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Abstract

In a context of a quantitative analysis of white matter fibers, there is a growing
need to develop statistical methods able to study diffusion properties along major
fiber bundles obtained from DTI (Diffusion Tensor Imaging). In this work, using the
Square Root Velocity Function (SRVF) representation proposed by Anuj Srivastava
and his contributors, we aim first to build a rigorous framework for shape analysis of
fibers, with the computation of summary statistics, clustering to filter out outliers and
registration. Afterwards, a new perspective with functional data analysis is introduced,
considering the functional nature of scalar measures from diffusion along fibers (i.e.,
Fractional Anisotropy). The possibility to localize abnormalities on diffusion indeces
along the tract represents an innovative and challenging approach to the study of
different diseases, for instance Multiple Sclerosis. We try to find a detector (significative
threshold) between a patient with a known lesion in the Corticospinal tract (CST) and
controls in the mean difference of the FA functions, relying on statistical inference in a
functional framework. We do not claim to assess the general validity of this approach,
but rather to pave a new way for future researchs.

Keywords: DTI, Shape analysis, SRVF, Fibers, FA functions, Functional Data
Analysis, Multiple Sclerosis, CST.

IX



X



Sommario

In un contesto di analisi quantitativa delle fibre neuronali nella materia bianca, c’è un
crescente bisogno di sviluppare modelli statistici capaci di analizzare indici di diffusione
lungo i principali tratti ottenuti tramite stime DTI (Diffusion Tensor Imaging). In
questo lavoro, grazie alla rappresentazione Square Root Velocity Function (SRVF)
proposta da Anuj Srivastava e dai suoi collaboratori, vogliamo prima modellizzare
statisticamente fasci di fibre con strumenti di shape analysis, ovvero calcolo di me-
dia e varianza, clustering per eliminare outliers e registrazione. Successivamente,
considerando la natura funzionale delle misure scalari di diffusione lungo le fibre
(Anisotropia Frazionaria ad esempio), vogliamo introdurre un approccio statistico
di tipo funzionale. A livello clinico, la possibilità di individuare regioni lesionate
all’interno dei tratti principali della materia bianca rappresenta uno strumento efficace
nell’analisi di diverse malattie, come la Sclerosi Multipla. Cerchiamo di individuare
una soglia significativa nella differenza dei valori FA tra un paziente con una lesione nel
tratto corticospinale e pazienti sani attraverso inferenza statistica funzionale. Le idee
presentate nell’ultima parte di questa tesi, più che un approccio di validità generale,
vogliono essere uno spunto verso ricerche future nella stessa direzione.

Parole Chiave: DTI, Shape analysis, SRVF, Fibre neuronali, Anisotropia frazionaria,
Statistica Funzionale, Sclerosi Multipla, Tratto corticospinale.
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Introduction

Background
Diffusion Magnetic Resonance Imaging (DMRI) is one of the most rapidly evolving
techniques in medical imaging. This method exploits the properties of water molecules
under the effect of a magnetic field. Briefly speaking, it can characterize water diffusion
properties at each picture element (pixel) of an image. The key idea is to study the
structure of spatial order in living organs in a non-invasively way. More precisely, in
this work we wonder how the diffusion molecular displacements are constrained by the
geometry of the brain.
The white matter of the central nervous system (CNS) constitutes the tracts in
which axons extend from one CNS region to another. Within a white matter tract,
the majority of axons lie parallel to one another. They may all run in one direction
or distinct populations may traverse the tract in opposite directions. This oriented
structure of the axonal architecture is thought to be the main reason of anisotropic
diffusion, which means that water does not diffuse equally in all directions (for example,
brain water diffuses preferentially along axonal fiber directions). Anisotropic water
diffusion in neural fibers forms the basis for the utilization of DMRI techniques to
track fiber pathways. The fact that water diffusion is sensitive to the underlying tissue
microstructure provides a unique method of measuring the orientation and integrity of
these neural fibers which may be useful in assessing a number of neurological disorders.
The most used method for identifying white matter pathways in the living human
brain is MR diffusion tractography. It’s quite suggestive since it’s the only available
tool for measuring these pathaways non-invasively and in vivo. Their non-invasive
nature and ease of measurement mean that tractography studies can adress scientific
and clinical questions that cannot be answered by any other means.
The main goal of this work is to perform statistical analysis on fiber bundles extracted
from the tractography of a patient. Fibers can be represented such as open curves in
R3 and an ongoing effort in medical imaging is to study the shapes of these curves to
associate them with functionality of the brain. Developing statistical tools for shape
analysis involves first a right mathematical representations for the shapes and second
a framework for performing calculations under those representations. In particular, we
will illustrate this idea using the square-root velocity function (SRVF), proposed
by Anuj Srivastava and his contributors, which leads to an elastic shape analysis. Under
this representation we aim to compute statistical summaries in different representative
spaces, based on the geometry of a specific fiber bundle. Furthermore, by computing
distances in this framework, we will show how one can apply these tools to cluster DTI
fibers and to filter out outliers from tractography results.
After this preliminary geometric analysis, we will associate scalar measures from
diffusion (such as Fractional Anisotropy) to the fiber bundle of interest. These diffusion

XIII



indeces can be viewed as functions along the fibers and they represent an efficient way
to fruitfully investigate disorders in human brain. To assess these results we use tools
from functional data analysis, which provide us powerful techniques for doing inference
in the case of functional data.
In our case, we will try to figure out the potentiality of this approach in a Multiple
Sclerosis research study, in which is known that along the course of the disease the
microstructural alteration of the WM may manifest with changes in diffusion scalar
measures in most of the major tracts. We now give a short view on the structure of
this work, summarizing the contents of each chapter.

Organization
Chapter 1
Since Diffusion Magnetic Resonance is the basis to develop our analysis, a coincise
overview on the principles of diffusion is presented in this chapter. This gives us the
proper background to introduce the diffusion model used in our project, the Diffusion
Tensor Model, with all the scalar measures derived from it and its influence in clinical
application. We have choosen this model due to its flexibility and ease of application,
but we underline that it has some key limitations (mainly in the detection of just one
diffusion direction for each voxel). More sofisticated models can be used in order to
account for more directions and thus improving the efficiency of these analysis, such as
multi compartment model. Finally, tractography procedure is theoretically described
with some examples.

Chapter 2
In this chapter we introduce the research study in Multiple Sclerosis and the dataset
used for the analysis. Furthermore, the preprocessing of the raw data from diffusion is
described in its steps.

Chapter 3
Fibers are essentially open curves with physical features such as shape, orientation,
scale and position. How can we analyze their geometry in a efficient way? Shape
analysis is the answer to this key question. In this chapter a preliminary mathematical
background is given, since some concepts are fundamental to deeply understand this
challenging context. Once we have introduced a comprehensive Riemaniann framework
for the analysis of open curves, we face the problem of the representation that best
suits our goals. The Square Root Velocity Function, due to its properties, is a
well-reasoned choice which leads to an elastic shape analysis. Theoretical rigorous
definitions of preshape and shape spaces are given in the case of shape feature, while
for the joint analysis of other features only final results are listed.

Chapter 4
Here we present the application of Shape analysis in the statistical modeling of fibers.
We focus on a major tract, the CST, and we model it taking into account shape,
orientation and scale. In such a way we obtain statistical summaries and we are able
to perform registration between subjects considering also a texture information along
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fibers (FA in our case). We describe also a hierarchical clustering tool for filtering
outliers from the bundle.

Chapter 5
In this chapter we discuss two different approaches to the problem of analyzing FA
profile along the tract, the Interval-Wise Testing procedure and the Functional
Linear Discriminant Analysis. The goal is to propose a method to recognize
possible lesions on patients.
We consider a patient with a known lesion on the CST and first we aim to detect a
significant threshold for the FA mean difference. Finally we try to validate the results.

Softwares
The Multiple Sclerosis dataset has been provided by the VISAGES team, which gave
me the access to a richful online platform (SHANOIR).
About the preprocessing of the data, numerous softwares have been used: in-house
MedInria and Anima for visualization of the data and registration, Freesurfer for
computing the parcellation of the brain and TrackVis for the tractography.
Last, for the second part of the analysis, MATLAB and R have been largely used.

XV
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Introduzione

Background

La Risonanza Magnetica di Diffusione è una delle tecniche di maggior rilevanza nel
campo dell’imaging diagnostico. Questo metodo misura la diffusione delle molecole
d’acqua all’interno di tessuti biologici sotto l’effetto di un campo magnetico. L’idea
chiave è quella di studiare la struttura spaziale di organi specifici in modo non inva-
sivo. Nel nostro caso, ci chiediamo come gli spostamenti molecolari di diffusione sono
vincolati dalla geometria del cervello umano.
La materia bianca del sistema nervoso centrale è costituita da fasci di fibre neu-
ronali che connettono tra di loro diverse aree. La complicata struttura architettonica
del cervello umano determina la diffusione anisotropica delle molecole d’acqua, le quali
si muovono principalmente lungo le direzioni date dalle fibre. Questo fatto è alla base
delle tecniche di trattografia, attraverso le quali è possibile ricostruire il percorso delle
molecole per formare stime efficienti delle fibre nervose.
La trattografia è l’unica tecnica che permette di misurare questi percorsi in modo
non invasivo e in vivo. La sua efficienza e la sua facilità di applicazione la rendono
fondamentale a livello clinico, poichè consente di investigare la struttura celebrale
e quantificare l’effetto di diverse malattie, soprattutto quelle demielinizzanti (SLA,
Sclerosi Multipla).
L’obiettivo principale di questo lavoro è l’analisi statistica di tratti neurali estratti
dalla trattografia del cervello di un paziente. Le fibre possono essere rappresentate
come curve aperte in R3, caratterizzate quindi da una forma, da un orientamento e da
una scala. Ci proponiamo di definire strumenti statistici adatti per lo studio di questo
tipo di ogetti e lo faremo utilizzando la rappresentazione SRVF presentata da Anuj
Srivastava e da suoi collaboratori. Sotto questo tipo di rappresentazione definiremo
distanze in varietà non euclidee (distanze geodetiche) e calcoleremo medie e varianze,
algoritmi di clustering e registrazione.
Dopo questa analisi geometrica preliminare, ci proponiamo di studiare il comporta-
mento di indici di diffusione lungo fasci di fibre specifici. Quest’ultimi possono essere
infatti visti come funzioni scalari e attraverso strumenti di analisi statistica funzionale
cercheremo di fare inferenza all’interno di uno studio di ricerca in Sclerosi Multipla.
Questa malattia provoca alterazioni (aree lesionate) all’interno della struttura bianca
che si possono manifestare con variazioni negli indici di diffusione. Presentiamo ora la
struttura di questa tesi, riassumendo i contenuti principali di ogni capitolo.
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Organizzazione

Capitolo 1
Siccome la Risonanza Magnetica di Diffusione è la tecnica alla base delle nostre analisi,
in questo capitolo presentiamo una sintesi dei principi fisici e teorici di questo metodo.
Questo ci permette di introdurre il modello Tensore di Diffusione e tutte le misure
scalari che ne derivano. La scelta di questo modello è dettata dalla sua flessibilità e
dalle numerevoli applicazioni in campo medico. Dall’altra parte, esso è caratterizzato
da alcune limitazioni chiave: è possibile ricavare solo una direzione di diffusione in
ogni voxel e questa spesso è un’assunzione troppo semplicistica. I dati provenienti
dall’imaging del tensore di diffusione possono essere usati per eseguire la trattografia.
Presentiamo il metodo FACT e alcuni risultati a livello pratico.

Capitolo 2
In questo capitolo introduciamo brevemente le caratteristiche della Sclerosi multipla e
il dataset utilizzato per le analisi. Inoltre, la parte di preprocessing dei dati di imaging
è descritta nei suoi vari passaggi.

Capitolo 3
Come è stato sottolineato precedentemente, le fibre sono delle curve aperte con parti-
colari proprietà fisiche. Come possiamo analizzare queste caratteristiche in un modo
efficiente? La risposta risiede nell’approccio statistico di Shape analysis. In questo
capitolo definiamo i concetti teorici fondamentali per comprendere questo contesto.
La nozione di varietà riemanniana assume un ruolo primario nel modellizzare spazi
curvi di dimensione arbitraria. Una volta formalizzato il giusto ambiente matematico,
presentiamo la rappresentazione SRVF e gli spazi in cui svolgeremo le nostre analisi.

Capitolo 4
In questo capitolo metteremo in pratica gli strumenti descritti nel capitolo 3. Ci
concentriamo su uno dei principali tratti neurali, il tratto corticospinale, considerando
le caratteristiche di forma, orientamento e scala. Precisamente, andremo a calcolare
una media, una struttura di varianza e cercheremo di filtrare outliers utilizzando un
algorimo di clustering. Infine, includendo nell’analisi anche una misura scalare di
diffusione (come l’anisotropia frazionaria), cercheremo di registrare i vari tratti ad
una media comune (population mean) e di preparare il campo per l’analisi statistica
funzionale.

Capitolo 5
In questo capitolo ci proponiamo di affrontare il problema della localizzazione tratto-
specifica di lesioni nella sostanza bianca nel decorso della Sclerosi Multipla. Queste
lesioni si possono manifestare in alterazioni di misure di diffusione lungo le fibre, come
nel caso dell’anisotropia frazionaria. Quest’ultima può subire un decremento nel suo
valore in aree danneggiate. Attraverso inferenza statistica funzionale cerchiamo di
individuare una soglia significativa tra un paziente con lesione nel tratto corticospinale
e pazienti sani.
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Softwares
Il dataset è stato fornito dal team VISAGES, che mi ha concesso l’accesso ad un ricco
database online (SHANOIR). Per la parte di preprocessing delle immagini, sono stati
usati numerosi softwares: MedInria e Anima per la visualizzazione e registrazione,
Fresurfer per il calcolo della parcellizzazione del cervello e TrackVis per la stima
della trattografia. Infine, per la seconda parte delle analisi, MATLAB e R son stati
largamente utilizzati.
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Chapter 1

Whitte Matter Tractography

In this first chapter we present an overview of the basic physics and underlying theory
of Diffusion MRI technique, followed by the introduction of the main model used for
the estimation of tractography: the Diffusion Tensor Model.
Over the years, increasingly data acquisition scheme and techniques have been devel-
oped to better explore the complexity of diffusion in the brain [23]. The advent of
Diffusion Tensor Imaging (DTI) and fiber tractography has opened new approaches
in scientific understanding of many neurologic disorders. As a matter of fact, White
matter tractography represents a method for identifying pathways in the living human
brains non-invasively and in vivo. These pathways form the substrate for information
transfer between different regions of the brain, thus its analysis is central in under-
standing the functionality of both normal and diseased brain. For a more detailed
treatment on diffusion MR, the reader may refer to the book "Diffusion MRI: From
quantitative measurement to in vivo neuroanatomy", which provides a complete review
of Magnetic Resonance techniques [11].

1.1 Diffusion Magnetic Resonance

1.1.1 Principles of Diffusion
Diffusion is the movement of a fluid from an area of higher concentration to an area of
lower concentration. The physical law behind this phenomenon is called Fick’s first law,
which relates the diffusive flux to any concentration difference through the relationship

J = −D∇C

where J is the net particle flux, C is the particle concentration and D is the diffusion
coefficient. As highlighted in the equation, particles move down a concentration
gradient in diffusion. Another interesting feature of diffusion is that it occurs even in
thermodynamic equilibrium. This is remarkable, since the Fick’s law depicted above
implies that when the concentration gradients or temperature vanish, there is no net
flux.
The first who reports this random motion was Robert Brown (1828) in his treatment
on some observations of particles trapped in cavities inside pollen grains in water. This
erratic motion is best described in statistical terms by a displacement distribution.

1



2 1. WHITTE MATTER TRACTOGRAPHY

Figure 1.1: Gaussian diffusion in one dimension (image courtesy of [11])

This concept was formally introduced by Einstein at the beginning of the 20th century.
He was able to describe the proportion of molecules that undergo displacement deriving
an explicit relationship between the mean-squared displacement of the ensemble,
characterizing its Brownian motion, and the classical diffusion coefficient, D, appearing
in Fick’s law, given by 〈

x2〉 = 2Dt

where
〈
x2〉 is the mean-squared displacement during time, ∆, and D is the same

classical diffusion coefficient appearing in Fick’s first law. Provided that we are in a
free diffusion framework, the displacement distribution takes a Gaussian form, with
the peak being at zero displacement as depicted above.
In three dimensions (if we consider for example free diffusion in a cubic volume of
water) these arguments extend in a similar manner〈

r2〉 = 6Dt

Thus the isopropability surface is a sphere of radius
√

6Dt and centered at the
origin.
We are interested in investigating the tissue microstructure of the brain, so a natural
question arises: How can we gain information about the microstructure?. The Einstein’s
equation gives us the answer, which lies in the dependence on the time of the mean
squared displacement. Diffusion coefficient is then inferred from observations of the
displacements over a time period and we will refer to it as the apparent diffusion
coefficient, since it will be lower than the one observed in free water. Now we are ready
to understand how we can actually measure displacements non-invasively using MRI.

1.1.2 Underpinnings of Diffusion MR
Magnetic resonance has assumed a fundamental role in clinical studies, since it provides
a unique opportunity to quantify diffusional characteristics and a way to investigate
the structural environment of the brain non-invasively.
Magnetic resonance images primarily reflect the signal from hydrogen nuclei, which
possess a magnetic dipole, with a corresponding north and south pole. A typical MR
scan starts with the excitation of the nuclei, under the main magnetic field B0, with a
90 degree Radio Frequency pulse given by the Larmor equation
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Figure 1.2: Illustration of the PGSE sequence. δ is the duration of the short pulses separated
by a diffusion time ∆ and G the magnitude of the gradient (image courtesy of [11])

ω = γB

where B is the magnetic field that the spins are exposed to and γ is the gyromagnetic
ratio (for nuclei such as Hydrogeni γ = 2.68 × 108 rad s−1 T−1). The excited spins
are tilted in the plane of normal B0, where they start precessing at the Larmor
frequency. The transverse precessing component of the spin decays exponentially
with a T2 time constant, while the longitudinal one exponentially recovers toward its
original orientation with a much slower time constant T1.
The rotation of the precessing spins generates a magnetic field which induces a current
in the receiver coils; this current is the signal used to generate MR images and is
reflected in the brightness of each pixel. The measured signal will be stronger if spins
are in phase, while the phase shifts will decrease it. For instance, in T2-weighted
images, contrast is produced by measuring this loss of coherence or synchrony between
the spins. In a free diffusion environment, relaxation tends to take a longer time; in
certain clinical situation, this can be used to detect an area of pathology.
Small inhomogeneities can occur in the magnetic field, which result in a loss of phase
coherence of excited spins. A solution to this problem was proposed by Edwin Hahn
(1950), who applies a second 180 degree rf, called refocusing RF pulse, at some time t.
It flips the spins in the plane of normal −B0, putting the faster precessing spins behind
the slower ones. At time 2t they will be back in phase, giving form to the so-called
spin echo principle. In this experiment, the time between the first rf pulse and the
formation of the echo is called TE (Echo Time). The time between two successive
excitation RF pulse is called TR (Replication Time).
To sensitize MR images to diffusion, a pulsed field gradient may be used instead of an
homogeneous strong magnetic. This idea was devised by Stejskal and Tanner (1965),
who introduced the basics for diffusion weighting, giving rise to the so-called Pulse
Gradient Spin Echo sequence (see Figure 1.2).
After excitation, and before signal sampling, application of a bipolar gradient adds to
each spin’s precession a positive phase proportional to its average position (along the
direction of the gradient) during the first gradient and a negative phase proportional
to its average position during the second. The sum of these phases is related to the
difference between these two positions, as it is shown in Figure 1.3
We can represent this scheme in a simple way. The net phase change induced by the
first gradient pulse is given by
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Figure 1.3: The principle of PGSE measurements. If molecules don’t undergo diffusion, there
is no phase shift. (image courtesy of [35])

φ1 = −qx1

where x1 is the position of the particle during the first pulse (note that we ignore
the phase change due to B0, since it’s constant for all spins) and q = γδG, where γ, δ
and G are the gyromagnetic ratio, the duration and the magnitude of the gradient
pulse. Similarly we have during the second gradient

φ2 = −qx2

Therefore, the aggregate phase change suffered by the particle is given by

φ2 − φ1 = −q(x2 − x1)

if particles remained stationary, i.e. x1 = x2, the net phase shift would fade.
Contrairwise, if particles diffuse randomly, the phase that they gain in the first period
does not cancel the phase decrement in the second one. This incomplet cancellation
causes phase dispersion and the overall signal is attenuated due to the incoherence in
the orientations of individual magnetic moments. This is the fondamental relation that
explains how diffusion can be measured using MR techniques.

1.1.3 Estimation of the Apparent Diffusion Coefficient
We have seen that a diffusion-weighted sequence is constructed by the addition of a pair
of diffusion-sensitizing gradients, also known as motion-probing gradients. Molecular
motion results in loss of signal intensity due to incomplete rephasing of water proton
spins, which may change their position during the sequence application.
To generate MR contrast based on the physical properties of water molecules, proton
density (PD), T1 and T2 relaxation times and the apparent diffusion coefficient are
largely used. The proton density represents water concentration, while T1,T2 are
related to the relaxation after excitation. This diffusion-weighted contrast can be fit to
an exponential model [21, 35]:

S(q) = PD(1− e−
T R
T1 )e−

T E
T2 e−bD = S0e

−bD (1.1)

where TR and TE are the replication and echo time of the sequence respectively and
b = q2D(∆− δ/3) = (γδG)2(∆− δ/3) is the so-called b-value (it’s used to characterize
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the level of induced sensitivity on diffusion during image acquisition). Typical b values
used in clinical applications range from 600 to 1500 seconds per square millimiters.
Furthermore, in the equation 1.1 terms related to the costants are usually simplified
as S0.
To quantify the apparent diffusion coefficient for any directions, one needs a minimum
of two signal measurements: S0, with no diffusion-weighting gradient, and SD, with
a non-zero diffusion-weighting gradient in a desired direction. When the diffusion is
isotropic, the choice of direction for the diffusion-sensitizing gradients is not relevant
because the coefficient D is identical for all directions. The apparent diffusion coefficient
is then estimated in the following way

D = Log[S0/SD]
b

This formalism is extended by Stejskal’s work in order to account for free anisotropic
diffusion and it leads to the introduction of a general scheme, called diffusion tensor
imaging (DTI).

1.2 Diffusion Tensor Model
1.2.1 Model Building
The White Matter is composed of bundles of myelinated nerve cell projections, which
connect various gray matter areas. In this complicated structure we can no longer
characterize the behaviour of the water molecules with a single apparent diffusion
coefficient. Therefore, we must look to a more complex model for diffusion introducing
a 3× 3 symmetric matrix that characterizes 3D displacements and accounts for the
anisotropic nature of the WM:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz


For purposes of discussion let us assume that diffusion remains Gaussian but may be

anisotropic. In this way we aim to model the diffusion expected along the orientation
of axonal bundles. Anisotropic Gaussian distributions have six degrees of freedom
instead of one. This means that, to fit our model, we must sample at least a series
of six diffusion-weighted images acquired with the scheme described in the previous
sections (in general with a b value of approximately 1000 sec/mm2). Usual acquisition
procedures account for more than six images in order to decrease the effect of the
noise in the estimation. In the literature we can find different way to estimate the
parameters of the tensor model [17, 12].
The diffusion tensor is usually represented by an ellipsoid, which principal axes are
given by the eigenvectors and the lengths by diffusion distance in a specific time t.
DT-MRI is affected also by some artifacts, such as subject motion, eddy currents,
magnetic susceptibility effects and image noise [24]. Most of them are amenable to
correction during postprocessing and can further be reduced with modified acquisition.

1.2.2 Scalar Measures From the Diffusion Tensor
The mathematical properties of the diffusion tensor let us to extract several useful
scalar measures from diffusion tensor images. Here we present a list of the main ones,
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Figure 1.4: Different possible configurations of the diffusion tensor matrix and its relative
ellpsoid. (image courtesy of [21])

which play a fundamental role in understanding in a full manner the diffusion results.

• Trace

The trace is the sum of the three diagonal elements of the diffusion tensor, which
is also equal to the sum of its three eigenvalues. We can think to the trace/3 as
being equal to the orientationally averaged mean diffusivity. We termed it Mean
Diffusivity

MD = Dxx +Dyy +Dzz

3 = λ1 + λ2 + λ3

3

• Fractional and Relative Anisotropy

Aside from describing the amount of diffusion, it is often important to quantify
the relative degree of anisotropy in a voxel. A basic solution could be the
ratio between the longest axis of the ellipsoid and the shortest, precisely λ1/λ3.
However, it can be shown that this measure is very suscetible to noise. To
circumvent this problem, other more complex measures are proposed, such as

FA =
√

3
2

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2√

λ2
1 + λ2

2 + λ2
3

and

RA =
√

1
3

√
(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

〈λ〉

where 〈λ〉 is one third of the trace of the tensor. The FA index is approximately
normalized so that it is easily readable, since it takes values from zero (when
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Figure 1.5: From the left to the right: Mean diffusivity, FA index and a color-coded image
showing orientations of the principal direction of diffusion. (image courtesy of [35])

diffusion is isotropic) to one (when diffusion is constrained along one axis only).
Between the two, the most used in clinical studies and in the literature is the FA
index.

• Tensor Orientation

By using the information contained within the diffusion tensor (mainly the
eigenvector associated with the largest eigenvalue) robust fiber orientation maps
could be derived. We assign color to diffusion direction, specifically red, green and
blue to x, y and z components. Any other direction is assigned to a combination
of these three colors, as shown in Figure 1.5.

1.2.3 Advantages and Limitations of DTI
DTI is a very popular technique in brain imaging since it provides various useful
information about the tissue microstructure: it quantifies diffusion anisotropy, which is
a useful measure of white matter integrity, and it provides an estimate of the principal
direction of axon fiber. There are also several drawbacks. One key limitation is that it
can only recover a single fiber orientation in each voxel and it fails at fiber crossing. We
must also consider that although white matter may look homogenous on conventional
MRI, it has a very complex structure. This makes the interpretation of the results not
always straightforward [35]
We have based our analysis on this model due to its flexibility and clinical relevance in
different applications, but some other more complicated models may be used [23]. The
main application of DT technique in this work is the estimation of brain tractography,
which is presented next.

1.3 Tractography
MR diffusion tractography is a method for identifying intervoxel connectivity and
white matter pathways in the living human brain. DTI fiber tracking is used in clinical
and scientific studies to perform localization and quantitative assessment of specifical
neuronal pathways, to investigate the causes of brain diseases and to more generally
analyze the functional connectivity between different areas [21, 22].
Despite his enormous potential for the study of the human brain anatomy, tractography
suffers from some limitations, as it is indirect and difficult to quantify. The most crucial
ones are its inability to determine the precise origin/termination of connections and to
accurately track the very dense network of horizontal intracortical connections [29].
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Figure 1.6: A schematic view of the FACT algorithm. Arrow represent principal diffusion
orientation and red lines the fibers tracked by the algorithm. (image courtesy of [21])

However, advances in methods and data acquisition may help to reduce the impact of
these limitations.
DTI fiber tracking algorithms can be divided into two main groups: deterministic
and probabilistic methods [34, 11]. In this work we will follow the first one, using the
well-known FACT algorithm.

1.3.1 Deterministic Tractography
In each brain voxel, the dominant direction of axonal tracts can be assumed to be
parallel to the primary eigenvector of the diffusion tensor. How can we reconstruct
fiber pathways from these principal orientations? The most intituive way to do it
is considering a streamline approach. Mathematically speaking, a streamline can be
viewed as a 3D space curve which location r is a function of the arc length s. The local
principal diffusion estimation is taken to be the tangent to the streamline at the arc
length s in order to estimate the fiber trajectory. In our context, we can formulate this
problem as a differential equation

dr(s)
ds = t(s)

where the tangent is assumed to be the first eigenvector of the diffusion tensor, i.e.
t(s) = ε1(r(s)).
Once the problem is formulated, we need a method for interpolating our discrete
measurements into continous space. In the FACT algorithm, a starting seed voxel is
choosen and fiber orientations are interpolated according to their nearest neighbors as
depicted in Figure 1.6.
We need to be aware of the fact that any tractography process is susceptible to errors,
which can have different nature:

• Imaging noise affecting the estimation of diffusion directions

• Modeling error (in our case, diffusion tensor model cannot identify regions where
fiber bundles cross)

• Integration errors introduced by the algorithm
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Figure 1.7: Whole brain tractography for a single patient (scene from TrackVis)

To overcome some of these problems, constraints on the maximum turning angle of
the streamline between voxels and on the minimum FA within a voxel for propagation
of the streamline can be applied. This is also a way to contain the fiber tracks to
regions of the brain where the diffusion tensor model realistically represents the white
matter pathways.
The choice of this basic algorithm is due to save time and effort in this part of the work,
since the focus will be on the subsequent analysis of the geometry of the white matter
tracts. Future directions may be on optimizing the tractography step and improving
the efficiency in terms of detecting more accurate fiber tracts.
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Chapter 2

Multiple Sclerosis Research
Study

Multiple Sclerosis is a chronic autoimmune and infiammatory disease which affects
the central nervous system. MS attacks the myelinated axons in CNS, resulting in
damaged areas of varying degrees (see Figure 2.1). These damaged areas provoke
difficulties to the nervous system to communicate, resulting in a range of signs and
symptoms, including physical, mental, and sometimes psychiatric problems. Specific
symptoms can include muscle weakness, double vision and trouble with coordination.
It can take several forms and its course is higly varied and unpredictable.
While the cause is not clear, the underlying mechanism is thought to be either de-
struction by the immune system or failure of the myelin-producing cells and it appears
to involve a combination of genetic susceptibility and a nongenetic trigger, such as a
virus, metabolism, or environmental factors [18]. There is no known cure for multiple
sclerosis, therefore symptomatic treatments are aimed at maintaining function and
improving quality of life.
MRI plays an increasing and fundamental role in the diagnosis and management of MS
[15]. It represents a reliable and accurate diagnostic technique and it is recognized as a
modality able to detect and visualize lesions. These damaged areas can be characterized
at MR imaging by their location, morphology and signal intensity.

2.1 Application of DTI in MS
Among all MRI techniques, Diffusion Tensor Imaging with tractography is a rich tool
for providing information about the integrity of specific tract in vivo. By focusing
on specific tract, DTI-tractography offers the possibility to investigate regional white
matter damage and its impact with the disability.
In this thesis, we aim to investigate the impact of this disease in a major portion of
the pyramidal sistem, the Cortico Spinal Tract (CST). It begins in the cerebral cortex,
from where the neurones descend through the internal capsule, pass from the medulla
and finally divides into two parts: lateral spinocortical tract and anterior spinocortical
tract (see Figure 2.2). The choice of this specific tract is motivated by its linearity
and robustness in the extraction procedure.
Several previous works have investigated how MS affects this tract. Associations
between DTI scalar indeces and clinical measures have been investigated in [8], while in

11
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Figure 2.1: Lesions in red on a T2-weigthed image of a patient affected by Multiple Sclerosis
(scene from MedInria)

[9] the attention is posed on depicting the axonal loss along the tract. From a clinical
perspective, in fact, it might be expected that the effects of axonal loss would be most
relevantly examined in the major tracts, such as the CST and the corpus callosum,
since they play a largest role in progressive disability.
A new challenging approach is an along-tract analysis, in which the aim is to explore
diffusion indeces as functions along a tract [13]. Tract profiles allow localization of
focal abnormalities in subjects. There is a prominent need to consider the behaviour of
these scalar measures along the entire tract, instead of considering a "tract-averaged"
approach by averaging the values from the many streamline to a single estimate. We
will face this topic in a new setting, using tools from functional and shape data analysis
in order to compare similarities/dissimilarities between patient and control groups
along scalar real-valued functions from diffusion.

2.2 Preprocessing of the data
The Multiple Sclerosis dataset is part of the USPIO-6 research study, shared in
SHANOIR (Sharing NeurOImaging Resources), an open source neuroinformatics
platform. The database on Shanoir is composed by n1 = 35 patients and n2 = 20
healthy volunteers with different ages and sex. For our analysis we have considered
n = 10 for both the groups, since the preprocessing part takes a long time (the
parcellation procedure described below may take 15-17 h per subject).
DWI data (size 128 × 128 × 55, with 2mm3 voxels) were acquired on a 3T Siemens
scanner. They have been denoised, but no distorsion correction has been applied.

• Tractography Estimation

Once DT images are obtained, FACT tractography is computed for each patient
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Figure 2.2: A schematic view of the CST along the brain

with the software Trackvis [28]. The stopping criteria for the tractography were
FA < 0.15 and a threshold of 60 degrees for the curvature is used. This results
in an average of tens of thousands traces per subject, as depicted in Figure 1.7.
The choice of Trackvis as the software for the tractography is drived by the
subsequent use of the White Matter Query Language (WMQL) [6], which is
a novel method to extract white matter tracts from diffusion MRI volumes. It is
designed in such a way to formalize tract descriptions from classic neuroanatomy
textbooks and current literature on the white matter anatomy. These descrip-
tions, formulated as a queries (with a near-to-English textual syntax), are then
processed along with MRI images to extract tract of interest.

• Parcellation

The WMQL requires also a parcellation of the white matter structure. This
can be done using FreeSurfer 1 with the recon-all procedure, in which a
full T1-image is processed in different steps. For each subject this results
in the white matter parcellated as we can see in Figure 2.4. For more de-
tailed description of this procedure, the reader may refer to the webpage
https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all.

• Registration

We underline that a common registration between subjects is not necessary for our
purposes. We need only to register patient-by-patient the resulted parcellation
and the processed T1-image (Skull remotion and normalization) to the diffusion
space in which we have computed the tractography. This can be done using

1Softwares FreeSurfer and FSL doesn’t work on Windows Machine

https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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Figure 2.3: Left Corticospinal tract and part of the Corpus Callosum extracted with WMQL
plotted on a MRI volume

different softwares, either the in-house Anima from Visages Team or FSL for
linux/MacOS machine.

• Fiber Bundle Extraction

Once all the above steps are done, we can run the WMQL in order to extract
the fiber bundle of interest. It works from the command line and it requires in
inputs the tractography file (in file format .trk or .vtk), the parcellation of the
brain and the query for the specific tract. In Figure 2.3 we can see an example
of a Corticospinal tract on the left hemisphere and a part of the Corpus Callosum.

Other possibilities to improve the results from the tractography may be considered,
such as more complicated models for the estimation of fiber principal directions and
more sofisticated fiber tracking algorithms.

2.3 Research Goals
In the current state of art, several approaches to the analysis of white matter tractog-
raphy in relationship with various neurological disorders can be found. In a statistical
point of view, main techniques such as voxel-based morphometry and spatial
statistics have reached optimal results in the investigation of focal differences in brain
anatomy.
In this work we present a different approach, trying to combine in a fruitful way
geometrical notion of the fibers and scalar measures from diffusion along a bundle.
There is indeed a growing need of exploring the structure of a specific white matter
tract in order to quantify similarities/dissimilarities between patients and controls.
In the following chapters we will present first a preliminary geometrical analysis of the
fiber bundle of interest with Shape analysis tools, motivated by the goal of building
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Figure 2.4: Parcellation of the brain obtained with FreeSurfer (scene from MedInria)

a statistical model and performing clustering. Afterwards, a new and challenging
perspective is introduced. We will try to apply methods from functional data statistic
to the analysis of scalar functions (such as FA values) along fibers in order to figure
out differences in damaged areas.
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Chapter 3

Shape Analysis

The central theme of this thesis is the analysis of fiber tracts extracted from a brain
tractography. Fibers can be represented as 3D open curves with several geometrical
features, such as shape, scale, orientation and location. An ongoing effort in the medical
image community is to study these fibers to investigate the functionality of the brain,
since they connect one region to another and they transmit information through signals.
This leads to a need of formulating a fully statistical framework in which we can do
registration of points across functions and curves, quantify similarities/dissimilarities
and model variability.
All these questions find an answer in a rich and powerful approach, termed Shape
Analysis, which is becoming prominent due to the increase of datasets involving
functions and curve data. There are multitudes of available techniques, which can
be distinguished by the way they represent the shape itself. A very famous approach
suggests to consider landmark shapes on Manifold [5, 20]. As defined in [20], a
landmark is "a point of correspondance on each object that matches between and
within populations".
Salient features can then be encoded as vectors in Rn×d where n is the number
of landmarks and d the dimension of the original object. The resulting matrix of
coordinates is called configuration matrix. Although this method had a great success,
due to its innovative ideas and solutions, it does not address the issue of how to select
those points to form a representative set. This kind of problem is also present in any
other point-based approach.
Several recent works have introduced a flexible Riemannian framework in order to
analyze shape of open curves [3, 33]. In this context curves are considered such as
continous objects, despite the fact in most of the applications we have a finite number
of points describing them. This approach is very richful and powerful, since in this
way one does not rely anymore in the choice of representative points and registration
between curves is better defined.
As a drawback, this analysis, instead of the usual one based on common vectors, brings
new challenges:

• Nonlinearity: We will deal with nonlinear spaces, that is they are not vec-
tor spaces and one cannot use classical vector calculus to perform statistical
computations.

• Infinite Dimensionality: Curves are formally represented by functions and
spaces of functions are usually infinite dimensional.

17
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• Invariance: Depending on which feature we want to analyze, we should take
care of removing invariant trasformations. For example, shape is invariant to
translation, rotation and rescaling.
Another aspect of invariance is the issue of parameterization, since a curve may
be parameterized in different ways without changing the shape. We will also
consider this parameterization variability.

In the first sections, we will face these problems and we will briefly introduce some
mathematical concepts that are relevant to understand the approach to Shape analysis.
The discussion is based directly on the book [3], with some integrations on differential
geometry taken from [14, 32].
Afterwards, motivated by the work of Anuj Srivastava and his contributors [3, 1, 19, 31],
we will present the main representation used throughout this thesis, the Square Root
Velocity Function (SRVF), and the different representative spaces for the analysis. In
chapter 4, then, we will illustrate this framework in the context of statistical modeling
of fibers and study the results with different combinations of features.

3.1 Differentiable Manifolds
Differential geometry plays an important role in shape analysis, since shape spaces are
studied as differentiable manifolds and individual shapes as points on these manifolds.
The commonly used tools for vector calculus (addition, multiplication etc) are not
available anymore in this particular spaces.
Fibers are seen as 3D open curves, which are objects that lie in a functional space,
in our case L2([0, 1],R3). For a ease of comprehension, we start from the idea of
finite-dimensional Manifold, which is the most common situation, and then we extend
it to the infinite-dimensional case.

3.1.1 Definition
Therefore, what is a Manifold? Informally speaking, a manifold is a space that locally
resembles euclidean spaces, although this may not be possible globally. We now give
step by step a formal definition, starting from the concept of topology.

Definition 3.1. A topology on a set X is a collection Ω of subsets of X, called open
sets, satisfying

1. X and the empty set ∅ are in Ω.

2. The union of an arbitrary collection of open sets in Ω is in Ω.

3. The intersection of a finite collection of open sets in Ω is in Ω.

The pair (X,Ω) is called topological space. Given a topological space (X,Ω), a
collection P of subsets of X forms a basis for the topology Ω, if

• Every set in P is open (i.e., P ⊂ Ω).

• For every open set V ∈ Ω and for every x ∈ V , there exists a set U ∈ P such that
x ∈ U ⊂ V.
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One common way to obtain a topological space is to start with a metric space,
which is

Definition 3.2. A metric space is a set X equipped with a distance function or a
metric d : X ×X → R with the following properties:

1. d(x, y) ≥ 0 for all x, y ∈ X.

2. d(x, y) = 0⇔ x = y.

3. d(x, y) = d(y, x) for all x, y ∈ X.

4. d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X (triangle inequality).

A metric topology can be easily derived from every metric space, in which the basic
open sets are open balls defined by the metric distance function:

Bε(x) = {y ∈ X : d(x, y) < ε}

The sets of open ε− balls in X provides a basis for this topology.

Definition 3.3. A topological space is said to be Hausdorff if for every pair of
distinct points p,q ∈ X, there exist disjoint open subsets U ⊂ X containing p and
V ⊂ X containing q.

We can now give a rigorous mathematical definition of a finite-dimensional Manifold
space

Definition 3.4. A topological space M is called manifold of dimension n if:

1. It is Hausdorff.

2. It has a countable basis.

3. For each point p ∈M , there is a neighborhood U of p that is homeomorphic to
an open subest of Rn.

The Locally Euclidean property of M tells us that for each p ∈M , there exists an
open neighborhood U of p and a mapping φ : U → Rn such that φ(U) is open in Rn and
φ : U → φ(U) is a homeomorphism (i.e., a continous bijective map 1 with continous
inverse). The pair (U , φ) is called a coordinate chart for the points that fall in U . Note
that if p denotes a point in U , we have (φ1(p), ..., φn(p))↔ (x1(p), ..., xn(p)) which are
called local coordinates of the point p.

Definition 3.5. An atlas A for M is a collection of charts such that the images cover
the whole of M:

M =
⋃
U∈A
U

1Recall that bijective means both injective and surjective. The first means that φ(a) = φ(b) implies
a=b; the second means "onto", that is every element of the codomain is the image of some element of
the domain.
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Figure 3.1: Illustration of the application of coordinate charts (Uα, φα), (Uβ , φβ) and its
transition map Φβα.

Two charts (Uα, φα) and (Uβ , φβ) are called smoothly compatible if the transition
maps

Φβα = φβ ◦ φ−1
α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ)

and

Φαβ = φα ◦ φ−1
β : φβ(Uα ∩ Uβ)→ φα(Uα ∩ Uβ)

are C∞, i.e. they have continous partial derivatives of all orders. (see Figure 3.1
for an illustration)
Definition 3.6. An atlas A is differentiable or smooth if it consists of (pairwise)
compatible charts.

At this point one may observe that for a given manifold we can have many different
atlases. We say that a smooth atlas A on M is maximal if every chart on M which is
smoothly compatible with all the charts in A is already in A.
Definition 3.7. M is an n-dimensional differentiable manifold if M is endowed
with a smooth n-dimensional atlas. The number n is called the dimension of M,
n = dim(M).

Let’s now shift the attention to the concept of differentiable maps. Consider some
manifold M equipped with a smooth structure (i.e., a maximal smooth atlas A) and a
function f : M → R. When should it be called smooth? We define f to be smooth
at p ∈M if f ◦ φ−1 is smooth for all charts in the atlas. The set of all such smooth
real-valued functions at p is denoted by C∞(p).
In a similar manner we can define smoth maps between two manifolds F : M → N .
For any point p ∈M , consider local charts (U , φ) with p ∈ U and (V, ψ) with F (p) ∈ V .
If the mapping ψ ◦F ◦φ−1 : φ(U ∩F−1(V))→ ψ(V) is smooth at the point φ(p) (in the
sense that all its partial derivatives exist and are continous) then F is called smooth
at p. A pictorial illustration is shown in Figure 3.2. Again, beacuse of the smooth
compatibility of charts, this determination will not depend on the choice of them.
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Figure 3.2: Illustration of the smooth map F : M → N (image courtesy of [14])

3.1.2 Tangent space
The advantage about a differentiable manifold M is that we can evaluate derivatives
of functions on M in terms of any coordinate chart we wish, and if we change them,
these derivatives will be related by the chain rule. Once we have the definition of a
differentiable manifold, we want to perform differential calculus of functions on these
spaces and to do this one needs to introduce the concept of the tangent structure.
There are various equivalent ways of defining the tangent spaces of a manifold. We
first face this argument considering differentiable (C1) curves on the manifold passing
through the point of interest and studying the velocity vectors of these curves at that
point.
A tangent vector at a point p ∈ M is thought as the "velocity" of a curve passing
through the point p. We can therefore consider an equivalence class of curves passing
through p, which elements are the tangent vectors at p.
More formally, let M be a n-manifold and for a point p ∈ M we consider a curve
γ : (−ε, ε) → M such that γ(0) = p. We then pick a chart (U , φ), where U is an
open subset containing p. Since γ is differentiable and φ smooth, the composition
µ = (φ ◦ γ) : (−ε, ε)→ Rn is differentiable as well. Its derivative denotes the velocity
of γ at p in local coordinates.
Any two differentiable curves γ1, γ2 passing through p at t = 0 are called equivalent if
the ordinary derivatives of µ1, µ2 coincide at 0, i.e.

d

dt
µ1(0) = d

dt
µ2(0)

This defines an equivalence relation and the equivalence classes are known as the
tangent vectors of M at p. They take the form

[γ] =
{
β : (−ε, ε)→M |β(0) = p and

d

dt
(φ ◦ β)(t)|t=0 = d

dt
(φ ◦ γ)(t)|t=0

}
A tangent vector to M at p is defined to be one of these equivalence classes and

the set of all such tangent vectors is called the tangent space to M at p, or Tp(M).
To define the operations on Tp(M) we use a bijective map Tp(M) → Rn, i.e [γ] →
d
dt (φ ◦ γ)(t)|t=0. It turns out that this map can be used to transfer the vector space
operations from Rn to Tp(M), turning the latter into an n-dimensional real vector
space. We underline also the fact that the choice of the chart doesn’t affect the above
costruction.
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The bijective map above is related with the concept of derivations. Let C∞(p) be
the set of all smooth real-valued functions as defined earlier. For a point p ∈ M , a
derivation is a linear map X : C∞(p) → R with a property modeled on the product
rule of calculus

X(fg) = X(f)g(p) +X(g)f(p), f, g ∈ C∞(p)

If we define addition and scalar multiplication for such derivations we get a real
vector space which is defined to be the tangent space and there is a one-to-one
correspondence between tangent vectors and derivations. In the case of M = Rn, the
tangent space is Tp(Rn) = Rn and we can define the mapping v → Xv ≡

∑n
i=1 vi

∂
∂xi

,
where ∂

∂xi
are example of derivations. This association underlines also the usage

of tangent vectors for computing directional derivatives 2. For instance, for a
function f ∈ C∞(p), the notation vf(p) stands for the directional derivative of f in
the v direction and is defined to be vf(p) = d

dt (f ◦ γ(t))|t=0 ≡ Xv(p). Thus, one can
interchangeably consider a tangent vector as a derivative operator for functions at p or
velocity vector of a curve passing through p.
These notions lets us to define a differential of a mapping between two manifolds

Definition 3.8. The differential of a smooth mapping f : M → N at p ∈ M is a
linear map dfp : Tp(M)→ Tf(p)(N) specified as follows. Let g : N → R be a smooth
function. Then, for any v ∈ Tp(M), define

(dfp(v))(g) = v(f ◦ g)(p) ≡ Xv(f ◦ g)

Looking at the right side, the derivative is given by forming a new function
f ◦ g : M → R and computing its directional derivative at p using v. In other words,
the directional derivative of g on N is defined as the directional derivative of the
composition with f on M.
Along the analysis, most of the sets we will encounter will be treated as susbsets of
larger manifolds. There is indeed a need of defining the concept of submanifold. A
useful way to obtain them is to exploit the definition above. A point p ∈M is said to
be a critical point of f if the differential df(p) is not onto, while a regular point
if it is. The image of a critical point, f(p), is called a critical value and any point
q ∈ N which is not critical is a regular value. The following holds:

Theorem 3.1. Suppose M and N to be manifolds of dimension m and n respectively
and let f : M → N be a smooth map with a regular value y ∈ N . Then f−1(y) is a
submanifold of M with dimension m-n.

Example 3.1. An important example of differentiable manifold for our case is the
Unit Sphere in Rn+1, defined as follows:

S
n =

{
p ∈ Rn+1|

n+1∑
i=1

p2
i = 1

}
Let’s now check indeed if it’s a submanifold of Rn+1. We define f : Rn+1 → R to

be a map given by f(p) =
∑n+1
i=1 p

2
i . Its differentialf dfp(u) = 2〈p, u〉 is clearly onto

for all p ∈ f−1(1). Thus, 1 is a regular value of f and the set f−1(1) given by Sn is a
n-dimensional submanifold of Rn+1.

2Generally, the directional derivative of a differentiable function along a given vector v at a given
point p intuitively represents the instantaneous rate of change of the function.
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3.1.3 Extension to the Infinite-dimensional Case
This theory can be extended to an infinite-dimensional setting, in which a manifold
is modeled on Hilbert spaces. This leads to the concept of Hilbert manifolds. In the
context of shape analysis we are interested in this spaces, since one aims to analyze
curves which are elements of L2([0, 1],Rn). The latter is in fact a Hilbert space, i.e. a
Banach space in which the norm is defined in terms of an inner product: || · || =

√
〈·, ·〉,

where

〈f1, f2〉 =
∫ 1

0
f1(x)f2(x)dx, f1, f2 ∈ L2([0, 1],Rn)

We repeat here the formal definition of smooth manifold, which takes now a more
general form.
First we define the notion of a smooth atlas:

Definition 3.9. Let X be a topological space. A smooth atlas on X is a collection
of pairs (Ui, φi) satisfying the following conditions:

1. Each Ui is an open subset of X and the X =
⋃
Ui.

2. Each φi is a homeomorphism of Ui onto the open set φi(Ui) of some Banach
space Ei and for any i,j the set φi(Ui ∩ Uj) is open in Ei.

3. The transition map:

φj ◦ φ−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj)

is a smooth isomorphism 3 for each pair i, j.

If we are given a new chart (U, φ), we shall say that it is compatible with the
atlas (Ui, φi) if each transition map φi ◦ φ−1 is a smooth isomorphism. Two atlases
are said to be compatible if each chart of one is compatible with the other atlas. We
can now give the following

Definition 3.10. (Smooth Manifold) A topological space X with a choice of an
equivalence class of smooth atlases is called a smooth manifold.

Note that if E = Rn for some fixed n, then we have the previous case of finite-
dimensional manifold.
Finally, for infinite-dimensional submanifolds a similar result to the finite-dimensional
case presented earlier holds. Let X and Y be two smooth Banach manifolds and
let f : X → Y be a smooth mapping. The map f is called transversal over y if the
differential of f at every point of f−1(y) is onto.

Theorem 3.2. If f is transversal over y, then f−1(y) is a submanifold of X.

As we will see in the following sections, a well known manifold used througout
our analysis is the unit radius hypershpere. Its relative simple geometry will let us to
derive tools for performing shape analysis.

3An isomorphism of smooth manifolds is commonly said diffeomorphism. It is an invertible function
that maps one differentiable manifold to another such that both the function and its inverse are
smooth.
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Figure 3.3: The tangent space at a point p on a hypersphere, which is a submanifold of
L

2([0, 1]).

Example 3.2. Let L2([0, 1]) be the infinite-dimensional space and f : L2([0, 1])→ R

defined by f(g) = 〈g, g〉 = ||g|| the transversal map. Then:

S∞ =
{
g ∈ L2([0, 1])|||g|| = 1

}
is a submanifold of L2([0, 1]). We call it hypersphere. For any g ∈ S∞, the

tangent space Tg(S∞) is given by:

Tg(S∞) =
{
h ∈ L2([0, 1])|〈h, g〉 = 0

}
In Figure 3.3 is shown an hypersphere with an example of tangent space.
Now we have sufficient mathematical knowledge to introduce a particular kind of

manifold space, the Riemannian manifold. This will be the right space to build on
all the statistical tools for calculating distances, summary statistics and probabibility
models.

3.2 Riemannian Framework
3.2.1 Riemannian Metric and Geodesics
Based again on [3], we are going to introduce a flexible Riemannian framework for
our analysis. How can we compute distances between curves on a manifold? This is a
key question, since distances on shape manifolds can be used to quantify dissimilari-
ties/similarities between shapes. In this way we may characterize fibers in different
bundles and in different patients.
These distances will be calculated by constructing shortest paths between shapes and
by measuring the lengths of these paths. First we need to define a particular kind of
metric, the so-called Riemannian metric.
Definition 3.11. A Riemannian metric on a differentiable manifold M is a map φ
that smoothly associates to each point p ∈M a symmetric, bilinear, positive definite
form on the tangent space Tp(M), i.e.

φ : Tp(M)× Tp(M)→M, p ∈M
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A differentiable manifold endowed of this Riemannian metric is called Riemannian
manifold.

Example 3.3. For the unit sphere Sn and a point p ∈ Sn, the Euclidean inner product
on the tangent space make Sn a Riemannian manifold, that is for v1, v2 ∈ Tp(Sn) we
use the Riemannian metric φ(v1, v2) = v1

T v2.

This Riemannian structure let us to calculate lengths of paths on a manifold. The
length is simply given by the following integral

L[α] =
∫ 1

0

√
(φ(dα(t)

dt
,
dα(t)
dt

))

where

• α : [0, 1]→M is a parameterized path on M,

• dα(t)
dt is a velocity vector on the tangent space Tp(M),

• φ is the metric defined previously.

For any two points p,q ∈M we can define the distance between them as the infimum
of the lengths of all smooth paths on M that start at p and end at q:

d(p, q) = inf
α:[0,1]→M |α(0)=p,α(1)=q

L[α] (3.1)

With this definition of distance, M becomes a metric space and the metric topology
agrees with the manifold one. Hence, geodesics in a Riemannian manifold are simply
the locally distance-minimizing paths.

Definition 3.12. If there exists a path α̂ that achieves the minimum in equation 3.1,
then it is called a geodesic between p and q on M.

Example 3.4. 1. Geodesics on a unit hypersphere Sn are great circles. The mini-
mizing one is the shorter of the two arcs joining any two points. Precisely, for
any p,q we have:

α(τ) = 1
sin(τ) (sin(ϑ(1− t)p+ sin(ϑt)q)

where ϑ is determined by cos(ϑ) = 〈p, q〉 and 0 < ϑ < π

2. Geodesics on Rn with the Euclidean metric are straight lines, i.e. for p, q,∈ Rn

α(τ) = τq + (1− τ)p

Another important concept is the exponential map, which lets us to transfer back
and forth between M and Tp(M). It is of great interest, since the vector space Tp(M)
can be viewed as a locally flat approximation of M and one can do multivariate analysis
on it. Before giving the definition, we need to enunciate the following

Theorem 3.3. Let M be a Riemannian manifold. Given a point p ∈M and a tangent
vector v ∈ Tp(M), there exixsts a unique geodesic αv : (−ε, ε) → M , for some ε > 0,
such that αv(0) = p and α̇v(0) = v.
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Figure 3.4: The Earth could be viewed as a hypersphere. The shortest path between two points
is then the great circle in blue (image courtesy of Gabriel Svennerberg, 2011).

Based on the theorem above, the definition of the exponential map follows straight-
forwardly

Definition 3.13. Let p be a point of a Riemannian manifold M. The exponential map
expp : U ⊂ Tp(M)→M is defined in the following way:

expp(v) = αv(1)

where αv is as defined in the theorem above and U contains an open neighborhood
of the origin in Tp(M).

There exists also the inverse of an exponential map, which takes a point on the
manifold M and maps it to an element (or multiple elements) of the tangent space
Tp(M).

Example 3.5. The geodesics on a hypersphere Sn under the Euclidean metric can
also be parameterized in terms of a direction v in Tp(M):

αt(v) = cos(t|v|)p+ sin(t|v|) v
|v|

Thus, the exponential map can be defined as:

expp(v) = cos(|v|)p+ sin(|v|) v
|v|

For a point q ∈ Sn (q 6= p), the inverse exponential map exp−1
p (q) is given by u,

where:

u = θ

sin(θ) (q − cos(θ)p), θ = cos−1(〈p, q〉)
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Figure 3.5: Exponential map associates to the vector v the unique geodesic passing through it
(image courtesy of McSush, wikipedia).

3.2.2 Group Actions and Quotient Space
A central point of shape analysis is the use of transformation to model variations
between objects, especially within the same shape classes. These transformations are
formulated as actions of particular groups, as follows

Definition 3.14. (Lie Groups) A group G is a Lie group if

• it is a smooth manifold

• the group operations G×G→ G defined by (g, h)→ gh and G→ G defined by
g → g−1 are both smooth mappings.

Our goal is to study how the application of a group changes points on a manifoldM ,
since in our shape analysis we are interested to remove certain kinds of transformations
from the representation.

Definition 3.15. Given a manifold M and a Lie group G, a left group action of G on
M is a map G×M →M , given by (g, p)→ g ∗ p such that:

1. g1 ∗ (g2 ∗ p) = (g1 · g2)p, ∀g1, g2 ∈ G and p ∈M .

2. e · p = p, ∀p ∈M .

We can also formulate the right version in a similar way. In caseM has a Riemannian
structure with a proper distance on it, we call the group action isometric if it preserves
the Riemannian metric on M.

Example 3.6. The groups related to shape-preserving transformations are Lie Groups:

1. The translation group Rn is both a manifold and a group. Therefore is a Lie
Group. Its action is given by x · y = x+ y, ∀x, y ∈ Rn.

2. The scaling group R× is a Lie Group. It acts on Rn by a · x = ax ∀a ∈ R× and
x ∈ Rn.
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In case there are multiple groups acting on a manifold, we call it a direct product
action. Let G and H be two groups, we give to the product G × H the structure
(g1, h1) ·(g2, h2) = (g1 ·g2, h1 ·h2). We say these actions commute if g∗(h∗p) = h∗(g∗p)
for all g ∈ G, h ∈ H and p ∈M . In the case that it is verified, they combine to give
us an action of the product group G×H on m defined by (g, h) ∗ p = g ∗ (h ∗ p).

Example 3.7. Scale and Rotate: Consider the rotation group SO(n) and the scaling
group R×. We can form the product group SO(n) × R× and for x ∈ Rn, O ∈ SO(n)
and a ∈ R× the action do commute, i.e a(Ox) = O(ax).

We will use group actions to incorporate the role of shape-preserving transformations
in shape analysis. There is in fact an additional notation associated with the action of
a group

Definition 3.16. Consider a group G acting on a manifold M. The orbit of an element
p ∈M is the set of elements in M to which p can be moved by the elements of G It is
denoted by G · p = {g · p|g ∈ G} ≡ [p]

Finally we introduce the notion of quotient spaces of Riemannian manifolds

Definition 3.17. Let M be a manifold and G a Lie group that acts on M. Then we
can define M/G = {[p]|p ∈M} to be the quotient space.

We now detail the application of these notions and techniques in shape analysis,
where we aim to impose a certain Riemannian structure on different representative
spaces and to describe the computation of geodesic paths and distances on them.

3.3 Representation of Curves
So far we have discussed about the main challenges that one have to face in a shape
analysis framework. In this section we will develop solutions to the problems of shape-
invariant trasformations, non linearity and infinite dimension considering the square
root velocity function (SRVF).
We will carry out the general procedure in the case of shape space under the SRVF
framework, which enables us to obtain tools for different tasks:

• computation of geodesic distances, geodesic paths and optimal registrations
between curves.

• summary statistics such as mean, covariance and PCA.

• clustering among curves

All these topics can be straightforwardly altered to include different features in
the analysis. Each representation space we will define uses a unique combination of
features and, by extension, invariances but they share common procedural steps.

3.3.1 Definition and Motivation
Let β : [0, 1]→ R3 be an absolutely continuous curve arbitrarily parameterized. We
introduce the following:
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Definition 3.18. Let F : R3 → R3 to be a map given by:

F (v) =
{

v√
(|v|)

, if |v| 6= 0

0, otherwise

Then, we define SRVF to be a function q : [0, 1] → R3, where q(t) = F ( ˙β(t)) =
˙β(t)√
| ˙β(t)|

and | · | is the 2-norm in R3.

One may immediately note that the SRVF is well defined, since it’s a continous
map and it exists also for curves with singular representations. In addition, if a curve
β in a range [a, b] is of length l, then we have

∫ b
a
|q(t)|2dt =

∫ b
a
| ˙β(t)|2 = l. One can

also recover the curve from q, up to a translation, using
∫ b
a
|q(τ)|q(τ)dt.

A question arises: What makes this representation so special? There are several reasons
for selecting it [30, 31]. First, the use of the SRVF leads to a complete and powerful
elastic analysis of curves, where we consider trasformations of curves that result not
just from bending but from stretching as well. The elastic metric quantify this
amount of deformation. In [3], Anuj Srivastava and his contributors highlight the
relationship between the SRVF representation and the elastic metric.
Let β : [0, 1]→ R3 be a smooth curve and ˙β(t) 6= 0 for all t. We introduce:

φ(t) = ln( ˙β(t)), Φ = {φ : [0, 1]→ R}

θ(t) =
˙β(t)

| ˙β(t)|
, Θ =

{
θ : [0, 1]→ S

n−1}
where φ(t) is the instantaneous log of the speed and θ(t) is the instantaneous

direction of the curve. These two functions determine unequivocally the curve, since
˙β(t) = eφ(t)θ(t). In this way we have built a new map from the space of parameterized

curves in R3 to Φ×Θ.
The tangent space of Φ × Θ at any point (φ, θ) is defined as T(φ,θ)(Φ × Θ) =
{(u, v) : u ∈ Φ and v : [0, 1]→ Rn smooth and v(t) ⊥ θ(t),∀t ∈ [0, 1]}

Definition 3.19. For any point (φ, θ) ∈ (Φ,Θ), a pair (u1, v1) and (u2, v2) in T(φ,θ)(Φ×
Θ), the elastic metric is defined as the inner product by

〈(u1, v1), (u2, v2)〉(φ,θ) = a2
∫ 1

0
u1(t)u2(t)eφ(t)dt+ b2

∫ 1

0

〈
v(t), v2(t)

〉
eφ(t)dt (3.2)

The two integrals in (3.2) account for the amount of stretching and bending,
respectively, weighted by the constants a,b. We can relate the SRVF with (φ, θ)
representation, i.e. q(t) = e

1
2φ(t)θ(t). The following theorem proves the importance of

the q-representation of curves

Theorem 3.4. The L2 metric on the space of square root velocity functions for curves
in R3 correspond to the elastic metric on Φ×Θ with a = 1

2 and b = 1.

This is a remarkable result: the L2 metric on the SRVF space gives us an elastic
framework and, as we will see in the next section, the space of fixed-length curves is a
unit hypersphere under it, with a well-known geometry.
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Last but not least, the reparameterization group, under the metric defines above, acts by
isometries on the representation space of SRVFs, that is for q1, q2 and γ : [0, 1]→ [0, 1]
we have ||q1 − q2|| = ||(q1, γ)− (q2, γ)||. This property will be useful when we’ll treat
the reparameterization variability on the shape space.

3.3.2 Preshape and Shape spaces under SRVF
We now have selected the representation for our parameterized curves in R3: the elastic
curve representation (i.e., the SRVF) under the L2 metric. In the context of shape
analysis, the next step is to make it invariant to all the shape-preserving trasformations
(translation, rotation, scaling) and also to the reparameterization variability.

1. Preshape Space

The translation variability is already removed since we consider the velocity
function, while the scaling variability can be easily removed defining the space of
fixed-length curves in the following way:

C1 =
{
q : [0, 1]→ R

3|
∫ 1

0
|q(t)|2dt = 1

}
By definition, this is a hypersphere of unit radius in L2([0, 1],Rn). We can define
a Riemannian metric:

〈w1, w2〉 =
∫ 1

0
〈w1(t), w2(t)〉dt

where the inner product in the integrand is the standard Euclidean product
between vectors. For any q ∈ C1, the tangent space is simply:

Tq(C1) =
{
w : [0, 1]→ R

3|〈w, q〉 = 0
}

The differentiable manifold C1 with this structure becomes a Riemaniian Manifold.
We underline that the elements of C1 don’t represent the shape of a curve uniquely.
We have not accounted yet for all the variability generated by shape-preserving
transformations.

2. Shape space

A reparametrization of the curve, using a diffeomorphism γ ∈ Γ1 : [0, 1]→ [0, 1] ,
results in a different SRVF while preserving the shape. Suppose we have β1, β2
such that β2 = β1 ◦ γ, what is the relationship between q1 and q2? Using the
chain rule:

q2(t) =
˙β1(γ(t)) ˙γ(t)√

| ˙β1(γ(t)) ˙γ(t)|
=

˙β1(γ(t))√
˙β1(γ(t))

√
˙γ(t) = q1(γ(t))

√
˙γ(t)

Additionally, any rigid rotation of β changes q but non its shape. The action of
the rotation group SO(3) is given by (O, q) = Oq. Two fundamental results hold
(proved in [1]):
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Lemma 3.1. The actions of Γ1 and SO(3) on L2 commute

Lemma 3.2. The actions of Γ1 and SO(3) on L2 are by isometries, i.e. ||O(q1, γ)−
O(q2, γ)|| = ||q1 − q2|| for all q1, q2 ∈ S1, γ ∈ Γ1 and O ∈ SO(3).

To unify all the different representations of the same curve, we can now define
an equivalence class or orbit 4 of functions:

[q] = closure
{
O
√
γ̇(q ◦ γ)|γ ∈ Γ1, O ∈ SO(3)

}
The set of all these orbits is defined as the shape space, which is a quotient space:
S1 = C1/(Γ1 × SO(3)). Since the shape space is a quotient of the preshape, it
inherits the same Riemannian metric. With this structure one can compute
geodesic distances.

3.3.3 Geodesics in the representative space
With the Riemannian structure and the spherical geometry of the preshape space,
we can derive an analytical form for geodesics between curves: they are given by the
shorter arcs on great circles

α(τ) = 1
sin(θ) (sin(θ(1− τ))q1 + sin(τθ)q2)

where θ = dC1(q1, q2) = cos−1(〈q1, q2〉). This geodesic starts at q1 at τ = 0 and
reaches q2 at τ = 1, while traveling at a constant speed. According to example 3.5, we
can define the exponential map exp : Tq(C1)→ C1 as:

expq(w) = cos(||w||)q + sin(||w||) w

||w||
Furthermore, for any q2 ∈ C1, the inverse of the exponential map at q1 ∈ C1, which

is denoted by exp−1
q1

: C1 → Tq1(C1), is computed as follows:

exp−1
q1

(q2) = θ

sin(θ) (q2 − cos(θ)q1)

These are all the basic ingredients for characterizing curves in the preshape space
and they can be extended in a similar manner to the shape space. The distance is
inherited and is formulated in the following way:

dS1([q1], [q2]) = inf
γ∈Γ1,O∈SO(3)

dC1(q1, O
√
γ̇(q2 ◦ γ))

This distance can be written in a more fascinated and suitable form considering
the L2 norm, which opens up the possibility of computationally efficient solutions:

inf
γ∈Γ1,O∈SO(3)

cos−1(〈q1, O
√
γ̇(q2 ◦ γ)) = arginf

γ∈Γ1,O∈SO(3)

∥∥∥q1 −
√
γ̇O(q2 ◦ γ)

∥∥∥2
(3.3)

The optimal paired solution (γ∗, O∗) for the above problem is obtained by a joint
optimization procedure. We briefly present the two steps [3]:

4The orbit of a point in M refers to all possible points one can reach in M using the action of a
group or a product of groups.
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(a) Artificial curves. (b) Optimal Registration.

(c) Geodesic paths. (d) optimal reparameterization.

Figure 3.6: Graphical illustration of the results obtained in the shape space between two
artificial curves with different shape, scale and orientation.

• Optimal Rotation

Let’s fix γ ∈ Γ1, the optimization problem in equation (3.3) over SO(3) is solved
by the singular value decomposition USV T of the matrix

A =
∫ 1

0
q1(t)(

√
˙γ(t)q2(γ(t)))T dt

that is O∗ = UV T . In case the determinant of A is negative, one needs to modify
V by making its last column negative (of it current value) before multiplying to
U to obtain O∗.

• Optimal Registration

For a fixed O, optimization over Γ1 is carried on with a DP algorithm, described
in [3]. A gradient-based optimization may be considered as an alternative, with
less accuracy but computationally less expensive.

In Figure 3.6 is shown an example of computing geodesics between artificial curves.
It is clear the combination of bending and stretching betweem them using the estimated
γ∗.
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3.3.4 Joint Analysis with other Features
Under this setup, we are going to introduce new scenarios, each corresponding to a
particular combination of physical properties of curves. For instance, when analyzing
white matter fibers, features such as scale and orientation may be of interest.
We list now the different representative spaces, with their Riemannian structures and
all the instruments for computing geodesic distances [3, 31].

1. Shape and Orientation

Here again we rescale all the curves to a fixed length and we compute the SRVFs.
The preshape space is still C1, while for the shape space we have to take care of the
parameterization variability. Thus we introduce a new quotient space S2 = C1/Γ1,
which elements are the orbits given by [q] = {(q ◦ γ)

√
γ̇|q ∈ C1, γ ∈ Γ1}. Note

that we don’t treat the orientation as a nuisance variable anymore.
The optimization problems becomes:

γ∗ = arginf
γ∈Γ1

cos−1(〈q1,
√
γ̇(q2 ◦ γ)〉) = arginf

γ∈Γ1

∥∥∥q1 −
√
γ̇(q2 ◦ γ)

∥∥∥2

Then the geodesic path is given again by the great circle connecting [q1] and [q2]
and the geodesic distance by θ = dS2([q1], [q2]) = cos−1(〈q1,

√
γ̇(q2 ◦ γ)〉).

2. Shape and Scale

The size of the curves in the analysis is no longer relevant. This means that
our SRVFs don’t rely on a hypersphere, but they are still elements of the L2

space and the preshape space becomes C2 =
{
q : [0, 1]→ L2([0, 1],R3)

}
. The

shape space is defined by S3 = C/(Γ1 × SO(3)) and the orbits again by [q] =
closure {O

√
γ̇(q ◦ γ)|γ ∈ Γ1, O ∈ SO(3)}.

The joint optimization is the same for the shape feature only, the difference here
lies in the form of the geodesics. The geodesic path between elements of S3 is
simply the straight line:

α(τ)(t) = (1− τ)q1(t) + τq∗2(t)

and the geodesic distance is the norm of the difference, i.e dS3([q1], [q2]) =∥∥∥q1 −O∗
√
γ̇∗(q2 ◦ γ∗)

∥∥∥.
3. Shape, Scale and Orientation

In case we are interested in comparing curves using their shapes, scales and
orientations, the only variability we have to remove is the reparametrization.
We form the quotient space as S4 = C2/Γ1, which elements are the orbits
[q] = closure {

√
γ̇(q ◦ γ)|γ ∈ Γ1}.

The optimization problem is γ∗ = arginfγ∈Γ1 ‖q1 −
√
γ̇(q2 ◦ γ)‖2 and the geodesic

distance between the registered curves is dS4([q1], [q2]) =
∥∥∥q1 −

√
γ̇∗(q2 ◦ γ∗)

∥∥∥.
The geodesic paths are again straight line α(τ)(t) = (1− τ)q1(t) + τq∗2(t).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: The same two artificial curves of Figure 3.6 analyzed using different combination
of features: (a),(b),(c) are the optimal registration, geodesic paths and reparameterization for
Shape + Orientation; (d),(e),(f) for Shape + Scale; (g),(h),(i) for Shape + Orientation +
Scale.
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Last consideration is about the inclusion of curve position in the analysis. In order
to incorporate the position one can introduce a different representation, i.e. the Square
Root Function (SRF). In our work we don’t consider it, since it’s not straightforward
to recover the original curves from its SRFs. Thus the computation of geodesic path is
not simple as in the SRVF case. While this drawback may limit the analysis, one can still
obtain distances in a easy way. The shape shape is defined as Sall = L2([0, 1],R3)/Γ1
and the distance is given by dSall

([h1], [h2]) = infγ∈Γ1 ‖h1 −
√
γ̇(h2 ◦ γ)‖, where the

optimization is perfomed using again the DP algorithm.
In Figure 3.7 is shown a schematic view of the results obtained by different combination
of features and in Table 3.1 we have summarized all the representative spaces and their
characteristics.
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Table 3.1: Summary of the representative spaces and their intrinsic characteristics



Chapter 4

Applications in Statistical
Modeling of Fibers

In the previous chapter we have defined a rigorous mathematical framework for the
analysis of open curves in Riemannian spaces. This gives us the basic tools for
computing summary statistics and for developing statistical models.
Now we are going to apply this approach to the modeling of fibers from the Left
Corticospinal tract, that is computation of a representative fiber (the mean of the
bundle), exploration of the variability inside the covariance structure, clustering to
filter out outliers from the tractography and registration (pairwise or groupwise). The
latter can also be perfomed in an augmented space including a scalar measure from
the diffusion, for instance the FA values along the fibers.
This preliminary geometrical analysis paves the way to a challenging approach in
functional data analysis, which will be faced in chapter 5.

4.1 Summary Statistics
In order to study white matter fibers, a reasonable choice is to consider shape in
conjunction with scale and orientation. Therefore our analysis are mainly performed
in the representative space S4, with some exceptions in other spaces to support better
the ideas.
The very first step is to define and then estimate the first two central moments: the
Karcher mean µn and the covariance in the tangent space at the Karcher mean. In
[3, 31], the Karcher mean is defined as:

µn = argmin
[q]∈Sj

n∑
i=1

dSj
([q], [qi])2, j = 1, ..., 4 (4.1)

A gradient-based approach is used to find a local minimum of the cost function.
Here we present the general version of the algorithm, which can be adapted to the
space j of interest:

Algorithm 4.1 (Karcher Mean). Let {β1, ..., βn} be a collection of curves and
{q1, ..., qn} its SRVFs. To minimize the cost function in (4.1), first let µ0 be an
initial estimate of the Karcher Mean (it seems natural to use the extrinsic mean, i.e
µ0 = 1

n

∑n
i=1 qi and project it if necessary). Set j = 0.

37
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Figure 4.1: Results of the application of the Karcher algorithm on the shape space S1. On the
first row a Corticospinal tract, while in the second row a Genu from the Corpus Callosum.
It’s clear how the mean resembles the shape of the bundle.

1. For each i = 1, .., n solve the specific optimization problem between µj and [qi].
Once q∗i is obtained, compute the tangent vector vi

vi = exp−1
µj

(q∗i )

2. Compute the average function v = 1
n

∑n
i=1 vi.

3. if ||v|| is small (good threshold may be 10−2), then stop. Else, update µj in the
direction v

µj+1 = expµj
(εv), ε = 0.5

4. set j = j + 1 and iterate.

An example of computation of the Karcher mean for two different tracts is shown
in Figure 4.1. Once we have the mean of our fiber bundle, we would like to explore the
variability in the Karcher covariance structure. The computation is as follows [2, 31]:

1. Let vi be the tangent vectors in R3 obtained in the last iteration of the above
algorithm. With a slight abuse of notation, we concatenate the components in a
tall vector vi ∈ R3T , where T is the number of sampling points.
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Figure 4.2: Resampling strategy in the shape space S1. On the left the real tract, while on the
right resampled fibers from a Wrapped Gaussian

2. Compute the sample covariance matrix K = 1
n−1

∑n
i=1 viv

T
i , which is a 3T × 3T

symmetric and non-negative matrix.

3. Let K = UΣUT be its singular value decomposition. One in this way can reach
an efficient basis using traditional PCA. The submatrix formed by the first r
columns of U spans the principal subspace of the observed data.

Following this procedure we can visualize variations in curves along principal paths
and also perform a sampling method from a Wrapped Gaussian Distribution. We
illustrate this approach considering only the shape space S1, which simplifies the
analysis. Given the SVD decomposition of the Karcher covariance, we can introduce
a multivariate Gaussian model for the long vector v ∈ R3T , i.e. we define v =∑n
i=1 zi

√
ΣiiUi, where zi ∼ N(0, 1) iid. One can then rearrange the vector v in its

components and project it back to the shape space using the exponential map to obtain
a random curve. This is a useful technique in bootstrapping statistics. In Figure 4.2
we can see how this technique works well, with satisfactory results in preserving the
original shape of the bundle.
In a similar manner we can also explore the variation along the principal paths by
computing straight lines along dominant directions. We do this for the same data used
for resampling. In Figure 4.3 are shown curves rendered along the path expq(τv) for
τ from −1 to +1, where v =

√
ΣiiUi, while in Figure 4.4 a compact visualization on

the 3D space is displayed.

4.2 Hierarchical Clustering
An important problem deriving from tractography estimation is the detection of out-
liers, which may affect the analysis and the reliability of the results. In our case, we
would like to make use of the tools described in the previous chapters. Since we have
defined different distances between curves under different combination of features, we
can use these distances for clustering. Here we don’t aim to cluster different bundles
in the brain, but rather to clean out a precise bundle from outliers.
We experiment this idea considering the representative space S4, since the combina-
tion of shape, orientation and scale features gives better discrimination than shape
information alone. It should be pointed out that the clustering in this case is solely
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Figure 4.3: Variation along the first mode from τ = −1 to τ = 1, with the middle curve
representing the mean q

Figure 4.4: The first and second eigenmodes of the shape, represented as deviation from the
Karcher Mean.

data-driven and it makes sense, whereas we want to filter out outliers. We exploit
the dendrogram clustering program in MATLAB with an average linkage (the mean
distance between elements of each cluster).
In Figure 4.5, the upper-left corner shows an original tract with a group of fibers
which are most probably outliers due to the different shape, while the upper-right is
the result from clustering. We can iterate this procedure to reach a desired result, as
shown in the bottom row.

4.3 Registration
The problem of joint registration and shape analysis can be studied either as pairwise
or groupwise. In the first case, one solves for which point on one curve matches
which point on the other. Since the two curves are parameterized, the registration is
controlled by parameterization: for any t ∈ I = [0, 1], the points β1(t) and β2(t) are
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Figure 4.5: Results of the clustering algorithm (two iterative steps) with the combination of
Shape, Orientation and Scale. In red we can see the fibers which have been filtered out.

registered. As we have seen in the optimization problem, the change in registration is
accomplished by a warping function.
The groupwise registration problem, instead, is that given multiple curves {β1, ..., β2}
we look for corresponding reparameterization functions {h1, ..., h2} such that {fi(hi(t))}
are registered for all t ∈ I. The idea is to compute a mean shape (i.e., the Karcher
Mean) and to align under a proper metric the individual curves to this mean shape [3].
The innovative aspect is the inclusion of a texture information in the problem. In
case there is any additional information associated with curves, other than the usual
features, it can be used to help improve the comparisons and registration between
curves. This motivates us to introduce a space of augmented curves, where we would
like to perform the process of matching, deformation and comparison to be based on
the representative space and the auxiliary information [36]. All this while keeping
appropriate constraints and invariances.
Let βs(t) : [0, 1] → R3 be the usual open curve and βt(t) : [0, 1] → Rk the auxiliary
function. We can combine these two components to form a curve:

β(t) =
[
βs(t)
bβt(t)

]
∈ R3+k

Here b > 0 may be a parameter introduced to control the influence of the auxiliary
function, relative to the shape function. In our case the auxiliary function is the FA
values along the fibers (so k = 1), which can be used to obtain a better alignment
within a bundle. For the resulting augmented curve, we define the SRVF using the
usual formula and the augmented preshape:
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Figure 4.6: Geodesic paths and correspondances in the augmented space (FA as the auxiliary
information) for two random fibers.

Caug =
{
q : [0, 1]→ R

4|
∫ 1

0
|q(t)|2dt = 1

}
(4.2)

As usual, we endow it with a Riemannian metric. For a point q ∈ Caug and any
two tangents w1, w2 ∈ Tq(Caug), we define the inner product:

〈w1, w2〉 =
∫ 1

0
〈w1, w2〉dt

where the inner product in the integrand is the standard Euclidean one. We have
now to treat the desired invariances in the analysis.

• Scaling: The global scaling has been accounted in (4.2). If a different scaling is
needed for the texture function, it can be controlled by the constant b.

• Rotation: we may be interested to remove the orientation from the representa-
tion, while maintaining the texture component the same. Thus we define:

R =
[
SO(3) 0

0 1

]
in such a way we only modify the shape component.

• Translation: The definition of q itself provides the removal of position informa-
tion in the analysis. In most of the cases, one needs to bring back the translation
of the texture information βt in the representation. This can be easily done
including a constant vector, which may be for instance the mean value of the
texture function along the curve:

βt(t) =
∫ 1

0 βt(t)dt∫ 1
0 dt

=
∫ 1

0
βt(t)dt ∈ Rk
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We recover the scalar function after registration substracting the new mean and
adding the mean saved before.

• Reparametrization: we seek to use both features and auxiliary information
in performing registration. As usual, we first define an equivalence class under
reparametrization and we optimize to find γ∗.

In [27], for instance, this approach is applied to the study of the shapes of carotid
arteries, which are analyzed as elastic curves. In our framework, the registration strategy
points to align fibers and scalar function along them, exploiting both coordinates
and texture information together. In figure 4.6 we can see an example of pairwise
registration with the FA feature included as a texture information, which has been
performed in the S4 space. The geodesic paths for the auxiliary information are simply
given considering a linear interpolation of the average texture β(τ) = (1− τ)β1 + τβ∗2 .
Instead, in Figure 4.7 we can clearly see the effect of the groupwise registration in
terms of better alignment in phase and amplitude of the FA functions. This procedure
can be iterated until a desired result is obtained.

4.4 Summary
In this chapter we have discussed the main applications of shape analysis in statistical
modeling of fibers. In certain kind of diseases, the computation of distances between
them may help to figure out possible damaged areas in the brain. The possibility to
study the shapes of fibers and to associate them with functionality between brain
regions is a prominent research question.
In our case we want to pull together shape and functional approach in order to
investigate scalar measures from diffusion along fibers. With tools from shape analysis
we aim to model a specific tract (i.e., Corticospinal) for each patient, computing the
Karcher Mean and registering the fibers to it including the FA information. Then we
move to the analysis of these FA functions trying to figure out a priori known lesions.
This is the starting goal of the next chapter.
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Figure 4.7: Comparison between the x-coordinates (above), y-coordinates (in the middle)
and the feature (below) before and after groupwise registration to the population Mean. This
procedure can be iterated until a desired result is obtained.



Chapter 5

A New Perspective with
Functional Data Analysis

5.1 Goals and Proposals
We have already highlighted how Multiple Sclerosis can affect the human brain. Lesions
on the brain may vary from patient to patient and are not predictable. One possible
solution is to analyze tract profiles in order to localize abnormalities in subjects that
can be manifested by significative changes in scalar measures from diffusion. It is
recognized that FA index is sensitive to pathological damages and in active lesions its
values may decrease according to the severity of the disease [7].
By this point, we should also be aware that a basic truth doesn’t exist. Inconsistencies
may exist with regard to FA results and different factors can affect our analysis.
Nevertheless, the study of diffusion indeces along fibers represents a challenging
approach to the problem. In Figure 5.1 we can see an example of the FA profile along
the left Corticospinal tract, while in Figure 5.2 is shown the localization of a lesion on
it for the same patient.
A question naturally arises: is it possible to detect these lesions working on the FA
functions? Several previous works have faced similar questions. In [25] diffusion indeces
along fiber tracts are measured as function of geodesic distance from specific anatomical
landmarks, while in [16] a tract-based analysis is introduced. Furthermore, in [4] a
functional approach is considered: diffusion properties are modeled as multivariate
functions of arc length and hypothesis testing is performed in the projection on the
PCA space.
In this thesis we would like to perform a tract-based analysis in a functional framework,
exploiting two different approaches:

• Interval-Wise Testing Procedure: this approach relies on statistical inference
in a functional framework. In [26], Pini and Vantini propose a non-parametric
inferential procedure able to detect portions of the domain where a null hypothesis
is rejected in a functional sense. The most common situation is a test on mean
differences between two groups.

• Functional Linear Discriminant Analysis: here, instead, we want to exploit
the ability of this technique to produce a discriminant function able to identify
areas of discrimination between classes, i.e. between patients and controls in our

45
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case. In [10], James and Hastie propose an extension of the linear discriminant
approach to a functional framework, accounting also for curves irregularly sampled
along the domain.

Figure 5.1: FA profile along the CST plotted on a MRI volume

Figure 5.2: Localization of a lesion on the CST for a patient affected by Multiple Sclerosis



5.2. PREPARING THE DATA 47

5.2 Preparing the Data

In Chapter 2 we have seen how the raw data from diffusion is processed and how the
extraction of the fiber bundle of interest is computed with the software WMQL. Once
we have obtained the tract for each patient and control under analysis, we read it in
Matlab using open source codes described in [13]. These tools let us to visualize the
fibers in a 3D fashion, to resample them with a cubic spline interpolation (we have
choosen T = 50 sampling points 1) and to extract scalar measures along them given
a MRI volume, as displayed in Figure 5.1. To read the volume, for Linux machine
and mac OS, one can run FSL commands from Matlab (function read avw), while in
Windows there is a tool for Nifti images that makes almost the same work.
The uniform number of vertices along the fibers, as proposed in [13], accounts for
inter-streamline and inter-subject scaling and it facilitates the analysis.
Afterwards, as the first step in our Shape analysis, we try to filter out outliers from
tractography with the hierarchical clustering algoritm. Once the bundle is cleaned, we
model it in the S4 space, computing the Karcher mean and the scalar mean for each
individual. In this way we obtain a vector µ(t) ∈ R4, where the components are the
x, y, z, coordinates and the FA value. To align the fibers we compute a population
mean, as shown in Figure 5.3, and we apply the registration procedure highlighted in
section 4.3. This results in phase alignment with respect to a common mean for all the
individuals, both patients and controls.
We now save the aligned functions and we move to R for performing functional data
analysis. In the case of IWT, a preliminary smoothing procedure is not necessary and
we can directly apply the procedure on the raw functions. Instead, for the FLDA, we
looked for the number of spline basis that best suits our data.

Figure 5.3: The population mean highlighted in blue for patient and control group.

1The choice of the number of sampling points is related with the size of the image, in our case
128 × 128 × 55
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5.3 Interval-Wise Testing Procedure
We first give a brief summary of the methodology in order to understand the inferential
approach in a FDA framework. Here again the infinite-dimensionality of the problem
poses new challenges: evaluation of point wise p-values is meaningless in a functional
space and the multiplicity correction would involve a family of infinite tests. We
describe the procedure in a version adapted to our case.
Suppose we have a set of L2 scalar functions over a domain T = (a, b) ⊂ R and we
want to perform a global unilateral hypothesis test in a two-sample framework of the
following form

H0 : µ1 = µ2 + C vs H1 : µ1 > µ2 + C (5.1)
where µj , j = 1, 2 are the mean functions for the two groups, C is a constant and

the equality has to be intended in L2 sense. In case of rejection of the null hypothesis
H0, one may be interested on the portion of the domain presenting a significant
mean difference. To achieve this goal we introduce restrictions (i.e. open intervals
I = (t1, t2) ⊂ T , with a1 ≤ t1 < t2 ≤ a2) on the domain and we formulate

HI0 : µI1 = µI2 + C vs HI1 : µI1 > µI2 + C

This implies that H0 =
⋂
I⊂T H

I
0 . Often assumptions of functional normality are

not realistic and a non-parametric permutation procedure is more suitable. For the
general case of a bilateral test, in [26] a statistic based on the L2 distance between the
two means is used:

T I(ξ11, ..., ξ1n1 , ξ21, ..., ξ2n2) = 1
|I|

∫
I
(ξ1(t)− ξ2(t))2dt

where ξji are the functional observations and ξj(t) = 1
nj

∑nj

j=1 ξji. In our case, we
modify the test statistic above to account for the unilaterality of the test. A possible
choice may be to take T I without the square and to consider just the positive part of
it, as follows

T I(ξ11, ..., ξ1n1 , ξ21, ..., ξ2n2) =
{

1
|I|
∫
I(ξ1(t)− ξ2(t))dt, if T I > 0

0, otherwise
(5.2)

Finally, a permutation test for (5.2) can be reached by evaluating the test statistic
over all possible permutations of our data.
At this point, we need to introduce the concept of p-value function in this framework.
One of the major contribution in [26] is the definition of an unadjusted and adjusted p-
value with well-suited properties. Let pI denote the restricted p-value of the functional
test described above, then we have

• unadjusted p-value: it controls the point-wise error (given any point where
H0 is not violated, the probability of wrongly selecting it as significant is con-
trolled) and is defined as

p(t) = lim sup
I→t

pI

where with the notation I → t we intend that both the extremes of the interval
I converges to t.
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• adjusted p-value: it controls the interval-wise error rate (control of the
probability of wrongly select an interval of the domain where H0 is not violated)
and is defined as

p̃(t) = sup
I3t

pI

These definitions bring important theoretical properties. Here we list them, for more
details on its proof see [26]. We can state that, even though the pointwise evaluation
is meaningless in a infinite dimensional framework such as L2 space, the boundedness
of the p-values pI guarantee that they are well-defined ∀t ∈ T . Furthermore, if we
consider an open limited interval T ∈ R, we have that L2(T ) ⊂ L1(T ) and thus the
integral mean value theorem guarantees that

p(t) = lim
I→t

pI

and it coincides almost everywhere with the p-value of the permutation test based
on the statistic (5.2). Moreover, in the special case of data embedded in L2(T )∩C0(T ),
the identity above holds ∀t ∈ T .
From a practical point of view, the p-value is evaluated as the proportion of the
corresponding test statistics that exceed the statistics on the original data set and by
thresholding it at level α we select the intervals of the domain presenting significant
differences in the mean. In detail, to control the point-wise error rate we select the
points t ∈ T such that p(t) ≤ α. Instead, if one is interested in controlling the
interval-wise error rate, we select the points t ∈ T such that p̃(t) ≤ α.

5.3.1 Detection of a Clinically Significant Threshold
The constant C in (5.1) plays the role of the detector. The idea is to find out a
suitable value for this constant able to highlight portions of the domain with significant
differences for a patient with a lesion on the CST.
We perform a sort of heuristic binary classification exploiting the Interval-Wise Testing
procedure. In detail, we consider n1 = 1 patient and n2 = 10 controls and the pairwise
functional test in (5.1) assumes the form of a two class-prediction problem as follows:

• n2(n2−1)
2 IWTs between the controls, which represents our True positive condition

(P). Ideally, we aim to validate the null hypothesis for the controls, i.e. no
differences in the FA means for each subject.

• n2 IWTs between the patient and the controls, which represents our True nega-
tive condition (N). In this case we expect significant evidence against the null
hypothesis if a lesion is present on the CST.

Specifically, for each threshold, we first apply the IWT between controls in a
pairwise manner (Control1 vs Control2, Control1 vs Control3 and so on) and we
consider the result as False Negative if we detect differences in the domain, while
True Positive if not. Afterwards we test the patient against each control (Patient vs
Control1, Patient vs Control2 and so on) and we consider the result as True Negative
if we find differences, while False Positive if not. We consider the patient with a
big lesion on the CST depicted in Figure 5.2 and we carry out the above procedure.
For instance, let’s take as the first threshold C = 0, i.e. no mean difference for the
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PREDICTED CONDITION
Pred. positive pred. negative

TRUE CONDITION Cond. positive (P) True positive (TP) False negative (FN)
Cond. negative (N) False positive (FP) True negative (TN)

Table 5.1: Confusion matrix for a two class-prediction problem.

FA profile in the hypothesis test (5.1). In this case we find significant differences also
between most of the controls, since clinically speaking the FA profile may vary from
subject to subject due to different factors. The aim is to increase step by step the
value of C and to find the first threshold which best discriminate between the patient
with lesion and the group of controls. We then build iteratively the confusion matrix
as shown in Table (5.1) and we select the best threshold exploiting the ROC curve.
The latter is a graphical plot that illustrates the performance of a binary classifier
system when its discrimination threshold is varied. In our case, the threshold is simply
the mean difference we test in the functional hypothesis procedure. The curve is
created by plotting the true positive rate (TPR or sensitivity) on the y-axis and the
false positive rate (FPR or specivity) on the x-axis at various threshold settings.
Following the confusion matrix in table (5.1), the TPR and FPR are computed for
each threshold as follows:

TPR = TP

P
, FPR = FP

N

How do we select the best value for the mean difference? The best prediction would
yield a point in the upper left corner of the ROC space. In practice , the latter is
divided by a diagonal line, where points above it represent good classification results,
while points below it represent poor results. We select as the best threshold the point
closer to (0, 1) coordinates, which in our case is given by C = 0.09, as depicted in
Figure 5.4. To validate it, we compare the patient under analysis and a patient
without lesion against the same control. The selected threshold highlights significant
dissimilarities in the middle-upper part for the patient with lesion, while any difference
is detected for the other patient, as shown in Figure 5.5.

5.4 Functional Linear Discriminant Analysis
We start by presenting the model on which the FLDA procedure is based. We don’t
go deep into the details, since it’s beyond our scope. For further information on the
derivation of this method the reader can refer to [10].
The main idea is to model each functional observations using a spline basis multiplied
by a q-dimensional coefficient vector. Let gij(t) be the true value at time t for the
jth curve from the ith class. Obviously we have a finite number of time points for
each curve, i.e. tij1, ...tijnij

(n depends on ij since in the general case we may have
irregularly sampled curves, but for us is fixed). Then we have

Yij = gij + εij , i = 1, ...,K, j = 1, ...,mi

where K is the number of classes and mi the number of curves in the ith class. The
errors εij are assumed to have zero mean , constant variance σ2 and be uncorrelated
between each other and gij . Now we choose the cubic spline functions and we define
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Figure 5.4: The ROC curve for the detection of the optimal threshold.

g(t) = S(t)T η

where S(t) is a spline basis in matrix form n× q and η is a q-dimensional vector of
spline coefficients. This leads to a more restricted model, which in index form is as
follows

Yij = Sijηij + εij , i = 1, ...,K, j = 1, ...,mi

Now the problem of modeling the observations reduces to one of modeling the
coefficients ηij . A natural extension of the LDA suggests to use a Gaussian distribution.
Finally, we obtain the following formulation

Yij = Sij(µi + γij) + εij , i = 1, ...,K, j = 1, ...,mi

εij ∼ N(0, σ2I), γij ∼ N(0,Γ)
(5.3)

One of the tasks of LDA is to trasform or project the variables into a lower
dimensional subspace and then classifying in this subspace. In this setting, Anderson
(1951) and Hastie and Tibshirani (1996) outline an alternative procedure that accounts
for this. They give raise to the final FLDA model defining the mean in (5.3) as
µi = λ0 + Λαi, where λ0 and αi are respectively q and h-dimensional vectors and Λ
is a q × h matrix, h < min(q,K). Certain kinds of constraints that accounts for the
normalization of linear discriminants need to be imposed. The final formulation given
in [10] is
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Figure 5.5: Results from IWT with the best threshold for a patient with a damaged CST
(above) and a patient without lesions (below) against the same control.

Yij = Sij(λ0 + Λαi + γij) + εij , i = 1, ...,K, j = 1, ...,mi

εij ∼ N(0, σ2I), γij ∼ N(0,Γ)

ΛTSTΣ−1SΛ = I,
∑
i

αi = 0

where Σ = σ2I + SΓST and S is the basis matrix evaluated over a fine grid of
points.
Fitting the model involves the estimation of the unknown parameters λ0,Λ, αi,Γ, σ2

and a natural approach to perform this is to maximize the likelihood of Yij . Since this
represents a difficult non-convex optimization problem, in [10] is proposed instead to
maximize jointly the likelihood of Yij and γij , which semplifies the analysis.
We also underline that, as in most of the functional analysis approaches, the choice
of q (i.e. the dimension of the spline basis) affects the procedure. Thus a smoothing
analysis is needed before applying the FLDA model.
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Figure 5.6: Plot of the generalized croos-validation against the number of q.

5.4.1 Applications
Now we are going to see how this model can be applied to the analysis of FA functions.
The main idea is to discriminate areas of dissimilarities represented by known lesions
in a specific tract. We apply FLDA in order to further validate the result obtained in
the previous section, i.e. we consider again the patient with lesion against a control.
The first step is the choice of a reasonable number q for the spline basis and the
generalized cross-validation (GCV) measure is designed to locate it. In our analysis, a
suitable range for q is [25, 30]. For instance, for the patient with lesion, q = 28 reaches
the minimun in the GCV as shown in Figure 5.6.
The second step is the fitting of the model, which involves the estimation of the
unknown parameters. Figure 5.7 shows the fitted FA functions for the two subjects,
while in Figure 5.8 we can see the mean and the two centroids, which are obtained as
follows

µi(t) = S(t)T (λ0 + Λαi), i = 1, 2

We can now proceed to the estimation of the discriminant function. In a standard
two-class LDA the latter is defined as

(µ1 − µ2)TΣ−1

where Σ−1 is the within group covariance matrix. In a functional framework,
considering that µi = S(λ0 + Λαi), the analogue is

(SΛα1 − SΛα2)TΣ−1 = (α1 − α2)TΛTSTΣ−1 (5.4)
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Figure 5.7: FA functions for the patient (above) and the control (below) with a suitable number
of spline basis.

Figure 5.8: Mean function and centroids.
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Figure 5.9: Discriminant function for the patient with lesion and the control.

Patient Control
Patient 565 40
Control 17 511

Table 5.2: Missclassification table for the FLDA. We have n1 = 605 FA functions for the
patient and n2 = 528 for the control.

Figure 5.9 shows the discriminant function produced by Eqn (5.4) using the state
of the subject (patient or control) as the class variable. We can see that most of the
discrimination appears in the middle upper-part with a strong negative peak followed
by a positive one. This fact may indicate the strong difference in FA profile in proximity
of the lesion, as detected with the IWT procedure.
The ability of FLDA to perform classification is as important as its ability to explain
discrimination between different classes. While classification is not our primary goal,
we test the prediction strength of the model on the data in order to assess the reliability
of the results.
For a two class-situation, such as our case, the classification rule is based on the
negativity or positivity of the discriminant scores for each observations. Figure 5.10
shows the discriminant scores plotted on the x-axis and the mean FA value along each
function on the y-axis . The two dotted vertical lines either side of zero give the fitted
values for the αi’s. The percentage of the missclassified functions is 0.0503%, computed
through the missclassification table in 5.2.
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Figure 5.10: Plot of the discriminant scores. The separation of the two classes is net.



Chapter 6

Conclusions and Perspectives

In this work we focused mainly in the statistical modeling of fibers with tools from
shape analysis. As described in chapter 3, one can combine different features depending
on the kind of problems. This approach can find various applications, such as improving
the results from tractography and studying the connectivity between different areas of
the brain.
In our case, shape analysis allowed us to model the geometry of the left corticospinal
tract. We have computed summary statistics, such as the Karcher mean and the
covariance structure. The latter can be explored to study the variability of the tract
in terms of principal components (PCA). The ability to compute distances between
fibers is of great importance, since they can be used for clustering and for evaluating
dissimilarities/similarities among different subjects. Regarding registration, we showed
two different strategies: pairwise and groupwise. Specifically, we extracted FA along
fibers in order to investigate possible abnormalities in patients with lesions on the CST
and we registered them to a population mean. In this way we tried to pull together
shape and functional approach in an efficient way.
Once we have registered all the FA functions for each subject, we faced the problem of
detecting changes in the FA profile in presence of a lesion known a priori in a Multiple
Sclerosis research study. The methods proposed aimed to find a significant threshold in
the mean difference of FA values using statistical inference in a functional framework.
Subsequently, with a linear discrimination approach, we tried to confirm the results
obtained.
Possible issues may derive from the basic steps of the analysis, where semplicistic
methods in fiber tractography are used. For this reason, scalar measures can be affected
by multiple fibers in the same voxel or even worse by some parts which are missing.
The ideas presented in chapter 5 are thought as possible starting points for a more
detailed and deep analysis in a functional framework. The possibility to investigate
directly diffusion properties on a specific tract is an open and interesting challenge
in the medical community. Most of the previous statistical methods considered an
average approach, accounting for a single mean function. Here we proposed a more
efficient tract-based approach.
We do not claim to assess the general validity of our proposals. Indeed, for a matter of
time, we have showed the results on just a patient. Possible future directions may be in
generalizing and further investigating this context. In particular, future developments
may regard:

• optimize the tractography step, with more sophisticated model that may result

57
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in more robustness in the extraction of the tracts.

• improve the inference procedure for the detection of a significative threshold,
considering a greater number of patients.

• moving from a subject-to-subject to a subject-to-group analysis in the functional
linear discriminant analysis. Clinically speaking, the first may give poor results.

Neverthless, the link between Shape and Functional data analysis in the quantitative
study of white matter fibers in clinical diseases represents a novel method and could
adress these problems in a stimulant perspective.
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