
POLITECNICO DI MILANO

SCHOOL OF INDUSTRIAL AND INFORMATION ENGINEERING
Degree Course of Master Of Science in Mechanical Engineering

Development of a 3 D.o.F. Platform for Additive
Manufacturing based on MIM Technique

Thesis Supervisor

Prof. Ing. Hermes Giberti

Thesis by

Kevin Castelli
id: 832716

Academic year 2015-2016

To study and at times practice what one has learned, is that not a pleasure?

Confucius

v

Acknowledgements

I’d like to thank prof.Giberti for giving me the opportunity to work on a innovative

project where I could prove the knowledge and ability learned in a life time of studies.

He allowed this paper to be my own work, but steered me in the right direction when-

ever he thought I needed it.

I take the chance to thank also PhD student Luca Sbaglia that was more than helpful

to enlighten the project so far and to where it was heading for.

I’d like to express my very profound gratitude to my family for the support in these

years. This accomplishment would not have been possible without them.

Many thanks to you all.

Milan, April 2017

Contents

1 INTRODUCTION 1

1.1 Additive Manufacturing . 1

1.2 CNC machine . 6

1.3 EFESTO project . 7

1.4 Starting point of the thesis work . 8

1.4.1 Linear Delta robot [7] [8] . 8

1.4.2 Motor-transmission system [8] . 8

1.4.3 realization [8] . 9

1.4.4 Extrusion system . 9

1.4.5 Control unit [8][10] . 11

1.4.6 PLC and motion programming [10] 11

1.4.7 PID tuning [10] . 13

1.4.8 Specifics [9] . 14

1.5 Thesis objectives . 14

2 MECHANICAL SYSTEM DEVELOPMENT 15

2.1 Objective and Overview . 15

2.2 Calibration process . 16

2.3 Structure modifications . 17

2.4 Adjustable plate . 20

2.4.1 Solution A . 20

2.4.2 Solution B . 21

2.4.3 Used solution . 22

2.5 Linear Delta calibration . 27

2.5.1 Linear Delta Kinematics . 27

2.5.2 X-Z behavior . 31

2.5.3 Calibrating tool . 35

3 CONTROL SYSTEM (HARDWARE) 39

3.1 Objective and Overview . 39

3.2 Components and their function . 40

3.3 Electrical layout . 42

3.4 First layout concept . 44

vii

viii CONTENTS

3.5 Cabinet realization . 45

3.6 Heated bed . 46

4 CONTROL SYSTEM (PROGRAMMING) 49

4.1 Objective and Overview . 49

4.1.1 Control outline . 50

4.2 Preliminary information . 51

4.2.1 Synchronization . 51

4.2.2 Motion laws . 52

4.3 G-code reader . 53

4.3.1 G-code introduction . 53

4.3.2 Repetier-HostRO G-code . 54

4.3.3 Algorithm variables . 56

4.3.4 Algorithm outline . 56

4.3.5 MatlabRO scripts . 57

4.3.6 G-code reader consideration . 61

4.4 Data processing . 62

4.4.1 Intermediate point generation 62

4.4.2 4t determination . 64

4.4.3 Motion law assignment . 65

4.5 CNC emulator . 65

4.5.1 Velocity-Displacement Cam file 66

4.5.2 Memory allocation . 67

4.5.3 Algorithm . 67

4.5.4 Additional consideration . 70

4.6 Manual control . 71

4.6.1 Memory allocation . 72

4.6.2 Inverse kinematics for the Motion software 72

4.6.3 Direct kinematics for the Motion software 73

4.6.4 Data processing and on-line control 74

4.7 HMI and PLC programming . 77

5 PRINTING and EXPERIMENTAL RESULTS 79

5.1 Objective and Overview . 79

5.2 Trajectory generation . 79

5.3 Square generation . 80

5.4 Interfilament gap script . 81

5.5 Cube . 83

5.6 Oblique parallelepiped . 83

5.7 Generic object . 84

5.8 Printing process outline . 84

5.8.1 G-code . 84

CONTENTS ix

5.8.2 Manual input . 86

5.8.3 Extrusion system preparation . 87

Conclusion 89

Appendices 91

A Technical sheets and drawings 93

A.1 Mitsubishi HG-KR43B electrical motor technical sheet 94

A.2 Bonfiglioli TR 080 1 10 LOW 50C1 CD14 S5 OR SB KE reducer 96

A.3 Rollon ELM 80-SP . 99

A.4 adjustable plate . 100

A.5 electrical layout for the cabinet . 103

A.6 electrical mounting specification . 107

A.7 bolt selection for the structure . 108

B Matlab scripts 109

B.1 robot behavior analysis . 109

B.1.1 MAIN X Z . 109

B.1.2 MAIN X Z fl f(l) . 110

B.1.3 MAIN X Z 3 f(Rb and/or s) . 111

B.2 tuning tot main . 112

B.3 G-code reader . 115

B.3.1 MAIN Gcode . 115

B.3.2 G code reader1 . 119

B.3.3 G code layer . 125

B.3.4 G code layer rep (Slic3r) . 128

B.3.5 G code inter points . 131

B.3.6 G code time1 (data processing) 132

B.3.7 G code slicer (agglomeration) . 133

B.3.8 save2melsoft1 (saving function) 134

B.3.9 save2txt gcode (saving function) 136

B.3.10 G code plot initial . 137

B.3.11 layer reducer . 138

B.4 square (input equation) . 138

B.4.1 MAIN SQUARE . 138

B.4.2 square gen (square generation) 142

B.4.3 shape8 gen (eight shape generation) 143

B.4.4 square mot law adim cv (motion law definition) 144

B.4.5 square mot law assignment . 145

B.4.6 save menu . 146

B.4.7 new cam1 . 147

B.4.8 extruder vel (velocity of the extruder punch) 148

x CONTENTS

B.4.9 G code anaimation1 . 148

B.4.10 d dep check . 149

B.4.11 line close . 150

List of Figures

1.1 Stereolithography with and without DMD 2

1.2 Selective Laser Sintering and S.L. Melting 3

1.3 AM process . 4

1.4 Geometrical precision . 5

1.5 first draft of the PKM . 7

1.6 initial PKM realization . 7

1.7 motor-transmission system . 8

1.8 universal joint . 9

1.9 link . 10

1.10 extrusion subsystem . 10

1.11 Ladder Diagram example . 12

1.12 Sequential Function Chart (SFC) example 12

2.1 main source of variation theoretical-real system 18

2.2 Spherical joint and cup spring . 18

2.3 final realization of the framework . 19

2.4 solution A . 22

2.5 solution B . 22

2.6 first draft to allow the inscription of a 22x22 cm square to accommodate

at least a heated bed of printing area of 20x20 cm 22

2.7 graphical solution to the maximum rotation problem for the case with

e=136.25 mm . 23

2.8 variation of the l0 as a function of k for a 3mm plate with same geo-

metrical and material property of the one already existing, β = 0.3 and

hmax = 10mm and a weight of 7 kg acting on a single screw 24

2.9 adjustable plate realization . 26

2.10 Linear Delta model . 28

2.11 (Left)X-Z behavior: dz as a function of lx given a trapezoidal velocity profile (c=1/3);

l=0.595; Rb=0.198; s=0.45651; . 32

2.12 (Right)X-Z behavior: dz as a function of lx given a trapezoidal velocity profile(c=1/3)

starting from X=8mm; l=0.595; Rb=0.198; s=0.45651; 32

xi

xii LIST OF FIGURES

2.13 X-Z behavior: dz as a function of different motion law. Line is associated with a

trapezoidal velocity profile (c=1/3), circle with a constant velocity and asterisk with

a cycloidal motion law (c=1/3) . 32

2.14 (Left) X-Z behavior: dz as a function of different,but equal, real link length given a

displacement (X=100mm) evaluated with initial geometric setting 33

2.15 (Right)X-Z behavior: dz as a function of random different real link length given a

displacement (X=100mm) evaluated with initial geometric setting 33

2.16 X-Z behavior: test of the numerically solved direct kinematic problem

as in Figure 2.11 . 33

2.17 X-Z behavior: trajectory followed for s=[0.4561 0.4565 0.4570] other parameters are

left as previously; the motion law is trapezoidal velocity profile (c=1/3) 34

2.18 X-Z behavior: trajectory followed for Rb=[0.1498 0.1500 0.1501] other parameters are

left as standard; the motion law is trapezoidal velocity profile (c=1/3) 34

2.19 X-Z behavior: trajectory followed for s=[0.4561 0.4565 0.4570] other parameters are

left as standard; the motion law is trapezoidal velocity profile (c=1/3) and different

travel values . 34

2.20 X-Z behavior: trajectory followed for Rb=[0.1498 0.1500 0.1501] other parameters are

left as standard; the motion law is trapezoidal velocity profile (c=1/3) and different

travel values . 34

2.21 three different pseudo eight path examples 35

2.22 final result of tuning process simulation in the x-y plane and in space . 38

2.23 final result of tuning process simulation in the x-z and x-y plane 38

2.24 solution with initial Rp . 38

2.25 case with initial length, but different Rp 38

3.1 electric component outline of the two initial subsystem 40

3.2 simplified electric layout . 42

3.3 first draft . 45

3.4 first draft . 45

3.5 final result of the electric cabinet . 46

3.6 heated bed and its placing spot . 47

4.1 control outline . 50

4.2 G-code (CuraRO Engine) example generated by Repetier-HostRO 55

4.3 slic3r G-code variation . 56

4.4 slic3r G-code first lines example . 56

4.5 example of drawing in Matlab of the G-code 59

4.6 result of the saving function to create back a G-code file (but as a .txt);

the second row states the layers saved in that file; the third is the overall

number of points containing actual data 61

LIST OF FIGURES xiii

4.7 example: result of the reading process: 30x30mm external-20x20mm;

sliced with Cura; 100% infill; obtained by feeding to the direct kinematics

equations (to simulate machine behavior) the absolute position of the

three linear guides . 63

4.8 example: result of the reading process: 30x30mm external-20x20mm;

sliced with Slicer; 40% infill;obtained by feeding to the direct kinematics

equations (to simulate machine behavior) the absolute position of the

three linear guides . 63

4.9 trapezoidal velocity profile. in our case:A=1200000 [mm/min2] and D=2A 64

4.10 example of the velocity-displacement cam data format imported inside

the Motion software . 67

4.11 main program . 69

4.12 point by point . 69

4.13 vext = vmean vs vext 6= vmean for 4x4 square with 3.1x3.1 [cm] inner hole,

geometrical initial setting and vext = 2.5 mm/s 70

4.14 variation of the diameter deposited: motion law mismatch. dnozzle =

0.9mm . 71

4.15 variation of the diameter deposited: motion law match. dnozzle = 0.9mm 71

4.16 inverse kinematics for the motion software 73

4.17 HMI layout for the manual control . 74

4.18 implementation of the direct kinematics in the motion software 75

4.19 Continuous mode solution test . 76

4.20 HMI and PLC programming example 77

4.21 PLC working program example . 78

4.22 HMI working program example . 78

5.1 square with A=40mm, B=31mm, r=0,45mm 80

5.2 first printed result of an hollow square 80

5.3 example of line breaking from one layer to the next: stop 82

5.4 example of line breaking from one layer to the next: rapid movement . . 82

5.5 example of line breaking from one layer to the next: restart 82

5.6 interfilament gap script example with different gap values 83

5.7 rectangular layer of 90x25 mm with interfilament of 0.9mm 83

5.8 130x130mm square with interfilament of 10mm 83

5.9 parallelepiped of 65x11x11 mm: from CAD to G-code reader output . . 84

A.1 PLC specification . 107

A.2 servo amplifier specification . 107

xiv LIST OF FIGURES

Abstract

In the Mechanical Department of Politecnico di Milano a project has started to develop

a new 3D printer based on a MIM, metal injection molding, technology aiming to

print metal objects with different mechanical properties and with lower costs than ones

printed by usual techniques.

This master thesis continuous on an already started project where an automated

machine for 3D printing has been designed and built based on a linear delta robot with

3 D.o.F., degrees of freedom, and a MIM extruder. The aim of the work is to develop

a machine capable to provide a complete set of functionalities as usual 3D printers. In

order to permit the correct study and development of this new 3D printing technology

the machine must be able to print from a G-code, typical command language used for

automated machines, allow a generic movement of the system, and allow the control

and regulation of specific technological parameters. To reach these goals a study and a

development of the mechanic and control system are done. Manufacturing tolerances

on mechanical components and imprecision during assembly can lead to numerical mis-

estimation of the geometrical parameters used in the kinematic equations of the control

system. Thus a calibration method is developed to obtain the actual measures to ensure

the correct positioning of the robot. The robot structure needs to be stiffened and an

adjustable plate is designed to ensure perpendicularity of the moving plate with the axis

of the extruder nozzle. A control scheme with its electrical and electronics components

is developed with the aim to power the system, measure correctly some key values of

the machine and control it through the use of a Mitsubishi®PLC, programmable logic

controller, and a motion control unit. This system is fit inside an electrical cabinet. The

control programs are developed using Matlab®and native Mitsubishi®software able to

analyze the object to print, either from CAD software (parsing effectively a G-code)

or user generated equations, to assign a given motion law and to execute them on the

final system. It’s presented a CNC emulator capable to provide these functionalities

taking into account the constraints of the Mitsubishi®control system as for instance

the management of the internal memory. A manual control is also developed for a

generic use of the machine by an operator.

Key world: parallel kinematics robot, linear delta, adjustable plate, calibrating

procedure, CNC emulator, control system

xv

Estratto

L’Additive Manufacturing, AM, é una tecnologia che sta ricevendo molta attenzione

dai media e si sta diffondendo nel campo scientifico e industriale. Molte ricerche sono

finalizzate alla creazione di componenti stampati a fini pratici e non solo per la realiz-

zazione di prototipi, ancora oggi una delle principali applicazioni di questa tecnologia.

La realizzazione di oggetti metallici é solitamente ottenuta per mezzo di laser o di EBM

(electron beam melting). Il Dipartimento di Meccanica del Politecnico di Milano ha

iniziato da circa due anni un progetto per sviluppare una nuova stampante 3D basata

sulla tecnologia MIM (metal injection molding) al fine di stampare oggetti metallici

con diverse proprietà meccaniche e a costi ridotti rispetto alle altre metodologie.

Questa tesi continua un progetto già iniziato dove una macchina automatica per

stampaggio 3D é stata progettata e realizzata usando un linear delta robot a 3 gdl (gradi

di libertà) e un estrusore MIM. Il sistema di estrusione é in grado di depositare un fila-

mento, composto da metallo e un legante, su una piastra mobile mossa dal linear delta.

Lo scopo di questo lavoro é di sviluppare un macchina in grado di offrire le medesime

funzionalità di una stampante 3D integrando i due sottosistemi inizialmente separati,

il linear delta robot e l’estrusore. Essendo la macchina una piattaforma di studio di

questa nuova tecnologia AM, é importante fornire il controllo di specifici parametri

tecnologici che caratterizzano il processo di stampa, inoltre la macchina deve essere

integrata con i software già esistenti utilizzati dalle stampanti 3D, come ad esempio i

software di slicing. È inoltre richiesto un sistema di controllo in grado di coordinare

sia la piattaforma mobile che l’estrusore al fine di stampare un pezzo a partire da un

G-code, uno dei linguaggi di comando più usato per le macchine automatiche, o da

una qualsiasi traiettoria generata a scopi di studio assicurando allo stesso tempo il

raggiungimento dei parametri precedentemente menzionati per garantire test affidabili

sulla tecnologia. Il lavoro é suddiviso nello studio e sviluppo del sistema meccanico

e di controllo della macchina. Tolleranze di realizzazione dei componenti meccanici e

imprecisioni durante il montaggio possono portare a una differenza tra i valori effettivi

di tali componenti e i valori numerici utilizzati dal sistema di controllo nelle equazioni

della cinematica inversa. Un metodo di calibrazione é stato sviluppato per ottenere i

valori reali dal momento che sono fondamentali per garantire il corretto posizionamento

del robot. Questo strumento si basa sul confronto fra la posizione misurata e quella

ottenuta tramite le equazioni cinematiche del sistema. I parametri cinematici del sis-

tema vengono fatti variare iterativamente confrontando la posizione simulata del robot

xvii

xviii Estratto

con quella effettivamente misurata. Per far ciò, la struttura del robot deve essere ir-

rigidita e la piastra mobile del linear delta deve essere perpendicolare all’asse dell’ugello

dell’estrusore, condizione ottenuta tramite la progettazione di un piatto regolabile. Lo

schema di controllo con i suoi componenti elettrici ed elettronici é stato sviluppato allo

scopo di alimentare il sistema, misurare correttamente alcune caratteristiche chiave

della macchina e controllarle attraverso l’uso di un PLC, programmable logic con-

troller, e una unità di controllo di movimento (Motion) scelti dalla casa Mitsubishi®.

L’intero sistema é progettato per essere collocato all’interno di un armadietto elettrico.

I programmi di controllo sono stati sviluppati per ottenere una macchina adatta a

stampare oggetti dalla forma generica e realizzati attraverso software CAD e tradotti

in file STL, il formato solitamente utilizzato dai software di slicing per stampa 3D. Essi

sono implementati sia in Matlab®sia nei software nativi di Mitsubishi®in modo da

poter stampare un pezzo secondo logiche diverse a seconda delle necessità dei test da

realizzare. Si ha quindi la realizzazione di un interprete e di un interpolatore, compo-

nenti base di una macchina CNC (computer numerical control), necessari per leggere

correttamente l’informazione contenuta in un file G-code ed effettuare la lavorazione

del pezzo. Viene presentato un emulatore CNC in quanto in grado di fornire queste

funzionalità tenendo conto delle limitazioni del sistema di controllo Mitsubishi®, come

ad esempio le limitazioni di memoria interna. È stato inoltre sviluppato un controllo

manuale per offrire la possibilità di effettuare movimentazioni generiche all’operatore.

Parole chiave: robot a cinematica parallela , linear delta, piatto regolabile,

calibrazione, emulatore CNC, sistema di controllo

Chapter 1

INTRODUCTION

In this chapter, the Efesto project, to which this thesis work is related, is presented

starting from the description of the Addittive Manufacturing state of art, the descrip-

tion of a generic CNC machine design, the Efesto project itself and its state at the

beginning of this work. At the end are listed the main goals of this work.

1.1 Additive Manufacturing

Additive Manufacturing is defined by ASTM F42 (American Society for Testing and

Materials) as: ”process of joining materials to make objects from three-dimensional

(3D) model data, usually layer upon layer, as opposed to subtractive manufacturing

methodologies”. Although many other definitions exist, the main philosophy of the

technology is perfectly embedded.

It was borne in the 1980s, developed by the MIT (Massachusetts Institute of Tech-

nology) and sold by 3D Systems that presented the first machine of this kind at the

Detroit Autofact show in november 1987 [1].

The success and wide spreading of AM machines is due to affirmation of rapid proto-

typing during the design process. This kind of machines offers the possibility to sees

and touch the developing object as it’s being designed. The technology opens up a new

field that needs to be charted, since it would be possible to reconstruct damaged goods

or directly produce it. For now, it’s limited to custom, small size batch (even one single

component). If from one side it offers a reduced lead time compared to other proto-

typing technologies and small engineering time (variation in the CAD file), from the

other not all the configuration or object could be realized (although many geometries

can not be manufactured with standard technologies).

Now a days, AM machines are widely used also by hobbyist since the diffusion of cheap

and/or open source Cartesian plastic FDM machines.

A thorough classification of the different techniques adopting the AM could be harsh

to conduct and this is not the intention of this chapter, if interested refer to a text

in the bibliography. Here only a brief overview of the AM universe will be presented

according to process.

1

2 1.1. ADDITIVE MANUFACTURING

Figure 1.1: Stereolithography with and without DMD

Stereolithography:

It was the first commercialized AM technique using a liquid material (photopolymers)

that undergoes a chemical transformation upon interaction with UV light. A platform

is placed inside a tank containing the liquid polymer that determines the new layer

height. The process begins with the adjusting of the bed in order that a thin film

between it and the atmosphere is created. Then a laser system is used to solidify only

the interested partition of the film. Completed a layer, the platforms moves to create

a new film upon the one just induced. Since standard laser optics interacts with the

polymer only in one point at a time making the process quite lasting, DMD (digital

micromirror device) has proven to realize a single layer simultaneously (mask projection

approach).

Selective Laser Sintering and S.L. Melting:

It’s a technique that uses high power laser (C02 laser) to fuse small particles of plastic,

glass or metal. SLM uses even higher power laser resulting in a better final result

requiring less post printing operation, but the process is more demanding, errors could

leads to residual stresses and strains. The printing procedure is not that much different

from stereolithography as can be seen in the Figure 1.2.

Fused deposition modelling (FDM):

FDM was invented and sold by Stratasys. It’s an extrusion-based process in which

the material contained in a reservoir is forced out through a nozzle when pressure is

applied creating the final object. This is the technology behind the majority of the 3d

printers available for private users since they do not require laser system or particular

operating environments. The material available are mainly polymeric (ABS and PLA).

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Selective Laser Sintering and S.L. Melting

This technique requires the material to reach a temperature a little higher than fusion

at the nozzle that solidifies once in contact with air.

AM works with different types of material as it can be deduced from the previous

descriptions. Here are the main material characteristics:

polymers: these materials are made up of molecules that repeats the same structural

chain. The main ones used are nylon, photopolymers, ABS, PLA. Nylon is used

especially with laser based techniques for its melting and joining properties. ABS is

the most spread material for FDM. Photopolymers reacts if threated with laser with

specific wave lengths.

ceramics: they can be printed by means of binder collecting their particles and, in a

next phase, it’s removed usually by heat. AM proves to be more affective with these

materials compared to standard technologies, due to their brittle and hard nature.

Direct printing has been tried, but the procedure is limited by their high melting

temperature.

metals: the main metallic materials used in 3D printers are stainless steels,

aluminum, Cr-Co and titanium. Particle size around 10-50 µm. They could be

directly or indirectly printed. Direct methods are based on melting the particles to

obtain the final object by means of laser or EBM (Electron Beam Melting); the final

objects are characterized by high mechanical properties. Indirect methods relays on

the partial melting of the metal particles or of the binder (polymer), they requires

post processing usually to remove the binder itself. It’s also possible to avoid melting

one of the two parts like in the SLA where the binder is previously bond with the

metallic powder.

4 1.1. ADDITIVE MANUFACTURING

Figure 1.3: AM process

AM process:

The AM process involves several steps (Figure 1.3) [2]:

1. CAD:

The first step is the realization of a software model that fully describes the ge-

ometry. Any CAD solid modeling software can be used, but the output must be

a 3D solid or a surface representation. Reverse engineering equipment (e.g., laser

and optical scanning) can also be used to create such representation.

2. Conversion to STL:

Every slicing software accepts the STL file format, which has become a de facto

standard, and nowadays nearly every CAD system can output such file format.

It describes the external closed surfaces of the original CAD model and forms the

basis for calculation of the slices.

3. Transfer to AM Machine and STL File Manipulation:

The STL file must be processed by a slicing software before being transferred to

the AM machine. Here, there may be some general manipulation of the file so

that it is the correct size, position, and orientation for building.

4. Machine Setup:

The AM machine must be properly set up prior to the build process. Slicing

software requires all these boundaries in order to generated the correct G-code

that the AM machine will use during build.

5. Build:

Building the part is mainly an automated process and the machine can largely

carry on without supervision. Only superficial monitoring of the machine needs

CHAPTER 1. INTRODUCTION 5

Figure 1.4: Geometrical precision

to take place at this time to ensure no errors have taken place like running out

of material, power or software glitches, etc.

6. Removal:

Once the AM machine has completed the build, the parts must be removed. This

may require interaction with the machine, which may have safety interlocks to

ensure for example that the operating temperatures are sufficiently low or that

there are no actively moving parts.

7. Post-processing:

Once removed from the machine, parts may require an amount of additional clean-

ing up before they are ready for use. Parts may be weak or present supporting

features that must be removed. This often requires time and careful, experienced

manual intervention.

FDM quality factor parameters:

It’s clear that exist several parameters that affect the superficial quality, mechani-

cal resistance and geometrical precision [4]. Defects inside the layers are impossible to

remove in post-processing, thus the realization process is very important. Parameters,

that condition the superficial roughness, are: layer thickness, material property, tem-

perature, nozzle size and other process parameters. Mechanical resistance is due to the

filling pattern, temperature profile and material characteristics. Geometrical precision

depends on which case the material is deposited during the TCP trajectory (overfill or

underfill (see Figure 1.4)) or expansion or shrinking that the filament might undergo

during extrusion and settlement on the plate.

Two filling philosophies exist and they are contour-parallel tool path and direction-

parallel (DP) tool path [5]. The first one deposits a series of profiles running parallel to

the edge obtained by the slicer. Although gives good results, the algorithm behind it

is complicated and layer shape worsen for particular geometries (multi-hollow object).

The second is the most used. DP requires the definition of the inclination angle of the

reference segment to determine the trajectory made up of parallel segments connected

with small curves. This leads to the impossibility to adopt a continuous deposition ap-

proach. Another issue is the deformation the materials undergoes due to one direction

deposition.

Additional information on AM, if required, will be presented throughout this thesis

only for clearness sake.

6 1.2. CNC MACHINE

1.2 CNC machine

For this section, please refer to [6].

Commercial 3D printers usually are CNC machine. Computerized numerical control

was developed for controlling the tool trajectory in multi-axis machines especially in

”cutting” operation (i.e. milling, turning operation) with great precision. CNC to be

exploited requires the generation of CAD model, by means of relative software, that is

then passed to a CAM software that generates the tool paths.

CNC is characterized mainly by the NCK (Numerical Control Kernel). This has two

main tasks, to read the file containing the trajectory (interpreter) and generate the

data of the motion (interpolation).

interpreter: it’s the core operation of the system because it has to correctly read

and understand the information stored in a file written with a given CNC language

(i.e. G-code). Several languages with different characteristic (flavors) exist, although

standardization allows a general unification of the language. The interpreter has to be

defined according to the CAM generated file, usually taking the majority of the design

of the system.

interpolator: it’s responsible for the generation of the axis movement from data

acquired by the interpreter and its precision reflects on the final object. Only the data

sampled interpolator for lines will be here discussed. Defined a starting position (x0,y0)

and an ending position (x1,y1), the total path (L) is:

L =
√

(x1− x0)2 + (y1− y0)2

If now a sampling time (Ts) is defined and also a feed override for the velocity, these

equations are obtained in [6] :

V = V o× feedoverride ; 4L = V Ts ; N = int(L/4 L)

4x = 4L(x1− x0)/L 4 y = 4L(y1− y0)/L

xi+1 = xi +4x yi+1 = yi +4y

The values of the incremental displacement are transfered to a FIFO (First In First

Out) buffer where they are used to assign the right acceleration-deceleration (AD)

profile. If N is not an integer, several ways are available to include the residual (r)

displacement such as split it evenly in the first r samples or simply add it to the final

movement.

Any interpolation method can be modified to occur after the AD allowing better perfor-

mances (exact execution of the path) knowing the acceleration and deceleration timing

based on the commanded feedrate, residual displacement and allowable AD value and

current velocity. This requires more computational cost.

CHAPTER 1. INTRODUCTION 7

1.3 EFESTO project

Figure 1.5: first draft of the PKM Figure 1.6: initial PKM realization

The EFeSTO1 (Extrusion of Feedstock for the manufacturing of Sintered Tiny Ob-

jects on a parallel kinematics table) project begins in the mechanical department of

Politecnico di Milano in September 2014. Its main objective is to design, build and

control a 3D printer aimed to test and study a new AM technology based on the already

existing Metal Injection Molding (MIM). This printing technique relies on the extru-

sion of metallic powder combined with a binder, that in post-processing the built object

requires to undergo a sintering process to remove the binder itself. This technique is

new and strives to create metallic items in opposition to alternative AM technologies

based on laser that are more expensive.

The AM technology consist in the deposition of the binary component filament on a

moving plate extruded from a fixed position (FDM). The extrusion system weights

around 25 kg and it’s made up by an extruder, realized by BabyplastRO and designed

for injection molding (adapted to the project with motor and nozzle), water cooling

system, pneumatic circuit and hopper. Due to its bulkiness the extrusion system is

the one rigidly connected to the ground while the plate moves, unlike commercial 3D

printers with parallel kinematics, otherwise the system would require higher power at

the motors and larger dead volume (leading to higher costs) with less precision.

It has been decided to opt for a PKM (Parallel Kinematics Machine) to increase rigid-

ity, precision and robot dynamics [3]; among those robots the combination of two was

1Efesto is the mythological god of fire, technology and metallurgy

8 1.4. STARTING POINT OF THE THESIS WORK

selected: a Linear Delta (3 translational d.o.f.) and Agile Eye (2 spherical d.o.f). This

second PKM will offer the possibility to incline the printing plate avoiding the realiza-

tion of supporting structures and reduce the step shape profile of traditional slicing.

At this stage the second robot has not been realized.

The main task is thus the starting up of a testing lab to improve this technique.

1.4 Starting point of the thesis work

1.4.1 Linear Delta robot [7] [8]

PKMs are robots with two plates (called bases) one moving and one grounded connected

by means of links. The relative movement between a base and a link is obtained by

joints guaranteeing at least one relative movement. Among the possible PKMs, the one

selected was the Linear Delta Robot a variation on the Delta Robot.

A Delta robot has three kinematics chains of the type Revolute-Revolute-Parallelogram-

Revolute (where only the first one is active) allowing the moving base three transitional

D.o.F.; the Linear version of it sees a prismatic joint in place of the first spherical joint.

This is a robot of high dynamic performances and has a vertical disposition of the

prismatic joints. This leads to these advantages: compact and ergonomic solution, the

only vertical limitation is the travel of the rails and the machine can be symmetric

(giving isotropy to the robot).

1.4.2 Motor-transmission system [8]

The system uses a MitsubishiRO HG-KR43B electric motor combined with BonfiglioliRO

TR 080 1 10 LOW 50C1 CD14 S5 OR SB KE reducer moving the RollonRO ELM

80-SP guide. See Appendix A.

Figure 1.7: motor-transmission system

CHAPTER 1. INTRODUCTION 9

1.4.3 realization [8]

Material:

The designed component are made of Aluminum alloy 6012, known as Anticorodal. It’s

light weight, corrosion proof and bears small loads.

σR[MPa] σRp0,2[MPa] E[GPa] A% 2 ρ[g=cm3] HB 3 Tf

350 320 69 10 2,75 105 580-650

Joints:

Here are the main characteristics of the Linear Delta joints:

Prismatic (active): RollonRO ELM 80-SP

Universal (passive): (see Figure 1.8) bushing SKFRO PBMF 253516 M1G1 - spherical

joint end SKFRO SA 8 E

Figure 1.8: universal joint

Links:

Links are made of two parts. The central one is a hollow tube of 30 mm in diameter,

inner diameter of 23 mm, 445 mm long. The end piece is a tapered tube featuring a

threaded hole for the spherical joint and a connecting rod for the first piece. The final

result can be seen in Figure 1.9.

1.4.4 Extrusion system

Here only the interested aspects of the extruder will be presented, for any other ad-

ditional information consult the reference thesis paper [9] . MIM is a technique char-

acterized by the extrusion of a metal powder mixed with a binder, usually a polymer.

Typically this technique is used for the creation of parts with complex geometry; they

require a subsequent step called debinding where the binder is removed leaving a piece

with a metal matrix.

2cylindrical specimen with diameter 12.5 mm
310mm sphere loaded for 30 second with 500kg

10 1.4. STARTING POINT OF THE THESIS WORK

Figure 1.9: link

Figure 1.10: extrusion subsystem; (1) plasticizing chamber, (2) extrusion chamber, (3)

blocking system

In figure 1.10, the main features of the extrusion system can be seen. The system

is made up of a plasticizing and extrusion chambers and a nozzle, all warmed up by

resistors. Temperature is achieved by means of PID control logic closing the feedback

loop on the temperature by means of thermocouples.

It’s advised to make sure that the extrusion punch is at the end, emptying the chamber

in order to allow the material to fill it. During the moving procedure from one chamber

to the other, the piston is pushed toward the actuator that is off-line by the pressure

generated.

Once the heating system is on, it’s mandatory that the cooling one is functioning as

well to avoid damaging the equipment. The pneumatic piston is used to close the nozzle

canal during the filling procedure. The plasticizing task is left to spheres and to the

temperature so a good combination of the two should be selected.

CHAPTER 1. INTRODUCTION 11

1.4.5 Control unit [8][10]

This 3D printer has a control system purchased from Mitsubishi Electric. The main

components are:

� PLC: (Programmable Logic Controller), it’s a control unit based on a micropro-

cessor used to control the activity of the auxiliaries and coordinate the processes.

It’s made up of a CPU with memory and an I/O (Input and Output) interfaces

allowing it to communicate with other components of the system. PLC cyclically

reads the code lines (cycle time of milliseconds) storing the input value (true

or false) and updating the outputs. Among the many languages, the Ladder

Diagram language is used.

� Motion Control Unit: it’s based on a CPU and a memory; here the real time

control is carried out. Thus it operates at the lower levels of the control system

and it must complete all the operation in the specified time interval.

� Servo drives: they are integrated with close loop control and responsible to the

powering of their respective motors (3-phase).

The printer has, at this stage, 5 controlled axis. Two moving the extruder and three

actuating the platform. The system uses closed loop control logic. In the extruder the

loop is closed on the encoders of the motors, while the ones of the Linear Delta can be

also closed on optical sensor on the slider to account for backlash in the transmission

chain.

The PLC to motor side connection is bidirectional. Once the trajectory evaluated off-

line is loaded on the motion control memory, it then uses them to correctly actuate the

machine. If the loop is closed on the slider, the reference position is compared to the

actual value and the error is used by a PID controller, inside the servo drive. If it’s

closed on the motor position, the slider position is translated in to an angle by means

of the transmission ratio and the diameter of the rail pulley. The current and velocity

loop are closed internally by the servo drive to erase the positioning error.

1.4.6 PLC and motion programming [10]

To program the PLC, consult the MitsubishiRO manuals [12][13][14].

The PLC unit can be programmed with the Ladder Diagram (LD). LD is a graphic

language derived from the drawing used to control electromechanical relays. It’s based

on the concept of contacts and coils.

It features two vertical lines, one on the left and one on the right side, the first repre-

senting power line while the second the ground. An horizontal line (rung) determines

the command to run. In fact a rung has on the left a contact (to simplify a switch) and

on the right a coil (to simplify a light bulb); if the contact is closed then the current is

free to energize the coil. In the LD, this turns the state associated with the coil from

0 to 1.

12 1.4. STARTING POINT OF THE THESIS WORK

Figure 1.11: Ladder Diagram example

In the control system of the printer, the contacts are controlled by the HMI (Human

machine interface), in this case a touch screen, or by internals relays. Coils are related

to the execution of a SFC program inside the Motion. In figure 1.11, an example is

shown where M1 is an user input, Y0 an internal state and Y21 is a busy flag to check

readiness; if they are close contact, then the right part of the rung is executed (lunches

the K1 program and then resets all the state of the contacts).

Figure 1.12: Sequential Function Chart (SFC) example

To program the Motion, consult the MitsubishiRO manuals [15][16][17].

The Motion is a real-time controller programmed by a licensed software too. A task is

implemented in Sequential Function Chart (SFC) that it’s also a graphical language.

It’s derived from Grafcet4 used for PLC programming and as a modeling and analytical

tool of automated system.

SFC is made up of steps, represent by squares, divided by transitions block where the

condition to forward to the next phase is expressed. In Figure 1.12, an example is

shown used to turn on the motors. In the first block a subroutine is called that sets

the state of the relays associated with the five motors. The transition block is a NOP,

that simply waits the termination of the previous step.

This controller also allows the usage of the advanced synchronous control. It works on

the realization of a series of virtual mechanism and a cam master axis that moves the

4functional diagram standardized by UTE (Union Tecnique de l’Electricité) that relies on the concept

of State, Transition and Oriented Link

CHAPTER 1. INTRODUCTION 13

cam slaves associated to an actuated axis.

PLC and Motion share part of their memory to communicate important variables

for the control of the system. PLC memory is larger than Motion causing a limitation

in the number of points uploaded directly on the Motion, although it’s possible to use

the memory of the first (that is also expandable) to store data and transfer them little

by little to the Motion.

1.4.7 PID tuning [10]

A PID (Proportional plus Integral plus Derivative) control is based on the evaluation

of an error function e(t) (or s if in the Laplace domain) by means of direct or indirect

measurement of the controlled variable. Once e is known, the control output x (t) is

obtained by:

x(t) = Kp[e(t) +
1

Ti

∫ t

0
e(σ)dσ + Td

de(t)

dt
]

whereKp ,Ti and Td are the proportional gain, integral and derivative time constants.

An electric motor requires three concentric loops: the inner is closed on the current

(related to the torque Tm), the middle on velocity and the outer on position (they are

used to assure execution of the desired trajectory).

The definition of the main parameters of the PID controller can be evaluated directly

from the MitsubishiRO software. Here are briefly the auto-tuning procedures:

One-Touch Tuning: assigned an operation to the servo-motor, automatically all the

parameters are set. The method only requires to set the response mode (low, basic or

high) that is a function of the rigidity of the machine. Used for low oscillation of the

moving load.

Auto Tuning: it’s obtained from the estimation of the load-motor inertia ratio that

can be evaluated automatically (mode 1) by the system from the velocity and current

feedback or manually inputted (mode 2). This procedure is repeated every 60 minutes

from turning on and the starting estimation are the last one saved in the EEP-ROM

(Electrically Erasable Programmable Read-Only Memory) of the servo.

Manual Tuning: last available technique, if both have failed, where the changeable

variables, for the position control, are load-motor inertia ratio, motor inertia, position

and velocity loop gains and integral action of the latter.

Auto tuning mode 2 is the one that has been used, since mode 1 gave bad results in a

trajectory following task. For additional information refer to manuals [18][19].

The PID control of the temperature of the extruder is defined by means of the auto-

tuning function, based on the analyzes of the overshoot and undershoot like in the

Ziegler-Nichols tuning method.

14 1.5. THESIS OBJECTIVES

1.4.8 Specifics [9]

� max. working area: 250x250 [mm];

� max. printing area: 200x200 [mm]

� max. printed weight: 8 [Kg]

� l=0.595 [m] ;Rp=0.198 [m]; s=0.45651 [m] 5

� Cmn =1.3 [Nm]; Cmmax=4.5 [Nm]; ωm,rmax=6000 [rpm]; Crmax=80 [Nm]

� extrusion chamber diameter: 14 [mm]; max plasticizing punch run: 77 [mm].

� nozzle resistor power: 150[W]; central chamber resistor power: 500[W] and plas-

ticizing chamber resistor power: 100[W]

1.5 Thesis objectives

The AM technology proposed in the Efesto project is new, thus it requires a reliable

and efficient 3D printing machine to test it. As has been seen in this chapter, a 3D

printer is like CNC machine that adds material instead of removing it. Commercial

softwares for 3D printing generate a command list in the G-code language from 3D

CAD models. In the early stages, testing may require deposition trajectory difficult to

obtain with commercial slicers. The final result, as has been seen also in the AM state

of the art, depends on different parameters that need to be controlled. Thus the main

objectives of this master thesis are:

� Printing from a G-code generated by a slicing software

� Printing from generic custom made trajectories

� Control of the parameters of the machine:

– velocity of the moving plate

– extruder feed rate

– printing temperature

5initial values, l, Rp and s might be changed

Chapter 2

MECHANICAL SYSTEM

DEVELOPMENT

2.1 Objective and Overview

One of the main task of the Efesto Project is the testing of a new AM technology. A

reliable system is needed in order to carry out those tests thoroughly and precisely. The

linear delta has to guarantee accuracy and precision to the deposition plate of the 3D

printer. In this chapter the development of a calibration tool and the mechanical im-

provements needed to make it applicable are presented. This tool is needed in order to

achieve the precision required. It is described a generic calibration process by pointing

out how it is mandatory on this machine as well as any other robot(2.2). Calibrating

tools, as the one here presented, only consider variation in the geometrical parameters,

thus it is necessary to eliminate any kind of positioning error due by mechanical defects.

The structural changes, that were made to cut down excessive play and to house the

extruder while increasing the rigidity of the overall system (the aspects related to the

repeatability are addressed), therefore will be discussed (2.3). This is followed by the

design of an adjustable plate to assure acceptable normality between printing plate and

extruder nozzle axis (2.4). Once contained the phenomena not included in the model,

a calibration process is explained that will help to find the most suitable geometrical

data to control the Linear Delta Robot (2.5). This requires the study of new equations

for the direct and inverse kinematics with geometrical variation within the three links.

Then x-z behavior is presented as a function on the geometrical parameters and travel

values to give an overview to roughly estimate the kinematic parameters that affect the

model. The actual calibrating algorithm based on numerical minimization of the errors

is then described.

15

16 2.2. CALIBRATION PROCESS

2.2 Calibration process

The calibration process is defined as the estimation of the errors of a robot model [7].

If a model (inverse and direct kinematics) is created to control a robot, it can be

generalized as (its inverse also stands), where Λ are the geometrical terms, while Q the

displacements in the joint-space:

S = F (Λ, Q)

If the actual system does not correspond to the model, when a position is aimed, this

will happen:

Sr = F (Λ +4Λ, Qi) ' Fi +
∂F

∂Ω
∆Ω

where Sr is the actual position reached by the robot, while Qi are the joints coordinate

evaluated by means of the model. Variations from the theoretical case could also be

introduced by the impossibility to actually reach the Qi evaluated.

The calibration procedure has two main phases to ensure the reduction of such depen-

dencies: measurement of the positioning error in the working space and development

of a mathematical technique to overcome those errors.

Two approaches can be found in literature: parametric and non-parametric calibration.

The first aims to use kinematic equations as well as measurements to be able to always

foretell the behavior of the robot. The steps are: structure analysis, measurement of the

errors in few configuration, data analysis and evaluation of the uncertain or unknown

parameters. The second one, uses the knowledge of the errors in few points to generate

a statistical distribution of the errors. The steps are: measurement, statistical analysis

and/or interpolation of positioning error in all the working space, error compensation.

The first approach requires the definition of a model capable to distinguish the possible

sources of error (usually only geometrical without any consideration on phenomenon

that are difficult to describe such as elasticity, play, variable load, etc.). The second

approach uses the nominal model, but requires several points to generate good results.

The compensation, once again from literature, can be carried out on or off-line, where

the on-line case represents the one on the robotic system (after the inverse kinematic).

If the compensation is carried out in the joint-space, this can be obtained:

Qc = Qi − J−1Jλ∆Λ

knowing the structural errors (∆Λ), the theoretical inverse kinematics, Jacobian matrix

(J) and the Jacobian matrix related to the structural parameters (Jλ). Obtained on the

need of a linearized model to describe imperfect robots. The off-line case compensates

the errors in the working-space. Using the same notation as before this is obtained:

Sc = Si − Jλ∆Λ

that states that, if the positioning error is known, then, the coordinate can be changed

in order to make the real system reaching the position intended.

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 17

The calibrating procedure could also be improved not only taking into consideration

the position reached, but also the measures of the actuated and non-actuated (if it’s

possible to place redundant sensors) joints.

2.3 Structure modifications

Here are presented additional changes that were made to the structure in order to in-

crease the rigidity of the machine and reduce plays in the kinematic chain that would

have affected the correct positioning during operation (due to intentional manual con-

tact with the moving plate to adjust the procedure during the first layers, i.e. clean-

ing residuals, although should be avoided for safety reason or even accidental contact

with the outer frame or vibration from the surrounding environment exciting the first

eigenvalues) or repeatability of the built object (play may cause small variation in the

inclination of the moving base leading to different projection of the filament on it). A

brief inquiry on the realized kinematic chain and how it could affect the control of the

robot is firstly discussed.

justification of the calibrating tool:

From the analyses of the assemble report and of the technical drawing (only the main

features are illustrated in figure 2.1), it can be seen how the model can significantly

deviate from the real system. Each link, despite the numerical value, is made of five

elements assembled together. Each components should have been realized with preci-

sion down to the 10−1mm, the real mismatch is expected to have been introduced in

the assembling operation. The tapered components are glued to the main tube, that

may cause a gap between the two pieces, and the spherical end joint is screwed on the

tapered block. If each link has not been assembled with a more than reliable template,

the error could be expected in the order of the mm. This variation is more than likely

to occur if the closure of the four-bar mechanism is seen; in fact the joint obtained

combining the spherical end and the rod by means of a bolt leaves enough room to

accommodate different length of the links. Other backlashes throughout the machines

allows the system to settle into a new configuration.

This is expected to reflect on the control of the machine since the model is no more a

description of the real system.

Backlash reduction:

The Spherical joint SA 8 E presents an intrinsic backlash allowing the inner ring to

move axially with respect to the outer frame, thus causing an overall oscillation of the

moving platform.

To reduce the impact on the machine, cup springs were placed between the joint and

its housing causing the two subsystem composing the SA 8 E to touch.

18 2.3. STRUCTURE MODIFICATIONS

Figure 2.1: main source of variation theoretical-real system

Figure 2.2: Spherical joint and cup spring

Used cup spring specification:

d2 = 25 mm d1 = 12.2 mm H = 1.6 mm

Extruder housing and outer frame:

The new frame designed1 to hold the extruder, while increasing the overall rigidity

of the machine, can be seen in figure 2.3. Let’s start the description beginning from

the top part, that is also the most interesting one since it’s the feature that allow the

transformation of the Linear Delta into a 3D printer.

The extruder has two vertical rods enclosed within a ”C” shaped support with one

of the jutting plates being welded at the bottom, while the other is tighten after the

positioning of the extruder. These two ”C” shaped support are welded on an hexagonal

squared beam made structure that is fixed on the higher strip after three plate have

been placed inside the gap that is generated. This allows the distribution of the load

through the strip itself down to vertical guide.

The middle part sees a crossed horizontal band made of five strips joined together and

1The design was developed to increase rigidity after some experimental analysis that showed a first

frequency at very low frequency (< 20Hz). Simulation carried out in previous thesis work showed that

this configuration with crossed horizontal strips could significantly increase the first eigenvalue of the

system

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 19

Figure 2.3: final realization of the framework

tighten to the guide.

The lower support was also modified; an almost cubic block is assembled to the vertical

rail through a plate. An ”L” shaped element is fixed to this component that will allow

the printer to be anchored to the ground; also a self leveling base is screwed on the

block to adjust the inclination of the entire machine.

Further work on the selection of the screws and bolts for the assembly of the new robot

structure can be found in appendix A.7. The sized used are the same that were already

assessed for the previous structure.

Here is presented a guideline for the assembling procedure to follow. Start putting

together the lower support parts and placing it on the guides by means of a template

to assure good positioning. Place the lower plate on a wooden block or anything that

will keep it high enough to position under the aluminum block just fixed upon the guide.

Screw them on. It’s then time to fix the first strip to avoid failure in the sub-assemble.

Mount on the rest of the robot before completing the horizontal band with the other

strips. Place the last band at the top. The definitive tightening operation must be

carried out to assure perpendicularity, where requested in the drawings, between the

parts. Place the hexagonal element on the last strip without the top plate. Screw on

the extruder initially only on the lower part; then close the ”C” shaped holding block

with the top piece.

20 2.4. ADJUSTABLE PLATE

2.4 Adjustable plate

In order to precisely determine the system behavior, it’s required to be able to separate

variation on the z-axis due to unleveled plate or due to a not precise estimation of the

kinematics parameters. Thus an adjustable plate, allowing easy and reliable compen-

sation, seems in order. This step and this equipment is necessary only in case of clearly

unbalanced moving base (by means of a level or laser system sampling different spots

on it) or uncertainty in the normality between plate and extruder.

Two solutions are presented that can be chosen according to the user preferences or

following the comments during the exposition.

2.4.1 Solution A

Solution A requires three, equally spanned from the center, screws placed 120° from

one another. The existing plate needs to be drilled and threaded, allowing the screw to

move vertically. At the end of each screw, a domed nut is placed in order to guarantee

a smooth contact point. The new plate is blocked it the final position by means of two

countersunk flat head screws.

Calibration by three screws:

In Figure 2.4 the regulation unit can be seen. For a first draft M6 screws are taken

under consideration, since several other part requires this size. The fundamental vari-

ables, in order to adjust the level, are described in the following table.

These equations are carried out supposing that dz, distances needed to solve the prob-

lem, are known. h0 is used to force a required gap between the plates. These equations

are obtained considering the center of the new plate fixed along the z-axis and center

of all the rotation of the plate itself can undergo. If a different point is considered as

reference adjust the value of the parameters accordingly.

Parameters [mm] Parameters [mm]

Lmeasure 75 screw-center gap h 13 Domed cap nuts height

h0 15 plates gap d 9.5 Domed cap nuts diameter

p 1 pitch

rt = d/2; ht = h− rt; Z = h0 + dz;

alpha = arctan
dz

Lmeasure
OH =

Z

cos(alpha)

ls =
Z − rt

cos(alpha)− ht
turns =

ls
p

where: OH can be seen from the picture and it’s the distance between center point of

the bolt and the intersect point of the middle line with the lower side of the new plate,

ls is the required gap between the domed nut and the old plate.

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 21

Tightening by means of two bolt:

One single centered bolt can be used to fasten the structure, but it could lead to the

rotation of the new plate resulting in the ruining of the printed object. Thus two seems

the least number of screws. One of the main issue related to this subsystem is the

necessity to tighten the screw to at least one inclined plate. In order to do so, several

techniques can be named:

� washer-spring-washer unit placed between the old plate and the nut or the head

of the screw

� binary system made of convex-concave washer (spherical washer) allowing a 3°

rotation

� sacrificial washer or plate

One further concern is in which direction to place the bolts. One reasonable solution

will be to create two countersunk holes in the new plate, in order to slightly hide them;

this solution could prove itself efficiently if a heated bed is placed on top of it to increase

adherence during the printing of the first layers.

2.4.2 Solution B

The compensation and the tightening procedure are realized by means of three bolts.

This solution can be seen in Figure 2.5 where the head of the screw juts out from the

new plate that is interposed between two spherical washer (convex plus concave washer)

allowing the free rotation of the new plate. The final tightening of the aforementioned

component can be achieved by a nut (only when desired) or a spring (could lead to

anticipated blockage). An additional nut can be placed to block the screw position.

A first draft of the system can be seen in Figure 2.6; using some data the maximum

allowable rotation until contact (use the lowest one) can be evaluated.

h = 10 mm rh = 4 mm rs = 3 mm e = 136.25 mm

Where h is the approximated height of the hole (plate plus two spherical screw), rs is

the screw radius, rh is the hole radius and e is the distance between the center point

of the plate and the bolt position.

θ0 = arctan
h

2(e− rh)
θ1 = arctan

h

2(e+ rh)

d0 =
√

(h/2)2 + (e− rh)2 d1 =
√

(h/2)2 + (e+ rh)2

αmax0 = θ0−arccos(
rh − rs + d0 cos(θ0)

d0
) αmax1 = θ1−arccos(

−(rh − rs − d1 cos(θ1)

d1
) (2.1)

Where d0 and θ0 are the distance and the angle between the center point and the inner

vertex of the hole (index 1 for the outer) that the center sees, αi are inner and outer

22 2.4. ADJUSTABLE PLATE

Figure 2.4: solution A Figure 2.5: solution B

maximum angle that the plate can rotate to (the point of rotation needs to remain

fixed in space).

αmax1 = 5.1 deg

For non centered rotation, but between two bolts placed at a distant of e = 136.25 mm

from the center, the new rotation distance e and the maximum rotary motion become:

e = 236 αmax1 = 4.1728 deg

Figure 2.6: first draft to allow the inscription of a 22x22 cm square to accommodate

at least a heated bed of printing area of 20x20 cm

2.4.3 Used solution

It has been decided to proceed with the solution B, using M4 screws and a 3mm

aluminum plate. Two possible blockage mechanism have been initially proposed and

they need to be sorted out.

By using a spring, the system sees two vertical forces, one directed upward due to

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 23

Figure 2.7: graphical solution to the maximum rotation problem for the case with

e=136.25 mm

the compression of the spring and one downward due to the weight of the plate. An

equilibrium point can be found by using Hook’s law, where Pi is a third of the overall

plate, k is the spring constant, l0 is the free length:

xi = l0 −
Pi
k

The system will be also subjected to the weight of the printed material, that will lower

the equilibrium point. One way to solve this would be preloading the spring (tightening

the screw) in a way that, in the working range, it would be seeing the maximum

printable load. So substituting the previous weight with the one of the plate itself added

by the one of maximum expected objected (also corrected by a 1.2 factor to assure a

minimum resultant force directed upward clamping the plate to the screw head) and by

imposing a lowering from the equilibrium position of one centimeter (corresponding to

maximum correcting displacement), while keeping the length variation under a given

percentage to avoid any damage to the spring itself, this equation can be found:

βl0 <
1.2P

k
+ hmax

where β is the percentage representing the maximum deflection acceptable. Solutions

available require wider inter-plate gap (see figure 2.8) and an overestimation of the forces

acting on the system leading to an increase of the upward resultant force limiting the

work done by the spherical washer. Thus the one using a nut as closing and regulating

mechanism is used.

In order to place a 22x22 cm square inside the position of the bolts, keeping in mind

the equation shown in the outline, this new configuration can be found where the holes

are placed at 14 cm distance from the center (see Appendix A).

Solving equation (2.1) for this configuration αmax1 becomes equal to 3.19° for the center

referenced case and to 2.67 ° for the inter-bolts case, considering the new plate of 10

mm thickness instead of 3mm to account to possible realization and modeling error.

24 2.4. ADJUSTABLE PLATE

Figure 2.8: variation of the l0 as a function of k for a 3mm plate with same geometrical

and material property of the one already existing, β = 0.3 and hmax = 10mm and a

weight of 7 kg acting on a single screw

Bolt sizing and assessment:

The screws used need to be at least 50 mm long since it has to account for the 15 mm

aluminum plates (already existing base), 10-14 mm free space for the regulation (the

extra four can be used for a second M4 nut or one single M4 locknut), 4 mm for the

M4 nut (actually 3.2mm), 0.8 mm for M4 washer, 4.15 mm for the spherical washer,

3mm for the plate, again 4.15mm plus 0.8 mm plus 4mm to close the bolt. It ads up

to 49.9 mm.

As for a first verification, let’s consider a maximum load of 20 kg 2 acting on the

plate and that one single screw is bearing it; the force will only act axially due to the

spherical washer. Under the assumption that a threads of the screw-nut coupling are

able to withstand the load until it leads to the failure of the bolt itself. Thus:

σ =
F

Ares
(2.2)

where P=mg=196N approximated to 200N; Ares=8.78mm2 for an M4 (it’s the tensile-

stress area of the screw, although the screw is under compression). A safety coefficient

can be found substituting (2.2) in the next equation:

σ =
σy
η

2corresponding more or less to a 20cm cube made of aluminum alloy 6012, since no information on

the printing material density are available at this stage, used also because gives an overestimation of

the load compared to the nominal bearing load

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 25

where σy is the admissible stress, that in this case is considered equal to 160 MPa

(lower class 4.6 according to CNR-UNI 10011).

η =
σy
σ

=
160

22.8
= 7

η is high enough to assure the screw to bear the compressive load.

M4 screws have a 0.7 mm pitch (p), corresponding to around 20 threads in the Alu-

minum plate (15mm thickness divided by the pitch and roughing accounting for coun-

tersink formation during the threading procedure), under the assumption that the load

is uniformly distributed along the thickness, each thread will see a load of 10N (al-

though according to the literature [11] the load will be withstood mainly by the first

six threads). If the load is supposed to be applied only on the maximum section of the

thread3 and that the pitch is the base of the triangle (the one attached to the plate)

then the resisting area can be approximated with 4:

Ares = πpD = 8.79mm2

The shear stress for Aluminum 6000 series is around 172 MPa5.

The safety coefficient, as before can be found:

τ =
P

Ares
=
τlim
η

η =
172× 8.79

10
= 151

each thread is able to bear the load. If the first one, that bears almost the 40% of

the load [11], is tested then the load seen is 80N, the safety coefficient is divided by 8

leading to 18.

Assembling and regulating procedure:

The actual solution differs from the initial presented, the head of the screw is placed

below the moving plate and the two spherical washers are closed between two washer-

nut system. This configuration allows to adjust the height directly moving the first nut

from the 3mm plate tightening with the last nut at the end of the tuning procedure or

directly adjusting the gap from the head of the screw. This second solution can prove

itself more user friendly since, after losing the last nut, that once tighten is in a de-

sired position (the screw juts out not extensively), allows to correct the height without

difficulties (placing correctly the spanner without a clear vision and applying a torque

between two narrow metallic components).

Here is presented the assembly required. Screw the M4 completely on the 15mm Alu-

minum plate. Then place the nut in order to leave around 10mm gap between it and

the plate (or leaving enough thread from the nut and the end of the screw in order

3it could have been approximated with the force acting on the medium diameter leading to an

additional bending stress term.
4the actual area for a spiral would have been pL, where L = 2π

√
R2 + (p

2π
)2, but the additional

term under square is neglected since is few order smaller than the other.
5average value of shear strength for this series

26 2.4. ADJUSTABLE PLATE

to assure the desired jut out). A second M4 nut or one single locknut can be used to

assure a complete lock (the screw and the nut are required in the second configuration

to act as one single system). Place a M4 washer (if required) and a spherical washer.

Once all three screws are in position, place the 3mm Aluminum plate. Close the ad-

justable plate placing a spherical followed by an M4 washer and a nut. The final result

can be seen in figure 2.9.

The adjustment should be performed by means of laser system (or any device able to

read the correct z-axis position of an object) sampling at least three points on the new

plate placed parallel to the old one. The measuring tool should be placed parallel to

the nozzle, even better if with an arm of fixed offset able to be easily rotated. Then the

correcting heights should be evaluated either way off-line using the equation previously

discussed or experimentally while receiving feedback from the measuring device. Mov-

ing the machine at this stage is not advised since errors in the model used to control it

might affect the final position reached (the in-plane movement with fixed z-axis value

can not be assured).

Figure 2.9: adjustable plate realization

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 27

2.5 Linear Delta calibration

The calibration process here presented uses a parametric approach and the measure-

ments to estimate the best fitting kinematic parameters. The compensation will be

therefore done on these variables and, if deemed still necessary, using one of the two

compensation philosophy. Thus the nominal and a more generic definition of the kine-

matic equations will be presented as well as a brief study on how these parameters

affect the system behavior, in order to refine the model taking into account only the

actual variables of the system.

2.5.1 Linear Delta Kinematics

The inverse kinematics can be solve straight forwardly, in fact defined the TCP (Tool

Center Point), p, bi and si vectors are known. They respectively are the TCP position,

spherical joint position referred to the TCP and initial position of the slider. Given

these three, the vector d connecting the i link to i slider is found. To allow such TCP

position, a qi displacement of the slider should exist able to guarantee the connection

between it and the plate and this should occur for all of the three rail simultaneously.

Here are the equations:

di = p+ bi − si
li = di − qiui

q
i

= dTi ui −
√

(dTi (uiu
T
i − [I])di + l2i) (2.3)

Equation (2.3) has no solution when the term under square root is negative, showing

the fail of the guaranteeing condition.

Direct kinematics can be solved for a 120° disposition of the linear guides and

keeping in mind that Rp and s are the modules of bi and si. For these machines, the

solution of this problem can be quiet challenging compared to the one of serial robots

where for any given displacement in the joint space a position is reached in the work

space. Here a solution in closed form can be found.

dTi di = pT
i
p
i
+ bTi bi + sTi si + 2pT

i
bi − 2pT

i
si − 2bTi si (2.4)

l2i = dTi di − 2dTi ûiqi + q2i (2.5)

1. substitute (2.4) into (2.5).

2. develop all the scalar products of the equation obtained (obtaining equation A,

for clearness sake, as a function of i).

3. B = 2A(i = 1)−A(i = 2)−A(i = 3)

4. C = A(i = 3)−A(i = 2)

28 2.5. LINEAR DELTA CALIBRATION

Figure 2.10: Linear Delta model

5. B and C define a linear relationship among px, py and pz; substituting them in

A(i=1), this can be obtained:

k1p
2
z + k2pz + k3 = 0 (2.6)

where:

k1 =
(2q1 − q2 − q3)2 + 3(q2 − q3)2

9(Rp − s)2
+ 1

k2 =
3(q2 − q3)(q23 − q22)− (2q1 − q2 − q3)(2q21 − q22 − q23)

9(Rp − s)2
+

2(2q1 − q2 − q3)
3

−2q1

k3 =
3(q22 − q23)2 + (2q21 − q22 − q23)2

36(Rp − s)2
− (2q21 − q22 − q23)

3
− l2 + q21 + (Rb − s)2

6. from (2.6) pz can be evaluated, substituting it in B and C, px and py are found.

Variation within the three links case:

In this section, the new kinematics equations are derived to deal with unexpected be-

havior of the machine that strictly relays on this, such as assembly errors and realization

imperfection.

Inverse Kinematic:

As concerns the inverse problem, no significant variation tells the two cases apart, only

the diversification of the li squared.

di = p+ (Rp− s)ui

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 29

qi = dTi ui −
√

(dTi (uiuTi − [I])di + l2i)

If the case with Rp and s varying is required, simply change in di the two parameters.

Direct Kinematic:

The direct problem is solved using the same aforementioned procedure carrying on the

indexes of the length of each link (using different alphabetic representation).

A = p2x + p2y + p2z

B = Rp− s

A+ 2B cos(
2(i− 1)π

3
)px + 2B sin(

2(i− 1)π

3
)py − 2qipz +B2 + q2i − l2i = 0 (2.7)

px =
2Cpz +D

6B
(2.8)

py =
2Epz + F

2
√

3B
(2.9)

Equation (2.7) is obtained substituting (2.4) inside (2.5) as a function of the i link.

Equation (2.8) and (2.9) are the linear functions of pz. Here are the definition of the

alphabetic symbols.

C = 2q1 − q2 − q3

D = −2q21 + q22 + q23 + 2l21 − l22 − l23
E = q2 − q3

F = −(q22 − q23)− (l23 − l22)

pz is obtained solving the quadratic equation (2.10).

K1p
2
z +K2pz +K3 = 0 (2.10)

K1 =
C2

3 + E2

3B2
+ 1 (2.11)

K2 =
CD + 3EF

9B2
+

2C

3
− 2q1 (2.12)

K3 =
D2

36B2
+

F 2

12B2
+
D

3
+B2 + q21 − l21 (2.13)

If also Rp and s would have been let change, then px would have been a function

of both py and pz and vice versa. If the equation presented before do not match the

behavior experienced then the resolution of this case should be carried out.

In oder to do so the three equations obtained varying i, from 1 to 3, in (2.7) are put in

matrix form. px
py
pz

T 1 1 1

1 1 1

1 1 1

 px
py
pz

+

 2B1 0 −2q1
−B2

√
3B2 −2q2

−B3 −
√

3B3 −2q3

 px
py
pz

 =

 l21 −B2
1 − q21

l22 −B2
2 − q22

l23 −B2
3 − q23

To solve such second order system a symbolic calculation in Matlab was run. The

term a,b,c are the B1, B2, B3; q, t, r are the ith (from 1 to 3) of the term: l2i −B2
i − q2i .

30 2.5. LINEAR DELTA CALIBRATION

syms a b c q1 q2 q3 q t r x y w S

A = ones(3); C = [q; t; r];

B = [2 ∗ a, 0,−2 ∗ q1;−b, b ∗ sqrt(3),−2 ∗ q2;−c,−c ∗ sqrt(3),−2 ∗ q3];

xt = [x, y, w];xn = [x; y;w];

S = solve(xt ∗A ∗ xn+B ∗ xn == C)

X(a, b, c, q, t, r, q1, q2, q3) = S.x; Y (a, b, c, q, t, r, q1, q2, q3) = S.y;

Z(a, b, c, q, t, r, q1, q2, q3) = S.w;

double(X(a, b, c, q, t, r, q1, q2, q3))

The solutions are not presented due to their extended length. One of the additional

reason is that, if this is the case, the solution, if required, can not be implemented in the

Mitsubishi softwares to check the position of the moving base after several operating

cycles avoiding the accumulation of errors. The double function is used to convert from

the symbolic formulation back to the numeric form.

Jacobian matrix definition:

It’s interesting to also see how this deviation from optimality changes the velocity be-

havior, thus the initial estimation of the resulting velocities required at the motors.

Deriving in time the equation (2.5) and with some rearrangements and therms recog-

nition, this equation can be found:

lTi (ḋi − ûiq̇i) = 0

If the li term is expressed as lin̂i and the equation divided by the module li, this is

obtained:

n̂i
T ûiq̇i − n̂iT ṗ = 0

Considering the three links simultaneously putting them in matrix form and rearranging

the terms to explicit the Jacobian matrix, finally it’s obtained:

[J]−1 = [Jq]
−1[Jgs]

−1 = diag(1/ni,z)n
T

q̇ = [J]−1ṗ

where for the theoretical case the only dependency to any geometrical parameter is:

n = p[1, 1, 1]− [0; 0; 1]qT + (Rp − s)

 1 −0.5 −0.5

0
√

3/2 −
√

3/2

0 0 0

The only case, where variation in the expected parameters leads to unpredicted behav-

ior, is when the Rp−s terms changes. If a diversification is required then the difference

of a given link multiplies the respective column ([Rp − s]T).

Variation in these two parameters is expected to be smaller compared to the one of the

links that were manually assembled by previous thesis-writers.

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 31

In general, all this consideration are valid if the orientation between two adjacent links

is of 120°. The discussion from here after is carried out considering that this angle does

not change, but if, for same reason, this assumption is overruled (due to the believed

imprecision in the realization of the supporting structure), the matrix containing the

orientations terms needs to be corrected with the right directors cosines.

2.5.2 X-Z behavior

Here are presented the behavior in the vertical plane (it would have been analogous

talking about the y-z plane) of the robot as a function of different parameter that will

help refining the model of the system accounting for only those uncertain parameters.

If the dimension of geometrical parameters is not specified [m] is intended.

Function of the motion law:

For this section, as well for all the others concerning the behavior of the robot, the

results are obtained imposing a given motion law and solving point by point the direct

kinematics equations. The parameter c used in the figures is the normalized inversion

point of the acceleration diagram.

Figure 2.11 and 2.12 show the increase of height for different point lying on the x-

axis. They are obtained using a trapezoidal velocity motion law. This parabolic trend

depends on the travel value rather start and end point.

Different motion law gives similar trend where the higher point is reached mid curve,

with the same value. It’s the only mutual point among all the motion laws (including

the linear interpolation between start and end point) (Figure 2.13).

This section can prove to be quite useful during the G-code adaptation or the points

assignment. In fact allowing the machine to reach far points in the space, from the

starting one, could lead to significant variation in the z-axis leading to bad result or

even failure of the machine or printed object (if during first layer, the nozzle will smash

against the moving base, damaging the mechanics, or if while executing a mid layer,

the nozzle will pierce or impact against the printing).

Function of the kinematics parameters:

Figure 2.14 shows the behavior for three, but equal, links length:

p0 = (X0, Y0) = (0, 0)mm p1 = (X1, Y1) = (10, 0)mm

alphai = linear inverse kinematics1(pi, L, s, Rb)

4q = alpha1 − alpha0

p1.new = linear direct kinematics1(4q, L1, s, Rb)

As suspected no significant variation (up to 10−1mm) is found. If the three lengths

are different from one another (Figure 2.15) this difference increases according to the

32 2.5. LINEAR DELTA CALIBRATION

Figure 2.11: (Left)X-Z behavior: dz as a function of lx given a trapezoidal velocity profile (c=1/3);

l=0.595; Rb=0.198; s=0.45651;

Figure 2.12: (Right)X-Z behavior: dz as a function of lx given a trapezoidal velocity profile(c=1/3)

starting from X=8mm; l=0.595; Rb=0.198; s=0.45651;

Figure 2.13: X-Z behavior: dz as a function of different motion law. Line is associated with a

trapezoidal velocity profile (c=1/3), circle with a constant velocity and asterisk with a cycloidal motion

law (c=1/3)

mismatch (the drawing is obtained using different values contained in the matrix M6

where the columns contain the different cases). The closer to the actual value the lower

dz gets. Significant is also a slight variation of the x position causing the robot to miss

the target aimed. Now the numerical solution with Rb and s that vary from one chain

to the other is considered. It needs to be checked first. In figure 2.16 the result can be

seen for same parameters as in the case Figure 2.11 for a 10 mm travel value, the x-z

behavior is practically the same while, the x-y has a very small variation in the order

6M=
l1 = 0.5800 0.5844 0.5889 0.5933 0.5978 0.6022 0.6067 0.6111 0.6156 0.6200

l2 = 0.5700 0.5744 0.5789 0.5833 0.5878 0.5922 0.5967 0.6011 0.6056 0.6100

l3 = 0.5850 0.5861 0.5872 0.5883 0.5894 0.5906 0.5917 0.5928 0.5939 0.5950

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 33

Figure 2.14: (Left) X-Z behavior: dz as a function of different,but equal, real link length given a

displacement (X=100mm) evaluated with initial geometric setting

Figure 2.15: (Right)X-Z behavior: dz as a function of random different real link length given a

displacement (X=100mm) evaluated with initial geometric setting

Figure 2.16: X-Z behavior: test of the numerically solved direct kinematic problem as

in Figure 2.11

of the 10−15 m, that can be neglected. It’s now possible to go ahead and check how the

robot moves if such parameters are not the same, since the two solutions gave almost

the same result7. Figure 2.17, 2.18, 2.19 and 2.208 show a significant residual error if

si are slightly different from one another compared to Rb case.

7true for z=0 (initial and final position), otherwise the solutions are significantly different. Since

the position are fed as relative position to the first one, the movement can be split as a strictly vertical

and one in plane movement leading to such approximation
8the x-y-z position of the figures has been rigidly moved to start from (0,0,0) position to clearly see

the variation in the considered case

34 2.5. LINEAR DELTA CALIBRATION

Figure 2.17: X-Z behavior: trajectory followed for s=[0.4561 0.4565 0.4570] other parameters are left

as previously; the motion law is trapezoidal velocity profile (c=1/3)

Figure 2.18: X-Z behavior: trajectory followed for Rb=[0.1498 0.1500 0.1501] other parameters are

left as standard; the motion law is trapezoidal velocity profile (c=1/3)

Figure 2.19: X-Z behavior: trajectory followed

for s=[0.4561 0.4565 0.4570] other parameters are

left as standard; the motion law is trapezoidal

velocity profile (c=1/3) and different travel values

Figure 2.20: X-Z behavior: trajectory followed

for Rb=[0.1498 0.1500 0.1501] other parameters

are left as standard; the motion law is trapezoidal

velocity profile (c=1/3) and different travel values

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 35

Figure 2.21: three different pseudo eight path examples

2.5.3 Calibrating tool

Once the plate has been leveled properly, a new test needs to be run to conclusively

determine the causes of errors in the model.

In the real system, the three rail displacements are fed feed-forwardly with no knowledge

of where the end effector will be. The algorithm allows us to simulate this behavior

because at every iteration a new pseudo real system is created until it matches the one

searched. The break condition is the reaching of the minimum error tolerance between

measure and simulated data(‖E‖∞ < tol). Since a redundancy of points are expected

to be available, the tolerance might be applied to the norm of the vector of errors

(‖E‖2 < tol as well the infinity norm).

Here are exposed the main points to follow to address the misbehaviors due to an

erroneous estimation of the Linear Delta parameters:

1. execute tuning drawing (ex. 1 turn square or pseudo ”8” path or simple line)

2. point by point inquiry or measure xmax, ymax and zmax (for pseudo ”8” also min)

3. execute the respective MatlabRO script

4. rerun the calibrating drawing with new geometrical parameters

5. check results.

This algorithm is based on the assumption that initial values could prove themselves

effective. If this is not the case, an expedient is in order to determine the correct values.

According to the results obtained, several options arise. If the references and actual

values differ, a calibration procedure is in order, otherwise the machine is already set to

operate. Established that additional work is needed, two cases need to be differentiated:

xmax and ymax are or not equal to each other. If their are equal than run the tuning

script only changing Rb and s parameters that will cause a dilatation or contraption

of the sketch; if this proves, after a new test, ineffective try also changing the length of

the link (but keeping them equal; no new kinematics equations are required). If xmax

and ymax differ one another (with different discards), then the tuning script requires to

iteratively change every combination of length links until the most suitable solution is

found.

36 2.5. LINEAR DELTA CALIBRATION

Repeat these steps until a desired result is reached. If no significant improvement is

achieved then it may also be tried the case with different l, Rb and s, but, due to its

nature, it’s computationally expensive leading to very high waiting times compared

to the analytical solutions. The scripts for these cases are no presented due to their

specific nature; they clearly depend on the data type and shape the instrument will

output.

A first measure set is required to increase the accuracy of the estimation of the kinematic

parameters. Once solved this issue, a second set can be used to estimate the residual

error, but this time used them to correct the target position exploiting either the on

or off-line compensation (the choice should be made considering experimental test,

since the correction depend on the nominal definition of the kinematic problem). The

error distribution can be in first attempt approximated as a second order equation in

function of x-y displacements (same order of the kinematic equations), while with no

z-axis value dependency: e(x, y)i = k1x
2
i + k2xy + k3y

2
i + k4xi + k5yi + k6. Supposing

to have obtained more than six measurements (one every dL for any pattern can be

obtained), then the equation becomes: E(x, y, z) = A(pi)K, where pi is the vector of

the in x-y plane coordinates of the target position. Only a least-square solution can be

found using the left-pseudo inverse of A: K = (ATA)−1ATE. Thus known the target

position, an off-line compensation can be set finding the error value and subtracting it to

the aimed configuration. The procedure here described has to be adjusted to better fit

the considered system, therefore the dependency of the error of also the z direction, the

selection of a suitable polynomial order approximation and the need to use a recursive

evaluation of the error, since it’s approximated as constant in the neighborhood of the

target position while it should be evaluated with the one that is commissioned knowing

where it will end up .

Measuring:

Run a tuning program such as a one turn square or a pseudo eight path with known

geometry. The points laying on the trajectory can be measured by means of a laser

tracking device9 placed on the extruder support or accordingly to the specific device

used. These family of instruments are based on the positioning of a sensing/reflecting

target placed on the machine and the measuring of angles and distance required to hit

the sensor (either external or internal to the tracker).

The space tracking instrument could be used few times during the main calibration

process to increase the performance of the machine or, if the cost related is financially

acceptable, permanently placed on the machine to execute the compensation automat-

ically every starting up or every unspecified number of hours. This could compensate

9For low budget, hobbyist application of this calibrating tool, place a piece of paper on the robot

and a drawing mechanism on the extruder (a pen with a pen-holder seems a reasonable solution for

early analysis). Use the sketch on the sheet to find out the xmax, ymax. If the drawing mechanism

during the test is incapable to perform its task due to detach or forced to move upward, please make

sure to also measure zmax. If this is the case adjust the script to the projection on the plate.

CHAPTER 2. MECHANICAL SYSTEM DEVELOPMENT 37

for variation in the system due to wear or other phenomena happening during sev-

eral working hours. This instrument could be used also to calibrate the machine every

switching on to find the z-axis home position of the 3D printer (the nozzle-plate contact

level), by placing a sensing element also near the extruder, with all the problematics

that this arises (temperature related).

Script comment:

For the actual code consult the appendix B10.

Import the .csv file containing the data fed to the MitsubishiRO software. Then the spe-

cific information related with the Motion software is discarded and only the important

data is carried on. After LAYER=1; the information is restored in such a way that the

kinematics functions can be run (for the possible cases please refer to the programming

chapter since it’s related to the data format chosen). Then the reference and obtained

values are stated; a for cycle is used to end up back again with the end effector position

record. Results are plotted to confirm the import procedure.

This part of the code can be used to easily change Rp or s (even l) and forwardly see

how the result adjust. If a proper set of value is required to be obtained automatically,

than run the second part.

The second part of the script starts with the setting up of all the data that define

the recursive procedure that determines the geometrical data. low and up store the

coefficient to be multiplied by the reference lengths, while dt the increment between to

consecutive measures points. The user can comment this part and manually introduced

a proper inquiry array. tol and tolz contains the tolerances that breaks the for-cycles;

the higher these values the lower the precision of the result. These parameters need to

be set in order to allow the iterative process to converge to at least one solution (in

fact higher increment or a too close range combined with restrictive tolerances could

lead to a negative outcome).

This version of the code is based on the variation of l, Rp and s, if reputed unnecessary

remove them from the code (it will also reduce the computational cost, and this step

could delayed to a next tuning test). The vector l is obtained by fixing the first term,

varying the second and for each of the middle term set a new third. Then the kinematic

problem is solved and discrepancies between real and obtained case are evaluated. Only

the in-range values are stored (change the data file name in consecutive run). The one

part of the code that studies the errors of the all in-range configuration is omitted due

to it’s immediate realization.

Figure 2.22 and 2.23 show the final result of a simulation considering a maximum x-y-z

displacement as if it would have been measured; it’s interesting to notice the strong

relationship with the z-axis behavior (in the figures is in [m]). Change in Rp or s value

also modify the vertical displacement as can be seen in figure 2.24 and 2.25.

10A variation of the script (not presented in the appendix) is based on the trace left on the plate and

not the relative x,y,z position, that can be required if dealing with trace based inquiry.

38 2.5. LINEAR DELTA CALIBRATION

Figure 2.22: final result of tuning process simulation in the x-y plane and in space

Figure 2.23: final result of tuning process simulation in the x-z and x-y plane

Figure 2.24: solution with initial Rp Figure 2.25: case with initial length,

but different Rp

Chapter 3

CONTROL SYSTEM

(HARDWARE)

3.1 Objective and Overview

The main function of the control system is to guarantee the correct operation of the

entire machine. In order to control specific technological parameters and permit the

mastering of the printing process the design of an integrated control system is developed

taking into account the two subsystems, linear delta and extruder. The control system

developed provide the possibility to follow a trajectory with a given velocity profile, to

steadily reach the temperature in the different chambers and at the nozzle, to correctly

cool down the overall extrusion system, to position the material as it should be inside

the extrusion chamber and to extrude with a given feed rate. To complete these tasks

the control unit needs to be connected to motors, resistors, a pump, an electro-valve,

sensors and the external world (power, water and air grid).

In this chapter the hardware component of the control system is described and an

electric layout is proposed to fit a 900 x 800 mm cabinet. After a concise presentation

of the component and their function (3.2), the electrical hook up is shown (3.3). Then is

the turn of the initial layout of the cabinet(3.4). The final solution is the one obtained

from an external company that actually carried out the realization of the cabinet from

the delivered information (3.5). The chapter is ended with the description of an heated

bed that will be placed later on the machine(3.6). As can be seen in figure 3.1, the

starting configuration was made by two separate subsystems with their similarities

and differences that required to be integrated and adjust to fit together. All of these

components are connected both to the control system and the power grid (same of any

household appliance). The first fitting operation, as well as the one commissioned, are

designed to ensure easy access to the main components and to allow an easy upgrading

of the feature and maintenance. The heated bed is required to ensure adherence of the

first layer to the moving plate, otherwise detachment has to expected (other solutions

requires usage of more material that needs to be manually separated).

39

40 3.2. COMPONENTS AND THEIR FUNCTION

Motor

Motor

Proximity
Sensor

Thermocouple

Resistance

Water cooling
system

Compressed
Air system

Figure 3.1: electric component outline of the two initial subsystem

3.2 Components and their function

The Motion Controller System is constituted by the rack of the PLC, by the motor

control modules and by relays for the activation of cooling and warming system of the

extruder.

component reference number component reference number

PLC Q03UDVCPU 1 6A Switch - 5

Motion Control Unit Q172DSCPU 1 Contactor - 5

Servo drive MR-J4-40B-RJ 5 Transformer 5V 1

HMI GS2107-WTBD 1 Transformer 24V 2

Security relay XPSAC5121 1 Relay RA - 5

Emergency Pushbutton - 1 Relay RB - 5

Current Pushbutton - 2 Varistor - 5

25A Switch - 1 prox. sensor - 3

temp. relay - 3 pump relay - 1

air relay - 1 thermocouple - 4

For the cables please refer to the Mitsubishi manuals.

PLC Programmable Logic Controller, it’s an high level controller for industry, capable

of executing a code and dealing with digital and analog signals in input or output. It’s

made up by a CPU and I/O modules.

CHAPTER 3. CONTROL SYSTEM (HARDWARE) 41

Motion Control Unit it’s a control unit based on a microprocessor and a memory;

it controls in real time all the axis of the system. It operates at a low level without

exceeding imposed temporal limits.

Servo Drive The servo drive gives power to the motor as a function of the reference

signal coming from the motion. Current, position and velocity loop are closed within

this unit.

HMI Human Machine Interface, it’s the interface between the machine ad the oper-

ator, thus allowing the selection of available operation saved in the machine memory.

One touch screen is connected to the PLC.

Relays They are electrically actuated switches.

Pushbuttons They open or short the circuit allowing current flow leading to tem-

porary or emergency stop.

Transformers Their main function is to feed to the various component with the

required electric energy, converting the alternate current from the grid to continuous

constant current.

In this project 3 transformers are required: one 5V for the PLC e Motion Control

and two 24V suppliers one for input-output circuit of the servo drive and one for the

electromagnetic break of the motor.

Magneto-thermal Switch Their main function is to guarantee the current flow

with a threshold value to protect the downstream circuits.

One 25A switch is placed at the beginning of the plant and one 6A switch before every

servo-drive module.

Contactor Similar in function to the relays, but with higher current resistance.

Only one contactor is placed at beginning of every servo-drive module.

Varistor Mainly used to prevent power surges in the electromagnetic breaks circuit.

Thermocouples A temperature measuring device in which two wires of dissimilar

metals are joined together. The system features four of them on the overall extruder.

Proximity sensor A sensing device that operates without making contact with the

measured object. The Linear Delta has one for each guide for the homing procedure.

Here are presented the electrical requirements for each component, please consult

the relative data sheets.

42 3.3. ELECTRICAL LAYOUT

Component tension [V] AC I [A]

servo drive 230 1.5

I/O servo drive 24 0.2

magnetic break circuit 24 -

proximity sensor 24 -

In Appendix A (A.6) the assembly specifics for the main control unit are quoted

from the respective wiring manuals.

3.3 Electrical layout

Servo drive Proximity sensor

Motor

220V plug

PLC rack
25A Switch

24V power
supplier I/O

24V power
supplier break

Power suplier subsystem

Break relay

Cooling- Heating-Compressed air subsystem
HMI

Figure 3.2: simplified electric layout

This section refers to the schemes that can be found in Appendix A.5 of this thesis

paper, while a simplified version can be seen in figure 3.2. In scheme 2, the main layout

is shown. The main plug is connected to 220V single-phase current, since the servo

drive can internally convert it to a tree-phase current (to power the motor). A 25A

magneto-thermal switch is placed to separate the system from the power grid.

The main line is then split a first time to power the PLC rack, a second time to create

a current circuit for the servo drive (it will be later clearly explained), a third by two

power supply unit at 24V (one for the I/O and one for the electromagnetic breaks).

The rack unit can be seen in scheme 3 and it’s made of the 5V power unit supplier, the

CHAPTER 3. CONTROL SYSTEM (HARDWARE) 43

PLC, Motion, the QX80 digital input, QY80 digital output, Q64AD analog to digital

converter and the temperature control module. The PLC module is connected to the

HMI unit by means of an Ethernet cable that is powered by the I/O 24 V power-supply

(scheme 6). The motion unit is connected to the servo drives by means of SSCNET

III/H (optical communication protocol) cables and is also connected to the 24V current

by means of the safety relays. Once power is disconnected by pressing the emergency

switch, this relay is not powered, thus the motion receives the information to promptly

arrest the system (this is done to avoid that the control unit keeps trying to continue

the work once the current has already been cut off from the motor). The digital input

(and output) module as well as the analogue one can be seen in scheme 7. The digital

output module is connected to the 24V current and controls the relays associated with

cooling system (pump) and the compressor (scheme 6). Finally the temperature con-

trol module is connected to three relays controlling the passage of 220V current through

three resistance placed on the extruder to heat it up (scheme 6). It’s also connected to

four thermocouples placed on the extruder. The 24-pins connector hook up table can

be found in Appendix A.5 that shows the port to port connection to be established in

order to guarantee a correspondence with the controlling programs already set up.

A servo drive is powered through a 6A magneto-thermal switch that is directly con-

nected to the internal control unit of the drive, while a second branch is connected

to the motor circuit by means of a contactor relay (scheme 5). This component is

powered by 220V current incoming from the ON pushbutton; two switches are con-

nected to the motor circuit (by pushing the ON button the motors are powered) and

one is connected in series creating a holding circuit for the ON pushbutton (the on

state is kept until OFF button, or other emergency flags, disconnect the power to the

coil of the contactor). In scheme 2 the security circuit can be seen (in the simplified

version is just stated power supplier subsystem). The safety relay is powered by 24V

current that can be disconnected by the emergency pushbutton, as stated previously.

This relay also controls a switch that cuts the powering of the system described in this

paragraph so far. The current to the motors can also be disconnected by pressing the

OFF pushbutton or in case of internal alarm in at least one of the servo drives. In

fact for each and every one of them an emergency relay (RA) is connected to the pin

terminals (connected to the MR-J4 through the CN3 port) that regulates the passage

of current. The fact that they are connected in series assures a stop if anyone of them

is faulty. In scheme 4, these components can be seen. The servo drive is connected to

a break relay (BR) that controls the activation of the electromagnetic breaks in case of

an alarm. The breaks are powered by a 24V current that for safety reason is required

to be delivered separately from the I/O grid.

A proximity sensor is connected to the CN3 pin terminal box and to the 24V current

in order to determine the home position of each linear guide.

44 3.4. FIRST LAYOUT CONCEPT

3.4 First layout concept

Before going into detail of the first draft, the geometrical specifications of the different

components required to be placed inside the cabinet are shown. They were used for the

conceptual optimization of the fitting job and to assure feasibility with the mandatory

requirements for safety according to the MitsubishiRO manuals. They are listed in the

following table.

name B[mm] H[mm] W[mm] name B[mm] H[mm] W[mm]

rear plate cabinet 750 800 10 Contactor 35 85 80

24V transformer 80 100 70 relays 6.10 92 60

25A switch 20 85 80 CN3 ”box” 60 80 55

6A switch 20 85 20 MR-J4 40 180 180

Security relay 25 100 120 rack 250 100 10

The basic idea to fit all the equipments in the cabinet, in an efficient and smart

way, was to separate the high tension branch from the low tension branch. The 220

V line is kept on the left while the 24 V one one the right. The second point was to

separate each motor axis vertically so that future addition will be effortlessly (they

would require the introduction from the right, for instance, of the new components on

the respective DIN guide).

The first draft can be see in Figure3.3 where the PLC rack is placed at the top but

is actual position will be determined by availability of the required cable length (one

connecting the touch screen and the one to the first servo drive); relays, pushbutton

and contactor just below; terminal box on the second DIN guide and on the button

the motor drivers. Relays associated with the heating and cooling system are not

represented, but they will be placed in the lower section.

The pressured air placed to the outer right in a separate space to avoid contact with

electric components for safety reason (air will spread the flames in case of a fire).

Equation used for the first assessment are (3.1) and (3.2). In figure 3.4 can be seen a

slight variation on this concept where transformers are placed where needed.

It could also be possible to use equipotent terminal arrays to easily access to a given

potential. Here follows some initial geometrical consideration:

H gap determination:

Htop = Hbutton hgap = Halpha/3

Halpha = H −Hrack −Htbox−Hrelays−Hdriver −Htop−Hbutton (3.1)

B gap determination:

naxis = 7 Brel.block = 6.10× 2 + 35 + 20 = 67.2

Belement max = max([Btbox, Bdriver, Brel.block])

Balpha = B −Belement max ∗ naxis −Bleft −Bright (3.2)

bgapmin = Balpha/naxis

CHAPTER 3. CONTROL SYSTEM (HARDWARE) 45

Figure 3.3: first draft Figure 3.4: first draft

3.5 Cabinet realization

Due to safety requirements, it has been decided, later in the design phase, to assign

the task of the realization of the electrical cabinet to an external company. Here are

the requirements enforced to the final result:

� HMI screen, emergency stop, 7 female USB connector (one for the PLC, HMI

and 5 for the servo drives) and a laptop stand are required to be placed on the

control panel with a wall-plug to power the laptop.

� In the lower part of the cabinet, terminals strips need to be placed in order to

later allow the connection of: thermocouples, thermo resistances, pump power,

electromagnetic breaks, proximity sensor with their power supplies, all the usable

connections of the QX80 module and Q64AD module (scheme 5 and scheme 7)

and 24 terminals (2 for each available QY80 module port) for future connection.

� easy and safe air connection to the electro-valve in the lower part of the cabinet.

� leave access for the encoder and motor powering cables (for each controlled axis)

that will be connected later on to the machine. The same has been done for the

heated bed components.

The final realization can be seen in figure 3.5 that reflects the specification imposed,

following the electrical layout scheme available in the appendix, and with additional

safety features (mainly a cooling fan to avoid over eating of the cabinet). The presence

of the terminal strips enforced a different configuration of the components, leading to

the servo drivers placed next to the PLC rack. The cables to the extruder are placed

inside a corrugated tube to protect them.

46 3.6. HEATED BED

Figure 3.5: final result of the electric cabinet

3.6 Heated bed

Commercial 3D printers also offer the possibility to place on the moving plate a heated

bed to increase adherence. Efesto also offers such possibility.

The adjustable plate was designed to accommodate a 22x22 cm plate. At this stage

of the machine, it’s only a possibility that has been considered. In this early stages,

the outline of the system is made of: the bed itself capable of heating up to 90°C, a

controller board and a power unit. It constitute a completely separate control system

that will be placed outside the cabinet for now, but room inside the cabinet has been

left for it.

The bed is a printed circuit on a fiberglass wafer that heats up once current is applied by

Joule’s principle. Temperature is read by an NTC (Negative Temperature Coefficient)

thermistor (resistance that vary according to temperature) of 100 kΩ soldered on it.

The control unit is the one used for open source 3D printers based on Arduino Mega,

to allow, in the testing phase, enough literature to not represent an obstacle. It’s sold

with already loaded the latest firmware. This is useful because it’s compatible with

the printer client (control panel) Repetier-HostRO (developed by Hot World Media)

allowing both the regulation of the temperature of the bed, but it also allows the

CHAPTER 3. CONTROL SYSTEM (HARDWARE) 47

Figure 3.6: heated bed and its placing spot

slicing procedure. This printer client can use both Slic3rROand CuraRO to perform the

task.

The power supplier is required to deliver at least 15V and 10A.

assembly guideline:

At least four holes are necessary to place the bed on the adjustable plate. An additional

window might be created to allow enough room from the NTC and connecting cables to

the control unit, otherwise it could be distanced from the metallic platform by means

of a nut or any appropriate gap creating element avoiding any accidental short circuit.

Using pin terminals to connect the cables will increase versatility of the machine, in

fact the heated bed would be easy to remove. Such feature could increase productivity

if two bed are available. The cables run along a link, fixed by strips for electrical

application, passing by the centers of rotation of the kinematic chains elements. This

allows to block the length required from the prismatic joint up to the heated bed. The

same can not be said for the segment associated to the guide. A longer cable, equal to

a little bit more of maximum vertical displacement of a guide, is required. This cable

is soldered to a female terminal compatible with the control unit.

48 3.6. HEATED BED

Chapter 4

CONTROL SYSTEM

(PROGRAMMING)

4.1 Objective and Overview

In this chapter, the attention is directed towards the programming part of the control

system with the main goal being able to print any object desired starting from a

G-code generated by a slicing software or starting from printing trajectories created

by the user. After a brief introduction (4.2) on the main synchronization processes

between the Linear Delta and the extruder and on standard motion law, focusing on

the ones mainly used, the attention is directed towards the G-code reading script wrote

in MatlabRO capable of importing data of this format ad modify them accordingly (4.3).

The information obtained needs to be properly fed to the MitsubishiRO softwares after

being processed (4.4). Two possible solutions are available to the user: synchronous

control or a new method that is more user-friendly and more close to the control

of commercial 3D printers that is therefore presented (4.5). After this topic is fully

exhausted, manual control is introduced in order to properly set the machine to print

(4.6). This chapter opens also at the possibility to directly feed the G-code to the

Mitsubishi controller with less invasive off-line operation.

During the description of these points, the analysis and comments of the MatlabRO script

will be illustrated to help any future user to fully understand and operate the machine.

Only the necessary information concerning the G-code or PLC/motion language will

be discussed (4.7).

The alternative control program derives also from need to reduce the number of points

required to describe a trajectory of the Linear Delta. This does not solve completely the

issue, but allows to print more layers with the same amount of points. The realization

of a communication bus between the PLC and a computer will definitively eliminate

the problematic.

49

50 4.1. OBJECTIVE AND OVERVIEW

4.1.1 Control outline

In Figure 4.1, the outline of the control system is shown where S are the data in the

working space, while Q the same but in the joint space, q the one after motion law

assignment and q∗ the information actually feed to the motors.

Input
 equation

G-code Interpreter Data
processing

Inverse
Kinematics

Motion
Law

Cam
File

Matlab PLC

Data
processing

Inverse
Kinematics

HMI
Manual
Control

S

S

S

Q q q*
Motion

Computer to PLC
comunication bus

Figure 4.1: control outline

Three input typologies of data are considered with the first being the G-code obtained

by means of any slicer software for 3D printers, the second the user defined equation

describing the trajectory and the last the manual control from the HMI. Two main

environments differentiate the in-machine operation (PLC) from the off-machine ones

(Matlab) with their respective steps.

From the different inputs, several paths can be taken leading to the realization of the

desired object. The plethora of paths are the consequence of the need in the early stage

to improve the first programs as well as to test them while searching to exploit best all

the possibility offered from the industrial control system.

Starting from the G-code: the information stored is read and processed by an inter-

preter (G-code reader) developed in the Matlab environment. The points are then

processed (Data processing) to obtain a good discretization in the working space as

well as time required for a given movement. The inverse kinematics is solved to pass

from working to joint space after which any given motion law can be assigned (or not).

The final information is saved in cam data files to be manually imported on the Motion

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 51

system that runs the ”CNC emulator” program or using the synchronous control (in

this thesis will not be discussed).

If user defined equations are used then the chain is practically the same, but without

the interpreter since they should be directly defined in the working space of the machine

and not in CNC language.

The user may wish to control the system from the HMI, in our case a touch screen,

so an interface is in order to accommodate this need. The information is processed as

it will be in the main G-code path and also the kinematic problem is solved, but this

time it should be carried out inside the Motion before executing the exact point.

The design of these two steps inside the industrial control is the main reason behind

the several combination (only the main ones are shown in the figure). Upon the devel-

opment of a reliable communication bus between a computer and the PLC, the G-code

could be imported using an interpreter before or even inside the control unit. The same

could be done for the input equation. Inter-processing data can be drawn and feed to

the PLC for testing and comparison.

This topic will be presented following the first path, followed by the manual control

one as well as the on-line one (with this term the fact than no, or at least a few, oper-

ation are carried outside the industrial control is intended). It will be concluded with

definition of the human-machine interface programs. The algorithms behind the user

equation adopted in this thesis work will be discussed in chapter 5.

4.2 Preliminary information

4.2.1 Synchronization

It’s clear how important is to adjust the velocity of the material flow with the one of

the robot and vice versa in order to guarantee the exact volume and shape of material

deposited. Using the principle of conservation of mass in the form of volumetric flow a

tool to relate the two system can be obtained 1.

V1A1 = V2A2

This general formulation is then adjust to our case in (4.1) (4.2).

Vextruder.outAextruder.out = Vend.effectorAend.effector (4.1)

Vextruder.outAextruder.out = Vextruder.inAextruder.in (4.2)

The definition of the layer height (dz) determines the thickness of the trace (distance

between two parallel lines of the square test) to allow a 100% infill, supposing that

the section of the trace is rectangular, due to the selection of a dz 6= dnozzle, and the

1Bernoulli’s equation can be used, but requires the knowledge of more therms like density of the

material and static pressure, data unavailable at this stage.

52 4.2. PRELIMINARY INFORMATION

velocities are the same:

rgap =
πd2nozzle

8dz
(2)

If instead the trace is kept fixed to the nozzle diameter and the velocity are left to

change, then:

Vend.effector =
πdnozzle

4dz
Vextruder.out

As for the Linear Delta, a calibrating phase is in order to adjust experimentally the

model with the system, allowing the optimization of the machine as a 3D printer.

4.2.2 Motion laws

In this section, only the main equations are quoted, use references for a detailed dis-

cussion [20]. Ca and Cv are respectively the acceleration and velocity coefficients.

Motion laws could also not be used during the preparation of the data, as it will be

explained later on.

constant velocity:

This motion law is one of the simplest to implement, but is almost impossible to obtain

since it requires instantaneous peak acceleration:

Ca =∞ Cv = 1

a = 0 3 ; s = Cv ; d = Cvx

trapezoidal velocity:

This motion law is one of the most used in mechanical application, although same

variation of it is preferred (to avoid discontinuity in the jerk). It’s the one that the

motion control uses as default to change position thus it’s required to be known to

correctly predict the behavior of the machine.

Ca =
1

ξv(1− ξv)
; Cv =

ξv
ξv(1− ξv)

x ≤ ξv ξv < x < 1− ξv x ≥ 1− ξv
a = Ca a = 0 a = −Ca
s = Cax s = Caξv s = Ca(1− x)

d = 0.5Cax
2 d = sx− 0.5sξv d = 1− 0.5Ca − 0.5Cax

2 + Cax

2if dz is close to 80 % of the nozzle diameter (approximation of π/4) then rgap = rnozzle. If

dz = dnozzle, it’ll be better to consider a circular section of the depositated material.
3for start and end point use equal to Ca

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 53

4.3 G-code reader

In this section the G-code interpreter will be presented starting from a few words

describing the language itself; it will then move on to the algorithms, with their relative

comments, implemented in Matlab that actually reads and adjust the file.

4.3.1 G-code introduction

A brief presentation of this language seems in order [21][22]. G programming language is

one of the most spread Numerical Control languages. Here follows an example (obtained

with CURA RO):

;FLAV OR : UltiGCode

;TIME : 813

;MATERIAL : 1225

;MATERIAL2 : 0

;Layer count : 48

;LAY ER : 0

M107

G0 F9000 X104.844 Y 103.451 Z0.300

;TY PE : SKIRT

G1 F1200 X105.845 Y 102.439 E0.17081

In the first five rows information on the file generated is stored (they do not affect the

run on the code since their are commented (;)); then command are stated each line.

Here is a table with the most common commands for a 3D printer machine:

variable description example

Mxxx action code M107: Fan off

M112: emergency stop

M109:set extruder temperature and wait

Gxxx motion command G0: rapid linear movement

G1: linear movement

X absolute x position

Y absolute y position

Z absolute z position

E incremental extrusion position

F velocity [mm/min]

A G0 command is usually without an E variable to avoid a loss in quality of the

print. This variable also depended on the slicer used so they should be investigated

according to the software used. There are several slicer available, most of them also

are open-source, like CURARO (by UltimakerRO) or Slic3rRO. They are simple to use,

54 4.3. G-CODE READER

they need to be set for the machine considered (usually a Cartesian Robot) imposing

(as our robot is concerned) these main parameters:

nozzle diameter 0.9mm

layer height 0.45-0.94 mm

fill density 100%

The fill density needs to be 100% to avoid bad pieces after the final procedure that

each piece will undergo. Setting this parameter automatically void the possibility to

choose different fill pattern. Lower fill density values can and are expected to be used

during testing to evaluate the best fill density to avoid significant problematic due to

evaporating bubbles during sublimation of the binder (space left empty on purpose can

allow the gas to remain in such rooms avoiding internal strain of the metal object).

Layer height requires to be lower then the nozzle diameter to assure good adherence with

the plate or the previous layers. When choosing, be careful to take into consideration

the behavior of the machine after the calibration process. If z-axis variation occurs

due to an uneven plate adjust also the first layer height (100% or more of the following

layers) to assure good leveling, otherwise it will be impossible to correct the final object

geometry.

Due to the extruder configuration, a skirt is required to properly set the material flow,

in any case make sure, previous to the program start, to position the printing system

ready for a good stream. A brim and/or a raft can be placed at the bottom to increase

adherence with the plate (if no heated bed is used) and avoid detachment of the printing

object from the plate during the building procedure.

No parameter regarding the temperature of the bed or the extruder need to be set in

these slicing softwares, but the printing velocity need to be chosen avoiding maximum

capability. For the initial tests do no exceed movement velocity of 2 cm/s. The F value

is the one required to move the TCP in the x-y-z space from one point to the other;

from it and the extrusion E, it’s possible to reconstruct the velocity at the nozzle.

4.3.2 Repetier-HostRO G-code

It was suggested the possibility to use Repetier-HostRO as a slicer environment, since

is already used as controlling interface of the heated bed. CuraRO Engine (ver.15.02.1)

is the one used to save the G-code with the specifics detailed in the following section.

Unfortunately the one saved with the printer client (if Slic3rRO is selected) has some

different features, for instance there’s no indication of the layer transition, the extru-

sion filament keeps changing reference value and the disposition of the commands are

slightly different. Some modifications are required to adjust it to the script already

implemented.

4the software itself advise to use no more than 80% of the nozzle diameter

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 55

Figure 4.2: G-code (CuraRO Engine) example generated by Repetier-HostRO

Repetier-HostRO: CuraRO Engine:

In configuration, set G-code start:

;TIME:1

;MATERIAL:0

;MATERIAL2:0

It’s a fake command used to adjust it with the one naturally created by the slicer

(allows the creation of three nonempty lines that are created usually with stand-alone

software).

In extrusion also make sure that the retraction of the filament is not selected. Refer to

the next sections for additional changes to impose to the text.

Repetier-HostRO: Slic3rRO:

In configuration, select a G-code flavor by MakerBot.

In the Printer settings: add ;LAYER:[layer num] in Custom G-code before layer change

G-code and END in end G-code (Figure 4.3). In Extruder 1, set to 0 the retraction

length. Open the text and write the first lines to resemble the following example:

; generated by Slic3r 1.2.9 on 2017-02-22 at 23:32:09

; external perimeters extrusion width = 1.00mm

; perimeters extrusion width = 1.70mm

; infill extrusion width = 3.97mm

;Layer count: 49 5

Of all the lines, the one that really matter is the fifth that should always be the number

of layers. In extrusion also make sure that the retraction of the filament is not selected.

The final result should look like the one in figure 4.4. Refer to the next sections for

additional changes to impose to the text.

5Use the right number of layer count

56 4.3. G-CODE READER

Figure 4.3: slic3r G-code variation

Figure 4.4: slic3r G-code first lines ex-

ample

4.3.3 Algorithm variables

Before entering more into detail of the actual code, the main variables are presented to

allow a better comprehension of the topic.

Upper level:

variable name function

fileID file Gcode to open

status sub-cycle temporary break

flagbase initial layer6

LAYER vector of layers interested in

layercount number of layers

Lower level:

variable name function

Tx X coordinate

Ty Y coordinate

Tz Z coordinate

Text.on extrusion state7

4.3.4 Algorithm outline

1. main execution where run data are stored and can be changed

2. upper level: LAY ER = [1, 2, .., nrlayer]

3. upper level: for-cycle for every LAYER aforementioned

4. for-cycle: lower level function for the ith layer

5. lower level: it reads every line separating G0 to G1 to others commands and for

each of them distinguishes X,Y,Z and extrusion position (only on/off, no rise)

and velocities until it reaches a new layer or an empty line.

6the MatLab RO script works only with layer figuring una tantum
70: off state, 1: on state (extrusion)

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 57

6. for-cycle:

xmin = min(Tx) ymin = min(Ty)

dx =
max(Tx)−min(Tx)

2
dy =

max(Ty)−min(Ty)

2

7. for-cycle: all variables are saved in cell arrays

8. upper level: variables named as in the for-cycle are vector here. (this step is for

centering the object to the plate)

Xmin = min(xmin) + max(dx) Ymin = min(ymin) + max(dy)

9. upper level: new for-cycle to refit all the points to the new configuration

10. for cycle: X,Y are cell arrays, function of the ith layer

Tx = X −Xmin Ty = Y − Ymin

In the next subsection the algorithm will be explained using the code in the appendix

as an explanatory tool.

4.3.5 MatlabRO scripts

The G-code file was obtained using CuraRO Engine (ver.15.02.1). Please refer to ap-

pendix B for the actual code:

Main:

In the first section almost all the variables that the user can exploit are declared in order

to allow an easy change from run to run. Geometrical parameters of the robot are the

first ones, followed by the maximum acceleration and deceleration of the linear guides

(useful to adjust velocity if it’s required to assure the following of a given motion law in a

given time). flag plot can be used to plot after the reading process the data, especially

if modification are made in the code; nr layer allows the selection of a partition of

the layers available if aimed analysis are required. dL stores the maximum rise in the

working space allowed to avoid any unwanted movement as presented in the mechanical

chapter. The maximum number of point for file can be set to split the overall layer in

a new bunch (such procedure is naturally done by the saving function for the velocity-

displacement format as it will be shown in the following section). Finally the saving

title can be inputed as well as the partition, if interested in, of the layers that are

required to be saved.

The script then launches the reading (actual interpreter), intermediate point generator

and delta time generation (data processing), if required, layer reducer and motion law

assignment (they need to be manually placed), closed by animation and saving.

58 4.3. G-CODE READER

Reader (Upper level):

This function is the main one to recall in case of G-code acquisition. After some vari-

ables declaration, flag base is set equal to zero. Such value can and need to be changed

according to the file imported; the majority will present no support material (it’s also

possible to add it during these adjusting phases), that will feature as negative layers. In

that case it’s required to set the value as the layer stated in the first rows of the original

file. If in future they will be a basic feature, it’s possible to modify the ”G code layer1 ”

function to also give back the first layer value. Since it was mentioned, this sub-call

routine as the solely responsibility to read the final number of layers; the user could

also choose in the pop-up menu window to use only a set of layers, he or she declared

in the main file. A menu based interface allows the user to adjust correctly the script

for a given G-code flavor.

The upper level function then recalls the lower level one (read the dedicated subpara-

graph) inside a for-cycle that is forced to start from the top once the status turns to

1 in the sub-function. Before completing a loop, it analyzes the data to be able to

properly reposition them in our printing area and to save them in a proper form, called

structured (a matrix that is not bounded to have necessarily same number of columns,

since the count of points per layer could and do vary from one another). Once all the

layers are known, the code starts to rescale the information to the machine center (like

a rigid movement). If future system variation do require any other particular change

in position (such as offsets) or orientation of the x-y axises modify these lines8.

Without going much into detail there is also a function that plots the final data stored.

This was mainly done as visual aid to see the final printed object, as for correc-

tion purposes. It could also prove effective when using the layers reduction script

(layer reducer), that divides all of them into bunches with same number, by the prin-

ciple that significant variation in the geometry leads to equal changes in the points

counts. Since this is a weak statement, but easy to run and numerically not challeng-

ing operation, needs to be visually checked (Figure 4.5).

Velocity acquisition from G-code:

In the final part of the reading script, velocity obtained from the G-code are shaped

accordingly. The layer script (lower level), as it will be seen, creates a 0 value every time

that F command is not declared, knowing that F stands as long as it’s not changed,

the following lines adjust the F vector to contain the right velocity for each movement

(speed, in the work space, required to reach point i to i+1). The travel value for

the machine and the extruder are known so it’s possible to obtain the velocity that

the filament of a commercial 3D printer requires to be forward of. Accordingly to the

flavor of the G-code, the value saved in E is different. The one obtained in Cura Engine

resemble a volume, defined like this E = t × h × dl where dl is the variation of the

8 120°rotation is easily obtained changing the numbering of the linear rails (changing the input

order)

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 59

Figure 4.5: example of drawing in Matlab of the G-code

movement of the robot, h is the layer hight and t is the trace left on the plate/object.

Thus it’s a loose statement that in Fext is contained a velocity of the filament, but allows

to clarify the idea behind. More generally E = Aprinteddl, therefore Aprinted = E/dl

that can easily be substituted into (4.1)9. The G-code obtained with Repetier-Host uses

already the extrusion displacement, anyhow make sure to check the saving property of

your file to properly adjust the reading function to the specific case.

Layer (Lower level):

This subroutine is the actual G-code interpreter. In the main script, the user has the

possibility to choose the file he or she wants to open. After some technical operation, a

cycle reads line by line until a stop condition is met. In a simple way, it reads the first

few letters and accordingly assign X, Y, Z, F and E data to a vector. The E case is very

simple, since no increment value is required for our printing system, it just distinguish

the extrusion case to the not case, although it’s used to obtain velocity of the material

at the nozzle.

All of this could have also implemented in a more efficient way, instead of restarting

the line analysis for each case. The modularity offers to any user the capability to copy,

paste and adjust to future necessity or flavors.

It then continues by checking if no break condition has been reached. The first one is

the empty line, that actually requires a few words. Some slicer leave a space in one

of the first rows that needs to be eliminated, fortunately this type of file can be easily

opened with any text editor and modified. Other condition are related to an M action

code, that depends on the slicer used (on the firmware used by the 3D printer that the

slicer has been designed for) and thus will require special attention (they were designed

9Such formulation was not included inside the present scripts commented due to the lack of necessity

in the early stages, but was introduced as a guide line for future usage. In general this depend on the

filament diameter: Cura by default uses 1.75mm while in Slic3r the diameter needs to be manually

indicated. This allows to directly describe our system in the CAM software; using directly E and F to

move the extruder.

60 4.3. G-CODE READER

to work with a CURARO elaborated text).

The Slic3r case did required a few changes in the data acquiring method due to the

tendency to break z-axis movement from the other commands and for the breaking

condition (as can be seen in the appendix).

G-code layers agglomeration:

Due to the nature of the controller (without the communication system), it may be

required to split or combine several layers into one. The cam data has a limited unit

storage memory, that can hold up to 16 cam profiles of 8000 points (128000 total

points). If using the new version of the controller, the number per file is limited to

2000 (actually 2048) points, but the overall memory can be filled with more than 16

data file (62 cams file10). This leads to the necessity to break (done by the saving

program) or join layers. Here is presented the algorithm that joins them: each layer

is analyzed one after the other and the single length is stored in a variable; until it

reaches the maximum value, it saves the information in a temporary variable. Once

met the limit the variables are saved in their respective structured array.

The user can select the number of points that define the new block combining a lot of

layer to one or few and let the saving option split them up accordingly.

G-code layers reduction:

If 100% infill is used, all the layer will be printed using 45deg lines (or with different

angles if stated otherwise). It will seem unnecessary to use a lot of data to simply repeat

information already stored. The layer deposition using a line infill sees the alternation

of 45 and 135 deg lines creating a grid every two layers. Therefore the knowledge of two

layers and for how long they repeat themselves is enough to print the object. In order

to tell them apart a script is easy to construct that analyze the number of points per

layer and if the values discard from two consecutive layers more than one (or more if it’s

deemed necessary) then it hypothesizes that a variation in the geometry has occurred.

This procedure should be used if the communication bus has not already been es-

tablished and high number of layers are to be printed. Also check feasibility of such

approximation with specific used object.

G-code saving option:

The MatlabRO main script for the G-code interpreter allows the user to decide which

saving format to use: four cams containing x, y, z, extrusion velocity and moving base

cumulative velocity on the cam-master axis using the on-line (see next subsection) al-

gorithm, or the velocity-displacement approach (off-line) as it will be presented later

on, with the fourth cam velocity-velocity of the extruder. The third option, on-line, is

to feed the x, y, z, extrusion and velocity, as in the case of the G-code, and let the

10the estimation needs to be done on memory consumption

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 61

motion move the machine as it will be presented11.

The actual saving function for cam-file format splits the data in as many files as nec-

essary to assure the possibility for the motion to read and execute all the information

stored.

In order to prepare the system for what will come later on, a general saving function

(save2txt gcode) creating back the G-code is implemented. This could be used as stand

alone to create the final interpolated data vector or, with simple adjust, correct it to

save in whatever format to match the feeding data program of the on-line control.

Such function does not sees any limitation on number of points for saved file, but it

offers through a pop-up menu to chose if all the layers wished to be saved or a smaller

partition previously indicated in the input part of the main script. The save2txt gcode

requires to be expanded, if future paths will take the machine there, to also features

the point by point velocity both for the extruder and the moving plate.

Figure 4.6: result of the saving function to create back a G-code file (but as a .txt);

the second row states the layers saved in that file; the third is the overall number of

points containing actual data

4.3.6 G-code reader consideration

To assure a smooth reading process, here are the points to make sure to follow:

� G-code should not have any empty line until the end.

� the fifth line needs to contain the total number of layers.

� the Cura engine generated file should end with the final layer to break the reading.

� it’s advised to use the velocity ratios (or values close by) obtained by the slicer to

have good layer deposition. If they need to be changed, rerun the slicing software

rather than modify them on existing trajectories.

The code here presented adds a starting and ending point in the center of the machine

and interlayer movement is done between them. If required the code can be modify to

11differences between the first and last case are related to the motion itself (as seen in the control

layout): if data is stored in a cam data file or directly communicated in a memory block. Due to a lack

of the communication parameters up to this day only a general .txt file can be presented as example

of this third point.

62 4.4. DATA PROCESSING

completely reflect the imported file as does the on-line case. Such decision was made

to allow a easier testing platform in the early stages since it’s possible to stop after one

layer or keeping repeating the same two layers to reduce the number of points needed

for a single built.

4.4 Data processing

Here the adaptations that the information requires to undergo before being uploaded to

the machine are discussed briefly. The first step is to check if the travel value is feasible

or if it has to be chopped into small segments. The second task left to carry out is to

determine the time required to go from point i to i+1. This requires to choose one of

the two motion profile (or other, but they need to be implemented). Once solved, the

actual motion law has to be assigned (also leaving the Motion to use its default profile

it’s a choice). For any further information, please consult any book on this topic[20].

These points are valid for G-code and user input equation.

4.4.1 Intermediate point generation

As stated in the mechanical behavior, a parabolic-like shape trend characterizes a

movement between two points given any standard motion law. Slicers, like the ones

mentioned before, do not take into care this issue (since they usually are combined

with Cartesian 3D printers); so a few line are in order to properly analyze the data and

adjust it to our case. Here is the algorithm with the main equations:

1. for each layer:

flagi = [0, i, 0] i = X,Y, ext.on

dx,y = diff(flagx,y);

lseg =
√
d2x + d2y

2. for each layer:

if : lseg(j) > dL j = 1, 2, .., nlseg(1)

npoints = ceil(lseg(j)/dL) + 1

pflag.i = linspace(flagi(j), f lagi(j + 1), f lag(j)) i = X,Y

if : flagext.on(i+ 1) == 0 or 1

pext.on = zeros/ones(1, npoints)

3. put all together in XXfinal, Y Yfinal, EEfinal

The same is also done for the extruder and the velocities.

The code determines the distance between two consecutive points, then uses this in-

formation to evaluate if it’s required to add intermediate points. Once established the

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 63

Figure 4.7: example: result of the reading process: 30x30mm external-20x20mm; sliced

with Cura; 100% infill; obtained by feeding to the direct kinematics equations (to

simulate machine behavior) the absolute position of the three linear guides

Figure 4.8: example: result of the reading process: 30x30mm external-20x20mm; sliced

with Slicer; 40% infill;obtained by feeding to the direct kinematics equations (to simu-

late machine behavior) the absolute position of the three linear guides

64 4.4. DATA PROCESSING

Figure 4.9: trapezoidal velocity profile. in our case:A=1200000 [mm/min2] and D=2A

case, it divides evenly the space in as many segment as calculated. The on/off state of

the extruder is simply propagated to the additional points.

Due to the start and ending in the (0,0) coordinate the z-axis movement is achieved

externally from the main data (for input user equation) or extending the last velocity

definition to this movement. The selection of this interpolator instead of other available

was to ensure in the early stage of the machine the control of the z-axis, avoiding any

accidental failure of the system due to bugged codes.

4.4.2 4t determination

The variation of time is used to pass from velocities in the working space to the ones in

the joint space without the Jacobian matrix, that if implemented in the on-line control

would require more time to solve the equation and memory consumption.

1. for each layer a for-cycle (j from 1 to length(XXlayer))

p = [XXlayer(j);Y Ylayer(j);ZZlayer(j)]

alphai = linear inverse kinematics12(p, l, s, Rp) i = 1, 2, 3

2.a Constant velocity:

dx = diff(XXfinal{layer}) same for dy

L =
√
dx2 + dy2 ; 4t{layer} = L/vext

2.b trapezoidal velocity profile:

look at figure 4.9 for the formulation. Use vm not as the actual maximum of the

machine but a lower value, according to the work-space requirements. If using

G-code file, use F as vm, making sure to check the final result from unexpected

variation.

12or other definition of the kinematics. linear inverse kinematics1 is used for different length of the

links; linear inverse kinematics2 is the one that uses the numerically solved equations

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 65

4.4.3 Motion law assignment

di = diff(alphai) i = 1, 2, 3

alphatemp.i = alphai(j) + di(j)d1 (j from 1 to length(di))

The final results are listed in alphamotlaw.i.final{LAY ER}, for any layer. d1 stores

the normalized motion law. This step can be skipped if the default motion law of

Mitsubishi is used. If the synchronous control is not used the Motion will either way

approximate in this way two consecutive points.

4.5 CNC emulator

This section deals with a different way to control the machine; the name is just a rep-

resentation of the control philosophy of these kind of systems. It derives from the need

to reduce the count of points and to overcome issue that may rise with synchronous

control, such as mis-filled information, out of phase cam or accidental changes in the

setting. This approach is not bulletproof, but could be easily adjust so that only cam

file importation is required by the user without no change in the motion controller

whatsoever (if no communication bus has been created yet).

The method is based on the exportation to the control system of the displacements of

the linear rails or with their differences. The choice is done by the user if to reduce the

burden or not on the Motion, both cases will be presented (they only differ from three

additional memory block storing the previous positions). In the alternative case, four

data are written in three cams (3 displacements on the y-axis and on the same x-axis

the travel value of the cam-master); it would appear that to complete our task a fourth

cam data file is required. The control is actually made to believe to posses standard

cam format by simply writing on the x-axis the cumulative sum of the velocity of the

longer displacement. Full motion laws or only one point every 4L can be used or even

letting the motion controller discretize the travel in opportune intervals (see on-line

control) storing directly the work-space coordinates instead of the joint-space ones.

The focus now moves on the control system where all of this simple operations need

to be carried out to print. A list of memory blocks used are listed below with further

comment on these. Two types of printing methods were required in the early stages:

continuous and discontinuous deposition. The first suits the need to test deposition

with a good stream without any break that could prove challenging while setting the

machine, although a basic test of pause is done from one layer to the other. Since not

all the cases can be well described with a continuous line, a discontinuous version of

it was written. This well adjust to any other case (both G-code and user equation).

This last variation requires a fourth cam containing the extruder breaks (as do the

synchronous control).

The development of this algorithm is mainly due to the presence of two functions of the

Motion software: one is a cam read function that easily allow to extrapolate informa-

tion from effortlessly imported data files and an incremental control function allowing

66 4.5. CNC EMULATOR

to move three axis simultaneously.

One of the main limitation of this approach, if used off-line, is that intrinsically the

cam read function is bounded up to 2048 points per cam file (using point data format),

requiring the user to input more files that in the previous case. One main other limi-

tation is the initial version of the emulator is the approximation of each segment with

a trapezoidal profile causing continuous cycles of acceleration and deceleration. If this

approach is proven to be affective this could be tried to be solved, realizing a control

system that is even closely to a CNC.

One last issue concerns the usage of motion laws different from the trapezoidal one,

that is the golden standard of the control system. With this method, they will be

approximated leading to results different than expected (in time and therefore in de-

position). To overcome it, the focus is moved on the average velocity to match the one

required to complete the task. A brief study on effect of deposition diameter due to

mismatch in the velocity profile will be illustrated.

In the Matlab scripts the variables are already prepared for the Mitsubishi control sys-

tem, by describing the guides displacements in 10−1µm while velocities in 10−2 mm/min.

4.5.1 Velocity-Displacement Cam file

They are presented considering a constant velocity motion law. The main variation from

any standard cam storage file is on the cam time/angle axis (here called DXcamV). The

Matlab script realized allows to prepare and save these three format for this particular

solution.

1. full motion law:

Pmax = max(| diff(Pflag, [], 2) |)× 103

vi =
Pmax
ti

; DXcamV = cumsum(vi)

2. full motion law (differences): after the previous steps, P flag is substituted

by:

Pflag2 = [zeros(3, 1), diff(Pflag)];
13

3. only one every 4L : (without motion law assignment)

Pi.flag3 = alphai{LAY ER} − alphai{LAY ER}(1);

Then same as point 1, but with Pi.flag3.

Where P flag is alphamotlaw.i.final{LAY ER} − alphamotlaw.i.final{LAY ER}(1).

The single values will be broken up by the Motion unit.

13this does not represent a Matlab instruction, only used the notation to sum up information

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 67

Figure 4.10: example of the velocity-displacement cam data format imported inside the

Motion software

4.5.2 Memory allocation

These are the memory of the Motion used for the continuous deposition, additional

term related on the fourth cam can be found in the algorithm paragraph. The selection

of # or D at this stage (testing) was entirely an arbitrary choice.

#0L number of cams transition #104L cumulative velocity at (i)

#2L cams transition variable (j) #106L jth cam 1 increment

#4L N.points of jthcams #202L jth cam 2 N.points

#6L N of layers14 variable #204L cumulative velocity at (i)

#10L iteration variable (i)15 #206L jth cam 2 increment

#12L N of layers count #302L jth cam 3 N.points

#20L jth cam 1 #304L cumulative velocity at (i)

#22L jth cam 2 #306L jth cam 3 increment

#24L jth cam 3 D556L velocity at (i)

#102L jth cam 1 N.points D558L cumulative velocity at (i-1)

4.5.3 Algorithm

The continuous and its opposite are discussed simultaneously pointing out their differ-

ences in the operation sequence and memory allocation. Here the two cases are summed

up for a rapid consultation and overview of the coding:

14used for manual control of layer deposition. Set #12L equal to one when using data from G-code
15within jthcams

68 4.5. CNC EMULATOR

Continuous deposition:

Printing:

1. set number of layers

2. while-cycle until all layers are printed. At every cycle execute simultaneously al-

gorithm ”Point by point” and ”Extrude”. Before completing the cycle it prepares

the moving base for the next layer.

Point by point:

1. set first three cams and number of sets of cams to read

2. reset required variables to 0

3. while-cycle until all cams to read have been considered: first determines number

of points for that given butch then it creates an inner while-cycle until all the

data stored are read. It evaluates the current velocity from the x-axis value and

the previous saved:

D556L = #104L−D558L

Position and velocity are fed to the move function.

extrude: moves the piston according to feed value

Discontinuous deposition:

Point by point:

1. set first four cams (new one #400L-#406L) and number of sets of cams to read

2. reset required variables to 0

3.a while-cycle until all cams to read have been considered: first determines number

of points for that given butch then creates an inner while-cycle until all the data

stored are read. Velocity are found: D556L = #104L−D558L.

if #406L == K0, it sets M3260 to stop motor 4 (extrusion) and vice versa.

Position and velocity are fed.

3.b as 3.a, but the fourth cam has extrusion velocity on the y-axis instead of a simple

1 for on-state.

Memory #6L is set equal to zero in order to start from the beginning the execution

of the layers. In memory #12L the number of layers needs to be inserted; for manual

operation this need to be stated, while when using G-code this requirements is overruled

by the number of cams. A pseudo while-cycle is then started until #12L value is

reached; the first operation is to rehabilitate the extruder motor that in between layers is

manually stopped (see Figure 5.5). Later on two subroutines are called simultaneously,

one that controls the Linear Delta and one the extruder. Once the points available for

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 69

Figure 4.11: main program Figure 4.12: point by point

a singe layer run out, the extruder is stopped and the two sub-function are terminated.

Before moving on, the layer counter is increased by one. The machine lowers accordingly

to the input data, preparing for the new operation. Once the while-cycle is completed

the extruder is set back to working condition.

Let’s now go back and deepen the subroutines topic. The one that controls the Linear

Delta starts by setting #2L equal to one in order to read the first useful point, #0L to

the number of cams file defining the layer and by setting #20, #22, #24 (and #26 for

the discontinuous case) equal to one to three (four). It then imposes D558L equal to

zero (x-axis of the cam file at previous step). A new inner pseudo while-cycle is created

until all the cams have been considered, that first reads one of them to get the number

of point, for that batch. A second inner loop is responsible for the reading of each point

and their execution. Here is the code for the discontinuous case, that simply differs by

an if statement:

CAMRD#20,#10,#10 +K1,#100

CAMRD#22,#10,#10 +K1,#200

CAMRD#24,#10,#10 +K1,#300

CAMRD#26,#10,#10 +K1,#400

#10L = #10L+K1

D556L = #104L−D558L

D558L = #104L

IF#406L == K0

SETM3260 //stop ext

ELSE

RSTM3260

IEND

The information is then fed to the motors and the variables are updated to complete

the loops. The second subroutine just moves the extruder with constant velocity or the

one stored in the fourth cam.

70 4.5. CNC EMULATOR

Figure 4.13: vext = vmean vs vext 6= vmean for 4x4 square with 3.1x3.1 [cm] inner hole,

geometrical initial setting and vext = 2.5 mm/s

4.5.4 Additional consideration

Trapezoidal velocity profile:

The Motion will move from two consecutive points by means of a trapezoidal velocity

profile. Thus to assure at least same mean velocity in the interval as the one intended

for that segment (first approximation of the printing process is done with constant

velocity) a few passages are required:

vext 6= vmean (constant velocity):

Pmax = max(4alphai) vi =
Pmax
ti

vext = vmean:

ti =
vi
am

+
vi
dm

+
4s
vi

(4.3)

dsi = 4Si − 0.5am(
v

am
)2 − 0.5dm(

v

dm
)2 (4.4)

4 = (
2

3
amti)

2 − 4

3
Pmaxam

vi =
2

3
amti −

√
4 4 > 0

vi =

√
4

3
amPmax 4 < 0

Where 4 determines if after the ramp up a constant velocity segment is required or

not before deceleration. See Figure 4.13.

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 71

Deposition check:

This brief inquiry is carried out for the full motion law case and with equal length of

the links. It’s supposed that the extruded material is able to flow though the nozzle

without friction. Once evaluated the velocity at the end effector, after applying the

motion law, by means of the Jacobian matrix, it’s possible to reconstruct the in-plane

resultant of the x-y-z velocity vector .Then the diameter of the deposited filament is

calculate.

ddep =

√
vext(2r)2

vplate

This approach could lead to numerical error (Figure 4.15), one major fault is due to

vplate that may be equal to zero leading the solution to infinity, this is the reason way

many firmware uses the inverse for the computation instead. Here are the results for

ideal match in velocity on both sides, but with a trapezoidal motion law (ξv = 1
3) on the

rail and a constant velocity on the extruder. It also give a representation of the error

incurred when approximating a constant velocity profile (i.e continuous deposition)

with a trapezoidal one without any correction (Figure 4.14).

Figure 4.14: variation of the diame-

ter deposited: motion law mismatch.

dnozzle = 0.9mm

Figure 4.15: variation of the diam-

eter deposited: motion law match.

dnozzle = 0.9mm

4.6 Manual control

Up to now, the controller was used to merely execute the commands obtained by means

of other software. It’ll be helpful to have any away to input and move the machine

directly from the HMI. The motion controller requires to solve the inverse kinematics

for any input, that is obtained by calculating the matrix product ahead.

Here is presented the program in the alpha-testing phase. The input process begins by

pressing the start button on the HMI that evaluates the inverse problem from the start

position and save the value in the memory block where the previous state is saved.

The program is based on an in-plane movement so there’s no z-axis dependency. To

change the X,Y value several increment are available that are made accessible to the

72 4.6. MANUAL CONTROL

motion by pressing them on the HMI. Until a new value is inserted the system will

use that value to determine the final position. Different from other philosophy where

by pressing the incremental direction (± x or y) the machine moves, here it allows to

set the final value and then operate the machine. This could prove useful in testing

the robot; by combining the increment values and directions the user, helped by the

display, can input the target position and by pressing the ”move” button control the

robot.

The programs behind these concepts are quite straight forward. The incremental values

only set a memory cell equal to a particular number, that gets rewritten when a new

button is pressed. The incremental directions only add or subtract that value in an

other memory cell where the target position is stored. The move command uses the new

value to solve the kinematics and feeds the value subtracted by the previous position to

the motor (data might be modified and analyzed by the data processing block). Before

completing the task, it substitutes the old position with the one reached.

In order to display the value on the HMI the value is converted in 10−2mm, allowing

the selection of values of the order of the tenths of millimeters. In the Motion, the

incremental value needs to wait a given time before completing the task using TIME

K2000 (2sec) in a wait block. This is done to avoid an over selection of that variable

since, during the pushing of the button, the PLC and the Motion have time to complete

several cycles. During the target selection, the input values are bounded to ±10cm.

4.6.1 Memory allocation

Here are presented the memories used by the Motion unit. The differentiation was done

with no particular reason, if not to separate different objectives.

memory:

#500F l1 #536F - #566F increment

#504F l2 #540F q2 #570L q1 old

#508F l3 #544F - #572L q2 old

#512F Rp − s #548F q3 #574L q3 old

#516F px #552F - #580F temporary px

#520F py #556F - #584F temporary py

#524F pz #560L q1(10−1µm) #590F input px

#528F - #562L q2(10−1µm) #594F input py

#532F q1 #564L q3(10−1µm)

D memory:

D500L x to HMI D504L 4q1 D508L 4q3
D502L y to HMI6 D506L 4q2

The PLC sees the D memories to HMI in D2024L and D2026L.

4.6.2 Inverse kinematics for the Motion software

The equations are obtained by developing the standard formulation of the inverse kine-

matics in order to reduce the evaluating time and memory consumption. The case for

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 73

different length of the links is the one implemented, if also Rb and s needs to vary from

link to link modify the code accordingly.

The function requires the position in meters and saves the guide displacement from the

home position in 10−7m.

di = p+ (Rp − s)ūi = [ai; bi; ci]

qi = ci −
√
l2i − a2i − b2i

example (i.e. q2) :

#552F = (#520F + #512F ∗ float(K0, 86603)) ∗ (#520F + #512 ∗ Ffloat(K0, 86603))

#536F = #504 ∗ F#504F − (#516F −#512Ffloat(K0, 5)) ∗ ...
...(#516F −#512 ∗ Ffloat(K0, 5))−#552F

#540F = #524F − SQRT (#536F)

The data format (#xxxF), as can be seen, is different from the one of the ”CNC

emulator”. Here the presence of the square root function force us to use a 64-bit

floating point type of data, instead of the 32-bit integer that works more than fine

when dealing with linear guide positions.

Figure 4.16: inverse kinematics for the motion software

4.6.3 Direct kinematics for the Motion software

Direct kinematics is not required for the manual control, but, since in this section the

opposite case has been presented, it’s included in this subsection. It was developed

keeping in mind future run of the robot where users might be interested to control the

machine also knowing the error due to approximation or simply infer the position of the

end effector from the measurements of the encoders. This could prove effective for the

assessment of the starting position, but also to check every fixed amount of points if any

approximation in the control chain has deviated the behavior from the one intended of

a given small tolerance. This procedure should be carried out with particular attention

since this function itself could introduce approximating errors.

74 4.6. MANUAL CONTROL

Figure 4.17: HMI layout for the manual control

#600F C #604F D #608F E #612L F

#616F K1 #620F K2 #624F K3 #688F q1(m)

#692F q2(m) #696F q3(m)

The nomenclature in the table refer to relative paragraph in the Mechanical System

chapter.

Omitting the input data:

#600F = 2 ∗#688F −#692F −#696F //C

#604F = −2 ∗#688F ∗#688F + #692F ∗#692F + #696F ∗#696F + 2 ∗#500F ∗#500F −#504F ∗

#504F −#508F ∗#508F //D

#608F = #692F −#696F //E

#612F = −#692F ∗#692F + #696F ∗#696F + #504F ∗#504F −#508F ∗#508F //F

#616F = ((#600F ∗#600F/3) + #608F ∗#608F)/(3 ∗#512F ∗#512F) +K1

#620F = (#600F ∗#604F + 3 ∗#608F ∗#612F)/(9 ∗#512F ∗#512F) + 2 ∗#600F/3− 2 ∗#688F

#624F = #604F ∗#604F/(36∗#512F ∗#512F)+#612F ∗#612F/(12∗#512F ∗#512F)+#604F/3+

#512F ∗#512F + #688F ∗#688F −#500F ∗#500F

#628F = #620F/(2 ∗#616F)

#632F = #624F/#616F

#640F = −#628F + SQRT (#628F ∗#628F −#632F) //Pz

#644F = (2 ∗#600F ∗#640F + #604F)/(6 ∗#512F) //Px

#648F = (2 ∗#608F ∗#640F + #612F)/(2 ∗ SQRT (K3) ∗#512F) //Py

4.6.4 Data processing and on-line control

The possibility to solve the kinematics equations inside the motion controller unit opens

a new field of inquiry. If up to now, all the solutions were introduced as a mean to

reduce point number or simplify the procedure for an not expert user, here all of these

points could be minimized or even wiped out. If a communication bus between the

PLC and a computer can be established, then it would be possible to transfer data like

position and velocity directly from a G-code file (or by means of an interpreter). If this

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 75

Figure 4.18: implementation of the direct kinematics in the motion software

is the case, a new program running in the motion is required. This could be also used

in combination with the method previously introduced (uploading of cams), but letting

the Motion split up the travel value and solve the inverse kinematics. As can be seen in

the control outline, the information requires to be analyzed before being executed. This

step is required for both manual control and on-line control. The difference between

the two of them is how the information is fed to the control system. Here is the main

outline:

#400F 4x #474F Zi #416F n #432F Yj

#404F 4y #420F 4xk #450F Xi−1 #436F Zj

#482F 4z #424F 4yk #454F Xi #490L j

#408F
√
4x2 +4y2 +4z2 #478F 4zk #460F Yi−1 #492F 4lj

#412F 4Lmax #428F Xj #470F Zi−1 D510L vj1

1. reads new target position and knowing the starting one, calculates (also for y and

z-axis):

#400F = #454F −#450F

2. it then evaluates the in the working space

#408F = SQRT (#400F ∗#400F + #404F ∗#404F + #482F ∗#482F)

3. fixed 4Lmax, it checks in how many intervals split the dL. It then sets j variable

for the inner loop.

IF#408F > #412F

#416L = LONG(FUP (#408F/#412F))

ELSE

#416L = K1

IEND

4. inside the loop, it determines the increase value from the starting point for that

iteration. It evaluates the target position for x, y and z, the time, for a given

velocity (obtained in the F command or custom), to reach that position.

76 4.6. MANUAL CONTROL

#420F = #400F/FLOAT (#416L)

#428F = (#450F + #420F ∗#490L)

#492F = SQRT (#420F ∗#420F + #424F ∗#424F + #478F ∗#478F)/#496F 16

#490L = #490L+K1

5. it then lunches a function that solves the inverse kinematics and the velocity for

the linear delta.

D512F = FLOAT (D504L)/#492F

D510L = LONG(D512F) ∗K60/K100

6. as it controls the guides, it moves the extruder according to the specification.

Continuous mode: The ”CNC emulator” works by approximating the movement

between two points with a trapezoidal motion law (exact stop mode). Such approxima-

tion can be overcome by means of few modification, that requires to be tested before

being used inside a printing cycle, if a more continuous mode is required. This approach

will be illustrated using only two control axises. Simulation in the Mitsubishi environ-

ment showed good result. This approach can only be implemented during interpolation

between two consecutive point of the original G-code, unless there’s no change in the

direction of the movement of all the guides.

Figure 4.19: Continuous mode solution test

In the left branch the overall movement is split in different segment as many as they

were obtained in the interpolation process. In the right part a if-case condition inside

a for-loop cycle allows to select the proper interval in which the velocity stands. A

wait condition allows to pace the feeding information to the left branch. The velocity

should be defined along the resulting path: V = V 1
√
d21 + d22 + d33/d1, where V1 is the

velocity of the first linear guide. The time to wait should be reduced of a small percent-

age to allow the reading of the correct value in the left branch. Due to its dependency

with the trajectory followed, it needs to be implemented only in the on-line control

where data processing correctly determine the no-inversion condition. This procedure

16#496F is the velocity for that segment

CHAPTER 4. CONTROL SYSTEM (PROGRAMMING) 77

can be useful if applied only to the extruder in order to guarantee a pseudo continuous

deposition without any interruption between two real stop condition.

4.7 HMI and PLC programming

The 3D printer requires also an interface to select and coordinate the tasks. Such op-

eration is done by means of a touch screen connected to the PLC unit.

The definition of the programs is required to be carried simultaneously helping to match

the bit information unit. Once a variable inside the PLC is defined, assigning it to a

specific memory unit, a pushbutton is created inside the interface related to that same

unit (figure 4.20).

Figure 4.20: HMI and PLC programming example

The Ladder Diagram will feature that variable in one of its rungs controlling a par-

ticular Motion routine. A small window of the whole working program can be seen in

figure 4.21 and 4.22.

The first version of the human-machine interface is made up of three pages. The first

page was developed to feature all the main buttons that are: turning on/off of the

motors, the homing command (the guides move back to the lower position obtaining

the correct starting configuration again), water cooling and temperature module en-

gagement pushbuttons and finally the printing start (the definition of the routines to

run has to be changed inside the Motion, in future versions they might be separated in

different blocks).

Four light indicators are placed in the upper side to show the state or alarms during

the operation. The numerical display is activated only when using the synchronous

control and it shows the cam-axis length that’s being executed. In the lower right

corner the reference to the other two pages are placed (they create an internal link to

those screens).

The second page is the one dedicated to the extruder. Three load programs are avail-

able to transfer material from the first chamber to the extrusion one differing from their

travel value. This may be useful to avoid reaching the maximum torque allowable; if

this condition is met in spite of all that, and the punches are stuck, two programs are

78 4.7. HMI AND PLC PROGRAMMING

Figure 4.21: PLC working program example

Figure 4.22: HMI working program example

available to force their retraction (return commands). The extrusion forces the empty-

ing of the extrusion chamber fundamental step during the starting up of the printer and

the cleaning of the extrusion chamber; similar command is the extruder positioning but

the forwarding movement of the punch can be stopped and unstopped by repressing

the same button (alternate type instead on momentary) designed to position the punch

in contact with the material, making the system ready to extrude.

The final screen is related to the control of the Linear Delta (partially introduced in the

manual control section). The additional pushbuttons to the ones of the testing manual

control are related to the positioning of the moving plate in the z-axis direction. The

main ones (lifting and lowering) increase the height of an acceptable value (26 cm for

the first test, but it can be adjust according to experimental necessities), while the

others offer the possibility to tune the height slightly, allowing a more delicate nozzle

approach.

Chapter 5

PRINTING and

EXPERIMENTAL RESULTS

5.1 Objective and Overview

In this chapter, all the previous information will be used to print. The first test is

carried out using a generation trajectory algorithm that is briefly described (5.2). The

algorithm is used to generate a hollow square with a continuous deposition approach

(5.3) and parallel lines with changeable interfilament distance (5.4). The same pro-

grams can be used to create different 3D objects. Few consideration are presented for

an oblique parallelepiped printing (5.6). The first results are outlined, marking the

validation feedbacks of the control system programming defined in the previous chap-

ter. In the end, the overall procedure from modeling to final object will be discussed

differentiating from the G-code and input equation based case (5.8).

5.2 Trajectory generation

The ones used are parametric trajectory (S) because they can be represented by means

of a parameter (λ). For this section refer to [7][10]. Then S(λ) is defined as well as

Ṡ =
(
∂
∂λS

) .
λ. In the previous thesis works, Bézier curves (lines and parabolas) were

summed to obtain the final trajectory keeping the velocity constant. These, as the ones

actually implemented and used for the first tests, are able to interpolate n-points into

a desired path.

The linear motion is the one used for the first tests. Here is what can be found from

literature: if a robot has to be moved from S0 to S1, then easily S = S0 + uλ, where u

is the vector direction. Both S0 and u are constant, thus Ṗ = uλ̇ and P̈ = uλ̈.

The programs that will later on be described only define the Si (corner) points of the

trajectory and normalized velocity vector. The interpolation is carried out in a second

phase using a sampling space interval known to leave the trajectory bounded to the

tolerance requirements. In addition to these general aspects, the programs presented

79

80 5.3. SQUARE GENERATION

Figure 5.1: square with A=40mm,

B=31mm, r=0,45mm

Figure 5.2: first printed result of an hol-

low square

create a normalized extrusion vector to resemble the one created from a slicer with

a simple binary code to tell the two state of the extruder apart. The normalization

allows to specify the trajectory parameters (velocity of the plate, filament dimension,

interfilament gap and extrusion feed rate) without any change in the generation func-

tion. Once defined the geometrical parameters of the filament, theoretically, an infinity

of ratios exist that solve such problem, so they are output still normalized, only later

on the velocities are selected. These features will allow great flexibility in the testing

phase.

5.3 Square generation

One of the first requests was the possibility to print a hollow cube. There were no

program able to read the input file and move the extruder accordingly. So the simple

way to test the machine and obtain the required object was developing a continuous

deposition program. The idea was realizing a single layer without interruption. To do

so any square needed to start from the center position and traveling around to complete

the square, then, stopped the extruder, move back and down to center ready for a new

layer (the only discontinuous movement). Thus a manual input was required, here are

the equation that were used to describe the point of the square.

Square generation data:

A outer dimension r adjacent segment gap B inner dimension N1 N = (A−B)/4r

at the beginning of each turn:

As = A− r ; Bs = A− 2r ; a = r(i− 1)

1st turn:

x = [a, a,Bs− a,Bs− a] y = [a,As− a,As− a, ri]
1number of turns

CHAPTER 5. PRINTING AND EXPERIMENTAL RESULTS 81

others turn:

x = [a+ r(i− 1), a+ r(i− 1), Bs− a− r(i− 1), Bs− a− r(i− 1)]

y = [a+ r(i− 2), As− a− r(i− 1), As− a− r(i− 1), a+ r(i)]

The geometry used for the first attempts where A=40 mm, B=31 mm and 2r=0.9 mm.

First test execution and result:

The very first test was conduct using the A equal to 40mm, but B to 30mm and r to

1 mm. The choice to use an higher gap was taken to account for unexpected behavior

of the system in that early stage and positioning errors (right distance between plate

and nozzle). The test is here presented because it shows perfectly the steps followed

during the programming chapter.

Figure 5.2 shows the final result from the top view, while Figure 5.3 to 5.5 show the

transition from one layer to the next. Once a layer is done, the Motion communicates

the extruder motor to stop, activating the respective bit; the plate is then move back

to the center ready to print the new layer without shedding a drop of material; the

next layer is then start after resetting the motor stop flag.

This procedure is very important because it’s the foundation algorithm used to execute

the G-code. As can be seen from any slicing software, the machine will have many free

movement to reset the position of the extruder. The execution of such step shows how

the obtained G-code could be implemented without any particular drawback2.

The program used was the one with velocity-displacement format using the ”CNC

emulator” with three cams, using a dL of 10 mm and a 2.5 mm/s work-space constant

velocity (corrected with the trapezoidal method shown).

5.4 Interfilament gap script

In order to test the effect of the gap between two near extruded filaments, a few lines

of coding were required. The script, that can be found in Appendix B (line close),

generates a series of segments according to the displacement imposed in the user input

data part as it will be done for the square. The function can be easily expanded to

house also the printed gap as a function of the z-axis gap making it also a possible

script to test the effects of the layer thickness on this particular machine (calibrating

the deposition process). This is an example of full user input discontinuous print

(resembling a G-code).

The parameters are: x0 and y0 as starting position; dl as the maximum interpolating

distance; lmax as the segment length; dd as the vector containing the interfilament gaps.

This program can be adjusted to create a different infill and filament analysis, in order

2the temperature at the nozzle plays a crucial role here, if too high the material will drop down

causing imperfections, if too low the material will take some time before being able to properly flow.

82 5.4. INTERFILAMENT GAP SCRIPT

Figure 5.3: example of line breaking from one layer to the next: stop

Figure 5.4: example of line breaking from one layer to the next: rapid movement

Figure 5.5: example of line breaking from one layer to the next: restart

CHAPTER 5. PRINTING AND EXPERIMENTAL RESULTS 83

to carry out new initial test on the material and machine performance. The applications

can be found in figures 5.7 and 5.8.

Figure 5.6: interfilament

gap script example with dif-

ferent gap values

Figure 5.7: rectangular

layer of 90x25 mm with in-

terfilament of 0.9mm

Figure 5.8: 130x130mm

square with interfilament of

10mm

5.5 Cube

In the previous section one layer was drawn. The motion control program was developed

giving the opportunity to select the number of layers and the return position to allow

flexibility on the final object specifics. As it can be seen in the Matlab code, the return

movement was split in half in order to separate the layer height from the centering

position (this will be helpful to test with layer heights as well as in the next section).

These values need to be placed manually on the motion controller or using a version

completely automated.

5.6 Oblique parallelepiped

One of the main limitation of the machine (as a 3D printer) that is required to be known,

is the maximum (or minimum depending on the point of view) taper angle. Realization

of inclined walls requires understanding of the necessity to or not to use temporary

reinforcement to sustain the construction. To do so, a hollow oblique parallelepiped

was required to be printed. Calling θ the taper angle, supposing that it lies in the

x-z plane and leads to small variation on the x-axis (otherwise it requires to solve the

inverse kinematics also for new points since the travel value of the guides are due only to

the start and end condition and not to the working space displacement), a relationship

between them can be found:

dx =
dz

tan θ

If high x-axis variation are required use a G-code approach.

84 5.7. GENERIC OBJECT

5.7 Generic object

If no particular equations are available, as occurs the majority of the time, the only path

is to draw the object with any CAD software and, using a slicer, obtain the relative

G-code and following one of the approaches previously explained. Refer to Printing

process outline:G-code for the exact procedure.

Here are presented a series of picture representing the realization steps of a specimen

for bending test of 65x11x11 mm (square section).

Figure 5.9: parallelepiped of 65x11x11 mm: from CAD to G-code reader output

5.8 Printing process outline

In this final section the procedure from designing to final object removal from the plate

will be presented. To allow a better understanding of the topic as of all the codes

written, two cases will be distinguished. This outline is intrinsically linked to the ver-

sion of the system in this thesis work. It requires to be updated when future version

of the programs will be available (all the function and script are in the alpha testing,

beta-testing releases will be a development and optimization of such initial elements)

5.8.1 G-code

1. draw object on any CAD,CAM software that support .stl(stereolithography) file

exportation. Make sure to well define (parametrically) any sketch or function.

2. save the part in the .stl format.

3. open it with any slicing engine (CURA, Slic3r). The following programs were

designed using CURA (if using Repetier-Host make sure to follow the relative

instruction).

4. if not already done, set the machine parameters. For our robot, the only one that

need to be checked are: Nozzle size (0.9mm), Initial layer thickness (depend on

the quality and adhesion of the first layer, no more than 3/4 of nozzle), Travel

speed (check limit on the rail, for first tests 5mm/s was used), Layer height

(lower or same as the initial layer thickness), Shell thickness (no less than twice

the nozzle) and fill density.

CHAPTER 5. PRINTING AND EXPERIMENTAL RESULTS 85

5. run the slicing operation and save it in the G-code format.

6. unless changing some line in the Matlab code, open the file just saved and remove

the empty line (that will cause a break in the layer read sub-function). Before

the last G0 command, place the commented layer definition as if were the last

layer 3.

7. save it without changing termination. Open Matlab script MAIN Gcode.m.

8. in the setting part, adjust: Robot geometry, chosen layer partition, plotting op-

tion, the intermediate point interval, number of point per cam file (2000) and the

saving name.

9. run the script. A window pops up asking the file to open. Select the one for the

case interested in.

10. the program will ask several questions by means of a menu. A first request is

either use all the layers (G code layer1 function) or a smaller set. If plotting

option flag is set to one, the menu will ask what kind of initial representation is

required 2D or 3D. A second pop up window is related to a single layer, point by

point, drawing showing if the extruder is on or not, use it to check the result.

11. it then asks what saving format has been chosen.

12. make sure that the correct ladder diagram and HMI program are uploaded on the

control system (correct temperature. See guide for extrusion preparation). Open

the relative .mtw file (at least the latest). On the left side, the program tree can

be found. Select Cam Data. Right click on No.001, then click on import. Choose

the first data file. Repeat the operation for all the files making sure to upload

them in the correct order (use the name as guide).

13. compile the program and upload it on the motion controller.

14. on the HMI, select in the main page in this order: motor on, home position,

cooling system on and resistance on.

15. in GX Works2, check that the temperature are reached and sustained according

to the guide to prepare the extruder.

16. completed it, place the plate in contact with the extruder (or leaving a small

gap). In the HMI push Move Linear Delta.

17. intermediate stops may be in order to refill the extruder chamber.

18. upon completion, remove object from the plate.

3it can be copied in the first row, as the total number of layers can be found

86 5.8. PRINTING PROCESS OUTLINE

5.8.2 Manual input

1. open MAIN square.m. Set robot geometry, square data (or for any other cus-

tom function), extruder velocity, maximum inter-point distance, number of point

defining motion law and any other specification, saving title, next layer start (layer

thickness, thus filament diameter). Below %bazier ret par data, it’s possible to

prepare the program ret per bazier script.

2. use square generation or any custom function (use the first as reference) to create

coordinate points.

3. run the .m script. A first option asks if either the Bazier approach or a motion

law assignment is preferred.

4. select the first one and the bazier script is launched.

Select the second one and a new pop up questions about the type of motion law

desired. If none of them is desired, just select the first one.

5. plot options are available for debug.

6. a save menu opens. Upon pressing ’yes’ a new option is given, continuing with syn-

chronous control (master cam-displacement) or using the new solution (velocity-

displacement).

7. selected the second, full motion law or full motion law with differences already

calculated or one point every dL. A third saving menu opens asking if using

constant velocity between two consecutive points (leading to some variation in

the result) or directly a corrected velocity in order to constraint the execution

time once performed by the motion controller (mean velocity is equal to the one

with constant velocity).

8. the file is saved. Open the relative .mtw file (at least the latest).On the left side,

the program tree can be found. Select Cam Data. Right click on No.001, then

click on import.Choose the first data file. Repeat the operation for all the files

making sure to upload them in the correct order (use the name as guide).

9. in the Matlab Command Window , Extruder velocity, delta pos1 and delta pos2

are found. The first needs to be placed in K23 (speed), the three values of

the second one in K22 (in the same order), the last three in K27 (they are the

inter-layers distance).

10. compile the program and upload it on the motion controller.

11. on the HMI, select in the main page in this order: motor on, home position,

cooling system on and resistance on.

12. in GX Works2, check that the temperature are reached and sustained according

to the guide to prepare the extruder.

CHAPTER 5. PRINTING AND EXPERIMENTAL RESULTS 87

13. completed it, place the plate in contact with the extruder leaving a small gap. In

the HMI push Move Linear Delta .

14. intermediate stops may be in order to refill the extruder chamber.

15. upon completion, remove object from the plate.

5.8.3 Extrusion system preparation

1. open the .gxw file. In Tool → Intelligent Function Module Tool → Temperature

Control Module → Auto tuning, temperature can be set and checked.

2. control that the information reflects the one for the material that is being printed.

Upload.

3. raise the robot using Main Raise in the HMI, adjust the height using other Raise

or Lower to give enough room to prepare the printing system.

4. move the plate with Manual Control to work in outer region, if required.

5. place some material in the first chamber and wait a few minutes, let it warm up,

then use a Loader button to transfer material from one chamber to the other. Be

careful on the selection, longer distance could prove unbearable for the system (it

reaches max torque capability leading to a fault).

6. push Extrusion to completely empty the main chamber.

7. repeat the two previous steps until the machine has been cleaned and the filament

is made of the printing material only (some plastic residue from the cleaning

procedure is still present in the first chamber).

8. use Extruder Positioning to place the punch in contact with the material. Once

the flow is established repress the same key to stop the moving.

9. collocate the extruder in the center position.

88 5.8. PRINTING PROCESS OUTLINE

Conclusion

This master thesis deals with the development and adjustment of an automated ma-

chine composed by two subsystems, a linear delta robot with 3 Dofs, and an extruder

for MIM technology. The whole machine is a 3D printer for metal components based

on the use of a MIM extruder contrary to typical 3D printers based on the use of

laser or EBM. The project aims at the realization of a machine capable to provide the

characteristic features of a 3D printer in order to permit the study and development of

this new technology. The machine must be capable to ensure a manufacturing process

inside precise technological constraints.

In this thesis work the primary objective was to permit the mastering of the printing

process in order to study and develop the related technology.

In order to do so, some mechanical problem as well as electric and control related ones

needed to be addressed.

The structure required to be made more rigid and at the same time feature elements to

assure normality of the nozzle-moving plate interaction. This component was designed,

realized and placed on the moving plate. An aimed analysis of the equation describing

a general configuration were carried out to outline the possible sources of unexpected

behavior. To correct such errors a calibrating script was developed that simulates the

actual system, due to assembly delays such algorithm was not tested up to now.

The electrical cabinet fitting analysis was initially developed, but later on it was com-

missioned to an external factory. Either way, a solution has been delineated and the

electrical layout transcribed to feature all the components used up to now.

As concerns the programming part, a new, for this particular machine, control method

was developed to reduce memory consumption and to make it as close as possible to

any other commercial 3D printer, allowing any user, with basic knowledge on such sys-

tems, to at least understand what the machine is actually carrying out. This required

to differentiate between final usage of the machine and what was required in the early

stages. A manual control was developed to directly operate the machine from the touch

screen, in order to set the moving base during the material preparation before printing.

Such program, was swollen up to directly process the data on the Motion itself.

All of this helped, finally, to print the first basic object. A single layer square was

more than enough to test the CNC emulator developed with its versatility to control

the printing process either by means of continuous or discontinuous deposition. Future

and/or possible development:

89

90 5.8. PRINTING PROCESS OUTLINE

1. further development of this technology

2. realization of a communication bus between a computer and the control unit to

easily transfer data.

3. use the calibration tool to enhance the performance of the machine as a whole.

4. development of a system to track the position of the Linear Delta end effector

and to be able to use the information to close a controlling loop.

5. measure increased rigidity.

6. Check feasibility to use heated flexible tube to connect the extruder to the moving

plate, featuring now the actual nozzle, that will print on the base of the machine

or a properly set bed. This solution could exploit all the advantages of a PKM

machine, reducing the problem of a moving printed object.

Appendices

91

Appendix A

Technical sheets and drawings

Here are presented the technical data of the electromechanical and mechanical compo-

nents used in the project [8]. The technical data of the designed components as well as

the electrical layout and specification can be found.

93

94 A.1. MITSUBISHI HG-KR43B ELECTRICAL MOTOR TECHNICAL SHEET

A.1 Mitsubishi HG-KR43B electrical motor technical sheet

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 95

96 A.2. BONFIGLIOLI TR 080 1 10 LOW 50C1 CD14 S5 OR SB KE REDUCER

A.2 Bonfiglioli TR 080 1 10 LOW 50C1 CD14 S5 OR SB

KE reducer

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 97

98 A.2. BONFIGLIOLI TR 080 1 10 LOW 50C1 CD14 S5 OR SB KE REDUCER

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 99

A.3 Rollon ELM 80-SP

100 A.4. ADJUSTABLE PLATE

A.4 adjustable plate

$PRPSHEET:{Descrizione}

Disegno31
PESO: $PRPSHEET:{Peso}

$PRPSHEET:{Fine}

$PRPSHEET:{Materiale}
A4

FOGLIO 1 DI 1SCALA:1:5

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

SolidWorks Student Edition.
 Solo per uso accademico.

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 101

A.4 adjustable plate

 52,08 2
3,

25

 23,03

 5
1,

61

 242,49

 242,49

3x M4

 280

$PRPSHEET:{Descrizione}

Disegno31
PESO: $PRPSHEET:{Peso}

$PRPSHEET:{Fine}

$PRPSHEET:{Materiale}
A4

FOGLIO 1 DI 1SCALA:1:1

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

SolidWorks Student Edition.
 Solo per uso accademico.

102 A.4. ADJUSTABLE PLATE

A.4 adjustable plate

28

0

 70

 120°

 120°

 320

3x 5

 3
20

 1
60

$PRPSHEET:{Descrizione}

Disegno31
PESO: $PRPSHEET:{Peso}

$PRPSHEET:{Fine}

$PRPSHEET:{Materiale}
A4

FOGLIO 1 DI 1SCALA:1:5

N. DISEGNO

TITOLO:

REVISIONENON SCALARE IL DISEGNO

MATERIALE:

DATAFIRMANOME

SBAVATURA E
INTERRUZIONE DEI
BORDI NETTI

FINITURA:SE NON SPECIFICATO:
QUOTE IN MILLIMETRI
FINITURA SUPERFICIE:
TOLLERANZE:
 LINEARE:
 ANGOLARE:

QUALITA'

FATTO

APPROVATO

VERIFICATO

DISEGNATO

SolidWorks Student Edition.
 Solo per uso accademico.

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 103

A.5 electrical layout for the cabinet

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

01
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente15/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

COMPONENTS LIST:

1 PLC rack
5 MR-J4

1 HMI

5 SSCNET III cables

1 ethernet cable HMI to PLC

1 magnetothermic switch 25 A [4 067 76] (S1)

2 power supply 24V (T1-T2)

1 emergency stop (EMG1)

1 security relay 3NO [Schneider Electric XPSAC5121 XPS] (K1)

1 NC red push buttons (OFF)

1 NO green push buttons (ON)

5 contactor realays NO (MC1-MC2-MC3-MC4-MC5)

5 relays NO 6A (RA1-RA2-RA3-RA4-RA5)

5 relays NO 6A (RB1-RB2-RB3-RB4-RB5)

5 pin terminal (PT1-PT2-PT3-PT4-PT5)

5 magnetothermic switch 6A (SW1-SW2-SW3-SW4-SW5)

3 relays NO 6A (RT1-RT2-RT3)

2 relays NO 6A (RP1-R_AIR)

5 varistor [Nippon] (R1-R2-R3-R4-R5)

terminals

CABINET IN

1) 220V plug

2) compressed-air

1) compressed-air

2) to motor cables (power, encoder, break)

CABINET OUT

1) proximity sensor

2) pump power

3) thermocouple cables

4) extrusion resistor

CABINET TERMINALS (post-realization connection)

TO CONTROL PANEL

1) HMI

2) emergency stop (EMG1)

3) 7x USB female connector (1 for PLC, 1 for HMI, 5 MR-J4)

[lower part of the cabinet]

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

02
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente13/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

power PLC motion T

220V

T1

T2

I/O

break

E
M

G
1

K1

R
A
1

R
A
2

R
A
3

R
A
4

R
A
5

+24V

24G

EMI

+24V_B

24G_B

ONOFF

+220V

220G

S1

to HMI

MC1 MC_i MC5

MC1 to MC5

MC_220

MC_220G

ON_p

QX80 QY80 Q64AD

104 A.5. ELECTRICAL LAYOUT FOR THE CABINET

A.5 electrical layout for the cabinet

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

03
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente13/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

digitalmotionPLCpower T

input_220V

FG

LG

EMI EMI.COM

24G +24V

1 2

17 18

 T1

 T2

 T3

COM T5

1+ T7

1- T9

2+ T8

2- T10

3+ T15

3- T17

4+ T16

4- T18

24G
MT1+

MT1-

MT2+

MT2-

MT3+

MT3-

MT4+

MT4-

RP R_AIRSSCNET III/H

RT1

RT2

RT3

HMI

+24V

QX80 QY80

digital

Q64AD

F

24G

FG

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

04
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente14/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

SERVODRIVE
MR-J4

L1

L2

L3

L11

L21

U

V

W

CN3

CN1A

CN1B

MC+

MC-

Sw+

Sw-

motor out

PIN TERMINAL

J4_i+1

J4_i-1

PIN TERMINAL (PT)

CN3

2 10 12 20

 3 13 15 19

RB_A1

RA_A1

MS_i

+24V

BREAK RELAY (RB)

EMERGENCY RELAY (RA)

14

11

A1

A4

14

11

A1

A4

MB_i

+24V_B

PT_13

24G

24G

24G

PT_15

+220V

RA_11_i-1 RA_11_i+1

MSU_i+24V

MSL_i

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 105

A.5 electrical layout for the cabinet

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

05
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente14/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

SERVODRIVE

+220V

220G

Switch_i contactor_i (MC)

1 3 A1 5 7

2 4 A2 6 8

C1 C3

L11 L21

C1 C3

L1 L3

S
W

1

+220V

220G

L1

L3

L111

L21

CN1A

CN1B

U

V

W

DICOM

ALM

EM2

DOCOM

MRB

MR-J4 _1
MC_220 MC_220G

ON_p

i+1

R
A
1

R
B
1

+24V

24G

motor out

SSCNET III/H

CN1A_i+1

24G

24G

MT1- MT1+ MT2- MT2+ MT3- MT3+ MT4- MT4+ MR1- MR1+ MR2- MR2+ MR3- MR3+ MP- MP+

MB1- MB1+ MB2- MB2+ MB3- MB3+ MB4- MB4+ MB5- MB5+ MS1 MS1

 24+

MS1

24G

MC_220

MC_220G

ON_p

MC_5_i+1

TERMINALS

MC

U

R
1

U

R
3

U

R
4

U

R
5

MS_i MS_i

24+

MS_i

24G

U

R
2

MS5

24+

MS5 MS5

24G

MSL1

24+

MSL1 MSL1

24G

MSU1

24+

MSU1 MSU1

24G

MSU_i

24G

MSU_i

24+

MSL_i

24G

MSL_i MSL_i

24+

MSU_i MSU5

24G

MSU5

24+

MSL5

24G

MSL5 MSL5

24+

MSU5

i=2,3,4

i=2,3,4

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

06
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente13/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

TEMPERATURE RELAYS

14

13

A2

A1
+24V

+220V

RT_i

MR_i

PUMP RELAYS

MP

RP

+220V

COMPRESSED AIR SYSTEM

+24V

R_AIR

Valve

AIR IN

AIR OUT

14

13

A1

A2

14

11

A1

A4

U

K_temp_i1

+220V

MR_i

RT_i

24G

24G

HMI

24G +24V

to PLC

(ethernet)

+24V

106 A.5. ELECTRICAL LAYOUT FOR THE CABINET

A.5 electrical layout for the cabinet

DATEREV. NAME CHANGES

REVISION

LOCATION:

Document realized with version :

CONTRACT:

SCHEME

07
L1 Main electrical closet

0

2017.0.1.21

User data 1 User data 2

0 utente17/02/2017

D
e
si

g
n
S
p
a
rk

 E
le

ct
ri
ca

l

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NC

COM

PLC- module

 QX80 PLC- module

 Q64AD

1-V+

1-V-

1-I+

1-SLD

2-V+

2-V-

2-I+

2-SLD

3-V+

3-V-

3-I+

3-SLD

4-V+

4-V-

4-I+

4-SLD

A.G

FG24G 24G

PLC- module

 QY80

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

R_AIR

RPMQX1

MQX2

MQX3

MQX4

MQX5

MQX6

MQX7

MQX8

MQX9

MQX10

MQX11

MQX12

MQX13

MQX14

MQX15

MQX16

MAD1_V+

MAD1_V-

MAD1_I+

MAD1_SLD

MAD2_V+

MAD2_V-

MAD2_I+

MAD2_SLD

MAD3_V+

MAD3_V-

MAD3_I+

MAD3_SLD

MAD4_V+

MAD4_V-

MAD4_I+

MAD4_SLD

MAD_AG +24V

STRIP

TERMINAL

 MQX1 MQX1

 24+

MQX1

24G

MQX_i MQX_i

24+

MQX_i

24G

MQX16

24+

MQX16 MQX16

24G

i=2,3,..,14,15

MAD1

 I+

MAD1 MAD1

 V+ V-

i=2,3

MAD1

 SLD

MAD_i

 SLD

MAD_i MAD_i

 V+ V-

MAD_i

 I+

MAD4

 SLD

MAD4 MAD4

 V+ V-

MAD4

 I+

MAD

 AG

24-pins connector hook up table

TCM terminal 24Pin terminal TCM terminal 24Pin terminal

T1 1 T8 7(+)

T2 2 T10 19(-)

T3 3 T15 8(+)

T5(GND) 13-14-15 GND T17 20(-)

T7 6(+) T16 10(+)

T9 18(-) T18 19(-)

APPENDIX A. TECHNICAL SHEETS AND DRAWINGS 107

A.6 electrical mounting specification

Figure A.1: PLC specification

Figure A.2: servo amplifier specification

108 A.7. BOLT SELECTION FOR THE STRUCTURE

A.7 bolt selection for the structure

In order to assemble the structure as can be seen in Figure 2.3, the screws and bolts

needed to be chosen to accommodate the specifics of the design. The design was

developed to increase rigidity after some experimental analysis that showed a first

frequency at around 5 Hz. Simulation carried out in previous thesis work showed that

this configuration with crossed horizontal strips could significantly increase the first

eigenvalue of the system. Here is presented a table with the screws and bolts required1:

1only the additional fasteners are here included

Appendix B

Matlab scripts

B.1 robot behavior analysis

B.1.1 MAIN X Z

Listing B.1: MAIN X Z

1 c l e a r ; c l c ;

2 format shor t g ;

3 l =0.595; Rb=0.198; s =0.45651;

4 vMaxQ= [0 . 0 5 ; 0 . 0 5 ; 0 . 0 5] ; %[m/ s]

5 aMaxQ = [0 . 2 ; 0 . 2 ; 0 . 2] ; %[m/ s ˆ2]

6 vec to r =5 :5 : 20 ;

7 f o r j j=vec to r

8 p0=[8e − 3 ; 0 ; 0 . 6] ; %i n i t i a l p o s i t i o n

9 p1=[j j *1e − 3 ; 0 ; 0 . 6] ;

10 zEst ruso re =0.8 ;

11 a lpha 0=l i n e a r i n v e r s e k i n e m a t i c s (p0 , l , s ,Rb) ;

12 a lpha 1=l i n e a r i n v e r s e k i n e m a t i c s (p1 , l , s ,Rb) ;

13 (alpha 1−a lpha 0) *10ˆ6 ;

14 format ;

15 n=50;

16 dx=(alpha 1−a lpha 0) /n ;

17 DX=(p1 (1)−p0 (1)) /n ;

18 p f l a g=p0 (1) :DX: p1 (1) ;

19 p temp=[p f l a g ; p1 (2) * ones (1 , l ength (p f l a g)) ; p1 (3) * ones (1 , l ength (p f l a g))] ;

20

21 vect =[alpha 0 , a lpha 1] ;

22 ma=max(vect , [] , 2) ;

23 mi=min (vect , [] , 2) ;

24

25 f o r j =1: l ength (p f l a g)

26 S (: , j)=l i n e a r i n v e r s e k i n e m a t i c s (p temp (: , j) , l , s ,Rb) ;

27 end

28 j =1;

29 f o r i =1:n+1;

30 alpha p=alpha 0+(i −1)*dx ;

109

110 B.1. ROBOT BEHAVIOR ANALYSIS

31 a lpha 1 (j)=alpha p (1) ;

32 a lpha 2 (j)=alpha p (2) ;

33 a lpha 3 (j)=alpha p (3) ;

34 q=[a lpha 1 (j) ; a lpha 2 (j) ; a lpha 3 (j)] ;

35 zoom=0;

36 [t c x (j) , t c y (j) , t c z (j)]=plotLD (q , l , s ,Rb, zEstrusore , zoom) ;

37 subplot (1 , 2 , 2)

38 p l o t (tc x , t c y) ;

39 a x i s equal

40 j=j +1;

41 end

42 %%

43 tc X{ j j }=tc x ; tc Y{ j j }=tc y ; tc Z { j j }=t c z ;

44 end

45 %%

46 f i g u r e ()

47 f o r j j=vec to r

48 p l o t (tc X{ j j } , (tc Z { j j }−p0 (3)) *1 e3) ;

49 hold on

50 end

51 f i g u r e ()

52 f o r j j=vec to r

53 p l o t (tc Y{ j j } , (tc Z { j j }−p0 (3)) *1 e3) ;

54 hold on

55 end

B.1.2 MAIN X Z fl f(l)

Listing B.2: MAIN X Z fl

1 c l e a r ; c l c ;

2 format shor t g ;

3 l =0.595; Rb=0.198; s =0.45651;

4 vMaxQ= [0 . 0 5 ; 0 . 0 5 ; 0 . 0 5] ; %[m/ s]

5 aMaxQ = [0 . 2 ; 0 . 2 ; 0 . 2] ; %[m/ s ˆ2]

6 L = [0 . 5 9 5 ; 0 . 5 9 5 ; 0 . 5 9 5] ;

7 low =0.98;

8 up =1.02;

9 dt=5e−4;

10 L1=0.590: dt : 0 . 6 0 0 ;

11 vec to r =1: l ength (L1) ;

12

13 zEst ruso re =0.8 ;

14 p0 = [0 ; 0 ; 0 . 6] ; %i n i t i a l p o s i t i o n

15 p1=[100*1e − 3 ; 0 ; 0 . 6] ;

16 a lpha 0=l i n e a r i n v e r s e k i n e m a t i c s 1 (p0 , L , s ,Rb) ;

17 a lpha 1=l i n e a r i n v e r s e k i n e m a t i c s 1 (p1 , L , s ,Rb) ;

18 q=alpha 1 ;

19 dq=alpha 1−a lpha 0 ;

20 format ;

21

22 f o r j j=vec to r

APPENDIX B. MATLAB SCRIPTS 111

23 p0 (: , j j)=l i n e a r d i r e c t k i n e m a t i c s 1 (0 . 25* ones (3 , 1) ,L1(j j) * ones (3 , 1) , s ,Rb) ;

24 p (: , j j)=l i n e a r d i r e c t k i n e m a t i c s 1 (0 . 25* ones (3 , 1)+dq , L1(j j) * ones (3 , 1) , s ,Rb)

;

25 tc X{ j j }=p (1 , j j) ; tc Y{ j j }=p (2 , j j) ; tc Z { j j }=p (3 , j j) ;

26 end

27

28 f i g u r e ()

29 f o r j j=vec to r

30 p l o t ([0 , tc X{ j j }] , [0 , p (3 , j j)−p0 (3 , j j)]*1 e3) ;

31 hold on

32 a{ j j }=num2str (L1(j j)) ;

33 end

34 x l a b e l (' [m] ') ; y l a b e l (' [mm] ')

35 legend (a {1 : vec to r (end) })

B.1.3 MAIN X Z 3 f(Rb and/or s)

Listing B.3: MAIN X Z 3

1 c l e a r ; c l c ;

2 format shor t g ;

3 A=ones (3) ;

4 syms a b c q1 q2 q3

5 B=[2*a ,0 ,−2*q1;−b , b* s q r t (3) ,−2*q2;−c ,−c* s q r t (3) ,−2*q3] ;

6 syms q t r

7 C=[q ; t ; r] ;

8 syms x y w

9 xt =[x , y ,w] ;

10 xn=[x ; y ;w] ;

11 syms S

12 S=s o l v e (xt*A*xn+B*xn==C)

13 X(a , b , c , q , t , r , q1 , q2 , q3)=S . x ;

14 Y(a , b , c , q , t , r , q1 , q2 , q3)=S . y ;

15 Z(a , b , c , q , t , r , q1 , q2 , q3)=S .w;

16

17 l =0.59; Rb=0.15; s =0.45651;

18 vec to r =5 :5 : 20 ;

19 %%

20 n=25;

21 c =1/3; x=0:1/n : 1 ; j =1;

22 f o r i=x

23 [d(j) , s1 , a]= const a motlaw (i , c) ;

24 j=j +1;

25 end

26 %%

27 f o r j j=vec to r

28 dx = [] ;DX= [] ;

29 p f a l g = [] ; p temp = [] ; vect = [] ;

30 l =0.59; Rb=0.15; s =0.45651;

31 p0 = [0 ; 0 ; 0] ; %i n i t i a l p o s i t i o n

32 p1=[j j *1e − 3 ; 0 ; 0] ;

33 a lpha 0=l i n e a r i n v e r s e k i n e m a t i c s (p0 , l , s ,Rb) ;

112 B.2. TUNING TOT MAIN

34 a lpha 1=l i n e a r i n v e r s e k i n e m a t i c s (p1 , l , s ,Rb) ;

35

36 alpha temp (1 , :)=alpha 0 (1) +(a lpha 1 (1)−a lpha 0 (1)) .* d ;

37 alpha temp (2 , :)=alpha 0 (2) +(a lpha 1 (2)−a lpha 0 (2)) .* d ;

38 alpha temp (3 , :)=alpha 0 (3) +(a lpha 1 (3)−a lpha 0 (3)) .* d ;

39 j =1;

40 l =0.59; Rb= 0 . 1 5* [0 . 9 9 9 , 1 , 1 . 0 0 1] ; s =0.45651* ones (3 , 1) ;

41 f o r i =1:n+1;

42 q=alpha temp (: , i) ;

43 p = [] ;

44 p=l i n e a r d i r e c t k i n e m a t i c s 2 (q , l * ones (3 , 1) , s ,Rb,X,Y, Z) ;

45 t c x (j)=p (1) ; t c y (j)=p (2) ; t c z (j)=p (3) ;

46 j=j +1;

47 end

48 tc X{ j j }=tc x ; tc Y{ j j }=tc y ; tc Z { j j }=t c z ;

49 end

50 %%

51 f i g u r e ()

52 f o r j j=vec to r

53 p lo t3 (tc X{ j j }−tc X{ j j } (1) , (tc Y{ j j }−tc Y{ j j } (1)) *1e3 , (tc Z { j j }−tc Z { j j

} (1)) *1 e3) ;

54 hold on

55 end

56 x l a b e l (' l x [m] ') ; y l a b e l ('y [mm] ') ; z l a b e l (' z [mm] ')

57 legend (num2str (vec to r (1)) , num2str (vec to r (2)) , num2str (vec to r (3)) , num2str (

vec to r (4)))

B.2 tuning tot main

Listing B.4: tuning tot main

1 c l e a r ; c l c

2 [f i l ename , pathname] = u i g e t f i l e (' . csv ') ;

3 DATA1=load ([pathname , f i l ename]) ;

4 data1=DATA1(6 : end) ' ;

5 [f i l ename , pathname] = u i g e t f i l e (' . csv ') ;

6 DATA2=load ([pathname , f i l ename]) ;

7 data2=DATA2(6 : end) ' ;

8 [f i l ename , pathname] = u i g e t f i l e (' . csv ') ;

9 DATA3=load ([pathname , f i l ename]) ;

10 data3=DATA3(6 : end) ' ;

11 vect =[data1 ; data2 ; data3] ;

12

13 time=vect (: , 1 : 2 : end−1) ;

14 po s i=vect (: , 2 : 2 : end) ;

15

16 LAYER=1;

17 DT motlaw lay{LAYER}=time (1 , :) /1000/1000;

18 E motlaw lay{LAYER}=ones (1 , l ength (DT motlaw lay{LAYER})) ;

19 a lpha mot law1 f ina l {LAYER}=cumsum(pos i (1 , :) *10ˆ−7) ;

20 a lpha mot law2 f ina l {LAYER}=cumsum(pos i (2 , :) *10ˆ−7) ;

21 a lpha mot law3 f ina l {LAYER}=cumsum(pos i (3 , :) *10ˆ−7) ;

APPENDIX B. MATLAB SCRIPTS 113

22 %%

23 l = [0 . 5 9 5 , 0 . 5 9 5 , 0 . 5 9 5] ; Rb=0.198; s =0.45651; zEst ruso re =0.8 ;

24 y max re f =39.5*1e−3;

25 x max re f =39*1e−3;

26 y max=38*1e−3;

27 x max=39*1e−3;

28 z max=0.5*1e−3;

29

30 Z=ones (1 , l ength (DT motlaw lay)) *1e−3;

31

32 f o r i =1: l ength (a lpha mot law1 f ina l {LAYER})

33 q=[a lpha mot law1 f ina l {LAYER}(i) ; a lpha mot l aw2 f ina l {LAYER}(i) ;

a lpha mot l aw3 f ina l {LAYER}(i)] ;

34 p (: , i)=l i n e a r d i r e c t k i n e m a t i c s 1 (q , l , s ,Rb) ;

35 end

36 x0=p (1 , :) ;

37 y0=p (2 , :) ;

38 z0=p (3 , :) ;

39 P0=[x0 ; y0 ; z0] ;

40 f i g u r e ()

41 p l o t (x0 , y0)

42 a x i s equal

43

44 opt=menu(' c a l i b r a t i o n ? ' , ' yes ' , 'no ') ;

45 i f opt==1

46 Rb=0.198; s =0.45651; zEst rusore =0.8 ;

47 L= [0 . 5 9 5 , 0 . 5 9 5 , 0 . 5 9 5] ;

48 Z=ones (1 , l ength (DT motlaw lay)) *1e−3;

49 dt =3.0*1e−3;

50 low =0.75;

51 up =0.9;

52 t o l=5e−4;

53 t o l z=5e−2;

54 j =1;

55 zz = [] ; xx = [] ;

56 yy = [] ;T= [] ;

57 h = waitbar (0 , ' Please wait . . . ') ;

58 s tep =1;

59 s t ep s=length (low*L(1) : dt : up*L(1)) * l ength (low*L(2) : dt : up*L(2)) * l ength (low*L

(3) : dt : up*L(3)) * l ength (low*Rb: dt *10 : up*Rb) * l ength (low* s : dt *10 : up* s) ;

60

61 f o r a=low*L(1) : dt : up*L(1)

62 f o r b=low*L(2) : dt : up*L(2)

63 f o r c=low*L(3) : dt : up*L(3)

64 f o r d=low*Rb: dt *10 : up*Rb

65 f o r e=low* s : dt *10 : up* s

66

67 l =[a , b , c] ;

68 f o r i =1: l ength (a lpha mot law1 f ina l {LAYER})

69 q=[a lpha mot law1 f ina l {LAYER}(i) ; a lpha mot l aw2 f ina l {LAYER}(i)

; a lpha mot l aw3 f ina l {LAYER}(i)] ;

114 B.2. TUNING TOT MAIN

70 p (: , i)=l i n e a r d i r e c t k i n e m a t i c s 1 (q , l , e , d) ;

71 end

72 x=p (1 , :)−p (1 , 1) ;

73 y=p (2 , :)−p (2 , 1) ;

74 z=p (3 , :) ;

75 waitbar (s tep / steps , h , s p r i n t f (' %12.9 f ' , l ength (T))) ;

76 s tep=step +1;

77 i f abs (max(x)−x max)<t o l && abs (max(y)−y max)<t o l

&& abs ((max(z)−min (z))−z max)<t o l z

78 T{ j }=[max(x) ; max(y) ; max(p (3 , :))−min(p (3 , :)) ; a ; b ; c ; d ; e] ;

79 j=j +1;

80 end

81 end

82 end

83

84 end

85 end

86 end

87

88 c l o s e (h)

89 l ength (T)

90 %%

91 i f l ength (T)>=1

92 f i g u r e ()

93 f o r i =1: l ength (T)

94 p l o t (i ,T{ i } (1) , 'b* ')

95 hold on

96 p lo t (i ,T{ i } (2) , ' r * ')

97 p l o t (i ,T{ i } (3) , 'k* ')

98 xx (i)=T{ i } (1) ;

99 yy (i)=T{ i } (2) ;

100 zz (i)=T{ i } (3) ;

101

102 end

103 temp=abs (xx−x max) .* abs (yy−y max) ;

104 p l o t ([1 , l ength (T)] , [x max , x max] , 'b ')

105 p l o t ([1 , l ength (T)] , [y max , y max] , ' r ')

106 p l o t ([1 , l ength (T)] , [z max , z max] , 'k ')

107

108 [min xval , pos minx]=min (abs (xx−x max)) ;

109 [min yval , pos miny]=min (abs (yy−y max)) ;

110 [min zval , pos minz]=min (abs (zz−z max)) ;

111 p l o t (pos minx ,T{pos minx } (1) , 'bO ')

112 p l o t (pos miny ,T{pos miny } (2) , ' rO ')

113 p l o t (pos minz ,T{pos minz } (3) , 'kO ')

114 save (' data tun ing1 . mat ' , 'T ')

115 hold o f f

116

117 %%

118 f i g u r e ()

119 f l a g=pos minx ;

APPENDIX B. MATLAB SCRIPTS 115

120 l =[T{ f l a g } (4) ,T{ f l a g } (5) ,T{ f l a g } (6)]

121 Rb=T{ f l a g } (7)

122 s=T{ f l a g } (8)

123 f o r i =1: l ength (a lpha mot law1 f ina l {LAYER})

124 q=[a lpha mot law1 f ina l {LAYER}(i) ; a lpha mot l aw2 f ina l {LAYER}(i)

; a lpha mot l aw3 f ina l {LAYER}(i)] ;

125 p (: , i)=l i n e a r d i r e c t k i n e m a t i c s 1 (q , l , s ,Rb) ;

126 end

127 x=p (1 , :)−p (1 , 1) ;

128 y=p (2 , :)−p (2 , 1) ;

129 z=p (3 , :) ;

130 P=[x ; y ; z] ;

131 p lo t3 (x , y , z)

132 hold on

133 p lo t3 (x0 , y0 , z0 , 'k ')

134

135 f i g u r e ()

136 p l o t (x , y)

137 hold on

138 p lo t (x0 , y0 , 'k ')

139 a x i s equal

140 end

141 e l s e

142 end

B.3 G-code reader

B.3.1 MAIN Gcode

Listing B.5: MAIN Gcode

1 c l e a r ; c l c ;

2 %

%%

3 % robot data

4 l =0.59; Rb=0.15; s =0.45651; zEst rusore =0;

5 a max=1200000;%[mm/min ˆ2]

6 d max=2*a max ;

7 %use to r e f e r the v e l o c i t y at the extruder from

8 %s l i c e r to Efe s to

9 A r a t i o s l i c e r =(1 .75/0 .9) ˆ2 ; %f i l ament / nozz l e diameter r a t i o n

10 %cura engine uses 1 .75mm f i lament , i f s t a t ed otherw i s e change i t

11 A r a t i o e x t r =(0.9/14) ˆ2 ; %nozz l e /punch diameter r a t i o n

12

13 % f i l e data

14 [f i l e , pathname] = u i g e t f i l e (' . GCode ') ;

15 f l a g p l o t =1;

16 n r l a y e r =15; %i f you choose a p a r t i t i o n

17 LAYER=1: n r l a y e r ;

18 g c o d e f l a g =1;

19

116 B.3. G-CODE READER

20 % inte rmed ia t e po in t s g e n e r a t i o data

21 dL=10; %[mm] do not change f o r now

22

23 %s l i c e r

24 n r s l i c e r p o i n t s =2000;

25

26 % sav ing data

27 t i t l e 1= ' a ' ;

28 f l a g l a y e r s a v e =1:2 ; %save opt ion l a y e r s p a r t i t i o n

29

30 % p lo t data

31 l a y e r f l a g 2 =2;

32 z e s t r u s o r e =0.8 ;

33 %

%%

34 %

%%

35 % G code reader

36 [X,Y, Z ,E, F , ext on ,LAYER, de l ta t ime , F ext , DT uniform]= G code reader (f i l e ,

n r l aye r , f l a g p l o t ,LAYER) ;

37

38 %inte rmed ia t e po in t s g e n e r a t i o

39 [XX final , YY final , EE f ina l , FF f ina l , F F e x t f i n a l]= G c o d e i n t e r p o i n t s (

LAYER,X,Y, Z ,E, ext on , dL , F , F ext) ;

40

41 % de l t a time genera t i on 1

42 [alpha1 , alpha2 , alpha3 , l s e g , DT motlaw lay , dt gcode]= G code time1 (LAYER,

XX final , YY final , EE f ina l , Z , zEstrusore , l , s ,Rb, FF f ina l) ;

43

44 %g code a n a l y s i s

45 % l a y e r r e d u c e r

46

47 % motion law ass ignement

48 a lpha mot law1 f ina l=alpha1 ;

49 a lpha mot law2 f ina l=alpha2 ;

50 a lpha mot law3 f ina l=alpha3 ;

51 E motlaw lay=EE f ina l ;

52

53 %mot law plot

54 % G code mot law plot (l a y e r f l a g 2 , a lpha mot law1 f ina l , a lpha mot law2 f ina l ,

a lpha mot law3 f ina l , va lpha mot law1 f ina l , va lpha mot law2 f ina l ,

va lpha mot law3 f ina l , aa lpha mot law1 f ina l , aa lpha mot law2 f ina l ,

aa lpha mot law3 f ina l , DT motlaw lay) ;

55

56 %animation

57 % G code anaimation1 (DT motlaw lay , E motlaw lay , a lpha mot law1 f ina l ,

a lpha mot law2 f ina l , a lpha mot law3 f ina l , l a y e r f l a g 2 , l , s ,Rb, zEstrusore ,

Z) ;

58 %%

APPENDIX B. MATLAB SCRIPTS 117

59 % sav ing

60 [A1 , A2 , A3 ,EA1,DT1]= G c o d e s l i c e r (LAYER, DT motlaw lay , n r s l i c e r p o i n t s ,

E motlaw lay , a lpha mot law1 f ina l , a lpha mot law2 f ina l ,

a lpha mot law3 f ina l , l s e g , de l ta t ime , l , s ,Rb, zEstrusore , Z) ;

61 opt save=menu(' save ? ' , 'x−y format ' , ' vel−di sp ' , 'G−code ' , 'no ') ;

62 i f opt save==1

63 xx = [] ; yy = [] ; zz = [] ; f e x t = [] ; f r ob = [] ;

64 f o r i =1: l ength (X)

65 xx=[xx ,X{ i }] ; yy=[yy ,Y{ i }] ;

66 zz =[zz ,−(Z{ i } (1)−Z{1} (1)) * ones (1 , l ength (X{ i }))] ;

67 f e x t =[fext , 0 , F F e x t f i n a l { i } (1 : end−1)* A r a t i o s l i c e r *

A r a t i o e x t r] ;

68 f rob =[frob , 0 ,F{ i } (1 : end−1)] ;

69

70 end

71 temlp=f i n d (EE==0) ; f e x t (temlp) =0;

72 f o r i=length (f e x t) :−1:1

73 i f f e x t (i)==0 && EE(i)˜=0

74 f e x t (i)=f e x t (i +1) ;

75 end

76 end

77 P f l ag1 =[xx ; yy ; zz] ; x f l a g=cumsum ([0 , f r ob]) ;

78 save2me l so f t1 (x f l a g , P f lag1 , s t r c a t (t i t l e 1 , ' x y fo rmat ') , f e x t)

79 e l s e i f opt save==2

80 AA1= [] ;AA2= [] ;AA3= [] ;EE= [] ; dt1 = [] ; P f l ag1 = [] ; f e x t = [] ; f r ob = [] ;

81 LAYER=1;

82 f o r i =1: l ength (A1)

83 AA1=[AA1, A1{ i }] ; AA2=[AA2, A2{ i }] ;

84 AA3=[AA3, A3{ i }] ; EE=[EE,EA1{ i }] ;

85 dt1=[dt1 ,DT1{ i }] ;

86 end

87 f o r i =1: l ength (F F e x t f i n a l)

88 f e x t =[fext , 0 , F F e x t f i n a l { i } (1 : end−1)* A r a t i o s l i c e r * A r a t i o e x t r] ;

89 f rob =[frob , 0 ,F{ i } (1 : end−1)] ;

90 end

91 temlp=f i n d (EE==0) ; f e x t (temlp) =0;

92 f o r i=length (f e x t) :−1:1

93 i f f e x t (i)==0 && EE(i)˜=0

94 f e x t (i)=f e x t (i +1) ;

95 end

96 end

97 P f l ag1 =[AA1−AA1(1) ;AA2−AA2(1) ;AA3−AA3(1)] ;

98 x f l a g =1: l ength (P f l ag1) ;

99 ee{1}=EE;

100 aa1{1}=AA1−AA1(1) ;

101 aa2{1}=AA2−AA2(1) ;

102 aa3{1}=AA3−AA3(1) ;

103 ddtt1{1}=dt1 ;

104 G code anaimation1 (ddtt1 , ee , aa1 , aa2 , aa3 , 1 , l , s ,Rb, zEstrusore , Z) ;

105 aa1 = [] ; aa2 = [] ; aa3 = [] ;

106 new cam1

118 B.3. G-CODE READER

107 aa1{1}=cumsum(P f l ag1 (1 , :)) ;

108 aa2{1}=cumsum(P f l ag1 (2 , :)) ;

109 aa3{1}=cumsum(P f l ag1 (3 , :)) ;

110 save2me l so f t1 (DX cam V , P f lag1 , s t r c a t (t i t l e 1 , ' x y new cam red ') , f e x t

*100) ;

111 e l s e i f opt save==3

112 f l a g l a y e r s a v e =2:3 ;

113 xx = [] ; yy = [] ; zz = [] ; f e x t = [] ; f r ob = [] ; ee = [] ;

114 o p t n r l a y e r 1=menu('how many l a y e r s ? ' , ' a l l ' , ' s e l e c t i o n ') ;

115 i f o p t n r l a y e r 1==1

116 n r o f l a y e r =1: l ength (XX final) ;

117 f o r i=n r o f l a y e r

118 xx=[xx , XX final { i }*1 e3] ; yy=[yy , YY final { i }*1 e3] ;

119 zz =[zz , Z{ i } (1) * ones (1 , l ength (XX final { i }))] ;

120 f e x t =[fext , 0 , F F e x t f i n a l { i } (1 : end−1)* A r a t i o s l i c e r *

A r a t i o e x t r] ;

121 f rob =[frob , 0 ,F{ i } (1 : end−1)] ;

122 ee =[ee , [E motlaw lay{ i } , 0]] ;

123 l a y e r s= ' a l l l a y e r s are saved ' ;

124 end

125 e l s e

126 n r o f l a y e r=f l a g l a y e r s a v e ;

127 j =1;

128 f o r i=n r o f l a y e r

129 xx=[xx , XX final { i }*1 e3] ; yy=[yy , YY final { i }*1 e3] ;

130 zz =[zz , j *Z{1} (1) * ones (1 , l ength (XX final { i }))] ;

131 f e x t =[fext , 0 , F F e x t f i n a l { i } (1 : end−1)* A r a t i o s l i c e r *

A r a t i o e x t r] ;

132 f rob =[frob , 0 ,F{ i } (1 : end−1)] ;

133 ee =[ee , [E motlaw lay{ i } , 0]] ;

134 j=j +1;

135 end

136 temlp=f i n d (EE==0) ; f e x t (temlp) =0;

137 f o r i=length (f e x t) :−1:1

138 i f f e x t (i)==0 && EE(i)˜=0

139 f e x t (i)=f e x t (i +1) ;

140 end

141 end

142 l a y e r s =[' from ' , num2str (n r o f l a y e r (1)) , ' to ' , num2str (n r o f l a y e r (end))] ;

143 end

144 o p t t e s t=menu(' t e s t an imat i on ? ' , ' yes ' , 'no ') ;

145 i f o p t t e s t==1

146 f i g u r e ()

147 f o r i =1: l ength (xx)

148 p lo t3 (xx (1 : i) , yy (1 : i) , zz (1 : i))

149 i f ee (i)==1

150 p lo t3 (xx (i) , yy (i) , zz (i) , ' * r ')

151 end

152 hold on

153 drawnow

154 end

APPENDIX B. MATLAB SCRIPTS 119

155 e l s e

156 end

157 M1=save2csv gcode (xx , yy , zz , ee , f rob , f ext , t i t l e 1 , l a y e r s) ;

158 e l s e

159 end

B.3.2 G code reader1

Listing B.6: G code reader1

1 func t i on [X,Y, Z ,E, F , ext on ,LAYER, dt gcode , F ext , DT uniform]= G code reader (

f i l e , n r l aye r , f l a g p l o t , Layer)

2 d f i l ament =1.5 ; %mm

3 f i l e I D = fopen (f i l e) ;

4 s t a t u s = 0 ;

5 X= [] ;Y= [] ;E= [] ; Z = [] ;

6 ext on = [] ; %on 1

7 f l a g b a s e =0; %i f l a y e r lower than 1 . . . 1 s t l a y e r −1 be care . in case o f

mu l t ip l e l a y e r with same number ; e l s e =0

8 opt11=menu(' which s l i c e r ? ' , 'Cura Engine ' , ' Repet ier−Host ') ;

9 i f opt11==1

10 opt10=menu('how many l a y e r ? ' , ' a l l ' , 'up to you ') ;

11 i f opt10==1

12 [l ay e r count]= G code layer1 (1+ f l a g b a s e , s tatus , f i l e I D) ;

13 n r l a y e r=laye r count ;

14 LAYER=1: n r l a y e r ;

15 e l s e

16 LAYER=Layer ;

17 end

18 % X,Y as Gcode

19 f o r l a y e r=LAYER;

20 s t a t u s = 0 ;

21 [TX,TY,TE,TZ,TF, T ext on , TX ext , TY ext]= G code layer (l a y e r+f l a g b a s e ,

s tatus , f i l e I D) ;

22 %use t h i s only i f po in t s are too c l o s e to be to ld apart

23 % t r e f x=d i f f (TX) ;

24 % t r e f y=d i f f (TY) ;

25 % trewx=f i n d (t r e f x ==0) ;

26 % trewy=f i n d (t r e f y ==0) ;

27 % i f l ength (trewx)>1

28 % TX(trewx+1)=TX(trewx+1) +0.001;

29 % end

30 % i f l ength (trewy)>1

31 % TY(trewy+1)=TY(trewy+1) +0.001;

32 % end

33 x min (l a y e r)=min (TX) ;

34 y min (l a y e r)=min (TY) ;

35 dx (l a y e r)=(max(TX)−min(TX)) /2 ;

36 dy (l a y e r)=(max(TY)−min(TY)) /2 ;

37

38 X{ l a y e r}=TX;Y{ l a y e r}=TY;E{ l a y e r}=TE;

39 Z{ l a y e r}=TZ;F{ l a y e r}=TF;

120 B.3. G-CODE READER

40

41 ext on { l a y e r}=T ext on ;

42 X ext{ l a y e r}=TX ext ;

43 Y ext{ l a y e r}=TY ext ;

44

45 end

46 X min=min (x min)+max(dx) ;

47 Y min=min (y min)+max(dy) ;

48 %X,Y r e f e r e d as the robot

49 dx = [] ; dy = [] ;

50

51 f o r l a y e r =1: n r l a y e r

52 TX=X{ l a y e r}−X min ;

53 TY=Y{ l a y e r}−Y min ;

54

55 TX ext=X ext{ l a y e r}−X min ;

56 TY ext=Y ext{ l a y e r}−Y min ;

57

58 X{ l a y e r}=TX;

59 Y{ l a y e r}=TY;

60 X ext{ l a y e r}=TX ext ;

61 Y ext{ l a y e r}=TY ext ;

62 end

63 % G code p lo t

64 i f f l a g p l o t==1

65 G c o d e p l o t i n i t i a l (n r l aye r ,X,Y, X min , Y min , Z) ;

66 end

67 e o l d =0;

68 f o r l a y e r =1: n r l a y e r

69 f o r i =1: l ength (F{ l a y e r })

70 i f F{ l a y e r }(i)==0 && i>1

71 F{ l a y e r }(i)=F{ l a y e r }(i −1) ;

72 end

73 i f F{ l a y e r }(i)==0 && i==1

74 F{ l a y e r }(i)=F old ;

75 end

76 F old=F{ l a y e r }(end) ;

77 end

78 dx=d i f f ([0 ,X{ l a y e r }]) ;

79 dy=d i f f ([0 ,Y{ l a y e r }]) ;

80

81 DE=d i f f ([e o ld ,E{ l a y e r }]) ;

82 f l a g=f i n d (ext on { l a y e r }==1) ;

83 de=ze ro s (1 , l ength (X{ l a y e r })) ;

84 de (f l a g)=DE;

85

86 e o l d=E{ l a y e r }(end) ;

87 l = [] ;

88 amaxlaw=1000*60ˆ2;

89 f o r i =1: l ength (F{ l a y e r })

90 i f ext on { l a y e r }(i)==1

APPENDIX B. MATLAB SCRIPTS 121

91 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

92 e l s e

93 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

94 end

95 l (1)=s q r t (dx (1) .ˆ2+dy (1) . ˆ 2) ;

96 end

97 t1=l . /F{ l a y e r } ;

98 dt gcode { l a y e r}=t1 ;

99 DT uniform{ l a y e r }=[0 ,cumsum(t1)] ;

100 F ext { l a y e r }=4*de .*F{ l a y e r } . / (p i * l * d f i l ament ˆ2) ;

101 % F ext { l a y e r}=de . / t1 ;

102 end

103 %%%

104 %%%

105 e l s e

106 opt12=menu(' which? ' , 'Cura ' , ' s l i c 3 r ') ;

107 i f opt12==2

108 opt10=menu('how many l a y e r ? ' , ' a l l ' , 'up to you ') ;

109 i f opt10==1

110 [l aye r count]= G code layer1 (1+ f l a g b a s e , s tatus , f i l e I D) ;

111 n r l a y e r=laye r count ;

112 LAYER=1: n r l a y e r ;

113 e l s e

114 LAYER=1;

115 end

116 f o r l a y e r=LAYER;

117 s t a t u s = 0 ;

118 [TX,TY,TE,TZ,TF, T ext on , TX ext , TY ext]= G code laye r r ep (l a y e r+f l a g b a s e ,

s tatus , f i l e I D) ;

119

120 f l a g h=f i n d (TX˜=0) ;

121 f l a g j=f i n d (TY˜=0) ;

122 f l a g k=f i n d (TZ˜=0) ;

123 f l a g e=f i n d (T ext on˜=−1) ;

124 lay=d i f f (f l a g k) ;

125

126 TXX=TX(f l a g h) ;

127 TYY=TY(f l a g j) ;

128 TZZ=TZ(f l a g k) ;

129 TEE=T ext on (f l a g e) ;

130 %use t h i s only i f po in t s are too c l o s e to be to ld apart

131 % t r e f x=d i f f (TXX) ;

132 % t r e f y=d i f f (TYY) ;

133 % trewx=f i n d (t r e f x ==0) ;

134 % trewy=f i n d (t r e f y ==0) ;

135 % i f l ength (trewx)>1

136 % TXX(trewx+1)=TXX(trewx+1) +0.001;

137 % end

138 % i f l ength (trewy)>1

139 % TYY(trewy+1)=TYY(trewy+1) +0.001;

140 % end

122 B.3. G-CODE READER

141 x min (l a y e r)=min (TXX) ;

142 y min (l a y e r)=min (TYY) ;

143 dx (l a y e r)=(max(TXX)−min(TXX)) /2 ;

144 dy (l a y e r)=(max(TYY)−min(TYY)) /2 ;

145

146 X{ l a y e r}=TXX;

147 Y{ l a y e r}=TYY;

148 E{ l a y e r}=TE(f l a g h) ;

149 Z{ l a y e r}=TZZ;

150 F{ l a y e r}=TF(f l a g h) ;

151

152 ext on { l a y e r}=TEE;

153 i f l a y e r ˜=1

154 ext on { l a y e r}=TEE(2 : end) ;

155 e l s e

156 ext on { l a y e r}=TEE;

157 end

158 X ext{ l a y e r}=TX ext ;

159 Y ext{ l a y e r}=TY ext ;

160

161 end

162 X min=min (x min)+max(dx) ;

163 Y min=min (y min)+max(dy) ;

164

165 dx = [] ; dy = [] ;

166 f o r l a y e r=LAYER

167 TX=X{ l a y e r}−X min ;

168 TY=Y{ l a y e r}−Y min ;

169 X{ l a y e r}=TX;

170 Y{ l a y e r}=TY;

171 X ext{ l a y e r}=TX ext ;

172 Y ext{ l a y e r}=TY ext ;

173 end

174 i f f l a g p l o t==1

175 G c o d e p l o t i n i t i a l (n r l aye r ,X,Y, X min , Y min , Z) ;

176 end

177 e o l d =0;

178 f o r l a y e r=LAYER

179 f o r i =1: l ength (F{ l a y e r })

180 i f F{ l a y e r }(i)==0 && i>1

181 F{ l a y e r }(i)=F{ l a y e r }(i −1) ;

182 end

183 i f F{ l a y e r }(i)==0 && i==1

184 F{ l a y e r }(i)=F old ;

185 end

186 F old=F{ l a y e r }(end) ;

187 end

188 f o r i =1: l ength (E{ l a y e r })

189 i f E{ l a y e r }(i)==0 && i>1

190 E{ l a y e r }(i)=E{ l a y e r }(i −1) ;

191 end

APPENDIX B. MATLAB SCRIPTS 123

192 i f E{ l a y e r }(i)==0 && i==1

193 E{ l a y e r }(i)=e o l d ;

194 end

195 e o l d=E{ l a y e r }(end) ;

196 end

197

198 i f l a y e r==1

199 DE=d i f f ([0 ,E{ l a y e r }]) ;

200 e o l d=E{ l a y e r }(end) ;

201 e l s e

202 e o l d=E{ l a y e r }(end) ;

203 DE=d i f f ([e o ld , e o l d+E{ l a y e r }]) ;

204 end

205 dx=d i f f ([0 ,X{ l a y e r }]) ;

206 dy=d i f f ([0 ,Y{ l a y e r }]) ;

207

208 l = [] ;

209 f o r i =1: l ength (F{ l a y e r })

210 i f ext on { l a y e r }(i)==1

211 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

212 e l s e

213 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

214 end

215 l (1)=s q r t (dx (1) .ˆ2+dy (1) . ˆ 2) ;

216 end

217 t1=l . /F{ l a y e r } ;

218 dt gcode { l a y e r}=t1 ;

219 DT uniform{ l a y e r }=[0 ,cumsum(t1)] ;

220 F ext { l a y e r}=DE. / t1 ;

221 end

222 %%%

223 e l s e

224 opt10=menu('how many l a y e r ? ' , ' a l l ' , 'up to you ') ;

225 i f opt10==1

226 [l aye r count]= G code layer1 (1+ f l a g b a s e , s tatus , f i l e I D) ;

227 n r l a y e r=laye r count ;

228 LAYER=1: n r l a y e r ;

229 e l s e

230 LAYER=Layer ;

231 end

232 f l a g b a s e =0;

233 % X,Y as Gcode

234 f o r l a y e r=LAYER;

235 s t a t u s = 0 ;

236 [TX,TY,TE,TZ,TF, T ext on , TX ext , TY ext]= G code layer (l a y e r+f l a g b a s e ,

s tatus , f i l e I D) ;

237

238 x min (l a y e r)=min (TX) ;

239 y min (l a y e r)=min (TY) ;

240 dx (l a y e r)=(max(TX)−min(TX)) /2 ;

241 dy (l a y e r)=(max(TY)−min(TY)) /2 ;

124 B.3. G-CODE READER

242

243 X{ l a y e r}=TX;Y{ l a y e r}=TY;E{ l a y e r}=TE;

244 Z{ l a y e r}=TZ;F{ l a y e r}=TF;

245

246 ext on { l a y e r}=T ext on ;

247 X ext{ l a y e r}=TX ext ;

248 Y ext{ l a y e r}=TY ext ;

249

250 end

251 X min=min (x min)+max(dx) ;

252 Y min=min (y min)+max(dy) ;

253 dx = [] ; dy = [] ;

254 f o r l a y e r =1: n r l a y e r

255 TX=X{ l a y e r}−X min ;

256 TY=Y{ l a y e r}−Y min ;

257 TX ext=X ext{ l a y e r}−X min ;

258 TY ext=Y ext{ l a y e r}−Y min ;

259 X{ l a y e r}=TX;

260 Y{ l a y e r}=TY;

261 X ext{ l a y e r}=TX ext ;

262 Y ext{ l a y e r}=TY ext ;

263 end

264 i f f l a g p l o t==1

265 G c o d e p l o t i n i t i a l (n r l aye r ,X,Y, X min , Y min , Z) ;

266 end

267 e o l d =0;

268 f o r l a y e r =1: n r l a y e r

269 f o r i =1: l ength (F{ l a y e r })

270 i f F{ l a y e r }(i)==0 && i>1

271 F{ l a y e r }(i)=F{ l a y e r }(i −1) ;

272 end

273 i f F{ l a y e r }(i)==0 && i==1

274 F{ l a y e r }(i)=F old ;

275 end

276 F old=F{ l a y e r }(end) ;

277 end

278 dx=d i f f ([0 ,X{ l a y e r }]) ;

279 dy=d i f f ([0 ,Y{ l a y e r }]) ;

280

281 DE=d i f f ([e o ld ,E{ l a y e r }]) ;

282 f l a g=f i n d (ext on { l a y e r }==1) ;

283 de=ze ro s (1 , l ength (X{ l a y e r })) ;

284 de (f l a g)=DE;

285

286 e o l d=E{ l a y e r }(end) ;

287 l = [] ;

288 amaxlaw=1000*60ˆ2;

289 f o r i =1: l ength (F{ l a y e r })

290 i f ext on { l a y e r }(i)==1

291 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

292 e l s e

APPENDIX B. MATLAB SCRIPTS 125

293 l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

294 end

295 l (1)=s q r t (dx (1) .ˆ2+dy (1) . ˆ 2) ;

296 end

297 t1=l . /F{ l a y e r } ;

298 dt gcode { l a y e r}=t1 ;

299 DT uniform{ l a y e r }=[0 ,cumsum(t1)] ;

300 F ext { l a y e r}=de . / t1 ;

301 end

302 end

303 end

B.3.3 G code layer

Listing B.7: G code layer

1 func t i on [TX,TY,TE,TZ,TF, T ext on , TX ext , TY ext]= G code layer (layer , s tatus ,

f i l e I D)

2 TX= [] ;TY= [] ;TZ= [] ;TF= [] ;

3 TX ext = [] ; TY ext = [] ;TE= [] ;

4 f l a g i t e r =1;

5 T ext on = [] ; %on 1

6 whi le s tatus<1

7 t l i n e = f g e t l (f i l e I D) ;

8 f l a g =0;

9 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

10 i =1;

11 whi l e f l ag <1

12 i f t l i n e (i)== 'X '

13 TX=[TX, s t r2doub l e (t l i n e (i +1: i +6))] ;

14 TX ext=[TX ext , s t r2doub l e (t l i n e (i +1: i +6))] ;

15 f l a g =2;

16 end

17 i=i +1;

18 i f i>=length (t l i n e)

19 f l a g =2;

20 end

21 end

22 end

23 f l a g =0;

24 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

25 i =1;

26 whi l e f l a g <1

27 i f t l i n e (i)== 'Y '

28 TY=[TY, s t r2doub l e (t l i n e (i +1: i +6))] ;

29 TY ext=[TY ext , s t r2doub l e (t l i n e (i +1: i +6))] ;

30 T ext on =[T ext on , 1] ;

31 f l a g =2;

32 end

33 i=i +1;

34 i f i>=length (t l i n e)

35 f l a g =2;

126 B.3. G-CODE READER

36 end

37 end

38 end

39 f l a g =0;

40 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 0 '&& t l i n e (3)== ' '

41 i =1;

42 whi l e f l a g <1

43 i f t l i n e (i)== 'X '

44 TX=[TX, s t r2doub l e (t l i n e (i +1: i +6))] ;

45 f l a g =2;

46 end

47 i=i +1;

48 i f i>=length (t l i n e)

49 f l a g =2;

50 end

51 end

52 end

53 f l a g =0;

54 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 0 '&& t l i n e (3)== ' '

55 i =1;

56 whi l e f l a g <1

57 i f t l i n e (i)== 'Y '

58 TY=[TY, s t r2doub l e (t l i n e (i +1: i +6))] ;

59 T ext on =[T ext on , 0] ;

60 f l a g =2;

61 end

62 i=i +1;

63 i f i>=length (t l i n e)

64 f l a g =2;

65 end

66 end

67 end

68 f l a g =0;

69 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

70 i =1;

71 whi l e f l a g <1

72 i f t l i n e (i)== 'E '

73 TE=[TE, s t r2doub l e (t l i n e (i +1: i +6))] ;

74 f l a g =2;

75 end

76 i=i +1;

77 i f i>=length (t l i n e)

78 f l a g =2;

79 end

80 end

81 end

82 f l a g =0;

83 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 0 '&& t l i n e (3)== ' '

84 i =1;

85 whi l e f l a g <1

86 i f t l i n e (i)== 'Z '

APPENDIX B. MATLAB SCRIPTS 127

87 TZ=[TZ, s t r2doub l e (t l i n e (i +1:end))] ;

88 f l a g =2;

89 end

90 i=i +1;

91 i f i>=length (t l i n e)

92 f l a g =2;

93 end

94 end

95 end

96 f l a g =0;

97 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 0 '&& t l i n e (3)== ' '

98 i =1;

99 whi l e f l a g <1

100 i f t l i n e (i)== 'F '

101 TF=[TF, s t r2doub l e (t l i n e (i +1: i +4))] ;

102 f l a g =2;

103 end

104 i f i>=length (t l i n e)

105 TF=[TF, 0] ;

106 f l a g =2;

107 end

108 i=i +1;

109 end

110 end

111 f l a g =0;

112 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

113 i =1;

114 whi le f l a g <1

115 i f t l i n e (i)== 'F '

116 TF=[TF, s t r2doub l e (t l i n e (i +1: i +4))] ;

117 f l a g =2;

118 end

119 i f i>=length (t l i n e)

120 TF=[TF, 0] ;

121 f l a g =2;

122 end

123 i=i +1;

124 end

125 end

126

127 i f t l i n e (1)==−1

128 s t a t u s =2;

129 e l s e

130 i f l ayer>=0

131 i f l ength (t l i n e)>3 && t l i n e (1)˜= 'M'

132 i f t l i n e (2 : 6)== 'LAYER '

133 i f l ength (t l i n e)==8

134 i f t l i n e (8)==num2str (l a y e r)

135 s t a t u s =2;

136 end

137 end

128 B.3. G-CODE READER

138 i f l ength (t l i n e)==9

139 i f t l i n e (8 : 9)==num2str (l a y e r)

140 s t a t u s =2;

141 end

142 end

143 i f l ength (t l i n e)==10

144 i f t l i n e (8 : 1 0)==num2str (l a y e r)

145 s t a t u s =2;

146 end

147 end

148 end

149 end

150 end

151 i f l ayer<0

152 i f l ength (t l i n e)>3 && t l i n e (1)˜= 'M'

153 i f t l i n e (2 : 6)== 'LAYER '

154 i f l ength (t l i n e)==9

155 i f t l i n e (8 : 9)==num2str (l a y e r)

156 s t a t u s =2;

157 end

158 end

159 end

160 end

161 end

162 end

163 end

164 f l a g i t e r=f l a g i t e r +1;

165 end

B.3.4 G code layer rep (Slic3r)

Listing B.8: G code layer rep

1 func t i on [TX,TY,TE,TZ,TF, T ext on , TX ext , TY ext]= G code laye r r ep (layer ,

s tatus , f i l e I D)

2 TX= [] ;TY= [] ;TZ= [] ;TF= [] ;

3 TX ext = [] ; TY ext = [] ;TE= [] ;

4 f l a g i t e r =1;

5 T ext on = [] ; %on 1

6 j j =1;

7 whi l e s tatus<1

8 t l i n e = f g e t l (f i l e I D) ;

9 i f l ength (t l i n e)==3 && t l i n e (1)˜= 'G '

10 i f t l i n e== 'END '

11 s t a t u s =2;

12 end

13 e l s e

14 f l a g =0;

15 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

16 i =1;

17 whi l e f l a g <1

18 i f t l i n e (i)== 'X '

APPENDIX B. MATLAB SCRIPTS 129

19 TX(j j)=st r2doub l e (t l i n e (i +1: i +6)) ;

20 TX ext (j j)=st r2doub l e (t l i n e (i +1: i +6)) ;

21 f l a g =2;

22 end

23 i=i +1;

24 i f i>=length (t l i n e)

25 TX(j j) =0;

26 TX ext (j j) =0;

27 f l a g =2;

28 end

29 end

30 end

31 f l a g =0;

32 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

33 i =1;

34 whi l e f l a g <1

35 i f t l i n e (i)== 'Y '

36 TY(j j)=st r2doub l e (t l i n e (i +1: i +6)) ;

37 TY ext (j j)=st r2doub l e (t l i n e (i +1: i +6)) ;

38 f l a g =2;

39 end

40 i=i +1;

41 i f i>=length (t l i n e)

42 TY(j j) =0;

43 TY ext (j j) =0;

44 f l a g =2;

45 end

46 end

47 end

48 f l a g =0;

49 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '&& t l i n e (4)== 'X '

50 i =1;

51 whi l e f l a g <1

52 i f t l i n e (i)== 'E '

53 TE(j j)=s t r2doub l e (t l i n e (i +1: i +6)) ;

54 T ext on (j j) =1;

55 f l a g =2;

56 end

57 i=i +1;

58 i f i>=length (t l i n e)

59 TE(j j) =0;

60 T ext on (j j) =0;

61 f l a g =2;

62 end

63 end

64 end

65 f l a g =0;

66 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

67 i =1;

68 whi l e f l a g <1

69 i f t l i n e (i)== 'Z '

130 B.3. G-CODE READER

70 TZ(j j)=st r2doub l e (t l i n e (i +1: i +6)) ;

71 T ext on (j j)=−1;

72 f l a g =2;

73 end

74 i=i +1;

75 i f i>=length (t l i n e)

76 TZ(j j) =0;

77 f l a g =2;

78 end

79 end

80 end

81 f l a g =0;

82 i f t l i n e (1)== 'G ' && t l i n e (2)== ' 1 '&& t l i n e (3)== ' '

83 i =1;

84 whi l e f l a g <1

85 i f t l i n e (i)== 'F '

86 TF(j j)=st r2doub l e (t l i n e (i +1: i +4)) ;

87 f l a g =2;

88 end

89 i f i>=length (t l i n e)

90 TF(j j) =0;

91 f l a g =2;

92 end

93 i=i +1;

94 end

95 end

96 end

97

98 i f t l i n e (1)==−1

99 s t a t u s =2;

100 e l s e

101 i f l ayer>=0

102 i f l ength (t l i n e)>3 && t l i n e (1)˜= 'M'

103 i f t l i n e (2 : 6)== 'LAYER '

104 i f l ength (t l i n e)==8

105 i f t l i n e (8)==num2str (l a y e r)

106 s t a t u s =2;

107 end

108 end

109 i f l ength (t l i n e)==9

110 i f t l i n e (8 : 9)==num2str (l a y e r)

111 s t a t u s =2;

112 end

113 end

114 i f l ength (t l i n e)==10

115 i f t l i n e (8 : 1 0)==num2str (l a y e r)

116 s t a t u s =2;

117 end

118 end

119 end

120 end

APPENDIX B. MATLAB SCRIPTS 131

121 end

122 i f l ayer<0

123 i f l ength (t l i n e)>3 && t l i n e (1)˜= 'M'

124 i f t l i n e (2 : 6)== 'LAYER '

125 i f l ength (t l i n e)==9

126 i f t l i n e (8 : 9)==num2str (l a y e r)

127 s t a t u s =2;

128 end

129 end

130 end

131 end

132 end

133 end

134 j j=j j +1;

135 end

136 f l a g i t e r=f l a g i t e r +1;

B.3.5 G code inter points

Listing B.9: G code inter points

1 func t i on [XX final , YY final , EE f ina l , FF f ina l , F F e x t f i n a l]=

G c o d e i n t e r p o i n t s (LAYER,X,Y, Z ,E, ext on , dL , F , F ext)

2 f o r l a y e r=LAYER;

3 f l a g x =[0 ,X{ l a y e r }*1e−3 ,0] ; %[m] ;

4 f l a g y =[0 ,Y{ l a y e r }*1e−3 ,0] ; %[m] ;

5 dx{ l a y e r}= d i f f (f l a g x) ;

6 dy{ l a y e r}= d i f f (f l a g y) ;

7 l s e g { l a y e r}=s q r t (dx{ l a y e r }.ˆ2+dy{ l a y e r } . ˆ 2) ;

8 L(l a y e r)=sum(l s e g { l a y e r }) ;

9 end

10 f o r l a y e r=LAYER

11 temp=l s e g { l a y e r } ;

12 temp2 =[0 , ext on { l a y e r } , 0] ;

13 f l a g x =[0 ,X{ l a y e r }*1e−3 ,0] ; %[m] ;

14 f l a g y =[0 ,Y{ l a y e r }*1e−3 ,0] ; %[m] ;

15 f l a g f =[0 ,F{ l a y e r } ,F{ l a y e r }(end)] ;

16 f l a g f e =[0 , F ext { l a y e r } , F ext { l a y e r }(end)] ;

17 X f i n a l = [] ; Y f i n a l = [] ; E f i n a l = [] ;

18 F f i n a l = [] ; F e x t f i n a l = [] ;

19 f o r i =1: l ength (temp)

20 p y f l a g = [] ; p x f l a g = [] ; p z f l a g = [] ;

21 p f f l a g = [] ; p f e f l a g = [] ;

22 i f temp (i)>dL*1e−3

23 f l a g (i)=c e i l (temp (i) *1 e3/dL) +1; % dL=10 means 1cm

24 p y f l a g=l i n s p a c e (f l a g y (i) , f l a g y (i +1) , f l a g (i)) ;

25 p x f l a g=l i n s p a c e (f l a g x (i) , f l a g x (i +1) , f l a g (i)) ;

26 p f f l a g=f l a g f (i +1)* ones (f l a g (i) , 1) ' ;

27 p f e f l a g=f l a g f e (i +1)* ones (f l a g (i) , 1) ' ;

28 i f temp2 (i +1)==0

29 p z f l a g=ze ro s (f l a g (i) , 1) ' ;

30 end

132 B.3. G-CODE READER

31 i f temp2 (i +1)==1

32 p z f l a g=ones (f l a g (i) , 1) ' ;

33 end

34 X f i n a l =[X f ina l , p x f l a g (1 : end−1)] ;

35 Y f i n a l =[Y f ina l , p y f l a g (1 : end−1)] ;

36 E f i n a l =[E f i na l , p z f l a g (2 : end)] ;

37 F f i n a l =[F f i n a l , p f f l a g (2 : end)] ;

38 F e x t f i n a l =[F e x t f i n a l , p f e f l a g (2 : end)] ;

39 e l s e

40 X f i n a l =[X f ina l , f l a g x (i)] ;

41 Y f i n a l =[Y f ina l , f l a g y (i)] ;

42 E f i n a l =[E f i na l , temp2 (i +1)] ;

43 F f i n a l =[F f i n a l , f l a g f (i +1)] ;

44 F e x t f i n a l =[F e x t f i n a l , f l a g f e (i +1)] ;

45 end

46 end

47 XX final { l a y e r }=[X f ina l , 0] ;

48 YY final { l a y e r }=[Y f ina l , 0] ;

49 EE f ina l { l a y e r }=[0 , E f i n a l (1 : end−1)] ;

50 FF f ina l { l a y e r }=[F f i n a l , F f i n a l (end)] ;

51 F F e x t f i n a l { l a y e r }=[F e x t f i n a l , F e x t f i n a l (end)] ;

52 end

B.3.6 G code time1 (data processing)

Listing B.10: G code time1

1 func t i on [alpha1 , alpha2 , alpha3 , l s e g , DT motlaw lay , dt gcode]= G code time1 (

LAYER, XX final , YY final , EE f ina l , Z , zEstrusore , l , s ,Rb, FF f ina l)

2 f o r l a y e r=LAYER

3 f l a g x = [] ; f l a g y = [] ;

4 f l a g e = [] ; f l a g z = [] ;

5 f l a g x=XX final { l a y e r } ; %[m] ;

6 f l a g y=YY final { l a y e r } ; %[m] ;

7 f l a g e=EE f ina l { l a y e r } ;

8 f l a g z=zEstrusore−Z{ l a y e r } (1) * ones (1 , l ength (f l a g x)) *1e−3; %[m] ;

9 t c x = [] ;

10 t c y = [] ;

11 a lpha 1 = [] ; a lpha 2 = [] ; a lpha 3 = [] ;

12 f o r j =1: l ength (f l a g x)

13 p=[f l a g x (j) ; f l a g y (j) ; f l a g z (j)] ;

14 alpha p=l i n e a r i n v e r s e k i n e m a t i c s (p , l , s ,Rb) ;

15 a lpha 1 (j)=alpha p (1) ;

16 a lpha 2 (j)=alpha p (2) ;

17 a lpha 3 (j)=alpha p (3) ;

18 end

19 alpha1 { l a y e r}=alpha 1 ;

20 alpha2 { l a y e r}=alpha 2 ;

21 alpha3 { l a y e r}=alpha 3 ;

22 k i t { l a y e r }=[length (alpha1 { l a y e r }) , l ength (f l a g x)] ;

23 dx{ l a y e r}= d i f f (f l a g x) ;

24 dy{ l a y e r}= d i f f (f l a g y) ;

APPENDIX B. MATLAB SCRIPTS 133

25 l s e g { l a y e r}=s q r t (dx{ l a y e r }.ˆ2+dy{ l a y e r } . ˆ 2) ;

26 dx = [] ; dy = [] ;

27 dx=d i f f ([0 , XX f inal { l a y e r }]) ;

28 dy=d i f f ([0 , YY f inal { l a y e r }]) ;

29 l l l = [] ;

30 f o r i =1: l ength (FF f ina l { l a y e r })

31 l l l (i)=s q r t (dx (i) .ˆ2+dy (i) . ˆ 2) ;

32 l l l (1)=s q r t (dx (1) .ˆ2+dy (1) .ˆ2+(Z{ l a y e r } (1) *1e−3) . ˆ 2) ;

33 end

34 t1= l l l . / (FF f ina l { l a y e r }*1e−3) ;

35 dt gcode { l a y e r}=t1 ;

36 DT motlaw lay{ l a y e r }=[cumsum(t1)] ;

37 dx = [] ; dy = [] ;

38 end

B.3.7 G code slicer (agglomeration)

Listing B.11: G code slicer

1 func t i on [A1 , A2 , A3 ,EA1,DT1]= G c o d e s l i c e r (LAYER, DT motlaw lay ,

n r s l i c e r p o i n t s , E motlaw lay , a lpha mot law1 f ina l , a lpha mot law2 f ina l ,

a lpha mot law3 f ina l , l s e g , de l ta t ime , l , s ,Rb, zEstrusore , Z)

2 A 1 = [] ; A 2 = [] ; A 3 = [] ; EA1 1 = [] ;

3 DT1 1 = [] ; L1 1 = [] ;

4 v e c t l a y =0;

5 j =1;

6 jkp =0;

7 A1 = [] ; A2 = [] ; A3 = [] ;EA1= [] ;DT1= [] ;

8 f o r i=LAYER

9 temp now (i)=length (DT motlaw lay{ i }) ;

10 i f sum(temp now)<n r s l i c e r p o i n t s

11 DT1 1=[DT1 1 , jkp+DT motlaw lay{ i }] ;

12 A 1=[A 1 , a lpha mot law1 f ina l { i }] ;

13 A 2=[A 2 , a lpha mot law2 f ina l { i }] ;

14 A 3=[A 3 , a lpha mot law3 f ina l { i }] ;

15 EA1 1=[EA1 1 , [E motlaw lay{ i } , 0]] ;

16 L1 1=[L1 1 , l s e g { i }] ;

17 jkp=DT1 1(end) ;

18 e l s e

19 A1{ j}=A 1 ;

20 A2{ j}=A 2 ;

21 A3{ j}=A 3 ;

22 EA1{ j}=EA1 1 ;

23 DT1{ j}=DT1 1 ;

24 L1{ j}=L1 1 ;

25 temp now (1 : i −1)=0;

26 v e c t l a y (j)=i −1;

27 A 1 = [] ; A 2 = [] ; A 3 = [] ;

28 DT1 1 = [] ; EA1 1 = [] ; L1 1 = [] ;

29 cont =1;

30 DT1 1=[DT1 1 , jkp+DT motlaw lay{ i }] ;

31 A 1=[A 1 , a lpha mot law1 f ina l { i }] ;

134 B.3. G-CODE READER

32 A 2=[A 2 , a lpha mot law2 f ina l { i }] ;

33 A 3=[A 3 , a lpha mot law3 f ina l { i }] ;

34 EA1 1=[EA1 1 , [E motlaw lay{ i } , 0]] ;

35 L1 1=[L1 1 , l s e g { i }] ;

36 jkp=DT1 1(end) ;

37 j=j +1;

38 end

39 i f i==LAYER(end)

40 A1{ j}=A 1 ;

41 A2{ j}=A 2 ;

42 A3{ j}=A 3 ;

43 EA1{ j}=EA1 1 ;

44 DT1{ j}=DT1 1 ;

45 L1{ j}=L1 1 ;

46 v e c t l a y (j)=i ;

47 end

48 end

49 d i sp (' s p l i t t i n g completed ! here are the l a y e r s u b d i v i s i o n : ')

50 l a y e r s u b d i v i s i o n=v e c t l a y

B.3.8 save2melsoft1 (saving function)

Listing B.12: save2melsoft1

1 func t i on save2me l so f t (tempo ,Q, f i gu ra geomet r i c a , e e x t)

2 i f l ength (Q)<2040

3 dimension cam master=length (tempo) ;

4

5 M=[2 ;101 ; dimension cam master ; 0 ; 0] ;

6 M1= [] ; M2= [] ; M3= [] ; ME= [] ;

7 f o r j =1: l ength (Q)

8 M1=[M1; tempo (j) *100 ;Q(1 , j) *1 0 ˆ 7] ;

9 M2=[M2; tempo (j) *100 ;Q(2 , j) *1 0 ˆ 7] ;

10 M3=[M3; tempo (j) *100 ;Q(3 , j) *1 0 ˆ 7] ;

11 ME=[ME; tempo (j) *100 ; e e x t (j)] ;

12 end

13 f p r i n t f (' \n\n ************************** \n SAVE 2 MELSOFT FUNCTION: \n ')

14 %j o i n t 1

15 Mjoint1 =[M;M1 ; 0] ;

16

17 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' J1 . csv ') , Mjoint1 , ' p r e c i s i o n ' , '%.0 f ') ;

18 d i s p l ay (s t r c a t (' s a l v a to f i l e : ' , f i gu ra geomet r i c a , ' J1 . csv '))

19 beep

20

21 %j o i n t 2

22 Mjoint2 =[M;M2 ; 0] ;

23 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' J2 . csv ') , Mjoint2 , ' p r e c i s i o n ' , '%.0 f ') ;

24 d i s p l ay (s t r c a t (' s a l v a to f i l e : ' , f i gu ra geomet r i c a , ' J2 . csv '))

25 beep

26

27 %j o i n t 1

28 Mjoint3 =[M;M3 ; 0] ;

APPENDIX B. MATLAB SCRIPTS 135

29 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' J3 . csv ') , Mjoint3 , ' p r e c i s i o n ' , '%.0 f ') ;

30 d i s p l ay (s t r c a t (' s a l v a t o f i l e : ' , f i gu ra geomet r i c a , ' J3 . csv '))

31 beep

32 %ext

33 Mjointe =[M;ME; 0] ;

34 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' EXT. csv ') , Mjointe , ' p r e c i s i o n ' , '%.0 f ') ;

35 d i s p l ay (s t r c a t (' s a l v a t o f i l e : ' , f i gu ra geomet r i c a , ' EXT. csv '))

36 beep

37

38

39 %stampa a l t r i da t i

40 f p r i n t f (' \n ')

41 f p r i n t f ('numero punti camma master = %d \n ' , dimension cam master)

42 f p r i n t f (' lunghhezza tempo = %f micrometr i \n ' , tempo (end))

43 % f p r i n t f (' v e l o c i t à camma master = %f mm/min \n ' , vel camma master)

44 e l s e

45 f l a g= c e i l (l ength (Q) /2040) ;

46 f o r j j =1: f l a g

47 j =0;

48 i f j j ˜= f l a g

49 dimension cam master =2040;

50 M=[2 ;101 ; dimension cam master ; 0 ; 0] ;

51 M1= [] ; M2= [] ; M3= [] ; ME= [] ;

52 f o r j =1+2040*(j j −1) :2040* j j

53 M1=[M1; tempo (j) *100 ;Q(1 , j) *1 0 ˆ 7] ;

54 M2=[M2; tempo (j) *100 ;Q(2 , j) *1 0 ˆ 7] ;

55 M3=[M3; tempo (j) *100 ;Q(3 , j) *1 0 ˆ 7] ;

56 ME=[ME; tempo (j) *100 ; e e x t (j)] ;

57 end

58 e l s e

59 M1= [] ; M2= [] ; M3= [] ; ME= [] ;

60 f o r j =1+2040*(j j −1) : l ength (Q)

61 M1=[M1; tempo (j) *100 ;Q(1 , j) *1 0 ˆ 7] ;

62 M2=[M2; tempo (j) *100 ;Q(2 , j) *1 0 ˆ 7] ;

63 M3=[M3; tempo (j) *100 ;Q(3 , j) *1 0 ˆ 7] ;

64 ME=[ME; tempo (j) *100 ; e e x t (j)] ;

65 end

66 dimension cam master=length (M1) /2+1;

67 M=[2 ;101 ; dimension cam master ; 0 ; 0 ; 0 ; 0] ;

68

69 end

70

71

72 f p r i n t f (' \n\n ************************** \n SAVE 2 MELSOFT FUNCTION: \n ')

73 %j o i n t 1

74 Mjoint1 = [] ;

75 Mjoint1 =[M;M1 ; 0] ;

76

77 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , ' J1 . csv ') , Mjoint1 ,

' p r e c i s i o n ' , '%.0 f ') ;

78 d i s p l ay (s t r c a t (' s a l v a t o f i l e : ' , f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , '

136 B.3. G-CODE READER

J1 . csv '))

79 beep

80

81 %j o i n t 2

82 Mjoint2 = [] ;

83 Mjoint2 =[M;M2 ; 0] ;

84 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , ' J2 . csv ') , Mjoint2 ,

' p r e c i s i o n ' , '%.0 f ') ;

85 d i s p l a y (s t r c a t (' s a l v a to f i l e : ' , f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , '

J2 . csv '))

86 beep

87

88 %j o i n t 3

89 Mjoint3 = [] ;

90 Mjoint3 =[M;M3 ; 0] ;

91 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , ' J3 . csv ') , Mjoint3 ,

' p r e c i s i o n ' , '%.0 f ') ;

92 d i s p l a y (s t r c a t (' s a l v a to f i l e : ' , f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , '

J3 . csv '))

93 beep

94

95 %ext

96 Mjointe =[M;ME; 0] ;

97 dlmwrite (s t r c a t (f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , ' EXT. csv ') , Mjointe

, ' p r e c i s i o n ' , '%.0 f ') ;

98 d i s p l a y (s t r c a t (' s a l v a to f i l e : ' , f i gu ra geomet r i c a , ' p a r t ' , num2str (j j) , '

EXT. csv '))

99 beep

100

101 %stampa a l t r i da t i

102 f p r i n t f (' \n ')

103 f p r i n t f ('numero punti camma master = %d \n ' , dimension cam master)

104 f p r i n t f (' lunghhezza tempo = %f micrometr i \n ' , tempo (end))

105 % f p r i n t f (' v e l o c i t à camma master = %f mm/min \n ' , vel camma master)

106 end

107 f l a g t i t l e v =[f i gu ra geomet r i c a , ' p a r t '] ;

108 end

B.3.9 save2txt gcode (saving function)

Listing B.13: save2txt gcode

1 func t i on M1=save2csv gcode (xx , yy , zz , ee , f rob , f ext , f i gu ra geomet r i c a , l a y e r s)

2 f rob ;

3 f e x t ;

4 dimensione camma master=length (xx) ;

5 M={ ' ; tx t f i l e s i m i l a r to G−code ' ; [' ; used l a y e r s : ' , 0 , l a y e r s] ; num2str (

dimensione camma master) ;}
6 M1= [] ; M2= [] ; M3= [] ; ME= [] ;

7 f o r i =1: l ength (xx)

8 i f abs (xx (i))<1e−7

9 xx (i) =0;

APPENDIX B. MATLAB SCRIPTS 137

10 end

11 i f abs (yy (i))<1e−7

12 yy (i) =0;

13 end

14 end

15 f o r j =1: l ength (xx)

16 i f ee (j)==1

17 M1{ j }=['G1 ' , 0 , 'X ' , num2str (xx (j) , 6) , ' ' , 0 , 'Y ' , num2str (yy (j) , 6) ,0 , 'Z ' ,

num2str (zz (j) , 6)] ;

18 e l s e i f ee (j)==0

19 M1{ j }=['G0 ' , 0 , 'X ' , num2str (xx (j) , 6) , ' ' , 0 , 'Y ' , num2str (yy (j) , 6) ,0 , 'Z ' ,

num2str (zz (j) , 6)] ;

20 end

21 c l c

22 end

23 f p r i n t f (' \n\n ************************** \n SAVE 2 MELSOFT FUNCTION: \n ')

24 %j o i n t 1

25 Mjoint1{1}=M{1} ;

26 Mjoint1{2}=M{2} ;

27 Mjoint1{3}=M{3} ;

28 f o r i =1: l ength (M1)

29 Mjoint1{ i+3}=M1{ i } ;

30 end

31 f i d = fopen ([f i gu ra geomet r i c a , ' . tx t '] , 'w ') ;

32 f o r cId = 1 : numel (Mjoint1)

33 f p r i n t f (f i d , '%s ' , Mjoint1{ cId }) ;

34 f p r i n t f (f i d , ' \ r \n ') ;

35 end

36 d i s p l ay (s t r c a t (' s a l v a t o f i l e : ' , f i gu ra geomet r i c a , ' J1 . csv '))

37 beep

B.3.10 G code plot initial

Listing B.14: G code plot initial

1 func t i on []= G c o d e p l o t i n i t i a l (n r l aye r ,X,Y, X min , Y min , Z)

2 dx = [] ; dy = [] ;

3 opt=menu(' 2d or 3d ' , ' 2D ' , ' 3D ' , ' e x i t ') ;

4 i f opt==1;

5 f o r l a y e r =2: n r l a y e r ;

6 TX=X{ l a y e r}−X min ;

7 TY=Y{ l a y e r}−Y min ;

8 p l o t (TX,TY)

9 hold on

10 g r id on

11 a x i s equal

12 drawnow

13 end

14 end

15 i f opt==2

16 f o r l a y e r =2:1 : n r l a y e r ;

17 TX=X{ l a y e r}−X min ;

138 B.4. SQUARE (INPUT EQUATION)

18 TY=Y{ l a y e r}−Y min ;

19 ZZ=Z{ l a y e r } ;

20 p lo t3 (TX,TY, ZZ* ones (l ength (TX)))

21 hold on

22 g r id on

23 a x i s equal

24 drawnow

25 end

26 end

27 i f opt==3

28 end

B.3.11 layer reducer

Listing B.15: layer reducer

1 L old=length (alpha1 {2}) ;

2 L index = [] ; L counter = [] ; c o u n t e r i =0;

3 f o r i =3: l ength (alpha1)

4 L alpha (i)=length (alpha1 { i }) ;

5 i f abs (L alpha (i)−L old)>2

6 L index =[L index , i] ;

7 L counter =[L counter , c o u n t e r i +1] ;

8 c o u n t e r i =0;

9 e l s e

10 c o u n t e r i=c o u n t e r i +1;

11 end

12 i f i==length (alpha1)

13 L index =[L index , i] ;

14 L counter =[L counter , c o u n t e r i +1] ;

15 c o u n t e r i =0;

16 end

17 L old=L alpha (i) ;

18 end

19 d i sp (' f i r s t l a y e r o f t r a n s i t i o n : ')

20 L f i s t=L index−L counter

21 d i sp ('number o f r e p e t i t i o n ')

22 L counter=L counter

B.4 square (input equation)

B.4.1 MAIN SQUARE

Listing B.16: MAIN SQUARE

1 c l e a r ; c l c ;

2

3 %

%%

4 % robot data

5 l =0.595; Rb=0.198; s =0.45651; zEs t ruso re =0.8 ;

APPENDIX B. MATLAB SCRIPTS 139

6 vMaxQ= [0 . 0 5 ; 0 . 0 5 ; 0 . 0 5] ; %[m/ s]

7 aMaxQ= [0 . 2 0 0 ; 0 . 2 0 0 ; 0 . 2 0 0] ; %[m/ s ˆ2]

8 v max =0.1;

9 a max=1200000;%[mm/min ˆ2]

10 d max=2*a max ;

11

12 d p =14; %[mm]

13

14 % square data

15 A=40; %[mm] ;

16 B=31; %[mm] ;

17 r =0.45; %[mm] d/2

18 z =1.5 ; %[mm]

19 v ext =2.5*1e−3;% 10e−3 %[m/ s] ;

20

21 LAYER=1;

22

23 % inte rmed ia t e po in t s g e n e r a t i o data

24 dL=10; %[mm]

25

26 % motion law data

27 n motlaw =50;

28 c1 =1/3;

29

30 % sav ing data

31 t i t l e 1= ' p i c t u r e ' ;%p r i n t 0 5 1 2 d f v f m 5 0 p o i n t d L v =2.5e−3

32

33 %next s t a r t data

34 dz =0.8*(2* r) ; %[mm] ;

35

36 %c i r c u l a r s e c t i o n

37 % A robot=(p i *dz ˆ2/4) ;

38 % v robot=(p i *(2* r) ˆ2/4) /(A robot) * v ext ;

39 % r gap=dz /2 ;

40

41 %square

42 v robot=v ext ;

43 r gap =0.5* pi *(2* r) ˆ2/(4* dz) *(v ext / v robot) ;

44 A robot=r gap *dz ;

45

46 N=(A−B) /4/ r gap ;

47

48 f l a g t a p e r =0;

49 t e ta=pi /4 ;

50

51 %b a z i e r r e t p a r data

52 opt=menu(' Bazier or mot . law ? ' , ' b a z i e r ' , 'motlaw ') ;

53 i f opt==1

54 f lag method =1;

55 e l s e

56 f lag method =0;

140 B.4. SQUARE (INPUT EQUATION)

57 end

58 de l t a =0.5e−3; %[m] i n d i c a i l comportamento de l ragg i o d i curvatura

n e l l a t r a i e t t o r i a r e t t e−para

59 dt =0.001; %[s] per iodo campionamento . 0 .001 normale . 0 .00001

memorizzato .

60 vDep=v ext ; %[m/ s] v e l o c i t à c u r v i l i n e a

61 aAcc=60e−3; %[m/ s ˆ2] modulo a c c e l e r a z i o n e c u r v i l i n e a i n i z i a l e

62 aDec=60e−3; %[m/ s ˆ2] modulo d e c e l e r a z i o i o n e c u r v i l i n e a f i n a l e

63

64 sa l t o punt i decamp ionato r e =125;

65 t i t l e= ' s q u a r e b a z i e r m i t ' ;

66

67 %

%%

68 %

%%

69

70 %b a z i e r ret−par

71 i f f lag method==1

72 r e t p e r b a z i e r s c r i p t

73 % next l a y e r

74 p o s i n i =[0 ,0 ,−dz*1e−3] ; %f l a g z −2*r *

75 a lpha p f=Q dec (: , end) ;

76 a lpha p i =[0 ;0 ;0]− dz*1e−3;

77 format shor t g

78 d e l t a p o s =(a lpha p i−a lpha p f) *1 e6

79 format

80 e l s e

81

82 %

%%

83 %

%%

84

85 %square gen

86 [X,Y, Z , T 1 temp ,V]= square gen (A,B, r gap ,N, v ext , z) ;

87

88 %inte rmed ia t e po in t s g e n e r a t i o

89 [XX final , YY final , EE f ina l , V f i n a l]= s q u a r e i n t e r p o i n t s (LAYER,X,Y, Z , dL ,V,

v ext) ;

90

91 %adim . motion law genera t i on

92 [x , d2 , s2 , acc2 , d1 , s1 , acc , ca , cv]= square mot law adim cv (n motlaw , c1) ;

93

94 %d e l t a time gene ra t i on 1

95 [DT motlaw , de l ta t ime , alpha1 , alpha2 , alpha3 , l s e g]= square t ime1 (LAYER,

XX final , YY final , EE f ina l , Z , zEstrusore , l , s ,Rb,vMaxQ,aMaxQ, cv , ca ,

APPENDIX B. MATLAB SCRIPTS 141

v robot , V f i n a l) ;

96

97 %motion law ass ignement

98

99 [a lpha mot law1 f ina l , a lpha mot law2 f ina l , a lpha mot law3 f ina l ,

va lpha mot law1 f ina l , va lpha mot law2 f ina l , va lpha mot law3 f ina l ,

aa lpha mot law1 f ina l , aa lpha mot law2 f ina l , aa lpha mot law3 f ina l ,

DT motlaw lay , E motlaw lay]= square mot law ass (LAYER, alpha1 , alpha2 ,

alpha3 , x , d2 , s2 , acc2 , d1 , s1 , acc , ca , cv , de l ta t ime ,aMaxQ,vMaxQ, EE f ina l) ;

100 VEL max=[max(abs (va lpha mot law1 f ina l {LAYER})) ,max(abs (

va lpha mot law2 f ina l {LAYER})) ,max(abs (va lpha mot law3 f ina l {LAYER}))]

101 ACC max=[max(abs (aa lpha mot law1 f ina l {LAYER})) ,max(abs (

aa lpha mot law2 f ina l {LAYER})) ,max(abs (aa lpha mot law3 f ina l {LAYER}))]

102

103 %mot law plot

104 G code mot law plot (LAYER, a lpha mot law1 f ina l , a lpha mot law2 f ina l ,

a lpha mot law3 f ina l , va lpha mot law1 f ina l , va lpha mot law2 f ina l ,

va lpha mot law3 f ina l , aa lpha mot law1 f ina l , aa lpha mot law2 f ina l ,

aa lpha mot law3 f ina l , DT motlaw lay) ;

105

106 %animation

107 G code anaimation1 (DT motlaw lay , E motlaw lay , a lpha mot law1 f ina l ,

a lpha mot law2 f ina l , a lpha mot law3 f ina l ,LAYER, l , s ,Rb, zEstrusore , Z) ;

108

109 %diameter as func t i on o f the ve l

110 d dep check

111

112 % sav ing

113 save menu

114

115 %extruder ve l

116 e x t r u d e r v e l

117

118 % next l a y e r

119 %%

120 p o s f i n =[XX final {LAYER}(end) , YY f inal {LAYER}(end) , zEstrusore−z] ;

121 p o s i n i =[0 ,0 , zEstrusore−z−dz*1e−3] ;

122 a lpha p f=l i n e a r i n v e r s e k i n e m a t i c s (p o s f i n ' , l , s ,Rb) ;

123 a lpha p i=l i n e a r i n v e r s e k i n e m a t i c s (p o s i n i ' , l , s ,Rb) ;

124 format shor t g

125

126 i f f l a g t a p e r==1

127 tape r 1=dz*1e−3/tan (t e ta) ;

128 p o s f i n =[XX final {LAYER}(end) , YY f inal {LAYER}(end) , zEstrusore−z] ;

129 p o s i n i =[taper 1 , 0 , zEstrusore−z] ;

130 a lpha p f=l i n e a r i n v e r s e k i n e m a t i c s (p o s f i n ' , l , s ,Rb) ;

131 a lpha p i=l i n e a r i n v e r s e k i n e m a t i c s (p o s i n i ' , l , s ,Rb) ;

132 d e l t a po s1=−(a lpha pf−a lpha p i) *1 e6

133 e l s e

134 d e l t a po s1 =−([a lpha mot l aw1 f ina l {LAYER}(end)−a lpha mot law1 f ina l {LAYER

} (1) ; a lpha mot l aw2 f ina l {LAYER}(end)−a lpha mot law2 f ina l {LAYER} (1) ;

142 B.4. SQUARE (INPUT EQUATION)

a lpha mot law3 f ina l {LAYER}(end)−a lpha mot law3 f ina l {LAYER} (1)]) *1 e6

135

136 end

137 d e l t a po s2=−dz* ones (3 , 1) *1 e3

138 format

139 end

B.4.2 square gen (square generation)

Listing B.17: square gen

1 func t i on [X,Y, Z , T 1 temp ,V]= square gen (A,B, r ,N, v ext , z)

2 X= [] ;Y= [] ;Vx= [] ;Vy= [] ; Vz = [] ;V= [] ;

3 f o r i =1:N

4 As=A−r ;

5 Bs=A−2*r ;

6 a=r *(i −1) ;

7 i f i==1

8 x=[a , a , Bs−a , Bs−a] ;

9 y=[a , As−a , As−a , r * i] ;

10 X=[X, x] ;

11 Y=[Y, y] ;

12 e l s e i f i==2

13

14 x=[a+r *(i −1) , a+r *(i −1) ,Bs−a−r *(i −1) ,Bs−a−r *(i −1)] ;

15 y=[a , As−a−r *(i −1) ,As−a−r *(i −1) , a+r *(i)] ;

16 X=[X, x] ;

17 Y=[Y, y] ;

18 e l s e

19 x=[a+r *(i −1) , a+r *(i −1) ,Bs−a−r *(i −1) ,Bs−a−r *(i −1)] ;

20 y=[a+r *(i −2) ,As−a−r *(i −1) ,As−a−r *(i −1) , a+r *(i)] ;

21 X=[X, x] ;

22 Y=[Y, y] ;

23 end

24

25 end

26 X=[X,X(end)−B−r] ;

27 Y=[Y,Y(end)] ;

28 f o r i =1:N

29 vx = [0 , 1 , 0 , 1] ;

30 vy = [1 , 0 , 1 , 0] ;

31 Vx=[Vx, vx] ;

32 Vy=[Vy, vy] ;

33 Vz=[Vz , [0 , 0 , 0 , 0]] ;

34

35 end

36 V=[Vx ;Vy ; Vz] ;

37 L 1 temp=s q r t ((d i f f (X) *1e−3) .ˆ2+(d i f f (Y) *1e−3) . ˆ 2) ;

38 T 1 temp=L 1 temp/ v ext ;

39 T 1 temp =[0 ,cumsum(T 1 temp)] ;

40 Z=z* ones (1 , l ength (X)) ;

41

APPENDIX B. MATLAB SCRIPTS 143

42 %%

43 f i g u r e ()

44 p l o t (X,Y)

45 a x i s equal

46 hold on

47 C=(A−B) /2 ;

48 p l o t ([− r ,− r] , [0 ,A] , ' r ' ,[− r ,A−r] , [A,A] , ' r ' , [A−r ,A−r] , [0 ,A] , ' r ' ,[− r ,A−r

] , [0 , 0] , ' r ')

49 p l o t ([C−r ,C−r] , [C,A−C] , ' r ' , [C−r ,A−C−r] , [A−C,A−C] , ' r ' , [A−C−r ,A−C−r] , [C,A−C

] , ' r ' , [C−r ,A−C−r] , [C,C] , ' r ')

B.4.3 shape8 gen (eight shape generation)

N=1 eight shape, N=2 leaning x eight shape, N=3 leaning y eight shape

Listing B.18: shape8 gen

1 func t i on [X,Y, Z , T 1 temp ,V]= shape8 gen (A,B, r ,N, v ext , z)

2 X= [] ;Y= [] ;

3 Vx= [] ;Vy= [] ; Vz = [] ;

4 i f N==1

5 x=[0,−A,A,−A,A, 0] ;

6 y=[0 ,B,B,−B,−B , 0] ;

7 vy = [1 , 0 , 1 , 0 , 1] ;

8 vx = [1 , 1 , 1 , 1 , 1] ;

9 X=[X, x] ; Y=[Y, y] ;

10 Vx=[Vx, vx] ; Vy=[Vy, vy] ; Vz=[Vz , [0 , 0 , 0 , 0 , 0]] ;

11 V=[Vx ;Vy ; Vz] ;

12 e l s e i f N==2

13 x =[0 ,0 ,A,−A, 0 , 0] ;

14 y=[0 ,B,B,−B,−B , 0] ;

15 vy = [1 , 0 , 1 , 0 , 1] ;

16 vx = [1 , 1 , 1 , 1 , 1] ;

17 X=[X, x] ; Y=[Y, y] ;

18 Vx=[Vx, vx] ; Vy=[Vy, vy] ; Vz=[Vz , [0 , 0 , 0 , 0 , 0]] ;

19 V=[Vx ;Vy ; Vz] ;

20 e l s e i f N==3

21 x=[0,−A,−A,A,A, 0] ;

22 y =[0 ,0 ,B,−B, 0 , 0] ;

23 vy = [1 , 0 , 1 , 0 , 1] ;

24 vx = [1 , 1 , 1 , 1 , 1] ;

25 X=[X, x] ; Y=[Y, y] ;

26 Vx=[Vx, vx] ; Vy=[Vy, vy] ; Vz=[Vz , [0 , 0 , 0 , 0 , 0]] ;

27 V=[Vx ;Vy ; Vz] ;

28 end

29 L 1 temp=s q r t ((d i f f (X) *1e−3) .ˆ2+(d i f f (Y) *1e−3) . ˆ 2) ;

30 T 1 temp=L 1 temp/ v ext ;

31 T 1 temp =[0 ,cumsum(T 1 temp)] ;

32 Z=z* ones (1 , l ength (X)) ;

33 f i g u r e ()

34 p l o t (X,Y)

35 a x i s equal

144 B.4. SQUARE (INPUT EQUATION)

B.4.4 square mot law adim cv (motion law definition)

Listing B.19: square mot law adim cv

1 func t i on [x , d2 , s2 , acc2 , d1 , s1 , acc , ca , cv]= square mot law adim cv (n motlaw , c1

)

2 % do not change t h i s

3 c =1/2;

4 x=0:1/ n motlaw : 1 ;

5 j =1;

6 f o r i=x

7 [d2 (j) , s2 (j) , acc2 (j)]= const a motlaw (i , c) ;

8 j=j +1;

9 end

10 % do p l e a s e change i t to your nece s s . a c co rd ing ly

11 opt=menu(' mot law ' , 'v=cos t ' , ' const a motlaw ' , ' par ' , ' asym a ' , ' cyc l o ') ;

12 i f opt==1

13 c=c1 ;

14 j =1;

15 f o r i=x

16 [d1 (j) , s1 (j) , acc (j)]= cons t v (i) ;

17 j=j +1;

18 end

19 ca =0; cv=1;

20 end

21 i f opt==2

22 c=c1 ;

23 j =1;

24 f o r i=x

25 [d1 (j) , s1 (j) , acc (j)]= const a motlaw (i , c) ;

26 j=j +1;

27 end

28 ca=1/(c*(1−c)) ; cv=1/((1−c)) ;

29 end

30 i f opt==3

31 c=c1 ;

32 j =1;

33 f o r i=x

34 [d1 (j) , s1 (j) , acc (j)]= par motlaw (i) ;

35 j=j +1;

36 end

37 ca =6; cv =1.5 ;

38 end

39 i f opt==4

40 c=c1 ;

41 j =1;

42 f o r i=x

43 [d1 (j) , s1 (j) , acc (j)]= asym a motlaw (i , c) ;

44 j=j +1;

45 end

46 ca=2/((1−c)) ; cv=2;

47 end

APPENDIX B. MATLAB SCRIPTS 145

48 i f opt==5

49 c=c1 ;

50 j =1;

51 f o r i=x

52 [d1 (j) , s1 (j) , acc (j)]= cyc lo ida l mot law (i) ;

53 j=j +1;

54 end

55 ca=2*pi ; cv=2;

56 end

B.4.5 square mot law assignment

Listing B.20: square mot law ass

1 func t i on [a lpha mot law1 f ina l , a lpha mot law2 f ina l , a lpha mot law3 f ina l ,

va lpha mot law1 f ina l , va lpha mot law2 f ina l , va lpha mot law3 f ina l ,

aa lpha mot law1 f ina l , aa lpha mot law2 f ina l , aa lpha mot law3 f ina l ,

DT motlaw lay , E motlaw lay]= square mot law ass (LAYER, alpha1 , alpha2 ,

alpha3 , x , d2 , s2 , acc2 , d1 , s1 , acc , ca , cv , de l ta t ime ,aMaxQ,vMaxQ, EE f ina l)

2 % ass . main mot . law i f not f e a s i b l e uses a bang−bang p r o f i l e .

3 l a y e r=LAYER;

4 a1 = [] ; a2 = [] ; a3 = [] ;

5 l a y e r f l a g=l a y e r ;

6 f o r i=l a y e r f l a g

7 a1=alpha1 { i } ;

8 a2=alpha2 { i } ;

9 a3=alpha3 { i } ;

10 dx1=d i f f (a1) ;

11 dx2=d i f f (a2) ;

12 dx3=d i f f (a3) ;

13 max da=[max(abs (dx1)) ,max(abs (dx2)) ,max(abs (dx3))] ;

14 min da=[min (abs (dx1)) , min (abs (dx2)) , min (abs (dx3))] ;

15 alpha motlaw1 = [] ; alpha motlaw2 = [] ;

16 alpha motlaw3 = [] ; valpha motlaw1 = [] ;

17 valpha motlaw2 = [] ; valpha motlaw3 = [] ;

18 aalpha motlaw1 = [] ; aalpha motlaw2 = [] ;

19 aalpha motlaw3 = [] ; E motlaw = [] ;

20 DT motlaw=0;

21 f o r j =1: l ength (dx1)

22 alpha temp1=a1 (j)+dx1 (j) .* d1 ;

23 alpha temp2=a2 (j)+dx2 (j) .* d1 ;

24 alpha temp3=a3 (j)+dx3 (j) .* d1 ;

25 valpha temp1=dx1 (j) .* s1 / d e l t a t im e (j) ;

26 valpha temp2=dx2 (j) .* s1 / d e l t a t im e (j) ;

27 valpha temp3=dx3 (j) .* s1 / d e l t a t im e (j) ;

28 aalpha temp1=dx1 (j) .* acc / d e l t a t i me (j) ˆ2 ;

29 aalpha temp2=dx2 (j) .* acc / d e l t a t i me (j) ˆ2 ;

30 aalpha temp3=dx3 (j) .* acc / d e l t a t i me (j) ˆ2 ;

31 i f (max(aalpha temp1)>aMaxQ(1) | | max(aalpha temp2)>aMaxQ(1) | | max(

aalpha temp3)>aMaxQ(1)) % | | (max(valpha temp1)>vMaxQ(1) | | max(

valpha temp2)>vMaxQ(1) | | max(valpha temp3)>vMaxQ(1))

32 alpha temp1=a1 (j)+dx1 (j) .* d2 ;

146 B.4. SQUARE (INPUT EQUATION)

33 alpha temp2=a2 (j)+dx2 (j) .* d2 ;

34 alpha temp3=a3 (j)+dx3 (j) .* d2 ;

35 valpha temp1=dx1 (j) .* s2 / d e l t a t i me (j) ;

36 valpha temp2=dx2 (j) .* s2 / d e l t a t i me (j) ;

37 valpha temp3=dx3 (j) .* s2 / d e l t a t i me (j) ;

38 aalpha temp1=dx1 (j) .* acc2 / d e l t a t i me (j) ˆ2 ;

39 aalpha temp2=dx2 (j) .* acc2 / d e l t a t i me (j) ˆ2 ;

40 aalpha temp3=dx3 (j) .* acc2 / d e l t a t i me (j) ˆ2 ;

41 end

42 alpha motlaw1 =[alpha motlaw1 , alpha temp1 (1 : end−1)] ;

43 alpha motlaw2 =[alpha motlaw2 , alpha temp2 (1 : end−1)] ;

44 alpha motlaw3 =[alpha motlaw3 , alpha temp3 (1 : end−1)] ;

45 valpha motlaw1 =[valpha motlaw1 , valpha temp1 (1 : end−1)] ;

46 valpha motlaw2 =[valpha motlaw2 , valpha temp2 (1 : end−1)] ;

47 valpha motlaw3 =[valpha motlaw3 , valpha temp3 (1 : end−1)] ;

48 aalpha motlaw1 =[aalpha motlaw1 , aalpha temp1 (1 : end−1)] ;

49 aalpha motlaw2 =[aalpha motlaw2 , aalpha temp2 (1 : end−1)] ;

50 aalpha motlaw3 =[aalpha motlaw3 , aalpha temp3 (1 : end−1)] ;

51 DT motlaw=[DT motlaw , DT motlaw (end)+x (2 : end) * d e l t a t i me (j)] ;

52 E motlaw=[E motlaw , EE f ina l { i }(j) * ones (1 , l ength (x)−1)] ;

53

54 end

55 a lpha mot law1 f ina l { i }=[alpha motlaw1 , alpha temp1 (end)] ;

56 a lpha mot law2 f ina l { i }=[alpha motlaw2 , alpha temp2 (end)] ;

57 a lpha mot law3 f ina l { i }=[alpha motlaw3 , alpha temp3 (end)] ;

58 va lpha mot law1 f ina l { i }=[valpha motlaw1 , valpha temp1 (end)] ;

59 va lpha mot law2 f ina l { i }=[valpha motlaw2 , valpha temp2 (end)] ;

60 va lpha mot law3 f ina l { i }=[valpha motlaw3 , valpha temp3 (end)] ;

61 aa lpha mot law1 f ina l { i }=[aalpha motlaw1 , aalpha temp1 (end)] ;

62 aa lpha mot law2 f ina l { i }=[aalpha motlaw2 , aalpha temp2 (end)] ;

63 aa lpha mot law3 f ina l { i }=[aalpha motlaw3 , aalpha temp3 (end)] ;

64 DT motlaw lay{ i }=[DT motlaw (1 : end)] ;

65 E motlaw lay{ i }=[E motlaw , 1] ;

66 end

B.4.6 save menu

Listing B.21: save menu

1 opt2=menu(' save ' , ' yes ' , 'no ') ;

2 i f opt2==1

3 c l o s e a l l

4 P f l a g =[a lpha mot law1 f ina l {LAYER}−a lpha mot law1 f ina l {LAYER} (1) ;

a lpha mot l aw2 f ina l {LAYER}−a lpha mot law2 f ina l {LAYER} (1) ;

a lpha mot l aw3 f ina l {LAYER}−a lpha mot law3 f ina l {LAYER} (1)] ;

5 opt=menu('cam . csv save opt ion ? ' , ' master cam−di sp ' , ' vel−di sp (new way) ') ;

6 i f opt==1

7 save2me l so f t1 (DT motlaw lay{LAYER} , P f lag , t i t l e 1 , E motlaw lay{LAYER})

8 e l s e

9 opt3=menu(' reduced or not ? ' , ' f u l l mot . law ' , ' f .m. l . d i f f ' , ' only 1

every dL ') ;

10 i f opt3==1

APPENDIX B. MATLAB SCRIPTS 147

11 new cam

12 save2me l so f t3 (DX cam V , P f lag , s t r c a t (t i t l e 1 , ' new cam '))

13 d i sp (' ')

14 d i sp ('make sure to add/ e l i m i n a t e F18 mit *1000 f a c t o r on ve l ')

15 e l s e i f opt3==2

16 new cam2

17 save2me l so f t3 (DX cam V , P f lag2 , s t r c a t (t i t l e 1 , ' new cam di f f '))

18 d i sp (' ')

19 d i sp ('make sure to add/ e l i m i n a t e F18 mit *1000 f a c t o r on ve l ')

20 e l s e

21 new cam1

22 save2me l so f t3 (DX cam V , P f lag1 , s t r c a t (t i t l e 1 , ' new cam red '))

23 d i sp (' ')

24 d i sp ('make sure to add/ e l i m i n a t e F18 mit *1000 f a c t o r on ve l ')

25 end

26 end

27 end

B.4.7 new cam1

Listing B.22: new cam1

1 P f l ag3 =[alpha1 {LAYER}−alpha1 {LAYER} (1) ; alpha2 {LAYER}−alpha2 {LAYER} (1) ;

alpha3 {LAYER}−alpha3 {LAYER} (1)] ;

2 t i=d i f f (DT motlaw) /60 ; %[min]

3 P max=(max(abs (d i f f (P f lag3 , [] , 2)))) *1 e3 ; %[mm]

4 v i = [] ;

5 Dt = [] ; t1 = [] ; t2 = [] ; t3 = [] ; s1 = [] ; s2 = [] ; s3 = [] ; dt = [] ; ds = [] ;

6 v i=P max . / t i ;

7 TT=0;

8 t1=v i /a max ;

9 t2=t1 /2 ;

10 dt=t i−t1−t2 ;

11 s1 =0.5*a max* t1 . ˆ 2 ;

12 s2 =0.5*2*a max* t2 . ˆ 2 ;

13 ds=P max−s1−s2 ;

14 t3=ds . / v i ;

15 Dt=t1+t2+t3−t i ;

16 t r=t1+t2+t3 ;

17

18 DT med=sum(Dt) *60

19

20 v ext new=sum(l s e g {LAYER}) /sum(t r) /60 ;

21

22 i f DT med>0.01

23 opt=menu('what ve l ' , 'v med<v ext ' , 'v med=v ext ') ;

24 i f opt==1

25 v i =[0 , v i] ;

26 DX cam V=cumsum(v i) ;

27 e l s e

28 dete r =(2*a max* t i /3) .ˆ2−4*P max*a max /3 ;

29 djk=f i n d (deter >0) ;

148 B.4. SQUARE (INPUT EQUATION)

30 djk1=f i n d (deter <0) ;

31 i f l ength (djk1)>1

32 d i sp (' deter<0 ')

33 end

34 v i i=ze ro s (1 , l ength (v i)) ;

35

36 v i i (djk)=2*a max* t i (djk)/3− s q r t (de te r (djk)) ;

37 v i i (djk1)=s q r t (4*a max*P max(djk1) /3) ;

38

39 t1=v i i /a max ;

40 t2=v i i /(2*a max) ;

41 dt=t i−t1−t2 ;

42 s1 =0.5* v i i . ˆ2/ a max ;

43 s2 =0.5* v i i . ˆ2/(2* a max) ;

44 ds=P max−s1−s2 ;

45 t3=ds . / v i i ;

46 Dt=t1+t2+t3−t i ;

47 DT aum=sum(Dt) *60

48 t r=t1+t2+t3 ;

49 v ext new=sum(l s e g {LAYER}) /sum(t r) /60 ;

50 v i i =[0 , v i i] ;

51 v i =[0 , v i] ;

52 f i g u r e ()

53 p l o t (v i)

54 hold on

55 p lo t (v i i)

56 DX cam V=cumsum(v i i) ;

57 t i t l e 1 =[t i t l e 1 , ' Vm eq Vext '] ;

58 end

59 e l s e

60 v i =[0 , v i] ;

61 DX cam V=cumsum(v i) ;

62 end

63

64 P f l ag1 =[d i f f (P f l ag3 (1 , :)) ; d i f f (P f l ag3 (2 , :)) ; d i f f (P f l ag3 (3 , :))] ;

65 P f l ag1 =[z e ro s (3 , 1) , P f l ag1] ;

66 i f l ength (f i n d (DX cam V*100>2147483647))>0

67 d i sp ('X−camma master l a r g e r than upper va lue : ')

68 d i sp (' reduce f a c t o r or s p l i t up the cam in to more par t s ')

69 end

B.4.8 extruder vel (velocity of the extruder punch)

Listing B.23: extruder vel

1 V extruder =((2* r) /d p) ˆ2* v ext ; %[m/ s]

2 V extruder=V extruder *60*1 e3 %[mm/min]

B.4.9 G code anaimation1

Listing B.24: G code anaimation1

1 func t i on []= G code anaimation1 (DT motlaw lay , E motlaw lay ,

APPENDIX B. MATLAB SCRIPTS 149

a lpha mot law1 f ina l , a lpha mot law2 f ina l , a lpha mot law3 f ina l ,LAYER, l , s ,

Rb, zEstrusore , Z)

2 opt=menu('do you wanna p lo t ' , ' yes (i t w i l take a l o t [c t r l+c to e x i t] ' , 'no ')

;

3 i f opt==1

4 f i g u r e ()

5 j =1;

6 t c x = [] ; t c y = [] ; t c z = [] ;

7 c l o s e a l l

8 f o r i =1: l ength (DT motlaw lay{LAYER}) ;

9 f l a g e (j)=E motlaw lay{LAYER}(i) ;

10 a lpha 1 (j)=a lpha mot law1 f ina l {LAYER}(i) ;

11 a lpha 2 (j)=a lpha mot law2 f ina l {LAYER}(i) ;

12 a lpha 3 (j)=a lpha mot law3 f ina l {LAYER}(i) ;

13 q=[a lpha 1 (j) ; a lpha 2 (j) ; a lpha 3 (j)] ;

14 zoom=0;

15 [t c x (j) , t c y (j) , t c z (j)]=plotLD (q , l , s ,Rb, zEstrusore , zoom) ;

16 subplot (1 , 2 , 2)

17 p lo t3 (tc x , tc y , t c z , 'b ') ;

18 i f f l a g e (j)==1

19 hold on

20 p lo t3 (t c x (j) , t c y (j) , t c z (j) , ' r * ') ;

21 end

22 drawnow

23 j=j +1;

24 end

25 end

B.4.10 d dep check

Listing B.25: d dep check

1 f o r i =1: l ength (DT motlaw lay{LAYER})

2 q=[a lpha mot law1 f ina l {LAYER}(i) ; a lpha mot l aw2 f ina l {LAYER}(i) ;

a lpha mot l aw3 f ina l {LAYER}(i)] ;

3 p (: , i)=l i n e a r d i r e c t k i n e m a t i c s (q , l , s ,Rb) ;

4 qp=[va lpha mot law1 f ina l {LAYER}(i) ; va lpha mot law2 f ina l {LAYER}(i) ;

va lpha mot law3 f ina l {LAYER}(i)] ;

5 inv J=l i n e a r i n v e r s e J a c o b i a n (p (: , i) , q , s ,Rb) ;

6 new v plat (: , i) =((inv J) ˆ−1)*qp ;

7 end

8 sp abs=s q r t (new v plat (1 , :) .ˆ2+ new v plat (2 , :) . ˆ 2) ;

9 % temp=f i n d (sp abs==0) ;

10 % sp abs (temp) =0.1 ;

11 d dep=s q r t (v ext *(2* r) ˆ2 ./ sp abs) ;

12 f i g u r e ()

13 p l o t (d dep)

14 d dep mean=mean(d dep)

15 d dep cov=cov (d dep)

16 d dep max=max(d dep)

17 d dep min=min (d dep)

18 dep e r ro r =[d dep max−2*r , 2* r−d dep min]

150 B.4. SQUARE (INPUT EQUATION)

B.4.11 line close

Listing B.26: line close

1 X= [] ;Y= [] ;E= [] ;

2 f o r i =1:N

3 X1 = [] ; X2 = [] ; Y1 = [] ; Y2 = [] ; E1 = [] ;

4 i f i==1

5 xo i=x0 ; yo i=y0 ;

6 temp lc =0: lmax : lmax ;

7 X1=xoi+temp lc ;

8 Y1=yoi * ones (1 , l ength (temp lc)) ;

9 E1=[0 , ones (1 , l ength (temp lc)−1)] ;

10 % E1=[ones (1 , l ength (temp lc))] ;

11 X2=X1(end)−temp lc ;

12 Y2=(Y1(end)+dd(i)) * ones (1 , l ength (temp lc)) ;

13 e l s e

14 xo i=x0 ;

15 yo i=Y(end)+l l+dd(i) ;

16 temp lc =0: lmax : lmax ;

17 X1=xoi+temp lc ;

18 Y1=yoi * ones (1 , l ength (temp lc)) ;

19 E1=[0 , ones (1 , l ength (temp lc)−1)] ;

20 % E1=[ones (1 , l ength (temp lc))] ;

21 X2=X1(end)−temp lc ;

22 Y2=(Y1(end)+dd(i)) * ones (1 , l ength (temp lc)) ;

23 end

24 X=[X, X1 , X2] ; Y=[Y, Y1 , Y2] ; E=[E, E1 , E1] ; % E(1) =0;

25 end

26 f i g u r e ()

27 p l o t (X,Y)

28 hold on

29 f o r i =1: l ength (X)

30 i f E(i)==1

31 p lo t (X(i) ,Y(i) , ' r * ')

32 end

33 end

34 V=[E;E;E] ;

35 Z=z* ones (l ength (X)) ;

Bibliography

[1] A. Dolenc, An Overview Of Rapid Prototyping Technologies In Manufactur-

ing,1994, Industrial automated institute of Helsinki university of technology

[2] Ian Gibson, David W Rosen, Brent Stucker et al. Additive manufacturing tech-

nologies. Springer, 2015.

[3] E. Fiore, H. Giberti e L. Sbaglia. ”Dimensional synthesis of a 5-DOF parallel kine-

matic manipulator for a 3d printer”. In: Research and Education in Mechatronics

(REM), 2015 16th International Conference on. Nov. 2015, pp. 41-48.

[4] Han W. et al. ”Tool Path-Based Deposition Planning in Fused Deposition Pro-

cesses”. In: Journal of Manufacturing Science and Engineering 124.2 (2002), pp.

462-472.

[5] Jin et al. ”Optimization of tool-path generation for material extrusion-based addi-

tive manufacturing technology”. In: Additive Manufacturing 1 (2014), pp. 32-47.

[6] S.-H. Suh, S.-K. Kang, D.-H. Chung, I. Stroud, Theory and Design of CNC Sys-

tems, Springer, 2008.

[7] Giovanni Legnani, Irene Fassi e Antonio Visioli. Robotica industriale. CEA, 2003.

[8] Luca Sbaglia. ”Ottimizzazione e Progettazione di un robot 5 gdl per stampa 3D”.

Tesi di laurea. Politecnico di Milano, 2014/2015.

[9] Marco Lotterio. ”Progetto e Sviluppo di una Testa di Iniezione MIM applicata ad

una Stampante 3D”. Tesi di laurea. Politecnico di Milano, 2014/2015.

[10] Marco Parabiaghi. ”Pianificazione di traiettorie di deposizione per una stampante

3D innovativa a 3 gdl a portata di estrusione costante”. Tesi di laurea. Politecnico

di Milano, 2014/2015.

[11] Richard G. Budynas, J. Keith Nisbett. Shigley’s mechanical engineering design.

McGraw-Hill, 2011

[12] Mitsubishi Electric industrial automation, cur. MELSEC A/Q series: Pro-

grammable Logic Controllers, Programming Manual. 2004.

151

152 BIBLIOGRAPHY

[13] Mitsubishi Electric industrial automation, cur. MELSEC System Q: Pro-

grammable Logic Controllers User’s Manual Hardware Description. 2011.

[14] Mitsubishi Electric industrial automation, cur. MELSEC System Q: PLC Manuale

del Principiante. 2009.

[15] Mitsubishi Electric motion controllers, cur. MOTION CONTROLLER Qseries

User’s Manual (Q173D(S)CPU/Q172(S)CPU). 2011.

[16] Mitsubishi Electric motion controllers, cur. MOTION CONTROLLER Qseries

Progrmming Manual (COMMON) (Q173D(S)CPU/Q172D(S)CPU). 2012.

[17] Mitsubishi Electric motion controllers, cur. MOTION CON-

TROLLER Qseries SV13/SV22 Programming Manual (Motion SFC)

(Q173D(S)CPU/Q172D(S)CPU). 2013.

[18] Mitsubishi Electric, cur. General-Purpose AC Servo MELSERVO (HG-MR/HG-

KR/HG-SR/HG-JR/HG-RR/HG-UR) Servo motor instruction manual (Vol. 3).

2012.

[19] Mitsubishi Electric, cur. General-Purpose AC Servo MELSERVO-J4 SSCNET II-

I/H Interface AC Servo (MR-J4-B(-RJ)/MR-J4-B4(-RJ)) Servo amplifier Instruc-

tion Manual. 2012.

[20] P.L. Magnani, G. Ruggieri. Meccanismi per Macchine Automatiche, ed. UTET,

Torino, Italia, 1986.

[21] Peter Zamiska PM et al. ”LITERATURE REVIEW 3D PRINTER”. In: (2013).

[22] Enrique Canessa, Carlo Fonda e Marco Zennaro. Low-cost 3D Printing for Sci-

ence, Education & Sustainable Development. ICTP-The Abdus Salam Interna-

tional Centre for Theoretical Physics, 2013.

	 INTRODUCTION
	Additive Manufacturing
	CNC machine
	EFESTO project
	Starting point of the thesis work
	Linear Delta robot [7] [8]
	Motor-transmission system [8]
	realization [8]
	Extrusion system
	Control unit [8][10]
	PLC and motion programming [10]
	PID tuning [10]
	Specifics [9]

	Thesis objectives

	MECHANICAL SYSTEM DEVELOPMENT
	Objective and Overview
	Calibration process
	Structure modifications
	Adjustable plate
	Solution A
	Solution B
	Used solution

	Linear Delta calibration
	Linear Delta Kinematics
	X-Z behavior
	Calibrating tool

	CONTROL SYSTEM (HARDWARE)
	Objective and Overview
	Components and their function
	Electrical layout
	First layout concept
	Cabinet realization
	Heated bed

	CONTROL SYSTEM (PROGRAMMING)
	Objective and Overview
	Control outline

	Preliminary information
	Synchronization
	Motion laws

	G-code reader
	G-code introduction
	Repetier-Host R G-code
	Algorithm variables
	Algorithm outline
	Matlab R scripts
	G-code reader consideration

	Data processing
	Intermediate point generation
	t determination
	Motion law assignment

	CNC emulator
	Velocity-Displacement Cam file
	Memory allocation
	Algorithm
	Additional consideration

	Manual control
	Memory allocation
	Inverse kinematics for the Motion software
	Direct kinematics for the Motion software
	Data processing and on-line control

	HMI and PLC programming

	PRINTING and EXPERIMENTAL RESULTS
	Objective and Overview
	Trajectory generation
	Square generation
	Interfilament gap script
	Cube
	Oblique parallelepiped
	Generic object
	Printing process outline
	G-code
	Manual input
	Extrusion system preparation

	Conclusion
	Appendices
	Technical sheets and drawings
	Mitsubishi HG-KR43B electrical motor technical sheet
	Bonfiglioli TR 080 1 10 LOW 50C1 CD14 S5 OR SB KE reducer
	Rollon ELM 80-SP
	adjustable plate
	electrical layout for the cabinet
	electrical mounting specification
	bolt selection for the structure

	Matlab® scripts
	robot behavior analysis
	MAIN_X_Z
	MAIN_X_Z_fl f(l)
	MAIN_X_Z_3 f(Rb and/or s)

	tuning_tot_main
	G-code reader
	MAIN_Gcode
	G_code_reader1
	G_code_layer
	G_code_layer_rep (Slic3r)
	G_code_inter_points
	G_code_time1 (data processing)
	G_code_slicer (agglomeration)
	save2melsoft1 (saving function)
	save2txt_gcode (saving function)
	G_code_plot_initial
	layer_reducer

	square (input equation)
	MAIN_SQUARE
	square_gen (square generation)
	shape8_gen (eight shape generation)
	square_mot_law_adim_cv (motion law definition)
	square_mot_law_assignment
	save_menu
	new_cam1
	extruder_vel (velocity of the extruder punch)
	G_code_anaimation1
	d_dep_check
	line_close

