
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Data-driven attitude control design for
multirotor UAVs

Advisor: Prof. Marco LOVERA
Co-Advisor: Ing. Pietro PANIZZA

Ing. Davide INVERNIZZI
Ing. Mattia GIURATO

Thesis by:
Thibaud Chupin Matr. 821382

Academic Year 2015–2016





Voici mon secret. Il est très simple: on ne voit bien qu’avec le cœur.
L’essentiel est invisible pour les yeux.

– Le Renard, Dans Le Petit Prince, Antoine de Saint Exupéry

Here is my secret. It is very simple: It is only with the heart that one can
see rightly; what is essential is invisible to the eye.

– The Fox, In The Little Prince, Antoine de Saint Exupéry





Acknowledgements

Research is always a collaborative effort and it would be remiss of me if I
did not thank all those who helped.

I would like to like to express my deep gratitude to Professor Lovera
for offering me the opportunity to work on a project this interesting. His
patience and guidance were essential to the completion of this work.

I must also thank Professor Ferrigno and Professor De Momi for their
support during these last months. Without their encouragement I may never
have graduated.

I would also like to thank Pietro Panizza, Davide Invernizzi and Mattia
Giurato for their help. Without their understanding of control theory and
quadrotors I doubt whether I would ever have been able to finish.

Finally I would like to thank my parents for always believing in me even
when I was ready to give up.

I





Abstract

Small multirotor unmanned aerial vehicles (UAV) are a ground-breaking
invention. They have made accessible to hobbyists and professionals alike
technologies that, until recently, were prohibitively expensive. They are used
by farmers to survey their fields and evaluate their fertility, by videographers
looking to capture impressive images in remote and inaccessible areas or by
power companies to monitor the state of high voltage power lines for example.
These are but a sample of the infinite applications of such vehicles. These
vehicles are, simple , sturdy and affordable. The downside is the relative
complexity of the control schemes required to pilot them. A complex attitude
control system is required to make the vehicle controllable.

The most complex part of a multirotor is the control software imple-
menting the attitude and position control loops. In traditional controller
synthesis a prerequisite is the availability of an accurate model of the system
the development of which is non-trivial. An alternative approach is offered by
so-called data-driven methods. These methods identify a suitable controller
by solving a parameter identification problem and thus avoid the need to
develop a model.

The goal of this thesis is to use the latter methods to obtain an attitude
controller with performance at least as good as what has been previously
achieved with traditional methods. In detail, the reasoning behind the choice
of the specific controller tuning algorithm will be presented following which
the methodology used to develop the controllers in practice will be exposed.
Most importantly, the results obtained from both a simulation of the system
and experimental tests will be shown.
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Introduction

Throughout history the development of heavier than air vehicles can gen-
erally be split between fixed wing aircraft (i.e.aeroplanes) and rotorcraft
(i.e.helicopters). The former use engines aligned along the longitudinal axis
of the vehicle to provide forward thrust, fixed wings for lift and a system
of control surfaces to generate the control torques and forces. The latter
rely on a single large main rotor where the pitch angle of each blade can
be controlled which provides both lift and thrust as well as a smaller rotor
to provide a counter-torque. The vehicle is then controlled by varying the
individual pitch of the rotor blades over the course of each rotation. With
few exceptions, such as tilt-wing aircraft that have elements of both fixed and
rotary wing aircraft, this separation has remained accurate until recently.

Multirotor vehicles have emerged as a radically different approach to
heavier than air flight. These are rotary wing aircraft that, instead of
depending on a large main rotor for lift and control, employ many smaller
rotors. Whereas a single large rotor requires a powerful (and thus expensive)
motor to power, smaller rotors can be powered with smaller motors whose
cumulative cost is less than the single large motor.

The downside is that the number of motors significantly complicates the
control scheme. Simple rotations and translations now require the combined
use of several motors which, in turn, requires a complex on-board flight
control unit (FCU). This FCU usually implements the different control loops
using data from an on-board inertial measurement unit (IMU) that provides
a continuously updated view of the aircraft’s orientation.

In turn the reduction in costs has created new opportunities: multi rotor
drones are used for low-cost aerial surveying and mapping, airborne video
and photography or, more recently, delivery. This leads to a wide variety of
payloads with different sizes and weights. This wide range of applications has
also lead to a wide variety of vehicles: multirotors with three, four, six or even
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eight rotors are quite common. Of these, the most common configuration
is without a doubt the quadrotor: a machine with with four rotors. These
have been widely used to fly small payloads in the neighbourhood of 1kg,
are relatively low cost and simple to control.

Thesis Description

The problem of attitude control in quadrotors is the focus of this thesis.
With such a wide variety of vehicles sizes and applications a one-size-fits-all
approach cannot provide satisfactory results. The individual attitude con-
trollers must be tuned manually to achieve acceptable levels of performance.
This is usually done by first producing an accurate physical model of the
quadcopter before applying classical control theory methods such as H∞
tuning to synthesise a suitable controller. This procedure is long, complex
but most of all, is only performed once over the lifetime of the vehicle and
cannot account for the degradation of the components as they age.

Data-driven methods represent an alternate approach to the controller
synthesis problem. Instead of requiring and accurate model of the system
they rely entirely on the availability of a set of input-output data measured
in open loop conditions and directly produce the parameters of a controller
minimising a specified cost criterion.

These approaches are attractive firstly because they do not require an
accurate model of the system to be controlled but most of all because they
can be easily re-run to account for changes in the hardware of the system.
One could for example periodically re-tune the controllers to account for
the aging of the components or even temperature variations. It may also be
possible to leverage this approach to automatically re-tune the controllers in
flight to account for the specific size and shape of the payload.

This thesis represents a single early step on the way to such auto-tuning
systems. In it the applicability of a specific data-driven controller synthesis
technique: Virtual Reference Feedback Tuning to the pitch control loop and
the performance levels that can be achieved are explored. The results were
compared with a pre-existing H∞ -tuned controller.
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Thesis Structure

The first chapter of this thesis aims to provide the reader with a more in-depth
understanding of multirotor systems in general and, considering quadrotors
specifically, the design considerations behind their structure. The second
half of the chapter concerns itself with an explanation of how a quadrotor
moves and turns, which control inputs are required. This leads us to consider
the individual pitch, roll and yaw control loops and their structure.

The second chapter looks at controller tuning, comparing the classical
approach with model-reference based methods. In talking about the latter
model-based and data-driven approaches were considered before several differ-
ent data-driven controller synthesis methods were detailed. After explaining
why VRFT is the better choice for this problem an in depth explanation of
this method is provided.

The third chapter looks at how the requirements on the system were
translated for the VRFT method and how a known model can be used to
guide the VRFT procedure. It shows how the simulated model was built
from the pre-existing knowledge of the machine and how this knowledge
was used to inform the structure of the reference models used to specify
the performance for the VRFT. Finally it shows how a set of input-output
data was simulated to be used for the VRFT and the performance of the
simulated model.

The fourth and final chapter presents the specifics of the actual quadrotor
that was used for which the controller was tuned. It presents a brief overview
of the hardware components and the test-bed. It then shows how the
input-output data required for VRFT was collected and processed, how the
reference models used were identified and finally it presents the results of
the experiments testing campaign.
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Chapter 1

Quadrotors & Attitude
Control

Quadrotors are multi-rotor aerial vehicles that exploit differential thrust from
their motors to move. Whilst quadrotors are the most common form of multi-
rotor in use today they are not by any means the only one: configurations
with three (tricopters), six (hexacopters) and eight rotors (octocopters) have
also seen significant use.

Most multi-rotor designs strive to use relatively inexpensive commodity
motors to keep the system affordable. To that end, when trying to increase
the payload of the system it is often preferable to increase the number of
motors instead of sourcing more powerful and more expensive motors capable
of driving larger propellers. This naturally increases the effective payload
of the system as well as its redundancy. Whereas the loss of one motor
on a tricopter or a quadcopter would have disastrous consequences on the
controllability of the system, the loss of one motor on an octocopter might
be relatively unnoticeable. The downside is that increasing the number of
motors leads to a lower global efficiency compared to simply increasing the
swept area of the rotors.

Quadcopters today have emerged as the standard architecture for lightweight
systems with payloads weighing in the neighbourhood of 1 kg. They provide
acceptable levels of cost, redundancy, payload and performance and are used
widely by hobbyists and professionals alike.

In Section 1.1 the general design considerations that must be taken into
account when designing a quadcopter will be briefly discussed following which
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the control inputs necessary to achieve the various motions of the system will
be shown in Section 1.2. Finally, in Section 1.3 the various attitude control
loops will be shown.

1.1 Design Considerations

Unlike fixed wing aircraft that employ a complex system of control surfaces
to generate control forces and moments, multicopters can only vary the
thrust provided by each propeller. This can be achieved in a number of ways
each providing different trade-offs.

The most common way to vary the thrust of each propeller is to vary the
speed of each motor. This is the simplest way from both a mechanical and
control theory standpoint. By increasing or decreasing its speed, the amount
of thrust produced by each propeller can be increased or decreased. This
simplicity comes at a cost: the time constants of an electric motor spinning
at several thousand rpm are comparatively high which limits the overall
agility of the system.

A scheme that allows for faster reactions at the cost of complexity is to
tilt the arms onto which the motors are attached. In this configuration small
changes in vertical thrust can be achieved with relatively small rotations of
the arms. Whilst these can be actuated rather quickly, it is not possible to
obtain large changes to the vertical thrust without also varying the speed of
the propellers.

The fastest but most complex way of varying thrust is to control each
propeller like the main rotor of a helicopter. A mechanical linkage allows the
control system to change the pitch angle of the blades of the propeller. This
allows extremely fast changes in thrust but is significantly more complex
mechanically. This configuration is generally reserved for larger quadcopters
where the inertia of the propellers might make the previous methods too
slow.

A second important design choice is whether to adopt an X or a +
structure. In the first configuration the motors are located on each side of
the system, one at each tip of the X. In the latter configuration two motors
are situated along the longitudinal axis of the system: one in front of and
one behind the centre. The other two motors are placed along the lateral
axis of the system: one right and one left of the centre.
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The X configuration is often retained because it can provide more ro-
tational acceleration and, if a camera is attached to the system it can be
pointed forward without the landing gear being in its field of view.

The quad copter used for this work has an X configuration and fixed
pitch rotors.

1.2 Control of a Fixed Pitch Quadcopter

In a fixed pitch quadrotor the only way to vary the attitude of the system
is to intervene on the speed of the motors. Thus, with only four actuators
to control the six spatial degrees of freedom the system is underactuated.
Vertical movement as well as the pitch, roll and yaw dynamics is directly
controlled. Forward and lateral translation movements however must be
controlled with the dynamics of the whole system.

Roll

P itch

Y aw

xB

yB

zB

Figure 1.1: Illustartion of the Roll, Pitch & yaw Motions

The pitch, roll, yaw and elevation motions of the quadcopter are uncou-
pled. Changing the yaw angle does not affect the roll or pitch dynamics
for example. From a practical standpoint this means that the problem of
designing a controller can be reduced from a MIMO problem to a set of
independent SISO problems. The outputs of the different controllers are
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simply summed to obtain a combined motion.

Additionally, unlike helicopters, quadrotors do not require anti-torque tail
rotors. This is achieved by having half of the propellers rotate in a clockwise
direction and half rotate in a counterclockwise direction. As shown in Figure
1.2, on the vehicle used for this work, rotors 1 (front left) and 3 (rear right)
rotate clockwise whilst rotors 2 (front right) and 4 (rear left) rotate counter
clockwise.

1 2

34

yB

xB

zB

Figure 1.2: Rotation directions of the quadrotor propellers

1.2.1 Elevation

To maintain the quadcopter in stable hovering flight a base speed (ΩH)
corresponding to a nominal rpm must be applied to all the propellers to
provide a thrust sufficient to counter gravitational effects. To fly upwards or
downwards it is sufficient to vary the speed of all four rotors by the same
amount δΩT such that

Ω1,2,3,4 = ΩH + δΩT (1.1)

where Ω1, Ω2, Ω3 and Ω4 are respectively the speeds of rotors 1, 2, 3 and 4.
This generates a vertical force along the zB axis.

1.2.2 Roll

Roll motion (a rotation around the longitudinal axis) is achieved by increasing
the speed of the rotors on the left of quadcopter (1, 4) by some amount
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δΩR and decreasing the speed of the rotors on the right (2, 3) by the same
amount. This generates a torque around the xB axis of the quadcopter.

Ω1,4 = ΩH + δΩR

Ω2,3 = ΩH − δΩR.
(1.2)

1.2.3 Pitch

Pitch motion (a rotation around the lateral axis) is obtained by increasing
the speed of the rotors on the front of the quadcopter (1, 2) by some amount
δΩP and decreasing the speed of the rotors on the rear (3, 4) by the same
amount. This generates a torque around the yB axis of the quadcopter.

Ω1,2 = ΩH + δΩP

Ω3,4 = ΩH − δΩP .
(1.3)

1.2.4 Yaw

Yaw motion (a rotation around the vertical axis) is achieved by increasing the
speed of the clockwise turning rotors by some amount δΩY and decreasing
the speed of the counterclockwise turning rotors by the same amount. This
generates an imbalance of angular momenta around the zB axis which causes
the system to rotate around the vertical (zB) axis .

Ω1,3 = ΩH + δΩY

Ω2,4 = ΩH − δΩY .
(1.4)

1.2.5 Longitudinal & Lateral translation

Longitudinal and lateral motions cannot be controlled directly with just
four control variables. Instead the dynamics of the entire system are used
to obtain these motions. Specifically, to move the quadcopter forward the
system is tilted forward (pitched forward). To move backward the opposite
motion is applied. The same reasoning applies to lateral translations where
instead of tilting around the pitch axis the system is rolled left and right.

9



1.3 The Attitude Control Loops

A closed loop control system is required in order to precisely control the
orientation of the aircraft. In Section 1.2 we showed that the rotational
degrees of freedom of the vehicle are uncoupled and that the attitude control
problem can be viewed as a set of independent SISO problems.

When looking at a X -frame quadcopter, after removing any bodywork
and aerodynamic fairings, it can be quite difficult to differentiate the front
and the sides of the system. This symmetry is exploited when designing the
control system: the pitch and roll control loops can generally be considered
identical. Only the yaw regulation loop differs.

Rather counter-intuitively the pitch and roll loops are stable. They
must however be extremely reactive in order to compensate for external
disturbances such as wind gusts.Thus, to maintain the vehicle in stable flight
it is essential that these control loops be as fast as possible. The performance
of the yaw control loop by contrast is imposed not by physical imperatives but
by the ability of the pilot. Whilst it would be possible to achieve extremely
high turn rates a human pilot must be able to control the vehicle and as such
the bandwidth of this control loop is kept artificially low. This difference is
apparent when comparing the structure of the pitch, roll and yaw control
loops. On the quadcopter used for this work the pitch and roll control are
implemented with a nested controller scheme whilst the yaw control loop
uses a simpler single-loop architecture.

1.3.1 The Pitch Control Loop

The pitch control loop employs two nested loops to achieve the best possible
performance. This is due to the fact that the pitch rate dynamics of the
system, controlled by modifying the speed of the rotors, are considerably
faster than the pitch angle dynamics.

PD(z) PID(z) Quadrotor
Pitch Dynamics

Mθo qo

q

θ

−−

Figure 1.3: The pitch control loop
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The controllers implemented in the firmware of our quadcopter have a
fixed structure. The outer loop controller is a PD whereas the inner loop
controller is a PID. These controllers are expressed in the ideal parallel form

PD(s) = Kpi + Kdi
s

Tf s + 1

PID(s) = Kpo + Kii

s
+ Kdi

s

Tf s + 1

(1.5)

where Kpi , Kii and Kdi
are respectively the proportional, integral and

derivative gains of the the PID controller, Kpo and Kdo are respectively the
proportional and derivative gains of the the PD controller and Tf is the filter
time constant.

The control variable produced by the inner controller is the torque around
the pitch axis. The real input to the plant however is the difference in speed
between the front rotors (numbers 1 & 2) and the rear rotors (numbers 3 & 4).
The transformation from a torque to a speed difference is the responsibility
of the mixer matrix χ.

Consider the fact that each propeller generates a vertical thrust and, due
to the distance between the centre of the propeller and the centre of mass
of the vehicle, a torque. Consequently each propellers contributes to the
vertical thrust T and the moments L, M and N around, respectively, the
pitch, roll and yaw axes. It can be shown that the cumulative force generated
by the propellers is

FP rops =

 0
0

KT

(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4
)
 (1.6)

where Ωi is the rotational speed of the i-th motor and KT is a known constant.
It can also be shown that cumulative moments L, M and N around the xB,
yB and zB axes are

Mprops =

L

M

N

 =


KT

b√
2
(
Ω2

1 − Ω2
2 − Ω2

3 + Ω2
4
)

KT
b√
2
(
Ω2

1 + Ω2
2 − Ω2

3 − Ω2
4
)

KQ

(
−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4
)
 (1.7)

where KQ is another known constant. The forces and moments can be
rearranged in order to isolate on one side L, M , N and T and on the other
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3 and Ω2

4


T
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b√
2 −KT

b√
2 −KT

b√
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b√
2

KT
b√
2 KT

b√
2 −KT

b√
2 −KT

b√
2

KQ KQ KQ KQ




Ω2
1

Ω2
2

Ω2
3

Ω2
4



= χ


Ω2

1
Ω2

2
Ω2

3
Ω2

4


(1.8)

where χ is the mixer matrix which relates the required thrusts and moments
to around each axis to the rotational speed of each propeller.

1.3.2 The Roll Control Loop

The roll control loop as implemented on the quadcopter that was used for this
work is identical to the pitch control described in Section 1.3.1. It differs only
in the pairs of rotors it considers. The input to the plant is the difference in
speed between the right rotors (numbers 1 & 4) and the left rotors (number
2 & 3).

1.3.3 The Yaw Control Loop

Due to its lower bandwidth requirements the Yaw control loop is the simplest
of the attitude control loops.

PI(s) Quadrotor
Roll Dynamics

qo eq N q

−

Figure 1.4: The yaw control loop

On this quadcopter the controller is implemented as a simple PI expressed
in the ideal parallel form

PI(s) = Kp + Ki
1
s

(1.9)
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which controls the angular rate of the system around the yaw axis. Unlike the
pitch and roll loops the yaw control loop groups the motors by the direction
of rotation of the propellers. The real control input is the difference in speed
between the clockwise turning and the counterclockwise turning propellers.
The transformation from an angular momentum to a speed difference is
assured by the mixer matrix.
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Chapter 2

Data Driven Control
Methods: State of the Art

Virtual Reference Feedback Tuning (VRFT) and its application to the
problem of attitude control is the focus of this thesis. VRFT is a data-driven
controller synthesis technique, part of a more recent branch of control theory
that, instead of relying on the availability of a model, depend only on the
existence of a suitable set of input output data.

In Section 2.1 we will discuss the traditional approach to controller
design and specifically look at H∞ synthesis. In Section 2.2 we will explore
model-reference methods, comparing model-based and data-driven approaches.
Finally in Section 2.2.2 I will detail the virtual reference feedback tuning
approach.

2.1 The Classical Approach

In the traditional approach to controller synthesis the requirements on the
closed loop behaviour of the system are expressed as simple conditions on, for
example, the bandwidth of the system or its disturbance rejection properties.
In addition some robustness requirements may be considered such as requiring
a certain gain and phase margin.

One such method is H∞ synthesis. In this framework the requirements
on the closed loop system are expressed as constraints on the H∞ norm
of its transfer function. This framework can extend the classical synthesis
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techniques to multi-loop and MIMO control architectures. However, practical
considerations have slowed its adoption: whereas industrial controllers usually
have a decentralised architecture employing many simple controllers the H∞
synthesis produces a monolithic high-order controller.

P (s)

K(s; θ)

u

w z

Figure 2.1: The standard form for structured H∞ synthesis

Structured H∞ synthesis is a solution to this problem. All the non
tunable blocks of the system are combined into a single block P (s) and all
the tunable elements are merged into a single structured controller K(s; θ)
parametrised in θ.

Solving the H∞ problem consists in identifying the parameter vector θ

that minimises

‖Tw→z (P (s), K(s; θ))‖∞ (2.1)

subject to the constraint that K(s; θ) stabilises P (s) where Tw→z(P (s), K(s; θ))
is the closed loop transfer function from w to z on which the requirements
the requirements have been imposed.

2.2 Model-Reference Controller Tuning

Model-reference approaches to controller tuning differ from traditional meth-
ods in how the requirements for the controller are specified. Instead of
providing explicit limits on overshoot, bandwidth or response time the re-
quirements are provided in the form of a reference model for the closed loop
behaviour of the system.

The objective is to design a controller such that the difference between
the reference model and the actual closed-loop behaviour of the system is as
small as possible.

Consider the closed loop system shown in Figure 2.2 with the stable
linear SISO plant G(z), the controller C(z; ρ) parametrised in ρ and the
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C(z; ρ) G
r e u y

−

ν

Figure 2.2: A generic closed loop system with a single degree of freedom controller and
a disturbance on the output

stable strictly proper reference model MR(z). The objective of minimising
the difference between the reference model and actual closed loop transfer
functions can be formulated as

Jmr(ρ) =
∥∥∥∥MR(z) − C(z; ρ)G(z)

1 + C(z; ρ)G(z)

∥∥∥∥2

2
. (2.2)

This is not the only possible control objective. Indeed, different methods
usually specify their own but they are usually similar in intent. In this
specific case the ideal controller C0 is

C0(z) = M(z)
G(z) (1 − M(z)) . (2.3)

We can identify two approaches to solving this problem:

• Model-Based approaches assume that a detailed and reliable model
of the plant is available in order to directly compute the ideal controller.

• Data-Driven approaches attempt to minimise the control objective
JMR(ρ) by solving a parameter optimisation problem without first
estimating a model of the plant.

The following section will be dedicated to detailing both approaches and
their limitations. We will also rapidly introduce several algorithms that
implement data-driven approaches and explain their specific limitations in
order to justify our decision to use VRFT.

2.2.1 Model-Based Control

As previously noted, model-based approaches solve the model-reference
problem by assuming that a plant model is available. This model may be
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derived from an understanding of the underlying physics or obtained with an
identification procedure. This requires the collection of a sufficiently large
set of input-output data from the plant in open-loop conditions. The choice
of a high order model reduces the modelling error to such a level that it can
be considered negligible in later steps. The identified model is then used to
compute a full-order controller that minimises the control objective.

In many applications however the type of controller is pre-determined.
Many industrial processes, for example, use pre-defined PID blocks and the
control procedure is limited to tuning the PID gains. If the tuning method
produces only high-order controllers an additional model-order reduction pass.
This step is generally problematic since any stability guarantees that were
formulated for the full-order controller may not transfer to the reduced-order
controller. Furthermore whilst the optimality of the full-order controller can
be guaranteed that is not the case for the reduced-controller. It may not even
be the best controller in its class. For this reason, structured model-based
control techniques have been developed using an approach similar to that of
structured H∞ control.

2.2.2 Data-Driven Control

Data-driven controller tuning methods skip the modelling phase entirely and
instead reformulate the controller identification procedure as a parameter
optimisation problem in which the optimisation is carried out directly on
the controller parameters.

The principal advantage of data-driven methods compared to their model-
based brethren is their ability to tune low-order controllers directly whereas
model-based methods may produce n without having to first pass through a
model order reduction stage. This ensures that any stability or optimality
guarantees provided by these methods will not be lost. Furthermore, the
achieved performance of the controllers is not linked to the techniques used
to model the plant or the order of the identified model.

In practice there are many ways to achieve this objective. In this section
we will detail several methods. In particular we will explain the functioning
of Iterative FeedbackTuning (IFT), Correlation Based Tuning (CBT) and
Virtual Reference Feedback Tuning (VRFT).
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Iterative Feedback Tuning

IFT, originally described in [6], is an iterative method that uses a gradient-
descent algorithm to compute a local minimum of the cost function. The
key observation of IFT is that the chosen cost criterion can be estimated by
using carefully designed experiments on the plant.

Consider a generic closed loop system with a single degree of freedom
controller as in Figure 2.2. Given a reference model MR(z) the desired output
of the plant in response to a reference input r is

yd = MR(z)r (2.4)

and consequently, the error between the achieved and desired responses is

ỹ(ρ) = y(ρ) − yd (2.5)

where ρ is the parameter vector and the (ρ)-argument indicates that the
terms were collected whilst the controller C(z; ρ) was in place. The control
objective that IFT seeks to minimise is the following:

J(ρ) = 1
2N

E

[
N∑

t=1
[Ly(z)ỹ(ρ)]2 + λ

N∑
t=1

[Lu(z)u(ρ)]2
]

(2.6)

where N is the number of points in the input-output dataset, Ly(z) and Lu(z)
are frequency weighting terms and u(ρ) is the control variable measured with
the controller C(z; ρ) in place.

This criterion considers the L2-norm of the frequency weighted error
between the achieved and desired responses and penalises the frequency
weighted control action. An algebraic solution to this problem would require
knowledge of the partial derivatives ∂ỹ

∂ρ(ρ) and ∂u
∂ρ (ρ) which are unknown.

IFT elegantly repurposes the plant itself to solve the problem. Indeed,
through careful choice of the input signals and simple computations the
derivatives can be estimated as described in [6].

The estimate of the gradient can be updated at each iteration using these
simple experiments in order to asymptotically approach the local optimum
of the control objective. At each iteration these experiments are re-run and
the gradient is estimated.
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Therein lies the main limitation of IFT and gradient-descent based
methods in general: it can only guarantee a local optimum. Thus, the quality
of the achieved controller depends in large part on the choice of the starting
guess for the parameters.

A very attractive property of the method is that it is even applicable to
non-linear systems. In this case the system should simply be linearised at
every iteration.

Correlation Based Tuning

CBT [8] is a one-shot method to obtain a controller that minimises the
control objective whilst only requiring that the input signal provided to the
plant be persistently exciting. It re-frames the model-reference problem as a
decorrelation problem using a single set of input-output data.

G 1 − MR C

MR

r +
v
+ y − ε

+

open-loop experiment

Figure 2.3: Tuning scheme for correlation based tuning

Consider the scheme in figure 2.3. If the model matching problem is
perfectly solved then

MR = C0G

1 + C0G
⇒ 1 − MR = 1

1 + C0G
(2.7)

and consequently

MR = G(1 − MR)C0 (2.8)

as in the block diagram. Thus, the error ε(t; θ) can be computed as

ε(t; θ) = MRr − C(θ)(1 − MR)y
= MRr − C(θ)(1 − MR)r − C(θ)(1 − MR)v.

(2.9)
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The goal is to find the optimal parameter vector θ such that the error
ε(t; θ) is uncorrelated from the reference signal r. To that end an extended
instrumental variable ζ(t) correlated with r is introduced.

ζ(t) = [rL(t + l) . . . rL(t) . . . rl(t − l)]T (2.10)

where l is a sufficiently large integer and rL is a suitably filtered version of r.
The exact form of the filter is discussed in [8]. The correlation function is
defined as

fN,l(θ) = 1
N

N∑
t=1

ζ(t)ε(t, θ) (2.11)

and the correlation criterion to minimise is

JN, l = fT
N,l(θ)fN,l(θ). (2.12)

It can be demonstrated that the optimal parameters for (2.12) asymptot-
ically converge to the optimisers of the model-reference problem.

Virtual Reference Feedback Tuning

VRFT [2], like CBT is a one-shot method that only requires that the input to
the plant be persistently exciting in order to minimise the control objective.
In practice however the achieved parametrised controller will only be near-
optimal since the probability that the ideal controller (i.e.the controller that
perfectly solves the model-matching problem) belongs to the chosen controller
family is vanishingly small.

Consider once again a parametrised single degree of freedom controller
inserted into a closed loop system as in Figure 2.2. The key concept underlying
VRFT is that if the error signal e(t) and the plant input signal u(t) are
known then the model matching problem can be reformulated as a parameter
identification problem on the controller. Specifically, the methods seeks to
minimise the parameter vector θ such that the criterion

J(θ) = E
[
(uL(t) − C(z; θ)eL(t))2

]
(2.13)
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where L is an appropriate pre-filter for the data is minimised. Conveniently
this criterion is convex and can be expressed entirely in terms of the input-
output data collected from the plant. Accordingly, the optimal parameter
vector is

θ̂N =
[∑

t

ϕL(t)ϕL(t)T

]−1∑
t

ϕL(t)u(t). (2.14)

In the case of noisy measurements the method can be extended with
the use of a second input-output dataset using the same input signal and
instrumental variable based approach. This however may not always be
possible. Alternatively the noise can be estimated with an appropriate ARX
model however identifying the correct order for the model is non-trivial and
an incorrect choice will lead to unsatisfactory performance.

2.2.3 Comparison of the data-driven methods

The three data-driven methods presented previously all have different limita-
tions and require different trade-offs.

IFT, being an iterative method, is comparatively slow and requires several
experiments on the plant at each iteration. Moreover it can only guarantee
that the result is close to the local minimum of the cost function.

CBT is an extremely efficient method. It only requires one set of input-
output data and some relatively simple calculations to to tune a globally
optimal controller within the bounds of the chosen controller family.

VRFT is also very efficient computationally and data-wise. Furthermore,
it has been extended in [4] to tune nested control loops of arbitrary depths
with a one shot procedure. The principal drawback of VRFT is the issue of
noise. None of the proposed solutions are ideal.

Whilst an iterative procedure like IFT would be technically acceptable,
the turnaround time due to many required experiments disqualified the
method from our consideration. In comparison CBT and VRFT both offer
extremely fast turnaround times since many controllers can be tuned from the
same set of input-output data by simply changing the reference model. This
allowed us to interactively explore the performance limitations of the system.
These fast turnaround times also make it easy to re-tune the controllers to
compensate for payload changes or the degradation of the actuators due to
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fatigue and temperature variations.

The final choice of VRFT was due to two predominant considerations:

• VRFT has already been successfully applied to the cascade control
problem and a MATLAB toolbox implementing the method is available
[3].

• significant pre-existing work exists documenting the application of
VRFT to quad-rotors (e.g., [7]).

Having detailed the reasons for the choice of VRFT to develop the
controllers the method will now be presented in more detail.

2.3 VRFT In Detail

In VRFT the aim is to identify the parameters of a controller such that the
complementary sensitivity of the system aligns with a user-specified reference
model describing the desired behaviour of the closed loop system. This is
achieved without requiring any knowledge of the structure of the system and
using only open-loop measurements.

The method is direct, it does not require a prior identification of the
plant, and searches for a global optimum of the design criterion. Additionally,
if the controller complexity is restricted the produced controller is a good
approximation of the restricted complexity global optimal controller.

C(z; θ) P (z)

MR(z)

rv
e u y

−

ȳ

Figure 2.4: Tuning scheme for VRFT

The method transforms the control problem into an identification problem
that minimises the L2-norm of the mismatch between the reference model
and the actual closed loop system.

If both the input and the output of the controller are known then it is
possible to find an optimal parameter vector that achieves this goal.
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The key observation of this approach lies in the fact that this is possible
when the input signal of the reference model is chosen with care. If the input
we provide to the reference model is such that its output is equal to the
measured output of the plant we can easily calculate the tracking error of
the closed loop system.

2.3.1 A Rigorous Explanation

We assume that the plant under consideration is a linear SISO dynamical
system described by an unknown, rational transfer function P (z).

We also assume that a set of open-loop input-output data has been
collected during an experiment on the plant. The only requirement for this
experiment is that it must excite the system over the entirety of the frequency
range of interest. This experiment provides us two vectors of data-points

u = {u0, u1, u2, . . . , un}
y = {y1, y2, y3, . . . , yn} .

We must also determine a reference model that describes the desired
closed-loop behaviour of the system. Great care should be taken here to
choose a model that is physically achievable given the physical constraints of
the system. If the reference model is unachievable the controller will be of
very limited use. Let this reference model be MR(z).

Finally, we must decide on a family of controllers to tune. We restrict
our attention to the class of controllers that can be expressed as a linear
combination of linear, discrete time, transfer functions. This controller family
takes the form

C(z; θ) = βT (z)θ (2.15)

where βT (z), the vector of linear transfer functions is

βT (z) = [β1(z), β2(z) . . . βn(z)]T

and θ, the parameter vector is
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θ = [θ1, θ2 . . . θn]T .

The control objective is the minimisation of the following performance
criterion:

JMR(θ) =
∥∥∥∥(MR(z) − P (z)C(z; θ)

1 + P (z)C(z; θ)

)
W (z)

∥∥∥∥2

2

= ‖(T (z) − MR(z)) W (z)‖2
2

(2.16)

where T (z) is the complementary sensitivity function of the closed-loop
system and W (z) is a user-specified weighting function.

The control objective penalises the difference between the closed-loop
transfer function and the reference model scaled by an appropriate weighting
function. This allows us to emphasize or de-emphasize performance in certain
frequency ranges.

The presence of the parameter vector in both the numerator and the
denominator of this function makes the minimisation problem non-convex
with respect to θ which significantly increases its difficulty.

In order to make the problem tractable an equivalent, convex optimisation
criterion must be identified. Consider now the following cost function:

JN
V R(θ) = 1

N

N∑
t=1

(uL(t) − C(z; θ) eL(t))2 (2.17)

where uL(t) and eL(t) are respectively the plant input and the tracking error
multiplied by a suitable pre-filter. Its form will be discussed later. Let this
filter be L(z) and defined filtered versions of the signals u(t) and e(t) as

eL(t) = L(z)e(t)
uL(t) = L(z)u(t).

(2.18)

Through simple transformations it is possible to rewrite the criterion as
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JN
V R(θ) = 1

N

N∑
t=1

(
uL(t) − βT (z)θeL(t)

)2

= 1
N

N∑
t=1

(
uL(t) − ϕT

L(t)θ
)2

, ϕL = βT (z)eL(t).
(2.19)

Since this criterion is quadratic in θ the optimal parameter vector θ̂ is
an explicit function of the data

θ̂N =
[∑

t

ϕL(t)ϕL(t)T

]−1∑
t

ϕL(t)u(t). (2.20)

We will now show that it is possible, through an appropriate choice of
the pre-filter, to make the two cost functions (equations (2.16) and (2.17))
equivalent.

Let JV R(θ) be the asymptotic counterpart of JN
V R(θ). If u(t) and y(t)

can be considered realisations of stationary stochastic processes then as the
amount of data grows (i.e., N → ∞) the minimum θ̂N of JN

V R(θ) converges
to the minimum of JV R(θ), θ̂.

lim
N→∞

JN
V R(θN ) = JV R(θ).

As such, the asymptotic criterion is

JV R(θ) = E
[
(uL(t) − C(z; θ)eL(t))2

]
= E

[
(L(z) (u(t) − C(z; θ)e(t)))2

]
.

(2.21)

The dependency on e(t) should be removed in order to make the criterion
depend only on the measured data. To that end we introduce rv(t), the
reference signal that would feed the closed loop system when the closed loop
transfer function is MR(z)

y(t) = MR(z)rv(t) (2.22)

from which we can deduce
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rv(t) = 1
MR(z)y(t)

= 1
MR(z)P (z)u(t).

(2.23)

The signal rv(t) is not a physical signal, it was not used in the physical
experiments to generate y(t) rather, y(t) was used to synthesise this signal.
It is a tool used in the identification of the optimal controller. It is the virtual
reference signal, the namesake of the method.

The tracking error of the closed loop system is

e(t) = rv(t) − y(t)
= rv(t) − Mr(z)rv(t)
= (1 − MR(z))rv(t)

(2.24)

and, by substituting the expression of rv(t) provided by equation (2.23) into
the tracking error (equation (2.24)) we obtain

e(t) = 1 − MR(z)
MR(z) P (z)u(t) (2.25)

By substituting this new expression for e(t) into the cost function JV R

(equation 2.21) we can rewrite the cost function as

JV R(θ) = E

[(
uL − C(θ)1 − MR

MR
PuL

)2
]

= E

[(
L

(
1 − C(θ)1 − MR

MR
P

)
u

)2
]

.

(2.26)

Under our current hypothesis, the reference model MR(z) is equal to the
closed loop transfer function of the system

MR(z) = P (z)C0(z)
1 + P (z)C0(z) (2.27)

where C0(z) is the ideal controller i.e., the controller that perfectly solves
the model matching problem. Note that in general C0(z) might not belong
to the family of parametrised controllers {C(z; θ)}, be a proper rational
transfer function or stabilise the closed loop system.
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Additionally, observe that

1 − MR(z) = 1 + P (z)C0 − P (z)C0(z)
1 + P (z)C0(z)

= 1
1 + P (z)C0(z)

(2.28)

from which

1 − C(z; θ)1 − MR(z)
MR(z) P (z) = 1

MR(z) [MR(z) − P (z)C(z; θ) (1 − MR(z))]

= 1
MR(z)

(
P (z)C0(z)

1 + P (z)C0(z) − P (z)C(z; θ)
1 + P (z)C0(z)

)
= 1

MR(z)

(
P (z) C0(z) − C(θ)

1 + P (z)C0(z)

)
.

(2.29)

If we substitute the previous result into the expression of the control
objective derived in equation (2.26) we can rewrite it in a more convenient
form

JV R(z; θ) = E

[(
P (z)C0(z) − C(z; θ)

1 + P (z)C0(z)
L(z)

MR(z)u

)2]
. (2.30)

An alternative frequency domain representation of this criterion is

JV R(θ) = 1
2π

∫ π

−π

∣∣∣∣∣P (ejω)C0(ejω) − C(ejω; θ)
1 + P (ejω)C0(ejω)

L(ejω)
MR(ejω)

∣∣∣∣∣
2

Φu(ω) dω

= 1
2π

∫ π

−π

∣∣∣∣∣
(

PC0(ejω)
1 + P (ejω)C0(ejω) − P (ejω)C(ejω; θ)

1 + P (ejω)C0(ejω)

)
L(ejω)

MR(ejω)

∣∣∣∣∣
2

Φu(ω) dω

(2.31)

where Φu(ω) is the power spectral density of the plant input u(t).

Observe that if C0(z) ∈ {C(z; θ)} and JV R(θ) has a unique minimum
then minimising JV R(θ) gives C0(z) for any choice of the filter L(z). Generally
however this is not the case and C0(z) 6∈ {C(z; θ)}.

The expression of the initial control objective JMR(z) as given in equation
(2.16) can be re-written in the following form:

28



JMR(θ) = 1
2π

∫ π

−π

∣∣∣∣∣MR(ejω) − P (ejω)C(ejω; θ)
1 + P (ejω)C(ejω; θ)

∣∣∣∣∣
2 ∣∣∣W (ejω)

∣∣∣2 dω

= 1
2π

∫ π

−π

∣∣∣∣∣ P (ejω)C0(ejω)
1 + P (ejω)C0(ejω) − P (ejω)C(ejω; θ)

1 + P (ejω)C(ejω; θ)

∣∣∣∣∣
2 ∣∣∣W (ejω)

∣∣∣2 dω.

(2.32)

There is a striking similarity between JMR and the new form of JV R. If the
filter were such that

∣∣∣L(ejω)
∣∣∣2 =

∣∣∣∣∣ MR(ejω)W (ejω)
1 + P (ejω)C(ejω; θ)

∣∣∣∣∣
2 1

Φu(ω) , ∀ω ∈ [−π, π] (2.33)

then we would have JV R(θ) = JMR(θ) and, as a consequence, minimising
JV R would be equivalent to minimising JMR. Unfortunately, this choice of
L(z) is not practical since P (z) is not known. VRFT solves this problem by
using the following pre-filter on the measured data

∣∣∣L(ejω)
∣∣∣2 =

∣∣∣(1 − MR(ejω)
)

MR(ejω)W (ejω)
∣∣∣2 1

Φu(ω) , ∀ω ∈ [−π, π]

(2.34)

With the exception of the power spectral density of the input signal Φu,
all the quantities on the right hand side of this filter are known. Φu can
be considered known only when the input signal has been selected by the
control system designer. In the general case it must be estimated.

Whilst on first approach the two different expressions of L(ejω) in equa-
tions (2.33) and (2.34) may have little in common, their parentage becomes
obvious if, exploiting (2.28), we re-write the latter as

∣∣∣L(ejω)
∣∣∣2 =

∣∣∣∣∣ MR(ejω)W (ejω)
1 + P (ejω)C0(ejω)

∣∣∣∣∣
2 1

Φu(ω) , ∀ω ∈ [−π, π] (2.35)

which makes it clear that this choice of L(ejω) is equivalent to substituting
|1 + PC(θ)|2 for |1 + PC0|2. This is a sensible choice if, as required, C(θ) is
a good approximation of C0.
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In conclusion, by a judicious choice of the pre-filter L(z) it is possible to
render the optimisation problem convex and purely quadratic in θ. This, in
turn, makes the optimisation problem trivial to solve.

2.3.2 The Method Step By Step

In summary, the VRFT procedure requires the following steps:

1. Compute the virtual reference signal rv(t) such that

y(t) = MR(z)rv(t)

and the corresponding tracking error

e(t) = rv(t) − y(t).

2. Compute the pre-filter

|L|2 = |(1 − MR) MRW |2 1
Φu

and apply it to u(t) and y(t) in order to obtain the filtered signals
uL(t) and yL(t).

3. Compute the optimal parameter vector θ̂N that minimises the cost
function JN

V R.

JN
V R(θ) = 1

N

N∑
t=1

[uL(t) − C(z; θ) eL(t)]2

2.3.3 The Problem of Noisy Data

The method as presented so far considers noiseless signals. In practice it is
rare that a signal can be considered such. Consider the case where the plant
output y(t) is affected by additive noise d(t). The measured signal ỹ(t) is
thus

ỹ(t) = P (z)u(t) + d(t) (2.36)

where P (z) is the (unknown) transfer function of the plant. It is assumed
that the input signal u(t) and the disturbance d(t) are uncorrelated. This is
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generally the case in open loop configurations. If we were to apply the VRFT
method to this noisy data the performance would be significantly affected by
noise. This is clearly evidenced by the frequency domain of the asymptotic
criterion JV R(θ). Considering the effect of the additive noise it becomes

JV R(θ) = 1
2π

∫ π

−π

∣∣∣∣∣P (ejω)C0(ejω) − C(ejω; θ)
1 + P (ejω)C0(ejω)

L(ejω)
MR(ejω)

∣∣∣∣∣
2

Φu(ω) dω

+ 1
2π

∫ π

−π

∣∣∣∣∣ C(ejω; θ)
P (ejω)C0(ejω)

∣∣∣∣∣
2

Φd(ω)dω︸ ︷︷ ︸
Bias due to disturbance

(2.37)

where Φd(ω) is the power spectral density of the disturbance. The disturbance
creates a bias in the criterion that needs to be overcome.

This is achieved with an instrumental variable method. We introduce
the quantity

ϕ̃L(t) = β(z)L(z)
(
M(z)−1 − 1

)
ỹ(t) (2.38)

as a replacement for ϕL(t) introduced in equation (2.19). We also introduce
the instrumental variable ζ(t) and compute the optimal parameter vector as

θ̂IV
N =

[
N∑

t=1
ζ(t)ϕ̃L(t)T

]−1 [ N∑
t=1

ζ(t)uL(t)
]

(2.39)

Two different choices for the instrumental variable have been proposed
in the literature.

Instrumental Variable From Repeated Experiments

Instead of performing a single experiment on the plant, two experiments
must be carried out with the same input signal. This yields three vectors of
data points

u = {u0, u1, u2, . . . , un}
ỹ = {ỹ1, ỹ2, ỹ3, . . . , ỹn}
ỹ′ =

{
ỹ′

1, ỹ′
2, ỹ′

3, . . . , ỹ′
n

}
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where ỹ and ỹ′ will be different since they depend on different realisation
of the disturbance. If the experiments are sufficiently spaced apart in time
it is reasonable to assume that the noise measured in both experiments is
uncorrelated. The instrumental variable is computed as

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ỹ′(t). (2.40)

This method has the benefit of guaranteeing that asymptotically θ̂IV = θ̂

at the cost of more experiments.

Instrumental Variable From Plant Identification

If performing multiple experiments with the same input signal is not pos-
sible or acquiring new measurements is not cost effective, an alternative,
identification based, approach has been developed.

Identify a high-order model P̂ (z) of the plant from the collected input
output data and use it to generated a simulated output

ŷ(t) = P̂ (z)u(t) (2.41)

and use this dataset to construct the instrumental variable as in the previous
scenario

ζ(t) = β(z)L(z)
(
M(z)−1 − 1

)
ˆ̃y(t). (2.42)

This method does not provide the same optimality guarantees as the
previous one since its accuracy depends on the quality of the identified model,
however it does not required any extra data.

The identification of the plant required for the computation of the instru-
mental variable does not make the method any less data-driven since the
model is not used directly to design the controller.

2.3.4 Extension to Cascade Control

The VRFT algorithm can be extended to cascade control systems with a
little extra work. A naive approach is to perform the tuning of the inner
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and outer loop sequentially. First the inner loop is tuned using the standard
approach. The inner loop is then closed and VRFT is performed on the
outer loop.

However, the VRFT method can in fact be extended to tune both the
inner and the outer controller at the same time using the same dataset as
described in [4].

Co Ci Pi Po

MRi

MRo

ro eo ei u yi yo

−− ri

ȳi

ȳo

Figure 2.5: Control and reference model

We assume that a set of open loop measurements have been taken during
an experiment on the plant. The plant input signal u(t) must be measured
as well as the inner and outer plant outputs yi(t) and yo(t). We should have
three vectors of data-points available

u = {u0, u1, u2, . . . , un}
yi = {yi1 , yi2 , yi3 , . . . , yin}
yo = {yo1 , yo2 , yo3 , . . . , yon}

We must also choose two reference models to describe the desired perfor-
mance of the inner and outer loops. Let MRi(z) be the reference model of
the inner loop and MRo(z) be the reference model of the outer loop.

We must also choose two families of controllers {Ci(z; θi)} and {Co(z; θo)}
for the inner and outer loops.

The requirements on the reference models and the controller families are
unchanged with regards to the requirements of the standard VRFT method.

The inner controller can be tuned immediately using standard VRFT since
the input-output data required for this is available. The only requirement
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imposed on the inner loop is that it be as close as possible to the reference
model.

The outer loop is slightly more complex. In this case, to apply the VRFT
algorithm we must compute a new plant model that encompasses the entirety
of the inner loop and the outer plant as well as a signal analogous to the
inner plant input u(t).

Calculating a new, extended, plant model is rather simple

G(z) = Ci(z)Pi(z)
1 + Ci(z)Pi(z)Po(z)

Considering this enlarged plant, the input is simply ri(t), the reference
signal of the inner loop. In contrast with the inner loop however this
signal takes on a physical meaning, it is no longer a virtual reference signal.
Additionally, since the original dataset was acquired in open-loop conditions
it is not part of our original dataset. Fortunately it can be computed quite
simply as

ri(t) = ei(t) + yi(t)

where the output yi(t) is part of our initial dataset and is known. The inner
tracking error ei(t) is entirely fictitious but since it derives directly from
the design of the inner plant it is rather simple to compute. If the inner
controller Ci(z) is invertible then

ei(t) = C(z; θi)−1u(t).

This calculation only yields useful results if the inner controller is
minimum-phase. If that is not the case it will have zeros located out-
side of the limit cycle. When the controller is inverted these will become
unstable poles. In turn they will cause the tracking error to diverge, making
the signal quite useless for our purposes.

Unfortunately, VRFT provides no guarantees that the controllers it pro-
duces will be minimum phase but in practice non-minimum phase controllers
only appear when the reference model is unachievable. Reducing the require-
ments on the reference model is usually sufficient to obtain a suitable inner
controller.

34



Thus, the reference input for the outer loop is

ri(t) = C(z; θi)−1u(t) + yi(t).

Once the extended plant input ri(t) is known the outer controller can be
easily found with the classic VRFT synthesis using as input-output data the
set of data-points {ri(t), yo(t)}.

2.3.5 The Cascade VRFT Method Step By Step

To summarise, in order to tune both the inner and outer controllers of a
cascade control system using a single set of data the procedure is:

1. Compute the inner virtual reference riv(t) such that

yi(t) = Mi(z)riv(t)

and the corresponding tracking error

eiv(t) = riv(t) − yi(t).

Next, compute the outer virtual reference rov(t) such that

yo(t) = Mo(z)rov(t)

and the corresponding tracking error

eov(t) = rov(t) − yo(t).

2. compute the pre-filter for the inner loop

|Li|2 = |(1 − Mi) MiWi|2
1

Φu

and apply it to the signals u(t) and ei(t) to obtain the filtered signals
uL(t) and eiL(t).

3. Compute the optimal parameter vector for the inner loop θ̂i
N that

minimises the cost function

JN
V R(θi) = 1

N

N∑
t=1

[uL(t) − Ci(z; θi) eiL(t))2 .
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4. If Ci(z) is non-minimum phase change the reference model or the
sample time. Otherwise, if Ci(z) is minimum phase calculate the
reference input ri(t) for the inner loop as

ri(t) = Ci(z; θi)u(t) + yi(t)

5. Compute the pre-filter for the outer loop

|Lo|2 = |(1 − Mo) MoWo|2 1
Φri

and apply it to the signals ri(t) and eo(t) to obtain the filtered signals
riL(t) and eoL(t).

6. Finally, estimate the optimal parameter vector for the outer loop θ̂o
N

that minimises the cost function

JN
V R(θo) = 1

N

N∑
t=1

(riL(t) − Co(z; θi) eoL(t))2 .
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Chapter 3

Simulation Results

One of the main selling points of data-driven controller tuning methods is
that they do not require a detailed mathematical description of the plant.
However, if is a model is available, it can be used as a guide to evaluate the
performance of the tuned controllers without having to run extensive tests
on the test-bed.

In Section 3.1 a model of the quadcopter will be introduced. In Section 3.2
how this model was used to refine the structure of the reference models will
be shown. In Section 3.3 the controller families for the inner and outer loops
used for VRFT will be shown and, finally, in Section 3.4 some controllers
generated with VRFT and the performance indicated by the simulations will
be shown.

3.1 Simulated Model

3.1.1 Pitch Dynamics

The quadcopter used in this work has been extensively characterised and
modelled in [5]. For the purpose of simulation the pitch dynamics of the
system can be reduced to two blocks: a simple model of the pitch dynamics
Gq(s) and an integrator used to compute the current pitch angle. This
structure is shown in Figure 3.1.

The model of the pitch dynamics obtained in the cited work
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Gq(s) 1
s

δΩ Θ

q

Figure 3.1: Simplified model of the quadcopter

Gq(s) = 0.423
s + 1.33 (3.1)

is a linearisation, in the origin, of the transfer function from δΩ, the requested
change in the speed of the propellers, to q, the pitch rate.

This transfer function does not attempt to account for any non linear
behaviours of the system such as saturations. It does not consider the
dynamics of the motors or any aerodynamic drag effects. In practice this is
not an issue as long the dynamics of the simulated system are slow enough
not to interfere with the motor dynamics.

The calculation of the pitch angle as the integral of the pitch rate repre-
sents a divergence from the real system. In the real system the pitch angle
is not directly available but is estimated as part of a sophisticated sensor
fusion algorithm by the IMU the dynamics of which are not accounted for in
this approximation. The signal Θ as computed in Figure 3.1 is the real pitch
angle.

This approximation is used for the simulations as it makes the two nested
control loops explicit.

Using a set of previously acquired input-output data this simplified
model was simulated by passing to the input (δΩ) a Pseudo Random Binary
Sequence (PRBS). The results of this simulation are show in Figure 3.2.
The measured and simulated pitch rates (q) are in agreement even if the
simulated system tends to be slower than the actual quadcopter. The pitch
angle was not included in the dataset but the simulated pitch angle was
included in the results for completeness.

3.1.2 Mixer Matrix

As discussed in Section 1.3.1, the pitch rate controller is a PID whose output
is the desired pitch moment of the quadcopter. The input of the above model

38



0 1 2 3 4 5 6 7
−0.10

−0.05

0.00

0.05

0.10

δM
(N

m
)

0 1 2 3 4 5 6 7
−100.00

0.00

100.00

q
(◦

s−
1 )

Measured Simulated

0 1 2 3 4 5 6 7

−50.00

0.00

Time (s)

Θ
(◦ )

Simulated

Figure 3.2: Comparison of the measured and simulated open loop responses of the
quadcopter
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however is the difference in speed between the front and rear propellers. The
translation from one to the other is devolved to the mixer matrix.

Recall that the mixer matrix relates the vertical thrust T and the moments
L, M and N around, respectively, the pitch, roll and yaw axes to the speeds
of all four rotors Ω1, Ω2, Ω3, Ω4 in the following manner


Ω2

1
Ω2

2
Ω2

3
Ω2

4

 = χ−1


T

L

M

N

 . (3.2)

Considering just the pitch control loop, the only non-null angular mo-
mentum term is M . We also know that the real input to the system is the
difference in speed between the front and the rear rotor. This allows us to
reduce the mixer to a single scalar:

χ = 66.67 (3.3)

3.1.3 Complete System

With this last piece of missing information the models obtained so far can
be inserted into the pitch control scheme previously presented in Figure 1.3.
The mixer matrix and the plant model combined describe the quadcopter
dynamics from the controller output to the pitch rate and the pitch angle is
produced by the integrator. The resulting control scheme is shown in Figure
3.3.

PD PID χ G 1
s

Θ0 eΘ q0 eq δM δΩP q Θ
−−

Figure 3.3: Control Scheme used to simulate the pitch dynamics

The task now is to choose appropriate reference models.
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3.2 Structure of the Reference Models

The choice of the reference model is critical to VRFT, the model should be
fast enough to obtain the best possible bandwidth without being unachievable,
but there is no need to rely on complex models to obtain satisfying levels of
performance. A second order model has been a good starting point. This
is the simplest class of models that allows us to tune both its static gain
and its bandwidth and it can also be easily extended to account for known
properties of the system such as delays.

If we were to choose the reference models without any knowledge of the
plant we would be reduced to semi-random guessing. The knowledge of the
plant that we have can be used to guide our decisions and hopefully choose a
reference model that better represents the actual closed loop transfer function
of the plant.

VRFT also provides for a user-defined weighting function to emphasize
performance in certain bands of interest. For simplicity all bands were
considered of equal importance and the inner and outer weighting functions
were defined as, respectively, Wi(z) = 1 and Wo(z) = 1.

3.2.1 Inner Reference Model

The reference model for the inner loop derives from a second order model.
It was observed algebraically that, considering a PID controller and a first
order plant model G such that

PID(s) = Ki

Kp

1 + s

s
, G(s) = a

b + s
(3.4)

the resulting closed loop transfer function would be of the form

F (s) = µ
1 + s

s2 + cs + d
(3.5)

and, to compensate for this additional zero, it was decided to add a zero to
the reference model. This zero was chosen to be in the neighbourhood of the
zero naturally emerging from the PID controller for a reasonable range of
PIDs. The resulting form of the inner reference model is thus
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Mi(s) =
ω2

ni

s2 + 2ζiωnis + ω2
ni

s + z0
z0

(3.6)

where ωni is the bandwidth of the reference model, ζi is the damping ratio
and z0 is the position of the zero.

Initially the specific bandwidth and damping ratio of the reference model
were set to achieve similar performance to what had been observed with
the pre-existing H∞ controller. During the experimental phase the reference
model would be further tuned to extract better performance from the system.

3.2.2 Outer Reference Model

The structure of the outer reference model was assigned in a similar fashion.
It was observed that the closed loop transfer function of the system could be
approximated with a second order system without any additional poles or
zeroes.

Mo(s) =
ω2

no

s2 + 2ζoωnos + ω2
no

(3.7)

where ωni is the bandwidth of the reference model and ζi is the damping
ratio.

3.3 Controller Families

The final choice to be made is the choice of the family of controllers to tune.
As discussed in Section 1.3.1 the pitch rate controller is a PID whilst the
pitch angle controller is a PD.

PD(s) = Kpo + Kdos

Tf s + 1

PID(s) = Kpi + Kii

s
+ Kdi

s

Tf s + 1

(3.8)

VRFT requires that the controller family expressed as a vector of linear
transfer functions β(z) such that the parametrised controller is
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C(z; θ) = βT (z)θ (3.9)

where θ is the parameter vector. This requirement that the controller family
be linear in the parameters means that Tf , the filter time constant of the
derivative terms cannot be tuned by the VRFT but must be set beforehand.
In the previous H∞ controller the filter time constant was manually set to
Tf = 0.01 and this value was left unchanged.

The controllers written as vectors of linear transfer functions are

PID(s) =
[
1 1

s s
]

θi

PD(s) =
[
1 s

]
θo

(3.10)

where θi and θo are, respectively, the parameter vectors for the inner and
outer controllers.

3.4 Simulation Results

Before starting the testing campaign it was decided to validate the applica-
bility of the VRFT approach to the problem of pitch control with a set of
simulations. Initially, reference models for the inner and outer loops were
developed that mimicked the behaviour of the pre-existing H∞ controllers.

One such pair on inner and outer reference models is

MRi(s) = 64s + 320
s2 + 72s + 320

MRo(s) = 16
s2 + 7.2s + 16

(3.11)

where the inner reference model (MRi) has a bandwidth of 8 rad s−1 and a
damping ratio of 0.9 and the outer reference model (MRo) has a bandwidth
of 4 rad s−1 and a damping ratio of 0.9.

The VRFT algorithm, applied with the above reference models produced
controllers with the parameters shown in Table 3.1.

A closed loop simulation of the controllers was performed to ensure that
the closed loop performance of the system is sufficiently close to the the
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Inner Controller (PID) Outer Controller (PD)

Kpi Kii Kdi
Tf Kpo Kdo Tf

VRFT Tuned 0.2978 0.514 0 0.01 1.6057 0.0 0.01
H∞ Tuned 0.298 0.304 0.0499 0.01 2.0 0.00522 0.01

Table 3.1: Controller parameters produced by VRFT with the reference models (3.11).

reference models. This results of the simulation are shown in Figure 3.4. The
simulated system appears to be slightly slower than the reference model but
overall the two are in accordance.

For completeness the Bode plots of both the inner and outer loops and
their associated reference models are reported, respectively, in Figures 3.6
and 3.7.

As shown in Figure 3.5 the synthesised controller provides similar be-
haviour to that of the previously obtained H∞ controller even though the
parameters of the controllers differ significantly.

Having shown, using the simulated model, that performance similar to
that of the pre-existing H∞ controller could be achieved with a VRFT tuned
controller we looked into improving the performance of the controllers. New
inner and outer reference models with bandwidths of, respectively, 15 and
10 rad s−1 were generated

MRi(s) = 225s + 1125
s2 + 135s + 1125

MRo(s) = 100
s2 + 18s + 100 .

(3.12)

Using these reference models for the VRFT yielded the parameters in table
3.2. Whilst the controller parameters seem extremely high the simulation
shown in Figure 3.8 bears out their effectiveness on paper. However, this
assumes that the system is accurately described by the model. Since the
model of the vehicle does not impose any limits to the closed loop bandwidth
this is not the case when the bandwidth of the reference model is high. A
test with similar controller parameters run on the actual quadrotor had to
be prematurely terminated due to uncontrolled oscillations of the system.

To achieve the requested speed an unrealistic control effort is required.
The real world performance is limited by the saturations on the controller
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Figure 3.4: Comparison of the responses of the outer reference model MRo and the
closed loop transfer function of the system with the controllers of Table 3.1. The upper
plot shows the complete simulation whilst the lower plot shows a zoomed-in view of
the first step.
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Figure 3.5: Comparison of the responses of the closed loop transfer function of the
system with the VRFT tuned controllers and the pre-existing H∞ controllers with the
parameters of Table of Table 3.1. The upper plot shows the complete simulation whilst
the lower plot shows a zoomed-in view of the first step.
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Figure 3.6: Comparison of the Bode plots of the inner reference model MRi and the
closed loop transfer function for the pitch rate regulation loop with the controllers of
Table 3.1.
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Figure 3.7: Comparison of the Bode plots of the outer reference model MRo and the
closed loop transfer function for the pitch angle regulation loop with the controllers of
Table 3.1.
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outputs and, consequently, the maximal real-world performance was much
lower than this.

Clearly, relying on only the simulated model is not sufficient to accurately
tune the controllers. An comprehensive set of experiments must be performed
on the system to identify the actual upper bound for performance.

Inner Controller (PID) Outer Controller (PD)

Kpi Kii Kdi
Tf Kpo Kdo Tf

VRFT Tuned 0.7826 9.4900 0.00162 0.01 4.1507 0.0 0.01

Table 3.2: Controller parameters produced by VRFT with the reference models (3.12).

The bode plots of the inner and outer loops with their associated reference
models are reported, respectively, in Figures 3.9 and 3.10. Note the the
bode diagrams of the inner loop and its reference model show a significant
divergence between the two at higher frequencies. This is an indication that
the required performance is difficultly achievable.
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Figure 3.8: Comparison of the responses of the outer reference model MRo and the
closed loop transfer function of the system with the controllers of Table 3.2.

49



100 101 102 103

−30.00
−20.00
−10.00

0.00
M

ag
.

(d
B

)

100 101 102 103
−90.00

0.00

ω(rad)

Ph
as

e
(◦ )

Reference Model Closed Loop

Figure 3.9: Comparison of the Bode plots of the inner reference model MRi and the
closed loop transfer function for the pitch rate regulation loop with the controllers of
Table 3.2.
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Figure 3.10: Comparison of the Bode plots of the outer reference model MRo and the
closed loop transfer function for the pitch angle regulation loop with the controllers of
Table 3.2.
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Chapter 4

Experimental Results

In chapter 3 the performance of the simulated system was explored and it was
showed that, since the model does not account for non-linearities and other
complex effects, it is possible (at least theoretically) to achieve unrealistic
levels of performance. Tests on the real hardware were conducted in order
to find an actual bound to the achievable performance.

In Section 4.1 the actual components of the quadcopter will be detailed. In
Section 4.2 the fashion in which the required input-output data was collected
will be explained. VRFT has provisions for noise mitigation procedures.
Their use will be detailed in Section 4.3. In Section 4.4 the reference models
used for the VRFT will be shown and, finally, in Section 4.5 the results of the
actual experiments on the system will shown and compared to a pre-existing
manually tuned H∞ controller.

4.1 Quadcopter Hardware & Firmware

The quadcopter used for this work was entirely developed at Politecnico di
Milano based on the following requirements:

• X frame of medium size (450 to 550 mm distance between opposite
rotors)

• Overall weight of less than 2 kg

• Payload of at least 0.5 kg

• Flight time of at least 10 minutes

51



The specifications of the components chosen in order to achieve these
goals are documented in the following sections. A fixed-pitch actuation
scheme was retained since the performance requirements of the system are
relatively low. For a more detailed explanation behind these choices see [5]

4.1.1 Frame

The frame (Figure 4.1a) is the central building block of the quadcopter. The
Talon V2.0 frame, built out of carbon fibre and aluminium was retained due
to its low weight and high strength. The distance between opposite motors
on this frame is 500 mm.

4.1.2 Motors, ESC & Propellers

The motors (Figure 4.1b) are brushless DC motors (BLDC) from the RCTimer
High Performance series (HP2814). Since brushless motors are synchronous
they cannot be driven by a simple DC current but require an inverter to
provide a switching electric signal. This is the Electronic Speed Controller
(ESC). In this case, the RCTimer NFS ESC 30A (Figure 4.1c). This com-
bination of motor and driver is able to push the propeller to close to 8000
rpm

The propellers mounted on the motors have two 12 inch blades with a
4.5◦ pitch angle (Figure 4.1d).

4.1.3 Battery

The batteries used on the quadrotor are Turnigy nano-tech 4000 mA h. These
are LiPo 3 cell batteries with a nominal tension of 3.7 V per cell for a total
tension of 11.1 V per battery. The batteries are capable of supplying a
constant current of 100 A with peaks of up to 200 A for short periods of
time.

4.1.4 Vibration Damping

To reduce the mechanical vibrations transmitted through the frame from the
motors a support plate onto which the electronics are mounted was realised
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(a) Hobby King Talon V2.0 Frame (b) RCTimer HP2814 Motor

(c) RCTimer NFS ESC 30A (d) 12 inch, 4.5 ◦ pitch propellers

(e) Electronic boards support (f) Vibration dampers

Figure 4.1: Quadrotor Components
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(Figure 4.1e). This plate is then fixed to the frame with vibration damping
rubber feet (Figure 4.1f).

4.1.5 Flight Control Unit & Firmware

The flight control unit is the brains of the quadrotor. It was implemented
on a Rapid Robot Prototyping (R2P) boards [1]. This is an open source
hardware and software framework that enables the rapid development of
robotic applications. These boards implement an IMU, serial communication,
control of the RC motors with PWM signals and the actual flight control.
The modules use a publish/subscribe architecture to communicate.

The control portion is implemented in Simulink and compiled to C++
code. The firmware manages the communication between the sensors and
the generated code in order to control the quadcopter.

4.1.6 Test Bed

All the tests on the quadrotor were performed on a test bed that constrains
all translational degrees of freedom as well as the roll and yaw motions.
Only the pitch rotation is left unconstrained. This ensures that the tests are
repeatable and safe and that an erroneous choice of the controller parameters
will not send the system crashing through the room.

(a) Test Bed, Front View (b) Test Bed, Top view

The test bed is built out of x-frame aluminium rods and weighted with
sacks of concrete. The upper part of the frame has a smooth rod resting on
ball bearings at each extremity for frictionless rotation. The quadrotor is
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then securely fastened to this rod.

In the current mounting scheme the rod passes as close as possible to
the centre of mass of the system in order to interfere as little as possible
with the dynamics of the quadrotor. Because of the physical configuration of
the system there is small distance between the rod and the actual centre of
mass. In turn, this causes the system to act like a very small pendulum and
the test bed adds some damping when the system quadrotor achieves higher
pitch angles. In practice this damping is negligible for small oscillations.

The test bed holds the quadcopter high enough that ground effect dis-
turbances are avoided however, since the test takes place in a closed space
some recirculation of rotor wakes occurs. This represents a discrepancy when
compared to outdoor flight conditions where the rotor wakes develop free
from obstacles. Even so, it has been shown in previous work that such a test
bed is representative of actual attitude dynamics in flight.

4.1.7 Additional Flight Hardware

The quadcopter also holds a RaspberryPi 2 board used to interface the R2P
modules with a ROS network but this functionality was unused for the tests.
In addition a small ultrasonic sensor has been mounted on the drone to
measure the distance from the ground when landing.

4.2 Tuning Experiment

The most important pre-requisite for data-driven algorithms such as VRFT is
the collection of a sufficiently long persistently exciting input-output dataset.

Since the aim of this work is to tune the controllers on the pitch regulation
loop all the tests were performed on the test bed described in Section 4.1.6.
The test bed constrains all the degrees of freedom of the vehicle except the
pitch rotation.

The control scheme for the pitch control loop is shown in Figure 4.3. See
Section 1.3.1 for a detailed description of each component and the symbols
used.

In the cascade VRFT setting the system should be divided into four
parts: an inner and an outer parametrised controller and and inner and
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Figure 4.3: Control scheme for VRFT as applied to the pitch control loop where q, the
pitch rate of the quadcopter, is analogous to the inner output signal yi, Θ, the pitch
angle, is analogous to the outer output signal yo and δΩP , the change in speed of the
propellers, is analogous to the plant input signal u.

anouter unknown plant. The controllers are quite obviously the PD and
PID blocks in Figure 4.3. It follows that the χG blocks representing the
dynamics from the requested torque around the pitch axis to the pitch rate
is the inner plant and the integrator 1

s computing the pitch angle from the
pitch rate is the outer plant.

The experiments used to gather the input-output data should be per-
formed in open loop, providing the torque δM as an input and reading the
pitch rate q and the pitch angle Θ as the inner and outer outputs yi and
yo. Unfortunately the firmware does not allow us to provide δM as an input
directly or read the pitch angle Θ when operating in open loop conditions.
Instead we were only able to specify as the input δΩP the difference in the
speed of the front and read propellers and read he pitch rate q as the single
output.

This is not an issue however since, as shown in Section 3.1.2, the mixer,
considering only the pitch control loop, is a known scalar. Consequently, the
inner plant input could be computed quite simply from the available data as

δM = χ−1δΩP . (4.1)

The pitch angle , Θ, the output of the outer plant, can also be calculated
algebraically. Whilst in the general case the outer plant model is unknown,
in our case the it is an integrator. The pitch angle Θ is simply the integral
of the pitch rate q over time. Consequently we were able to calculate the
pitch angle as

Θ =
∫ t

0
q dt (4.2)
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With the quadcopter firmware operating in open loop, a Pseudo Random
Binary Sequence (PRBS) was generated for the input δΩP and fed into the
system with a time step of 0.01s. This sequence was generated in such way
as to reliably excite the dominant dynamics of the system. This input signal
and the computed torque around the pitch axis δM are show in Figure 4.4.
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Figure 4.4: Measured δΩP and computed control variable δM . Measured signals are
represented with a continuous line, computed signals are shown with a dotted line

The output measurement, the pitch rate signal q, was acquired and logged
by the quadcopter itself using its on-board IMU with a time step of 0.01s.
The pitch angle Θ was computed from the pitch rate measurements as shown
in equation (4.2). The measured pitch rate and the computed pitch angle
are shown in Figure 4.5.

4.3 Noise Considerations

Like all real world signals the input-output signals measured on the quad-
copter are noisy. As detailed in Section 2.3.3, VRFT solves the problem of
reducing the noise induced bias in the criterion it minimises with an instru-
mental variable approach. This requires either the collection of a second
input-output dataset or the identification of a high-order model of the plant
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Figure 4.5: Measured pitch rate (q) and computed pitch angle (Θ). Measured signals
are represented with a continuous line, computed signals are shown with a dotted line

that can be used to generate such a dataset.

The toolbox used in this work to perform the VRFT [3] uses the second
method. It accepts as an input the order of an ARX model that will be used
to generate the second dataset.

To identify the order of the ARX model of the plant to be used the
measured input data was loaded into the MATLAB System Identification tool
and de-biased. Using the polynomial estimation function It was observed
that the model that provided the best fit was an ARX(17, 7).

4.4 Reference Models

The structure of the reference models was previously defined in Section 3.2
based on the knowledge provided by the available models. What is left is to
identify an inner and an outer reference model that maximises the achievable
performance.

This was done with a series of tests. VRFT makes this incredibly fast; a
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single input-output dataset can be used to tune any number of controllers.
Once programmed onto the quadcopter the system was put through a series
of step inputs and any controllers that unexpectedly yielded unstable control
loops were immediately discarded to avoid what Elon Musk famously referred
to as rapid unscheduled disassembly events. The final choice of parameters
represents the best trade-off between the rise time and the settling time.

This also illustrates one of the limitations of VRFT: it does not provide
any kind of guarantee that the closed loop transfer function will be stable.

4.4.1 Inner Reference Model

The structure of the inner reference model decided in Section 3.2.1 is

Mi(s) =
ω2

ni

s2 + 2ζiωnis + ω2
ni

s + z0
z0

where ωni is the bandwidth of the reference model, ζi is the damping ratio
and z0 is the position of the zero.

At the conclusion of the testing campaign I observed that the best tradeoff
between the rise time and the settling time was obtained with a bandwidth
ωni = 8rad s−1, a damping-ratio ζi = 0.9 and a zero placed in z0 = 5

Mi(s) = 64s + 320
5s2 + 72s + 320

s − 5
5 (4.3)

The VRFT procedure is defined only for discrete time systems but the
quadcopter firmware considers only continuous time models. This mismatch
was overcome by discretising the models prior to performing the VRFT and
converting the output back to a continuous time model.

The discretised form of the inner reference model, considering a time step
Ts = 0.01s is

MRi(z) = 0.1221z − 0.1162
z2 − 1.86z + .8659 . (4.4)
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4.4.2 Outer Reference Model

In Section 3.2.1 it was decided that the best form for the outer reference
model is a simple second order model. At the conclusion of the testing
campaign the model providing the best traedoff between the rise time and
the settling time had a bandwidth of ωno = 4rad s−1 and a damping ration
of ζo = 0.9

MRo(s) = 16
s2 + 7.2s + 16 (4.5)

and the discretised form of this reference model is

MRo(z) = 7.81z + 7.625
z2 − 1.929z + 0.930510−4 (4.6)

4.5 Results & Comparison

Running the VRFT procedure on both the inner and outer loops with the
input-output data shown in Figures 4.4 and 4.5, the reference models (4.4)
and (4.6) and considering an ARX(17, 7) model for the noise mitigation
leads to the controller parameters shown in table 4.1. Also shown are
the parameters for the pre-existing H∞ controller to be used as a point of
reference.

Inner Controller (PID) Outer Controller (PD)

Kpi Kii Kdi
Tf Kpo Kdo Tf

VRFT Tuned 0.2978 0.514 0 0.01 1.6057 0.0 0.01
H∞ Tuned 0.298 0.304 0.0499 0.01 2.0 0.00522 0.01

Table 4.1: Controller parameters for both the VRFT and H∞ tuned controllers. Note
that Tf , the filter time constant, was set manually for both controllers and is not a
direct product of the tuning procedures.

4.5.1 Set-Point Tracking

To validate the controllers a test sequence with steps of increasing amplitude
was generated an fed as a set a set-point to the quadcopter. For safety the
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tests were performed with the quadcopter securely fastened to the test-bed.
The result of one such run with the VRFF tuned controllers of Table 4.1 are
shown in Figure 4.6.
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Figure 4.6: Pitch angle set point tracking using the VRFT tuned controller

The test was repeated 10 times using . the both the VRFT and H∞
tuned controllers and the average mean square error was computed.

The set-point tracking performance of the quadcopter with, respectively,
the VRFT and H∞ controllers during one, randomly chosen, run is shown
in Figures 4.6 and 4.7.

The VRFT and H∞ tuned controllers were very similar in the simula-
tion runs with the VRFT controller being marginally slower than the H∞
controller. In these experiments this trend is inverted. The VRFT tuned
controller is marginally faster than the H∞ controller. This can be explained
quite easily: the H∞ tuned controller is based on an identified model of the
system and can only ever be as good as the identified model. The VRFT
tuned controller has the advantage of being tuned on real data collected on
the system and is thus exempt from modelling errors.

The mean square error, comparing the measured pitch angle to the set-
point, was computed for each test and averaged. The values for the VRFT
and H∞ tuned controllers are shown in the first column of table 4.2. The
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Figure 4.7: Pitch angle set point tracking using the pre-existing H∞ controller

mean square error of the VRFT controller, whilst a little higher than that of
the H∞ controller is still within acceptable bounds. It can be explained by
the slightly more oscillatory nature of the VRFT tuned controller.

4.5.2 Disturbance Rejection

The disturbance rejection properties of the firmware were considered using
a similar method. The firmware of the quadcopter provides a method to
introduce a step disturbance on the speed of the motors. This was used
to repeatedly reduce the lift generated by the motors on the front of the
quadcopter (motors 1 & 2) by 10 %. The test was repeated 10 times with
both the VRFT and H∞ tuned controllers and the average of the mean
square error was computed.

The disturbance rejection performance of the quadcopter with, respec-
tively, the VRFT and H∞ controllers during one, randomly chosen, run are
shown in Figures 4.7 and 4.7.

It is immediately apparent that the VRFT tuned controller offers sig-
nificant improvements to the steady state error. The H∞ tuned controller
settles with a steady state error of several degrees whereas the VRFT tuned

62



0 2 4 6 8 10 12 14 16 18 20 22 24

−20.00

0.00

20.00

D
is

tu
rb

.
(%

)

0 2 4 6 8 10 12 14 16 18 20 22 24

0.00

0.50

1.00

Time (s)

δM
(N

m
)

Figure 4.8: Disturbance rejection properties of the VRFT Tuned controller. The dis-
turbance is a 10% drop in the speed of rotors 1 & 2.
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Figure 4.9: Disturbance rejection properties of the H∞ Tuned controller. The distur-
bance is a 10% drop in the speed of rotors 1 & 2.
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controller achieves zero state error. In addition the control effort required
by both controllers is quite similar even if the VRFT tuned controller has
slightly higher peaks.

The improvement is reflected in the steady state error of the two con-
trollers as shown in Table 4.2. The mean square error of the VRFT tuned
controller is slightly lower than that of the H∞ controller.

Mean Square Error

VRFT Tune Controller H∞ Tuned Controller

Undisturbed 10.719 6.3384
Disturbed 4.7908 5.5686

Table 4.2: Mean of MSE for validation experiments considering both VRFT and H∞
tuned controllers
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