
Politecnico di Milanoa, Delft University of Technologyb

Academic Year 2016/2017

POLITECNICO DI MILANO

SCHOOL OF CIVIL, ENVIRONMENTAL AND LAND MANAGEMENT

ENGINEERING

MASTER OF SCIENCE IN CIVIL ENGINEERING - STRUCTURES

MODEL ORDER REDUCTION

H-REFINEMENT

Supervisor: Dr. Giorgio NOVATI
a

Co-Supervisor: Dr. Angelo SIMONE
b

Candidate:

Aleksei SUVOROV
a

836339

1 / 85

CONTENTS

1 Abstract... 5

Italian abstract .. 6

2 Introduction .. 7

3 Problem Statement.. 9

3.1 Strain-softening Perzyna Viscoplasticity .. 11

3.2 Inviscid Burgers Equation ... 12

4 Methods ... 17

4.1 Full Order Model .. 17

4.2 Data Collection ... 19

4.3 Data Normalization ... 20

4.4 Tree Construction .. 21

4.4.1 Clustering .. 21

4.4.2 Clustering typology ... 22

4.4.3 k-means clustering .. 25

4.4.4 Metric for the clustering .. 26

4.4.5 Tree construction example .. 29

4.4.6 Properties of tree ... 33

4.5 Singular Value Decomposition ... 33

4.6 Rank-Revealing QR Factorization .. 35

4.7 Projection Error ... 37

4.8 Reduced Order Model ... 37

4.9 Relative Error .. 39

2 / 85

5 Results .. 40

5.1 Time Function ... 40

5.2 Bar under Tension ... 42

5.3 Inviscid Burgers Equation ... 53

5.3.1 Full Order Model... 53

5.3.2 Reduced Order Model ... 57

5.3.3 Error computation ... 60

6 Conclusion and Future development .. 62

7 Appendix A. Code manual ... 63

7.1 Tree Construction .. 63

7.1.1 Normalization of snapshots ... 63

7.1.2 Binary clustering ... 64

7.1.3 Refinement Mechanism .. 65

7.1.4 Rank revealing QR-factorization .. 66

7.1.5 Projection error.. 68

7.2 Reduced Order Model ... 71

8 Appendix B. MatLab Code ... 73

8.1 Full Order Model .. 73

8.2 Tree construction... 75

8.3 Refinement mechanism ... 79

8.4 Rank Revealing QR factorization ... 80

8.5 Reduced Order Model ... 81

References .. 84

3 / 85

LIST OF FIGURES

Figure 3.1. Projection error .. 10

Figure 3.2. Inviscid Burgers equation. Shock formation ... 15

Figure 4.1. Observations 1 and 2. Time function Not normalized (left) – highly scattered

entities Normalized (right) scatter is reduced by normalization .. 21

Figure 4.2. Clustering of the set of points. Random scattered set of 15 points. Metric: Squared

Euclidean Distance; Two clusters (left); Three clusters (right) ... 22

Figure 4.3. Clustering of the set of points. Random scattered set of 15 points. Metric: Cosine

measure; Two clusters (left); Three clusters (right) ... 23

Figure 4.4. Clustering of the set of points. Random scattered set of 15 points. Metric:

Cityblock; Two clusters (left); Three clusters (right) .. 23

Figure 4.5. Geometric representation of clustering metrics. Euclidean (left); Cityblock

(center); Cosine (right) ... 26

Figure 4.6. Clusters’ dendrogram. Time function Not normalized (left) and normalized (right)

observations ... 30

Figure 4.7. Tree structure obtained from binary clustering. Time function. 32

Figure 4.8. h-Refinement methodology for several basis .. 35

Figure 5.1. A-priori (projection) error. Time function Not normalized (left) and normalized

(right) observations. ... 41

Figure 5.2. Geometry of the bar ... 42

Figure 5.3. Strain-softening response curve .. 43

Figure 5.4. Geometry of the bar with three imperfections ... 45

Figure 5.5. Force-displacement curve of the tip. ... 46

Figure 5.6. Singular values of the snapshot matrix. Viscoplasticity. 47

Figure 5.7. A-Priori (projection) error. Viscoplasticity Not corresponding tree (left) and not

normalized observations (right) ... 48

Figure 5.8. A-Priori (projection) error. Viscoplasticity Not normalized observations (left) and

RRQR not normalized observations (right) ... 49

Figure 5.9. A-Posteriori (relative) error. Viscoplasticity Not corresponding tree (left) and not

normalized observations (right) ... 51

Figure 5.10. A-posteriori relative error for not normalized observations(left scale) and size of

splitted basis (right scale). Viscoplasticity... 52

4 / 85

Figure 5.11. Full Order Model discretized in 150 elements. Inviscid Burgers equation. 54

Figure 5.12. Full Order Model discretized in 1000 elements. Inviscid Burgers equation. 55

Figure 5.13. Singular values of the snapshot matrix. Inviscid Burgers equation. 56

Figure 5.14. Dendrogram. Inviscid Burgers equation.. 56

Figure 5.15. Projection Error. Inviscid Burgers equation. ... 57

Figure 5.16. ROM with 50 basis vectors. Inviscid Burgers equation. 59

Figure 5.17. ROM with 200 basis vectors. Inviscid Burgers equation. 60

Figure 5.18. Relative error of ROM. Inviscid Burgers equation. .. 61

LIST OF ALGORITHMS

Algorithm 1. Typical Newton-Raphson scheme .. 18

Algorithm 2. Construction of snapshot matrix .. 19

Algorithm 3. Normalization of snapshot matrix .. 20

Algorithm 4. Typical k-means clustering .. 25

Algorithm 5. Tree construction via binary clustering .. 27

Algorithm 6. Rank-Revealing QR Factorization ... 36

Algorithm 7. Typical POD algorithm .. 37

Algorithm 8. Newton-Raphson – POD reduced .. 38

LIST OF TABLES

Table 5.1 . Model setup: G-FEM parameters. Strain-softening viscoplasticity....................... 42

Table 5.2 . Model setup: material parameters. Strain-softening viscoplasticity. 44

Table 5.3 . Model setup: boundary conditions. Strain-softening viscoplasticity. 45

Table 5.4 . Model setup. Burgers Equation ... 53

Table 5.5. ROM basis splitting into branches. Burgers Equation .. 58

5 / 85

1 ABSTRACT

With a reference to a viscoplastic bar discretized by the finite element method (FEM), an h-

refinement technique for model order reduction is developed. The Perzyna viscoplasticity

model is adopted. The procedure employs the Proper Orthogonal Decomposition-Galerkin

(POD-G) in conjunction with the h-refinement mechanism, which enriches the reduced-basis

space online by ‘splitting’ a given basis vector into several vectors. For this purpose, the

snapshots are collected from a standard full order FEM analysis in the offline phase and a tree

structure is constructed, using a binary clustering algorithm. The singular value decomposition

is used for construction of a low-dimensional basis for POD algorithm and a corresponding

reduced order model (ROM). The projection error is computed offline for a predefined size of

basis vector and extent of the basis splitting (refinement according to the tree). In the online

phase, the truncated basis is refined based on the tree structure. The relative error is computed

on the basis of full and reduced order models. The constructed reduced order model with

refined basis is applied to the viscoplastic bar problem, where in the presence of imperfections

(cross area reduction) giving rise to a strain-localization.

The same technique is also applied to a different problem governed by Burgers equation.

Such problem, being strongly nonlinear, is an interesting benchmark for the proposed

technique.

6 / 85

ITALIAN ABSTRACT

Con riferimento al problema di una barra viscoplastica discretizzata utilizzando il metodo

degli elementi finiti, viene sviluppata una tecnica di “h-refinement” applicata ad una procedura

di “model order reduction”. Viene adottato il modello viscoplastico di Perzyna. La procedura

risoltiva proposta utilizza la tecnica denominata POD-G (“Proper Orthogonal Decomposition

– Galerkin”) in combinazione con il meccanismo di “h-refinement” che arricchisce lo spazio a

base ridotta attraverso lo “splitting” dei vettori di base. A questo scopo, si raccolgono

“snapshots” ottenuti dal modello FEM completo (generati offline) e si costruisce una struttura

ad albero usando un algoritmo di “clustering” binario. Si fa uso di una decomposizione ai valori

singolari per costruire una base di dimensione ridotta e il corrispondente modello di ordine

ridotto. Viene valutato in modalità offline l’errore (in termini dei proiezione) conseguente alla

dimensione predefinita della base adottata e del grado di “splitting” adottato. In modalità

online, la base troncata viene raffinata utilizzando la struttura ad albero. L’errore relativo viene

calcolato confrontando la risposta del modello completo con quella del modello a base ridotta.

Il modello ridotto viene applicato al problema della barra viscoplastica in cui siano presenti

delle imperfezioni (costituite da riduzioni dell’area trasversale) che generano un fenomeno di

localizzazione delle deformazioni.

La stessa procedura risolutiva viene applicata anche a un problema diverso, governato

dall’equazione di Burgers. Questo problema, caraterizzato da forte nonlinearità, rappresenta un

banco di prova interessante per valutare l’efficacia della tecnica risolutiva proposta.

7 / 85

2 INTRODUCTION

In the modern stage of development of engineering and technology the need in large-scale

numerical simulations is high. The computational cost of the high-fidelity calculation across

the industries has rapidly increased in the past years. Model Order Reduction (MOR)

techniques are aimed to mitigate this computational bottleneck and reduce the cost of these

procedures. Moreover, for many time-critical applications computational cost of executing

high-fidelity large-scale simulations remains to be infeasibly high.

The common algorithm for Reduced Order Models (ROM) consists in splitting the problem

into a two-phase procedure commonly known as the offline–online decomposition. First, a

computationally expensive ‘offline’ phase is executed. During which the training tasks, such

as evaluating the high-fidelity model at several points in the input-parameter space and

computation of a representative low-dimensional reduced basis for the system state are done.

Second, the inexpensive ‘online’ phase carries out a many-query procedure. These methods

use a projection process of the high-fidelity Full Order Model (FOM) equations onto the low

dimensional subspace spanned by the reduced basis and quickly find the approximate solutions

for arbitrary points in the input space. The implementations of these techniques are broadly

applied in finite element models of solid dynamics [1], aerolasticity [2], stochastic processes

[3] and fluid dynamics [4, 5].

In this research the Reduced Order Model (ROM) in conjunction with a basis refinement

technique is used for a boundary value problem. A quasistatic equilibrium equation is equipped

with Perzyna viscoplasticity – a nonlinear and path-dependent constitutive law [6]. The

singular values of collected snapshots have a slow decay, so efficiency of the Reduced Order

Model is decreased.

To improve the efficiency of ROM online, an h-refinement algorithm is developed. It

consists in basis splitting according to a tree structure. The tree reflects correlation of the

degrees of freedom of the system and is constructed on the basis of snapshots collected offline

(in the same fashion as for typical ROM algorithm). The tree construction algorithm employed

for the basis splitting is developed by means of using bottom-up binary clustering [7]. Such a

8 / 85

clustering technique belongs to hierarchical agglomerative clustering algorithm and it links

pairs of entities.

The same methodology of ROM equipped with h-refinement algorithm is applied to a

problem of shock wave formation described by Burgers Equation. It is a special case of Navier-

Stokes equation for Newtonian incompressible fluid. This problem is investigated in one spatial

dimension and one temporal coordinate. Due to the fact that the solution of Burgers equation

[8] can develop discontinuities (shock waves) it serves as a valuable benchmark for testing the

ROM efficiency (and, as such, has been used as other authors to validate newly proposed MOR

algorithm see [9]).

9 / 85

3 PROBLEM STATEMENT

As it is already known, in the cases of large-scale simulations the computational cost of

executing is high, especially for time-critical problems. Full order models are not able to solve

these problems relatively fast, so reduced order models were aimed to decrease computational

burden. First, ROMs execute expensive offline stage, when the model is trained on a large

dataset. Low-dimensional basis VH is constructed, that appropriately captures the behaviour of

state variable u. Then, inexpensive online stage starts to compute approximate solution for

arbitrary input parameters via low-dimensional subspace spanned by the reduced basis.

Being inspired by h-refinement mechanism, the proposed solution follows the similar

tactics. In typical h-refinement, the domain (finite elements or volumes) is split by mesh

refinement. While here, the basis vector is split according to a tree structure. Tree structure is

constructed using binary bottom-up clustering. The a-priori error is computed in offline stage.

The a-priori error is defined by projection of state variable lying in the low-dimensional

subspace onto the full order space

 H r u u (3.1)

where uH denotes an orthogonal projection of the vector u onto the space VH with a

projection error r. Graphically it is described by Figure 3.1.

10 / 85

r

V

VH

u

uH

Figure 3.1. Projection error

For a boundary value problem a parametrized system of equations of the type

 (;) 0k kr x μ (3.2)

has to be solved for state of variable xk n . Input parameters μ are predefined. Residual rk

at iteration k has to me minimized. This is a general formulation that describes, for example,

parameterized systems of linear equations arising from the finite-element discretization of

elliptic PDEs. In such a case () () ()k kr b ax , μ μ μ x).

The output is computed as

 (;)k kgz x μ (3.3)

With function : DOF DOFN N
g  so the solution is lying in the same space as V, and zk

DOFN
 . When dimension of system NDOF is large, in full order models the outputs zk are

computed by solution of system (3.2) and then (3.3), which is computationally expensive. For

time-critical problems this approach is not suitable.

11 / 85

3.1 STRAIN-SOFTENING PERZYNA VISCOPLASTICITY

A problem of one dimensional bar under tension equipped with viscoplastic constitutive

model is employed for illustration of the ROM with h-refinement performance. A strain-

softening constitutive model that is used has a following stress-strain relationship

 (-)e

vpσ D ε ε (3.4)

with vpε is a viscoplastic strain tensor, ε refers to time derivative of strain / t  ε ε and

e
D represents the elastic modulus tensor. The quasistatic equilibrium equation is described

by

 T in L σ q (3.5)

where a matrix of stress tensors in denoted by σ, q is a vector of body forces, the

displacement vector u is defined in a computational domain Ω having a boundary Γ = Γu ∪ Γt

with applied Dirichlet and Neumann boundary conditions. The operator matrix L is defined as

0 0 0

0 0 0

0 0 0

x y z

T

y x z

z y x

   
 

    
    

L (3.6)

where # #/    the partial derivative with respect to #.

The flow rule of Perzyna viscoplastic model [6] is formulated as

 vp








ε
σ

 (3.7)

In this case the rate of plastic multiplier

 ()


    (3.8)

with the yield function

 vm Y    (3.9)

and overstress function

12 / 85

 ()
Y


 


 (3.10)

In the above equations, ⟨#⟩ is the Macaulay bracket meaning that

() () 0

()
0

if

otherwise

   
 


 


 (3.11)

 η is the viscosity parameter, β is a model parameter, σY is the current yield stress, and σvm

is the von Mises stress. To introduce a strain-softening response, relation

 - -2

0 ((1))bk bk

Y Y a e a e    (3.12)

is employed, where a and b are model parameters, σY0 is the initial yield stress, and the

plastic strain

 k  (3.13)

The viscoplastic strain-softening Perzyna model typically induces strongly localized strain

fields.

3.2 INVISCID BURGERS EQUATION

In the field of solid mechanics, the differential equations in the displacement field such as

2() () 0G div G in V      s s f (3.14)

where
2 denotes Laplacian operator (

2 2 2

2 2 2x y z

  
  
  

in Cartesian orthogonal

coordinate system xyz) are known as the Navier equations.

The equation above is valid for a solid in a homogeneous isotropic linear elastic material. It

is characterized, by the two Lamé constants, λ and G; for the homogeneity hypothesis the value

of these constants is not a function of a place. For sake of simplicity, assume that the solid does

13 / 85

not undergo inelastic deformations. Under the assumptions made above, the equations of law

(in direct form) are written, at each point of the body as

 1 2ij ij ijI G     (3.15)

with

, ,

1 ,

1
 ()

2

 ()

ij i j j i

kk k k

s s

I s div





 

   s

 (3.16)

Wishing to reach a formulation in the only unknown displacement, and replacing the

indefinite equilibrium equations, it is needed to take into account the relationships between

deformations and displacements

 , , , ,
()k k ij i j j i ii

s G s s f       (3.17)

Assuming invertibility of the displacement components (continuous functions and regularity

of the place) it becomes

 , ,() 0, 1, 2,3i ij j ii jG s G s f j      (3.18)

in the explicit form, which is the same as compact form in the Equation (3.14). This equation

is in close analogy with the indefinite equations of equilibrium of motion of viscous fluids (or

Newtonian) and are reduced to so-called "Navier-Stokes" [10].

 2

t
 

 
       

 

u
u u p u f (3.19)

were ρ is the density of the fluid, u is a velocity vector field, p is the pressure, μ is a constant

called the viscosity, and f is a specified external force (again a vector field).

The use of simplifications of the Navier-Stokes equations can be performed to achieve more

simple versions of this equation [11], for instance dropping pressure term in case of

incompressible fluids

14 / 85

 2

t
 

 
     

 

u
u u u f (3.20)

Assuming that the external force is equal to zero and taking advantage of the fact that density

ρ is a constant for an incompressible fluid, this allows to define a new constant, the kinematic

viscosity ν = μ/ρ and obtain from the equation above

 2

t



   



u
u u u (3.21)

An even further simplification arises when we assume the viscosity is zero Then obtain the

inviscid Burgers’ equation:

 0
t


  



u
u u (3.22)

This equation provides a useful model for many physical phenomena of a fluid flow - a

nonlinear, propagating shock wave with viscous dissipation, turbulence, a propagating shock

wave in gases, a propagating flame in the combustion chamber and other problems.

In the case of one-dimensional problem, the Burgers’ equation (3.21) with nonzero

viscosity, can be rewritten as

2

2
0

u u u
u

t x x


  
  

  
 (3.23)

or in a conservation form, when the flow is conserved:

()

0
u f u

t x

 
 

 
 (3.24)

where u represents velocity of some quantity and the associated flow is represented by f (u)

 2(
2

)
1 u

f u u
x




 


 (3.25)

15 / 85

The equation (3.24) is used as prototype for nonlinear hyperbolic equations and

conservation laws in general [8]. It is widely used in studies of gas dynamics, turbulent fluid

motion and traffic flow. Burgers equation with the characteristics

dx

u
dt

 (3.26)

means that characteristic lines are straight lines in the x, t -plane

 0
du

dt
 (3.27)

and wave profile u is constant along the characteristics of the Burgers’ equation.

Shock formation arises with the Burgers equation and other conservation laws and solution

develops discontinuity even if the initial waveform is continuous. After a certain finite time the

discontinuities may appear and then propagate in a regular manner.

Figure 3.2. Inviscid Burgers equation. Shock formation

It can be shown that for any kinematic viscosity 0  , a unique smooth solution of the

Equation (3.23) exists any time. The curves of Figure 3.2 are obtained by taking the limit

0  , and represent the case of vanishing viscosity. The Burgers equation can be considered

16 / 85

applicable to any phenomenon of flow in which balancing effects of viscous and inertia or

convective forces exist.

The solution is similar to the solution of the kinematic wave equation when inertial or

convective forces predominate. It maps the boundary layers and propagating wave front. In

such a case, it behaves like a hyperbolic PDE. When viscous forces predominate, the solution

behaves like a parabolic equation, and any propagating wave front is blurred and dissipated

due to viscous action.

Due to these different forms, which can adopt the Burgers equation in combination with its

nonlinear characteristics, it has become a model for estimating and evaluating the performance

of many computational methods. For this reason, the validation of ROM with h-refinement

mechanism here is done employing Burgers equation for a POD-Galerkin.

Both problems of strain-softening viscoplasticity and Burgers equation require a high

number of degrees of freedom for discretization of domain and solution of the system of

nonlinear equations. The resolving of the gradients of strongly localized strain fields in

viscoplasticity and shock formation in wave propagation implies high computational costs,

since large nonlinear systems of equations of the dimensions NDOF × NDOF should be solved at

each time step.

17 / 85

4 METHODS

4.1 FULL ORDER MODEL

The quasistatic equilibrium equation (3.5) can be written in a weak form and, using a Finite

element formulation for space discretization, it yields to set of nonlinear equations

int ext() () -  r a f a f 0 (4.1)

where

int

ext

() ()

t

T

T T

a a d

d d



 

 

   



 

f B σ

f N t N q
 (4.2)

A matrix that contains shape functions 3 DOFN
N and a matrix that contains derivatives

of the shape functions
6

 DOFN
 B L N are substituted into (4.2). t are the prescribed

tractions on boundary Γt , DOFN
a is a vector of the nodal values of the displacement vector

u, and NDOF is the total number of degrees of freedom (DOFs).

The system of nonlinear equations is then solved using a Newton–Raphson scheme

according to Algorithm 1, where at each iteration j the residual vector DOFNj r is computed

using stiffness matrix Kj DOF DOFN N
 .

The tangential stiffness matrix is computed as

()

j

int jj T d


 
  

 
a

f a σ
K B

a a
 (4.3)

The increment of the displacement vector 1 DOFNjd  a is computed at iteration j + 1.

()

()
()

j 


 

σ a
D

ε a
 (4.4)

18 / 85

Algorithm 1. Typical Newton-Raphson scheme

Input: ; ;ta D σ

iteration j = 1 , displacement at 1 0t a

set 1 t  a a , 1 t

int intf f

compute new external force vector t t

ext


f

(*) compute jacobian of stress vector D

compute tangent stiffness matrix at element level and

assemble tangent stiffness matrix at structure level Kj

solve 1 1 ()j j j j j j

ext intd      K a f f a r for 1jd 
a , where j

r is a residual

update displacement vector 1 1j j jd    a a a

compute stress 1 j
σ

compute internal force vector at element level

assemble internal force vector at structure level 1j

int


f

if
2

2

1

j

L

j

L

tol






a

a
 then

1 t t j   a a

go to next load step

else

19 / 85

 j = j + 1, go to step (*)

end if

Output: t ta , t t

int


f

4.2 DATA COLLECTION

The results of the solution of Full Order Model (FOM) or generally speaking the observation

data is used as a training set for offline stage. The matrix of snapshots X Samp DOFN N
 collects

data in a format where rows contain degrees of freedom and columns the snapshot number, and

it has a dimensionality NSamp × NDOF. Typically, the snapshot collection is organized according

to the Algorithm 2.

Algorithm 2. Construction of snapshot matrix

Input: NSamp – number of desired snapshots at time T

set X = []

repeat

run full order model simulation for t time steps

 X ← [X Xt]

 t = t + Δt

until t = T

Output: snapshot matrix X Samp DOFN N


20 / 85

4.3 DATA NORMALIZATION

For the scope of capturing the correlation of the degrees of freedom, it is possible to

normalize training set according to Equation (4.5) inherited into Algorithm 3. In this case the

correlated and anticorrelated state variables become separated by small Euclidean distance and

can be grouped via a clustering technique.

 2

,

,

1; 0

i j

i j T

i L

T T T

i i i

x
x

if x



 

x

x x

 (4.5)

where 2.
L

 denotes a Euclidean (L2) norm calculated by

 2

2

1

N

i

i
L




 X (4.6)

where σi denotes the singular values of X and N is a length of vector xi.

Algorithm 3. Normalization of snapshot matrix

Input: Snapshot matrix X Samp DOFN N
 , containing NSamp observations

for i=1,…,NDOF

 Normalize rows of X to capture correlation and anti-correlation by clustering

, , / T

i j i j ix x x

 Flip origin if the first entity is negative

1; 0T T T

i i iif x x x

end

Output: Samp DOFN N
X , normalized

21 / 85

The difference in scatter is visible in Figure 4.1 when, for instance taking the input from

snapshot matrix of time function (4.10), plotting first taken snapshot versus the second one. In

Figure 4.1 (left) the scatter is high and the anti-correlation is not seen, while the Figure 4.1

(right) shows the same dataset after normalization. The 3 clusters are clearly seen.

Figure 4.1. Observations 1 and 2. Time function

Not normalized (left) – highly scattered entities

 Normalized (right) scatter is reduced by normalization

4.4 TREE CONSTRUCTION

4.4.1 CLUSTERING

The data related to the scatter of snapshot matrix and capturing of the clusters information

is used for a tree construction. For this purpose, a clustering algorithm has to be employed.

There exist several possibilities to do this. The first one consists in algorithm when the entire

set of observations is split into the clusters, known as k-means clustering. The existing

challenge of this method is the definition of the number of clusters required. The proposed here

solution can be seen with two conceptually different approaches: top-down and bottom-up. The

first case is consisted in splitting the entire set in 2 clusters recursively, while the second links

pair of entities combining them into the binary clusters.

22 / 85

4.4.2 CLUSTERING TYPOLOGY

There exist two conceptually different types of clustering techniques: hierarchical and

partitional. Partitional clustering is a division of the set into the non-overlapping subsets, such

that the entity belongs to exactly one subset.

Figure 4.2. Clustering of the set of points. Random scattered set of 15 points.

Metric: Squared Euclidean Distance; Two clusters (left); Three clusters (right)

Taking individually, each association of the points into a group from Figure 4.2 to Figure

4.4 is a partitional clustering. If the clusters contain sub-clusters, then we obtain hierarchical

clustering, when the clusters are nested and organized as a tree. Each node of the tree except

the bottom level (leaf nodes) is association of child sub-clusters. The root of the tree (top

cluster) contains all the entities, the set consists of. The example of illustration of such a tree

organized in a form of dendrogram would be demonstrated in Chapter 4.4.5.For example, on

the Figure 4.4 (left), the blue cluster consists in union of blue and yellow Figure 4.4 (right),

allowing the further splitting. The yellow cluster on the Figure 4.4 (left) is completely

coincident to the green of Figure 4.4 (right). The hierarchical clustering can be viewed as a

sequence of partitional clustering and vice versa, partitional clustering can be obtained by

taking any member of the hierarchical sequence, cutting the tree at a particular level.

23 / 85

Figure 4.3. Clustering of the set of points. Random scattered set of 15 points.

Metric: Cosine measure; Two clusters (left); Three clusters (right)

Figure 4.4. Clustering of the set of points. Random scattered set of 15 points.

Metric: Cityblock; Two clusters (left); Three clusters (right)

24 / 85

Complete clustering assigns each entity to a cluster. Partial clustering may not include some

elements to a set. This may happen when data in some sets does not belong to any well-defined

group. In many cases this data represents noise outliers or background objects, not contributing

to a scope.

Another way to distinguish the clustering is an exclusive, when an entity belongs to a single

cluster, or overlapping when a point can be placed in several clusters. Non-exclusive

(overlapping) reflects the fact that an object can simultaneously belong to more than one class.

In fuzzy clustering a weight factor is assigned to each variable and it varies from 0 (absolutely

does not belong) to 1 (fully belongs). In a same fashion, probabilistic clustering computes

probability with which the entity belongs to a cluster, and probabilities must also sum to a unit.

Practically, the probabilistic and fuzzy clustering to can be converted into exclusive

clustering, when the element is assigned to a cluster with the highest probability or weight.

Prototype-Based Algorithms are aimed to learn a prototype for each cluster, and form

clusters by data objects around the prototypes [7]. For vast majority of the algorithms of this

class, the prototype is a centroid of a cluster, and the clusters tend to be globular.

Graph-Based Algorithms regard data objects as nodes, and the distance between two objects

as the weight of the edge connecting the two nodes, the data can be represented as a graph, and

a cluster can be defined as a connected subgraph. In a typical graph-based algorithm defines

the shared nearest-neighbours for each data object, and then sparsifies the graph to obtain the

clusters.

Density-Based Algorithms take a cluster as a dense region of data objects that is surrounded

by regions of low densities. They are often employed when the clusters are irregular or

intertwined, or when noise and outliers are present. In case of highly dimensional data, the

density notion is valid only in subspaces of features, which motivates the subspace clustering.

25 / 85

4.4.3 K-MEANS CLUSTERING

The one of the most widely used and oldest clustering algorithms is k-means clustering. It

is a prototype-based partitional clustering algorithm [7] that attempts to find k non-overlapping

clusters. These clusters are represented by their centroids (a cluster centroid is typically the

mean of the points in that cluster).

Algorithm 4. Typical k-means clustering

Input: dataset X, number of clusters k

Select k initial centroids

repeat

form k clusters by assigning each point to the closest centroid

recalculate centroid of each cluster

until position of centroids do not change

Output: k cluster sets and their centroids with the points belonging to the cluster

The clustering process of k-means is described by Algorithm 4. First, k initial centroids are

selected, where k is specified in the input and indicates the desired number of clusters. Every

point in the data is then assigned to the closest centroid, and each collection of points assigned

to a centroid forms a cluster. The centroid of each cluster is then updated based on the points

assigned to that cluster. This process is repeated until no point changes clusters.

The examples of application of k-means clustering for a random dataset using different

metrics from the Chapter 4.4.4 are demonstrated in Figure 4.2, Figure 4.3 and Figure 4.4

26 / 85

4.4.4 METRIC FOR THE CLUSTERING

In order to link pairs of vectors it is needed to establish a metric for the pairwise distance

[12]. The way of capturing similarities between observations in the examples is the Euclidean

distance

 2 ()()ij i j j jd x x x x    (4.7)

where for a given matrix of snapshots
 Samp DOFN N

X


 , the NSamp row vectors have the various

distances between xi and xj. There exist another ways of computing the distance, as for instance

cosine similarity evaluated for vectors xi and xj as

 (,) 1 cos(,) 1
()()

i j

ij i j i j

i i j j

x x
d x x x x

x x x x


   

 
 (4.8)

The metric such as Cityblock

1

(,)
p

j j

j

d x c x c


  (4.9)

is defined as sum of absolute differences (L1 distance). Each centroid cj is the component-

wise median of the points xj in that cluster.

O
b
se

rv
at

io
n
 2

Observation 1 Observation 1 Observation 1

Figure 4.5. Geometric representation of clustering metrics.

Euclidean (left); Cityblock (center); Cosine (right)

27 / 85

Geometric representations of basic distance measures between two entities (A and B) in 2D

space are shown in Figure 4.5. Looking at 2D plain of Cartesian coordinate system, the

Euclidean distance is computed is a length of AB, the axes in Figure 4.5 (left) meet at the

origin. In the Figure 4.5 (center) Cityblock distance is computed as the sum of projections of

AB onto the orthogonal coordinate system in, that is why it also sometimes known as

Manhattan distance. In most cases, this distance measure yields to results similar to the

Euclidean distance. However, Cityblock distance provides the effect of a large difference when

a single dimension is dampened, since the distances are not squared. Cosine distance in Figure

4.5 (right) is measured by (4.8), where similarity r = cos(α) is computed for vectors taking the

origin from centroid.

It is observed in [13] that having large dimensionality of vectors, the difference between

results of computation Euclidean (4.7) or cosine (4.8) distance is not significant. On the other

hand, the studies such as [14] point out that squared Euclidean distance is not suitable for high-

dimensional k-means data clustering because of the “curse of dimensionality”. Nevertheless,

investigation of this problem for different datasets is interesting task to deal with in the future

research.

Algorithm 5. Tree construction via binary clustering

Input: Snapshot matrix Samp DOFN N
X , can be normalized

compute Pairwise (Euclidean) Distance from snapshot matrix between vectors xi and xj

2 ()()ij i j i jd x x x x   

grouping into binary clusters by creation agglomerative hierarchical cluster tree

compute the proximity matrix LinkX, based on a metric

repeat

merge the closest two clusters

update the proximity matrix LinkX to reflect the metric dij between the

centroids of new cluster and the original clusters

28 / 85

until only one cluster remains

create first NDOF clusters corresponding to observations themselves

for i=1,…,NDOF

Tree{1,…,NDOF}=1,…,NDOF

end

create definition of each cluster EEE

for i=1,…,size(LinkX)

take left cluster of LinkX, define its content by entities

ResL=E{LinkX (i,1)}

take right cluster of LinkX, define its content by entities

ResR=E{LinkX(i,2)}

combine defined left and right clusters of LinkX

E{i}=[ResL ResR]

end

for i=1,…,size(Tree)

replace cluster name by its definition (contents)

TREE{i}= LinkX{ E{i}}

end

Output: TREE – String of arrays NDOF × 1 containing trees for each branch (For example

see Figure 4.7)

29 / 85

4.4.5 TREE CONSTRUCTION EXAMPLE

It is necessary to clarify Algorithm 5 with a comprehensive example. “Time function” is the

example of data collected from time history analysis [15]. Snapshot matrix

8,8078 20,3701 10, 6956 37, 2035 25, 7282 12,9818 16,8462 12,9854

4, 2437 9,1066 6, 2987 9, 6227 13, 0436 16, 0915 3,5370 0,1259

25,8879 5, 6943 26, 4645 47,9825 24, 0329 20, 2440 83,5343 57, 7367

14,8654 31,9001 22, 0641 33, 7077
=X

  

  

 

  45, 6912 56,3677 12,3898 0, 4409

5,5002 11,8031 8,1638 12, 4720 16,9059 20,8562 4,5842 0,1631

4,8868 1, 0749 4,9956 9, 0575 4,5366 3,8214 15, 7684 10,8987

  

    

     

 (4.10)

contains NSamp = 8 snapshots and NDOF = 6 degrees of freedom.

The snapshot matrix X (4.10) of a time function after processing by means of normalization

becomes more suitable for clustering (see Figure 4.1 (right)). Binary clustering is adopted to

capture correlations between degrees of freedom. The Euclidean distance is computed at the

each iteration, defining the metric for linking pairs of clusters. It creates the matrix (2NDOF -1)

× 3

Global Left Right
Distance

Cluster Cluster Cluster

{1} 1 1 0

{6} 6 6 0

0.0039

0.0062

0

{7} 4 5

{8} 2 7

{9} 3 6

{

.0071

1.010} 1 9

{11} 8 10

083

1.3088

 (4.11)

30 / 85

where the Global Cluster contains the Left and Right clusters, telling the linked pair. The

last column defines the value of the metric which was used for creating a new cluster. At the

next stage the names of the clusters are replaced with the clusters form 1 to NDOF themselves,

for instance Global Cluster {10}, containing Global Clusters {1} as Left Cluster and {9} as a

Right Cluster becomes {1, 3, 6} after substitution.

Figure 4.6. Clusters’ dendrogram. Time function

Not normalized (left) and normalized (right) observations

As it was discussed before, traditional k-means clustering can be used instead of bottom-up

algorithm. For both algorithms the optimal solution is depicted at Figure 4.6, which is a

dendrogram, describing the tree structure of observations. Dendrogram is a tree structure,

where each node is associated with a distance (height) and satisfies

     h A h B A B   (4.12)

where h(A) and h(B) denote the heights of A and B respectively. For all subsets of points A

and B if A B   is necessary and sufficient

     max , , , , i j ik jkh h h i j k n   (4.13)

31 / 85

where hi,j denotes the height of internal node specifying the smallest cluster to which both

xi and xj belong, for each pair of data points (xi, xj).

 Figure 4.6 (left) figure describes the dendrogram associated with the Figure 4.1 (left), when

the normalization is not done. The right dendrogram is constructed on the basis of normalized

snapshots. Conceptually, the refinement tree branches can be determined at each desired

distance between the observations. The needed depth level of tree could be graphically obtained

by intersection of horizontal line at the predefined distance and Degree of Freedom index.

Each association of the adjacent state variables create a new cluster, e.g. branch. This branch

is united with the next closest observation or branch, which has the closest centroid. The initial

clusters correspond to number of degrees of freedom, i.e. correspond to itself, so the distance

is zero. The graphical representation of creation of the new clusters corresponds to Figure 4.7,

where the new created clusters are listed at (4.11). The complete procedure of the new clusters

creation consists in assigning to the NSamp observations, the clusters containing themselves and

then estimating the Euclidean distance between the clusters (observations). The succeeding

procedure is based on the creation of the binary clusters by collecting them on the basis of

distance between centroids.

The refinement mechanism is based on the tree structure in Figure 4.7, where the needed

depth of refinement can be obtained by the choice of the needed level of the tree. The array of

the tree structure (4.14) contains matrix of the elements required for splitting on the each level

of the basis refinement such as

String Array

Number Contents

1 {1,...,6}

2 {1,3,6}{2,4,5}

3 {1}{3,6}{2,4,5}

4 {1}{3}{6}{2,4,5}

5 {1}{3}{2,4}{5}{6}

6 {1}{2}{3}{4}{5}{6}

 (4.14)

where the string of arrays contains the basis splitting for the chosen branch of the tree.

32 / 85

Figure 4.7. Tree structure obtained from binary clustering. Time function.

On one hand, for a large dataset, the binary bottom-up clustering can be more

computationally demanding than the k-means clustering. Due to the fact that during the offline

stage the computational cost is not critical, the more expensive binary clustering is acceptable

for a tree construction. On the other hand, the choice of the number of clusters for k-means

clustering is questionable. Moreover, the iterative procedure of k-means clustering such as

Algorithm 4 does not always converge to the optimal minimum.

Global Cluster Number: d = 11

Contained Clusters: C(11) = {8,10}

Contained elements E(11) = {1,...,6}

d = 10

C(10) = {1,9}

E(10) = {1,3,6}

d = 8

C(8) = {5,7}

E(8) = {2,4,5}

d = 1

C(1) = {0}

E(1) = {1}

d = 9

C(9) = {3,6}

E(9) = {3,6}

d = 3

C(3) = {0}

E(3) = {3}

d = 6

C(6) = {0}

E(6) = {6}

d = 7

C(7) = {2,4}

E(7) = {2,4}
d = 5

C(5) = {0}

E(5) = {5}

d = 2

C(2) = {0}

E(2) = {2}

d = 4

C(4) = {0}

E(4) = {4}

33 / 85

4.4.6 PROPERTIES OF TREE

1. Hierarchical subspaces

Refinement method with the use of a tree creates a hierarchy of subspaces such as

() ()H hrange rangeV V .

The poof of this property is:

   () | () | () ()H h h q h h h

H Hrange w w range I w w range range      V V V I q V

2. Fully refined ROM basis converges to the FOM solution

If every element has non-zero entity in one of the original reduced-basis vectors,

(0) (0)(), (,) () () | 0ijl n i j n p v      and

(), () | () , ()l n i m E i l C i      holds, this means that fully refined basis

converges to Full Order Model solution.

Both properties 1 and 2 [15] say that with refinement a sequence of hierarchical subspaces

can be generated. The ROM converges to full-order model solution when the basis is

completely split. However, the use of this methodology could produce rank-deficient matrices,

when a completely split basis has linearly dependant columns. In order to be able to detect and

remove rank-deficiency, the refinement method proposes the use of rank-revealing QR

factorisation (see Chapter 4.6) after each split of basis.

4.5 SINGULAR VALUE DECOMPOSITION

The matrix of the snapshots X which has dimensions of NSamp × NDOF can be seen as

DOF Samp DOF SampDOF DOF Samp Samp

T

N N N NN N N N  
X V Σ W (4.15)

34 / 85

The operation described by the Equation (4.15) is called Singular Value Decomposition

(SVD) with the following components:

DOF DOFN N
V - Left singular matrix defined by the eigenvectors of

T
X X ; orthonormal

Samp Samp

T

N N
W - Right singular matrix defined by the eigenvectors of

T
X X ; orthonormal

DOF SampN N
Σ - Singular basis matrix, containing the 11 22 .. N N     ; diagonal

The diagonal values of the matrix Σ contain the variance of the taken snapshots. The number

of significant values of σ is showing the number of principal components NP.C of the snapshot

matrix X

The three components V, Σ, WT of the singular value decomposition are truncated according

to NP.C

For the certain value of fext, the solution in terms of displacements a(x) can be found by the

same algorithm, such as Newton-Raphson, but solving the reduced system.

The further application of SVD is discussed on the basis of h-refinement for a tree

construction in a Chapter 4.4. Taking just the first column from the left-side singular vector

 0.2606 0.0355 0.9391 0.1242 0.0460 0.1773
TH   V (4.16)

obtained from the singular value decomposition of snapshot matrix (4.10), and constructing

tree matrix according to the tree structure from the Figure 4.7 for branch = 3, it becomes

 {3} 0 2 0 4 5

1 0 0

0

0 0 0

0 0

6

0

3 0

E (4.17)

the matrix containing the location of cluster contents in the refined basis (see Algorithm 5).

The obtained reduced basis with the arrangement according to the tree structure is

35 / 85

0.2606 0 0 0 0 0

0 0.0355 0 0.1242 0.0460 0

 0 0 0.9391 0 0 0.1773

Th



  V (4.18)

Here VH and Vh denote refined and unrefined basis accordingly. In the same manner it is

possible to refine more basis vectors as it is illustrated by Figure 4.8.

HV  hV

Figure 4.8. h-Refinement methodology for several basis

4.6 RANK-REVEALING QR FACTORIZATION

Rank revealing QR factorization consists in matrix decomposition algorithm based on QR

factorization. The aim is to determine rank deficiency of matrix [16, 17]

1 1

1 1
0 0

   
      

   

R R
X QR Q Q Q R (4.19)

where R1 is an n×n upper triangular matrix, 0 is an (m − n) × n zero matrix, Q1 is m×n, Q2

is m×(m − n), and Q1 and Q2 both have orthogonal columns. The typical iterative procedure

is defined by the Algorithm 6

36 / 85

Algorithm 6. Rank-Revealing QR Factorization

Input: Rank-deficient refined basis DOFN branch Nh  
V , Tolerance 

Compute L2 norm of first column

   2
 :,1h

L
  V

Store first normalized column

 

1

:,1

h


 

V
Q q

for i= 2 : size(Vh, 2)

Compute

r = QT
 ̇ V

h (: , i)

qi = Vh (: , i) - Q ̇ r

2 i Li  q

if
2 i

i

L




r

store index of linearly dependant column

jout = [jout , i]

else

proceed appending the columns to matrix Q

Q = [Q, qi/ ρ]

end if

end

Output: jout – vector containing indexes of linearly dependant columns

37 / 85

4.7 PROJECTION ERROR

After removal of linear dependency of the columns of left orthogonal vector the basis

vectors are processed through RRQR, the projection error can be computed as

†

()h h

F

F

X V V X

X
 (4.20)

where † denotes Moore–Penrose pseudoinverse ,
F

 is a Frobenious norm, X

corresponds to the initial dataset, on the basis of which the tree was constructed and Vh is a

refined basis vector.

4.8 REDUCED ORDER MODEL

For typical ROM the quality of training set plays a crucial role in the accuracy of solution.

Usually the span of taken snapshots has to contain the information about possible events, since

the solution of something that was not observed during the training cannot be obtained

accurately.

The matrix of observations X is used for construction of the left orthogonal vector by means

of SVD (see Chapter 4.5) and used for instance in the POD basis construction such as

Algorithm 7

Algorithm 7. Typical POD algorithm

Input: Snapshot matrix samp DOFN N
X

Compute SVD:
T  X V Σ W

Choose number of basis vectors {1,2,... }n n

Truncate basis
1 1[...] [...]DOFNH n where V V V V V V

Output: DOFn NH 
V

38 / 85

The iterative finite element model procedure of reduced order model described by

Algorithm 8 similar to the full order model discussed in Chapter 4.1.

Algorithm 8. Newton-Raphson – POD reduced

Input: ; ;t

r ia D σ

Iteration j = 1 , displacement at 1 0t

ra  

Set 1 t

r r  a a , 1 t

int,r int,r=f f

compute new external force vector 1

, ,

t t

ext r ext r

f f

(*) compute jacobian of stress vector rD

compute tangent stiffness matrix at element level

assemble tangent stiffness matrix at structure level Kj

compute j

rK

solve 1

,

j j j

r r ext r int,rd   K a f f for 1j

rd 
a

update displacement vector 1 1j j j

r r rd    a a a

compute stress 1j

r


σ

compute internal force vector at element level

assemble internal force vector at structure level 1j

int,r


f

project ra , ,ext rf and int,rf back to full order space

if
2 2

1 j j

L L
tol   a a

then 1 t t j   a a

go to next load step

39 / 85

else

 j = j + 1 , go to step (*)

end if

Output: t t

r

a , t t

int,r


f

4.9 RELATIVE ERROR

For the chosen refined basis Vh the online stage is executed through POD algorithm (see

Algorithm 8) and relative error is computed as

2

21

(,) (,)1

(,)

k kt
FOM ROM L

k
k FOM L

u u
a posteriori error

t u

 



  
 


 (4.21)

where of difference between output of ROM
ROMu and FOM

FOMu is normalized using L2

norm at the each time step τ

40 / 85

5 RESULTS

Herein the results of application of the tree construction and the succeeding refinement of

reduced basis are presented. The snapshot matrix of observations for time function (See chapter

4.4.5) is processed. The computational complexity of the Finite Element Model equipped with

Viscoplastic constitutive model is tackled using the refinement technique and the accuracy of

the ROM is measured in both the offline and the online stages.

5.1 TIME FUNCTION

Data collected in a snapshot matrix for a certain time function (4.10) is processed by means

of normalization (see Chapter 4.3). The comparison of the normalized and the original data is

the base of discussion on feasibility of the refinement method.

The refinement methodology itself consists in procedures on the observed data collected

into snapshot matrix. It starts from the tree construction (see Chapter 4.4) which is based on

correlation between degrees of freedom. Then the base splitting is done according to the tree

structure. Finally, the error has to be computed, in order to know the accuracy of chosen

combination of branch of the tree and bases vectors.

In the beginning the refinement technique is applied to the normalized dataset as it was

described in the Chapter 4.3. Figure 5.1 shows the resulting offline error (5.5) of Reduced

Order Model at each step of basis refinement. It illustrates the fact that the use of normalized

dataset in Figure 5.1 (right) gives the reduction of projection error with respect to original

dataset in Figure 5.1 (left).

Projection error for the first basis that is split in 3 branches does not show better results than

adding new bases (selection of 3 bases vectors for POD). Nevertheless, in Figure 5.1 (right)

the error decreases 2 orders of magnitude for normalized dataset. For 3 basis vectors, after split

in 2 branches the dimension becomes 6, which corresponds to FOM, so the relative error (4.21)

between ROM and FOM drops to numerical zero.

41 / 85

Figure 5.1. A-priori (projection) error. Time function

Not normalized (left) and normalized (right) observations.

This example illustrates the fact that in the offline stage the projection error reduces if the

dataset is normalized. It is important to keep in mind that the reduction is obtained by capturing

the correlation between degrees of freedom. The a-priori error is defined by projection of the

vector spanning in the reduced space onto the full order space. Due to the fact that the tree

constructs sequence of hierarchical subspaces, h-refinement guarantees the convergence of

ROM to FOM at the fine basis. Such a basis is a fully-split left orthogonal vector which has a

dimension NDOF × NDOF after RRQR and normalization, and number of basis chosen times full

depth of the tree × NDOF.

 Size of fully split (fine basis)

 Before

RRQR

Nbasis chosen ̇ Depth of

tree
× NDOF

(5.1)

 After RRQR NDOF × NDOF

42 / 85

5.2 BAR UNDER TENSION

In this example the one-dimensional Finite Element Model equipped with Viscoplastic

constitutive model is investigated. The non-linear bar under tensile forces has geometrical

imperfections. The initial setup The geometry of the bar containing one imperfection is

depicted at Figure 5.2 and cross-section area is defined at the Table 5.2. The Dirichlet boundary

condition is applied at the constrained side of the bar and tensile force (Neumann boundary) is

applied at the other end corresponding to (5.2) and Table 5.3. Viscoplastic constitutive model

corresponds to Perzyna’s formulation (See Chapter 3.1).

Aimp A0A0

Figure 5.2. Geometry of the bar

0

() 0

() ()

x

extx L

u x

x A x F







 
 (5.2)

The full order model that is solved by means of Newton-Raphson scheme (see Algorithm

1) and uses the programme setup from Table 5.1.

Table 5.1 . Model setup: G-FEM parameters. Strain-softening viscoplasticity.

Definition Variable Value

Number of time intervals model.nT 100 [s]

End time model.T 20 [s]

Time increment model.deltaT 5 [s]

Length of the bar model.L 100 [m]

Length imperfection zone model.impL 5 [m]

Number of elements model.nel 100 [-]

43 / 85

Max number of iterations per N.R.

increment
model.niter 10 [-]

Convergence tolerance of N.R. model.tol 10-6 [-]

The model parameters for inserting into the constitutive model of Perzyna viscoplasticity

(see Chapter 3.1) are listed in the Table 5.2. Substituting the values into strain-softening

response relation, it yields to

 -150 Y e   (5.3)

where σY0 is the initial yield stress, and λ is the plastic strain and it behaves as depicted in

Figure 5.3

Figure 5.3. Strain-softening response curve

44 / 85

Table 5.2 . Model setup: material parameters. Strain-softening viscoplasticity.

Definition Variable Value

Modulus of elasticity mat{1}.E 1000 [N / m2]

Yield stress mat{1}.Y 1 [N / m2]

Viscosity value Perzyna model mat{1}.eta 10-2 [-]

Exponent value Perzyna model mat{1}.N 1 [-]

Hardening parameter Perzyna model mat{1}.Ya -1 [-]

Hardening exponent parameter Perzyna model mat{1}.Yb 75 [-]

Specimen area mat{1}.area 1 [m2]

Imperfection 1 area mat{2}.area 0.89 [m2]

Imperfection 2 area mat{3}.area 0.90 [m2]

Imperfection 3 area mat{4}.area 0.91 [-]

In fact, the model with only one imperfection does not have enough contributing singular

values. In order to discover the potential of MOR with h-refinement algorithm, three

imperfections were introduced. The areas of imperfections are

0

0

0

0

0

0

0

0.00 0.22

0.89 0.22 0.27

0.27 0.47

0.90 0.47 0.52

0.52 0.72

0.91 0.72 0.77

0.77 1.00

I

imp

II

imp

III

imp

A x l

A A l x l

A l x l

A A l x l

A l x l

A A l x l

A l x l

 

  

 

  

 

  

 

 (5.4)

with the geometry as it is shown in Figure 5.4.

45 / 85

AIII
imp A0AII

impAI
imp A0A0 A0

Figure 5.4. Geometry of the bar with three imperfections

The boundary conditions remain to be (5.2)

Table 5.3 . Model setup: boundary conditions. Strain-softening viscoplasticity.

Definition Variable Value

Location of boundary bc.dirichlet.x [0 model.L] [m]

Value of displacement at the boundary bc.dirichlet.ux [0 1] [m]

Location of the applied force bc.neumann.x model.L [m]

Value of the applied force bc.neumann.fx 0 [N]

The displacement of the tip versus the applied force is plotted in Figure 5.5. At the initial

loading stage the specimen behaves in elastic way, following a linear loading path. After

passing the yielding point it reaches the peak value and due to strong localization of the stresses

at the points of imperfection the strain-softening occurs. At the end of the loading stage when

the value of displacement reaches 1, the residual is 0.25.

46 / 85

Figure 5.5. Force-displacement curve of the tip.

The data from FOM results for all degrees of freedom from Figure 5.5 is collected into the

snapshot matrix X, where columns correspond to the taken snapshots, while rows contain the

degrees of freedom.

Processing the snapshot matrix through the singular value decomposition (see Chapter 4.5)

allows to plot the singular values in Figure 5.6. It is seen that four singular values are

significantly contributing to the results of MOR.

47 / 85

Figure 5.6. Singular values of the snapshot matrix. Viscoplasticity.

The basis vectors of this snapshot matrix could be described by four values of SVD, which

means that taking four basis is sufficient for full description of this problem in a framework of

ROM.

Snapshot matrix X is not processed, which means that no normalization from Algorithm 3

was done. For this original dataset the tree construction and refinement shows that the

projection error in offline stage gradually decreases as the number of basis vectors increase. In

Figure 5.7 (left) the projection error of the refinement of basis vector with not corresponding

tree are presented. It could be told that the tree structure does not correspond to the snapshot

matrix when, for instance, as in this case normalized dataset is used for the construction of the

tree, while the matrix of observations X remains not-normalized. As it was illustrated before in

the Figure 5.1, normalization of observations provides faster a-priori error reduction. In the

Figure 5.7 (right) the tree fully corresponds to the non-normalized dataset.

48 / 85

Figure 5.7. A-Priori (projection) error. Viscoplasticity

Not corresponding tree (left) and not normalized observations (right)

The projection error calculated a-priori has a trend to decrease by refining basis vectors. In

this example four significant bases vectors are present, meaning that four singular values σ are

nonzero.

The projection error

†

()h h

F

F

X V V X

X
 (5.5)

where † denotes Moore–Penrose pseudoinverse and
F

X is a norm defined by Equation

(4.6), is shown in the Figure 5.7. Choosing just one basis for refinement, the error gradually

decreases, but the refinement does not introduce significant error drop. While for 2 basis

vectors the significant drop occurs when the branch is equal to 14. Three basis reach the error

reduction faster when the chosen branch is 7. In both cases of splitting the basis 2 or 3 the

projection error reaches value of using 4 basis vectors. It is seen that splitting the basis does

not produce improvement with respect to adding the basis vector. Nevertheless, the produced

result show that the desired value of error could be reached without adding the basis vectors,

but by means of splitting the reduced basis. This happens when size of VH tends to NDOF × NDOF

and described by the property 2 of the tree (see Chapter 4.4.6).

49 / 85

Observations derived from the described behaviour of projection error could be summarized

in two facts. First of all, the importance of using the proper tree corresponding to snapshot

matrix on a refined basis Vh is shown by comparison of left and right plots of Figure 5.7. The

meaning of ‘proper tree’ in this context is that the tree was constructed on the basis of the same

snapshot matrix X, as the basis Vh was computed. Secondly, the right plot demonstrates that

the error reduction could be achieved by means of refinement. Also, it is important to mention

that the process of refinement should be terminated at a certain point, in order to avoid the error

increase, which occurs when the columns of Vh are linearly dependant.

Figure 5.8. A-Priori (projection) error. Viscoplasticity

Not normalized observations (left) and RRQR not normalized observations (right)

According to the properties of the tree described in Chapter 4.4.6, the refinement provides

the creation of hierarchical subspaces () ()H hrange rangeV V . So, conceptually the

projection error has to decrease monotonically. Due to the fact that during the refinement the

basis VH is split, columns of Vh might become linearly dependent. In order to avoid the

phenomena appearing in Figure 5.8 (left) for case of 3 basis, split 12, it is needed to remove

linear dependence of columns of the refined left orthogonal vector Vh. Rank-Revealing QR

factorization (RRQR) is aimed to do so (see Chapter 4.6). The avoidance of singularity of Vh,

when condition number is high provides results of Figure 5.8 (right). The error does not only

50 / 85

remain stable, but also the size of Vh is shrunk by use of RRQR, which leads to further reduction

of the computational cost.

The relative error

2

21

(,) (,)1

(,)

k kt
FOM ROM L

k
k FOM L

u u

t u

 



  


 (5.6)

is computed during online stage. It decreases by refining basis vectors, as it is shown in the

Figure 5.5 (left). There could be seen a correlation between a-priori and a-posteriori error.

During the offline stage the accuracy of refinement is defined by projection error calculated

with Equation (5.5).

The accuracy of online stage is measured by calculation of residual (ROM solution extracted

from FOM solution) and normalized with respect to the result of full order solution. Obviously,

during the real online stage the use of Equation (5.6) is limited, since there is no possibility to

know FOM solution. Nevertheless, since for this illustrative example FOM solution is

provided, the relative error can be computed a-posteriori.

Figure 5.5 (right) shows the fact that using one basis the error gradually decreases, but never

reaches the low value of error in a certain span of [1; 35] basis refinements. The use of two

basis vectors shows significant error drop at 14 branches and then a further drop to desired

value at 22 branches, when the size of the basis reaches 22, thanks to RRQR. The first drop in

the case of 3 basis also occurs for 3 branches in both cases of a-priori and a-posteriori errors

and at a certain point when the size of the basis is equal to 19, for 2 and 3 basis chosen the

relative error starts to follow the same path. From the projection error is hard to predict the

occurrence of the second error drop at a branch 22 with size of the basis 29, when the relative

error reaches desired value.

51 / 85

Figure 5.9. A-Posteriori (relative) error. Viscoplasticity

Not corresponding tree (left) and not normalized observations (right)

Basically, the same observation of the necessity of correspondence of the tree to the snapshot

matrix is induced from comparison of plots from Figure 5.9. The trend of the error reduction

by means of refinement is observed on the right plot. The exact point of termination of

refinement process has to be investigated in details. Also the comparison with Figure 5.7 shows

that a-posteriori error is hard to predict during online stage.

 In order to see the evolution of the relative error during the process of basis refinement, it

is necessary to plot the relative error and the size of the basis simultaneously on the same

canvas. In Figure 5.10 the left scale corresponds to the computed relative error, the right scale

shows size of the basis during refinement procedure.

52 / 85

Figure 5.10. A-posteriori relative error for not normalized observations(left scale) and

size of splitted basis (right scale). Viscoplasticity

Taking initially one basis vector as VH the relative error does not drop, and the size of the

basis increases linearly. It is possible to predict that the error drop would occur due to the

property 2 of the tree (see Chapter 4.4.6), but it is less efficient then adding another basis to

VH. In the case of choosing two or three basis vector as VH the value of error becomes similar

when both basis have the same size. Even thought the size of the basis Vh has to increase

dramatically at size(VH)̇ split, it does not happen due to he RRQR

53 / 85

5.3 INVISCID BURGERS EQUATION

5.3.1 FULL ORDER MODEL

The setup used for the initial solution is parameterized boundary value problem

 

2

2 (,)(,) 1
0.02

2

u xu x
e x

x







 

 
 (5.7)

with boundary conditions

1(0,) , 0u      (5.8)

 (,0) 1 , [0, 100]u x x   (5.9)

where μ1 and μ2 are two real-valued input variables is defined by Table 5.4.

In the time interval [0, 50]  the solution (,)u x  is computed using a uniform

computational time-step size Δt =0.05, leading to t = 1000 total time steps. During the offline

stage, snapshots of the state are collected into the snapshot matrix X for the time steps at training

inputs. Newton-Raphson scheme with a tolerance 10-8 is used at a full order model (see Table

5.5).

Table 5.4 . Model setup. Burgers Equation

Definition Variable Value

Number of time intervals model.nT 1000 [s]

End time model.T 50 [s]

Time increment model.deltaT 0.05 [s]

Length of the bar model.L 100 [m]

Length imperfection zone model.impL 10 [m]

54 / 85

Number of elements model.nel 150 [-]

Max number of iterations per N.R.

increment
model.niter 10 [-]

Convergence tolerance of N.R. model.tol 10-8 [-]

In this case the produced solution is not smooth as it is depicted in the Figure 5.11. The G-

FEM with the Newton-Raphson scheme fails to capture the shock wave formation, so the

oscillations in the field of u occur.

Figure 5.11. Full Order Model discretized in 150 elements. Inviscid Burgers equation.

Increasing the number of elements model.nel = 1000 and leaving all the rest of the input

parameters from Table 5.4 the result becomes much smoother, as it is depicted at Figure 5.12.

55 / 85

Figure 5.12. Full Order Model discretized in 1000 elements. Inviscid Burgers equation.

In such a case the dimension of the model has drastically increased from 150 to 1000, as

well as the solution of the linearized system of equations became more computationally

expensive. The singular value coefficients on the Figure 5.13 have significant number of non-

zero values. Moreover a slow decay of the plot illustrates the fact of high nonlinearity of the

model based on Inviscid Burgers equation.

The offline stage of the ROM procedure includes computation of the left orthogonal basis

VH based in the SVD procedure. The tree construction algorithm, described at the Chapter 4.4

is employed for the offline stage. The constructed tree based on the snapshot matrix X can be

seen as a dendrogram of Figure 5.14, according to the structure of hierarchical binary clustering

(see Chapter 4.4.2). Some degrees of freedom are separated by a high distance calculated with

a metric of Euclidean distance (See Chapter 4.4.4). The rest have a small distance, which is

good sign for defining the groups, e.g. branches for basis splitting. The created tree structure is

stored for use on the online stage in the array consisting of the branches.

56 / 85

Figure 5.13. Singular values of the snapshot matrix. Inviscid Burgers equation.

Figure 5.14. Dendrogram. Inviscid Burgers equation.

57 / 85

5.3.2 REDUCED ORDER MODEL

In the offline stage is possible to compute the projection error defined in Chapter 5.3.3. The

projection error plotted on the Figure 5.15 gradually decreases, as long as the basis vector VH

is refined according to the tree structure. The values of offline error do not decrease

dramatically adding the basis vectors (increasing the size of left orthogonal vector by adding

basis). Just a slight reduction occurs taking the basis from 50 to 250, with a step of 50, e.g the

basis size is higher 5 times than the initially taken.

Figure 5.15. Projection Error. Inviscid Burgers equation.

In order to check the trend of error reduction observed a-priori, it is necessary to execute the

online stage and compare the results of ROM and FOM. In the Table 5.5 the ROM results (solid

line) of taking 5, 10 and 25 basis vectors are compared to the Full order solution (dashed line)

in the first row. It is clearly seen that the ROM fails to reproduce the solution of Burgers

Equation. The same happens for splitting the basis 5 and 10 up to 10 branches. In the case of

splitting the left orthogonal vector VH of the size 25 once (into 2 branches) the resulting picture

58 / 85

slightly resembles the captured behaviour of FOM, nevertheless the resulting error computed

offline is 10%. It is still not acceptable result for the ROM performance.

Table 5.5. ROM basis splitting into branches. Burgers Equation

B
ra

n
ch

Basis 5 Basis 10 Basis 25

1

2

10

It was observed in the example of the bar under tension in Chapter 5.2 that the basis splitting

reduces the relative error. Tests on the ROM without basis splitting (1 Branch) for 50 and 200

basis show that ROM alone cannot reach the FOM solution.

59 / 85

Increasing the size of the basis by means of h-refinement from 50 basis to 100 splitting into

two branches does not mean that the size of Vh remains the same. After processing Vh trough

RRQR the linear dependency of columns becomes eliminated. In this case the size of the basis

changes from 50 to 51, but the offline error drops from 56% to 3,6%. It also seen on the Figure

5.16 that the further splitting into 10 branches does not reduce the error significantly. It is

important to keep in mind that instead of the Full Order Model requiring the solution of the

system of size 1000, the system solved here has dimensionality of 51, resulting in 3,6% error.

Figure 5.16. ROM with 50 basis vectors. Inviscid Burgers equation.

For illustrative purposes, it is possible to take 200 basis vectors, and split in the same fashion

as before, producing the Figure 5.17. It results in error drop from 45% to 0,2% as at solving a

five times smaller system as the initial FOM.

60 / 85

Figure 5.17. ROM with 200 basis vectors. Inviscid Burgers equation.

5.3.3 ERROR COMPUTATION

For the available model of Burgers equation the error reduction occurs after a first basis

splitting. For the number of branches greater than two, the error does not decrease significantly

(see Figure 5.18).

Adding the basis to the left orthogonal vector and executing ROM alone shows incapability

of capturing the phenomena. H-refinement coupled with adding the basis reduces the online

error.

61 / 85

Figure 5.18. Relative error of ROM. Inviscid Burgers equation.

Comparing trends of offline error (Figure 5.15) and error computed online (Figure 5.18) it

is hard to define a-priori the proper choice of the basis and branch to be efficient online.

62 / 85

6 CONCLUSION AND FUTURE DEVELOPMENT

On the basis of the observations from the numerical results, it is possible to conclude that

the reduction in projection error is observed for nonlinear problem. The Rank-Revealing QR-

factorization helps in removing linear dependency of the columns of basis vector and as a

consequence, prevents the increase of the projection error offline.

In the online stage, for the current viscoplastic model an error reduction occurs. The use of

RRQR is mandatory here, since the system of equation cannot be solved without positive

definite stiffness matrix. Nevertheless, the use of RRQR does not eliminate spurious increase

of the relative error computed during the online stage.

Comparison of the h-refinement technique with the standard ROM, shows that one

dimensional bar equipped with Perzyna viscoplastic model does not show advantage of the use

of h-refinement (basis splitting). However in the case of the problem of Burgers equation,

where the response can be discontinuous, and more singular values contribute to the solution

of ROM (when the typical ROM basis is not truncated significantly), the advantage of using

ROM with h-refinement is visible. It was illustrated that when POD alone fails to capture the

shock formation, the use of refinement technique is able to deliver an accurate solution without

a noticeable increase of the computational cost.

63 / 85

7 APPENDIX A. CODE MANUAL

The given code manual describes the workflow and operations of the MatLab code devoted

to Model order reduction, h-refinement technique. It includes full order model solution for 1D

bar, tree construction procedure and computation of the error in both: offline and online stages.

The reduced order model is trained on the basis of the full order model (FOM), and the

succeeding solution is obtained through model order reduction.

7.1 TREE CONSTRUCTION

The tree construction procedure is described by a flow chart at the end of this section in

Flowchart 4. The results of the solution of FOM is used as a training set for offline stage. The

matrix of snapshots X has a format where rows contain degrees of freedom and columns the

snapshots, and it has a dimensionality of NSamp × NDOF.

7.1.1 NORMALIZATION OF SNAPSHOTS

In order to capture the correlation of the degrees of freedom, it is possible to normalize

training set according to

,

,

1; 0

i j

i j T

i

T T

i i i

x
x

x

x x if x



 

 (7.1)

where . denotes a L2 norm

Through the normalization, the correlated and anticorrelated state variables become

separated by small Euclidean distance and can be grouped via clustering.

64 / 85

7.1.2 BINARY CLUSTERING

In order to proceed on clustering algorithm it is needed to establish a metric for the pairwise

distance. The way of capturing similarities between observations in this case is the Euclidean

distance computed by

 2 ()()ij i j j jd x x x x    (7.2)

where for xi and xj are row vectors of snapshot matrix Samp DOFN N
X




There exists other ways of computation the distance, as for instance cosine distance

evaluated for vectors xi and xj as

 (,) 1 cos(,) 1
()()

i j

ij i j i j

i i j j

x x
d x x x x

x x x x


   

 
 (7.3)

It is observed in [13] that having large dimensionality of vectors, the difference between

results of computation Euclidean or cosine distance is not significant.

Binary clustering is adopted for capturing the correlations between degrees of freedom. The

Euclidean distance is computed at the each iteration, defining the metric for linking pairs of

clusters. It creates the matrix (2NDOF -1)× 3

65 / 85

Global Left Right
Distance

Cluster Cluster Cluster

{1} 1 1 0

{6} 6 6 0

0.0039

0.0062

0

{7} 4 5

{8} 2 7

{9} 3 6

{

.0071

1.010} 1 9

{11} 8 10

083

1.3088

 (7.4)

where the Global Cluster raw contains the left and right cluster, defining the linked pair.

The last column defines the value of the metric which is used for creating a new cluster. At the

next stage the names of the clusters are replaced with the clusters form 1 to NDOF themselves,

such as Global Cluster {10}, containing global clusters {1} and {9} becomes {1, 3, 6} after

substitution.

7.1.3 REFINEMENT MECHANISM

As soon as the branch and size of the basis Vh is chosen, the depth of the tree is set. The

corresponding level of the tree is chosen and the basis vector VH is split the following manner

HV  hV

The “split basis” procedure places the entities of basis vector Vh at the positions prescribed

by the tree. The entire procedure is as described at the Flowchart 1

66 / 85

Insert:

- Basis vector VH

- Depth of the tree

Begin Split Basis

Extract matrix from the Tree

array according to the depth

Row-wise place basis entity

according to the Tree

Output refined Vh

End

RRQR on Vh

Flowchart 1. Split basis

7.1.4 RANK REVEALING QR-FACTORIZATION

In the case when it is needed, the refined basis vector Vh could be processed though the rank-

revelling QR factorization, in order to eliminate linear dependency of the columns Flowchart

2

67 / 85

Insert

- Basis vector Vh

- Tolerance tol

Begin RRQR

(Rank Revealing QR

factorization)

Compute norm of the 1st

basis vector w.r.t. row

Normalize 1st basis vector

for l=2:size(Vh,2)

Output indexes of linearly

dependent columns

End

Store index of the column

jout = [jout, l]

 ρ /norm(r,2) < tol
YesNo

Append normalized next

column

Q = [Q, q/ρ]

r = QT * Vh(:,l)

q = Vh(:,l) - Q*r

ρ = norm(q,2)

Flowchart 2. Rank Revealing QR-Factorization

68 / 85

7.1.5 PROJECTION ERROR

The projection error is computed for a certain branch and certain basis of the tree as

†

()h h

F

F

X V V X

X


 (7.5)

where † denotes Moore–Penrose pseudoinverse and
F

X is a Frobenious norm. The

procedure of computation of the offline error is described by Flowchart 3

69 / 85

Insert Snapshot

matrix X

Load Tree Structure

Begin computation of

projection error

Compute SVD of X

Create VH

Set

Number of basis and

depth of the tree

Split Basis

Compute projection error

Plot Projection Error

End

RRQR

Vh is linearly dependant
YesNo

Flowchart 3. Offline (projection) error

70 / 85

Insert Snapshot

matrix X

Begin Tree construction

Clear data

Set plot properties

Read size of snapshot matrix X

Normalization

procedure

Normalize rows of X

YesNo

Compute Pairwise Distance

Euclidean / Cosine/ e.t.c.

Group into binary clusters

according to criteria

Define contents of each

cluster

Create array of matrices

for each possible split of

the tree

First entity is negative

Flip the origin

YesNo

Plot Dendrogram

End

Flowchart 4. Tree construction

71 / 85

7.2 REDUCED ORDER MODEL

The traditional Newton-Raphson scheme is employed for the ROM as at is depicted at

Flowchart 5.

The snapshot matrix X is decomposed according to the SVD in order to create reduced basis

VH and truncate it as it is set in the input. The depth of the tree is set. Basis VH is split to Vh

using the refinement mechanism. For the chosen refined Basis Vh the online stage is executed

and relative error is computed as

2

21

(,) (,)1

(,)

k kt
FOM ROM L

k
k FOM L

u u

t u

 



  


 (7.6)

where of difference between ROM and FOM is normalized using L2 norm at the each time

step τ

72 / 85

Insert:

- number of time steps TMAX

Begin ROM

Set number of

iterations ItMAX

Compute Residual force vector

Compute Stiffness matrix

Apply boundary conditions

Compute reduced Stiffness matrix

Compute Reduced residual vector

Solve the system
Project displacement field

Compute residual

Convergence check

 < Tolerance

It < ItMAX

Yes
Project displacement field

Compute relative error

Time step > TMAX

End ROM

No

No

Yes

Flowchart 5. Reduced Order Model

73 / 85

8 APPENDIX B. MATLAB CODE

8.1 FULL ORDER MODEL

Corresponds to Algorithm 1

clear all
close all

addpath('make_R');
addpath('make_dRdu');
addpath('make_R/perzyna');

%% Input model, material, boundary conditions

[model,mat,bc] = input_values();

%% Initiate model

[model, bc] = initiate(model, mat, bc);
pd = [0 0]; %!!! initial load displacement curve

%% Time integrator

%initialize time integrator
[time_step, u0, R_int, ut, ft, inVar_timeStep, inVar_iter] =

initiate_timeAdvancing(model, mat);

% start counting time
tic;

for t=1:model.nT
 fprintf('Time step %i \n', t);

 % initialize Newton Raphson scheme
 du = zeros(model.sdof,1);

 % compute external part of residual vector
 R_ext = make_Rext(model, bc, t);

 for iter=1:model.niter

 % Residual vector (force vector)
 [R_int, inVar_iter] = make_Rint(model, mat, du, inVar_iter,

inVar_timeStep);

74 / 85

 % Jacobian matrix (stiffness matrix)
 dRdu = make_dRdu(model, mat, inVar_iter);

 R = R_int + R_ext;

 % apply boundary condition and initial value
 [dRdu, R] = apply_Boundary(dRdu, R, bc, iter, model, t);

 % solver
 ddu = - dRdu \ R;

 %update solution
 du = du + ddu;

 % convergence check
 if iter==1
 du1 = ddu;
 end

 res = norm(ddu)/norm(du1);
% res = norm(R);
 fprintf('\t iteration %i , residual %i \n', iter, res);

 if res < model.tol
 break
 end

 end

 %update internal variables for current time step
 inVar_timeStep = update_inVar_timeStep(inVar_iter);

 u0 = u0+du;

 % collect sample
 ut(:,t) = u0;
 ft(:,t) = R_int;

 %% Post process, plot force vs displacement
 if t==1
 plot(0, 0, 'ob')
 hold on
 end
 pd = [pd ; u0(end), - R_int(end)];
 plot(pd(end, 1), pd(end,2), 'ob')
 drawnow

 %!!! stop if displacement reaches a certain point (any better way to

specify this ?)
 if u0(bc.dirichlet.dof.x(end)) > bc.dirichlet.dof.u(end) || -

R_int(bc.dirichlet.dof.x(end)) < 0;
 break
 end
end

75 / 85

xlabel('Displacement')
ylabel('Force')

timeStamp = toc;

fprintf('\nSimulation time: %i \n', timeStamp);

%% Post process
% save samples (snapshot data)
 save('/data/ut.mat', 'ut')
 save('/data/pd.mat', 'pd')

8.2 TREE CONSTRUCTION

The code corresponds to Flowchart 4

clear all
close all

%% INPUT (Snapshot matrix N_snapshots X N_DOF)
 load('/data/ut.mat');
%compute size of the basis
n_DOF=size(X,1);
n_samp=size(X,2);

XX=X;

%% NORMALIZATION (if needed)
%%Normalize observations (DOFs) to capture correlation%%%%%%

for i=1:size(XX,1) %through DOF

 if norm(XX(i,:),'fro') == 0 %if Zero cannot normalize

 Normal_XX(i,:)=XX(i,:);

 else %if nonzero - normalize

 for j=1:size(XX,2)

 Normal_XX(i,j)=XX(i,j)/norm(XX(i,:),'fro');

 end

 end

76 / 85

 if Normal_XX(i,1)<0 %flip origin if negative
 Normal_XX(i,:)=-Normal_XX(i,:);
 end

end

%END normalization%%

%% If no normalization was used
Normal_XX=XX;

%% CLUSTERING

%%_ Clustering by Matlab (Binary clusters Bottom-Up)

PwDist_XX=pdist(Normal_XX); %Compute PairwiseDistance (Euclidean) from

snapshot matrix
% squareform(PowDist_XX) %if Possible to see intercorrelaton between dof

i and j
LinkXX=linkage(PwDist_XX); %Grouping into binary clusters
SZLinkXX=size(LinkXX);

E={}; %Define contetnts of each cluster

%Assign to first NDOF clusters itself
for i=1:n_DOF
 E{i}=i;
 E_Err_dist{i}=0;
end

%Create the hierarchical clusters

for i=1:SZLinkXX(1) %Go vertically trough new clusters

 ResL=[]; %take left binary cluster
 ResR=[]; %take right binary cluster

 %For left side of linkage
 if LinkXX(i,1)>n_DOF %if more than NDOF than define what's inside
 ResL=E{LinkXX(i,1)};
 else ResL=LinkXX(i,1);
 end

 %For right side of linkage
 if LinkXX(i,2)>n_DOF %if more than NDOF than define what's inside
 ResR=E{LinkXX(i,2)};
 else ResR=LinkXX(i,2);
 end

 %Put right and left together
 E{n_DOF+i}=([ResL ResR]) ;
 %Definition of each cluster (by DOFs)
 E_Err_dist{n_DOF+i}=LinkXX(i,3) ;
 %Store the distance (metric)
end

77 / 85

%Definition of each cluster (by other NDOF Clusters)
for i=1:(SZLinkXX(1))
 ClusN(((SZLinkXX(1)+n_DOF+1)-i),1:2)=LinkXX(((SZLinkXX(1)+1)-i),1:2);
end

EEE{1}=(SZLinkXX(1)+n_DOF); %First branch of the tree contains TOP

cluster number

EEE_sort{1}=(SZLinkXX(1)+n_DOF); %First branch of the tree contains top

cluster number (Sorted)

for i=1:(SZLinkXX(1)) %Go through clusters which are > than NDOF

 corrr=zeros(length(EEE{i}),n_DOF); %assign lenght of branch

 for j=1:(length(EEE{i})) %Create branches subsituing clusters with

entities

 ReadE=EEE{i}; % What is the cluster number?

 Val=strrep(ReadE(j),ReadE(j),E{ReadE(j)}); %Substitute cluster

number with its contetnt

 for mm=1:length(Val)
 %Fill sparse matrix for each tree level
 corrr(j,Val(mm))=Val(mm);
 end

 end
 TREE{i}=corrr; %Ready matrix for the branch (Entire tree is stored)

 cl=((SZLinkXX(1)+n_DOF+1)-i);

 expr=(ClusN(cl,:)); %Take out cluster numbers for the level

 EEE{i+1}=(strrep(EEE{i},cl,(expr))); %Branches created with clusters

names (globally)
 EEE_sort{i+1}= sort(strrep(EEE{i},cl,ClusN(cl,:))); %Branches

created with clusters names |Sorted|

 display(['Creation of branch E ' int2str(size(TREE,1))]);

end

%%%%Tree is alredy created in EEEL_1
save('data\Tree_E.mat','TREE','-v7.3')

%% PLOT DENDROGRAM
figure
[H]=dendrogram(LinkXX,'ColorThreshold','default'); %Plot the tree

Dendrogram
 xlabel('DOF indexes, clustered')
 ylabel('Distance between objects')
%
%

78 / 85

%% Compute projection error for each branch
%
% %%%%Select coarse basis%%%%%
% tic
[V,SIG,~]=svd(Normal_XX);

n_basis=150; %set number of basis

for curr_bas=[5 10 25 50 100 150 200 250]

 display(['Basis ' int2str(curr_bas)]);

 V_H=-V(:,(1:curr_bas)); % take first column of SVD

approximation (Coarse Basis)
%
 V_h=[];
 V_h_norm=[];

for n_branch=[1 2 3 10 50 100 200 250] %choose number of branches
 display(['Branch ' int2str(n_branch)]);

E_S=TREE{n_branch}; %Selected DEPTH of tree

 %%%%Refine corse basis using the tree%%%%%%

 V_h=[]; % Define sparse matrix for the refined basis

 for j=1:(size(V_H,2)) %through size of reduced basis

 for i=1:(size(E_S,1)) %through number of tree roots

 E_I=nonzeros(E_S(i,:))';
 V_h_1(E_I,i)= V_H(E_I,j); %create matrix of basis due

to tree of one root

 end

 V_h=[V_h V_h_1]; %create matrix of basis due to tree

of all roots
 V_h_1=0*[];

 end

%% RRQR See Flowchart 2 of Code Manual)

 V_h_RRQR=V_h;
 rrqr_tol = 1e-6; %RRQR tolerance
 cols=rrqr(V_h,rrqr_tol); %linarly dependant columns indexes
 V_h_RRQR(:,cols)=[]; %take them out

X=Normal_XX;
%

79 / 85

%% Compute projecion Error:
%--Corresponds to Flowchart 3 of Code Manual--
 %after RRQR
 Err_pinv_REF_RRQR (curr_bas,n_branch) = norm((X-

V_h_RRQR*pinv(V_h_RRQR)*X),'fro')/norm(X,'fro');
 %normalization+RRQR
 Err_pinv_REF_normXX_RRQR (curr_bas,n_branch) =

norm((Normal_XX-

V_h_RRQR*pinv(V_h_RRQR)*Normal_XX),'fro')/norm(Normal_XX,'fro');

 end
%
end%

8.3 REFINEMENT MECHANISM

Function split basis corresponds to Flowchart 1

function [va]=splitbasis(V_H,n_branch)

 %load Tree structure
 load(/Tree_E.mat','TREE')

 E_S=EEEL_1{n_branch}; %Selected DEPTH of tree

 %%%%Refine coarse basis using the tree%%%%%%

 V_h=[]; % Define sparse matrix for the refined basis

 for j=1:((size(V_H,2))) %through size of reduced basis

 for i=1:((size(E_S,1))) %through number of tree roots

 E_I=nonzeros(E_S(i,:))';

% create matrix of basis due to tree of one root
 V_h_1(E_I,i) = V_H(E_I,j);

 end

 %create matrix of basis due to tree of all roots
 V_h=[V_h V_h_1];

 V_h_1=0*[];

 end

80 / 85

%% RRQR (See Flowchart 2 of Code Manual)

 va=V_h;

 %input RRQR tolerance
 rrqr_tol = 1e-10;

 %find indexes of linarly dependant columns
 cols=rrqr(V_h,rrqr_tol);

 %take linarly dependant columns out
 va(:,cols)=[]; %take them out

end

8.4 RANK REVEALING QR FACTORIZATION

RRQR algorithm is explained by Flowchart 2

function [jout] = rrqr(A,tol)

rho = norm(A(:,1),2); %Norm of 1st col w.r.t. to row
q1 = A(:,1) / rho; %normalized 1st column

Q = [q1];
jout = []; %index of columns to be taken out

for l=2:size(A,2)
 r = Q' * A(:,l);
 q = A(:,l) - Q*r;

 rho = norm(q,2); %rho = norm(A(:,l) - Q*(Q' * A(:,l);),2)

 if rho/norm(r,2) < tol
 jout = [jout, l]; %store index
 else
 Q = [Q, q/rho]; %append column
 end

end

end

81 / 85

8.5 REDUCED ORDER MODEL

Corresponds to Flowchart 5

clear all
close all

addpath('make_R');
addpath('make_dRdu');
addpath('make_R/perzyna');

%% Input model, material, boundary conditions

[model,mat,bc] = input_values();

%% Initiate model

[model, bc] = initiate(model, mat, bc);

% load values of FOM
 load ('/data/ut.mat', 'ut')
 ut_FOM = ut;
 XX = ut;

% SVD of the snapshot matrix
 [va,SIG,~] = svd(XX);

% store left orthogonal vector V_H
 va_ini = va;

for n_bas = 1: 5 %SET number of basis

for n_branch = 1: 80 %SET depth of tree
pd = [0 0]; % initial load displacement curve

va=va_ini;

fprintf('Chosen basis: %i \n', n_bas);
fprintf('Chosen branch: %i \n', n_branch);

%% time integrator

%initialize time integrator
[time_step, u0, R_int, ut, ft, inVar_timeStep, inVar_iter] =

initiate_timeAdvancing(model, mat);

% start counting time
tic;

% truncate basis V_H

82 / 85

 va_1 = va(:,(1:n_bas));

% split V_H to obtain V_h (see Refinement Mechanism)

 Va = splitbasis(va_1,n_branch);

% start MOR
for t=1: model.nT
 fprintf('Time step %i \n', t);

 % initialize newton raphson scheme
 du = zeros(model.sdof,1);

 % compute external part of residual vector
 R_ext = make_Rext(model, bc, t);

 for iter=1:model.niter

 % Residual vector (force vector)
 [R_int, inVar_iter] = make_Rint(model, mat, du, inVar_iter,

inVar_timeStep);

 % Jacobian matrix (stiffness matrix)
 dRdu = make_dRdu(model, mat, inVar_iter);

 R = R_int + R_ext;

 % apply boundary condition and initial value
 [dRdu, R] = apply_Boundary(dRdu, R, bc, iter, model, t);

 % compute the reduced stiffness matrix and the reduced force

vector
 % Reduced stiffness
 dRdu_r=va'*dRdu*va;

 % Reduced residual
 R_r=va'*R;

 % Solver
 ddu_r = - dRdu_r \ R_r;

 % Project back
 ddu = va * ddu_r;

 % update solution
 du = du + ddu;

 % convergence check
 if iter==1
 du1 = ddu;
 end

83 / 85

 % check convergence
 res = norm(va'*ddu)/norm(va'*du1);

 fprintf('\t iteration %i , residual %i \n', iter, res);

 if res < model.tol
 break
 end

 end

 %update internal variables for current time step
 inVar_timeStep = update_inVar_timeStep(inVar_iter);

 u0 = u0+du;

 %compute relative error
 err_ut(t) = (norm((ut_FOM(:,t)-u0),'fro')/ norm(ut_FOM(:,t),'fro'));

end

 %store size of the basis
 store_sz_basis(n_branch,n_bas) = size(va,2);

 %store relative error
 store_pd_displ_Vh(n_branch,n_bas) = (1/size(ut_FOM,1))*sum(err_ut);

end

end

timeStamp = toc;

84 / 85

REFERENCES

[1] P. Krysl, S. Lall and J. E. Marsden, "Dimensional model reduction in non-linear finite

element dynamics of solids and structures," Int J Numer Methods Eng, vol. 51, pp. 479-504,

2001.

[2] D. Amsallem and C. Farhat, "Interpolation Method for Adapting Reduced-Order Models

and Application to Aeroelasticity," Aiaa J., vol. 46, pp. 1803-1813, 07/01; 2017/03, 2008.

[3] A. Doostan, R. G. Ghanem and J. Red-Horse, "Stochastic model reduction for chaos

representations," Comput. Methods Appl. Mech. Eng., vol. 196, pp. 3951-3966, 8/1, 2007.

[4] K. Carlberg, C. Farhat, J. Cortial and D. Amsallem, "The GNAT method for nonlinear

model reduction: Effective implementation and application to computational fluid dynamics

and turbulent flows," Journal of Computational Physics, vol. 242, pp. 623-647, 6/1, 2013.

[5] C. W. Rowley, "Model Reduction for fluid, using balanced Proper Orthogonal

Decomposition," Int. J. Bifurcation Chaos, vol. 15, pp. 997-1013, 03/01; 2017/03, 2005.

[6] P. Perzyna, "Fundamental Problems in Viscoplasticity," Adv. Appl. Mech., vol. 9, pp. 243-

377, 1966.

[7] J. MacQueen, "Some methods for classification and analysis of multivariate

observations," in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics

and Probability, Volume 1: Statistics, 1967, pp. 281-297.

[8] J. M. Burgers, "A Mathematical Model Illustrating the Theory of Turbulence," Adv. Appl.

Mech., vol. 1, pp. 171-199, 1948.

[9] Y. Wang, I. M. Navon, X. Wang and Y. Cheng, "2D Burgers equation with large

Reynolds number using POD/DEIM and calibration," Int. J. Numer. Methods Fluids, vol. 82,

pp. 909-931, 2016.

[10] D. Citrini and G. Noseda, Idraulica. CEA, 1987.

85 / 85

[11] E. Hopf, "The partial differential equation ut + uux = μxx," Communications on Pure

and Applied Mathematics, vol. 3, pp. 201-230, 1950.

[12] T. Korenius, J. Laurikkala and M. Juhola, "On principal component analysis, cosine and

Euclidean measures in information retrieval," Inf. Sci., vol. 177, pp. 4893-4905, 11/15, 2007.

[13] G. Qian, S. Sural, Y. Gu and S. Pramanik, "Similarity between euclidean and cosine

angle distance for nearest neighbor queries," in Proceedings of the 2004 ACM Symposium on

Applied Computing, Nicosia, Cyprus, 2004, pp. 1232-1237.

[14] J. Wu, Advances in K-Means Clustering: A Data Mining Thinking. Springer Publishing

Company, Incorporated, 2012.

[15] K. Carlberg, "Adaptive h-refinement for reduced-order models," Int J Numer Methods

Eng, vol. 102, pp. 1192-1210, 2015.

[16] Y. P. Hong and C.-T. Pan, "Rank-Revealing QR Factorizations and the Singular Value

Decomposition," Mathematics of Computation, vol. 58, pp. 213-232, 1992.

[17] T. F. Chan. Rank revealing QR factorizations. Linear Algebra and its Applications 88pp.

67-82. 1987.

