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1 ABSTRACT 

With a reference to a viscoplastic bar discretized by the finite element method (FEM), an h-

refinement technique for model order reduction is developed. The Perzyna viscoplasticity 

model is adopted. The procedure employs the Proper Orthogonal Decomposition-Galerkin 

(POD-G) in conjunction with the h-refinement mechanism, which enriches the reduced-basis 

space online by ‘splitting’ a given basis vector into several vectors. For this purpose, the 

snapshots are collected from a standard full order FEM analysis in the offline phase and a tree 

structure is constructed, using a binary clustering algorithm. The singular value decomposition 

is used for construction of a low-dimensional basis for POD algorithm and a corresponding 

reduced order model (ROM). The projection error is computed offline for a predefined size of 

basis vector and extent of the basis splitting (refinement according to the tree). In the online 

phase, the truncated basis is refined based on the tree structure. The relative error is computed 

on the basis of full and reduced order models. The constructed reduced order model with 

refined basis is applied to the viscoplastic bar problem, where in the presence of imperfections 

(cross area reduction) giving rise to a strain-localization.  

The same technique is also applied to a different problem governed by Burgers equation. 

Such problem, being strongly nonlinear, is an interesting benchmark for the proposed 

technique.  
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ITALIAN ABSTRACT 

Con riferimento al problema di una barra viscoplastica discretizzata utilizzando il metodo 

degli elementi finiti, viene sviluppata una  tecnica di “h-refinement” applicata ad una procedura 

di “model order reduction”. Viene adottato il modello viscoplastico di Perzyna. La procedura 

risoltiva proposta utilizza la tecnica  denominata POD-G (“Proper Orthogonal Decomposition 

– Galerkin”) in combinazione con il meccanismo di “h-refinement” che arricchisce lo spazio a 

base ridotta attraverso lo “splitting” dei vettori di base. A questo scopo, si raccolgono 

“snapshots” ottenuti dal modello FEM completo (generati offline)  e si costruisce una struttura 

ad albero usando un algoritmo di “clustering” binario. Si fa uso di una decomposizione ai valori 

singolari per costruire una base di dimensione ridotta e il corrispondente modello di ordine 

ridotto. Viene valutato in modalità offline l’errore (in termini dei proiezione) conseguente alla 

dimensione predefinita della base adottata e del grado di “splitting” adottato. In modalità 

online, la base troncata viene raffinata utilizzando la struttura ad albero. L’errore relativo viene 

calcolato confrontando la risposta del modello completo con quella del modello a base ridotta. 

Il modello ridotto viene applicato al problema della barra viscoplastica in cui siano presenti 

delle imperfezioni (costituite da riduzioni dell’area trasversale) che generano un fenomeno di 

localizzazione delle deformazioni. 

La stessa procedura risolutiva viene applicata anche a un problema diverso, governato 

dall’equazione di Burgers. Questo problema, caraterizzato da forte nonlinearità, rappresenta un 

banco di prova interessante per valutare l’efficacia della tecnica risolutiva proposta. 
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2 INTRODUCTION 

In the modern stage of development of engineering and technology the need in large-scale 

numerical simulations is high. The computational cost of the high-fidelity calculation across 

the industries has rapidly increased in the past years. Model Order Reduction (MOR) 

techniques are aimed to mitigate this computational bottleneck and reduce the cost of these 

procedures. Moreover, for many time-critical applications computational cost of executing 

high-fidelity large-scale simulations remains to be infeasibly high.  

The common algorithm for Reduced Order Models (ROM) consists in splitting the problem 

into a two-phase procedure commonly known as the offline–online decomposition. First, a 

computationally expensive ‘offline’ phase is executed. During which the training tasks, such 

as evaluating the high-fidelity model at several points in the input-parameter space and 

computation of a representative low-dimensional reduced basis for the system state are done. 

Second, the inexpensive ‘online’ phase carries out a many-query procedure. These methods 

use a projection process of the high-fidelity Full Order Model (FOM) equations onto the low 

dimensional subspace spanned by the reduced basis and quickly find the approximate solutions 

for arbitrary points in the input space. The implementations of these techniques are broadly 

applied in finite element models of solid dynamics [1], aerolasticity [2], stochastic processes 

[3] and fluid dynamics [4, 5].  

In this research the Reduced Order Model (ROM) in conjunction with a basis refinement 

technique is used for a boundary value problem. A quasistatic equilibrium equation is equipped 

with Perzyna viscoplasticity – a nonlinear and path-dependent constitutive law [6]. The 

singular values of collected snapshots have a slow decay, so efficiency of the Reduced Order 

Model is decreased.  

To improve the efficiency of ROM online, an h-refinement algorithm is developed. It 

consists in basis splitting according to a tree structure. The tree reflects correlation of the 

degrees of freedom of the system and is constructed on the basis of snapshots collected offline 

(in the same fashion as for typical ROM algorithm). The tree construction algorithm employed 

for the basis splitting is developed by means of using bottom-up binary clustering [7]. Such a 
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clustering technique belongs to hierarchical agglomerative clustering algorithm and it links 

pairs of entities. 

The same methodology of ROM equipped with h-refinement algorithm is applied to a 

problem of shock wave formation described by Burgers Equation. It is a special case of Navier-

Stokes equation for Newtonian incompressible fluid. This problem is investigated in one spatial 

dimension and one temporal coordinate. Due to the fact that the solution of Burgers equation 

[8] can develop discontinuities (shock waves) it serves as a valuable benchmark for testing the 

ROM efficiency (and, as such, has been used as other authors to validate newly proposed MOR 

algorithm see [9]).   
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3  PROBLEM STATEMENT 

As it is already known, in the cases of large-scale simulations the computational cost of 

executing is high, especially for time-critical problems. Full order models are not able to solve 

these problems relatively fast, so reduced order models were aimed to decrease computational 

burden. First, ROMs execute expensive offline stage, when the model is trained on a large 

dataset. Low-dimensional basis VH is constructed, that appropriately captures the behaviour of 

state variable u. Then, inexpensive online stage starts to compute approximate solution for 

arbitrary input parameters via low-dimensional subspace spanned by the reduced basis. 

Being inspired by h-refinement mechanism, the proposed solution follows the similar 

tactics. In typical h-refinement, the domain (finite elements or volumes) is split by mesh 

refinement. While here, the basis vector is split according to a tree structure. Tree structure is 

constructed using binary bottom-up clustering. The a-priori error is computed in offline stage. 

The a-priori error is defined by projection of state variable lying in the low-dimensional 

subspace onto the full order space 

 H r u u   (3.1) 

where uH denotes an orthogonal projection of the vector u onto the space VH with a 

projection error r. Graphically it is described by Figure 3.1.  
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Figure 3.1. Projection error 

 

For a boundary value problem a parametrized system of equations of the type 

 ( ; ) 0k kr x μ   (3.2) 

has to be solved for state of variable xk n . Input parameters μ are predefined. Residual rk 

at iteration k has to me minimized. This is a general formulation that describes, for example, 

parameterized systems of linear equations arising from the finite-element discretization of 

elliptic PDEs. In such a case ( ) ( ) ( )k kr b ax , μ μ μ x ). 

The output is computed as 

 ( ; )k kgz x μ   (3.3) 

With function : DOF DOFN N
g   so the solution is lying in the same space as V, and  zk

DOFN
 . When dimension of system NDOF is large, in full order models the outputs zk are 

computed by solution of system (3.2) and then (3.3), which is computationally expensive. For 

time-critical problems this approach is not suitable.  
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3.1 STRAIN-SOFTENING PERZYNA VISCOPLASTICITY 

A problem of one dimensional bar under tension equipped with viscoplastic constitutive 

model is employed for illustration of the ROM with h-refinement performance. A strain-

softening constitutive model that is used has a following stress-strain relationship 

    (  -  )e

vpσ D ε ε   (3.4) 

with vpε  is a viscoplastic strain tensor, ε  refers to time derivative of strain / t  ε ε  and 

e
D  represents the elastic modulus tensor. The quasistatic equilibrium equation is described 

by  

     T in L σ q   (3.5) 

where a matrix of stress tensors in denoted by σ, q is a vector of body forces, the 

displacement vector u is defined in a computational domain Ω having a boundary Γ = Γu ∪ Γt 

with applied Dirichlet and Neumann boundary conditions. The operator matrix L is defined as  

 

0 0 0

0 0 0

0 0 0

x y z

T

y x z

z y x

   
 

    
    

L   (3.6) 

where # #/     the partial derivative with respect to #. 

The flow rule of Perzyna viscoplastic model [6] is formulated as  

 vp








ε
σ

  (3.7) 

In this case the rate of plastic multiplier 

 ( )


      (3.8) 

with the yield function 

 vm Y      (3.9) 

and overstress function 
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 ( )
Y


 


   (3.10) 

In the above equations, ⟨#⟩ is the Macaulay bracket meaning that  

 
( ) ( ) 0

( )
0

if

otherwise

   
 


 


  (3.11) 

 η is the viscosity parameter, β is a model parameter, σY is the current yield stress, and σvm 

is the von Mises stress. To introduce a strain-softening response, relation 

 - -2

0   ((1  )     )bk bk

Y Y a e a e      (3.12) 

is employed, where a and b are model parameters, σY0 is the initial yield stress, and the 

plastic strain 

 k    (3.13) 

The viscoplastic strain-softening Perzyna model typically induces strongly localized strain 

fields.  

 

 

3.2 INVISCID BURGERS EQUATION 

In the field of solid mechanics, the differential equations in the displacement field such as  

 
2( ) (  )    0G div G in V      s s f   (3.14) 

where
2 denotes Laplacian operator (

2 2 2

2 2 2x y z

  
  
  

in Cartesian orthogonal 

coordinate system xyz) are known as the Navier equations.  

The equation above is valid for a solid in a homogeneous isotropic linear elastic material. It 

is characterized, by the two Lamé constants, λ and G; for the homogeneity hypothesis the value 

of these constants is not a function of a place. For sake of simplicity, assume that the solid does 
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not undergo inelastic deformations. Under the assumptions made above, the equations of law 

(in direct form) are written, at each point of the body as 

 1      2ij ij ijI G       (3.15) 

with  

 
, ,

1 ,

1
  (  ) 

2

 ( )

ij i j j i

kk k k

s s

I s div





 

   s

  (3.16) 

Wishing to reach a formulation in the only unknown displacement, and replacing the 

indefinite equilibrium equations, it is needed to take into account the relationships between 

deformations and displacements 

 , , , ,
( )k k ij i j j i ii

s G s s f         (3.17) 

Assuming invertibility of the displacement components (continuous functions and regularity 

of the place) it becomes  

 , ,(   )       0,    1, 2,3i ij j ii jG s G s f j        (3.18) 

in the explicit form, which is the same as compact form in the Equation (3.14). This equation 

is in close analogy with the indefinite equations of equilibrium of motion of viscous fluids (or 

Newtonian) and are reduced to so-called "Navier-Stokes" [10].  

 2

t
 

 
       

 

u
u u p u f   (3.19) 

were ρ is the density of the fluid, u is a velocity vector field, p is the pressure, μ is a constant 

called the viscosity, and f is a specified external force (again a vector field). 

The use of simplifications of the Navier-Stokes equations can be performed to achieve more 

simple versions of this equation [11], for instance dropping pressure term in case of 

incompressible fluids  
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 2

t
 

 
     

 

u
u u u f   (3.20) 

Assuming that the external force is equal to zero and taking advantage of the fact that density 

ρ is a constant for an incompressible fluid, this allows to define a new constant, the kinematic 

viscosity ν = μ/ρ  and obtain from the equation above 

 2

t



   



u
u u u   (3.21) 

An even further simplification arises when we assume the viscosity is zero Then obtain the 

inviscid Burgers’ equation: 

 0
t


  



u
u u   (3.22) 

This equation provides a useful model for many physical phenomena of a fluid flow - a 

nonlinear, propagating shock wave with viscous dissipation, turbulence, a propagating shock 

wave in gases, a propagating flame in the combustion chamber and other problems.  

In the case of one-dimensional problem, the Burgers’ equation (3.21) with nonzero 

viscosity, can be rewritten as  

 
2

2
0

u u u
u

t x x


  
  

  
  (3.23) 

or in a conservation form, when the flow is conserved:  

 
( )

0
u f u

t x

 
 

 
  (3.24) 

where u represents velocity of some quantity and the associated flow is represented by f (u) 

 2(
2

)
1 u

f u u
x




 


  (3.25) 
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The equation (3.24) is used as prototype for nonlinear hyperbolic equations and 

conservation laws in general [8]. It is widely used in studies of gas dynamics, turbulent fluid 

motion and traffic flow. Burgers equation with the characteristics  

 
dx

u
dt

   (3.26) 

means that characteristic lines are straight lines in the x, t -plane 

 0
du

dt
   (3.27) 

and wave profile u is constant along the characteristics of the Burgers’ equation. 

Shock formation arises with the Burgers equation and other conservation laws and solution 

develops discontinuity even if the initial waveform is continuous. After a certain finite time the 

discontinuities may appear and then propagate in a regular manner. 

 

 

Figure 3.2. Inviscid Burgers equation. Shock formation 

 

It can be shown that for any kinematic viscosity 0  , a unique smooth solution of the 

Equation (3.23) exists any time. The curves of Figure 3.2 are obtained by taking the limit 

0  , and represent the case of vanishing viscosity. The Burgers equation can be considered 
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applicable to any phenomenon of flow in which balancing effects of viscous and inertia or 

convective forces exist.  

The solution is similar to the solution of the kinematic wave equation when inertial or 

convective forces predominate. It maps the boundary layers and propagating wave front. In 

such a case, it behaves like a hyperbolic PDE. When viscous forces predominate, the solution 

behaves like a parabolic equation, and any propagating wave front is blurred and dissipated 

due to viscous action. 

Due to these different forms, which can adopt the Burgers equation in combination with its 

nonlinear characteristics, it has become a model for estimating and evaluating the performance 

of many computational methods. For this reason, the validation of ROM with h-refinement 

mechanism here is done employing Burgers equation for a POD-Galerkin. 

 

Both problems of strain-softening viscoplasticity and Burgers equation require a high 

number of degrees of freedom for discretization of domain and solution of the system of 

nonlinear equations. The resolving of the gradients of strongly localized strain fields in 

viscoplasticity and shock formation in wave propagation implies high computational costs, 

since large nonlinear systems of equations of the dimensions NDOF × NDOF  should be solved at 

each time step. 
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4 METHODS  

4.1 FULL ORDER MODEL 

The quasistatic equilibrium equation (3.5) can be written in a weak form and, using a Finite 

element formulation for space discretization, it yields to set of nonlinear equations 

 
int ext( )  ( ) -     r a f a f 0   (4.1) 

where 

 

int

ext

( ) ( )

t

T

T T

a a d

d d



 

 

   



 

f B σ

f N t N q
  (4.2) 

A matrix that contains shape functions 3 DOFN
N  and a matrix that contains derivatives 

of the shape functions 
6

  DOFN
 B L N  are substituted into (4.2). t  are the prescribed 

tractions on boundary Γt , DOFN
a  is a vector of the nodal values of the displacement vector 

u, and NDOF is the total number of degrees of freedom (DOFs).  

The system of nonlinear equations is then solved using a Newton–Raphson scheme 

according to Algorithm 1, where at each iteration j the residual vector DOFNj r  is computed 

using stiffness matrix Kj DOF DOFN N
 .  

The tangential stiffness matrix is computed as  

 
( )

j

int jj T d


 
  

 
a

f a σ
K B

a a
  (4.3) 

The increment of the displacement vector 1 DOFNjd  a  is computed at iteration  j + 1.  

 
( )

( )
( )

j 


 

σ a
D

ε a
  (4.4) 



 

18 / 85 

 

Algorithm 1. Typical Newton-Raphson scheme 

Input: ; ;ta D σ   

iteration j = 1 , displacement at 1 0t a  

set 1 t  a a , 1 t

int intf f  

compute new external force vector t t

ext


f  

(*) compute jacobian of stress vector D 

compute tangent stiffness matrix at element level and  

assemble tangent stiffness matrix at structure level Kj 

solve 1 1 ( )j j j j j j

ext intd      K a f f a r  for 1jd 
a , where j

r  is a residual 

update displacement vector 1 1j j jd    a a a  

compute stress 1  j
σ  

compute internal force vector at element level  

assemble internal force vector at structure level 1j

int


f   

if 
2

2

1

  
   

j

L

j

L

tol






a

a
 then 

1  t t j   a a   

go to next load step 

else 
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 j = j + 1, go to step (*) 

end if 

Output: t ta , t t

int


f  

 

 

4.2 DATA COLLECTION 

The results of the solution of Full Order Model (FOM) or generally speaking the observation 

data is used as a training set for offline stage. The matrix of snapshots X Samp DOFN N
  collects 

data in a format where rows contain degrees of freedom and columns the snapshot number, and 

it has a dimensionality NSamp × NDOF. Typically, the snapshot collection is organized according 

to the Algorithm 2. 

 

Algorithm 2. Construction of snapshot matrix 

Input: NSamp – number of desired snapshots at time T 

set X = [ ] 

repeat 

run full order model simulation for t time steps 

 X ← [X Xt] 

 t = t + Δt 

until t = T  

Output: snapshot matrix X Samp DOFN N
  
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4.3 DATA NORMALIZATION 

For the scope of capturing the correlation of the degrees of freedom, it is possible to 

normalize training set according to Equation (4.5) inherited into Algorithm 3. In this case the 

correlated and anticorrelated state variables become separated by small Euclidean distance and 

can be grouped via a clustering technique. 

 2

,

,

1; 0

i j

i j T

i L

T T T

i i i

x
x

if x



 

x

x x

  (4.5) 

where 2.
L

 denotes a Euclidean (L2) norm calculated by  

 2

2

1

N

i

i
L




 X   (4.6) 

where σi denotes the singular values of X and N is a length of vector xi. 

 

Algorithm 3. Normalization of snapshot matrix 

Input: Snapshot matrix X Samp DOFN N
 , containing NSamp observations 

for i=1,…,NDOF 

 Normalize rows of X to capture correlation and anti-correlation by clustering  

, , / T

i j i j ix x x  

 Flip origin if the first entity is negative 

1; 0T T T

i i iif x x x  

end 

Output: Samp DOFN N
X , normalized 
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The difference in scatter is visible in Figure 4.1 when, for instance taking the input from 

snapshot matrix of time function (4.10), plotting first taken snapshot versus the second one. In 

Figure 4.1 (left) the scatter is high and the anti-correlation is not seen, while the Figure 4.1 

(right) shows the same dataset after normalization. The 3 clusters are clearly seen. 

 

Figure 4.1. Observations 1 and 2. Time function 

Not normalized (left) – highly scattered entities 

  Normalized (right) scatter is reduced by normalization 

4.4 TREE CONSTRUCTION 

4.4.1 CLUSTERING 

The data related to the scatter of snapshot matrix and capturing of the clusters information 

is used for a tree construction. For this purpose, a clustering algorithm has to be employed. 

There exist several possibilities to do this. The first one consists in algorithm when the entire 

set of observations is split into the clusters, known as k-means clustering. The existing 

challenge of this method is the definition of the number of clusters required. The proposed here 

solution can be seen with two conceptually different approaches: top-down and bottom-up. The 

first case is consisted in splitting the entire set in 2 clusters recursively, while the second links 

pair of entities combining them into the binary clusters.  
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4.4.2 CLUSTERING TYPOLOGY 

There exist two conceptually different types of clustering techniques: hierarchical and 

partitional. Partitional clustering is a division of the set into the non-overlapping subsets, such 

that the entity belongs to exactly one subset.  

 

Figure 4.2. Clustering of the set of points. Random scattered set of 15 points. 

Metric: Squared Euclidean Distance; Two clusters (left); Three clusters (right)  

Taking individually, each association of the points into a group from Figure 4.2 to Figure 

4.4 is a partitional clustering. If the clusters contain sub-clusters, then we obtain hierarchical 

clustering, when the clusters are nested and organized as a tree. Each node of the tree except 

the bottom level (leaf nodes) is association of child sub-clusters. The root of the tree (top 

cluster) contains all the entities, the set consists of. The example of illustration of such a tree 

organized in a form of dendrogram would be demonstrated in Chapter 4.4.5.For example, on 

the Figure 4.4 (left), the blue cluster consists in union of blue and yellow Figure 4.4 (right), 

allowing the further splitting. The yellow cluster on the Figure 4.4 (left) is completely 

coincident to the green of Figure 4.4 (right). The hierarchical clustering can be viewed as a 

sequence of partitional clustering and vice versa, partitional clustering can be obtained by 

taking any member of the hierarchical sequence, cutting the tree at a particular level. 
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Figure 4.3. Clustering of the set of points. Random scattered set of 15 points. 

Metric: Cosine measure; Two clusters (left); Three clusters (right)  

 

 

 

Figure 4.4. Clustering of the set of points. Random scattered set of 15 points. 

Metric: Cityblock; Two clusters (left); Three clusters (right)  
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Complete clustering assigns each entity to a cluster. Partial clustering may not include some 

elements to a set. This may happen when data in some sets does not belong to any well-defined 

group. In many cases this data represents noise outliers or background objects, not contributing 

to a scope. 

Another way to distinguish the clustering is an exclusive, when an entity belongs to a single 

cluster, or overlapping when a point can be placed in several clusters. Non-exclusive 

(overlapping) reflects the fact that an object can simultaneously belong to more than one class. 

In fuzzy clustering a weight factor is assigned to each variable and it varies from 0 (absolutely 

does not belong) to 1 (fully belongs). In a same fashion, probabilistic clustering computes 

probability with which the entity belongs to a cluster, and probabilities must also sum to a unit.  

Practically, the probabilistic and fuzzy clustering to can be converted into exclusive 

clustering, when the element is assigned to a cluster with the highest probability or weight. 

Prototype-Based Algorithms are aimed to learn a prototype for each cluster, and form 

clusters by data objects around the prototypes [7]. For vast majority of the algorithms of this 

class, the prototype is a centroid of a cluster, and the clusters tend to be globular. 

Graph-Based Algorithms regard data objects as nodes, and the distance between two objects 

as the weight of the edge connecting the two nodes, the data can be represented as a graph, and 

a cluster can be defined as a connected subgraph. In a typical graph-based algorithm defines 

the shared nearest-neighbours for each data object, and then sparsifies the graph to obtain the 

clusters. 

Density-Based Algorithms take a cluster as a dense region of data objects that is surrounded 

by regions of low densities. They are often employed when the clusters are irregular or 

intertwined, or when noise and outliers are present. In case of highly dimensional data, the 

density notion is valid only in subspaces of features, which motivates the subspace clustering. 
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4.4.3 K-MEANS CLUSTERING 

The one of the most widely used and oldest clustering algorithms is k-means clustering. It 

is a prototype-based partitional clustering algorithm [7] that attempts to find k non-overlapping 

clusters. These clusters are represented by their centroids (a cluster centroid is typically the 

mean of the points in that cluster). 

 

Algorithm 4. Typical k-means clustering 

Input: dataset X, number of clusters k  

Select k initial centroids  

repeat  

form k clusters by assigning each point to the closest centroid 

recalculate centroid of each cluster 

until position of centroids do not change 

Output: k cluster sets and their centroids with the points belonging to the cluster 

 

The clustering process of k-means is described by Algorithm 4. First, k initial centroids are 

selected, where k is specified in the input and indicates the desired number of clusters. Every 

point in the data is then assigned to the closest centroid, and each collection of points assigned 

to a centroid forms a cluster. The centroid of each cluster is then updated based on the points 

assigned to that cluster. This process is repeated until no point changes clusters.  

The examples of application of k-means clustering for a random dataset using different 

metrics from the Chapter 4.4.4 are demonstrated in Figure 4.2, Figure 4.3 and Figure 4.4 



 

26 / 85 

4.4.4 METRIC FOR THE CLUSTERING 

In order to link pairs of vectors it is needed to establish a metric for the pairwise distance 

[12]. The way of capturing similarities between observations in the examples is the Euclidean 

distance  

 2 ( )( )ij i j j jd x x x x      (4.7) 

where for a given matrix of snapshots
 Samp DOFN N

X


 , the NSamp row vectors have the various 

distances between xi and xj. There exist another ways of computing the distance, as for instance 

cosine similarity evaluated for vectors xi and xj as 

 ( , ) 1 cos( , ) 1
( )( )

i j

ij i j i j

i i j j

x x
d x x x x

x x x x


   

 
  (4.8) 

The metric such as Cityblock 

 
1

( , )
p

j j

j

d x c x c


    (4.9) 

is defined as sum of absolute differences (L1 distance). Each centroid cj is the component-

wise median of the points xj in that cluster. 
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Observation 1                           Observation 1                           Observation 1 

Figure 4.5. Geometric representation of clustering metrics.  

Euclidean (left); Cityblock (center); Cosine (right)  
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Geometric representations of basic distance measures between two entities (A and B) in 2D 

space are shown in Figure 4.5. Looking at 2D plain of Cartesian coordinate system, the 

Euclidean distance is computed is a length of AB, the axes in Figure 4.5 (left) meet at the 

origin. In the Figure 4.5 (center) Cityblock distance is computed as the sum of projections of 

AB onto the orthogonal coordinate system in, that is why it also sometimes known as 

Manhattan distance. In most cases, this distance measure yields to results similar to the 

Euclidean distance. However, Cityblock distance provides the effect of a large difference when 

a single dimension is dampened, since the distances are not squared. Cosine distance in Figure 

4.5 (right) is measured by (4.8), where similarity r = cos(α) is computed for vectors taking the 

origin from centroid. 

It is observed in [13] that having large dimensionality of vectors, the difference between 

results of computation Euclidean (4.7) or cosine (4.8) distance is not significant. On the other 

hand, the studies such as [14] point out that squared Euclidean distance is not suitable for high-

dimensional k-means data clustering because of the “curse of dimensionality”. Nevertheless, 

investigation of this problem for different datasets is interesting task to deal with in the future 

research. 

 

Algorithm 5. Tree construction via binary clustering 

Input: Snapshot matrix Samp DOFN N
X , can be normalized 

compute Pairwise (Euclidean) Distance from snapshot matrix between vectors xi and xj 

2 ( )( )ij i j i jd x x x x     

grouping into binary clusters by creation agglomerative hierarchical cluster tree 

compute the proximity matrix LinkX, based on a metric 

repeat 

merge the closest two clusters 

update the proximity matrix LinkX to reflect the metric dij between the 

centroids of new cluster and the original clusters 
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until      only one cluster remains 

create first NDOF clusters corresponding to observations themselves  

for i=1,…,NDOF 

Tree{1,…,NDOF}=1,…,NDOF 

end 

create definition of each cluster EEE 

for i=1,…,size(LinkX) 

take left cluster of LinkX, define its content by entities 

ResL=E{LinkX (i,1)} 

take right cluster of LinkX, define its content by entities 

ResR=E{LinkX(i,2)} 

combine defined left and right clusters of LinkX 

E{i}=[ ResL ResR] 

end 

for i=1,…,size(Tree) 

replace cluster name by its definition (contents) 

TREE{i}= LinkX{ E{i}} 

end 

Output: TREE – String of arrays NDOF × 1 containing trees for each branch (For example 

see Figure 4.7) 
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4.4.5 TREE CONSTRUCTION EXAMPLE 

It is necessary to clarify Algorithm 5 with a comprehensive example. “Time function” is the 

example of data collected from time history analysis [15]. Snapshot matrix  

 

8,8078 20,3701 10, 6956 37, 2035 25, 7282 12,9818 16,8462 12,9854

4, 2437 9,1066 6, 2987 9, 6227 13, 0436 16, 0915 3,5370 0,1259

25,8879 5, 6943 26, 4645 47,9825 24, 0329 20, 2440 83,5343 57, 7367

14,8654 31,9001 22, 0641 33, 7077
=X

  

  

 

  45, 6912 56,3677 12,3898 0, 4409

5,5002 11,8031 8,1638 12, 4720 16,9059 20,8562 4,5842 0,1631

4,8868 1, 0749 4,9956 9, 0575 4,5366 3,8214 15, 7684 10,8987

  

    

     

 

 (4.10) 

contains NSamp = 8 snapshots and NDOF = 6 degrees of freedom. 

The snapshot matrix X (4.10) of a time function after processing by means of normalization 

becomes more suitable for clustering (see Figure 4.1 (right)). Binary clustering is adopted to 

capture correlations between degrees of freedom. The Euclidean distance is computed at the 

each iteration, defining the metric for linking pairs of clusters. It creates the matrix (2NDOF -1) 

× 3  

 

 

Global Left Right
Distance

Cluster Cluster Cluster

{1} 1 1 0

{6} 6 6 0

0.0039

0.0062

0

{7} 4 5

{8} 2 7

{9} 3 6

{

.0071

1.010} 1 9

{11} 8 10

083

1.3088

  (4.11) 
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where the Global Cluster contains the Left and Right clusters, telling the linked pair. The 

last column defines the value of the metric which was used for creating a new cluster. At the 

next stage the names of the clusters are replaced with the clusters form 1 to NDOF  themselves, 

for instance Global Cluster {10}, containing Global Clusters {1} as Left Cluster and {9} as a 

Right Cluster becomes {1, 3, 6} after substitution. 

 

Figure 4.6. Clusters’ dendrogram. Time function 

Not normalized (left) and normalized (right) observations 

 

As it was discussed before, traditional k-means clustering can be used instead of bottom-up 

algorithm. For both algorithms the optimal solution is depicted at Figure 4.6, which is a 

dendrogram, describing the tree structure of observations. Dendrogram is a tree structure, 

where each node is associated with a distance (height) and satisfies 

          h A h B A B     (4.12) 

where h(A) and h(B) denote the heights of A and B respectively. For all subsets of points A 

and B if    A B    is necessary and sufficient  

       max ,  ,  ,  ,    i j ik jkh h h i j k n     (4.13) 
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where hi,j denotes the height of internal node specifying the smallest cluster to which both 

xi and xj belong, for each pair of data points ( xi, xj ). 

 Figure 4.6 (left) figure describes the dendrogram associated with the Figure 4.1 (left), when 

the normalization is not done. The right dendrogram is constructed on the basis of normalized 

snapshots. Conceptually, the refinement tree branches can be determined at each desired 

distance between the observations. The needed depth level of tree could be graphically obtained 

by intersection of horizontal line at the predefined distance and Degree of Freedom index. 

Each association of the adjacent state variables create a new cluster, e.g. branch. This branch 

is united with the next closest observation or branch, which has the closest centroid. The initial 

clusters correspond to number of degrees of freedom, i.e. correspond to itself, so the distance 

is zero. The graphical representation of creation of the new clusters corresponds to Figure 4.7, 

where the new created clusters are listed at (4.11). The complete procedure of the new clusters 

creation consists in assigning to the NSamp observations, the clusters containing themselves and 

then estimating the Euclidean distance between the clusters (observations). The succeeding 

procedure is based on the creation of the binary clusters by collecting them on the basis of 

distance between centroids. 

The refinement mechanism is based on the tree structure in Figure 4.7, where the needed 

depth of refinement can be obtained by the choice of the needed level of the tree. The array of 

the tree structure (4.14) contains matrix of the elements required for splitting on the each level 

of the basis refinement such as  

 

 

String Array

Number Contents

1 {1,...,6}

2 {1,3,6}{2,4,5}

3 {1}{3,6}{2,4,5}

4 {1}{3}{6}{2,4,5}

5 {1}{3}{2,4}{5}{6}

6 {1}{2}{3}{4}{5}{6}

  (4.14) 

where the string of arrays contains the basis splitting for the chosen branch of the tree. 
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Figure 4.7. Tree structure obtained from binary clustering. Time function. 

 

On one hand, for a large dataset, the binary bottom-up clustering can be more 

computationally demanding than the k-means clustering. Due to the fact that during the offline 

stage the computational cost is not critical, the more expensive binary clustering is acceptable 

for a tree construction. On the other hand, the choice of the number of clusters for k-means 

clustering is questionable. Moreover, the iterative procedure of k-means clustering such as 

Algorithm 4 does not always converge to the optimal minimum.  

Global Cluster Number:   d = 11 

Contained Clusters:   C(11) = {8,10} 

Contained elements   E(11) = {1,...,6} 

d = 10 

C(10) = {1,9} 

E(10) = {1,3,6} 

d = 8 

C(8) = {5,7} 

E(8) = {2,4,5} 

d = 1 

C(1) = {0} 

E(1) = {1} 

d = 9 

C(9) = {3,6} 

E(9) = {3,6} 

d = 3 

C(3) = {0} 

E(3) = {3} 

d = 6 

C(6) = {0} 

E(6) = {6} 

d = 7 

C(7) = {2,4} 

E(7) = {2,4} 
d = 5 

C(5) = {0} 

E(5) = {5} 

d = 2 

C(2) = {0} 

E(2) = {2} 

d = 4 

C(4) = {0} 

E(4) = {4} 
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4.4.6 PROPERTIES OF TREE 

1.  Hierarchical subspaces  

Refinement method with the use of a tree creates a hierarchy of subspaces such as 

( ) ( )H hrange rangeV V . 

The poof of this property is:  

   ( ) | ( ) | ( ) ( )H h h q h h h

H Hrange w w range I w w range range      V V V I q V  

2.  Fully refined ROM basis converges to the FOM solution 

If every element has non-zero entity in one of the original reduced-basis vectors,  

(0) (0)( ), ( , ) ( ) ( ) | 0ijl n i j n p v       and 

( ), ( ) | ( ) , ( )l n i m E i l C i       holds, this means that fully refined basis 

converges to Full Order Model solution. 

Both properties 1 and 2 [15] say that with refinement a sequence of hierarchical subspaces 

can be generated. The ROM converges to full-order model solution when the basis is 

completely split. However, the use of this methodology could produce rank-deficient matrices, 

when a completely split basis has linearly dependant columns. In order to be able to detect and 

remove rank-deficiency, the refinement method proposes the use of rank-revealing QR 

factorisation (see Chapter 4.6) after each split of basis. 

 

4.5 SINGULAR VALUE DECOMPOSITION 

The matrix of the snapshots X which has dimensions of NSamp × NDOF can be seen as 

 
DOF Samp DOF SampDOF DOF Samp Samp

T

N N N NN N N N  
X V Σ W   (4.15) 
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The operation described by the Equation (4.15) is called Singular Value Decomposition 

(SVD) with the following components: 

DOF DOFN N
V - Left singular matrix defined by the eigenvectors of 

T
X X ; orthonormal 

Samp Samp

T

N N
W - Right singular matrix defined by the eigenvectors of 

T
X X ; orthonormal 

DOF SampN N
Σ  - Singular basis matrix, containing the 11 22 .. N N     ; diagonal 

The diagonal values of the matrix Σ contain the variance of the taken snapshots. The number 

of significant values of σ is showing the number of principal components NP.C of the snapshot 

matrix X 

The three components V, Σ, WT of the singular value decomposition are truncated according 

to NP.C 

For the certain value of fext, the solution in terms of displacements a(x) can be found by the 

same algorithm, such as Newton-Raphson, but solving the reduced system.  

The further application of SVD is discussed on the basis of h-refinement for a tree 

construction in a Chapter 4.4. Taking just the first column from the left-side singular vector  

 0.2606 0.0355 0.9391 0.1242 0.0460 0.1773
TH   V   (4.16) 

obtained from the singular value decomposition of snapshot matrix (4.10), and constructing 

tree matrix according to the tree structure from the Figure 4.7 for branch = 3, it becomes 

 

 {3} 0 2 0 4 5

1 0 0

0

0 0 0

0 0

6

0

3 0

E   (4.17) 

the matrix containing the location of cluster contents in the refined basis (see Algorithm 5).  

The obtained reduced basis with the arrangement according to the tree structure is  
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0.2606 0 0 0 0 0

0 0.0355 0 0.1242 0.0460 0

 0 0 0.9391 0 0 0.1773

Th



  V   (4.18) 

Here VH and Vh denote refined and unrefined basis accordingly. In the same manner it is 

possible to refine more basis vectors as it is illustrated by Figure 4.8. 

 

HV    hV  

             

             

             

             

             

             

Figure 4.8. h-Refinement methodology for several basis 

 

4.6 RANK-REVEALING QR FACTORIZATION  

Rank revealing QR factorization consists in matrix decomposition algorithm based on QR 

factorization. The aim is to determine rank deficiency of matrix  [16, 17] 

 
1 1

1 1
0 0

   
      

   

R R
X QR Q Q Q R   (4.19) 

where R1 is an n×n upper triangular matrix, 0 is an (m − n) × n zero matrix, Q1 is m×n, Q2 

is m×(m − n), and Q1 and Q2 both have orthogonal columns. The typical iterative procedure 

is defined by the Algorithm 6 
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Algorithm 6. Rank-Revealing QR Factorization 

Input: Rank-deficient refined basis DOFN branch Nh  
V , Tolerance   

Compute L2 norm of first column  

   2
  :,1h

L
  V   

Store first normalized column 

 
 

1

:,1
    

h


 

V
Q q   

for i= 2 : size(Vh, 2) 

Compute  

r = QT  
 ̇ V

h ( : , i ) 

qi = Vh ( : , i ) - Q ̇ r 

2  i Li  q  

if 
2 i

i

L




r  
 

store index of linearly dependant column 

jout = [ jout , i ] 

else 

proceed appending the columns to matrix Q  

Q = [Q, qi/ ρ ] 

end if 

end 

Output: jout – vector containing indexes of linearly dependant columns 
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4.7 PROJECTION ERROR 

After removal of linear dependency of the columns of left orthogonal vector the basis 

vectors are processed through RRQR, the projection error can be computed as  

 

†

( )h h

F

F

X V V X

X
  (4.20) 

where †  denotes Moore–Penrose pseudoinverse , 
F

  is a Frobenious norm,  X  

corresponds to the initial dataset, on the basis of which the tree was constructed and Vh is a 

refined basis vector. 

 

4.8 REDUCED ORDER MODEL 

For typical ROM the quality of training set plays a crucial role in the accuracy of solution. 

Usually the span of taken snapshots has to contain the information about possible events, since 

the solution of something that was not observed during the training cannot be obtained 

accurately. 

The matrix of observations X is used for construction of the left orthogonal vector by means 

of SVD (see Chapter 4.5) and used for instance in the POD basis construction such as 

Algorithm 7 

Algorithm 7. Typical POD algorithm 

Input: Snapshot matrix samp DOFN N
X  

Compute SVD: 
T  X V Σ W  

Choose number of basis vectors {1,2,... }n n   

Truncate basis 
1 1[ ... ] [ ... ]DOFNH n where V V V V V V  

Output: DOFn NH 
V  
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The iterative finite element model procedure of reduced order model described by 

Algorithm 8 similar to the full order model discussed in Chapter 4.1. 

 

Algorithm 8. Newton-Raphson – POD reduced 

Input: ; ;t

r ia D σ   

Iteration  j = 1 , displacement at 1 0t

ra    

Set 1 t

r r  a a , 1 t

int,r int,r=f f  

compute new external force vector 1

, ,

t t

ext r ext r

f f  

(*) compute jacobian of stress vector rD   

compute tangent stiffness matrix at element level  

assemble tangent stiffness matrix at structure level Kj 

compute j

rK   

solve 1

,

j j j

r r ext r int,rd   K a f f  for 1j

rd 
a  

update displacement vector 1 1j j j

r r rd    a a a  

compute stress 1j

r


σ   

compute internal force vector at element level  

assemble internal force vector at structure level 1j

int,r


f   

project ra  , ,ext rf and int,rf   back to full order space 

if 
2 2

1      j j

L L
tol   a a    

then 1  t t j   a a   

go to next load step 
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else 

 j = j + 1 , go to step (*) 

end if 

Output: t t

r

a , t t

int,r


f  

 

4.9 RELATIVE ERROR 

For the chosen refined basis Vh the online stage is executed through POD algorithm (see 

Algorithm 8) and relative error is computed as 

 
2

21

( , ) ( , )1

( , )

k kt
FOM ROM L

k
k FOM L

u u
a posteriori error

t u

 



  
 


   (4.21) 

where of difference between output of ROM 
ROMu  and FOM 

FOMu  is normalized using L2 

norm at the each time step τ  
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5 RESULTS 

Herein the results of application of the tree construction and the succeeding refinement of 

reduced basis are presented. The snapshot matrix of observations for time function (See chapter 

4.4.5) is processed. The computational complexity of the Finite Element Model equipped with 

Viscoplastic constitutive model is tackled using the refinement technique and the accuracy of 

the ROM is measured in both the offline and the online stages. 

 

5.1 TIME FUNCTION 

Data collected in a snapshot matrix for a certain time function (4.10) is processed by means 

of normalization (see Chapter 4.3). The comparison of the normalized and the original data is 

the base of discussion on feasibility of the refinement method.  

The refinement methodology itself consists in procedures on the observed data collected 

into snapshot matrix. It starts from the tree construction (see Chapter 4.4) which is based on 

correlation between degrees of freedom. Then the base splitting is done according to the tree 

structure. Finally, the error has to be computed, in order to know the accuracy of chosen 

combination of branch of the tree and bases vectors. 

In the beginning the refinement technique is applied to the normalized dataset as it was 

described in the Chapter 4.3. Figure 5.1 shows the resulting offline error (5.5) of Reduced 

Order Model at each step of basis refinement. It illustrates the fact that the use of normalized 

dataset in Figure 5.1 (right) gives the reduction of projection error with respect to original 

dataset in Figure 5.1 (left). 

Projection error for the first basis that is split in 3 branches does not show better results than 

adding new bases (selection of 3 bases vectors for POD). Nevertheless, in Figure 5.1 (right) 

the error decreases 2 orders of magnitude for normalized dataset. For 3 basis vectors, after split 

in 2 branches the dimension becomes 6, which corresponds to FOM, so the relative error (4.21) 

between ROM and FOM drops to numerical zero.  
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Figure 5.1. A-priori (projection) error. Time function 

Not normalized (left) and normalized (right) observations. 

This example illustrates the fact that in the offline stage the projection error reduces if the 

dataset is normalized. It is important to keep in mind that the reduction is obtained by capturing 

the correlation between degrees of freedom. The a-priori error is defined by projection of the 

vector spanning in the reduced space onto the full order space. Due to the fact that the tree 

constructs sequence of hierarchical subspaces, h-refinement guarantees the convergence of 

ROM to FOM at the fine basis. Such a basis is a fully-split left orthogonal vector which has a 

dimension NDOF × NDOF  after RRQR and normalization, and number of basis chosen times full 

depth of the tree × NDOF. 

 

           Size of fully split (fine basis)  

 Before 

RRQR 

Nbasis chosen ̇  Depth of 

tree 
× NDOF 

(5.1) 

 After RRQR NDOF × NDOF  
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5.2 BAR UNDER TENSION 

In this example the one-dimensional Finite Element Model equipped with Viscoplastic 

constitutive model is investigated. The non-linear bar under tensile forces has geometrical 

imperfections. The initial setup The geometry of the bar containing one imperfection is 

depicted at Figure 5.2 and cross-section area is defined at the Table 5.2. The Dirichlet boundary 

condition is applied at the constrained side of the bar and tensile force (Neumann boundary) is 

applied at the other end corresponding to (5.2) and Table 5.3. Viscoplastic constitutive model 

corresponds to Perzyna’s formulation (See Chapter 3.1). 

Aimp A0A0

 

Figure 5.2. Geometry of the bar 
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  (5.2) 

The full order model that is solved by means of Newton-Raphson scheme (see Algorithm 

1) and uses the programme setup from Table 5.1. 

Table 5.1 . Model setup: G-FEM parameters. Strain-softening viscoplasticity. 

Definition Variable Value 

Number of time intervals model.nT 100 [s] 

End time model.T 20 [s] 

Time increment model.deltaT 5 [s] 

Length of the bar model.L 100 [m] 

Length imperfection zone model.impL 5 [m] 

Number of elements model.nel 100 [-] 
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Max number of iterations per N.R. 

increment 
model.niter 10 [-] 

Convergence tolerance of N.R. model.tol 10-6 [-] 

 

The model parameters for inserting into the constitutive model of Perzyna viscoplasticity 

(see Chapter 3.1) are listed in the Table 5.2. Substituting the values into strain-softening 

response relation, it yields to  

 -150    Y e     (5.3) 

where σY0 is the initial yield stress, and λ is the plastic strain and it behaves as depicted in 

Figure 5.3  

 

 

Figure 5.3. Strain-softening response curve 
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Table 5.2 . Model setup: material parameters. Strain-softening viscoplasticity. 

Definition Variable Value 

Modulus of elasticity mat{1}.E 1000 [N / m2] 

Yield stress mat{1}.Y 1 [N / m2] 

Viscosity value Perzyna model mat{1}.eta 10-2 [-] 

Exponent value Perzyna model mat{1}.N 1 [-] 

Hardening parameter Perzyna model mat{1}.Ya -1 [-] 

Hardening exponent parameter Perzyna model mat{1}.Yb 75 [-] 

Specimen area mat{1}.area 1 [m2] 

Imperfection 1 area mat{2}.area 0.89 [m2] 

Imperfection 2 area mat{3}.area 0.90 [m2] 

Imperfection 3 area mat{4}.area 0.91 [-] 

 

In fact, the model with only one imperfection does not have enough contributing singular 

values. In order to discover the potential of MOR with h-refinement algorithm, three 

imperfections were introduced. The areas of imperfections are  
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  (5.4) 

with the geometry as it is shown in Figure 5.4. 
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AIII
imp A0AII

impAI
imp A0A0 A0

 

Figure 5.4. Geometry of the bar with three imperfections 

 

The boundary conditions remain to be (5.2) 

 

Table 5.3 . Model setup: boundary conditions. Strain-softening viscoplasticity. 

Definition Variable Value 

Location of boundary bc.dirichlet.x [0 model.L] [m] 

Value of displacement at the boundary bc.dirichlet.ux [0 1] [m] 

Location of the applied force bc.neumann.x model.L [m] 

Value of the applied force bc.neumann.fx 0 [N] 

 

The displacement of the tip versus the applied force is plotted in Figure 5.5. At the initial 

loading stage the specimen behaves in elastic way, following a linear loading path. After 

passing the yielding point it reaches the peak value and due to strong localization of the stresses 

at the points of imperfection the strain-softening occurs. At the end of the loading stage when 

the value of displacement reaches 1, the residual is 0.25. 
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Figure 5.5. Force-displacement curve of the tip.  

The data from FOM results for all degrees of freedom from Figure 5.5 is collected into the 

snapshot matrix X, where columns correspond to the taken snapshots, while rows contain the 

degrees of freedom. 

Processing the snapshot matrix through the singular value decomposition (see Chapter 4.5) 

allows to plot the singular values in Figure 5.6. It is seen that four singular values are 

significantly contributing to the results of MOR.  
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Figure 5.6. Singular values of the snapshot matrix. Viscoplasticity. 

The basis vectors of this snapshot matrix could be described by four values of SVD, which 

means that taking four basis is sufficient for full description of this problem in a framework of 

ROM. 

Snapshot matrix X is not processed, which means that no normalization from Algorithm 3 

was done. For this original dataset the tree construction and refinement shows that the 

projection error in offline stage gradually decreases as the number of basis vectors increase. In 

Figure 5.7 (left) the projection error of the refinement of basis vector with not corresponding 

tree are presented. It could be told that the tree structure does not correspond to the snapshot 

matrix when, for instance, as in this case normalized dataset is used for the construction of the 

tree, while the matrix of observations X remains not-normalized. As it was illustrated before in 

the Figure 5.1, normalization of observations provides faster a-priori error reduction. In the 

Figure 5.7 (right) the tree fully corresponds to the non-normalized dataset. 
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Figure 5.7. A-Priori (projection) error. Viscoplasticity 

Not corresponding tree (left) and not normalized observations (right) 

The projection error calculated a-priori has a trend to decrease by refining basis vectors. In 

this example four significant bases vectors are present, meaning that four singular values σ are 

nonzero. 

The projection error  

 

†

( )h h

F

F

X V V X

X
  (5.5) 

where †  denotes Moore–Penrose pseudoinverse and 
F

X  is a norm defined by Equation 

(4.6), is shown in the Figure 5.7. Choosing just one basis for refinement, the error gradually 

decreases, but the refinement does not introduce significant error drop. While for 2 basis 

vectors the significant drop occurs when the branch is equal to 14. Three basis reach the error 

reduction faster when the chosen branch is 7. In both cases of splitting the basis 2 or 3 the 

projection error reaches value of using 4 basis vectors. It is seen that splitting the basis does 

not produce improvement with respect to adding the basis vector. Nevertheless, the produced 

result show that the desired value of error could be reached without adding the basis vectors, 

but by means of splitting the reduced basis. This happens when size of VH tends to NDOF × NDOF 

and described by the property 2 of the tree (see Chapter 4.4.6). 
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Observations derived from the described behaviour of projection error could be summarized 

in two facts. First of all, the importance of using the proper tree corresponding to snapshot 

matrix on a refined basis Vh is shown by comparison of left and right plots of Figure 5.7. The 

meaning of ‘proper tree’ in this context is that the tree was constructed on the basis of the same 

snapshot matrix X, as the basis Vh was computed. Secondly, the right plot demonstrates that 

the error reduction could be achieved by means of refinement. Also, it is important to mention 

that the process of refinement should be terminated at a certain point, in order to avoid the error 

increase, which occurs when the columns of Vh are linearly dependant. 

 

Figure 5.8. A-Priori (projection) error. Viscoplasticity 

Not normalized observations (left) and RRQR not normalized observations (right) 

According to the properties of the tree described in Chapter 4.4.6, the refinement provides 

the creation of hierarchical subspaces ( ) ( )H hrange rangeV V . So, conceptually the 

projection error has to decrease monotonically. Due to the fact that during the refinement the 

basis VH is split, columns of Vh might become linearly dependent. In order to avoid the 

phenomena appearing in Figure 5.8 (left) for case of 3 basis, split 12, it is needed to remove 

linear dependence of columns of the refined left orthogonal vector Vh. Rank-Revealing QR 

factorization (RRQR) is aimed to do so (see Chapter 4.6). The avoidance of singularity of Vh, 

when condition number is high provides results of Figure 5.8 (right). The error does not only 
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remain stable, but also the size of Vh is shrunk by use of RRQR, which leads to further reduction 

of the computational cost. 

The relative error  

 
2
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( , ) ( , )1

( , )

k kt
FOM ROM L

k
k FOM L

u u

t u

 



  


   (5.6) 

is computed during online stage. It decreases by refining basis vectors, as it is shown in the 

Figure 5.5 (left). There could be seen a correlation between a-priori and a-posteriori error. 

During the offline stage the accuracy of refinement is defined by projection error calculated 

with Equation (5.5).  

The accuracy of online stage is measured by calculation of residual (ROM solution extracted 

from FOM solution) and normalized with respect to the result of full order solution. Obviously, 

during the real online stage the use of Equation (5.6) is limited, since there is no possibility to 

know FOM solution. Nevertheless, since for this illustrative example FOM solution is 

provided, the relative error can be computed a-posteriori. 

Figure 5.5 (right) shows the fact that using one basis the error gradually decreases, but never 

reaches the low value of error in a certain span of [1; 35] basis refinements. The use of two 

basis vectors shows significant error drop at 14 branches and then a further drop to desired 

value at 22 branches, when the size of the basis reaches 22, thanks to RRQR. The first drop in 

the case of 3 basis also occurs for 3 branches in both cases of a-priori and a-posteriori errors 

and at a certain point when the size of the basis is equal to 19, for 2 and 3 basis chosen the 

relative error starts to follow the same path. From the projection error is hard to predict the 

occurrence of the second error drop at a branch 22 with size of the basis 29, when the relative 

error reaches desired value. 
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Figure 5.9. A-Posteriori (relative) error. Viscoplasticity 

Not corresponding tree (left) and not normalized observations (right) 

 

Basically, the same observation of the necessity of correspondence of the tree to the snapshot 

matrix is induced from comparison of plots from Figure 5.9. The trend of the error reduction 

by means of refinement is observed on the right plot. The exact point of termination of 

refinement process has to be investigated in details. Also the comparison with Figure 5.7 shows 

that a-posteriori error is hard to predict during online stage. 

 

 In order to see the evolution of the relative error during the process of basis refinement, it 

is necessary to plot the relative error and the size of the basis simultaneously on the same 

canvas. In Figure 5.10 the left scale corresponds to the computed relative error, the right scale 

shows size of the basis during refinement procedure.  
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Figure 5.10. A-posteriori relative error for not normalized observations(left scale) and  

size of splitted basis (right scale). Viscoplasticity 

Taking initially one basis vector as VH the relative error does not drop, and the size of the 

basis increases linearly. It is possible to predict that the error drop would occur due to the 

property 2 of the tree (see Chapter 4.4.6), but it is less efficient then adding another basis to 

VH. In the case of choosing two or three basis vector as VH the value of error becomes similar 

when both basis have the same size. Even thought the size of the basis Vh has to increase 

dramatically at size(VH)̇ split, it does not happen due to he RRQR 
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5.3 INVISCID BURGERS EQUATION 

5.3.1 FULL ORDER MODEL  

The setup used for the initial solution is parameterized boundary value problem 

 
 

2

2 ( , )( , ) 1
0.02

2

u xu x
e x

x





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 

 
  (5.7) 

with boundary conditions 

 
1(0, ) , 0u        (5.8) 

 ( ,0) 1 , [0, 100]u x x     (5.9) 

where μ1 and μ2 are two real-valued input variables is defined by Table 5.4. 

In the time interval [0, 50]   the solution ( , )u x   is computed using a uniform 

computational time-step size Δt =0.05, leading to t = 1000 total time steps. During the offline 

stage, snapshots of the state are collected into the snapshot matrix X for the time steps at training 

inputs. Newton-Raphson scheme with a tolerance 10-8 is used at a full order model (see Table 

5.5). 

 

Table 5.4 . Model setup. Burgers Equation 

Definition Variable Value 

Number of time intervals model.nT 1000 [s] 

End time model.T 50 [s] 

Time increment model.deltaT 0.05 [s] 

Length of the bar model.L 100 [m] 

Length imperfection zone model.impL 10 [m] 
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Number of elements model.nel 150 [-] 

Max number of iterations per N.R. 

increment 
model.niter 10 [-] 

Convergence tolerance of N.R. model.tol 10-8 [-] 

 

In this case the produced solution is not smooth as it is depicted in the Figure 5.11. The G-

FEM with the Newton-Raphson scheme fails to capture the shock wave formation, so the 

oscillations in the field of u occur. 

 

Figure 5.11. Full Order Model discretized in 150 elements. Inviscid Burgers equation. 

Increasing the number of elements model.nel = 1000 and leaving all the rest of the input 

parameters from Table 5.4 the result becomes much smoother, as it is depicted at Figure 5.12. 
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Figure 5.12. Full Order Model discretized in 1000 elements. Inviscid Burgers equation. 

In such a case the dimension of the model has drastically increased from 150 to 1000, as 

well as the solution of the linearized system of equations became more computationally 

expensive. The singular value coefficients on the Figure 5.13 have significant number of non-

zero values. Moreover a slow decay of the plot illustrates the fact of high nonlinearity of the 

model based on Inviscid Burgers equation. 

The offline stage of the ROM procedure includes computation of the left orthogonal basis 

VH based in the SVD procedure. The tree construction algorithm, described at the Chapter 4.4 

is employed for the offline stage. The constructed tree based on the snapshot matrix X can be 

seen as a dendrogram of Figure 5.14, according to the structure of hierarchical binary clustering 

(see Chapter 4.4.2). Some degrees of freedom are separated by a high distance calculated with 

a metric of Euclidean distance (See Chapter 4.4.4). The rest have a small distance, which is 

good sign for defining the groups, e.g. branches for basis splitting. The created tree structure is 

stored for use on the online stage in the array consisting of the branches. 
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Figure 5.13. Singular values of the snapshot matrix. Inviscid Burgers equation. 

 

Figure 5.14. Dendrogram. Inviscid Burgers equation. 
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5.3.2 REDUCED ORDER MODEL 

In the offline stage is possible to compute the projection error defined in Chapter 5.3.3. The 

projection error plotted on the Figure 5.15 gradually decreases, as long as the basis vector VH 

is refined according to the tree structure. The values of offline error do not decrease 

dramatically adding the basis vectors (increasing the size of left orthogonal vector by adding 

basis). Just a slight reduction occurs taking the basis from 50 to 250, with a step of 50, e.g the 

basis size is higher 5 times than the initially taken. 

 

Figure 5.15. Projection Error. Inviscid Burgers equation. 

In order to check the trend of error reduction observed a-priori, it is necessary to execute the 

online stage and compare the results of ROM and FOM. In the Table 5.5 the ROM results (solid 

line) of taking 5, 10 and 25 basis vectors are compared to the Full order solution (dashed line) 

in the first row. It is clearly seen that the ROM fails to reproduce the solution of Burgers 

Equation. The same happens for splitting the basis 5 and 10 up to 10 branches. In the case of 

splitting the left orthogonal vector VH of the size 25 once (into 2 branches) the resulting picture 
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slightly resembles the captured behaviour of FOM, nevertheless the resulting error computed 

offline is 10%. It is still not acceptable result for the ROM performance. 

 

Table 5.5. ROM basis splitting into branches. Burgers Equation 

B
ra

n
ch

 

Basis 5 Basis 10 Basis 25 

1 

   

2 

   

10 

  

 

 

It was observed in the example of the bar under tension in Chapter 5.2 that the basis splitting 

reduces the relative error. Tests on the ROM without basis splitting (1 Branch) for 50 and 200 

basis show that ROM alone cannot reach the FOM solution.  
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Increasing the size of the basis by means of h-refinement from 50 basis to 100 splitting into 

two branches does not mean that the size of Vh remains the same. After processing Vh trough 

RRQR the linear dependency of columns becomes eliminated. In this case the size of the basis 

changes from 50 to 51, but the offline error drops from 56% to 3,6%. It also seen on the Figure 

5.16 that the further splitting into 10 branches does not reduce the error significantly. It is 

important to keep in mind that instead of the Full Order Model requiring the solution of the 

system of size 1000, the system solved here has dimensionality of 51, resulting in 3,6% error.  

 

 

Figure 5.16. ROM with 50 basis vectors. Inviscid Burgers equation. 

 

For illustrative purposes, it is possible to take 200 basis vectors, and split in the same fashion 

as before, producing the Figure 5.17. It results in error drop from 45% to 0,2% as at solving a 

five times smaller system as the initial FOM. 
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Figure 5.17. ROM with 200 basis vectors. Inviscid Burgers equation. 

 

5.3.3 ERROR COMPUTATION 

For the available model of Burgers equation the error reduction occurs after a first basis 

splitting. For the number of branches greater than two, the error does not decrease significantly 

(see Figure 5.18). 

Adding the basis to the left orthogonal vector and executing ROM alone shows incapability 

of capturing the phenomena. H-refinement coupled with adding the basis reduces the online 

error. 
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Figure 5.18. Relative error of ROM. Inviscid Burgers equation. 

Comparing trends of offline error (Figure 5.15) and error computed online (Figure 5.18) it 

is hard to define a-priori the proper choice of the basis and branch to be efficient online. 
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6 CONCLUSION AND FUTURE DEVELOPMENT  

On the basis of the observations from the numerical results, it is possible to conclude that 

the reduction in projection error is observed for nonlinear problem. The Rank-Revealing QR-

factorization helps in removing linear dependency of the columns of basis vector and as a 

consequence, prevents the increase of the projection error offline.  

In the online stage, for the current viscoplastic model an error reduction occurs. The use of 

RRQR is mandatory here, since the system of equation cannot be solved without positive 

definite stiffness matrix. Nevertheless, the use of RRQR does not eliminate spurious increase 

of the relative error computed during the online stage. 

Comparison of the h-refinement technique with the standard ROM, shows that one 

dimensional bar equipped with Perzyna viscoplastic model does not show advantage of the use 

of h-refinement (basis splitting). However in the case of the problem of Burgers equation, 

where the response can be discontinuous, and more singular values contribute to the solution 

of ROM (when the typical ROM basis is not truncated significantly), the advantage of using 

ROM with h-refinement is visible. It was illustrated that when POD alone fails to capture the 

shock formation, the use of refinement technique is able to deliver an accurate solution without 

a noticeable increase of the computational cost. 
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7 APPENDIX A. CODE MANUAL 

The given code manual describes the workflow and operations of the MatLab code devoted 

to Model order reduction, h-refinement technique. It includes full order model solution for 1D 

bar, tree construction procedure and computation of the error in both: offline and online stages. 

The reduced order model is trained on the basis of the full order model (FOM), and the 

succeeding solution is obtained through model order reduction. 

 

7.1 TREE CONSTRUCTION 

The tree construction procedure is described by a flow chart at the end of this section in  

Flowchart 4. The results of the solution of FOM is used as a training set for offline stage. The 

matrix of snapshots X has a format where rows contain degrees of freedom and columns the 

snapshots, and it has a dimensionality of NSamp × NDOF. 

7.1.1 NORMALIZATION OF SNAPSHOTS 

In order to capture the correlation of the degrees of freedom, it is possible to normalize 

training set according to  
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  (7.1) 

where .  denotes a L2 norm  

Through the normalization, the correlated and anticorrelated state variables become 

separated by small Euclidean distance and can be grouped via clustering.  
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7.1.2 BINARY CLUSTERING 

In order to proceed on clustering algorithm it is needed to establish a metric for the pairwise 

distance. The way of capturing similarities between observations in this case is the Euclidean 

distance computed by 

 2 ( )( )ij i j j jd x x x x      (7.2) 

where for xi and xj are row vectors of snapshot matrix  Samp DOFN N
X


  

 

There exists other ways of computation the distance, as for instance cosine distance 

evaluated for vectors xi and xj as 

 ( , ) 1 cos( , ) 1
( )( )

i j

ij i j i j

i i j j

x x
d x x x x

x x x x


   

 
  (7.3) 

It is observed in [13] that having large dimensionality of vectors, the difference between 

results of computation Euclidean or cosine distance is not significant. 

 

Binary clustering is adopted for capturing the correlations between degrees of freedom. The 

Euclidean distance is computed at the each iteration, defining the metric for linking pairs of 

clusters. It creates the matrix (2NDOF -1)× 3  
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Global Left Right
Distance

Cluster Cluster Cluster

{1} 1 1 0

{6} 6 6 0

0.0039

0.0062

0

{7} 4 5

{8} 2 7

{9} 3 6

{

.0071

1.010} 1 9

{11} 8 10

083

1.3088

  (7.4) 

where the Global Cluster raw contains the left and right cluster, defining the linked pair. 

The last column defines the value of the metric which is used for creating a new cluster. At the 

next stage the names of the clusters are replaced with the clusters form 1 to NDOF  themselves, 

such as Global Cluster {10}, containing global clusters {1} and {9} becomes {1, 3, 6} after 

substitution. 

 

 

7.1.3 REFINEMENT MECHANISM 

As soon as the branch and size of the basis Vh is chosen, the depth of the tree is set. The 

corresponding level of the tree is chosen and the basis vector VH is split the following manner  

HV    hV  

             

             

             

             

             

             

The “split basis” procedure places the entities of basis vector Vh at the positions prescribed 

by the tree. The entire procedure is as described at the Flowchart 1 
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Insert: 

- Basis vector VH

- Depth of the tree

Begin Split Basis

Extract matrix from the Tree 

array according to the depth

Row-wise place basis entity 

according to the Tree 

Output refined Vh

End

RRQR on Vh

 

Flowchart 1. Split basis 

 

7.1.4 RANK REVEALING QR-FACTORIZATION 

In the case when it is needed, the refined basis vector Vh could be processed though the rank-

revelling QR factorization, in order to eliminate linear dependency of the columns Flowchart 

2 
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Insert 

- Basis vector Vh

- Tolerance tol

Begin RRQR

(Rank Revealing QR 

factorization)

Compute norm of the 1st 

basis vector w.r.t. row

Normalize 1st basis vector

for l=2:size(Vh,2)

Output indexes of linearly 

dependent columns

End

Store index of the column

jout = [jout, l]

 ρ /norm(r,2) < tol        
YesNo

Append normalized next 

column

Q = [Q, q/ρ ]

r = QT * Vh(:,l)

q = Vh(:,l) - Q*r

ρ  = norm(q,2)

 

Flowchart 2. Rank Revealing QR-Factorization 
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7.1.5 PROJECTION ERROR 

The projection error is computed for a certain branch and certain basis of the tree as  

 

†

( )h h

F

F

X V V X

X


  (7.5) 

where †  denotes Moore–Penrose pseudoinverse and 
F

X  is a Frobenious norm. The 

procedure of computation of the offline error is described by Flowchart 3 
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Insert Snapshot 

matrix X

Load Tree Structure

Begin computation of 

projection error

Compute SVD of X

Create VH

Set 

Number of basis and 

depth of the tree

Split Basis

Compute projection error

Plot Projection Error

End

RRQR

Vh is linearly dependant
YesNo

 

Flowchart 3. Offline (projection) error 
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Insert Snapshot 

matrix X

Begin Tree construction

Clear data

Set plot properties

Read size of snapshot matrix X

Normalization 

procedure

Normalize rows of X 

YesNo

Compute Pairwise Distance

Euclidean / Cosine/ e.t.c.

Group into binary clusters 

according to criteria

Define contents of each 

cluster

Create array of matrices 

for each possible split of 

the tree

First entity is negative

Flip the origin

YesNo

Plot Dendrogram

End
 

Flowchart 4. Tree construction 
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7.2 REDUCED ORDER MODEL 

The traditional Newton-Raphson scheme is employed for the ROM as at is depicted at 

Flowchart 5.  

The snapshot matrix X is decomposed according to the SVD in order to create reduced basis 

VH and truncate it as it is set in the input. The depth of the tree is set. Basis VH is split to Vh 

using the refinement mechanism. For the chosen refined Basis Vh the online stage is executed 

and relative error is computed as 

 
2
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   (7.6) 

where of difference between ROM and FOM is normalized using L2 norm at the each time 

step τ  
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Insert: 

- number of time steps TMAX

Begin ROM

Set number of 

iterations ItMAX

Compute Residual force vector

Compute Stiffness matrix

Apply boundary conditions

Compute reduced Stiffness matrix

Compute Reduced residual vector

Solve the system
Project displacement field

Compute residual  

Convergence check

  < Tolerance

It < ItMAX

Yes
Project displacement field

Compute relative error

Time step > TMAX

End ROM

No

No

Yes

 

Flowchart 5. Reduced Order Model  
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8 APPENDIX B. MATLAB CODE 

 

8.1 FULL ORDER MODEL  

Corresponds to Algorithm 1 

 
clear all 
close all 

  
addpath('make_R'); 
addpath('make_dRdu'); 
addpath('make_R/perzyna'); 

  

 
%% Input model, material, boundary conditions 

  
[model,mat,bc] = input_values(); 

  

  
%% Initiate model 

  
[ model, bc ] = initiate( model, mat, bc ); 
pd = [0 0]; %!!! initial load displacement curve 

  
%% Time integrator 

  
%initialize time integrator  
[ time_step, u0, R_int, ut, ft, inVar_timeStep, inVar_iter ] = 

initiate_timeAdvancing( model, mat ); 

  
% start counting time 
tic; 

  
for t=1:model.nT 
    fprintf('Time step %i \n', t); 

     
    % initialize Newton Raphson scheme 
    du = zeros(model.sdof,1); 

     
    % compute external part of residual vector 
    R_ext = make_Rext( model, bc, t); 

     
    for iter=1:model.niter 

         
        % Residual vector (force vector) 
        [R_int, inVar_iter] = make_Rint(model, mat, du, inVar_iter, 

inVar_timeStep); 
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        % Jacobian matrix (stiffness matrix) 
        dRdu = make_dRdu(model, mat, inVar_iter); 

                 
        R = R_int + R_ext; 

  
        % apply boundary condition and initial value 
        [dRdu, R] = apply_Boundary(dRdu, R, bc, iter, model, t); 

              
        % solver 
        ddu = - dRdu \ R; 

         
        %update solution  
        du = du + ddu; 

                 
        % convergence check 
        if iter==1 
            du1 = ddu; 
        end 

  
        res = norm(ddu)/norm(du1); 
%         res = norm(R); 
        fprintf('\t iteration %i , residual %i \n', iter, res);   

         
        if res < model.tol 
            break 
        end 

     
    end 

  
    %update internal variables for current time step 
    inVar_timeStep = update_inVar_timeStep(inVar_iter); 

     
    u0 = u0+du; 

     

     
    % collect sample 
    ut(:,t) = u0; 
    ft(:,t) = R_int; 

     
    %% Post process, plot force vs displacement 
    if t==1 
        plot(0, 0, 'ob') 
        hold on 
    end 
    pd = [pd ; u0(end), - R_int(end)]; 
    plot(pd(end, 1), pd(end,2), 'ob') 
    drawnow 

     
    %!!! stop if displacement reaches a certain point (any better way to 

specify this ?) 
    if u0(bc.dirichlet.dof.x(end)) > bc.dirichlet.dof.u(end) || -

R_int(bc.dirichlet.dof.x(end)) < 0;     
        break 
    end 
end   
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xlabel('Displacement') 
ylabel('Force') 

  
timeStamp = toc; 

  
fprintf('\nSimulation time: %i \n', timeStamp); 

  
%% Post process 
% save samples (snapshot data) 
 save('/data/ut.mat', 'ut') 
 save('/data/pd.mat', 'pd') 

 

 

8.2 TREE CONSTRUCTION 

The code corresponds to Flowchart 4 

 
clear all  
close all 

  
%% INPUT (Snapshot matrix N_snapshots X N_DOF) 
   load('/data/ut.mat'); 
%compute size of the basis  
n_DOF=size(X,1); 
n_samp=size(X,2); 

    
XX=X; 

  
%% NORMALIZATION (if needed) 
%%Normalize observations (DOFs) to capture correlation%%%%%% 

  
for i=1:size(XX,1) %through DOF 

     
    if norm(XX(i,:),'fro') == 0 %if Zero cannot normalize  

     
       Normal_XX(i,:)=XX(i,:); 

            
    else                        %if nonzero - normalize 

        
        for j=1:size(XX,2) 

  
            Normal_XX(i,j)=XX(i,j)/norm(XX(i,:),'fro'); 

             
        end 

         

         
    end 

     



 

76 / 85 

    if Normal_XX(i,1)<0 %flip origin if negative 
        Normal_XX(i,:)=-Normal_XX(i,:); 
    end 

     
end 

  
%END normalization%%              

 
%% If no normalization was used 
Normal_XX=XX; 

  

 
%% CLUSTERING 

                 
%%_ Clustering by Matlab (Binary clusters Bottom-Up) 

  
PwDist_XX=pdist(Normal_XX); %Compute PairwiseDistance (Euclidean) from 

snapshot matrix 
% squareform(PowDist_XX) %if Possible to see intercorrelaton between dof 

i and j 
LinkXX=linkage(PwDist_XX); %Grouping into binary clusters 
SZLinkXX=size(LinkXX); 

 
E={}; %Define contetnts of each cluster 

 
%Assign to first NDOF clusters itself 
for i=1:n_DOF  
    E{i}=i;  
    E_Err_dist{i}=0;  
end 

 
%Create the hierarchical clusters 

for i=1:SZLinkXX(1) %Go vertically trough new clusters  

     
    ResL=[]; %take left binary cluster 
    ResR=[]; %take right binary cluster 

     
    %For left side of linkage 
    if LinkXX(i,1)>n_DOF %if more than NDOF than define what's inside 
        ResL=E{LinkXX(i,1)}; 
    else ResL=LinkXX(i,1); 
    end 

     
    %For right side of linkage 
    if LinkXX(i,2)>n_DOF %if more than NDOF than define what's inside 
        ResR=E{LinkXX(i,2)}; 
    else ResR=LinkXX(i,2); 
    end 

     
    %Put right and left together 
        E{n_DOF+i}=([ResL  ResR])  ;  
        %Definition of each cluster (by DOFs) 
        E_Err_dist{n_DOF+i}=LinkXX(i,3) ;  
        %Store the distance (metric) 
end 
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%Definition of each cluster (by other NDOF Clusters) 
for i=1:(SZLinkXX(1))  
    ClusN(((SZLinkXX(1)+n_DOF+1)-i),1:2)=LinkXX(((SZLinkXX(1)+1)-i),1:2); 
end 

  
EEE{1}=(SZLinkXX(1)+n_DOF); %First branch of the tree contains TOP 

cluster number 

 
EEE_sort{1}=(SZLinkXX(1)+n_DOF); %First branch of the tree contains top 

cluster number (Sorted) 

  
for i=1:(SZLinkXX(1)) %Go through clusters which are > than NDOF  

     
    corrr=zeros(length(EEE{i}),n_DOF); %assign lenght of branch 

     
    for j=1:(length(EEE{i})) %Create branches subsituing clusters with 

entities  

     
        ReadE=EEE{i}; % What is the cluster number? 

         
        Val=strrep(ReadE(j),ReadE(j),E{ReadE(j)}); %Substitute cluster 

number with its contetnt 

               
            for mm=1:length(Val) 
                %Fill sparse matrix for each tree level 
                corrr(j,Val(mm))=Val(mm);  
            end  

       
    end 
     TREE{i}=corrr; %Ready matrix for the branch (Entire tree is stored) 

    
     cl=((SZLinkXX(1)+n_DOF+1)-i); 

     
     expr=(ClusN(cl,:)); %Take out cluster numbers for the level 

      
     EEE{i+1}=(strrep(EEE{i},cl,(expr))); %Branches created with clusters 

names (globally) 
     EEE_sort{i+1}= sort(strrep(EEE{i},cl,ClusN(cl,:))); %Branches 

created with clusters names |Sorted| 

     
    display(['Creation of branch E ' int2str(size(TREE,1))]); 

      
end 

  
%%%%Tree is alredy created in EEEL_1 
save('data\Tree_E.mat','TREE','-v7.3') 

  
%% PLOT DENDROGRAM 
figure 
[H]=dendrogram(LinkXX,'ColorThreshold','default'); %Plot the tree 

Dendrogram 
 xlabel('DOF indexes, clustered') 
 ylabel('Distance between objects') 
%  
%  
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%% Compute projection error for each branch 
%  
% %%%%Select coarse basis%%%%% 
%          tic  
[V,SIG,~]=svd(Normal_XX); 

               
n_basis=150; %set number of basis 

           
for curr_bas=[5 10 25 50 100 150 200 250] 

     
    display(['Basis ' int2str(curr_bas)]); 

     
         V_H=-V(:,(1:curr_bas));        % take first column of SVD 

approximation (Coarse Basis) 
%  
 V_h=[]; 
 V_h_norm=[]; 

  
for n_branch=[1 2 3 10 50 100 200 250] %choose number of branches 
    display(['Branch ' int2str(n_branch)]); 

        
E_S=TREE{n_branch}; %Selected DEPTH of tree 

  
    %%%%Refine corse basis using the tree%%%%%% 

         
            V_h=[]; % Define sparse matrix for the refined basis 

  

  
            for j=1:(size(V_H,2)) %through size of reduced basis 

  
                for i=1:(size(E_S,1)) %through number of tree roots 

                     
                    E_I=nonzeros(E_S(i,:))'; 
                    V_h_1(E_I,i)= V_H(E_I,j); %create matrix of basis due 

to tree of one root 

                     
                end 

                                  
                   V_h=[V_h V_h_1]; %create matrix of basis due to tree 

of all roots 
                   V_h_1=0*[]; 

                  
            end 

             

  
%% RRQR See Flowchart 2 of Code Manual) 
  
    V_h_RRQR=V_h; 
    rrqr_tol = 1e-6;   %RRQR tolerance 
    cols=rrqr(V_h,rrqr_tol); %linarly dependant columns indexes 
    V_h_RRQR(:,cols)=[];  %take them out 

     
X=Normal_XX; 
%            
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%% Compute projecion Error: 
%--Corresponds to Flowchart 3 of Code Manual-- 
            %after RRQR 
            Err_pinv_REF_RRQR   (curr_bas,n_branch)  = norm((X-

V_h_RRQR*pinv(V_h_RRQR)*X),'fro')/norm(X,'fro'); 
            %normalization+RRQR 
            Err_pinv_REF_normXX_RRQR   (curr_bas,n_branch)  = 

norm((Normal_XX-

V_h_RRQR*pinv(V_h_RRQR)*Normal_XX),'fro')/norm(Normal_XX,'fro'); 

           
 end 
%  
end%  

 

 

8.3 REFINEMENT MECHANISM 

Function split basis corresponds to Flowchart 1 

 
function [va]=splitbasis(V_H,n_branch) 

     

        
    %load Tree structure 
    load(/Tree_E.mat','TREE') 

     

     
    E_S=EEEL_1{n_branch}; %Selected DEPTH of tree 

  
    %%%%Refine coarse basis using the tree%%%%%% 

         
    V_h=[]; % Define sparse matrix for the refined basis 

             
        for j=1:((size(V_H,2))) %through size of reduced basis 

  
            for i=1:((size(E_S,1))) %through number of tree roots 

                     
                    E_I=nonzeros(E_S(i,:))'; 
 
%                   create matrix of basis due to tree of one root 
                    V_h_1(E_I,i) = V_H(E_I,j);  

                     
                end 

 
                   %create matrix of basis due to tree of all roots 
                   V_h=[V_h V_h_1];  

 
                   V_h_1=0*[]; 
                  
        end 
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%% RRQR (See Flowchart 2 of Code Manual) 

  
    va=V_h; 
 
    %input RRQR tolerance 
    rrqr_tol = 1e-10;    
 
    %find indexes of linarly dependant columns  
    cols=rrqr(V_h,rrqr_tol);  
 
    %take linarly dependant columns out 
    va(:,cols)=[];  %take them out 
             
end 

 

 

 

8.4 RANK REVEALING QR FACTORIZATION 

RRQR algorithm is explained by Flowchart 2 

 
function [jout] = rrqr(A,tol) 

  
rho = norm(A(:,1),2); %Norm of 1st col w.r.t. to row 
q1  = A(:,1) / rho; %normalized 1st column 

  
Q       = [q1]; 
jout    = []; %index of columns to be taken out 

  
for l=2:size(A,2) 
    r = Q' * A(:,l);  
    q = A(:,l) - Q*r; 

     
    rho = norm(q,2); %rho = norm(A(:,l) - Q*(Q' * A(:,l);),2) 

         
    if rho/norm(r,2) < tol 
        jout = [jout, l]; %store index 
    else 
        Q = [Q, q/rho]; %append column 
    end 

         
end 

  
end 
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8.5 REDUCED ORDER MODEL 

Corresponds to Flowchart 5 

 
clear all 
close all 

  
addpath('make_R'); 
addpath('make_dRdu'); 
addpath('make_R/perzyna'); 

 
%% Input model, material, boundary conditions 

  
[model,mat,bc] = input_values(); 

 
%% Initiate model 

  
[ model, bc ] = initiate( model, mat, bc ); 

  
% load values of FOM 
  load ('/data/ut.mat', 'ut')  
  ut_FOM = ut; 
  XX = ut; 

  
% SVD of the snapshot matrix 
 [va,SIG,~] = svd(XX);  

  
% store left orthogonal vector V_H 
 va_ini = va;  

             
for  n_bas = 1: 5 %SET number of basis 

       
for n_branch = 1: 80 %SET depth of tree 
pd = [0 0]; % initial load displacement curve 

  
va=va_ini; 

  
fprintf('Chosen basis: %i \n', n_bas); 
fprintf('Chosen branch: %i \n', n_branch ); 

  
%% time integrator 

  
%initialize time integrator  
[ time_step, u0, R_int, ut, ft, inVar_timeStep, inVar_iter ] = 

initiate_timeAdvancing( model, mat ); 

  

  
% start counting time 
tic; 

  
% truncate basis V_H 
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            va_1 = va(:,(1:n_bas));  

             
% split V_H to obtain V_h (see Refinement Mechanism) 

  
            Va = splitbasis(va_1,n_branch); 

             
% start MOR           
for t=1: model.nT 
    fprintf('Time step %i \n', t); 

     
    % initialize newton raphson scheme 
    du = zeros(model.sdof,1); 

     
    % compute external part of residual vector 
    R_ext = make_Rext( model, bc, t); 

     

 
    for iter=1:model.niter 

         
        % Residual vector (force vector) 
        [R_int, inVar_iter] = make_Rint(model, mat, du, inVar_iter, 

inVar_timeStep); 

         
        % Jacobian matrix (stiffness matrix) 
        dRdu = make_dRdu(model, mat, inVar_iter); 

                 
        R = R_int + R_ext; 

               
        % apply boundary condition and initial value 
        [dRdu, R] = apply_Boundary(dRdu, R, bc, iter, model, t); 

              
        % compute the reduced stiffness matrix and the reduced force 

vector 
            % Reduced stiffness 
            dRdu_r=va'*dRdu*va; 

             
            % Reduced residual 
            R_r=va'*R; 

             
            % Solver 
            ddu_r = - dRdu_r \ R_r; 

  
            % Project back 
            ddu = va * ddu_r; 

         
        % update solution  
        du = du + ddu; 

                 
        % convergence check 
        if iter==1 
            du1 = ddu; 
        end 
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        % check convergence  
        res = norm(va'*ddu)/norm(va'*du1); 

  
        fprintf('\t iteration %i , residual %i \n', iter, res);   

         
        if res < model.tol 
            break 
        end 

     
    end 

  
    %update internal variables for current time step 
    inVar_timeStep = update_inVar_timeStep(inVar_iter); 

     
    u0 = u0+du; 

     
    %compute relative error 
    err_ut(t) = (norm((ut_FOM(:,t)-u0),'fro')/ norm(ut_FOM(:,t),'fro')); 

   
end 

  
 %store size of the basis 
 store_sz_basis(n_branch,n_bas) = size(va,2); 

  
 %store relative error 
 store_pd_displ_Vh(n_branch,n_bas) = (1/size(ut_FOM,1))*sum(err_ut); 

     
end 

  
end 

  
timeStamp = toc; 
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