
POLITECNICO DI MILANO

Corso di Laurea Magistrale in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

JPEG-BASED FORENSICS

THROUGH CONVOLUTIONAL NEURAL

NETWORKS

Image & Sound Processing Group (ISPG)

Relatore: Prof. Paolo BESTAGINI

Correlatore: Ing. Luca BONDI

Tesi di Laurea di:

Nicolò BONETTINI, matricola 835569

Anno Accademico 2016-2017

Abstract

Due to the wide diffusion of JPEG coding standard, the forensic community

has devoted significant attention to the development of image authenticity

detectors based on the analysis of JPEG traces. Given the trend recently

gained by convolutional neural networks (CNN) in many computer vision

tasks, in this thesis we propose to use CNNs for JPEG-based forensics.

Among the many JPEG-based forensic problems, one of the most stud-

ied is double JPEG (DJPEG) compression detection. Indeed, the ability

of detecting whether an image has been compressed once or twice provides

paramount information toward image authenticity assessment. For this rea-

son, we focus on exploring the capability of CNNs to capture DJPEG artifacts

directly from images. Results show that the proposed CNN-based detectors

achieve good performance in situations considered particularly challenging

in the literature: i) analysis of small sized images (i.e., 64× 64); ii) analysis

of the case in which the first JPEG compression has higher quality than the

second one.

To further explore the flexibility of CNNs for JPEG-based forensic tasks,

we also investigated two additional related problems. We considered quality

factor estimation and software identification to this extent. Results show

that satisfactory accuracies can be reached despite the challenging nature of

these problems.

Sommario

Data la grande diffusione dello standard di codifica JPEG, negli ultimi anni la

comunità forense ha dedicato una sempre crescente attenzione allo sviluppo

di tecniche per l’analisi delle tracce da essa lasciate. Al contempo, si è anche

assistito ad un forte slancio nell’impiego di reti neurali convolutive (CNN) in

vari ambiti di computer vision. Per i suddetti motivi, in questa tesi proponi-

amo l’uso di CNN per problemi forensi legati alla compressione JPEG.

Fra i tanti casi, uno dei più affrontati in letteratura è quello di determinare

se un’immagine sia stata sottoposta ad una doppia compressione (DJPEG).

Tale informazione è infatti di grande aiuto nello stabilire l’autenticità della

stessa. Lo scopo di questo lavoro è di esplorare le capacità delle CNN di

catturare le tracce lasciate dalla doppia compressione partendo direttamente

dall’immagine. I risultati mostrano che i modelli proposti raggiungono buone

performance anche in situazioni considerate particolarmente difficili dalla let-

teratura: i) analisi di immagini di piccole dimensioni (i.e., 64×64); ii) analisi

nel caso in cui la prima compressione avvenga ad una qualità maggiore della

seconda. Per esplorare la flessibilità delle CNN in questo campo, abbiamo

investigato due problemi minori. Abbiamo considerato la stima del fattore di

qualità e l’identificazione del software adoperato per la compressione. I risul-

tati mostrano come si possano raggiungere accuratezze soddisfacenti nonos-

tante l’ardua natura di questi problemi.

Ringraziamenti

Per quanto una paginetta risicata non basti a ringraziare adeguatamente

tutti quelli che se lo meritano, proveró a fare del mio meglio.

Grazie a mio padre, mia madre, mia sorella e mio cognato per avermi dato

la possibilità di raggiungere questo obiettivo e per avermi sempre sostenuto

in questi anni. Grazie a tutti i nonni, in particolare a Narciso che avrebbe

tanto voluto esserci in questo giorno.

Grazie ai miei amici di una vita perchè mi danno motivo per tornare a

casa, ricordandomi l’importanza delle radici. Fortunatamente per me, siete

veramente troppi per essere menzionati singolarmente. Scrivo solo Nanni che

altrimenti si offende.

Grazie ad Enrico, Pietro e Simone, la mia famiglia milanese.

Grazie a tutta la combriccola ISPG, in particolare a Sara, Silvia ed Enzo

per i consigli dispensati.

Grazie a Paolo e Luca, per avermi accolto, sopportato e soprattutto in-

segnato tanto in questi mesi.

Contents

1 Introduction 1

2 State of the Art 5

2.1 JPEG Compression . 5

2.2 JPEG Forensics . 8

2.2.1 Compression Detection 9

2.2.2 Double Compression Detection 12

2.2.3 Multiple Compression Detection 14

2.2.4 Forgery Localization 14

2.3 Convolutional Neural Networks 16

2.4 Convolutional Neural Networks in Image Forensics 21

3 Problem formulation 26

3.1 Double JPEG detection . 26

3.2 Quality factor estimation . 29

3.3 Software identification . 30

4 Forensics detection system 32

4.1 Pipeline overview . 32

4.2 CNN architectures . 33

4.2.1 Classic architectures 34

I

4.2.2 DCT driven architecture 35

4.2.3 High pass filters driven architecture 37

4.2.4 Noise driven architecture 39

4.2.5 Histogram based architecture 40

5 Experimental results 46

5.1 Double JPEG detection . 46

5.1.1 Dataset construction 47

5.1.2 Evaluation Methodology 48

5.1.3 Results . 50

5.2 Quality factor estimation . 58

5.2.1 Dataset construction 58

5.2.2 Evaluation methodology 59

5.2.3 Results . 59

5.3 Software identification . 61

5.3.1 Dataset construction 61

5.3.2 Evaluation methodology 62

5.3.3 Results . 63

6 Conclusions and future work 66

Bibliography 69

II

List of Figures

2.1 Example quantization tables for luminance (left) and chromi-

nance (right) components provided in the informative sections

of the standard. 7

2.2 JPEG compression pipeline. 8

2.3 Histograms of DC coefficients (left) andAC0,1 coefficients (right)

of the top image. 11

2.4 Example of blockwise tamper detection. 15

2.5 Example of regionwise tamper detection. 15

2.6 Example of simple CNN architecture composed by some of the

principally used layers. 17

2.7 Qualitative representation of feature maps transformation. . . 18

2.8 Convolutional architecture for characters recognition proposed

in [1]. 18

2.9 DCT coefficient histograms corresponding to the (0,1) position. 23

2.10 CNN architecture used in [2]. 24

2.11 Accuracy of [2] for different QF2 and different block sizes W . . 25

3.1 A-DJPEG example. 27

3.2 NA-DJPEG example. 27

III

3.3 JPEG compression image degradation due to different quality

factors compression. 28

3.4 Different JPEG compression outcomes from different software

products. 31

4.1 CNN training (top) is performed using images In labeled with

ln. The CNN model M is then used for testing (bottom) a

new image I and obtain the candidate label l̂. 33

4.2 2D DCT filters adopted in the first convolutional layer of the

network. 38

4.3 Subset of filters used in [3]. 40

4.4 Pipeline of the CNN layers used by the third proposed method. 42

4.5 Outputs of CNN layers devoted to histogram computation. . . 43

4.6 Example of cumulative histogram B and histogram Z. 44

5.1 Impact of training set size on DJPEG detection accuracy using

Cpix. 51

5.2 Aligned DJPEG compression detection accuracy against base-

line [2]. 52

5.3 Sensitivity analysis for aligned DJPEG compression detection

when QF2 = 75. 53

5.4 Non-aligned DJPEG compression detection accuracy against

baseline [4]. 55

5.5 DJPEG compression detection accuracy tested separately on

aligned and misaligned cases, when training is performed on a

mixed dataset. 57

5.6 Train and validation loss, validation accuracy curves over train-

ing epochs for quality factor estimation task. 61

IV

5.7 Per-class accuracy over the test dataset for quality factor es-

timation task. 62

5.8 Train and validation loss, validation accuracy curves over train-

ing epochs for software identification task. Top-left: high;

top-right: mid-high; bottom-left: mid-low; bottom-right: low . 65

V

List of Tables

4.1 LeNet architecture parameters. 35

4.2 LeNet-3 architecture parameters. 36

4.3 LeNet-6 architecture parameters. 37

4.4 DCT driven architecture parameters. 39

4.5 High-pass filters driven architecture parameters. 41

5.1 Datasets used for training on DJPEG problem. 49

5.2 Sensitivity of Cnoise to variations of QF1 and QF2 for aligned

DJPEG detection. 54

5.3 Sensitivity of Cnoise to variations of QF1 and QF2 for non-

aligned DJPEG detection. 56

5.4 Confusion matrix over the test dataset. 60

5.5 Definition of adopted compression levels with their software

counterparts. 63

5.6 Accuracies for software identification task considering various

compression levels. 63

VI

1.

Introduction

In the last decades, due to the wide availability of easy-to-use imaging soft-

ware and inexpensive hardware devices that enable the acquisition of visual

data, digital images can be readily created, stored, transmitted, modified

and tampered with. Moreover, picture duplication is a quite straightforward

procedure, and the storage of copies on reliable physical devices has become

rather inexpensive. As a consequence, the diffusion of tampered content has

become a widespread phenomenon. Not unexpectedly, with the advent of

social networks and social media, a growing need to discern between original

and tampered content started to interest people in everyday life.

Fortunately, when an image is edited through non-reversible operations,

it is possible to partly reconstruct information about its past history for au-

thenticity detection. Indeed, the history of an edited digital image can be

described in terms of complex information processing chains, whereby each

processing operator alters the underlying features of the content in a charac-

teristic and detectable manner (e.g., compression may leave peculiar blocking

artifacts). It is then possible to blindly analyze an image to search for char-

acteristic footprints that confirms the use of specific editing operations.

Among the techniques developed by the image forensic community to

Chapter 1. Introduction 2

fight tampering trend exposing these footprints [5, 6], great attention has

been devoted to methods analyzing JPEG traces [7, 8]. Indeed, every time

an image is stored (e.g., at shooting time directly on the acquisition device,

or after editing with processing tools), it is usually saved in JPEG format.

Therefore, manipulated content often undergoes JPEG re-compression, and

its detection provides paramount information in terms of image authenticity.

The goal of this thesis is to develop a series of JPEG traces detectors to

solve forensic problems, based on the use of Convolutional Neural Networks

(CNNs). As a matter of fact, Convolutional Neural Networks were employed

for imaging tasks since the late 1980s [9, 10], but due to the lack of compu-

tational power were never exploited properly. Today we are experiencing a

golden age for what concerns computing resources. In particular, the use of

GPUs as general computation source (GP-GPUs) has proved exceptionally

efficient with CNNs. The GPU’s ability to process large amount of data in

parallel allows fast CNN training over massive datasets in reasonable time,

making Deep Learning one of the most fascinating technologies to explore

in the near future. Nonetheless, CNNs have only been exploited for JPEG-

based forensics in some preliminary studies [2], thus leaving room to further

research on the topic.

JPEG-based forensic detectors can be roughly split into two categories:

i) detectors aiming to assess the presence of JPEG compression (e.g., dis-

criminating uncompressed from compressed images, detecting the number of

subsequent compressions applied) [11, 12]; ii) methods aiming at estimating

some parameters of the applied JPEG compression (e.g., estimation of the

used quantization matrix) [13, 14]. Within this framework, great part of

our work is specifically focused on the first class of detectors considering the

problem of double JPEG compression detection (i.e., understanding whether

Chapter 1. Introduction 3

an image has been compressed once or twice). Then, we analyze two different

cases of study related to the second class of detectors: i) software identifica-

tion (i.e., which software has been used to apply JPEG compression), and;

ii) quality factor estimation (i.e., which is the quality of the applied JPEG

compression). For all these problems, we analyze different CNN architectures

characterized by different peculiarities.

Double JPEG compression detection has received great attention in image

forensics, and presence of tampering is often revealed by looking for the arti-

facts left by JPEG re-compression. However, depending on whether second

JPEG compression grid is aligned or not with the one adopted by the first

compression, different artifacts are introduced. For this reason, these two sce-

narios are often analyzed separately and are commonly referred to as aligned

double JPEG (A-DJPEG) compression detection [3] and non aligned double

JPEG (NA-DJPEG) compression detection [4, 15], respectively. Detectors

proposed in this work are able to compete with state-of-the-art algorithms

in the A-DJPEG and NA-DJPEG scenarios separately, and to show good

results in mixed A and NA-DJPEG scenario.

In many cases, manipulation takes place on limited parts of the image

only. Therefore DJPEG traces are only left on a limited number of pixels.

For this reason, being able to detect DJPEG on small image patches proves

paramount for localization of manipulated regions in image forgery detec-

tion problems. However, most of the techniques performing double JPEG

detection in literature focus on estimating compression history of an image

as a whole, whereas the localization of double compressed regions of rela-

tively small size (i.e., possibly tampered regions) has been often overlooked

and only addressed in some works [2, 3]. For this reason, all our DJPEG

detectors are developed to work in the challenging scenario of small images

Chapter 1. Introduction 4

(i.e., 64× 64 pixel).

Besides DJPEG, compression is applied by means of a software and it

involves the adoption of a precise quantization table, or quality factor. Be-

ing able to identify which software performed a compression on an image, or

which quality factor was used can provide additional insights during compres-

sion history investigation. We therefore examine quality factor estimation

and software identification as cases of study in order to prove the flexibil-

ity and the capability of CNNs in JPEG forensic field. To the best of our

knowledge, literature shows no approaches involving CNN for these two par-

ticular problems. The proposed models reach satisfactory accuracies despite

the challenging nature of the problems.

The thesis is structured as follows.

In Chapter 2 we provide a background on JPEG compression and on

Convolutional Neural Networks. Furthermore, we report the current state-

of-the-art for JPEG forensics and for the use of CNN in JPEG forensics.

In Chapter 3 we formalize the three problems tackled in this thesis (i.e.,

DJPEG detection, software identification and quality factor estimation). We

briefly report the motivation behind them and we define the respective hy-

pothesis space for all of them.

In Chapter 4 we describe the systems we designed to tackle the afore-

mentioned problems. In particular we explain all the investigated network

architectures in details.

In Chapter 5 we report all the performed experiments. We focus on

dataset construction, pipeline design and we give an interpretation to the

obtained results.

In Chapter 6 we draw our conclusions on the performed work and we

outline the intended future directions of work.

2.

State of the Art

In this Chapter we introduce the main background concepts and state-of-the-

art algorithms needed to understand the rest of the work. First, we provide

some background explanation on how JPEG compression works. We then

review state of the art techniques developed by the image forensic community

to expose JPEG traces. Then we move on convolutional neural networks, the

most peculiar technique we adopted in our research. Finally we give a brief

overview of the state of the art involving the use of convolutional neural

networks in forensics tasks.

2.1 JPEG Compression

The JPEG format is a broadly used method of lossy image compression. It

achieves a good tradeoff between compression and perceptual quality loss,

therefore it has emerged as a near universal image standard [16, 17]. Given a

three channel color image in the Red Green Blue (RGB) color space, JPEG

compression proceeds as follows. The image is first transformed into lumi-

nance/chrominance space (YCbCr). The two chrominance channels (Cb,Cr)

can be subsampled by a factor of two relative to the luminance channel (Y).

Chapter 2. State of the Art 6

Each channel is divided in 8×8 pixel non-overlapped blocks. These values

are converted from unsigned to signed integers (e.g., from [0, 255] to [128,

127]).

For each channel c, let us denote a 8 × 8 block obtained from it as f c,

or simply f for the sake of simplicity. Each block f is converted to a 8 × 8

block in frequency space F , using two-dimensional discrete cosine transform

(DCT) as:

Fc1,c2 =
7∑

i=0

7∑
j=0

f(i, j)Hc1,c2(i, j), (2.1)

where Hc1,c2 is the base at (c1, c2) frequency of the 8× 8 DCT, whose entries

are defined as:

Hc1,c2(i, j) = α(c1, c2) cos

[
π

8

(
i+

1

2

)
c1

]
cos

[
π

8

(
j +

1

2

)
c2

]
, (2.2)

where α(c1, c2) is a normalization constant and i, j, c1, c2 ∈ [0, 7]. Depending

on the specific frequency (c1,c2) and channel c, each DCT coefficient of F is

quantized with quantization step qc1,c2 , thus obtaining:

F̂c1,c2 = round

(
Fc1,c2

qc1,c2

)
. (2.3)

This stage is the primary source of entropy reduction and information loss,

since quantization is not invertible and it does not allow a precise reconstruc-

tion of F . The primary source of variation in JPEG encoders is the choice

of quantization values q, Equation (2.3). Quantization is specified as a set

of two 8×8 tables, one for luminance, one for chrominance. After quantiza-

tion, the DCT coefficients undergo to entropy encoding (typically Huffman

coding). Huffman coding is a variable-length encoding scheme that encodes

frequently occurring values with shorter codes, and less frequently occurring

values with longer codes. It is worth pointing out that this operation is

lossless and has the only purpose to pack the quantized coefficients into a

Chapter 2. State of the Art 7

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99

18 21 26 66 99 99 99 99

24 26 56 99 99 99 99 99

47 66 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

99 99 99 99 99 99 99 99

Figure 2.1: Example quantization tables for luminance (left) and chrominance (right)

components provided in the informative sections of the standard.

bitstream. A schematic representation of the JPEG compression pipeline is

shown in Figure 2.2.

Camera vendors and software engineers are free to balance quality and

compression to their own tastes, since the JPEG standard does not enforce

any specific quantization table q or Huffman probability tables. Nevertheless,

Annex K of the standard reports a table for the luminance component and

a table for the two chrominance components, as shown in Figure 2.1. These

tables were obtained from a series of of psychovisual experiments and are

known to offer reasonable tradeoff for natural images over a wide variety of

applications and viewing conditions. Hence they have been widely accepted

and over the years have become known as the “default” quantization tables.

In many applications there is a need to provide flexibility to adjust image

quality by changing the overall bit rate. In practice, scaled version of the

“default” quantization tables are commonly adopted to vary quality and

compression performance of JPEG. This adjustment is done through the use

of a quality factor QF for scaling all the elements of quantization tables,

Chapter 2. State of the Art 8

Original 8× 8 block Transformed 8× 8 block Zig-zag scan

Figure 2.2: JPEG compression pipeline.

according to the rule

scale factor =

5000
QF

for 1 ≤ QF < 50

200− 2 ·QF for 50 ≤ QF ≤ 99

1 for QF = 100

. (2.4)

The decompression procedure is a matter of going backward in the

pipeline described above. Quantization tables q are stored in the JPEG

header, as well as information on the adopted entropy encoding. The DCT

coefficients of each channel are first re-arranged as a 8 × 8 table and then

multiplied by the coefficients of q. As aforementioned, the rounding oper-

ation performed in Equation (2.3) is not invertible, therefore we have an

unavoidable data loss in reconstructing F . The last step is computing the

inverse of the two-dimensional DCT, which outputs the reconstructed 8× 8

blocks in (YCbCr) domain.

2.2 JPEG Forensics

The history of a digital image can be represented as a composition of several

steps. As an example, an image can be acquired using a given camera,

then resized to meet some specific requirements, edited to adjust colors or

brightness, compressed to save space on disk and finally uploaded to a web

Chapter 2. State of the Art 9

sharing platform, before some other users download it to further process it.

The idea behind blind image forensics is that each non-reversible editing step

applied to an image inevitably leaves peculiar footprints. By detecting these

footprints it is possible to trace back image history, e.g., to possibly expose

forgeries [6].

Lossy JPEG image compression is one of the most common operations

performed on digital images. This is due to the convenience of handling

smaller amounts of data to store and/or transmit. Indeed, most digital cam-

eras compress each picture directly after taking a shot. Due to its lossy

nature, image coding leaves characteristic footprints, which can be detected.

Although revealing coding-based footprints in digital images is in itself rele-

vant, these traces are fundamentally a powerful tool for detecting forgeries.

For this reason, the forensic community has developed a series of algorithms

to extract JPEG-based traces from images under different conditions. In the

following, we review some of the most relevant JPEG-based forensic methods.

2.2.1 Compression Detection

Let us consider the scenario in which a digital image is available in the

pixel domain in raw format, without any knowledge about prior processing.

JPEG compression detection is the problem of detecting whether that image

is actually uncompressed, or it has been previously compressed and which

were the compression parameters being used. This is useful to avoid fake-

bitrate frauds, in which someone sells an image as high-quality uncompressed

one, even if the image was previously compressed.

The underlying idea of forensic methods coping with the problem of JPEG

compression detection is that the block-based image coding leaves character-

istics compression traces both in the pixel and in the transform domain [6].

Chapter 2. State of the Art 10

In pixel domain, block based image coding scheme introduces blockiness.

Several proposed methods aim to estimate this blockiness. Authors in [13, 11]

propose an algorithm based on the idea that if the image has not been com-

pressed, the pixel differences across 8× 8 block boundaries should be similar

to those within blocks. Then, it is possible to build two functions, Z ′ and

Z ′′, taking into account inter and intrablock pixel differences. The presence

of prior compression is deduced if the energy of the difference between the

histograms of Z ′ and Z ′′ is higher than a threshold. In [12], the authors

model a blocky image as a nonblocky image interfered with a pure blocky

signal. Then, the estimation of blockiness in a blind way is turned into the

problem of evaluating the power of the blocky signal without accessing the

original image. In order to achieve this goal, the absolute value of the gra-

dient between each column or row of the image is computed separately. The

power of the blocky signal can be estimated in order to reveal its presence.

In transform domain, block based image coding schemes modify the his-

togram of transformed coefficients. Several proposed methods analyze the

shape of the histogram in order to detect traces of JPEG compression.

In [14], the authors derive a method based on the observation that in a

JPEG-compressed image, the integral of the DCT coefficients histogram in

the range (1,+1) is greater than the integral in the range (−2,−1]∪[+1,+2),

with quantization steps that are equal to or larger than 2. By examining, as

feature, the ratio between the first and the second integral, it is possible to

verify that its value, in case of JPEG-compressed image, will be close to zero,

and it would be much smaller than that of the corresponding uncompressed

one. So, JPEG compression is detected when the ratio is smaller than a given

threshold.

Once verified the presence of JPEG compression, another interesting task

Chapter 2. State of the Art 11

Figure 2.3: Histograms of DC coefficients (left) and AC0,1 coefficients (right) of the

top image.

is the estimation of quantization step QF (or the whole quantization table

q). Most of the methods proposed in literature exploit the fact that the

histogram of the DCT coefficients has a comb-like shape, and the spacing

between consecutive peaks is related to the adopted quantization step size.

Furthermore, it is well-known that the histogram envelope of DC coefficients

(i.e., the first DCT coefficient F̂0,0, Equation (2.3)) can be approximated

by means of a Gaussian or uniform distribution, whereas the histogram en-

velope of each AC coefficient (i.e., the other 63 DCT coefficients) can be

approximated by means of a Laplacian distribution, as shown in Figure 2.3

In particular, the method proposed in [13, 11] leverages this information

and estimates the quality factor through a Maximum Likelihood approach.

In [14], the authors propose a scheme to identify whether a image has been

Chapter 2. State of the Art 12

previously JPEG compressed, estimate the quantization step and detect the

whole quantization table. The key idea is that when a JPEG image is re-

constructed in the pixel domain, pixel values are rounded to integers. As

a consequence, the histograms of DCT values computed from decoded pixel

values are not exactly comb-shaped, but they are blurred with respect to

the ones computed directly after the quantization. In this way, is possible to

compute the quantization step for each DCT frequency by looking at peak

distances in these rounded histograms.

2.2.2 Double Compression Detection

The aforementioned solutions aim at detecting whether an image is uncom-

pressed, or has been JPEG compressed once. However, images are often

JPEG compressed once at photo inception directly by the acquisition de-

vice. When they are edited with whathever software suite (e.g., PhotoShop,

GIMP, etc.) and saved, they often undergo a second compression. Being

able to estimate whether an image has been JPEG compressed once or twice

proves then paramount as forgery indicator. Specifically, we refer to this

problem as double JPEG (DJPEG) compression detection.

We can distinguish between two separate kinds of double JPEG compres-

sion. If no operations are applied between the two compression steps, 8× 8

JPEG blocks of the first and second compressions are perfectly aligned, thus

we speak of A-DJPEG compression. Conversely, when the second compres-

sion 8× 8 grid is shifted with respect the previous one (e.g., due to cropping

between first and second compression or to a cut and paste operation), we

have a non aligned (NA-DJPEG) compression.

Concerning A-DJPEG detection, a promising method is proposed in [18].

It is proposed to detect the presence of double-aligned JPEG compression

Chapter 2. State of the Art 13

by observing that consecutive quantizations introduce periodic artifacts into

the histogram of DCT coefficients. These periodic artifacts are visible in

the Fourier domain as strong peaks in medium and high frequencies and are

defined as double quantization (DQ) effect. These peaks in the histogram

assume different configurations according to the relationship between the

quantization steps of the first and of the second compression. Given a JPEG

file with quality factor QF2, to decide if the file was previously JPEG com-

pressed with a different quality factor QF1, the approach proposed in [18]

works as follows: as the first step, the histograms of absolute values of all

analyzed DCT coefficients are computed from the image under investigation

I. The image is then cropped (in order to disrupt the structure of JPEG

blocks) and compressed with a set of candidate quantization tables repre-

senting various quality factors. The cropped and compressed images are then

recompressed using QF2; finally, the histograms of absolute values of DCT

coefficients from the double-compressed cropped images are computed. The

estimator chooses the quantization table such that the resulting histogram is

as close as possible to that obtained from the image I.

Detecting NA-DJPEG is indeed very interesting in all those cases in which

a portion of an image could be copy-pasted into another image. In such a

scenario, there is a high probability that the pasted portion does not match

the existing JPEG grid (63/64 if we consider all the possible shift among the

8 × 8 grid). In [4, 15], authors propose a threshold method to detect and

even estimate the region affected by not aligned double compression. The

main idea behind the method detecting NA-DJPG compression by measuring

how DCT coefficients cluster around a given lattice (defined by the JPEG

quantization table) for any possible grid shift. When NA-DJPG is detected,

the parameters of the lattice also give the primary quantization table.

Chapter 2. State of the Art 14

2.2.3 Multiple Compression Detection

JPEG multiple compression detection is the problem of detecting whether a

JPEG image has been compressed more than twice. Some of the proposed

solutions analyze the statistics of DCT coefficients. Although the problem

of multiple compression detection is relatively new in multimedia forensics,

several works on double compression detection have been presented in liter-

ature [19, 20]. The idea is to exploit DCT coefficients histogram to obtain

a descriptor based on the First Digits law (Benford’s law). Descriptors are

then used to train a classifier, typically a SVM, to distinguish between single

compression and multiple compressions.

2.2.4 Forgery Localization

Working on detection with small portion of the original images can be very

useful for localization purposes. Localization aims at discover which portion

of the image has been tampered with, i.e., precisely identify where the forgery

is within the image area. Once built a working methodology for detection

on small blocks, the underlying idea is to divide the investigated image into

smaller patches and to carry out a probability scoring for each patch [21, 22].

The aggregation of the various probabilities is used to produce a heatmap

representing the likelihood of each region to be tampered with. Figure 2.4

shows the result of the method depicted in [21]. The outcome of the algorithm

can be further refined by considering a color segmentation of the original

image and its overlapping with the tampered region, Figure 2.5. In this way

the analysis of the tampered area is restricted to a meaningful region, instead

of merely indicate the approximated tampered parts.

Chapter 2. State of the Art 15

Figure 2.4: Example of blockwise tamper detection. Top-left: original image; top-

right: tampered image; bottom-left: tampering map; bottom-right: tampered region

identified by the blockwise detector.

Figure 2.5: Example of regionwise tamper detection. Left: output of the segmentation

algorithm; right: output of the tamper detector.

Chapter 2. State of the Art 16

2.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) is a special type of multi-layer neu-

ral network used in deep learning. They first appeared in the late 1980’s with

handwritten zip code recognition [9], but they recently gained significant at-

tention in the computer vision and machine learning communities due to the

spreading adoption of GPUs as general-purpose sources of computation over

the last few years. CNN are indeed very expensive in terms of computational

power as they exploit very high dimensionality in data to adaptively learn

classification features.

Every CNN employs a set of common layers, whose typical concatenation

is depicted in Figure 2.6:

• Convolution: each convolution layer is a bank of filters h. Given an

input signal x, the output of each filter is the valid part of the linear

convolution computed with stride S (i.e., y = convS(x, h)) and it is

known as feature map. The output of the layer is obtained stacking all

the feature maps obtained through different filters h.

• Pooling : this layer downsamples the input x by sliding a small window

over it. A common choice is to keep the maximum value for each

window position (max-pooling). Following the same idea, also min-

pooling and average-pooling layers can be constructed.

• Activation: acts in a non-linear fashion on the input values. Rectified

Linear Unit (ReLU) applies the rectification function max(0, x) to the

input x, thus truncating negative values to zero [23]. This is one of the

possible way to add non-linear behavior to the network in addition to

sigmoids and hyperbolic tangents among others.

Chapter 2. State of the Art 17

Conv Pool IP … Soft
Max

Figure 2.6: Example of simple CNN architecture composed by some of the principally

used layers. A convolution layer (Conv) processes the input image with a series of

linear filters. A pooling layer (Pool) downsamples each filtered image. Inner product

(IP) linearly combines all its input data before applying a non-linear transformation.

After a few other layers, SoftMax normalizes its input to sum to 1.

These three layers represent the convolutional part of a CNN which have the

purpose of focusing on important patterns in data. It is not uncommon to

come across a chain of several convolution→ pooling→ activation layers, in

order to reduce the dimensionality of the input, Figure 2.7.

The following layers are usually employed atop of the convolutional part:

• Inner Product : this is a fully-connected layer that performs a set of lin-

ear combinations of all samples of the input x. Typically inner product

layers also apply some non-linearity at the end (e.g., ReLU).

• SoftMax : this normalizes the input values in the range [0, 1] and guar-

antees that they sum up to one. This is particularly useful at the end

of the network in order to interpret its outputs as probability values.

CNN are known to deliver good results when working with images [10].

Firstly, they have built-in invariance with respect to translation and local

distortion of the inputs. Before being sent to the fixed-sized input level

of a neural network, images (like generic 2D or 1D signals) must be size-

normalized and centered in the input field. This cause variations in the posi-

Chapter 2. State of the Art 18

Layer 1 Layer 2 Layer 3

Figure 2.7: Qualitative representation of feature maps transformation.

Figure 2.8: Convolutional architecture for characters recognition proposed in [1].

tion of distinctive features in input objects, complicating a lot the learning of

a generic fully-connected network which would require the replication of in-

put data to cover every possible variation in space. CNN are employed since

shift invariance is automatically obtained by forcing the replication of weight

configurations across space. Secondly, in fully connected architectures, the

topology of the input is completely ignored. Images have a strong 2D local

structure: spatially nearby pixels are in fact highly correlated. CNN force

the extraction of local features by restricting the receptive fields of hidden

units to be local, and focus on recognition of spatial objects only in a second

time.

CNN combine three architectural ideas to ensure some degree of shift and

distortion invariance: local receptive fields, shared weights, and, generally,

spatial subsampling.

Chapter 2. State of the Art 19

A very well-known and studied network for character recognition [1]

is shown in Figure 2.8. The input image has been approximately size-

normalized and centered during preprocessing. Each unit of a layer receives

inputs from a set of units located in a small neighborhood in the previous

layer. With local receptive fields, neurons can extract elementary visual fea-

tures such as oriented edges, end-points, corners, and having this features

combined in the higher levels. Another interesting characteristic of CNN is

that elementary feature detectors that are useful on one part of the image

are likely to be useful across the entire image. This knowledge can be applied

by forcing a set of units whose receptive fields are located at different places

on the image to have identical weight vectors. The outputs of such a set of

neurons constitute a feature map. At each position, different types of units

in different feature maps compute different types of features. A sequential

implementation of this, for each feature map, would be to scan the input

image with a single neuron that has a local receptive field and to store the

states of this neuron at corresponding locations in the feature map. This op-

eration is equivalent to a convolution with a small-size kernel, followed by a

squashing function. The process can be performed in parallel by implement-

ing the feature map as a plane of neurons that share a single weight vector.

Units in a feature map are constrained to perform the same operation on

different parts of the image. A convolutional layer is usually composed of

several feature maps (with different weight vectors), so that multiple features

can be extracted at each location.

More specifically, the analytical expression of the convolution within the

CNN architecture is given in:

h
(n)
j =

K∑
k=1

h
(n−1)
k ∗w(n)

kj + b
(n)
j , (2.5)

Chapter 2. State of the Art 20

where h
(n)
j is the jth feature map output in the hidden layer h(n), h

(n−1)
k is

the k(th) channel in the hidden layer h(n−1), w
(n)
kj is the k(th) channel in the

jth filter in h(n) and b
(n)
j is its corresponding bias term.

The filter coefficients are generally initialized with random numbers, and

are learned during the training via a process known as backpropagation [9].

This iterative algorithm alternates between feedforward and backpropagation

passes of the data, and its ultimate goal is to minimize the average loss

between the actual labels (the ground truth) and the network outputs:

L =
1

m

m∑
i=1

c∑
k=1

y
∗(k)
i log y

(k)
i , (2.6)

where y
∗(k)
i and y

(k)
i are respectively the true label and the network output

of the i(th) image at the k(th) class with m training images and c neurons in

the output layer.

The iterative update rule for the kernel coefficients w
(n)
ij in CNN during

the backpropagation pass is given by:

w
(n)
ij = w

(n)
ij + ∆w

(n)
ij

∆w
(n)
ij = m ·∆w

(n)
ij − d · ε ·w

(n)
ij − ε ·

∂E

∂w
(n)
ij

,
(2.7)

where w
(n)
ij represents the i(th) channel from the j(th) kernel matrix in the

hidden layer h(n) that convolves with the i(th) channel in the previous feature

maps denoted by h
(n−1)
i , ∆w

(n)
ij denotes the gradient of w

(n)
ij and ε is the

learning rate. The letters m and d are respectively the momentum and the

weight decay, used for fast convergence as explained in [24]. The bias term

b
(n)
j in (2.5) is updated using the same equation presented in (2.7).

Chapter 2. State of the Art 21

2.4 Convolutional Neural Networks in Image Forensics

As mentioned in the previous section, CNNs have been successfully used in

recent years for many image recognition and classification tasks [1]. How-

ever, only recently, some works have started to explore CNNs for multimedia

forensic applications.

One of the first works using CNNs for multimedia forensics is [25]. In this

paper, the authors developed a detector for median-filtered images, whose ca-

pability of working on small 64×64 patches enabled its use also for tampering

localization. In developing this algorithm, authors showed the importance of

applying a pre-processing filtering step to images, in order to better expose

forgery traces in a residual domain. The used CNN architecture is composed

by only four convolutional layers and fewer inner-products, nonetheless pro-

viding very accurate results.

The importance of working with high-pass versions of the image under

analysis for forensic works was also remarked in [26]. In this paper, the

authors use a CNN to build a detection model for image manipulation. The

key idea is to learn to discriminate between a set of known manipulation

(i.e., median filtering, gaussian blurring, addition of white gaussian noise,

resizing) performed on the image. During the training phase, they constrain

the weight of the first convolutional level to evolve towards a designed high-

pass filter, instead of following the usual gradient descent update. In this

way they manage to exclude the scene (image content) from the learning

procedure, focusing only on manipulation features. With this method, they

do not require to know the characteristic traces of each transformation, and

they reach very satisfactory results.

A forensic task that has been better investigated with CNNs is camera

Chapter 2. State of the Art 22

model identification. This is detecting the camera model used to shoot a

picture from the analysis of the picture itself. To this purpose, authors of

[27] made use of a three convolutional layers network to detect the camera

model used to shot a picture. In [28], the same goal was achieved using four

convolutional layers, also showing the capability of CNNs to generalize to

camera models never used for training. Finally, in [29], the authors investi-

gated the possibility of using up to ten convolutional layers, concluding that

no additional benefit was provided by going that deep. It is worth noting

that [28, 29] perform well against the previous state-of-the-art ones, espe-

cially when results are compared on small blocks extracted from images (i.e.,

64× 64 pixel). The main advantage of the proposed algorithms is that they

work on raw data and they do not rely on any analytical modeling, which can

be prone to errors due to simplistic assumptions or model simplifications.

To the best of our knowledge, the only work based on CNNs for double

JPEG detection is [2]. However, in this work, the authors feed the CNN with

hand-crafted features (i.e., DCT coefficients histograms) rather than letting

the network learn directly from data. Specifically, the authors exploit hierar-

chical feature learning of CNNs to detect double JPEG compression. Given

an input image, they extract a feature vector based on some considerations

on DCT histograms and feed it to a CNN. In particular, they observe that

double JPEG compression considerably changes the shape of the distribution

of DCT coefficients at given frequency, exhibiting characteristics peaks and

valleys, Figure 2.9.

They consider only Y component of (YCbCr) and for simplicity they drop

the DC component since it has a different distribution histogram with respect

to the AC components’ ones. Furthermore, they reduce the dimensionality of

the input by considering only the 2nd-10th DCT coefficients in zigzag order

Chapter 2. State of the Art 23

Figure 2.9: DCT coefficient histograms corresponding to the (0,1) position. a, b

DCT coefficient histograms of a single-compressed image with a QF1 = 60 and b

QF1 = 90. c, d DCT coefficient histograms of the same double-compressed image

with c QF1 = 90, QF2 = 60, and d QF1 = 60, QF2 = 90.

and using only the values corresponding to {−5,−4, ..., 4, 5} as representative

of the whole histogram. In details: let B denote a block with a size of W×W ,

and let hi(u) denote the histogram of DCT coefficients with the value u at

the ith frequency in zigzag order in B. Then, the feature set consists of the

following values:

XB = {hi(−5), hi(−4), hi(−3), hi(−2), hi(−1), hi(0),

hi(1), hi(2), hi(3), hi(4), hi(5) | i ∈ 2, 3, ..., 9, 10}, (2.8)

in this way they obtain a 9×11 feature vector for each block. The architecture

Chapter 2. State of the Art 24

Figure 2.10: CNN architecture used in [2].

of their network is shown in Figure 2.10.

It contains two convolutional connections followed by two pooling con-

nections and three full connections. The size of the input data is 9× 11, and

the output is a distribution of two classes (single or double compressed). For

the convolutional connections, they set the kernel size m × n to 3 × 1, the

number of kernels k to 100, and the stride s to 1. Here, we consider the first

convolutional layer as an example: the size of the input data is 99 × 1, and

the first convolutional layer convolves these data with 100 3×1 kernels, with

a stride (step size) of 1. The size of the output is 97× 1× 100, which means

that the number of feature maps is 100 and the output feature maps have

dimensions of 97× 1. For the pooling connections, they set the pooling size

m× n to 3× 1, and the pooling stride s to 2 with “max pooling” as pooling

function. Each full connection has 1000 neurons, and the output of the last

one is sent to a two-way softmax connection, which produces the probability

that each sample should be classified into each class. The accuracy of this

method, for different QF2 averaged over QF1 ∈ {60, 70, 80, 90, 95} and dif-

ferent block sizes W is shown in Figure 2.11. Notice that the performance

rapidly degrade as image size decreases. As a matter of fact, double JPEG

Chapter 2. State of the Art 25

60 70 80 90 100
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2.11: Accuracy of [2] for different QF2 and different block sizes W .

compression detection on small images (e.g., 64× 64) is still an open issue in

the literature.

Based on the aforementioned works, it is worth noting how CNNs for mul-

timedia forensics typically necessitate of just a few layers to achieve promising

results, being much less deeper than CNNs used for artificial intelligent and

computer vision applications. This is probably due to the fact that the con-

sidered forensic classification tasks can be efficiently solved also using simple

statistical model. This means that they do not need a very high abstraction

capability, which proves essential for complex tasks like object recognition,

in which the underlying model (i.e., human brain behavior) is particularly

hard to describe.

3.

Problem formulation

In this Chapter we first introduce the problem of double JPEG compres-

sion detection, which is the main focus of our research. Than, we introduce

the problem of JPEG quality factor estimation and software suite identifica-

tion. These are two additional JPEG-based forensic problems we analyze as

peculiar cases of study.

3.1 Double JPEG detection

JPEG compression is a destructive transformation, as Equation (2.3) is not

invertible. As a consequence, a JPEG image subject to a second compression

will show some characteristic features that can be detected. The pipeline of a

double compression is the following. Image I0 is compressed with QF = QF1

(Chapter 2.1), obtaining a JPEG image I1. Then, I1 is decompressed obtain-

ing Ĩ1 which is compressed with QF = QF2 obtaining I2. If no operations are

applied between the two compression steps, 8 × 8 JPEG blocks of the first

and second compressions are perfectly aligned, thus we speak of A-DJPEG

compression, Figure 3.1. Conversely, when the second compression 8 × 8

grid is shifted with respect the previous one (e.g., due to cropping between

Chapter 3. Problem formulation 27

first and second compression or to a cut and paste operation), we have a

NA-DJPEG compression, Figure 3.2.

I0 I1 I2

Figure 3.1: A-DJPEG example: Image I0 is first compressed with the block grid shown

in yellow, obtaining image I1. Then I1 is again compressed with the red block grid,

aligned with the one of the first compression, obtaining I2.

I0 I1 I2

Figure 3.2: NA-DJPEG example: Image I0 is first compressed with the block grid

shown in yellow, obtaining image I1. Then I1 is again compressed with the red block

grid, misaligned with the one of the first compression, obtaining I2.

Our goal is to build a detector which is able to classify between single

compressed and double compressed images. In other words, let us define:H0, single compressed

H1, double compressed

,

Chapter 3. Problem formulation 28

QF100 QF50 QF10

QF100 QF50 QF10

Figure 3.3: JPEG compression image degradation due to different quality factors com-

pression. Top: example images compressed with various QFs. Bottom: magnified

detail of the respective top image. Blocky artifacts become particularly evident as QF

lowers.

corresponding to the hypothesis of single compressed image and to the hy-

pothesis of image compressed twice, respectively.

Given a B×B pixel image I, we want to detect whether H0 or H1 is verified,

considering: i) only A-DJPEG case; ii) only NA-DJPEG; iii) both A-DJPEG

and NA-DJPEG cases.

Chapter 3. Problem formulation 29

3.2 Quality factor estimation

The outcome of JPEG compression heavily depends on the adopted qual-

ity factor QF (Chapter 2.1). Clearly, using higher quality factors leads to

lower image degradation whilst using lower quality factors leads to a greater

compression in spite of a greater degradation. The effect of using different

quality factors is depicted in Figure 3.3.

Our goal is to build a detector which is able to estimate the

adopted quality factor QF among a set of possible quality factors

Q = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. For this task, let us define:

H0, QF10

H1, QF20

H2, QF30

H3, QF40

H4, QF50

H5, QF60

H6, QF70

H7, QF80

H8, QF90

H9, QF100

,

each hypothesis corresponding to the respective quality factor of Q. Given

an B×B pixel image I, compressed with quality factor QF ∈ Q we want to

detect QF .

Chapter 3. Problem formulation 30

3.3 Software identification

JPEG compression has indeed to be done by means of a software. The

underlying idea of this experiment is that the employed software could leave

some characteristic traces on the bitmap of the compressed image. We take

in consideration the two most used software products in image editing world:

Photoshop and GIMP. The former is a proprietary software produced by

Adobe, the latter is an open source alternative.

Our goal is to build a detector which is able to classify between Photoshop

and GIMP compression. According to the file size of some test images com-

pressed with both the products, we set 4 compression levels in order to have

a common reference between the two of them. These compression levels are:

high, mid-high, mid-low and low, loosely representing QF = {95, 70, 30, 15}.

Figure 3.4 shows the differences between the compressed JPEG version of the

two software products. As we can see, discerning can be very challenging,

especially on higher compression levels. Let us define:H0, Photoshop

H1, GIMP

,

corresponding to Photoshop compression and GIMP compression hypothesis

respectively. Given a B×B pixel image I, we want to detect whether H0 or

H1 is verified considering the four possible scenarios given by the four defined

compression levels.

Chapter 3. Problem formulation 31

Photoshop high Photoshop mid-high Photoshop mid-low Photoshop low

GIMP high GIMP mid-high GIMP mid-low GIMP low

Figure 3.4: Different JPEG compression outcomes from different software products.

Top: various Photoshop JPEG compression levels. Bottom: various GIMP JPEG

compression levels.

4.

Forensics detection system

The problems described in the previous chapter (i.e., DJPEG detection, QF

estimation and software recognition) share two common aspects: i) their

solution is based on detection of JPEG footprints; ii) they can all be cast

as supervised classification problems. In this chapter we first describe the

pipeline common to them and then we examine in details the proposed net-

works.

4.1 Pipeline overview

Given a input image I, our goal is to classify it between M classes, depending

on the specific considered problem. Therefore, we make a set of hypoteses

Hm, m ∈ [0,M]. The proposed pipeline, depicted in Figure 4.1, is composed

by two steps: training and testing. During training, a database of labeled

images is used to learn CNN parameters for the selected architecture. The

CNN is fed with N pairs {In, ln}, n ∈ [1, N], where ln = m if image In verifies

Hm. After training, the CNN outputs the learned model M containing all

CNN parameters (e.g., filters, fully connected weights, etc.). When an image

I is under analysis, it is fed to the trained CNN. The output of the network

Chapter 4. Forensics detection system 33

Figure 4.1: CNN training (top) is performed using images In labeled with ln. The CNN

model M is then used for testing (bottom) a new image I and obtain the candidate

label l̂.

will be a set of M probabilities, one for each hypotesis Hm, for the image I

to verify that specific hypotesis. A label l̂ is then assigned to I by simply

considering the maximum among these probabilities.

In particular, we would like to stress that it is convenient for us to work

with small images, i.e., small patches of size B × B obtained by cropping

an image I. We impose such a condition for different reasons: i) reducing

the computational burden for processing a single image; ii) enlarging the

amount of available images for a better training of the network; iii) working

with small patches paves the way to tampering localization, a task on which

we would like to focus in future. For these reasons, when we refer to image

I, from now on we mean a small patch extracted from an actual image.

4.2 CNN architectures

In this section we report detailed information about all the CNN architectures

applied in this work to solve the aforementioned tasks.

Chapter 4. Forensics detection system 34

4.2.1 Classic architectures

Following recent literature results in image forensics we selected as starting

point of our investigation the well known LeNet architecture for handwritten

digits recognition.

LeNet is the network proposed in [1] for handwritten digits recognition.

It has somehow become the standard baseline for image classification tasks.

We therefore decided to test it to have a reliable yardstick for results on the

other investigated networks.

The architecture is depicted in Table 4.1. Given an input image of size

B×B×1 (i.e., a grayscale image), two convolutional layers (i.e., Conv-1,

Conv-2) apply stride 1 convolution with a 5×5 kernel. Conv-1 uses 20 fil-

ters, whereas Conv-2 uses 50 filters. Each one of them is followed by a max

pooling layer (i.e., Pool-1, Pool-2) with stride 2 and a 2×2 kernel. The first

inner product layer (i.e., IP-1) reduces its input to 500 neurons and a ReLU

non-linearity is performed on top of it. Finally, the last fully connected layer

(i.e., IP-2) reduces its input to M neurons (one per class) and SoftMax layer

normalize them to probability values.

Although the results yielded by the use of LeNet are often satisfactory, we

can fall in some situations in which is preferable to “going deeper” [30] in the

network by extending the chain of convolutional layers. The advantage is that

we shrink the number of free parameters in the model, since we progressively

reduce the feature maps dimension. To this purpose, we extended LeNet

to two additional architectures. The first one has 3 convolutional→pooling

layers. The second one has 6 convolutional→pooling layers. We refer to

them as “LeNet-3” and “LeNet-6” respectively and we report Table 4.2 and

Table 4.3 with the specifics of each layer.

Chapter 4. Forensics detection system 35

Layer Kernel size Stride Num. filters Output Size

Conv-1 5×5 1 30 B-4 × B-4 × 30

Pool-1 2×2 2 - B/2-2 × B/2-2 × 30

Conv-2 5×5 1 30 B/2-6 × B/2-6 × 30

Pool-2 2×2 2 - B/4-3 × B/4-3 × 30

IP-1 - - 500 500

ReLU-1 - - - 500

IP-2 - - M M

SoftMax - - - M

Table 4.1: LeNet architecture parameters. Output of each layer is reported as function

of the input image size B ×B × 1.

4.2.2 DCT driven architecture

The literature has shown how working in DCT domain might be profitable in

various aspects of JPEG detection, as mentioned in Chapter 2.2.1. A valid

approach would be apply DCT transform to images and then feed them

to the network. Starting from this idea and knowing that DCT can be

implemented as a linear filtering operation, we ended up to a solution that

exploits the learning capability of the network to explore a DCT-like domain.

The architecture is depicted in Table 4.4.

The first convolutional layer (i.e., DCT) is initialized with the weights

shown in Figure 4.2, which are the 8× 8 DCT basis defined as

Hc1,c2(i, j) = α(c1, c2) cos

[
π

8

(
i+

1

2

)
c1

]
cos

[
π

8

(
j +

1

2

)
c2

]
,

where c1 ∈ [0, 7] and c2 ∈ [0, 7] define horizontal and vertical frequencies of

a DCT base (i.e., which filter), i ∈ [0, 7] and j ∈ [0, 7] are sample positions

Chapter 4. Forensics detection system 36

Layer Kernel size Stride Num. filters Output Size

Conv-1 3×3 1 20 B-2 × B-2 × 20

Pool-1 2×2 2 - B/2-1 × B/2-1 × 20

Conv-2 3×3 1 50 B/2-3 × B/2-3 × 50

Pool-2 2×2 2 - B/4-1 × B/4-1 × 50

Conv-3 3×3 1 80 B/4-3 × B/4-3 × 80

Pool-3 2×2 2 - B/8-3 × B/8-3 × 80

IP-1 - - 500 500

ReLU-1 - - - 500

IP-2 - - M M

SoftMax - - - M

Table 4.2: LeNet-3 architecture parameters. Output of each layer is reported as

function of the input image size B ×B × 1.

of each filter, and α is a scale normalization term. Given an input image

of size B×B×1, the stride 8 convolution with this particular set of filters is

equivalent to compute the 8× 8 block DCT on the whole image and to map

frequence c1, c2 of each block to a single feature map on the third dimension

of the output, shaped dB−8
8
e+ 1× dB−8

8
e+ 1× 64. We set the first filter

(i.e., the DC component) to 0 in order to ease the computation. In fact, DC

terms are generally on a different magnitude order with respect to the AC

terms, hence keeping the DC would have led to non-convergence problems.

Two convolutional layers (i.e., Conv-1, Conv-2) apply stride 1 convolution

with a 5×5 kernel, the first one with 20 filters, the second one with 50 filters.

Both of them are followed by a max pooling layer (i.e., Pool-1, Pool-2) with

stride 2 and a 2×2 kernel. The first inner product layer (i.e., IP-1) reduces

its input to 500 neurons and a ReLU non-linearity is performed on top of

Chapter 4. Forensics detection system 37

Layer Kernel size Stride Num. filters Output Size

Conv-1 5×5 1 20 B-4 × B-4 × 20

Pool-1 2×2 2 - B/2-2 × B/2-2 × 20

Conv-2 5×5 1 50 B/2-6 × B/2-6 × 50

Pool-2 2×2 2 - B/4-3 × B/4-3 × 50

Conv-3 3×3 1 80 B/4-5 × B/4-5 × 80

Pool-3 2×2 2 - B/8-2 × B/8-2 × 80

Conv-4 3×3 1 100 B/8-4 × B/8-4 × 100

Pool-4 2×2 2 - B/16-2 × B/16-2 × 100

Conv-5 2×2 1 120 B/16-3 × B/16-3 × 20

Pool-5 2×2 2 - B/32-1 × B/32-1 × 120

Conv-6 2×2 1 140 B/32-2 × B/32-2 × 140

Pool-6 2×2 2 - B/64-1 × B/64-1 × 140

IP-1 - - 250 250

ReLU-1 - - - 250

IP-2 - - M M

SoftMax - - - M

Table 4.3: LeNet-6 architecture parameters. Output of each layer is reported as

function of the input image size B ×B × 1.

it. Finally, the last fully connected layer (i.e., IP-2) reduces its input to M

neurons (one per class) and SoftMax layer normalize them to probability

values.

4.2.3 High pass filters driven architecture

As stated in [3, 31], high-pass filtering is a valid preprocessing in order to

eliminate semantical content from images and focus on the traces left by

JPEG compression (or even other forensic traces). Therefore, we decided to

Chapter 4. Forensics detection system 38

Figure 4.2: 2D DCT filters adopted in the first convolutional layer of the network.

exploit this idea embedding a high-pass filtering layer to the network, rather

than performing any preprocessing on raw images. We insert a handcrafted

convolutional layer that computes the high-pass filtering starting with the

weights used in [3] and possibly improving them.

The network architecture is depicted in Table 4.5. Given an input image

of size B × B × 1, the first convolutional layer (i.e., HP) performs high-

pass filtering using 26 filters. A subset of adopted values used for weights

initialization is shown in Figure 4.3. Two convolutional layers (i.e., Conv-1,

Conv-2) apply stride 1 convolution with a 5×5 kernel, the first one with 20

filters, the second one with 50 filters. Both of them are followed by a max

pooling layer (i.e., Pool-1, Pool-2) with stride 2 and a 2×2 kernel. The first

inner product layer (i.e., IP-1) reduces its input to 500 neurons and a ReLU

Chapter 4. Forensics detection system 39

Layer Kernel size Stride Num. filters Output Size

DCT 8×8 8 64 dB−8
8
e+ 1× dB−8

8
e+ 1× 26

Conv-1 5×5 1 20 dB−8
8
e − 3× dB−8

8
e − 3× 20

Pool-1 2×2 2 - dB−8
16
e − 2× dB−8

16
e − 2× 20

Conv-2 5×5 1 50 dB−8
16
e − 6× dB−8

16
e − 6× 50

Pool-2 2×2 2 - dB−8
32
e − 3× dB−8

32
e − 3× 50

IP-1 - - 250 250

ReLU-1 - - - 250

IP-2 - - M M

SoftMax - - - M

Table 4.4: DCT driven architecture parameters. Output of each layer is reported as

function of the input image size B ×B × 1.

non-linearity is performed on top of it. Finally, the last fully connected layer

(i.e., IP-2) reduces its input to M neurons (one per class) and SoftMax layer

normalize them to probability values.

4.2.4 Noise driven architecture

The HP-driven architecture just described can be seen as a layer of high-

pass filters that pre-process an input image I enhancing noisy components,

followed by the basic LeNet architecture. The use of noise enhancement tech-

niques to analyze fine image details related to the past processing history of

an image is widely adopted in the forensic literature. Specifically, it is well

known that characteristic artifacts can be extracted using non-linear noise en-

hancement techniques, e.g., for camera device identification [32]. In order to

gain a deeper insight on the importance of using a non-linear pre-processing

operator, we also propose to apply a non-linear pre-processing step to im-

age I, and feed the resulting image residual to LeNet. This solution mimic

Chapter 4. Forensics detection system 40

Figure 4.3: Subset of filters used in [3]. Values ∈ {−2,−1, 0,+1} from the darkest to

the brightest.

the behavior of the HP-driven approach, substituting high-pass filters with

a fixed non-linear hih-pass-like operation. Specifically, the pre-processing

operation we consider is

Ĩ = I −F(I) , (4.1)

where Ĩ is the image residual fed to LeNet, and F(·) is the non-linear denois-

ing operator described in [33], widely used in forensics for its good capability

of separating image content from noise [32].

4.2.5 Histogram based architecture

In [2], histogram of DCT coefficients are successfully employed as feature

vector. They are extracted from the images and fed to a CNN (Chapter 2.4)

for further feature transformations and final classification.

Despite our approach is similar to the one proposed in [2], we would like to

stress that: i) we do not make use of DCT coefficients extracted from JPEG

bitstream, rather we compute DCT with a CNN layer enabling us to work

with decompressed images (i.e., our method still works if double JPEG im-

ages are stored in bitmap or PNG format); ii) we exploit a 2D-convolutional

CNN, rather than a 1D one, thus capturing possible correlation among DCT

Chapter 4. Forensics detection system 41

Layer Kernel size Stride Num. filters Output Size

HP 3×3 1 26 B-2 × B-2 × 26

Conv-1 5×5 1 20 B-6 × B-6 × 20

Pool-1 2×2 2 - B/2-3 × B/2-3 × 20

Conv-2 5×5 1 50 B/2-7 × B/2-7 × 50

Pool-2 2×2 2 - B/4-3 × B/4-3 × 50

IP-1 - - 500 500

ReLU-1 - - - 500

IP-2 - - M M

SoftMax - - - M

Table 4.5: High-pass filters driven architecture parameters. Output of each layer is

reported as function of the input image size B ×B × 1.

coefficient histograms; iii) our solution embeds histogram computation as

part of the CNN; iv) by embedding histogram computation in the CNN, we

are able to also optimize the choice of quantization bins, rather than fixing

it manually as in any hand-crafted approach. Indeed, the used set of bins

become a parameter that the CNN can learn during training.

The proposed architecture can be thought as split into two parts as show

in Figure 4.4: i) the former computes DCT coefficients histograms; ii) the

latter, fed with these histograms, is the CNN described in Table 4.1. For the

first part, the first step consists in obtaining the 2D DCT representation of

each 8×8 image block. To this purpose, let us define Dc1,c2 as the B
8
× B

8

matrix containing the DCT coefficients at frequency (c1, c2) for each 8 × 8

image block. This can be computed with a convolutional layer as:

Dc1,c2 = conv8(I,Hc1,c2), (4.2)

Chapter 4. Forensics detection system 42

Conv
DCT Bias Sigm Avg

Pool
Conv
Diff

Conv-1 Conv-2Pool-1 Pool-1 IP-1 ReLU IP-2

DCT Cumulative Histogram Histogram

Figure 4.4: Pipeline of the CNN layers used by the third proposed method. On the top,

the part devoted to DCT histogram computation. On the bottom, the CNN described

in Table 4.1.

where conv8(·, ·) computes the valid part of the 2D linear convolution using

stride 8, and Hc1,c2 is the base at (c1, c2) frequency of the 8× 8 DCT, whose

entries are defined as:

Hc1,c2(i, j) = α(c1, c2) cos

[
π

8

(
i+

1

2

)
c1

]
cos

[
π

8

(
j +

1

2

)
c2

]
, (4.3)

where α(c1, c2) is a normalization constant and i, j, c1, c2 ∈ [0, 7]. An example

of Dc1,c2 is reported in Figure 4.5. In order reduce computational burden, we

decided to use only 9 DCT frequencies (i.e., the first 10 coefficients in zigzag

order, DC excluded). At this point we want to compute the histogram for

each frequency (c1, c2). To do so by means of common CNN layers, we first

compute the cumulative histogram then we differentiate it. Specifically, to

count the average number Bc1,c2(b) of values in Hc1,c2 that are greater than a

constant b, we resort to a series of bias, sigmoid and average-pooling layers,

Chapter 4. Forensics detection system 43

Dc1,c2

H0,1 − b

sigmoid(γ · (H0,1(i, j)− b))

Figure 4.5: Outputs of CNN layers devoted to histogram computation: (a) output

of the DCT layer Dc1,c2 for nine different pairs (c1, c2); (b) output of the bias layer

Hc1,c2 − b for (c1, c2) = (0, 1) and different b values; (c) output of sigmoid layer

sigmoid(γ · (Hc1,c2(i, j)− b)) for (c1, c2) = (0, 1) and different b values.

obtaining:

Bc1,c2(b) =
B2

64

∑
i,j∈[0,7]

sigmoid [γ · (Hc1,c2(i, j)− b)] , (4.4)

where the bias b is a constant value identifying a histogram bin boundary,

γ is a gain (i.e., 106 in our experiments) used to expand the dynamic of

Hc1,c2(i, j) − b (i.e., to obtain very high values for Hc1,c2(i, j) > b and very

low values for Hc1,c2(i, j) < b), sigmoid(·) turns very low and very high

input values into {0, 1} respectively, and the average-pooling layer performs

the sum and normalization for B2/64. In other words, Bc1,c2(b) is the b-th

cumulative histogram bin for DCT coefficient (c1, c2). Examples of these

Chapter 4. Forensics detection system 44

(a)

(b)

Figure 4.6: Example of (a) cumulative histogram Bc1,c2 and (b) histogram Zc1,c2 ,

for (c1, c2) = (0, 1) and b ∈ [b0, b15]. These are the output of average pooling and

derivative convolutional layer fixing (c1, c2) = (0, 1), respectively.

signals are depicted in Figure 4.5.

The histogram for each (c1, c2) can be obtained from the cumulative his-

togram using a convolutional layer that computes:

Zc1,c2(b) = conv1(Bc1,c2 , [1,−1]), (4.5)

namely the 1D convolution with the filter [1,−1] acting as differentiator in

the b-th direction. Differently from [2], we do not assume to already have

access to quantized DCT coefficients. Therefore, the set of b values used

to construct histograms is not known and must be sought. An example of

Chapter 4. Forensics detection system 45

obtained histogram and its cumulative version is reported in Figure 4.6.

Once all histograms Zc1,c2 for all considered DCT frequency pairs (c1, c2)

have been computed in parallel by the CNN, they are concatenated into a

2D matrix, where each row represents a histogram bin b, and each column

represents a frequency pair (c1, c2). This matrix (i.e., the output of ConvDiff

layer of Figure 4.4) can be considered as an image, fed as input to the CNN

pipeline defined in Table 4.1.

5.

Experimental results

In this Chapter we describe the setup of each carried experiment and we an-

alyze the results of our methodology with respect to the state of the art. All

the employed datasets are built from images belonging either to the RAISE

dataset [34] or to the Dresden Image Database dataset [35]. Both of them are

large collections of natural uncompressed images (in TIFF or PNG format)

taken with different instances of different camera models from different man-

ufactorers. We choose these two particular datasets because they are largely

employed in forensic field research e.g., [25, 28, 29, 2]. From now on, we will

refer to them simply as the RAISE and the Dresden.

All the experiments have been run exploiting Caffe framework [36] on a

workstation equipped with an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz

with 64GB of RAM and one NVIDIA Titan-X GPU.

5.1 Double JPEG detection

We put a considerable part of our effort in investigating the traces left by

double JPEG compression. Here we present our experimental methodology

after problem formalization of Chapter 3.1.

Chapter 5. Experimental results 47

5.1.1 Dataset construction

In order to thoroughly validate the proposed solutions, we generated a set of

training and test datasets of single and double compressed images at different

resolutions and with different quality factors, for a total amount of more than

2 500 000 images.

All datasets were built starting from images of RAISE database. Images

have been first converted to grayscale, then randomly cropped in order to

obtain smaller resolution images used in our tests. Attention were paid to

split into only one set (training or validation) all cropped portions coming

from a same original image. All sets are balanced, i.e., they contain the same

number of single and double JPEG images.

Training sets have been created in the following cases: i) B = {64, 256};

ii) aligned and non-aligned DJPEG. For each scenario, the image set was

built as it follows: for the first class (H0), images of size B × B were single

compressed with quality factor QF2; for the second class (H1), double com-

pressed images were built by coding B × B images first with various QF1

and then with QF2. For a meaningful analysis, we took QF = QF2 as done

in [2].

To build double compressed images for the non-aligned case, we started

from images of size B′ ×B′ with B′ ≥ B + 7. Then, after the first compres-

sion with QF1, images were shifted by a random quantity (r, c), 0 < r < 7,

0 < c < 7, and cropped to the size B × B, before being compressed again

with QF2, thus simulating grid misalignement. In all our experiments,

we considered two possible values for QF2, that is 75 and 85, whereas

QF1 ∈ {50, 60, 70, 80, 90}. Table 5.1 reports the breakdown of all these

training datasets. We denote with D̄ datasets for the aligned DJPEG case

and with D̂ datasets for non-aligned JPEG scenario. Superscripts indicate

Chapter 5. Experimental results 48

the adopted QF2 (i.e., 75 or 85), whereas subscripts indicate image size (i.e.,

B = 64 or 256).

Validation datasets have been created to evaluate: i) detection accuracy

under normal working conditions, i.e., the ability of classifying test images

built under the same conditions of training, and also; ii) generalization ca-

pability, that is, the ability of classifying images even when they are not

perfectly compliant with the used training set. To this purpose, we gener-

ated different sets of double JPEG images with many different (QF1,QF2)

pairs and single JPEG images with the corresponding QF2. Specifically, in

addition to the same pairs used for training, we considered some new pairs

where QF1 or QF2 deviates from the values used for training. Each set con-

tains 3 000 single compressed images and 3 000 double compressed ones. As

for training, validation sets were built for the case B = {64, 256}, with either

aligned or non-aligned DJPEG.

As commonly done to evaluate the performance with data-driven ap-

proaches, detection accuracy is measured over the same (QF1,QF2) pairs

used for training. Then, to test their generalization capability, we also mea-

sured the performance of the detectors with respect to (QF1,QF2) pairs

never used for training.

5.1.2 Evaluation Methodology

In order to fairly evaluate all CNN-based considered approaches, we devised

a common training-validation strategy. All CNNs have been trained using

stochastic gradient descent (SGD) algorithm with batch size (i.e., number of

images used for each SGD iteration) set to 128. Momentum was set to 0.9.

Learning rate was set to 0.01 for 64×64 images and 0.001 for 256×256 images,

and was progressively decreased with exponential decay at each iteration.

Chapter 5. Experimental results 49

Dataset I Size (B ×B) QF1 QF2 Alignement N. Train

D̄(85)
256 256× 256 50,60,70,80,90 85 A 280 000

D̂(85)
256 - - - NA -

D̄(75)
256 - - 75 A -

D̂(75)
256 - - - NA -

D̄(85)
64 64× 64 50,60,70,80,90 85 A 300 000

D̂(85)
64 - - - NA -

D̄(75)
64 - - 75 A -

D̂(75)
64 - - - NA -

Tot Images 2 320 000

Table 5.1: Datasets used for training. All datasets are balanced in both classes and

QF pairs.

The maximum amount of epochs (i.e., number of times the CNN sees all

training data) was set to 30 to ensure network convergence. Initialization

of CNN parameters have been performed using the method devised in [37].

As best CNN trained model, we always selected the one at the epoch with

minimum validation loss in order to avoid overfitting.

The results are provided in terms of accuracy, namely the percentage of

correctly classified single and double JPEG images in the validation dataset.

We use notation Cpix to refer to the CNN-based detector in the pixel domain

(Chapter 4.2.1), Cnoise for the one in the noise domain (Chapter 4.2.4), and

Chist for the case of CNN embedding DCT histogram computation (Chap-

ter 4.2.5). Concerning parameters of the latter, we only made use of the

first 9 DCT frequencies after DC in zig-zag order for fair evaluation with

[2]. Histograms have been computed using 61 integer bins initialized with

b ∈ [−30, 30]. We avoid reporting results for CNN architectures providing

less accurate results, leaving them to the next applications for which they

Chapter 5. Experimental results 50

proved more robust.

5.1.3 Results

In this section we evaluate the performance of the proposed detectors rely-

ing on Cpix, Cnoise and Chist, and we compare them with the state-of-the-art.

We first focus on the classification in the aligned double JPEG compression

scenario, then we move to the case of non-aligned double JPEG compres-

sion. Finally, we provide some results in the mixed scenario of aligned and

non-aligned double compression.

Aligned Double JPEG

It is well known that the performance of supervised machine learning tech-

niques strongly depends on the amount of data used for training. In order

to assess the dependency between number of images used for training and

detection accuracy in our case, Figure 5.1 shows the results achieved with

Cpix in the most difficult scenario with small patches (B = 64) and strong

second quantization (QF = 75). To get the plot, the network is trained on

different percentages of training images from D̄(75)
64 . We see that, when 10% of

the dataset is used for training, accuracy is below 0.75. However, when more

than 70% of training data is used, accuracy saturates around 0.82. Therefore,

using the whole training dataset, we are sure that we are not experiencing

losses due to insufficient amount of training data.1

To assess the performance of the proposed approaches for aligned double

JPEG detection, we compare them to the state-of-the-art technique in [2].

We selected [2] as a baseline for two reasons: i) it is shown to outperform

1It is worth pointing that the other proposed solutions, i.e., Cnoise and Chist, usually

need less training images to converge.

Chapter 5. Experimental results 51

Figure 5.1: Impact of training set size on DJPEG detection accuracy using Cpix.

other existing state-of-the-art detectors, e.g., [38, 39, 40, 41]; ii) to the best

of our knowledge, it is the only double JPEG compression detection method

based on CNNs, thus being a natural yardstick for our methods.

Figure 5.2 reports results obtained training all proposed CNNs in the

various cases, i.e., on the datasets D̄(75)
256 , D̄(85)

256 , D̄(75)
64 and D̄(85)

64 .

Results for B = 256 show that the proposed solutions achieve slightly

lower performance with respect to the baseline [2]. This is due to the fact

that hand-crafted features exploited in [2] are very distinctive, especially

when large images are concerned.

However, things are different in case B = 64. Quite expectedly, all al-

gorithms suffer when QF2 ∼= QF1 and QF2 < QF1, as a stronger second

compression tends to mask artifacts left by the first one; however, on 64×64

patches, Chist is the one with the best performance and always outperforms

state-of-the-art. Concerning the proposed methods, Chist always outperforms

Cpix and Cnoise. This is also expected, as aligned DJPEG traces are better

exposed in the DCT domain, rather than the pixel domain. Nonetheless, a

part when QF1 and QF2 are very close, also Cpix and Cnoise allow to achieve

accuracy greater than 0.70 on small images.

Chapter 5. Experimental results 52

(a) Train on D̄(75)
256 (b) Train on D̄(85)

256

(c) Train on D̄(75)
64 (d) Train on D̄(85)

64

Figure 5.2: Aligned DJPEG compression detection accuracy against baseline [2].

Dashed black line indicates the considered QF2.

Regarding generalization capability, Figure 5.3 shows the accuracy

achieved by all CNNs trained on the most difficult scenario with QF = 75

and small images (B = 64). The methods based on DCT histograms (i.e.,

Chist and baseline [2]) suffer to recognize aligned DJPEG for values of QF1

different from those used during training when they are close to QF2, and

completely fail when these QF1s are larger than QF2. Contrarily, the meth-

ods relying on pixel analysis (i.e., Cpix and Cnoise) show greater robustness to

changes in (QF1,QF2).

To further explore this fact, Table 5.2(a) shows the behavior of Cnoise
trained on D̄(75)

64 and D̄(75)
256 and tested on images with several different

(QF1,QF2) pairs. (similar results hold for Cpix). Similarly, Table 5.2(b)

reports the accuracy results with Cnoise trained on D̄(85)
64 and D̄(85)

256 .

We notice that, by varying QF1, results are perfectly in line with those

Chapter 5. Experimental results 53

Figure 5.3: Sensitivity analysis for aligned DJPEG compression detection when QF2 =

75. Image size is 64× 64.

achieved with matched QF pairs. Good results are also obtained with dif-

ferent QF2s, a part for the case of much higher QF2 and QF2 > QF1, and

especially QF2 = 90. This behavior is not surprising, since compression with

high QF2 leaves few traces on images compressed at lower quality, hence de-

tecting a DJPEG compression in these cases is hard even when such examples

are included in the training set. Therefore, although on one side CNNs based

on a strong hand-crafted modeling assumption (as baseline [2] and Chist) al-

low to achieve better accuracies, the ones based on the analysis of the pixel

image (i.e., Cpix and Cnoise) prove to be more robust to perturbations of QF1

and QF2 with respect to the values used for training, which is paramount

every time the algorithm works in the wild.

Non-aligned Double JPEG

When DJPEG compression occurs with misalignment between the grids, de-

tectors in the previous section trained on aligned data do not work anymore,

getting an accuracy which is around 0.5. To evaluate the performance of our

method for NA-DJPEG detection, we re-trained the detectors in the mis-

aligned case. In this case, not surprisingly, the algorithm in [2] does not

work. Indeed, the features extracted by this method, i.e., the DCT his-

Chapter 5. Experimental results 54

Testing (QF1,QF2) B = 64 B = 256

(55, 75) 0.925 0.982

(65, 75) 0.880 0.981

(85, 75) 0.820 0.952

(60, 78) 0.900 0.917

(70, 78) 0.810 0.907

(60, 80) 0.860 0.810

(70, 80) 0.790 0.800

(a) Train on D̄(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256

(55, 85) 0.963 0.994

(65, 85) 0.960 0.993

(75, 85) 0.923 0.978

(70, 88) 0.860 0.914

(80, 88) 0.640 0.656

(70, 90) 0.718 0.687

(80, 90) 0.500 0.510

(b) Train on D̄(85)
B , B ∈ {64, 256}.

Table 5.2: Sensitivity of Cnoise to variations of QF1 and QF2 for aligned DJPEG

detection. For any pair, only one between QF1 and QF2 is common to images used

in the training set (reported in bold).

tograms, are particularly distinctive only when the second compression is

aligned with the first one (the typical peak and gap artifacts shows up in

the DCT histograms). Therefore, we selected the well-known algorithm for

NA-DJPEG detection proposed in [4] as baseline in this case.

Figure 5.4 shows the performance of all proposed techniques and the

baseline [4] for QF2 = {75, 85} with image size 64× 64 and 256× 256. It is

known that the method in [4] does not work when QF1 > QF2. Besides, the

accuracy significantly drops for small images, especially in the case QF1 '

QF2. Concerning our methods, not surprisingly, our solution Chist shows

poor performance. Indeed, similarly to [2], the traces in the DCT domain

that Chist looks at are weak in the non-aligned case.

On the other hand, CNNs designed to work in the pixel domain, and

especially Cnoise, show good detection performance even for small images (i.e.,

64× 64). From these results, we see that the detector based on Cnoise always

outperforms state-of-the-art.

Chapter 5. Experimental results 55

(a) Train on D̂(75)
256 (b) Train on D̂(85)

256

(c) Train on D̂(75)
64 (d) Train on D̂(85)

64

Figure 5.4: Non-aligned DJPEG compression detection accuracy against baseline [4].

Dashed black line indicates the considered QF2.

It is worth observing that the performance of Cpix are very poor when

QF2 = 75 and images are large (B = 256). A possible motivation can be

the following. When larger images are considered, it is more difficult for the

CNN to automatically get rid of the content (in fact, Cnoise always outperform

Cpix when B = 256, even in the aligned case) and this is even more difficult

when the second quantization is coarser (e.g., with QF2 = 75) and traces

are more complex, as it is in the NA-DJPEG scenario (traces also vary with

the specific misalignment between the grids). Actually, this is the case in

which a deeper network would probably provide some benefits. However,

since we are more interested in the performance with smaller images, we do

not further investigate this case here.

Concerning network sensitivity to QF pairs different from those in the

training set, Table 5.3 shows the results obtained with our best method Cnoise

Chapter 5. Experimental results 56

Testing (QF1,QF2) B = 64 B = 256

(55, 75) 0.816 0.876

(65, 75) 0.805 0.866

(75, 75) 0.764 0.842

(85, 75) 0.674 0.776

(60, 78) 0.777 0.845

(70, 78) 0.765 0.830

(60, 80) 0.723 0.794

(70, 80) 0.720 0.790

(a) Train on D̂(75)
B , B ∈ {64, 256}.

Testing (QF1,QF2) B = 64 B = 256

(55, 85) 0.897 0.972

(65, 85) 0.878 0.972

(75, 85) 0.865 0.961

(85, 85) 0.793 0.954

(70, 88) 0.751 0.786

(80, 88) 0.738 0.785

(70, 90) 0.650 0.610

(80, 90) 0.634 0.600

(b) Train on D̂(85)
B , B ∈ {64, 256}.

Table 5.3: Sensitivity of Cnoise to variations of QF1 and QF2 for non-aligned DJPEG

detection. Test and training images have only QF1 or QF2 in common (reported in

bold).

for both QF1 = 75 and 85, and image sizes. As for the aligned scenario, Cnoise
enables good detection accuracy, the only critical cases being those with much

higher QF2.

It is interesting to notice that Cnoise is able to detect non-aligned DJPEG

compression with good accuracy also in the very challenging scenario in which

QF1 = QF2.

Aligned and Misaligned Double JPEG

Since it is usually not known a-priori whether double compression is aligned

or not, it is relevant to be able to detect both A-DJPEG and NA-DJPEG

with the same system. To this purpose, we trained the proposed architectures

on a dataset obtained by the union of the one used for A-DJPEG, namely

D̄, and the one used for NA-DJPEG, namely D̂. For the experiments of

these section, we considered the most challenging scenario with small images

Chapter 5. Experimental results 57

(a) Train on (D̄(75)
64 ∪ D̂

(75)
64)

(b) Train on (D̄(85)
64 ∪ D̂

(85)
64)

Figure 5.5: DJPEG compression detection accuracy tested separately on aligned and

misaligned cases, when training is performed on a mixed dataset. Image size is 64 and

QF2 = {75, 85}.

(B = 64). Figure 5.5 shows the performance of the CNN-based detectors

in terms of average accuracy computed separately on A-DJPEG and NA-

DJPEG images. The average is taken over all the QF pairs used for training.

As expected from the previous analysis, Chist tends to learn characteristics of

aligned DJPEG but fails in non-aligned case. Conversely, Cnoise is the most

stable solution being able to detect with almost the same accuracy both A-

DJPEG and NA-DJPEG images. The Cpix approach still proves to be robust,

but provides average accuracy lower than Cnoise.

Driven by the accurate performance of Chist on A-DJPEG compression,

we also investigated an alternative solution according to which the detection

Chapter 5. Experimental results 58

for the mixed case is obtained by fusing the outputs of our best CNN-based

detectors for the aligned and non-aligned case, through the use of a binary

classifier. Specifically, we considered the output provided by Chist trained

on A-DJPEG images, and the output of Cnoise trained in the NA-DJPEG

case, as feature vector. By feeding this feature vector to a binary classifier

(i.e., a random forest in our case), it is possible to further increase the final

accuracy in the mixed case by up to 2%. However, other solutions and fusing

strategies might be investigated. We leave a thorough investigation of this

case to future studies.

5.2 Quality factor estimation

We report here the set of experiments we performed for quality factor esti-

mation task (Chapter 3.2). We describe the dataset construction procedure,

the evaluation methodology and then we move to results.

5.2.1 Dataset construction

For this task we considered a subset of RAISE dataset. We converted

TIFF images in grayscale and then we compressed each of them with

QF = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. We extracted 100 patch of size

256× 256 from each image, reaching the final dataset size of 284 000 images.

The patches were selected as the top-100 scoring according to a sorting func-

tion that assign a score between 0 and 1 to them. Score tends to 1 as pixels

intensity is not saturated and high texture occurs. We followed a common

train-validation split policy, adopting 70% of the images for training set and

30% for validation set. The 10 classes were balanced i.e., each class repre-

senting 1/10 of the total amount of the images in both the datasets. During

Chapter 5. Experimental results 59

splitting, we paid particular attention to put cropped patches belonging to

the same original image only in one set (train or validation).

We built validation set in order to assess a good point in which stop

the training and avoid overfitting over the training set. We carried out an

accuracy measure over the validation set, but we also built a test set for the

sake of completeness. The test set is made of nearly 150 000 images from the

Dresden dataset, following the same aforementioned pipeline for compression

and patch extraction.

5.2.2 Evaluation methodology

In order to fairly evaluate our CNN-based approach, we devised a common

training-validation strategy. We resorted to LeNet-6 (Table 4.3) trained using

stochastic gradient descent (SGD) algorithm with batch size (i.e., number of

images used for SGD iteration) set to 64. Momentum was set to 0.9. Learning

rate was set to 0.001 and was progressively decreased with a step down policy

by a factor of 10 every 10 epochs. The maximum amount of epochs (i.e., the

number of times the CNN sees all training data) was set to 30 to ensure

network convergence. Initialization of CNN parameters has been performed

using the method devised in [37].

The results are provided in terms of accuracy, namely the percentage of

correctly classified images in the validation dataset.

5.2.3 Results

Figure 5.6 shows the train and validation loss and the validation accuracy

over the training epochs. This particular chart gives us insights on how the

learning capability of the network is exploited over time, i.e, how “fast” or

“slow” the network is learning and if it is learning the correct parameters.

Chapter 5. Experimental results 60

QF10 QF20 QF30 QF40 QF50 QF60 QF70 QF80 QF90 QF100 Per-class accuracy

QF10 14791 104 3 2 1 0 0 9 0 0 99.2%

QF20 61 14568 272 9 0 0 0 0 0 0 97.71%

QF30 10 471 13939 474 12 2 0 2 0 0 93.49%

QF40 5 34 925 13429 498 14 5 0 0 0 90.07%

QF50 2 19 69 1054 12741 943 82 0 0 0 85.45%

QF60 3 5 22 84 1406 12571 714 2 99 4 84.31%

QF70 7 6 27 70 299 208 13060 2 1154 77 87.59%

QF80 6 4 2 3 5 36 128 11261 322 3143 75.53%

QF90 6 5 19 29 55 126 4839 29 8164 1638 54.76%

QF100 6 6 12 6 21 50 545 606 2155 11503 77.15%

Table 5.4: Confusion matrix over the test dataset.

Blue line represents the value of the training loss function, therefore we want

it to decrease as fast as possible. We want a similar behavior for the green line

as well, representing the validation loss function. A separation between the

two of them (i.e, the training loss decreases while the validation loss increases)

is the first symptom of overfitting over the training data, a situation we want

to avoid. Orange line represents the validation accuracy.

Table 5.4 shows the confusion matrix for the various classes. Per-class

accuracy decreases as the quality factor increases. This trend is justified by

the fact that a low quality factor implies a stronger degradation of the image,

leaving palpable traces. We notice a peak in accuracy for QF100. This can

be explained by the fact that traces left by the compression with such a

quality factor are negligible. This is somehow a characteristic feature for the

network, therefore it is able to classify QF100 with a improved accuracy with

respect to the trend. Anyway, the average accuracy is more than satisfying,

having:

• Top-1 accuracy: 84.53%

• Top-5 accuracy: 99.68%

Chapter 5. Experimental results 61

Figure 5.6: Train and validation loss, validation accuracy curves over training epochs

for quality factor estimation task.

5.3 Software identification

We report here the set of experiments we performed for software identification

task (Chapter 3.2). We describe the dataset construction procedure, the

evaluation methodology and then we move to results.

5.3.1 Dataset construction

For this task we considered a subset of the Dresden JPEG dataset. In order

to apply the smallest possible transformation by means of a software, we

limited to open each JPEG image separately with Photoshop and GIMP

and to save it according to some fixed compression levels. These levels are

motivated by the fact that the two products have different scales for defining

the compression level. In particular, Photoshop scale goes from 0 to 12,

whereas GIMP scale follows the “standard” QF scale (Chapter 2.1) going

Chapter 5. Experimental results 62

Figure 5.7: Per-class accuracy over the test dataset for quality factor estimation task.

from 0 to 100. The levels definition aside their software counterparts is

depicted in Table 5.5. For this experiment we extracted patches of size

32× 32 from the images.

5.3.2 Evaluation methodology

In order to fairly evaluate our CNN-based approach, we devised a common

training-validation strategy. We resorted to LeNet-3 (Table 4.2) trained using

Nesterov’s accelerated gradient (NAG) algorithm [42] with batch size (i.e.,

number of images used for NAG iteration) set to 128. Momentum was set

to 0.9. Learning rate was set to 0.1 and was progressively decreased with a

step down policy by a factor of 10 every 10 epochs. The maximum amount

of epochs (i.e., the number of times the CNN sees all training data) was set

Chapter 5. Experimental results 63

Photoshop GIMP Compression level

0 16 low

3 33 mid-low

7 69 mid-high

10 94 high

Table 5.5: Definition of adopted compression levels with their software counterparts.

Compression level Patch accuracy Aggregate accuracy

low 0.933 0.998

mid-low 0.925 0.998

mid-high 0.918 0.994

high 0.794 0.967

Table 5.6: Accuracies for software identification task considering various compression

levels.

to 30 to ensure network convergence. Initialization of CNN parameters has

been performed using the method devised in [37].

The results are provided in terms of accuracy, namely the percentage of

correctly classified images in the validation dataset.

5.3.3 Results

Figure 5.8 reports the train and validation loss and the validation accuracy

over the training epochs for all the considered compression levels. Intuitively,

the validation accuracy increases as the quality factor decreases. We explain

such a behavior as a stronger degradation of the original image, hence a

conspicuous characteristic trace of the particular software. Table 5.6 reports

the accuracies for the various compression levels. The first column shows the

Chapter 5. Experimental results 64

validation patch accuracy, i.e., the accuracy on single patch classification.

The second column shows the validation aggregate accuracy, i.e, the result

of the majority voting of all the patches belonging to the same image. We

remark that in this experiment we are considering patches of size 32 × 32

pixel, considerably small with respect to the size of the original images. We

reached high accuracies, especially with aggregation. This bodes well for

localization tasks we want to explore in future.

Chapter 5. Experimental results 65

F
ig

u
re

5.
8:

T
ra

in
an

d
va

lid
at

io
n

lo
ss

,
va

lid
at

io
n

ac
cu

ra
cy

cu
rv

es
ov

er
tr

ai
n

in
g

ep
o

ch
s

fo
r

so
ft

w
ar

e
id

en
ti

fi
ca

ti
on

ta
sk

.
T

op
-l

ef
t:

h
ig

h
;

to
p

-r
ig

h
t:

m
id

-h
ig

h
;

b
ot

to
m

-l
ef

t:
m

id
-l

ow
;

b
ot

to
m

-r
ig

h
t:

lo
w

6.

Conclusions and future work

The ability of detecting the use of JPEG compression on images under analy-

sis is considered of paramount importance in the forensic literature. For this

reason, in this thesis we explored the use of Convolutional Neural Networks

for various JPEG forensics tasks and scenarios.

We put most of our effort in investigation of double JPEG (DJPEG) com-

pression detection, i.e., estimating whether a picture has been compressed

once or twice. We extensively tested both the hypothesis of aligned (A-

DJPEG) and non-aligned (NA-DJPEG) second compression. We considered

“difficult” quality factors, i.e., those on which state-of-the-art methods fail

or show poor results. Specifically, three different solutions were investigated:

in one of them, the CNN is based on hand-crafted features extracted from

the images; in the other two, the CNN is trained directly with images and

their noise residuals, then features are self-learned by the CNN itself. Results

show that CNN based on hand-crafted features allow to achieve better accu-

racies in the case of A-DJPEG. For the NA-DJPEG instead, the CNN based

on self-learned features applied to the image noise residuals is shown to out-

perform the state-of-the-art in every tested scenario. Good performance are

achieved even in the difficult cases in which the second quality factor is larger

Chapter 6. Conclusions and future work 67

than the first one and over small images. Besides, CNN based on self-learned

features prove very robust to deviations between training and test conditions.

Additionally, some preliminary experiments show the proposed CNN-based

methods can also be successfully applied to simultaneously detect an aligned

or non-aligned DJPEG compression.

In addition to DJPEG detection, we also investigated two different tasks

as cases of study in order to proof the flexibility of convolutional neural

networks for JPEG-based forensic works. To this purpose, we analyzed the

problem of JPEG quality factor estimation, which was never tried before by

means of CNNs to the best of our knowledge. Our detector was able to reach

high accuracies over test dataset, especially with lower quality factors. Then,

we focused on detection of the software suite used to JPEG compress images.

Software identification can be considered a very tough task, as it is not trivial

to establish a common baseline between the investigated software products.

Plus, the traces they leave might be negligible at first glance. We remark

that for this specific case we designed our pipeline to work with very small

patches. Nonetheless, our detector hit very good accuracies considering the

single patch and excellent ones considering the whole image.

Considering the outcome of the performed research on DJPEG detection,

future work will be devoted to the study of fusion techniques to make the

most out of each network in a mixed aligned and non-aligned DJPEG case.

Moreover, as we decided to work with patches instead of whole images still

obtaining very satisfactory results, the development of tampering localization

techniques based on our detector is a natural follow up. Indeed, we intent to

develop a proper aggregation policy over the entire image area once detection

result for each small patch is obtained.

In this thesis we focused on double JPEG compression as simplification

Chapter 6. Conclusions and future work 68

of multiple JPEG compression. Considering N > 2 compressions paves the

way to a series of exciting problems, such as knowing how many times an

image was compressed and which quality factors were adopted. We could

investigate the history of an image posted on a social network in first place

and then reposted several times on others. We could determine the phylogeny

between different versions of the same image in order to establish which one

was the original content.

In addition to double JPEG detection, also results obtained through the

two considered cases of study pave the way to interesting future work. In this

preliminary work, we only considered two software products, which is a very

small subset of all the available image editing products indeed. Extending our

two-class classification to N-class in order to perform an automatic estima-

tion of the editing tool would definitely be more comprehensive. Moreover,

with the same rationale, we can study traces left by compression applied by

different multimedia sharing platforms, thus aiming to estimate the website

an image is coming from.

Bibliography

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-

ing applied to document recognition,” Proceedings of the IEEE, vol. 86,

no. 11, pp. 2278–2324, 1998.

[2] Q. Wang and R. Zhang, “Double JPEG compression forensics based

on a convolutional neural network,” EURASIP Journal on Information

Security, vol. 2016, no. 1, pp. 23, 2016.

[3] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of digital

images,” IEEE Transactions on Information Forensics and Security,

vol. 7, no. 3, pp. 868–882, June 2012.

[4] T. Bianchi and A. Piva, “Detection of nonaligned double JPEG com-

pression based on integer periodicity maps,” IEEE Transactions on

Information Forensics and Security (TIFS), vol. 7, pp. 842–848, 2012.

[5] A. Rocha, W. Scheirer, T. Boult, and S. Goldenstein, “Vision of the

unseen: Current trends and challenges in digital image and video foren-

sics,” ACM Computing Surveys, vol. 43, pp. 1–42, 2011.

[6] A. Piva, “An overview on image forensics,” ISRN Signal Processing,

vol. 2013, pp. 22, 2013.

Bibliography 70

[7] A. C. Popescu and H. Farid, “Statistical tools for digital forensics,” in

International Conference on Information Hiding, 2004.

[8] C. Chen, Y. Q. Shi, and W. Su, “A machine learning based scheme for

double JPEG compression detection,” in IEEE International Conference

on Pattern Recognition (ICPR), 2008.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W.

Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten

zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,

Dec 1989.

[10] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech,

and time-series,” in The Handbook of Brain Theory and Neural Net-

works, M. A. Arbib, Ed., pp. 255–258. MIT Press, Cambridge, MA,

1995.

[11] Z. Fan and R. L. de Queiroz, “Identification of bitmap compression

history: JPEG detection and quantizer estimation,” IEEE Transactions

on Image Processing, vol. 12, no. 2, pp. 230–235, Feb 2003.

[12] Z. Wang, A. C. Bovik, and B. L. Evan, “Blind measurement of blocking

artifacts in images,” in Proceedings 2000 International Conference on

Image Processing (Cat. No.00CH37101), 2000, vol. 3, pp. 981–984 vol.3.

[13] Z. Fan and R. de Queiroz, “Maximum likelihood estimation of JPEG

quantization table in the identification of bitmap compression history,”

in IEEE International Conference on Image Processing (ICIP), 2000,

vol. 1, pp. 948–951 vol.1.

Bibliography 71

[14] W. Luo, J. Huang, and G. Qiu, “JPEG error analysis and its applications

to digital image forensics,” IEEE Transactions on Information Forensics

and Security, vol. 5, no. 3, pp. 480–491, Sept 2010.

[15] T. Bianchi and A. Piva, “Detection of non-aligned double JPEG com-

pression with estimation of primary compression parameters,” in 2011

18th IEEE International Conference on Image Processing, Sept 2011,

pp. 1929–1932.

[16] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edi-

tion), Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[17] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression

Fundamentals, Standards and Practice, Kluwer Academic Publishers,

Norwell, MA, USA, 2001.

[18] J. Lukas and J. Fridrich, “Estimation of Primary Quantization Ma-

trix in Double Compressed JPEG Images,” Digital Forensic Research

Workshop, 2003.

[19] S. Milani, M. Tagliasacchi, and S. Tubaro, “Discriminating multiple jpeg

compression using first digit features,” in 2012 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP), March

2012, pp. 2253–2256.

[20] S. Milani, M. Tagliasacchi, and S. Tubaro, “Discriminating multiple

JPEG compressions using first digit features,” APSIPA Transactions

on Signal and Information Processing, vol. 3, 2014.

[21] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut & paste

tampering by means of double-JPEG detection and image segmenta-

tion,” ISCAS 2010 - 2010 IEEE International Symposium on Circuits

Bibliography 72

and Systems: Nano-Bio Circuit Fabrics and Systems, vol. 8, pp. 1687–

1690, 2010.

[22] T. Bianchi and A. Piva, “Image forgery localization via block-grained

analysis of JPEG artifacts,” IEEE Transactions on Information Foren-

sics and Security, vol. 7, no. 3, pp. 1003–1017, 2012.

[23] V. Nair and G. Hinton, “Rectified linear units improve restricted Boltz-

mann machines,” in International Conference on Machine Learning

(ICML), 2010.

[24] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Efficient BackProp,

pp. 9–50, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998.

[25] C. Jiansheng, K. Xiangui, L. Ye, and Z. J. Wang, “Median Filtering

Forensics Based on Convolutional Neural Networks,” IEEE Signal Pro-

cessing Letters, vol. 22, no. 11, pp. 1849–1853, 2015.

[26] B. Bayar and M. C. Stamm, “A Deep Learning Approach to Universal

Image Manipulation Detection Using a New Convolutional Layer,” Pro-

ceedings of the ACM Workshop on Information Hiding and Multimedia

Security, pp. 5–10, 2016.

[27] A. Tuama, F. Comby, and M. Chaumont, “Camera model identification

with the use of deep convolutional neural networks,” in IEEE Interna-

tional Workshop on Information Forensics and Security (WIFS), 2016.

[28] L. Bondi, L. Baroffio, D. Guera, P. Bestagini, E. J. Delp, and S. Tubaro,

“First Steps Toward Camera Model Identification With Convolutional

Neural Networks,” IEEE Signal Processing Letters, vol. 24, pp. 259–263,

2017.

Bibliography 73

[29] L. Bondi, D. Guera, L. Baroffio, P. Bestagini, E. J. Delp, and S. Tubaro,

“A preliminary study on convolutional neural networks for camera model

identification,” in IS&T International Symposium on Electronic Imag-

ing: Media Watermarking, Security, and Forensics, 2017.

[30] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D.

Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convo-

lutions,” in 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), June 2015, pp. 1–9.

[31] D. Cozzolino, D. Gragnaniello, and L. Verdoliva, “Image forgery lo-

calization through the fusion of camera-based, feature-based and pixel-

based techniques,” Proceedings of the IEEE International Conference

on Image Processing, pp. 5302–5306, October 2014, Paris, France.

[32] J. Lukáš, J. Fridrich, and M. Goljan, “Digital camera identification from

sensor pattern noise,” IEEE Transactions on Information Forensics and

Security, vol. 1, no. 2, pp. 205–214, June 2006.

[33] M. K. Mihcak, I. Kozintsev, and K. Ramchandran, “Spatially adaptive

statistical modeling of wavelet image coefficients and its application to

denoising,” in IEEE International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), Mar 1999, vol. 6, pp. 3253–3256.

[34] D.-T. Dang-Nguyen, C. Pasquini, V. Conotter, and G. Boato, “RAISE:

A raw images dataset for digital image forensics,” in ACM Multimedia

Systems Conference, 2015.

[35] T. Gloe and R. Bhme, “The ‘Dresden Image Database’ for benchmark-

ing digital image forensics,” in Proceedings of the 25th Symposium On

Applied Computing (ACM SAC 2010), 2010, vol. 2, pp. 1585–1591.

Bibliography 74

[36] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for

fast feature embedding,” arXiv:1408.5093, 2014.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep

feedforward neural networks,” in International Conference on Artificial

Intelligence and Statistics (AISTATS), 2010.

[38] T. Bianchi, A. De Rosa, and A. Piva, “Improved DCT coefficient anal-

ysis for forgery localization in JPEG images,” in IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011.

[39] I. Amerini, R. Becarelli, R. Caldelli, and A. Del Mastio, “Splicing forg-

eries localization through the use of first digit features,” in IEEE In-

ternational Workshop on Information Forensics and Security (WIFS),

2014.

[40] B. Li, Y. Shi, and J. Huang, “Detecting doubly compressed JPEG

images by using mode based first digit features,” in IEEE Workshop on

Multimedia Signal Processing (MMSP), 2008.

[41] T. Pevny and J. Fridrich, “Detection of double-compression in JPEG

images for applications in steganography,” IEEE Transactions on In-

formation Forensics and Security (TIFS), vol. 3, pp. 247–258, 2008.

[42] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the impor-

tance of initialization and momentum in deep learning,” in Proceedings

of the 30th International Conference on International Conference on

Machine Learning - Volume 28. 2013, ICML’13, pp. III–1139–III–1147,

JMLR.org.

	Introduction
	State of the Art
	JPEG Compression
	JPEG Forensics
	Compression Detection
	Double Compression Detection
	Multiple Compression Detection
	Forgery Localization

	Convolutional Neural Networks
	Convolutional Neural Networks in Image Forensics

	Problem formulation
	Double JPEG detection
	Quality factor estimation
	Software identification

	Forensics detection system
	Pipeline overview
	CNN architectures
	Classic architectures
	DCT driven architecture
	High pass filters driven architecture
	Noise driven architecture
	Histogram based architecture

	Experimental results
	Double JPEG detection
	Dataset construction
	Evaluation Methodology
	Results

	Quality factor estimation
	Dataset construction
	Evaluation methodology
	Results

	Software identification
	Dataset construction
	Evaluation methodology
	Results

	Conclusions and future work
	Bibliography

