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Abstract

Convolutional Neural Networks are a particular type ofArtificial Neu-
ral Networks (ANNs) inspired by the biological processes in the primary
visual cortex of animals, and represent the state of the art in image recog-
nition and classification. Nowadays, Convolutional Neural Networks
(CNNs) and otherDeepLearning algorithms have been extensively adopted
in contexts such as big data analysis and smart embedded systems, provid-
ing customized technologies through cloud-based services and personal-
ized devices.
As regards this type of applications, the huge amount of data to be pro-
cessed and power constraints require to find techniques to build fast and
energy efficient solutions. In particular, the dataflow pattern of CNN algo-
rithm make them highly suitable for hardware acceleration. In fact, many
hardware accelerators have been proposed based on Graphics Processing
Units (GPUs),Field-ProgrammableGate Arrays (FPGAs),Application-
Specific Integrated Circuits (ASICs). Among them, FPGAs are able to
make a proper tradeoff between flexibility, performance and power con-
sumption. However, the design and the implementation of a CNN accel-
erator on such devices may result complex and time consuming, especially
for developers that are not experienced in hardware design.
For these reasons, the work presented in this thesis proposes a frame-
work to automatically generate a hardware implementation of CNNs on
FPGAs thoughHigh Level Synthesis (HLS) tools. The working flow of
the framework starts from an high level description of the network, inte-
grating TensorFlow for training and an internally developed C++ library
for the final implementation.
The proposed approach has been evaluated on several CNN topologies
and two different datasets of input images, reducing the design time from
hours to minutes, and obtaining hardware implementations able to achieve
a performance-per-watt ratio up to 10771 FPS/W .
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Estratto

Le Reti Neurali Convoluzionali (conosciute come Convolutional Neural
Networks) sono un particolare tipo di Rete Neurale Artificiale, il cui fun-
zionamento è ispirato a cellule presenti nella corteccia visiva degli animali,
e rappresenta oggi la miglior soluzione per il riconoscimento e la classifi-
cazione di immagini. Al giorno d’oggi, le cosiddette Convolutional Neu-
ral Networks (CNNs) e altri tipi di algoirtmi appartenenti alla branca
del Deep Learning vengono ampiamente utilizzati in contesti come quelli
dell’analisi di big data e dei sistemi embedded smart, fornendo delle tec-
nologie personalizzate attraverso servizi cloud-based e dispositivi come ad
esempio smartphones, e smart watches.
In questo tipo di applicazioni, l’enormemole di dati da processare e i vincoli
di consumo energetico rendono cruciale l’individuazione di soluzioni che
siano sia veloci che efficienti da un punto di vista energetico. In particolare,
lo specifico flusso di calcolo di una CNN rende questo tipo di algoritmi
estremamente adatti per essere accelerati in dispositivi hardware dedicati.
Infatti, molti acceleratori hardware basati su Graphics Processing Units
(GPUs), Field-Programmable Gate Arrays (FPGAs) ed Application-
Specific Integrated Circuits (ASICs) sono stati proposti a questo scopo.
Tra questi, le FPGA sono in grado di fornire un giusto compromesso
tra flessibilità, performance e consumo energetico. Tuttavia, il design e
l’implementazione di un acceleratore per una CNN su questo tipo di dis-
positivi potrebbe risultare sia complesso che oneroso in termini di tempo
di sviluppo, specialmente per sviluppatori con poca esperienza di proget-
tazione hardware.
Per questi motivi, il lavoro proposto in questa tesi propone un framework
in grado di generare automaticamente un’implementazione hardware di
CNN su FPGA attraverso strumenti di High Level Synthesis (HLS).
Il flusso di lavoro del framework parte da una descrizione ad alto livello
della rete, integrandosi con il framework di Machine Learning Tensor-
Flow per l’addestramento e una libreria C++ sviluppata internamente per
l’implementazione finale.
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La metodologia proposta è stata valutata su diverse topologie di CNN e
due diversi dataset di immagini in input, riducendo i tempi di sviluppo da
ore a minuti, e ottenendo implementazioni hardware in grado di raggiun-
gere un picco di performance-per-watt di 10771 FPS/W .
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Introduction 1

This introductive Chapter provides an overview of the topics that will be dis-
cussed in this dissertation. Section 1.1 describes the Deep Learning context,
a widely discussed topic in both research and engineering. Afterwards, CNNs
are introduced as one of the most promising algorithms in this context, briefly
describing the idea behind their working principle and providing examples of
application fields in which this kind of algorithm are involved. Section 1.2 ex-
plains the rationale behind the hardware acceleration of CNNs, focusing on
FPGAs as target devices for the implementation of such accelerators. Finally,
Section 1.3 describes the purposes of this thesis, providing an overview of the
work and its organization.

1



. Introduction

1.1 e Deep Learning Context

In the last years, the Deep Learning field has emerged as the most promising
approach for meeting several challenges in computing. In particular, every day
millions of images, text documents, audio file and so on are generated and stored
in data-centers of different service providers. Due to this huge amount of data,
it is crucial to find techniques to extract from them useful information automat-
ically. This is the so called Big Data Analysis field, in which several Machine
Learning (ML) algorithms, such as Neural Networks (NNs), Support Vector Ma-
chines (SVMs), Random Forests, have been adopted to provide models of the
data from an high level of abstraction. Indeed, many datacenter applications
currently rely on Machine Learning algorithm to provide services to end users.
In fact, prominent examples of use of deep learning algorithms can be found
on online available services such as AWS by Amazon [2], Microsoft Bing docu-
ment analysis [3], and many cloud-assisted services such as Siri [4]) and Google
Photos [5].

Moving from big to small scale, another challenge that has to be faced is
the one represented by the ubiquity of smart devices, designed to be always con-
nected and ready to interact with the sorrounding environment. This scenario is
the so-called Internet ofThings (IoT) paradigm, that refers to the interconnection
between all kinds of physical objects. IoT devices collect information on and/or
interact with the environment, resulting in a plethora of new applications in
the domains of smart cities [6], healthcare [7], transportation, and more [8, 9].
These pervasive devices are generally required to understand the environment
they are working in and the goals of their target user, possibly improving over
time by learning from experience.

Even though the energy efficiency requirement was the most constraining
aspect at the beginning of themobile era, use case scenarios and user expectations
have changed, and performance steadily gained relevance in the IoT industry.
The search for the right trade-off between the two becomes more and more
difficult as smart devices (smart watches, smart glasses, andwearables in general)
are now entering the market as the next generation personal devices: in this big
picture, customization will soon become a key performance indicator.

Deep learning [10, 1] has emerged as the most promising approaches for

2



1.2. Hardware Acceleration

meeting these challenges. In particular, within the deep learning class of al-
gorithm, CNNs [11] have emerged as the most efficient approach for image
recognition and classification tasks.

CNNs are inspired by the biological process in the visual cortex of animals.
From an high level of abstraction, they are able to extract features from an im-
age and aggregate this information to provide a classification of the image sub-
ject. The effectiveness and performance of such algorithms have considerably
improved in the past years, outperforming other existing visual recognition al-
gorithm [1] and becoming the state-of-the-art in image classification.

As a result, in the last years a huge research and engineering effort has been
devoted to design, implement and improve these kind of algorithms. Indeed
many Machine Learning frameworks have been developed to support tools to
build and train CNNs, such as TensorFlow [12], Caffe [13], Torch [14]. The
interest in CNNs and neural networks in general lead also to look for specialized
and efficient solutions oriented to Deep Learning algorithms, such as theTensor
Processing Unit (TPU) announced by Google [15].

1.2 Hardware Acceleration
Despite all the benefits, the adoption of deep learning algorithms, and CNNs in
particular, faces significant barriers due to performance and energy requirements
at different scales. In the context of High Performance Computing (HPC), dat-
acenters have to process data at Exascale, consuming a huge amount of power.
For this reason, it is crucial to find techniques to speed up the computation,
while meeting constraints on power consumption. The same challenges occur
also in the IoT field, where the limited resources of mobile devices make often
infeasible to implement deep learning algorithms on target hardware [16].

CNNs represent a peculiar type of algorithm where the demands in terms
of required memory and number of operations increase exponentially with the
size of the network. As an example, in Table 1.1 are reported the number of
operations of some well-known networks.

Nevertheless, the specific computation pattern of CNNs make them highly
suitable for hardware acceleration. For these reasons, many accelerators have
been proposed in the literature based onGPUs, FPGAs and ASICs [18, 19, 20].

3



. Introduction

Network FLOPs
LeNet-5 [11] 0.84M
AlexNet [1] 1.4G
GoogleNet [17] 1.5G

Table .: Number of FLOPs of well-known CNNs in the state of the art.

Among these different types of devices for hardware acceleration, FPGAs
represent a proper tradeoff between performance and power consumption. On
the one hand, the computational pattern of CNNs presents a highly repetitive,
pipelined and parallelized structure, which particularly fits with the regular con-
figurable fabric of such devices. On the other hand, even thouhg FPGAs may
not reach the same performance peaks of GPUs, their power efficiency makes
them suitable for the acceleration of algorithms even in case of strict power con-
straints.

FPGAs have been succesfully employed as new hardware accelerator plat-
form both in HPC [21] and embedded systems contexts. As a consequence,
various vendors, such as Xilinx and Altera (now Intel), have started the pro-
duction of specific FPGA families for embedded and mobile markets ([22, 23])
able to offer reasonable performance while presenting a low power profile, as
well as high-end devices such as the Virtex FPGA [24] and the Stratix-V [25].
Thanks to their reconfigurability, this kind of devices also provide high flexibil-
ity, which allows to perform fast prototyping and development round. This is
especially needed in the machine learning field, where the design process may
require several attempts due to the huge design space and the amount of config-
urable hyper-parameters, which have to be tuned in order to find the optimal
model to accomplish a given task.

However, FPGAdesign presents a considerable challenge: the learning curve
required to target hardware design is indeed very steep. Hence, even an expert
software developer might need a considerably long training period to generate
a working solution with sufficient performances. This has to be further im-
proved to gather the desired standard. To overcome this issue, HLS can be very
helpful, allowing to use high-level languages such as C, C++ and OpenCL to
design custom hardware accelerators on FPGAs. Indeed, many industrial tools
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such as Vivado HLS by Xilinx nowadays are able to obtain efficient solutions
comparable with accelerators written with the so-called Hardware Description
Languages (HDLs) such as VHDL and Verilog. With HLS, it is possible to
rapidly explore the design space both from hardware (i.e. the accelerator) and
software (e.g. the structure of a CNN) perspectives.

Nevertheless, the benefits introduced byHLS to target FPGAs as devices for
hardware acceleration are still not enoughwhen compared to the fast development-
round offered by productivity-level languages such as Python or Lua. While a
certain level of experience is required to design an efficient hardware accelerator
with HLS tools, modern frameworks available online such as TensorFlow [12],
Caffe [13], Torch [14], permit to implement several machine learning algo-
rithms using APIs for different languages, significantly reducing the develop-
ment effort when compared to the actual implementation workflow for FPGA
design.

Thus, it is evident the existing gap between modern tools and solid develop-
ment frameworks in order to target FPGAs.

1.3 Proposed Work and Contributions
The aim of this thesis is to bridge the aformentioned gap between productity-
level tools and FPGA-based accelerator design, providing a framework for the
automated generation and synthesis of an hardware implementation of CNNs.
In particular, the framework allows the user to give an high-level description of
the network, specifying the hyperparameters of the different layers. The CNN
specification is then translated into an internal Intermediate Representation (IR),
from which the C++ code implementing the model is generated, along with
the .tcl scripts to perform the HLS and the bitstream file needed to set up the
obtained hardware accelerator on the target FPGA device.

Figure 1.1 shows the overall structure of the framework. The blue modules
describe the components implemented in the framework, while the dashed ones
represent optional components that may be integrated in the proposed workflow.
As shown in the Figure, the developed framework provides a toolchain that con-
nects an high-levelUser Interface (UI) to industrial tools for hardware implemen-
tation. Specifically, the structure and the configuration of the network can be
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Figure .: Overall structure of the proposed framework.

given through lightweight data-interchange objects such as the ones generated
by the Caffe Deep Learning framework by Berkley [13]. Moreover, it is al-
ways possible to convert any description generated by other Machine Learning
frameworks, and convert it to a compatible representation through the Python
APIs exposed by the proposed framework. Thanks to the flexibility of Python
APIs, a Graphical User Interface (GUI) could be potentially integrated in the
work-flow, as well as other types of visual tools such as Jupyter Notebooks [26].

Furthermore, the toolchain provides a module to perform the training of the
specified CNN and export the weights to the hardware generation flow. Alter-
natively, a set of weights pretrained in a different environment can be directly
included.

As regards the hardware acceleration, the framework include templatized
C++ libraries for the High Level Synthesis of the CNN accelerator, which can
be used either as a black-box, or configured to meet particular needs for a given
application. The hardware generation targets Xilinx devices and it is interfaced
with the Vivado Design Suite [27] for the HLS and the bitstream generation.
In particular, the currently supported platforms are the Zybo and the Zedboard
boards by Digilent [22, 23], powered by a Xilinx Zynq MPSoC and mainly
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focused on mobile and embedded market, and the Xilinx Virtex7 VC707 De-
velopment Board [24], an high-end board oriented to HPC. However, the
proposed approach can be easily extended in the future to include any custom
board as target device.

In summary, this work includes:

• A novel framework written in Python, providing a set of modules that
implement the toolchain for the design and the implementation of CNNs
on FPGAs;

• A flexible internal representation based onGoogle Protocol Buffers that is
compliant with a subset of the layer definitions of the Caffe deep learning
framework, giving the possibility to provide existing models as input;

• The integration with TensorFlow for CNN training, providing the train-
ing set and the test set directly to the framework;

• A hardware library with customizable modules implementing the differ-
ent type of layers of CNNs.

The proposed approach has been tested on a large experimental set, demon-
strating the effectiveness of the proposed solution on well-known case studies
as the MNIST [28] and the CIFAR-10 [29] datasets.

The following part of this thesis work is organized as follows. Chapter 2
provides the background on CNNs, giving the main definitions to understand
the working principle of such networks. Chapter ?? discusses the literature on
both CNN design and hardware acceleration targeting FPGAs. The proposed
framework is presented in Chapter 3, discussing the design flow and the details
of the modules. Chapter 4 describes the architectural template for the FPGA-
based CNN accelerator. Chapter 5 illustrates the experimental evaluation of
the proposed approach on different case studies. Finally, Chapter 6 draws the
conclusions of the thesis, also including future works.
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Background on
Convolutional Neural Networks 2

This chapter provides the main definitions needed to understand how Convolu-
tional Neural Networks work. Section 2.1 briefly introduces ANNs in general,
explaining their mechanism and the training process. Section 2.4 provides the
idea behind CNNs are implemented and the difference with respect to a classi-
cal ANN. Section 2.3 gives the details about the overall structure of such net-
works, discussing the different types of layers that can be part of a CNN. Then,
Section 2.4 analyzes research works regarding CNNs in general, focusing on
proposed network topologies and application case studies. Finally, Section 2.5
shows the research effort in accelerate such networks on dedicated hardware,
such as GPUs, FPGAs and even ASICs.
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. Background on Convolutional Neural Networks

2.1 Artificial Neural Networks

Back in 1957, a probabilistic model called Perceptron was presented by Rosen-
blatt [30]. This model was firstly inspired by the biological neurons of ani-
mal brain. As it can be seen from Figure 2.1, in a simplified way, a neuron
is made by the nucleus, the dendrites and the axon. This type of cell is elec-
trically excitable and transmits signals to the other cells through connections
called synapses, which are formed between the terminal part of the axon and
the dendrites of the other neurons. Each neurons receive electrical signals from
its dendrites, accumulating charge until a certain threshold is reached. At this
point the neuron fires the signal through the axon to the other neurons.

Nucleus

Axon

Dendrites

Figure .: The schematic representation of a neuron cell of animals.

2.1.1 e Perceptron classifier

This mechanism is somehow mimicked in the perceptron model, represented in
Figure 2.2. A perceptron takes an arbitrary number of inputs x1, x2, ..., xn and
produces an output y. The connections between the input values and the nu-
cleus, called in this case synapses, are weighted with values w1, w2, ..., wn, while
w0 is a special weight that represents the threshold of the neuron, called bias. The
nucleus of the perceptron computes a function f(·) of the input, also called acti-
vation function. The most commonly used activation functions for perceptrons
are the Heaviside step function, the sigmoid and the hyperbolic tangent functions,
that are smoother than the step function and are real-valued in [0, 1] and [−1, 1]
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Figure .: Diagram of the Perceptron model.

respectively, and in some cases the Rectified Linear Unit (ReLU) function, de-
fined as the max(0, x).

Given these values, the way in which the output y is computed is really
simple:

y = f

(
n∑

i=1

(wi · xi) + b

)
(2.1)

Where the bias b is defined as b = 1 · w0. From Equation 2.1, the output
of a perceptron is computed as a function of the weighted sum of the inputs.
Supposing that the activation function f is the step function, the output of the
perceptron would be:

y =

1 if
∑n

i=1(wi · xi) + b ≥ 0,

0 if
∑n

i=1(wi · xi) + b < 0
(2.2)

Drawing a comparisonwith the neuron cell, the perceptronwill fire if the weighted
sumof the inputs is above a certain threshold (for instance considering threshold =

−b), otherwise the output would be 0.
Given the right set of weights, the perceptron is able to discriminate any

linearly-separable set of inputs. However, the great advantage of this model is
that the weights can be learned from experience. In other words, it is possible
to develop a learning algorithm in order to find the proper values of the weights
that allow to obtain the desired value in output.
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. Background on Convolutional Neural Networks

Consider a set of S samples D = {(x1, t1), (x2, t2), ..., (xs, ts)}, where each
(xi, ti) is a tuple of the n-dimensional vector of the inputs xi, and the correspond-
ing desired output ti. This is the so-called training set, from which is possible to
learn the right values of the weights so that y → t. Then, the learning algorithm
of the perceptron is executed for a certain number of iterations called epochs. The
algorithm works as follows:

1. At epoch 0, the weights and the bias are initialized to 0 or to an another
pre-determined or random value.

2. For each sample s in the training set, the following steps are performed:

a. Compute the output ys with the input vector xs.

b. Compute the error with respect to the desired output as:

δ = ts − ys

c. Compute the new values for weights and the bias at step k + 1 with
the following rule:

wk+1
i = wk

i + γ · δ · xs,i ∀i ∈ [1, n] (2.3)

bk+1 = bk + γ · δ (2.4)

3. Repeat from step 2 until the desired output is obtained.

The parameter γ in 2.3 and 2.4 is the learning rate, usually valued in (0, 1),
which is able to tune the impact of the error δ on the actual weight. After each
update during the training process, the value of the weights move towards the
correct one. However, it is necessary to find a criterion to obtain good general-
ization capability, so that the model is able to provide the desired output, even in
case of unseen inputs. Finding the right number of epochs for the training process,
as well as the proper value of the learning rate, is not an easy task. Indeed, one
major problem of this type of learning is the so-called overfitting, which occurs
when the weights perfectly fit the instrinsic model of the training set, providing
garbage results in case of new inputs. For this reason, several techniques have
been proposed in order to avoid overfitting and optimize the training results.
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input layer

hidden layers

output layer

Figure .: Artificial Neural Network topology. Image from Neural Networks
and Deep Learning book by Nielsen [32].

Although powerful, the perceptron has the strong limitation of being able
to discriminate only linearly-separable class of problems. To overcome this is-
sue, the adopted solution was to connect several perceptrons in a network of
neurons, analogously to what happens in the animal brain. Even though it
may seem a trivial idea, this led to the birth of the well-known machine learn-
ing algorithm called Artificial Neural Network (ANN), Neural Network (NN) or
sometimes Multi-Layer Perceptron (MLP). As it can be seen from Figure 2.3,
neural networks are organized in an arbitrary number of layers of perceptron
units. The first and the last layers are called input and output layers respectively,
while the layers in the middle are known as hidden layers. Starting from the
input layer, the output of the neurons become the input vector of the next layer
and so on, until the last layer is reached. Because of this specific computation
pattern, ANNs are also called feed-forward neural networks.

2.1.2 Stochastic Gradient Descent and Backpropagation

Considering the capability of a single perceptron as linear classifier, neural net-
works potentially can discriminate multi-class inputs, discriminating regions of
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. Background on Convolutional Neural Networks

any shape within the input space. The training process of such networks is based
on the same idea of the perceptron one. Indeed, the key point of the algorithm
is to tune the value of the weights in the network, according to the amount of
the error committed with respect to the desired output.

This idea is implemented by the Stochastic GradientDescent (SGD) algorithm.
The intuition behind SGD is analogous to the perceptron update rule of the
weights in Equation 2.3. Consider a cost function C defined as:

C(w) =
1

2

N∑
n=1

(y(xn, w)− tn)
2 (2.5)

where w represents the weights of the network, y(xn, w) is the output corre-
sponding to n-th sample in training set, and tn is the associated desired output.
Then, the goal is to minimize the error given by the cost function. In order
to do so, the gradient ∇C(w) is computed with respect to each weight in the
network. From an high-level perspective, this corresponds to compute the con-
tribution that each weight gives to the final error. Recalling that the gradient
is the direction of maximum growth of a function, the idea behind SGD is to
iteratively change the value of the weights towards the opposite direction with
respect to the gradient. The new value of the weights is computed according to
the following rule:

wk+1 = wk − γ · ∇C(w) (2.6)

where k is the k-th iteration and γ is the learning rate. It is worth to notice the
similarity with the update rule of the single perceptron in Equation 2.3.

However, due to the presence of the hidden layers, it is necessary to find
a way to compute the gradients of the weights for any layer in the network.
Indeed, it is not possible to directly compute the derivative of the error with
respect to the weights of the hidden neurons, since their output is not explicit
in the expression of the cost function. This has been a major problem in research
on NNs, until in 1986 an algorithm known as backpropagation was introduced
in [31]. Nowadays, the backpropagation algorithm has become the standard
approach for training of neural networks.

As explained in [32], starting from the last layer, it is possible to derive the
expression of the derivatives of the cost function with respect to the weights of
each layer in the network. Given the cost function C(w) defined in Equation
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2.5, the gradient can be written as:

∇C(w) =
∂C

∂aL
(2.7)

where L indicates the index of the last layer, and aL is the output vector after
the computation of the activation function. Then, exploiting the chain rule, it
is possible to find the contribution to the error given by the weights in the last
layer by computing the derivative of the activation funtion, providing:

δL =
∂C

∂zL
=

∂C

∂aL
· f ′(zL) (2.8)

where wL are the weights of the neurons in the output layer, while zL is the out-
put vector before the activation function is computed. This represents a measure
of the error commited by the neurons in the last layer. With the same princi-
ple, it is possible to proceed backwards, and compute the derivative of the cost
function with respect to the weights in any layer. The measure of the error for
a generic layer l is computed as:

δl = wl+1 · δl+1 · f ′(zl) (2.9)

From this, it can be derived the equation to compute the derivative of any weight
and bias in the network as:

∂C

∂wl
= al−1 · δl (2.10)

∂C

∂bl
= δl (2.11)

Backpropagation algorithm, together with SGD, provide an efficientmethod
for training neural nets, which have become one of the most popular machine
learning algorithm nowadays, outperforming existing solutions in many fields.

2.2 From Neural Networks to Computer Vision
Artificial Neural Networks demontrated their capability as classifiers even in
image recognition tasks [11, 32, 33]. Indeed, it is quite straight-forward to con-
sider an image as a vector of pixels, that become the input vector of a network.
Although obtaining promising results, due to the complete interconnection be-
tween neurons, NNs are not able to take into account the instrinsic spatial local-
ity of an image. However, taking inspiration from another biological process,
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Input Feature Maps Feature Maps Feature Maps Neurons Output

Convolutional
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Figure .: Common architecture of a CNN.

a variant of classic ANNs particularly efficient for image classification has been
developed. This new type of neural networks are known as Convolutional Neural
Networks (CNNs).

The work in [34], published in the late 1960s, showed that animal visual
cortex contains specialized neurons that respond to small regions of the visual
field. The same type of cells are present in similar regions across the visual cortex,
providing a complete map of the visual space. This working principle lead to the
idea behind CNNs structure.

As shown in [32], the input of the network can be considered as organized
in a grid of input neurons, which particularly fits the 2D structure of an image.
Then, each neuron in the next layer responds only to a small region of the in-
put image, providing a filter made by the weights of the neuron. In this way,
the output value can be considered as a pixel of the filtered image. The crucial
point behind the mechanism of CNNs is that the weights are shared among the
neurons in the layer, such that every output value is a pixel of the same filtered
image that is known as feature map.

The sharing of the weights exploits the spatial locality of an image, as it hap-
pens in the animal visual cortex. In fact, the purpose of the layers in a CNN is
to find correlation in different regions of the image, extracting features from it.
In the same way of ANNs, the weights of the neurons are the result of the train-
ing process, providing filters that are able to recognize distinct characteristics,
such as edges, lines, circles and so on (Figure 2.5, from [1]). Moving forward in
the network topology, the filters are able to extract more complex and abstract
features.

Those features are then aggregated and utilized in order to provide a clas-
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Figure .: Features from the first layer of AlexNet. Image from Krizhevsky
et al. [1].

sification of the input image. Figure 2.4 presents the overall architecture of a
CNN; it is structured in a configurable chain of layers that can be partitioned
in two main stages, called feature extractor and classifier, respectively.

2.3 Topology of Convolutional Neural Networks

The feature extractor is the defining part of a CNN. In general, it is composed
of a sequence of the so-called convolutional layers, usually followed by activation
layers and alterned with pooling or sub-sampling layers. The classifier instead is
constituted by fully-connected layers, which form a standard ANN in the last part
of the network.

CNNs demonstrated to be very efficient in image classification. Nowadays,
they have become the state-of-the-art in image recognition and classification,
and they are widely used in many applications in the field of Computer Vision.
The next subsections provide the details on the structure and the implementa-
tion of the different types of layers of a CNN.

2.3.1 Convolutional layer

The convolutional layer implements an arbitrary number ofK filters, or kernels, to
extract relevant features from the input image; for each filter k, a correspoding
output feature map is generated. Usually, the dimensions of the kernels are
small, varying from 3x3 to 5x5 pixels or 12x12 in case of very big input images.
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Figure .: Computation pattern of 2D convolution.

The mathematical operation implemetented by each kernel is a convolution
of the volume made by the input pixels with the kernel weights. The input
volume has shape Ch×H×W , respectively the channels (e.g. RGB), the height
and the width of the image. The following equation shows how each output
pixel is computed.

oki,j =
Ch∑
c=0

KH∑
h=0

KW∑
w=0

(wk
h,w,c · xi+h,j+w,c) + bk (2.12)

where i and j are the coordinates of the output pixel, k is the k-th filter with
dimensions Ch × KH × KW , x and w are respectively the input pixel and the
weight, and bk is the bias of the kernel.

From an abstract point of view, filters are slided on the image to produce
the output feature map. The sliding factor, called stride, is usually set to 1, but
sometimes it has higher values in order to significantly reduce the input dimen-
sions, especially in the earlier stages of the network. In fact, every position of
the filter computes one single pixel in output, as depicted in Figure 2.6. The
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dimensions of the output feature map are given by:

H ′ =
H −KH

Kstride

+ 1

W ′ =
W −KW

Kstride

+ 1

(2.13)

A convolutional layer can be implemented in an algorithmic way given by
the following pseudo-code:

1 for (i = 0; i < H - Hk + 1; i++)

2 for (j = 0; j < W - Wk + 1; j++)

3 for (k = 0; k < K; k++)

4 for (c = 0; c < Ch; c++)

5 for (h = 0; h < KH; h++)

6 for (w = 0; t < KW; w++) {

7 w = weights[k][c][h][w];

8 x = img[i+h][j+w][c];

9 o[k][i][j] += w * x;

10 }

Listing .: Pseudo-code of a convolutional layer

It is worth noting the lack of control structure in the code. This makes the
specific computation pattern of the convolutional layer to be extremely dataflow.

2.3.2 Pooling layer

The pooling or sub-sampling layer is generally inserted between two convolu-
tional ones to progressively decrease the size of the elaborated data. The work-
ing principle of this layer is similar to the convolutional layer one. Indeed, the
pooling layer is implemented as a small filter (usually 2x2 or 4x4 for large im-
ages) that selects or compute one output pixel according to an operator. The
most common type of operator is the so-called Max-Pooling, which selects the
pixel in the filter with maximum value. Other types of sub-sampling operators
are the Min-Pooling and the Mean-Pooling, which select the minimum value
and compute the mean of the input pixels, respectively. After the pooling layer,
the dimensions of the output feature maps are reduced according to Equation
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2.13. However, in general the pooling filter dimension is equal to the stride,
also called pooling step, providing the following equations for the new feature
maps size:

H ′ =
H

Pstep

W ′ =
W

Pstep

(2.14)

There are twomain purposes of this type of layer. On the one hand, reducing
the dimensions of the feature maps allows to save significant memory to store
the intermediate results. On the other hand, pixel selection makes sure that
only the most relevant features will be forwarded to the next layers.

2.3.3 Activation layer

The activation layer is an element-wise operator that applies an activation func-
tion to each of the input pixels, in the same way of what happens in the per-
ceptron. The application of the activation function allows to squash the value
of the pixels within the boundaries of the specific function, avoiding indefinitly
increasing of the values due to the multiply-accumulate operation in the con-
volution layer. Moreover, such function add a non-linearity that smooths the
obtained classification boundaries. Common functions used in the activation
layer are the following:

• Sigmoid function: σ(z) = 1
1+e−z with range [0, 1]

• Hyberbolic tangent function: tanh(z) = ez−e−z

ez+e−z with range [−1, 1]

2.3.4 Fully-connected layer

The fully-connected layer, also called linear layer, is the same type of layer of a
classical ANN. Basically, it is composed of several perceptron units that take
the output of the previous layer as input. It is worth noting that the activation
function of the perceptron in case of fully-connected layers is usually the identity
function. In fact, the same result can be obtained by putting an activation layer
afterwards.
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From a mathematical point of view, linear layers compute the sum of the
product of the weights and the inputs, given by the following equation:

y = W · x (2.15)

where y is the vector obtained by the dot-product of the matrix of the weights
W , and the input vector x. Each element wj,i in W is the weight between the
i-th input neuron and the j-th neuron in the layer.

As it happens for the convolutional layers, even fully-connected layers have
a specific computation pattern that makes them highly-suitable for hardware
acceleration, thanks to the absence of control structure. The pseudo-code of a
fully connected layer is the following:

1 for (j = 0; j < OUT_NEURONS; j++)

2 for (i = 0; i < INPUT_NEURONS; i++) {

3 w = weights[j][i];

4 y[j] += w * x[i];

5 }

Listing .: Pseudo-code of a fully-connected layer

The number of neurons of the last linear layer is equal to the number of
classes to be recognized. In this way, it is possible to apply a normalization
operator that gives a probabilistic interpretation of the provided classification.
In particular, one of the most common operators is the SoftMax operator σ:

σi =
eyi∑N
n=1 e

yn
∀j ∈ [1, N ] (2.16)

where yi is the output vector generated by the linear layer. This operator enforces
theN values of the output to lie in range [0, 1] and to sum up to 1, such that they
can be interpreted as the probability of the input to belong to a certain class.

2.4 Convolutional Neural Networks in Research
Since their first proposal in the late nineties in [11], CNNs have been employed
in many fields due to their capability of identifying different and complex fea-
tures in images. In [11], LeCun et al. first proposed a CNN-based approach for
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the recognition of handwritten digits of the MNIST dataset [28], composed of
28x28 black and white images (Figure 2.7). Thanks to its popularity, this dataset
has become one of the most adopted benchmark for CNNs related works. The
models proposed in the literature have been able to obtain a classification accu-
racy up to the 99,7% of this testing dataset [35, 36], composed of 10 000 images.
This is an incredible result, especially considering that some of the numbers are
very difficult to be recognized even from humans.

Figure .: Sample of the handwritten digits belonging to theMNIST dataset.
Image from: http://theanets.readthedocs.io.

Interest in this kind of algorithms has been growning constantly, and other
more complex datasets have been introduced as benchmarks, such as the Cifar-
10 and the Cifar-100 [29], composed of 32x32 RGB images belonging to 10
and 100 different classes, respectively (Figure 2.8). Another well-known dataset
is the ImageNet dataset [37], which is the object of the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) [38]. This dataset is composed of
big images divided in high-level catergories, sub-categories and so on. The
ILSVRC is one of the largest competitions in Computer Vision and every year
teams compete to claim the state-of-the-art performance on the dataset. CNNs
demonstrated to be very effective in the classification task of those images. In
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fact, the popular network known as AlexNet, presented in [1], was able to obtain
62.5% and 83% in top-1 and top-5 accuracy, winning the ILSVRC competition
in 2012.

Figure .: Sample RGB images belonging to the Cifar-10 dataset. Image
from: https://www.cs.toronto.edu/kriz/cifar.html

Since then, new CNN models have been proposed to further improve the
classification accuracy, involving also companies as Google and Microsoft. In
particular, in 2014 Google won the ILSVRC challenge presenting a network
name GoogLeNet [17], which is able to achieve 93.33% top-5 accuracy on the
test set. Then, in 2015 Microsoft proposed its own model called ResNet [39],
which got the first place in the same competion, obtaining a top-5 accuracy of
96.43%.

Thanks to their capability in image classification, CNNs started to be em-
ployed in many computer vision applications. As illustrated in [40], such net-
works have been firstly adopted in Optical Character Recognition (OCR) and
hanwriting recognition systems, such as the works in [41, 42, 43], including
also case studies for Chines and Arabic characters [44, 45].

CNNs have also been used for object detection in images, even in case of face
recognition, providing very high accuracy and real-time performance [46, 47,
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48, 49]. Examples of such applications include the work developed by Google
in [50] for detecting faces and license plate in StreetView images for privacy
purposes. NEC deployed a CNN-based sysem able to track customers in super-
market and recognizing gender and age. Google introduced image classification
in the search engine services, through the Search by Image feature. Amazon de-
veloped deep-learning based technologies for image recognition, face detection
and sentiment analysis in AmazonWeb Services (AWS), and provides APIs for
such applications with AWS Rekognition [2].

Other experimental applications using CNNs also include hands/gesture de-
tection [51, 52], logos and text recognition [53], but also vision-based obstacle
avoidance for off-road mobile robotos [54]. Moreover, CNNs are emerging
also for another type of multimedia data, with examples of natural language
processing applications [55, 56, 57, 58].

2.5 Hardware Acceleration of CNNs
One of the main challenges application engineers have to face with CNNs is
their considerable computational demand as the size of the network grows to
achieve the required accuracy. As a matter of fact, most of modern CNN ap-
plications achieve bad performance on Central Processing Unit (CPU), even in
the case when multi-core architectures are used. For this reason, a large re-
search effort has been devoted in the past years to the acceleration of CNN by
means of dedicated co-processing units such as GPUs, FPGAs or even custom
ASIC modules. GPUs have demonstrated to achieve adequate performance
levels (e.g. [1, 59, 60]); however, their considerable power consumption is not
affordable in application scenarios such as the embedded and mobile one. On
the other hand, even if offering the best performance/power consumption trade-
off, ASIC solutions (such as [61]) are not very appealing due to their high design
and manufacturing costs. In the end, the literature has shown in many works
(e.g. [62, 63, 20, 64, 65, 66]) how FPGAs represent the most suitable device
for acceleration thanks to their highly-parallel and power-efficient grid of pro-
grammable processing elements.

In [67], the author developed a DRAM simulator based on memory access
patterns of CNNs. A memory-centric design method for CNN accelerators on
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FPGAs is presented in [18]. The efficient data pattern access proposed by the
authors resulted in a minimization of on-chip memory size and improvement
in data reuse, as well as better performance and energy efficiency. This work
was evaluated on a Xilinx Virtex-6 FPGA board and it outperformed standard
scratchpad memories accelerators.

The work reported in [63] aimed at increasing performance and reducing
energy consumption of CNN accelerators on FPGA thanks to computation
reordering and local buffer usage. Moreover, the authors proposed a novel ana-
lytical methodology whose purpose was to optimize nested loops for inter-tile
data reuse. This work evaluation proved a significant boost in XilinxMicroBlaze
soft-core performance, as well as a 2.1X reduction in data movement.

The work reported in [20] exploits the roofline model [68] in order to perform
a design space exploration for the acceleration of CNN convolutional layers on
FPGA. The defined architecture is based on a single module executing in se-
quence all the layers. The resulting implementation of the AlexNet CNN [1]
outperformed the previous state-of-the-art implementation.

A programmable CNN processor implemented on a custom board powered
by a low-end DSP-oriented FPGA, called ConvNets Processor (CNP), is pre-
sented in [69]. Such processor relies on an external memory module and takes
in input a sequence of instructions generated by a Lush-based network compiler,
which accepts a Lush description of the CNN.

In [65], the authors propose a CNN accelerator design to overcome resource
underutilization on FPGA devices. The result is a modular implementation
of the CNN consisting of a chain of various modules supporting a pipelined
execution; the aim is to optimize the resources and avoid data dependencies
among them. The authors achieved on a Virtex-7 485T FPGA a 1.3X higher
throughput than the single module state-of-the-art design of the same network,
with a 97.1% of dynamic resource utilization.

The authors of [66] present a CNN accelerator design for Image-Net large-
scale image classification on FPGA devices. The authors analyzed the literature
on CNN designs to show that convolutional layers are computational-centric,
whereas linear layers are memory-centric. Then, they developed a dynamic-
precision data quantization method to enhance bandwidth and resource uti-
lization. The experimental results reported only 0.4% accuracy loss, while the

25



. Background on Convolutional Neural Networks

average performance remarkably overcomes the previous approaches.
All the approaches discussed so far focused on the architectural design of

the CNN accelerator in order to improve performance and power consump-
tion. However, authors performed the design activities manually and, most of
the time, the implemented solutions are specifically targeted for a single appli-
cation scenario, such as the HPC one. This implies that the re-targeting and
adaptation of such HW design to different scenarios, such as the embedded
one, is a demanding and time consuming activity. The goal of this work is to
implement a novel framework overcoming these limitations by proposing new
re-usable architectural templates that are automatically generated, targeting dif-
ferent scenarios.
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This Chapter describes the methodology proposed in this thesis. Section 3.1
gives an overview of the framework, while the next sections provide the details
on the different modules. Section 3.2 analyse the Intermediate Representation
used in the framework, as well as the conversion from an existing Caffe descrip-
tion of a CNN. Then, Section 3.3 explains the training process, illustrating the
supported dataset formats and describing the training strategy. Finally, Section
3.4 provides the details on the generation of the C++ code for the High Level
Synthesis.
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3.1 Framework Overview

As stated in Chapter 1, CNNs are a very widely discussed topic in research and
engineering. Lot of efforts have been done in order to provide improvement
in accuracy, performance and energy efficiency of such algorthms. Despite the
latest achievements in this field, the huge amount of operations and memory
required for the parameters of a CNN makes it a very difficult task. This is
particularly true when this type of networks have to be implemented in hard-
ware and/or scenarios critical as regards power consumption, such as embedded
devices and datacenters.

Even though GPUs demonstrated to be efficient as accelerators for both
training and inference of CNNs, such devices are very power hungry, which
makes them not suitable in the aforementioned power-constrained scenarios.
For this reason, interest in FPGAs as accelerators has been growing in the last
years. Indeed, this kind of devices are extremely low-power, and their architec-
ture perfectly fit the massively parallel computation pattern of CNNs and neural
networks in general.

However, the process to design and implement such algorithms on FPGAs
can be complex and time consuming, especially for developers who are not
versed in hardware design. Despite many machine learning frameworks have
been proposed targeting both CPUs and GPUs as underlying device (e.g. Ten-
sorFlow [12], Caffe [13]), there are still no tools that allow to reduce the devel-
opment effort to implement CNNs on FPGA-based accelerators.

Given these motivations, the aim of this work is to provide a framework
that significantly reduce the development time, providing a toolchain for fast-
prototyping and deployment of hardware accelerators for inference.

The modules of the framework and the exposed APIs have been written in
Python. There are twomain reasons behind this specific implementation choice.
On the one hand, almost all machine learning frameworks provide PythonAPIs,
giving the possibility to easily integrate functionalities where needed. On the
other hand, the framework is specifically designed as a set of Python modules,
exposing the APIs that provide the toolchain for the automatic generation of the
C++ code of the CNN. Themodularity of the framework makes also the frame-
work to be scalable and provides a flexible external interface. In fact, it would

28



3.1. Framework Overview

C
N

N
 F

ra
m

ew
o

rk
 C

o
re

Python APIs

Google Protocol Buffer IR

TensorFlow Training

Hardware Generation

Trained
Weights

Caffe Representation

Zedboard / Virtex7

Existing IR

Figure .: Framework organization and workflow.

be straight-forward to both use the provided libraries as a Python package, for
instance using Jupyter Notebooks for enhanced code visualization, and build a
GUI on top of it. Moreover, each of the modules can be used as a stand-alone
Python script.

The overall organization of the framework is provided in Figure 3.1. As it
can be seen, there are three main modules provided:

• ProtoBuf Generator: this module provides the APIs for both the con-
versions from the Caffe .prototxt definition of a network, or a custom
JSON notation. The output generated by this module is a .proto file, con-
taining the serialized object definition made with the Google Protocol
Buffer [70].

• Trainer: this module is responsible of the training of the specified CNN
using TensorFlow APIs [12]. The datasets for training and testing are
required as input, as well as the .proto definition of the specified model,
either generated by the ProtoBuf Generator module, or created from
scratch with Protocol Buffer APIs. The Trainer will generate the files
containing the trained weights of the CNN as output.
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• HardwareGenerator: thismodule provides functions to generate both
the C++ source code and the .tcl scripts for High Level Synthesis and bit-
stream generation using Vivado and Vivado HLS [27]. The same .proto

definition is used as model to generate the code and to set the target device
for synthesis.

The next sections provide the details on the framework modules and their
implementation. In particular, a description of the utilized Protocol Buffer def-
inition and the training stratergy are provided.

3.2 e Intermediate Representation

The Intermediate Representation (IR) of the model is a key point within the
framework infrastructure, since every module relies on this specification to per-
form its functionalities. In order to provide the required flexibility to store all
the types of information needed by the different modules, it has been decided
to use Google Protocol Buffers [70], or simply ProtoBufs, as IR.

ProtoBufs provide a light-weight, extensible mechanism to store and serial-
ize data. In order to be used, ProtoBufs require a file containing the specifica-
tion of the information to be represented. The information inside a ProtoBuf is
structured in a so-called message, in which data are represented as fields in the
message definition. The fields can be either standard data-types as int, bool and
string, enumerations, or another message type. Once defined, the specification
of ProtoBufs has to be compiled, providing a special generated code with APIs
to write, read and manipulate messages as objects.

Furthermore, the choice of using Protocol Buffers as IR allows to provide
the same structure of models generated by the Caffe framework, which also
relies on this mechanism. Indeed, there are different approaches that can be
used as entry-points to the framework, namely, either a Caffe .prototxt model
or a JSON file can be provided to the ProtoBuf Generator, as shown in
Figure 3.1.
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3.2.1 Protocol Buffer definition

The top-level message definition within the framework is the one provided in
Listing 3.1. As it can be seen from the code, the Project message provides a
container for all the informations needed by different modules. In particular,
the ProtoBuf contains information about the network model, the training and
testing datasets, the parameters for training, and the target FPGA device for
the HLS and the hardware synthesis.

1 message Project{

2 optional string name = 1;

3 optional NetParameter network = 2;

4 optional Dataset train_set = 5;

5 optional Dataset test_set = 6;

6 optional Training train_param = 7;

7

8 enum DeviceType{

9 ZEDBOARD = 0;

10 ZYBO = 1;

11 VIRTEX7 = 2;

12 }

13

14 optional DeviceType device = 3 [default = ZEDBOARD];

15 optional uint32 num_cores = 4 [default = 1];

16 }

Listing .: Protocol Buffer definition of a Project message.

The network model definition is described in Listing 3.2. The NetParameter

message is compliant with the Caffe definition of the network. Indeed, the
same definitions for the different type of layers are used. Although reduced, the
framework definition of the network model supports the primary types of layer
of a CNN, i.e. convolutional layers, pooling layers and fully-connected layers.
It is also worth noting that the topology of the network is given by a sequence
of generic LayerParameter messages, providing a scalable definition in case of
additional supported types of layer.
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1 message NetParameter {

2 optional string name = 1; // representative name of the network

3 // The layers that make up the net. Each of their configurations, including

4 // connectivity and behavior, is specified as a LayerParameter.

5 repeated LayerParameter layer = 2;

6 }

7

8 message LayerParameter {

9 optional string name = 1; // the layer name

10 optional string type = 2; // the layer type

11 optional string bottom = 3; // the name of each bottom blob

12 optional string top = 4; // the name of each top blob

13

14 // Layer type-specific parameters.

15 optional ConvolutionParameter convolution_param = 106;

16 optional PoolingParameter pooling_param = 121;

17 optional InnerProductParameter inner_product_param = 117;

18 optional MemoryDataParameter memory_data_param = 119;

19 }

Listing .: Protocol Buffer definition the network model, compliant with a
subset of the one provided by the Caffe deep learning framework.

Themessage definitions of the supported types of layers are provided in List-
ing 3.3. The hyper-parameters of each type of layer are specified as fields. In
particular, the MemoryDataParameter is one of the available Caffe definitions for
the input data layer, containing information on the input image dimensions.
The ConvolutionParameter provides information on the filters of a convolutional
layer, i.e. the number of output feature maps and the kernels size. Then, the
PoolingParameter defines the structure of the pooling layer, including the sub-
sampling operator for future support to different types of pooling. Finally, the
InnerProductParameter specifies the structure of a fully-connected layers by pro-
viding the number of output neurons of the layer. It is worth to notice that some
of the parameters may seem redundant, however, this guarantees compatibility
with older definitions of existing network.
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1 message ConvolutionParameter {

2 optional uint32 num_output = 1; // The number of outputs for the layer

3 optional bool bias_term = 2 [default = true]; // whether to have bias terms

4

5 repeated uint32 kernel_size = 4; // The kernel size

6 repeated uint32 stride = 6; // The stride; defaults to 1

7 optional uint32 kernel_h = 11; // The kernel height

8 optional uint32 kernel_w = 12; // The kernel width

9 }

10

11 message PoolingParameter {

12 enum PoolMethod {

13 MAX = 0;

14 AVE = 1;

15 }

16

17 optional PoolMethod pool = 1 [default = MAX]; // The pooling method

18 optional uint32 kernel_size = 2; // The kernel size (square)

19 optional uint32 stride = 3 [default = 2]; // The stride (equal in Y, X)

20 optional uint32 kernel_h = 5; // The kernel height

21 optional uint32 kernel_w = 6; // The kernel width

22 }

23

24 message InnerProductParameter {

25 optional uint32 num_output = 1; // The number of outputs for the layer

26 optional bool bias_term = 2 [default = true]; // whether to have bias terms

27 }

28

29 message MemoryDataParameter {

30 optional uint32 batch_size = 1;

31 optional uint32 channels = 2;

32 optional uint32 height = 3;

33 optional uint32 width = 4;

34 }

Listing .: Protocol Buffer definition of Layer messages.
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As regards the Datasetmessage definition, it contains the information about
the images, as well as the format of the files. The currently supported formats
are the IDX format used for the MNIST dataset [28], and the most common
types of image format as png, jpg, bmp and so on. The message definition is
provided in Listing 3.4.

1 message Dataset {

2 optional string path = 1;

3 optional string img_file = 8;

4 optional string img_ext = 10;

5 optional string label_file = 9;

6

7 enum Format{

8 MNIST = 0;

9 OTHER = 1;

10 }

11

12 optional Format format = 2 [default = OTHER];

13 optional ImageInfo img_info = 6;

14 optional uint32 num_images = 3;

15 optional uint32 classes = 7;

16 }

17

18 message ImageInfo {

19 optional uint32 channels = 4;

20 optional uint32 height = 5;

21 optional uint32 width = 6;

22 }

Listing .: Protocol Buffer definition of a Dataset message.

Finally, each specific Projectmessage can be serialized or parsed as an object
to be used by the framework modules. It is also possible to export the message
in a human-readable string represention in a .prototxt file.
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3.3 e Training process
The Trainer is the module providing APIs to perform the training of the spec-
ified CNN. In addition to training, this module is able to export the weights in
a convenient file formats, namely the csv or the npy file format from the numpy

Python library.
The purpose of this module is to provide a first implementation of the CNN

training process in order to obtain the weights needed for inference. Indeed,
it is not possible to determine an optimal training strategy for all the possible
network topologies in the design space of CNN. However, it is possible to
implement a training approach that is able to obtain a sufficiently good accuracy
for the given model.

The training flow provided by the Trainer module is composed as follows.
Firstly, the datasets for the training and testing are loaded into the Trainer, as
well as the corresponding labels. As stated in Section 3.2, the supported formats
of the images can be either the IDX format as for the MNIST dataset, or one
of the standard image formats (e.g. png, bmp, etc.).

Secondly, the module builds the model of the CNN according to the struc-
ture parsed by the serialized ProtoBuf network message. Thirdly, the model is
mapped to a computational graph definition within a TensorFlow session. A
Graph in TensorFlow is a set of nodes representing operations among tensors.
For each convolutional or fully-connected layer in the network topology, the
weights and the bias are instantiated as TensorFlow Variable, which are tensors
that can be trained by the backpropagation algorithm. Then, for each type of
layer an operation is added to the computational graph.

At this point, the TensorFlow session is run to compute both the feedfor-
ward and the backward passes, updating the weights of the network. The batch
size of images and the learning rate are set according to the ProtoBuf message
of the training parameters.

The loss function used to compute the gradients is the cross-entropy error
function, applied after a SoftMax operator as described in Chapter 2. The cross-
entropy loss function is defined by the following equation:

C(w) = − 1

N

∑
n

∑
j

(tj ln(aLj ) + (1− tj) ln(1− aLj )) (3.1)
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where N is the batch size, j is the index of the j-th output neuron, tj is the cor-
rect output for that neuron, while aLj is the actual output. As described in [32],
the cross-entropy function has nice properties as a cost function. In particular,
it allows to prevent the learning slowdown caused by the derivative of the acti-
vation function σ′(z). Indeed, thanks to its mathematical definition provided
in Equation 3.1, the derivative of the cross-entropy with respect to the weights
∂C
∂w

is proportional to the error committed in the output, i.e. the larger the error,
the faster the neuron will learn, according to the update rule provided in 2.6.

Finally, after the training process is complete, the TensorFlow variables rep-
resenting the weights are evaluated as numpy arrays and exported in the specified
format for the next step of the framework work-flow.

3.4 Hardware generation

TheHardware Generator module is responsible for the main purpose of the
framework: to automatically generate the source code of a CNN suitable for
High Level Synthesis and implementation on an FPGA accelerator.

The functions provided by the module perform the following three tasks:

• A write_hls function is provided in order to generate the C++ code im-
plementing the CNN topology. This is done by parsing the ProtoBuf
description of the model as it happens for the training process. For each
layer in the network, an hardware module is instantiated by using templa-
tized functions with the dimensions of the layer as parameters. Further-
more, also the pragmas to configure the hardware generated by the HLS
process are added to the code at this stage. The details on the hardware
implementation are provided in Chapter 4.

• Along with the C++ implementation of the network, the module provide
functions to read the weights generated by the training process, or any
other weights file compliant with the format given by the Trainer module.
The imported weights are then written to an header file as static multi-
dimensional arrays and initialized.
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• Lastly, the module provides APIs to generate the tcl scripts to perform
the High Level Synthesis and the hardware implementation down to the
generation of the bitstream to configure the FPGA. The scripts are in
charge to create the projects for Vivado HLS and Vivado, add the source
code, generate the block design and run all the steps to write the bist-
stream. This allows to save a lot of effort and time to set up the tools
every time a new implementation is needed.
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This chapter gives the details on the architecture of the hardware accelerator
that implements a CNN. Section 4.1 explains the overall structure of the CNN
accelerator, the interconnections between the layer modules and the interfaces
with the sorrounding system. The following sections provide the implementa-
tions of the different type of layers as stand-alone modules. In particular, Sec-
tion 4.2 describes the architecture of the convolutional layer module, Section 4.3
details the max-pooling layer, while Section 4.4 provides the implementation of
the fully-connected layer. Finally, Section 4.5 concludes the chapter explaining
the overall architecture of the hardware accelerator implemented on the FPGA,
including the components for memory communication and run-time control.
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4.1 CNN Accelerator
As stated in the introductory chapter, the specific computation patterns of CNNs
makes them highly suitable for hardware acceleration. The main reason under
this statement is that the core computation of both the convolutional and the
fully-connected layers, which are the most computationally-intensive, can be re-
duced to a dot-product between the matrix of the weightsW and the input vector
x. For the fully-connected layer, this is trivial to be seen from Equation 2.15.
As regards the convolutional layer instead, from Equation 2.12 we can consider
the matrix W k

c as the weighted filter related to the c-th input feature map and
the k-th output feature map, thus it can be seen as subsequent dot-product op-
erations to reconstruct the 3D convolution. This kind of computation can be
efficiently mapped in specialized hardware like FPGAs and GPUs, which ex-
ploits the instrinsic parallelism of the dot-product to obtain a speed up in terms
of latency of a single multiply-accumulate operation.

Convolutional Layer Fully-connected LayerMax-Pooling Layer

Stream Stream

On-Board DDR Memory

AXI DMA
Core

Stream

AXI4-Stream

Stream

AXI4-Stream

Figure .: Convolutional Neural Network architetcural template.

The hardware accelerator that the framework is able to generate from the
network description is depicted in Figure 4.1. Each layer in the CNN topology
is implemented as a single module with connections implemented as First-In
First-Outs (FIFOs) for input and output. This choice is specifically tailored to
build a data-flow architecture that allows to process images in a streaming way.
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The modules of the accelerator form a pipeline in which each layer is a different
stage. The implementations of the different layers guarantee that each pixel has
the lowest possible latency inside each module, so that the throughput of the
overall accelerator is maximized.

The code shown in Listing 4.1 represents a simplified version of the CNN
accelerator of an example network made by one convolutional layer with max-
pooling, and one fully-connected layer. As it can be seen, each layer is im-
plemented as an instance of a templatized C++ function, in which the dimen-
sions of the layer are provided as macros that are automatically generated by the
Hardware Generator module described in Section 3.4. The pragmas in the
code determine the directives to guide the HLS process and obtain the desired
hardware implementation of the accelerator.

1 void cnn(hls::stream<ap_uint<DATAWIDTH> > &axistream_in,

2 hls::stream<ap_uint<DATAWIDTH> > &axistream_out){

3 #pragma HLS INTERFACE ap_ctrl_none

4 #pragma HLS DATAFLOW

5 #pragma HLS ARRAY_PARTITION variable=W_conv1 complete

6 #pragma HLS ARRAY_PARTITION variable=W_fc1 dim=2

7

8 hls::stream<data_t> data_stream;

9 hls::stream<data_t> conv1_stream;

10 hls::stream<data_t> pool1_stream;

11 hls::stream<data_t> fc1_stream;

12

13 convLayer<CHANNELS, FMOUT_1, KERSIZE_1, IMG_DIM, data_t>

14 (data_stream, conv1_stream, W_conv1, b_conv1);

15 maxPoolLayer<FMOUT_1, POOLSIZE_1, FMDIM_1, FMDIM_1, data_t>

16 (conv1_stream, pool1_stream);

17 fullyConnLayer<FC_NEURONS_0, FC_NEURONS_1, data_t>

18 (pool1_stream, fc1_stream, W_fc1, b_fc1);

19 }

Listing .: C++ implementation of the CNN accelerator top function.

There are some aspects that are worth noting from the code. Firstly, the
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interface of the function takes two axistreams for input and output. This partic-
ular modules implement FIFOs according to the AXI4-Stream protocol, which
provides a very low overhead for control signals, allowing streaming data trans-
fer. Furthermore, the external interface is set to ap_ctrl_none, which removes
the control signals of the accelerator. In this way, the accelerator is always active
and it starts to compute as soon as the input FIFO begins to fill, allowing also
to send batch of images without having to read the results of each classification
and to restart the accelerator.

Secondly, the DATAFLOW directive makes Vivado HLS build the pipeline com-
posed of the layer modules. So, as it happens for the external interface, each
subsequent module can start to process data as soon as it gets the first pixel
given by the previous layer in output, avoiding to stall until the computation of
the previous module is completed and thus maximizing the throughput.

Thirdly, due to the ARRAY_PARTITION directives, the arrays that store the weights
for both the convolutional and the fully-connected layers are partitioned on the
dimension specified in the pragma. Partioning an array means to split the array in
the elements of the specified axis and to store them in separated memory loca-
tions, either implemented in Look-Up Tables (LUTs) or Block-RAMs (BRAMs)
in the programmable logic of the FPGA.

Finally, we can see the declaration of the FIFOs for input and output of
each layer. FIFOs are implemented as hls::stream, a template class provided
by the Vivado HLS library. The template parameter specifies the data type
contained in the FIFO, while the class provides methods for read and write
data and allows to set the depth of the FIFO to synchronize the data exchange
between two modules.

4.2 Convolutional Layer Accelerator

The convolutional layer module implements the pseudo-code reported in List-
ing 2.1. The hardware implementation of the convolutional layer exploits the
instrinsic parallelism in its computation pattern. Indeed, the filters can operate
independently of each other, providing one pixel per output feature map at each
clock cycle.
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Figure .: Example of input image loading on on-chip memory

However, the overlap between different positions of the same filter on the
input feature map makes necessary to store at least some of the input pixels
among different iterations. For this reason, at the beginning of each convolu-
tional layer a shift register is present to store only a portion of the data needed
for the computation of a row of the output feature map. The shift register has
been realized using the hls::Window component from the Vivado HLS library.

This component allows to store data in a bidimensional array which is com-
pletely partioned. The 2D window allows to insert a new value anywhere in the
matrix with a direct access to the memory location of the pixel. The window
permits to shift the values in the matrix in two different ways: on the one hand,
it is possible to shift the values on a row (or a column) left or right, on the other
hand, all the rows (or the columns) can be shifted together up or down. More-
over, the partioning of the window allows to access all the pixels in the matrix
in parallel.

Such component is configured to store a number of rows of the input equals
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to the height of the convolutional kernelsKH , and a number of columns equal to
W×Ch, whereW andCh are respectively the width and the number of the input
feature maps. Figure 4.2 illustrates how the window behaves in a convolutional
layer. At the beginning, the first KH rows of the window are filled in order to
have enough data to start the computation. After the kernel swipes over the
entire row, the content of the window shifts up, deleting the pixels of the first
row that are no more needed. At this point a new row is loaded into the window
for the next iteration, and the computation continues in this way until all the
output feature maps are produced.

1 void convLayer (hls::stream<data_t> &streamIn, hls::stream<data_t> &streamOut,

2 data_t weights[FM_OUT][CH][KH][KW], data_t bias[FM_OUT]){

3 for (int i = 0; i < DIMH-KH+1; i++) {

4 for (int j = 0; j < DIMW-KW+1; j++) {

5 for (int k = 0; k < FM_OUT; k++) {

6 #pragma HLS PIPELINE

7 for (int ch = 0; ch < CH; ch++) {

8 #pragma HLS UNROLL

9 for (int kh = 0; kh < KH; kh++) {

10 #pragma HLS UNROLL

11 for (int kw = 0; kw < KW; kw++) {

12 #pragma HLS UNROLL

13 data_t w = weights[k][ch][kh][kw];

14 data_t pixel = window.next();

15 acc += w * pixel;

16 }

17 }

18 }

19 streamOut.write(acc + bias[k]);

20 }

21 }

22 window.shiftUp();

23 }

24 }

Listing .: C++ implementation of the convolutional layer module.
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Listing 4.2 reports the C++ code for the convolutional layer. As it can be
seen from the code, the computation pattern is very similar to the pseudo-code
reported in chapter 2. However, the presence of the pragmas determines how
the module will be implemented in hardware.

The HLS PIPELINE directive put subsequent iterations of the corresponding
loop into a pipeline, so that the execution of the next iteration starts as soon as
the first instruction of the current one is completed. Since this directive is put
on the loop that iterates over the output feature maps, when the pipeline is filled
one pixel of the corresponding output channel is produced at each clock cycle.

In fact, the UNROLL directives in the inner loops instantiate the functional units
to perform Ch × KH × KW multiplication in parallel and then accumulating
the results. Then, after one row of each output feature map is completed, the
window is shifted up and the computation proceed to the next iteration.

The structure of the convolutional layer is able to produce one pixel on the
output stream at each clock cycle, which is necessary to have a dataflow execu-
tion of the overall network.

4.3 Max-Pooling Layer Accelerator
The most used type of sub-sampling layer in many CNN architectures is the
max-pooling layer. Since only the pixel of maximum values inside a kernel win-
dow is forwarded to later stages in the network, the max-pooling layer allows
to save only the most relevant information for the classification process. More-
over, the sub-sampling of the pixel significantly reduces the dimensions of the
resulting feature maps, thus saving a lot of memory.

The reduction of the memory also has a relevant effect on the amount of
resources used to implement the accelerator on the FPGA. Indeed, as stated
in the previous section, the dimension of window buffers is also determined by
the width of the feature maps. Reducing the size of window buffers allows to
save LUTs and possibly to implement larger models, even in terms of number
of layer or compute units that operate in parallel.

The max-pooling accelerator module is implemented according to the code
reported in Listing 4.3. As it can be seen, also in this case an hls::Window is
used to store the portion of the pixels to get a row of the corresponding output
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feature map. However, since the stride of the pooling kernel is usually equal to
the kernel dimension, it is necessary to perform enough shifts of the window
until the proper number of new rows are loaded into the buffer.

As it happens for the convolutional layer, a HLS PIPELINE directive is put in
the loop that iterates over the feature maps in order to write one pixel on the
output FIFO at each cycle.

1 void maxPoolLayer (hls::stream<data_t> &streamIn, hls::stream<data_t> &streamOut){

2 for (int i = 0; i < DIMH/PS; i++) {

3 for (int j = 0; j < DIMW; j+=PS) {

4 for (int fm = 0; fm < FM; fm++) {

5 #pragma HLS PIPELINE

6 data_t max = -FLT_MAX;

7 for (int ph = 0; ph < PH; ph++) {

8 for (int pw = 0; pw < PW; pw++) {

9 data_t pixel = window.next();

10 if (pixel > max)

11 max = pixel;

12 }

13 }

14 streamOut.write(max);

15 }

16 }

17 for (int p = 0; p < PS; p++)

18 window.shiftUp();

19 }

20 }

Listing .: C++ implementation of the max-pooling layer module.

4.4 Fully-connected Layer Accelerator
The fully-connected layer has a different computation pattern with respect to
the convolutional and the max-pooling ones. Indeed, while those layers are
based on kernels that perform the given operation on a small subset of the input
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4.4. Fully-connected Layer Accelerator

pixels, fully-connected layers use all the input values to compute each element
of the output vector. For this reason, it is not necessary in this case to insert a
window buffer. In fact, each i-th pixel read from the input FIFO can be used
directly by multiplying the weights wi,j and calculate each j-th output.

Listing 4.4 reports the implementation of the fully-connected module. The
HLS UNROLL directive makes the output neurons to be computed in parallel. For
bigger layer dimensions, the amount of computational units (i.e. Digital Signal
Processors (DSPs) in case of floating point multiplication and addition) required
to completely parallelize the inner loop may exceed the number of resources
available on the programmable logic of the FPGA. However, it is always possi-
ble to instantiate only a portion of the output neurons to operate in parallel.

1 void fcLayer (hls::stream<data_t> &streamIn, hls::stream<data_tt> &streamOut,

data_t weights[INPUT_NEURONS][OUT_NEURONS], data_t bias[OUT_NEURONS]){

2 for (int i = 0; i < INPUT_NEURONS; i++) {

3 #pragma HLS PIPELINE

4 data_t pixel = streamIn.read();

5 for (int j = 0; j < OUT_NEURONS; j++) {

6 #pragma HLS UNROLL

7 data_t w = weights[i][j];

8 data_t tmp_mul = w * pixel;

9 acc[j] += tmp_mul;

10 }

11 }

12

13 for(int j = 0; j < OUT_NEURONS; j++){

14 #pragma HLS PIPELINE

15 streamOut.write(acc[j] + bias[j]);

16 }

17 }

Listing .: C++ implementation of the fully-connected layer module.

This can be achieved by simply adding an unrolling factor in the directive. In
this way it is possible to balance the tradeoff between performance and resource
consumption of the desired implementation. Furthermore, the HLS PIPELINE di-
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. The Proposed Hardware Template

Figure .: Zynq-7000 block design.

rectives allow to overlap subsequent execution of the loops, thus mantaining the
dataflow property of the accelerator to obtain a higher throughput.

4.5 FPGA Hardware Design

Independently from the CNN accelerator, the FPGA needs to be configured
with the modules for the run-time control and the memory management. The
overall hardware design can be different according to the target device. Indeed,
at the moment the framework supports three different platforms: the Zybo [22]
and the Zedboard [23], both with powered by a chip of the Zynq®-7000 All-
Programmable System on Chip (APSoC) family, and the VC707 Development
Board [24], powered by a Virtex®-7 FPGA. Despite the limited number of de-
vices, the design procedure for the two supported boards would be the same for
other chips of the same family, thus the approach is easily extendable. Moreover,
the same property holds also for the Virtex-7 and other FPGA-only devices.

4.5.1 Zynq Hardware Design

The Zynq-7000 devices are powered by a System on Chip (SoC) composed of
an ARM processor and the Programmable Logic of the FPGA. The hardware
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4.5. FPGA Hardware Design

design for these platforms exploits the ARM CPU in order to manage the run-
time of the computation. Such design contains the ZYNQ7 Processing System
(consisting of the hardwired ARM dual-core processor), an AXIDirect Memory
Access (DMA) module, an AXI Interconnect and the CNN IP Core generated
from Vivado HLS.

The framework allows also to instantiate more than one CNN core in the de-
sign, each with its own DMAmodule for data transfer. In this way is it possible
to obtain a coarse-grained parallelism for the inference of the given dataset.

The resulting Block Design from Vivado is illustrated in Figure 4.3. The
processing system takes advantage of the AXI High Performance slave inter-
faces (up to 4 ports) to transfer data to the DMA through the interconnect. In
this way, data are directly moved between the accelerator and the on-chip main
memory, without the need of CPU intervention. Moreover, each of the instan-
tiated CNNs cores will be connected to a different DMA and, consequently,
evenly distributed among the memory ports available on the target platform.

4.5.2 Virtex-7 Hardware Design

The hardware design for the Virtex-7 FPGA has a vey similar structure to the
Zynq design. However, this type of device does not have an hard processor in
the fabric, it is necessary to instantiate modules for the communication with the
DDR memory and to manage the run-time. For this reasons, in such design a
MicroBlaze soft-processor takes the place of the Zynq7 Processing System.

Furthermore, a Memory Interface Generator (MIG) IP Core is added to pro-
vide standard interface to the memory channels of the on-board DDR.The data
transfer to the CNN core is done through a FIFO connected to a DMAmodule
as for the hardware design for the Zynq devices. As it happens for the Zynq de-
sign, even for the Virtex-t it is possible to instantiate multiple groups of CNN
and DMAmodules by exploiting the four memory channels from the on-board
DDR to the FPGA.

For sake of completeness, the block design of the Virtex-7 device is illus-
trated in Figure 4.4.
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Figure .: Virtex-7 block design.
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Experimental Results 5

This chapter shows the experimental results of the validation of the proposed
approach. Firstly, Section 5.1 describes the experimental setup in terms of case
studies, target platforms and metrics. Then, the two following sections provides
the details on the two different case studies. In particular, Section 5.2 describes
the results obtained by the implementation of CNN accelerators for the USPS
dataset, while Section 5.3 illustrates the outcome on the well-known MNIST
dataset using two different network architectures. Finally, Section 5.4 provides
a summary of the evaluated case studies, making also an analysis of the devel-
opment time of such models using the framework.
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5.1 Experimental Setup

The proposed framework has been developed as a set of Python modules to
implement the different functionalities of the provided toolchain. In particular,
the modules are written using Python 2.7 for legacy compatibility purpose. The
module responsible for the training relies on the TensorFlow libraries byGoogle,
while the internal representation structure is described with Google Protocol
Buffers version 2. Then, the tools for the synthesis of accelerators are interfaced
with the Xilinx Vivado HLx Editions 2016.2.

5.1.1 Target platforms

In order to validate the proposed approach, two different families of platforms
have been used as target devices. As regards embedded-oriented devices, the
Zynq APSoC family provides a variety of chips with limited resources available
on the FPGA. Indeed, the selected Zynq target platforms is the Zedboard [23]
board, which is powered by the Z7020 SoC, one of the smallest chips of the
family. The SoC integrates also a dual core ARM Cortex-A9 that runs the
PetaLinux Operating System.

Then, the VC707 Development Board [24] has been selected in order to
evaluate the results for high-end devices. This board is powered by the Virtex-
7, which has much more resources available on the programmable logic with
respect to the aforementioned Zynq device. The control software on such device
is run on the MicroBlaze soft processor, which boots in stand-alone mode.

Table 5.1 shows the amount of usable resources on the target FPGAs de-
vices, pointing out the significantly different scale of the available area on the
programmable logic.

Device BRAM (18Kb) DSP FF LUT

Zedboard (Zynq z7020) 280 220 106 400 53 200

VC707 (Virtex-7) 2 060 2 800 607 200 303 600

Table .: Amount of resources available on the programmable logic in the
two different FPGAs considered as target devices.
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The performance of the proposed approach have been evaluated by consid-
ering different aspects. First of all, the acceleration gain obtained by offloading
the inference on the FPGA is measured in terms of execution time and through-
put in Frames Per Second (FPS). All the accelerators have been synthesized with
a clock frequency of 100 MHz. As regards the energy consumption, we mea-
sured the power absorbed by the whole board using the Energy Logger 4000 by
Voltcraft [71]. Moreover, we provide the area utilization of the programmable
logic of the Zynq APSoC and the Virtex-7 for the different network implemen-
tations in terms of the resources in Table 5.1.

5.1.2 Case studies

Since the publication of the work of LeCun et al. [11], one of the most analyzed
case study for CNNs is the classification of handwritten digits. According to
this tradition, this work analyzes four CNN architectures trained on two dif-
ferent datasets of handwritten digits, i.e. the USPS and the MNIST datasets.
The models have different topologies in terms of number of layers and hyper-
parameters, leading to a different number of operations to process a single im-
age. In particular, since the accelerators have been implemented by using 32-bit
floating point datatype, the number of operations is expressed in Floating-point
Operations (FLOPs).

Each of the test benches offloads the entire inference process of the two
different datasets on the FPGA. The results are then collected and normailized
by using a SoftMax operator from the host code.

5.2 Case Study: U.S. Postal Service dataset
The first case study of two different CNN models able to recognize the hand-
written digits of the USPS dataset. This dataset is composed of 16x16 grey-scale
images of digits scanned from the envelops of the U.S. Postal Service, and it was
firstly utilized by LeCun et al. in [72].

The two CNN architectures, called Small and Large, have been trained with
the TensorFlow process embedded in the framework. Then, the C++ code im-
plementing the two networks has been generated starting from the ProtoBuf
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Layer Ksize Kstride InFM OFM InDim ODim FLOPs

Conv1 5 1 1 6 16 12 44064

Pool1 2 2 6 6 12 6 864

FC1 – – – – 216 10 4330

(a) Small USPS-Net

Layer Ksize Kstride InFM OFM InDim ODim FLOPs

Conv1 5 1 1 6 16 12 44064

Pool1 2 2 6 6 12 6 864

Conv2 5 1 6 16 6 2 19264

FC1 – – – – 64 10 1290

(b) Large USPS-Net

Table .: Architecture of Small and Large CNNs for USPS dataset recogni-
tion. The tables report the hyper-parameters of the layers and the number of
floating point operations to process a single image.

represention of the models. As test bench for the two CNNs, we used 1000
images from the USPS test-set and compared the accuracy of the prediction
and the performance with respect to a CPU multi-threaded execution.

Tables 5.2a and 5.2b report the structure of the two CNN models, while
Table 5.3 shows the results in terms of performance, energy consumption and
resource utilization of the different implementations. The execution time is
compared to a multi-threaded (2 thread) software implementation running on
the ARM Cortex-A9 of the Zedboard.

5.2.1 Small USPS-Net

The first test case has been performed on a CNN with a simple structure. This
network is composed of a single convolutional layer, followed by aMax-pooling
layer and a linear layer at the end. As it can be seen from Table 5.2a, the con-
volutional layer is made of six 5x5 kernels that take in input a 16x16 grey-scale
image (single channel). The resulting six feature maps have dimensions 12x12;
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then, the Max-pooling layer reduces the feature maps of a factor 2, resulting in
a 6x6x6 cube. Each pixel of the cube becomes then an input neuron to the lin-
ear layer, composed of 10 neurons that predict the values corresponding to the
10 classes of digits to be recognized. Despite the simple structure, this CNN
model is able to reach 96.3% of accuracy in the classification task, with only 37
mispredictions over the test set.

Three different configurations of hardware accelerators have been tested for
the network to evaluate the gain in performance with respect to the software
implementation. The first configuration consists in the hardware implementa-
tion on the Zedboard with single precision floating point. As it can be seen
from Table 5.3a, this implementation is able to obtain a speed up in terms of
execution time of 59.64x with respect to the multi-threaded software execution
(2 threads), processing images at 35714 FPS. Moreover, thanks to the signifi-
cantly reduced execution time, the obtained accelerator is more energy efficient
than the software version running on the ARM processor (with an energy con-
sumption of 3.67 J), even considering the whole System on Chip.

As regards resource utilization (Table 5.3b), the implementation of the small
CNN model on the Zedboard makes an extensive use of DSPs and LUTs to
implement floating-point adders andmultipliers. Indeed, even though the fully-
parallelized modules of the accelerator allow to obtain extremely low latency,
the amount of resources to build such modules make impractical to implement
large networks on resource-constrained devices. However, this problem can
be handled by reducing the unrolling factor, thus implementing less processing
elements per module, and folding the kernels computation in more iterations.

Finally, the small USPS CNN has been implemented also on the VC707
board. As it can be seen from Table 5.3a, the different lithography of the
Virtex-7 FPGA is able to provide a faster implementation of the same accel-
erator, resulting in 0.017 s of execution time, and a speed up of 98.23x with
respect to the pure software implementation, and almost 60 000 FPS. Despite
the higher power drain of the Virtex-7, the energy required for the computa-
tion is still very small when compared to the ARM processor, with only 0.34 J
of energy consumption.

Then, the greater number of available resources of this FPGA allowed also
to implement a 4-cores configuration of the accelerator, obtaining a 4x faster

56



5.2. Case Study: U.S. Postal Service dataset

implementation than the single core one and further reducing the energy con-
sumption (0.09 J).

In terms of resource utilization, the Virtex-7 single-core implementation is
similar to the one on the Zedboard. Indeed, the only differences that can be
noticed are due to the presence of the MicroBlaze soft processor and the MIG
as memory controller. The multi-core implementation uses almost 4x resources
as expected, saving a portion of the area thanks to resource sharing.

5.2.2 Large USPS-Net

In this test case we evaluate the performance of the proposed approach when
the dimensions of the CNN increases. In fact, this second model of network
has an additional convolutional layer with respect to the previous one, thus aug-
menting considerably the multiply-accumulate operations that have to be per-
formed during the image recognition process of the USPS test set. The addi-
tional convolutional layer takes as input the six 6x6 feature maps computed by
the previous Max-pooling layer and it applies sixteen 5x5 kernels that produce
the corresponding 2x2 feature maps. Then, the 16x2x2 is the input of the fol-
lowing linear layer, composed of 10 neurons associated to the classes as in the
smaller CNN.

As reported in Table 5.3, the hardware implementation on the VC707 board
of this larger CNN, performs slightly better than the previous ones in terms of
speed-up; indeed, the enhanced number of multiply-accumulate increases the
gap between CPU and FPGA. However, from Table 5.3b it can be noticed
an increased amount of occupied area on the programmable logic. For this
reason, it was not possible to implement the CNN hardware accelerator on the
Zedboard due to the limited available resources. The implementation for the
VC707 obtained a speedup of 127.06x compared to the ARM multi-threaded
reference; furthermore, this design consumes only 0.36 J of energy.

An interesting note is that the prediction error of this network is worse than
the previous one (8.3% against 3.7%), however this is not surprising because in
the supervised learning context, too complex models can overfit the training set,
thus resulting in a worse generalization capability on the testset.
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5.3 Case Study: MNIST dataset

As a second case study, this work analyzes the results of FPGA-based acceler-
ated inference of one of most popular datasets, i.e. the MNIST dataset. This
datasets is composed of 28x28 black and white images of handwritten digits
as illustrated in Figure 2.7 in Chapter ??. Although similar to the previous one,
the bigger size of the input images significantly increases the amount of floating-
point operations needed to process a single image, thus providing further useful
results for the analysis of the performance of the accelerator generated by the
framework.

As for the USPS case study, two different CNN architectues have been
tested. The first one is a custom network topology named MNIST-Net. It is
composed of two convolutional layers withmax-pooling and one fully-connected
layer. The second one instead is a variant of the model presented in [11] known
as LeNet-5, composed of three convolutional layers and three fully-connected
layers. Table 5.4 reports the dimensions of the layers of the two networks and
the FLOPs for each layer to process a single image.

The two networks have been tested on the inference of the 10 000 images of
the MNIST test set. The results are measured in terms of execution time, FPS
and energy efficiency, also comparing with a pure software execution (Table
5.5a). The execution time is compared to a multi-threaded (4 threads) soft-
ware implementation running on a Intel Core i7 6700HQ CPU. Moreover,
Table 5.5b shows the resource utilization of the implemented accelerators on
the FPGA.

5.3.1 MNIST-Net

This CNN topology is similar to the one of the Large USPS-Net. The con-
volutional part is composed of a pair of convolutional and max-pooling layers.
The first convolutional layer has six 5x5 kernels that produce the same number
of 24x24 feature maps. The subsequent sub-sampling layer halves each dimen-
sion of the features maps by applying 2x2 kernels with stride equal to 2. The
same pattern is repeated in the next pair of convolutional and pooling layers.
More precisely, the second convolutional layer is composed of sixteen 3x3 fil-
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Layer Ksize Kstride InFM OFM InDim ODim FLOPs

Conv1 5 1 1 8 28 24 235008

Pool1 2 2 8 8 24 12 4608

Conv2 3 1 8 16 12 10 232000

Pool2 2 2 16 16 10 5 1600

FC1 – – – – 400 10 8010

(a) MNIST-Net

Layer Ksize Kstride InFM OFM InDim ODim FLOPs

Conv1 5 1 1 6 28 24 176256

Pool1 2 2 6 6 24 12 3456

Conv2 5 1 6 16 12 8 308224

Pool2 2 2 16 16 8 4 1024

Conv3 4 1 16 64 4 1 32832

FC1 – – – – 64 64 8256

FC2 – – – – 64 32 4128

FC3 – – – – 32 10 650

(b) Variant of LeNet-5

Table .: Architecture of the two CNNs for inference of the MNIST dataset.
The tables report the hyper-parameters of the layers and the number of floating
point operations to process a single image.

ters, while the pooling has the same dimensions as the previous one. Then, the
fully-connected layer perform the dot-product between the 400 inputs and the
10 neurons in output.

After the training process of the framework, this model is able to reach
97.82% accuracy. Although this is less than state-of-the-art accuracy, it still has
a low prediction error and may be improved with small changes in the network
topoplogy, such as adding ReLU activation functions to the neurons.

The size of the layers of this CNN results in an increased number of opera-
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tions that reaches 0.48 Mega Floating-point Operations (MFLOPs) to process a
single image. The implemented hardware accelerator is able to process the 10
000 images of the test set in 0.081 s, providing a throughput of 123456 FPS.
Compared to the pure software execution, the hardware accelerated version
achieves a 3.33x speed-up in terms of execution time. Although this may seem
a modest improvement, by considering the performance-per-watt, the FPGA is
able to obtain 6172.8 FPS/W , against 807.5 FPS/W of the CPU.

From Table 5.5b it can be seen the increase in the amount of utilized re-
sources with respect to the previous models. In particular, the size of the con-
volutional layers of the MNIST-Net results in an increased number of compu-
tational units for floating-point multiply-accumulate operations, i.e. DSPs and
LUTs.

5.3.2 LeNet-5

The last case study consists in the analysis of the popular CNN model called
LeNet-5. As stated before, the original model was first proposed by LeCun
et al. [11]. In this work, a slightly different model has been generated by the
framework and implemented on a Virtex-7 FPGA.

As illustrated in 5.4b, the CNN architecture is made by a total of eight layers:
three convolutional layers, two max-pooling layers and three fully-connected
layers. The first two convolutional layers have six and sixteen 5x5 kernels, re-
spectively, and are followed by max-pooling layers with 2x2 filters and stride
equal to 2. The last convolutional layer takes sixteen 4x4 feature maps as in-
put and produces 64 single pixels in output by applyng 4x4 filters. Then, the
fully-connected layers are composed of 64, 32 and 10 neurons, respectively.

In terms of accuracy, this model is slightly better than the previous one, pro-
viding 1.83% classification error, which is closer to the test error of the original
vanilla implementation of LeNet-5 (0.95%).

Due to the number of layers and the filters dimensions, this network requires
0.54 MFLOPs to classify one image, resulting in 5.4 Giga Floating-point Oper-
ations (GFLOPs) for the inference of the entire test set. As it can be seen from
Table 5.5, the CNN accelerator is able process the test set in 0.087 s, achiev-
ing a peak of almost 115 000 FPS. The execution time of the multi-threaded
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software version is instead 0.3 s. Considering these results, the performance-per-
watt ratio for the two implementations are 5607 FPS/W for the FPGA, and 761
FPS/W for the CPU, providing a more efficient solution when the computation
is offloaded in hardware.

As regards resources utilization, fromTable 5.5b it can be seen that the hard-
ware implementation of this accelerator makes an extensive use of the available
LUTs and DSPs, due to the high level of parallelism in each layer module, and
the array partioning of the internal buffers as explained in Chapter 4. For these
reasons it would not be possible to implement larger networks due to the lim-
ited amount of resources. However, future versions of the framework will take
into account this limitation and allow to specify the number of computational
units to be instantiated for each layer, thus making a tradeoff between latency
and resource consumption.

Network  Lines FLOPs FPS GFLOPS/W FPS/W

Small USPS-Net 864 49K 58K 144M 2.9K

Large USPS-Net 1 583 65K 58K 183M 2.78K

Mnist-Net 2 300 0.48M 123K 2.96G 6.15K

LeNet-5 9 181 0.54M 115K 3.25G 5.61K

Table .: Results summary of the evaluated CNN accelerators. The results are
provided in terms of lines of code, number of FLOPs, throughput, performance-
per-watt ratio both in terms of Frames Per Second (FPS) over Watt and Giga
Floating-point Operations per Second (GFLOPS) over Watt.

5.4 Framework Evaluation Summary
The main purpose of the proposed framework is to provide tools that allow
to rapidly develop a CNN hardware accelerator targeting FPGAs. As stated
before, this process can be complex and time consuming. Indeed, the models
that have been used as case studies count up to more than 9000 lines of C++
code that have to been synthesized by the Vivado toolchain to obtain the final
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implementation of the accelerators. Starting from scratch, it would be necessary
to spend many hours to get the same result. By using the framework instead,
the source code can be automatically generated in a few minutes, for instance
providing a high level description of the network model in a prototxt file.

Table 5.6 provides a summary of the implemented models, specyfing the
number of lines of code, and the obtained results in terms of number of opera-
tions, throughput and performance-per-watt ratio considering the entire test set.
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Conclusions and Future Works 6

This chapter provides an overall analysis of this thesis. Section 6.1 gives an
overiew of the proposed work, summarizing the rationale, the methodology
and the obtained results. Finally, Section 6.2 concludes the thesis by analyzing
the problems of the proposed approach, proposing solutions to overcome such
limitations and providing suggestions on future directions for this work.
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6.1 Proposed Work Summary

Convolutional Neural Networks are playing an important role as a new emerg-
ing technology for computer vision. Thanks to their capability, they have be-
come one of the most analyzed approaches in the last years for many applica-
tion fields, including Big Data Analysis, mobile robot vision, video surveillance
and so on. In such contexts, due to the huge amount of data to be processed or
the need for real time execution, it is crucial to find techniques to speed up the
computation. Moreover, the huge number of operations of CNNs makes it im-
practical to implement them on CPUs, so researchers and engineers have been
looking for hardware accelerators able to provide both fast and energy efficient
implementations. Among the accelerators proposed in the literature, FPGAs
demonstrated to be very effective as flexible, low-power devices for hardware
acceleration of CNNs.

However, the process to design and implement FPGA-based accelerators
requires experience in hardware design and long development time. HLS soft-
wares such as Vivado HLS provide tools that allow to build CNN accelerators
using high-level languages such as C and C++. Nevertheless, some knowledge
in hardware design is still required in order to obtain efficient implementations,
while usually machine learning frameworks (e.g. TensorFlow, Caffe and so on)
allow to use productivity-level language such as Python as programming lan-
guage, thus becoming easily accessible for most of the software developers.

The aim of the work presented in this thesis is to bridge the gap between
FPGA hardware design and software development, providing a framework able
to design and implement a CNN accelerator on such platforms, starting from an
high level description of the newtork. In particular, as described in Chapter 3,
the proposed framework work-flow consists in:

• An external interface compatible with a subset of Caffe prototxt defini-
tion of a CNN to specify the network topology. Starting from this def-
inition and other configurable parameters, such as the target device and
the datasets for training and testing, the framework generates an Interme-
diate Representation based on a custom Google Protocol Buffer message
structure.
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• A configurable training process to generate the weights used by the final
hardware accelerator for inference. The software implementation of the
model is built on top of the internal ProtoBuf representation by using
TensorFlow APIs to perform the actual training. The framework accepts
different dataset formats from the user as input, including common image
formats as png, and the IDX format as the one used by theMNIST dataset.

• A module for the automated generation of the C++ source code of the
desired CNN model. The code implements a set of HLS-oriented, tem-
platized C++ functions for the different types of layer of a CNN, described
in Chapter 4. The resulting source code is then synthesized by using the
Vivado Design Suite, and inserted in a hardware design template depend-
ing on the specified target device.

Chapter 5 provides the experimental results of the proposed approach, show-
ing the performance of different CNN accelerators implemented on FPGAs.
In particular, the obtained implementation has been evaluated on four different
network models for the inference of two different datasets, i.e. the USPS and
the MNIST.

The hardware design generated by the proposed framework demonstrated
to be very efficient in terms of energy consumption and Frames Per Second,
outperforming the pure software version running on CPU.

6.2 Future Works

Although efficient, the proposed framework still has some limitations. In par-
ticular, there are two different aspects that is worth to notice. On the one hand,
at the moment the framework only supports a few types of layers to build the
CNN model, thus limiting the degrees of freedom in the design space of such
networks. On the other hand, the generated hardware implementation uses
floating point operations as data type, which results in an extensive utilization
of the programmable logic due to the implementations of floating point addi-
tions and multiplications with DSPs. Moreover, the generated architecture is
massively parallel in terms of the number of computational units instantiated for
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each layer. For this reason it is not possible to implement very deep networks
due to the limited resources available on the FPGA.

However, the modularity of the framework and the configurability of the
hardware libraries allow scalability and flexibility to add more features and over-
come this limitations. In fact, it is possible to further explore two different
directions as future improvements for the proposed work:

• From the framework perspective, future extensions of this work will add
other types of layer such as activations layer for ReLU, hyperbolic tan-
gent and so on. Moreover, other degrees of freedom can be added to the
training strategy in order to obtain better accuracy.

• From the hardware perspective, future architectures will use fixed-point
data types instead of floating point, reducing also the precision in terms of
bitwidth. Adopting low-precision data types would allow to significantly
reduce the resource utilization on the target device, and exploits FPGA
compute capability with few bits operands. Furthermore, new versions
of the hardware library will include parameters to determine the number
of compute units to be instantiated for each layer in the network. In this
way it would be possible to properly tune the parallelism of the desired
architecture, making a tradeoff between latency and resource utilization.
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