
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

A Path Learning Approach for Building

Accessibility Topologies

Polo Territoriale di Como

Master of Science in Computer Engineering

Advisor: Prof. Matteo Matteucci

Co-Advisor: Prof. Sara Comai

Co-Advisor: Ing. Emanuele De Bernardi

Master Thesis by:

Andrea Peccini, ID 823759

Academic Year 2015-2016

A Roberta.

Abstract

According to World Healt Organization statistics, about 15% of the world’s

population, which represents over a billion people, presents some form of

physical disability or mobility impairment, which may be congenital or as

a result of injury, where aging disease is the most common reason. This

number is supposed to grow rapidly, as the EU population gets progressively

older.

Our cities collect a multiplicity of obstacles and barriers because they

are usually built for able-bodied users. This represents one of the main issue

for those users who are obliged to move around in their everyday life with

manual or motorized wheelchairs.

This thesis, as a part of the Maps for Easy Paths (MEP) polisocial

project, aims at defining and developing a set of tools for the enrichment of

cartographic maps with accessibility information regarding the pedestrian

routes usually adopted by users affect by mobility impairments. This work

takes care of building a system able to elaborate and supply information

through an automatic procedure, in order to show a suitable path for each

user based on its mobility conditions.

The research work described throughout this thesis aspires to the pro-

blem resolution adopting an unsupervised and neural network based algori-

thm, designed to cluster the collected routes, and to extract the accessibility

of areas within a city. The described method takes into account the geo-

tagged information supplied by users using two applications developed for

mobile devices, i.e., smartphones and tablets, considering the collected rou-

tes and physical barriers. This correspond to a step toward the visualization

of cartographic heat maps where the degree of accessibility can be identified

by simply looking at different colored areas.

i

Sommario

In accordo con quanto riportano le statistiche dell’Organizzazione Mondiale

della Sanità, circa il 15% della popolazione mondiale, approssimativamente

circa un miliardo di persone, presenta una qualche forma di disabilità fisica

o menomazione motoria, la quale può essere congenita o dovuta ad una

ferita, dove l’invecchiamento è una delle cause più comuni. Queste cifre

sono destinate ad un rapido aumento, poiché il numero di anziani nell’Unione

Europea è in forte crescita.

Le nostre città a misura di utenti normodotati, collezionano una molte-

plicità di barriere fisiche e ostacoli. Questi rappresentano un serio impedi-

mento per chi è costretto a muoversi quotidianamente con uno mezzo quale

puó essere una carrozzina manuale o motorizzata.

Questo lavoro di tesi, in quanto parte del progetto polisocial Maps for

Easy Paths (MEP), ha come obiettivo quello di definire e sviluppare un

insieme di strumenti per l’arricchimento di mappe cartografiche contenenti

informazioni sull’accessibilità dei percorsi pedonali urbani abitualmente uti-

lizzati da utenti affetti da disabilità motorie. Questo lavoro si fa carico di

costruire un sistema capace, tramite una procedura automatica, di elaborare

e fornire dati, al fine di mostrare il percorso ottimale per ogni utente basato

sulle sue condizioni di mobilità.

Il lavoro di ricerca, descritto in questo lavoro di tesi, mira alla risoluzio-

ne del problema adottando un algoritmo non supervisionato basato su reti

neurali, capace di raggruppare i percorsi tracciati e di estrarre l’accessibilità

delle aree all’interno di una città. Il metodo descritto prende in conside-

razione informazioni geo-localizzate, riportate dagli utenti stessi attraverso

due applicazioni sviluppate per dispositivi mobili (smartphone e tablet),

considerando i percorsi tracciati dagli utenti e le barriere architettoniche.

Questo corrisponde ad un ulteriore passo verso la visualizzazione di mappe

cartografiche colorate, in cui il grado di accessibilità possa essere individuato

osservando semplicemente la colorazione delle diverse aree.

iii

Acknowledgements

Per prima cosa vorrei esprimere la mia gratitudine nei confronti del Professor

Matteo Matteucci e della Professoressa Sara Comai per la loro guida, i loro

consigli e interesse durante lo svolgimento di questo lavoro.

Un sincero grazie lo dedico al Dot. Emanuele De Bernardi, per il suo

costante aiuto e per il tempo che mi ha dedicato per risolvere ogni singolo

problema incontrato durante tutto il periodo di svolgimento di questa tesi.

A tutti i Membri dell’Assistive Technology Group e in particolare al

Professor Salice, per l’interesse dimostrato per il progetto. Un interesse non

solo formale che ha portato tutti a partecipare attivamente all’acquisizio-

ne iniziale dei dati, senza i quali, difficilmente questa tesi avrebbe potuto

raggiungere risultati cos̀ı notevoli.

Vorrei ringraziare i miei genitori, Marilena e Sauro, per avermi dato la

possibilità di intraprendere questo fantastico percorso che mi ha permesso

di crescere come persona e come professionista in un modo che non credevo

nemmeno possibile. Ai miei nonni Maria, Pietro e Francesca per i forti valori

che mi hanno trasmesso.

Con immenso affetto vorrei ringraziare Roberta con cui ho condivi-

so questo lungo viaggio, per aver sempre creduto ciecamente in me senza

mai vacillare e senza la quale difficilmente sarei riuscito a raggiungere tale

traguaro.

Devo anche un meritato ringraziamento alla mia famiglia comasca Iaco-

po, Luca, Emilio, Nino, Sara, Clara, Stella, Francesco, Carmelo, Rosario e

tutti i compagni di “Sound”, i quali hanno allietato e reso indimenticabile la

mia permanenza comasca in tutte quelle giornate che non sembravano finire

mai tra progetti ed esami.

Come non ringraziare inoltre la mia personale equipe medica e in par-

ticolare Carola e Zain, per per avermi supportato e forse troppo spesso

“sopportato”, soprattutto durante l’ultimo periodo di questo lavoro.

Al mio gruppo di fisici, soprattutto Andrea ed Erica, con cui ho condiviso

pause pranzo tra torte e partite a carte, voglio dire grazie.

v

Agli amici di sempre Erika e Riccardo per esserci sempre stati e per i

momenti condivisi insieme.

A Walter, Monica, Valentina, Simone ma soprattutto Rosy, per la sua

fantastica pizza, una costante ormai irrinunciabile della domenica sera che

mi dà la carica per affrontare tutta la settimana.

Contents

Abstract i

Sommario iii

Acknowledgements v

1 Introduction 1

1.1 Thesis Contribution within the MEP-Project 2

1.2 Structure of the Thesis . 5

2 State of the Art 7

2.1 About statistical learning . 7

2.1.1 Reducible and Irreducible Errors 10

2.2 Estimation of f . 10

2.2.1 Supervised vs. Unsupervised Learning 12

2.2.2 Regression vs. Classification Problems 13

2.3 Model Accuracy . 13

2.3.1 The Bias-Variance Trade-Off 16

2.3.2 The Classification Setting 18

2.4 Clustering . 20

2.4.1 Spectral Clustering . 22

2.4.2 Pairwise & Path-Based Clustering 23

2.4.3 In between Spectral Clustering and Path-Based Clus-

tering . 30

2.5 The Neural Gas Network Approach 33

2.5.1 Growing Neural Gas Network 35

2.5.2 Adaptive Incremental Growing Neural Gas Network . 39

3 Methods and Procedures 43

3.1 The MEP Data Collections 43

3.1.1 Implicit Data Collection 46

vii

3.1.2 Explicit Data Collection 47

3.1.3 Issue and Requirements 48

3.1.4 Android Sensor Framework 49

3.2 The MEP-Fusion Engine . 50

3.2.1 The ROAMFREE Library 52

3.3 Geodetic System . 54

3.3.1 Geodetic Coordinates 55

3.3.2 Conversion . 57

3.3.3 Cartographic Correction of Global Navigation Satel-

lite System Trajectories From Low Cost Devices . . . 58

3.4 PostgreSQL and PostGIS . 60

3.5 Python Programming Language & Libraries 62

3.6 The MEP Project Workflow 64

3.6.1 Decompression Phase 67

3.6.2 Building and Highway Tables Population Phase 68

3.6.3 MEP-Fusion Correction Phase 70

3.6.4 GNSS Correction Phase 73

4 The MEP-Clusterpath Algorithm 75

4.1 Algorithm Preparation and Definitions 75

4.1.1 Nodes, Arc and Graph 77

4.2 The MEP-Clusterpath Algorithm 78

4.2.1 Initialization . 78

4.2.2 The MEP-Clusterpath Input Set 79

4.2.3 The MEP-Clusterpath Training Phase 81

4.2.4 The Merging Procedure 85

4.3 Neurons’ Heat Maps Representation 88

5 Experimental Results and Validation 93

5.1 Algorithms’ Performances . 98

5.2 The MEP Heat Maps Representations 101

5.3 Results Validation . 106

5.4 The MEP APIs . 108

6 Conclusions 111

6.1 Future Works . 112

Bibliography 115

List of Figures

1.1 The MEP project scenario. 3

1.2 Heat maps results examples. 4

2.1 On the left a generic initial data set. On the right the same

generic data set with the curve which generates the data. . . 8

2.2 Generic multi-variable fitting example. 9

2.3 On the left panel the data simulated from f are shown in

black. Three estimates of f are presented: the linear re-

gression line(orange), and two smoothing spline fits(blue and

green). On the right the training MSE(gray curve), test

MSE(red curve), and minimum test MSE over all methods(dashed

line) can be observed. Squares represent the training and test

MSEs for the three fits shown in the left hand panel. 14

2.4 Graphical illustration of bias and variance 17

2.5 Squared bias(the blue curve), variance(the orange curve), V ar(ε)

(the dashed line) and test MSE(the red curve) for different

underlying function f , respectively an general one, an highest

linear function and finally an highly non linear function. . . . 18

2.6 Simulated dataset consisting of 100 observations, distributed

into two groups. The dashed line represents the Bayes deci-

sion boundary. The orange background grid represents the

region in which a test observation will be assigned to the or-

ange class, and the same for the blue background grid area

respectively. 19

2.7 Generic examples of spectral clustering and path-based clus-

tering. 21

2.8 Generic examples of pairwise clustering on a generic data set. 24

2.9 Two subsamples from the same input data set. Agglomerative

algorithms sometimes fail to extract the correct underlying

structure of the clusters, due to noise link between objects. . 26

2.10 Distance matrices of three-circles dataset. 29

ix

2.11 Final clustering results using K-means after the application

of multi-dimensional scaling 30

2.12 Clustering results for a noisy 2-circle data set. 32

2.13 Representation of two ways of defining closeness among a set

of points. 35

2.14 A “Growing Neural Gas” example. 38

2.15 “Growing Neural Gas” vs. “Neural Gas” 39

2.16 The three possible different cases in which the AING operates. 40

3.1 MEP-Traces Activities. From left to right: the MEP-Traces

Splash screen, displayed at the application launch; the Wel-

come screen of the application after the login; the Main menu

with the application’s features buttons. 44

3.2 MEP-APP activities. From left to right: the initial screen

with the MEP logo; the welcome screen; the map which can

be consulted by the user. 45

3.3 Implicit Data Collection general schema. 46

3.4 General processing schema applied to data coming from MEP-

Traces in order to perform the trajectories reconstruction. . . 51

3.5 Instance of hyper-graph for pose tracking and self-calibration

with four pose nodes. 53

3.6 Ellipsoid approximation of the Earth 55

3.7 ENU reference system . 56

3.8 “Bring-outside” correction produced by the GNSS algorithm

from the DICA. 59

3.9 On the left a real case result after the application of the GNSS

correction. On the right there is an example in which the

GNSS correction results in an error. 59

3.10 The MVC design pattern general block schema. 65

3.11 The Main Controller subdivision into the different elements

cooperating into the scientific computation. 66

3.12 Worker general process tasks. 67

3.13 The .zip file check procedure. 68

3.14 Population of the Building and Highway tables required by

the GNSS correction to operate. The MEP NMEA INFO file

contains the points’ sequence corresponding to the recorded

path. This can be used to create a series of overlapping

windows. Each window corresponds to a query to the OSM

server to retrieve building and highway falling within its area.

The server’s response contains all the demanded information,

which can then be loaded locally into the related MEP-Server

schema. Subsequently to the schema, also the related tables

have to be updated. 69

3.15 The MEP-Fusion pre-processing schema. This schema tackle

many different problems, focusing on the purpose to get het-

erogeneous data as input to the MEP-Clusterpath algorithm.

The results of this step get loaded into the MEP-Database in

the pose pt table and activate the GNSS correction trigger. . 72

3.16 GNSS correction workflow adopted in order to keep updated

the tables public.building area, public.building perimeter, pub-

lic.building segment, public.highway segment. These tables

contains all the data required for the application of the GNSS

“outside-building” projection. We decide here to represent

also the population of the four tables underlying the GNSS

correction although the correction take place when the new

points from the Fusion correction come into the MEP-Database. 74

4.1 Three different real data collection referred to three different

cities, i.e., Cernobbio, Siena and Milano respectively. 80

4.2 Real examples of raw and cleaned data representation of Cer-

nobbio coming from the MEP-Database. 81

4.3 MEP-Clusterpath threshold definition reflects the one of the

base AING algorithm. 82

4.4 Green square points correspond to the three possible cases

based on the distance of the point x with respect to first

and second nearest nodes. The black squares are the samples

already assigned to a neuron node (blue circle points). 84

4.5 Two-dimensional representation of a generic Gaussian function. 89

5.1 Real examples of raw and cleaned data representation of Cer-

nobbio and Orta San Giulio coming from the MEP-Database. 94

5.2 The urban canyon problem around cities. In panel 5.2(a)

Cernobbio recorded data; in panel 5.2(b) an information’ slice

from the city of Siena. 94

5.3 Both slices represent two cases in which the AING algorithm

produced sub-optimal results. Into the left panel, blue points

show the displacement of the neurons Cernobbio. In partic-

ular, the red circle points out the area in which the AING

algorithm produced sub-optimal results. Into the right panel

orange squares indicate the neurons’ position over Novara.

Once again the algorithm fails to fuse information while cre-

ating the accessibility topology of the city. 96

5.4 Neurons’ displacement in Cernobbio. 97

5.5 Detailed zoom of the AING’s weakness. Resulting nodes that

characterize a graph, may sometimes distribute over tight ar-

eas, leading to an undesired situation of overlapping informa-

tion. 99

5.6 Each panel presents the final topology arising with a different

set of parameter. The “id” links the panel to the correspond-

ing parameter set in Table 5.2. In such a way its easy to

compare the results obtained from different tunings. 102

5.7 Two and three dimensional heat maps representations of the

accessibility obtained by the application of the AING algo-

rithm on the data contained into the MEP-Database related

to Cernobbio. Both panels represent the same input topology

from a different point of view. In particular, the accessibility

scale valid for both figures appears in Figure 5.7(b). Starting

from 0 (unrecorded areas) the scale describes values up to 4. . 104

5.8 Heat maps referred to Cernobbio. In both figures the green

blobs refer to the accessible areas while the red peaks cor-

respond to the places where an obstacle or an inaccessible

barrier has been encountered by a user. The lowest purple

level instead marks the areas with no reference path recorded

by users. 105

5.9 Resulting heat map obtained over the city of Cernobbio. Green

shaded areas locate the accessible areas within the city’s sur-

face while the red blobs precisely locate the inaccessibilities

descending by the presence of an obstacle. 107

List of Tables

3.1 Complete sensor overview of the Android platform. 50

3.2 Geodetic defining parameters. 56

3.3 Geodetic derived geometric constants. 56

3.4 Database Features . 61

5.1 Results obtained by testing all the possible settings config-

uration. Each setting can be uniquely identified through a

corresponding identification (id) number. The column time

refers to the time laps spent by the algorithm to produce the

results. The d parameter indicates the mean distance from

all the existing neurons with respect to the center of-mass of

the observed data-points. The dmin parameter collects the

different values for the minimum granularity tested with our

algorithm. The maxage parameter fixes an upper bound se-

niority for the nodes links; by setting it to +∞, the algorithm

will never eliminate outdated links. Nodes’ number column

collects the final number of neurons produced by the algorithm. 98

5.2 Collection of results obtained by varying the parameters set

of the MEP-Clusterpath algorithm. We refer to each test

through an id number which uniquely indicates the parame-

ters set that we employ for the test itself. All the described

features reflect the ones it Table 5.1 and they can be used

to operate comparisons between different settings for each al-

gorithm, or evaluations between tunings of the two different

algorithms. 100

xiii

Chapter 1

Introduction

“Tutti abbiamo dei limiti, ma non tutti siamo limitati.”

Angela Gambirasio

Urban mobility is recently one of the most discussed thematic in the in-

ternational debate, which mainly focuses its attention on environmental

sustainability of movements and social sustainability as key aspects in the

improvement an reorganization of urban life and of the cities themselves.

Public areas’ accessibility represents a benefit for all the inhabitants con-

sidering that the movement around the urban space must be easy, safe and

pleasant for all the citizens. In particular, some extra care should be taken

considering the difficulties of people with mobility impairments, considering

dedicated solutions to solve the problem of this specific class of users.

According to World Healt Organization statistics, about 15% of the world’s

population, which represents over a billion people, presents some form of

physical disability or mobility impairment, which may be congenital or as a

result of injury, where aging disease is the most common reason.

Traveling through cities for such users, is one of the concerns which

people with mobility impairments deal with. In particular physical barriers

cause uneven access to public services or public areas, reducing the impaired

people’s everyday-life quality of mobility.

In daily life wheelchair users face off with a huge amount of obstacles along

their routes represented by poles, steps, poor surfaces or, lack of ramp on

the footpaths, inappropriate urban design and inaccessible transportation

services. These are the basic issues that they are dealing with, and may

sometimes represent a serious problem, forcing them to dangerous situa-

tions or leading them to consider longer alternative routes to reach their

favorite/preferred destination.

As a consequence of the presence of this physical barrier dislocated

around cities there is the frustrating situation in which an entire class of

users could not freely participate in what is considered “normal” in every-

day society on their own. People who are not affected by any kind of mobility

impairment are usually unaware of the impact of this kind of obstacle, which

characterizes the daily moving of the impaired users instead.

Regardless of the need for further enhancements in city routes accessi-

bility conditions and facilities, the huge worldwide smartphone and tablet

spread affecting nowadays world offers the possibility to turn mobile de-

vices into an enormous sensing platform, enabling large-scale analysis of the

human behavior in all the aspects of life. Mobile device technology really

introduces the possibility to improve the people’s experience of the modern

cities daily life by offering services which can be specialized on the different

user’s needs.

Many projects developed in different mobile applications, e.g., Comu-

niPerTutti, Mapability and Rota Accessible offer the possibility to display

the Point of Interests (POIs) like restaurants, museums, etc. They present

locations with a good accessibility level around a specific city, but they lack

the accessibility as information of the path that the user has to take to reach

the desired destination, resulting in an incomplete information.

Popular modern navigation systems on the market, such as TomTom,

Garmin or Google Maps Navigation do not consider information about the

accessibility of the routes for people affected by mobility impairments. This

lack of information about the accessibility level of the routes represents the

starting point for a project called MEP(Map for Easy Paths) which will be

described into the following paragraph.

1.1 Thesis Contribution within the MEP-Project

Despite the recent attitude toward making modern urban cities accessible,

many barriers and obstacles still represent a serious issue for impaired peo-

ple’s mobility in every day life. The effort of keeping updated maps of both

accessible paths and obstacles, in order to support people with limited mo-

bility in their daily movement, would represents a too high expense for the

majority of local administrations. For this reason the notification of such

elements is usually left to volunteers and no-profit associations. The com-

munity objective should be to reach noticeable results by involving directly

the interested users in the mapping process keeping its costs low while of-

fering a constantly updated map of the location of the barriers, obstacles,

2

Figure 1.1: The MEP project scenario.

and accessible points within the city area, renewing the attention and the

effort toward this extremely sensitive and social argument.

The challenge of how to improve the life’s quality of people affected

by mobility impairments using common mobile-device, has been caught by

the Maps for Easy Paths polisocial project, a program of social effort and

responsibility of Politecnico di Milano whose main target is the development

of a set of automated tools and innovative solutions to enrich the geographic

map with information about the accessibility of the urban pedestrian areas.

The MEP project represents an attempt to build accessibility maps (i.e.,

maps with accessible routes and city areas) fusing, in an automatic fash-

ion, data implicitly collected through mobile devices (e.g., smartphone and

dedicated electronic systems) which are able to automatically detect the

location (through the Global Positioning System, i.e., the GPS) and when

possible the characteristics of the ground condition (e.g., the presence of

steps, holes, etc.). All the interested citizens can participate and give their

own contribution to the project in order produce a more fair society.

The MEP scenario is well described by the representation in Figure 1.1.

Two type of data were discovered to be fundamental for the project’s purpose

i.e., “implicit” and “explicit” data. “Implicit data” refers to automatically

collected data, specifically to those caught without the need for the user to

be aware off. “Explicit data” refers to those information which the users ex-

plicitly decide to make available to the MEP community, recording problems

3

Figure 1.2: Heat maps results examples.

encountered on his/her path.

The MEP project aims to promote a solution of the problems reported by

the users through the direct involvement of public entities and associations,

which may be interested in the process by sponsoring the removal of physical

barriers.

The knowledge about this problems produces a better understanding of

the obstacles distribution which impaired users encounter in every day life

focusing the attention on people with impairments in order to produce a

more fair society.

Information’s relevance goes together with human readability. A carto-

graphic representation of areas through accessibility heat maps offers the

possibility to easy locate places characterized by high level of accessibility.

Nonetheless visual inspection of a cartographic heat map leaves also the

possibility for further definition of accessibility indexes, which may arise as

considerations about the colored areas’ distribution around cities. Some ex-

amples of this powerful data visualization tools appear in Figures 1.2, and

4

well describe the thesis final contribution within the MEP project.

1.2 Structure of the Thesis

The thesis is structured in the following way:

• Chapter two offers a more specific definition of the MEP project data

collection and a particular method for the processing of the data is

theoretically defined.

• Chapter three and four presents the development of a new processing

method for the solution of the problem.

• Chapter five presents the application of the developed method upon

the MEP data collection, the results which have been obtained and

the problem encountered during the development of the solution.

• Finally Chapter six presents the results and the considerations about

the processing of the solution, and possible future development with

the enhancement of this method.

5

6

Chapter 2

State of the Art

“Un piccolo passo per l’uomo, un miracolo per la disabilità.”

Angela Gambirasio

The ease which characterizes humans’ behavior in recognizing everything

surrounds them all, belies the extremely complex processes that underlie

the acts of pattern recognition. Pattern recognition, i.e., the act of taking in

raw data and taking an action based on the “category” of the pattern, has

been crucial for humans’ survival from the moment we appear on the earth

[8]. Sophisticated neural and cognitive systems has been extensively stud-

ied within the fields of neurosciences, neurophysiology and neuropsychology

among others.

The successful application of cognitive reasoning to computer science

field, lead to the build of machines able to recognize patterns in an au-

tonomous and flexible fashion.

In particular, statistical learning refers to a set of tools for modeling and

understanding complex datasets, usually encountered in the computer sci-

ence field. It arises as a recently developed area in statistics blends with par-

allel developments in computer science and, in particular, Machine Learning.

Recent explosion of “Big Data” problems lead the Machine Learning

field to be one of the hottest in many scientific areas as well as marketing,

finance and other business disciplines [18].

2.1 About statistical learning

The main goal of statistical learning is the development of an accurate model

which can be used to predict the outputs, when the inputs are given. The

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

10 12 14 16 18 20 22

2
0

3
0

4
0

5
0

6
0

7
0

8
0

Inputs

O
u
tp
u
ts

O
u
tp
u
ts

Inputs

Figure 2.1: On the left a generic initial data set. On the right the same generic data

set with the curve which generates the data.

symbols X and Y are respectively used to denote the inputs and the outputs.

Suppose to observe a quantitative response Y and p different predictors,

respectively X1, X2, · · · , Xp, we can assume the existence of a relationship

between Y and the p predictors X = (X1, X2, · · · , Xp) and in particular we

could write its general form as:

Y = f (X) + ε (2.1)

where f represents some fixed, even still unknown, function ofX1, X2, · · · , Xp

and the parameter ε expresses a random error term, assumed independent

from X, with 0 mean. The function f expresses the systematic information

that X provides about Y , providing a connection between the input vari-

able to the output one. Figure 2.1 gives a representation of the previous

analytic expression. Left hand panel displays a generic relation connecting

inputs and outputs variables. The true f which generates the data shows in

the right hand panel of Figure 2.1, in particular deviation between the real

data and the true f(the black vertical lines) allows to figure out what the

parameter ε stands for.

Machine Learning refers in particular to the set of approaches adopted for

the estimation of the unknown function f . The two main reasons demanding

the function f are: prediction and inference.

• Prediction refers to those situations in which a set of inputs X is

available, but the output Y cannot be easily obtained. In those cases,

thanks to the error term averaging to zero, the output estimate Ŷ can

be obtained as:

Ŷ = f̂ (X) (2.2)

8

Z

X

Z

Figure 2.2: Generic multi-variable fitting example.

where f̂ describes the unknown function f ’s estimate. In particular

the accuracy of Ŷ , in predicting Y , depends on two relevant quantities

denoted as reducible an irreducible error(discussed in details in Section

2.1.1).

• Inference refers to situations in which the estimate of the function

f represents the relevant information itself. In such cases the tar-

get knowledge is embedded into the relation linking the predictors

X1, X2, · · · , Xp change to the output Y .

Several reasons may guide through the choice between inference and pre-

diction. Often only a small fraction of the predictors are effectively related

with Y . For this reason the subset’s identification of relevant predictors may

produce an improvement. Moreover, some predictors may have a positive

relationship with the Y , i.e., an increase of the associated predictor results

into an increase of the output value Y , but other predictors may depict the

opposite relationship.

Even though most of the relationships are more complicated with respect

to linear one, this basic and simple relation has been widely considered in

order to describe the input-output relationship. Clarity and interpretability

regarding inference comes out adopting linear models to explain the input-

output relationship at the cost of poor prediction results. Elementary models

in fact, neglect the incredible real-world complexity embedded into the data.

At the same time, even though highly complex models provide accurate

9

results regarding prediction, they come at the expense of lower interpretabil-

ity, which negatively affects the inference process.

The estimation of the function f might also involve multiple variables

assuming geometrical form closer to the thin plate represented in Figure 2.2

with respect to the line previously represented in Figure 2.1.

2.1.1 Reducible and Irreducible Errors

Considering the expression of f outlined in Function 2.2, the amount of error

which can be encountered when fitting a data set, may be of two types, i.e.,

reducible or irreducible.

The inaccuracy introduced by estimating f through f̂ results in an error

afflicting the estimate. This error can be addressed as “reducible” in the

sense that it can be potentially removed by adopting the proper learning

technique to estimate the unknown function f .

Even if it were possible to obtain the perfect estimate of f , so that

Ŷ = f(X), the prediction would still produce an approximation of the true

f . This uncertainty, denoted with ε, represents the variability which affects

the accuracy of the prediction. Unlike the previous error, this one cannot

be reduced and so denoted as “irreducible”. No matter how accurate the

estimate f̂ of the model is, it will always contain an error which cannot be

avoided. The quantity ε expresses a mixture of unmeasured variables or

unmeasurable variations.

The analytical explanation takes into account an estimate f̂ , a set of

predictors X, where the input-output relation takes the form Ŷ = f̂ (X).

Fixing both f̂ and X, then

E(Y − Ŷ)2 = [f(X)− f̂(X)]2 + V ar (ε) ; (2.3)

E(Y − Ŷ)2 represents the expected value of the squared difference between

the predicted and actual value of Y , and V ar (ε) represents the variance

associated with the error term ε.

In particular, terms encountered in Equation 2.3 outline two fundamental

quantities: bias and variance respectively.

2.2 Estimation of f

Estimation of the function f requires a collection of n different observed

points, denoted through the term observations. Observations compose the

training data set and they will be used to train or “teach” the method, with

the objective of estimate f .

10

Let xij represents the value of the j-th predictor for observation i, where

i = 1, 2, · · · , n and j = 1, 2, · · · , p. Let also yi represents the response

variable for the i-th observation. Then the training data set assumes the

form {(x1, y1), (x2, y2), · · · (xn, yn)} where xi = (xi1, xi2, · · · , xip)T .

A statistical learning method responsibility is the estimation of the un-

known function f using the set of observation, defined then as “training

data set”. The estimate, denoted through f̂ is such that Y ≈ f̂(X) for any

observation (X,Y).

Parametric vs. Non-Parametric

Statistical learning methods can be mainly divided into two classes, i.e.,

parametric and non-parametric.

Parametric methods involve a two-step model based approach. In par-

ticular they leverage on an assumption about the model underlining f , re-

ducing the problem of estimating the unknown function f down to the one

of estimating a set of parameters.

The first step outlines an assumption about the functional shape of the

unknown function f . Assumptions on the linearity of f with respect to X

have the advantage to be simple and easy to understand. Linear model’s

assumption can be represented as:

f(X) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (2.4)

Instead of estimating an entirely and arbitrary p-dimensional function f(X),

one only needs to estimate the p+ 1 coefficients β0, β1, · · · , βp.
The second step consists of training the model using the observations.

As result comes out an estimate of the parameters β0, β1, · · · , βp, such that:

Y ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp (2.5)

Among others, the most common approach adopted to fit the model is the

(ordinary) least squares [4] one.

Model-based approaches can be referred as parametric, in the sense that

they reduce the problem of estimating f down to the one of estimating a

set of parameters. Of course the estimation of a set of parameters only is

simpler with respect to the estimation of an arbitrary function f .

Disadvantage of parametric approaches relies on the fact that usually

the elected model will not match the true unknown form of f . Expressions

too far from the true one will result in a poor estimation and the adoption

of more flexible models solves only partially the problem, because it requires

the estimation of an higher number of parameters. Moreover, too complex

11

models can lead to the phenomenon of “overfitting”, i.e., too close explana-

tion of the intrinsic error lead to a perfect estimation on the training data,

which is unlikely to perform well on novel patterns [18], discussed in Section

2.3.

Non-parametric methods, also referred as “sample-based” or “instance

based” methods, do not make explicit assumptions about the functional

form of f , and they exploit the training data “directly”. They seek an

estimate of f that get as close as possible to the data points, without being

too rough wiggly. Non-parametric approaches have the potential advantage

to accurately estimate a wider range of possible shapes for f , since they do

not rely on any assumption on the form it can assume.

The problem with non-parametric approaches regards to the number of

observations considered before obtaining an accurate estimate of the func-

tion f : it can potentially grow till prohibitive values, thus producing com-

putational issues.

2.2.1 Supervised vs. Unsupervised Learning

Most statistical learning problems fall into one of two of the following cate-

gories: “supervised” or “unsupervised” [18].

The main purpose of supervised learning consists in fitting a model re-

lating the response to the predictors. A teacher drives this method by pro-

viding a category label or cost for each pattern within the training, trying

to minimize the sum of the costs for the patterns. Many statistical learning

methods such as linear regression, logistic regression and support vector ma-

chines, operate under the supervised learning domain. Supervised learning

problems can be further divided into Regression and Classification problems,

which will be further described in Section 2.2.2.

As opposite to supervised, unsupervised learning describes the situation

in which for every observation vector of measurements there is no associated

response. For this reason would be impossible fitting a linear regression

model, due to the lack of response variable to predict. In unsupervised

learning there is no more an explicit teacher and the system forms clusters

or “natural grouping” of the input patterns. “Natural” is defined explicitly

or implicitly in the clustering system itself, and each set of patterns or cost

function definitions lead to different clustering results. One fundamental

statistical learning tool which goes under the unsupervised learning domain

is the cluster analysis, or clustering, whose main goal is the ascertain of

whether the observations fall into relatively distinct groups. Cluster analysis

will be described in detail in Section 2.4.

12

2.2.2 Regression vs. Classification Problems

Variables denoting inputs and outputs can be characterized as either “quan-

titative” or “qualitative”(also denoted as “categorical”) [18].

Quantitative variables take on numerical values. Example of those vari-

ables are height, weight, response time, temperature, etc. Qualitative vari-

ables instead, take on values in one of K different classes, or categories,

and they can be distinguished from quantitative ones because no ordering

or measuring holds between them, i.e., color, religion, city of birth, etc.

Problems with a quantitative response are typically denoted as “Regres-

sion” problems, while those involving a qualitative response as “Classifica-

tion” problems. The choice of the statistical learning method must take care

of whether the response is quantitative or qualitative.

2.3 Model Accuracy

The selection of the best approach on a given data set is one of the most

challenging task when performing statistical learning in the real world. This

is due to the fact that no statistical learning approach dominates all other

methods over all possible data sets.

In the regression setting, evaluation of the performance of a statistical

learning method on a given data set, expresses the extent to which the

predicted response value for a given observation is close to the true one. The

performances of a statistical learning approach can be evaluated through the

“mean squared error(MSE)”

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.6)

where ŷi is the prediction obtained through f̂(xi) for the i-th observation.

Training is designed to make the MSE small on the training data. Looking

at Equation 2.6, MSE will displays small values if the predicted response

is close to the true one, while it will be large if the true responses differ

substantially from the predicted one, for some of the observations.

Training MSE does not represent the absolute quality information of the

model. What really does instead, is the “test MSE”, obtained applying the

learning approach on novel data. Moreover, results obtained on the training

set in fact, are already available and do not represent whichever interesting

information.

Given a set of training observations {(x1, y1), (x2, y2), · · · , (xn, yn)}, sup-

pose to fit a statistical learning method on them: the computation of the

13

0 20 40 60 80 100

2
4

6
8

1
0

1
2

X

Y

2 5 10 20

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

Flexibility

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

Figure 2.3: On the left panel the data simulated from f are shown in black. Three

estimates of f are presented: the linear regression line(orange), and two smoothing

spline fits(blue and green). On the right the training MSE(gray curve), test MSE(red

curve), and minimum test MSE over all methods(dashed line) can be observed. Squares

represent the training and test MSEs for the three fits shown in the left hand panel.

estimate over all the observations produces f̂(x1), f̂(x2), · · · , f̂(xn) and if

these are approximately equal to y1, y2, · · · , yn, then the training MSE will

be small. Knowing whether f̂(xi) ≈ yi does not give a sufficient information

about the quality of the elected model. Whether f̂(x0) is approximately

equal to y0, where (x0, y0) is a previously unseen test observation not used

to train the statistical learning method, offers the possibility to get more

interesting results. The method offering the lowest test MSE, as opposed to

the lowest training MSE, represents the criterion for the choice of the best

model.

Considering a large number of test observations, we would be able to

compute

Ave(y0 − f̂(x0))
2. (2.7)

Equation 2.7 represents the average squared prediction error for test obser-

vations (x0, y0). By adopting the method with the lowest training set MSE

there would be no certainty for the test set MSE to be the lowest possible

too. Nevertheless many statistical methods specifically estimates coefficients

so as to minimize the training set MSE, producing large errors in the test

MSE.

A non-linear function f(the black curve) generats the observations dis-

played in the left hand panel of Figure 2.3. Methods with increasing flexi-

bility produces the orange, blue and green curves when trying to estimate

the undelying model. In particular the orange line is the inflexible linear re-

14

gression fit, while the blue and green curves were produced using smoothing

splines with different level of smoothness. Growing levels of flexibility, make

the curves fit the obsersevations closer. The green curve matching data very

with high flexibility, but it ends up fitting poorly the true f because of it’s

sinuosity. Adjusting the level of flexibility of the smoothing spline, many

different fits can be obtained.

Moving on the right hand panel of Figure 2.3, the gray curve displays

the average training MSE as a function of flexibility in terms of degrees

of freedom, for a number os smoothing splines. The degrees of freedom

summarize the flexibility of a curve: more restricted and hence smoother

curve has fewer degrees of freedom than a wiggly curve. The training MSE

declines monotonically as flexibility increases. The true f is non-linear, so

the orange linear fit is not flexible enough to estimate f well. The green

curve instead, has the lowest training MSE and corresponds to the most

flexible of the tree curves fit.

The red curve in the right-hand panel of Figure 2.3 represents the test

MSE. As with the training MSE, the test MSE initially declines as the level

of flexibility increases, but at some point it levels off and then starts to

increase again. The orange and green curves, both have high test MSE,

while the blue curve minimizes the test MSE. The horizontal dashed line

indicates V ar(ε), i.e., the irreducible error expressed in Equation 2.3, which

corresponds to the lowest achievable test MSE among all possible methods.

Hence, the smoothing spline(blue curve)is close to optimal.

As the flexibility of the statistical learning method increases, a monotone

decrease in the training MSE appears as well as a U-shape like curve for the

test MSE. This represents a fundamental property of statistical learning

that holds regardless of the particular data set or the statistical method

being used. The increase of model’s flexibility produces a lower training

MSE which may not correspond to a lower test MSE. Overfitting describes

the situation in which a given method yields a small training MSE and, at

the same time, a large test MSE. This means that the statistical learning

procedure is working too hard while trying to discovery patterns into the

training data, and may be picking up some patterns caused only by random

change rather than by the true properties of the unknown function f .

Overfitting the training data, results in large test MSE. In fact, the pat-

terns supposed to be present also into the test data, simply does not exist

there producing then large errors. Irrespective of overfitting occurrence,

the training MSE will always be lower with respect to the test MSE, be-

cause most statistical learning methods either directly or indirectly seek to

minimize the training MSE.

15

2.3.1 The Bias-Variance Trade-Off

The U-shaped curve described in Section 2.3 underlies the competition be-

tween two forces that govern the choice of any statistical learning method:

• Bias refers to the error introduced by modeling a real life problem by

a much simpler problem. The more flexible/complex a method is, the

less bias it will have.

The error related to the bias is taken as the difference between the

expected (or average) prediction of the model and the correct value

to be predicted. Imagine to repeat the whole model building process

more than once: each time new data becomes available, a new analysis

can take place producing a new model. Due to the randomness in

the underlying data sets, the resulting models will have a range of

predictions. At the end the Bias will measures how far off in general

these models’ predictions are from the correct value.

• Variance refers to how much the estimate for f would change by

adopting a different training data set. In general, it can be observed

that the more flexible a method is, the more variance it will have.

The error corresponding to the variance is taken as the variability of

a model prediction for a given data point. Repeating the entire model

building process multiple times, the variance measures how much the

predictors for a given point vary between different realizations of the

model.

The bulls-eye diagram in Figure 2.4 offers the bias-variance graphical

representation, presenting a plot of all the possible different combinations

of both high and low bias and variance . Imagine the center of the target

to be a model that perfectly predicts the correct values. Moving away from

the bulls-eye, predictions get worse and worse. Repeating the entire model-

building process getting as result a number of separate hits on the target

representing the individual realization of the model. Results can display

a large variability going from the center, meaning a very good prediction,

to the exterior, indicating the presence of outliers or non standard values

producing then a poorer prediction. These different realizations result in a

scatter of hits on the target.

According to [18] estimating a model f trough f̂ using whichever mod-

eling technique in a given point x0 produce an error denoted as expected

squared prediction error:

E(y0 − f̂(x0))
2 = V ar(f̂(x0)) + [Bias(f̂(x0))]

2 + V ar(ε) (2.8)

16

Low Variance High Variance

Low Bias

High Bias

Figure 2.4: Graphical illustration of bias and variance

The expected test MSE refers to the average test MSE that would be ob-

tained by repeatedly estimating f using a large number of training sets. The

overall expected test MSE can be computed as the average E(y0 − f̂(x0))
2

over all possible values of x0 in the test set. The minimization of the ex-

pected test MSE goes through the selection of the model which simultane-

ously achieves low bias and low variance. Adopting more flexible methods

will make the variance increase and the bias decrease. The relative changes of

the two quantities determines whether the test MSE increases or decreases.

Relationship between bias, variance, and test set MSE defines in Equa-

tion 2.8. Good test set performances of statistical learning methods require

low variance as well as low squared bias. Obtaining optimal performances

from the bias and variance point of view is referred as “trade-off”, since

to extremely low bias may correspond an high variance and vice versa.

The challenge lies in finding a method for which both the variance and

the squared bias are simultaneously low.

Figure 2.5 presents the bias-variance trade-off considering different or-

ders of flexibility of the function f generating the data. On the left hand

panel of Figure 2.5 shows up a generic function f underlying the data. In

general, as discussed throughout this Section, the test MSE displays an

initial decrease, before starting increasing. The increase means that the

method starts to fit the noise which is naturally present into the data. Cen-

17

Figure 2.5: Squared bias(the blue curve), variance(the orange curve), V ar(ε) (the

dashed line) and test MSE(the red curve) for different underlying function f , respec-

tively an general one, an highest linear function and finally an highly non linear function.

ter and right hand panel represent instead an almost-linear and an highly

non-linear function f respectively. In the first case the test MSE starts grow-

ing immediately due to the fact that the function is linear. In the second

case instead, the error starts immediately to grow since the generating model

is linear. Finally in the third, case the high non linearity makes the error

rapidly decrease as the complexity of the model increases, before leveling off

to a stable value and starting increasing again at the end.

2.3.2 The Classification Setting

The estimate of the function f in a classification setting, based on train-

ing observations {(x1, y1), · · · , (xn, yn)}, assume y1, · · · , yn to be qualitative

measurements. Most common approach adopted for the quantification of the

accuracy of the estimate f̂ is the training error rate, i.e., the proportion of

mistakes that were made applying the estimate to the training observations:

1

n

n∑
i=1

I(yi 6= ŷi) (2.9)

where ŷi is the predicted class label for the i-th observation using f̂ . I(yi 6=
ŷi) is an indicator variable, it is equal to 1 if yi 6= ŷi and equal to 0 if yi = ŷi.

If I(yi 6= ŷi) = 0 then the i-th observation was classified correctly by the

classification method adopted, otherwise it was misclassified. Equation 2.9

is referred as “training error rate” since it is computed on data used to train

18

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o
o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o
o

oo

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

X 1

X
2

Figure 2.6: Simulated dataset consisting of 100 observations, distributed into two

groups. The dashed line represents the Bayes decision boundary. The orange back-

ground grid represents the region in which a test observation will be assigned to the

orange class, and the same for the blue background grid area respectively.

the system. By applying the classifier to previously unseen test observations

of the form (x0, y0) we obtain the “test error rate” as:

Ave(I(y0 6= ŷ0)), (2.10)

where ŷ0 is the predicted class label that results from the application of the

classifier to the test observation with predictor x0. Good classifiers are those

achieving low test error rate.

The test error rate expressed in Equation 2.10 is minimized, on average,

by a simple classifier that assigns each observation to the most likely class,

given its predictor values. A test observation with predictor vector x0 is

assigned to the class j for which

Pr(Y = j|X = x0) (2.11)

is largest. The conditional probability is the probability that Y = j, given

the observed predictor vector x0. This classifier is addressed as “Bayes

Classifier”.

In a two-class problem where there are two only possible response val-

ues, lets say class 1 or class 2. The Bayes classifier corresponds to predict

class 1 if Pr(Y = 1|X = x0) > 0.5, and class 2 otherwise. The orange

and blue circles of Figure 2.6 correspond to the training observations that

19

belong to two different classes. For each value of X1 and X2, there is a

different probability of the response for being orange or blue. Computing

the conditional probabilities for each value of X1 and X2, the orange shaded

region reflects the set of points for which Pr(Y = orange|X) is greater than

50%, while the blue shaded region indicates the set of points for which the

probability is below 50%. The dashed line represents the points where the

probability is exactly 50%, also denoted as “Bayes decision boundary”. De-

pending on which side of the Bayes decision boundary an observation fall

in, it will be assigned to the corresponding class. The Bayes classifier is

the one that produces the lowest possible test error rate, called the “Bayes

error rate”. The Bayes classifier will always choose the class for which the

Equation 2.11 is largest and, precisely, the error rate at X = x0 will be

1−maxj Pr(Y = j|X = x0). The overall Bayes error rate is given by:

1− E(1−maxj Pr(Y = j|X)), (2.12)

where the expectation averages the probability over all the possible values.

2.4 Clustering

Clustering can be considered the most important unsupervised learning

problem[5]. In particular it deals with finding an inherent structure in a

collection of unlabeled data. A cluster represents a collection of objects

which are “similar” between each other and are “dissimilar” to the objects

belonging to other clusters. Clustering devise a set of tools intended for the

setting in which only a set of features measured on n observations becomes

available.

Two type of clustering can be distinguished:

• distance-based clustering adopts as similarity criterion the distance

between pair of objects (i.e., two or more objects belong to the same

cluster if they are “close” according to a given distance);

• conceptual clustering, in which two or more objects belong to the same

cluster if this one defines a concept common to all the objects (i.e. the

objects are grouped according to their fit to descriptive concepts and

not according to simple similarity measures).

The goal of clustering is to extract the intrinsic grouping in a set of unlabeled

data. The main requirements that a clustering algorithm should satisfy are

• scalability : the ability to handle a growing amount of work;

20

(a) Spectral clustering result

for two-circle data set.

(b) Spectral clustering result

for three-spiral data set.

(c) Path-based spectral clus-

tering for three-spiral data

set.

Figure 2.7: Generic examples of spectral clustering and path-based clustering.

• capability : discover clusters with arbitrary shape even when noise and

outliers are present into the data set;

• interpretability and usability of the results.

Whichever clustering algorithm needs to be robust enough to cope with

imperfect data and to extract new knowledge from the available dataset.

Some important issues can be identified when dealing with a large num-

ber of dimensions and large number of data items: the effectiveness of the

method strictly depends on the definition of “distance” adopted.

According to [17] cluster analysis has received, during the past few years,

an increasing attention in machine learning and statistics fields. Although

many traditional clustering algorithms have been developed in literature,

there are two methods that produce particularly interesting results on some

challenging data sets, represented by elongated in addition to compact clus-

ters. This two relevant methods are “spectral clustering” [25, 33] and “path

based clustering” algorithm [26, 6, 9].

Despite the theoretical performances of this two clustering algorithm’s

family on some challenging data set, there exist situations in which their

behavior is heavily affected by the presence of noise and outliers. On the

two-circle dataset in Figure 2.7(a), spectral clustering offers very interesting

results but reveal to be inadequate for the three-spiral data set of figure

2.7(b). The poor results obtained on the three-circle data set of Figure

2.7(b) can be mitigated adopting an in between approach, i.e., path-based

spectral clustering, whose relevant results can be found in Figure 2.7(c) and

whose description is left for Section 2.4.3.

21

2.4.1 Spectral Clustering

Success of spectral clustering [36] resides on the lack of the a priori assump-

tions about the shape of the considered clusters. As opposed to traditional

cluster algorithms as K-means, where resulting cluster are always convex

sets, spectral clustering can operate over very general problems such as in-

terwined spirals or nested clusters. Moreover, spectral clustering can be im-

plemented efficiently for large data sets, as long as they are based on sparse

similarity graph, reducing the memory and computational effort. Once the

similarity graph is chosen, the solution can be obtained solving a linear

problem, without issue of getting stuck in local minima or restarting the

algorithm for several times with different initializations. The choice of the

proper similarity graph represents the non trivial point and its wrong choice

may also lead to instability. Spectral clustering should not be confused for

a “ black box” algorithm automatically detecting the correct clusters, but it

can be considered a powerful tool producing good results even when complex

cases are encountered.

Many traditional clustering methods adopt a spherical or elliptical met-

ric to group data points [14], hence they wont be able to work optimally with

non-convex clusters. Spectral clustering is a generalization of standard clus-

tering methods designed to work on data sets containing non-convex shapes.

Concentric circles data sets, such as the one in Figure 2.7(a), highlight the

weakness of traditional cluster algorithms such as K-means. The globular

assumption on which they strictly rely does not allow the search for nested

or overlapping clusters.

An undirected “similarity graph”, denoted through G = 〈V,E〉, rep-

resents the observations and pair of connected vertexes, starting from an

N × N matrix of pairwise similarities sii′ ≥ 0 weighted by sii′ . Once the

undirected similarity graph has been defined, the clustering problem can be

rephrased as a graph-partition problem, where each connected component

can be identified with a cluster.

In an undirected similarity graph weights between edges of different

group are low, while ones between edges within the same group high is

finally obtained. Spectral clustering algorithms requires the construction of

a similarity graph for the representation of the local neighborhood relation-

ship between observations. The similarity matrix and the similarity graph

reflecting the local behavior can be obtained in several ways.

With “adjacency matrix” we refer to the edge weights matrix W = {wii′}
obtained from a similarity graph. The degree of vertex i, i.e., gi =

∑
i′ wii′ ,

collects the sum of the weights of the edges connected to it. Let G be a

22

diagonal matrix with the diagonal elements gi.

The unnormalized graph Laplacian can be defined as:

L = G−W. (2.13)

Spectral clustering finds the m eigenvectors ZN×m corresponding to the

m smallest eigenvalues of L. Using a standard method the rows of Z can be

grouped yielding a clustering of the original data points.

For any vector f we have:

fTLf =
1

2

N∑
i=1

N∑
i′=1

wii′(fi − fi′)2. (2.14)

Equation 2.14 suggests that a small value of fTLf can be achieved if pairs

of points with large adjacencies have coordinates fi and f ′i close together.

Since 1TL1 = 0 for any graph, the constant vector is a trivial eigenvector

with eigenvalue zero. Less obvious is the fact that if the graph is connected,

it is only the zero eigenvector. For a graph with m connected components,

the nodes can be reordered so that L is block diagonal with a block for each

connected component. Then L has m eigenvectors of eigenvalue zero, and

the eigenspace of eigenvalue zero is spanned by the indicator vectors of the

connected components. In other words, it has strong and weak connections,

so zero eigenvalue are approximated by small eigenvalues.

Spectral clustering is an interesting approach for finding non-convex clus-

ters, but there are a number of issue that one must deal with in applying

spectral clustering in practice. The first one is the choose of the type of sim-

ilarity graph to be used and the associated parameters. Another element to

choose is the number of eigenvectors to extract from L and finally, as with

all the clustering methods, the number of clusters.

2.4.2 Pairwise & Path-Based Clustering

Despite spectral methods’ success over a wide range of data collections,

some problems still persist demanding for a different dissertation. Perhaps

the most important problem is the lack of a straightforward probabilistic in-

terpretation, which makes difficult the automatic parameters’ tuning using

the available training data. On the other hand significant progress in clus-

tering has been achieved by algorithms based on pairwise affinities, which

somehow relate data points [32].

A class of data collection, such as the one in Figure 2.8(a), which cannot

be easily described through parametric models, can be successfully clustered

23

(a) Generic data set presenting pairwise

affinities between data points.

(b) Pairwise clustering results for the

generic presented data set.

Figure 2.8: Generic examples of pairwise clustering on a generic data set.

using pairwise clustering methods. These algorithms start by building a

graph where:

• vertexes corresponds to data points.

• Edges corresponds to connections existing between nearby points, char-

acterized by a weight that decreases with distance.

Adopting this kind of structure a clustering operation is equivalent to a

graph partitioning.

The partitioning of a set of objects into groups aspires to the extraction

of the hidden structure of the data collection relying on pairwise comparisons

between different objects. In particular the pairwise comparisons are based

on proximity or (dis)similarity information, which can be estimated even if

objects are not elements of a metric space.

Pairwise clustering starts by grouping adopting a configuration of exactly

one object per cluster and then successively merges the two most similar

clusters. While general agglomerative clustering methods adopt algorithmic

considerations rather than an optimization principle, a systematic approach

is preferred in pairwise clustering. The objective function is based on an

axiomatization of invariance properties and robustness for data grouping.

By replacing the pairwise object comparisons with a path-based dis-

similarity measure, the cluster connectedness is emphasized. The effective

dissimilarity between objects is defined as the largest edge cost on the min-

imal intra cluster path connecting both objects into the feature space. Two

objects assigned to the same cluster are either similar or there exists a set

24

of mediating objects such that two consecutive objects in the chain, are

similar[10].

The final goal of path-based clustering algorithms is the extraction of

elongated structures from data collections. This information can be obtained

adopting a cost function considered as a generalization of graph-based clus-

tering cost function. The cost function can be seen as a measure evaluating

improvements produced over each step of the process. Despite agglomerative

optimization is very fast, it can be influenced by fluctuations present within

data. In order to reduce noise sensitivity the approach presented in [9] pro-

poses a data resampling technique, employed to measure the instability of

the resulting grouping.

The reliability measure aims to define a statistical criterion in order to

determine the number of cluster. In fact, the number of clusters is rarely

known a priori and has to be chosen as the value providing the highest

stability.

While in most data analysis application distances are measured by Eu-

clidean distances(or more general `p − norms), this method assumes a gen-

eral situation describing objects with their pairwise dissimilarities, which

may also violate the triangular inequality. The representation of the objects

space is not explicit and the dissimilarity representation of all the existing

object is a priori defined.

A clustering instance combines a set of objects O = {o1, · · · , øn} and the

respective mutual dissimilarities D, building an undirected graph through

a vertex set O and edge set {Di,j : oi.oj ∈ O}. Dissimilarities relies on a

symmetric assumption and a clustering solution c : O → {1, · · · , k}, maps

each object to one of the k labels.

The quality of an “object-cluster” assignment relates to a cost function

H : C → R+, projecting the space of clustering solutions C to the non-

negative reals.

According to pairwise clustering, two objects oi, oj should be assigned

to the same cluster if their pairwise similarity is high, or, in other words,

their dissimilarity is small.

Considering paths Pi,j(c) connecting two object oi to oj , the dissimilarity

corresponding to a particular path p ∈ C can be defined as the maximal

dissimilarity encountered on that path. The effective dissimilarity Deff
ij can

be computed as the minimum overall path distances:

Deff
ij = minp∈Pij(c){max1≤i≤|p|−1Dp[i]p[i+1]} (2.15)

Deff
i,j provides the discriminative information to decide if two objects are

jointly assigned to the same cluster.

25

(a) First subsample. (b) Second subsample.

Figure 2.9: Two subsamples from the same input data set. Agglomerative algorithms

sometimes fail to extract the correct underlying structure of the clusters, due to noise

link between objects.

The cost for each cluster ν represents the mean effective dissimilarity of

cluster ν scaled by the number of objects |Oν |:

Hpbc(c;D) =
∑

νin{1,··· ,k}

|Oν(c)|Deff
ν (c;D) (2.16)

where the mean effective dissimilarity averages all the pairwise effective dis-

similarities

Deff
ν (c;D) =

1

|Oν(c)|2
∑
oi∈Oν

∑
oj∈Oν

Deff
ij (c;D) (2.17)

Cost function in Equation 2.17 is invariant with regard to additive shift and

dissimilarities’ scaling. The best clustering solution is then obtained as the

one which groups regions of high probability within the same cluster.

Two problems subsist with agglomerative optimization:

1. It is not guaranteed that the global minimum of the path-based clus-

tering energy function is found.

2. Clustering results for two data sets drawn from the same data distri-

bution should be comparable.

A suitable solution can be obtained by adopting “bootstrap aggregation”

or “bagging”. Bagging is a general-purpose procedure for reducing the vari-

ance of a statistical learning methods. The desired advantage of procedures

with low variance is that they will yield similar results if they are applied

repeatedly to distinct data sets.

Given a set of n independent observations Z1, · · · , Zn, each with variance

σ2, the variance of the mean Z of the observations is given by σ2/n. This

26

means that averaging a set of observations reduces variance. Hence it is

possible to reduce the variance and, at the same time, increase the prediction

accuracy by taking many training sets from the population, build a separate

prediction model and finally average the resulting predictions. Compute

f̂1(x), f̂2(x), · · · , f̂B(x) using B separate training sets, and average them in

order to obtain a single low-variance statistical learning model:

f̂avg(x) =
1

B

B∑
b=1

f̂ b(x). (2.18)

The B different sets are drawn by sampling n objects with replacement

from the empirical probability distribution defined by the input collection.

Because some objects might occur more than one times, the B sets of objects

containing the sampled elements, can be considered as a bootstrap replica-

tions, denoted as Ob for (1 ≤ b ≤ B). The computation of the mapping

function cb for each of the B replications relies on agglomerative optimiza-

tion.

The probability of a cluster assignment, considering that the costs of a

mapping is invariant with respect to the permutation of the cluster labels,

can be obtained combining the B mapping solutions:

f̂bag(x) =
1

B

∑
b=1

Bf̂∗b(x). (2.19)

Averaging with bagging has the effect of reducing the variance giving

impressive improvements in accuracy, combining together hundreds or even

thousands of “data-replications” into a single procedure.

This bagging-based method[9] reside on the Minimum Spanning Tree

clustering algorithm[27], an elementary method to find elongated(connected)

structures into the data and to detect clusters with irregular boundaries.

This ability comes from the fact that it does not rely on the spherical shaped

clustering assumption, adopted in many traditional clustering algorithms.

According to [16] the minimum spanning tree is denoted as a subset of

edges of a connected, edge-weighted undirected graph connecting all vertexes

together, without cycles and with the minimum possible total edge weight.

Minimum Spanning Tree algorithm starts by considering n different clus-

ters, each containing exactly one object, and proceeds fusing objects into

bigger groups adopting an agglomerative optimization.

The relative low cost of building a minimum spanning tree represents a

huge plus for this algorithm. It can be approximately around O(m · log(n)),

where m is the number of edges and n is the number of vertexes in the graph.

27

On the other hands, an high sensitivity to outliers, i.e., a single object

far away from all the other, represents a relevant drawback. If the input

collection contains noisy data, then the probability to encounter outliers

may represent a serious issue.

An Euclidean Minimum Spanning Tree is a spanning of a set of n points

in a metric space (En), where the length of an edge is the Euclidean distance

between a pair of points in the point set.

A Minimum Spanning Tree based clustering algorithm adopting Eu-

clidean Minimum Spanning Tree (EMST) of a graph [27] produces the struc-

ture of point clusters in the n-dimensional Euclidean space. A measure of

optimality, such as minimum intra-cluster distance or maximum inter-cluster

distance, develops the required ability to perform cluster detection. Accord-

ing to this optimality measure, two possible different ways to produce a

group of clusters arises:

• Given the number of clusters in advance, the algorithm sorts the edges

in descending order of weights and then remove the edges with the

heaviest weights till reaching the desired number of clusters. This is

denoted as standard EMST(SEMST) algorithm which first builds the

EMST of a data set and then removes the inconsistent edges that sat-

isfy the inconsistency measure. The process repeats until the number

of clusters reach the desired one, creating a hierarchy of clusters.

• If the clusters’ number is a priori unknown, the algorithm proceeds

deleting edges which do not satisfy a predefined inconsistency measure

from the tree. This is denoted as ZEMST because the method employs

the Zahn inconsistency measure. Groups of clusters arise partitioning

the input collection, maximizing the overall standard deviation reduc-

tion. Finally the clusters’ number can be determined by finding the

local maximum of the standard deviation reduction function.

The intuitive idea behind path based dissimilarity[26] expresses the sit-

uations in which even if two objects are very far from each other in space,

but there exists a link connecting them through a path composed by points

which can be considered close each other, then their distance should be

adjusted to a smaller value, in order to reflect the existing connection.

When a points interconnection rises up, the membership to the same

cluster can be evaluated. Denoting Pij as the set of all possible paths con-

necting the graph pair points xi − xj , their effective dissimilarity charac-

terizing each path p ∈ Pij can be obtained as the maximum of all edge

weights in the path p. The path-based distance d′ij between xi and xj , de-

28

(a) Input data. (b) Original distance matrix. (c) Transformed distance

matrix.

Figure 2.10: Distance matrices of three-circles dataset.

noted as pbdis(xi, xj), can be computed as the minimum among effective

dissimilarities of all paths in Pij :

d′ij = pbdis(xi, xj) = minp∈Pij{max1≤h≤|p|(dis(p[h], p[h+ 1]))} (2.20)

where p[h] denotes the object at the hth position in the path p and |p| denotes

the length of path p.

The only definition of path-based distance doesn’t offer the total solu-

tion for the purpose of path-based clustering. A multi-dimensional scaling

(MDS) technique could be adopted for the visual exploration of data based

on dissimilarity information, improving results of the clustering process.

Multi-dimensional scaling technique produces a new data representation

trying to preserve original distances with a better representation of the data

collection. Multi-dimensional scaling analytical solution for the problem

employs the well known linear algebra operation of eigendecomposition[11].

Eigendecomposition operates a factorization of a given matrix into a canon-

ical form, representing it through eigenvalues and eigenvectors: eigenvalues’

magnitude will indicate the relative contribution of the resulting coordinate

matrix’s column with respect to the original distance matrix. A shrinkage

of the dimensions’ number results considering only those eigenvalues with a

small loss of information.

This transformation carries the advantage that even classical and wide

spread clustering algorithm such as K-means [1] will produce interesting re-

sults. Another advantage resides in the single transformation operated on

the whole data set at the beginning without further operations for the pro-

cedure to work. The clusters’ number definition instead, represents the main

drawback of this method. Clusters’ number parameter is rarely available in

advance and limits the scenarios in which this algorithm can be applied.

29

Figure 2.11: Final clustering results using K-means after the application of multi-

dimensional scaling

Figure 2.10 visually presents results of the application of this methods

on a commonly used three circle data set. Figure 2.10(a) shows the original

collection in a two-dimensional space while its distance matrices before and

after the multi-dimensional scaling appear respectively in Figures 2.10(b)

and 2.10(c). The difference between Figures 2.10(b) and 2.10(c) clearly

displays how the application of the path-based dissimilarity transformation

enhanced the cluster structures on the distance matrix. After the application

of the transformation even a classical algorithms, such as K-means, can easily

detect and identify the three circles as shown in Figure 2.11.

2.4.3 In between Spectral Clustering and Path-Based Clus-

tering

Robust path based spectral clustering approach proposed in [6], develops

a solution in between spectral clustering and path-based clustering. This

approach is strictly based on the concept of M-estimation [15] statistics, in

order to enhance the poor results obtained by the separate application of

the two approaches.

Recalling the definition of path-based distance expressed in Equation

2.20, the dissimilarity between two points xi and xj should take on small

values when they belong to the same cluster, and viceversa high values when

they do not.

Problems arise in presence of outliers because in that cases the dissimi-

larity between points residing in different cluster may become smaller than it

should be. This means that the path-based dissimilarity measure is sensitive

to noise and outliers.

To address the robustness problem [6] propose to adopt a weighted path-

based similarity measure, used in combination with spectral clustering to

obtain a robust path-based spectral clustering method.

30

A fully connected graph with n vertexes corresponding to the n points

X = {x1, x2, · · · , xn} represents the initial data collection.

To each edge (i, j) that connects two points in the graph corresponds a

weight s′i,j reflecting the original similarity between the two vertexes xi and

xj :

s′ij =

exp
(
− ||xi−xj ||

2

2σ2

)
for i 6= j,

0 for i = j
(2.21)

where σ represents a scaling parameter controlling the fall off speed of s′i,j
with respect to the Euclidean distance between xi and xj .

By denoting Pij as the set of all paths p ∈ Pij from vertex i to j

through the graph, the effective similarity spij is the minimum edge’s weight

along the path. Finally the total similarity sij take on the maximum value

of all path-based effective similarities spij ’s for paths p ∈Pij :

sij = maxp∈Pij
{min1≤h≤|p|s′p[h]·p[h+1]}. (2.22)

Into Equation 2.22 p[h] denotes the h-th vertex along the path from vertex

i to vertex j and |p| denotes the number of vertexes that p goes through.

According to the definition the similarity between points that belongs to

different clusters should be small, but the presence of outliers leads similarity

to assume larger values than they should be. This high sensitivity to noise

and outliers can be reduced by adopting an M-estimator.

The squared residual error e2ij of i,j based on the xi-xj distance can be

defined as:

e2ij =
‖xi − xj‖2

|Ni|
(2.23)

where N denotes the neighborhood of xi and |Ni| the number of neighbors

it contains. Using e2ij the total squared residual error of the estimators on

xi can be expressed as
∑

xj∈Ni ‖xi − xj‖
2/|Ni|. Therefore the total squared

error E can be obtained as:

E =
n∑
i=1

∑
xj∈Ni

e2ij =
n∑
i=1

∑
xj∈Ni

‖xi − xj‖2

|Ni|
. (2.24)

While the standard least squared would try to minimize the error in Equa-

tion 2.24, the adoption of a robust estimation technique replaces it with a

robust statistical estimator, minimizing the follwoing expression:

Eρ =

n∑
i=1

∑
xj∈Ni

ρ(eij) (2.25)

31

(a) Original data

before the applica-

tion of noise points.

(b) Spectral clus-

tering results for

the original data

set.

(c) Path-based

spectral clustering

results for the

original data set.

(d) Robust path-

based spectral clus-

tering results for

the original data

set.

Figure 2.12: Clustering results for a noisy 2-circle data set.

where ρ(·) usually grows more slowly than the quadratic function, reduc-

ing the outliers’ influence. Using robust estimation techniques, Eρ can be

minimized by solving an iterative re-weighted least squares problem[13].

At the end of the optimization process the weights w′i for each point xi
can be obtained as:

w′i =
∑
xj∈Ni

aij =
∑
xj∈Ni

exp

(
−‖xi − xj‖

2

2σ2

)
=
∑
xj∈Ni

s′ij , (2.26)

expressed recurring to the original similarity values.

A data point’s weight is large if many points are in its proximity while

it is small when few point are close to it. In order to reduce the effect of the

parameter σ over the w′i’s range, each weight has to be normalized through

wi = w′i/maxxi∈H {w′i} (2.27)

so that all weights finally reside in range (0, 1]. Large values for wi points

out that xi is likely to be inside a compact cluster, while small ones that xi
may be an outlier.

Robust path-based similarity can be finally reformulated as:

sij = maxp∈Pij
{min1≤h≤|pwp[h]wp[h+1]s

′
p[h]p[h+1]}. (2.28)

Equation 2.28 reflects the genuine similarity between xi and xj neglecting

outliers’ presence. This method reflects the simple idea that if there exists

a path connecting xi to xj , going through only points with high weights

values, then the similarity should be large as the total similarity, revealing

the two points’ membership to the same cluster.

32

Although both spectral clustering(2.4.1) and path-based clustering(2.4.2)

can detect the two clusters in the two-circle data set of Figure 2.12(a), they

reveal to be not robust enough against the presence of outliers as in Figure

2.12(b). Figures from 2.12(b) to 2.12(d) compare spectral clustering and

path-based clustering with robust path based spectral clustering[6] when

30 noise points are added. Some of the introduced noise points, located

between the two circles, ends up connecting the two clusters introducing

further problems. Figure 2.12(b) shows that spectral clustering produces

no interesting results for this data set. On data set in Figure 2.12(c) the

presence of noise points reduces the measures for the dissimilarity values af-

fects negatively the cluster separation when path-based clustering has been

adopted. Finally, Figure 2.12(d) presents the results obtained by the ap-

plication of the robust path-based spectral clustering: the introduction of

the robust similarity measure is reveal to be very effective in reducing the

influence of the outliers. This brings to better identification of the different

groups.

2.5 The Neural Gas Network Approach

Lack of information about the desired output characterizes unsupervised

learning problems. Only input data are available with the aim of inferring

a function to describe the hidden structure from an unlabeled data collec-

tion. “Dimensionality reduction”, i.e., find a low-dimensional subspace of

the input vector space containing most or all the input data represents one

possible objective. Linear subspace with this particular property can be

computed directly by principal component analysis1 or iteratively with a

number of network models.

Dimensionality reduction’s objective can be gathered through the use

of self-organizing map(SOM) sometimes called Kohoen feature map, which

are particular type of artificial neural network whose input space is general

wider with respect to the output one. Kohoen feature maps in conjunction

with the “growing cell structures” allow projection onto non-linear discretely

sampled subspaces whose dimensionality has been chosen a priori. Self or-

ganizing maps differ from usually adopted artificial neural network because

they apply “competitive learning” instead of classical techniques of error-

reduction learning such as back-propagation with gradient descent.

1Principal Component Analysis (PCA) is a statistical procedure that uses an orthogo-

nal transformation to convert a set of observations of possibly correlated variables into a

set of values of linearly uncorrelated variables called principal components. The number

of principal components is less than or equal of the number of original variables.

33

https://en.wikipedia.org/wiki/Principal_component_analysis

Given some high-dimensional data distribution P (ξ), the objective is

to find a topological structure closely reflecting the topology of the data

distribution. This process is denoted as Topological Learning. The data

structure’s construction can be elegantly performed adopting “competitive

Hebbian learning” which in turns refers to a vector quantization method2.

Competitive Hebbian learning(CHL)[12] assumes a number of centers in

Rn and successively inserts topological connections among them by evalu-

ating input signals collected from a data distribution P (ξ). For each input

signal x, it connects the two closest centers by an edge, where closeness is

evaluated according to the Euclidean distance. Figure 2.13 represents two

ways of defining closeness among a set of points.

A subgraph of the “Delaunay triangulation” corresponding to the set

of centers appears in Figure 2.13(a), connecting points having neighboring

Voronoi polygons(thin lines). Basically this reduces to points having small

Euclidean distance with respect to the given set of points.

The “induced Delaunay triangulation”(thick lines) in Figure 2.13(b) can

be obtained by masking the original Delaunay triangulation with a data

distribution(shaded). Two centers are connected if and only if the common

border of their Voronoi polygons lies at least partially in those areas of the

input space Rn where P (ξ) > 0. In other words only centers lying on the

input data submanifold or in its vicinity develop any edges. The others are

useless for the purpose of topology learning and are often called dead units.

To make use of all centers they have to be placed in those regions of Rn

where P (ξ) differs from zero. This could be done using vector quantization3

procedure.

Neural Gas Network algorithm[12] operates an adaptation of the k -

nearest centers toward the input signal x where k decreases from a large

to a smaller final value. A large initial value for k causes adaptation toward

the input signal of a large fraction of centers, while it’s decrease brings to

a low number of center adapted time by time. Adaptation strength under-

lies a similar decay schedule. For the parameter decay operation, the total

number of adaptation steps must be a priori defined.

Initially it requires to run the Neural Gas algorithm in order to distribute

2Vector quantization is a classical quantization technique usually adopted in the field

of signal processing, which allows the modeling of probability density function by the

distribution of prototype vectors.
3Vector Quantization (VQ). The density matching property of vector quantization is

powerful, especially for identifying the density of large and high-dimensioned data. Since

data points are represented by their closest centroid’s index, commonly occurring data

have low error, and rare data high error.

34

https://en.wikipedia.org/wiki/Vector_quantization

(a) The Delaunay triangulation(thick

lines) connects point having neighboring

Voronoi polygons(thin lines).

(b) Induced Delaunay triangula-

tion(thick lines) arises by masking the

original Delaunay triangulation with a

data distribution P (σ)(shaded).

Figure 2.13: Representation of two ways of defining closeness among a set of points.

a certain number of centers into the space according to an input data distri-

bution. In a second moment the competitive Hebbian learning process can

be applied to generate the final topology. The execution of the two different

techniques can be even applied concurrently. The last operation required is

a procedure for removing obsolete edges. In fact, the centers’ motion makes

previously generated edges invalid when they overpass a fixed age threshold.

Competitive Hebbian learning method does not influence in any way

the outcome of the Neural Gas method, because adaptations employ input

distances and not network topology. On the other hands, Neural Gas algo-

rithm does not influence in any way the topology generation of competitive

Hebbian learning since it moves the centers around.

Combination of Neural Gas and competitive Hebbian learning represents

a successful strategy to operate topology learning. The main drawback relies

on the fact that the number of the centers must be a priori defined. This is

usually not trivial and, depending on the situations, many different values

can be adopted.

2.5.1 Growing Neural Gas Network

Despite Neural Gas network (Section 2.5) approach represents a very effec-

tive method to perform topology learning, it’s lack of an automatic proce-

dure to detect an a priori suitable number of centers and adaptation steps,

makes it dependent on a human intervention. A second method, strictly

35

relying on Neural Gas network approach, tackle this problem with an inter-

esting adaptation avoiding to fix a priori this two fundamental parameters.

This method considers:

• A set A of units. To each c ∈ A corresponds an associated reference

vector wc ∈ Rn, which can be regarded as positions in input space

of the corresponding unit. Each units can be represented through a

node.

• A set N of non-weighted connections among pairs of units, whose pur-

pose is the definition of a topological structure. The pairs units’ con-

nections can be represented through edges.

In principle there are possible infinite number of n-dimensional input

signals obeying to a probability density function P (ξ). Growing Neural Gas

network approach[12] proposes to add new units over time to an initially

small network. Local statistical measures obtained throughout the adap-

tation steps evaluate over this small network. In this way, the network

topology can be generated incrementally adopting the competitive Hebbian

learning method, and the final dimension of the network will depend on the

input local statistical behavior.

Topology learning process starts by placing randomly two units into the

space which have to be learned. Successively an input signal ξ, according

to the probability distribution P (ξ), is initially generated. According to the

generated input signal ξ, the two closest units can be identified. Each unit

contains a local counter, responsible for the tracking of the distance between

inputs and the unit itself. At each step the local counter of the closest unit is

updated by incrementing the aging of all the emanated edges. In particular

the update of the local counter adopts the following expression:

∆error(s1) = ‖ws1 − ξ‖. (2.29)

The closest unit s1 and its direct topological neighbors moves toward ξ re-

spectively by fractions εb and εn of the total distance, which can be computed

as:

∆ws1 = εb(ξ − ws1) (2.30)

∆wn = εn(ξ − wn) (2.31)

for all direct neighbors n of s1. If units s1 and s2 are connected each other,

the age is reset to zero. If they are not connected, a new link between

them have to be introduced. Obsolete edges removal process occurs when

the nodes display ages larger than a fixed threshold amax. Input signals’

36

cardinality multiple of a fixed parameter λ causes the insertion of a new

unit. The new unit’s placement is not performed randomly, but supporting

the units with accumulated the largest error q. Finally the new unit r take

place between units q and its neighbor f with the largest error variable:

wr = 0.5(wq + wf). (2.32)

Existing edges between the previous units q and f must be removed and

new edges between the new r and q, f created. The q and f ’s error vari-

ables decrease multiplying them by a constant α and the r ’s error variable

initializes with the new value of the error variable of q instead. The process

ends up decreasing all the error variables by multiplying it with a constant

d.

Adaptation steps towards the input signals lead to a general movement

of all units towards those areas of the input space where signals come from

P (ξ) > 0. The insertion of edges between the first and the second-nearest

unit with respect to an input signal generates a single connection of the

“induced Delaunay triangulation” with respect to the current position of

all units. Removal of edges is necessary to get rid of those edges which

are no longer part of the “induced Delaunay triangulation”, due to the fact

that their ending points have been moved. Local edge aging in combination

with the edges’ age re-setting procedure achieves the objective of keeping

the network updated.

With edges insertion and removal the model tries to construct and then

track the “induced Delaunay triangulation”, which is a slowly moving target

due to the adaptation of the reference vectors. The accumulation of squared

distances during the adaptation helps to identify units lying in areas of the

input space where the mapping from signals to units causes much error. To

reduce this error, new units are inserted in such regions.

Results obtained with Growing Neural Gas network algorithm are par-

ticularly interesting when topology learning is the objective, even when the

input distribution follows complicated structures evolving over different di-

mensionalities.

Figure 2.14 shows the Growing Neural Gas network adaptation steps to a

signal distribution with different dimensionalities in different areas of the in-

put space. Figure 2.14(a) displays the initial placement of two random units

on the surface. Figures 2.14(c) to 2.14(f) present the adaptations produced

by the application of 600, 1800, 5000, 15000 and 20000 generated signals re-

spectively to the initial small network. Especially Figure 2.14(f) highlights

how the Growing Neural Gas method efficiently operates the learning of

37

(a) Initial situation. (b) Introduction of 600 generated input

points.

(c) Introduction of 1800 generated input

points.

(d) Introduction of 5000 generated input

points.

(e) Introduction of 15000 generated in-

put points.

(f) Introduction of 20000 generated in-

put points.

Figure 2.14: A “Growing Neural Gas” example.

38

(a) “Neural Gas” and “competitive Hebbian learning”.

(b) “Growing Neural Gas” with the use of “competitive Hebbian learning”.

Figure 2.15: “Growing Neural Gas” vs. “Neural Gas”

complicated topologies. Hypothetically the learning process could be oper-

ated indefinitely, so Figure 2.14(f) representation is not necessarily the final

one.

Another example represented in Figure 2.15 displays the main difference

between the current method and the Neural Gas method of Section 2.5.

Both methods are perfectly able to learn the clusters’ distribution, but the

Growing Neural Gas Network approach is able to indefinitely continue until

the complete disclosure of the smaller clusters is completed.

2.5.2 Adaptive Incremental Growing Neural Gas Network

Each edge, in Growing Neural Gas, has an associated age used to remove

old edges in order to keep the topology dynamically updated. While in

Growing Neural Gas method the decision of introducing a new neuron is

taken upon a fixed parameter λ, in Adaptive Incremental Growing Neural

39

Figure 2.16: The three possible different cases in which the AING operates.

Gas Network procedure the decision is taken upon an adaptive parameter-

free distance threshold instead. An excessive growth of neurons’ number is

avoided by condensing them using a probabilistic criterion, in such a way a

new topology arises to preserve memory constraints.

Let y1 and y2 be respectively the nearest and the second nearest neurons

from a new data-point x, such that dist(y1, x) < dist(y2, x):

1. if x is far enough from y1: a new neuron ynew is created at x (1st case);

2. if x is close enough to y1 but far enough from y2: a new neuron ynew
is created at x, and linked to y1 by a new edge (2nd case);

3. if x is close enough to y1 and close enough to y2 (3rd case):

• move y1 and and its neighboring neurons towards x, i.e. modify

their reference vectors to be less distant from x;

• increase the age of y1s edges;

• link y1 to y2 by a new edge (reset its age to 0 if it already exists);

• activate the neighboring neurons of y1;

• delete the old edges if any.

Figure 2.16 displays intuitively this procedure in a graphical manner, rep-

resenting the three possible different cases which can be encountered.

An age parameter characterizes each existing edge emanating from a

given neuron, keeping track of the seniority of a particular neuron-to-neuron

link. The age of neuron edges increments each time a data-point assigns to

the winning unit y1 (such as in the 3rd case). Each time an input-generated

point is close enough to neurons y1 and y2, the age of the link connecting

the two different units reset to 0. In such a way their interconnection in

refreshed to smaller values, reflecting the youngness of the link. If the age

of an edge increases without being never reset, it will reach a maximum age

40

value. By reaching this threshold value, the node will be considered “old”

and thus removed though the edge removal procedure.

Point-to-point distances’ considerations rely on a parameter-free adap-

tive threshold Ty, which can be defined for a generic neuron y as:∑
e∈Xy dist(y, e) +

∑
e∈Vy |Xe| × dist(y, e)

|Xy|+
∑

e∈Vy |Xe|
. (2.33)

In case y has no assigned data-points (Xy is empty) and it has no neighbor

(Vy is empty), then we consider the adaptive threshold to be the half distance

from y to its nearest neuron, according to the expression:

dist(y, ỹ)

2
, ỹ = argminỹ 6=y dist(y, ỹ). (2.34)

By fusing together Equation 2.33 and 2.34 the expression becomes:

Ty =


∑
e∈Xy dist(y,e)+

∑
e∈Vy |Xe|×dist(y,e)

|Xy |+
∑
e∈Vy |Xe|

if Xy 6= ∅ ∨ Vy 6= ∅,
dist(y,ỹ)

2 , ỹ = argminỹ 6=y dist(y, ỹ) otherwise.
(2.35)

The adaptive threshold updates incrementally as the data become available

by keeping information related to each neuron up to date over time.

Once again, the merging process(as in Growing Neural Gas network ap-

proach depicted in Section 2.5.1) tries to reduce the number of neurons

generated by the algorithm. When the number of neurons within the net-

work reaches an upper bound fixed a priori, some of them can optionally

fuse together, reducing the whole dimension of the network itself.

Dimensionality reduction by neurons merging employs a probabilistic

criterion evaluating the probability for y to be far enough from its nearest

neuron ỹ:

Py,ỹ =
|Xy| × dist(y, ỹ)

κ
. (2.36)

Equation 2.36 highlights that the probability is proportional to the distance

between the two nearest neurons and the number of data point assigned to

y : in particular, the more is y is far from ỹ, the more likely they wont be

merged together. As we can see, the probability is inversely proportional to

a parameter κ, used for the tuning of the merging probability between two

nearest neurons. In Expression 2.36, Py,ỹ may also assume values higher then

1 when κ is not sufficiently big. Values greater than 1 has no mathematical

sense for a probability, then a better formulation consists in:

Py,ỹ = min

(
|Xy| × dist(y, ỹ)

κ
, 1

)
(2.37)

which guarantees a probability included in 0 and 1.

41

42

Chapter 3

Methods and Procedures

“In materia di accessibilità, una denuncia vale più di mille suppliche. ”

Angela Gambirasio

3.1 The MEP Data Collections

MEP-Traces and MEP-APP applications were both developed specifically

for Android devices, in collaboration with the “Design department of Po-

litecnico di Milano” in order to make them intuitive and easy-to-use for any

kind of user[30].

MEP-Traces offers the possibility to track users’ habitual path within

the city area. Figure 3.1 shows the elements the users face off when using

the MEP-Traces application. The main menu, in Figure 3.1(c), gives the

access to the whole functionality of the application. Starting from the top

there are: the start-acquisition button, the user-profile button, the send-

acquisition button, and finally the exit button.

During data collection, the placement of the device reveals to be one of

the main issue that we encountered during the definition of the applications’

functionalities, especially for motor-free wheelchair users. In fact, it would

be impractical for users with motor disabilities to hold it while moving.

The installation of the device on a physical support fixed on the wheelchair,

represents a possible solution, leaving the user the possibility to freely move

while tracking its current path.

However, this simple solution introduces a computational problem: algo-

rithms usually adopted for step detection and movement, cannot be applied

anymore, and new data processing methods have to be adopted.

(a) MEP-Traces (b) Welcome (c) Main Menú

Figure 3.1: MEP-Traces Activities. From left to right: the MEP-Traces Splash screen,

displayed at the application launch; the Welcome screen of the application after the

login; the Main menu with the application’s features buttons.

By definition, we classify the MEP-Traces routes as accessible. This

anyway does not represent the absolute accessibility degree for an area, and

users considerations could modify its definition by reporting the presence of

obstacles/barriers along the recorded path.

In order reconstruct the path as close as possible to the real one, MEP-

Traces records data coming out from multiple sensors(i.e., GPS, gyroscope

accelerometer and magnetometer), required for a further computation of

a particular sensor fusion technique(described in Chapter 3.2). The joint

contribution of all the different recorded paths builds the MEP implicit

data collection.

Path information alone would not be enough for the purpose of building

accessibility maps, so another type of data has to be considered. This other

data type is the user’s explicit information, supplied during the mapping

process. For this particular purpose, MEP-Traces allows to record times-

tamped1 and geo-located pictures of the obstacles encountered during the

mapping process. Those data are immediately uploaded on the server and

they become available to the whole users community.

Implicit and explicit data jointly contribute to the establishment of the

1Timestamps[23] are sequence of characters or encoded information identifying when

a certain event occurred, usually giving date and time of day, sometimes accurate to a

small fraction of a second.

44

(a) MEP-APP initial

screen.

(b) Welcome. (c) Maps Visualization.

Figure 3.2: MEP-APP activities. From left to right: the initial screen with the MEP

logo; the welcome screen; the map which can be consulted by the user.

“MEP Collection”, which represents the starting point of our knowledge

discovery process.

While sensors acquisition is totally automatic and user-transparent, the

obstacle’ position has to be explicitly reported by the user who encounter

it along his/her route. Sensors and obstacles notifications reach the server

which in turns proceeds with the update of the database with new available

information.

Visualization of data stored in the MEP database is available in any

moment to registered users through the MEP-APP application. It offers

the possibility to retrieve the best possible route based on the user’s needs

taking into account his/her physical disease. The MEP-APP, exactly as the

MEP-Traces application, is very intuitive.

Figure 3.2 represents the MEP-APP elements that the users encounter

in the application. The application immediately localizes the position of the

user over the map(Figure 3.2(c)). By using the search bar at the top of the

application, the user can visualize information and notifications about the

interested city.

The back-end server outperforms the exchange of information between

the two applications: it receives, elaborate, and supplies data from/to many

different sources. The data flow behind MEP-Traces and MEP-APP shows

up in Figure 3.3. Green elements refer to the MEP-Traces data flow, while

the orange ones represent the MEP-APP flow. The back-end server offers

45

Figure 3.3: Implicit Data Collection general schema.

the set of tools which make the two mobile applications work properly.

3.1.1 Implicit Data Collection

As introduced in Section 3.1, the MEP data collection is made up by two

types of data, i.e., “implicit” and “explicit”. The concept of implicit data

collection will be explained in detail throughout this section, while the treat-

ment of the concept of explicit data is left for Section 3.1.2.

MEP-Traces (the upper green part in Figure 3.3) collects implicit data

in a total automatic procedure which does not require any user intervention.

For wheelchair users the device is assumed to be fixed upon the vehicle: in

terms of acquired data, a fixed smartphone or tablet is supposed to produce

an higher quality sensors data collection with respect to devices kept into

pockets or bags.

The user records the GPS and IMU2 information on the internal mem-

ory or into the SD-card3 of the device where MEP-Traces has been installed

on. Data coming from real-world GPS sensor demonstrate not to be accu-

rate enough for our purposes. We then introduce a method which corrects

the GPS coordinates adopting the IMU information, and produces a notice-

able improvement of the localizations. Further details of this technique can

be found in Section 3.2 which describes the MEP-Fusion engine in all its

relevant aspects.

The data store into text files, dividing into:

2Inertial Measurement Units
3Secure Digital memory card

46

• MEP POSITION INFO.txt stores GPS data sampled every second.

• MEP MOTION INFO.txt stores data coming out from the sensors.

• MEP NMEA INFO.txt stores GPS data in the NMEA4 format [34].

• MEP DEVICE INFO.txt collects some useful information about the

device characteristics and battery consumption.

Implicit data have the characteristic to be completely transparent to the

users when they are generated. Once the user collects implicit data, he/she

can upload them on the server using MEP-Traces. The back-end server

immediately starts elaborating data as soon as the upload process stops,

and data are completely available (further details in Section 3.6). The first

step of the elaboration employs a fusion algorithm to find an approximate

path representation of the user experience along his/her route. A second

step adopts a simple technique which rigidly transports points located over

buildings on more appropriate places. Finally a clustering technique tries

to group points coming from different paths into pre-specified definitions of

accessibility. The server response is the result of the application of several

methods and techniques coming from different fields, in order to suggest the

best accessible path according the user’s needs.

At the end of the elaboration of “implicit” data, the accessibility will be a

kind of available and usable knowledge about the areas’ accessibility around

the space. Of course the creation of this knowledge strictly relies on the

mapping process: not covered/mapped areas do not have any accessibility

definition.

Implicit data alone only brings positive information about the accessi-

bility of an area, but anything about its unattainability. For this reason the

collection of explicit data, along with implicit ones, has to be adopted in

order to produce complete results.

3.1.2 Explicit Data Collection

As discussed in Section 3.1.1, the server employs a set of implicit data to

reconstruct the best accessible path for a given user. Considerations about

implicit data alone are not enough to obtain a complete information about

the paths’ accessibility structures within a city. Implicit data, integrated

4NMEA format is a combined electrical and data specification for communication be-

tween marine electronics such as echo sounder, sonars, anemometer, gyrocompass, autopi-

lot, GPS receivers and many other types of instruments. It has been defined by, and is

controlled by, the National Marine Electronics Association.

47

with explicit information, produce an additional knowledge about different

accessibility levels of the paths. Both applications allow users to send noti-

fications about barriers or obstacles that they encounter during the travel.

Notifications take place in the following way:

• Collecting at most three pictures of the obstacle from three different

point of view.

• Evaluating the seriousness of a barrier can be expressed in a range

from one to three.

• Inserting a short description to give further information.

The back-end server receives each user-filled formatted notification. All

explicit information join together to produce an update of the obstacles list

contained into the MEP database (“public.obstacle” table).

Users’ notifications express fundamental information about the paths’

accessibility which cannot be extracted directly from the implicit data col-

lection conveyed by the MEP-Traces application. The completeness and

soundness of information drifts directly from this additional data: once the

condition of the area is known, i.e., the ground, the position of the steps

and/or the poles, etc., it is possible to decide how to classify the given area

in an accessibility scale. Using such kind of information, the users are served

with the best possible path based on their disability.

The entire knowledge discovery process relies on this two kind of data

collections, i.e., “implicit” and “explicit”, representing the minimum frag-

ment of information to reconstruct cities’ accessibility levels.

3.1.3 Issue and Requirements

The MEP project innovativeness resides on the method used to collect data

which the project purposes require for: no adoption of dedicated nor specific

devices, but only commonly spread smartphones and tablets instead.

Mobile devices’ spread and diffusion during the last few years reported a

substantial increase, and, at the same time, the increased computing power

of such kind of devices gives the MEP project a chance to be very effective

all over the world.

Nowadays these devices come with a huge amount of low cost sensors

chips marked by an high frequency rate and able to perform activities previ-

ously found only on fully equipped desktop operating systems. The growth

of technology offers new possibilities to users and researchers which have to

be investigated in dept.

48

MEP-Traces and MEP-APP demand to some minimum devices’ charac-

teristics, which can be summarized as:

• Satisfy the minimum requirements for the system to operate in the

best condition, i.e., we expect at least a device to mount Android 4.4.4

KitKat or higher, providing at least accelerometer and magnetometer

sensors and optionally the gyroscope sensor.

• Since the operations on the sensors are not just a matter of acquisition

but it is also required a tuning of the parameters within them, a certain

amount of flexibility of the hardware is required for the applications

to work (dual core CPU or higher).

• Elaboration of the data collected by smartphones and tablets should

be saved into a text format, therefore we require at least a minimum

space of the SD-card.

3.1.4 Android Sensor Framework

Almost all Android devices come with a set of built-in sensors that mea-

sure motion, orientation, and a list of various environmental conditions in

order to implement a series of function with the aim of improving the users’

experience. Each sensor provides raw data characterized by high precision

and accuracy capable to monitor three-dimensional device’s movement or

positioning as well as changes in the environmental ambient near the device

itself.

In particular the Android platform supports three broad categories of

sensors:

• Motion sensors: they measure acceleration and rotational forces along

three main axes. Among this category there are accelerometers, grav-

ity, gyroscopes, and rotational vector sensors.

• Environmental sensors: they measure various environmental parame-

ters, such as ambient air temperature and pressure, illumination, and

humidity. Among them there are barometers, photometers, and ther-

mometers.

• Position sensors: they measure the physical position of a device. This

category includes orientation and magnetometer senors.

The access to the device’ sensors for the acquisition of the raw data re-

quires the adoption of the Android sensor framework, which provides several

49

Table 3.1: Complete sensor overview of the Android platform.

Sensor Type Common Uses

TYPE ACCELEROMETER Hardware Motion detection.

TYPE AMBIENT TEMPERATURE Hardware Monitoring air temperatures.

TYPE GRAVITY Software or Hardware Motion detection.

TYPE GYROSCOPE Hardware Rotation detection.

TYPE LIGHT Hardware Controlling screen brightness.

TYPE LINEAR ACCELERATION Software or Hardware Monitoring acceleration along a single axis.

TYPE MAGNETIC FIELD Hardware Creating a compass.

TYPE ORIENTATION Software Determining device position.

TYPE PRESSURE Hardware Monitoring air pressure changes.

TYPE PROXIMITY Hardware Phone position during a call.

TYPE RELATIVE HUMIDITY Hardware Monitoring dewpoint, absolute, and relative humidity.

TYPE ROTATION VECTOR Software or Hardware Motion detection and rotation detection.

TYPE TEMPERATURE Hardware Monitoring temperatures.

classes and interfaces for the development of a series of sensor-related tasks.

Two general class of sensors arise from the Android sensor framework, i.e.

hardware-based and software-based sensors.

Hardware-based sensors are physical components built onto the device

itself. Their data come directly from the measurement of specific environ-

mental properties, such as the acceleration, geomagnetic field strength or

angular change.

On the other hand, the software-based sensors do not refer to physi-

cal devices, although they mimic hardware-based sensors. Software sensors

collect data from one or more hardware-based sensors denoting as virtual

or synthetic sensors. Linear acceleration and gravity sensors reside among

software-sensor category.

Table 3.1 presents all the possible sensor type commonly present on

Android device. It also presents the sensor’s classification into the hard-

ware/software categories and a common use of the sensor’s data type.

3.2 The MEP-Fusion Engine

The MEP-Fusion engine is a set of tools whose aim is the perfect recon-

struction of the users’ traveled paths, using implicit data collected through

MEP-Traces.

Multi-sensor fusion techniques are required for many reasons. First of

all the sensors’ measurements quality: the IMU5 measurements (represented

by the joint contribution of accelerometer, gyroscope, and magnetometer)

reveal to be corrupted by an intrinsic error which can be represented as an

unpredictable white noise. On the other hands, the GPS sensor provides

5Inertial Measurements Unit

50

Figure 3.4: General processing schema applied to data coming from MEP-Traces in

order to perform the trajectories reconstruction.

the absolute position of the device and it can displays errors in the order of

meters or it can also be completely unavailable.

Another reason can be found in the a priori assumption of the tar-

get users: people with motor impairments are supposed to move using

wheelchairs. This implies that traditional method, commonly adopted to

localize pedestrians, based on step detection, appears to be ineffective for

the MEP project purposes.

The adoption of the ROAMFREE[7]6 sensor fusion library presented in

[2] offers a solution to the two explained problems. In particular MEP-

Fusion engine employs a modified and enhanced form of the ROAMFREE

library, accommodating to sensors commonly spread among mobile devices.

Figure 3.4 presents the MEP-Fusion engine general operative schema

in the processing of MEP-Traces’ collected data. The MEP-Fusion engine

adopts splines in the Pre-processing/Filtering step to perform a fixed fre-

quency sampling. This is required by the ROAMFREE framework which

needs measurements collected at a fixed frequency, whereas the Android op-

erating system adopts an event-based sampling schema while recording the

sensors’ measurements. Once the splines have been created, they are sam-

pled at a frequency equal to the nominal frequency of the mobile sensors.

6ROAMFREE (Robust Odometry Applying Multisensor Fusion to Reduce Estimation

Errors)

51

http://roamfree.dei.polimi.it/index.php/

Because timestamps collected by the Android operating system accord-

ing to the standard “wall” clock (i.e. time-date) are expressed in millisec-

onds from January 1, 1970 00:00:00.0 UTC7, the correspondence with the

real-world dates and times can be performed uniquely. Through the use of

a reconstruction module, the IMU can be reconstructed according to UTC

format.

Measurements coming from gyroscope and accelerometer cannot be used

directly into the computation. A fundamental element of the ROAMFREE

library, i.e., the IMUhandler is responsible for the combination of the iner-

tial measurements, derived from the variations of translation and rotation.

As result, fusing the obtained data together with the GPS measurements,

produces an improvement of the path-noise cleaning process. Further de-

scriptions of how sensors fuse and details about the ROAMFREE library

are left for Section 3.2.1.

3.2.1 The ROAMFREE Library

The ROAMFREE library [2] is a framework developed by the “Artificial

Intelligence and Robotics lab of Politecnico di Milano”. It offers a library

of sensor measurements models, a tracking module, and a calibration suite

that allows the estimation of unknown sensor parameters.

Originally this set of tools where not specifically designed to solve the

specific problem of path reconstruction for the MEP-Traces application, but

its application on the MEP project can reveal an interesting twist.

The original purpose of the ROAMFREE library is the fusion of an

arbitrary sensors number, in order to determine the pose8 of a mobile robot.

Even if this is not the case of the MEP-project, which presents a different

quality and heterogeneity of data instead, it offers the fundamentals for the

development of a specific and dedicated algorithm.

One of the main issue is that each device presents slightly different hard-

ware characteristics which make impossible the a priori sensors’ calibration.

Through an abstraction on logical sensors, ROAMFREE performs a catego-

rization of the sensors into different categories:

• Absolute position and/or velocity;

• Angular and linear speed;

• Acceleration and vector field (e.g. magnetic field and gravitational

acceleration).

7Universal Time Coordinated
8Pose is the combination of position and orientation

52

Figure 3.5: Instance of hyper-graph for pose tracking and self-calibration with four pose

nodes.

A specific error model can be obtained for each sensor, by explaining the

relation between the pose and the real measured data. Such explanation is

obtained by taking into account the source of distortion, the bias and the

noise which affect real-world measurements.

The ROAMFREE library employs three different reference frame type:

• W is the fixed world reference frame, taken into a known geo-referenced

location;

• O identifies the moving reference frame placed at the center of the

device to localize;

• Si represents the i-th sensor frame, whose origin and orientation are

defined with respect to O.

Through the use of the three different reference frames, ROMFREE is

able, at time t, to track the position and orientation of the moving reference

frame O with respect to global geo-referenced frame W, fusing the measure-

ments in the location sensor frames Si. Such an estimate is represented with

the notation ΓWO (t) including both the position and the orientation of the

device.

Employing a master sensor, characterized through an high frequency,

in order to predict ΓWO (t+ ∆t) given the last pose estimate ΓWO (t) and its

measurements z(t), the algorithm is able to produce a graph.

Each time a new reading for the master sensor is available, ROAMFREE

instantiates a new node ΓWO (t+ ∆t) using the last pose estimate available,

ΓWO (t), and z(t) to compute an initial guess for the node. The initialization

53

of the so called odometry edge9 between poses at time t and t+ ∆t requires

the sensor’s measurements z(t).

Each time new measurements from non master sensors become available,

the corresponding hyper-edges are inserted into the graph between the nodes

with the nearest timestamp.

Figure 3.5 represents an example of possible hyper-graph where two types

of hyper-edges are present (odometry hyper-edges, eODO, and global posi-

tioning systems hyper-edges, eGPS)

3.3 Geodetic System

Geodetic systems10 apply for different purpose such as geodesy, navigation,

surveying by cartographers, and satellite navigation systems.

The Earth is not a perfect sphere, and geodetic systems tackle the prob-

lem of obtaining the real position on the Earth in a precise mathematical

way. The difference in coordinates between data, commonly addressed as

“datum shift”, can vary from one place to Another even within a country

or region. The datum shift can be a value in between zero and hundreds

of meters, which may represents an unacceptable error depending on the

application.

The absence of a common surveying reference point before the advent of

the GPS positioning system leads to the creation of nationals maps, usually

not combining each other. As result, the lack of a common reference point

produces a fragmented scenario for the data representation.

A datum can be defined as a reference point or surface against which

position measurements are obtained. This is associated with a model of

the shape of the Earth, and can be adopted in order to compute the exact

position. While Horizontal datums describe a point over the Earth’s surface,

expressed in latitude and longitude, vertical datums measure elevations or

underwater depths.

• Horizontal datum: represents the model to measure the positions

on the earth. A specific point on the Earth assumes multiple different

coordinates representing the different measurements adopted to repre-

sent the point itself. Despite several local horizontal datums have been

applied in the past to reference some convenient reference point, the

spread of recent technology produces precise heart’s shape measure-

9Odometry edge is an hyper-edge representing a displacement
10http://wiki.gis.com/wiki/index.php/Geodetic_system

54

http://wiki.gis.com/wiki/index.php/Geodetic_system

Figure 3.6: Ellipsoid approximation of the Earth

ments, allowing the adoption of datums spread over larger surfaces.

The WGS 84 is now a commonly adopted standard datum.

• Vertical datum: represents the unit for the points’ elevation mea-

surement on the heart’s surface. In common usage, elevations refers to

the height above the sea level. This may introduce some issue because

the sea levels are non-constant. For this reason we reasonably consider

a specific zero point, computing the elevation based on the geodetic

model being used, with no further reference to sea levels.

3.3.1 Geodetic Coordinates

An ellipsoid approximates the Earth’s surface, and characterizes locations

near the surface in terms of latitude (φ), longitude (λ) and height (h). This

ellipsoid is completely parametrized upon the semi-major axis a and the

flattening f .

It is important to notice that geodetic latitude (φ) is different from geo-

centric latitude (φ′): geodetic latitude corresponds to the angle between

the normal of the spheroid and the plane of the equator, while geocentric

latitude is determined around the center.

Figure 3.6 clearly shows that the same position on a spheroid may have

different latitude’s angle, depending on whether the angle itself measures

the normal (angle α) or the center (angle β). The flatness of the spheroid

(in orange) is greater with respect to the one of the Earth, resulting in an

exaggerated difference between “geodetic” and “geocentric” latitudes. Table

3.2 represents the geodetic parameters required for the ellipsoid definition

and construction.

From a and f we derive the semi-minor axis b, first eccentricity e and

55

Table 3.2: Geodetic defining parameters.

Parameter Symbol

Semi-major axis a

Reciprocal of flattening 1/f

Table 3.3: Geodetic derived geometric constants.

Parameter Symbol

Semi-minor axis b = a(1− f)

Reciprocal of flattening e2,= 1− b2/a2,= 2f − f2

Second eccentricity e′2 = a2/b2 − 1 = f(2− f)/(1− f)2

second eccentricity e′ of the ellipsoid. Table 3.3 reports the derived param-

eters.

The Earth-centered Earth-fixed (ECEF), or conventional terrestrial co-

ordinate system, rotates with the Earth and has its origin at the center of

the Earth itself.

• The X axis passes through the equator at the prime meridian.

• The Z axis passes through the north pole.

• The Y axis can be determined by the right-hand rule to be passing

through the equator at 90◦ longitude.

Figure 3.7 represents the ENU’s reference system principal elements.

Many applications adopt the local East, North, Up (ENU) Cartesian coor-

dinate system in which the local coordinates form a plane tangent to the

Figure 3.7: ENU reference system

56

Earth’s surface fixed to a specific location. By convention the east axis, the

north and the up corresponds to x, y and z respectively.

3.3.2 Conversion

Conversion from geodetic to local ENU coordinates involves a two stage

process: first the conversion from geodetic to ECEF coordinates and finally

the conversion from ECEF to local ENU coordinates.

In turn, the conversion from geodetic (latitude φ, longitude λ, height h)

to ECEF coordinates requires the following operations:

X =

(
a

χ
+ h

)
cos(φ)cos(λ)

Y =

(
a

χ
+ h

)
cos(φ)sin(λ)

Z =

(
a(1− e2)

χ
+ h

)
sin(φ)

(3.1)

where χ =
√

1− e2sin2(φ). The parameters a and e2 represent respectively

the semi-major axis and the square of the first numerical eccentricity of the

ellipsoid according to Tables 3.2 and 3.3. The parameter a
χ (denoted as

Normal) represents the distance from the surface to the Z-axis along the

ellipsoid normal.

ECEF to local ENU coordinates transformation requires a reference

point: assuming the reference point located at {Xr, Yr, Zr} and the inter-

ested element at {Xp, Yp, Zp}, the vector pointing from the reference to the

interested element in ENU reference system is:xy
z

 =


−sin(λ) cos(λ) 0

−sin(φ)cos(λ) −sin(φ)sin(λ) cos(φ)

cos(φ)cos(λ) cos(φ)sin(λ) sin(φ)


Xp −Xr

Yp − Yr
Zp − Zr

 (3.2)

The conversion from local ENU to geodetic coordinates requires first a

datum conversion from local ENU to ECEF and finally ECEF transform to

geodetic. The inversion from ECEF to ENU coordinates is performed as:XY
Z

 =


−sin(λ) −sin(λ)cos(λ) cos(φ)cos(λ)

cos(λ) −sin(φ)sin(λ) cos(φ)sin(λ)

0 cos(φ) sin(φ)


xy
z

+

Xr

Yr
Zr

 (3.3)

Despite the simplicity of this initial conversion, the conversion from ECEF

to geodetic is a much more complicated problem, involving the following 15

57

steps, which require to know in advance the parameters {a, b, e, e′}:

r =
√
X2 + Y 2

E2 = a2 − b2

F = 54b2Z2

G = r2 + (1− e2)Z2 − e2E2

C =
e4Fr2

G3

S =
√

31 + C +
√
C2 + 2C

P =
F

3(S + 1
S + 1)2G2

Q =
√

1 + 2e4P

r0 =
−(Pe2r)

1 +Q
+

√
1

2
a2(1 + 1/Q)− P (1− e2)Z2

Q(1 +Q)
− 1

2
Pr2

U =
√

(r − e2r0)2 + Z2

V =
√

(r − e2r0)2 + (1− e2)Z2

Z0 =
b2Z

aV

h = U

(
1− b2

aV

)
φ = arctan

[
Z + e′2Z0

r

]
λ = arctan2 [Y,X]

(3.4)

where arctan2[X,Y] is the four quadrant inverse tangent function.

Expressing a set of measurements according to a reference datum allows

to tune the level of accuracy when processing geographic data, focusing on

the map’s area relevant for the computation.

3.3.3 Cartographic Correction of Global Navigation Satellite

System Trajectories From Low Cost Devices

Even though the MEP-Fusion engine operates a trajectories’ cleaning (Sec-

tion 3.2) they can still present some intrinsic error which cannot be removed

without accessing to further information, such as a perfect superposition

with buildings. Fusion of static information (such as the ones contained

into the OpenStreetMap database) leads to interesting improvements.

The Global Navigation Satellite System (GNSS) trajectory-building su-

perposition correction[22], developed by the “Dipartimento di Ingegneria

58

Figure 3.8: “Bring-outside” correction produced by the GNSS algorithm from the DICA.

Original PointsCorrected Points

(a) Real case example “bring-outside” cor-

rection.

Original Points

Corre
cted Points

(b) Wrong results example “bring-

outside” correction.

Figure 3.9: On the left a real case result after the application of the GNSS correction.

On the right there is an example in which the GNSS correction results in an error.

Civile e Ambientale” in Politecnico di Milano, employs a real time trigger-

ing technique over the GNSS points table. A dedicated trigger activates

when new points appear into the database, performing a simple check of

the point’s coordinates superposition with respect to the coordinates of the

buildings around it. If the trigger detects the occurrence of a complete over-

lapping, it rigidly projects the point outside the building’s area considering

the closest “road pipe” as reference.

Figure 3.8 shows the initial situation in which the trigger detects a new

point (in black) pending over a building. In this case the point has a number

of possible candidate points (displayed in white) at the building’s bound-

ary. The final point’s coordinates (the blue point) correspond to the ones

reflecting the closest road pipe.

59

Considering a real path example, composed by multiple points, this

method produces results as in Figure 3.9(a). All the points occurring over

a building (the black points) shifts toward new positions (the blue points).

This example clearly shows that original measured points can even occur

over large portions of buildings, due to large errors in the surveys.

Some critical situations can lead to a completely unwanted result such

the one represented in Figure 3.9(b): large measurements errors produce

the complete misleading of the building’s side over which the points are

projected (the yellow points), whereas their real correct position should be

a completely different one (the green points).

3.4 PostgreSQL and PostGIS

PostgreSQL is a powerful, open source object-relational database system

with more than 15 years of active development, and a proven architecture

that earned a strong reputation for reliability, data integrity, and correctness.

It runs on all major operating systems and it is fully ACID11 compliant, with

a full support for foreign keys, joins, views, triggers, and store procedures.

As an enterprise class database, PostgreSQL boasts sophisticated fea-

tures such as Multi-Version Concurrency Control (MVCC), point in time

recovery, table-spaces, asynchronous replication, nested transactions (save-

points), on-line/hot backups, a sophisticated query planner/optimizer, and

write ahead logging for fault tolerance. It supports international charac-

ter sets, multi-byte character encodings(Unicode), and it is locale-aware for

sorting, case-sensitivity, and formatting. It is highly scalable both for the

amount of data that it can manage and for the number of concurrent users

that it can accommodate. Table 3.4 reports some of the main feature of the

postgreSQL database system.

Alone it is not able to manage geographic referenced data. What makes

the PostgreSQL able to accept geographic data is the PostGIS extension.

PostGIS is a spatial database extender for the PostgreSQL object-relation

which adds the support for geographic objects allowing location queries ex-

ecutable in SQL. Moreover PostGIS also offers the support for GiST-based

R-Tree spatial indexes, and functions for analysis/processing of GIS objects.

The PostGIS geography type provides a native support for spatial features

represented on “geographic” coordinates, i.e., the geodetic coordinates.

The plane is the basis for the PostGIS geometry type, where the shortest

path between two points can be approximated as a straight line. Operations

11Atomicity, Consistency, Isolation, e Durability

60

Limit Value

Maximum Database Size Unlimited

Maximum Table Size 32 TB

Maximum Row Size 1.6 TB

Maximum Field Size 1 GB

Maximum Rows per Table Unlimited

Maximum Columns per Table 250 - 1600 depending on column types

Maximum Indexes per Table Unlimited

Table 3.4: Database Features

on geometries take place through Cartesian mathematics, and straight line

vectors, by which we can extract areas, distances, lengths, intersections, etc.

Contrary the basis for the PostGIS geographic type is the sphere, where the

shortest path between two points corresponds to a great circle arc. On the

other hands, operations performed on geographies, such as areas, distances,

lengths, intersections, etc, adopt a more complicated maths.

The GIS objects supported by PostGIS are a superset of the “Simple

Features” defined by the OpenGIS Consortium(OGC). PostGIS extends the

standard with support for 3DZ,3DM, and 4D coordinates. In particular the

spatial objects assume the geometric forms12:

• POINT: it represents a single location on the Earth, represented by

a single coordinate(including either 2-,3- or 4-dimensions). Points de-

scribe objects whose shape is not a relevant information for the project

purpose.

• LINESTRING: it simply represents a path connecting locations tak-

ing the form of an ordered series of two or more points joined together.

• POLYGON: it describes an area. The outer boundary of the polygon

assumes the form of a ring. The ring is a line-string both closed and

simple. Holes within the polygon are rings exactly as the outer ones.

Features expressed in Table 3.4 in conjunction with the PostGIS exten-

sion make the PostgreSQL service the perfect base tools set for the MEP

project. The ability to manage geographic data with ease and flexibility rep-

resents a uniqueness in the geographic big data field, no longer encountered

in other database system.

12http://revenant.ca/www/postgis/workshop/geometries.html

61

http://revenant.ca/www/postgis/workshop/geometries.html

3.5 Python Programming Language & Libraries

Python is a dynamic, object oriented language adopted in many software

development area, and it offers a support for the integration with other

programming language. Its design philosophy emphasizes code readability,

and its simple syntax allows the concepts expressions in much fewer line

of code with respect to other languages, such as Java or C++. This lan-

guage provides constructs to enable clear programs writing, on both small

and large scale. Python supports multiple programming paradigms, in-

cluding object-oriented, imperative, and functional programming as well as

procedural styles. It includes a dynamic type system, and automatic mem-

ory management together with a large and comprehensive standard library.

Python interpreters accommodates for the major operative systems, allow-

ing code exchangeability between different systems.

Two Python’s versions are particularly diffused in scientific research area,

i.e., the 2.7 and the 3.5 version; this two versions have minimal differences

between each other. Regarding the realization of the MEP project server

side, we adopt the 3.5 version.

The “Psycopg PostgreSQL adapter” for Python language accounts for

heavily multi-threaded applications, able to execute large numbers of con-

current INSERTs or UPDATEs. It is a wrapper for the libq13 library which

is the official PostgreSQL client library, representing a bridge between the

Python’s data elaboration and the PostgreSQL database system.

Python handles the management of large data collections through the

“Pandas library”, a set of tools devised for an efficient and fast data manipu-

lation. It is an open source, BSD-licensed library providing high-performance,

easy-to-use data structures specialized for the Python programming lan-

guage. A fast and efficient DataFrame object for data manipulation with

integrated indexing, providing instruments for reading and writing data

into different file formats, such as text files, CSV, Microsoft Excel, SQL

databases, and the fast HDF5 format.

It also introduces an intelligent data alignment, and integrated handling

of missing data, along with functions for table reshaping, slicing, fancy in-

dexing, and sub-setting. Columns insertion and deletion is very easy. The

traditional database functions for the data aggregation represent an inter-

esting and powerful engine ready to use. All this features joined with the

performance optimization, with critical code paths written in Cython14 or

13https://www.postgresql.org/docs/current/static/libpq.html
14Cython is an optimizing static compiler for both the Python programming language

and the extended Cython programming language. It makes writing C extensions for

62

https://www.postgresql.org/docs/current/static/libpq.html

C, makes the Pandas framework the ideal tool set for data management

required by our project.

In computer science field, the thread of execution is the smallest sequence

of programmed instructions that can be managed independently by a sched-

uler, a part of the operating system. Each system differs from each other

regarding the threads’ implementation, but in most cases a thread can be re-

garded as a component of a process. Many threads can exist within a single

process, hence their execution takes place concurrently. Unlike processes,

threads share resources like memory[21].

The Python language, as most of the newest programming language,

includes a threading library providing a set of tools for the multi-threading

management.

The Watchdog library monitors file system’s events triggered when a

change occurs.

Python’s incredible flexibility and spread leads to the theoretical pos-

sibility to model any kind of algorithm coming from many different fields.

It comes with an interesting tools set allowing the prototyping of articu-

late problems, giving the programmer the possibility to express in details

all the relevant information. The use of the Python programming language

in computational neuroscience has been growing steadily over the past few

years. The maturation of two important open source projects, i.e., the sci-

entific libraries “NumPy” and “SciPy”, provides access to a large collection

of scientific functions.

“Modular toolkit for Data Processing(MDP)” is a Python data processing

framework, that offers a collection of supervised and unsupervised learning

algorithms, and data processing units. Single units can be combined to-

gether producing a data processing flow or more complex structures such as

feed-forward network architectures. Its modular paradigm offers the posi-

tive basis for the implementation of new algorithms. At the same time the

base of available algorithms in the library gets continuously updated and

expanded, including in particular:

• Signal processing methods such as Principal Component Analysis, In-

dependent Component Analysis, Slow Feature Analysis.

• A manifold learning methods such as (Hessian) Locally Linear Em-

bedding.

• Several classifiers.

Python as easy as Python itself. http://cython.org/

63

http://cython.org/

• Probabilistic methods.

• Data pre-processing methods.

Given a set of input data, MDP takes care of training and executing all net-

work’s nodes in the correct order, and pass the intermediate data between

them. In such a way, the definition of complex algorithm as a series of sim-

pler data processing steps becomes more reliable. Efficient computations in

terms of speed and memory consumption comes from the elaboration of data

batches, whose computation can be also parallelized using the specifically

designed parallel sub-package, a parallel implementation of the concepts of

nodes and flows.

3.6 The MEP Project Workflow

MEP project’s basic implementation requires the development of methods

and procedures coming from different computer science fields, in particular

the ones described throughout this chapter.

The definition of the proper workflow has been one of the crucial points

we encountered during the development of the project’s block structure. An

articulate workflow precisely defines the sequence of the different element

into the project and it combines them together in order to reach the final

purpose of building accessibility maps of the different cities.

One of commonly adopted software engineering’s design principle is the

Separation of Concerns(SoC) principle. The idea behind the SoC prin-

ciple is to split an application into distinct sections, where each section ad-

dresses a separate concern. The Model-View-Controller (MVC) pattern is

nothing more than the SoC principle applied to Object Oriented Program-

ming(OOP). The name of this pattern comes from the three main com-

ponents used to split a software application: the model, the view, and the

controller. MVC better classifies under “architectural” rather than “design”

patterns, whose differences refers only to the broader scope of the latter with

respect to the former.

The model represents the core element, containing the whole knowledge

represented by logic, data, state, and rules of a specific application. The

view builds a visual representation of the model instead. It only displays

the data without handle them. The task of connecting the view to the

model relies on the controller which operates a link between them, perform-

ing all the connection operations[20]. This particular framework is widely

adopted in the development of many applications due to its high flexibility

64

Figure 3.10: The MVC design pattern general block schema.

and scalability. Figure 3.10 represents the MVC design pattern in a basic

and intuitive block schema, representing its main elements.

MVC is a generic and useful design pattern which brings large benefits

such as:

• The separation between the view and the model allows to build the

user interface (UI) without interfering with other parts of the program.

Despite this is not the case of the MEP project, this represents an

important code design strategy.

• Because of the decoupling between view and model, each part can be

easily modified/extended without affecting the others.

• The maintenance of each part is easier due to the clear definitions of

roles and responsibilities.

The MEP Project workflow starts by instantiating the controller, which

implements the communication between the different elements of the pro-

gram. Implicit and explicit elaboration of data conveyed by the two appli-

cations can be considered to start exactly at this moment. The controller

further subdivides into three elements:

1. An observer, whose aim is the discovery of new elements added to the

MEP-Traces acquisitions’ space.

2. A cluster manager, whose principal purpose is the clustering of the

user-uploaded paths.

3. One or more worker(s), responsible for the sequential/parallel load

into the MEP-Database of the paths recorded by the users.

65

Figure 3.11: The Main Controller subdivision into the different elements cooperating

into the scientific computation.

Figure 3.11 highlights the different elements cooperating into the project.

We develop the first two elements into two separate threads, kept alive

for the whole program life. A Worker element only activates when the queue

contains at least one element.

At the initialization of the controller, the program scans the storage

and it pushes on the queue the elements discovered into the MEP-Server’s

memory: it preserves only those elements which have not been elaborated

yet, while it neglects those that have already been processed. This task is

accomplished through a database table (“mep-folder-table”) containing a list

of the elaborated folder. This shrewdness allows to keep track of the folders

already computed. A table represents a smarter solution with respect to

the backup files because of its persistence, easy management, and update

facility. The mep-folder-table combines together the folder name, the user,

and the date in which the algorithm processed it.

After the initial scan, the controller launches the observer. It monitors

the directory where the users upload their acquisitions through the MEP-

Traces application. If a change occurs, it provides an immediate response

pushing the new element onto the processing queue. Each time a .zip ap-

pears into the “observed” directory, the observer updates the queue with

this new element.

The controller also launches the worker element(s). If the queue contains

at least one element, the controller pops the first one and it assigns the new

item to a worker which immediately begins the elaboration. The general

processing schema can be found in Figure 3.12. It represents the logical

sequence of operations leading to the final accessibility definition of the

areas.

The observer pushes new elements as soon as they appear into the

server’s folder, without waiting for their complete upload. This forces us

to perform a check of the element’s completeness before proceeding. The

66

Figure 3.12: Worker general process tasks.

check takes place by looking at the element’s dimension according to a fixed

time lapse every 2 seconds: if no changes occur in the meanwhile, the file

can be considered completely uploaded. Another check verifies the correct-

ness of the .zip file in order to avoid to waste time and computational effort

on corrupted or useless items. Bad structured elements remain in the cen-

tral memory, but do not participate to the algorithm’s computations. Once

again the mep-folder-table keeps track of those elements by modifying the

corresponding flag.

The process starts popping an item from the queue. The controller

assigns this new element to a worker, whose identifier corresponds to the

timestamp referred to the instant in which the worker has been created.

This temporal mark is important in order to distinguish one worker from

another.

At the beginning, each worker dumps data concerning the building and

highway of previous operations. This solution has been adopted to make

the GNSS correction faster, because too many rows in these tables stuck the

machine. For this reason the time lapse between the moment in which the

worker loads data into the database, and the one in which it use them for

the GNSS correction must be serialized, in order to prevent other workers

to flush information that are still valid. A simple lock mechanism prevents

the dump of these data before they are actually used preventing the loss of

information.

3.6.1 Decompression Phase

The decompression of the .zip file produces four files:

1. MEP DEVICE INFO.txt

2. MEP MOTION INFO.txt

67

Figure 3.13: The .zip file check procedure.

3. MEP NMEA INFO.txt

4. MEP POSITION INFO.txt

presented in Section 3.1.

The .zips’ files corruptions occur for several reasons, i.e., a network lack

or the occurrence of a client-side compression’s failure. Figure 3.13 presents

the block procedure of the .zip file check. Each file, contained into the

original .zip folder, refers to a particular step of the processing and carries

out a precise task.

We get a rough approximation of path’s behavior by loading the points

contained into the MEP POSITION INFO file. It collects data coming from

the direct acquisition of the GPS sensor without further processing. This

initial data collection represents the scale over which we can evaluate im-

provements produced throughout the different cleaning steps.

The MEP DEVICE INFO file contains the set of information related to

the device which supplied the acquisition. It collects the device model, the

Android version name, the kernel signature, and other useful facts. The

MEP project adopts those information in order to perform statistics about

MEP-Traces’, i.e., memory and battery consumed during the acquisition,

the location and duration of the recording, etc.

3.6.2 Building and Highway Tables Population Phase

The GNSS correction in Section 3.3.3 requires the MEP NMEA INFO file

as input. This file contains the relevant satellite’s position information re-

garding the user’s path.

Figure 3.14 highlights the fundamental steps of the processing. Each

point builds a series of non-overlapping square windows, used by the script to

68

Figure 3.14: Population of the Building and Highway tables required by the GNSS

correction to operate. The MEP NMEA INFO file contains the points’ sequence cor-

responding to the recorded path. This can be used to create a series of overlapping

windows. Each window corresponds to a query to the OSM server to retrieve building

and highway falling within its area. The server’s response contains all the demanded

information, which can then be loaded locally into the related MEP-Server schema.

Subsequently to the schema, also the related tables have to be updated.

69

query the OpenStreetMap database through a request message. The server

replies with an .xml file that contains information about the interested area.

The OGR tool perform the task of loading the OSM responses onto the

MEP-Database, inserting the newest buildings and highway information,

through the “ogr2ogr” command, contained into the GDAL library. OGR

is a toolkit for the manipulation of spatial data, comprehensive of a wide

set of features, under the Geospatial Data Abstraction Library (GDAL)15.

3.6.3 MEP-Fusion Correction Phase

The MEP MOTION INFO and MEP NMEA INFO files jointly provide the

input to the MEP-Fusion correction algorithm(presented in Section 3.2).

Even though the Android system provides common functionalities for

the sensors’ management within applications through the Android Sensor

Framework (depicted throughout Section 3.1.4), each device presents a dif-

ferent combination of chips, which results into slightly changing sensors’

acquisitions. For this reason, we introduced strategies to standardize results

even though inputs data exhibit heterogeneous characteristics.

In particular recent devices, such as the Huawei Nexus 6P, mount sensors

characterized by an high sampling rate frequencies in the order of KHz[31].

Computations of accelerometer, gyroscope, and magnetometer’s data com-

ing from this type of devices is not trivial due to the high quantity of rows

produced during the acquisition. The Android Sensor Framework records

the most recent event occurrence into the a dedicated buffer, that will be

definitely written down into the MEP MOTION INFO file as soon as the

system frees the necessary resources to perform the task. The system writes

samples row by row marking them with the precise instant, i.e., the times-

tamp, in which the code function occurs identifying the sensors’ evolution

during time.

Devices characterized by an high frequencies fill the buffer with a huge

number of records which could also assume the same temporal marker at

the moment of writing into the MEP MOTION INFO file. In other words,

this causes two or more samples to assume coincident timestamp. This is

an undesired situation which may lead to computational problems.

A proper “down-sample” operation takes the situation back to a more

reasonable one for the algorithm, so that it can handle more easily sensors’

15GDAL is a computer software library for the read and write of raster and vector

geospatial data formats. It presents a single abstract data model to the calling applica-

tion for several supported formats and also implements a variety of command line interface

utilities for data translation and processing. OGR works under the GDAL library provid-

ing additional tools for simple features vector graphics data[24]

70

data, avoiding errors at the moment to reconstruct the paths.

Other recent devices, such as the Motorola Moto X Play Edition(XT1562)

or the Motorola Moto G 3rd Generation(XT1541), do not come with the gy-

roscope included into the sensors set. Despite the gyroscope’s lack does not

influence the user experience in every day usage, it represents a serious issue

from the MEP-Fusion point of view. Even if the orientation’s information

can be extracted from other sensors, the Fusion algorithm explicitly demands

the gyroscope sensor’s data.

Samsung devices shows a bias affecting the magnetometer sensor instead.

This particular bias demands for a dedicated procedure: retrieved data have

to be conformed to other devices present on the market.

All this problems require the adoption of some practical solutions in

order to make the MEP-Fusion algorithm operate in suitable conditions on

heterogeneous data.

The process begins extracting from the MEP MOTION INFO file the

different sensors’ records, grouping them according to their types:

• TYPE GYROSCOPE

• TYPE GYROSCOPE UNCALIBRATED

• TYPE ACCELEROMETER

• TYPE MAGNETOMETER

• TYPE MAGNETOMETER UNCALIBRATED

The introduction of a fake artificial gyroscope addresses the problems related

with the absence of such sensor’s type. Fake data get mixed with the real

ones reproducing plausible temporal marker positions.

The separation of the MEP MOTION INFO file, grouping the sensors

according to their type, leaves the possibility to handle missing values.

Once we get different data frame containing the related sensor’s data,

procedures of missing values handling operate the first simplest cleaning of

the data collection.

Samples falling on the same timestamp are initially spread over the range

between the last available and the current timestamp. If the explained pro-

cedure does not solve the problem then we can fuse the rows performing the

mean between them in order to reach the ideal situation of non overlapping

timestamps. The whole process depicts in Figure 3.15, which represents the

block schema of the pre-processing adaptations required by the MEP-Fusion

tool.

71

Figure 3.15: The MEP-Fusion pre-processing schema. This schema tackle many dif-

ferent problems, focusing on the purpose to get heterogeneous data as input to the

MEP-Clusterpath algorithm. The results of this step get loaded into the MEP-Database

in the pose pt table and activate the GNSS correction trigger.

72

The final step of the pre-cleaning processing provides the rejoin of the

different sensor’s subsets into a single data frame, which subsequently di-

vides into two minutes length data collection. Dividing the complete collec-

tion into a smaller sub-data set makes the elaboration of the MEP-Fusion

algorithm faster and easier.

The final results obtained by the application of the sensors’ fusion algo-

rithm over the different windows collect together into a single output file,

i.e., “TPoseSE3(W)”. The timestamps perfectly indicate uniquely the row

position with respect to the others, thus the total path reconstruction it’s

just a trivial operation. The TPoseSE3(W) file is also used for the upload of

the newly obtained information onto the pose pt table in the MEP-Database,

in order to keep track of this cleaning step.

3.6.4 GNSS Correction Phase

The insertion of the Fusion corrected points makes the GNSS correction

trigger start the correction. At this moment, all the information about the

building and highway positions (obtained addressing the OSM database)

cooperates to project building-overlapping points into more a reasonable

location along the proximity of the building’s perimeter.

The general operative workflow of the GNSS correction is outlined in

Figure 3.16. It shows the sequence of the steps adapted specifically for the

MEP-Workflow, and the operations required to correct tables within the

MEP-Database. Those tables will be later supplied to the GNSS algorithm

to actuate the correction. The different tables keeps track of all the different

elements according to the geometric types defined by the PostGis framework,

explained in details in Section 3.4.

MEP-Clusterpath algorithm elaborations take advantage of the cleaning

operations giving a chance to operate in suitable conditions. The quality

level of results strictly depends on the data collection. For this reason avoid-

ing, or at least reducing, the effect of outliers and missing values represent

a benefit for the algorithm computation. The MEP-Clusterpath algorithm

will be described in details in Chapter 4.

73

Figure 3.16: GNSS correction workflow adopted in order to keep updated the

tables public.building area, public.building perimeter, public.building segment, pub-

lic.highway segment. These tables contains all the data required for the application

of the GNSS “outside-building” projection. We decide here to represent also the pop-

ulation of the four tables underlying the GNSS correction although the correction take

place when the new points from the Fusion correction come into the MEP-Database.

74

Chapter 4

The MEP-Clusterpath

Algorithm

“Camminare è un mezzo, non un fine.”

Angela Gambirasio

4.1 Algorithm Preparation and Definitions

The MEP-Clusterpath algorithm has the main purpose in the perfect inte-

gration with the different elements of the MEP project workflow. Computa-

tional and memory resources are shared between different algorithms. Hence

each element has to interact with each other, and the complete tool set must

not exceed the machine’s possibilities. A suitable trade off between results’

accuracy and lightweight computations represents the final purpose of the

optimization process. Optimal policies’ definition and tuning of parameters

must take care of all the different aspects allowing to free resources as soon

as they are no more required.

The cluster thread is activated at the beginning of the program and it is

maintained alive for the whole program life, cooperating with the database

which stores the queue of the cities that have to be processed. The MEP-

Database contains a properly designed “clustering queue” table (precisely

the cluster queue table) in order to keep track of the cities already clustered,

and the ones over which the clustering has to be repeated. This happens

when newly uploaded points change accessibility definition of a particular

area introducing new data to the collection. A priority index between the

different cities contained into the MEP-Database describes the level of rele-

vance that we want to attribute to a particular element. Precisely, it resides

into a column of the cluster queue table.

The thread synchronizes a local queue at its initialization and period-

ically updates it by monitoring changes of the corresponding table. The

table get updated every time a user uploads a new acquisition. This process

is totally automatic thanks to a trigger on the raw-gps-point table:

• If the acquisition’s location already constitutes a row into the clus-

ter queue table and it has already been processed, then the boolean

cluster-repeat flag gets the TRUE value, by meaning that the cluster-

ing process must be repeated as soon as possible, including the newer

data.

• If the acquisition’s location does not corresponds to any row of the

cluster queue table, then it gets included within the queue with the

boolean cluster parameter equal to FALSE, and the cluster-repeat flag

equal to TRUE.

The queue collects the complete information’s set of the processing phase.

On the other hand the local queue stores only those elements whose acces-

sibility level has not been defined yet or the ones that display outdated

information due to new uploads modifying the accessibility of a particular

area.

The composition of the data set starts with the pop of an item from the

local queue: this new element goes into a query that retrieves all the points

related to a city from the MEP-Database. Results that come out from the

query build the complete data set related to that city, and they summarize

the most updated information available for the computation.

At this point two possible choices rise up:

• Randomize the data set, i.e, shuffling the collection.

• Leave the data set as is to reflect the order relations which characterize

the paths’ points.

MEP-Clusterpath strictly relies on the Adaptive Incremental Growing

Neural Gas Network(AING) algorithm discussed in Section 2.5.2, with slightly

modifications in order to adapt to geospatial/geographic datum. The choice

of the AING algorithm, as starting point of the development of the MEP-

Clusterpath algorithm, arises from its high flexibility and degree of adapta-

tion upon many different classes of data.

76

4.1.1 Nodes, Arc and Graph

We expect the learning process to produce a graph. We know from graph

theory that a graph is a structure amounting to a set of objects in which some

pairs are related according to a particular characteristic. In particular these

objects corresponds to mathematical abstractions, i.e., nodes, and elements’

pairs connection denoted through the term edge [35].

Python’s MDP library contains basic definitions and implementations

of the concept of Node, Edge, and Graph. For the MEP-Clusterpath imple-

mentation we devise two extensions for the Node’s concept producing two

nodes’ type:

• Neuron: contains in-coming and out-coming arcs to neighboring neu-

rons and out-coming arcs to samples. They rise as the meaningful rep-

resentative points for the accessibility representation of a given area.

• Sample: contains only one in-coming edge from the neuron they are

related to. As opposite to Neuron, they cannot display any out-going

arc.

Two more arc’s types can be defined:

• NeuronEdge: they realize the neuron-to-neuron link, where the corre-

sponding age parameter keeps track of the edge’s seniority.

• SampleEdge: they realize the neuron-to-sample connection. As oppo-

site to NeuronEdges, they do not contain the concept of edge’s senior-

ity, but they are only adopted to keep track of the samples referring

to a particular node.

We adopt this separate edges’ specialization into different objects in order

to take advantage of the two elements’ different characteristics. Within

the graph, nodes can be connected to each other relating different groups

of samples with neighboring ones. During the training phase the graph

representing the accessibility topology keeps updated through the merging

process, responsible for the removal of old-fashioned links. In particular, the

algorithm frequently drops and creates NeuronEdges throughout the differ-

ent iteration, while it preserves the SampleEdges instead. In fact, they can

only be caught to some other node during the merging procedure, but the

total number of Samples supplied to the algorithm equals the number of

Samples contained into the final graph. As a consequence of the specializa-

tion of this two new concepts, also the graph’s one must be updated and

expanded accordingly in order to contain these new elements, producing the

ExtendedGraph object.

77

4.2 The MEP-Clusterpath Algorithm

4.2.1 Initialization

Algorithm’s initialization starts by defining an empty graph g. The graph

can be initialized with two points randomly chosen from the input data

frame that corresponds to the first two nodes of the g. When no point’s

pair constitutes the initialization, two random defined nodes join g. Other

parameters may optionally participate to the algorithm’s initial phase and

their definition is fundamental to reach a suitable operative point in rea-

sonable time. If they are not externally assigned, they will assume default

values.

In particular they are:

• maxage, i.e, the maximum age that an edge can assume, before the

graph merging/reshaping procedure eliminates it.

• maxnodes, i.e., the maximum number of nodes characterizing the built

of the output topology.

• d, i.e., the mean distance estimate of all the existing neurons with

respect to the center of-mass of the observed data-points.

• dmin, i.e., the minimum distance which can be tolerated between two

different nodes.

Tuning of maxage parameter reflects the desired relevance which we want

to attribute to younger edges with respect to elder ones: each time an input

point hooks to a neuron, the edges emanating from the neuron itself in-

crease the corresponding age value. The age can increase up to a maximum

value, and when it overpasses this superimposed threshold, the network

gets reshaped removing the edge which gets through maxage. This expedi-

ent makes the network always preferring newer information with respect to

old-fashioned ones.

The d parameter reflects the mean distance of the existing neurons with

respect to the center of-mass of the observed data-points and affects the

initial radius for the merging process to fuse neighboring neurons. Each

time the algorithm exceeds the maximum number of neurons, the parameter

k is updated incrementally by summing d. Once k has been incremented,

the merging process can be repeated. In such a way the probability to fuse

two nearest neurons becomes more reliable, and the neuron’s number can

level off to suitable values. Tuning the d parameter is crucial: low values

correspond to slow merge between item pairs, while high ones produce too

78

rapid merging between elements’ pairs. A suitable trade-off can be found

considering the half length of two successive points into a path as initial

value for d, so that it assumes values strictly based on the real data set.

The maxnodes parameter fixes the maximum number of nodes that the

algorithm can employ to produce the output topology. Tuning this value is

not trivial since it fixes the learning’s “deepness” that we want to obtain

in order to fit memory constraints or speed up computation. According to

2.5.2 the definition of the maxnodes cannot be easily found a priori through

a simple formula.

Our adaptation of the AING algorithm over geospatial data mitigates

the effect of maxnodes by introducing a new parameter, i.e., dmin. It prevents

the creation of neurons which exhibit too close coordinates with respect to

an existing one, i.e., its node-to-node distance is below an externally de-

fined threshold represented by the parameter dmin. We use it to tune the

minimum neurons’ density that we want to obtain for the final network’s rep-

resentation. Some considerations about the distance between two sequential

samples within a path help us to set this newly introduced parameter. Our

purpose is to discover the general accessibility topology of a city adopting

as input the users’ path, which exhibit an elongated structure by definition.

Graphs with nodes containing a single sample produce no knowledge. Our

work concentrates on the extraction of meaningful representative points de-

scribing the users’ collected routes. An approximate number for the dmin
parameter can be computed as twice the distance between two sequential

samples. With this adaptation, the topology’s representation exhibits a min-

imum density or granularity for the displacement of the neurons over the

city.

4.2.2 The MEP-Clusterpath Input Set

The input set for the MEP-Clusterpath algorithm is composed by a two

columns matrix containing latitude and longitude information. Elements’

pairs represent the coordinates in space of the GPS points.

In particular those points comes out from the different cleaning processes

depicted throughout Chapter 3 and they represent the suitable collection for

the MEP-Clusterpath. We can refer to these points as the minimum data-

block information, while others, such as timestamp, user name or email, do

not add further details. Final results are user-independent: they fuse data

coming from multiple users, acquisitions and days. Fused information turn

into a loss of the possibility to link the single point to the user who recorded

it.

79

(a) Input collection ob-

tained after the GNSS

correction for the city of

Cernobbio.

(b) Input collection ob-

tained after the GNSS

correction for the city of

Siena.

(c) Input collection ob-

tained after the GNSS

correction for the city of

Milano.

Figure 4.1: Three different real data collection referred to three different cities, i.e.,

Cernobbio, Siena and Milano respectively.

A further subdivision of the training set into smaller chunks makes the

elaboration easier, allowing incremental and multiple training phases. This

particular feature comes from the MDP python library presented in Section

3.5. This subsets collect two thousand points from the original collection

and they represent the input training set of the MEP-Clusterpath algorithm.

An example of input collection for the MEP-Clusterpath algorithm ap-

pears in Figures 4.1(a), 4.1(b) and 4.1(c). As we can see, the points collec-

tions over different cities are highly different between each others regarding

data heterogeneity and homogeneity. The algorithm has to be then per-

fectly adapted over different accessibility models, in order to characterize

the user’s experience along the recorded paths. Data quality also depends

on the device which perform the acquisition. For this reason we expect that

paths collected over different devices also exhibit different characteristics.

Further disturbing elements for the acquisition of GPS data are the urban

canyon. Many different ancient cities exhibit narrow buildings and tight

streets for military defense reasons. Nowadays we have other structures,

i.e., skyscrapers, characterized by huge glass facade, which constitutes urban

canyons. Urban canyons are the base unit through which the complex urban

morphology can be described and they appear to be particularly difficult for

the GPS sensors due to the inadequate satellite’s exposure.

Last but not least, we do also expect that not all users care about the

quality of data that they acquire. The project’s requirements demand for

80

(a) Raw data referred to Cernobbio. (b) GNSS correction over raw data

referred to Cernobbio.

Figure 4.2: Real examples of raw and cleaned data representation of Cernobbio coming

from the MEP-Database.

a continuous movement while the user records the GPS and sensors’ data.

When a user stops during the acquisition, we see that a measurement noise

affects the GPS samples which start turning around a position, producing

then a mass of points. This phenomena leads to a sub-optimal elaboration.

Figure 4.2(a) shows the data as they come from the MEP-Traces appli-

cation with no further processing, while Figure 4.2(b) clearly represents how

the GNSS process cleans the input data. In such a way the could become

an acceptable training set for the MEP-Clusterpath algorithm.

4.2.3 The MEP-Clusterpath Training Phase

The training phase of the algorithm loops on each chunk inspecting element

by element the complete collection: for each point x, the algorithm scans the

graph g and extracts the first and the second nearest nodes, with respect to

the x ’s coordinates. Each node stores locally its adaptive threshold obtained

in past steps. The thresholds’ computation relies on the set of samples (Xy)

and the set of neighboring nodes (Vy), according to the formula:

Ty =

∑
e∈Xy dist(y, e) +

∑
e∈Vy |Xe| × dist(y, e)

|Xy|+
∑

e∈Vy |Xe|
(4.1)

Graphical representation of threshold’s concept can be found in Figure

4.3. Thresholds’ value represent a trade-off between information locally

81

Figure 4.3: MEP-Clusterpath threshold definition reflects the one of the base AING

algorithm.

assigned to a neuron with respect to information contained into neighboring

neurons. Its design reflects a dynamic evolution of the network representing

the data supplied to the algorithm and the topology of the neurons.

Considering the thresholds corresponding to the two closest nodes, three

possible cases arise considering the coordinates of the input point with re-

spect to the training sample (presented in 2.5.2):

• 1st case. The input point x is far enough from n0, i.e., dist(x, n0) >

Tn0, and dist(x, n0) > dmin: a new neuron joins the graph g at the

sample’s coordinates, and a new sample joins the new neuron’s sample-

list. Finally the thresholds of the new node is updated accordingly.

• 2nd case. The input point x is close enough to n0 but far from n1,

i.e., dist(x, n1) > Tn1, and dist(x, n0) > dmin: a new neuron joins the

graph g at the sample’s coordinates, and a new link connects the new

node to n0. Finally the sample gets into the new neuron’s sample-list,

and the threshold of the node n0 is updated accordingly.

• 3rd case. The input point x is close enough to both n0 and n1 nodes,

i.e., dist(x, n1) < Tn1, Tn0: move n0 and its neighboring neurons

toward the input point x. Increase the age of n0’s emanating edges.

Then connect n0 and n1 with a new edge whose age is equal to 0.

Finally remove old edges from the graph if any, and update both n0
and n1’s thresholds accordingly.

Figure 4.4 graphically explores the three possible situations which arise

considering the position of the input point x. Algorithm 1 presents the

pseudo-code of the training step of the MEP-Clusterpath algorithm.

The base version of the AING algorithm (presented in Section 2.5.2)

avoids an indefinite growth of the graph’s dimension by shrinking the nodes’

82

Algorithm 1: MEP-Clusterpath Training Algorithm (maxnodes, d, dmin)

Initialize graph g with the two points input vector;

k = 0;

while Some input data-point x remain unread do

Get current data-point x;

Let n0 and n1 be the two nearest neurons from x in g;

Retrieve the thresholds Tn0 and Tn1 stored into the neuron’s

local space;

if dist(x, n0) > Tn0 ∧ dist(x, n0) > dmin then

g ← g ∪ {nnew/wnnew = x};
Add the sample to the ynew samples’ space;

else

if dist(x, n1) > Tn1 ∧ dist(x, n0) > dmin then

g ← g ∪ {nnew/wnnew = x};
Connect nnew to n0 by an edge of age 0;

Add the sample to the nnew samples’ space;

else

Increase the age of edges emanating from n0;

Let εb = 1
|Xn0 |

, εm = 1
100×|Xn0 |

;

wn0+ = εb × (x− wn0);

wnn+ = εn × (x− wnn), ∀nn ∈ Vn0 ;

Connect n0 to n1 by an edge of age 0, reset if it already

exists;

Remove old edges from g if any;

end

while Number of neurons in g > max neurons do

g ←Merging(k, g);

k = k + d;

end

end

end

83

n1

n2

Figure 4.4: Green square points correspond to the three possible cases based on the

distance of the point x with respect to first and second nearest nodes. The black

squares are the samples already assigned to a neuron node (blue circle points).

number within the bound expressed through the maxnodes parameter. When

the number of nodes overpass this threshold, a sub-call to the merging pro-

cedure reshapes the graph itself fusing nodes together according to a specif-

ically design probability (Section 4.2.4).

The adaptation presented in Algorithm 1 works under the assumption

that neurons’ geographical coordinates should not display an arbitrary close-

ness between each other. New neurons born if and only if their coordinates

preserve the minimum required distance imposed to the training algorithm.

Adopting this changes, our procedure rarely overpasses the maxnodes bound,

reducing then also the merging procedure sub-algorithm calls. Reduction of

merging invocations, turns at the same time into a lighter computation of the

final output topology and realizes also the desire to perform a dimensional

scaling. Compact representations of the graph produce more interpretable

models while describing all the relevant aspects through meaningful param-

eters.

We evaluate a suitable value for the parameter dmin estimating the dis-

tance between two succeeding points within the same path, obtaining the

order of magnitude of this new parameter. Our considerations of this pa-

rameter rely upon the fact that too close neurons represent the accessibility

of almost the same area. Validation of the results aims to get representations

of wide areas through simple points structures collecting all the accessibility

information conveyed by the inputs.

MEP-Clusterpath adaptation of the original AING algorithm prevents

the birth of nodes’ groups toward restricted areas, mitigating the negative

effects produced on the learning by the overfitting phenomena. In this way

84

the desired output topology’s granularity can be tuned modifying the dmin
parameter in order to obtain densities within an imposed range.

4.2.4 The Merging Procedure

The merging process starts by creating a new empty graph g̃. Two randomly

picked nodes get out from g ’s neuron list and come into the new graph g̃.

These two nodes accomplish to the same role of the initialization vector

supplied as input to the AING algorithm. Successively a new link in g̃

connects the new nodes with an age equal to 0.

In order to keep track of the node’s generation process throughout the

different reshaping sub-procedure, when a node moves from g to g̃, also its

samples have to migrate with him. In such a way, the number of samples

within the output topology is equal to the number of inputs supplied to the

algorithm.

The merging algorithm threats the g ’s neurons list as it were an input

data set: after the initialization, it explores the nodes y ∈ g and retrieves

the first and second nearest neurons in g̃, corresponding to ñ0 and ñ1. Each

node y contains the set of related samples (i.e., Xy) and the list of the edges

to neighboring neurons (i.e., Vy). A neuron y is considered to be far enough

from its nearest neuron ñ0 when the probability of the nodes y y not to be

assigned to ñ0 is large enough. This probability can be expressed according

to the formula:

Py,ỹ =
|Xy| × dist(y, ỹ)

k
(4.2)

Equation 4.2 computes the probabilities of the two nearest nodes as:

Py,ñ0 =
|Xy |×dist(y,ñ0)

k

Py,ñ1 =
|Xy |×dist(y,ñ1)

k .

(4.3)

The merging algorithm picks up a random number from a uniform distribu-

tion in 0 and 1. Once again there are three possibilities:

1. If the random number is lesser or equal than Py,ñ0 : add the node

coming from g to g̃, migrate the samples to the new node in g̃ and

update its threshold.

2. If the random number is lesser or equal than Py,ñ1 : add the node

coming from g to g̃ and link the new node with ñ0. Migrate the

samples from the node in g to the new one in g̃ and update both

thresholds of the new node and ñ0.

85

3. If both two previous conditions are not satisfied, y and its related

samples are included into the samples’ space of ñ0. Age of the edges

emanating from ñ0 increments, and its neighborhood is adapted to-

ward y. A new/reset link connects ñ0 to ñ1. Finally outdated edges

get removed.

When neurons’ number starts to increase, the merging process immedi-

ately reshapes the graph by fusing nodes which are considered to be close

enough each other. The final purpose of the merging procedure is the rep-

resentation of large areas identified by similar level of accessibility with a

small number of meaningful elements.

High costs comes from the necessity to build a new graph (i.e., g̃) start-

ing from scratch at each sub-call to the merging procedure. Even if the

merging process is optional and can be avoided by setting the max neurons

parameter to +∞, without merging, the graph’s dimension would exhibit

larger values. For this reason the max neurons parameter fixes the upper

bound on the elements’ number of the final topology in order to match the

memory constraints.

Once the merging process ends, g̃ substitutes to the outdated graph g.

The sub-call returns to the training which can continue the elaboration over

the input samples. The merging procedure pseudo-code can be found in

Algorithm 2.

Particularly relevant tuning parameters are the maxnodes and the d pa-

rameters. Higher values for maxnodes make the merging process more spo-

radic, i.e., invocations to the merging subprocess will becomes fewer with

respect to cases in which maxnodes assumes higher values. Avoiding the

merging process would produce lighter computations and an easier resource

management.

On the other hands, too low values for maxnodes parameter make the

merging process works harder on the graph trying to fuse together an high

number of nodes, in order satisfy dimensionality constraints. This intensive

operation demands for a huge amount of time and resources in terms of

power and memory consumption.

The definition of the d parameter is fundamental because it affects the

computation of the probabilities over which the merging process fuses to-

gether different neurons. Before the invocation of the merging algorithm,

the parameter k updates through the formula:

k = k + d, (4.4)

affecting the probability Py,ỹ =
|Xy |×dist(y,ỹ)

k . The assignment of the d pa-

rameter has to consider a trade-off between too long merging times and a

86

Algorithm 2: AING Merging Algorithm (k, g)

Initialize graph g̃ with two neurons chosen randomly from g;

while Some neuron y in the g’s neurons list remains unread;

do

Get current neuron node y;

Let ñ0 and ñ1 be the two nearest neurons from y in g̃;

Let d1 = dist(wy, wñ0) and d2 = dist(wy, wñ1);

Retrieve Xñ0 and Vñ0 ;

if randomuniform([0, 1]) < min
(
ny×d1
k , 1

)
then

g̃ ← g̃ ∪ {nnew/wnnew = x};
Migrate the samples from the old node in g to the new node in

g̃;

else

if randomuniform([0, 1]) < min
(
ny×d2
k , 1

)
then

g̃ ← g̃ ∪ {nnew/wnnew = y};
Connect nnew to ñ0 by an edge of age 0;

Migrate the samples from the old node in g to the new

node in g̃;

else
Migrate the samples from the old node in g to the new

node in g̃;

Increase the age of edges emanating from ñ0;

Let εb = 1
|Xñ0 |

, εn = 1
100×|Xñ0 |

;

wñ0+ = εb × (x− wñ0);

wñn+ = εn × (x− wñn), ∀nn ∈ Vñ0 ;

Connect ñ0 to ñ1 by an edge of age 0, reset if it already

exists;

Remove old edges from g̃ if any;

end

end

end

return g̃;

87

trivial underfitting of the network’s topology.

4.3 Neurons’ Heat Maps Representation

Heat maps are intuitive graphical data representations, where individual

values contained into a matrix can be described with colors. They’ve been

adopted in many different fields and their huge spread comes from their

incredible readability[37].

By representing each neurons’ samples-set as a Gaussian shaped curve,

we can extrapolate heat maps containing information about the cities’ ac-

cessibility.

In mathematics, a Gaussian function is a function of the form:

f(x) = a · e−
(x−b)2

2c2 ; (4.5)

with arbitrary real constants a, b and c. The graph of a Gaussian exhibits

a characteristic symmetric “bell curve” shape. The parameter a defines

the height of the curve’s peak, b is the center position of the peak and c

(the standard deviation) controls the width of the “bell”. Gaussian func-

tions are widely adopted in different fields such as statistics (the normal

distributions), signal processing (Gaussian filters), image processing (two-

dimensional Gaussian performs Gaussian blurs), and in mathematics (solve

heat equations and diffusion equations and to define the Weierstrass trans-

form). Gaussian functions arise by composing the exponential function with

a concave quadratic function. In two dimensions, the exponential e power

assumes any negative-definite quadratic form. Consequently, the level sets

of the Gaussian will always be ellipses. In particular a two-dimensional

Gaussian function can assume the form

f(x, y) = A · exp
(
−
(

(x− x0)2

2σ2x
+

(x− y0)2

2σ2y

))
. (4.6)

The coefficient A refers to the peak’s amplitude. The parameters x0, y0
correspond to the peak’s position, and σx,σy to the x and y blob’s spreads.

The plot of Expression 4.6 assumes the shape observed in Figure 4.5.

In general, a two dimensional elliptical Gaussian function assumes the

form:

f(x, y) = A · exp(−(a(x− x0)2 − 2b(x− x0)(y − y0) + c(y − y0)2)) (4.7)

where the matrix [
a b

b c

]
(4.8)

88

X

−6
−4

−2
0

2
4

6

Y

−6

−4

−2

0

2

4

6

Z

0.00

0.02

0.04

0.07

0.09

0.11

0.13

0.16

0.18

0.20

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 4.5: Two-dimensional representation of a generic Gaussian function.

is positive-definite.

For the general form of the Equation 4.7 we have to set parameter a, b

and c as:

a =
cos2(θ)

2σ2x
+
sin2(θ)

2σ2y
. (4.9)

b = −sin(2θ)

4σ2x
+
sin(2θ)

4σ2y
. (4.10)

c =
sin2(θ)

2σ2x
+
cos2(θ)

2σ2y
. (4.11)

in order to effectively produce a rotation within the blobs.

The computation of the orientation of the blobs is not trivial. We decide

to adopt the simple linear regression method to estimate the slope of the

straight line representing the main blob’s orientation. Each neuron stores

locally the list of the samples that generated a node. This set can be used

as input for the simple linear regression method.

Using such definitions the different areas can be represented through

blob-smoothed elements whose connection gives us the general accessibility

level of a city.

Algorithm 3 presents the pseudo code of algorithm adopted for the com-

putation of the complete heat maps layer of a city. It receives as input

the lists of neurons and obstacles. In particular, the neurons’ list contains

information related to the blobs’ position and orientation, while obstacles’

one collects the coordinates and the level of inaccessibility reported by the

89

Algorithm 3: HeatMapGridBuilder(neurons, obstacles)

Compute the boundary of the grid;

mlt = the minimum between neurons and obstacles’ latitude;

Mlt = the maximum between neurons and obstacles’ latitude;

mlg = the minimum between neurons and obstacles’ longitude;

Mlg = the maximum between neurons and obstacles’ longitude;

lat axis = linspace(mlt, Mlt, resolution);

long axis = linspace(mlg, Mlg, resolution);

neuron layer = len(lat axis)×len(long axis) grid of zero elements ;

obstacle layer = len(lat axis)×len(long axis) grid of zero elements ;

while Some neuron remains unread do

if σlat! = 0 and σlong! = 0 then
Compute the Gaussian function: gauss(long axis, lat axis,

µlong, µlat, σlong, σlat, θ, accessibility level);

end

Sum the current Gaussian to the neuron layer;

end

while Some obstacle remains unread do
Compute the Gaussian function: gauss(long axis, lat axis, µlong,

µlat, σlong, σlat, θ, accessibility level);

Sum the current Gaussian to the obstacle layer;

end

elevation = merge the two layer, i.e., neuron layer, obstacle layer;

elevation = Radial Basis Function Interpolation of the elevation layer;

return the complete elevation grid;

90

user. As output, the algorithm produces a grid representing the accessibility

surface of the desired city.

91

92

Chapter 5

Experimental Results and

Validation

“Cè chi nella vita si fa strada a pugni e chi a parole: a volte è difficile capire

la differenza.”

Angela Gambirasio

In this chapter we summarize the results obtained from the MEP-Clusterpath

algorithm using the data collection conveyed by MEP-App and MEP-Traces.

As depicted throughout Chapters 3 and 4, the MEP-Clusterpath performs

an elaboration of the implicit and explicit data contained into the MEP-

Database server. Starting from raw data, the algorithm adopts different

cleaning techniques improving the quality of data supplied as input of the

MEP-Clusterpath algorithm.

Looking at Figure 5.1 its easy to see two possible patterns coming from

Cernobbio (Figure 5.1(a)) and Orta San Giulio (Figure 5.1(b)), over which

we decide to perform several experimentations.

Many clustering algorithms reveal to be very sensitive to the presence

of outliers within the training set. For this reasons we decide to apply a

variety of cleaning tasks, described throughout Chapter 3 in order to reach

a suitable data set. The reduction of the effects produced by the presence

of such disturbing elements is a fundamental step to obtain heterogeneous

and relevant results. MEP-Clusterpath algorithm (described in Chapter 4),

as well as AING(Section 2.5.2), is very sensitive to the presence of outliers

which would lead the algorithm to produce neurons over coordinates which

have not been ever recorded.

In Figures 5.2(a) and 5.2(b) the red points correspond to the raw GPS

data collected by users, while in green we represent the points corrected

(a) Raw data(red points) referred to

Cernobbio.

(b) Raw data(red points) referred to

Orta San Giulio.

Figure 5.1: Real examples of raw and cleaned data representation of Cernobbio and

Orta San Giulio coming from the MEP-Database.

(a) Raw (red points) and

GNSS-corrected(green points)

data comparison from Cernob-

bio’s urban canyon.

(b) Raw (red points) and

GNSS-corrected(green points)

data comparison from Siena’s

urban canyon.

Figure 5.2: The urban canyon problem around cities. In panel 5.2(a) Cernobbio recorded

data; in panel 5.2(b) an information’ slice from the city of Siena.

94

through the GNSS procedure. From these two Figures we can see how the

urban canyons negatively affect the recording of GPS information due to the

bouncing of the signal from one wall to another. Without a cleaning pre-

processing, the application of the MEP-Clusterpath algorithm would lead

to totally undesired results. Clusters’ resulting definitions based on data

affected by large measurements errors lead to detrimental results, because

they do not reflect the real path traveled by the user. Under the hypothesis

that implicit collections represent the accessible paths within a city, the

presence of outliers would brings neurons to move toward positions that do

not match the real accessibility of an area.

Considering all this aspects together, we adapt the MEP-Clusterpath al-

gorithm over different topological situations. A suitable learning over prob-

lematic areas can be obtained through the proper tuning of the algorithm’s

parameter. Our procedure reveal to be resilient over urban canyon, mitigat-

ing the effects of different issues encountered during the development of the

thesis. The tuning of parameters should be also performed over different

cities in order to validate the set up.

The application of the base version of the AING algorithm leads to re-

sults in Figure 5.3. The blue points represent the neurons displacement

over the area of Cernobbio. After the elaboration, we notice that some

nodes tend to group towards restricted areas. This neurons’ concentration

is somehow related to the overfitting phenomena, because more than one

neuron brings similar information with respect to neighboring ones. Wider

areas are then represented with a single point describing the level of ac-

cessibility. In particular, the red circled area (Figure 5.3(a)) highlights the

overcoming of this undesired phenomena. Again in Figure 5.3(b) the AING

algorithm identifies each input point as representative for the underlying

area. This method explains too closely the input samples bringing to the

overfitting phenomena (Section 2.2). In those cases it works too hard on the

supplied data set, trying to extract information which are not really present

inside the collection: the method stops to fit the real model and starts to

explain the intrinsic error of the training set instead. In our case the nodes

will contain no samples, except for the one that generated the neuron itself.

Representing each input point with a node is detrimental from the dimen-

sional scaling point of view: in those cases the algorithm does not perform

dimensional scaling at all.

The MEP-Clusterpath’s design and tuning tackles this problems in order

to avoid concentrations of neurons within tight areas. During the training

phase, the algorithm creates new nodes if and only if they preserve the min-

imum required granularity for the output topology as described in Section

95

(a) Slice coming from Cernobbio

where the base version of the AING

algorithm produces groups of unde-

sired neurons within restricted ar-

eas.

(b) Slice coming the clustering re-

sults obtained from the application

of the AING algorithm over inputs

of Novara.

Figure 5.3: Both slices represent two cases in which the AING algorithm produced sub-

optimal results. Into the left panel, blue points show the displacement of the neurons

Cernobbio. In particular, the red circle points out the area in which the AING algorithm

produced sub-optimal results. Into the right panel orange squares indicate the neurons’

position over Novara. Once again the algorithm fails to fuse information while creating

the accessibility topology of the city.

96

(a) Green points refers to the

raw GPS data collected by

users along their routes. Or-

ange points represent the neu-

rons’ displacement over the

area of Cernobbio.

(b) The orange points offer a

representation of the neurons

coordinates.

Figure 5.4: Neurons’ displacement in Cernobbio.

4.2.3. On the other hand the intervention of the merging procedure operates

a reshape of the graph, fusing together nodes when their number exceeds

the maximum granted to the algorithm to build the output topology. These

two different competing forces operate a trade-off between the accuracy of

the model an the computational effort required to produce it.

Figure 5.4 presents an example of how the fix of the minimum distance

parameter affects the final topology of a city. In Figure 5.3(a), we can see

how neurons (the orange square points) spread over Cernobbio city. This is

totally different with respect to displacement in Figure 5.3. The underlying

green points correspond to the training input supplied to the algorithm in

order to perform the learning of the accessibility’s topology, while the orange

points are the nodes obtained as output of the MEP-Clusterpath algorithm.

Thanks to these representations, we can see how the neurons effectively learn

the different routes collected by users.

Into Section 5.1 we will compare the performances obtained by testing

different setup of the algorithm offering also a detailed comparison between

the MEP-Clusterpath and the AING base version of the method.

97

5.1 Algorithms’ Performances

In this Section we present the analysis of the AING and the MEP-Clusterpath

algorithms performances, recorded during our tests. Several runs of the al-

gorithm with different settings produce results collected in Tables 5.1 and

5.2. In particular, we decide to focus our tests over a randomly extracted

subset of the complete collection related to Cernobbio. Our data set is com-

posed by 31432 points and joins data that come out from different users and

devices, cleaned through the Fusion and GNSS algorithms.

Table 5.1: Results obtained by testing all the possible settings configuration. Each

setting can be uniquely identified through a corresponding identification (id) number.

The column time refers to the time laps spent by the algorithm to produce the results.

The d parameter indicates the mean distance from all the existing neurons with respect

to the center of-mass of the observed data-points. The dmin parameter collects the

different values for the minimum granularity tested with our algorithm. The maxage
parameter fixes an upper bound seniority for the nodes links; by setting it to +∞, the

algorithm will never eliminate outdated links. Nodes’ number column collects the final

number of neurons produced by the algorithm.

id time d maxnodes maxage neurons num

1 19:17 5.00e-06 400 ∞ 385

2 30:23 5.00e-06 300 ∞ 293

3 27:00 5.00e-06 500 ∞ 469

4 06:51 5.00e-05 300 ∞ 237

5 07:52 5.00e-05 400 ∞ 374

6 08:12 5.00e-05 500 ∞ 385

7 06:52 5.00e-05 300 10 231

8 06:45 5.00e-05 400 20 328

9 09:41 5.00e-05 500 50 396

10 19:38 5.00e-06 300 10 289

11 17:17 5.00e-06 400 20 388

12 19:35 5.00e-06 500 50 478

13 17:00 5.00e-06 400 100 383

Table 5.1 collects what we obtained by several runs of the AING algo-

rithm over the sub data set. The maxnodes parameter calibrates the trade-off

between memory constraints and computational speed. As explained in Sec-

tion 2.5.2, its calibration is not trivial, and an automatic procedure to obtain

this fundamental parameter does not exist. For this reason we decide to test

three different values: 300, 400, and 500.

98

Figure 5.5: Detailed zoom of the AING’s weakness. Resulting nodes that characterize

a graph, may sometimes distribute over tight areas, leading to an undesired situation

of overlapping information.

Each of this three possible values, produces different neurons’ concentra-

tion over the area. Adopting 300, we force too many nodes to group together,

producing overly complex shapes which cannot be easily represented through

Gaussian blobs. On the other hand, too high values of maxnodes lead to

the uprise of the phenomena described beforehand: the algorithm does not

fuse enough information producing an unsatisfying topology. Values chose

close to 500 produce a suitable compromise between shapes complexity and

generalization, required for the subsequent heat map representation of the

Gaussian blobs (Section 5.2).

Focusing on d values in Table 5.1, we can state that values near 5.00e−5

make the algorithm faster with respect to the ones close to 5.00e−6. This

can be explained appealing to the fact that AING has to keep the nodes’

number within a predefined threshold. When they overpass this thresh-

old, the algorithm invokes the merging procedure to bring them back inside

the limits. The d parameter affects the merging procedure modifying the

probabilities that establish which nodes have to be fused together.

The max age parameter seems not to have any influence onto the results.

However we prefer to attribute more relevance to the latest samples coming

from the input data set.

Figure 5.5 shows a zoom of the area interested by too dense nodes con-

centration. This situation appears in almost all settings gathered in Table

5.1 and lead to an undesired situation, solved with the MEP-Clusterpath

algorithm.

In Table 5.2 we reported the results obtained by the application of the

MEP-Clusterpath algorithm. Despite low computational times, rows with

99

Table 5.2: Collection of results obtained by varying the parameters set of the MEP-

Clusterpath algorithm. We refer to each test through an id number which uniquely

indicates the parameters set that we employ for the test itself. All the described features

reflect the ones it Table 5.1 and they can be used to operate comparisons between

different settings for each algorithm, or evaluations between tunings of the two different

algorithms.

id time d d min maxnodes max age neuron’s num

1 03:16 5.00e-05 5.00e-04 300 inf 287

2 01:36 5.00e-05 5.00e-04 400 inf 291

3 01:13 5.00e-05 5.00e-04 500 inf 292

4 04:11 5.00e-05 5.00e-04 500 inf 287

5 03:04 5.00e-05 5.00e-05 300 inf 297

6 18:02 5.00e-06 5.00e-05 300 inf 300

7 16:49 5.00e-06 5.00e-05 500 inf 500

8 21:03 5.00e-06 5.00e-05 400 inf 396

9 20:40 5.00e-06 5.00e-05 500 10 497

10 20:04 5.00e-06 5.00e-05 500 20 495

11 21:40 5.00e-06 5.00e-05 400 20 397

12 39:56 5.00e-06 5.00e-05 300 20 299

13 30:36 5.00e-06 5.00e-05 300 10 299

14 20:44 5.00e-06 5.00e-05 400 100 395

id between 1 to 5 exhibit results characterized by poor quality: with high

values of d and dmin the algorithm fuses many neurons together which should

be kept separated instead. From Figure 5.6(a) we can see the uprise of this

problem, where each single neuron tries to represent a complex blob shape

which cannot be easily described through mean and variance. Too complex

geometrical representations produce no interesting results when we express

them through simpler shapes (such as Gaussian blobs). To overcome this

problem, we decide to concentrate upon topologies obtained with higher

number of nodes, which are supposed to represent smaller and simpler areas

with higher accuracy. With this expedient, we expect the algorithm to build

elementary Gaussian blobs over the topology learned above a specific city.

Table 5.2 underlines how parameters setting influences the computa-

tional time required by the algorithm to produce the neurons’ displacement

over the map. Lower values of d increase the number of invocations to the

merging algorithm, implying longer learning times. At each call to the merg-

ing subprocess, low d values make the algorithm fuse few nodes together per

100

time. As a consequence, to preserve the maximum number of nodes imposed

by maxnodes, the algorithm has to repeat the merging procedure more then

once.

The introduction of the dmin parameter forces the algorithm to observe a

minimum distance between neighboring neurons. Adopting too large values

(dmin = 5.00e−4) produces no relevant results. For this reason we consider

lower values (dmin = 5.00e−5) which produce the expected results from the

topology’s minimum granularity point of view.

Regarding the maxage parameter we change it from +∞ to a value be-

tween 10 to 100. We recall that the maxage parameter is responsible for the

trade-off between newly arrived information and the previous one. With a

value equal to +∞, the algorithm includes all the information into the com-

putation excluding the aged-edges removal procedure. On the other hand

integer values different from +∞ make the algorithm to forget the outdated

links. Considering the topologies obtained from different tests, we noticed

that different values assigned to the maxage parameter do no produce rele-

vant changes from one output to another. We decide anyway to give more

relevance to newer information, and, for this reason, we define it equal to

10 in order to reflect this intention.

Pictures in Figure 5.6 display some results obtained with different set-

tings of the parameters according to Table 5.2. We can see how the variation

of the parameters setting corresponds also to a different neurons’ displace-

ment all over the examined area. In Images 5.6(c) and 5.6(d), we decide to

leave also the GNSS corrected data as reference of the input data set, in or-

der to compare results between different settings. In particular image 5.6(a)

represents a situation in which the quality of the results is not satisfying

our expectations. We prefer displacements as the ones obtained in Figures

5.6(b), 5.6(c) and 5.6(d) instead.

Our aim is to obtain a suitable nodes disposition over the city’s area,

because it heavily affects the final heat map images produced by the al-

gorithm, starting from the output topology. The hard work performed on

the parameter set definition would be totally useless, unless the final images

satisfy the desired quality and readability criteria expected from heat maps.

We left the description of the final heat map images construction in Section

5.2, where we explain in details how the expected results are produced.

5.2 The MEP Heat Maps Representations

Starting from topologies obtained by the application of the MEP-Clusterpath

algorithm, we can graphically define a specific accessibility representation

101

(a) Results obtained with parame-

ter set corresponding to id=2.

(b) Results obtained with parame-

ter set corresponding to id=4.

(c) Results obtained with parame-

ter set corresponding to id=8.

(d) Results obtained with parame-

ter set corresponding to id=12.

Figure 5.6: Each panel presents the final topology arising with a different set of param-

eter. The “id” links the panel to the corresponding parameter set in Table 5.2. In such

a way its easy to compare the results obtained from different tunings.

102

for each city in order to build the related heat map. We design each node

within the graph to contain samples describing its neighboring area. Thanks

to this shrewdness, we are able to obtain the shape of the blob correspond-

ing to each node, according to what we described in Section 4.3, by simply

retrieving the associated samples.

Initially we present heat maps as result of the application of the base

version of the AING algorithm on the data recorded on Cernobbio, in order

to obtain some reference images over which we can evaluate the effectiveness

of our improvements. Figures 5.7(a) and 5.7(b) display heat maps obtained

from the same topology adopting a parameters setting corresponding to row

with id = 1, contained into Table 5.1. In details, Figure 5.7(a) offers a three

dimensional view of Cernobbio, while Figure 5.7(b) a simple two dimensional

one. These two images are particularly relevant because they highlights how

the blobs interacts each other, achieving the final goal to produce heat map

images which describes the accessibility of a given city. Blobs’ magnitude

in Figure 5.7(a) uniquely identifies the accessibility level discovered during

the learning process which can be successfully adopted to color the map.

The accessibility scale valid for both figures can be found in Figure 5.7(b).

Purple areas denote those which have not been covered by the mapping

process, and the transition flows from green (which marks accessible areas)

to red (indicating the presence of a critical issue coming from an obstacle or

barrier). The purple layer indicates the base unrecorded level. Higher red

peaks reflect the inaccessibility level experienced and subsequently noticed

by users.

We apply the MEP-Clusterpath over the same dataset producing results

depicted in panels in Figure 5.8. On the left-hand side, Figure 5.8(a) displays

a three dimensional representation of Cernobbio surface according to the

accessibility levels obtained by fusing the learned topology with the explicit

information conveyed by the users with MEP-Traces. On the right-hand

side, Figure 5.8(b) represents a two dimensional heat map of the same area

offering an interesting perspective of the whole surface of the city.

Comparing results obtained from the application of AING and MEP-

Clusterpath algorithms (presented in Figures 5.7 and 5.8), we can evaluate

virtues and vices of both.

We described the uprising of the phenomena in which the AING creates

uncontrolled neurons concentrations over tight areas. Even though from the

topology point of view they do not represent a critical issue, nevertheless

they could create a problem when we want to represent them through an

heat map. We notice that in those cases, the algorithm somehow fails to

fuse information regarding a specific area, and the neurons ends up con-

103

+4.

0

0.5

1.0

1.5

Acces

(a) Three dimensional representation of the accessibility topology obtained through the

AING algorithm over Cernobbio. The base layer collects the longitude and latitude of the

neurons over the surface, while the third axis expresses the level of accessibility of an area.

9.065 9.070 9.075

0.006

0.008

0.010

0.012

0.014

0.016

+4.583e1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Latitude

Longitude

(b) Two dimensional representation of the accessibility topology obtained through the

AING algorithm over Cernobbio. The two axis locate the longitude and latitude of the

nodes, while the coloring highlights the different accessibility levels.

Figure 5.7: Two and three dimensional heat maps representations of the accessibility

obtained by the application of the AING algorithm on the data contained into the

MEP-Database related to Cernobbio. Both panels represent the same input topology

from a different point of view. In particular, the accessibility scale valid for both figures

appears in Figure 5.7(b). Starting from 0 (unrecorded areas) the scale describes values

up to 4.

104

9.060

080

+4.

0.004

0.0

0.5

0

1.0

1.5

2.0

Access

(a) Three dimensional representation of MEP-Clusterpath algorithm results over Cernob-

bio. The base layer collects longitude and latitude of the neurons over the surface, while

third axis expresses the level of accessibility of an area.

9.065 9.070 9.075

0.006

0.008

0.010

0.012

0.014

0.016

+4.583e1

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Latitude

L
o
n
g
it
u
d
e

(b) Two dimensional representation of the MEP-Clusterpath algorithm results over Cer-

nobbio. The two axis locate the longitude and latitude of the nodes, while the coloring

highlights the different accessibility levels.

Figure 5.8: Heat maps referred to Cernobbio. In both figures the green blobs refer to

the accessible areas while the red peaks correspond to the places where an obstacle or

an inaccessible barrier has been encountered by a user. The lowest purple level instead

marks the areas with no reference path recorded by users.

105

taining just a single sample. With just one element, the samples variance

will be equal to 0 producing no blob at all. Those areas will get no color

representation for the accessibility.

The MEP-Clusterpath algorithm solves this problem by fixing a mini-

mum distance between nodes that forces the algorithm to fuse a minimum

amount of information. In this way there will be no neuron containing just

a single element, and it can be represented with ease through blob-shape

element.

5.3 Results Validation

As we describe in Section 2.2.1, the aims of unsupervised learning methods

is to perform a model’s inference describing the hidden structure from an

“unlabeled” set of data. This means that the training of this kind of methods

does not rely on any error signal back-propagating through the method in

order to improve the quality of the obtained results.

Classical examples of unsupervised learning, in both natural and artifi-

cial neural networks, usually rely on the Donald Hebb’s principle: neurons

that fire together wire together. Within Hebbian learning theory, connec-

tion reinforces irrespectively to a signal error. Specifically, they are the

product of the coincidence between action potentials of two different neu-

rons. Hebbian Learning underlies a range of cognitive functions, such as

pattern recognition and experiential learning. Among many neural network

models, the self-organizing maps (SOM)1 represents commonly adopted un-

supervised learning algorithms.

MEP-Clusterpath, according to unsupervised learning definition, does

not represent an exception: MEP-Database collects implicit and explicit

information coming from MEP-Traces and MEP-APP, but no a priori in-

formation about the accessibility-level of a given area. As consequence, also

the nodes position can’t be identified a priori and used for the algorithm

training. To build heat maps evaluating the local accessibility of a given

area, we compare our results according to how good and intuitive appear

their representations from a user perspective. First of heat maps must offer

an easy readable information to any kind of user. Even though we evalu-

ates some computational related parameter in terms of speed and memory

consumption, the final setup must satisfies the real users’ requirements.

Evaluation of the final results can be graphically performed tanks to

1As we describe in Section 2.5 self-organizing maps(SOM) are topographic organiza-

tions in neighboring locations within the map groups inputs with similar properties.

106

Figure 5.9: Resulting heat map obtained over the city of Cernobbio. Green shaded

areas locate the accessible areas within the city’s surface while the red blobs precisely

locate the inaccessibilities descending by the presence of an obstacle.

107

Figure 5.9. The overlap between cartographic and heat map obtained ac-

cording to the MEP-Clusterpath algorithm offers the desired representation

of the different areas within Cernobbio. In this case, we decide to remove

the purple color marking the unrecorded areas obtaining the visualization

of clear and intuitive maps. Users sampling process updates the definition

attributed to a given area and changes its level of accessibility.

Soundness of the results cannot be easily obtained due to the fact that the

MEP-Clusterpath algorithm is an unsupervised learning method. Validation

of the results is then left for future works and it represent a limit of this kind

of approach: in fact, it is not possible to define an a priori definition of the

accessibility level of an area. Local considerations can be performed through

a simple visual inspection of the map, considering areas whose accessibility

level can be verified personally.

5.4 The MEP APIs

Results obtained with the MEP-Clusterpath algorithm can be visualized

using MEP-APP, offering the accessibility maps to any user who requires

them. This application has been developed with the purpose to offer an

interactive two dimensional maps visualization of the information contained

into the MEP-Database, with no exception for the results obtained with the

MEP-Clusterpath algorithm. In Section 3.1 we defined how the users can

interact with the application, but we will now describe how we exchange the

information through the MEP-APIs.

Once the user demands information of a given city, MEP-APP performs

an http request to the MEP back-end server defining the boundary and all

the parameters required for the composition of the image that will constitute

the reply to the request. We address this specialized subprogram as MEP-

Heatmap-Visualizer: this piece of software gets into the APIs tool set, with

the aim of make available the information produced by the execution of the

MEP-Clusterpath algorithm.

We consider as a necessary constraint the fact that exists the possibility

in future that many different applications can use the MEP Apis to connect

with the MEP-Server in order to retrieve accessibilities information about

cities around the world. For this reason we imagine them as general as

possible in order to be robust over time. MEP-Heatmap-Visualizer does

also offer a three dimensional plot of the topologies discovered during the

learning process replaying to the different requests reaching the server.

The MEP’s APIs conclude the life cycle of the MEP-Clusterpath algo-

rithm which, starting from the input data coming from the two applications,

108

produces the results for the applications themselves.

109

110

Chapter 6

Conclusions

“Non chiederti solo cosa tu possa fare per il disabile, ma anche cosa il disabile

possa fare per te.”

Angela Gambirasio

According to World Healt Organization statistics, about 15% of the

world’s population, which represents over a billion people, presents some

form of physical disability or mobility impairments. This works represents

an initial step in the direction of building accessibility maps, i.e. carto-

graphic maps containing information about the accessibility of the cities

around the world. In particular the main purpose of the thesis is to develop

a totally automatic procedure to build heat maps, starting from the implicit

and explicit data conveyed by MEP-Traces and MEP-APP.

To reach the final goal we adopt different cleaning procedure to mitigate

the error which affects any existing sensor. For the data pre-processing, we

experiment two methods: the MEP-Fusion algorithm (Section 3.2), and the

GNSS trajectory correction (Section 3.3.3) algorithm. The first one performs

a sensor based GPS cleaning. The data extracted from the gyroscope, mag-

netometer, and accelerometer sensors get fused together in order to improve

the user’s localization into the recorded paths. The GNSS trajectory correc-

tion shifts those points that overlap with a building area toward the nearest

road. It uses the static information contained into the OpenStreetMap ser-

vice in order to operate at best.

A neural network approach executes the learning of the topology. The

method presented in this thesis, strictly relies on the Adaptive Incremen-

tal Neural Gas Network approach with some changes, in order to be able

elaborate the geographical datum. We do also propose an adaptation which

force the algorithm to suitably distribute the nodes over the surface that it

is going to be learned.

Finally we build heat maps combining data produced by the MEP-

Clusterpath algorithm, in order to visualize the obtained clustering results

with the accessibility zones into a city. All the interested citizens can partic-

ipate and offer their own contribution to the project, improving movements

quality of people affected by physical impairments. MEP-APP also offers

the access to the information the users contribute to, by visualizing the heat

maps produced as result of the MEP-Clusterpath algorithm.

We perform several tests in order to obtain a suitable parameters set for

our algorithm, and we devise an improvement of the base Adaptive Incre-

mental Neural Gas Network (AING) algorithm. MEP-Clusterpath allows to

define a minimum density for the nodes’ distribution to perform the learn-

ing of a particular area. This avoids the undesired situation of neurons

concentration within limited zone.

Our tests demonstrate how this problem must not be underestimated:

resulting heat maps poorly describe the accessibility of the area interested

by the phenomena.

Despite a rigorous validation approach is still missing, we obtain promis-

ing heat maps which demonstrate to be interpretable with ease by any kind

of user. The lack of a validation approach represents the main limit of our

approach, and we left it for future development as described in Section 6.1.

6.1 Future Works

The approach adopted to perform the task of topology learning falls into

the unsupervised learning methods set. For this reason, as we described

in Section 5.3, we were not able to validate the obtained results through a

rigorous procedure.

The presented approach still lacks a validation procedure of the topolo-

gies obtained through the MEP-Clusterpath algorithm, presented into this

work.

We suggest as a possible proposal the possibility to develop a crowd-

sourcing technique. Our idea is to leave this fundamental task to users who

perform mapping around cities using MEP-Traces. This could bring to pos-

sibly conflicting information, that should not anyway trusted blindly. Of

course users notifications should be mediated through specifically developed

statistical method. In this way, it would be possible to validate heat maps

produced by the MEP-Clusterpath adopting rigorous methods.

112

Other possible improvements can be obtained applying the Ramer-Douglas-

Peucker (RDP) [29] [28] algorithm which reduces the points number into a

segmented line. Given a curve composed by linear segments, the idea of the

algorithm is to find a more compact representation of the curve (in this case

denoted as Polyline) containing a subset of points which define the original

path. We expect that this algorithm could produce a further cleaning of the

input paths recorded with MEP-Traces.

113

Bibliography

[1] Hierarchical Clustering Algorithms. A tutorial on clustering algorithms.

Online][Cited: 24 04 2008.] http://home. dei. polimi. it/matteucc/Clus-

tering/tutorial html/hierarchical. html, 2013.

[2] Gianluca Bardaro, Ava Vali, Sara Comai, and Matteo Matteucci. Ac-

cessible urban routes reconstruction by fusing mobile sensors data. In

Proceedings of the 13th International Conference on Advances in Mo-

bile Computing and Multimedia, MoMM 2015, pages 84–92, New York,

NY, USA, 2015. ACM.

[3] Mohamed-Rafik Bouguelia, Yolande Belad, and Abdel Belad. An adap-

tive incremental clustering method based on the growing neural gas al-

gorithm. In Proceedings of the 2nd International Conference on Pattern

Recognition Applications and Methods, pages 42–49, 2013.

[4] Kenneth P Burnham and David Anderson. Model selection and multi-

model inference. A Pratical informatio-theoric approch. Sringer, 1229,

2003.

[5] Hong Chang and Dit-Yan Yeung. Robust path-based spectral clustering

with application to image segmentation. In Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages

278–285 Vol. 1, Oct 2005.

[6] Hong Chang and Dit-Yan Yeung. Robust path-based spectral cluster-

ing. Pattern Recognition, 41(1):191 – 203, 2008.

[7] Davide Antonio Cucci and Matteo Matteucci. On the development of a

generic multi-sensor fusion framework for robust odometry estimation.

Journal of Software Engineering for Robotics, 5(1):48–62, 2014.

[8] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classi-

fication (2Nd Edition). Wiley-Interscience, 2000.

115

[9] Bernd Fischer and Joachim M. Buhmann. Bagging for path-based clus-

tering. IEEE Trans. Pattern Anal. Mach. Intell., 25(11):1411–1415,

November 2003.

[10] Bernd Fischer, Thomas Zöller, and Joachim M. Buhmann. Path Based

Pairwise Data Clustering with Application to Texture Segmentation,

pages 235–250. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[11] Joel N Franklin. Matrix theory, 1993. Mineola: Dover Publications Inc,

1968.

[12] Bernd Fritzke. A growing neural gas network learns topologies. In

Advances in Neural Information Processing Systems 7, pages 625–632.

MIT Press, 1995.

[13] James E Gentle. Matrix algebra: theory, computations, and applications

in statistics. Springer Science & Business Media, 2007.

[14] Trevor J. Hastie, Robert John Tibshirani, and Jerome H. Friedman. The

elements of statistical learningFis : data mining, inference, and predic-

tion. Springer series in statistics. Springer, New York, 2009. Autres

impressions : 2011 (corr.), 2013 (7e corr.).

[15] Christopher C Heyde. Quasi-likelihood and its application: a general

approach to optimal parameter estimation. Springer Science & Business

Media, 2008.

[16] Frederick S Hillier. Introduction to operations research. Tata McGraw-

Hill Education, 2012.

[17] Anil K. Jain and Richard C. Dubes. Algorithms for clustering data.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[18] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-

rani. An Introduction to Statistical Learning: With Applications in

R. Springer Publishing Company, Incorporated, 2014.

[19] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source

scientific tools for Python, 2001–. [Online; accessed 2017-02-03].

[20] Sakis Kasampalis. Mastering Python Design Patterns. Packt Publish-

ing, 2015.

[21] Leslie Lamport. How to make a mulitprocessor computer that correctly

executes multiprocess programs. In Readings in computer architecture,

pages 574–575. Morgan Kaufmann Publishers Inc., 2000.

116

[22] Marco Negretti Ludovico Biagi. Correzione cartografica di traiettorie

gnss da periferiche a basso costo. feb 2016. Politecnico di Milano -

DICA - Polo Territoriale di Como.

[23] Claudia Maria Bauzer Medeiros. ADVANCED GEOGRAPHIC IN-

FORMATION SYSTEMS-Volume I. EOLSS Publications, 2009.

[24] Markus Neteler, Venkatesh Raghavan, et al. Advances in free software

geographic information systems. Journal of Informatics, 3(2), 2006.

[25] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clus-

tering: Analysis and an algorithm. In ADVANCES IN NEURAL IN-

FORMATION PROCESSING SYSTEMS, pages 849–856. MIT Press,

2001.

[26] Uyen T. V. Nguyen, Laurence A. F. Park, Liang Wang, and Kota-

giri Ramamohanarao. A Novel Path-Based Clustering Algorithm Using

Multi-dimensional Scaling, pages 280–290. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2009.

[27] Harun Pirim. A Minimum Spanning Tree Based Clustering Algorithm

for High Throughput Biological Data. PhD thesis, Mississippi State,

MS, USA, 2011. AAI3450335.

[28] D. K. Prasad, C. Quek, M. K. H. Leung, and S. Y. Cho. A parameter

independent line fitting method. In The First Asian Conference on

Pattern Recognition, pages 441–445, Nov 2011.

[29] Dilip K. Prasad, Maylor K.H. Leung, Chai Quek, and Siu-Yeung Cho.

A novel framework for making dominant point detection methods non-

parametric. Image and Vision Computing, 30(11):843 – 859, 2012.

[30] M. Matteucci F. Salice GOODTECHS ’16 S. Comai, E. De Bernardi.

Maps for easy paths (mep): Enriching maps with accessible paths using

mep traces. 2nd EAI International Conference on Smart Objects and

Technologies for Social Good, 30 novembre - 1 dicembre 2016, Venezia,

Italy, dec 2016.

[31] Bosch Sensortec. Bmi160, 2015. BST-BMI160-DS000-07.

[32] Noam Shental, Assaf Zomet, Tomer Hertz, and Yair Weiss. Pairwise

clustering and graphical models, 2003.

117

[33] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–905, August

2000.

[34] Paul Spivak. Gps controlled marine speedometer unit with multiple

operational modes, March 5 2002. US Patent 6,353,781.

[35] Richard J Trudeau. Introduction to graph theory (corrected, enlarged

republication. ed.), 1993.

[36] Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and

Computing, 17(4):395–416, 2007.

[37] Leland Wilkinson and Michael Friendly. The history of the cluster heat

map. The American Statistician, 63(2):179–184, 2009.

118

	Abstract
	Sommario
	Acknowledgements
	Introduction
	Thesis Contribution within the MEP-Project
	Structure of the Thesis

	State of the Art
	About statistical learning
	Reducible and Irreducible Errors

	Estimation of f
	Supervised vs. Unsupervised Learning
	Regression vs. Classification Problems

	Model Accuracy
	The Bias-Variance Trade-Off
	The Classification Setting

	Clustering
	Spectral Clustering
	Pairwise & Path-Based Clustering
	In between Spectral Clustering and Path-Based Clustering

	The Neural Gas Network Approach
	Growing Neural Gas Network
	Adaptive Incremental Growing Neural Gas Network

	Methods and Procedures
	The MEP Data Collections
	Implicit Data Collection
	Explicit Data Collection
	Issue and Requirements
	Android Sensor Framework

	The MEP-Fusion Engine
	The ROAMFREE Library

	Geodetic System
	Geodetic Coordinates
	Conversion
	Cartographic Correction of Global Navigation Satellite System Trajectories From Low Cost Devices

	PostgreSQL and PostGIS
	Python Programming Language & Libraries
	The MEP Project Workflow
	Decompression Phase
	Building and Highway Tables Population Phase
	MEP-Fusion Correction Phase
	GNSS Correction Phase

	The MEP-Clusterpath Algorithm
	Algorithm Preparation and Definitions
	Nodes, Arc and Graph

	The MEP-Clusterpath Algorithm
	Initialization
	The MEP-Clusterpath Input Set
	The MEP-Clusterpath Training Phase
	The Merging Procedure

	Neurons' Heat Maps Representation

	Experimental Results and Validation
	Algorithms' Performances
	The MEP Heat Maps Representations
	Results Validation
	The MEP APIs

	Conclusions
	Future Works

	Bibliography

