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Abstract: 
(English Language): 

 

Nowadays, the numerical modelling of thermo-fluid dynamic processes that occurs in the 

internal combustion engines is an indispensable tool of analysis in the design and development 

of engines. In fact, the use of reliable software and correct processes modelling, can predict the 

engine performance with a sufficient degree of accuracy, in terms of: power, fuel consumption, 

pollutants and all the variables that characterize its operation.  

The software used for the thesis work is Gasdyn, developed at Politecnico di Milano by the I.C. 

Engine research team. First part of the thesis includes turbo-matching of steady flow through a 

turbocharger (whose experimental investigation is carried out on the University of Genova 

(UNIGE) test facility). Where results obtained from experimental rig are compared with results 

achieved on Gasdyn simulation platform for turbo-matching. 

In the second part of the thesis work, a new algorithm is made and executed in Gasdyn code, to 

achieve convergence of turbocharger simulation accurately and efficiently. Then this new 

algorithm is validated and checked for two set of engines “TD-4” and”F1C” 

Keywords: Turbocharger, Gasdyn, turbo-matching, numerical modelling, steady flow. 
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(Italian Language): 

Oggigiorno, la modellazione numerica dei processi termofluidodinamici che si verificano 

all'interno dei motori a combustione interna rappresenta uno strumento indispensabile per 

l'analisi del progetto e sviluppo dei motori. Infatti l'uso di software affidabile e di modelli 

corretti dei processi, può consentire la previsione delle prestazioni del motore con un sufficiente 

grado di accuratezza, in termini di potenza, consumi, inquinanti emessi e di tutte le variabili 

che caratterizzano il suo funzionamento. 

Il software impiegato per questo lavoro di tesi è stato Gasdyn, sviluppato al Politecnico di 

Milano dal Gruppo Motori. La prima parte della tesi riguarda il turbo-matching di un flusso 

stazionario attraverso il turbogruppo (l'analisi sperimentale è stata condotta nei laboratori 

dell'Università di Genova (UNIGE)). I risultati ottenuti sperimentalmente sono stati confrontati 

con quelli forniti dalle simulazioni in Gasdyn. 

Nella seonda parte del presente lavoro di tesi, è stato implementato un nuovo algoritmo 

all'interno di Gasdyn, con lo scopo ri raggiungere più accuratamente e in modo più efficiente 

durante la simulazione, la convergenza dei turbogruppi.n Questo nuovo algoritmo è stato poi 

validato e testato su i due modelli motore denominati "TD-4" e "F1C". 

Parole chiave: turbocompressore, Gasdyn, turbo-matching, modelllazione numerica, flusso 

stazionario. 
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Introduction: 
 

The computing speed of today's computers has allowed the development of models that can 

simulate the operation of internal combustion engines in their entirety. The modeling through 

calculation codes has become essential in the design and optimization as it greatly reduces time 

and cost. The realization of an engine of the model allows the limitation of experimental tests 

to only configurations that have produced satisfactory results in the numerical simulation. It 

makes possible a further reduction of the measurement campaigns, as it facilitates the 

identification of the key variables of the phenomenon and estimate the value of quantities which 

are not easily measured, such as the internal temperature of the cylinders. 

 

The predictive tool used within “Politecnico di Milano” is the Gasdyn software, developed at 

the Department of Energy from Motors group. It is a thermo-1D computational fluid dynamics 

model that offers the possibility to calculate the properties of air and flue gas at every point of 

the engine, in a short time compared to multi-dimensional predictive codes. The research 

interest is focused on continuous development of the code and its adaptation to an increasingly 

large series of engines. The thesis work has led to simulate the turbocharger boosting for I.C. 

engine in Gasdyn to make faster and more accurate simulation of turbocharged engines. 

 

The first and the second chapter of the thesis concerning the thermo-fluid dynamic Gasdyn 

code, which allows a one-dimensional simulation of the unsteady motion of the fluid inside the 

engine, by combining the method of characteristics with numerical methods of the second order. 

 

In Third chapter, we discuss the fundamental equations which is the basis of Gasdyn code, it is 

explained in detail the process which numerically represents turbine and compressor operation 

starting from their respective maps. Finally, the ways in which the code identifies the matching 

between the two components are illustrated. 

 

In fourth chapter, turbo-matching of an automotive turbocharger (IHI RHF3) is done using 1D 

gasdyn simulation software, where experimental results obtained on the University of Genova 

(UNIGE) test facility were simulated to get turbo-matching of steady state flow. 

 

In fifth chapter, new algorithm to reach convergence for turbocharger simulation is developed 

and simulation results on two engines “TD-4” and “F1C” were studied to see the effective of 

new convergence algorithm. 
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Future development of this thesis work provide the implementation of Gasdyn code for the 

simulation of unsteady flow through turbocharger and turbo matching of pulsating flow through 

turbocharger. 
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Chapter 1 
 

 

1. Governing Equations 
 

1.1. Equations of dynamic equilibrium indefinite 

 

Given the importance of the replacement process of the working fluid has a volumetric engine, 

in order to obtain from certain benefits, research has been directed towards the study of models 

for the calculation of the flow characteristics in intake and exhaust. 

 

Unfortunately, the phenomena in question are so complex (due to mainly their non-stationary 

in time) that a physically rigorous description by a calculation model of the events suffered 

from air and flue gases through the various engine components lead to additional complexity 

of the program and to the calculation of cost management is not always acceptable. Some 

models therefore introduce appropriate approximations and simplifications, to obtain a fair 

compromise between the accuracy of the forecast requests, the complexity of the program and 

the cost of computation. 

 

The models are proposed to solve the equations that express the balance of: 

 

Mass: 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑣)1
𝜕𝑥1

+
𝜕(𝜌𝑣)2
𝜕𝑥2

+
𝜕(𝜌𝑣)3
𝜕𝑥3

= 0 (1.1) 

 

Momentum: 

 

 

{
 
 
 

 
 
 𝜌 ∙ (−

𝑑𝑣1
𝑑𝑡
) =

𝜕𝜎1
𝜕𝑥1

+
𝜕𝜏3
𝜕𝑥2

+
𝜕𝜏2
𝜕𝑥3 

𝜌 ∙ (−
𝑑𝑣2
𝑑𝑡
) =

𝜕𝜏3
𝜕𝑥1

+
𝜕𝜎2
𝜕𝑥2

+
𝜕𝜏1
𝜕𝑥3 

𝜌 ∙ (−
𝑑𝑣3
𝑑𝑡
) =

𝜕𝜏2
𝜕𝑥1

+
𝜕𝜏1
𝜕𝑥2

+
𝜕𝜎3
𝜕𝑥3

 
(1.2) 
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Energy: 

 𝑒̇ − 𝑞̇ =
1

𝜌
∑∑𝑡𝑖𝑗𝑣𝑖𝑗

3

𝑖=1

3

𝑗=1

 (1.3) 

 

according to the spatial dimensions and time, with the aim of arriving to predict, locally and in 

time, the conditions of motion of the fluids. 

It 'well known that the cyclic operation of reciprocating engines, characterized by the opening 

and closing of lift valves which connect the cylinder with the ducts, generates in the working 

of the intense pressure and fluid velocity oscillations, which propagate in the systems of intake 

and exhaust to the silencers. The processes are highly non-stationary, the temperature gradients 

and entropy in the gas are considerable, and the fluid manifests significantly its compressibility 

and viscosity. A detailed simulation of the fluid dynamic phenomena in question is based on 

integration numerical of the Navier-Stokes equations in three dimensions, with the addition of 

a model for turbulence. The complexity of this approach makes it impractical for the overall 

study of the engine and have thus developed one-dimensional models, whch have proved of 

great help in the development of the intake and exhaust systems. Only recently are emerging 

multidimensional models [1]. 
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1.2. One-dimensional Model 

 

The one-dimensional model used introduces the following assumptions: 

 

1. unsteady motion in time 

2. compressible fluid: it adopts the model of ideal gas mixture, with specific variables heat 

with the temperature and the chemical composition, or perfect gas with constant specific 

heats. 

3. One-dimensional motion, because you believe the longitudinal dimensions the systems 

studied clearly prevalent than cross. 

4. Section of the duct variable assigned with the law. 

5. Process non-adiabatic due to heat flows to the walls. 

6. Non-isentropic motion for the presence of viscous forces on the walls. 

 

The hypothesis of One-dimensionality implies that all thermodynamic variables such as 

pressure p, density ρ, fluid velocity u are then considered constant over the cross section of the 

duct, and variables only in function of a space coordinate x curvilinear, taken generally along 

the ' axis of the tubes, and the time variable t: then we have p = p (x, t), ρ = ρ (x, t), u = u (x, t), 

etc .. It also has that, if the entropic level is everywhere uniform, and does not vary with space 

and time, the flow is said isentropic; if instead the entropy levels are not uniform, the flow is 

said non-isentropic. Consider an infinitesimal portion of duct with variable section crossed by 

a compressible fluid [2]: 

 

 
Figure 1:1: One dimensional Scheme. 
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u = fluid velocity 

p = pressure 

ρ = density 

F = flow section 

Based on the newly formulated hypothesis we can derive the equations of continuity, 

conservation of momentum and energy to the volume of control dashed in figure 1.1. 

 

1.2.1. Mass conservation equation (continuity) 

Conservation of mass requires that the speed of the mass within the volume variation is equal 

to the net mass flow which crosses the contour. 

 

Variation of mass over time within the control volume: 

 

 
𝜕(𝜌𝐹𝑑𝑥)

𝜕𝑡
 (1.4) 

 

Incoming mass flow rate: 

 

 𝜌𝑢𝐹 (1.5) 

 

Outgoing mass flow rate: 

 

 (𝜌 +
𝜕𝜌

𝜕𝑥
𝑑𝑥)(𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) (𝐹 +

𝜕𝐹

𝜕𝑥
𝑑𝑥) (1.6) 

 

The balance shows: 

 

 (𝜌 +
𝜕𝜌

𝜕𝑥
𝑑𝑥)(𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) (𝐹 +

𝜕𝐹

𝜕𝑥
𝑑𝑥) − 𝜌𝑢𝐹 = −

𝜕(𝜌𝐹𝑑𝑥)

𝜕𝑡
 (1.7) 

 

and then, developing and considering only the infinitesimal of the first order, we get: 

 

 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜌𝑢

𝐹

𝜕𝐹

𝜕𝑥
= 0 

 

(1.8) 
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1.2.2. Equation of conservation of momentum 

The conservation of momentum states that the sum of pressure and frictional forces acting on 

the surface of the control volume is equal to the sum of the speed of variation of the quantity of 

motion in its interior and the net flow of the outgoing quantity of motion from it. 

 

Pressure forces: 

 

 𝑝𝐹 − (𝑝 +
𝜕𝑝

𝜕𝑥
𝑑𝑥) (𝐹 +

𝜕𝐹

𝜕𝑥
𝑑𝑥) + 𝑝

𝜕𝐹

𝜕𝑥
𝑑𝑥 = [−

𝜕(𝑝𝐹)

𝜕𝑥
𝑑𝑥 +𝑝

𝜕𝐹

𝜕𝑥
𝑑𝑥] (1.9) 

 

Friction forces: 

 

 𝜏 = 𝑓 ∙
1

2
𝜌𝑢2  

 
⇒  𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = −𝑓

𝜌𝑢2

2
(𝜋 ∙ 𝐷 ∙ 𝑑𝑥) (1.10) 

 

Variation in time of the quantity of motion: 

 

 
𝜕(𝜌𝑢𝐹𝑑𝑥)

𝜕𝑡
=
𝜕(𝜌𝐹𝑑𝑥 ∙ 𝑢)

𝜕𝑡
 (1.11) 

 

Net outgoing momentum of flow: 

 

 (𝜌 +
𝜕𝜌

𝜕𝑥
𝑑𝑥) (𝑢 +

𝜕𝑢

𝜕𝑥
𝑑𝑥) (𝐹 +

𝜕𝐹

𝜕𝑥
𝑑𝑥) − 𝜌𝐹𝑢2 = −

𝜕(𝜌𝐹𝑢2)

𝜕𝑥
𝑑𝑥 (1.12) 

 

therefore, by summing these four contributions and taking account of continuity equation, we 

obtain the following expression: 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+
1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝐺 = 0 (1.13) 

 

Where: 

 

 𝐺 = 𝑓
𝑢2

2
∙
𝑢

|𝑢|
∙
4

𝐷
 (1.14) 

  

 

 

 



Governing Equations 

 

 

16 

 

 

 

1.2.3. Energy conservation equation 

It is determined by applying the first law of thermodynamics to the control volume: 

 

 
𝑄̇ − 𝐿̇ =

𝜕𝐸

𝜕𝑡
+
𝜕𝐻0
𝜕𝑥

𝑑𝑥 

 

(1.15) 

 

where 
𝜕𝐸

𝜕𝑡
 is the temporal change in internal energy of stagnation, L is the work done by, or on, 

the system that, for a flow of gas in an element of a conduit of the engine, is zero, Q is the 

temporal variation of the heat transferred from the gas to the walls of the duct and vice versa, 

finally 
𝜕𝐻0

𝜕𝑥
𝑑𝑥 is the net efflux of enthalpy of stagnation through the 

control surface. 

 

In detail the terms of (1.15) are expressed as follow: 

 

 𝑄̇ = 𝑞̇𝜌𝐹𝑑𝑥 + ∆𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑑𝑥 (1.16) 

 

where q is the heat transmitted per unit of mass and time through the walls of the duct, while 

ΔHresction is heat, per unit volume and time freed from the reactions that take place in the first 

section of the exhaust ducts: 

  

 
𝜕𝐸

𝜕𝑡
=
𝜕(𝑒0𝜌𝐹𝑑𝑥)

𝜕𝑡
 (1.17) 

 

where e0 is the internal energy of stagnation: 

 

 𝑒0 = 𝑒 +
𝑢2

2
 (1.18) 

 

 

 
𝜕𝐻0
𝜕𝑥

𝑑𝑥 =
𝜕(ℎ0𝜌𝐹𝑢)

𝜕𝑥
𝑑𝑥 (1.19) 

 

where h0 is the enthalpy of the fluid stagnation which is linked to the internal energy of 

stagnation by the following equation: 

 

 ℎ0 = 𝑒0 +
𝑝

𝜌
 (1.20) 
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which when combined with the expression of e0, it becomes 

 

 ℎ0 = 𝑐𝑣𝑇 +
𝑝

𝜌
+
𝑢2

2
 (1.21) 

 

The energy equation thus takes the following form: 

 

 𝑞̇𝜌𝐹𝑑𝑥 + ∆𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑑𝑥 =
𝜕(𝑒0𝜌𝐹𝑑𝑥)

𝜕𝑡
+
𝜕(ℎ0𝜌𝐹𝑢)

𝜕𝑥
𝑑𝑥 (1.22) 

 

The equations of continuity, momentum and energy constitute a system of partial differential, 

non-linear, hyperbolic. The closure of the problem (we have four variables p, ρ, u, and, and 

three equations) is obtained by introducing a fourth equation which expresses the properties of 

the fluid. Usually it introduces the additional hypothesis of ideal gas at constant specific heats, 

so that apply the known laws: 

 

 
𝑝

𝜌
= 𝑅𝑇  ,   𝑒 = 𝑐𝑣𝑇. (1.23) 

 

With the assumption of perfect gas at constant specific heats it is possible to transform the 

equation of conservation of energy, by removing the fourth associated variable energy specific 

and internal. The terms of the energy equation, therefore, become: 

 

 
𝜕𝐸

𝜕𝑡
=
𝜕

𝜕𝑡
[(𝜌𝐹𝑑𝑥) (𝑐𝑣𝑇 +

𝑢2

2
)] (1.24) 

 

 

 
𝜕𝐻0
𝜕𝑡

𝑑𝑥 =
𝜕

𝜕𝑥
[(𝜌𝑢𝐹) (𝑐𝑣𝑇 +

𝑝

𝜌
+
𝑢2

2
)] 𝑑𝑥 (1.25) 

 

Energy equation, after using above expressions, can be rewritten, using the continuity equation 

and the quantity of motion, in the form: 

 

 
(
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − 𝑎2 (

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − 𝜌(𝑘 − 1)(𝑞 +

Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝜌

+ 𝑢𝐺)

= 0 

(1.26) 
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where 𝑎 = √
𝑘∙𝑝

𝜌
 is the speed of sound, that, for an ideal gas. 

 

 𝑎 = √𝑘𝑅𝑇 (1.27) 

 

The hyperbolic problem now consists of the equations (1.8), (1.13), (1.26) and the previous p 

= ρ RT; it is written in "non-conservative", a shape suitable to the resolution with the method 

of characteristics (see Chapter 2). 

 

1.2.4. Formulation of the equations in conservative form. 

Substituting equation of motion quantity with the pulse equation, a linear combination of the 

equation of continuity and that of the quantity of motion, you are obtained: 

 

 
𝜕𝜌𝐹

𝜕𝑡
+
𝜕(𝜌𝑢𝐹)

𝜕𝑥
= 0          𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 (1.28) 

   

 
𝜕(𝜌𝑢𝐹)

𝜕𝑡
+
𝜕(𝜌𝑢2 + 𝑝)𝐹

𝜕𝑥
= 0        𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 (1.29) 

 

 
𝜕(𝜌𝑒0𝐹)

𝜕𝑡
+
𝜕[𝜌𝑢ℎ0𝐹]

𝜕𝑥
− 𝜌𝑞𝐹 − Δ𝐻𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝐹 = 0       𝐸𝑛𝑒𝑟𝑔𝑦 (1.30) 

 

This system of equations can be eventually rewritten in matrix form, essential for the 

implementation and development of numeric type shock-capturing methods that we will study 

in the next chapters. 

 

We introduce the following carriers: 

 

Conserved variables vector: 

 

 𝑾 = [
𝜌𝐹
𝜌𝑢𝐹
𝜌𝑒0𝐹

] (1.31) 

 

in which there are three groups of independent gas dynamic variables, in turn function of x and 

t. 
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Flows vector: 

 

 𝑭 = [

𝜌𝑢𝐹

(𝜌𝑢2 + 𝑝)𝐹
𝜌𝑢ℎ0𝐹

] (1.32) 

 

Source term vector: 

 

 𝑪 = [

0

−𝑝
𝑑𝐹

𝑑𝑥
0

] + [

0
𝜌𝐺𝐹

−(𝜌𝑞+Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)𝐹
] (1.33) 

 

So, we can rewrite the hyperbolic system in more compact form: 

 

 
𝜕𝑭

𝜕𝑡
+
𝜕𝑾

𝜕𝑥
+ 𝑪 = 0 (1.34) 

 

The problem thus posed is not solved, because it consists of a system of three equations in four 

unknowns represented by the quantities p, ρ, u, and. As has already been done previously, it is 

introduced the fourth equation is necessary for the closure of the problem and detectable in the 

fluid behavior. 

 

A first model implemented in computer code, is to perfect gas at constant specific heats. 

According to this hypothesis, which appears to be very restrictive, the internal energy and the 

enthalpy of stagnation can be described as follows, as above: 

 

 𝑒0 = 𝑒 +
𝑢2

2
= 𝑐𝑣𝑇 +

𝑢2

2
=

𝑝

𝜌(𝑘 − 1)
+
𝑢2

2
 (1.35) 

 

 ℎ0 = ℎ +
𝑢2

2
= 𝑐𝑝𝑇 +

𝑢2

2
=

𝑘𝑝

𝜌(𝑘 − 1)
+
𝑢2

2
 (1.36) 

 

the latter allow to rewrite the three vectors W, F and C in the following form: 
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 𝑾 =

[
 
 
 

𝜌𝐹
𝜌𝑢𝐹

(
𝑝

𝑘 − 1
+ 𝜌

𝑢2

2
)𝐹

]
 
 
 

 (1.37) 

 

 𝑭 =

[
 
 
 
 

𝜌𝑢𝐹

(𝜌𝑢2 + 𝑝)𝐹

𝑢 (
𝑝

𝑘 − 1
+ 𝜌

𝑢2

2
)𝐹

]
 
 
 
 

 (1.38) 

 

 𝑪 = [

0

−𝑝
𝑑𝐹

𝑑𝑥
0

] + [

0
𝜌𝐺𝐹

−(𝜌𝑞+Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)𝐹
] (1.39) 

 

A second model implemented in the calculation code, more general than the first, is the one 

with a mixture of ideal gases. In a real gas, in fact, the specific heat are functions of temperature 

and chemical composition. The different molecules give different contributions to the specific 

heat due to the different behavior intramolecular level; the various molecules, in fact, have 

different vibrational and rotational motions, different electronic motions, different dissociation 

and ionization. To this is added that the composition of the gas can vary in correspondence of 

contact discontinuities present in the stream. So, we'll see how the introduction of this model 

allows the resolution of most of the problems just mentioned, although they should in turn use 

some restrictive assumptions. 

 

For this type of approach, the system of hyperbolic equations must then be rewritten for each 

chemical species by replacing the global variables u, p, e, and ρ with those of any chemical 

species uj, pj, ej, ρj, where the partial pressure pj and the partial density ρj are respectively 

defined as the pressure and density at which you would find the single chemical species j-th if 

occupied alone the entire volume occupied by the mixture to a prescribed temperature. 

 

Note the equation of the ideal gas state expressions in global terms: 

 

 𝑃
𝑉

𝑀
= 𝑅𝑇 (1.40) 
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and the valid one for each chemical species: 

 

 𝑃𝑗
𝑉

𝑀𝑗
= 𝑅𝑇 (1.41) 

 

You are obtained by the following relation: 

 

 
𝑃𝐽
𝑃
= 𝑋𝐽 =

𝑀𝐽
𝑀

 (1.42) 

 

where Xj is the molar fraction of j-th species. 

 

Proceeding in a similar manner one can derive the definition of the mass fraction Y j evidently 

be expressed as: 

 

 
𝜌𝐽
𝜌
=
𝑀𝐽
𝑀
= 𝑌𝐽 (1.43) 

 

where Mj is indicated with the mass of the j-th species, and useful to highlight the relationship 

between the two values, report, however, widely used within the code: 

 

 𝑋𝑗 =

𝑌𝑗
𝑀𝑚𝑗
⁄

∑ 𝑌𝑗
𝑁𝑠
1 𝑀𝑗

 
(1.44) 

 

It is indicated with NS the number of chemical species with Mm and their molar mass. For each 

specie, the value of the pressure is obtained by means of the following report: 

 

 𝑃𝑗 =
𝜌𝑗

∑ 𝑋𝑗
𝑁𝑠
1 𝑀𝑗

𝑅𝑇 (1.45) 

 

The internal energy for each chemical species of a mixture of ideal gases can be defined by an 

expression of the type: 

 

 𝑒𝑗(𝑇) = ∑𝑎𝑗𝑘 ∙ 𝑇
𝑘

𝑁

𝑘=1

 (1.46) 
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where N is the number of terms of the polynomial development considered to approximate the 

real evolution of the function and the coefficients ajk are obtained from the literature. The 

internal energy of the mixture is obtained by a similar interpolation in which the overall 

coefficients are obtained from a weighted average of the molar fractions of the coefficients 

relating to each single chemical species: 

 

 𝑎𝑚𝑘 =∑𝑎𝑗𝑘 ∙ 𝑋𝑗

𝑁𝑠

𝑗=1

 (1.47) 

 

in which Ns is the number of considered chemical species. After implementation of the code to 

the second order. 

 

It is therefore evident expression of internal energy: 

 

 𝑒(𝑇) = 𝑎1𝑚𝑇 + 𝑎2𝑚𝑇
2 (1.48) 

 

In differential terms the relationship between internal energy and temperature is: 

 

 𝑑𝑒 = 𝑐𝑣(𝑇)𝑑𝑇 (1.49) 

 

and above equation in integral form becomes: 

 

 𝑒 = ∫ 𝑐𝑣(𝑇)𝑑𝑇
𝑇

0

 (1.50) 

 

Depending on the model proposed so far you can get the following expressions with which to 

determine the temperature values and the specific heat at constant volume once known the 

internal energy value from the hyperbolic system solution (1.28, 1.29, 1.30). 

 

 𝑇 = [−𝑎1𝑚 + √𝑎1𝑚
2 + 4𝑎2𝑚𝑒(𝑇)]

1

2𝑎2𝑚
 (1.51) 

 

 𝑐𝑣 =
𝑑𝑒(𝑇)

𝑑𝑇
= 𝑎1𝑚 + 2 ∙ 𝑎2𝑚 ∙ 𝑇 (1.52) 

 

For the determination of the Cv it could also proceed by other means. It 'well known, in fact, 

that in the case of monatomic gases, this is obtainable according to the following expression: 
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 𝑐𝑣1𝐷 =
3

2
𝑅 +

𝑛

2
𝑅 +∑𝐶𝑗𝑣𝑖𝑏𝑟𝑎𝑡𝑒

𝑁𝑀

𝑗=1

 (1.53) 

 

where NM is the number of vibration modes of the molecule. 

 

This expression has been created knowing that in this case the cv (T) is equal to 3/2R, where 3 

is the number of translational degrees of freedom of the molecule, which we must add n*(1/2) 

R, with n equal to the number of rotational degrees of freedom on which the molecule can 

distribute their energy. It is finally considered the possibility on the part of the molecule to 

distribute the energy absorbed in the vibrational modes, function and properties of the 

temperature determined by the Einstein relationship: 

 

 𝐶𝑗𝑣𝑖𝑏𝑟𝑎𝑡𝑒 =
𝑢2𝑒𝑢

(𝑒𝑢 − 1)
𝑅 (1.54) 

 

where: 

 

 𝑢 =
ℎ𝑣

𝑘𝑇
 (1.55) 

 

 𝑣 = √
𝐾

𝑀
 (1.56) 

 

where: 

e = constant 

h = plank constant 

k = Boltzmann constant 

M = mass associated with the vibration mode 

K = stiffness associated to the mode of vibration 

ν = natural frequency associated with the mode of vibration 

 

It is however still of an approximate expression in which interactions between the molecules 

are exclusively of the elastic type and in which it does not consider the dependence on the gas 

pressure. This dependence, linked to the fact that the molecules have their own volume is not 

null and that there are of the electromagnetic type relationships between them, becomes 
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negligible, however, significantly by virtue of high temperatures existing inside the ducts of the 

engine speed. This simplification allows to greatly relieve the computational cost of the 

simulations, in fact, in the calculation program are numerous cases in which use the constant 

𝐾 =
𝑐𝑣+𝑅

𝑐𝑣
 to switch from internal temperature or vice versa without yet knowing the pressure. 

In order to take into account the influence of this variable, it should make convergent iterative 

cycles to the solution every time. 

 

It is also noted that the temperature and pressure fields, in which we operate, allow us to 

consider the value of the unit of compressibility coefficient, which allows us to use the state 

equations without any modifications. 

In the light of what has been said we could calculate the specific heat cv making use of views 

reports for each chemical species, or using polynomial relations, available in the literature, 

which define the behavior of a real gas as a function of temperature. The current code was 

developed following the latter possibility, approximating polynomial such relations with 

relations of the second order, in such a way as not to make excessive the computational burden. 

So, we can rewrite the hyperbolic problem in the case of mixture of ideal gases. Putting the 

equations (1.47) and (1.48), written for all chemical species, with (1.45) we obtain the following 

equations Ns: 

 

 

{
 
 

 
 𝑒𝑗(𝑇) = ∑𝑎𝑗𝑘 ∙ 𝑇

𝑘

𝑁

𝑘=1

𝑃𝑗 =
𝜌𝑗
𝑀𝑚𝑗

𝑅 ∙ 𝑇
 
⇒      𝑃𝑗 = 𝑃𝑗(𝜌𝑗 , 𝑒𝑗)          𝑗 = 1,𝑁𝑠  (1.57) 

 

For each chemical species, it will be possible to rewrite the hyperbolic equations but merely 

refer to the partial quantities. 

With this amendment, it is now possible to consider the molecular diffusion of different 

chemical species. The formula of the conservation of mass becomes: 

 

 
𝜕𝜌𝑌𝑗𝐹

𝜕𝑡
+
𝜕(𝜌𝑗𝑢𝑌𝑗𝐹)

𝜕𝑥
= 𝜔𝑗 (1.58) 

 

in which uj is the velocity of the jth chemical species, while ωj is the rate of disappearance per 

unit of volume [kg/m3s] of the j-th species which takes account of chemical reactions. That 

period is calculated for each species and depends on the kinetics of the various reactions that 
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take place in the catalyst and in the first exhaust ducts where there is the phenomenon of post 

oxidation. So, we get: 

 

 
𝜕𝑾𝒋

𝜕𝑡
+
𝜕𝑭𝒋
𝜕𝑥

+ 𝑪𝑗 = 0 (1.59) 

 

where: 

 

 𝑾𝒋 = [

𝜌𝑗𝐹

𝜌𝑗𝑢𝑗𝐹

𝜌𝑗𝑒0𝐹
] (1.60) 

 

 𝑭𝒋 = [

𝜌𝑗𝑢𝑗𝐹

(𝜌𝑗𝑢𝑗
2 + 𝑝𝑗)𝐹

𝜌𝑗𝑢0𝑗ℎ0𝑗𝐹

] (1.61) 

 

 𝑪𝒋 = [

0

−𝑝𝑗
𝑑𝐹

𝑑𝑥
0

] + [

𝜔𝑗
𝜌𝑗𝐺𝑗𝐹

−(𝜌𝑗𝑞𝑗+Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛,𝑗)𝐹
] (1.62) 

 

The problem at this point, it would seem closed, having 4Ns equations in 4Ns unknowns j, uj, 

ej, pj. 

however, it should be introduced into the vector Cj of the sources (via Gj and qj) the forces and 

of mechanical origin powers (elastic collisions) and heat exchanging the various gases 

constituting the mixture, and which are obtainable through a complex model that takes account 

of the different molecular weights as well as the diffusion of the various chemical species. The 

powers exchanged for electromagnetic interactions would still be neglected, because the ideal 

gas model, as already mentioned, does not provide for the existence of such forces. To simplify 

the problem, then you are using the following approach, based on the estimate of the velocity 

of the center of mass. 

It is not possible to define a velocity ‘u’ of the mixture, even though there has uj the speed 

relating to each component defined. 

In the presence of temperature gradients, concentration and pressure along the axis of the duct, 

each species changes its distribution in space based on convection phenomena, molecular and 

thermal diffusion governed by different constants for each species and dependent on weight 

and by molecular complexity. 

Neglecting thermal diffusion phenomena, the flow of a component is given by two distinct 

processes: a convective and a diffusive type. 
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For the first phenomenon of gas molecule acquires speed due to disturbing external action such 

as the pressure gradient, the molecule according to the phenomenon moves by the action of 

internal forces to the mixture, generated by random collisions with other molecules. 

The speed of the center of mass can be defined using the following media: 

 

 𝑢𝑐 =∑
𝜌𝑗𝑢𝑗
𝜌

𝑁𝑠

𝑗=1

 (1.63) 

 

One can then define the diffusive flux of the j-th species such as: 

 

 𝐽𝑗 = 𝜌𝑗(𝑢𝑗 − 𝑢𝑐) (1.64) 

 

It 'so obvious that the j-th species does not diffuse if its speed coincides with that of the center 

of mass defined above. 

We call Φj with the flow of molecules of the j-th species that cross the section A of the duct 

because of the two distinct processes: 

 

 Φ𝑗 = Φ𝑗
𝐷 +Φ𝑗

𝐶 = 𝑛𝑗𝑢𝑗𝐴 (1.65) 

 

where Φj is a flow rate in terms of number of molecules in the unit time and nj represents the 

number of molecules per unit volume. And possible to demonstrate that the contributions due 

to convection and diffusion molecular have the following expressions: 

 

 Φ𝑗
𝐷 = 𝐶𝑗 ∙ 𝑋𝑗 (1.66) 

 

 Φ𝑗
𝐶 = −𝐷𝑗

𝑑𝑋𝑗
𝑑𝑥

 (1.67) 

 

where Xj is the molar fraction of j-th species, while: 

 

 𝐷𝑗 = 𝜇𝑗 ∙  𝑇 ∙ 𝑅 ∙ 𝑁        𝑎𝑛𝑑          𝐶𝑗 = 𝜇𝑗 ∙ 𝐹 ∙ 𝑁 ∙ 𝑁0 (1.68) 

 

where: 

N = number of moles contained in the control volume; 

N0 = Avogadro constant; 

T = temperature in Kelvin; 

F = intensity of the external force (given by the pressure gradient); 
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 𝜇𝑗 ∝
𝜏

𝑀𝑚𝑗
 (1.69) 

 

 = mean time between two molecular collisions; 

Mmj = molecular mass of the species j. 

 

Then comparing the characteristic times of the diffusive phenomenon with those of convective 

transport, that the first phenomenon occurs much more slowly than the second, so its effects 

may be neglected. In this way, the speed of each single species is described by the following 

equality: 

 

 𝑢𝑗 =
Φ𝑗
𝐶

𝐴 𝑛𝑗
= 𝜇𝑗𝐹 (1.70) 

 

It should be noted that this speed is different from species to species owing to the different mj 

mobility. Thus, further simplifying the problem, it was decided to evaluate the speed of each 

species coinciding with that of the center of mass of the mixture: 

 

 𝑢𝑗 = 𝑢𝑐 = 𝑢                           𝑗 = 1, 𝑁𝑠 (1.71) 

 

This last hypothesis involves neglect of surface forces between the various species as there is 

no relative motion between them. We can now rewrite the three conservation equations in 

global terms for the mixture, with the introduction of speed of the center of mass. In vector 

form: 

 

 
𝜕𝑾𝑚

𝜕𝑡
+
𝜕𝑭𝑚
𝜕𝑥

+ 𝑪𝑚 = 0 (1.72) 

 

Where: 

 

𝑾𝒎 = [
𝜌𝐹
𝜌𝑢𝑐𝐹
𝜌𝑒0𝐹

]  𝑭𝒎 = [

𝜌𝑢𝐹

(𝜌𝑢𝑐
2 + 𝑝)𝐹

𝜌𝑢𝑐ℎ0𝐹
]  𝑪𝒎

= [

0

−𝑝
𝑑𝐹

𝑑𝑥
0

] + [

0
𝜌𝐺𝐹

−(𝜌𝑞+Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)𝐹
] 

(1.73) 
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To these three equations are flanked by (Ns-1) scalar continuity equations for the single 

chemical species, resulting from the writing of the first vector line equation (1.59): 

 

 
𝜕𝑾𝑗

𝜕𝑡
+
𝜕𝑭𝑗
𝜕𝑥

+ 𝑪𝑗 = 0 (1.74) 

 

where terms Wj, Fj and Cj are: 

 

 𝑊𝑗 = [𝜌𝑌𝑗𝐹]       𝐹𝑗 = [𝜌𝑢𝑌𝑗𝐹]        𝐶𝑗 = [−𝜔𝑗] (1.75) 

 

and correspond to the mass conservation equations for each chemical species to less than one, 

which is dictated by the other according to the following: 

 

 ∑𝑌𝑗 = 1

𝑁𝑠

𝑗=1

 (1.76) 

 

that is the equation of continuity of the global Ns species. 

We get then, for incoming carriers in the full matrix system, the following expressions: 

 

 𝑾𝒎 =

[
 
 
 
𝜌𝐹
𝜌𝑢𝑐𝐹
𝜌𝑒0𝐹

𝜌𝑌𝐹 ]
 
 
 
           𝑭𝒎 =

[
 
 
 

𝜌𝑢𝐹

(𝜌𝑢𝑐
2 + 𝑝)𝐹

𝜌𝑢𝑐ℎ0𝐹

𝜌𝑢𝑌𝐹 ]
 
 
 

  (1.77) 

 

 𝑪𝒎 =

[
 
 
 
 

0

−𝑝
𝑑𝐹

𝑑𝑥
0

0 ]
 
 
 
 

+

[
 
 
 

0
𝜌𝐺𝐹

−(𝜌𝑞+Δ𝐻𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛)𝐹

−𝜔𝑗 ]
 
 
 

        𝑌 = [

𝑌1
𝑌2
⋮

𝑌𝑁𝑠−1

]    (1.78) 

 

The remaining two vector equation scalar equations (1.59) should not be considered because of 

the hypothesis made according to which all the chemical species have the same speed equal to 

that of the center of mass. 

Then it is recalled that a mixture of ideal gases can be regarded as a single ideal gas with 

appropriate molar mass. We will make use of the following equation: 
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𝑝 = 𝜌
𝑅

∑ 𝑋𝑗𝑀𝑚𝑗
𝑁𝑠
𝑗=1

𝑇

 
 

  ∑𝑌𝑗 = 1

𝑁𝑠

𝑗=1

 

(1.79) 

 

‘T’ is obtained by the expression of internal energy: 

 

 𝑒𝑗(𝑇) = ∑𝑎𝑗𝑘 ∙ 𝑇
𝑘

𝑁

𝑘=1

       ;          𝑋𝑗 =

𝑌𝑗
𝑀𝑚𝑗
⁄

∑ 𝑌𝑗
𝑁𝑠
1 𝑀𝑗

 (1.80) 
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Chapter: 2 
 

 

2. Numerical Methods 
 

2.1. Introduction: 

 

Generally, it is not possible to determine an analytical solution of the hyperbolic system to the 

determined partial derivatives in the previous paragraph. The first step in the determination of 

the solution of similar problems was studied by Riemann in 1858 with the development of the 

method of characteristics, whose peculiarity lies in the fact of being able to switch from partial 

differential equations to equations with ordinary derivatives. Over the years the method has 

been perfected for the treatment of compressible fluids and, in the second half of the 19th 

century to the present day, has had a wide application in the field of modeling of fluid dynamic 

processes in internal combustion engines. The main limitations of the method of characteristics 

are essentially three: 

 

- Assumption of perfect gas model with constant specific heats; 

- Linear approximation: the space-time domain is discretized through a calculation grid 

in the plane (x, t) and the solution is determined between the successive nodes with an 

accuracy of the first order; 

- Discontinuities in the solution: the method is unable to grasp properly any 

discontinuities in the solution, as the typical case of shock waves, distributing the 

phenomenon on many nodes of the grid. 

 

Despite these limitations and although passed by the more robust and accurate numerical 

methods developed subsequently, the method of characteristics is still used in the calculation 

codes for the modeling of the boundary conditions. 

Since the '90s began the application to the computer codes of a new family of methods, called 

Shock-Capturing. They determine the hyperbolic system solution based on his conservative 

form and allow you to capture successfully any shockwaves or discontinuities of the 

chemical/thermal contact in the gas stream. 
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Figure 2:1: Classification of Shock-Capturing numerical methods. 

The different pattern of calculation adopted, up-winded or not up-winded, involves achieving 

significantly different results. The up-winded methods orient the calculation scheme as a 

function of the direction of flow with excellent results, at the expense of a high computational 

burden because the Riemann problem is solved in each node of the discretization. Differently, 

the methods not up-winded always apply the same type of calculation scheme, not realizing the 

flow direction, but despite this they are obtained with reliable results and is the type of favorite 

methods if it required a compromise between performance and Rates of limited calculation. 

Unfortunately, accuracies higher than the first order lead to problems of spurious oscillations 

in the solution. It is therefore essential to the application of particular algorithm be able to 

mitigate this phenomenon [2] [3]. 

 

2.1.1. The Method of Characteristics: 

The method of characteristics is based on the ability to transform partial differential equations 

into equations to ordinary derived along particular traceable line in the flow field, calls 

characteristic lines. To directly seize the principle behind the method is appropriate to use a 

graphical approach. You think you have an equation in the form c = c (x, t), it can represent a 

generic surface in the space (x, t, c), as shown in fig. 2.2, and its numerical value is given by 

the height of the surface above the plane c=0. 
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Figure 2:2 Graphical Method of Characteristics interpretation. 

 

Consider a line AB on the surface in question and its projection A'B 'on the plane c = 0. AB is 

said characteristic line if, in any of its point, the value of the angular coefficient of the tangent 

to A'B 'is equal to the value assumed by the equation c = c (x, t) in the same point, that is, if: 

 

 (
𝑑𝑥

𝑑𝑡
)  𝑚′ = 𝑚𝑚′̅̅ ̅̅ ̅̅ = 𝑐(𝑥, 𝑡) 𝑚′ (2.81) 

 

The application of this method to the specific case of the modeling of compressible flow in a 

conduit, provides for the use of the hyperbolic system of partial differential written in non-

conservative form, already introduced in chapter 1 and expressed as following: 

 

 
𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜌𝑢

𝐹

𝑑𝐹

𝑑𝑥
= 0 (2.82) 

 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+
1

𝜌

𝑑𝑝

𝑑𝑥
+ 𝐺 = 0 (2.83) 

 

 (
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − 𝑎2 (

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − (𝑘 − 1)(𝜌𝑞̇ − Δ𝐻𝑟𝑒𝑐 + 𝜌𝑢𝐺) = 0 (2.84) 

 

Through a suitable linear combination of eq. 2.82-2.83-2.84 that make up the hyperbolic 

system, it is possible to arrive at a shape that highlights the following quantities: (u+a), (u-a) 

and u. 
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(
𝜕𝑝

𝜕𝑡
+ (𝑢 + 𝑎)

𝜕𝑝

𝜕𝑥
) + 𝜌𝑎 (

𝜕𝑢

𝜕𝑡
+ (𝑢 + 𝑎)

𝜕𝑢

𝜕𝑥
)

− (𝑘 − 1)(𝜌𝑞̇ − Δ𝐻𝑟𝑒𝑐 + 𝜌𝑢𝐺) + 𝑎
2
𝜌𝑢

𝐹

𝑑𝐹

𝑑𝑥
+ 𝜌𝑎𝐺 = 0 

(2.85) 

 

 

(
𝜕𝑝

𝜕𝑡
+ (𝑢 − 𝑎)

𝜕𝑝

𝜕𝑥
) − 𝜌𝑎 (

𝜕𝑢

𝜕𝑡
+ (𝑢 − 𝑎)

𝜕𝑢

𝜕𝑥
)

− (𝑘 − 1)(𝜌𝑞̇ − Δ𝐻𝑟𝑒𝑐 + 𝜌𝑢𝐺) + 𝑎
2
𝜌𝑢

𝐹

𝑑𝐹

𝑑𝑥
− 𝜌𝑎𝐺 = 0 

(2.86) 

 

 (
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − 𝑎2 (

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − (𝑘 − 1)(𝜌𝑞̇ − Δ𝐻𝑟𝑒𝑐 + 𝜌𝑢𝐺) = 0 (2.87) 

 

To simplify writing, condense the terms source appearing in the equations: 

 

 Δ1 = −(𝑘 − 1)(𝜌𝑞̇ − Δ𝐻𝑟𝑒𝑐 + 𝜌𝑢𝐺) (2.88) 

 

 Δ2 = 𝑎
2
𝜌𝑢

𝐹

𝑑𝐹

𝑑𝑥
 (2.89) 

 

 Δ3 = 𝜌𝑎𝐺 (2.90) 

 

The terms Δ1, Δ3 are dissipative nature and take on values greater than zero if the flow is not 

isentropic, with friction and heat exchange with the walls. On the contrary, the term Δ2 is 

conservative and depend on the variation of the section along the axis of the duct. 

Now you can rewrite the system in a more compact form: 

 

 (
𝜕𝑝

𝜕𝑡
+ (𝑢 + 𝑎)

𝜕𝑝

𝜕𝑥
) + 𝜌𝑎 (

𝜕𝑢

𝜕𝑡
+ (𝑢 + 𝑎)

𝜕𝑢

𝜕𝑥
) + Δ1 + Δ2 + Δ3 = 0 (2.91) 

 

 (
𝜕𝑝

𝜕𝑡
+ (𝑢 − 𝑎)

𝜕𝑝

𝜕𝑥
) − 𝜌𝑎 (

𝜕𝑢

𝜕𝑡
+ (𝑢 − 𝑎)

𝜕𝑢

𝜕𝑥
) + Δ1 + Δ2 − Δ3 = 0 (2.92) 

 

 (
𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) − 𝑎2 (

𝜕𝑝

𝜕𝑡
+ 𝑢

𝜕𝑝

𝜕𝑥
) + Δ1 = 0 (2.93) 

 

The term in parentheses of Eq. 2.91, 2.92 and 2.93, are nothing more than the ordinary 

differential of the independent variables p, u, ρ measured along the lines traceable features along 

the plane (x, t) and with a slope dependent on the properties of the unsteady flow. For example, 



Numerical Methods 

 

 

34 

 

 

 

if the speed of propagation of a pressure wave within a fluid in movement is defined as (u+a), 

then the following relation is valid: 

 

 

𝑑𝑝(𝑥(𝑡), 𝑡)

𝑑𝑡
= (

𝜕𝑝

𝜕𝑡
+
𝜕𝑥

𝜕𝑡
∙
𝜕𝑝

𝜕𝑥
) = (

𝜕𝑝

𝜕𝑡
+ (𝑢 + 𝑎)

𝜕𝑝

𝜕𝑥
) 

 

(2.94) 

 

Clarified this concept, it is easy to determine the slope of the characteristic lines on which it 

will be possible to transform the above equations in differential equations to ordinary 

derivatives. 

 

The following equations define the characteristics lines for the equations of the previous system, 

traceable lines continuously in the plane (x, t). 

 

 
𝑑𝑥

𝑑𝑡
= 𝑢 + 𝑎  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑤𝑎𝑣𝑒 (2.95) 

 

 
𝑑𝑥

𝑑𝑡
= 𝑢 − 𝑎  𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑜𝑓 𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 𝑤𝑎𝑣𝑒      (2.96) 

 

 
𝑑𝑥

𝑑𝑡
= 𝑢   𝑓𝑙𝑜𝑤 𝑙𝑖𝑛𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (2.97) 

 

The first 2 lines are linked to the characteristics propagation nature of the wave motion in the 

ducts, since the terms (u+a) and (u-a) represent the absolute speed of propagation of pressure 

waves; the third line is instead correlated to the motion of fluid particles, and provides 

information on the level of entropy in the ducts. An effective graphic representation is shown 

in fig. 2.3. 

 

The single feature line represents the separation between two regions of the plan, in which the 

fluid-dynamic properties differ in infinitesimal quantities; they therefore constitute 

discontinuities for the derived quantities, for example the speed, but not for the fluid. On the 

three lines, described by eq. 2.95, 2.96 and 2.97, apply relations (see eq. 2.94) that allow you 

to transform eq. 2.91, 2.92 and 2.93 in the equations to ordinary derivatives, also known as 

compatibility equations. 
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Figure 2:3 Tracking of characteristic lines in the (x, t) discretized. 

 

Without introducing any approximation, you can rewrite the system through compatibility 

equations, or equations to ordinary derivatives: 

 

 
𝑑𝑝

𝑑𝑡
+ 𝜌𝑎

𝑑𝑢

𝑑𝑡
+ Δ1 + Δ2 + Δ3 = 0 (2.98) 

 

 
𝑑𝑝

𝑑𝑡
− 𝜌𝑎

𝑑𝑢

𝑑𝑡
+ Δ1 + Δ2 − Δ3 = 0 (2.99) 

 

 
𝑑𝑝

𝑑𝑡
− 𝑎2

𝑑𝜌

𝑑𝑡
+ Δ1 = 0 (2.100) 

 

To simplify the discussion, it develops the case of isentropic flow in ducts with a constant 

section. In these conditions, the terms source Δ1, Δ2, Δ3 is cancel and compatibility equations 

become: 

 

 𝑑𝑝 + 𝑝𝑎 ∙ 𝑑𝑢 = 0 (2.101) 

 

 𝑑𝑝 − 𝑝𝑎 ∙ 𝑑𝑢 = 0 (2.102) 

 

 𝑑𝑝 − 𝑎2 ∙ 𝑑𝑝 = 0 (2.103) 
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it is also appropriate to the isentropic transformation relations: 

 

 
𝑝

𝜌𝑘
= 𝑐𝑜𝑛𝑠𝑡 (2.104) 

 

 
𝜌

𝑎
2
𝑘−1⁄

= 𝑐𝑜𝑛𝑠𝑡 (2.105) 

 

Differentiating 2.106 relationships, 2.105 and placing them in Eq. 2.101, 2.102 is obtained: 

 

 𝑑𝑢 +
2

𝑘 − 1
𝑑𝑎 = 0 (2.106) 

 

 𝑑𝑢 −
2

𝑘 − 1
𝑑𝑎 = 0 (2.107) 

 

From these one obtains the differential of the sound velocity compared to the flow velocity, 

obtaining: 

 

 
𝑑𝑎

𝑑𝑢
= −

𝑘 − 1

2
 (2.108) 

 

 
𝑑𝑎

𝑑𝑢
= +

𝑘 − 1

2
 (2.109) 

 

The eq. 2.108, 2.109 accompanied of the respective equations of the characteristics lines (eq. 

2.95, 2.96) can be represented on the planes (x, t) and (u, a), shown in Fig. 2.4, which are named 

respectively: 

 

- Location diagram: on which lines features are represented (eq. 2.95, 2.96); 

- State diagram: on which the differentials are represented in the speed of sound relative to the 

flow velocity. 

 

They introduce 2 families of curves to identify the curves associated progressive wave (λ) and 

those associated with the regressive (β): 
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𝜆−→ {

𝑑𝑢

𝑑𝑡
= 𝑢 + 𝑎

𝑑𝑎

𝑑𝑢
= −

𝑘 − 1

2

             𝛽−→ {

𝑑𝑢

𝑑𝑡
= 𝑢 − 𝑎

𝑑𝑎

𝑑𝑢
= +

𝑘 − 1

2

 

 

 
Figure 2:4: Position diagram (a) and state (b) for the families of λ and β curves. 

 

The solution can be determined graphically by the intersection of the two families of 

characteristic curves. 

 

Rewriting eq. 2.108, 2.109 as: 

 

 𝑑 (𝑢 +
2

𝑘 − 1
𝑎) = 0   ⟶  𝜆 (2.110) 

 

 𝑑 (𝑢 −
2

𝑘 − 1
𝑎) = 0   ⟶  𝛽 (2.111) 

 

we realize that the words in brackets of 2 equations are constant along the characteristic lines 

and define the Riemann invariants J + and J-. 

 

 𝐽+ = 𝑢 +
2

𝑘 − 1
𝑎      𝑐𝑢𝑡𝑠 𝑑𝑜𝑤𝑛 ⟶ 𝜆 (2.112) 
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 𝐽− = 𝑢 −
2

𝑘 − 1
𝑎      𝑐𝑢𝑡𝑠 𝑑𝑜𝑤𝑛 ⟶ 𝛽 (2.113) 

 

The terms Δ source assume a non-null value, the invariants of Riemann become the Riemann 

variables and takes the curvature of the lines drawn on the state diagram. 

Up to this point it is not any approximation, but they are only manipulated with the initial 

equations to arrive at a formulation suitable to the resolution through numerical approach. 

 

Before going into the actual numerical method, we should define new variables: 

 

 𝐴 =
𝑎

𝑎𝑟𝑒𝑓
      𝑁𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑. (2.114) 

 

 𝑈 =
𝑢

𝑎𝑟𝑒𝑓
      𝑁𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑔𝑎𝑠. (2.115) 

 

 𝐴𝐴 =
𝑎𝐴
𝑎𝑟𝑒𝑓

      𝑁𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑡𝑜 𝑔𝑎𝑠 (2.116) 

 

 𝑍 =
𝑎𝑟𝑒𝑓
𝑥𝑟𝑒𝑓

      𝑁𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑡𝑖𝑚𝑒. (2.117) 

 

 𝑋 =
𝑥

𝑥𝑟𝑒𝑓
      𝑁𝑜𝑛 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ. (2.118) 

 

where aref, pref, xref are a constant reference values, appropriately chosen for the calculation, 

whose physical interpretation is instant referring to the following diagram: 

 

 
Figure 2:5 :a-s diagram on which it is possible to recognize the reference values of: the speed of sound, pressure and 

entropy. 
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On the diagram of Fig. 2.5, you can define the speed of aA sound. Starting from the local 

conditions of p, ρ and hence the speed of sound in, it performs an expansion processing (or 

compression) isentropic up to the reference pressure pref which corresponds to the speed of 

sound aA. 

 

The fictitious transformation is isentropic, so you can write the classic relations: 

 

 
𝑝

𝑝𝑟𝑒𝑓
= (

𝑎

𝑎𝐴
)

2𝑘
𝑘−1

 (2.119) 

 

 
𝜌

𝜌𝐴
= (

𝑝

𝑝𝑟𝑒𝑓
)

1
𝑘

 (2.120) 

 

In general, for a flow non-isentropic, the value of entropy ‘s’ of the initial state is different from 

sref therefore aA is distinct from aref isobaric of pref reference. One senses that the aA magnitude 

is related to the entropy of the AA variable, which represents the entropy level of the gas relative 

to the reference condition local and especially dynamic gas state, can be immediately related to 

the entropy variation Δs=s-sref. 

 

Isobaric infinitesimal long increment in entropy gives us: 

 

 𝑑𝑠𝑝=𝑐𝑜𝑛𝑠𝑡 =
𝑑ℎ

𝑇
= 𝑐𝑝

𝑑ℎ

𝑑ℎ
 (2.121) 

 

knowing that the enthalpy and its infinitesimal variation can be expressed in function of the 

speed of sound: 

 

 ℎ = 𝑐𝑝𝑇 =
𝑘𝑅𝑇

𝑘 − 1
=

𝑘

𝑘 − 1
∙
𝑝

𝜌
=

𝑎2

𝑘 − 1
 (2.122) 

 

 
𝑑ℎ

ℎ
=
2𝑑𝑎

𝑎
 (2.123) 

 

we obtain a new expression for eq. 2.41: 
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 𝑑𝑠𝑝=𝑐𝑜𝑛𝑠𝑡 =
𝑑ℎ

𝑇
= 2𝑐𝑝

𝑑𝑎

𝑎
 (2.124) 

 

The link between entropy and the speed of sound can be expressed in integral form and 

dimensionless by: 

 

 𝐴𝐴 =
𝑎𝐴
𝑎𝑟𝑒𝑓

= 𝑒

(𝑠−𝑠𝑟𝑒𝑓)

2𝑐𝑝  (2.125) 

 

Continuing the discussion, they introduce the Riemann variables as dimensionless calling λ and 

β: 

 𝜆 = 𝐴 +
𝑘 − 1

2
𝑈     𝑐𝑢𝑡𝑠 𝑑𝑜𝑤𝑛 𝑙𝑖𝑛𝑒 (

𝑑𝑋

𝑑𝑍
)
𝜆
= 𝑈 + 𝐴 (2.126) 

 

 𝛽 = 𝐴 −
𝑘 − 1

2
𝑈     𝑐𝑢𝑡𝑠 𝑑𝑜𝑤𝑛 𝑙𝑖𝑛𝑒 (

𝑑𝑋

𝑑𝑍
)
𝛽
= 𝑈 − 𝐴 (2.127) 

 

In the presence of isentropic flow, λ and β assume constant values, becoming the invariants of 

Riemann, while in the opposite case their variation along the characteristic lines is expressed 

as: 

 𝑑𝜆 = 𝑑𝐴 +
𝑘 − 1

2
𝑑𝑈 (2.128) 

 

 𝑑𝛽 = 𝑑𝐴 −
𝑘 − 1

2
𝑑𝑈 (2.129) 

 

The quantities dλ and dβ are determined by the compatibility equations (eq.2.101-102-103), in 

dimensionless form and rearranged, and the direction of equations. 

 

Following solved equations are applied to the three characteristics families: 

 

- λ Characteristic (traveling wave) 

 

   Equation direction: 

 

 (
𝑑𝑋

𝑑𝑍
)
𝜆
= 𝑈 + 𝐴 (2.130) 
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Compatibility Equation: 

 

 

𝑑𝜆 = −
(𝑘 − 1) ∙ (𝐴𝑈)

2
∙ (
1

𝐹

𝑑𝑓

𝑑𝑋
) 𝑑𝑍

−
(𝑘 − 1)

2

2𝑥𝑟𝑒𝑓𝑓

𝐷
𝑈2

𝑈

|𝑈|
[1 − (𝑘 − 1)

𝑈

𝐴
] 𝑑𝑍

+
(𝑘 − 1)2

2

𝑞̇𝑥𝑟𝑒𝑓

𝑎𝑟𝑒𝑓
3

1

𝐴
𝑑𝑍 +

𝐴

𝐴𝐴
𝑑𝐴𝐴 

(2.131) 

 

-  Characteristic (regressive wave) 

 

   Equation direction: 

 

 (
𝑑𝑋

𝑑𝑍
)
𝛽
= 𝑈 − 𝐴 (2.132) 

 

  Compatibility Equation: 

 

 

𝑑𝛽 = −
(𝑘 − 1) ∙ (𝐴𝑈)

2
∙ (
1

𝐹

𝑑𝑓

𝑑𝑋
) 𝑑𝑍

+
(𝑘 − 1)

2

2𝑥𝑟𝑒𝑓𝑓

𝐷
𝑈2

𝑈

|𝑈|
[1 − (𝑘 − 1)

𝑈

𝐴
] 𝑑𝑍

+
(𝑘 − 1)2

2

𝑞̇𝑥𝑟𝑒𝑓

𝑎𝑟𝑒𝑓
3

1

𝐴
𝑑𝑍 +

𝐴

𝐴𝐴
𝑑𝐴𝐴 

(2.133) 

 

- Trajectory Feature (flow line or path line)  

 

  Equation direction: 

 

 (
𝑑𝑋

𝑑𝑍
) = 𝑈 (2.134) 

 

  Compatibility Equation: 

 

 𝑑𝐴𝐴 =
(𝑘 − 1)

2

𝐴𝐴
𝐴2
(
2𝑥𝑟𝑒𝑓𝑓

𝐷
|𝑈3| +

𝑞̇𝑥𝑟𝑒𝑓

𝑎𝑟𝑒𝑓
3 )𝑑𝑍 (2.135) 
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In the first two compatibility equations (eq. 2.131-2.133) it is observed that changes in variables 

Riemann, dλ and dβ, depend on four basic terms due respectively to the change of section of 

the pipe, friction, heat exchange and the entropy change. 

 

 𝑑(𝜆, 𝛽) = 𝛿𝑠𝑒𝑐𝑡𝑖𝑜𝑛 + 𝛿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝛿ℎ𝑒𝑎𝑡 + 𝛿𝑒𝑛𝑡𝑟𝑜𝑝𝑦 (2.136) 

 

In the third equation of compatibility, the increase of entropy level depends only from the 

contributions due to friction and heat exchanges. 

 

 𝑑𝐴𝐴 = 𝛿𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝛿ℎ𝑒𝑎𝑡 (2.137) 

 

Now consider the physical features of the Method of Characteristics. 

 

In a compressible and unsteady flow, the conditions, in a given section are determined by the 

mass transport rate and the pressure perturbations that propagate at the speed of sound through 

the fluid itself. As shown in fig. 2.6, in a generic section of the pipe at time t+t P of the flow 

conditions can be influenced only by the states of the gas relative to the previous time t, i.e the 

points C, D and F. The lines connecting the points P to C, D and F represent characteristic lines 

in the plane (x,t) and their inclination depends on the absolute speed of sound of the gas in this 

point 

 

 
Figure 2:6 Influence of the flow conditions at time t+𝛥t in a given section of the duct. 
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Operationally, we proceed in the following way: notes the Riemann variables at time Z, is the 

change in entropy through the equation of the flow line 2.135, and then the variations along the 

lines of the characteristics of Riemann variables through the 2.131 compatibility equations and 

2.133. It is thus possible to determine the new value of the Riemann variables at time Z + ΔZ 

in the following way: 

 

 
𝜆𝑍+Δ𝑍 = 𝜆 + Δ𝜆 

 
(2.138) 

 

 
𝛽𝑍+Δ𝑍 = 𝛽 + Δ𝑑 (2.139) 

 

At this point the solution is determined through deriving from the relations eq 2.126 and 2.127: 

 

 𝐴 =
𝜆 + 𝛽

2
 (2.140) 

 

 𝑈 =
𝜆 − 𝛽

𝑘 − 1
 (2.141) 

 

Is now introduced to the Method of Characteristics to mesh, namely it adopts a numerical 

method for the estimation of the analytical solution. 

 

In the Method of Characteristics to mesh, belonging to the family of explicit methods, the points 

of intersection of the characteristic lines have a known position and defined in the (x, t). To 

discretize the space-time domain using a rectangular grid computing with the following 

features: 

 

SPACE: discretization along the x coordinate is fixed according to the number of mesh, or 

sub-elements, with which the duct is divided. For a number of the sub-elements correspond 

l+1 compute nodes. Increasing computing nodes, thereby reducing the size of the mesh, you 

will get more accurate results. 

 

TIME: the size of the time step is determined based on the condition of stability dictated by 

the policy CFL (Courant-Friedrichs-Lewy). Considering the finite propagation velocity of a 

wave of pressure in a conduit such as the speed of sound in added to the flow velocity u, the 

distance traveled by the wave in the time of Dt calculation step must be less than the size of 

the mesh Δx. It therefore introduces the CFL number: 
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 𝐶𝐹𝐿 = (𝑎 + |𝑢|)
Δ𝑡

Δ𝑥
≤ 1 (2.142) 

 

 𝐶𝐹𝐿 = (𝐴 + |𝑈|)
Δ𝑍

Δ𝑋
≤ 1 (2.143) 

 

In order for all the nodes belonging to the grid at the time Z+ΔZ from falling into the domain 

of influence the CFL has to assume values ≤ 1. 

 

The calculation of the Riemann variables and tracking features lines are made only in the grid 

nodes at each time step, as shown in the following figure: 

 

 
Figure 2:7 Grid space-time used for the calculation of the Riemann variables with the method of characteristics 

 

Now rename the Riemann variables as: λI corresponding to λ and λII corresponding to β; this 

allows a generalization that simplifies the calculation procedure. 

 

Note the values of the three variables λI, λII, AA in each mesh point of the duct at the 

dimensionless time Z, it determines the time step ΔZ, according to the criterion of the CFL so 

as to define the calculation grid at time Z + ΔZ. For the tracking characteristics of the lines to 

the new time step we proceed back in time, ie the two families of λI and λII lines are drawn from 

each node of the mesh at the time Z + ΔZ, as shown in fig. 2.8. 
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Figure 2:8 Tracking feature lines back in time, starting from the node s in Z+ΔZ (point R') up to the P points to the time Z. 

The two characteristic lines intersect the abscissa axis at the time Z in two points L and R, 

distinct from the nodes. The slope of the lines is held constant but in reality, they are curved 

and then introduces an approximation. The smaller is the size of the calculation grid and the 

lower the numerical error associated with this approximation. In addition to the characteristics 

lines it is also track the flow line that intersects the axis of the space at the point S. 

 

It is shown that the position of the points L and R on the mesh (Fig. 2.8) can be calculated from 

the known values of λI and λII in adjacent nodes, for brevity it will only show the calculation of 

the position of the point L, as regard R is completely analogous process. 

λI being the progressive characteristic curve, the following relationship: 

 

 
𝛿𝑋𝐿
Δ𝑍

= 𝑈𝐿 + 𝐴𝐿 (2.144) 

 

Using eq. 2.140 and 2.141 and drifting the 2.144 you get: 

 

 
𝛿𝑋𝐿
Δ𝑍

= 𝑎𝜆𝐼𝐿 + 𝑏𝜆𝐼𝐼𝐿  (2.145) 

 

where a, b represents two constants dependent on the nature of the gas: 

 

 𝑎 =
𝑘 + 1

2(𝑘 − 1)
 (2.146) 
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 𝑏 =
3 − 𝑘

2(𝑘 − 1)
 (2.147) 

 

- λI the point L is determined by linear interpolation between the known values of the same 

magnitude in the i and i-1 nodes: 

 

 𝜆𝐼𝐿 = 𝜆𝐼𝑖 −
𝛿𝑋𝐿
Δ𝑋

(𝜆𝐼𝑖 − 𝜆𝐼𝑖−1) (2.148) 

 

- λII at the point L it is determined in a similar manner to λ: 

 

 𝜆𝐼𝐼𝐿 = 𝜆𝐼𝐼𝑖 −
𝛿𝑋𝐿
Δ𝑋

(𝜆𝐼𝐼𝑖 − 𝜆𝐼𝐼𝑖−1) (2.149) 

 

Replacing the 2.148 and the 2.149 in 2.145 is finally obtained: 

 

 
𝛿𝑋𝐿
Δ𝑋

=
𝑎𝜆𝐼𝑖 + 𝑏𝜆𝐼𝐼𝑖

Δ𝑋
Δ𝑍 + 𝑎(𝜆𝐼𝑖 − 𝜆𝐼𝑖−1) − 𝑏(𝜆𝐼𝐼𝑖 − 𝜆𝐼𝐼𝑖−1)

 (2.150) 

 

At this point the values of the variables are known Riemann and in general all the other 

quantities in the characteristics of line intersections points with the abscissa axis at the time Z; 

before you can evaluate Δ1 and Δ2 is necessary to calculate the entropy change along the same 

characteristics. 

 

To do this it uses the equation of the flow line compatibility (2.135) in which the magnitude, 

AA, U, q and f must be calculated in the point S to means of a linear interpolation of the 

neighboring nodes: 

 𝐺𝑠 = 𝐺𝑖 −
𝛿𝑋𝑠
Δ𝑋

(𝐺𝑖 − 𝐺𝑖−1) (2.151) 

 

Where G indicates a generic observable and 

 

 
𝛿𝑋𝑠
Δ𝑋

=
𝜆𝐼𝑖 − 𝜆𝐼𝐼𝑖

Δ𝑋
Δ𝑍 (𝑘 + 1) + (𝜆𝐼𝑖 − 𝜆𝐼𝑖−1) − (𝜆𝐼𝐼𝑖 − 𝜆𝐼𝐼𝑖−1)

 (2.152) 

 

The 2.152 is easily obtainable with a similar process to that illustrated previously. 
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Now it is known the value of AAS and dAAS from which it is possible to calculate the entropy 

of the point P (AAP) through the equation: 

 

 𝐴𝐴𝑃 = 𝐴𝐴𝑆 + 𝑑𝐴𝐴𝑆 (2.153) 

 

Known AAP for finding the entropy change along λI character line and in a similar manner along 

λII, it will be enough to calculate: 

 

 𝑑𝐴𝐴𝐿 = 𝐴𝐴𝑝 + 𝐴𝐴𝐿 (2.154) 

 

dAAL and d AAR, are to be inserted respectively in 2.131 and 2.133 to find  and . 

 

The described numerical method is used to determine the three λI variables, λII, and AA in all 

the mesh nodes, except the first and last. In fact, starting from the end nodes we can trace back 

in time only one of the two characteristic lines because the other falls outside of the duct, in the 

region bordering contour, as shown in fig. 2.7. It suggests that in the node 1 is possible to know 

λ’Il, directly only while the node I + 1 is possible to know λ’I, because both fall within the duct 

considered; These two variables are called λin. 

 

To assess the missing Riemann variable, called λout, recourse is to the boundary conditions, it 

conditions that translate the presence of the environment or of a neighboring component with 

the end of the duct considered. For the modeling of the boundary conditions it is assumed the 

hypothesis of almost stationarity of the phenomena that take place in the boundary regions, or 

that is, it is supposed that the gas dynamic processes in these regions can be described by a 

succession of stationary states, spaced by time intervals ΔZ. These assumptions lead to 

expressing the boundary conditions as algebraic equations arising from the conservation 

equations for steady flow and one-dimensional, unsteady neglecting the terms of type t. 

Numerous situations to the contour can be described with this approach, including: open ends 

in a constant pressure environment, end partially open, junctions of two ducts with abrupt 

variation of section, more ducts junctions and others. 

 

In conclusion, please note that, by adopting a linear interpolation technique in the space of the 

grid, the gate of the Features method to be accurate to the first order in space and time. This 

characteristic turns out to be a limitation in the very detailed analysis, since they can not be 

picked by small oscillations of the magnitudes at high frequencies. 
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2.2.  Shock-Capturing methods: 

 

The results of fluid dynamic simulations can be greatly improved by using, for the resolution 

of hyperbolic system, more robust and accurate than the method of numerical methods to mesh 

Features. The fundamental merit of the Shock-Capturing methods resides in the ability to grasp 

correctly any discontinuities in the solution, as for example: shock waves, contact 

discontinuities due to temperature or chemical composition. Within this family, the methods to 

the symmetrical finite differences have proved the most efficient, representing a good 

compromise between: accuracy, the goodness of the solution, simplicity and calculation times. 

The symmetry of the method consists in applying in each node of the grid the same scheme 

with finite differences for expressing the terms of the spatial derivatives, irrespective of the 

flow field characteristics. 

 

The methods described below are explicit and have an accuracy of the II order in the space-

time domain. Unfortunately, as is known from the theorem of Godunov, the fact of having an 

accuracy of higher order at the first port to have problems of spurious oscillations in the solution 

found, and then is indispensable the use of special algorithms accessories to mitigate this 

phenomenon. 

 

As described in chapter 1, the Shock-Capturing methods are applied to the hyperbolic system 

written in conservative form and matrix, complete additional hypothesis on the evolving gas 

model. Referring to Eq. 1.34 and clearing of the source terms vectors, we obtain the Euler 

equations describing the isentropic flow in a duct with constant cross section: 

 

 
𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐹̅(𝑊̅)

𝜕𝑥
= 0 (2.155) 

 

By integrating Eq.2.155 in space x and in time t and applying the divergence theorem of Gauss, 

we obtained: 

 

 ∫ ∫ (
𝜕𝑊̅

𝜕𝑡
+
𝜕𝐹̅

𝜕𝑥
)𝑑𝑥 ∙ 𝑑𝑡 = 0

𝑥+Δ𝑥

𝑥

𝑡+Δ𝑡

𝑡

 (2.156) 

 

The use of finite difference methods for the solution of eq. 2.156 requires the discretization of 

the space-time domain through mesh subdivision. The carrier, allows to fully characterize the 

motion of the flow and can be approximated by the following relationship: 
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 𝑊̅(𝑥, 𝑡) ≅ 𝑊̅𝑖
𝑛(𝑖Δ𝑥, 𝑛Δ𝑡) (2.157) 

 

Introducing the relationship 2.157 Eq. 2.156 is obtained: 

 

 (𝑊̅𝑖
𝑛+1 − 𝑊̅𝑖

𝑛)Δ𝑥 + (𝐹̅
𝑖+
1
2

𝑛 − 𝐹̅
𝑖−
1
2

𝑛 )Δ𝑡 = 0 (2.158) 

 

Where the terms 𝑊̅ and 𝐹̅ are accessible using the following media expressions 

in space and time. 

 

 𝑊̅𝑖 =
1

Δ𝑥
∫ 𝑊̅𝑑𝑥

𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

 (2.159) 

 

 𝐹̅
𝑖±
1
2
=
1

Δ𝑡
∫ 𝐹̅𝑑𝑡

𝑡𝑛+1

𝑡𝑛

 (2.160) 

 

The eq. 2.156 allows to disengage from the condition of differentiability, required by the Euler 

equations, the integral formulation also has the advantage of treating the discontinuities prior 

to not knowing their localization. appropriately rearranging the terms of Eq. 2.158 you can 

write: 

 

 (𝑊̅𝑖
𝑛+1 − 𝑊̅𝑖

𝑛)

Δ𝑡
+

(𝐹̅
𝑖+
1
2

𝑛 − 𝐹̅
𝑖−
1
2

𝑛 )

Δ𝑥
= 0 

(2.161) 

 

Now adding the differences along x is obtained: 

 

 Δ𝑥 ∑ 𝑊̅𝑖
𝑛+1

𝑖𝑚𝑎𝑥

𝑖𝑚𝑖𝑛

= Δ𝑥 ∑ 𝑊̅𝑖
𝑛

𝑖𝑚𝑎𝑥

𝑖𝑚𝑖𝑛

+ Δ𝑡 [𝐹̅
𝑖𝑚𝑖𝑛+

1
2

𝑛 − 𝐹̅
𝑖𝑚𝑎𝑥+

1
2

𝑛 ] (2.162) 

 

Where: 

The first member is the total mass, the total momentum and the total amount of energy to the 

new time instant (n+1); 
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The first term to the second member represents the total mass, the amount the total momentum 

and the total amount of energy to time instant n; 

The second term to the second member represents the amount of flow preserved through the 

ends of the conduit. 

The well-defined equations constitute a scheme to conservative discretization, feature that 

guarantees us the validity of the integral properties of differential equations. 

In next steps, we will be introducing Shock-Capturing methods Lax-Wendroff and 

MacCormack, both used in Gasdyn code and belonging to the category of finite difference 

methods, centered, explicit, with accuracy of the II order. 

 

2.2.1. Lax-Wendroff method: 

It is based on the development in Taylor series of the carrier solution, and is used in two forms: 

schema one step or two steps scheme. 

 

ONE STEP SCHEME 

Consider the system of equations in conservative form assuming isentropic stream written in 

matrix form: 

 

 

𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐹̅(𝑊̅)

𝜕𝑥
= 0 

 

(2.163) 

 

Since the spatial derivative of the function vector is expressible as: 

 

 
𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐹̅(𝑊̅)

𝜕𝑊̅

𝜕𝑊̅

𝜕𝑥
= 0 (2.164) 

 

the term 
𝜕𝐹(𝑊̅)

𝜕𝑊̅
 represents the Jacobian matrix A: 

 

 𝑨 =
𝜕𝐹̅(𝑊̅)

𝜕𝑊̅
 (2.165) 

 

whose elements are: 

 

 𝑎𝑖𝑗 =
𝜕𝐹𝑖
𝜕𝑊𝑗

 (2.166) 

 

With the introduction of the eq 2.159, Jacobian expression becomes: 
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𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
+ 𝑨

𝜕𝑊̅

𝜕𝑥
= 0 (2.167) 

 

Consider now the development in a Taylor series arrested to the second order of the vector in 

the discretized solution 𝑊̅ domain at time n+1 and in the node: 

 

 𝑑̅𝑖
𝑛+1

= 𝑊̅𝑖
𝑛 +

𝜕𝑊̅

𝜕𝑡
|
𝑖

𝑛

Δ𝑡 +
1

2!

𝜕2𝑊̅

𝜕𝑡2
|
𝑖

𝑛

Δ𝑡2 + 0(Δ𝑡3) (2.168) 

 

Recalling the relationships 2.163 and 2.167: 

 

 
𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
= −𝑨

𝜕𝑊̅

𝜕𝑥
= −

𝜕𝐹̅(𝑊̅)

𝜕𝑥
 (2.169) 

 

one can express the second derivative in time that appears in the development in 

series: 

 

 
𝜕2𝑊̅

𝜕𝑡2
= −

𝜕

𝜕𝑡
(
𝜕𝐹̅

𝜕𝑥
) = −

𝜕

𝜕𝑥
(
𝜕𝐹̅

𝜕𝑡
) (2.170) 

 

but the time derivative of the vector, using the above relations, it appears to be: 

 

 
𝜕𝐹̅

𝜕𝑡
=
𝜕𝐹̅

𝜕𝑊̅
(
𝜕𝑊̅

𝜕𝑡
) = −

𝜕𝐹̅

𝜕𝑊̅
(
𝜕𝐹̅

𝜕𝑥
) =

𝜕𝐹̅

𝜕𝑊̅
(−𝑨

𝜕𝑊̅

𝜕𝑥
) = (−𝑨

𝜕𝐹̅

𝜕𝑥
) (2.171) 

 

the eq 2.170 takes the form: 

 

 
𝜕2𝑊̅

𝜕𝑡2
= 𝑨

𝜕

𝜕𝑥
(
𝜕𝐹̅

𝜕𝑥
) (2.172) 

 

Introducing the 2.169 and 2.172 expressions Taylor series expansion is obtained: 

 

 𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛 −𝑨
𝜕𝑊̅

𝜕𝑥
|
𝑖

𝑛

Δ𝑡 +
1

2!

𝜕

𝜕𝑥
(𝑨2

𝜕𝑊̅

𝜕𝑥
)|
𝑖

𝑛

Δ𝑡2 + 0(Δ𝑡3) (2.173) 
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 𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛 −
𝜕𝐹̅

𝜕𝑥
|
𝑖

𝑛

Δ𝑡 +
1

2!

𝜕

𝜕𝑥
(𝑨2

𝜕𝐹̅

𝜕𝑥
)|
𝑖

𝑛

Δ𝑡2 + 0(Δ𝑡3) (2.174) 

 

By approximating the partial derivatives in Eq. 2.173 with centered finite differences, we reach 

the final expression of the one step Lax-Wendroff method: 

 

 𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛 − 𝑨(
𝑊̅𝑖+1

𝑛 − 𝑊̅𝑖−1
𝑛

2Δ𝑥
)Δ𝑡 +

𝑨2

2!
(
𝑊̅𝑖+1

𝑛 − 2𝑊̅𝑖
𝑛 − 𝑊̅𝑖−1

𝑛

Δ𝑥2
)Δ𝑡2 (2.175) 

 

above eq. is valid, where A is constant, otherwise expression is: 

 

 

𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛 −
Δ𝑡

2Δ𝑥2
(𝐹𝑖+1

𝑛 − 𝐹𝑖−1
𝑛 )Δ𝑡

+
Δ𝑡2

2Δ𝑥2
(𝐴

𝑖+
1
2

𝑛 (𝐹𝑖+1
𝑛 − 𝐹𝑖

𝑛) − 𝐴
𝑖−
1
2

𝑛 (𝐹𝑖
𝑛 − 𝐹𝑖−1

𝑛 )) 

(2.176) 

 

where: 

 𝐴
𝑖±
1
2

𝑛 =
1

2
(𝐴𝑖

𝑛 + 𝐴𝑖±1
𝑛 ) (2.177) 

 

Or 

 𝐴
𝑖±
1
2

𝑛 = 𝐴(𝑊𝑖
𝑛 +𝑊𝑖±1

𝑛 ) (2.178) 

 

The eq. 2.175 and 2.176 allow to calculate the 𝑊̅ solution at time n+1 in i-th node starting from 

the knowledge of the vector 𝑊̅ at time n-1 in the nodes, i and i+1. 

 

Unfortunately, the one step Lax-Wendroff method requires a high computational burden, since 

the need of calculation of the Jacobian matrix A in each node for all the time steps. 

 

TWO STEP SCHEME 

Richtmeyer proposed the two step method of Lax-Wendroff. This method avoids the calculation 

of the Jacobian matrix, by inserting an intermediate step in the calculation of the vector solution 

in the node and to the desired time, and therefore is particularly suited to implementation in 

computer codes. 
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Figure 2:9 Calculation scheme of two step method Lax-Wendroff. 

Step I: Note the 𝑊̅ and 𝐹̅ vectors in the nodes i-1, i, i+1 at time n, one obtains the vector 𝑊̅ 

solution, via an expansion in Taylor series stopped at the first order, to the intermediate time 

n+1/2 in intermediate nodes i+1/2 and i-1/2. Introducing the approximation centered finite 

difference you get: 

 

 𝑊̅
𝑖+
1
2

𝑛+
1
2 = (

𝑊̅𝑖+1
𝑛 − 𝑊̅𝑖

𝑛

2
) − (

𝐹̅𝑖+1
𝑛 − 𝐹̅𝑖

𝑛

2Δ𝑥
)Δ𝑡 (2.179) 

 

 𝑊̅
𝑖−
1
2

𝑛+
1
2 = (

𝑊̅𝑖
𝑛 − 𝑊̅𝑖−1

𝑛

2
) − (

𝐹̅𝑖
𝑛 − 𝐹̅𝑖−1

𝑛

2Δ𝑥
)Δ𝑡 (2.180) 

 

Step II: 𝑊̅ known you can calculate the vector of 𝐹̅ flows in the intermediate nodes i+1/2 and 

i-1/2 to split time n+1/2, then you can determine the vector 𝑊̅ solution at time n+1 in the node. 

 

 𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛 −

(

 
 
𝐹̅
𝑖+
1
2

𝑛+
1
2 − 𝐹̅

𝑖−
1
2

𝑛−
1
2

Δ𝑥

)

 
 
Δ𝑡 (2.181) 

 

The time step is determined by the stability criterion Courant-Friedrichs-Lewy, previously 

defined in section 2.1, for which the CFL must assume values ≤ 1. 

 

2.2.2. MacCormack method: 

The novelty introduced by the MacCormack method, compared to the previous method, is to 

resort to two different phases of calculation: predictor and corrector. Consider the system of 
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equations in conservative form and in the hypothesis matrix of isentropic flow duct and a 

constant section: 

 

 
𝜕𝑊̅(𝑥, 𝑡)

𝜕𝑡
+
𝜕𝐹̅(𝑊̅)

𝜕𝑥
= 0 (2.182) 

 

- Phase predictor: known carriers and in each node at the instant time n, using a scheme of 

finite difference forward (forward) for the approximation of the derivatives, we calculate the 

approximate value of the carrier solution 𝑊∗̅̅ ̅̅  at the time t*: 

 

 𝑊̅𝑖
∗ = 𝑊̅𝑖

𝑛 −
Δ𝑡

Δ𝑥
(𝐹̅𝑖+1

𝑛 − 𝐹̅𝑖
𝑛) (2.183) 

 

Determined 𝑊𝑖∗̅̅ ̅̅  can be calculated by the vector amount of flows 𝐹∗̅̅ ̅. Finally, we proceed to the 

calculation of the carrier solution at half time step by the average of the vector estimated at the 

time t* and the one at the previous time step. 

 

 𝑊̅𝑖
𝑛+

1
2 =

1

2
(𝑊̅𝑖

𝑛 + 𝑊̅𝑖
∗) (2.184) 

 

- Phase corrector: using finite difference backward (backward) and advancing in the Δt/2 time 

to conclude the entire time step, you get the final value of the carrier solution. 

 

 𝑊̅𝑖
𝑛+1 = 𝑊̅𝑖

𝑛+
1
2 −

Δ𝑡

2
(
𝐹̅𝑖
∗ − 𝐹̅𝑖−1

∗

Δ𝑥
) (2.185) 

 

The diagram of fig. 2.10 summarizes the steps of the method Mac-Cormack: 

 

 
Figure 2:10 Representation of the MacCormack method in the case of forward predictor-backward corrector. 
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The method is described in the forward-backward predictor corrector shape, but you can reverse 

the diagram application of finite differences in the two phases getting different results because 

of the different behavior of the algorithm. it was found by experimental findings that the best 

solution is achieved by adopting finite difference in the direction of propagation of the 

discontinuity in the predictor step. If this direction is not known prior, as a rule, you can reverse 

the scheme of finite difference by making a step forward in the form predictor-corrector 

backward and the next in the form backward predictor-corrector forward. Also for this method 

the stability condition is derived from the application of CFL. 

 

2.3. The problem of spurious oscillations: 

 

The Lax-Wendroff and Mac-Cormack methods present the problem of so called spurious 

oscillations, i.e oscillations of the numerical solution in correspondence of the discontinuities, 

such as shock or contact discontinuities waves. One reason for this behavior is found in 

Godunov's theorem, which shows that all the numerical schemes with accuracy higher than the 

first order and due to a diagram of the constant type coefficients: 

 

 𝑊̅𝑖
𝑛+1 =∑𝑐𝑘𝑊̅𝑖+𝑘

𝑛

𝑘

 (2.186) 

 

have non-physical oscillations in the discontinuity of the match solution. The Harten criterion 

indicates the necessary and sufficient conditions that a numerical method must meet in order to 

avoid the occurrence of spurious oscillations. 

 

 𝑇𝑉(𝑊̅𝑛) =∑|𝑊̅𝑖
𝑛+1

𝑖

+ 𝑊̅𝑖
𝑛| (2.187) 

 

if, with the advancement of the time step, the TV sum does not grow: 

 

 𝑇𝑉(𝑊̅𝑛+1) ≤ 𝑇𝑉(𝑊̅𝑛) (2.188) 

 

then the numerical scheme admits monotonous solution and does not have the 

problem of spurious oscillations. Methods with this character are called TVD, i.e Total 

Variation Diminishing. 

Through the criterion of Harten you can then show that the methods Lax-Wendroff and TVD 

Mac-Cormack are not, but you can make such by suitably modifying the calculation schemes 

so that the coefficients ck belong to the same solution 𝑊̅ [1] [2]. 
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The TVD schemes are divided into two classes: 

 

Pre-processing schemes: characterized in that the complex data is modified before updating 

the solution. 

Post-processing schemes: the solution is updated from time to time through the selected 

numerical method and subsequently modified to meet the requirements of TVD schemes. 

 

Covered in the second group of FCT techniques and flow restrictors, algorithms are 

implemented in Gasdyn code. 

 

2.4. The FCT technique: 

 

The Corrected Flux Transport, more briefly indicated with the acronym FCT, is a technique of 

damping of spurious oscillations introduced by Boris and Book in 1973 that includes three basic 

steps: 

 

- Transport Stage: the temporary solution is achieved by the Lax-Wendroff methods or Mac-

Cormack represented on the transport operator T. 

 

 𝑊̅𝑛+1 = 𝑊̅𝑛 + 𝑇(𝑊̅𝑛) (2.189) 

 

- Diffusion stage: introduces a numerical diffusion in solution that will dampen the non-physical 

oscillations. The diffusive flux introduced is defined as: 

 

 𝜃̅ (𝑊̅
𝑖+
1
2
) =

1

8
(𝑊̅𝑖+1 − 𝑊̅𝑖) (2.190) 

 

 𝜃̅ (𝑊̅
𝑖−
1
2
) =

1

8
(𝑊̅𝑖 − 𝑊̅𝑖−1) (2.191) 

 

which corresponds to a diffusion operator 𝑫𝑖  : 

 

 𝑫𝑖 = 𝜃̅ (𝑊̅𝑖+
1
2
) − 𝜃̅ (𝑊̅

𝑖−
1
2
) (2.192) 

 

Now for the calculation of the vector 𝑊̅ solution there are two different routes of development 

of the method: 
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 1. Diffusion via Damping: diffusion operator in calculating the carrier relative to the time level 

solution is used n: 

 

 𝑊̅𝐷
𝑛+1 = 𝑊̅𝑛+1 +𝐷(𝑊̅𝑛) (2.193) 

 

2. Diffusion via Smoothing: the operator of diffusion calculation is used in the carrier solution 

for the new time level n+1: 

 

 𝑊̅𝐷
𝑛+1 = 𝑊̅𝑛+1 +𝐷(𝑊̅𝑛+1) (2.194) 

 

- Anti-Diffusion Stage: introduce the non-linear anti diffusive operator "A" that removes, where 

it is not required, the diffusion introduced in a uniform manner in the previous phase. The 

operator A is given by: 

 

 𝑨(𝑊̅𝑛+1) = −𝜓̅ (𝑊̅
𝑖+
1
2

𝑛+1) + 𝜓̅ (𝑊̅
𝑖−
1
2

𝑛+1) (2.195) 

 

where ψ, called anti-diffusive flux (flux limiter), is defined as follow, proposed by Ikeda and 

Nakagawa: 

 

 𝜓̅
𝑖+
1
2
(𝑊̅) = 𝑠̅ ∙ 𝑚𝑎𝑥 [0,𝑚𝑖𝑛 (

5

8
𝑠̅Δ𝑊̅𝑖−1 2⁄ ,

1

8
|Δ𝑊𝑖+1 2⁄ |,

5

8
𝑠̅Δ𝑊̅𝑖+3 2⁄ )] (2.196) 

 

with: 

 𝑠̅ = 𝑠𝑔𝑛 (Δ𝑊̅
𝑖+
1
2
) (2.197) 

 

 Δ𝑊̅
𝑖+
1
2
= 𝑊̅𝑖+1 − 𝑊̅𝑖 (2.198) 

 

 Δ𝑊̅
𝑖−
1
2
= 𝑊̅𝑖 − 𝑊̅𝑖−1 (2.199) 

 

 Δ𝑊̅
𝑖+
3
2
= 𝑊̅𝑖+2 − 𝑊̅𝑖+1 (2.200) 

 

The calculation of the final vector 𝑊̅𝐷𝐴
𝑛+1 solution, depending on the alternatives adopted in the 

diffusion stages, and defined as: 
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 𝑊̅𝐷𝐴
𝑛+1 = 𝑊̅𝐷

𝑛+1 +𝑨(𝑊̅𝑛)     𝐷𝑎𝑚𝑝 𝑐𝑎𝑠𝑒 (2.201) 

 

 𝑊̅𝐷𝐴
𝑛+1 = 𝑊̅𝐷

𝑛+1 + 𝑨(𝑊̅𝑛+1)     𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑐𝑎𝑠𝑒 (2.202) 

 

The alternative Damping allows almost completely eliminate the spurious oscillations but 

makes the numerical method unstable, as demonstrated by Bulaty and Niesser. To prevent 

instability, it is necessary that the CFL does not exceed the 0.866 value in place of 1, for the 

time step Δt this should result in less increased computational burden. The alternative 

Smoothing however does not completely eliminate the spurious oscillations but does not 

experience instability, thus leaving time step unchanged. 

 

2.5. Flow restrictors: 

 

The general philosophy of the flow restrictors is applying an anti-diffusive flux only to areas 

affected by discontinuity, this is to prevent possible non-physical numerical oscillations. Van 

Leer introduced the φ parameter, called flow restrictor, able to control the oscillations of the 

numerical solution. This parameter is a function of the ratio of successive solutions gradients 

and is defined as: 

 

 𝜙𝑖 = 𝜙(𝑟𝑖) (2.203) 

where: 

 𝑟𝑖 =

Δ𝑊
𝑖−
1
2

𝑛

Δ𝑊
𝑖+
1
2

𝑛  (2.204) 

 

 Δ𝑊
𝑖+
1
2

𝑛 = Δ𝑊𝑖+1
𝑛 − Δ𝑊𝑖

𝑛 (2.205) 

 

 Δ𝑊
𝑖−
1
2

𝑛 = Δ𝑊𝑖
𝑛 − Δ𝑊𝑖−1

𝑛  (2.206) 

 

The principle function of the algorithms for the application of the flow restrictors is based on 

the following concept: when solutions in adjacent points are similar is maintained the accuracy 

of the second order of the numerical method is used, while in vicinity of a discontinuity the 

accuracy the method is downgraded to first order for not having the problem of spurious 

oscillations. 

 

Due to Davi’s introduction of the first symmetrical pattern applied method of Lax-Wendroff to 

make TVD. Following will be briefly illustrated the application of this technique to a linear 
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partial differential equation, leaving those concerned the most complex application to 

hyperbolic equations. 

 

Starting from linear differential equation like this: 

 

 
𝜕𝑤

𝜕𝑡
− 𝑎

𝜕𝑤

𝜕𝑥
= 0 (2.207) 

 

the solution at time n+1 determined using the Lax-Wendroff method is: 

 

 𝑊𝑖
𝑛+1 = 𝑊𝑖

𝑛 −
𝑣

2
(Δ𝑊𝑖+1 2⁄

𝑛 + Δ𝑊𝑖−1 2⁄
𝑛 ) +

𝑣2

2
(Δ𝑊𝑖+1 2⁄

𝑛 + Δ𝑊𝑖−1 2⁄
𝑛 ) (2.208) 

 

where v represents CFL. 

 

Davis applies a dissipative term in Eq. 1.208 that simulates the effect of an artificial viscosity, 

using the correct values in each node of the mesh to get the TVD property in the numerical 

solution. In following table provides additional term, developing the case with constant positive 

(superscript + to terms G and r): 

 

 𝐺𝑖+1 2⁄
+ (𝑟𝑖

+)Δ𝐺𝑖+1 2⁄
𝑛 − 𝐺𝑖±

+ (𝑟𝑖−1
+ )Δ𝑊𝑖−1 2⁄

𝑛  (2.209) 

 

The eq. 1.208 with the addition of the term 1.209 can be written as: 

 

 

𝑊𝑖
𝑛+1 = 𝑊𝑖

𝑛 − Δ𝑊𝑖−1 2⁄
𝑛 {𝑣 [1 +

1

2
(1 − 𝑣) (

1

𝑟𝑖
+ − 1)]

− [
𝐺𝑖+1 2⁄
+

𝑟𝑖
+ − 𝐺𝑖−1 2⁄

+ ]} 

(2.210) 

 

where: 

 𝑟𝑖
+ =

Δ𝑊𝑖−1 2⁄
𝑛

Δ𝑊𝑖+1 2⁄
𝑛  (2.211) 

 

 𝐺𝑖+1 2⁄
+ (𝑟𝑖

+) =
𝑣

2
(1 − 𝑣)[1 − 𝜙(𝑟𝑖

+)] (2.212) 

 

In a similar way, we obtain the variables 𝐺− and 𝑟𝑖
− in case of negative constant: 
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 𝑟𝑖
− =

Δ𝑊𝑖+1 2⁄
𝑛

Δ𝑊𝑖−1 2⁄
𝑛  (2.213) 

 

 𝐺𝑖+1 2⁄
− (𝑟𝑖+1

+ ) =
𝑣

2
(1 − 𝑣)[𝜙(𝑟𝑖+1

− − 1)] (2.214) 

 

The two different cases can be combined to obtain the following solution: 

 

 

𝑊𝑖
𝑛+1 = 𝑊𝑖

𝑛 −
𝑣

2
(𝑊𝑖+1

𝑛 +𝑊𝑖−1
𝑛 ) +

𝑣2

2
(𝑊𝑖+1

𝑛 − 2𝑊𝑖
𝑛 +𝑊𝑖−1

𝑛 )

+ [𝐺𝑖+1 2⁄
+ (𝑟𝑖

+) + 𝐺𝑖+1 2⁄
− (𝑟𝑖+1

+ )]Δ𝑊𝑖+1 2⁄
𝑛

− [𝐺𝑖−1 2⁄
+ (𝑟𝑖

+) + 𝐺𝑖−1 2⁄
− (𝑟𝑖−1

− )]Δ𝑊𝑖−1 2⁄
𝑛  

(2.215) 

 

where: 

 𝐺𝑖+1 2⁄
+ (𝑟𝑖

+) = {

𝑣

2
(1 − 𝑣)[1 − 𝜙(𝑟𝑖

+)], 𝑎 > 0

0, 𝑎 ≤ 0
 (2.216) 

 

 𝐺𝑖+1 2⁄
− (𝑟𝑖+1

+ ) = {
0, 𝑎 > 0

𝑣

2
(1 − 𝑣)[𝜙(𝑟𝑖+1

− − 1)], 𝑎 ≤ 0
 (2.217) 

 

The evaluation of the terms 1.216-1.217 preclude the knowledge of the direction of flow, being 

to the coefficient that determines the sign of the shipping term. Davis solves this problem, so 

as to obtain a non-up-wind scheme and avoid the high computational effort required, redefining 

the terms G: 

 

 
𝐺𝑖+1 2⁄
+ (𝑟𝑖

+) =
|𝑣|

2
(1 − |𝑣|)[1 − 𝜙(𝑟𝑖

+)] 

 

(2.218) 

 

 
𝐺𝑖+1 2⁄
− (𝑟𝑖+1

− ) =
|𝑣|

2
(1 − |𝑣|)[1 − 𝜙(𝑟𝑖+1

− )] 

 

(2.219) 

 

To make the TVD of the flow restrictor  method cannot assume any values, in the Davis 

diagram eligibility region is defined by: 
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𝜙(𝑟) = {

min (2𝑟, 1), 𝑟 > 0
0, 𝑟 ≤ 0

 

 

(2.220) 

 

 
Figure 2:11: Davis scheme of the flow restrictor eligibility region of φ. 

 

This limit leads to consequences on the CFL, by imposing its value to 0.7.  

 

The scheme is extended to the solution of certain hyperbolic equations with numerical methods 

of Lax-Wendroff and Mac-Cormack. 
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Chapter 3 
 

 

3. Modeling of turbocharger in Gasdyn 
 

The instrument used in the performance of this thesis was the Gasdyn software, a code 

developed in-house at the Politecnico di Milano from Motors group. Gasdyn is a thermo-1D 

computational fluid dynamics model, able to simulate the operation of internal combustion 

engines in their entirety. With greater ease than the 3D software and the ability to calculate the 

properties of air and flue gas at every point of the engine, the Gasdyn code allows to reach an 

optimization of the parameters of interest such as torque, power, fuel consumption, noise and 

emissions in a short time. 

 

The numerical model is based on the fluid dynamic equations of conservation of the one-

dimensional flow, unsteady, compressible, reagent flowing inside ducts of variable section. The 

available numerical methods for solving the equations, are the Method of Characteristics to 

mesh, which has an accuracy of one order, and methods Shock-Capturing, which have an 

accuracy of the second order. It is preferred to use the Shock-Capturing methods able, thanks 

to their order of accuracy, to grasp the possible discontinuity of the resulting solution, for 

example, to the presence of shock waves. Within this family, the methods including Gasdyn 

lets you choose are those of Lax-Wendroff and Mac-Cormack, both finite difference methods, 

focused and explicit. 

 

A problem which appears in the use of methods with greater accuracy of order unity is that of 

spurious oscillations, numerical oscillations in correspondence of the discontinuity. This 

problem is solved using the Flow restrictors applying an anti-diffusive flux in those areas 

affected by discontinuities thus limiting any non-physical oscillations. 

 

And necessary to define the boundary conditions to represent what is located at the ends of the 

conduits, as the external environment, or, as we will see below, the turbine and the compressor. 

Although the flow inside the ducts is strongly unsteady, the edge phenomena are represented 

as a succession of stationary states, defined by the conservation equations for steady flow and 

one-dimensional. When you can’t ignore the model as correctly as possible a few unsteady 

phenomena, you can enter the boundary conditions derived from 3D simulations, performed 

with other software [1] [2]. 
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3.1. Modeling turbines: 

 

The approach followed in Gasdyn for modeling of the turbine consists in receiving as input the 

characteristic curves of steady flow and extract from them the boundary conditions that best 

represent their operation in unsteady conditions. The representation of the turbine is translated 

in terms of quantities such as pressures, temperatures, flow and speed in the ducts connected to 

it. The Gasdyn code also calculates the power and torque developed by it to go then to define 

its matching with the compressor. 

 

For the fact that our interest in turbochargers of the processed flow rates are low, the choice 

falls on radial rather than axial geometries. The results obtained from modeling of a centripetal 

turbine with a quasi-static approach is not exactly consistent with the data obtained 

experimentally as the non-stationariness of the inside flow. it is high and is expanded by the 

volute of negligible volume. There is not yet 1D computational models available that describe 

properly the magnitudes of the unsteady flow without increasing the complexity of the problem 

and with it the calculation time. For this reason and for the fact that the results are still 

acceptable, the turbine is described as operating under quasi-static conditions. 

 

3.1.1. Features of the radial turbine steady stream: 

The magnitudes of the steady stream, from which we start to model the turbine, are defined as 

follows: 

 

𝐸𝑥𝑝𝑒𝑛𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝑝01
𝑝2

 

 

𝐹𝑙𝑜𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝑚̇√𝑇01
𝑝01

 

 

𝑆𝑝𝑒𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝑁

√𝑇01
 

 

𝑇𝑜𝑡𝑎𝑙 𝑡𝑜 𝑠𝑡𝑎𝑡𝑖𝑐 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝜂𝑇𝑆  =
ℎ01 − ℎ2
ℎ01 − ℎ2𝑠

 

 

𝑅𝑎𝑡𝑖𝑜 𝑜𝑓 𝑝𝑒𝑟𝑖𝑝ℎ𝑒𝑟𝑎𝑙 𝑠𝑝𝑒𝑒𝑑 =
𝑢

𝐶𝑖𝑠
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Figure 3:1 Characteristic curve of expansion ratio - flow parameter of a radial turbine for various speed parameters. 

 

where the subscript 01 means the total quantities in the inlet section and 2 with the static 

variables in the output section. The representation of the performance curves through 

dimensionless parameters is useful in the design phase because it allows to identify among 

several machines that is coupled to the better system. 

 

The first characteristic curve describes the trend of the expansion ratio as a function of the flow 

parameter, is shown in fig.3.1. The single characteristic curve, for a given rate parameter, 

outlines a growing trend of the flow with the expansion ratio up to a value beyond which no 

longer increases with it, this as the speed of sound within the machine has been reached. Unlike 

the axial turbines, the curves are strongly dependent on the speed of the impeller and the total 

inlet temperature and can’t be approximated by a single curve independent from them. For the 

same expansion ratio, the processed flow rate decreases with increasing speed, this is because 

it is closest to the flow block. 

 

The other feature of our interest is the efficiency curve trend ηTS as a function of the speed ratio 

(fig.3.2). It is noted that it too is dependent on the speed parameter, the maximum efficiency 

point moves to the grow of the speed parameter to the relationship between the peripheral speed 

of the blades and speed of increasing gas. 

 



Modeling of turbocharger in Gasdyn 

 

 

65 

 

 

 

 
Figure 3:2  Characteristic curve performance - the speed ratio of a radial turbine for various speed parameters 

 

The Gasdyn model requires these curves input and need to set the entire flow range, from no 

flow conditions to the chocked flow. Maps are provided by the manufacturers as a series of 

experimental data only in vicinity of the point of maximum efficiency, was then developed by 

the group of a Matlab tool motors that allows the fitting of the maps on entire range of flow 

rates. It can thus represent operating conditions that fall outside the range of maximum 

efficiency, as can happen in a typical turbocharger. 

 

3.1.2. Performance of turbines with variable outlet pressure: 

The method used by Gasdyn consists in expressing the performance curves of the stationary 

flow into a form compatible with the equations of the waves which describe the gas flowing in 

the ducts. In this way, it is possible to evaluate the influence of the presence of the turbine on 

what is located upstream and downstream of it. The pressure downstream of the turbine can’t 

be assumed constant for the fact that it does not vented directly into the atmosphere, there are 

in fact the exhaust pipes, the catalytic converter and the muffler. Are indicated with 1 and 2 the 

upstream and downstream of the turbine sections (fig.3.3). The starting point is the 

characteristic curve represented in fig. (3.4). 

 

 
Figure 3:3 Schematic view of a representative turbine. 
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Figure 3:4 Characteristic curve of expansion ratio - flow parameter of a radial turbine 

 

To make the expression of the turbine consistent with the wave equations, Gasdyn expresses 

the operating maps in terms of the Mach number on the upstream section M1, starting from the 

flow parameter: 

 

 

𝑚̇√𝑇01
𝑝01𝐹01

= (
𝑘

𝑅
)

1
2 𝑀1

√{(1 +
𝑘 − 1
2 𝑀1

2)

𝑘+1
2(𝑘−1)

}

 
(3.221) 

 

Through an iterative process, it is possible to know the value of M1 to the fact that, of the known 

flow rate parameter, is only of itself function: 

 

 𝑀1 = (𝐶+
𝑘−1
2

𝐶𝑀1
2
)

𝑘+1
2(𝑘−1)

 (3.222) 

with: 

 𝐶 = {(
𝑅

𝑘
)

1
2
(
𝑚̇√𝑇01
𝑝01𝐹01

)}

2(𝑘−1)
𝑘+1

 (3.223) 

 

Once known M1 are defined reports (p01/p1) and (T01/T1) between stagnation variables and static 

variables upstream of the turbine: 
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 𝑝01
𝑝1

= (1 +
𝑘 − 1

2
𝑀1
2)

𝑘
(𝑘−1)

 (3.224) 

 

 
𝑇01
𝑇1

= (1+
𝑘 − 1

2
𝑀1
2)
 

 (3.225) 

 

Through eq. 3.224 and 3.225 are defined quantities that describe the operation of the turbine: 

 

 
𝑝1
𝑝2
=
𝑝1
𝑝01

𝑝01
𝑝2

 (3.226) 

 

 
𝑇2
𝑇1
= 1 − 𝜂𝑇𝑆 {1 −

𝑝2
𝑝01

𝑘−1
𝑘
}
𝑇01
𝑇1

 (3.227) 

 

 𝐺1 =
𝑚̇√𝑇01
𝑝01

(
𝑝01
𝑝1
) (
𝑇1
𝑇01

)

1
2
 (3.228) 

 

The next step consists in tying (p1/p2), (T1/T2) and G1 to the flow conditions in the discharge 

pipes and the turbine exhaust. To make this step it is necessary to first introduce the wave 

propagation equations that correctly model the behavior of the gas inside the ducts. For the 

definition of the boundary conditions, as mentioned above we utilized the method of 

characteristics, so the wave equations are expressed in terms of the Riemann λin and λout 

variables. 

 

- Upstream of turbine: 

 

 𝜆𝑖𝑛,1 = 𝐴1 +
𝑘 − 1

2
𝑈1 (3.229) 

 

 𝜆𝑜𝑢𝑡,1 = 𝐴1 −
𝑘 − 1

2
𝑈1 (3.230) 

 

- Downstream of turbine: 

 

 𝜆𝑖𝑛,2 = 𝐴2 −
𝑘 − 1

2
𝑈2 (3.231) 

 

 𝜆𝑜𝑢𝑡,2 = 𝐴2 +
𝑘 − 1

2
𝑈2 (3.232) 
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where U and A respectively are the velocity of the gas and the speed of sound. 

 

 𝜆𝑖𝑛,1
∗ =

𝜆𝑖𝑛,1
𝐴𝐴1

 (3.233) 

 

 𝜆𝑖𝑛,2
∗ =

𝜆𝑖𝑛,2
𝐴𝐴2

 (3.234) 

 

with AAN = (aA/aref) representing the entropy level of gas compared to the reference state. 

 

- Upstream of turbine: 

 

 𝜆𝑖𝑛,1
∗ = 𝐴1

∗ +
𝑘 − 1

2
𝑈1
∗ (3.235) 

 

 𝜆𝑜𝑢𝑡,1
∗ = 𝐴1

∗ −
𝑘 − 1

2
𝑈1
∗ (3.236) 

 

- Downstream of turbine: 

 

 𝜆𝑖𝑛,2
∗ = 𝐴2

∗ −
𝑘 − 1

2
𝑈2
∗ (3.237) 

 

 𝜆𝑜𝑢𝑡,2
∗ = 𝐴2

∗ +
𝑘 − 1

2
𝑈2
∗ (3.238) 

 

The generic Mach number can be seen as, M=(U*/A*) and it is possible to express the Riemann 

variables marked in function of it. 

 

- Upstream of turbine: 

 

 𝜆𝑖𝑛,1
∗ = 𝐴1

∗ (1 +
𝑘 − 1

2
𝑀1) (3.239) 

 

 𝜆𝑜𝑢𝑡,1
∗ = 𝐴1

∗ (1 −
𝑘 − 1

2
𝑀1) (3.240) 
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- Downstream of turbine: 

 

 𝜆𝑖𝑛,2
∗ = 𝐴2

∗ (1 −
𝑘 − 1

2
𝑀2) (3.241) 

 

 𝜆𝑜𝑢𝑡,2
∗ = 𝐴2

∗ (1 +
𝑘 − 1

2
𝑀2) (3.242) 

 

The size (A*1/A*2) expresses the relationship between the entropy of the gas input and the 

entropy of the outlet gas, as the internal processing machine is adiabatic it is led back to the 

expansion ratio as follows: 

 

 𝐴1
∗

𝐴2
∗ = (

𝑝1
𝑝2
)

𝑘−1
2𝑘

 (3.243) 

 

Now we can rewrite the equations of propagation of the waves so that it also contains the 

characteristics of the turbine. 

 

- Upstream of turbine: 

 

 𝜆𝑖𝑛,1
∗ = 𝐴1

∗(1 + 𝐶1𝐺1) (3.244) 

 

 𝜆𝑜𝑢𝑡,1
∗ = 𝐴1

∗(1 − 𝐶1𝐺1) (3.245) 

 

- Downstream of turbine: 

 

 𝜆𝑖𝑛,2
∗ = 𝐴2

∗(1 − 𝐶2𝐺2) (3.246) 

 

 𝜆𝑜𝑢𝑡,2
∗ = 𝐴2

∗(1 + 𝐶2𝐺2) (3.247) 

 

having defined the flow parameter G and the constant C in the input and output sections, 

respectively, as: 

 

 𝐺𝑛 =
𝑚̇√𝑇𝑛
𝑝𝑛

        𝑛 = 1, 2 (3.248) 

 

 𝐶𝑛 =
𝑘 − 1

2
√
𝑅

𝑘

1

𝐹𝑛
     𝑛 = 1, 2 (3.249) 
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Now they express the relationship between the Riemann variables as a function of the variables 

(p1/p2), (T1/T2) and G1: 

 

 
𝜆𝑖𝑛,1
∗

𝜆𝑖𝑛,2
∗ = (

𝑝1
𝑝2
)

𝑘−1
2𝑘

(

 
 1 + 𝐶1𝐺1

1 − 𝐶2𝐺1 (
𝑝1
𝑝2
) (
𝑇2
𝑇1
)

1
2

)

 
 

 (3.250) 

 

 
𝜆𝑜𝑢𝑡,1
∗

𝜆𝑖𝑛,1
∗ = (

1 − 𝐶1𝐺1
1 + 𝐶1𝐺1

) (3.251) 

 

 
𝜆𝑜𝑢𝑡,2
∗

𝜆𝑜𝑢𝑡,1
∗ = (

𝑝1
𝑝2
)

𝑘−1
2𝑘

(

 
 1 − 𝐶2𝐺1 (

𝑝1
𝑝2
) (
𝑇2
𝑇1
)

1
2

1 − 𝐶1𝐺1

)

 
 

 (3.252) 

 

The last step of the translation of the maps in the boundary conditions is the collection of the 

starting values in the set of data in the form (x, p1/p2, T1/T2 and G1), having defined as x: 

 

 
Figure 3:5 Boundary condition in terms of the pressures of a radial turbine 

 

 𝑥 =
𝜆𝑖𝑛,1
∗

𝜆𝑖𝑛,2
∗  (3.253) 
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The boundary conditions have to be tabulated for any point of the turbine operation. They are 

then identified xmin and xmax, which assumes x values when the processed flow is zero or 

maximum respectively: 

 

 𝑥𝑚𝑖𝑛 = (
𝑝1
𝑝2
)

𝑘−1
2𝑘

 (3.254) 

 

 𝑥𝑚𝑎𝑥 = (
𝑝1
𝑝2
)

𝑘−1
2𝑘

(

 
 1 + 𝐶1𝐺1,𝑚𝑎𝑥

1 − 𝐶2𝐺1,𝑚𝑎𝑥 (
𝑝1
𝑝2
) (
𝑇2
𝑇1
)

1
2

)

 
 

 (3.255) 

 

If xmin ≥ x the flow will flow in the opposite direction inside the turbine, reports (T1/T2) and 

(p1/p2) will be uniform and algorithm cycle willbe increasing the flow rate of the G1 until you 

have the ΔG incoming flow positive. If xmax ≤ x G1 will reach the maximum, and the program 

cycle will increase (p1/p2) of Δ(p1/p2) until you identify the maximum expansion ratio. They 

are shown in fig.3.5 and fig.3.6 representations of boundary conditions of the turbine. 

 

 
Figure 3:6: Boundary state in terms of the scope of a radial turbine 

. 

The complete algorithm implemented in Gasdyn is an iterative procedure, starting from the 

values of the variables Riemann input to the turbine, will define the new flow conditions inside 

the ducts. The steps are: 
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1. Calculation of the Riemann variables 𝜆𝑖𝑛,1
∗  𝜆𝑖𝑛,2

∗  from λin,1, λin,2, AA1 and AA2; 

2. Calculation of the speed parameter from the characteristics curves and x from 

eq. (3.253); 

3. Determination of (p1/p2), (T1/T2) and G1 by extrapolation from the curves 

(x,𝑁 √𝑇01⁄ ); 

4. Calculation of the Riemann variables 𝜆𝑜𝑢𝑡,1
∗  𝜆𝑜𝑢𝑡,2

∗ , from equations. (3.251) and (3.252); 

5. Calculation of the new AA1 and AA2 from the initial values and the equation: 

 
𝐴2
𝐴1
= (

𝑇1
𝑇2
) (
𝑃1
𝑃2
)

𝑘−1
2𝑘

 

 

(3.256) 

6. Calculating the values of λin,1, λin,2, λout,1 and λout,2. 

7. If the difference between the initial values of λin,1 and λin,2, and calculated values is less 

than a given tolerance, the solution is the final one, in case it is not so, the algorithm 

starts from the calculation of  𝜆𝑖𝑛,1
∗  𝜆𝑖𝑛,2

∗  and repeat the process as long as this does not 

happen. 

 

the calculated values of λin,1, λin,2, λout,1 and λout,2, it is now possible to derive the flow 

characteristics that determine the turbine inside the ducts in terms of pressures, flows, 

temperatures, speed and other variables of interest. 

 

 
Figure 3:7  Pressure profile and the temperature upstream of the turbine. 
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3.1.3. Work and Efficiency of turbines: 

The pressure oscillations and temperature upstream of the turbine, represented in fig.3.7, cause 

fluctuations of the instantaneous work and the processed mass flow rate. You can see this from 

the fact that these oscillations ranging in continuously change the speed parameter (N/√T01) and 

the expansion ratio (p01/p2) as shown in fig.3.8. 

 

Actual power will be given by the product between flow rate and enthalpy difference horse of 

the machine: 

 

 𝑊𝑖𝑠,𝑇 = 𝑚̇𝜂𝑇𝑆(ℎ01 − ℎ2𝑆) = 𝑚̇𝜂𝑇𝑆
𝐶𝑖𝑠
2

2
 (3.257) 

 

and the maximum theoretically available will be: 

 

 𝑒𝑇 = 𝑚̇(ℎ01 − ℎ2𝑆) = 𝑚̇
𝐶𝑖𝑠
2

2
 (3.258) 

 

You notice that in fig.3.9 ηTs performance and theoretical power eT oscillate in phase. The 

theoretical power has in fact its best to high expansion ratios while ηTS for limited amounts. L' 

of the actual instantaneous power trend is in phase with respect to the theoretical one and, as 

said, is more damped for high values of it. 

 

 
Figure 3:8  results of the rate parameter and the expansion ratio with the crank angle 

.   
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For the calculation of the instantaneous effective power from Eq. (3.258), the Gasdyn code 

solves, once again, by translating the equations through the method of characteristics. The flow 

rate, defined as 𝑚̇ = 𝜌𝑢𝐹 can be derived for any instant of time ‘t’ from equation that expresses 

the function of Riemann variables: 

 

 𝑚̇ =
4𝑘

𝑘 − 1
(
𝑝𝑟𝑒𝑓
𝑎𝑟𝑒𝑓

){
(𝜆𝑖𝑛 − 𝜆𝑜𝑢𝑡)

(𝜆𝑖𝑛 + 𝜆𝑜𝑢𝑡)2
} (
𝜆𝑖𝑛 + 𝜆𝑜𝑢𝑡
2𝐴𝐴

)

2𝑘
𝑘−1

 (3.259) 

 

and the same applies to the term (𝜂𝑇𝑆
𝐶𝑖𝑠
2

2
), seen as enthalpy difference between inlet and outlet 

of the turbine: 

 

 𝜂𝑇𝑆
𝐶𝑖𝑠
2

2
=

𝐴0
2

𝑘 − 1
{1 − (

𝐴2
𝐴1
)
2

}𝑎𝑟𝑒𝑓
2  (3.260) 

 

The total mass flow processed by the turbine will be obtained by integrating the instantaneous 

value of the engine cycle, and multiplying the whole by the number of cycles NC: 

 

 𝑚̇𝑇 = 𝑁𝐶 ∫𝑚̇ 𝑑𝑡 (3.261) 

 

and similarly, the power produced will be given by: 

 

 𝑊̇𝑇𝐴 = 𝑁𝐶∫𝑊𝑖𝑠,𝑇 𝑑𝑡 (3.262) 

 

with NC indicating the number of cycles per second. 
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Figure 3:9 Power Performance and efficiency with the crank angle. 

 

3.2. Modeling of centrifugal compressors: 

 

The aerodynamics of the blades of centrifugal compressors is very complex and it is difficult 

to understand the totality of the fluid dynamic phenomena even in steady flow conditions. The 

centrifugal compressor, the same way of the turbine, is modeled using the operation curves of 

the steady-flow analysis as the basis for the non-stationary. The model implemented in Gasdyn 

allows to identify the boundary conditions of a compressor, considering wave effects in the 

flow or exhaust. 

 

3.2.1. Characteristics of centrifugal compressors steady stream: 

Similarly, to what was done for the turbine also for the compressor performance curves it is 

described by variables calculated in stationary conditions. These dimensionless parameters can 

be defined in several ways depending on whether they refer to static or total quantities: 

 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑝02
𝑝01

,
𝑝2
𝑝01

,
𝑝2
𝑝1
, 

 

𝐹𝑙𝑜𝑤 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝑚̇√𝑇01
𝑝01

,
𝑚̇√𝑇1
𝑝1

,  
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Figure 3:10 Characteristic curve of the total compression ratio - flow parameter of a centrifugal compressor. 

 

𝑆𝑝𝑒𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
𝑁

√𝑇01
,
𝑁

√𝑇1
 

 

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 𝜂𝐶  =
ℎ2𝑆 − ℎ01
ℎ02 − ℎ01

 

 

where subscript 01 and 02 will indicate the total quantities on the input section and the output 

of the compressor and with the subscript 2 the static quantities on the output section. 

 

The characteristic curve that describes the operating conditions of a centrifugal compressor 

(fig.3.10) shows the trend of the compression ratio with respect to the flow parameter. They 

also represent the iso-efficiency curves that define the efficiency of the machine in every 

operating point. The curves are strongly influenced by the flow parameter, if efficiency 

increases, at equal flow parameter, that could arise in pumping phenomenon, if instead at one 

of its growth corresponds to an increase of the flow parameter greater compression ratios than 

are obtainable without problems. From fig.3.11 you can see how the maximum yield point is 

very close to the chocked conditions, therefore much attention must be paid to the fact that in 

unsteady conditions, the compressor does not work in this area for a prolonged time, else it may 

result in damage. 
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Figure 3:11 Efficiency characteristic curve - flow parameter of a centrifugal compressor. 

 

3.2.2. Performance of centrifugal compressors with variable inlet pressure: 

The centrifugal compressor but does not suck directly from the atmosphere through a discharge 

pipe, the inlet pressure should be considered variable for wave effects in the duct. The procedure 

for the determination of the boundary equations is analogous to the case of the turbine with 

variable exhaust pressure, described in section 3.1.2. The resulting equations are in fact 

identical to the previous case: 

 

 
𝜆𝑖𝑛,1
∗

𝜆𝑖𝑛,2
∗ = (

𝑝1
𝑝2
)

𝑘−1
2𝑘

(

 
 1 + 𝐶1𝐺1

1 − 𝐶2𝐺1 (
𝑝1
𝑝2
) (
𝑇2
𝑇1
)

1
2

)

 
 

 (3.263) 

 

 
𝜆𝑜𝑢𝑡,1
∗

𝜆𝑖𝑛,1
∗ = (

1 − 𝐶1𝐺1
1 + 𝐶1𝐺1

) 3.44 

 

 
𝜆𝑜𝑢𝑡,2
∗

𝜆𝑜𝑢𝑡,1
∗ = (

𝑝1
𝑝2
)

𝑘−1
2𝑘

(

 
 1 − 𝐶2𝐺1 (

𝑝1
𝑝2
) (
𝑇2
𝑇1
)

1
2

1 − 𝐶1𝐺1

)

 
 

 (3.264) 
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having indicated with 1 and 2 respectively, the upstream and downstream sections of the 

compressor (fig.3.12). 

 

 
Figure 3:12  representative diagram of a compressor. 

 

The only difference is in the calculation of the (T2/T1) ratio due to the different definition of 

efficiency, the turbine being a driving machine and the compressor a user machine: 

 

 
𝑇2
𝑇1
= 1 −

1

𝜂𝐶
{(
𝑃2
𝑃1
)

𝑘−1
𝑘
− 1} (3.265) 

 

The computational method implemented by Gasdyn code is as follows: 

 

1. Calculation of the Riemann variables 𝜆𝑖𝑛,1
∗  𝜆𝑖𝑛,2

∗  from λin,1, λin,2, AA1 and AA2; 

2. Calculation of the speed parameter from the characteristics curves and x from eq. 

(3.253); 

3. Determination of (p1/p2), (T1/T2) and G1 by extrapolation from the curves (x,𝑁 √𝑇01⁄ ). 

Because of the shape of the boundary conditions in correspondence of the reverse flow 

zone (fig.3.13) is possible for certain values that dx obtain three values of the flow 

parameter G1, in this case, the program takes the value closest to the one previous 

calculated iteration. 

4. Calculation of the Riemann variables 𝜆𝑜𝑢𝑡,1
∗  𝜆𝑜𝑢𝑡,2

∗ , from equations (3.251) and (3.252); 

5. Calculation of the new AA1 and AA2 from the initial values and the equation: 

 
𝐴𝐴2
𝐴𝐴1

= (
𝑇1
𝑇2
) (
𝑃1
𝑃2
)

𝑘−1
2𝑘

 

 

(3.266) 
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6. Calculating the values of λin,1, λin,2, λout,1 and λout,2. 

7. If the difference between the initial values of λin,1 and λin,2, and calculated values is less 

than a given tolerance, the solution is the final one, in case it is not so, the algorithm 

starts from the calculation of  𝜆𝑖𝑛,1
∗  𝜆𝑖𝑛,2

∗  and repeat the process as long as this does not 

happen. 

 

 
Figure 3:13 Boundary conditions of a centrifugal compressor 

 

3.2.3. Work and Efficiency for centrifugal compressors: 

The instantaneous power absorbed by the compressor is obtained as the product between flow 

rate and enthalpy difference horse of the machine: 

 

 𝑊𝑖𝑠,𝐶 =
1

𝜂𝐶
𝑚̇(ℎ01 − ℎ2𝑆) =

1

𝜂𝐶
𝑚̇𝑐𝑝𝑇01 {(

𝑃2
𝑃1
)

𝑘−1
𝑘
− 1} (3.267) 

 

It's also useful to determine the instantaneous torque that moves the compressor: 

 

 𝐿𝐶,𝑖𝑠 =
𝑊𝐶𝐼

2𝜋𝑁
 (3.268) 

 

The mass flow, the static pressure upstream P1 and the upstream static temperature T1 are 

obtained for each instant of time ‘t’ from the equations which express them as a function of 

Riemann variables as in the case of the turbine: 
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 𝑚̇ =
4𝑘

𝑘 − 1
(
𝑝𝑟𝑒𝑓
𝑎𝑟𝑒𝑓

){
(𝜆𝑖𝑛 − 𝜆𝑜𝑢𝑡)

(𝜆𝑖𝑛 + 𝜆𝑜𝑢𝑡)
2
} (
𝜆𝑖𝑛 + 𝜆𝑜𝑢𝑡
2𝐴𝐴

)

2𝑘
𝑘−1

 (3.269) 

 

 𝑝1 = (
𝜆𝑖𝑛,1 + 𝜆𝑜𝑢𝑡,1

2𝐴𝐴1
)

2𝑘
𝑘−1

𝑝𝑟𝑒𝑓 (3.270) 

 

 
Figure 3:14 Characteristic curve of the total compression ratio - flow parameter of a centrifugal compressor. 

 

 𝑇1 = (
𝜆𝑖𝑛,1 + 𝜆𝑜𝑢𝑡,1

2𝐴𝐴1
)
2

𝑇𝑟𝑒𝑓 (3.271) 

 

The power and torque parameters are defined as follows: 

 

 
𝑊𝑖𝑠,𝐶

√𝑇1𝑝1
= (

𝑚̇√𝑇1
𝑝1

) 𝑐𝑝 {(
𝑃02
𝑃01

)

𝑘−1
𝑘
− 1} (3.272) 

 

 
𝐿𝐶,𝑖𝑠
𝑝1

= (
𝑚̇√𝑇1
𝑝1

)(
√𝑇1
𝑁
)
𝑐𝑝
2𝜋
{(
𝑃02
𝑃01

)

𝑘−1
𝑘
− 1} (3.273) 
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For each instant of time ‘t’, knowing the flow parameter and the speed parameter, it is possible 

to derive instantaneous power and torque as shown in fig.3.14 and 3.15. 

 

The power ratings and total torque is finally calculated from the integration of the respective 

parameters on the engine cycle: 

 

 
𝑊𝐶 =

∫(
𝑊𝑖𝑠,𝐶

√𝑇1𝑝1
)√𝑇1𝑝1 𝑑𝑡

∫ 𝑑𝑡
 

(3.274) 

 

 
𝐿𝐶 =

∫ (
𝐿𝐶,𝑖𝑠
𝑝1

)𝑝1 𝑑𝑡

∫ 𝑑𝑡
 

(3.275) 

 

as well as the total incoming mass flow rate in the compressor: 

 

 
Figure 3:15 Characteristic curve of the total compression ratio - flow parameter of a centrifugal compressor. 

 

 𝑚̇𝐶 = 𝑁𝐶∫𝑚̇ 𝑑𝑡 (3.276) 
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3.3. Turbo-Matching in Gasdyn: 

 

The turbo-matching is the process by which power balance is achieved on the turbocharger, all 

the power produced by the turbine is absorbed by the compressor and by any internal 

components such as the bearings. The mass flow rate processed by the two machines 

(compressor and turbine) can be different. Also, if waste-gate valve is open then some of the 

mass flow is by-passed by it and in this case work produced by turbine would be correspond to 

the fraction of mass flowing through turbine. The Gasdyn Code provides two different 

analytical methods for turbo-matching between the turbine and compressor. The most simplistic 

method, called Cyclic Matching, implements a power balance every engine cycle, when the 

power produced by the turbine is equal to that absorbed by the compressor bearings and hence 

matching is reached. The second method, called Instantaneous Matching, is more precise as it 

calculates each time step the instantaneous torque provided and accelerates or decelerates the 

turbocharger as a function of it. 

 

 
Figure 3:16 characteristic curves of centrifugal compressor 

 

3.3.1. Cyclic Matching:  

The Cyclic Matching process implements a power balance on the shaft of turbocharger each 

engine cycle: 

 

 𝜂𝑀𝑊𝑇 −𝑊𝐶 = 0 (3.277) 
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Initially the boost pressure p2, the temperature T2 and the turbocharger speed NT are estimated 

by characteristic curves. Power produced by the turbine mediated on cycle is calculated from 

eq. 3.262. It expresses the total flow rate of the compressor, as a product of the flow 

corresponding to one cycle and the number of cycles (eq. 3.277), to determine the flow 

parameter (𝑚̇𝐶 √𝑇1 𝑝1⁄ ). Knowing the turbine power and the speed of the group, the compressor 

torque parameter is calculated as: 

 

 
𝐿𝐶
𝑝1
= 𝜂𝑀

𝐿𝑇
𝑝1

 (3.278) 

 

From the characteristic curves shown in fig.3.5 it is possible to derive the new speed NT and, 

by means of it, the new boost pressure p2. 

 

The energy balance on the compressor is possible, to calculate the new value of temperature T2, 

by entering the new value of the torque parameter in new equation, which is also obtained from 

the operation maps: 

 

 2𝜋𝑁𝑇𝐿𝐶 = 𝑚̇𝐶𝑐𝑝(𝑇2 − 𝑇1) (3.279) 

 

The iterative process is repeated at the end of each cycle as long as Eq.3.278 is not verified. To 

reduce the jitter caused by this procedure it is useful to introduce a damping factor D, the lower 

unit, and define the value of the new turbocharger speed as follows: 

 

 𝑁𝑇 = 𝑁𝑇,𝑜𝑙𝑑 + 𝐷(𝑁𝑇,𝑛𝑒𝑤 −𝑁𝑇,𝑜𝑙𝑑) (3.280) 

 

in this way, the convergence of speed is strongly linked to the initial value estimated NT, p2 and 

T2. 

 

3.3.2. Instant Matching: 

The Instant Matching is more accurate, it is not exactly in fact to consider the constant speed of 

the turbocharger over the entire engine cycle, it will rise and fall because of the available 

instantaneous torque variation. If a generic time step of the simulation arises, we can express 

the torque generated by the turbine and that absorbed by the compressor and bearings as: 

 

 𝑊𝑖𝑠𝑡,𝑇 =
𝐿𝑖𝑠𝑡,𝑇
2𝜋𝑁𝑇

 (3.281) 
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 𝑊𝑖𝑠𝑡,𝐶 =
𝐿𝑖𝑠𝑡,𝐶
2𝜋𝑁𝑇

 (3.282) 

 

 𝑊𝑖𝑠𝑡,𝐵 = (1 − 𝜂𝑀)
𝐿𝑖𝑠𝑡,𝑇
2𝜋𝑁𝑇

 (3.283) 

 

Whist having denoted by the instantaneous powers and ηM the mechanical efficiency of the 

turbocharger that evaluates the power produced by the turbine less than that absorbed from the 

bearings. Instant torque available will then be the one developed by the turbine less than that 

absorbed by the compressor and bearings: 

 

 𝐿𝑖𝑠𝑡 = 𝐿𝑖𝑠𝑡,𝑇 − 𝐿𝑖𝑠𝑡,𝐶 − 𝐿𝑖𝑠𝑡,𝐵 (3.284) 

 

The turbocharger acceleration is proportional to the instantaneous torque and inversely 

proportional to the polar moment of inertia of the rotating parts: 

 

 
𝑑𝑁𝑇
𝑑𝑡

=
1

2𝜋𝐼
(𝜂𝑀𝐿𝑖𝑠𝑡,𝑇 − 𝐿𝑖𝑠𝑡,𝐶) (3.285) 

 

You can define the turbocharger speed NT2 at time step following the one in which the speed 

NT1 is as: 

 

 𝑁𝑇2 = 𝑁𝑇1 + (
1

2𝜋𝐼

𝑥𝑟𝑒𝑓
𝑎𝑟𝑒𝑓

) (𝜂𝑀𝐿𝑖𝑠𝑡,𝑇 − 𝐿𝑖𝑠𝑡,𝐶) (3.286) 

 

expressing the time difference dt in terms of dimensionless time dZ =dt (aref /xref). In this way, 

the turbo-matching is reached instant by instant, if dt is suitably chosen then it is possible to 

describe the oscillating nature of the turbocharger speed during an engine cycle. 
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Chapter: 4 
 

 

4. Turbo-matching Steady state 
 

Turbocharging technique will play a fundamental role in the future not only to improve 

automotive engine performance, but also to reduce fuel consumption and exhaust emissions 

both in Spark Ignition and diesel automotive applications. To achieve excellent engine 

performance for road application, it is necessary to overcome some typical turbocharging 

drawbacks i.e., low end torque level and transient response. Experimental studies, developed 

on dedicated test facilities, can supply a lot of information to optimize the engine-turbocharger 

matching, especially if tests can be extended to the typical engine operating conditions 

(unsteady flow). A specialized component test rig (particularly suited to study automotive 

turbochargers) has been operating since several years at the University of Genova. The test 

facility allows to develop studies under steady or unsteady flow conditions both on single 

components and subassemblies of engine intake and exhaust circuit. 

In the chapter, preliminarily, the measurement of the turbine steady flow performance map is 

carried out. In a second step the same component is tested under unsteady flow conditions. 

Instantaneous inlet and outlet static pressure, mass flow rate and turbocharger rotational speed 

are measured, together with average inlet and outlet temperatures. 

The integration of the experimental activity with the numerical analysis represents a 

methodology that can be helpfully employed during the design process of internal combustion 

engine intake systems [4]. 

 

4.1. Introduction: 

 

It is widely recognized that turbocharging is a very useful technique commonly applied in both 

Spark-Ignition and Compression Ignition engines to improve engine efficiency. Advanced 

technologies, such as variable geometry and multi-stage turbocharging, high and low pressure 

loop EGR systems, assisted turbocharging and turbo-compounding, are emerging to control 

emissions and maintain fuel economy in both diesel and gasoline engines. Moreover, an 

effective management of the turbocharging system gives the possibility to achieve a suitable 

engine torque curve and an excellent vehicle drivability. 

The engine-turbocharger matching can be successfully carried out by means of one-dimensional 

(1D) models. The classical quasi-steady approach, based on the employment of compressor and 

turbine characteristic maps (provided by the manufacturers or directly measured) is usually 

followed. Anyway, in many cases, a limited operating domain of the turbocharger device is 
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available, and mathematical techniques for the extrapolation of the performance maps are 

commonly utilized in commercial software products. In addition, due to various phenomena, 

the actual compressor and turbine behavior may differ from the one expressed by the 

characteristic map. First of all, performance data refer to a steady operation of the devices, while 

the turbocharger, due to the pressure pulsations caused by the engine, always operates under 

unsteady conditions. This is particularly true in the case of small S.I engines fitted with a 

reduced number of cylinders, determining a wide mass flow rate and pressure ratio oscillations 

during each engine cycle. Moreover, heat transfer through the casing and heat radiated by the 

turbine and the engine may affect the efficiency values derived at the test-bench. 

To analyze the steady and unsteady behaviors, since several years, a specialized component test 

facility has been operating at the University of Genova. Under Assistant Professor Silvia 

Marelli (Department of Mechanical, Energy, Management and Transportation Engineering) 

University of Genova, The test rig is fitted with specific devices which allow for investigations 

to be performed under steady and unsteady flow operation both on single components and 

engine subassemblies [5]. 

 

4.2. Experimental Rig: 

 

The experimental investigation is carried out on the University of Genova (UNIGE) test facility. 

Three electrical screw compressors provide a total mass flow rate of about 0.6 kg/s at a 

maximum pressure of 8 bar. Two independent feeding lines allow to supply turbocharger 

turbine and compressor with air at controlled pressure thus allowing to measure steady flow 

maps over an extended range. Main feature of the test rig is the availability of two different 

systems to generate the unsteady flow typically occurring in the intake and exhaust automotive 

engine circuit. In a first configuration, diametric slot rotating valves are adopted in order to 

perform parametric studies by properly controlling the main characteristics of generated 

pressure pulses (i.e. mean value, amplitude, shape and pulse frequency). The second layout, 

including a Variable Valve Actuation cylinder head (Fiat Multiair system) makes it possible to 

analyze the interactions between the engine circuit and both turbocharger turbine and 

compressor. Measurement of different parameters under steady and unsteady flow conditions 

is performed by an automatic data acquisition system using dedicated procedures developed in 

Lab VIEW® environment. 

The experimental investigation was performed on a small automotive turbocharger (IHI RHF3) 

matched to a small-size spark ignition engine. Initially, the reference compressor steady flow 

maps, expressed in terms of both total-to-total pressure ratio and total-to-total efficiency versus 

corrected mass flow rate, were measured at different corrected rotational speed levels. 

Secondly, the compressor performance was evaluated under unsteady flow conditions by 

integrating the turbocharger in a current production automotive engine intake circuit [6].  
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4.2.1. Features of the IHI turbo RHF3: 

The supercharging unit object of study is characterized by very small dimensions and can reach 

high engine speeds, in the order of 220000 revolutions per minute. 

 

 
Figure 4:1: Exploded IHI turbo RHF3. 

 

This unit is manufactured according to the typical architecture of the exhaust-gas turbocharger 

systems for automotive application, which involves the use of a radial turbine mixed flow and 

a centrifugal radial compressor. 

Fig. 4.1 shows a picture of the turbo group disassembled: the rotors of the two machines, the 

intermediate casing are visible which encloses the shaft support bearing and the compressor 

(left) and turbine (right). In the case of mounting on the turbine engine it is also equipped with 

a tire handling system of the waste-gate by-pass valve of the flue gas in the turbine, for the 

boost pressure adjustment. This system is not present in Fig. 4.1 as the experimental tests 

conducted have been carried out with the waste-gate valve in the fully closed position, therefore 

without the adjustment possibility of the flow of exhaust gas in the turbine involutes. 
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4.3. Modelling of Steady flow through Turbocharger in Gasdyn. 

 

4.3.1. Duct:  

It is the element that allows the modeling of the ducts. The single component is often modeled 

as a set of conduits and joints, then this tool turns out to be essential. Through the graphical 

interface, you can set the main features that simulate the actual ducts, such as geometric 

dimensions, physical characteristics of the material, wall temperature, surface roughness. In 

addition, you can set the size of the mesh, fundamental parameter for numerical methods 

introduced in Ch. 1. 

 

4.3.2. Constant pressure junction:   

junction is a model that allows you to connect two or more ducts regardless of total pressure 

losses. It is widely used whenever there is a variation of a limited extent of section diameter (in 

the order of 1-2 mm on diameter) and in the case of joints with negligible losses, for example, 

the branching of the intake plenum into the individual ducts. This tool is indispensable in the 

one-dimensional modeling, in fact the use of dissipative connections in correspondence with 

each small geometric discontinuity would lead to systematic over estimation of losses. 

 

4.3.3. Sudden diameter variation:  

This element allows to model the sudden area changes (contractions and enlargements) along 

the duct-system, including the evaluation of the consequent concentrated pressure losses. In 

the case of sudden contractions, a “vena contracta” arises in the restriction, followed by a 

subsequent expansion of the fluid flow. The effective flow area in the contraction is determined 

by means of a discharge coefficient (Cd = Aeffective/Ageometrical in the contraction), which can be 

assigned manually or evaluated automatically (Cd auto). Otherwise, an isoentropic contraction 

can be selected, which involves no stagnation pressure loss.  

In the case of sudden enlargements, it is supposed that no “vena contracta” arises in the abrupt 

enlargement (Cd=1.0). The model adopted is non-isoentropic, allowing for the calculation of 

the stagnation pressure loss across the enlargement. 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Figure 4:2 (A) Brusco shrinkage resulting contracted vein; (B) abrupt enlargement characterized by a zone of dead water in 

the first section of the duct of larger cross-section. 

    

Isoentropic  

This option allows to treat the sudden contraction of the flow as an isoentropic process, with no 

stagnation pressure loss.  

 

Cd auto 

This option allows to calculate the discharge coefficient (Cd=Aeffective/Ageometrical in the 

contraction) for the sudden contraction automatically, in order, to determine the effective flow 

area in the restriction. The semi-empirical formula adopted is the following:  

 

 𝐶𝑑 = 1 − 0.2 [1 − (
𝑑

𝐷
)
4

] (4.287) 

 

where D is the large diameter and d the small diameter of the contraction.  

 

Cd [non-dimensional] 

This is the discharge coefficient (Cd = Aeffective/Ageometrical in the contraction) adopted in the case 

of sudden contractions to determine the effective flow area due to the “vena” contraction. 

Typical values are in the range 0.6÷0.98.  

 

4.3.4. Volume:    

This zero-dimensional element allows to model a capacity and thus lends itself to be used as a 

backwater tank in the case of stationary flushing. Assigning a sufficiently high volume it is 

possible to break down the velocity of flow and then to obtain a static pressure approximately 

equal to the total pressure, less than a kinetic contribution negligible. 
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4.3.5. Orifice:  

This element allows to model an orifice separating two ducts with different (or equal) diameters. 

A “vena contracta” arises in the orifice, so that a discharge coefficient is adopted to determine 

the effective flow area in the restriction. The stagnation (and static) pressure loss in the 

component is evaluated.  

This element can be used also to simulate an EGR valve. Different diameters D1 and D2 

upstream and downstream of the orifice can be assigned. The effective flow area is calculated 

on the basis of semi-empirical formula:  

 

 Cd = 1 − [1 − (
d

D1
)
4

] ∙ [0.2 + 0.2 ∙ (1 − (
d

D2
)
4

)] (4.288) 

 

Where D1 and D2 are the upstream and downstream (large) diameters, and d is the (small) 

diameter of the contraction. 

In our case, orifice is introduced to chock the flow in downstream of compressor line, to 

simulate the valve in the experimental rig. 

 

 
Figure 4:3 Orifice modelling in Gasdyn. 

 

4.3.6 Air Injection:   

It is the tool that enables you to impose the desired conditions in the boundary regions of a 

conduit. In the case of different inlet boundary conditions for turbine inlet side and compressor 

inlet, among the various possible solutions, mass flow and temperature boundary conditions are 

imposed on the turbine and compressor inlet sides, so as, to do the turbo-matching. 

 

4.3.7. Y junction: ,  

This element allows to model “Y” junctions of three pipes with pressure loss. The concentrated 

static pressure loss (or pressure recovery) depends on the geometry (angles, diameters) of the 
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concurrent ducts and on the flow regimes and types. In a “Y” junction two symmetric (equal) 

pipes are joined to a main duct, with an angle within the two ducts generally in the range 0°- 

120° (but 60° and 120° are the only values acceptable in this element). 

 

 
Figure 4:4 Y junction modelling in Gasdyn. 

4.3.8. Outlet:  

Data for the open termination. This is the tailpipe outlet of the exhaust system. It is modelled 

as an open end, with the typical acoustical transmission and reflection characteristics of this 

element. This kind of termination is required to calculate the sound field and the noise radiated 

at a fixed distance from the outlet. A constant outlet pressure (equal to the ambient pressure or 

back-pressure) is assumed in the “vena contracta”. 

  

Outflow area ratio: 

This coefficient is used to fix the tailpipe outlet effective flow area. If the outlet is a fully open 

end, the coefficient is in the range 1.0-0.98. If it is a partially open end, the coefficient is given 

by the ratio between the open flow area and the duct cross-section area. In this case, typical 

values may be 0.1, 0.5, 0.7, etc.  

 

4.3.9. Output pick-up:  

They are virtual sensors that allow the relief of thermo-fluid-dynamic and acoustic magnitudes 

based on the chosen settings. In the specific case, transducers are placed in the schematic to 

measure the pressure, temperature and mass flow rate through the ducts at various locations like 

upstream and downstream of turbine and compressor. 
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4.4. Turbine:  

 

This element allows to model a single-entry or multi-entry turbine with its fluid dynamic 

characteristics. In the case of a turbocharged I.C. engine, it is possible to connect this 

component to the exhaust manifold, to simulate the unsteady flows upstream and downstream 

of the turbine, the upstream and downstream average pressures, the turbine work and speed on 

the basis of the turbine map data.  

Generally, one-entry or two-entry turbines are adopted on most I.C. engines. The compressor, 

driven by the turbine, can be also modelled, but this is not strictly necessary. In fact, it is 

possible to simulate the turbine alone (if the main interest is focused on the pressure pulses in 

the exhaust system, to optimize the manifold geometry and the silencer), taking into account 

the turbocharging effect, by means of suitable intake conditions (on the basis of reasonable data 

or experimental measurements).  

 

Mass flow factor [adim]: 

This factor multiplies the mass flow parameter (mT01/p01) of the turbine map curves. The 

suggested value is 1.0, when the fluid dynamic characteristics of the turbine matched to the 

engine are available. For our case, turbine experimental data is available.  

 

Rotor diameter [m]: 

This is the max. diameter of the turbine rotor, which is, 0.033 m.  

 

Rotor speed [rps]: 

This is the input turbine rotor speed in revolution per second [rps]. A typical value can be in the 

range 400÷1200 rps. If the compressor is not modelled, this value remains fixed during the 

calculation, hence it must be assigned carefully. Conversely, if also the compressor is included 

in the simulation, the matching process of the complete turbocharger to the engine allows to 

adjust the turbocharger speed during the calculation, on the basis of the turbine and compressor 

performance maps. In this second case, the rotor speed represents only an initial value. 

The graph included in the turbine data window can show two kinds of curves:  

 

4.4.1. Chart type – Map:  

The graph included in the map window shows the turbine expansion ratio (p01/p2) versus the 

mass flow parameter (𝑚̇√𝑇01/𝑝01), for different values of the speed parameter (n/√𝑇01).  

The fluid dynamic characteristics of the turbomachine (turbine map) must be assigned for the 

simulation of the component. The curves of expansion ratio (p01/p2) versus mass flow parameter 

(𝑚̇√𝑇01/𝑝01), for different values of the speed parameter (n/√𝑇01), must be given in input as a 
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set of data. So, based on the experimental data gathered at Genova site, below we can see the 

plotted results for 3 distinctive RPM of turbine.  

 

 
Figure 4:5 Experimental results of turbine (Expansion ratio v/s Mass flow parameter). 

 

Speed (parameter) = Turbine speed parameter (n/√𝑇01 [rps/K0.5]).  

Mass par = Turbine mass flow parameter (𝑚̇√𝑇01/𝑝01 [kg s-1K0.5/bar]).  

Expansion ratio = Turbine expansion ratio (p01/p2 non-dimensional).  

Each curve, corresponding to a certain speed parameter value, must be described by a prefixed 

number of experimental data couples, on the basis of the experimental map provided by the 

turbine manufacturer.  

 

4.4.2. Chart type – Efficiency:  

The graph included in the efficiencies window shows the turbine fluid dynamic efficiency (𝜂ts, 

total-to-static) versus the velocity ratio (u/cis, where u is the turbine blade speed, cis is the ideal 

gas velocity due to an isentropic expansion), for different values of the speed parameter 

(n/√𝑇01).  

The fluid dynamic characteristics of the turbomachine (turbine efficiency) must be assigned for 

the simulation of the component. The curves of efficiency (𝜂ts, total-to-static) versus the 

velocity ratio. (u/cis, where u is the turbine blade speed, cis is the ideal gas velocity due to an 

isentropic expansion), for different values of the speed parameter (n/√𝑇01) must be given in 

input as a set of data. All input data are expressed in the S.I. system. 
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Figure 4:6 Experimental results of turbine (Efficiency v/s velocity ratio). 

 

Speed (parameter) = Turbine speed parameter (n/√𝑇01 [rps/ K0.5]).  

Velocity R = Turbine velocity ratio (u/cis non-dimensional).  

Efficiency = Turbine efficiency (𝜂ts non-dimensional).  

Each curve, corresponding to a certain speed parameter value, must be described by a prefixed 

number of experimental data couples, on the basis of the experimental measurements provided 

by the turbine manufacturer. Each curve must leave from the origin.  

 

4.5 Compressor:  

 

This element allows to model a centrifugal, axial or volumetric compressor driven by the 

turbine to supercharge the engine, by considering its fluid dynamic characteristics. 

In the case of a turbocharged i.c. engine, it is possible to connect this component to the intake 

manifold as the first element of the intake. The model adopted currently allows to simulate the 

unsteady flows downstream of the compressor, the air delivery pressure and temperature, the 

compressor work and speed on the basis of performance map data. 
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Mass flow factor [adim.] 

This factor multiplies the mass flow parameter (𝑚̇√𝑇01/𝑝01), of the compressor map curves. The 

suggested value is 1.0, when the fluid dynamic characteristics of the compressor matched to the 

engine are available. If the data refer to a different compressor (larger/smaller), it is possible to 

couple it to the engine by adjusting the mass flow factor (generally in the range 0.1÷10.0). 

 

Rotor momentum of inertia [kg/m2]: 

This is the momentum of inertia of the turbocharger rotor 4.226e-06 [kg/m2]. It is necessary to 

calculate the new turbine and compressor operating conditions by means of the turbocharger 

model with rotor inertia. 

 

Mechanical efficiency [%]: 

This is the mechanical efficiency of the turbocharger, expressed in [%]. It is necessary to 

calculate the shaft energy balance of the turbocharger; a typical value lies in the range 95÷98 

%. 

 

Accuracy limit [%]: 

It is necessary to fix a tolerance or accuracy limit [%] to determine when the turbocharger has 

been matched to the engine (with the required accuracy), i.e. a stable operating point has been 

achieved for both the engine and the turbocharger. In this situation, after a certain number of 

simulation cycles, the turbocharger speed is stable, within the assigned accuracy limit, which 

can be in the range 1÷15%. The suggested value for a reasonable result is 5 %. The smaller 

(larger) the accuracy limit, the larger (smaller) the number of cycles required to achieve a stable 

turbocharger operating point, i.e. a satisfactory matching of the turbocharger to the engine 

The graph included in the compressor data window can show two kinds of curves: 

 

4.5.1. Chart type – Map: 

The compressor compression ratio (p02/p01) versus the mass flow (𝑚̇√𝑇01/𝑝01), for different 

values of the speed parameter (n/√𝑇01); 

 

Surge line: 

The map is limited on the left by the surge line. This is the limitation of the air flow at the 

compressor inlet. If the pressure ratio is too high and the volume flow is too small, the air no 

longer sticks to the suction side of the blades, then the discharge process is interrupted. The air 

flow stops going through the compressor and is reversed until the pressure is stabilized and the 

positive volume flow rate is reached again, then the pressure builds up again and the cycle 
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repeats. This flow instability creates a pulsation and the resulting noise is known as "surging" 

[7]. 

 

Choke line: 

The cross section of the compressor inlet is normally the limitation of the maximum centrifugal 

compressor volume flow rate. When the flow at the inlet reaches it's maximum velocity the 

flow rate can no longer be increased. The choke line is the rapidly descending line on the right 

of the compressor map [7]. 

 

 
Figure 4:7  Experimental results of compressor (Compression ratio v/s Mass flow parameter). 

 

4.5.2. Chart type - Efficiency: 

The compressor fluid dynamic efficiency (ηTT, total-to-total, or ηTS , total-to-static) versus the 

mass flow parameter (𝑚̇√𝑇01/𝑝01), for different values of the speed parameter (n/√𝑇01). 
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Figure 4:8 Experimental results of compressor (Efficiency v/s Mass flow parameter). 

 

4.6. Smoothing and Extrapolating of Compressor and Turbine Curves: 

 

It is necessary to extrapolate the compressor curves beyond the surge limit to allow a safe 

simulation, without interruptions. In fact, during the turbocharger matching process, sometimes 

a provisional operating point could lay into the compressor surge region, to finally achieve a 

realistic operating point at the end of the simulation (providing the turbocharger matched to the 

engine within the required accuracy limit). Hence, the compressor curves (compression ratio 

and efficiency vs. mass flow parameter) and turbine curves (expansion ration vs. mass flow 

parameter and efficiency vs. velocity ratio) must be extrapolated for different speed parameter 

values. 

In order to do that, we use Matlab tool (spline function) to extrapolate and fit the curves. Usually 

because the maps are listed with different values of Speed parameter, we used the Matlab 

program interpolating "spline" data on an interval sets of Speed Parameter, from the point of 

view of the modeling of a motor is necessary to have the greatest number of points as possible. 

In fact, for a correct interpolation of the maps during the simulation of the transient 

turbocharger, you must have the full curves. Resulting curves are shown in figures [8]. 
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4.6.1. Extrapolated and smooth Turbine curves: 

 

 
Figure 4:9 Extrapolated result of turbine’s Expansion ratio v/s Mass flow parameter curve. 

 

 
Figure 4:10 Extrapolated result of turbine’s efficiency v/s velocity ratio curve. 
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4.6.2 Extrapolated and smooth Compressor curves: 

 

 
Figure 4:11 Extrapolated result of compressor’s Compression ratio v/s Mass flow parameter curve. 

  

 
Figure 4:12 Extrapolated result of compressor’s efficiency v/s Mass flow parameter curve. 
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4.7. Gasdyn Modelling and Simulation for steady state: 

 

Based on the experimental rig setup, a schematic of experimental rig is prepared in 1D Gasdyn 

simulation software as shown in figure 4.13 with following circuits and dimensions: 

 

4.7.1. Input circuit of the turbine: 

An injector “Injector-1” is introduced in the modelling upstream of turbine side to impose the 

boundary conditions on the Inlets T-1, T-2, T-3 and T-4. 

 

Symmetric Inlets T-1 and T-3 are taken with following pipe lines dimensions: 

pipeY_noRV-1 (Din=69 mm, Dout=69 mm, L=155 mm) 

pipeY_noRV-5 (Din=69 mm, Dout=69 mm, L=385 mm) 

pipeY_noRV-7 (Din=41 mm, Dout=41 mm, L=53 mm) 

curve 1-4 (flow-split) (Vol=3563.202943 mm3) 

pipeY_noRV-11 (Din=41 mm, Dout=41 mm, L=185 mm) 

partValve-1 (ball valve) D=41mm 

pipeY_noRV-9 (Din=41 mm, Dout=41 mm, L=105 mm) 

Y-2 (flow-split) (Vol=123575.8037 mm3) 

pipeY-1 (Din=41 mm, Dout=41 mm, L=80 mm) 

 

Symmetric Inlets T-2 and T-4 are taken with following pipe lines dimensions:  

metal tubing (Din = 52.5 mm, Dout = 52.5 mm, L = 313 mm) 

converging portion (Din = 52.5 mm, Dout = 45.5 mm, L = 44 mm) 

 

4.7.2. Output circuit of the turbine: 

Converging adaptor (Din = 70 mm, Dout = 54 mm, L = 100 mm) 

2 identical adapters (Din = Dout = 54 mm, L = 356 mm) 

PipeT-Out-1 (Din=70,3 mm, Dout=70,3 mm, L=575 mm) 

PipeT-Out-2 (Din=70,3 mm, Dout=106,3 mm, L=115 mm) 

PipeT-Out-3 (Din=106,3 mm, Dout=106,3 mm, L=190 mm) 

PipeT-Out-4 (Din=106,3 mm, Dout=158,3 mm, L=130 mm) 

PipeT-Out-5 (Din=158,3 mm, Dout=158,3 mm, L=545 mm) 

PipeT-bend-1 (curve 90°, Din=158,3 mm, Dout=158,3 mm, radius of curvature = 229 mm) 

PipeT-Out-6 (Din=158,3 mm, Dout=158,3 mm, L=3644 mm)  

PipeT-bend-2 (curve 90°, Din=158,3 mm, Dout=158,3 mm, radius of curvature = 229 mm) 

PipeT-Out-7 (Din=158,3 mm, Dout=158,3 mm, L=3475 mm) 

Outlet T-1 
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4.7.3. Input circuit of the Compressor:  

Inlet C-1  

PipeC-In-3 (Din=106,3 mm, Dout=106,3 mm, L=445 mm) 

PipeC-bend-1 (curve 90°, Din=106,3 mm, Dout=106,3 mm, radius of curvature =152 mm) 

PipeC-In-4 (Din=106,3 mm, Dout=106,3 mm, L=1020 mm) 

PipeC-bend-2 (curve 90°, Din=106,3 mm, Dout=106,3 mm, radius of curvature =152 mm) 

PipeC-In-5 (Din=106,3 mm, Dout=106,3 mm, L=245 mm) 

PipeC-bend-3 (curve 90°, Din=106,3 mm, Dout=106,3 mm, radius of curvature =152 mm) 

PipeC-In-8 (Din=106,3 mm, Dout=50 mm, L=110 mm) 

Pipe in plastic material (curve 90 °, Din = Dout = 51 mm, radius of curvature = 430 mm) 

Portion of metal tubing (Din = 44.3 mm, Dout = 44.3 mm, L = 300 mm) 

adapter tube (plastic) (Din = 44.3 mm, Dout = 51 mm, L = 90 mm) 

 

4.7.4. Output circuit of the Compressor: 

Rubber sleeve (Din = Dout = 36 mm, L = 80 mm) 

Portion of metal tubing (Din = Dout = 38 mm, L = 300 mm) 

Rubber sleeve (Din = Dout = 36 mm, L = 220 mm) 

Metal conduit (Din = Dout = 36 mm, L = 200 mm) 

PipeT-Out-1 (Din=70,3 mm, Dout=70,3 mm, L=575 mm) 

PipeT-Out-2 (Din=70,3 mm, Dout=106,3 mm, L=115 mm) 

PipeC-Out-1 (Din=90 mm, Dout=90 mm, L=880 mm) 

PipeC-bend-7 (curve 90°, Din=90 mm, Dout=90 mm, radius of curvature =26 mm) 

PipeC-Out-2 (Din=90 mm, Dout=90 mm, L=3970 mm) 

Outlet C-1 

 



Turbo-matching Steady state 

 

 

102 

 

 

 

 
Figure 4:13 Gasdyn schematic of steady-state flow through Turbo-charger. 

 

4.7.5. Boundary conditions: 

As there is no cylinder in the model, so the RPM and no. of cycles sets only gives us the time 

of simulation for steady state to get the convergence. Which in our case is set to 4000 RPM and 

50 cycles, gives us 1.5 seconds, in order to get the results, which is fair time to get the steady 

state convergence and turbo-matching. 

An injector is placed upstream of Inlet T-1, T-2, T-3 and T-4 with mass and temperature 

boundary conditions, to regulate the mass flow, temperature and pressure entering the turbine 

inlet. 

Same Concept is applied in the upstream of compressor inlet C-1, with temperature and mass 

flow boundary conditions. Though inlet of compressor should be kept as ambient condition but 

for some experimental readings, pressurized conditions upstream of the compressor, necessary 

to control the power absorbed by the compressor. 
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C-Valve-1 (in experimental rig setup) represents the motorized valve to the delivery side of the 

compressor, which is modelled as an orifice in the upstream of compressor with different 

chocked diameter, to achieve the desired boost pressure upstream of compressor. 

Ambient conditions are maintained at the outlet T-1 and outlet C-1, which are present at the 

experimental site. 

 

4.7.6. Results: 

Once schematic of the experimental rig is modelled in Gasdyn with the specification provided 

in sections 4.7.1 to 4.7.4 along with the boundary conditions mentioned in section 4.7.5. 

Simulations for 4 different operating points is run (picked from experimental data) to match 

and compare the results obtained from simulation and experiment. The results from the 

simulation and experiments are plotted below in figures 4.14 to 4.18.    

 

 
Figure 4:14: Comparison of boost pressure (Experimental v/s simulation) at the downstream of compressor. 
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Figure 4:15: Comparison of mass flow through compressor line (Experimental v/s simulation). 

 

 
Figure 4:16: Comparison of pressure upstream of turbine (Experimental v/s simulation). 
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Figure 4:17: Comparison of Flow Temperature at the inlet of turbine (Experimental v/s simulation). 

 

 
Figure 4:18: Comparison of Turbocharger speed (Experimental v/s simulation RPM). 
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Figure 4:19: Plot of boost pressure, turbocharger speed and power balance of 1st simulated point.  

 

 
Figure 4:20: Plot of Iterative step’s value for 1st simulated point during simulation cycles. 
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Figure 4:21: Plot of boost pressure, turbocharger speed and power balance of 2nd simulated point. 

 

 
Figure 4:22: Plot of Iterative step’s value for 2nd simulated point during simulation cycles. 
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Figure 4:23: Plot of boost pressure, turbocharger speed and power balance of 3rd simulated point. 

 

 
Figure 4:24: Plot of Iterative step’s value for 3rd simulated point during simulation cycles. 
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Figure 4:25: Plot of boost pressure, turbocharger speed and power balance of 4th simulated point. 

 

 
Figure 4:26: Plot of Iterative step’s value for 4th simulated point during simulation cycles. 
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4.8. Conclusion and Future Work: 

 

A good match of experimental data and simulation results can be seen in figures 4.14 to 4.18. 

This shows the good ability of Gasdyn software to simulate the turbocharger for steady flow. 

 

For future work, Gasdyn can be used to simulate unsteady flow through turbocharger. To 

simulate the pulsating flow produced by motorized rotating valve, we can introduce a cylinder 

(with no piston movement but intake and outlet poppet valves in action) in upstream of turbine 

line to simulate the pulsating flow. 
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Chapter: 5 
 

 

5. Convergence Algorithm for Turbocharger:    
 

The correct study of turbocharger and its characteristic demands necessitates to reach a 

condition of "stability", in which its operating conditions between a cycle and the next can be 

considered almost unchanged: this means that the average speed of turbocharger must not vary 

appreciably. Once you reach this stability it is possible to determine on the turbine and 

compressor maps a region of instantaneous operating points which corresponds to a single point 

of cyclic operation: in these conditions the matching condition was obtained, which is the 

equality of the work in a cycle between turbine and compressor. 

Previously in the older version of Gasdyn, the convergence condition was represented by the 

value of the percentage deviation of the oscillation speed of the turbocharger, which had to be 

lower than a set limit value. As a first approximation compliance with this condition may have 

seemed effective: in reality, it had problems due to the fact that the turbocharger speed fell 

within the set tolerance despite this was still accelerating or decelerating. Precisely for this 

reason it is an alternative model of convergence been implemented. 

 

5.1. Old Condition for Turbocharger convergence (v.10.2.1): 

 

When the simulation for turbocharger is run with some predefined no. of simulation cycles for 

each engine rpm and with tolerance limit, to stop the simulation, we put some 

conditions/constrains on various parameters to achieve the convergence and hence stop the 

simulation for that rpm. At first, we check the below mentioned conditions only after some 

certain no. of cycles for example (5 cycles), so that we don’t stop the simulation in early stage 

where for first few cycles we can easily be mistaken for the convergence tolerance criteria. So 

for the same reason, all the below conditions are active after 5 cycles of the simulation. Then 

following conditions, as explained below, apply. 

 

5.1.1. Condition 1: 

As anticipated the main parameter is represented by the gradient of the average speed of the 

turbocharger, boost pressure, Power balance b/w compressor and turbine to be compared with 

a reference tolerance value set in an “input file” usually equal to 0.03%; The calculation of the 

gradient can be easily traced to the calculation of the derivative: 

 



Convergence Algorithm for Turbocharger: 

 

 

112 

 

 

 

 
𝑀𝑒𝑎𝑛 𝑠𝑝𝑒𝑒𝑑 (𝑛 + 1) −𝑀𝑒𝑎𝑛𝑠𝑝𝑒𝑒𝑑(𝑛)

𝑐𝑦𝑐𝑎𝑛𝑔𝑙𝑒
≤ 𝑇𝑜𝑙𝑙_𝑎𝑐𝑐 (5.289) 

Where: 

- Cycangle = angle of rotation necessary to achieve a complete cycle, 720 ° for a four-

stroke. 

- Mean Speed (n +1) = average speed of the next cycle (+ 720 °); 

- Mean Speed (n) = average speed of the previous cycle, taken as a reference. 

- Toll_acc = is the acceptable tolerance for convergence on turbo speed. 

 

 
Figure 5:1 Slope tolerance of Turbo-speed for convergence. 

 

The convergence achieved is considered as the slope of the velocity curve becomes less than 

the tolerance value imposed; in these conditions, it can be argued that in fact the curtain speed 

to asymptotically to a constant value. 

 

 



Convergence Algorithm for Turbocharger: 

 

 

113 

 

 

 

5.1.2. Condition 2: 

Second condition to reach convergence is put on the delivery boost pressure. Where difference 

in the target boost pressure and boost pressure in the current cycle is measured and if this 

difference is within the acceptable tolerance limit then we are met with this condition and if all 

other conditions are fulfilled then it’s fine to stop the simulation of that rpm of engine. 

 

 
𝑃_𝑏𝑜𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃_𝑏𝑜𝑜𝑠𝑡𝑛𝑡𝑢𝑟𝑏𝑜

𝑃_𝑏𝑜𝑜𝑠𝑡𝑡𝑎𝑟𝑔𝑒𝑡
≤  𝑇𝑜𝑙𝑙_𝑝𝑏𝑜𝑜𝑠𝑡 (5.290) 

Where: 

- P_boost target is the boost pressure to be achieved. 

- P_boost_nturbo is the boost pressure achieved in the current cycle. 

- Toll_pboost is the acceptable tolerance limit set to stop the simulation. 

 

 
Figure 5:2 Convergence tolerance in Boost pressure. 

 

5.1.3 Condition 3: 

Third condition to reach convergence is put on the Turbocharger power balance. Same concept 

goes for power curve as it is explained in boost pressure curve in figure 2. Where difference in 

the compressor power and turbine power for the current running cycle is measured and if this 

difference is within the acceptable tolerance limit then we are met with this condition and if all 

other conditions are fulfilled then it’s fine to stop the simulation of that rpm of engine. 
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 𝑐𝑜𝑛𝑣𝑃𝑜𝑤𝑒𝑟𝑛𝑡𝑢𝑟𝑏𝑜 ≤  𝑇𝑜𝑙𝑙_𝑝𝑜𝑤𝑒𝑟 (5.291) 

Where: 

- convpower_nturbo is the difference in the compressor power and turbine power for the 

current running cycle. 

- Toll_power is acceptable tolerance for power balance between compressor and turbine. 

- So, to see the effects of this algorithm, we run the simulation for two different engines 

“TD-4” and “F1C”. 

 

5.2. Engine 1 “TD-4” 

 

This is a 4-stroke diesel engine (inline-4) with fixed geometry turbocharger (FGT) and 

intercooler. Which produces maximum power of 72.35 KW @ 3550 rpm and maximum torque 

of 228 Nm @ 1750 rpm. Specification of this engine is shown in “table 5.1”. 

 

 
Figure 5:3 Schematic of “TD-4” engine in Gasdyn. 
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5.2.1. Specification:  

 

Cycle and injection mode 4-stroke Diesel, direct injection 

Number of cylinder 4 in line 

Total displacement 
2.771 dm

3
 

Bore 93 mm 

Stroke 102 mm 

Compression ratio 17.5:1 

Firing order 1-3-4-2 

  Valves per cylinder 2 (1 intake – 1 exhaust) 

Air metering 

 

FGT Turbocharger with intercooler 

Maximum brake torque 228 Nm @ 1750 rpm 

Maximum brake power 72.5 kW @ 3550 rpm 

Table 5-1 Specification of “TD-4” engine. 

 

5.2.2. Results: 

Now the simulation for “TD-4” engine is run to see the convergence with old algorithm for only 

2 rpm i.e (1000, 2000 rpm). Results are plotted using matlab tool (TurboPost) in figures below. 

 

 
Figure 5:4  Convergence of “TD-4” engine at 1000 RPM with old algorithm. 
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Figure 5:5 Convergence of “TD-4” engine at 2000 RPM with old algorithm. 

 

As we can see from figure 5.4, simulation runs for 100 cycles without stopping. Whereas after 

30 cycles there is no change in the results of simulation. We can notice here that boost pressure 

and turbocharger speed curves are oscillating with some small amplitude around target value 

of boost pressure. Similar observation can be taken from results of figure 5.5. 

 

5.3. Engine 2 “F1C”. 

 

This is a 4-stroke diesel engine (inline-4) with variable geometry turbocharger (VGT) and 

intercooler. Which produces maximum power of 125 KW @ 3500 rpm and maximum torque 

of 400 Nm @ 1250 rpm. Specification of this engine is shown in “table 5.2”. 
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Figure 5:6 Schematic of “F1C” engine in Gasdyn. 

 

5.3.1. Specification: 

 

Cycle  4-stroke Diesel engine 

Air metering VGT Turbocharger with intercooler 

Injection type Direct, common rail system 

Number of cylinder  4 in-line 

Bore  95.8 mm 

Stroke 104 mm 

Total displacement 2.998 dm3 

Compression ratio 18.7:1 

Firing order 1-3-4-2 

Maximum brake power 125 kW@ 3500 rpm 

Maximum brake torque 400 Nm @ 1250 rpm 

Table 5-2 Specification of “F1C” engine. 

 

5.3.2. Results: 

Simulation for “F1C” engine is run to see the convergence with old algorithm for only 3 rpm 

(1000, 2000, 3500). Results are plotted using matlab tool (TurboPost) in figures below. 
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Figure 5:7 Convergence of “F1C” engine at 1000 RPM with old algorithm. 

 

 
Figure 5:8 Convergence of “F1C” engine at 2000 RPM with old algorithm. 

 

In figures 5.8, 5.9 and 5.10, we can notice that simulation runs for 100 cycles (max. cycles 

specified for simulation) without matching old convergence criteria. Although we can see from 

these figures that after 75-80 cycles there is not much change in boost pressure, turbocharger 

speed and power balance. 
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Figure 5:9 Convergence of “F1C” engine at 3500 RPM with old algorithm. 

 

For old convergence algorithm to match, all the conditions mentioned in equations needs to be 

fulfilled only then the convergence criteria is met and simulation is stopped. But in practice, as 

we can see in results of “TD-4” and “F1C” engines case, it is very rare to meet all the conditions 

at the same time in the simulation.  

With the application of previous algorithm, we have noticed that in many cases of turbocharger 

simulation, simulation runs until the last cycle and hence convergence criteria are not met fully. 

So, a new algorithm is made to reach the convergence accurately. 

 

5.4. New Algorithm for Turbocharger convergence: 

 

The problem with old criteria is that, if any one of the condition is not satisfied then simulation 

does not stop and instead, runs until the maximum no. of cycles specified before running the 

simulation (which in our case is 100 cycles). So, we developed some extra constrain and 

conditions to get the better convergence results, to save the computation time and other 

resources. 

When the simulation for turbocharger is run with some predefined no. of simulation cycles for 

each engine regime and with tolerance limit, to stop the simulation, we put some 

conditions/constrains on various parameters to achieve the convergence and hence to stop the 

simulation for that regime. At first, we check the below mentioned conditions only after some 
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certain no. of cycles for example (after 5 cycles), so that we don’t stop the simulation in early 

stage where for first few cycles we can easily be mistaken for the convergence tolerance criteria. 

For the same reason, all the below conditions are active after 5 cycles of the simulation. 

 

5.4.1. Condition 1 (Derivative + Error): 

In this case derivatives and errors are calculated for turbo speed, boost pressure and power 

balance.  For each case of derivate and error to match with the tolerance limit a value of “1” is 

assigned and in total sum could go to 3. Various combinations are tried to see the effects on the 

convergence of turbocharger simulation like (1 constrain, 2 constrain and 3 constrains to be 

true). For example, if we put 3 constrain condition to be true, in this case, if all 3 conditions for 

derivative and error are not satisfied in the same cycles then simulation will run for the 

maximum no. of simulation cycle. But, to achieve a subtle convergence, we deployed other 

conditions to be activated after predefined no. of cycles like 40, 70 or 80 cycles. Other constrain 

are activated after some specified no. of cycles and if those constrains are fulfilled then 

convergence is achieved and simulation stops. 

In this convergence condition, at first, derivate value is checked for the current running cycle 

and if derivate comes out to be close to zero or within acceptable tolerance limit assigned for 

convergence. Then the difference in target values and achieved values in the current cycle is 

measured (called Error) and if this error is less than the desired tolerance, convergence is 

achieved. 

 

Derivative: 

If  

 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑇𝑢𝑟𝑏𝑜 𝑠𝑝𝑒𝑒𝑑 𝑐𝑢𝑟𝑣𝑒 ≤ 𝐶𝑜𝑛𝑣𝑑𝑒𝑟𝑇𝑜𝑙𝑙1        & (5.292) 

 

 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝑃𝑏𝑜𝑜𝑠𝑡𝑐𝑢𝑟𝑣𝑒 ≤ 𝐶𝑜𝑛𝑣𝑑𝑒𝑟𝑇𝑜𝑙𝑙2                & (5.293) 

 

 𝑆𝑙𝑜𝑝𝑒 𝑜𝑓 𝐶𝑜𝑛𝑣𝑝𝑜𝑤𝑒𝑟𝑐𝑢𝑟𝑣𝑒 ≤ 𝐶𝑜𝑛𝑣𝑑𝑒𝑟𝑇𝑜𝑙𝑙3    (5.294) 

Then 

Errors: 

If 

 𝑛𝑡𝑢𝑟𝑏𝑜𝑛𝑒𝑤 − 𝑛𝑡𝑢𝑟𝑏𝑜𝑜𝑙𝑑 ≤ 𝑇𝑒𝑐ℎ𝑎𝑐𝑐               𝑡ℎ𝑒𝑛                 𝐶𝑜𝑛𝑣𝐸𝑟𝑟1 = 1 (5.295) 

If 

 𝐶𝑜𝑛𝑣𝑝𝑏𝑜𝑜𝑠𝑡 ≤  𝑇𝑜𝑙𝑙_𝑐𝑜𝑛𝑣𝑝𝑏𝑜𝑜𝑠𝑡              𝑡ℎ𝑒𝑛                 𝐶𝑜𝑛𝑣𝐸𝑟𝑟2 = 1 (5.296) 

If 

 𝐶𝑜𝑛𝑣𝑝𝑜𝑤𝑒𝑟 ≤  𝑇𝑜𝑙𝑙𝑝𝑜𝑤𝑒𝑟               𝑡ℎ𝑒𝑛                 𝐶𝑜𝑛𝑣𝐸𝑟𝑟3 = 1 (5.297) 

If  
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 𝐶𝑜𝑛𝑣𝐸𝑟𝑟1 +  𝐶𝑜𝑛𝑣𝐸𝑟𝑟2 + 𝐶𝑜𝑛𝑣𝐸𝑟𝑟3 ≥ 𝑇𝑒𝑐ℎ_𝑐𝑜𝑛𝑣_𝑐𝑜𝑛𝑠𝑡𝑟 (5.298) 

Then 

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑛𝑡𝑢𝑟𝑏𝑜) =  1 (5.299) 

Where: 

- Conv_der_toll_1 is the acceptable tolerance for the slope on turbo speed curve. 

- Conv_der_toll_2 is the acceptable tolerance for the slope on Boost pressure curve. 

- Conv_der_toll_3 is the acceptable tolerance for the slope on power curve. 

- Toll_conv_pboost is the acceptable tolerance for the Error (difference b/w target value 

and current value) on boost pressure curve. 

- Toll_conv_power is the acceptable tolerance for the Error (difference b/w target value 

and current value) on power balance curve. 

- Matched(n_turbo) = 1 means, convergence achieved and simulation stops.  

 

 
Figure 5:10 Slope tolerance of Turbo-speed for convergence. 

 

As it’s clear from the figure that as derivative or slope of the curve comes flat or close to zero 

and error are very small compare to the tolerance limit then we can say simulation is running 

very close to the final results. But we need to take care of oscillation part of the simulation, 
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which usually happens due to unsteady flow through turbocharger. So, to address that criteria, 

we introduced a condition as explained in section 5.4.2.  

 

 
Figure 5:11 Error calculation of boost pressure for convergence. 

 

The convergence achieved is considered as the slope of the turbocharger speed curve becomes 

less than the tolerance value imposed; in these conditions, it can be argued that in fact the curtain 

speed to asymptotically to a constant value. 

 

5.4.2. Condition 2 (Oscillation, check forced fluctuations in boost pressure and 

turbocharger power balance): 

Second condition to reach convergence is forced on the delivery boost pressure and power 

balance of turbo. Where this condition is activated after “N” no of cycle, which could be 40, 70 

or 80 cycles. This condition is basically to check if the oscillation of boost pressure and power 

balance is happening or not, if oscillation is occurring for some acceptable tolerance limit of 

amplitude compared with the target values, then we assume convergence is reached and 

simulation is forced to stop running for that regime. 

 

If  

 𝑛𝑐𝑦𝑐𝑙𝑒 ≥ 50 (5.300) 

Then 
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 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 {
𝑃𝑏𝑜𝑜𝑠𝑡𝑚𝑒𝑎𝑛 (𝑛𝑡𝑢𝑟𝑏𝑜) − 𝑝𝑏𝑜𝑜𝑠𝑡𝑔𝑜𝑎𝑙(𝑛𝑡𝑢𝑟𝑏𝑜)

𝑝𝑏𝑜𝑜𝑠𝑡𝑔𝑜𝑎𝑙(𝑛𝑡𝑢𝑟𝑏𝑜)
≤ 0.1       & (5.301) 

 

 𝐶𝑜𝑛𝑣𝑝𝑜𝑤𝑒𝑟 < 0.10 (5.302) 

Then  

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑛𝑡𝑢𝑟𝑏𝑜) =  1 (5.303) 

where: 

- Matched(n_turbo) = 1 means, convergence achieved and simulation stops. 

- Conv_power is the percentage error in the power balance of turbo. 

- Pboost_mean is the mean of the amplitude of pressure oscillations. 

- Pboost_goal is the target boost pressure to be achieved. 

 

 
Figure 5:12 Oscillating curve of boost pressure close to it’s target value. 

 

5.4.3 Condition 3 (Steady turbocharger speed and turbocharger power balance): 

Just like condition 2, condition 3 also is activated after “N” no of cycle, which could be 40, 50, 

70 or 80 cycles. This condition basically checks 2 conditions i. e. stabilizing of derivative of 
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turbo-speed and Power converted curve for a given tolerance limit and if these 2 conditions are 

fulfilled after “N” cycle, then we get the convergence of turbocharger simulation and hence 

simulation stops for that regime. In terms of equations it can be seen as follow: 

 

If  

 𝑛𝑐𝑦𝑐𝑙𝑒 ≥ 50 (5.304) 

Then 

 
𝑑𝑁(𝑛𝑡𝑢𝑟𝑏𝑜)

𝑑𝑡
−
𝑑𝑁𝑜𝑙𝑑(𝑛𝑡𝑢𝑟𝑏𝑜)

𝑑𝑡
≤ 𝑇𝑐ℎ_𝑐𝑜𝑛𝑣_𝑑𝑒𝑟_𝑇𝑜𝑙𝑙_1      & (5.305) 

 

 𝐶𝑜𝑛𝑣_𝑝𝑜𝑤𝑒𝑟 − 𝐶𝑜𝑛𝑣_𝑝𝑜𝑤𝑒𝑟_𝑜𝑙𝑑 (𝑛𝑡𝑢𝑟𝑏𝑜) < 0.02 (5.306) 

Then  

 𝑚𝑎𝑡𝑐ℎ𝑒𝑑(𝑛𝑡𝑢𝑟𝑏𝑜) =  1 (5.307) 

 

Where in equation 5.17, first part on the left side is the rate of change of turbocharger speed at 

cycle “N” and second part is rate of change of turbocharger speed at cycle “N-1” 

 

So, to see the effects of this algorithm, we run the simulation for two different engines “TD-4” 

and “F1C” with the new convergence algorithm. 

 

5.5. Convergence Results on TD-4:  

 

5.5.1. One Constrain: 

Now “TD-4” engine is run  for 3 regime (1000, 2000 and 3500) with 1 constrain (means that 

the value of Tech_conv_constr is set to 1)  and 70 cycles for condition 2 to be activated and 

50 cycles for condition 3 to be activated. 
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Figure 5:13 Convergence of “TD-4” engine at 1000 RPM with 1 constrain condition. 

 

 
Figure 5:14 Convergence of “TD-4” engine at 2000 RPM with 1 constrain condition. 
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Figure 5:15 Convergence of “TD-4” engine at 3500 RPM with 1 constrain condition. 

 

Here in figures 5.13, 5.15 and 5.15, we can see how new algorithm helps in reaching 

convergence in less no. of simulation cycles (18, 35 and 51 respectively) as compared to figures 

5.4 and 5.5, where simulation run until 100 cycles. But for this simulation we put only one 

constrain, as anticipated, one constrain meets the criteria very early. So, we try different 

combination of no. of constrains and condition 2 and condition 3 activation cycles.  

 

5.5.2. Two Constrain: 

To see the effects on convergence, we run “TD-4” engine for 3 RPM (1000, 2000 and 3500) 

with 2 constrain (means that the value of Tech_conv_constr is set to “2”)  and 70 cycles for 

condition 2 to be activated and 50 cycles for condition 3 to be activated. The results are plotted 

in figure 5.16, 5.17 and 5.18. 
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Figure 5:16 Convergence of “TD-4” engine at 1000 RPM with 2 constrain condition. 

 

 
Figure 5:17 Convergence of “TD-4” engine at 2000 RPM with 2 constrain condition. 
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Figure 5:18 Convergence of “TD-4” engine at 3500 RPM with 2 constrain condition. 

 

In figures 5.16, 5.17 and 5.18, we can see, how good the convergence is reached and algorithm 

stopped the simulation to run for further cycles. So, this new algorithm with 2 constrain seems 

to work well. 

 

5.5.3. Three Constrain: 

To see the effects on convergence, we run “TD-4” engine for 3 regime (1000 and 2000) with 3 

constrain (means that the value of Tech_conv_constr is set to “3”)  and 70 cycles for condition 

2 to be activated and 50 cycles for condition 3 to be activated. The resluts are plotted in figure 

5.19 and 5.20. 
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Figure 5:19 Convergence of “TD-4” engine at 1000 RPM with 3 constrain condition. 

 

 
Table 5-3: Data from “Turbo_Conv_Debug” file at 1000 RPM with 3 constrain condition. 

 

From the table 5.3, it’s clear how algorithm works good, as we can see in the round circle that 

even if 2 constrain out of 3 are fulfilled and after the activation of condition 2 and condition 3, 

we reach convergence in 51 cycles, as Tch_cond_4 value is “1” (condition 3).  
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Figure 5:20 Convergence of “TD-4” engine at 2000 RPM with 3 constrain condition. 

 

 
Table 5-4: Data from “Turbo_Conv_Debug” file at 2000 RPM with 3 constrain condition 

 

Similarly, from table 5.4, it’s clear how algorithm works good, as we can see in the round circle 

that even if 2 constrain out of 3 are fulfilled and after the activation of condition 2 and condition 

3, we reach convergence in 51 cycles, as Tch_cond_4 value is “1” (condition 3).  

 

So, from section 5.5, we can conclude that with 2 constrains and application of condition 2 and 

condition 3 gives us good results of convergence for turbocharger. 
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5.6. Convergence Results on F1C:  

 

5.6.1. Two Constrain: 

With the conclusion from section 5.5, we run the “F1C” engine for 3 regime 1000, 2000 and 

3500 RPM with 2 constrain only (means that the value of Tch_conv_constr is set to 2)  and 70 

cycles for condition 2 to be activated and 50 cycles for condition 3 to be activated. Results are 

plotted in figures 5.21, 5.22 and 5.23. 

 

 
Figure 5:21 Convergence of “F1C” engine at 1000 RPM with 2 constrain condition. 

 

 
Table 5-5: Data from “Turbo_Conv_Debug” file at 1000 RPM with 2 constrain condition. 
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Figure 5:22 Convergence of “F1C” engine at 2000 RPM with 2 constrain condition. 

 

 

Table 5-6: Data from “Turbo_Conv_Debug” file at 2000 RPM with 2 constrain condition. 
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Figure 5:23 Convergence of “F1C” engine at 3500 RPM with 2 constrain condition. 

 

 
Table 5-7: Data from “Turbo_Conv_Debug” file at 3500 RPM with 2 constrain condition. 

 

From section 5.4 and 5.5, it’s very clear that the new algorithm developed checks the conditions 

for convergence and force the simulation to stop to save time and resource. 

As it can be seen in highlighted circles, even if no constrains in “Derivative and Error” are true, 

condition 2 and condition 3 gets active after 70 and 50 cycles respectively to check for 

convergence criteria and forces the simulation to stop, if these conditions are true. 

 

So, With the introduction of new algorithm with 2 constrains and condition 2 and condition 3, 

as explained in section 5.4 the “Gasdyn” code gives reliable results for convergence in 

turbocharger cases. 
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5.7. PID control: 

 

PID control flow chart of new algorithm for convergence criteria in turbocharger simulation is 

explained below in figure 5.10. 

 

 
Figure 5:24: Flow chart of PID control for new convergence algorithm of turbocharger simulation in Gasdyn.  
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