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Sommario 

 

Introduzione e scopo del lavoro 

 La sindrome della morte improvvisa infantile (Sudden Infants Death Syndrome, 

SIDS) è descritta come la morte improvvisa di un neonato sano durante il sonno e 

rappresenta una delle maggiori cause di mortalità infantile nei paesi sviluppati. Nonostante 

il marcato declino dell’incidenza della SIDS a partire dal 1990, grazie a campagne globali 

di educazione sul tema, SIDS rimane una delle maggiori cause di morte per i neonati di età 

1-12 mesi di età. A causa del suo drammatico impatto, questa sindrome è stata studiata per 

lungo tempo, ma i meccanismi fisiologici di base rimangono ancora da essere chiariti. 

 

 Attualmente, la spiegazione più supportata in letteratura riguardo SIDS, è il modello 

del triplo rischio (Triple-risk model), proposto da Filiano e Kinney.  

 L’ipotesi di Filiano e Kinney riguardo SIDS è basata sulla concomitanza di tre fattori: 

1) un neonato fragile, 2) un periodo critico dello sviluppo, 3) un fattore di stress esogeno. 

 I neonati hanno una maggiore probabilità di morire di SIDS se posseggono tutti questi 

tre fattori: la vulnerabilità congenita dei neonati rimane latente finché questi ultimi entrano 

nel periodo critico della SIDS e sono soggetti ad uno stress esterno.  

 

 Lo sviluppo del controllo cardiorespiratorio può essere classificato come un fattore 

di rischio, in accordo con il modello del triplo rischio. In particolare può essere pensato come 

una sottoclasse del cosiddetto controllo omeostatico. 

 A seguito di queste considerazioni, il presente studio si propone di analizzare una 

popolazione di neonati a termine sani ed una popolazione di infanti sani di un mese di età. Il 

lavoro di tesi si concentra sull’analisi dell’interazione cardiorespiratoria, la sua relazione con 

gli stati del sonno e la sua evoluzione dalla nascita ad un mese di vita. Lo scopo della ricerca 

è la descrizione dell’accoppiamento cardiorespiratorio di tipo fisiologico, al fine di metterne 

in luce le differenze rispetto all’accoppiamento cardiorespiratorio delle vittime di SIDS. 
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 Lo studio di questa interazione è eseguita su soggetti durante il sonno. Il sonno ha un 

ruolo fondamentale nello sviluppo del sistema nervoso e nella regolazione omeostatica. 

 Il sonno nei neonati e negli infanti può essere classificato in tre tipi: Sonno Quieto 

(Quiet Sleep, QS) (equivalente a NREM), Sonno Attivo (Active Sleep, AS) (equivalente a 

REM) e Sonno Indeterminato (Indeterminate Sleep, IS).  

 È stato ipotizzato che gli infanti morti di SIDS avrebbero mostrato anormalità 

nell’organizzazione degli stati del sonno precedentemente allo loro morte.  

 Il meccanismo alla base di SIDS appare avere origini nell’ambiente fetale con il 

risultato di danni neuronali e di sviluppo del sistema nervoso autonomo (Autonomic Nervous 

System, ANS). Questo meccanismo ancora sconosciuto in seguito, comprometterebbe 

l’adeguata risposta alle sfide respiratorie e pressorie durante il sonno. 

Questo deficit coinvolge alterazioni dei recettori delle regioni coinvolte nel controllo 

chemocettivo, cardiovascolare e cardiorespiratorio.  

 

 Risulta fondamentale evidenziare che l’indagine dell’accoppiamento 

cardiorespiratorio è in grado di fornire una conoscenza non invasiva dei meccanismi di 

interazione fra il sistema cardiaco e respiratorio ed è in grado di aiutare a comprendere i 

fattori che contribuiscono all’occorrenza di SIDS.    

 

 Lo studio descritto in questa tesi è stato possibile grazie alla collaborazione fra il 

centro clinico di eccellenza Columbia University Medical Center (CUMC) e il Politecnico 

di Milano, Dipartimento DEIB. 

  L’indagine di tesi è stata condotta al Politecnico di Milano e al CUMC durante i miei 

6 mesi di permanenza nella città di New York. L’incontro fra il contributo dell’ingegneria 

biomedica e le competenze mediche hanno permesso di proporre nuove soluzioni per la 

quantificazione dell’interazione cardiorespiratoria e la validazione dei risultati ottenuti. 

 

Materiali e Metodi 

Il dataset dei neonati include 151 infanti nati al Morgan Stanley Children’s Hospital 

di New York at CUMC fra 38 e 40 settimane di età gestazionale (Gestational Age (GA)), 

mentre il gruppo degli infanti di un mese di età include 33 soggetti che si sono sottoposti ad 

un follow-up ad un mese, la selezione di questi ultimi soggetti è basata sul medesimo criterio 
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relativo all’età gestazionale. Nessuno degli infanti è stato ricoverato nell’unità di terapia 

intensiva neonatale (Neonatal Intensive Care Unit, NICU) o è stato diagnosticato di gravi 

patologie o disordini genetici conosciuti. 

Fra i vari segnali registrati, in questo contesto sono stati analizzati ECG e segnale 

respiratorio. Gli stati del sonno sono stati codificati, sulla base del respiro, da medici esperti 

nel settore. 

Durante i 10 minuti di acquisizione della baseline, i neonati dormivano in posizione 

supina, entro ~ 30 minuti in seguito all’allattamento. Sono stati analizzati segmenti di 3 

minuti di durata duranti i quale non vi sono cambiamenti nello stato del sonno: 514 epoche 

di durata tre minuti per la popolazione dei neonati (239 sonno quieto, 275 sonno attivo), 

mentre 247 epoche per gli infanti di un mese di età (144 sonno quieto, 103 sonno attivo).  

I picchi R sono stati individuati sul tracciato ECG per mezzo dell’algoritmo di Pan-

Tompkins. Un filtro adattativo è stato successivamente applicato al fine di rimuovere i battiti 

ectopici o artefatti. 

Il segnale respiratorio è stato filtrato con un filtro passa-banda (0.05 – 3.5 Hz). I 

picchi di inspirazione sono stati individuati per mezzo di un software automatico di 

riconoscimento ed ogni segmento è stato controllato manualmente al fine di eliminare i 

picchi incorretti. 

 

L’analisi dell’interazione cardiorespiratoria durante il sonno è svolta per mezzo di un 

approcciato univariato ed uno bivariato, per mezzo di metodi lineari e non lineari. Lo scopo 

dell’analisi è la caratterizzazione dell’interazione in relazione agli stati del sonno e la 

corrispondente evoluzione dovuta all’età.  

 

La prima analisi riguarda l’estrazione dei parametri univariati nel dominio del tempo, 

calcolati dalla serie RR e dal respiro. Vi è una mancanza di linee guida per l’applicabilità di 

questi metodi per i neonati. È evidente che modalità di analisi applicate agli adulti non 

possano essere applicate a questo contesto, considerato che la frequenza cardiaca media 

(Heart Rate, HR) dei neonati risulta circa doppia rispetto a quella degli adulti e presenta 

caratteristiche peculiari. Date queste considerazioni, l’analisi nel dominio del tempo per i 

neonati utilizza parametri adattati dal contesto dell’analisi per gli adulti. 
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Come indicato nella HRV Task Force, i parametri relativi ad HR sono RR medio, RR 

IQR, SDNN and RMSSD, calcolati per ogni segmento di durata 3 minuti. Riguardo il segnale 

respiratorio, i parametri calcolati sono Inter Breath Interval (IBI) medio and IBI IQR.  

L’analisi nel dominio delle frequenze è effettuata considerando tre differenti bande 

specificatamente scelte for la popolazione di infanti di questo studio: Very Low Frequency 

(VLF), 0.01-0.04 Hz, Low Frequency (LF), 0.04-0.2 Hz, and High Frequency (HF), 0.35-

1.5 Hz. 

Riguardo l’analisi non lineare dell’interazione cardiorespiratoria, stimatori di 

entropia univariati e bivariati sono stati calcolati.   

È ampiamente riportata in letteratura la capacità degli stimatori di entropia di 

discriminare i segnali fisiologici per mezzo di misure di complessità. In questa tesi sono stati 

calcolati parametri di entropia classici ed in aggiunta ad essi, nuovi indici capaci di 

descrivere la direzionalità dell’interazione fra sottosistemi. 

 

Sample Entropy (SampEn) e Quadratic Sample Entropy (QSE) sono stimatori di 

entropia univariati basati sull’analisi della serie RR. Possono essere intesi come l’evoluzione 

dell’Approximate Entropy (ApEn) di Pincus. Entrambi mostrano un leggero bias nella stima 

in dipendenza alla lunghezza del segnale analizzato, per questa ragione in questa analisi, è 

stato considerato un numero fisso di battiti per ogni segmento.  

 

L’approccio innovativo proposto in questo lavoro è l’utilizzo della Transfer Entropy 

(TE) per lo studio della coordinazione cardiorespiratoria. TE stima la direzionalità del 

trasferimento di informazione fra il segnale HR e il segnale respiratorio senza nessuna 

assunzione a priori riguardo la natura dell’interazione fra i sottosistemi, in questo modo è in 

grado di coglierne i contributi lineari e non lineari. La stima di TE riguarda il calcolo della 

funzione di densità di probabilità di entrambi i segnali e la funzione di densità di probabilità 

capace di descrivere la relazione reciproca fra serie RR e respiro.  

TE è una misura di predicibilità e complessità. In questa contesto, TE calcolata per 

la direzionalità 1→2, quantifica il miglioramento nella predizione del futuro del segnale 2, 

nel caso in cui si tenga in considerazione non solo il passato del segnale stesso ma anche 

l’informazione del passato del segnale 1.  

 



SOMMARIO 

 

XV 
 

Al fine di fornire una differente prospettiva alla quantificazione dell’interazione 

cardiorespiratoria l’analisi conclusiva di questo lavoro si focalizza sull’interazione delle fasi 

della serie RR e del segnale respiratorio. 

Gli stimatori presentati sono la quantificazione del locking di fase (phase locking) e 

l’indice di direzionalità (Directionality Index, DI). 

Entrambi sono metodi non lineari bivariati che quantificano, per mezzo dell’analisi 

della fase di due sistemi, sincronizzazione e direzionalità rispettivamente. In accordo con 

questa ipotesi è possibile indagare la sincronizzazione cardiorespiratoria per mezzo 

dell’analisi di fase della serie RR e del segnale respiratorio rispetto ad una classica analisi 

sulle ampiezze.  

Questo presupposto supporta l’assunzione che l’ampiezza di due oscillatori possa 

rimanere scorrelata nonostante le loro fasi interagiscano mutualmente. 

 

La sincronizzazione è stata in prima luogo analizzata per mezzo del sincrogramma, 

uno strumento visuale che rappresenta le distanze relative fra i picchi R e i picchi di 

inspirazione respiratoria. Al fine di quantificare la presenza o l’assenza di interazione e 

valutare la forza dell’accoppiamento fra i sistemi in analisi, l’indice di sincronizzazione λ è 

stato calcolato. 

 

L’analisi della sincronizzazione non è in grado di spiegare la modalità con cui i 

sistemi interagiscono e mutualmente perturbano loro stessi. L’indice di direzionalità è 

capace di stimare l’interazione causale fra HR e segnale respiratorio, osservando 

l’evoluzione delle fasi dei sottosistemi. 

In questo studio, l’algoritmo Evolution Map Approach (EMA) è stato utilizzato. 

Questo metodo si basa sulla mutua predicibilità in modo simile alla causalità di Granger.  

 

Risultati 

In questa tesi, sono state eseguite due tipologie di analisi: una riguardante gli stati del 

sonno (state-related) ed una riguardante le età (age-related). Il primo caso tratta il confronto 

di un parametro in AS rispetto allo stesso parametro in QS considerando una specifica età 

(neonati oppure infanti di un mese d’età), il secondo caso riguarda invece il confronto di un 

parametro in uno specifico state del sonno valutato per le due differenti età. 
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L’analisi statistica è stata eseguita utilizzando il criterio IQR per l’outlier rejection. 

Le differenze fra gruppi sono state valutate per mezzo di un unpaired T-test se l’ipotesi di 

distribuzione Gaussiana per la distribuzione della popolazione risulta verificata; nel caso 

l’ipotesi di Gaussianità non sussiste, è stato utilizzando il test non parametrico Wilcoxon 

signed-rank. 

 

I risultati ottenuti in questa tesi mostrano come i nuovi parametri descritti nella 

sezione precedente siano in grado di aumentare la conoscenza della sincronizzazione 

cardiorespiratoria e della regolazione del sistema nervoso autonomo durante il sonno. 

Risulta importante sottolineare come questi indici siano da utilizzarsi in 

combinazione con gli stimatori nel dominio del tempo, nel dominio delle frequenze, con gli 

stimatori di entropia classici al fine di ottenere una descrizione completa dell’interazione fra 

sistema cardiaco e sistema respiratorio. 

 Dominio del tempo e dominio delle frequenze: i risultati confermano un aumento 

di HR dalla nascita ad un mese di età come riportato da vari autori. I parametri estratti 

dalla serie RR e dal segnale respiratorio mostrano differenze significative per 

l’analisi state-related, ad eccezione del parametro RMSSD. Le differenze nella 

variabilità battito-battito possono essere estratte per mezzo dell’analisi in frequenza, 

il contributo delle alte frequenze aumenta in modo significativo comparando AS 

contro QS. Questa considerazioni sono valide per entrambe le popolazioni presentate 

in questa tesi. Riguardo l’analisi age-related, solo i parametri nel dominio del tempo 

relativi ad HR mostrano una evoluzione relativamente all’età. 

 Sample Entropy e Quadratic Sample Entropy: è stato possibile osservare in studi 

precedenti che l’entropia è maggiore in QS rispetto che in AS. I risultati ottenuti in 

questo lavoro confermano un aumento di entropia in QS per entrambi gli stimatori. 

Queste considerazioni sono consistenti indipendentemente la dimensione di 

embedding (m), in questo contesto m=1, 2, 3. L’analisi age-related non mostra 

differenze nel confronto fra le due età.  

 

 Transfer Entropy: in questa tesi, TE è stata utilizzata per la prima volta per 

caratterizzare il cambiamento in termini di flusso di informazione, per entrambi i tipi 
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di analisi: state-related e age-related (paper sottomesso, Entropy Journal 2017). In 

AS non è evidenziabile nessuna differenza di flusso di informazione comparando le 

direzionalità RR→RESP e RESP→RR. Al contrario in QS, un aumento netto di 

informazione è rintracciabile in direzione RESP→RR rispetto alla direzionalità 

opposta. Le precedenti considerazioni sono valide per entrambe le età. 

Riguardo l’analisi age-related, l’evoluzione in termini di flusso di informazione è 

rintracciabile in QS per entrambe le direzioni (RR→RESP e RESP→RR), al 

contrario AS non mostra nessuna evoluzione in termini di trasferimento di 

informazione fra i sottosistemi, confrontando neonati e infanti di un mese d’età. 

 

 L’analisi state-related dell’interazione cardiorespiratoria per mezzo dell’analisi delle 

fasi del sistema cardiaco e respiratorio ha evidenziato interessanti peculiarità. È evidente un 

significativo aumento della sincronizzazione confrontando QS ed AS (poster session 

Dynamics Days, January 2017; conference paper EMBEC, June 2017). 

 Sono state individuate differenze in termini di direzionalità relativamente agli stati 

del sonno, i risultati supportano le analisi di TE sopra riportate. Le presenti conclusioni sono 

in contrasto con la precedente letteratura in cui è riportata una assenza di cambio di 

direzionalità nel confronto AS contro QS.  

 

 Locking di fase: l’analisi state-related mostra un aumento di sincronizzazione 

significativo confrontando AS contro QS. L’aumento è calcolato in termini di 

percentuale di sincronizzazione (la durata di sincronizzazione percentuale rispetto 

alla durata del segmento analizzato) e di durata media di sincronizzazione (la durata 

media degli episodi di sincronizzazione durante il segmento analizzato). L’indagine 

age-related mostra un aumento di sincronizzazione in termini di percentuale, mentre 

la durata media della sincronizzazione resta invariata, questi risultati sono relativi 

solamente a QS. 

 

 Indice di direzionalità: l’analisi state-related ha evidenziato un’assenza di 

direzionalità chiara in AS ed una predominanza di direzionalità RESP→RR in QS. I 

presenti risultati supportano le considerazioni ottenute per mezzo di TE, è da 

evidenziare però la differente modalità di indagine, basata sulla fase del segnale 
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cardiaco e respiratorio. L’analisi age-related non mostra alcuna evoluzione nel 

confronto fra neonati ed infanti di un mese di età. Un’ulteriore analisi indaga la 

direzionalità dell’interazione quando la suddivisione delle popolazioni è basata sulla 

frequenza respiratoria indipendentemente dallo stato del sonno. È evidente una 

direzionalità predominante (RESP→RR) per frequenze respiratorie < 0.6 Hz, mentre 

non è individuabile una direzionalità chiara per frequenze respiratorie ≥ 0.6 Hz. 

 

Discussioni 

I risultati presentati nelle sezioni precedenti hanno contribuito alla descrizione 

dell’interazione cardiorespiratoria attraverso metodi non invasivi di analisi del segnale.  

Il tentativo di caratterizzare la relazione reciproca fra il sistema cardiaco e il sistema 

respiratorio ha confermato gli studi precedenti e ha fornito interessanti nuovi risultati. 

 

I parametri nel dominio del tempo hanno evidenziato differenze fra gli stati del 

sonno, con un aumento di RR medio in QS rispetto ad AS esclusivamente nei neonati e una 

decrescita della variabilità cardiaca (Heart Rate Variability, HRV) sia nel caso dei neonati 

che negli infanti. 

Considerando il confronto tra gli stati del sonno, i parametri nel dominio del tempo 

indicano una maggiore variabilità in AS (SDNN), mentre non vi sono differenze nella 

variabilità battito-battito (RMSSD) alla nascita, ad un mese di età è evidenziabile una lieve 

e significativa decrescita in QS rispetto ad AS. 

In conclusione, la maggioranza dei parametri nel dominio del tempo mostra una 

adeguata capacità nell’individuare differenze in relazione agli stati del sonno. 

Riguardo il confronto fra neonati ed infanti di un mese di età, solo i parametri nel 

dominio del tempo relativi all’analisi delle serie RR mostrano differenze significative, 

mentre i parametri estratti dall’analisi del segnale respiratorio mostrano una decrescita non 

significativa con l’età.  

 

La complessità del segnale HR è stata analizzata per mezzo dell’entropia univariata: 

Sample Entropy (SampEn) e Quadratic Sample Entropy (QSE). 

Un aumento di entropia in QS rispetto ad AS è consistente indipendentemente dalla 

dimensione di embedding, questo risultato conferma la predominanza del controllo 
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simpatico in QS. Un’ulteriore conferma a quest’ultima considerazione è stata proposta in 

studi precedenti, i quali interpretano una semplificazione della variabilità cardiaca e quindi 

una diminuzione della stima di entropia, in conseguenza di una diminuzione dell’attività 

parasimpatica ed attivazione del sistema simpatico. 

 

TE è uno stimatore di entropia bivariato, il quale può essere impiegato per stimare il 

flusso di informazione fra due serie temporali. 

I risultati riportati in questa tesi mostrano valori di TE maggiori in QS rispetto ad 

AS: QS può essere interpretato come una condizione in cui l’accoppiamento 

cardiorespiratorio è maggiormente evidente e la mutua influenza dei segnali risulta evidente. 

Inoltre, la principale direzione di interazione è RESP→RR in QS, mentre in AS non è 

rintracciabile una direzione preferenziale. Data le più lente e regolari frequenze respiratorie 

associate a QS, è possibile ipotizzare una più stabile relazione fra respiro e segnale cardiaco. 

L’analisi della popolazione degli infanti di un mese d’età mostra risultati analoghi 

rispetto a quanto emerso dall’analisi dei neonati. 

L’analisi age-related mostra una evoluzione in termine di flusso di informazione in 

QS per entrambe le direzionalità (RESP→RR, RR → RESP). AS risulta invece uno stato di 

minore accoppiamento cardiorespiratorio e la stima di TE non varia in modo significativo 

con l’età 

I risultati ottenuti per mezzo dell’analisi di TE fornisco una descrizione innovativa 

ed una quantificazione del controllo cardiorespiratorio e della regolazione autonomica negli 

infanti. 

 

L’analisi della sincronizzazione di fase permette la quantificazione dell’interazione 

cardiorespiratoria per mezzo dell’analisi della fase degli oscillatori cardiaco e respiratorio. 

Il confronto fra AS e QS nei neonati mostra un incremento di sincronizzazione 

significativo in QS in accordo con studi precedenti i quali riportano gli stati del sonno come 

un aspetto fondamentale per la regolazione della sincronizzazione cardiorespiratoria, la 

quale è più frequente in QS. 

La medesima analisi considerando gli infanti di un mese d’età evidenzia trend di 

aumento di sincronizzazione analoghi a quanto riportato nei neonati. 
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Nell’analisi age-related, un aumento di sincronizzazione è rintracciabile solo in QS. 

Il seguente risultato è coerente con l’analisi dei parametri del dominio del tempo e di TE, i 

quali riportano una evoluzione relativa all’età solo in QS. 

 

L’analisi dell’indice di direzionalità (DI) permette una quantificazione della 

relazione di causalità fra HR e respiro, in modo simile alla stima di TE. 

QS è caratterizzato da una prevalenza di direzionalità RESP→RR, mentre AS non 

mostra nessuna direzionalità preferenziale nell’interazione fra i due sistemi. Questi risultati 

sono simili all’analisi di TE: il respiro appare il principale driver dell’interazione in QS. 

Frequenze respiratorie più elevate ed associate ad AS non risultano in grado di modulare HR 

e la direzionalità conseguentemente si sposta verso la direzionalità opposta (RR→RESP). 

Risultati analoghi sono ottenuti considerando le due popolazioni: neonati e infanti di un mese 

d’età. 

 

Gli indici tradizionali ed innovativi calcolati in questa tesi, hanno dimostrato la loro 

capacità di discriminare fra i differenti stati del sonno e descrivere l’interazione 

cardiorespiratoria attraverso una nuova prospettiva.  

 

Alcune fra le più recenti teorie riguardo SIDS attribuiscono alla mancanza di 

coordinazione cardiorespiratoria un ruolo fondamentale nell’aumento del rischio associato 

alla patologia. È stato ipotizzato che gli stati del sonno (AS e QS) siano due condizioni che 

differiscono in termini di sincronizzazione cardiorespiratoria e la continua alternanza fra stati 

di maggiore e minore accoppiamento sia in grado di stressare il sistema nervoso autonomo 

al fine di renderlo capace di fronteggiare le numerose sfide cui è sottoposto.  

 

I risultati ottenuti in questa tesi possono essere interpretati in accordo con l’ipotesi 

del sistema nervoso autonomo come capace di stressare se stesso. I soggetti analizzati in 

questa tesi erano distesi supini, e hanno presentato epoche di AS e di QS con una prevalenza 

di AS nei neonati. AS e QS sono stati descritti in questa indagine come due stati del sonno 

che differiscono in termini di sincronizzazione e direzionalità. 

L’alternanza di questa due stati del sonno costituisce un fattore di stress positivo per 

il sistema nervoso autonomo, capace di stimolarne lo sviluppo. 
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Nonostante gli interessanti risultati, molte domande richiedono una futura 

approfondita indagine. 

Al fine di studiare in profondità lo sviluppo del sistema nervoso autonomo in termini 

di sincronizzazione e direzionalità, sarebbe opportuno seguirne la crescita in funzione del 

tempo. La situazione ideale è rappresentata da una indagine dalla nascita fino all’anno di 

vita al fine di caratterizzare l’evoluzione fisiologica della coordinazione cardiorespiratoria 

durante il periodo critico per l’occorrenza di SIDS. 

In seguito alla caratterizzazione della risposta fisiologica, un’indagine su soggetti 

prematuri potrebbe evidenziarne differenze nello sviluppo autonomico rispetto ai soggetti a 

termine. 

Infine, l’analisi delle differenze nella coordinazione cardiorespiratoria in soggetti 

deceduti a causa di SIDS potrebbe aprire nuovi orizzonti nel monitoraggio e nella cura 

neonatale per mezzo di un’indagine non invasiva ed affidabile del sistema nervoso 

autonomo.    
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Summary 

 

Introduction and aim of the work 

Sudden Infants Death Syndrome (SIDS) is characterized by the sudden death of a 

healthy infant during a sleep period. It is one of the leading causes of infant mortality in 

developed countries. Despite the dramatic decline in the incidence of SIDS since 1990 

following worldwide education programs, SIDS remains the major cause of death in infants 

of 1–12 months of age. Because of its dramatic impact, this syndrome has been studied for 

long, but the underlying physiologic mechanisms have not been cleared yet. 

 

At the moment, the most supported explanation in literature regarding SIDS, is the 

Triple-risk model, proposed by of Filiano and Kinney. 

Filiano and Kinney’s SIDS hypothesis is based on the concurrence of three factors: 

1) a vulnerable infant, 2) a critical developmental period, 3) an exogenous stressor.  

Infants are likely to die of SIDS if they possess all three factors: the already 

congenital infants’ vulnerability lies latent until they enter the crucial period and are subject 

to an exogenous stressor. 

 

Cardiorespiratory control development can be classified as risk factor according to 

Triple-risk model. In particular, it can be thought as a subclass of the so-called homeostatic 

control.  

In light of this issue, the present study proposes to analyze a population of healthy 

full-term newborns and one month infants with a deep focus on cardiorespiratory interaction, 

its relationship with sleep state and its evolution from birth to one month of age. The aim of 

the investigation is the description of physiological cardiorespiratory coupling, within the 

future prospective of highlighting differences with respect to cardiorespiratory coupling of 

SIDS victims.  
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The investigation of this interaction is performed on subjects during sleep. Sleep 

plays a fundamental role in neurodevelopment and homeostatic regulation.  

Sleep in newborns and infants can be classified in three type: Quiet Sleep (QS) 

(NREM equivalent), Active Sleep (AS) (REM equivalent) and Indeterminate Sleep (IS).  

It has been hypothesized that infants who were to die of SIDS would show 

abnormalities of sleep state distribution prior to their deaths.  

The mechanism underlying SIDS appears to have origins in the fetal environment 

resulting in neural damage and ANS development which later compromises responses to 

breathing or blood pressure challenges during sleep. The deficits appear to be related to 

alterations in neurotransmitter receptors within regions involved in chemoreception and 

cardiovascular and cardiorespiratory control.  

 

It is crucial to stress the fact that cardiorespiratory coupling can provide a 

noninvasive insight of the mechanism underlying the interaction between the cardiac and 

respiratory system and help understanding the factors contributing to SIDS occurrence. 

 

 The study reported in this thesis was possible thanks to collaboration of the 

outstanding Columbia University Medical Center (CUMC) and Politecnico di Milano, DEIB 

Department.  

 The thesis investigation has been conducted at Politecnico di Milano and at CUMC 

during my 6-months staying in New York. The encounter between the biomedical 

engineering contribution and the clinical expertise has allowed proposing new solutions for 

a quantification of cardiorespiratory interaction and validation of obtained results. 

 

Materials and Methods  

The newborn dataset includes 151 infants born at the Morgan Stanley Children’s 

Hospital of New York at CUMC between 38 and 40 weeks of gestation and the one month 

infants cohort includes 33 subjects who came back for a one month follow up, based on the 

same criterion about Gestational Age (GA). None of the infants were admitted to the 

Neonatal Intensive Care Unit (NICU) nor had any major illness or known genetic disorder.  

Among the various recorded signal, in this work ECG and respiratory signal were 

analyzed. Sleep states were coded based on respiration by expert clinicians.  
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During the 10-minutes baseline acquisition, babies were sleeping in supine position 

within ~ 30 minutes following feeding. Segments of 3-minute length in a continuous sleep 

state were analyzed: 514 three-minute epochs were considered for newborns (239 quiet, 275 

active), while 247 epochs were considered for one month infants (144 quiet, 103 active). 

The R peaks were detected on the ECG with the Pan-Tompkins algorithm. An 

adaptive filter was then applied to remove ectopic beats or artifacts.   

The respiration signal was filtered with a bandpass filter (0.05 - 3.5 Hz). Peaks of 

inspiration were detected with automated marking software and each record was corrected 

for incorrect marks manually. 

 

The analysis of cardiorespiratory interaction during sleep is performed with a 

univariate and bivariate approach by means of linear and nonlinear methods. The aim of this 

investigation is to characterize this interaction depending on sleep state and track its age-

dependent evolution. 

 

The first performed investigation was the extraction of time domain univariate 

parameters, computed from RR series and respiration. There is a lack in guidelines for the 

application of these methods on neonates. As a matter of fact, indications given for adults 

are not applicable, since the average heart rate (HR) of neonate is almost double adult’s one 

and it has peculiar characteristics. For this reason, time domain analysis takes adapted 

parameters from the adult approach.  

As indicated in HRV Task Force, HR parameters employed in the analysis were RR 

mean, RR IQR, SDNN and RMSSD, computed on 3-minute length segments. On the other 

hand, computed respiratory parameters were Inter Breath Interval (IBI) mean and IBI IQR.  

Frequency domain analysis were performed considering three different bands 

specifically chosen for this population of infants: Very Low Frequency (VLF), 0.01-0.04 

Hz, Low Frequency (LF), 0.04-0.2 Hz, and High Frequency (HF), 0.35-1.5 Hz. 

 

Regarding nonlinear investigation of cardiorespiratory coordination, univariate and 

bivariate entropy estimates were computed.  

Entropy estimators have already shown their capability in discriminating 

physiological signals based on complexity measurements. In this work, classical entropy 
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parameters have been computed along with new indexes capable of describing directionality 

of interaction between subsystems within the information theory framework. 

Sample Entropy (SampEn) and Quadratic Sample Entropy (QSE) are univariate 

entropy estimators based on RR series analysis. They can be seen as the evolution of 

Approximate Entropy (ApEn) by Pincus. Both SampEn and QSE have been reported to show 

a slight bias dependent on the length of the analyzed signal, due to this reason a fixed number 

of beats for each segment have been considered in this analysis. 

 

The novel approach proposed in this work is the application of Transfer Entropy (TE) 

to investigate cardiorespiratory coordination. TE estimates the directionality of the 

information transfer between HR signal and respiratory signal without any assumption about 

the underlying nature of the interaction, in this way it is capable of catching both linear and 

nonlinear contributions. The estimation of TE deals with the computation of probability 

density function of both signals and the joint probability density function capable of 

describing the interrelationship between RR series and respiration.  

TE is a measure of predictability and complexity. In this analysis when considering 

the direction 1→2, TE quantifies the improvement in predicting the future of signal 2 when 

the prediction takes into consideration not only the past of signal 2 but also information from 

the past of signal 1. 

 

In order to provide a different prospective of cardiorespiratory quantification the last 

part of this work focuses on phase analysis of RR series and respiratory signal.  

The last estimators presented in this work are phase locking quantification and 

directionality index (DI).  

They both are nonlinear bivariate method to quantify synchronization and 

directionality respectively, by means of the analysis of systems’ phase rather than a 

traditional amplitude analysis.  

This assumption supports the idea that amplitude of (two or more) oscillators may 

remain uncorrelated whereas their phases do mutually perturb.  

Synchronization has been primarily investigated by means of synchrogram, a visual 

tool displaying the relative distances between R peaks and respiratory onsets. In order to 
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quantify the presence or absence of the interaction and the strength of the coupling between 

the systems under analysis, the synchronization index 𝜆 has been computed. 

 

Even when considering phase-locking analysis, synchronization does not explain 

how systems interact and mutually perturb themselves. Directionality index is capable of 

estimating a casual interrelationship between the HR and respiration, looking at the evolution 

of phase of the subsystems.  

In this work the Evolution Map Approach (EMA) algorithm has been used. This 

method deals with mutual predictability similarly to Granger causality. Considering system 

1 interacting with system 2, if system 1 affects system 2, the future of system 2 can be better 

predicted taking into account the past samples of both system with respect to information of 

system 1 only. 

 

Results  

In this work, state-related and age-related analyses have been performed. The former 

case regards the comparison of a parameter in AS versus QS when a specific age is 

considered (newborns or one month infants), in the latter case a parameter in a specific state 

(AS or QS) is compared at two different time points.  

The statistical analysis has been performed employing IQR outlier rejection criterion. 

Differences between groups have been tested by means of an unpaired T-test in case of 

Gaussian distributed populations; on the contrary the non-parametric Wilcoxon signed-rank 

test has been performed if the hypothesis of Gaussian-like distribution was not verified.  

 

 Results obtained in this thesis show that novel parameters are capable of improving 

the knowledge about cardiorespiratory synchronization and ANS regulation during sleep.  

 It is important to stress that they need to be employed in combination with traditional 

time domain, frequency domain and classical entropy estimators to achieve a complete 

description of the interaction between the cardiac and respiratory systems. 

 Time domain and frequency domain: results confirmed the HR increase from birth 

to one month of age as reported by many authors. Time domain parameters extracted 

from RR series and respiratory signal showed significant differences when 
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performing state-related analysis, with the exception of RMSSD. Beat-to-beat 

variability differences can be instead extracted by means of frequency analysis, high 

frequencies contribution is statistically increasing when comparing AS versus QS. 

These considerations are valid for both newborns and one month infants populations. 

Regarding age-related analysis, only time domain parameters extracted from HR 

showed an evolution with age when the two cohorts are compared.  

 

 Sample entropy and Quadratic Sample Entropy: it has been observed by previous 

studies that entropy is higher in QS than in AS. Results obtained in this work, 

confirmed an entropy increase in QS with respect to AS for both SampEn and QSE. 

This finding is consistent regardless the employed embedding dimension (m), in this 

work m=1, 2, 3. Age-related analysis showed no differences when comparing 

newborns and one month infants. 

 

 Transfer Entropy: in this work, TE analysis has been applied for the first time to 

characterize the information flow changes when performing state-related and age-

related analyses (submitted paper, Entropy Journal 2017). 

In AS no clear differences in information flow has been found when comparing 

RR→RESP and RESP→RR directionalities. In QS instead, a net TE increase is 

found for RESP→RR with respect to the opposite directionality. This result is valid 

both for newborns and one month infants.  

Regarding the age-related analysis, the evolution of information flow is only seen in 

QS for both RR→RESP and RESP→RR directionalities, on the other hand AS did 

not show any evolution in term of information transfer between subsystems when 

comparing newborns versus one month infants. 

 

The state-related investigation of cardiorespiratory interaction by means of phase 

analysis highlighted interesting peculiarities. A net increase in synchronization in QS with 

respect to AS is seen (poster session Dynamics Days, January 2017; conference paper 

EMBEC, June 2017).  
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Differences in directionality related to sleep states have been found, supporting this work 

results about TE. The obtained finding is in contrast with previous works reporting the 

absence of a clear change in directionality when comparing AS versus QS. 

 

 Phase locking: state-related analysis showed a statistically significant increase in 

synchronization comparing AS versus QS. The increase is computed in term of 

percentage of synchronization (the percentage duration of synchronization with 

respect to length of the analyzed record) and mean duration in seconds (the mean 

duration of various synchronization episodes during the analyzed segment). Age-

related investigation showed an increase in synchronization in term of percentage 

while the average duration stayed the same, in QS only.  

 

 Directionality Index: state-related analysis highlighted the absence of a clear 

directionality in AS and a predominance of RESP→RR directionality in QS. This 

result support findings of TE analysis, within a different investigation procedure 

based on oscillators’ phase. Age-related analysis shows no trend of evolution when 

comparing newborns and one month infants. A further analysis investigates the 

directionality of interaction when population grouping is performed based on 

breathing frequency rate regardless the sleep state. A predominant directionality 

(RESP→RR) is clearly seen for breathing frequency < 0.6 Hz, while no clear 

directionality is present when considering breathing frequency ≥ 0.6 Hz. 

 

Discussions  

 The thesis results presented in the previous section have helped describing in details 

the cardiorespiratory interaction by means of noninvasive methods of signal processing. 

 The effort in characterizing the interrelationship between the cardiac and respiratory 

system confirmed previous studies and provided interesting new findings. 

 

Time domain parameters from this data analysis enhance differences between sleep 

states, with an increase of RR mean in QS with respect to AS in newborns only, and a 

decrease of Heart Rate Variability (HRV) in both newborns and one month infants cohorts. 
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Considering the comparison between sleep states, time domain parameters indicate 

an increase in variability in AS (SDNN), while no difference was found in beat-to-beat 

variability (RMSSD) at birth and a slightly significant decrease in QS with respect to AS at 

one month of age.  

Concluding, almost all the time domain parameters when performing state-related 

analysis have proved their ability to find significant differences between sleep states. 

Regarding the comparison between newborns and one month infants within the same 

sleep state, only time domain parameters computed on RR series show significant 

differences while parameters extracted from respiratory signal show a non-significant 

decreasing trend with age.  

 

The complexity of HR signal has been investigated by means of Univariate Entropy: 

Sample Entropy (SampEn) and Quadratic Sample Entropy (QSE).  

An entropy increase in QS with respect to AS has been found for both SampEn and 

QSE despite the embedding dimension, confirming the predominance of parasympathetic 

control in QS. As a matter of fact, even previous studies have proposed that a simplification 

of HR dynamics and thus a lowering in entropy values, might follow a parasympathetic 

withdrawal and sympathetic activation.  

 

Transfer entropy is a bivariate entropy estimator, which can be employed to assess 

the information flow between two time series.  

Results reported in this work showed that TE is higher in QS than AS: QS can be 

seen as condition in which the cardiorespiratory coupling is more evident and the influence 

of RR over respiration and vice versa is noticeable. Moreover, the main direction of the 

information flow is RESP→RR in QS, while in AS no clear directionality is recognizable. 

Given that breathing in QS is slower and more regular, it potentially allows a more stable 

effect/relationship with HR.  

The analysis performed on one month cohort shows analogous results of the ones 

obtained considering newborns.  

An age dependent evolution in terms of information flow happens only in QS for 

both RR→RESP and RESP→RR directions. AS is per se a state of lower coupling between 

HR and respiration, changes in TE are not dramatically affected by age.  
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These findings provide an innovative description and quantification of 

cardiorespiratory control and ANS regulation in infants, based on information theory. 

 

Phase synchronization analysis allows quantifying the cardiorespiratory interaction 

between the cardiac and respiratory systems by means of oscillators’ phase analysis.  

The comparison can be performed considering AS versus QS within the newborn 

cohort. A significant increase in synchronization in QS is noticeable and in agreement with 

previous studies, which established that sleep state is a relevant aspect for cardio-respiratory 

synchronization, which occurs more frequently in QS.  

When one month population is analyzed, comparable trend of increase in 

synchronization are found.  

When age-related analysis is performed, an increase in synchronization is found in 

QS only. This result is coherent with what previously found in time domain parameters and 

TE reporting an evolution with age in QS only.  

 

Directionality index (DI) analysis performs a quantification of the causal 

directionality between HR and respiration similarly to Transfer Entropy.  

QS is characterized by a prevalence of RESP→RR directionality while AS exhibit 

no clear directionality of interaction. These results are similar with what found in TE 

analysis: respiration appears to be the main driver in QS. Higher breathing frequencies 

associated with AS are no more capable of modulating the HR and the directionality shifts 

on the opposite direction, RR→RESP. The analogous analysis has been performed on one 

month infants: results are similar with what found for newborns.  

 

The traditional and novel indexes have proven capability to discriminate between 

sleep states and to describe the cardiovascular interaction with a new insight. 

 

Some of the most recent theories about SIDS started attributing the lack of 

cardiorespiratory control as the main driver of risk for SIDS. It has been hypothesized that 

AS and QS are two conditions that differs in term of cardiorespiratory synchronization and 

the continuous alternation between lower and higher coupling condition is capable of 

stressing the ANS, making it more ready to face several challenges.  
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It has been also reported that the state change from AS to QS increases the occurrence 

of sighs and gaps, two mechanisms those are crucial to overcome cardiorespiratory 

challenges and capable of driving the autoresuscitation mechanism.  

The results obtained in this work could be interpreted with this hypothesis of ANS 

being the stressor of itself. The healthy and full-term subjects analyzed were lying supine 

and their sleep was characterized by both AS and QS with a prevalence of AS for newborns. 

AS and QS have been reported by this work as two different sleep states with different 

characteristics in term of synchronization and also directionality.  

The alternation between these two sleep states constitutes a constant positive 

stressing condition that is probably capable of stimulating the ANS development. 

 

Despite the interesting results many questions are still to be addressed.  

In order to deeper investigate the ANS evolution in term of both synchronization and 

directionality, more time points are needed. The ideal situation would be tracking the ANS 

development from birth to one year of age to fully characterize the physiological behavior 

during the critical risk period for SIDS.  

Once the quantification of interaction is established, an investigation on early and 

late preterm could help discovery the difference in term of ANS development on subjects 

born preterm.  

The analysis on SIDS patients could highlight differences in coupling and 

synchronization and its quantification could open novel view about newborn state 

monitoring and care path by means of noninvasive and reliable investigations of ANS. 
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Chapter 1 

 

In this chapter, Sudden Infant Death Syndrome (SIDS) will be defined and its 

epidemiology will be presented.  

SIDS is characterized by the sudden death of a healthy infant during a sleep period. 

It is considered a multifactorial condition that associates inadequate cardiac, breathing, 

autonomic and/or arousal controls. The already immature control mechanisms can be 

aggravated by infections as well as by prenatal and postnatal life environmental factors.  

These risk factors for SIDS were identified by epidemiological studies.  

 

Afterwards, the fetal and newborn cardiovascular system evolution will be described, 

focusing on the Autonomic Nervous System (ANS) control. 

 

Lastly, an overview of Cardiorespiratory Coupling (CRC) and sleep in infants is 

offered. Some of the most recent hypothesis about causes leading to SIDS are explained in 

term of lack of cardiorespiratory synchronization.  

This work focuses on noninvasive signal processing techniques capable of assessing 

the physiological ANS coordination in a population of healthy newborns and one month 

infants. 
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1 Introduction 
 

1.1 Sudden Infant Death Syndrome  

Sudden Infant Death Syndrome (SIDS) is one of the leading causes of infant mortality 

in the developed countries and accounts for nearly 30% of deaths during the post neonatal 

period. Nonetheless, the physiologic mechanisms that underlie this syndrome are still 

unclear [1].  

 

The first definition of SIDS was given by Bergman in 1970, who argued that SIDS did 

not depend on a “single characteristic that ordains an infant for death”, but on an interaction 

of risk factors with variable probabilities [2].  

Later, Wedgwoog, Raring, Rognum and Saugstad developed the first “triple risk 

hypothesis” [2] which was succeeded by the most famous Triple Risk model by Filiano and 

Kinney. This model is based on invasive pathological studies of brainstem from SIDS 

victims.  

Kinney at al. state that “many cases result from defects in brainstem-mediated 

protective responses to homeostatic stressors occurring during sleep in a critical 

developmental period” [2], [3], [4].  

 

Given these hypothesis Kinney and Thach emphasize that SIDS occurs “only in 

infants with underlying abnormality”. The National Institute of Child Health and 

Development SIDS strategic plan 2000 quoting Kinney’s work, stated unequivocally that 

“SIDS is a developmental disorder. Its origins are during fetal development.” and later in 

2001 “Knowledge acquired during the past decade supports the general hypothesis that 

infants who die from SIDS have abnormalities at birth that render them vulnerable to 

potentially life-threatening challenges during infancy” [4]. 
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Filiano and Kinney’s SIDS hypothesis was based on the concurrence of three factors:  

1) a vulnerable infant,  

2) a critical developmental period for the homeostatic control with a peak at 2 - 4 

postnatal months  

3) an exogenous stressor,  

as summarized in Figure 1.1.1 [5].  

 

Infants are likely to die of SIDS if they possess all three factors: the infants’ 

vulnerability lies latent until they enter the crucial period and the infants are subject to an 

exogenous stressor [2].  

During the first year of life, rapid changes in the maturation of cardiorespiratory 

control and in cycling between sleeping and waking occur, first as the fetus transitions to 

extrauterine life and subsequently as the infants adjust to postnatal life.  

Regarding the investigation of SIDS risk evolution with age, it appears crucial to 

investigate changes from birth to one year of age [6]. 

 

 

In the following sections two main intrinsic risk stressors will be investigated: 

Prematurity and Sleep Position. 

Critical 

Developmental 

Period 

SIDS 

Vulnerable 

Infants 

Exogenous 

Stressors 

INTRINSIC RISK FACTORS 

 Male gender 

 Prematurity  

 Possible brainstem 

abnormalities  

 Genetic polymorphism 

 Prenatal exposure to 

parental smoking, 

ethanol intake, drug use 

 Black or Native 

American race or ethnic 

group  

EXTRINSIC RISK FACTORS 

 Prone or side  

sleep position 

 Bed sharing 

 Soft bedding 

 Over-heating 

 Over-bundling 

 Face covering 

 Mild infections  

 (including colds)  

 Development of homeostatic 

control 

 First 12 month of life with an 

increased risk from birth to 6 

months of life 

Figure 1.1.1 Triple-risk model for SIDS by Filiano et al.  
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1.2 Intrinsic risk: Prematurity 

Any infant born before the 37th weeks of Gestational Age (GA) is defined as 

premature. Premature infant can be further divided into extremely (GA ≤ 26), early (26 < 

GA ≤ 34) and late preterm (34 < GA ≤ 36).   

Reducing preterm birth is a national public health priority. Preterm birth rates 

decreased from 2007 to 2014 after about three decades of continuous increasing, from early 

1980s through 2006. Despite this success, the preterm birth rate rose slightly in 2015 (Figure 

1.2.1) and about 1 out of 10 babies (10%) was born premature in the United States. 

Additionally, racial and ethnic differences in preterm birth rates remain [6], [7], [8].  

 

Prematurity is reported as intrinsic risk factor for SIDS in the Triple-risk model [9]. It 

should be reminded that preterm delivery is not a disease per se. Rather, preterm delivery 

raises the risk of adverse outcomes that would be present in normal delivery as well.  

Prematurity sets the newborn to be exposed to the outer environment before his 

autonomic nervous system is fully developed and able to effectively face life challenging 

Figure 1.2.1 Preterm birth rates with respect to the total life birth in each state in 2015.  

The USA score (considering the whole country) is C, with a 9.6 rate 

Source: Grades determined by March of Dimes based on preterm birth rates from National Center 

for Health Statistics, 2015 final natality data 
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situations like breathing and thermoregulation. A preterm baby is understandably more 

vulnerable than a full-term baby.  

 

The immaturity of ANS has been hypothesized to be mainly reflected in 

cardiorespiratory coordination and consequently be responsible for SIDS episodes [10]. 

 

The lack of cardiorespiratory synchronization that represents per se a risk factor for 

SIDS, is mainly reflected in the frequent occurrence of apneic events. Apnea of prematurity 

is the most common disorder affecting infants born prematurely and the incidence and 

severity of apnea are also inversely related to GA.  

Prolonged apneas in adults are generally resolved by arousal; however, in preterm 

infants this is not commonly found. Apnea of prematurity may not be inherently life 

threatening, but a deficient arousal response to the consequent asphyxia or hypoxia, could 

have fatal consequences. Abnormal arousal responsiveness to hypoxia and hypercarbia has 

been observed in infants with apnea of infancy, along with diminished ventilatory 

responsiveness [11], [12].  

Preterm infants can experience a variety of cardiovascular disorders, ranging from 

major morphological defects to dysfunctional auto-regulation of blood vessels. Hypotension 

is a frequent concern in preterm infants, but there is no consensus as to what the blood 

pressure readings should be in preterm infants with gestational ages of less than 26 or 27 

weeks.  

Apnea and bradycardia are common in premature infants and are manifestations of 

immature cardiorespiratory control.  

The non-physiological operation of these mechanisms exposes preterm infants to an 

increased risk of life-threating events, which cannot be successfully resolved because the 

absence of mature cardiorespiratory coordination. The lack of responsiveness between 

cardiac and respiratory systems is at base of many models trying to depict the SIDS 

manifestation.  
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Figure 1.3.1 Trend of SIDS rate, the diminishing trend can be observed as a consequence of the Back to Sleep 

Campaign. The green line indicates the percentage of babies sleeping supine with respect to the total percentage 

of premature infants in the USA 

SIDS Rate Source: CDC, National Center for Health Statistics 

Sleep Position Data: NICHD, National Infant Sleep Position Study 

1.3 Extrinsic risk: Sleep Position 

Prone position is thought to be one of the major risks for developing SIDS for a 

newborn. An association between prone sleep and an increased risk of SIDS was reported 

since the 1950s [1], [5].  

 

The incidence of SIDS is highly reduced since the “Back to Sleep” campaign in 1994, 

initiated by the National Institute of Child Health and Development in the United States. In 

June 1992, the American Academy of Pediatrics (AAP) Task Force on Infant Positioning 

and SIDS published a recommendation that healthy full-term infants be placed laterally or 

supine to sleep. The SIDS rate in the United states declined by > 50 % in the 10 years after 

the initiation of the campaign (Figure 1.3.1) [13].  
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Several hypotheses relating prone sleep posture to SIDS were proposed. These 

include the consequence of the face-down position, such as nasal obstruction, posterior 

displacement of the mandible, increased upper airway resistance, rebreathing of carbon 

dioxide, the compromise of cerebral blood flow during cervical hyperextension, interactions 

between prone sleep and thermal balance, as well as depressed arousal responses.  

 

When lying prone both premature infants and newborns were shown to have longer 

total sleep time, fewer arousals, less time spent in Active Sleep with respect to Quiet Sleep 

and less body movements. In supine position infants had more awakenings and arousals but 

more obstructive apneas [14].  

 

A possible explanation for the increased risk of SIDS in the prone position is that 

infants sleep more deeply in that position and arouse less easily. It has been hypothesized 

that the ability to arouse from sleep is an important survival mechanism, which may be 

impaired in SIDS [15].  
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1.4 Fetal and newborn cardiovascular systems 

1.4.1 Cardiovascular system generation  

The cardiovascular system is one of the apparatus that develops firstly in the growing 

fetus. As the embryo becomes larger, the diffusion mechanism comes to be inadequate for 

the intake and outtake of oxygen, carbon dioxide and nutrients, triggering the development 

of a more complicate system for the growing organism.  

The system is generated through a cascade of processes; first there is the 

vasculogenesis, which is the creation of the main vessels, followed by the angiogenesis, 

which is the generation of minor branches from the main vessels. Due to the expansion and 

elastic resistance of the walls of these vessels, the blood flow starts to be rhythmic and 

peristaltic patterns are originated.  

The primitive heart is generated from an area of embryonic mesoderm as two tubes 

are fused together to form a single heart tube. The generation of the four chambers is mainly 

due to the vortexes, created by the blood flow in the heart.  

By the 21st day after the conception, the cells around the heart begin to differentiate 

in myocardial cells, capable of stimulating a controlled response and at this point the heart 

begins to beat.  

 

1.4.2 Circulation before birth  

In fetus, the oxygen source role is played by the placenta instead of the lungs. To 

perform this task, the fetal circulation is provided with supplementary structures with respect 

to the adults, shown in Figure 1.4.1: the umbilical vein, which conveys the blood enriched 

with oxygen and nutrients to the underside of the liver, the ductus venosus, which connects 

the umbilical vein with the inferior umbilical vein and allows part of the blood to bypass the 

liver. Additionally, lungs are bypassed thanks to two structures, the foramen ovale that 

allows the blood to move directly from the right atrium to the left atrium, and the ductus 

arteriosus, which connects the pulmonary arterial trunk to the descending aorta.  
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The blood that is oxygenated and rich with nutrients is taken from the placenta in the 

umbilical vein that goes through the abdominal wall to the underside of the liver. 

Approximately half of the blood passes through the liver, the rest goes through the ductus 

venosus to the inferior vena cava where it mixes with blood low in oxygen content that 

comes from the lower trunk and extremities. 

 

These two streams approximately maintain their separate identities inside the inferior 

vena cava: since the entry of the inferior vena cava is aligned with the foramen ovale, the 

blood stream coming from the umbilical vein manages to pass from the right atrium through 

the foramen ovale into the left atrium. The other stream goes into the right atrium, where it 

mixes with the blood coming from the upper parts of the body.  

The reason why the foramen ovale remains open is that the high pulmonary vascular 

resistance (PVR) induces high pressure in the right atrium as well.  

Figure 1.4.3 shows that the fetal circulation, differently from the adult one, operates in 

parallel; this is precisely because the pulmonary vascular resistance is very high, so only 

Figure 1.4.1 The heart and peripheral circulations in fetus 
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about 10% of the right ventricle output contributes to the pulmonary circulation for the 

growth and metabolic needs of the lungs. The rest is diverted from the pulmonary artery to 

the aorta through the ductus arteriosus, which has a lower resistance. The ratio of the volume 

which goes to the lungs grows with the progression of the pregnancy.  

The large volume of blood that passes through the foramen ovale into the left 

ventricle is joined by the blood coming from the pulmonary circulation and is pumped into 

the aorta.  

 

1.4.3 Circulation after birth  

An important step for a newborn is the transition from fetal circulation to neonatal 

circulation.  

At the moment of birth, the blood flow starts to invade the pulmonary circulation and 

ceases to pass through the fetal structures. This process normally takes place within a minute 

from the birth, but it could take few weeks to stabilize.  

Figure 1.4.2 Heart and peripheral circulation before and after birth 



CHAPTER 1.   INTRODUCTION 

 

11 
 

The fetal shunt closes because umbilical circulation and consequently placental 

perfusion have ceased and because of lungs inflation, which generates an increase in 

pulmonary flow. This change is induced due to the fact that the lung circulation passes from 

high to low resistance. Another consequence of the ceased umbilical flow is the closure of 

the foramen ovale: decreased umbilical flow leads to a decreased venous return from the 

inferior vena cava so the pressure in the right atrium and the PVR fall. The increased 

pulmonary blood flow results in an increased return to the left atrium and consequent 

increase in pressure. Thus, the pressure gradient across the foramen ovale is reversed. The 

closure of the foramen is at first temporary then after few days should fuse and become 

permanent (Figure 1.4.2).  

Figure 1.4.3 depicts by means of schematic approach the change in cardiorespiratory 

system comparing fetal and newborn circulation. 

Figure 1.4.3 A schematic of the fetal circulation before birth and the changes in flow in a newborn subject. 

Before birth the major supply of preload for the left ventricle is derived from the placental circulation, which 

passes from several structures and enters the left side of the heart; thereby bypassing the right side of the heart 

and the lungs (panel A, pathway is shown by red arrow). As most blood exiting the right ventricle passes 

through the ductus arteriosus (A, red arrow) and enters the descending aorta, very little blood flows into the 

fetal lungs before birth.  

After birth, the supply of blood for the left ventricle derived from the placental circulation is lost (B, broken 

red arrow) and so preload for the left ventricle becomes dependent on pulmonary venous return (B, red arrow). 

For this to occur, the lung must first aerate, which triggers a decrease in pulmonary vascular resistance, allowing 

all of right ventricular output to pass through the lungs (B, red arrow). In addition, flow through the ductus 

arteriosus reverses so that left ventricular output becomes a major contributor to pulmonary blood flow and, 

therefore to pulmonary venous return as well 
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1.5 Autonomic Nervous System 

The Autonomic Nervous System (ANS) is an essential regulator of the homeostasis and 

a main actor in the control of circulatory and respiratory systems. The ANS, also known as 

visceral nervous system or vegetative nervous system, controls several body functions such 

as blood circulation, body temperature, respiration and digestion, maintaining the 

cardiovascular, thermal and gastrointestinal homeostasis.  

These regulatory processes do not require a conscious intervention of higher brain 

centers, for this reason the ANS is also called involuntary nervous system. Anatomically and 

functionally the ANS consists of two complementary branches or subsystems, the 

Sympathetic Nervous System and the Parasympathetic Nervous System: 

 

 Sympathetic innervation: this innervation is controlled by a complex neural 

network within the medulla and sympathetic nerves. Stimulation of the sympathetic 

nerves is usually driven by norepinephrine; the effect is a constriction of resistance 

and capacitance vessels, leading to increased systemic vascular resistance and 

decreasing venous capacitance, producing tachycardia and also an increase in the 

vigor of cardiac contractions.  

In resting condition, the effect of sympathetic innervation on the HR is very 

low, because there is a predominance of vagal tone, thus the sympathetic nerves are 

a reserve mechanism to improve the pumping activity of the heart during intermittent 

stressful situations.  

In contrast with the effect of the vagal stimulation, the sympathetic one decays 

very slowly when the stimulus is interrupted. Furthermore, the norepinephrine 

released even during intense stimulation, is enough to change the HR only by a small 

increment.  

This is due to the fact that the neurotransmitters of the two branches of 

autonomic innervations, acetylcholine and norepinephrine, are released at different 

rates during stimulation and also sympathetic activity depends on the intracellular 

accumulation of second messengers. 
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 Parasympathetic innervation: the fibers of this innervation originate from the 

medulla of the brainstem, particularly from neurons called dorsal vagal nucleus. 

Efferent vagal fibers travel to the heart with two pathways, the left and right vagus 

nerves. The first one innervates the atrioventricular (AV) node, the second the 

sinoatrial (SA) node. Stimulation of the vagus nerve or injection of its mediator, 

acetylcholine, results in a reduction of HR and under resting conditions are tonically 

active, producing the so called ‘vagal tone’, which results in a HR much lower than 

the intrinsic firing rate of the SA pacemaker.  

Moreover, some efferent parasympathetic fibers connect directly with blood 

vessels within specific organs and can cause vasodilatation.  

The effect of this system is ephemeral because the acetylcholine released is 

hydrolyzed right away; moreover, the latency is very short since the acetylcholine 

can activate the specific K+ channels without the help of any secondary messenger.  

When vagus nerve is stimulated, the HR reaches a steady state value within 1 

or 2 cardiac cycles and, when stimulation is interrupted HR goes quickly back to its 

basal level.  

These two aspects are very important because they allow the parasympathetic 

system to have a beat to beat control. The vagal tone is not necessarily constant, its 

influence increases progressively with GA.  
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1.6 Cardiorespiratory coupling  

The analysis of causal and non-causal relationships within and between dynamic 

systems has become more and more a topic of great interest in the medical field. The 

understanding of driver–response relationships between regulatory systems and within 

subsystems is of growing interest. In particular, the detection and quantification of the 

strength and direction of couplings are two major aspects of investigations for a more 

detailed understanding of physiological regulatory mechanisms. The cardiovascular and 

cardiorespiratory systems are characterized by a complex interplay of several linear and 

nonlinear subsystems. Interactions of these physiological subsystems within the 

cardiovascular system can be described as closed loops with feed-forward (FF) and feed-

back (FB) mechanisms [16].  

 

Cardiorespiratory coupling (CRC) is an encompassing definition of various 

phenomena which result from shared inputs, common rhythms, and complementary 

functions related to the cardiovascular and respiratory systems. In addition to the well-

recognized respiratory influence on autonomic activity, the autonomic system has an 

influence on respiratory pattern formation. The respiratory influence on autonomic activity 

is breath to breath, whereas the autonomic influence on respiration can be considered beat 

to beat [17].  

Heartbeat, blood pressure, and ventilation share common frequencies. Many authors 

studied the quantification of HR and BP and the influence of respiration on these two 

variables.  

In 1733 Rev. Stephen Hales reported that respiration modulates HR and BP. This 

observation was confirmed by Carl Ludwig (1847) who measured the increases in HR and 

BP during inspiration. The increase in HR during inspiration is referred as Respiratory Sinus 

Arrhythmia (RSA) and the increase in BP as Traube–Hering waves.  

Heart rate (HR) and BP are modulated neurally, and both parasympathetic and 

sympathetic nerves have respiratory-modulated activity patterns. Multiple factors, including 

mechanical and neural coupling, underlie the increases in HR and BP [18].  
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1.7 Sleep states 

Sleep plays a fundamental role in neurodevelopment mainly for the primary purpose 

of memory consolidation. The gold standards for scoring sleep stages in the newborn 

includes sleep behaviors, respiratory rates, eye movements, EEG and muscle tone. At birth, 

the circadian rhythm is not fully established; therefore, sleep can occur as easily during the 

daytime hours as during the night. The normal, full-term newborn sleeps approximately 16 

to 18 hours per day. The longest continuous sleep period is 2.5 to 4 hours and the pattern of 

sleep and wakefulness is irregular.  

Newborn sleep can be classified in three types: Quiet Sleep (QS) (analogous to NREM 

sleep), Active Sleep (AS) (REM equivalent) and Indeterminate Sleep (IS) [19], [20].  

QS is characterized by minimal large or small muscle movements and rhythmic 

breathing cycles.  

During AS instead, sucking motions, twitches, smiles, frowns, irregular breathing, and 

gross limb movements are seen.  

IS is a period of sleep that cannot be defined as either Active or Quiet Sleep by 

predetermined criteria.  

 

Sleep cycling is essential for brain wiring including receptors system, pathway 

processing, cortical processing, learning, cognition and memory. AS is predominant in the 

fetus and produces spontaneous synchronous firing of fetal sensory receptors for brain 

wiring. By term age, QS starts to be part of newborn sleep cycle and 1 hour sleep cycling 

between AS and QS is evident, with a mature cycling showing the predominance of QS at 3 

months of age. During infancy, sleep cycles begin to block together and resemble adult sleep 

at 6 months. This maturation period coincides with the critical period for SIDS [21]. 

 

Infants at increased risk of SIDS show abnormal patterning of sleep-waking states. It 

was hypothesized that infants who were to die of SIDS would show abnormalities of sleep 

state distribution prior to their deaths. Victims of SIDS showed less arousals and more sleep 

than control infants during the early-morning hours. The finding of decreased waking time 

during the early morning is of particular importance since most SIDS deaths occur during 

this portion of the day. The findings of altered sleep patterns in SIDS victims suggest that 

central neural modulation is associated with SIDS risk. The mechanism underlying SIDS 
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appear to have origins in the fetal environment resulting in neural damage which later 

compromises responses to breathing or blood pressure challenges during sleep. The deficits 

appear to involve alterations in neurotransmitter receptors within regions involved in 

chemoreception and cardiovascular control.  

 

It is crucial to stress the fact that cardiorespiratory coupling can provide an insight of 

the mechanism underlying the interaction between the cardiac and respiratory system. It has 

been reported by many authors [22], [23] that the interaction between these subsystems does 

deeply change depending on sleep state and the lack of this coupling may be address as one 

of the leading cause for SIDS.  

 

The aim of this thesis is to investigate this interaction in a full-term cohort of newborns 

and one month infants in order to characterize the physiological interrelationship between 

the cardiac and respiratory system.  

 

1.8 SIDS and cardiorespiratory control 

Sighs, gasps, and the arousal response 

Sleep has a marked influence on cardiorespiratory function. The mechanisms leading 

to SIDS may include a failure in the neural integration of the cardiovascular and respiratory 

systems, with a concomitant failure to arouse from sleep. Shannon and Kelly stated that 

“sudden death without an obvious cause implies the cessation of autonomic regulation of 

cardiovascular or respiratory activity or both”. In the following years, all SIDS hypotheses 

essentially invoked defective respiratory or autonomic mechanisms. The roles of respiratory 

and autonomic pathways in SIDS are not mutually exclusive, given that infants who 

subsequently died of SIDS have frequently been found to have subclinical deficits in both 

respiratory and autonomic function [10], [24], [25], [26].  

 

Studies have shown that sleep states exert a marked influence on respiratory control 

and arousability. Infants are more likely to show arousals in AS compared with QS from 

both somatosensory and respiratory stimuli. Post-natal and gestational age at birth also have 

a marked influence on waking. Arousability is depressed by the major risk factors for SIDS 
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(prone sleeping, maternal smoking, prematurity and recent infection) and is increased by 

factors that decrease the risk for SIDS [27], [28], [29].  

 

Sighs, gasps and arousals from sleep are important survival response to a life-

threatening event such as hypotension or prolonged apnea. Arousal from sleep can occur 

spontaneously in response to internal physiological changes but can also be induced by 

external environmental factors. Arousal involves both autonomic and behavioral 

components. By arousing from sleep, heart rate, arterial pressure and ventilation are 

increased [30].  

The cardiorespiratory responses at arousal are similar to ‘fight or flight’ reactions 

that also increase arterial pressure, heart rate and ventilation. These responses are relayed 

and integrated in specific regions of the hypothalamus and the brainstem. The underlying 

neuronal activity that elicits cortical activation also involves specific neurotransmitter-

modulated discharge patterns of thalamocortical neurons. The insights gained are consistent 

with a final common pathway of cardio-respiratory distress that SIDS victims experience 

involving arousal and/or auto-resuscitation deficiencies [31].  

 

One of the hypothesis capable of explaining the respiratory pathway to SIDS is shown in 

Figure 1.8.1 and it can be summarized in 5 steps [31]: 

 

1. A life-threatening event which is more likely to occur in any infant during sleep, 

causes severe asphyxia, brain hypoperfusion. Such life-threatening events include 

rebreathing of exhaled or in the face-covered (supine) position, reflex apnea 

originating from the laryngeal chemoreflex. The vulnerable infant does not wake up 

and turn his/her head in response to asphyxia resulting in rebreathing or an inability 

to recover from apnea. 

2. Progressive asphyxia leads to a loss of consciousness and areflexia, a so-called 

hypoxic coma. 

3. Extreme bradycardia and hypoxic gasping ensue are seen. These phenomena that are 

evident in the terminal-event recordings in infants who were being monitored at 

home at the time of death from SIDS. 
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4. In the vulnerable infant, autoresuscitation is impaired because of ineffectual gasping, 

which results in uninterrupted apnea and death.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arousal from sleep that is triggered by abnormal levels of carbon dioxide and oxygen is 

essential for the initiation of protective airway responses. Arousal involves a progressive 

activation of specific subcortical-to-cortical brain structures and consists of ascending and 

descending components that mediate cortical and subcortical arousal, respectively, with 

feedback loops between them. Cortical arousal involves noradrenergic, serotonergic (5-

hydroxytryptamine), dopaminergic, cholinergic, and histaminergic neurons in the brain 

stem, basal forebrain, and hypothalamus, which excite the cerebral cortex and cause cortical 

activation. In severe hypoxia or ischemia, normal breathing fails and is replaced by gasping. 

Gasping increases the volume of air in the lungs, followed by oxygen transport to the heart, 

increased cardiac output, and finally brain perfusion and reoxygenation. Tracings from 

Figure 1.8.1 Five Steps in the terminal respiratory pathway associated with the SIDS results from one or 

more failures in protective mechanisms against a life-threatening event during sleep in the vulnerable infant 

during a critical period.  
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infants who subsequently died of SIDS have indicated that their gasping was ineffectual, 

with large-amplitude breaths, abnormally complex gasps, and an inability to increase the 

heart rate. Some infants with acute life-threatening events may represent potential SIDS 

cases in which the failure in gasping is averted by successful intervention [31]. 

 

Cardiorespiratory recordings from infants who subsequently died of SIDS have 

shown episodes of tachycardia and bradycardia hours or days before death, suggesting a 

primary failure of autonomic mechanisms involving a lack of cardiorespiratory 

synchronization. In this context, it is important to monitor the cardiorespiratory interaction 

in order to identify a lack in coupling hours or even days before the critical event.   

 

The biologic role of SIDS risk factors becomes comprehensible in light of the 

abovementioned pathways, since many risk factors can trigger asphyxia or other homeostatic 

stressors and exacerbate the underlying vulnerability in term of cardiorespiratory interaction. 

An increased risk of SIDS in the first 6 months of life probably reflects a convergence of 

immature homeostatic systems.  

The search for the underlying vulnerability in SIDS infants has led to intense analysis of 

peripheral and central sites critical to protective responses to asphyxia and hypoxia.  

 

The major focus of SIDS research has been on the brain stem because it contains 

critical neural networks that mediate respiration, chemosensitivity, autonomic function, 

sleep, and arousal as depicted in Figure 1.8.2. Abnormalities in various neurotransmitters or 

their receptors have now been reported in relevant brainstem regions in infants with SIDS. 

To date, the most robust evidence for a neurochemical abnormality comes from research on 

the medullary 5- hydroxytryptamine system, in that approximately 50 to 75% of infants with 

SIDS appear to have abnormalities in this system confirming brainstem abnormalities as an 

intrinsic risk factor. The medullary 5-hydroxytryptamine system, which is considered critical 

for the modulation and integration of diverse homeostatic functions, according to the level 

of arousal, is involved in ventilation and gasping, thermoregulation, autonomic control, 

responses to carbon dioxide and oxygen, arousal from sleep, and hypoxia-induced plasticity 

[25]. Abnormalities in 5-hydroxytryptamine neuronal number and differentiation, receptors, 

or transporter have been reported in the medulla of infants.  
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The investigation of these abnormalities can only be assessed by means of invasive 

procedures, not suitable to be performed on newborns or infants. Due to these reasons, the 

quantification of cardiorespiratory interaction in a noninvasive way, as proposed in this 

work, can provide an insight to the underlying interaction between cardiac and respiratory 

systems [31].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8.2 The serotonergic system is considered to be critical for the modulation and integration of diverse 

homeostatic functions. The medullary level of the brain stem (black line in Panel A) includes regions 

involved in the regulation of upper-airway control, respiration, temperature, autonomic function, and the 

sympathetic nervous system. In the medulla of an infant with the sudden infant death syndrome (SIDS), 

tissue autoradiography shows a generalized reduction in binding to the 5- hydroxytryptamine type 1A 

receptor (Panel B), as compared with that in a control infant at the same postconceptional age (Panel C). 

ARC denotes arcuate nucleus, DMX dorsal motor nucleus of the vagus nerve, GC ganglion cells, HG 

hypoglossal nucleus, NA noradrenaline, NTS nucleus tractus solitarius, PGCL paragigantocellularis lateralis, 

PreBot pre-Bötzinger complexes, and ROb raphe obscurus 
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Chapter 2 

 

In this chapter, the populations employed for the analysis will be described. 

Information will be given about the infants involved in the first study and in the one month 

follow up, about the ECG and respiratory signal acquisition. 

 

Afterwards, all the methods used in this work will be presented. Classical parameters 

such as time domain, univariate entropy estimators are computed analyzing the RR series, 

on the other hand bivariate entropy estimator, phase locking and directionality index are 

computed analyzing both RR series and respiratory signal. 
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2 Materials and Methods 
 

2.1 Study population and acquisition system 

The newborn dataset includes 329 infants born at the Morgan Stanley Children’s 

Hospital of New York at CUMC between 35 and 40 weeks of gestation. The subjects who 

met inclusion criteria were recruited and tested 12-84 hours after birth.  

 

The newborn population analyzed in this work is subset of the original larger cohort, 

in this case the considered gestational age (GA) is 38-40 weeks, this interval of GA includes 

full-term subjects only.  

Gestational age was determined by prenatal ultrasound in the first 20 weeks of 

gestation in combination with postnatal physical examination by the neonatal team as 

indicated in the newborn’s medical record.  

 

The resulting number of full-term subjects is 206, 55 of the participating infants 

(26.70%) had poor ECG and/or respiratory recordings and were excluded from the analyses, 

the total number of newborn subjects after exclusions is 151.  

 

In order to evaluate the subjects’ development, a second population has been 

considered. The one month infants cohort includes 93 subjects who came back for a one 

month follow up, 33 of them were selected for this work based on the same criterion about 

GA without any further exclusion related to the quality of ECG and/or respiratory. 

 

Medical-record information about the two populations is summarized in Table 2.1.1.  

 

None of the infants were admitted to the NICU nor had any major illness or known 

genetic disorder. All infants had a minimum Apgar score of 8 after 5 minutes of life. Review 

of the maternal medical chart revealed no evidence of major illness, genetic disorders, or 

past/present medicated/non-medicated psychiatric complaints.  
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Newborns One month infants 

Sex [number of subjects], [%] Sex [number of subjects], [%] 

Male 74 49.01% Male 18 54.55% 

Female 77 50.99% Female 15 45.45% 

Sex distribution by group (%) male vs 

female [number of subjects] 

Sex distribution by group (%) male vs 

female [number of subjects] 

38 GA (28.47%) 19 24 38 GA (27.27%) 5 4 

39 GA (37.09%) 28 28 39 GA (30.30%) 5 5 

40 GA (34.44%) 27 25 40 GA (42.43%) 8 6 

Birth weight [g] Birth weight [g] 

Mean ± SD 3343.08 ± 407.22 Mean ± SD 3388.03 ± 435.75 

Min 2385 Min 2725 

Max 4525 Max 4525 

Hours of life [hours] Hours of life [hours] 

Mean ± SD 37 ± 15 Mean ± SD 38 ± 17 

Min 14 Min 18 

Max 80 Max 80 

Maternal age [years] Maternal age [years] 

Mean ± SD 31 ± 7 Mean ± SD 31 ± 6 

Table 2.1.1 Subject information, percentages are computed with respect to the total number of subjects for 

each cohort; 151 newborns and 33 one month infants 

 

Three ECG leads were placed on the infant’s chest (left abdomen, left and right 

scapula) and the signal was amplified and collected using the DATAQ Instruments ECG 

system (Medelex, NY, NY).  

A respiratory inductance belt (Ambulatory Monitoring Inc., Ardsley, NY) was placed 

around the infant’s abdomen. ECG and respiration signals were acquired at 500 and 200 

samples per second, respectively.   

 

During the 10-minutes baseline acquisition, babies were sleeping in supine position 

within ~ 30 minutes following feeding. Sleep states were classified into Active Sleep (AS), 

Quiet Sleep (QS), indeterminate (I) and awake (W) by an expert clinician [32].  

 

The minimum length for a segment in order to be classified either as Active or Quiet 

is 120 seconds, indeterminate and awake segments were discarded from the analysis.  
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The sleep state coding assessment is performed on the respiratory signal analysis 

only. Sleep state coding procedure was supplemented by behavioral codes entered 

throughout the study and by review of videos to determine when infants were awake, crying, 

or fussy. 

 

In this work for the purpose of signal processing analysis, segments of 3-minute 

length in a continuous sleep state were analyzed: 514 three-minute epochs were considered 

for newborns (239 Quiet, 275 Active), while 247 epochs were considered for one month 

infants (144 Quiet, 103 Active). 

 

The R peaks were detected on the ECG with the Pan-Tompkins algorithm. An 

adaptive filter was then applied to remove ectopic beats or artifacts.  

The respiration signal was filtered with a bandpass filter (0.05 - 3.5 Hz), peaks of 

inspiration were detected with automated marking software and each record was corrected 

for incorrect marks manually. 
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In the following sections, several linear and nonlinear parameters will be presented. In 

this thesis, the cardiorespiratory investigation starts with traditional methods: time and 

frequency domain. These tools have proven their capability of discriminating between sleep 

states and ANS development, within different degree of reliability. The results obtain by 

means of this analysis confirm previous findings by several authors. 

 

Entropy estimators such as Sample Entropy and Quadratic Sample Entropy computed 

in this work are in accordance with previous findings, the novel contribution of this 

investigation is the estimation of information directionality by means of Transfer Entropy. 

 

Regarding nonlinear phase analysis, phase locking and directionality index are 

powerful tools to be used in combination with traditional parameters. The contribution of 

these estimators is crucial to achieve a complete characterization of cardiorespiratory 

interaction. Their application in the neonatal field is the novel contribution presented in this 

work. 

  

2.2 Time domain analysis 

The simplest methods to evaluate the variations of HR and respiratory rate by means 

of a univariate approach are the time domain measurements. These quantities are computed 

for each segment, analyzing the distances between the R peaks for the ECG signal and peaks 

of inspiration for respiratory signal.  

In this work some of the HRV Task Force [33] indexes are computed: RR mean, RR 

Interquartile Range (IQR), SDNN, RMSSD analyzing the RR series signal and Inter Breath 

Intervals (IBI) mean, IBI IQR analyzing the respiratory signal.  

Considering the distribution of the RR distances, it is possible to compute their mean 

temporal distance and their interquartile range and obtain the above-mentioned RR mean 

and RR IQR.  

SDNN is the standard deviation of the NN intervals, which is the square root of the 

variance. The variance is mathematically equivalent to total power of spectral analysis, thus 

SDNN represents all the cyclic components responsible for variability in the period 

considered. If the period analyzed is diminished, SDNN estimates shorter cycle lengths, thus 

SDNN depends on the duration of the recording period and for this reason it is inappropriate 
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to compare measures obtained from recordings of different length. On the other hand, 

RMSSD is the most frequently used measure derived from interval differences; it estimates 

short-term variations in HR.  

IBI mean and IBI IQR are the corresponding measurements of RR mean and RR IQR 

when considering the differences between adjacent respiratory onsets.   

 

2.3 Entropy analysis: univariate and bivariate estimators 

In this work the entropy analysis is performed with both univariate and bivariate 

approaches. In the first case, the entropy estimation is based on the analysis of HR only, 

whereas in the bivariate case both HR and respiratory signal are considered.  

 

Since the birth of this theory, many different entropies estimators have been developed 

[34]. One of the first methods to estimate univariate entropy is the KS entropy, developed 

by Kolmogorov and expanded by Sinai [35], which allowed classifying deterministic 

systems by rates of information generation. The main issues is that KS entropy is not 

developed for statistical applications, it requires infinite and noiseless signals, a combination 

of conditions those are impossible to be fulfilled in real applications in particular when 

dealing with biological signals [35]. 

 

Pincus proposed ApEn as solution to these issues and successfully applied it to 

relatively short and noisy data [36]. ApEn is a nonnegative entropy estimation of a time 

series, with larger values corresponding to more complexity, according to information 

entropy.  

 

Richman and Randall [37] developed and characterized SampEn, a new family of 

statistics measuring complexity and regularity of clinical and experimental time-series data. 

SampEn statistics provide an improved evaluation of time-series regularity and is a useful 

tool in studies of the dynamics of human cardiovascular physiology. 
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2.3.1 Approximate Entropy 

To face shortcomings of KS entropy, Approximate Entropy (ApEn) was introduced 

by Pincus [36] to provide applications on real, noisy and finite signals. 

ApEn has four advantages in comparison to KS entropy: 1) the estimation is less 

affected by noise, 2) it is robust to occasional artifacts, 3) it requires a reasonable number of 

data points and 4) it is finite for both stochastic and deterministic processes.  

In order to calculate ApEn the parameters N, m and r must be fixed for each 

calculation. N is the length of the time series, m is the length of template to be compared and 

r is the matches tolerance. It is convenient to set the tolerance as r-times the signal standard 

deviation, within this assumption it is possible to compare results obtained analyzing signals 

with different magnitudes.  

For a time series of N points, {𝑢( 𝑗) ∶  1 ≤  𝑗 ≤  𝑁}  it is possible to subdivide the 

time series in 𝑁 –  𝑚 +  1 vectors  𝑥𝑚(𝑖) for  {𝑖 ∶  1 ≤  𝑖 ≤  𝑁 –  𝑚 +  1}, where  𝑥𝑚(𝑖)  =

 {𝑢(𝑖 +  𝑘) ∶  0 ≤  𝑘 ≤  𝑚 –  1} is the vector of m data points from 𝑢(𝑖) to 𝑢 (𝑖 +  𝑚 −

 1).  

The distance between two such vectors is defined as 𝑑[𝑥(𝑖), 𝑥(𝑗)] =  𝑚𝑎𝑥 {|𝑢(𝑖 +

 𝑘) −  𝑢( 𝑗 +  𝑘)| ∶  0 ≤  𝑘 ≤  𝑚 –  1}, that represents the maximum difference of their 

corresponding scalar components. Let 𝐵𝑖 be the number of vectors 𝑥𝑚(𝑗) within r distance 

of 𝑥𝑚(𝑖) and let 𝐴𝑖 be the number of vectors 𝑥𝑚+1(𝑗) within r distance of 𝑥𝑚+1(𝑖).  

Define the function 𝐶𝑖
𝑚(𝑟)  =  𝐵𝑖/ (𝑁 – 𝑚 + 1). In calculating 𝐶𝑖

𝑚(𝑟), the vector 𝑥𝑚(𝑖) is 

called the template and an instance where a vector 𝑥𝑚(𝑗) is within r of it is called a template 

match. 𝐶𝑖
𝑚(𝑟) is the probability that any vector 𝑥𝑚(𝑗) is within r of 𝑥𝑚(𝑖).  

The function 𝛷𝑚(𝑟) =  (𝑁 − 𝑚 + 1)−1 ∑ 𝑙𝑜𝑔 (𝐶𝑖
𝑚(𝑟))𝑁−𝑚+1

𝑖=1   is the average of the 

natural logarithms of the functions 𝐶𝑖
𝑚(𝑟) and the parameter 𝐴𝑝𝐸𝑛 (𝑚, 𝑟) = lim

𝑁→∞
[ 𝛷𝑚(𝑟) −

 𝛷𝑚+1(𝑟)]. 

Given N data points, this parameter is estimated by defining the statistic 

𝐴𝑝𝐸𝑛 (𝑚, 𝑟, 𝑁) = lim
𝑁→+∞

[ 𝛷𝑚(𝑟) −  𝛷𝑚+1(𝑟)]. 

ApEn measures the logarithmic likelihood that patterns that are close for m 

observations remain close on next incremental comparisons. Greater likelihood of regularity, 

produces smaller ApEn values, and conversely [36].  
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The main disadvantage of ApEn is the risk to obtain a number of matches equal to 

zero, thus a logarithm of zero is obtained. This constraint is overcome by allowing each 

template to match itself (self-matching), within this hypothesis ApEn is defined under all 

circumstances, because at least a single self matches is always defined. Although ApEn is a 

great methodological improvement, it is still affected by a bias effect and it depends strongly 

on the record length. This assumption leads to an entropy overestimation: self-matchings are 

counted even if they do not generate new information [37].  

 

2.3.2 Sample Entropy 

Sample entropy (SampEn) has been introduced by Richman and Moorman in order 

to overcome the limitations of ApEn [36]. SampEn quantifies the probability that two short 

templates that match within an arbitrary tolerance will continue to match at the next point. 

Considering a time series of N points 𝑥1, 𝑥2, . . . , 𝑥𝑛, for a length 𝑚 <  𝑛 and starting point 

𝑖, the template 𝑥𝑚(𝑖) is the vector containing the m consecutive 

intervals 𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝑚−1.  

For a matching tolerance r > 0, an instance where all the components of 𝑥𝑚(𝑖) are 

within a distance r of any other 𝑥𝑚(𝑗) in the record, is called a match (or template match). 

Let 𝐵𝑖 denote the number of matches of length 𝑚 with template 𝑥𝑚(𝑖) and 𝐴𝑖 denote the 

number of matches of length 𝑚 + 1  with template 𝑥𝑚+1(𝑖).  

Let  𝐴 =   ∑ 𝐴𝑖𝑖  and 𝐵 =   ∑ 𝐵𝑖𝑖  denote the total number of matches of length 𝑚 +

1  and 𝑚, respectively. The ratio 𝑝 =  
𝐴

𝐵
  is then the conditional probability (CP) that 

subsequent points of a set of closely matching 𝑚 intervals remain close and match. 

𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) is the negative natural logarithm of this probability, it can be expressed as 

in [38] :  

 𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) =  − 𝑙𝑜𝑔(𝑝) =  − 𝑙𝑜𝑔 (
𝐴

𝐵
) = 𝑙𝑜𝑔(𝐵) − 𝑙𝑜𝑔(𝐴) (1) 

Equation 1 calculates the negative natural logarithm of a probability associated with 

the time series as a whole, it is always defined unless in the case of B = 0, when regularity 

has not been detected, or in case A = 0, which corresponds to a conditional probability of 0 

and an infinite value of sample entropy [37].  
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The advantages of the SampEn are the exclusion of self-matches, the independence 

of record length and stronger consistency with respect to ApEn.  

On the other hand, SampEn is strongly dependent on the choice of the tolerance r. 

Small values of r lead to higher and less confident entropy estimates because of the falling 

numbers of matches of length m and m+1 whereas larger values of r lead to entropy 

overestimation because of the high number of matches.  

 

In this work, the newer insight about entropy is provided by Quadratic Sample 

Entropy (QSE) and Transfer Entropy (TE). The application of these measurements to infants 

has not been deeply investigated but results from this work suggest their applicability and 

reliability in the neonatal field.  

 

2.3.3 Quadratic Sample Entropy 

The main issue in computing an entropy estimator is the choice of r tolerance value. 

A new insight that deals with this limitation is presented in [39]. The idea is to convert the 

measured conditional probability to a density by normalizing it with a factor equal to 2r, 

within this hypothesis, entropy estimation computed with different r can be compared 

directly. This measure is called Quadratic Sample Entropy (QSE) and it is defined as 

(Equation 2): 

 
𝑄𝑆𝐸 =  −𝑙𝑜𝑔(

𝑝

2𝑟
)  =  −𝑙𝑜𝑔(𝑝)  + 𝑙𝑜𝑔(2𝑟)  

=  𝑆𝑎𝑚𝑝𝐸𝑛(𝑚, 𝑟) + 𝑙𝑜𝑔(2𝑟) 

(2) 

Furthermore, r can be optimally varied for each data record. Another improvement 

to increase the statistical significance and the reliability of QSE parameter is to impose a 

minimum numerator counter. The minimum numerator count aim is to vary r until a pre-

specified number of matches 𝐴 are observed. Other additional restrictions, such as minimum 

denominator count on 𝐵, can be also used to control accuracy.  

 

In this work SampEn and QSE have been computed considering the RR series of the 

two cohorts of newborns and one month infants. The length of the analyzed records is 300 

beats and not 3-minute length as for time domain analysis. 
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This choice aims to avoid the influence of the length of the record on the entropy 

estimation. The same analysis has been performed considering 100 and 200 in order to test 

the reliability of the estimation. 

 

2.3.4 Transfer Entropy 

ApEn, SampEn and QSE are univariate entropy estimators based on RR series only. 

Transfer entropy (TE) is a multivariate method based on both RR series and respiratory 

signal [40], [41], [42]. It allows computing entropy not only evaluating the information flow 

from one system to another but also taking into account the directionality of interactions 

[43], [44].  

In this work, TE has been computed within a bivariate framework, the interaction is 

either from RR series to respiration (RR→RESP) or vice versa (RESP→RR). TE evaluates 

the information flow from a source system X to a destination system Y, considering X and 

Y as two interacting dynamical subsystems. 𝑋𝑛, 𝑌𝑛 are the stochastic variables obtained by 

sampling the stochastic processes describing the state visited by the systems X and Y over 

time. Furthermore, 𝑌𝑛
−, 𝑋𝑛

−  are the vector variables representing the whole past of the 

processes. 

 

Within this hypothesis, the transfer entropy from X to Y is defined as: 

 𝑇𝐸𝑋→𝑌 =  ∑ 𝑝(𝑌𝑛, 𝑌𝑛
−, 𝑋𝑛

−) ⋅  log
𝑝(𝑌𝑛| 𝑌𝑛

−, 𝑋𝑛
−)

𝑝(𝑌𝑛| 𝑌𝑛
−)

            (3) 

The conditional probability expressed in Equation 3, can be interpreted as the 

transition probability quantifying the information provided by the past of the process X about 

the present of the process Y that is not already provided by the past of Y.  

It should be noted that the TE can be also expressed as a difference of two conditional 

entropies (CE) as in Equation 4: 

 

 𝑇𝐸𝑋→𝑌 = 𝐻(𝑌𝑛| 𝑌𝑛
−)  −  𝐻(𝑌𝑛| 𝑌𝑛

−, 𝑋𝑛
−) (4) 

 



CHAPTER 2.   MATERIALS AND METHODS 

 

31 
 

TE parameter is really powerful in detecting information transfer given that it does 

not require any particular assumption about the underlying models or their mutual 

interactions. It is able to discover purely non-linear interactions and to deal with a range of 

interaction delays [43]. 

 

Reconstruction of system’s past states 

In order to estimate CE and compute TE it is necessary to approximate the infinite-

dimensional variable representing the past of the processes. This issue can be seen in terms 

of finding the best embedding set for both time series [45]. 

The idea is to reconstruct the past of the system represented by the processes X and 

Y, in order to obtain a vector 𝑉 = [𝑉𝑛
𝑌, 𝑉𝑛

𝑋]  containing the most significant past variables to 

explain the present of the destination system. 

 

Two possible approaches can be employed: uniform (UE) and non-uniform (NUE) 

embedding schemes. In the first case, components to be included in the embedding vectors 

are selected a priori and separately for each time series.  For example, the vector 𝑌𝑛
− is 

approximated using the embedding vector 𝑉𝑛
𝑌 = [𝑌𝑛−𝑚, 𝑌𝑛−2𝑚, . . . , 𝑌𝑛−𝑑𝑚], where d and m 

are respectively the embedding dimension and embedding delay (same reasoning to compute 

𝑉𝑛
𝑋 from 𝑋𝑛

−). 

Following this approach, TE estimation consists of two steps: collection of past states 

and estimation of entropy with a chosen estimator. 

The main flaw related to estimation by means of UE is the arbitrariness and the 

redundancy, which may cause problems such as overfitting and detection of false influences.  

 

The alternative strategy is the non-uniform embedding (NUE). This technique 

consists of a progressive selection among the available variables describing the past of the 

observed processes X, Y, considered up to a maximum lag, to identify the most informative 

variable for the destination variable 𝑌𝑛. 

At each step, selection is performed maximizing the amount of information that can 

be explained about Y by observing the variables with their specific lag up to the current step. 

Thus, a criterion for maximum relevance and minimum redundancy is applied for candidate 
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selection, and the resulting embedding vector V includes only the components of 𝑋𝑛
− and 

𝑌𝑛
−, which contribute most to the description of 𝑌𝑛. 

Moreover, the variables included into the embedding vector are by definition 

associated with a statistically significant contribution to the description of Y. Thus, the 

statistical significance of TE estimated with this approach results from the selection of at 

least one past component of the source process. Otherwise, the estimated TE will be zero 

and nonsignificant [45].  

 

Joint probability distribution estimators 

Another crucial aspect is the choice of the appropriate method to estimate the joint 

probability distribution capable of fully-describe the interrelationship between X and Y [46].  

The first approach is the linear estimator (LIN) that assumes data are drawn from a 

Gaussian distribution. Under this assumption, the two CE terms defining the TE can be 

quantified by means of linear regressions involving the relevant variables taken from the 

embedding vector.  

The second estimator is the classical binning estimator (BIN), which consists of 

coarse-graining the observed dynamics using Q quantization levels, and then computing 

entropies by approximating probability distributions with the frequencies of occurrence of 

the quantized values [47].  

The third estimator is based on k-nearest neighbor techniques (NN) which exploit the 

statistics of distances between neighboring data points in the embedding space to estimate 

entropy terms. Regarding the method adopted in this work, a problem that could emerge 

dealing with uniform and non-uniform embedding procedures concerns the issue of 

dimensionality [48]. Indeed, increasing the candidates, the more the data points will be 

spread in the phase space, the more the probability density function will assume a constant 

value. Adopting the non-uniform embedding could overcome this potential. As a matter of 

fact, this method reduces the candidates of significant past states, preventing the risk of 

probability density function to assume a constant value.  

This non-uniform embedding method was chosen in combination with nearest 

neighbor entropy estimator, since this arrangement was suggested to have high sensitivity 

and specificity both for linear and non-linear systems [49]. 
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Nearest neighbor estimator  

The nearest neighbor estimator method has been shown to be a powerful non-

parametric method for classification, density and regression estimation [50]. It can be 

employed to estimate the entropy of a d-dimensional random variable X, H(X), starting from 

its N realizations. Considering the probability distribution 𝑃𝑘(휀) for the distance between 𝑥𝑖 

and its k-th nearest neighbor, the probability 𝑃𝑘(휀)𝑑휀 is equal to the chance that there is one 

point lying within a distance 𝑟 𝜖 [
𝜀

2
,

𝜀

2
+ 𝑑휀] from 𝑥𝑖, that there are 𝑘 − 1 other points at 

smaller distances from it and that 𝑁 −  𝑘 − 1 points have larger distance from  𝑥𝑘.  

 

Within these assumptions, the expectation value of the mass 𝑝𝑖  of 휀-sphere centered 

at 𝑥𝑖 can be expressed as:   

 𝐸(log(𝑝𝑖 )) =  ∫ 𝑃𝑘(휀) log(𝑝𝑖 (휀))
∞

0

 𝑑휀 (5) 

The expectation is evaluated over the position of all other 𝑁 − 1 points, with 𝑥𝑖 kept 

fixed. By means of further manipulations of this probability it is possible to compute H(X), 

H(Y), H(X, Y), in the latter case the mass function is two-dimensional.  
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In this work the MuTE toolbox was employed to estimate Transfer Entropy values 

[49]. TE has been computed considering RR series and respiratory signal that was resampled 

at the R peak instants in order to defined two synchronous series. The adopted method is 

nearest neighbor with non-uniform embedding (NNNUE). 

 

The main steps for TE estimation procedure are summarized in Figure 2.3.1. Red 

boxes are relative to method choice adopted in this work [51]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.1 Scheme of the main steps involved in TE calculation: 

1) selection of the 2 signals of interest equally spaced. TE will be calculated evaluating the     

directionality signal 1→signal 2 and vice versa 

2) choice of the method to approximate the infinite-dimension past states of the systems (UE vs. 

NUE) 

3) choice of Conditional Entropy estimator (LIN vs. BIN vs NN) and TE estimation 

4) verification of TE results significance 
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2.4 Phase locking analysis 

Generation of rhythms is an intrinsic property of many physiological systems, cardiac 

and respiratory systems are proper examples [52], [53]. It is well known that cardiac and 

respiratory system are not independent and they interact in a complex interplay of both linear 

and nonlinear interrelationships. Normally their interaction is weak and transient: the most 

well-known example is the respiratory sinus arrhythmia (RSA) [54], but in specific 

physiological conditions a tight coupling between the two subsystems takes place.  

The univariate approaches employed to analyze HRV and respiration are not capable 

of investigating the interactions between the two subsystems. Bivariate methods have been 

developed to analyze coordination between complex interacting systems in both linear and 

nonlinear fashion. It is important to highlight that classical linear approaches are insufficient 

to quantify the strength and the nonlinear nature of cardiorespiratory interactions because 

the main assumption is linearity.  

Many studies describe the cardiorespiratory interaction as characteristic of two weakly 

coupled chaotic oscillators [55], [56], [57]. Within this hypothesis it is possible to investigate 

cardiorespiratory synchronization by means of a phase analysis of RR series and respiratory 

signal rather than a classical amplitude analysis. This assumption is supported by the idea 

that amplitude of oscillators may remain uncorrelated whereas their phases do mutually 

perturb. 

The first step towards the analysis of cardiorespiratory coordination is the calculation 

of temporal distances between the event markers of the two subsystems, in this context the 

temporal series of R peaks and inspiratory onsets [58]. The investigation can be performed 

considering various cardiorespiratory coordination ratio, where ratios refer to different n:m 

ratios (cardiac cycles : breathing cycles) [59].  
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Figure 2.4.1 From top to bottom: examples of a 60-second segment of RR series, respiration, synchrogram 

and relative λ index of 3:1 synchronization order  

Defining 𝑅𝑖  (𝑖 = 1, … , 𝑛𝑅) as the series of R peaks and 𝐼𝑗  (𝑗 = 1, … , 𝑛𝐼) as the series 

of inspiratory onsets detected in a 3-minutes long segment, it is possible to compute the 

absolute (𝑡𝑖) and relative (𝜑𝑖) distance between the current respiratory event and the 

successive R peaks as: 

 𝑡𝑖 =  𝑅𝑖 − 𝐼𝑗 (6) 

 

 

𝜑𝑖 =  (
𝑅𝑖 −  𝐼𝑗

𝐼𝑗+1 −  𝐼𝑗  
+ 𝑗) ⋅ mod 𝑏 

 

(7) 

Figure 2.4.1 shows a 60-second segment of RR series (first panel) and the 

synchronous respiratory signal (second panel). The third panel of Figure 2.4.1 shows the 

relative distances 𝜑𝑖 for 𝑏 = 1, a single respiratory cycle.  
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This kind of presentation is called Synchrogram and it visually shows the relative 

distance with respect to time on x-axis and respiratory cycle on y-axis.  

A synchrogram may show structures of parallel horizontal line: this configuration 

reveals epochs in which relative distances 𝜑𝑖 stay constant over consecutive breathing 

cycles. In this situation the cardiorespiratory interaction is said to be phase-locked [60], [61]. 

For example, the synchrogram in Figure 2.4.1 shows the main epochs of phase locking from 

15 to 25 and from 40 to 60 seconds. In order to detect the number of successive coordinated 

beats, it is sufficient to count the number of horizontal lines. In this case, it is possible to 

assess a 3:1 ratio of synchronization.  

After a visual representation of phase locking, it is necessary to quantify the degree 

of phase locking [62]. Considering two weakly coupled oscillators as the cardiac and 

respiratory systems, their phase variable can be defined as 𝜙1 and 𝜙2 respectively, so that 

their phase dynamics are expressed as: 

 
𝑑𝜙1

𝑑𝑡
=  𝜔1 +  휀𝑔1(𝜙1, 𝜙2) (8) 

 
𝑑𝜙2

𝑑𝑡
=  𝜔2 +  휀𝑔2(𝜙2, 𝜙1) (9) 

where the variables 𝜙1 and 𝜙2 are defined not on the [0, 2𝜋] circle but on the whole real 

line, 𝜔1 and 𝜔2 are the natural angular frequency of the system, 𝑔1 and 𝑔2 are the 2𝜋-

periodic coupling terms and 휀 is the coupling coefficients.  

 

In this work, instantaneous phase of the ECG is estimated as [63]: 

 𝜙1(𝑡) = 2𝜋𝑘 + 2𝜋
𝑡 −  𝑡𝑘

𝑡𝑘+1 −  𝑡𝑘
 (10) 

where 𝑡𝑘 are the times of appearance of the 𝑘-th R peak. 

 

The respiratory signal was detrended and filtered with a Savitzky-Golay filter and 

then its instantaneous phase 𝜙2 was estimated applying the Hilbert transform.  

All the instantaneous phases were resampled at 100 Hz. 
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Considering a general case of n:m phase locking it is possible to define the 

generalized phase difference: 

 𝜑𝑛,𝑚(𝑡) = 𝑛𝜙1(𝑡) − 𝑚𝜙2(𝑡) (11) 

and its instantaneous variation considering the above defined phase variables:  

 
𝑑𝜑𝑛,𝑚

𝑑𝑡
= 𝑛𝜔1 −  𝑚𝜔2 +  휀𝐺(𝜙1, 𝜙2) (12) 

where 𝐺 is a function taking into account the mutual relationship between 𝜙1 and 𝜙2. 

Equation 12 admits two different kinds of solutions: the phase variable relationship 

can be either unbounded or bounded. When investigating the phase locking, it is crucial to 

achieve a bounded expression linking 𝜙1and 𝜙2: 

 |𝑛𝜙1(𝑡) − 𝑚𝜙2(𝑡) −  𝛿| < const (13) 

where 𝛿 is a term that takes into account the average phase shift.  

In the ideal synchronous situation, the difference between phase variables stays stable 

at a constant specific value (Equation 13). When dealing with real data derived from 

physiological systems, noise is always present and its influence needs to be taken into 

account. It is possible to assess that during synchronization in presence of noise, the 

difference 𝜙1 − 𝜙2  fluctuates around a constant. 

Under the assumption about the synchronous state between two subsystems, it is 

possible to extract an index capable of quantifying the presence or absence of the interaction 

and measuring the strength of the coupling between the systems under analysis.  

In order to achieve a quantitative estimator of synchronization, the phase variables 

are redefined as cyclic: 

 �̃�1 =  𝜙1mod 2𝜋 (14) 

 �̃�2 =  𝜙2mod 2𝜋 (15) 
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The phase �̃�2 of the second oscillator is then observed each time instant 𝑡𝑖 when �̃�1 

fulfills the condition �̃�1 =  휃, and then the following is computed (Equation 16): 

 η𝑖 =  �̃�2(𝑡)|
�̃�1(𝑡)=𝜃

 (16) 

where 휃 is a specific and constant value of first oscillator’s phase. 

This quantity corresponds to the construction of the Poincaré section that reduces 

Equation 16 to a circle map. Considering a 1:1 free-noise phase locking situation η𝑖 = const, 

whereas in presence of noise the values of η𝑖 are scattered around a constant.  

The distribution of η𝑖 can be characterized by computing the intensity of its first 

Fourier mode. A binning procedure of the first oscillator’s phase allows to estimate the index 

over multiple values of 휃 in order to obtain a reliable estimation of phase relationship 

between oscillators.  

In case of N points binning, the index Λ𝑙  computed for the l-th bin can be expressed 

as: 

 Λ𝑙
2 =  𝑀𝑙

−2 (∑ cos 휂𝑖

𝑀𝑙

𝑖=1

)

2

+  𝑀𝑙
−2 (∑ sin 휂𝑖

𝑀𝑙

𝑖=1

)

2

 (17) 

In this work the cyclic phase of the first oscillator was divided in 10 equally spaced 

bins.  

The average of Λ𝑙 over all N bins allows to compute the synchronization index 𝜆: 

 𝜆 =  𝑁−1 ∑ Λ𝑙

𝑁

𝑖=1

 (18) 

The synchronization index 𝜆 (Equation 18) varies from 0 (absence of 

synchronization) to 1 (presence of synchronization) in the free-noise case [25]. Due to the 

constant presence of noise when dealing with physiological systems, the value of 𝜆 does not 

attain unity: it remains close to 1 in synchronization region and progressively decreases when 

synchronization vanishes.  
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In order to consider a generalized phase locking ratio, it is sufficient to rescale both 

phase variables. For example, in the case of 𝑛: 𝑚 locking, phases are rescaled such as: 𝜙1  →

 𝜙1/𝑛 and 𝜙2  →  𝜙2/𝑚, obtaining the synchronization index 𝜆 that now can also be 

rewritten as 𝜆𝑛,𝑚.  

According to this definition, 𝜆𝑛,𝑚 measures the conditional probability for �̃�2 to have a 

certain value, provided �̃�1 is in a certain bin. 

 

In this study, the λ index was calculated on windows of 1000 samples overlapping 

by 50 samples. λ values equal or above the threshold of 0.7 were considered indicating a 

situation in which coupling is present. Bottom panel of Figure 2.4.1 shows an example of 

𝜆3,1 (blue line) and the threshold (red line). In the intervals 15-25 sec and 40-60 sec, the 

index value is close to 1. This is in accordance with the synchrogram exhibiting horizontals 

lines in the same intervals Figure 2.3.1. 

It is well-known [56], [61] that different rhythms can be found when considering the 

interacting relationship between the cardiac and respiratory phase.  

It is also well-known that shifts in synchronization are likely to occur even 

considering short time scale as in the work. Due to these reasons a global index of 

synchronization, called n:1 can be computed by summation of 3:1, 4:1, 5:1, 6:1 ratios, this 

measurement summarizes the synchronization contribution of different rhythms in the whole 

signal. Analogous reasoning allows to compute n:2 summing 3:2, 5:2 ratios.  

Once n:1 and n:2 have been computed it is possible to assess the time spent in 

synchronization for each segment. This latter quantity can be computed as the percentage of 

time spent in synchronization with respect to the 3-minute duration of segments, or in a 

different way, by computing the average duration (in seconds) of each epoch of 

synchronization. 

 

 

 

 

 

 



CHAPTER 2.   MATERIALS AND METHODS 

 

41 
 

2.5 Directionality Index analysis 

Interactions between subsystems can be investigated by means of traditional and more 

novel signal-processing techniques e.g., cross-spectra, mutual information. These 

measurements provide a symmetric estimation of interaction strength, not suitable for 

evaluation of causality. Even when considering phase-locking analysis, synchronization 

does not explain how systems interact and mutually perturb themselves.  

Other approaches deal with the concept of phase interaction of irregular oscillators: 

the main requirement is that the systems under analysis can be modeled as weakly coupled 

oscillators and the causal interaction can be assessed looking at the evolution of phase of the 

subsystems. The cardiorespiratory system can be modeled by two weakly interacting 

rhythmed oscillators. Subsystems have their own intrinsic rhythms even if they are 

completely uncoupled. Interaction takes place when the systems mutually perturb 

themselves during transient and finite time intervals.  

Under this assumption, it is possible to fully describe weakly coupled oscillators 

dynamics by means of a phase model capable of describing underlying physiological 

mechanisms. The model generating cardiorespiratory rhythmic behavior is mostly unknown 

and it can be only passively observed. It is possible to have an insight looking at its 

macroscopic oscillations which are observable and they can be employed to describe the 

dynamic of the nonlinear oscillators [65].  

In this work, a simple model of two coupled phase oscillators is proposed. Each system 

can be represented by its own phase variable 𝜙 so that its time variation �̇� can be expressed 

as �̇� =  𝜔, where 𝜔 = 2𝜋/𝑇 is the natural frequency of the considered oscillator and 𝑇 the 

period of oscillation. The phase space of the model is two-dimensional, and it can be 

expressed as: 

 𝜙1̇ =  𝜔1 + 휀1 ⋅  𝑓1(𝜙2, 𝜙1) +  휁1(𝑡) (19) 

 𝜙2̇ =  𝜔2 + 휀2  ⋅  𝑓2(𝜙1, 𝜙2) + 휁2(𝑡) (20) 

in Equation 19 and Equation 20 subscript 1 refers to cardiac system and subscript 2 to 

respiratory system.  
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The continuous phase variables (𝜙1̇, 𝜙2̇) take into account the natural angular 

frequency of the system (𝜔1, 𝜔2). The random terms (휁1, 휁2) instead, account for amplitude 

fluctuations and perturbations which are intrinsic characteristics of every biological systems. 

The coupling terms consist of 2𝜋-periodic functions (𝑓1, 𝑓2) and the parameters describing 

the strength of interaction between subsystems (휀1, 휀2); in case of weakly coupled systems 

the conditions  𝜔1 ≫  휀1 and 𝜔2 ≫  휀2 are usually verified.  

Given the assumption that phase variables can be computed directly from the 

measured time series, it is possible to obtain an approximated reconstruction of both cardiac 

and respiratory oscillators in order to understand the causal relationship between the 

subsystems.  

In this work, the Evolution Map Approach (EMA) [64], [66] algorithm has been used. 

This method deals with mutual predictability similarly to Granger causality. Considering 

system 1 interacting with system 2, if system 1 affects system 2, the future of system 2 can 

be better predicted taking into account the past samples of both system with respect to 

information of system 1 only. EMA was shown capable of revealing asymmetric 

directionality strength from short noisy records and quantify which of the systems under 

analysis influence its counterparts more strongly.  

The idea is to observe the evolution of phase variables over a specific temporal 

window of length 𝜏. Both 𝜙1 and 𝜙2 are unwrapped phase variables, defined as continuous 

quantities represented on the whole real line, not limited from 0 to 2𝜋.  

In this work the phase variable increments are computed using a fourth order 

Savitzky–Golay filter. Given these hypotheses, the phase increments of oscillator 1 and 

oscillator 2 can be expressed as: 

 Δ1(𝑘) =  𝜙1(𝑡𝑘 +  𝜏) −   𝜙1(𝑡𝑘) (21) 

 Δ2(𝑘) =  𝜙2(𝑡𝑘 +  𝜏) −   𝜙2(𝑡𝑘) (22) 

where Δ1 and Δ2 can be computed from phase variables 𝜙1 and 𝜙2 and they represent the 

phase variable increments over time.  
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In order to reconstruct the real weakly coupled oscillators from a single recorded 

realization, it is necessary to fit the dependences of Δ1 and Δ2 over 𝜙1 and 𝜙2 upon 

considering phase variable increments generated by an unknown two-dimensional noisy 

map: 

 Δ1(𝑘) =  𝜔1𝜏 +  ℱ1[𝜙2(𝑡𝑘), 𝜙1(𝑡𝑘) ] +  𝜉1(𝑡𝑘) (23) 

 Δ2(𝑘) =  𝜔2𝜏 +  ℱ2[𝜙1(𝑡𝑘), 𝜙2(𝑡𝑘) ] + 𝜉2(𝑡𝑘) (24) 

The deterministic part ℱ1 and ℱ2 of the map can be estimated fitting the dependences 

of Δ1 and Δ2 over 𝜙1 and 𝜙2 by the least mean square approach.  

Giving the assumption that phase variables are cyclic, the most appropriate choice of 

family function is the finite Fourier series:  

 ℱ1  ≈  𝐹1 =  ∑ 𝐴𝑚  ⋅

𝑚

 𝑒𝑖𝑚𝜙1+ 𝑖𝑛𝜙2  (25) 

 ℱ2  ≈  𝐹2 =  ∑ 𝐴𝑛  ⋅

𝑛

 𝑒𝑖𝑚𝜙1+ 𝑖𝑛𝜙2  (26) 

in this work the maximum order of Fourier expansions is set to 3, in the following 

computation  |𝑚| ≤ 3 and |𝑛| ≤ 3. 

𝐹1 and 𝐹2 computed in Equation 25 and in Equation 26 are capable of describing the 

deterministic (𝜔 and ℱ) and stochastic (𝜉) link between phase variables and their 

increments. They can be also seen as smoothing functions because they are capable of 

filtering out the noise by means of the least square fitting. 

The cross-dependency coefficients of phase dynamics of the two systems can be 

extracted from 𝐹1 and 𝐹2 as: 

 𝑐1
2 =  ∬ (

𝜕𝐹1

𝜕𝜙2
)

2

𝑑𝜙1𝑑𝜙2

2𝜋

0

 (27) 

 𝑐2
2 =  ∬ (

𝜕𝐹2

𝜕𝜙1
)

2

𝑑𝜙1𝑑𝜙2

2𝜋

0

 (28) 
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In summary, the directionality index can be expressed as: 

 𝑑(1,2) =  
𝑐2 −  𝑐1

𝑐1 +  𝑐2
 (29) 

 

The EMA algorithm computes a normalized directionality index. It varies from 1 in 

case of unidirectional coupling from system 1 to system 2, to -1 in the opposite case of 

unidirectional coupling is from system 2 to system 1. The positive intermediate values of  𝑑 

express a stronger or weaker 1→2 coupling strength, the negative intermediate values a 

coupling strength in the opposite direction (2→1). In the case of absence of interaction when  

𝑐2 =  𝑐1, 𝑑 is equal to zero. 

In this work the DACOMO toolbox by Rosenblum et al. has been used to compute 

directionality index [66], [67], [68]. 

 

2.6 Statistical analysis 

IQR outlier rejection criterion has been employed in this work. Differences between 

groups have been tested by means of T-test in case of Gaussian-like distributed populations, 

on the contrary the non-parametric Wilcoxon signed-rank test has been applied if the 

hypothesis of Gaussian-like distribution was not verified.  
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Chapter 3 

 

In this chapter results obtained with methods illustrated in Chapter 2 will be 

presented.  

 

In this work state-related and age-related analyses have been performed, the former 

case regards the comparison of a parameter in AS versus QS when a specific age is 

considered (newborns or one month infants), in the latter case a parameter in a specific state 

(AS or QS) is compared at two different time points.  

In the first part of this chapter time domain and entropy parameters will be presented. 

The reliability of these results is compared with previous works by several authors. 

 

In the second part of this Chapter the bivariate analysis is reported. 

 

For each estimated parameter both state-related and age-related have been performed 

and the corresponding statistical analyses are reported.  
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3 Results 
 

3.1 Time domain 

Time domain parameters of RR series and respiratory signal have been calculated on 

3-minute length segments, both in AS and QS.  

As reported in [33] a 5-minute length segment is sufficient to extract short-term time 

domain parameters in adults. Due to this assumption and given the higher heart rate for 

newborns and one month infants, 3-minute segments are optimal to compute short-term 

parameters with the same degree of reliability.  

In order to perform the parameter computation, both RR and respiratory signal quality 

has to be controlled; low quality segments containing for instance ectopic beats, 

interruptions, movement or noise artifacts have been discarded from the analysis.  

A single set of time domain parameters is extracted, averaging the results over multiple 

segments if a subject presents more than one in a specific sleep state, N represents the 

number of subjects of a considered population.  

 

In Table 3.1.1, mean and standard deviation of time domain parameters are shown. 

Differences between AS and QS considering the two cohorts of newborns and one month 

infants have been tested. 

 

 Newborns One months 

 Active sleep Quiet sleep p-value Active sleep Quiet sleep p-value 

RR mean [s] 0.49 ± 0.05 0.51 ± 0.04 < 0.01 0.41 ± 0.03 0.43 ± 0.02 n.s. 

RR IQR [s] 0.04 ± 0.02 0.03 ± 0.01 < 0.01 0.03 ± 0.01 0.02 ± 0.01 < 0.01 

SDNN [ms] 34.84 ± 15.73 25.33 ± 10.56 < 0.01 23.07 ± 6.29 14.10 ± 6.38 < 0.01 

RMSSD [ms] 16.22 ± 9.63 16.10 ± 8.28 n.s. 11.04 ± 4.18 8.81 ± 4.97 < 0.05 

IBI mean [s] 1.24 ± 0.25 1.50 ± 0.27 < 0.01 1.31 ± 0.23 1.62 ± 0.34 < 0.01 

IBI IQR [s] 0.45 ± 0.15 0.27 ± 0.10 < 0.01 0.41 ± 0.15 0.26 ± 0.09 < 0.01 

 

Table 3.1.1 Time domain parameters extracted from RR series and respiratory signal. IBI measures the mean 

distance between adjacent respiratory onsets and IBI IQR the interquartile range of this distribution.  P-values 

are relative to statistics comparing AS and QS parameters within the same age 
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Figure 3.1.1 Boxplot of time domain parameters computed from RR series (RR mean, RR IQR, SDNN, 

RMSDD, IBI mean, IBI IQR) and from respiratory signal (IBI mean, IBI IQR) 

AS and QS can be seen as two states in which the ANS regulation acts differently 

and differences in time domain parameters confirm this.  

As reported in Table 3.1.1 the majority of these indexes are significantly different 

when comparing the two sleep states. 

 

Figure 3.1.1 shows boxplots of the above mentioned quantities highlighting 

increasing and decreasing trends. 
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A further investigation can be performed considering the comparison between the 

newborns and one month infants populations within the same sleep state as reported in Table 

3.1.2. 

 

 Active sleep Quiet sleep 

 Newborns One months p-value Newborns One months p-value 

RR mean [s] 0.49 ± 0.05 0.41 ± 0.03 < 0.01 0.51 ± 0.04 0.43 ± 0.02 < 0.01 

RR IQR [s] 0.04 ± 0.02 0.03 ± 0.01 < 0.01 0.03 ± 0.01 0.02 ± 0.01 < 0.01 

SDNN [ms] 34.84 ± 15.73 23.07 ± 6.29 < 0.01 25.33 ± 10.56 14.10 ± 6.38 < 0.01 

RMSSD [ms] 16.22 ± 9.63 11.04 ± 4.18 < 0.05 16.10 ± 8.28 8.81 ± 4.97 < 0.05 

IBI mean [s] 1.24 ± 0.25 1.31 ± 0.23 n.s. 1.50 ± 0.27 1.62 ± 0.34 n.s. 

IBI IQR [s] 0.45 ± 0.15 0.41 ± 0.15 n.s. 0.27 ± 0.10 0.26 ± 0.09 n.s. 

 

Table 3.1.2 Time domain parameters extracted from RR series and respiratory signal. P-values are relative to 

statistics comparing same sleep state (AS and QS) parameters for the two different time points 
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Figure 3.1.2 Boxplot of time domain parameters computed from RR series (RR mean, RR IQR, SDNN, 

RMSDD, IBI mean, IBI IQR) and from respiratory signal (IBI mean, IBI IQR) 

Figure 3.1.2 shows the boxplot graphs of time domain parameters considering the 

population described in Table 3.1.2. 
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3.2 Sample Entropy and Quadratic Sample Entropy  

Sample Entropy (SampEn) and Quadratic Sample Entropy (QSE) are univariate 

entropy estimators computed on RR series. They are reported by many authors as dependent 

on the length of the considered signal [36], [37].  

 

Due to this issue, 300-beat long segments are analyzed in order to obtain an unbiased 

estimation. The mean duration of segments is 148.30 ± 14.01 seconds for newborns in AS, 

151.63 ± 12.29 seconds for newborns in QS, 124.02 ± 8.55 seconds for one month infants in 

AS and 129.87 ± 10.04 seconds for one month infants in QS.  

 

Time domain analysis was performed considering the 300-beat segment for both 

newborns and one month infants, in order to perform a reliable comparison.  

Time domain results considering 300-beat segments are consistent with time domain 

results when 3-minute segments were considered (Table 3.1.1 and Table 3.1.2). The only 

differences are found when comparing RR mean in newborns and IBI mean in QS between 

newborns and one month infants, analogous trends are found but resulting in a non-

significant comparison. 

 

Table 3.2.1 and Table 3.2.2 show Sample Entropy and QSE considering different 

embedding dimensions (m=1, 2, 3). The tolerance parameter r is set to 20% of RR series 

standard deviation for SampEn while for QSE is optimally chosen with the minimum count 

of matches method. The minimum required number of matches is 0 for SampEn while for 

QSE is set to 
𝑛2

5
, where n is the number of points of the considered time series. 
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Table 3.2.1 shows SampEn and QSE computed for the three embedding dimension 

when newborns and one month infants are tested for differences related to sleep states.  

 

 Newborns One months 

 Active sleep Quiet sleep p-value Active sleep Quiet sleep p-value 

SampEn1 [bits] 1.76 ± 0.26 2.00 ± 0.14 < 0.01 1.70 ± 0.28 1.94 ± 0.15 < 0.01 

SampEn2 [bits] 1.63 ± 0.31 1.84 ± 0.20 < 0.01 1.59 ± 0.30 1.86 ± 0.16 < 0.01 

SampEn3 [bits] 1.52 ± 0.37 1.70 ± 0.25 < 0.01 1.50 ± 0.35 1.74 ± 0.24 < 0.01 

QSE1 [bits] 7.89 ± 0.21 8.05 ± 0.16 < 0.01 7.83 ± 0.25 8.05 ± 0.18 < 0.05 

QSE2 [bits] 8.00 ± 0.21 8.07 ± 0.15 < 0.01 7.88 ± 0.25 8.09 ± 0.14 < 0.01 

QSE3 [bits] 8.00 ± 0.21 8.11 ± 0.14 < 0.01 8.00 ± 0.26 8.12 ± 0.15 < 0.01 

Table 3.2.1 Sample Entropy and Quadratic Sample Entropy considering 300 beats of RR series only. P-values 

are relative to statistics comparing AS and QS parameters within the same age 

 

Each of the computed entropy measurements is significant when comparing 

newborns and one month infants for differences between AS and QS, despite the embedding 

dimension.  

 

It is important to highlight that each of the indexes show an increasing trend (Figure 

3.2.1 and Figure 3.2.3) from AS (red) to QS (green), N represents the number of subjects of 

a considered population. Same time domain and entropy results are found when segments of 

100 and 200 beats were analyzed. 
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Figure 3.2.2 Boxplots of Sample Entropy computed for different embedding dimensions when state-related 

analysis is performed, AS (red) versus QS (green) in newborns and one month infants 
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Figure 3.2.3 Boxplots of Quadratic Sample Entropy computed for different embedding dimensions when state-

related analysis is performed, AS (red) versus QS (green) in newborns and one month infants 
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The comparison of newborns and one month infants within the same sleep state does 

not show any differences at newborn and one month time points as reported in Table 3.2.2.  

Both entropy estimators remain stable within the same sleep stage when comparing 

newborns and one month infants.  

  

 Active sleep Quiet sleep 

 Newborns One months p-value Newborns One months p-value 

SampEn1 [bits] 1.76 ± 0.26 1.69 ± 0.28 n.s. 1.98 ± 0.14 1.94 ± 0.15 n.s. 

SampEn2 [bits] 1.63 ± 0.31 1.59 ± 0.30 n.s. 1.84 ± 0.20 1.86 ± 0.16 n.s. 

SampEn3 [bits] 1.52 ± 0.37 1.49 ± 0.35 n.s. 1.69 ± 0.25 1.74 ± 0.24 n.s. 

QSE1 [bits] 7.89 ± 0.21 7.83 ± 0.2479 n.s. 8.05 ± 0.17 8.05 ± 0.18 n.s. 

QSE2 [bits] 7.92 ± 0.21 7.88 ± 0.25 n.s. 8.07 ± 0.15 8.10 ± 0.14 n.s. 

QSE3 [bits] 8.00 ± 0.21 7.91 ± 0.26 n.s. 8.11 ± 0.14 8.12 ± 0.15 n.s. 

Table 3.2.2 Sample Entropy and Quadratic Sample Entropy considering 300 beats of RR series only. P-values 

are relative to statistics comparing same sleep state (AS and QS) parameters for the two different time points 
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3.3 Transfer Entropy 

Transfer entropy (TE) is a method to assess directionality of information transferred 

between two time series. TE is a bivariate entropy estimator measuring the flow of 

information between RR series and respiratory signal. In this context, the same 300-beat 

database has been used in order to achieve a standardized entropy measurement over 

multiple subjects.  

In Table 3.3.1, TE values for newborns and one month infants are reported. It is 

important to highlight that comparison can be performed within the same age group 

comparing AS versus QS when the information flow is from RR series to respiration 

(RR→RESP) and vice versa from respiration to RR series (RESP→RR).  

 

 Newborns One months 

 Active sleep Quiet sleep p-value Active sleep Quiet sleep p-value 

RR RESP [bits] 0.03 ± 0.02 0.04 ± 0.02 < 0.05 0.04 ± 0.02 0.06 ± 0.02 < 0.01 

RESP RR [bits] 0.04 ± 0.02 0.09 ± 0.06 < 0.01 0.03 ± 0.02 0.10 ± 0.06 < 0.01 

p-value n.s. < 0.01  n.s. < 0.01  

Table 3.3.1 Transfer Entropy considering 300 beats of RR series and respiratory sampled at RR instants. P-

values are relative to statistics comparing AS and QS parameters within the same age and directionality or 

within the same age and different directionality 

  

Top row of Figure 3.3.1 shows the sleep state comparison of TE when the 

information flow is RR→RESP on the left and RESP→RR on the right. In this case both the 

populations are statistically different when tested. In both cases there is an increase in terms 

of information flow in QS with respect to AS [51].  

When comparison are performed within the same sleep state but for opposite 

directions, no differences are found  in AS, whereas in QS RESP→RR directional flow is 

more informative than RR→RESP, as shown in the bottom row of Figure 3.3.1 [51].  
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Figure 3.3.1 Boxplots of Transfer Entropy computed for newborn cohort. Comparisons are made 

considering same direction and different sleep state or same sleep state and different direction, N 

represents the number of segments in the considered population 
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Figure 3.3.2 Boxplots of Transfer Entropy computed for one month cohort. Comparisons are made considering 

same direction and different sleep state or same sleep state and different direction, N represents the number of 

segments in the considered population 

Figure 3.3.2 shows the same comparisons of Figure 3.3.1 considering one month 

infants, significant differences of AS versus QS are comparable with what found in newborn 

cohort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Looking at the evolution of TE in the first month of life, it appears clear that major 

differences occur in QS, with an increase in information flow in both directions with age 

(Figure 3.3.3).  
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Figure 3.3.3 Boxplots of Transfer Entropy computed for both newborns and one month infants. Comparisons 

are made considering same direction and sleep state at different time points, N represents the number of 

segments in the considered population 

Considering the evolution of TE in AS from newborn age to one month age, no 

differences in information flow are found neither from RR series to respiration nor from 

respiration to RR series (Figure 3.3.3) [51]. 

 

 Active sleep Quiet sleep 

 Newborns One months p-value Newborns One months p-value 
RR RESP [bits] 0.03 ± 0.02 0.04 ± 0.02 n.s. 0.04 ± 0.02 0.06 ± 0.02 < 0.01 

RESP RR [bits] 0.04 ± 0.02 0.03 ± 0.02 n.s. 0.09 ± 0.06 0.10 ± 0.06 < 0.05 

Table 3.3.2 Transfer Entropy considering 300 beats of RR series and respiratory sampled at RR instants. -

values are relative to statistics comparing same sleep state (AS and QS) parameters for the two different time 

points 
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3.4 Phase synchronization 

The phase synchronization parameters are computed to highlight differences in 

cardiorespiratory coupling when comparing AS versus QS or subjects within the same sleep 

state at different time points.  

As reported in Materials and Methods section, various n:m (cardiac cycles : breathing 

cycles) are considered in the analysis.  

 

In Table 3.4.1, total synchronization parameters, considering a single breathing cycle 

or two consecutive breathing cycles, have been computed in terms of both percentage and 

duration. Statistical comparisons aim at assessing differences between AS and QS within 

subjects of the same age, N represents the number of subjects in the considered population. 

 

 

 Newborns One months 

 Active sleep Quiet sleep p-value Active sleep Quiet sleep p-value 

Total synch. n:1 

[%] 
0.06 ± 0.05 0.23 ± 0.14 < 0.01 0.08 ± 0.05 0.30 ± 0.17 < 0.01 

Total synch. n:2 

[%] 
0.01 ± 0.01 0.14 ± 0.01 < 0.01 0.03 ± 0.03 0.19 ± 0.12 < 0.01 

Total synch. n:1 

duration [s] 
5.27 ± 3.47 9.28 ± 4.72 < 0.01 5.55 ± 3.14 10.03 ± 4.27 < 0.01 

Total synch. n:2 

duration [s] 
1.63 ± 1.74 6.53 ± 3.66 < 0.01 1.39 ± 1.21 6.94 ± 3.51 < 0.01 

Table 3.4.1 Total synchronization parameters extracted from the analysis of phase relationship between RR 

series and respiratory signal. P-values are relative to statistics comparing AS and QS parameters within the 

same age  
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Figure 3.4.1 Boxplots of total percentage of synchronization, sum of ratios with respect a 

single breathing cycle and two consecutive breathing cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When comparing AS versus QS in term of synchronization percentage, differences 

are statistically significant for n:1 and n:2 parameters considering both newborn and one 

month subjects. The mean increase of n:1 and n:2 is 17% and 13% considering newborns 

cohort while 22% and 16% considering one month cohort. These percentage values 

correspond to 30, 40, 23, 29 seconds respectively, when considering 3-minutes length 

segments as in this analysis [69].  
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Figure 3.4.2 Boxplots of total duration of synchronization, sum of ratios with respect a 

single breathing cycle and two consecutive breathing cycles 

The total synchronization percentage of n:2 index is lower than n:1, in the former 

case λ index is required to stay stable for two respiratory cycles while for n:1 the circular 

variance index is computed considering a single breathing cycle. 
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Figure 3.4.3 Boxplots of total percentage of synchronization, sum of ratios with respect a 

single breathing cycle and two consecutive breathing cycles 

In Table 3.4.2 total synchronization parameters are evaluated when age-related 

analysis is performed. 

 Active sleep Quiet sleep 

 Newborns One months p-value Newborns One months p-value 

Total synch. n:1 

[%] 
0.06 ± 0.05 0.08 ± 0.05 n.s. 0.23 ± 0.14 0.30 ± 0.17 < 0.05 

Total synch. n:2 

[%] 
0.01 ± 0.01 0.03 ± 0.03 < 0.01 0.14 ± 0.01 0.19 ± 0.12 < 0.05 

Total synch. n:1 

duration [s] 
5.27 ± 3.47 5.55 ± 3.14 n.s. 9.28 ± 4.72 10.03 ± 4.27 n.s. 

Total synch. n:2 

duration [s] 
1.63 ± 1.74 1.39 ± 1.21 n.s. 6.53 ± 3.66 6.94 ± 3.51 n.s. 

Table 3.4.2 Total synchronization parameters extracted from the analysis of phase relationship between RR 

series and respiratory signal. P-values are relative to statistics comparing same sleep state (AS or QS) 

parameters for the two different time points 
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Figure 3.4.4 Boxplots of total duration of synchronization, sum of ratios with respect a single breathing 

cycle and two consecutive breathing cycles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 3.4.4 comparison between newborns and one month infants within the same 

sleep state are shown. When testing the populations in terms of duration of synchronization 

no differences are found despite the number of considered breathing cycles.  

Given the fact the percentage of synchronization is increasing, as depicted in Figure 

3.4.3, it is possible to assess that events of coupling in the cardio respiratory system are more 

likely to occur with increasing age but the average duration of the synchronization is not 

statistically changing. 
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Within the available database, it is possible to investigate the total percentage in 

synchronization for those subjects having both AS and QS epochs for the recorded baseline 

 

In Table 3.4.3  the mean total synchronization n:1 and n:2 considering newborn and 

one month populations are shown.  

The parameter “increase” represent the mean and standard deviation increase in 

synchronization for those subjects having a greater total synchronization in QS with respect 

to AS. In this context populations are tested by means of a paired T-test, upon passing the 

Lilliefors normality test, otherwise in case of non-normal distribution, the populations are 

tested with a Wilcoxon signed-rank test. 

 

 Active sleep Quiet sleep Increase p-value 

Newborns 
Total synch. n:1 [%]  

0.07 ± 0.06 0.20 ± 0.15 0.16 ± 0.10 < 0.01 

Newborns 
Total synch. n:2 [%] 

0.03 ± 0.04 0.13 ± 0.11 0.11 ± 0.09 < 0.01 

One months  
Total synch. n:1 [%] 

0.09 ± 0.06 0.28 ± 0.16 0.21 ± 0.12 < 0.01 

One months  
Total synch. n:2 [%] 

0.03 ± 0.03 0.18 ± 0.12 0.15 ± 0.11 < 0.01 

Table 3.4.3 Paired comparison of AS versus QS in newborns and one months 
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Figure 3.4.5 Entity of increase in synchronization between AS and QS for subjects with both state during the 

recorded baseline. Each colored line represents a subject 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this analysis, the number of subject in newborns cohort is 29, 86.21% (25 out of 

29) and 89.66% (26 out 29) exhibit an increase in synchronization from AS to QS when n:1 

and n:2 are computed, while when considering one month cohort the percentage number of 

subjects increasing synchronization are 95.45% (21 out of 22) for n:1 ratio and 100.00% (22 

out of 22) for n:2 ratio.  
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Figure 3.4.6 Bar graph of specific ratio of synchronization comparing same sleep state for 

different time points 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.6 shows the comparison within the same sleep state for newborns and one 

month when considering specific synchronization ratio, such as 3:1 and 4:1.  

When the two cohorts are tested for both ratios in AS no significant differences are 

found; this result is coherent with absence of significance for total synchronization n:1 as 

reported in Table 3.4.2. Regarding 3:1 ratio and 4:1 ratio in QS, significant differences are 

found: p-values are < 0.05 and < 0.01 respectively.  

This shift in synchronization, from 3:1 to 4:1, is coherent with results about the RR 

mean as reported in Table 3.1.2, the mean distance between R peaks decreases both in AS 

and QS from newborn to one month age. Consequently at one month time point the heart 

rate increases, so that 4:1 ratio is more likely to occur with respect to 3:1 [70]. 
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3.5 Directionality index  

Directionality index method to assess causality is an important step forward in 

revealing and understanding interaction between the cardiac and respiratory systems. A 

state-related and age-related analysis have been performed in order to assess the 

directionality of interaction, comparing AS versus QS and newborns versus one month 

infants.   

 

In Table 3.5.1 directionality index and breathing frequency in AS and QS for both 

newborns and one month infants are compared, N represents the number of subjects in the 

considered population. 

 

 Newborns One months 

 Active sleep Quiet sleep p-value Active sleep Quiet sleep p-value 

Directionality 

index [s] 
0.10 ± 0.30 -0.23 ± 0.30 < 0.01 0.06 ± 0.20 -0.15 ± 0.29 < 0.01 

Breathing 

freq. [Hz] 
0.82 ± 0.21 0.68 ± 0.14 < 0.01 0.76 ± 0.16 0.64 ± 0.15 < 0.01 

Table 3.5.1 Computed directionality index and extracted breathing frequency. P-values are relative to statistics 

comparing AS and QS parameters within the same age 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 Scatter plot of breathing frequency and directionality index for newborns 
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Figure 3.5.1 and Figure 3.5.2 show scatterplot and boxplots of stage-related analysis: 

slower breathing frequencies are associated with QS and faster breathing frequencies with 

AS.  

At intermediate frequencies, such as the interval 0.6-0.8 Hz, an overlapping area is 

present where subjects with both AS and QS are found.  

When breathing frequency and directionality index are tested for differences between 

sleep states, both measures are found statistically different. It is important to recall that a 

negative directionality index is an interacting condition in which respiration is driving HR 

(RESP→RR) while HR drives respiration (RR→RESP) when directionality index is 

positive. 

 

 

 

 

 

RR→RESP 

RESP→RR 

Figure 3.5.2 Boxplots of directionality index and breathing frequency in AS versus QS considering 

newborns 
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Considering state-related analysis for one month infants, Figure 3.5.3 shows slower 

breathing frequencies associated with QS and faster breathing frequencies with AS. At 

intermediate frequencies, such as the interval 0.5-0.8 Hz, an overlapping area is present 

where subjects with both AS and QS are found, similarly to newborns scatter plot (Figure 

3.5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.3 Scatter plot of breathing frequency and directionality index for one months 
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Figure 3.5.4 depicts the breathing frequency and directionality index when one 

month infants are tested for differences between sleep states, both measurements are found 

statistically different.  

Since directionality index sign is capable of discriminating the causal interactions 

between subsystems is important to highlight that directionality index mean is positive 

signed (RR→RESP) and close to zero in AS while negative signed (RESP→RR) in QS.  

 

 

 

 

 

 

 

 

RR→RESP 

RESP → RR RESP→RR 

Figure 3.5.4 Boxplots of directionality index and breathing frequency in AS versus QS considering one 

months 
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Regarding age-related analysis, no differences within same sleep state at different 

time points are found.  

Considering both breathing frequency and directionality index for newborns and one 

month infants, neither of them turns out to be statistically different as reported in Table 3.5.2. 

 

 Active sleep Quiet sleep 

 Newborns One months p-value Newborns One months p-value 

Directionality 

index [s] 
0.10 ± 0.30 0.06 ± 0.20 n.s. -0.23 ± 0.30 -0.15 ± 0.29 n.s. 

Breathing 

freq. [Hz] 
0.82 ± 0.21 0.76 ± 0.16 n.s. 0.68 ± 0.14 0.64 ± 0.15 n.s. 

Table 3.5.2 Extracted directionality index and breathing frequency computed. P-values are relative to statistics 

comparing same sleep state (AS or QS) parameters for the two different time points 
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Figure 3.5.5 Scatter plot of breathing frequency and directionality index in AS for both newborns and one 

months  

Figure 3.5.5 and Figure 3.5.7 show scatter plots of age-related analysis. No clear 

differences between cohorts at different time points are present.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RR→RESP 

RESP→RR 

Figure 3.5.6 Boxplots of directionality index and breathing frequency comparing newborns versus one months 

in AS 
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Figure 3.5.7 Scatter plot of breathing frequency and directionality index in QS for both newborns and one 

months 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 3.5.8 Boxplots of directionality index and breathing frequency comparing newborns versus one months 

in QS 

RR→RESP 

RESP→RR 
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As reported in the paper by Rosenblum et al. [65], it is possible to investigate 

directionality when the classification into groups is not performed based on sleep state but 

on breathing frequency. In this context, the breathing frequency threshold is set to 0.6 Hz.  

As mentioned in Material and Method session, the assessment of directionality is 

based upon the directionality index sign, for this reason a negative and positive value refers 

to RESP→RR and RR→RESP direction respectively.  

Table 3.5.3 shows the number of subjects (expresses as percentage) when newborns 

and one month infants are compared regardless the sleep stage and grouped based on 

directionality index sign. 

In Table 3.5.4 directionality index and breathing frequency are shown when grouping 

is performed upon breathing frequency threshold of 0.6 Hz. 

 

 Newborns One months 

 RESP → RR RR → RESP RESP → RR RR → RESP 

Breathing 

freq. < 0.6 
82.35% 17.65% 75.00% 25.00% 

Breathing 

freq. ≥ 0.6 
49.67% 50.33% 42.11% 57.89% 

Table 3.5.3 Percentage indicating the portion of subjects associated with a negative directionality index and 

positive directionality index  

 

  Newborns One months 

 Breathing 

frequency  

< 0.6 Hz 

Breathing 

frequency  

≥ 0.6 Hz 

p-value 

Breathing 

frequency  

< 0.6 Hz 

Breathing 

frequency  

≥ 0.6 Hz 

p-value 

Directionality 

index [s] 
-0.28 ± 0.34 0.00 ± 0.32 < 0.01 -0.20 ± 0.31 0.00 ± 0.24 < 0.01 

Breathing 

freq. [Hz] 
0.52 ± 0.04 0.81 ± 0.18 < 0.01 0.51 ± 0.06 0.78 ± 0.12 < 0.01 

Table 3.5.4 Extracted breathing frequency and computed directionality index. P-values are relative to statistics 

comparing AS and QS parameters within the same age 
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Figure 3.5.9 Histogram of newborn cohort grouped based on breathing frequency, darker 

green indicates bins where the distributions overlap 

Figure 3.5.9 shows the frequency distribution in terms of probability for 

directionality index. Considering breathing frequencies lower than the threshold of 0.6 Hz 

(blue), 82% of subjects exhibit a negative directionality index while the remaining 18% has 

positive values for directionality index. On the other hand, when breathing frequencies are 

equal or higher than the threshold (green), the population is distributed such as the 50% of 

subject has a negative value of the index while the remaining 50% has a positive value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RR→RESP 

RESP→RR 

Figure 3.5.10 Boxplots of directionality index and breathing comparing newborns grouped based on breathing 

frequency  
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Figure 3.5.10 shows breathing frequency and directionality index comparison for 

state-related analysis, significant differences are found when comparing the two 

measurements in newborns for AS and QS. 

Figure 3.5.11 shows the analogous histogram as Figure 3.5.9 when considering the 

one month cohort. Considering breathing frequencies lower than the threshold of 0.6 Hz 

(blue), 75% of subjects exhibit a negative directionality index while the remaining 25% has 

positive values for directionality index. On the other hand, when breathing frequencies are 

equal or higher than the threshold (green), the population is distributed such as the 42% of 

subject has a negative value of the index while the remaining 58% has a positive value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.11 Histogram of one month cohort grouped based on breathing frequency, 

darker green area indicates bins where the distributions overlap 
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Figure 3.5.12 shows breathing frequency and directionality index comparison for 

state-related analysis, significant differences are found when comparing the two 

measurements for one month infants in AS and QS. 

Table 3.5.5 shows the comparison of the two populations for both breathing 

frequency and directionality index. When these two quantities are tested at different time 

points no difference is found.  

 

 Breathing frequency < 0.6 Hz Breathing frequency ≥ 0.6 Hz 

 Newborns One months p-value Newborns One months p-value 

Directionality 

index [s] 
-0.28 ± 0.34 -0.20 ± 0.31 n.s. 0.00 ± 0.32 0.00 ± 0.24 n.s. 

Breathing 

freq. [Hz] 
0.52 ± 0.04 0.51 ± 0.06 n.s. 0.81 ± 0.18 0.78 ± 0.12 n.s. 

Table 3.5.5 Computed directionality index and extracted breathing frequency. P-values are relative to statistics 

comparing newborns and one months grouped based on breathing frequency threshold  

 

 

 

 

RR→RESP 

RESP→RR 

Figure 3.5.12 Boxplots of directionality index and breathing frequency comparing one months 

grouped based on breathing frequency  
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Figure 3.5.13 Boxplots of breathing and directionality index comparing newborns and one 

months at different time points  
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Chapter 4 

 

In this chapter a discussion on the obtained results will be presented. 

Computed parameters have shown abilities in discriminating Active Sleep versus 

Quiet Sleep and newborns versus one month infants.  

 

Time domain and univariate entropy parameters, extracted from RR series and 

respiratory signal, confirmed results illustrated in literature about sleep states and evolution 

of Autonomic Nervous System with age.  

 

Bivariate parameters showed a robust capability in discriminating sleep states based 

on information flow (Transfer Entropy), percentage and duration of synchronization (phase 

locking), directionality of interaction (Directionality Index) differences. 

 

Afterwards, physiological interpretations of these results will be reported focusing 

on future applications of these method in SIDS investigation prospective.  

 

Lastly, future developments and limitations of this work will be presented.  
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4 Discussions 
 

4.1 Time and Frequency domain 

The aim of the time domain analysis is to characterize RR series and respiratory 

signal depending on sleep states (AS versus QS) and age (newborns versus one month 

infants) by means of a univariate approach.  

Despite the lack of a bivariate investigation of cardiorespiratory interaction, this 

preliminary analysis is capable of providing interesting insight on HR and respiratory 

dynamics.  

In this work, time domain parameters relative to RR series are RR mean, RR IQR, 

SDNN and RMSSD. IBI mean and IBI IQR are computed analyzing the respiratory signal.  

 

Time domain parameters from this data analysis indicate differences between AS and 

QS, with an increase of RR mean in QS with respect to AS in newborns only, and a decrease 

of HRV in both newborns and one month infants cohorts. 

This is the normal expected behavior given that 1 month of age represents a transition 

between birth and later months, when the HR will settle on lower values and HRV increases, 

due to development of vagal regulation if subjects are in normal conditions [70].  

 

Considering the comparison between sleep states, time domain parameters indicate 

an increase in overall variability in AS and QS (SDNN), while no difference was found in 

beat-to-beat variability (RMSSD) at birth and a slightly significant result at one month of 

age.  

It is known from literature that the sympathetic system is the first to develop during 

pregnancy, while the parasympathetic system develops later and continues to adapt even 

during the first months of life [71]. The parasympathetic branch of the ANS is responsible 

of the HR decrease; its faster response is manifested in a more rapid, beat-to-beat control of 

the HR and this has emerged in the short-term variability parameters. The absence of 

significant differences in short term variability between sleep states in newborns can be a 

possible explanation for this parasympathetic immaturity.  
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To better identify the sources responsible for these changes in variability, power 

spectral estimation was performed and showed that RR variance distributes differently in 

High Frequency (HF), 0.35-1.5 Hz and Low Frequency (LF), 0.04-0.2 Hz depending on 

sleep states. HF is the major contribution in QS.  

These results combined with time domain parameters suggest an increased 

parasympathetic activation in QS regardless of the age [51].  

 

The mean distance between inspiratory onsets (IBI mean) and respiration variability 

(IBI IQR) show an increase and a decrease respectively when comparing AS versus QS for 

newborns and one month infants. These results are coherent with a slower respiratory rate 

and a lower variability associated to QS, as in this latter state the respiration is reported to 

be more regular with respect to AS. 

 

Concluding, almost all the time domain parameters have proved their ability to find 

significant differences between sleep states. 

 

Regarding the comparison between newborns and one month infants within the same 

sleep state, only time domain parameters computed on RR series show significant 

differences while parameters extracted from respiratory signal show a non-significant 

decreasing trend with age.  

RR mean decreases from birth to one month of age in both active and quiet sleep. 

This counterintuitive behavior has been reported by some studies highlighting the 

HR increase from birth to one month and then progressively decrease, with a stabilization at 

six months of age. HRV, SDNN and RMSSD decrease when comparing newborns and one 

month infants within the same sleep state [70]. 

Parameters computed from respiration do not show any change when comparing 

populations at different time points. This behavior shows the slower maturation and 

adaptation of respiratory system in term of development of both physical structures and 

control mechanisms.  
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4.2 Sample Entropy and Quadratic Sample Entropy 

The univariate entropy has been computed on RR series by means of Sample Entropy 

(SampEn) and Quadratic Sample Entropy (QSE), in order to extrapolate information 

regarding complexity of the HR signal.  

As described in literature, entropy is a measure of complexity that might help to 

highlight differences between populations such as healthy versus pathological subjects [36], 

[72].  

As reported in Materials and Methods session, 300-beat segments are considered in 

order to achieve a reliable estimation, not affected by the segment length. 

The use of these methods allows to explore HRV signals on a beat-to-beat scale, 

being the templates employed by SampEn and QSE related to embedding dimensions m=1, 

2, 3.  

Regulations occurring at this scale can be linked with vagus nerve activity, which 

change HR substantially within one cardiac cycle.  

As a general consideration time domain parameters show a higher variability in AS 

rather than QS, on the other hand the complexity registered by SampEn and QSE is higher 

in QS. An entropy increase in QS with respect to AS has been found for both SampEn and 

QSE despite the embedding dimension, confirming the predominance of parasympathetic 

control in QS [51].  

As a matter of fact, even previous studies have proposed that a simplification of HR 

dynamics and thus a lowering in entropy values, might follow a parasympathetic withdrawal 

and sympathetic activation [33].  

These results also agree with previous results by Pincus et al. [36],, who found higher 

values of approximated entropy (ApEn) in QS with respect to AS, and with another measure 

of complexity based on Mutual Information, AIF [73]. 

 

Regarding the age evolution of both entropy estimators no differences are found 

when comparing newborns and one month infants. This result is mainly attributed to the 

univariate investigation performed by measurements based on HR only.  

Time domain parameters such as RR mean and RR IQR are successful in detecting 

HR changes based on mean and standard deviation but it is important to stress that this 

evolution does not necessarily imply changes in term of complexity.  
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From a methodological point of view, entropy measures tend to be influenced by the 

choice of the values for parameters r, m, N, as previously reported [35], [36].  

In this work, the consistency of entropy measures can be observed, independently 

from the parameter choice. As a matter of fact, parameter m did not influence the results.  

It is important to highlight that same analysis have been performed considering 

segments of length equal 100 beats and 200 beats. Obtained results are comparable with 

what reported for 300-beat length segments, this results shows the consistence of entropy 

estimation and their reliability in detecting complexity in presence of short records.  

 

4.3 Transfer Entropy 

Transfer entropy is a bivariate entropy estimator, which can be employed to assess 

the information flow between two time series. In this work the considered signals are the HR 

and respiratory signal. TE is a measure of predictability and complexity. In this analysis 

when considering the direction 1→2, TE quantifies the improvement in predicting the future 

of signal 2 when the prediction takes into consideration not only the past of signal 2 but also 

information from the past of signal [49]. 

 

It is possible to investigate differences in term of TE when AS and QS are compared 

within the same direction of information flow. Considering newborn population, an increase 

in TE from AS to QS can be seen both in RR→RESP and RESP→RR direction. The increase 

is more pronounced in QS than AS: QS can be seen as condition in which the 

cardiorespiratory coupling is more evident and the influence of RR over respiration and vice 

versa is noticeable. These findings suggest that cardio-respiratory interactions in QS transfer 

more information than in AS in healthy infants, as confirmed by Frasch et al [73].  

 

Moreover, the main direction of the information flow when considering RR→RESP 

and RESP→RR within the same sleep state is from respiration to HR in QS, while in AS 

this not clearly recognizable.  

Given that breathing in QS is slower and more regular, it potentially allows a more 

stable effect/relationship with HR.  
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The linear contribution of this relationship could be described in term of Respiratory 

Sinus Arrhythmia (RSA) phenomenon, that is the modulation of HR occurring during a 

breathing cycle. Giving the fact that respiration modulates HR, the past of respiratory signal 

is very informative in predicting the evolution of RR series because the effects of RSA 

modulation are seen on HR at a slightly delayed time scale. RSA is capable of explaining 

the linear aspect of this interaction only, it is important to underline that TE accounts for 

both linear and nonlinear interactions. 

 

The analysis performed on one month cohort shows analogous results of the ones 

obtained considering newborns.  

An age dependent evolution in terms of information flow happens only in QS for 

both RR→RESP and RESP→RR directions. AS is per se a state of lower coupling between 

HR and respiration and changes in TE are not dramatically affected by age. A bivariate and 

bidirectional approach to investigate entropy is capable of explaining age dependent 

evolutions those are instead more difficult to be extracted when a univariate entropy analysis 

is performed, such as the results obtained with SampEn and QSE. 

 

TE analysis has provided an interesting insight in term of quantification of interaction 

and directionality but some questions are still in need to be addressed.  

One limitation of this study is that the complexity of HR and respiration interaction 

operates on different time scales, which are not set a priori.  

Thus, different rates of information production and exchange between length scales 

might affect the rate of information transfer, and consequently the values of TE obtained. 

This issue can be addressed with further analysis, including TE estimation on signals 

with delays.  

TE method of estimating entropy does not make any assumption about the 

interactions between subsystem, it would be interesting to separate linear and nonlinear 

contributions to pinpoint the prevalent working regime between the cardiac and respiratory 

systems.  
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4.4 Phase synchronization 

Phase synchronization analysis allows quantifying the cardiorespiratory interaction 

between the cardiac and respiratory systems by means of oscillators’ phase analysis.  

 

The comparison can be performed considering AS versus QS within the newborn 

cohort. A significant increase in synchronization in QS is noticeable and in agreement with 

previous studies, which established that sleep state is a relevant aspect for cardio-respiratory 

synchronization, which occurs more frequently in QS. The above-mentioned increase is in 

term of both percentage of synchronization and duration of synchronization, considering a 

single breathing cycle or two breathing cycles.  

It is important to highlight that the increase in synchronization is minor when two 

breathing cycles are considered, this is probably related to a more long term synchronization, 

a condition that is more difficult to be fulfilled over multiple breaths [69].  

 

When one month population is analyzed, comparable trend of increase in 

synchronization are found. It is important to underline that in this case, the increase in 

synchronization is greater when comparing AS versus QS. It is possible to state that a more 

evident separation of the two sleep states in term of phase coupling is recognizable.  

 

When age related analysis is performed, differences are found when considering the 

percentage of synchronization, whereas no differences are found in term of duration of 

synchronization. Focusing on synchronization occurrence, increasing trends are found in QS 

for both a single and two breathing cycles at different time points. This result is coherent 

with what previously found in time domain parameters and TE, reporting an evolution with 

age in QS only.  

Given the result that one month infants percentage of synchronization is increasing 

in QS while the duration stays stable with respect to newborns, it is possible to assess that 

QS at one month is characterized by an increased number of coupling epochs with respect 

to QS in newborns. This conclusion is confirmed by the work of many authors reporting an 

increase in synchronization with age and a prevalence in synchronization in QS dependent 

on age [63].  
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The synchronization analysis on subjects with at least one AS segment and one QS 

segment during the 10-minute baseline shows a consistent trend of synchronization increase 

in QS for both newborns and one months despite the number of breathing cycles. 

The slope of the synchronization increase from AS to QS appears to be independent 

from the percentage of synchronization in AS. This result may indicate that the increase in 

synchronization related to sleep state is an intrinsic property of the cardiorespiratory system 

and its investigation on a larger scale is needed in order to correlate its absence to SIDS risk.  

 

The results obtain in this work regarding phase synchronization do present coupling 

as the sum of various ratios of n:m heartbeats and breathing cycles. A further analysis 

investigates the changes in synchronization when specific ratios are considered. It is 

important to stress that the mean HR increases from birth to one month of age as reported in 

time domain analysis [70]. This counter intuitive behavior is also shown by phase 

synchronization analysis where the occurrence of 3:1 ratio is more recurrent than 4:1 for 

newborns and vice versa for one month infants, despite the sleep state.  

Thus, it is of particular interest to note a shift in the typical cardiorespiratory 

synchronization ratio when passing from a low risk period (birth) to a high risk one (2-4 

months of age). 

 

4.5 Directionality Index 

Directionality index (DI) analysis performs a quantification of the causal 

directionality between HR and respiration similarly to Transfer Entropy.  

This estimator is capable of assessing directionality by means of the phase analysis 

of the two considered signal, differently from TE that estimates probability in term of joint 

distribution of HR and respiration.  

 

The analysis of DI and breathing frequency performed on newborns, comparing AS 

versus QS, shows slower breathing frequencies associated with QS and higher breathing 

frequencies with AS. QS is also characterized by a prevalence of RESP→RR directionality 

while AS exhibit no clear directionality of interaction. These results are similar with what 

found for TE: respiration is the main driver in QS.  
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On the other hand, the higher breathing frequencies associated with AS are no more 

capable of modulating the heart rate and the directionality shifts on the opposite direction 

(RR→RESP) or, to an absence of interaction [69]. 

 

The analogous analysis has been performed on one month infants. In this case, results 

are similar with what found for newborns.  

 

In this work, differences between AS and QS in term of directionality have been 

found for both newborns and one month infants. This result is in contrast with other authors 

reporting the absence of significant differences between sleep states within the same age. 

The difference found when comparing AS versus QS is in agreement with results obtain in 

this work about TE and phase synchronization analysis. The hypothesis of two working 

regime in AS and QS can be seen in terms of both synchronization and directionality as 

hypothesizes by many authors [23], [74].  

 

Age-related analysis shows no clear evolution in term of directionality of interaction 

when newborns and one months are compared within the same sleep state at different time 

points.  

Despite the lack of significance it is possible to observe a slightly decrease of DI in 

AS, this trend is consistent with what found in [64] highlighting a decrease of DI with age, 

from birth up to six month of age when the directionality is reported to settle to a univocal 

direction: RESP→RR in both AS and QS.  

 

The analysis of DI based on breathing frequency only, regardless sleep state, provides 

a confirmation of results by Rosenblum et al. [65], stating that respiratory frequencies of < 

0.6 Hz are associated with a unidirectional interaction from RESP→RR.  

On the contrary, respiratory frequencies ≥ 0.6 Hz exhibit the absence of a dominating 

directionality and interaction becomes nearly symmetrical. The mechanism for the latter 

condition may be explained by the low-pass behavior of the vagal-atrial transmission 

dynamics.  

The dynamics include the release of acetylcholine from the nerve endings, its 

diffusion across the synaptic cleft, the action on sinoatrial pacemaker cells, the dynamics of 
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signal transduction in the pacemaker cells, and the degradation and reuptake processes of 

acetylcholine. Within these hypothesis, at physiological conditions, at higher breathing rates, 

the unidirectional working regime is abolished [64], [65].  

These results are consistent in both newborns and one month infants populations, 

without changes related to age.  

 

4.6 Conclusions 

This work analyses has been performed on two databases composed of 151 newborns 

and 33 one month infants.  

ECG and respiratory signals have been investigated by means of linear and nonlinear 

methods.  

 

Time domain parameters constitutes a solid and established gold standard approach 

capable of highlighting sleep state and age differences when the two populations are 

compared. Despite a good discrimination capability, time domain parameters benefit from 

the integration with nonlinear parameters such as SampEn, QSE, TE, phase locking and DI 

to better describe the interrelationship between the cardiorespiratory circuit.  

These newer descriptors are capable of addressing nonlinear phenomena of 

interaction that could lead to a better understanding of the controlling mechanism and a clear 

quantification of interaction.  

It is crucial to fully characterize the physiological cardiorespiratory behavior with a 

joint linear and nonlinear analysis, in order to investigate its changes in pathological 

conditions. 

 

Within this effort in characterizing the cardiorespiratory interrelationship, TE 

investigation performed in this work may be useful in revealing the causal relationship 

between subsystems.  

The cardiorespiratory system of both newborns and one months may be modeled as 

closed-loop scheme with two different working regimes. In AS the HR and respiration are 

slightly perturbing each other so that a clear directionality cannot be seen, this result is 

coherent with the hypothesis of cardiac and respiration systems as two weakly coupled 

oscillators.  
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In QS instead, respiration becomes the main driver and its influence is clearly seen 

in the closed loop between HR and respiration. In this case, RSA can account for the linear 

contribution of this interaction, on the other hand cardiorespiratory synchronization takes 

into account the nonlinear oscillators’ phase relationship.  

If phase locking condition takes place, the interaction is transient and related to 

oscillators’ phase, this behavior is in agreement with chaos theory regarding the weakly 

interacting systems.  

 

Some of the most recent theories about SIDS started attributing the lack of 

cardiorespiratory control as the main driver of SIDS risk. In particular, the work by Bergman 

[23] addresses the interesting question about the role of supine sleep in preventing SIDS.  

It has been reported by epidemiological investigation, as stated in the Introduction of 

this work, that the Back to Sleep campaign dramatically reduced the SIDS occurrence, 

indicating the supine position reduces SIDS risk with respect to prone sleep position.  

As reported by many authors [1], [31] supine sleep is characterized by an increased 

occurrence of AS epochs, a reduced occurrence of QS, more frequent arousal, and more 

fragmented sleep. On the other hand, prone position reduces the occurrence of arousal, and 

it is characterized by more regular and pacified breathing patterns. 

In light of these issues, many authors started to investigate the physiological 

determinants those make supine position capable to reduce SIDS occurrence. 

It has been hypothesized that AS and QS are two conditions those differs in term of 

cardiorespiratory synchronization and the continuous alternation between lower and higher 

coupling condition is capable of stressing the ANS, making it more ready to face several 

challenges.  

It has been also reported that the state change from AS to QS increases the occurrence 

of sighs and gaps, two mechanisms those are crucial in order to overcome cardiorespiratory 

challenges and the main drivers of the autoresuscitation mechanism [69].  

 

The results obtained in this work could be interpreted with this hypothesis of ANS 

being the stressor of itself.  
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In this study, the healthy and full-term subjects analyzed were lying supine and their 

sleep was characterized by both AS and QS with a prevalence of AS for newborns. 

AS and QS have been defined as two different sleep states with different 

characteristics in term of synchronization and also directionality. The alternation between 

these two sleep states constitutes a constant stressing condition that is probably capable of 

stimulating the ANS development. 

 

 Regarding the sleep state analysis, this work has highlighted QS as a state 

characterized by a clear preferential directionality of information flow and a net increase in 

synchronization with respect to AS. On the contrary, AS is defined as a state of low coupling 

between the cardiac and the respiratory system, differences between subjects are minor and 

often to be attributed to the quality of the signals.  

These peculiar findings suggest to focus on QS rather than AS when analyzing 

cardiorespiratory coupling in infants. It should be emphasized that along with the analysis 

of QS, the sleep state patterns need to be investigated, in order to achieve a complete 

description of the cardiorespiratory interrelationship.  

 

4.7 Further developments and future work 

Despite the interesting results many questions are still to be addressed.  

In order to deeper investigate the ANS evolution in term of both synchronization and 

directionality more time points are needed, the ideal situation would be tracking the ANS 

development from birth to one year of age to fully characterize the physiological behavior.  

 

Once the quantification of interaction is established, an investigation on early and 

late preterm infants could help investigating the difference in term of ANS development on 

subjects born preterm.  

 

The analysis on SIDS patients could highlight differences in coupling and 

synchronization and its quantification could open novel view about newborn state 

monitoring and care path by means of a noninvasive and reliable investigations. 
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An appealing prospective for future work is the analysis of the massive PASS 

database (available at CUMC), that comprises approximately 12,000 pregnant women from 

the United States and South Africa. It includes recordings of maternal, fetal, and neonatal 

signals, investigating pregnant women conditions’ and following the development of their 

babies through pregnancy and the infants’ first year of life. It is important to highlight that 

some infants included in the database died of SIDS. 

The mission of the PASS Network is to perform community-linked studies to 

investigate the role of prenatal alcohol exposure in the risk for Sudden Infant Death 

Syndrome (SIDS) and adverse pregnancy outcomes, such as Stillbirth and Fetal Alcohol 

Spectrum Disorders (FASD). 

A data-mining approach is required in order to discover hidden patterns in a such 

large dataset, involving methods of artificial intelligence and machine learning. It would be 

interesting to investigate which parameters and indexes are more capable of discriminating 

between healthy subjects and SIDS victims and the contribution of cardiorespiratory 

coupling in describing these differences. 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Machine_learning
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