ecution context performing like an observer that keeps track of performance
metrics of applications thanks to which autotuner can make a decision on
the next part of computation.

In order to use a dynamic autotuner an application must expose dynamic
knobs which can be tuned by the autotuner. The work in [33] describes a
framework to extract the dynamic knobs automatically, transforming static
configuration parameters into dynamic ones, calibrate and tune them. In
particular PowerDial enables applications to execute responsively in the
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face of power caps and it can significantly reduce the number of machines
required to service intermittent load spikes, enabling reductions in power
and capital costs. It uses the calibrated dynamic knobs to move the applica-
tion to a Pareto-optimal point. PowerDial has a feedback mechanism that
allows the system to monitor application performance, a control component
which converts the feedback into a desired speedup and an actuator which
converts the desired speedup into settings for one or more dynamic knobs.

In general autotuning consists of a first Design Space Exploration part in
which the autotuner must understand application features and then uses it
at run-time for computing the optimal operating point every time there are
changes in conditions, sensed through the monitoring infrastructure.

Researches at Politecnico di Milano are very active in the dynamic autotun-
ing field: hereafter there is a brief description of the 2PARMA project and
the current ongoing ANTAREX project, led by Politecnico di Milano, then
we present the mARGOt dynamic autotuning framework, which is the one
we choose to use in our framework.

2PARMA [45] This project focuses on the development of parallel pro-
gramming models and run-time resource management techniques to exploit
the features of many-core processor architectures. In particular one of the
objectives of this project meets the challenge we are interested in: to explore
power/performance trade-offs and to provide runtime resource management
and optimization in a parallel environment. For the optimization part, this
project provides a runtime manager with metadata information covering
both design time and run time knowledge of both hardware and software,
combining a DSE tool used at design-time to find the set of operating points
plus the info collected at run-time on the system workload and resource uti-
lization. The run time manager is also used to handle the dynamism in the
control flow and data usage by determining suitable allocation strategies
that meet the application needs. Finally the runtime manager is responsi-
ble for the adaptive power management of the many-core architecture. The
DSE phase is made by extending the MULTICUBE Explorer framework to
support runtime dse.

ANTAREX [46] The ANTAREX ongoing project explores autotuning tech-
niques in HPC systems. Its main goal is to express by a Domain Specific
Language the application self-adaptivity and to runtime manage and au-
totune applications for green heterogeneous HPC systems up to Exascale.
The related tool flow [Figure 3.1] operates both at design-time and runtime.

The specification of runtime adaptability strategies will rely on the DSL im-
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Figure 3.1: The ANTAREX tool flow [46].

plementing key concepts from Aspect-Oriented Programming (AOP) [37].
It also offers runtime resource and power management combining appli-
cation progress and dynamic requirements; autotuning capabilities enabled
by the DSL in the applications; information coming from the processing
elements of the IT infrastructure and its performance knobs.

3. Proactive Autotuning Autotuning can also be done at runtime in a proac-
tive way, for selecting the best configuration for a non-streaming applica-
tion before it is executed. So, differently from the dynamic autotuning, this
one is not used in response of something, but to choose how the application
must be executed based essentially only on particular data input features
to compute. There is very little amount of work on exploiting autotuning
functions in a proactive way. Our work goes in the direction of investigat-
ing this innovative way of using autotuning frameworks. The main work
handling this problem is [50], described in Section 3.4.

3.3.1 mARGOt Framework

mARGOt framework is a dynamic autotuner and it is the autotuner we use in this
work. It is being developed at the System Architecture group of Politecnico di
Milano [25]. At [4] you can find the gitlab repository of the mARGOt autotuner
framework. It is also one of the tools used in the ANTAREX project [1]. mAR-
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GOt is a runtime framework used to dynamically adapt applications in multicore
architectures. It was designed for the tunable applications class that exposes dy-
namic knobs. This framework requires to have some knowledge about the appli-
cation and this knowledge is represented as a list of Operating Points, explained
previously. These data are collected during the performance profiling phase done
at design time and they are all Pareto-optimal with respect to the target metrics.

This framework is composed of two big infrastructures: the Monitoring in-
frastructure and the Application-Specific Run-Time Manager [Figure 3.2].

Figure 3.2: mARGOt structure [25].

The first one is used in order to keep updated the knowledge of the framework
at runtime, regarding the application running it. Different types of monitors can
be used to observe both high-level and low-level metrics. A requirement of the
application on a monitored value is expressed by a Goal object. It requires to
define a monitor to be used to keep track of the metric, the value of the goal, the
statistical properties of the monitored metric and the comparison function. If a
Goal is related to a metric not monitored, it is called Static Goal.

The Application-Specific Run-Time Manager instead exploits design-time
knowledge to select the best configuration for an application, taking into account
information coming from the monitors, the goals defined in the application and
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the type of optimization function (rank value). If there is a "normal" Goal, this
runtime manager compares the goal value against the observed one, while if there
is a Static Goal, this manager compares the goal value only against the one in the
current Operating Point. An optimization function is a combination of objective
metrics to be maximize or minimize. An application can have more that one
optimization function, with different constraints. To do so, mARGOt provides
the State concept, which is the object wrapping a particular state of the applica-
tion characterized by a particular set of goals, monitors and "rank value". This
framework also realizes the separation of concepts between functional and ex-
tra functional properties, facilitating the integration in the application providing
a tool that automatically generates the required code from XML configuration
files.

3.4 Control Problem of Tunable Programs

This problem affects in particular the controlling of non-streaming tunable pro-
grams which cannot be observed in order to adjust the computation. So far,
indeed, autotuning techniques were mainly used for observing and adapting
streaming programs since every part of the execution is strictly linked to the
previous one. The proactive control technique is one of the solution found for
solving this problem.

The work in [50] formulates the control problem as a constrained optimization
problem, focusing on application whose knobs can control the level of approxi-
mation of different components and dealing explicitly with the problem of input
variability. It also addresses the inverse problem with respect to dynamic auto-
tuning. Starting from the Definition 3.3.1, the inverse problem tries to find the
best configuration for an application execution, given a set of application knobs
and the data features of the input. The work [50] also provides the description
of the Capri system that uses machine learning techniques to learn cost and error
models for the program and uses these models to determine the configuration
that optimize performance metrics, such as running time and energy spent, while
meeting a desired level of approximation.

In order to solve the control problem for a given tunable program, these in-
formation are needed:

1. Output function: as for classical tunable programs, the output value can be
a function of the data features of the input and the knob settings.

2. Quality degradation: also this function can depend only on data input fea-
tures and knobs.
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3.4. Control Problem of Tunable Programs

3. Cost: this function expresses the cost of computing the output for an input
with a configuration. This cost can be whatever performance metrics to be
optimize.

As we have seen, for building cost and error models they use machine learning
on the data obtained by executing the programs on a set of representative inputs.
They profiled the program exhaustively over the knob space.

Two search algorithms are evaluated for the design space exploration of knob
settings:

• Exhaustive search

It performs a full search over the entire space of configurations and for each
of them uses the error model to determine if that configuration lays in the
feasible region. The cost model is then used to find a minimal cost point in
that region.

• Precimonious search [28]

It is a heuristic-based search strategy which starts from a change set, made
up of all configurations set to the highest values of performance they realize.
At each iteration, this algorithm lowers all configurations in that set by one
level, and if this new setting satisfies the accuracy constraint the algorithm
goes on to the next iteration. Otherwise it tries to find subsets of knobs
whose settings can be lowered while satisfying the accuracy constraint and
chooses the lowest cost subset from these, which becomes the new change
set. This strategy takes less time to be executed, but the solution it finds can
be a local minimum.

In this work, we also evaluate two search strategies very similar to the ones
described above, but with a few differences, especially regarding the second
strategy. They are later described in Subsection 5.3.4.

3.4.1 Capri System

Capri is the system implemented to evaluate the work [50]. Figure 3.3 shows an
overview of this system.

It must be provided, for a given program, with a set of training inputs and
metrics for quality and cost of the output. As we can noticed, it is mainly divided
in an offline and online part. The offline part deals with the learning phase and
builds up the models required. The online portion, instead, is composed of a
controller which, having these models and an input, solves the control problem to
estimate optimal knob settings. This implementation in particular uses Bayesian
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Figure 3.3: Overview of Capri system [50].

network for learning the error model, and the tree-based model in the M5 system
for the cost model. It uses the open-loop control to control approximation. Thus
there is no way to correct for model inaccuracy, but stability is not an issue since
there is no feedback.

Results obtained evaluating this approach on different programs show that
obviously training time increases with the number of training inputs, but since
it is done offline, it is not so important. The accuracy of cost and error mod-
els is evaluated by comparing predictions against empirical measurements. It
shows that for some programs the accuracy is pretty good, but for others it does
not reach an acceptable level. However, they state that more accurate models
do not necessary enable Capri system to produce better solutions, since some
models are used only for doing things with a low impact on the overall solu-
tion. Then, they evaluate the speedup of the controller and the results show that
speedup depends on the application and its constraints but overall this system
can yield significant speedups in running time. For the effectiveness in finding
optimal knob settings, they compare models built using linear regression against
using the learning techniques described above and the results show that using
the second strategy is fairly successful across the constraint space. In the end,
they evaluate the use of exhaustive and Precimonius search algorithm and they
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find that Precimonious is significantly faster that the other, but the solution found
maybe be worse than the one using exhaustive search.

3.5 Contribution of this Work

The last approach described [50] is very similar to the one adopted in this thesis,
but our work introduces many innovative elements: first, we work in a parallel
and distributed environment, where memory is not shared, then we integrate the
mARGOt autotuner and evaluate its behavior in distributed environments in a
proactive way. Then, we try to satisfy a given metric-to-solution global constraint
acting on knobs in every application process, still dealing explicitly with the
problem of input variability. Another innovation point is that our framework
can automatically generate at runtime simple predictive models according to the
application using it. All these new elements are well described in Chapter 4 and
Chapter 5.
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CHAPTER4
Proposed Methodology

4.1 Introduction

This chapter explains the methodology proposed in this thesis and the logic struc-
ture developed for implementing it in the Ipazia framework described in Chap-
ter 5. First, there is a more detailed description of the addressed problem and its
context, expanding the concepts already introduced in Chapter 3. Then, we go in
depth in the design flow, giving a description of the methods and concepts used
and developed in the proposed methodology.

4.2 Problem Description

Optimization performance problem affects many computer science and indus-
trial fields. Since HPC systems are very powerful structures, they are also very
consuming and many current researches are investigating this problem, propos-
ing different types of solutions that we have analyzed in Chapter 3. Nevertheless,
this problem is still far from being solved.

In this work, we also give our contribution in this direction. In particular,
we focus on the HPC context where environments are parallel and distributed,
with no shared memory. The specific problem we address is the satisfaction
of a global constraint (mostly regarding performance) in HPC applications with
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input variability which, as we have seen, has not been treated in the current
state-of-the-art described previously. This global constraint is given in terms of
a particular metric-to-solution that the application must meet. In HPC, popular
metric-to-solutions are the Time-to-Solution or Energy-to-Solution, since these
are the main optimization areas.

The difficulty in solving this problem arises from the fact that many HPC
applications have unpredictable behavior as it strongly depends not only on the
load of the input data but also on the characteristics of the data input themselves.
Therefore, knowing the load of incoming data is not enough in order to under-
stand how the application will behave in terms of time or energy performance.
In an HPC application that has to process a very huge amount of data, it is unfea-
sible to characterize it by reading all the incoming data before computation has
started. Just thinking about the capacity of HPC to handle and analyze massive
amounts of data at high speed, that can take months using normal computers,
in days or even minutes, and also thinking about the ability of HPC systems to
run data-intensive modeling and simulation problems at large scale, at higher
resolution and with more elements. As seen in Chapter 2, HPC meets data-
intensive challenges which are already enlarging HPC’s contributions to science,
commerce and society. So we have to imagine another way to characterize these
applications spending little time and maybe analyzing only a part of the data in
input. The detailed description of the characterization method proposed is given
in Section 4.3.

Furthermore, this work addresses this type of problem for parallel applica-
tions with more or less the following structure: they process the data in input
using multiple instances of themselves, each one executing in a separate process
with its own memory space and computing only its own part of the whole work-
load. There is a master process which acts as a dispatcher of inputs to the other
worker processes that actually perform computation on the data. Results are then
collected by the master. There are in literature many works on performance sus-
tainability for parallel applications, but none of them gives an answer regarding
such circumstances. We developed a way through which the global constraint
is somehow spread on all worker processes based on their own workloads, thus
allowing them to perform local optimization while meeting only its own part of
the global constraint and remaining totally unaware of global dynamics. More
precisely, we found that spreading the global constraint on a single data input is
an effective way for doing this.

Now the problem is how to extract the quantity of the global constraint for
a precise input. Obviously, it depends on how many data there are as inputs
and what are the characteristics of the data input themselves. So, first of all, we
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should get an idea of how the application will behave on average, still in terms of
how much metric-to-solution given it would consume. As we have said, appli-
cations considered are tunable, so another degree of freedom in the application
behavior regards the configuration (knobs setting) under which it is executed. In
particular, a configuration sets a precise level of accuracy in the application. Es-
sentially, we need some application models, function of both knobs setting and
data input features, which must be able to give us predictions relating to the part
of the metric-to-solution that the computation of a single input would require. As
mentioned in Chapter 3, tuning the level of accuracy means changing the perfor-
mance of the application, since in HPC applications there is always a trade-off
between accuracy and performance metrics such as execution time and energy
used. We will consider only time metric for the experimental results in this work,
but the whole methodology is suitable for every type of metric used.

Another problem regards the use of autotuning techniques in worker pro-
cesses. We indicate as worker process a process in the MPI environment which is
not the master one. In the applications considered, worker processes are the ones
that actually perform computation on the inputs. We have said that integrating
an autotuner in an application would lead to a saving in time or energy used and
so we would use a dynamic one in order to allow a local optimization. Issues
in this phase concern more or less on how a worker process can obtain its own
autotuning knowledge, and all the options treated in this methodology are well
described in Subsection 4.3.4. We will use the autotuner in a proactive way, thus
investigating furthermore this new autotuning capability and its effectiveness.

In the end, we also handle the problem of dynamically recomputing the part of
the metric-to-solution to give to each input on average. This is important because
the first time it was computed maybe would not been so precise, since we have
not read all data in input. Therefore, as the workers completed computation on an
input, the part of the metric-to-solution estimated for that input could have been
too much or too low, and so we propose a method to adjust this quantity of metric
to spread for the next inputs that have not been already sent. This is done in order
to still satisfying the global constraint but allowing a more accurate computation
if there is much more metric remaining or forcing to lower the accuracy level in
case the new quantity of metric estimated is less. The computation of the new
quantity of metric will be calculated on the remaining inputs to be sent.

4.3 Methodology

In this section we approach every topic mentioned in Section 4.2 in detail, de-
scribing step by step the mathematical constructs, algorithms developed and de-
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cisions taken representing a possible solution to the problem addressed in the
introduction.

In Figure 4.1 there is a global schematic design flow of the methodology
proposed in this thesis. Each block is explained in the next subsections.

Figure 4.1: Proposed methodology phases.

4.3.1 Data Collection

The first step in our methodology consists of a profiling phase of the applica-
tion. In this phase information regarding metrics and knobs are collected. With
the word information we indicate the collection of metric values about executing
the application under different input samples and different knob configurations.
The metric values to be collected are those that the application requires both
in the metric-to-solution global constraints and in local constraints. Local con-
straints are then managed in the mARGOt framework, while information about
the global metric are necessary for the computation phase of metric-to-solution
to be allocated for each input.

After collecting these data, a relationship between metrics and both knobs and
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input features must be found. In this work, we decide to use the R software [13]
for doing this. We started from a simple linear regression in order to construct
these models: for each metric, for example, one model to predict the time spent
on execution of a single input and one to predict the level of accuracy of a single
input.

Then we used these models in order to make predictions on the metric val-
ues. A model must predict a precise metric as a function of the accuracy level
(set by a particular configuration) and the input features of the single data con-
sidered. This process is valid also in a distributed environment where machines
have different architectures and so they can show different performance for the
same input and configuration, since in the input features can be encase all the
parameters that our framework and the mARGOt framework must not tuned.

These prediction models are then exploited in many phases of the method-
ology, both from the master and workers processes, if they have access to this
knowledge.

In this phase we also collect information about the trend of the metric-to-
solution given as global constraint.

4.3.2 Montecarlo Sampling

Since the target application has a huge data input, we are not able to read the
whole workload in order to understand how the application will behave, without
spending too much time on this phase. Therefore, we choose to adopt the Mon-
tecarlo sampling approach. This means that we pick up a quite-random number
of samplings from the whole data in input and we collect the features of these
samplings in order to construct a Probability Density Function (PDF) regarding
each type of input features the input must have. All the PDFs built give us an
overview of how can be the data distribution in input.

For example, if data in inputs are vectors, one possible input feature can be
the length of them. Therefore, the PDF of the length of the vectors gives us
information about how many vectors have a length over 200, how many of them
have a length less than 10, and so on. In this way we can get an idea of how
much time the application will execute the whole data input, how much power it
needs, and so on.

Starting from this distribution then we calculate the quantity of metric-to-
solution to allocate for a given input. Obviously, the data distribution found in
this way is only an estimation of the real data distribution in input and so, exactly
for this reason, we need to update this distribution as inputs are executed.

Figure 4.2 and Figure 4.3 show examples of PDFs. Each bean shows the
density of a molecule/ligand in input with a number of atoms between the values
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written on the x axis.
For doing this we face the problem of how many samplings we need for com-

puting the PDFs. First of all, as we have already said, we cannot examine the
whole data in input, but just a part of it. We adopt the Cartesian product ap-
proach for building a unique PDF enclosing all input features information. For
every bean of the PDF of an input features, we construct as many beans as the
number of others PDF input features multiply each others. So, the number of
samplings must be less than the number of total inputs, but also it has to sat-
isfy a precise inequality formula, otherwise we have no income in time to do the
sampling instead of reading all inputs.

If we call x the parameter we have to set in order to create a number of sam-
plings to use, below there is the mathematical formulation to derive the range of
values x must take, starting from the number of data in inputs:

numsamplings <
|data|
x

(4.1)

Then:

x > n
√
|data| (4.2)

Where:
n: Number of data features of each input.

numsamplings: Number samplings to collect.
|data|: Cardinality of data in input.

4.3.3 Limit Configuration Selection

In this phase we develop a mathematical method for extracting the configura-
tion that on average would meet the global constraint(i.e. the metric-to-solution
given). From then, we address this configuration as the global limit configura-
tion. Indeed, we must point out that the sentence configuration that on average
would meet the global constraint has a particular meaning for us. In this phase,
we do not really want to obtain the configuration that meets the global constraint
optimizing it in an extreme way, but we need that configuration which acts as a
watershed between configurations that are good (satisfy the constraint) and the
ones that are not good (do not satisfy it). Since we have used a local autotuner
in order to improve performance and have gain for example in time, energy, now
we do not perform a search of the best configuration absolute, but of a limit one.
This leads to a more freedom in the autotuning phase.

The formulation is expressed as:
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Figure 4.2: Probability Density Function of molecules on their number of atoms.

Figure 4.3: Probability Density Function of ligands on their number of atoms.
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k∑
i

p(di) · f(di, OP ) ≤ MtoS(·numresources)
|data|

(4.3)

Where:
k: Number of different beans constructed with different

input features.
di: Input features vector of i-th bean.

p(di): Probability density function of input features di.
f(di, OP ): Predictive function of the MtoS metric.

OP : Operating Point on average that must be found.
MtoS: Metric to solution global value given.

numresources: Optional parameter in case the MtoS value must be
spread on the number of resources available in a parallel
environment (ex. in case the metric considered is the
total time).

≤: To be set according to the one given in the global
constraint problem.

|data|: Cardinality of data in input.

4.3.4 Constraint Spread

Once the limit configuration has been selected, it must be sent to every worker.
In our methodology, we decide to spread this configuration over a single input.
Our solution operates in this way: for every input, in the input submission phase,
it is estimated the part of metric-to-solution that a worker would spend in order
to compute this input, according to input features and the global limit configu-
ration selected before. Also in this phase the models previously built are used.
This means that every worker has to receive a precise part of the global metric
regarding each of the inputs it has to compute. We call this part of global metric
a soluion for a precise input.

Sending this value is important since it has to be used in the local autotuning
phase for making the worker satisfy the global constraint it cannot see.

4.3.5 Configuration Update

If our models are not so good, predictions can be wrong and our application may
not actually satisfy the global constraint. To put a remedy to this, we have con-
sidered to introduce a periodic recomputation of the global limit configuration. It
can be done every number of results returned in master or something else. In this
way we adjust the previous estimation of the input features distribution and the
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new configuration to select now is related to to the new metric-to-solution value.
From now until the next configuration update, the inputs that have yet to be sent
will gain a constraint value associated updated. For example, after 100 results
received there is the recomputation of the configuration. If the metric of interest
is the execution time, its new value to be considered is the old value minus the
time spent until now. The new configuration selection will take into account the
advance or the delay in the metric consumption and recalibrate its usage.

We decide to perform this adjustment only during the dispatching phase, so,
once all the data in input have been assigned together with their regarding metric-
to-solution information, no configuration update will happen.

4.3.6 Autotuning Knowledge Spread

Each worker will perform a local autotuning phase. Therefore, we have to think
also about how each worker can gain all the knowledge related to the input to
execute. As well described in Section 3.3, an autotuner needs a knowledge on
which to perform optimization. In particular we must give it the Operating Point
list related to each input. An operating point in our case will contain a config-
uration and the values of the metrics on which autotuning is performed. As we
have seen, the configuration is a set of knob settings, while the metrics of inter-
est are values that the application probably would use during the execution of
a precise input. The metric values to put in the operating point are computed
starting from the models developed previously. So, each predicted metric value
owns inherently knowledge about input features.

We think of four possible spreading knowledge strategies for providing the
knowledge to the autotuner. They go from the fully distributed version to the
fully centralized one. Hereafter the detailed description of the strategies devel-
oped:

1. Fully Distributed: In this strategy, the master process sends for each in-
put the solution the worker has to satisfy while executing that input. This
method is addressed as fully distributed since we can figure out a situation
where all workers know which is the list of configurations and which are
the models to be used. The master process does not necessarily compute the
operating points list to send to them since each worker is able to calculate
it by itself. The minimal communication strategy thus rely on the sending
of the solution per input alone, or the global limit constraint itself. This
approach seems to be the one with the less overhead and so the fastest one,
but we actually cannot say it a priori since processes could lie on machines
with different characteristics. Figure 4.4 shows the scheme of this method.
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Figure 4.4: Fully distributed knowledge location.
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2. Partially Distributed: This strategy assumes that each worker process
does not have the predictive models knowledge, so it is not able to produce
the list of operating points for the inputs it has to execute. The operating
points list is thus provided by the master process, together with the part of
the global metric-to-solution for that input.

With this strategy, we can expect that the overhead for the communication
is very high, but we still want to evaluate it since in an environment where
the master process acts only as a data input dispatcher it may be faster if the
workers spend their time to perform only the real computation. Maybe the
master process can also lie on a more powerful machine with respect to the
workers, and so with this strategy we could actually have some improve-
ment. Figure 4.5 shows the scheme of this method.

Figure 4.5: Partially distributed knowledge location.
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3. Partially Centralized: This is a mixed strategy between the partially dis-
tributed and the fully centralized. As for the partially distributed strategy,
here the master computes the solution per input and sends also the operating
points list for every input, but this list is first filtered. The master sends only
the operating points that lie in the feasible region traced by the solution per
input. In this way the exchange of messages is lowered, and so also for the
overhead, but the workers have now a limited space to explore in the auto-
tuning phase. So, they could not have directly a further constraint on the
global metric because each operating point in the list received is feasible.
But with this strategy it can also happened that they do not find a feasible
operating point in that list for their local optimization problem. Figure 4.6
shows the scheme of this method.

Figure 4.6: Partially centralized knowledge location.
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4. Fully Centralized: All the phases for finding the best operating point for a
precise input with precise input features are performed by the master pro-
cess. Workers may not have autotuning knowledge nor the autotuner itself.
They will wait only for the best configurations chosen for their inputs by
the master.

This strategy could be hardly applicable since master is almost always
blocked in performing the autotuning for each input, but we have to take
into account also this approach because we must not forget the environ-
ment we have addressed. It has no shared memory, so it is perfectly legal
to consider also this method. Figure 4.7 shows the scheme of this method.

Figure 4.7: Fully centralized knowledge location.

Obviously, they would gain different execution times and different overheads,
but we cannot say a priori which one could be the optimal strategy because we
cannot say which performance characteristics will have the system on which the
application will be executed. It can happen that the master process will lie on
a very powerful system while the workers will lie in a worse environment, and,
since the master essentially will act only as a dispatcher, maybe it is faster if it
also computed the operating points list for each input for each worker, and the
workers will use their time and power only for the real computing stage. As we
have seen, the environment of our thesis can also be distributed and with non
identical machines.
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CHAPTER5
The Ipazia Framework

5.1 Introduction

This chapter describes in details Ipazia, the framework implementation devel-
oped to evaluate the proposed methodology. The name of our framework derives
from the italian name of Hypatia of Alexandria. Hypatia was a mathematician,
astronomer, and philosopher of the ancient Greece. She devoted herself to learn-
ing and teaching in an environment considered new and hostile for a woman
at that time. Similarly to what she dealt with the dissemination of knowledge
and her discoveries to her disciples in such an environment, in our framework
we want to do the same by first learning, discovering and then spreading the
information gathered to the "disciples" workers in such a new distributed envi-
ronment.

In this chapter, we first outline the global structure of our framework and the
structure of a generic target application. Then, we discuss about the implemen-
tation and architectural choices, focusing on each module of the methodology
described in Chapter 4. Finally, we describe the integration process in a target
application.
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Chapter 5. The Ipazia Framework

5.2 General Description

Figure 5.1 shows the general overview of the framework architecture. The Ipazia
framework is divided in two modules: the back-end and the front-end. The back-
end performs the heavy computation phase, implementing the functionalities de-
scribed in Chapter 4. The front-end is the interface exposed toward the target
application. In particular, the application will interact only with the Ipazia ob-
ject.

Our framework is agnostic with respect to the framework used by the slaves to
select the most suitable configuration, according to the application requirements.
In this thesis we used the mARGOt autotuner, which does not interact directly
with our framework. It is the application that links the autotuner to Ipazia, as
depicted in Figure 5.1.

The Ipazia framework is implemented as a C++ [49] library that is linked to
the target application. This library requires external libraries and packages as de-
pendencies. The uppermost dependency is obviously the MPI library described
in Subsection 2.3.1. In particular we use the MPICH Hydra distribution [5]. An-
other important dependency is the RInside package [9]. The latter is a package
that provides C++ classes which embed the R programming language in C++
applications. In particular, it provides an instance of an embedded R interpreter,
which we use for several operations. This shared library supports MPI envi-
ronment. To read configuration XML files, we choose to adopt the Pugixml
parser [8].

5.3 Ipazia Back-End

Ipazia back-end implements the logic for all the methodology steps described in
Chapter 4. It contains functionalities for estimating the data distribution in input,
building the predictive models and getting the predictions from them, solving
the global constraint given and computing the knowledge to send to the auto-
tuner. A simple representation of the framework back-end structure is shown in
Figure 5.2.

5.3.1 Model Building

This functionality is performed in the initialization of the framework, and it is
required to build the predictive models for computing the values of the metrics
of interest the application would consume, to be later used in the framework. It
is implemented in the Predictive Model object by the build functionality. The
build functionality takes in input the training set file, containing the list of the
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5.3. Ipazia Back-End

Figure 5.1: General overview of Ipazia framework architecture.

data that characterizes the application behavior, obtained in the profiling phase
of the targetr application (Subsection 4.3.1). A better description of the structure
of the training set file is shown in Section 5.5 and in Listing 5.5.

The model building functionality uses the RInside instance to access to the
R object, which actually performs modeling operations. In this first release we
implemented only the automatic build of completed linear regressions, but other
types of automatic models generation can be further added. Therefore, the build
functionality reads the data in the training set file and build a predictive regres-
sion model for each metric of interest present in the application. The regression
model computed is a complete one and reduced by performing the step function-
ality provided by the R software.

The Predictive Model structure is shown in Figure 5.3.
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Chapter 5. The Ipazia Framework

Figure 5.2: Ipazia back-end structure.

Figure 5.3: Predictive Model object structure.

5.3.2 Input Characterization

This functionality is required to build the Probability Density Functions for each
input feature that is present in the application. This is implemented in the objects
Application Definition Interface and InputFeature Model.

The Application Definition Interface contains a reference to the data in input
of the application, and performs the Montecarlo sampling functionality. It ex-
tracts features from a set of samples of data in input. This requires that the data
in input must be an iterable object. Each input of the iterable object must also
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5.3. Ipazia Back-End

implement a templated function that returns the vector of all the features of that
input. The framework samples from the iterable object and calls the templated
method on each object extracted to obtain its features. The method throws an
exception in case it has not been implemented.

5.3.3 Prediction Retrieving

This functionality is required to compute the prediction of a particular metric,
according to a configuration and the input features. It is implemented in the
Predictive Model object by the get prediction functionality. It takes as input the
metric to predict, a configuration and the features of the input, and calculates the
quantity of metric that an input with that features would consume.

5.3.4 Best Global Limit Configuration Selection

This functionality searches for the best global limit configuration that satisfies
the global constraint according to the formula in Equation 4.3. It is implemented
in the objects Problem, InputFeature Model and Application Definition Interface.
The Problem object contains the information about characteristics of the global
metric-to-solution to satisfy. These information are the metric of interest, its
value and if it can be spread over the number of processes or not. The framework
must know if the value of that metric can be parallelized or it is consumed by new
resources. The Application Definition Interface uses the Problem information for
performing the global configuration selection functionality. This functionality
consists of using the PDFs previously calculated and stored in the InputFeature
Model object and the prediction retrieving functionality, for selecting the best
global limit configuration more appropriate for this input features distribution,
that satisfies the global constraint stored in the Problem object.

The search of the global limit configuration can be done using two different
strategies:

• Exhaustive search strategy performs a full search over the entire space of
configurations and for each of them uses the predictive models to determine
that configuration which acts as a watershed between configurations that are
good (satisfy the constraint) and the ones that are not good (do not satisfy
it) (Subsection 4.3.3), using the formula in Equation 4.3.

• Precimonious-like strategy, instead, creates an operating points list with
the metric values filled with average values of the input features collected
in the Montecarlo phase. For example, if the application has a global time-
to-solution value to stay within, then this strategy sorts the list from the
configuration with the higher predicted time value to the one with the lower
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Chapter 5. The Ipazia Framework

predicted time value. Then, it applies the formula in Equation 4.3 using this
sorted list, and ends the search as soon as it finds a feasible configuration,
that is a configuration whose time metric satisfy the global constraint. In
this way, not all configurations and input features space must be examined.
This is a heuristic.

5.3.5 Autotuning Knowledge Computation

This is requested to compute the knowledge that the autotuner needs in order to
perform the optimization on a single input execution. It is implemented in the
Application Definition Interface through the functionalities Metric value calcu-
lation, Operating points list population and Operating points list filtering:

1. Metric value calculation This functionality is used for retrieving the quan-
tity of global metric for a precise input. It can be called after having found
the limit configuration for the first time.

2. Operating points list population This functionality computes the operat-
ing points list for a precise input. This list is intended to be the list of all
configurations given in the knobs list file and the predictions on the metrics
of interest regarding the autotuning local solver phase. So, for example if
the global constraint regards the energy metric but the autotuner is set to
minimize error, also prediction on the error metric must be provided for
each configuration.

3. Operating points list filtering This functionality filters the operating points
list calculated with the previous function in order to delete those points that
do not satisfy the constraint on the quantity of global limit metric their input
would spend.

5.4 Ipazia Front-End

Ipazia front-end is composed of the public methods exposed by the Ipazia object.
Front-end methods must interact with the back-end part for allowing the tar-

get application to retrieve information regarding the knowledge to send to the
autotuner. It interfaces with the Application Definition Interface, acting as a dis-
patcher between the different spreading knowledge methods.

5.4.1 Front-End Implementation

Ipazia front-end exposes several functionalities towards the application: these
functionalities are all the public ones in the Ipazia object. The front-end structure
is shown in Figure 5.4.
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5.4. Ipazia Front-End

Figure 5.4: Ipazia front-end structure.

The initialization functionality initializes the Ipazia framework environment,
setting all the information related to the target application, read from both the
configuration files and the parameters passed in this method. It also needs a
function as a parameter, in order to let the framework be able to retrieve the
value of the consumed global metric-to-solution given, in any instant of time.

The best limit configuration selection functionality starts the framework pro-
cedure to calculate the optimal limit configuration.

The global metric status functionality alerts Ipazia framework of the number
of inputs that have been completed until that moment. This is required in order
to know when the framework has to make the update of the limit configuration.

The information sending functionality deals with the sending of autotuning
knowledge according to the spreading knowledge method selected before. It
sends different information based on the requirements on the worker side, that
are well explained in the following Table 5.1.

The update functionality returns the configuration selected for an input, re-
specting both global and local constraints.

Local Solver Interface

This Local Solver Interface must be implemented in the target application. It
provides the methods for making interfacing the Ipazia framework with the au-
totuner of the application. The interface stores the information that the autotuner
needs in order to find the best operating point for a precise input. The parameters
of the interface are the list of the operating points, and the constraint value that
the computation of the input at issue must satisfy. This information is computed
by the Ipazia framework. Developer of the target application must implement
two functionalities: the autotuner initialization functionality, that initializes the
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Chapter 5. The Ipazia Framework

autotuner once for every process involved in the application, and the solve func-
tionality, that starts the autotuner passing it the information required, calculates
the best operating point for the input that satisfies both the global and the local
constraints and returns the configuration chosen. In our implementation we use
mARGOt autotuner. Local constraints must be defined directly in the configura-
tion of the autotuner used.

Figure 5.5 shows the structure of the Local Solver interface.

Figure 5.5: Local Solver interface structure.

5.4.2 Workflow

Figure 5.6 shows the workflow of a target application that uses Ipazia library.
Remember that a target application is made up of a master process that acts as a
dispatcher of inputs to worker processes, which actually do computation on the
inputs.

Master process of target application acts as a planner on the quantity of metric-
to-solution to be used by every input and acts as a dispatcher between the differ-
ent methods of spreading the autotuning knowledge from master to every worker.
The master can make calls relative to the setup of the framework environment and
it also provides to Ipazia the information related to the global metric-to-solution
status and the inputs computed when required. All these primitives are executed
in a synchronous way in the application. Master process starts the first initial-
ization of the optimal limit configuration. For doing this computation, Ipazia
framework starts a separate thread, thus not blocking the application. The fol-
lowing operations of updating of the global limit configuration are also done in
this separate thread by refreshing it.

Worker process performs the operations for initializing its Ipazia environ-
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ment, receives inputs from the master process and then it calls the update func-
tionality for getting the local optimal configurations with which computes the
inputs received. Ipazia methods used in the worker process are all executed syn-
chronously with the target application.

5.4.3 Execution Environments

In order to obtain the local optimal configuration starting from the one found
as the best limit on average by the master, four steps must be done (actually
three steps, except for one method) and according to the method selected for
spreading autotuning knowledge to workers these steps can be performed by
master or worker processes (Subsection 4.3.6).

Table 5.1 shows the correspondences between method selected and where the
computation of that step is done. In the fully distributed environment, workers
have knowledge related to the predictive models for filling the list of operating
points to pass to the autotuner, so they can perform the op list population opera-
tion, which calculates the operating points list for a precise input, using the pre-
dictive models. After that, the solve functionality starts the autotuner and returns
the configuration chosen that satisfies both the global and the local constraints.
Workers in this environment must receive only the information on the config-
uration selected by the master (FULLY DISTRIBUTED A version), or on the
quantity of metric reserved for each input (FULLY DISTRIBUTED B version),
which are computed in the master by the metric value calculation functionality.

In the partially distributed environment, however, workers do not have pre-
dictive models knowledge, so master must send them both the quantity of metric
reserved for each input and the list of operating points for each input. Once re-
ceived all these information, workers can call the solve functionality, which acts
in the same way as in the fully distributed environment.

The partially centralized environment is equal to the partially distributed one,
except for the fact that the list of operating points that the master must send to
the worker is a filtered one. More precisely, in this environment the master sends
only the operating points that satisfy the global constraint. This leads workers to
apply the autotuning phase only regarding their local constraints, since the global
one is automatically satisfied.

In the fully centralized environment, the master performs all operations from
the generation of the solution and the operating points list for each input to the
execution of the autotuning phase on that input. The master must only send the
configuration chosen for each input and the worker receiving it can soon do the
computation of that input with the knob settings received. The worker may not
provide the autotuner to the framework.
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Figure 5.6: Target application workflow.

56



i
i

“thesis” — 2017/4/3 — 10:33 — page 57 — #73 i
i

i
i

i
i

5.4. Ipazia Front-End

Table 5.1: Summary of spreading autotuning knowledge functionalities

Methods Steps Master Worker

FULLY DISTRIBUTED A

metric value calculation X

op list population X

op list filtering - -

solve X

FULLY DISTRIBUTED B

metric value calculation X

op list population X

op list filtering - -

solve X

PARTIALLY DISTRIBUTED

metric value calculation X

op list population X

op list filtering - -

solve X

PARTIALLY CENTRALIZED

metric value calculation X

op list population X

op list filtering X

solve X

FULLY CENTRALIZED

metric value calculation X

op list population X

op list filtering - -

solve X
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5.4.4 Communication Pattern

The framework has a communication object that wraps all the MPI communi-
cation used by this framework. Ipazia uses its own MPI communicator to send
and receive MPI messages. This communicator must be built on a group of pro-
cesses including master and workers, obviously. Primitives provided by this file
are listed in Figure 5.7.

They are related to the different information the master must send to the work-
ers, accordingly to the environment in which the application executes. Note that
this file also contains threaded queues for storing autotuning knowledge received
in the workers.

Figure 5.7: Ipazia communication architecture.

5.5 Integration in the Application

The framework requires several information that are provided through configu-
ration files. It must have the knowledge about all the metrics of interest that are
used in the application, all the knobs and their possible settings, and information
on what are and how are the global constraints the whole application must meet.
The framework also requires in input a training set containing the behavior of
the application in terms of metric trend with respect to knob settings and input
features. It must be used for fitting the model in the model building functionality.

An example of a configuration file is shown in Listing 5.1. This file is divided
in three sections: the first section (lines 3-8) describes the metrics of interest for
the target application. Each metric is represented by the <Metric> element, in
which there must be specified the name of the metric in the "name" attribute. The
metric object of the global constraint must specified further information, added
in the element <Problem> (line 6). The <Problem> element must specify the
value of the global constraint in the "constraint" attribute, the type of inequality
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the application must apply for satisfy the global constraint is specified in the
"type" attribute. There are four possible type value to specify:

1. LESS: the overall execution of the target application must produce a global
metric quantity less than the value provided in the configuration file.

2. LESSOREQUAL: the overall execution of the target application must pro-
duce a global metric quantity less or equal than the value provided in the
configuration file.

3. GREATER: the overall execution of the target application must produce a
global metric quantity greater than the value provided in the configuration
file.

4. GREATEROREQUAL: the overall execution of the target application must
produce a global metric quantity greater or equal than the value provided in
the configuration file.

The attribute "spreadable" must specify if the metric of the global constraint
can be spread over the number of processes (yes) or not (no). The framework
must know if the value of that metric can be parallelized or it is consumed by
new resources. For example, the time metric can be spread, since, increasing the
number of processes decreases the execution time, while the power consumption
metric cannot be spread, since adding a process would increase the quantity of
power consumed.

The second section (lines 9-12) describes the features that can be extracted
by the input. Each feature is represented by the <InputFeature> element, in
which there must be specified the name of the feature in the "name" attribute.

The third section (lines 13-17) describes the knobs the application has. Each
knob is represented by the <Knob> element, in which there must be specified
the name of the knob in the "name" attribute.

An example of a file containing the list of the possible knob settings that
the application can use, is shown in Listing 5.2. It is made of a list of
configuration elements (lines 3-9 for the first element of the list). Each
configuration element is represented by the knob settings and their values
for that configuration, through a list of parameter elements (lines 5-7 for the
first element of the list). Each parameter must contain the name of the knob in
the "name" attribute and the value of the knob of the relative configuration in the
"value" attribute.

An example of a training set file is shown in Listing 5.5. This training set must
have columns of all knobs, input features and metrics used in the applications.
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Listing 5.1: config_file.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

2 <Ipazia FormatVersion="1">

3 <Metrics>

4 <Metric name="Accuracy"/>

5 <Metric name="Time">

6 <Problem constraint="25000000" type="LESS" spreadable

="yes"/>

7 </Metric>

8 </Metrics>

9 <InputFeatures>

10 <InputFeature name="NUM_ATOM_MOLECULE"/>

11 <InputFeature name="NUM_ATOM_LIGAND"/>

12 </InputFeatures>

13 <Knobs>

14 <Knob name="precision"/>

15 <Knob name="alpha_skip_factor"/>

16 <Knob name="beta_skip_factor"/>

17 </Knobs>

18 </Ipazia>

The order is not important provided that column names follow fixed patterns
explained below.

• pattern knob column label: k<occupied position> in the knobs list in the
configuration file (Listing 5.1 lines 14-16);

• pattern input feature label: i<occupied position> in the input features list
in the configuration file (Listing 5.1 lines 10-11);

• pattern metric label: m<occupied position> in the metrics list in the con-
figuration file (Listing 5.1 lines 4-7);

In this example there are three knobs, k0, k1 and k2, two input features i0 and
i1, and two metrics of interest m0 and m1.

1 "k0","k1","k2","i0","i1","m0","m1"

2 0,0,0,123,21,4.67678,9775007

3 0,0,0,57,30,3.14085,6013007

4 0,0,1,74,6,7.01668,1414247

5 0,0,1,87,12,4.80814,3051925

6 0,0,2,74,6,7.01668,1732096

7 0,0,2,87,12,4.80814,2443932
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Listing 5.2: knob_file.xml

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>

2 <configurations>

3 <configuration>

4 <parameters>

5 <parameter name="precision" value="0"/>

6 <parameter name="alpha_skip_factor" value="0"/>

7 <parameter name="beta_skip_factor" value="0"/>

8 </parameters>

9 </configuration>

10 <configuration>

11 <parameters>

12 <parameter name="precision" value="0"/>

13 <parameter name="alpha_skip_factor" value="2"/>

14 <parameter name="beta_skip_factor" value="1"/>

15 </parameters>

16 </configuration>

17 <configuration>

18 <parameters>

19 <parameter name="precision" value="1"/>

20 <parameter name="alpha_skip_factor" value="0"/>

21 <parameter name="beta_skip_factor" value="1"/>

22 </parameters>

23 </configuration>

24 </configurations>
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8 0,0,3,123,21,4.67678,2265001

9 0,0,3,57,30,3.14085,1932382

5.5.1 Master Side

The following code shows the code that the developer must include in the appli-
cation code of the master process:

1 // Master process Ipazia calls

2 #include <ipazia/ipazia.hpp>

3
4 //GLOBAL declaration of IpaziaObject

5 ipazia::IpaziaObject my_ipazia_object;

6
7 my_ipazia_object = new ipazia::IpaziaObject();

8
9 // Initialization

10 my_ipazia_object->init(ipazia::Method::

PARTIALLY_DISTRIBUTED, my_rank,

computational_resources, ipazia::structures::

Search_Type::EXHAUSTIVE, input_list,

get_metric_value_consumed, path/to/config_file

, path/to/knobslist_file, path/to/

trainingset_file, mARGOt_local_solver);

11
12 // Find the global limit configuration the first

time

13 my_ipazia_object->init_configuration();

14
15 // Send framework data for each input

16 my_ipazia_object->send_data_per_input(input,

worker_rank);

17
18 // Receive information on the number of

computations

19 // already completed

20 my_ipazia_object->receive_computation();

First, developers need to include the header of the framework that states the
data structures used (line 2).

62



i
i

“thesis” — 2017/4/3 — 10:33 — page 63 — #79 i
i

i
i

i
i

5.5. Integration in the Application

They must now declare the global object IpaziaObject as an interface to our
framework (line 5) and create it (line 7).

The first operation to do after is the initialization of the framework (line 10).
This function requires several parameters:

the first parameter (ipazia::Method::PARTIALLY_DISTRIBUTED) is the
enum value of the execution environment where the application is launched. It
can be one of the following:

• FULLY_DISTRIBUTED_A;

• FULLY_DISTRIBUTED_B;

• PARTIALLY_DISTRIBUTED;

• PARTIALLY_CENTRALIZED;

• FULLY_CENTRALIZED;

Their differences are described in Table 5.1 and in Subsection 4.3.6.
The second parameter (my_rank) is the rank of the actual process. In this case

the rank is 0, since this process is the master.
The third parameter (computational_resources) is the number of computa-

tional resources of the application. A computational resource is a process that
actually performs operations on the input. Therefore, for our target application
it is the size of the MPI structure minus 1, the master process, that acts only as a
data dispatcher.

The fourth parameter (ipazia::structures::Search_Type::EXHAUSTIVE) is the
enum value of the search strategy selected for doing the computation of the best
global limit configuration. It can be one of the following:

• EXHAUSTIVE: the search strategy selected is an exhaustive one.

• PRECIMONIOUS; the search strategy selected is an heuristic, based on the
Precimonious strategy explained in [28].

The details in the behavioral differences are explained in Subsection 5.3.4.
The fifth (input_list) parameter is the whole data in input of the application.
The sixth parameter (get_metric_value_consumed) is the function that returns

the quantity of the global metric spent until that moment.
The seventh parameter (path/to/config_file) is the path to the configuration

file.
The eighth parameter (path/to/knobslist_file) is the path to the file with the

list of the knob settings.
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Chapter 5. The Ipazia Framework

The nineth parameter (path/to/ trainingset_file) is the path to the training set
file.

The last parameter (mARGOt_local_solver) is the pointer to the local solver
the application would use to perform the local autotuning phase. We use the
mARGOt autotuner as our local solver.

After the initialization, developers must start the search of the global limit
configuration (line 13).

Then, in the input dispatching phase it is required to compute and send the
Ipazia framework information to each workers, for every input sent to them (line
16).

The last operation the master must perform sends to Ipazia framework infor-
mation on the status of the input computation (line 20). It informs the framework
of the number of inputs completed until that moment.

5.5.2 Worker Side

The following code shows the code that the developer must include in the appli-
cation code of a worker process:

1 //Worker processes Ipazia calls

2 #include <ipazia/ipazia.hpp>

3
4 //GLOBAL declaration of IpaziaObject

5 ipazia::IpaziaObject my_ipazia_object;

6
7 my_ipazia_object = new ipazia::IpaziaObject();

8
9 // Initialization

10 // Local Solver in Worker is needed except

11 // for Method FULLY CENTRALIZED

12 my_ipazia_object->init(ipazia::Method::

PARTIALLY_DISTRIBUTED, my_rank,

computational_resources, path/to/config_file,

path/to/knobslist_file, path/to/

trainingset_file, mARGOt_local_solver);

13
14 // Compute and receive optimal configuration for

15 // my_input and

16 // both global and local problems
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5.5. Integration in the Application

17 my_configuration = my_ipazia_object->

update_worker(input);

First, developers need to include the header of the framework that states the
data structures used (line 2).

They must now declare the global object IpaziaObject as an interface to our
framework (line 5) and create it (line 7).

The first operation to do after is the initialization of the framework (line 12).
This function requires several parameters:

the first parameter (ipazia::Method::PARTIALLY_DISTRIBUTED) is the enum
value of the execution environment where the application is launched. It can as-
sume the same values as for the master process.

The second parameter (my_rank) is the rank of the actual process. In this case
the rank cannot be 0, since this process is not the master.

The third parameter (computational_resources) is the number of computa-
tional resources of the application. A computational resource is a process that
actually performs operations on the input. Therefore, for our target application
it is the size of the MPI structure minus 1, the master process, that acts only as a
data dispatcher.

The fourth parameter (path/to/config_file) is the path to the configuration file.
The fifth parameter (path/to/knobslist_file) is the path to the file with the list

of the knob settings.
The sixth parameter (path/to/trainingset_file) is the path to the training set

file.
The last parameter (mARGOt_local_solver) is the pointer to the local solver

the application would use to perform the local autotuning phase. We use the
mARGOt autotuner as our local solver. In a worker process, this is an optional
parameter, since in the fully centralized environment the worker cannot have its
local autotuner. It is required in all the other environments.

The last operation (line 17) the worker must perform calculates the best oper-
ating point using autotuning information received by the master or computing in
this method, and the local solver.

65



i
i

“thesis” — 2017/4/3 — 10:33 — page 66 — #82 i
i

i
i

i
i



i
i

“thesis” — 2017/4/3 — 10:33 — page 67 — #83 i
i

i
i

i
i

CHAPTER6
Experimental Results

6.1 Introduction

In this chapter we show experimental results collected to assess the proposed
methodology and framework, and also to validate the effectiveness of our con-
tribution in the HPC problem described in Chapter 4. First, we introduce the ex-
perimental setup used and show results related only to the global solver part that
has to compute and spread the global constraint. Then we describe the bench-
mark application used for performing our experiments and propose their results
and analysis. We also show information regarding overheads of the different
autotuning spreading knowledge methods.

6.2 Experimental Setup

6.2.1 Intel Core i7 5500u

For the initial experiments we used a heterogeneous machine containing a dual-
core processor Intel Core i7 5500u, with two logical cores per physical, clock-
speed of 2.4 GHz with turbo speed up to 3.0 GHz.

We spawn only one application process on each core, and two fixed threads
in each process.
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Chapter 6. Experimental Results

We chose MPICH as our MPI implementation, the RInside library and Rcpp
library which contains instance of R software for computing predictive models
and mARGOt autotuner as the local solver of the application.

6.3 Assessing the Limit Configuration Selection

To assess and show the effectiveness of the global solver (planner) developed, we
first perform some experiments using synthetic functions instead of real work-
loads. Applications considered simply have a master that sends inputs to work-
ers. These inputs have different features. Metrics of interest are the accuracy
level and the execution time. The predictive models for these metrics are simply
mathematical functions of knobs and features.

More in detail, we performed these experiments using different function types:
linear, quadratic and sinusoidal, in order to collect results of the behavior of our
framework under different types of synthetic functions. In this chapter we show
results from the experiments with the quadratic and sinusoidal functions. The
metric values can be retrieved as follows:

Time = f1(x, f) (6.1)

Accuracy = f2(x, f) (6.2)

Where:
x: is the vector of knobs.
f : is the vector of input features.

Once received inputs, workers must simply call the update_worker()

Ipazia function using as local solver the mARGOt autotuner, and with the con-
figuration received they compute the Time for that input and do a sleep of Time
milliseconds.

We perform several runs under different environment conditions:

1. First, we executed experiments under completely predictable conditions.
The metrics are those extracted as Equation 6.1 and Equation 6.2.

2. Then, we introduced a Gamma noise of 10%. The expected time for an
input is taken from the Equation 6.1 plus a random value extracted from a
Gamma distribution.

3. Then, we perform the same experiment with a medium level of Gamma
noise, of 25%.
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6.3. Assessing the Limit Configuration Selection

4. Finally, we introduced a very high level of of Gamma noise, of 50%, in
order to really stress the framework and see how it behaves in this extreme
condition.

Noise introduced is modeled as a Gamma distribution. We chose this distri-
bution since several works show that this is the best distribution to model time
to solution behavior under unpredictable events. Indeed, it is not symmetric like
the Gaussian, and so it captures in a better way the fact that the majority of un-
predictable events led to increase execution time rather than decrease it. The
Gamma distribution function is described in Equation 6.3 and Equation 6.4.

f(x; k, θ) = xk−1e
−x
θ

1

θkΓ(k)
(6.3)

Where:

Γ (k) =

∞∫
0

sk−1e−sds (6.4)

is the Gamma function of Euler.

Below there is the cumulative distribution function formula:

F (x; k, θ) =

∫ x

0

f(u; k, θ)du =
γ(k, x

θ
)

Γ(k)
(6.5)

Gamma distribution has mean µ = kθ and variance σ2 = kθ2.
In our experiments, both parameters are positive real numbers with a shape

parameter k and a scale parameter θ.
Figure 6.1 and Figure 6.2 show examples of PDFs and CDFs of Gamma dis-

tribution with several k and θ values.

6.3.1 Quadratic Function

Time = f1(x, f) = x2 + f (6.6)

Accuracy = f2(x, f) = x (6.7)

There is one knob x and one input feature f . Knob x can assume values from
4 to 13. Feature f can assume values from 5 to 205.
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Chapter 6. Experimental Results

Figure 6.1: Gamma probability density function.

Figure 6.2: Gamma cumulative density function.
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6.3. Assessing the Limit Configuration Selection

Synchronization points are set every 20% of inputs. We performed experi-
ments using 1000 inputs, so we recomputed the limit configuration every 200
results received.

Values for the different executions are given for:

No noise introduced:
k = Time; (6.8)

θ = 1; (6.9)

Low noise introduced:
k = Time; (6.10)

θ = 1, 1; (6.11)

Medium noise introduced:
k = Time; (6.12)

θ = 1, 25; (6.13)

High noise introduced:
k = Time; (6.14)

θ = 1, 5; (6.15)

Charts in Figure 6.3, Figure 6.4 and Figure 6.5 show the noise amplitude
introduced in three different experiments. This noise amplitude is represented as
a quantity of time added to the execution time metric of a precise input, for all
the data in input.

Figure 6.3 contains the noise amplitude introduced in the experiment with low
noise. There are some points where the noise introduced decreases the execution
time of the data, but in the majority of them it gives a positive contribution to the
time increment.

Figure 6.4 represents the noise amplitude introduced in the experiment with
a medium level of noise. We can see that the average of noise values introduced
is higher that the one of the previous chart, and so is the mean amplitude, too.
The same considerations apply to Figure 6.5, containing values for the high noise
level case. This is because we have not only increased the variance value of the
Gamma distribution, but we have also moved its mean value upper. Our purpose
is to stress at maximum the framework, in feasible noise conditions and also
in excessively bad ones. We must say that, in the environment the framework
is addressed to, it probably would never encounter conditions with such bad
levels of noise as the ones in our medium and high noise cases, but we perform
experiments also in those conditions because we want to explore the behavior of
Ipazia framework at very extreme conditions.
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Chapter 6. Experimental Results

Figure 6.3: Low noise introduced: time by varying the input.

Figure 6.4: Medium noise introduced: time by varying the input.

Figure 6.5: High noise introduced: time by varying the input.
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6.3. Assessing the Limit Configuration Selection

For demonstrating the benefits of our framework, we have taken several val-
ues of time to solution and we have left to the framework the task of selecting
the best limit configuration, according to the time-to-solution and the data fea-
tures distribution. We have repeated this experiment for several noise values: no
noise introduced, low, medium and very high noise introduced. Values collected
are shown in Figure 6.6, Figure 6.7 and Figure 6.8. The accuracy level has been
normalized between 0, which corresponds to the minimum level of accuracy, and
100, which corresponds to the maximum level of accuracy.

The time-to-solution values are expressed in milliseconds.
We did those experiments using seven time-to-solution values that cover the

application behavior from the point where it is no longer possible to increase the
accuracy level to the point where it is no longer possible decreasing it, taking
as a reference the behavior of the application in perfect conditions. Therefore,
in charts we show results collected in these two extreme points (where time-
to-solution is equal to 300000 and where time-to-solution is equal to 100000,
respectively), in points just after (time-to-solution equal to 350000) and just be-
fore (time-to-solution equal to 90000), respectively, and in three intermediate
points, one taken in the middle of the two extreme points (time-to-solution equal
to 200000), one taken 25% after (time-to-solution equal to 250000) and the last
taken 25% before it (time-to-solution equal to 150000).

Figure 6.6 shows the normalized accuracy values by varying the time-to-
solution given to the application, collected from experiments with different noise
levels introduced.

Figure 6.7 shows the percentage of remaining time by varying the time-to-
solution given to the application, always from data collected in all the experi-
ments with different noise levels: no noise, low, medium and high noise.

Finally, Figure 6.8 shows the percentage of inputs successfully completed by
the application within the given time-to-solution, by varying the time-to-solution
constraint itself. As for the previous charts, also this experiment has been re-
peated for the four different levels of noise. This percentage is less than 100% in
correspondence with a negative percentage of remaining time.

As we expected, the trend of the accuracy curve obtained in perfect condi-
tions has an average accuracy level higher than the ones of the other experiments
in quite all the points. The trend of the accuracy curve for the low noise case
is very close to the trend in perfect conditions, in particular in the behavior in
extreme values of the time-to-solution. As a consequence of the huge quantity
of noise introduction, the accuracy trends of medium and high level cases have
an average accuracy very low with respect to the other conditions. In particular,
regarding results with the high level noise introduction, even with the greater

73



i
i

“thesis” — 2017/4/3 — 10:33 — page 74 — #90 i
i

i
i

i
i

Chapter 6. Experimental Results

time-to-solution constraint the average accuracy is very far from the maximum
value. However, these are exactly the results we expected from the experiments
with this quadratic function.

If the remaining percentage of time is much greater than 0%, it means that
Ipazia framework has taken too many margins in the calculation of the optimal
limit configuration, and it has selected an accuracy level smaller than the best
appropriate level for that time-to-solution and that workload. This should never
happen, unless the accuracy level is already at the maximum. In this case, in-
creasing the time-to-solution does only cause the increase in the percentage of
remaining time. In the charts this situation is represented for time-to-solution
values equal to 300000 and 350000 milliseconds. Regarding the experiments
with no noise and with a low level of noise introduced, in the time-to-solution
value of 300000 milliseconds, the relative accuracy is at maximum and the per-
centage of remaining time is nearly 0%. Increasing the time-to-solution until
350000 milliseconds has obtained the only effect of bring the percentage of re-
maining time above the 20% in the no noise experiment, and above the 10% in
the low level noise experiment. Regarding the experiments with a medium and
a high level of noise this does not happen in the same way, since the noise intro-
duced in the computation of the final part of the workload is so high that Ipazia
framework could not have the time to absorb this noise and do the recompupta-
tion of the best limit configuration. A possible solution consists in the increase
of the number of synchronization points, that can be set for example, every 10%
or even 5% of the cardinality of data in input. As we have said previously, the
situation with medium and high level of noise were treated only in order of stress
the framework at the maximum, but they probably are not realistic situations in
which Ipazia framework might operate.

However, if Ipazia fails in ending the computation within the time-to-solution
constraint, it may be due to two reasons:

1. Time-to-solution given is actually not sufficient to compute the whole data
in input. This situation can be seen in the experiments with no and low
noise level, when time-to-solution given is small, precisely in points with
time-to-solution equal to 100000 and 90000 milliseconds.

With 100000 milliseconds as time-to-solution constraint, the accuracy level
for both the experiments with no and low noise values is at the minimum
value, but the percentage of the remaining time is less than 0%, breached
10% and 30%, respectively, and, as a consequence, the percentage of inputs
computed within the given time-to-solution does not reach the 100%. Being
already at the minimum level of accuracy, Ipazia framework can do nothing
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6.3. Assessing the Limit Configuration Selection

in order to satisfy the time-to-solution constraint. Then, further decreasing
the time-to-solution to 90000 milliseconds has obtained only effects on the
percentage of remaining time and inputs completed, decreasing them.

2. The framework made a mistake in the calculation of the estimate distri-
bution of the workload or it was not able to handle the quantity of noise
introduced. The second situation is very well visible in experiments with
medium and high noise values. In the point with time-to-solution equal
to 200000 milliseconds, we can see that, meanwhile the percentage of the
remaining time of the none and low noise levels is equal to 0%, with accu-
racy levels that not reached the maximum value, increasing the noise level
led to a further decreasing of the accuracy level and the percentage of the
remaining time, which goes below the 0%. It can be seen in a very evi-
dent way in the high noise curve: the percentage of the inputs successfully
completed is just above the 80% for the 200000 time-to-solution constraint,
and close to the 90% in the point with time-to-solution equal to 250000,
where, instead, in the experiments with medium, low and no noise intro-
duced, Ipazia successfully leads the application to complete the 100% of
the input computations.

We must note that, nevertheless, in the remaining situations, Ipazia reaches
in making the application satisfy the given time-to-solution by decreasing the
accuracy level for the input computation, mostly in the experiments with no and
low noise values introduced. The curves assume the trend that we expected: the
accuracy curves trend decrease with the decreasing of the time-to-solution given
until reaching the minimum possible level. Increasing the noise introduced, the
problem becomes intractable, while still preserving the trend of the curves that
we expected.
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Figure 6.6: Average accuracy trend by varying the time to solution.

Figure 6.7: Percentage of remaining time trend by varying the time to solution.

Figure 6.8: Trend of the percentage of inputs successfully completed by varying the time to
solution.
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Comparing Accuracy Level Trends of an Execution with the same Time-to-Solution Con-

straint

Charts in Figure 6.9, Figure 6.10, Figure 6.11 and Figure 6.12 show accuracy
values with which inputs of a complete execution were computed, in the four
experiments with different noise values. On the x-axis there is the number of the
input computed with the accuracy value on the y-axis. The results represented
have been collected from a complete execution with a time-to-solution equal to
250000 milliseconds. The accuracy level has been normalized between 0, which
corresponds to the minimum level of accuracy, and 100, which corresponds to
the maximum level of accuracy.

Figure 6.9 contains the accuracy values related to each input computed with
no introduction of noise. The accuracy levels chosen by Ipazia are concentrated
among the top, 100, and values just below 80. These values are just above and
just below the mean accuracy value of 90, respectively. Ipazia has made minor
adjustments to maintain the execution time within the given constraint, since
there have been no big changes in the environment.

The same considerations apply to the experiment with low noise level intro-
duction. In chart in Figure 6.10 the mean accuracy is less than the one in perfect
conditions, but the accuracy selected by Ipazia framework is still just above and
just below the respective mean accuracy value.

In experiments with medium (Figure 6.11) and high (Figure 6.12) values of
noise the behavior is not the same of previous charts. The amplitude between the
maximum and the minimum accuracy values selected is very wide. It goes from
an accuracy value around 80 to a value below 40, in the experiment with medium
noise, and from a value around 90 to a value just above 20, in the experiment with
high noise. This happens because the framework handles a great change of the
initial conditions, due to the introduction of high values of noise, and then the
adjustments that Ipazia must make are wide and cover very different accuracy
values from each other.
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Figure 6.9: No noise introduced: accuracy trend by varying the input.

Figure 6.10: Low noise introduced: accuracy trend by varying the input.

Figure 6.11: Medium noise introduced: accuracy trend by varying the input.

Figure 6.12: High noise introduced: accuracy trend by varying the input.
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Overall Comment on the Experimental Results

Our experiments show that introducing noise has led to obtain an average ac-
curacy less that the one of the experiments under perfect conditions, with the
same Time to Solution. By comparing results under different noise values we
can see that when no noise has been introduced, mean accuracy level chosen is
concentrated in a small set of accuracy level (between 80 and 100), the same
applies more or less in the case with low noise, while the accuracy level range
in case of medium and high noise is very wide, even from 90 to 20. This is the
response to the huge positive noise introduced. But pictures also show that our
framework is flexible and even if we introduce some noise this is extinguished
through synchronization points and Ipazia succeeded in maintaining a certain
accuracy level as far as possible.

6.3.2 DTLZ 2 Function

We show also a set of experiments performed on a DTLZ function. DTLZ is a
test suite of benchmark problems, created by Deb et al., well described in [22]. It
is a collection of multi-objective test problems, which are scalable to any number
of objectives, and so, it has facilitated several recent investigations into multi-
objective problems. It is made of nine problems. In our experiments we used the
DTLZ2 problem, described in Equation 6.16 and Equation 6.17. Its parameter
domain is [0,1]. We implemented the version in [2].

f1(~x) = (1 + g((~x) cos(x1
π

2
) (6.16)

f2(~x) = (1 + g((~x) sin(x1
π

2
) (6.17)

Where:

g(~x) =
∑
xi∈~x

(xi − 0.5)2.

0 ≤ xi ≤ 1, i = 1, ..., n.

A Pareto Front example with 3 functions is shown in Figure 6.13.
This is the formulation we used for our metrics:

Error = f1(x, ~f) = (1 + g((~f) cos(x
π

2
) (6.18)

Time = f2(x, ~f) = (1 + g((~f) sin(x
π

2
) (6.19)

Where:
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Figure 6.13: Pareto front of DTLZ2 with 3 functions.

g(~f) =
∑
fi∈~f

(fi − 0.5)2.

0 ≤ fi ≤ 1, i = 1, 2.

We used one knob x and two features f1, f2 for each input. Knob x can
assume one of the following values that we have taken from [2].

0.2973856025

0.4426370244

0.5602489444

0.6613433487

0.7500827675

0.8283237130

0.8967005327

0.9547573070

1.0000000000

We rejected the knob value that would set to zero the execution time for that
input, because it would have altered our experiments.

Features instead can assume a random value in the range (0,1]. As we have
done for the quadratic synthetic function, we made experiments by introducing
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6.3. Assessing the Limit Configuration Selection

several quantities of noise. Synchronization points are set every 20% of the
inputs. We performed experiments using 5000 inputs, so we recomputed the
limit configuration every 1000 inputs done.

Gamma parameters used for different executions are the same used in Sub-
section 6.3.1.

To assess our framework, we have taken several values of time to solution
and we have left to the framework the task of selecting the best limit configu-
ration, according to the time-to-solution and the data features distribution. We
have repeated this experiment for several noise values: no noise introduced, low,
medium and very high noise introduced. Values collected are shown in Fig-
ure 6.14, Figure 6.15 and Figure 6.16. This time we collected the error val-
ues, which have been normalized between 0 (minimum error level, which corre-
sponds to the maximum accuracy) and 100 (maximum error level, which corre-
sponds to the minimum accuracy). The time-to-solution values are expressed in
milliseconds.

The choice of the set of time-to-solution values to display has been done
applying the same considerations made for the previous experiment. Therefore,
we perform seven experiments for the different level of noise used.

The same considerations made for the previous experiment apply also to these
charts.
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Figure 6.14: Average error trend by varying the time to solution.

Figure 6.15: Percentage of remaining time trend by varying the time to solution.

Figure 6.16: Trend of the percentage of inputs successfully completed by varying the time to
solution.

82



i
i

“thesis” — 2017/4/3 — 10:33 — page 83 — #99 i
i

i
i

i
i

6.4. Application Case Study

6.4 Application Case Study

6.4.1 Drug Discovery - Miniapp

We carried out our experimental results also on a real application: a pharmaceutical-
design application, namely LiGen, that has to compute the best matches between
each couple of molecule and ligand in input [17]. The data in input are couples
of molecule and ligand. Either of them are simply vectors of atoms.

The actual execution part is made of nested loops, where for each molecule
orientation it is computed the match with each ligand orientation. The output is
simply the maximum value of the match between that couple of molecule-ligand.

We have inserted some approximation knobs that can be tuned by our frame-
work. In particular we have found three parameters that can be changed to mon-
itor the approximation level, the execution time and the energy used:

1. Precision: this knob sets the data structure type to use in the application for
managing all data/operations. It can take these values:

• 2: knob set to value 2 means that computation is done using doubles;

• 1: knob set to value 1 means that computation is done using floats;

• 0: knob set to value 0 means that computation is done using integers.

2. Alpha skip factor: this knob controls the skip factor for the loop iterating
on each atom in a molecule. It is the outer loop of the actually computation
phase. Formally it can assume all values between 0 and 359 (since molecule
rotation is perform in degrees), but the application is tiled with a tile equal to
10, and so this knob can only assume values between 0 and 9. For example,
an alpha skip factor equal to 0 means that no cycle is skipped, while an
alpha skip factor equal to 3 means that application will execute this loop
once and then will skip 3 cycles.

3. Beta skip factor: the same definition of alpha skip factor applies also to beta
skip factor, but this is applied to the inner loop, which iterates on the atoms
of a ligand.

Therefore, each configuration in this application has the following structure:
<precision, alpha_skip_factor, beta_skip_factor>.
As it regards to the metrics of interest, for this experiment we considered

only the level of approximation and the execution time. In particular, the global
constraint value is set on the time.

So each tuple of metrics of interest has the following structure:
<accuracy, time>.
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These two metrics have a trade off, since increasing the level of accuracy
means to spend more execution time.

Applications are compiled with mpirun command, using the optimization
flags -O2, -Wall (warn all), -Wextra, -g2, -pg and -std=c++11. An example of
launch command is the following:

>mpirun -np <num-processes> ./<application_executable>

In our experiments we considered only molecules that have a number of atoms
between 5 and 200, while ligands considered have a number of atoms between 5
and 30.

6.5 Application Case Study: Experimental Evaluation

At first, we measure execution time consumed for the maximum accuracy level.
Reported results are related to the experiments that produced the mean time over
three runs. These are direct program executions and measurements, not simula-
tions or emulations. Time measured is the total time of the application, until all
processes have completed.

6.5.1 Overheads Characterization

In this subsection we provide information regards both communication over-
heads characterization and overheads introduced by Ipazia framework. We col-
lected this information only on the real application study, because only here we
can draw significant results, and we examine the whole set of spreading auto-
tuning knowledge, well described in Table 5.1: fully distributed, partially dis-
tributed, partially centralized and fully centralized.

Table 6.1 shows the trend of communication overheads alone, that is, time
spent to send Ipazia information through master and workers. The execution
times shown involve only one sending operation. In the fully distributed A ver-
sion and in the fully centralized methods, the framework has to send only a con-
figuration, that is a list of three float values regarding this experiment. In the fully
distributed method B version, instead, the framework has to send the quantity of
time metric for a given input, that is a double value. In partially distributed and
partially centralized Ipazia has to send an operating points list.

We can notice that these communication overheads are in the order of mi-
croseconds. Even the sending of all operating points list, with length equal to
108 in this experiment, and with every operating point having 3 knobs and 2
metrics, lies in the order of microseconds. Obviously, overhead of the partially
centralized method depends on the number of operating points to be sent, but the
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upper limit is represented by the overhead of the partially distributed method,
which does not exceeded the time value of one millisecond. Therefore, in case
the execution time of a single input lies in the order of milliseconds, we may
not taken into account these communication overheads, or we can also formalize
those with a constant value. In the fully distributed A and B cases, the commu-
nication overheads are very very small, lying in the order of few microseconds.

Table 6.1: Summary of average communication overheads of the different spreading
autotuning knowledge methods. Execution time refers to one sending operation.

Methods Time (microseconds)

FULLY DISTRIBUTED A 3,36

FULLY DISTRIBUTED B 13,64

PARTIALLY DISTRIBUTED 576,94

PARTIALLY CENTRALIZED 502,87

FULLY CENTRALIZED 3,37

Table 6.2: Summary of average overheads introduced by our framework.

Call Time (milliseconds)

init 561

init limit configuration 18166

autotuning knowledge computation 2204

Table 6.2 shows overheads introduced by our framework, measured in mil-
liseconds and mediated on several executions and on the different search mech-
anisms and on the different environment used (Table 5.1). The first line refers to
the overhead introduced by the initialization of the framework. In this method,
Ipazia sets up its environment, by reading the configuration files, and builds the
predictive models from the given training set file. The overhead is constant and
does not exceeded the second.

The second line refers to the overhead measured in the phase of calculating
the optimal limit configuration for a given workload. It has been averaged on
several executions with the same workload but different search strategies used.
This overhead is much higher than the previous one, since the operations that the
framework must done in this phase are many more. Therefore, we would expect
a much lower value than the one measured. This large latency is primarily due
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to interfacing with the model, which consists of making numerous accesses to
the R software, regarding this experiment. Using a different model to interface
with can be a possible solution to decrease this overhead. Details regarding the
overhead introduced by each search strategy evaluated in this experiment are
shown in Table 6.3.

The last line shows the average overhead measured on the computation of the
autotuning knowledge in the different methods that we proposed, master side.
Table 6.4 goes in the detail of the overheads measured in each method.

We can see that overheads are in the order of milliseconds, therefore they are
not so negligible, but there are some specifications to introduce: this framework
is meant to be used in application computing a so huge quantity of inputs using
several parallel processors. Overheads shown in Table 6.2 are not all present
in the whole application life. For example, the time spent for the update of
the global limit configuration is lost only during the first computation, since the
following times it is performed in a separate thread. Regarding the ipazia init, it
obviously is called only one time per processor in the application, and the delay
is quite constant and independent from the length of configuration files it has to
read, since it remains in terms of milliseconds.

In Table 6.3 there are information regarding the execution time spent, in mil-
liseconds, in the two different search methods that we used in this experiment for
evaluating the methodology: the exhaustive and the precimonious-like strategies.

Exhaustive search strategy performs a full search over the entire space of
configurations and for each of them uses the predictive models to determine that
configuration which acts as a watershed between configurations that are good
(satisfy the constraint) and the ones that are not good (do not satisfy it) (Subsec-
tion 4.3.3), using the formula in Equation 4.3.

Precimonious-like strategy, instead, first creates an operating points list with
the time metric values filled with average values of the input features collected in
the Montecarlo phase, then sorts the list from the configuration with the higher
predicted time value to the one with the lower predicted time value. Then, it
applies the formula in Equation 4.3 using this sorted list, and ends the search
as soon as it finds a feasible configuration, that is a configuration whose time
metric satisfy the global constraint. In this way, not all configurations and input
features space must be examined. This is an heuristic and we decided to evaluate
this strategy since in HPC applications it may not to be possible to apply an
exhaustive search method when the knobs and the features space to explore is
too wide.

We can notice that the exhaustive search method has an execution time bigger
of an order of magnitude with respect to the execution time of the precimonious-
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like search method. Time spent by precimonious-like method is not totally linear
in the number of samplings since its duration depends also on the number of
configurations that it explored. We can say that the higher the constraint it is,
the less configuration it has to explore, since probably the best configuration will
lie in the first positions of the sorted operating points list. Both the overheads
are higher than the expected values, and this is still primarily due to interfacing
with the model, which consists of making numerous accesses to the R software,
regarding this experiment. Using a different model to interface with can be a
possible solution to decrease this overhead.

Table 6.3: Summary of average overheads introduced by the different search method
used, with different number of samplings.

Search method Number of samplings Time (milliseconds)

EXHAUSTIVE

6 29595

5 27489

4 19509

3 9844

PRECIMONIOUS

6 7093

5 6027

4 2381

3 1835

We have also collected overheads regarding the time spent for generate the
knowledge to then give to the autotuner. We have repeated the execution using
the different spreading autotuning knowledge methods (Table 5.1) and we have
collected time values on the master side, but they can also be applied on the
worker side, since steps to perform on master and on worker are complementary.
Results are shown in Table 6.4.
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Table 6.4: Summary of autotuning knowledge computation times w.r.t the spreading
knowledge method selected.

Spreading method Steps Time (milliseconds)

FULLY DISTRIBUTED B metric value
calculation

11

PARTIALLY DISTRIBUTED
metric value
calculation 2893

op list
population

PARTIALLY CENTRALIZED

metric value
calculation 3177

op list
population

op list filtering

FULLY CENTRALIZED

metric value
calculation 3045

op list
population

solve

The fully distributed method version A is not present since the master has to
compute nothing.

Using the fully distributed method version B, the master process has also
to access to the model and retrieve the value of the metric for the input given,
therefore its relative latency is very small, only 11 milliseconds.

In the partially distributed method, master has to do the same as in the previ-
ous method, but it must also compute the operating points list of the input given,
and so the overhead grows, reaching few seconds. This is always due to the
accesses to the model through the R software.

The same considerations apply to the partially centralized strategy, in addition
master filters the operating points list, before sending it. The overhead value is
similar to the previous one. In the last method considered, instead, the master
has to perform also the autotuning phase, thus the relative is greater than the one
of the partially distributed method, but only slightly.

However, these overheads weigh on the application lifetime only one time,
since the master process does nothing except for the dispatching work. We can
considered them negligible if the amount of data in input is large enough.
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6.6 Application Case Study: Profiling Phase

In this phase we have collected information related to the metrics of interest
(accuracy levels and execution times) set by different combinations of configu-
rations and input features.

We first have executed the parallel application with different numbers of data
in input and we have gathered execution times information related to both total
and per input time spent, under the configuration with maximum accuracy, which
in this application is the <2, 0, 0> configuration, so with no loops skipped
and a double precision. These experiments are needed in order to understand
what is the maximum execution time the application will spend on these inputs
and then it is used to set a valid metric-to-solution constraint on the execution
time to test if our methodology actually satisfies the global constraint selecting
a configuration with less accuracy than the perfect one, and actually produces a
significant saving in time.

For gathering accuracy levels information we first executed each input with a
configuration and then re-executed the same input under the max-accuracy con-
figuration, i.e. the tuple <2, 0, 0>. The accuracy level is simply calculated
as the inverse of the error. If we call error the error measured, the accuracy
accuracy is defined in this way:

accuracy =
1

error
(6.20)

This is a normalized accuracy, since the error is calculated as follow:

error =

∣∣∣∣perfectResult− inputResultperfectResult

∣∣∣∣ (6.21)

Where:

perfectResult: Result computed with the max accuracy configuration

(which is <2, 0, 0> in this experiment).

inputResult: Result computed using the configuration

found by mARGOt autotuner.

After having collected all these data we first verified if different values of
knobs and input features actually influence the application execution time and
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accuracy levels. Results from the regression modeling phase show that our hy-
potheses were correct. The adjusted R-squared values are greater than 0,6:

• Adjusted R-squared value for the time model: 0,89.

• Adjusted R-squared value for the accuracy model: 0,95.

In the time model, all variables have a strong influence on the resulted time.
Complete regression model has a much greater accuracy that the simple one. We
can so say that probably a better model could be a nonlinear one, since there
are relationships the linear model does not fully grasp. But we can also point
out that the adjusted R squared is satisfying in both the complete and the simple
regression model for execution time prediction. For the accuracy level model we
applied the same considerations. There have been surely nonlinear relationships
our regression modeling does not grasp at all, but the adjusted R squared is sat-
isfying also this time. We have also perform the step phase in order to eliminate
variables that do not give a huge contribution to the predictions.

However, since our framework does not have to compute in an automatic way
the perfect predictive model for all possible numbers, values and types of knobs
and metrics of interest, we performed all experimental results using complete
regression models built automatically in the data collection phase of our frame-
work. We can also stated that our methodology proposes estimations of both
workload in input and consumption analysis, and since we recomputed the limit
configuration many times and the application has local problems to solve, we
do not really need the absolute perfect predictive models and the perfect results
from them. We can accept a quite good predictive model that more or less allows
us to discriminate between configurations good and not good [Subsection 4.3.3].

Figure 6.17 gathers differences between predicted and real execution times
collected on a complete execution of the Miniapp. The chart shows the execution
time in milliseconds by varying the input (and so, with different input features,
the configuration selected can be different). Predictive models used are good for
our experiment since the prediction curve follows more or less the trend of the
one built with the actual values.

We performed the computing modeling phase using a training set made of
measurements collected performing exhaustively running on the whole set of
configurations, but not on the whole set of possible input features values, since
they are too much.

Figure 6.18 and Figure 6.19 show the distribution of the data input features
used in our experiments. On the y axis there is the number of molecules/ligands
that have a number of atoms in the range indicating by the respective bean.
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Figure 6.17: Predicted versus real execution time trend by varying the configuration.

For example, in the distribution considered there are 6 molecules with a num-
ber of atoms in the range [14,24] and there are 15 ligands with a number of atoms
in the range [25,30]. We collected results on 100 couples of molecule-ligand in
input. The distribution of the atoms in molecules is wide, since the number of
atoms in molecule can range from 5 and 200, while ligands considered can have
a number of atoms between 5 and 30.
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Figure 6.18: Distribution of number of atoms of molecules in the data in input, for this
experiment.

Figure 6.19: Distribution of number of atoms of ligands in the data in input, for this experiment.
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6.7 Application Case Study: Configuration Selection

In this section we show results regarding the difference in configuration selection
of the two search methods evaluated. Table 6.5 show several limit configuration
computation results collected using exhaustive and precimonoius-like methods,
with different constraint values related to the computation of a single input.

Table 6.5: Summary of configuration selected by the two search methods used.
Constraint value and time used are in milliseconds.

Search method Time
constraint on
a single input
(milliseconds)

Configuration
selected

Time used for
configuration
selected
(milliseconds)

EXHAUSTIVE

6000 <2,1,0> 5790

5000 <2,2,0> 4875

4000 <1,2,1> 3978

3000 <1,1,2> 2976

2000 <2,4,0> 1985

1000 <1,1,3> 974

PRECIMONIOUS

6000 <2,1,0> 5790

5000 <2,2,0> 4875

4000 <1,2,1> 3978

3000 <1,1,2> 2976

2000 <2,4,0> 1985

1000 <1,1,3> 974

The configuration selected from the exhaustive search strategy for the dif-
ferent constraint values is always the same selected from the precimonious-like
search, and it is always the optimal one. In the last column there is the time value
predicted for the computation of a single average input of the workload, whose
features are the average values computed from the feature distributions built in
the Montecarlo sampling phase. We can see that, for example, with a time con-
straint equal to 6000 milliseconds and average input features, it has been selected
a configuration which allows the execution of the average input to be less than
the constraint, and in particular, to be equal to the predicted time of 5790 mil-
liseconds. Precimonious-like method is not exhaustive, but our results show that
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in this experiment it has always found the optimal solution, using less time than
the exhaustive search method.

6.7.1 Global Constraint Satisfaction

As in tests performed using synthetic functions, we have collected results on
several executions providing significant time-to-solution values: starting from a
time-to-solution equal to 850000 milliseconds, where the application can be suc-
cessfully executed at maximum accuracy level, to a time-to-solution not large
enough to allow the complete execution within that constraint at the minimum
accuracy level (230000 milliseconds). Values collected are shown in Figure 6.20,
Figure 6.21 and Figure 6.22. The accuracy level has been normalized between
0, which corresponds to the minimum level of accuracy, and 100, which cor-
responds to the maximum level of accuracy. The time-to-solution values are
expressed in milliseconds. Synchronization points are set every 20% of the in-
puts. We performed experiments using 100 inputs, so we recomputed the limit
configuration every 20 inputs done.

Figure 6.20 shows the normalized accuracy values by varying the time-to-
solution given to the application.

Figure 6.21 shows the percentage of remaining time by varying the time-to-
solution given to the application.

Finally, Figure 6.22 shows the percentage of inputs successfully completed by
the application within the given time-to-solution, by varying the time-to-solution
constraint itself. This percentage is less than 100% in correspondence with a
negative percentage of remaining time.

The overall shapes follow the trend found in experiments with quadratic and
DTLZ 2 functions. Therefore, the same considerations regarding the experi-
ment with the quadratic function in perfect and with low noise conditions can
be applied also to these results. The average accuracy level decreases with the
decreasing of the time-to-solution given. The percentage of remaining time is
greater than zero in all the runs except for the last one, where it is not possible
to end the application execution within the given constraint (230000 millisec-
onds) since the relative accuracy level is already at the minimum level. Thanks
to our framework we are able to stay in the global constraint given and also in
some cases we are able to obtain a substantial gain in time-to-solution with re-
spect to the error introduced. This quantity of time saved can be thus used for
example to perform some runs on some inputs that gave very inaccurate results
or, on the contrary, in the case of this specific application, to find more precise
matches between couples of molecule-ligand that at a first run have obtained a
good matching value.
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Figure 6.20: Average accuracy trend by varying the time to solution.

Figure 6.21: Percentage of remaining time trend by varying the time to solution.

Figure 6.22: Trend of the percentage of inputs successfully completed by varying the time to
solution.
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CHAPTER7
Conclusions and Future Works

7.1 Summary, Benefits and Limitations

In this thesis, we have faced some important issues related to the High Perfor-
mance Computing field. We address the problem of both performance modeling
and performance automatic management. We focus on the HPC context where
environments are parallel and distributed, with no shared memory. The specific
problem we dealt with concerns the satisfaction of a global constraint (mostly
regarding performance) in HPC applications with input variability. This global
constraint is given in terms of a particular metric-to-solution that the applica-
tion must meet. In HPC, popular metric-to-solutions are the Time-to-Solution or
Energy-to-Solution, since these are the main optimization areas. The difficulty in
solving this problem arises from the fact that many HPC applications have unpre-
dictable behavior as it strongly depends not only on the load of the input data but
also on the characteristics of the inputs themselves. We also give a contribution
in the investigation of the use of an autotuner in a proactive way, for choosing
how the application must be executed based essentially only on particular data
input features to compute.

Our solution consists of providing a framework to enable job scheduling in
a distributed environment with no shared memory and to configure processes
for respecting metrics-to-solution constraints, in particular time-to-solution con-
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straints, which are the most required in HPC field. The framework developed
has a modeling module, which deals with the automatic computation of predic-
tive models for the metrics of interest. They are used both in the computation
of the limit configuration and in the calculation of the list of operating points to
pass to the autotuner locally. The methodology proposes a method for estimating
the distribution of the data in input without having to read them all. It is based
on the Montecarlo sampling technique.

The first advantage of our solution consists surely of the easiness of integra-
tion in the application. Ipazia framework must be configured using configuration
XML files, thus it is completely independent of the application internal struc-
ture. Our framework has been developed to be interfaced with different autotuner
frameworks, since the mARGOt that we used is not integrated in our framework.
We also proposed different methods for spreading the autotuning knowledge in
worker processes, that can be applied depending on the physical structures of the
machines used.

Another advantage is the introduction of the periodic update limit configu-
ration mechanism, that allows the application to be successfully tolerant of low
noise levels, as shown in Chapter 6.

Our experiments show that the approach proposed in this thesis has proved
to be effective in the applications considered and it can actually give a real con-
tribution to the HPC problems described in Chapter 2 and in Section 4.2. The
majority of experiments we have done show that Ipazia framework succeeded in
guaranteeing the execution of all inputs within the time to solution constraint, in
case the noise introduced is restrained.

Overheads values collected show that a distributed solution using MPI does
not introduced excessive communication overheads and it is quite faster for per-
forming these operations, but it can be improved as well. Overheads values intro-
duced by the Ipazia framework, instead, are not negligible. The latency resulting
from access to R has a big impact on the time to search the limit configuration.
Sure, a possible limitation of this approach can be identified in the fact that our
framework can choose a configuration that is not the best one, since through the
Montecarlo sampling method it builds an estimated distribution of the data in
input. However, this limitation can be absorbed since, in the context we have
addressed, obtaining optimal values in the search of the global limit constraint to
spread to workers is unfeasible due to the huge amount of data in inputs.
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7.2 Future Works

The methodology and the framework developed can be further improved and
expanded, by introducing several aspects:

• Introducing a better automatic building framework of predictive models.
This can be an improved bound to the automatic model creation alone. We
can think of integrating an external framework that computes in an auto-
matic way, different types of predictive models and chooses in autonomy
the best one to provide to our framework. Types used must take into ac-
count also machine learning mechanisms, in order to create very precise
models when relationships are not so evident.

• Online learning: It is in some way an expansion of the automatic building
models phase, but this also must wrap the profiling phase part of the ap-
plication. With this improvement our framework can be able to generate
predictive models in a complete automatic way, without that the user must
provide any information regarding the behavior of metrics of interest with
respect to knobs and input features.

• More heuristics: In case the design space of knobs, features and metrics is
very large, other heuristics can be used in the limit configuration selection
part. Precimonious-like heuristic that we have used is so fast, but in the
worst case, that is when the satisfying configuration is situated in the final
part of the configuration list, its performing time reaches the exhaustive
performing time. Therefore, another improvement is to take into account
heuristics that also in the worst case do not explore all the decision tree.

• Apply other topologies for MPI communication. We can extend our re-
search by further studying alternative communication topologies for dis-
seminating information through processes.
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