
POLITECNICO DI MILANO
Corso di Laurea MAGISTRALE in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Analysis of Different Footprints for

JPEG Compression Detection

Supervisor: Prof.Paolo Bestagini

Associate Supervisor: Dr.Luca Bondi

Tesi di Laurea di:

Chen Ke, matricola 833240

Anno Accademico 2016-2017

Abstract

Due to the wide availability of image editing software, it becomes more easy

for people to tamper with image content. This makes authentication of digital

images a problem of paramount importance for forensic researchers. There-

fore, a lot of methods have been proposed to detect tampering process, and

many of these algorithms are based on the analysis of traces left by JPEG

compression. As an important part of digital image forensics, JPEG com-

pression detection can be used to make a first judgment of the authenticity

of images.

In the light of this consideration, this thesis focuses on the analysis

of JPEG compression detection, i.e., the ability of blindly understanding

whether an image has been JPEG compressed or not from pixel analysis.

More specifically, in this work we focus on the analysis of two specific state-

of-the-art algorithms for JPEG compression detection: one based on pixel

domain analysis; another one based on Fourier transform domain analysis.

After proposing a modification that enhance the performance of one detector,

we compare all the implemented methods showing pros and cons of these

algorithms by means of a simulative campaign. Finally, in this work we also

propose a graphical user interface to enable non-expert forensic investigators

to use the implemented JPEG-based tools for image analysis.

1

Acknowledgment

I would first like to thank my thesis supervisor Prof. Paolo Bestagini of

the Department of Electronics, Informatics and Bioengineering at Politec-

nico di Milano, and assistant supervisor Dr. Luca Bondi of the Image and

Sound Processing Group (ISPL) at Politecnico di Milano. The doors to

Prof. Bestagini and Dr. Bondi office were always open whenever I ran into

a trouble spot or had a question about my research or writing. They con-

sistently allowed this paper to be my own work, but steered me in the right

the direction whenever they thought I needed it.

Finally, I must express my very profound gratitude to my parents and to

my girlfriend for providing me with unfailing support and continuous encour-

agement throughout my years of study and through the process of researching

and writing this thesis. This accomplishment would not have been possible

without them. Thank you.

3

Contents

Abstract 1

Acknowledgment 3

1 Introduction 13

1.1 Motivation Behind Image Forensics 13

1.2 Problem Statement and Contribution 15

1.3 Structure of the Thesis . 17

2 Background 19

2.1 JPEG Compression . 19

2.1.1 JPEG Introduction . 19

2.1.2 Luminance/Chrominance Space Transformation 20

2.1.3 Discrete Cosine Transform 21

2.1.4 Quantization . 23

2.1.5 Coding . 24

2.2 JPEG Forensics . 28

5

2.2.1 JPEG Compression Detection 29

2.2.2 JPEG Double Compression Detection 30

2.2.3 JPEG Multiple Compression Detection 36

2.2.4 Tampering Localization 37

3 JPEG Compression Detection 41

3.1 Pixel Domain Compression Detection 41

3.2 Pixel Domain Cropped Image Detection 46

3.3 Pixel Domain Improved Cropped Image Detection 48

3.4 Transform Domain Compression Detection 48

4 Implementation and GUI 53

4.1 Experimental Software . 53

4.2 Compressed Image Detector GUI Implementation 54

5 Experimental Results 57

5.1 Dataset Generation . 57

5.2 Evaluation Metrics . 59

5.3 JPEG Compression Detection With A Priori Grid Information 60

5.3.1 Pixel Domain Compression Detection 60

5.3.2 Transform Domain Compression Detection 61

5.4 JPEG Grid Position Estimation 64

5.5 JPEG compression detection in the wild 65

6

6 Conclusion and Future Works 67

Bibliography 69

7

8

List of Figures

1.1 Original and forged images of South Korea former leader Kim

Jong-il’s funeral. 14

2.1 Block Diagram of JPEG coding [1]. 20

2.2 Image 8× 8 partition [2]. 22

2.3 DCT Spectrum [2]. 22

2.4 Zig-zag scanning process [2]. 26

2.5 A-DJPG and NA-DJPG compression [3]. 31

2.6 probability distribution of first digits of block-DCT coefficients

[4]. 32

2.7 Effect of double-compression on histograms of absolute values

of DCT coefficients [5]. 33

2.8 Contour Comparison [6]. 35

2.9 JPEG multiple compression steps [7]. 36

2.10 Example of blockwise tamper detection [8]. 38

2.11 Application to realistic forgeries [9]. 39

3.1 For each block the number Z ′[i, j] = |A − B − C + D| and

Z ′′[i, j] = |E − F −G+H| [10]. 42

9

3.2 Histogram of K with different quality factors 10 and 30. 43

3.3 Histogram of K with different quality factors 50 and 70. 44

3.4 Histogram of K with different quality factors 90 and 100. . . . 45

3.5 Histograms of region I (within block) and II (across blocks)

and those difference. Top figure is related to QF 90, bottom

figure is related to QF 10. 46

3.6 Vertical and horizontal masks of Sobel operator [11]. 50

3.7 Sobel operator example [11]. 50

3.8 Basic concept of harmonic analysis [12]. 51

3.9 Harmonic analysis process for estimating blockiness [12]. . . . 52

4.1 Compression detection GUI 56

5.1 UCID . 58

5.2 Image datasets with different QF by using IrfanView 59

5.3 ROC of compress image datasets and compressed & cropped

image datasets with pixel domain compression detection. . . . 61

5.4 Same image with different QF implemented by transform do-

main compression detection. 62

5.5 ROC curve for all proposed methods. 63

5.6 Histogram of result of cropped image detection algorithm. . . 64

5.7 Accuracy of old D21 and improved D21 (alternative 1 is old

D21, and alternative 2 is improved D21). 66

10

List of Tables

2.1 Intermediate format of DC coefficients 25

2.2 Intermediate format of DC coefficients 28

4.1 Implementation software . 54

5.1 Unranked retrieval . 60

5.2 Method combinations of transform domain compression detec-

tion . 62

11

12

Chapter 1

Introduction

1.1 Motivation Behind Image Forensics

With the progress of time, technology is changing rapidly and all linked costs

are constantly decreasing. Therefore, digital cameras, printing and scanning

equipment have started to spread. For this reason, digital images have be-

come part of our everyday life. In the meanwhile, the possibilities opened by

digital image processing and editing software suites (e.g., Photoshop, Light-

room, etc.) enable to perform very complex tampering operations. There-

fore, it is becoming more difficult to distinguish tampered image by human

eyes inspection. In particular, every picture we see instill so many doubts

about its authenticity. Indeed, nowadays we often ask ourselves whether an

image has been tampered with before, or if it is reliable and authentic. Even

knowing that the image has been forged, which operations have been applied

to the tampered image often remains a doubt [13].

In the present society, any users of personal computer and portable

platform (mobile and tablet) can easily tamper the image due to the low-

cost digital image intake devices and the popularity of powerful image editing

software. Simultaneously, the powerful communication ability of Internet

supplies abundant software and image resource for digital image tampering.

With a lot of images being used in the newspaper, image fraud and

tampering still exist despite repeated bans. Just to mention an example, In

2011, a group of photos of Kim Jong-il’s funeral reports the funeral scene

of the former leader Kim Jong-il of South Korea. From the top image in

Figure 1.1 reported by Japanese media, it is obvious that there is a group

of people surrounding a camera on the bottom-left corner, but those people

and camera have been removed from the photo in the bottom picture in

Figure 1.1, which was taken by North Korea media.

Figure 1.1: Original and forged images of South Korea former leader Kim Jong-il’s

funeral.

Let us imagine that such a fraud image appears in court of law as ev-

14

idence. In this situation, it may lead to misjudgments and incorrect court

results. Therefore, it is essential to find a way to analyze digital images with

scientific way from a forensic perspective. To solve this issue, the forensic

community has developed several algorithms to fight image tampering [3].

These algorithms work under the assumption that, every time an image is

modified through editing operations, some characteristic footprints are left

on the picture itself. Therefore, it is possible to analyze an image to assess

the presence of these footprints, thus detecting tampering.

As one of the most commonly used non-invertible operations leaving

footprints on images is JPEG compression [10, 14], in this thesis we focus on

forensic methodologies able to detect the presence of JPEG compression on

an image.

1.2 Problem Statement and Contribution

Digital image tampering forensics is an important branch of the field of dig-

ital forensics. It involves a variety of forensic techniques that are used for

digital image authenticity analysis, detection and identification. JPEG-based

forensics is an important part of digital image forensics, as JPEG compres-

sion is widely accepted as commonly used compression scheme. Therefore,

traces left by JPEG compression can be often exploited to reconstruct the

past history of an image and detect the use of possible tampering operations.

It is undeniable that continuously developing forensic technologies and

algorithms have brought tremendous influence and enhancement on digital

image forensics, especially in JPEG compression detection [3]. In particular,

we can roughly split JPEG-based forensic methods into two categories: i)

algorithms to detect the use of JPEG compression on an image [14, 15]; ii)

algorithms to estimate JPEG parameters (e.g., quantization matrix) from an

image which is known to be JPEG compressed [10].

In this thesis, we focus on the first class of algorithms. In particular,

we analyze methods for JPEG compression detection. This means, given

an image in the pixel domain, detect whether this image has been JPEG

compressed, not using any information from the header.

15

Being able to solve this problem is useful in many application scenarios.

As an example, in the context of professional photography, it is possible to

detect whether an image is a real raw picture coming from a camera, or it is

a lower quality compressed one. Moreover, it is possible to detect whether

JPEG compression has been applied only to a portion of an image. This

happens when a portion of JPEG image is copied and pasted onto a raw

(e.g., bitmap, PNG, TIFF, etc.) image. Therefore, the ability of detecting

JPEG compression paves the way to the development of image tampering

detection methods.

Despite a set of methodologies to detect JPEG compression has been

proposed in the literature [10, 14], some questions still remain unanswered.

As a matter of fact, a common implementation of many algorithms is not

readily available. Moreover, different algorithms have been tested on different

datasets in different conditions. This makes difficult to choose which method

to select in case of forensic analysis. For instance, after the implementation of

one algorithm, it is necessary to analyze the result of the algorithm and make

hypothesis that whether this algorithm can handle different types of JPEG

image such as aligned compressed JPEG image and non-aligned compressed

JPEG image.

Furthermore, we have mentioned in previous section that any user of per-

sonal computer and portable platform (mobile and tablet) can easily tamper

with images due to the low-cost digital image intake devices and the popu-

larity of powerful image editing software. Thus, it would be preferable that

non-expert forensic investigators could perform their analysis with some easy-

to-use tools. However, great part of the forensic algorithms proposed in the

literature remain confined for expert people in the field.

From this premises, in this thesis we

• Implement of a set of state-of-the-art algorithms [10, 14, 6] for JPEG

compression detection.

• Test and analyze these algorithm for JPEG compression detection,

highlighting their pros and cons on a common dataset.

• Propose a modification that enhance the performance of [10, 14].

16

• Propose a methodology for merging results from different detectors.

• Build a GUI with those algorithms to enable non-expert forensic inves-

tigators to use these tools for JPEG image analysis.

1.3 Structure of the Thesis

The rest of the thesis is structured as it follows.

In Chapter 2, we focus our attention on the background and mecha-

nisms of JPEG compression and JPEG forensics. In terms of JPEG com-

pression, we will introduce the specific processes of JPEG compression such

as luminance and chrominance transformation, DCT, Quantization, Zig-zag

scanning and entropy coding. As far as JPEG forensics is concerned, we are

going to give brief formulation and corresponding state-of-the-art algorithms

and methods of JPEG compression detection, JPEG double compression de-

tection, JPEG multiple compression detection and tampering localization.

In Chapter 3, a subset of chosen state-of-the-art algorithms and methods

for JPEG compression detection will be discussed in detail. Three algorithms

of JPEG compression detection will be proposed, two of them are committed

to JPEG grid alignment, the last one is going to estimating the grid location.

In this chapter we also provide details about our proposed modification to

[10, 14].

In Chapter 4, we explain how to implement the above algorithms pro-

posed in Chapter 3. In order to achieve the last objective, we will give

the explanation and functional requirements of JPEG compression detection

GUI.

In Chapter 5, we gather all simulations and experimental results in order

to analyze the pros and cons of the implemented algorithms, together with

our proposal.

In Chapter 6, we will present an overall view of conclusion about the

achieved objectives and give possible future works.

17

18

Chapter 2

Background

In this chapter, we introduce the background and mechanism of JPEG com-

pression and JPEG forensics. In terms of JPEG compression, we will discuss

what are the mechanisms like luminance and chrominance transformation,

DCT, Quantization, Zig-zag scanning and entropy coding and explain one

example of JPEG compression as well. Concerning JPEG forensics, we are

going to discuss JPEG compression detection, JPEG double compression de-

tection, JPEG multiple compression detection and tampering localization.

For each of these topics we briefly introduce how state-of-the-art methods

work.

2.1 JPEG Compression

In this section, we introduce in detail how JPEG compression works and

what processes have been used in each step. In the last, we give an example

that how to compress an image to JPEG.

2.1.1 JPEG Introduction

JPEG stands for Joint Photographic Experts Group, and it is one of two

sub-groups of ISO/IEC Joint Technical Committee, being responsible for the

development of the well-known digital image compression standard also called

JPEG. JPEG coding is the most widespread standard for representation of

still images. JPEG is widely used today and a very flexible digital photograph

compression standard. It could be lossy as well as lossless. The technique

we are going to discuss hereinafter is the lossy one. In particular, JPEG

compression process follows the steps depicted in Figure 2.1, and detailed in

the following:

1. First an image is converted into YCbCr colorspace and split into blocks.

2. Each block is transformed through Discrete Cosine Transform (DCT).

3. DCT coefficients are quantized according to some quantization rules to

be defined.

4. Encode and pack into bit-stream.

Figure 2.1: Block Diagram of JPEG coding [1].

2.1.2 Luminance/Chrominance Space Transformation

JPEG uses YCbCr luminance and chrominance space, but images are often

available in RGB color space. Therefore, an image is first transformed from

20

RGB into luminance/chrominance space(YCbCr) before it is compressed. In

YCbCr, Y stands for luminance, I and Q stand for chrominance. The two

chrominance channels(Cb and Cr) are typically subsampled by a factor of two

relative to the luminance channel(Y). And the transformation relationship

between RGB and YCbCr are:

Y = 0.299R + 0587G+ 0.114B

Cb = −0.1687R− 0.3313G− 0.5B + 128

Cr = 0.5R− 0.418G− 0.0813B + 128

2.1.3 Discrete Cosine Transform

DCT (Discrete Cosine Transform), is a linear transformation commonly used

in transform coding methods. Each channel is then partitioned into 8 × 8

pixel blocks. These values are converted from unsigned to signed integers (e.g.

from [0, 255] to [-128, 127]) as shown in Figure 2.2. JPEG first partitioned an

image into 8× 8 non overlapping pixel blocks, then execute DCT operation

for 8× 8 pixel blocks one by one. Recall that the encoding of a JPEG image

need DCT and decoding of a JPEG image need inverse DCT.

The DCT formula is

F [i, j] = C[i, j]
7∑

x=0

7∑
y=0

f [x, y] cos

[
(2x+ 1)iπ

16

]
cos

[
(2y + 1)jπ

16

]
, (2.1)

where f [x, y] is a pixel in a 8× 8 image block, i and j are DCT frequencies,

and C[i, j] is a normalization term.

The DCT basic spectrum consist of an 8 × 8 array as shown in Figure

2.3, with each element in the array being an amplitude of one of the 64

basis functions. Six of these functions are shown here, referenced where the

corresponding amplitude resides

21

Figure 2.2: Image 8× 8 partition [2].

Figure 2.3: DCT Spectrum [2].

22

2.1.4 Quantization

Quantization is the process of converting a continuous range of infinitely

many values into a finite discrete set of all possible values. The quantization

process generally approximates the input set into preferably smaller set. The

advantage of quantization is that it decreases the number of bits required for

storing and transmitting the data.

Quantization is a lossy and non-reversible process since it involves round-

ing off and discarding negligible entities. The inverse quantization does not

generate the same object which was fed to a quantizer. Whatever is lost is

often modeled by an additive quantization noise.

Quantization matrices are used for defining the quantization process.

Assuming Q[i, j] is the quantizer matrix, every time a matrix of DCT co-

efficient, we call it F [i, j], is encountered, it’s divided by quantizer matrix

Q[i, j] and rounded to obtain quantized matrix Fq[i, j]. Formally, quantiza-

tion equation can be given as Fq[i, j] = round(F [i, j]/Q[i, j]). The inverse

quantization equation is F ′[i, j] = Fq[i, j] ∗Q[i, j].

An example, if we consider the matrix of DCT coefficients:

F [i, j] =

−415 −33 −58 35 58 −51 −15 −12

5 −34 49 18 27 1 −5 3

−46 14 80 −35 −50 19 7 −18

−53 21 34 −20 2 34 36 12

9 −2 9 −5 −32 −15 45 37

−8 15 −16 7 −8 11 4 7

19 −28 −2 −26 −2 7 −44 −21

18 25 −12 −44 35 48 −37 −3

23

and the Quantizer Matrix:

Q[i, j] =

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

we get the following quantized matrix:

Fq[i, j] =

−26 −3 −6 2 2 −1 0 0

0 −3 4 1 1 0 0 0

−3 1 5 −1 −1 0 0 0

−4 1 2 −1 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

which will be further processed by the next JPEG standard steps.

Notice that, in order to control the trade-off between image quality and

compression rate, quantization matrices can be scaled by a quality factor

(QF). In doing so, DCT coefficients can be strongly (or lightly) quantized,

thus generating a worse (or better) quality image. Higher QFs denote higher

quality. Conversely, lower QFs denote lower quality.

2.1.5 Coding

In order to further compress quantized coefficients, JPEG standards makes

use of different lossless coding techniques on direct current (DC) and alter-

nating components (AC) coefficients. Specifically, Differential Pulse Code

Modulation (DPCM) and Run Length Encoding (RLE) are used, respec-

tively.

24

After DCT and quantization, the DC coefficients of 8× 8 image blocks

have two characteristics: the values of the coefficients are relatively large and

the DC coefficient values of the adjacent 8×8 image blocks do not change too

much. Therefore, DC coefficients are coded using DPCM (Difference Pulse

Code Modulation) based on those two features, that’s encoding of difference

between each DC value of the same image component and the previous DC

value, rather than storing DC actual values.

To save more space in JPEG, it groups 16 sets based on the values of

data instead of saving the exact value of data and called it VLC (Variable

Length Coding). VLC is the process of mapping the input symbols into codes

of variable lengths. This enables us to compress the symbols without any

error.

Intermediate format of DC coefficients. We mentioned in last

paragraph that there is a difference between two DC values, we can check

this value in Table 2.1. For example, if the difference between two DC values

is 3, it is obvious that integer 3 located in set 2, thus its format can be written

as (2)(3) , and this format is called intermediate format of DC coefficients.

Value Set Actual saved value

0 0 -

-1, 1 1 0, 1

-3, -2, 2, 3 2 00, 01, 10, 11

-7, -6, -5, -4, 4, 5, 6, 7 3 000, 001. . . .111

-15,, -8, 8,, 15 4 0000,, 0111, 1000,

. . . ., 1111
-31,, -16, 16,,

31

5 00000, ,11111

-63,. . . .,-32, 32,. . . , 63 6 ...

...

-32767,. 15 ...

Table 2.1: Intermediate format of DC coefficients

Concerning AC coefficients, JPEG exploits the fact that many of them

are quantized to zero and makes use of RLE (Run Length Encoding). And

Zig-zag scanning is going to be implemented.

25

We know that the most AC values in a quantized matrix are zero [16]

. Zig-zag is an approach that can be used to gather more numbers of zeros

together. Zig-zag scanning groups low frequency coefficients before the high

frequency coefficients. If the process stores 64 numbers column by column,

thus there is no relationship between last node of current column and first

node of next column. So, this ‘Z’ processes serialize the matrix into a string

from left-top corner and this process as shown in Figure 2.4

Figure 2.4: Zig-zag scanning process [2].

RLE (Run Length Encoding) is a lossless compression technique of en-

coding data where consecutively occurring entities are represented only once

with a symbol along with frequency. The original sequence is transformed

into a smaller run with data values and their count, thus enabling compres-

sion. RLE is an approach that is suitable for all kinds of information, text

or binary.

An example of RLE is the following. Let us consider the input sequence

of symbols: AAABBBBBBBCCCCCDDDDDEEFFFGGGGG

Using Run Length Coding, they become: 3A7B5C5D2E3F5G

Another example of RLE that only compresses consecutive zeros is as fol-

lows. Let us consider the input symbols: 0000010000000000010001011000000000000

26

Counting the number of zeros separated by 1’s: 5 11 3 1 0 12 and in

4-bit code representation, the run length encoding is: 0101 1011 0011 0001

0000 1100.

Intermediate format of AC coefficients. Let us input a string:

57,45,0,0,0,0,23,0,-30,-8,0,0,1,000...... After the processing of RLE, we get

the data with this format: (0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-8) ; (2,1) ;

(0,0). Then process the right-side data of the data in pair and then implement

it with VLC table. For instance, we found that value 57 located in set 6,

therefore, the format of this data can be written as (0,6), 57 and named it

as intermediate format of AC coefficients.

To further compress the data, it’s necessary to entropy the DPCM and

RLE. JPEG standard specifies two entropy coding methods which are Huff-

man coding and arithmetic coding. Huffman coding defines that a binary

code having a shorter character length is assigned to a character having a

large probability of occurrence, and a binary code having a longer character

length is assigned to a character having a small probability of occurrence, so

that average encoding length of the character is shortest.

DC coefficients and AC coefficients are using different Huffman table

when Huffman coding is being processed, and using different Huffman table

based on luminance and chrominance components. Therefore, JPEG defines

four Huffman coding tables to complete the work of entropy coding.

To better clarify this concept, let us now see an example. Let’s assume

that we already got matrix of quantized 8× 8 image blocks:

M =

15 0 −1 0 0 0 0 0

−2 −1 0 0 0 0 0 0

−1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

It’s obvious that DC coefficient is 15, assume that previous quantized

DC coefficient value of 8 × 8 image block is 12, then the difference between

27

current DC coefficient and previous DC coefficient is 3, it’s easy to find the

intermediate format of DC coefficient is (2)(3) based on VLC coding table,

it means the code length of number 3 is 2. After Zig-zag scanning, we found

that the first non-zero AC coefficient value is -2, and zero is 1, then it can

be presented to (1, -2) and belonging to set 2 in VLC table. Thus, the

intermediate format of AC coefficient is (1, 2) -2, and repeat those steps

for left values in matrix and obtained the intermediate format of 8*8 block

entropy code are following: DC: (2)(3); AC (1, 2) (-2), (0, 1) (-1), (0, 1)

(-1), (0, 1) (-1), (2, 1) (-1). The Table 2.2 shows the example of intermediate

format.

Intermediate format Luminance Huffman

table

Code VLC

DC (2)(3) 011 11

AC (1, 2) (-2) 11011 01

AC (0, 1) (-1) 00 0

AC (2, 1) (1) 11100 0

AC (0, 0) 1010

Table 2.2: Intermediate format of DC coefficients

Thus, the data flow of compressed 8*8 block luminance is 01111, 1101101,

000, 111000, 1010. Totally 31 bits and compression rate is 64*8/31 = 16.5.

2.2 JPEG Forensics

In this section, we introduce some background on JPEG forensics. First, we

review some state-of-the-art JPEG compression detection methods. Then,

we focus on JPEG double compression detection and JPEG multiple com-

pression detection explaining what are the majority methods and algorithms

used for this purpose.

28

2.2.1 JPEG Compression Detection

Let us consider the scenario in which a digital image is available in the

pixel domain as BMP, without any knowledge about prior processing. JPEG

compression detection is the problem of detecting whether that image is

actually uncompressed, or it had been previously compressed and which were

the compression parameters being used. This is useful to avoid fake-bitrate

frauds, in which someone sells an image as high-quality uncompressed one,

even if the image was previously compressed.

The idea of forensic methods coping with this problem is that block-

based image coding like JPEG leaves characteristic artifacts on images. This

artifact, as shall be explained in the rest of the section, can be exposed in

different domains to reverse engineer the compression history of an image.

To this purpose, we are going to discuss two different compression detection

in pixel domain and transform domain.

In the pixel domain, there are several approaches in the literature that

introduce different methods for estimating blockiness, i.e., a JPEG charac-

teristic artifact. The authors of [10, 14] explain a method that estimate in

conjunction with a very simple efficient way whether an image has been pre-

viously JPEG compressed, and the used quality factor (QF), which ranges

from 1 to 100, 1 means highly compressed. The rationale behind the algo-

rithm is that if an image has not been compressed, pixel differences across

8 × 8 block boundaries should be similar to those within blocks. It is then

possible to compute a measure of this pixel differences, and compare it to a

threshold. If it is higher than the threshold, the image has been compressed.

The authors of [17] explain a method that model a blocky image as sum

of non-blocky image and a pure blocky signal. The method detects JPEG

compression based on the estimation of the power of this blocky signal. There

is a problem in evaluating the power of blocky signal without accessing the

original image by using blind way of estimation of blockiness. So, the absolute

value of row gradient and column gradient of image need to be computed

separately.

There is a similar algorithm mentioned by authors of [18]. Compared

with last case, horizontal gradient and vertical gradient of image are com-

29

puted instead of row and column, using DFT to estimate their periodicity

due to gradient peaks at block boundaries in frequency domain. After that,

the gradient position can estimate block position, then they computed block-

iness distortion evaluation, employing a weighting scheme based on the local

gradient energy, thus, the block size and block location are identified.

The authors of [19] provide another method to estimate block size by

using the periodicity of direction of gradient. In order to enhance the peaks,

the authors subtract a median filtered version to the gradient, and set thresh-

old based on the sum of the gradient which aims at avoiding spurious peaks

caused by edges from objects in the image.

2.2.2 JPEG Double Compression Detection

The aforementioned solutions aim at detecting whether an image is uncom-

pressed, or has been JPEG compressed once. However, images are often

JPEG compressed once at photo inception directly by the acquisition device.

When they are edited with whatever software suite (e.g., PhotoShop, GIMP,

etc.) and saved, they often undergo a second compression. Being able to

estimate whether an image has been JPEG compressed once or twice proves

then paramount as forgery indicator. Specifically, we refer to this problem

as double JPEG (DJPEG) compression detection.

DJPEG however depends on some parameters. As an example, first

and second compression may use different quantization matrices Q1
ij and

Q2
ij. Moreover, the 8 × 8 JPEG grid may be aligned or not between the

two compression steps. Usually, DCT coefficient F [i, j] are considered to be

compressed twice when Q1
ij 6= Q1

ij.

Figure 2.5 reports an example of DJPEG compression. It is obvious that

I0 is an uncompressed image, the second JPEG compression I2 in case one

that adopts a DCT grid aligned with one used in I1, but it does not match

in second case.

The main algorithms for detecting double JPEG compression are based

on JPEG artifacts, there are two detection approaches according to whether

the second JPEG compression adopts a DCT grid aligned with the one used

30

Figure 2.5: A-DJPG and NA-DJPG compression [3].

by first JPEG compression.

Detection of A-DJPG Compression. The authors of [4, 20] pro-

posed the detection method that is based on the observation that in natural

images the distribution of the first digit of DCT coefficients in single JPEG

compressed images follows the generalized Benford’s law [21]. The method

uses the probabilities of the first digits of quantized DCT coefficients from

individual AC modes to detect double compression JPEG images. The Fig-

ure 2.6 shows that the probability distribution of first digits of block-DCT

coefficients follow the standard Benford law very well. The quality of the

fitting can be present as:

X =
9∑

i−1

(P̂i − Pi)
2

Pi

,

where P̂i is the actual first digit distribution and Pi is the probability pre-

dicted by Benford’s law.

The experimental result shows that each compression step changes the

statistics of the first digit distribution and with the number of the com-

31

Figure 2.6: probability distribution of first digits of block-DCT coefficients [4].

pression, the accuracy the Benford’s law has been decreased. Therefore, by

thresholding X it is possible to infer information about single or double com-

pression. The performance of this method does not seem adequate and the

result can be improved by other methods.

In [22], author introduce the observation that re-quantization includes

periodic artifacts and discontinuities in the image histogram, a set of features

is derived from the pixel histogram to train an SVM using for A-DJPEG com-

pression detection. However, this method has been tested only for secondary

quality factors 75 or 80.

A promising idea is introduced by authors in [5], they proposed the

methods for detecting double-aligned JPEG compression and for estimation

of primary quantization matrix, which is lost during recompression. The

proposed methods are necessary for construction of accurate targeted and

blind steganalysis methods for JPEG images and those methods based on

SVM classifiers with features vectors by histograms of DCT coefficients.

We have mentioned before that the quantization matrix Q1
ij used dur-

ing the first compression is called the primary quantization matrix. The

32

quantization matrix Q2
ij used in subsequent JPEG compression is called the

secondary quantization matrix. They specific DCT coefficient F [i, j] was

double compressed if and only if Q1
ij 6= Q2

ij, the double compressed DCT

coefficient F [i, j] is

Dij =
⌊
bF [i, j]

Q1
ij

c ·
Q1

ij

Q2
ij

⌋
We can see that the values of double compressed DCT coefficient rely on the

combination of quantization steps Q1
ij and Q2

ij. And Figure 2.7 shows the

effect of double compression on histograms of absolute values of DCT coef-

ficients. The secondary quantization coefficient is in all four cases the same

Q2
ij = 4, only the primary quantization coefficient Q1

ij changes. These peaks

in the histogram assume different configurations according to the relationship

between the first quantization and secondary quantization.

Figure 2.7: Effect of double-compression on histograms of absolute values of DCT

coefficients [5].

33

Then they implement the method as follow:

• Computing the histograms of absolute values of all analyzed DCT co-

efficients from the image under investigation I

• Using sets of quantization table to crop and compress the image.

• Re-compressing the cropped and compressed image by using ∆2.

• Computing the histograms of absolute values of DCT coefficients from

double compressed and cropped images. The estimator chooses the

quantization table that the result histogram is as similar as possible to

obtained from the image I.

Detection of NA-DJPG Compression. In order to analyze whether

the reconstructed image has been compressed, the blocking artifacts analysis

has been taken into account. These methods depend on the fact that, the

original part of tampering image exhibits regular blocking artifacts, however

the pasted one does not, because second compression was not aligned with

the first one.

They start from an idea proposed in [10, 14] to detect blocking arti-

facts, and used in [6]. The authors in [6] proposed a method first analyses

the process in JPEG compression like the methods mentioned in [10, 14].

They estimate a matrix M [x, y], and derives the blocking artifacts character-

istics matrix (BACM) to measure the symmetrical property of the blocking

artifacts in a JPEG image. As Figure 2.8 shown, Figure 2.8d shows the con-

tour of M [x, y] in the cropped and recompressed image, the symmetry of the

values of M [x, y] descends comparing with Figure 2.8c, in other words, as

asymmetric M [x, y] will reveal the exist of Non-aligned JPEG compression.

However, this method is available only when the tampered region is very

large. (greater than 500× 500 pixels)

There is another method [23] which improves usability and performance

around 5% of the method we already have talked in [6]. The authors pro-

posed the method which assumes the image signal is the result of the su-

perposition of different components that are mixed together in the resulting

image. The independent component analysis (ICA) algorithm is suitable for

34

Figure 2.8: Contour Comparison [6].

this task which used to identify the different contribution and separate them

into independent signal. Comparing with last method, this method can be

implement with NA-DJPG image whose tampered regions are small.

The authors of [15] proposed a method which does not rely on SVM

classifier but the threshold detector has been used. The proposed method

evaluates a single feature based on the integer periodicity of DCT coefficient

when the DCT has been computed according to the grid of previous com-

pression. When NA-DJPG is detected, the parameters of the lattice give the

primary quantization table.

35

2.2.3 JPEG Multiple Compression Detection

JPEG multiple compression detection, as the name implies, is the problem

of detecting whether a JPEG image has been compressed more than twice.

The authors of [7] proposed a method which is a statistical framework for the

identification of multiple aligned compression in JPEG images and estimation

of the applied quality factors. This method involves following steps and

Figure 2.9 shows the example of this method.

Figure 2.9: JPEG multiple compression steps [7].

• Estimation of inherent statics: estimate the unquantized DCT

coefficients of the image, implement the noise on the DCT coefficient

and modeled as Gaussian noise to extract its mean and variance from

the given image.

• Definition of the alternative hypotheses : create a collection of

possible binary hypotheses and test the image on each of them, depend-

ing on the type of compression chains considered. The null hypothesis

set as HN , the collection of alternative hypotheses set as
{
Hk

A

}
k
∈ K.

• Multiple binary hypothesis tests : perform binary test HN versus

Hk
A and compute log-likelihood ratio (LLR).

• Final decision : once all the alternative hypotheses have been tested,

find LLRmax of LLRk. If LLRmax is greater than a threshold, the

null hypothesis is reject and the alternative hypothesis with LLRmax

is considered as estimate of the image compression history.

36

2.2.4 Tampering Localization

Nowadays, the diffusion of tampered visual contents through the digital world

is increasing because of the large availability of simple and effective image and

video processing tools (Photoshop, Lightroom and so on). Due to this issue,

the development of techniques for detection of image tampering operations

changing the content of an image is getting more and more attention from

a forensics point of view and many image forensic techniques have been

proposed to detect the present of forgeries in digital image.

The authors of [8] mentioned that the detection of cut & paste opera-

tions whereby a portion of a source image is copied into a target image plays

a crucial role, since this is the most common way of changing the semantic

content of an image. Thus, authors proposed two algorithms for detection

of image regions that have been transplanted from another image. The pro-

posed methods work whenever the pasted region is extracted from a JPEG

compressed image and inserted into a target image that is subsequently com-

pressed with a quality factor (QF) larger than that used to compress the

source image. In proposed methods, authors assume that the tampered im-

age is generated by taking I region R from a source image S and pasting it

into a target image T generating a fake image K. They assume that both

images S and T are in JPEG format. Moreover, they assume that the tam-

pered image K is JPEG compressed again and stored after the insertion of

R within T . It is obvious that all the regions in K undergo a double JPEG

compression, however in the part of T that have not been replaced by R, the

two subsequent compressions used aligned 8× 8 grids. The rationale behind

the first algorithm Block-wise approach is that authors decided to consider a

128× 128 region centered on the analyzed block. In practice, for each block

a blocking artifact characteristics matrix (BACM) is built by considering the

surrounding 128 × 128 area and the 14 features describing the symmetry

of the BACM extracted. Then they are training neural network with 5000

JPEG images and obtained a tampering map with dark area corresponding

to tampered regions. An example of the result produced by the block-wise

detector is shown in Figure 2.10. The original and the tampered images are

in the first row, respectively on the left and on the right. The tampering map

is shown in the last row, and we can see that there are two pasted flowers

are detected.

37

Figure 2.10: Example of blockwise tamper detection [8].

However, there are some drawbacks existing in Block-wise approach.

Therefore, the authors proposed a Region-wise approach to improve the last

approach, they first segment the image into homogeneous regions and then

analyze each region separately. They build the BACM of each region by an-

alyzing only the blocks belonging to it and used the features extracted from

the BACM to classify the whole region at once. By doing in this approach,

the computing time is reduced.

The authors of [9] proposed a forensic algorithm to discriminate between

original and forged regions in JPEG images, under the hypothesis that the

tampered image presents a double JPEG compression, either aligned (A-

DJPG) or nonaligned (NA-DJPG). The proposed algorithm automatically

computes a likelihood map indicating the probability for each 8× 8 discrete

cosine transform block of being doubly compressed. An example of this

algorithm is reported in Figure 2.11, (a) images under analysis; (b) likelihood

maps obtained using the A-DJPG simplified model; and (c) likelihood maps

38

obtained using the NA-DJPG simplified model. Red/blue areas correspond

to high/low probability of being doubly compressed. On the left side, the

proposed algorithm shows that there is a high probability of the pyramid

to be doubly compressed according to NA-DJPG model. On the right side,

the proposed algorithm shows that the license plate has a high probability of

being singly compressed, whereas the rest of the image has a high probability

of being doubly compressed according to A-DJPG model. Quality settings

are QF1=60, QF2=95 (left side), QF1=90, QF2=95 (right side).

Figure 2.11: Application to realistic forgeries [9].

39

40

Chapter 3

JPEG Compression Detection

In the previous chapter, we briefly introduced some background on JPEG and

some state-of-the-art detection methods for JPEG compression detection and

how those algorithms work for different situations. In this chapter, we focus

on the JPEG compression detection methods thoroughly analyzed in this

thesis, highlighting improvements over the state-of-the-art. Specifically, we

first tackle JPEG detection problem under the assumption that we know in

advance a possible JPEG grid alignment. To this purpose we analyze two

algorithms. Then, we remove the made assumption, and focus on a detector

able to estimate the possible JPEG grid location.

3.1 Pixel Domain Compression Detection

The first method we analyze for JPEG compression detection is the one

proposed in [10, 14]. This method is based on the analysis of JPEG artifacts

directly in the pixel domain.

The rationale behind this method is that JPEG compression introduces

blocking artifacts at the boundary of each 8× 8 pixel block. Therefore, it is

possible to detect the presence of these artifacts from a pixel-based analysis.

Presence of these traces indicate JPEG compression.

Figure 3.1: For each block the number Z ′[i, j] = |A − B − C + D| and Z ′′[i, j] =

|E − F −G+H| [10].

Formally, this algorithm (hereinafter denoted as detector one, or D1)

works as it follows. Let us assume we are analyzing an image I. The first step

of the method is image 8× 8 block decomposition. Before this process, what

we need to be careful is converting RGB to grayscale before we load the image.

Then author explain that even less compressed image may leave small but

consistent discontinuities across block boundaries, so the algorithm is that if

there is no compression the pixel difference across blocks should be similar

to those within blocks and spanning across a block boundary. We know that

the block grid is 8×8, then we need to compute a sample of difference within

a block and spanning across a block boundaries, as presented in Figure 3.1.

Figure 3.1 point out that for each decomposition 8× 8 block we need to

compute number Z ′[i, j] = |A−B −C +D| and Z ′′[i, j] = |E − F −G+H|
(A, B, C, D, E, F, G and H are the value of its corresponding pixels). For

example, when we load an image with 384×512, we have to compute Z ′′ and

Z ′ for 48 × 64 times and save those values into a 2D array. Then continue

to compute the normalized histogram H1(n) and H2(n) of the Z ′[i, j] and

Z ′′[i, j], respectively. The blocking signature measure that we use is the

energy of the difference between two histograms.

K =
∑
n

H1(n)−H2(n)

42

We computed several K values based on different quality factors images

and images with no compression and plot six histograms with related quality

factors. The range of K value (X axis) from 0 to 1.6, the sum of frequency

for compressed image is the number of input images and we simply call this

image compression algorithm D1.

Figure 3.2: Histogram of K with different quality factors 10 and 30.

As Figure 3.2, Figure 3.3 and Figure 3.4. It is obvious that K value with

no compression images mainly distribute from 0 – 0.1, with quality factor 90

43

Figure 3.3: Histogram of K with different quality factors 50 and 70.

images mainly distribute from 0 – 0.6, with quality factor 70 images mainly

distribute from 0.5 – 0.8, with quality factor 50 images mainly distribute

from 0.6 – 1.0, with quality factor 30 images mainly distribute from 0.8 –

1.2, and with quality factor 10 images mainly distribute from 0.9 – 1.4. The

quality factor is higher, the less is the K value (highly compressed image

has higher K value). Also, K can be compared to a threshold or given as a

confidence parameter.

44

Figure 3.4: Histogram of K with different quality factors 90 and 100.

Figure 3.5 serves to illustrate the method. The top figure of Figure

3.5 shows histograms H1(n) and H2(n) for a typical image with QF 90, the

absolute histogram differences K is 0.48969942587. The bottom figure of

Figure 3.5 shows the same after the same image underwent compression with

QF 10 and K is 1.12326916582.

45

Figure 3.5: Histograms of region I (within block) and II (across blocks) and those

difference. Top figure is related to QF 90, bottom figure is related to QF 10.

3.2 Pixel Domain Cropped Image Detection

The algorithm presented above assumes that the grid origin is the same as the

image origin point, but the pre-condition is that there is no image cropping

or pasting. In this section, we show how authors of [10, 14] propose to detect

46

JPEG grid alignment in case of cropping.

They let f(m,n) be the image pixels, then the grid origin can be chosen

as the pair
{

(p, q)|0 6 p 6 7, 0 6 q 6 7
}

that maximizes Epq, where

Epq =
∑
i

∑
j

|f(8i+ p, 8j+ q)− f(8i+ p, 8j+ q+ 1)− f(8i+ p+ 1, 8j+ q)

+ f(8i+ p+ 1, 8j + q + 1)|

We can observe that the grid should be aligned with the position where

horizontal and vertical neighbor difference, in a periodic displacement, are

at their maximum. If there is no compression, therefore, no blocking and all

Epq should be similar and the grid origin will be picked randomly.

Once we implement this method (D2) to detect the grid position of

cropped image, we obtain a matrix which stores all Epq for each block of an

image. And the position of maximum value in matrix presents the p and q,

respectively grid position of cropped image. An example shows below:

M =

...

...

...

...

...

... max

...

...

The p and q are [5,5], and cropped pixels of detected image are [2, 2].

In Chapter 3.1, we introduced the algorithm for pixel domain compres-

sion detection, what if we implement that algorithm to detect the cropped

image. However, the problem of detecting cropped image by using first com-

pression detector is that we don’t know exactly what are the values of p and

q, that means algorithm does not know what are the values of the pixels in

the positions (from A through H). However, we can observe that p and q

are fixed values (p=q=3) when we implement the first compression detector,

but p and q will be flexible based on which grids have been cropped when

we input cropped image with first detector.

47

Thus, for detecting cropped image, the first step is that implementing

the algorithm of cropped image detection to compute the grid position Epq.

Then passing the new values p and q to the first compression detector to

compute K value and the new cropped image detection algorithm has been

generated and named it as D21.

3.3 Pixel Domain Improved Cropped Image

Detection

The method just presented for JPEG grid alignment estimation can be fur-

ther improved using some considerations. As a matter of fact, it is possible

to notice experimentally that picking the maximum value of matrix Epq may

lead to wrong results. Instead, we propose to select p as the index of the

row of E whose elements sum to the maximum value among all rows. In the

same way, we select q as the index of the column of Epq whose elements sum

to the maximum value among all columns. Formally,

q = arg max
q

(
∑
p

Epq)

p = arg max
p

(
∑
q

Epq).
(3.1)

As shall be reported in the experimental section, this solution allows

to improve results obtained with detector D1. Indeed, it provides a more

accurate estimation of p and q parameters.

3.4 Transform Domain Compression Detec-

tion

In Chapter 2, we mentioned a method for transform domain compression

detection [6], which computes the horizontal gradient and vertical gradient

of image, and use DFT to estimate their periodicity due to gradient peaks at

48

block boundaries in frequency domain. Thus, we can use gradient informa-

tion to estimate the block position and blockiness distortion evaluation can

be computed. Moreover, this method is not affected by possible JPEG grid

misalignment due to cropping as it works in the frequency domain.

Due to this possibility, the second algorithm we focused on is the one in

[6], and hereinafter denoted as D3. This paper explains a novel method for

estimating blockiness in MPEG-coded picture by measuring the harmonic

generated by blocking artefacts in the frequency domain. However, we can

also implement this algorithm on JPEG compression detection. In the fol-

lowing a detailed step-by-step explanation of how to do it.

Harmonic analysis : Blockiness is made by luminance discontinuities

across the DCT block boundaries. We know that the DCT block size is fixed

to 8×8 by JPEG standard and luminance discontinuity is thus periodic. So,

we can use Sobel operators to detect the luminance variation in an JPEG-

coded image.

Sobel operator is a derivate mask and is used for edge detection. This

operator is also used to detect two kind s of edges in an image: vertical

direction and horizontal direction.

The Figure 3.6 shows the vertical and horizontal mask of Sobel operator.

When we apply the vertical mask on the image it prominent vertical edges. It

simply works like as first order derivate and calculates the difference of pixel

intensities in an edge region. As the center column is zero so it does not

include the original values of an image but rather it calculates the difference

of right and left pixel values around that edge. Also the center values of both

the first and third column is 2 and -2 respectively. It gives more weight age

to pixel values around the edge region. This increase the edge intensity and

it became enhanced comparatively to the original image.

The horizontal mask will find edges in horizontal direction and it is

because that zeros column is in horizontal direction. When you will convolve

this horizontal mask onto an image, it would prominent horizontal edges in

the image. The only difference between it is that it has 2 and -2 as a center

elements of first and third row.

49

Figure 3.6: Vertical and horizontal masks of Sobel operator [11].

Figure 3.7 reports that the original image and two images applied above

two masks at one time. For the computation of horizontal and vertical gra-

dient of an image, we need to use image gradient formula such that

Gx = f(x+ 1, y)− f(x, y)

Gy = f(x, y + 1)− f(x, y)

Where Gx used to compute horizontal gradient and Gy used to compute and

vertical gradient.

Figure 3.7: Sobel operator example [11].

The extracted luminance gradient information forms a gradient image.

Figure 3.8a shows an ideal 32× 32 gradient image, in Sobel operators, each

luminance transition generates two pixels in the gradient image. The gra-

dient image appears as a lattice pattern with a grid width of two pixels.

Figure 3.8b shows the luminance level of pixels along line AB and Figure

3.8c presents actual lattice pattern image. The last figure 3.8d tells us that

50

Figure 3.8: Basic concept of harmonic analysis [12].

fast Fourier transform has been used on this block, and it’s obvious that we

can see some outstanding frequency points along vertical axis. We found that

the more obvious the lattice pattern is in the gradient image, the stronger the

harmonics are. Therefore, we use this point to estimate the degree of block-

iness in the codes picture, author quantifies the blockiness using the relative

strength of harmonics compared to other frequency components, and the ab-

solute strength of the harmonics. They define two ratios Rh and Rv where Hn

and Vn are the magnitude of the nth frequency component on the horizontal

and vertical axes.

Rh =
H4 +H8 +H12∑n=1

15 Hn

Rv =
V4 + V8 + V12∑n=1

15 Vn

51

Figure 3.9: Harmonic analysis process for estimating blockiness [12].

Figure 3.9 illustrates the complete harmonic analysis process which in-

cludes the following steps: Given an image,

• 32× 32 block segmentation

• Compute the horizontal gradient of the image.

• Compute the FFT of horizontal gradient.

• Compute the vertical gradient of the image.

• Compute the FFT of vertical gradient.

• Compute two ratios Rh and Rv

At this point we have two values (Rh and Rv) indicating blockiness likelihood

for each 32×32 image block. We need therefore to devise a way to put these

values together to take decision about possible JPEG compression at image

level. Let us assume that the blockiness level as L. The first method we

propose to merge all Rhand Rv results for each 32× 32 image block consists

in taking the maximum values of each Rh and Rv. Formally, L=max(Rh,Rv).

This idea is driven by the fact that, even if just one block presents JPEG

artifacts, we conclude that the image has been compressed. The second

method we propose to merge all Rh and Rv results for each 32 × 32 image

block consists in taking the minimum values of each Rh and Rh. Formally,

L=min(Rh,Rv). The rationale behind this method is that when threshold is

less that the L, then the image has been compressed. And we also consider

other possible ways to merge Rh and Rv such as L=median(Rh,Rv).

52

Chapter 4

Implementation and GUI

In this chapter we report implementational details about the used software,

and the development of the GUI embedding all previous mentioned algo-

rithms.

4.1 Experimental Software

The software we used in our experimental includes one Python IDE Py-

Charm, a library of programming functions for computer vision OpenCV,

Numpy which is the fundamental package for scientific computing with Python,

Matplotlib is a Python 2D plotting library which produce publication qual-

ity figures in a variety of hardcopy and interactive environments across plat-

forms. PIL is the Python imaging library and SciPy which is an open source

Python library used for scientific computing and technical computing. And

we list our software and its version in Table 4.1.

In order to develop image compression detector application, we need

to install PyQt for designing GUI, PyQt is most popular Python bindings

for the Qt cross-platform GUI/XML/SQL C++ framework. There are two

available editions Qt 4 and Qt 5 which will build for Python 2 and Python 3

and we used Qt 4 because Python 2.7 is being used for implementation and

development.

Library, framework and

environment

Version

OpenCV 3.1.0

Numpy 1.11.2

Matplotlib 1.5.1

SciPy 0.16.1

PIL 1.1.6

PyQt 4.11.4

Pillow 3.2.0

PySide 1.2.4

Python 2.7.11

IrfanView 64

Table 4.1: Implementation software

There is one reason to install OpenCV fails on MacOS with Xcode 8.

Once you updated your Xcode version to 8, the ‘QTKit/QTKit.h’ file will be

not existed on your new Xcode. There are two solutions for people who want

to use OpenCV on Mac, the first one is that using old version of Xcode, and

second is that using HomeBrew to install Head OpenCV3 on your Xcode 8.

4.2 Compressed Image Detector GUI Imple-

mentation

In previous sections of chapter 3, we have introduced image compression

detection algorithm D1 and D3, cropped image grid position detection algo-

rithm D2 and cropped image detection algorithm D21 and improved version

of D21. After implement those three detection algorithms, we intent to cre-

ate a compressed image detector GUI using PyQt 4 and we named it Image

Detector.

This Image Detector includes all the algorithms we discussed and im-

proved in chapter 3, which has following functional requirements:

54

• Able to select cropped and compressed image from folder.

• Able to extract ground truth information when available (i.e., quality

factor, cropping details).

• Able to implement the original D2 algorithm to obtain the grid position

and display on grid image based on input image.

• Able to implement the improved D2 algorithm to obtain the grid posi-

tion and display on grid image based on input image.

• Able to display ground truth crop data on grid image with green color

based on input image.

• Able to use green color to display the position on grid image when the

result of the old D2 and the improved D2 match with the ground true

data, able to use red color to display the position on grid image when

the result of the old D2 and the improved D2 do not match with the

ground true data.

• Able to implement the D1 algorithm to compute K and display on GUI

with color based on input image.

• Able to implement the improved D21 algorithm to compute K and

display on GUI with color based on input image.

• Able to display a color bar to show the user how much the image has

been compressed.

• Able to implement the D3 algorithm and display the matrix with image

based on input image. User can see which block of image has been

highly or less compressed.

Figure 4.1 shows the Image Detector GUI with input images and their

results. The improved detector D21 always has better performance than old

detector D21. As the results of those two input images, light block shows

highly compression and dark block presents less compression.

55

Figure 4.1: Compression detection GUI

56

Chapter 5

Experimental Results

In this chapter we report the experimental validation of the analyzed tech-

niques. First, we report details about the construction of the test dataset.

Then we present the used evaluation metrics. Afterwards, we report results

on JPEG detection based on pixel-domain and transform-domain detectors

(D1 and D3), showing the behavior of our proposed solutions to merge re-

sults from different blockiness information. Additionally, we validate the grid

detection algorithm, showing the performance increase due to our proposed

modification. Finally, we validate the system as a whole, feeding results ob-

tained from the grid detector to the pixel-domain-based JPEG detector (i.e.,

D21).

5.1 Dataset Generation

In order to test the mentioned algorithms, we need a certain number of

uncompressed and compressed images. The uncompressed image dataset

(UCID)[24] as shown in Figure 5.1, which includes 1338 images with TIF

format comes from Loughborough University.

In the previous chapters, we mentioned that different quality factors can

be used in JPEG compression. Thus, we used the application IrfanView to

compressed dataset with six different quality factor QF 10, QF 30, QF 50, QF

Figure 5.1: UCID

70 and QF 90 as Figure 5.2 shows. We ended up with five different datasets

(one per quality factor) of 1338 images each. Notice that different JPEG

implementations might use different quantization matrix. For this reason we

specify the used implementation for the sake of reproducibility of results.

In order to test the algorithms on cropped images, we propose to ran-

domly crop images for each dataset with different QF. We therefore ended

up with five additional datasets for each QF.

58

Figure 5.2: Image datasets with different QF by using IrfanView

5.2 Evaluation Metrics

Algorithms D1 and D2 output a real number that should be compared to a

threshold to assess presence of JPEG compression. To evaluate these algo-

rithms, we rely on ROC (Receiver Operating Characteristic) curves, which

are a graphical plot that illustrates the performance of a binary classifier sys-

tem as its discrimination threshold is varied. The curve is created by plotting

the true positive rate (TPR) against the false positive rate (FPR) at various

threshold settings. Specifically, TPR is the percentage of JPEG compressed

images correctly detected as such. FPR is the percentage of compressed

images mistakenly detected as uncompressed. Formally,

True positive rate: TPrate = Recall = TP
TP+FN

= TP
relevant

.

False positive rate: FPrate = FP
FP+TN

= FP
non−relevant .

59

Table 5.1 reports definitions of TP and FP in relation to relevant (or

not) retrieved (or not) classes.

Relevant Non-relevant

Retrieved true positive (TP) false positive (FP)

Non-Retrieved false negative (FP) true negative (TN)

Table 5.1: Unranked retrieval

We can set that the threshold range from 0 to 0.3, and compute the

prediction based on the data greater than threshold or not. If data is greater

than threshold, then we store in prediction as 1 and it has been compressed,

otherwise we store it as 0 and it has not been compressed. After that we can

compute the TP, FP, TN, and FN of each dataset and plot ROC curve.

5.3 JPEG Compression Detection With A Pri-

ori Grid Information

In this section, we introduced the results of the previous algorithms men-

tioned in pixel domain compression detection and transform domain com-

pression detection.

5.3.1 Pixel Domain Compression Detection

The first set of ROC curves in Figure 5.3 shows that the compressed image

datasets with quality factor 10, 30, 50 and 70 are overlapped when we im-

plement algorithm D1. In this case, JPEG compression detection is almost

ideal. However, these results assume that JPEG grid alignment is known be-

forehand. Conversely, if this is not known, results change considerably. The

second set of ROC curves in Figure 5.3 are related to cropped and compressed

image dataset with quality factor 10, 30, 50, 70 and 90. It is possible to see

that in this scenario the algorithm often fails to detect JPEG compression

as expected.

60

Figure 5.3: ROC of compress image datasets and compressed & cropped image

datasets with pixel domain compression detection.

5.3.2 Transform Domain Compression Detection

In pixel domain compression detection, in order to observe the whether the

image has been compressed, we input two images (same image with com-

pression and without compression), result shown as Figure 5.4. The left one

is the image without compression, the right plot is the image with highly

compression (quality factor = 30). And it is obvious that more warm the

color tone is in image, the stronger compression the image is.

We already explained in Chapter 4 that how to analyze the data with

ROC curve and we need to implement ROC curve on this data analysis

61

Figure 5.4: Same image with different QF implemented by transform domain com-

pression detection.

as well. However, the problem different with last algorithm is that which

number we are going to choose for comparison with the threshold. Indeed,

D3 outputs two values (Rh and Rv) for each image block. We therefore have

a collection of two matrices of size 16 × 12. In Chapter 3.2, we mentioned

that how does the algorithm works and several methods to merge all Rh

and Rv results for each 32 × 32 image block of an image. Therefore, we try

several combinations of chosen value and operator between threshold and

feature values. As shown in Table 5.2, we list all the combinations. As Table

Extract a value from

matrix

Operator (threshold

and feature values)

Result

Max Greater Sufficient

Min Less Sufficient

Median Less Insufficient

Table 5.2: Method combinations of transform domain compression detection

5.2 and Figure 5.5 show, only combinations (Max, Greater) and (Min Less)

show promising results. Compared to D1, on average D3 performs better

considering that JPEG grid position is not known. If the grid is known, D1

is a better choice.

62

Figure 5.5: ROC curve for all proposed methods.

63

5.4 JPEG Grid Position Estimation

We have explained that detector (D2) is built to estimate the position of

JPEG grid exploiting blocking artifacts. If there is no compression, no block-

ing artifacts are present, thus all Epq values computed by D2 should be simi-

lar. The grid origin in this situation is picked randomly. Conversely, when an

image is JPEG compressed, the origin of the JPEG grid should be correctly

identified. Figure 5.6 shows the accuracy obtained in estimating JPEG grid

for cropped and compressed images at different quality factors. It is possible

to see that for high QF, accuracy is not achieved with our expectation.

Figure 5.6: Histogram of result of cropped image detection algorithm.

In order to test the accuracy of this method, we tested several cropped

images and obtained the results comparing with the clipping data of cropped

images. We found the problem that the p and q values could not match the

clipping data all the time for some cropped images. For example, we input

a cropped image which cropped with factor [1, 0] (that means crop the first

column of the image, did not crop the row of the image, pixels 512 × 384

changed to pixels 512× 383) and we obtained the result as shown in Matrix

Mresult.

64

Mresult =

24419 24529 24745 24500 24826 28140 35174 27137

24270 23910 24543 24605 24414 25856 30831 25754

24417 25561 25435 24951 24093 27107 32125 27500

24074 25642 24804 24957 24263 26516 32956 27209

24277 25607 25408 24992 25130 27410 32030 25959

24201 24409 24514 24419 24348 26181 30534 26811

25000 25080 25667 24733 24304 26313 35488 27724

40196 38817 38275 39905 38989 42446 37137 42196

This matrix shows the maximize value of the matrix is 42446, the q1 and p1

are 5 and 7. However the clipping factor is [1, 0], and convert it to p and q

are [7-1, 7-0], the result which are q2 = 6, p2 =7. We can see that q1 6= q2,

p1=p2, the way of finding p and q where p and q come from maximize value

of matrix has problem. This is the motivation behind out improved solution

presented in Chapter 3.

Matrix Mresult shows the matrix Epq and the p and q values of same

image we input in last case. Obviously, we can see that the maximize average

summing column and row are 5th column and 7th row. Simultaneously, the

q1 and p1 are [5, 7], and it matched the clipping data [1, 0] where q2=7-1=6,

p2=7-0=7. Thus, p1=p2,q1=q2 and the new D2 works well on other cropped

images.

5.5 JPEG compression detection in the wild

After the improvement of D2 has been validated, we can implement it as

additional step before running D1 and create the improved algorithm D21,

but there is an issue we need to consider that values passing between D2 and

D1. In D1 algorithm, we know that

Z ′[i, j] = |A−B − C +D|
Z ′′[i, j] = |E − F −G+H|

65

Epq =
∑∑

|y(8i+ p, 8j+ q)− y(8i+ p, 8j+ q+ 1)− y(8i+ p+ 1, 8j+ q)

+ y(8i+ p+ 1, 8j + q + 1)|,

where
{

(p, q)|0 6 p 6 7, 0 6 q 6 7
}

, so that, when values of p and q

are greater and equal than 4, the p and q need to be recomputed as p=p-

4,q=q-4 and the starting block will be the first block where i=0, otherwise

p=p-4,q=q-4 and the starting block will jump to next one where i=1. The

distance between Z ′[i, j] and Z ′′[i, j] will keep the constant value = 4.

With the improvement of D21, we generate accuracy analysis as Figure

5.7 to see the performance of old algorithm D21 and new D21. The green

line denoted as alternative 2 stands for improved D21 and blue line denoted

alternative 1 stands for old D21 from the literature. Comparing those two

different algorithms D21, the performance of improved D21 is much better

than old D21 mentioned by paper. And there is less error occurred when

detecting cropped and compressed image with improved D21.

Figure 5.7: Accuracy of old D21 and improved D21 (alternative 1 is old D21, and

alternative 2 is improved D21).

However, even if the performance of improved algorithm for detecting

image compression has been enhanced, the improved algorithm (improved

D21) still has some errors when detecting cropped and compressed images.

66

Chapter 6

Conclusion and Future Works

In this thesis, we faced the problem of JPEG compression detection, i.e., de-

tecting whether an image has been JPEG compressed. We have provided de-

tails about the background and mechanism of JPEG compression and JPEG

forensics. As far as JPEG forensics is concerned, first, we have reviewed

some state-of-the-art JPEG compression detection methods. Then we have

explained what is the main idea behind the many methods and algorithms for

JPEG double compression detection, JPEG multiple compression detection

and tampering localization.

After background study, we have analyzed a set of representative meth-

ods and algorithms for JPEG compression detection in detail [10, 14, 6]. First

of all, we have analyzed an algorithm based on the assumption we know in

advance a possible JPEG grid alignment. Then, we removed the made as-

sumption and focus on a detector able to estimate the possible JPEG grid

position. In this situation, we proposed a modified version of such detec-

tors that outperforms the state of the art one. Finally, we focused on an

algorithm that does not need to estimate grid position at all. Also in this

situation, we proposed a few ways to deal with the multiple outputs produce

by the method, and merge them into a single JPEG compression detection

estimation.

After the theoretical study, we have implemented the proposed algo-

rithms. Our results show that the method assuming knowledge about JPEG

grid [10, 14], typically outperforms its counterpart [6] only if the grid has

been correctly estimated. However the algorithm in [6] can detect not only

whether the image has been compressed, but also show which part of image

has been highly compressed or less compressed. Concerning the algorithm for

estimating JPEG grid location, the version proposed in the literature does

not provide sufficient accuracy, whereas the proposed modification greatly

improves its results. Finally, we built a GUI to enable non-expert forensic

investigators to use these methods and algorithms for image analysis.

As far as future work is concerned, we plan to follow two separate re-

search liens. On one hand, we believe that the proposed analysis can be

extended to the case of multiple JPEG compression detection, which is a

much more challenging scenario. As a matter of fact, multiple compression

may also involve the presence of multiple misaligned JPEG grids. On the

other hand, we would like to further investigate the possibility offered by [6]

to localize traces of JPEG compression to specific area of an image. This

could be particularly useful to expose images obtained through copy and

paste of many pictures.

68

Bibliography

[1] D. Marshall, “Jpeg compression,” 2001. Available at https://users.

cs.cf.ac.uk/Dave.Marshall/Multimedia/node234.html.

[2] P. Steven W. Smith, “The scientist and engineer’s guide to digital signal

processing,” 1997. Available at http://www.dspguide.com/ch27/6.

htm.

[3] A. Piva, “An overview on image forensics,” ISRN Signal Processing,

vol. 2013, pp. 1–22, 2013.

[4] D. Fu, Y. Q. Shi, and W. Su, “A generalized benford’s law for jpeg

coefficients and its applications in image forensics,” in SPIE Conference

on Security, Steganography, and Watermarking of Multimedia Contents

(E. J. Delp and P. W. Wong, eds.), vol. 6505, 2007.

[5] J. Lukas and J. Fridrich, “Estimation of primary quantization matrix in

double compressed jpeg images,” in Digital Forensic Research Workshop,

Aug. 2003.

[6] W. Luo, Z. Qu, J. Huang, and G. Qiu, “A novel method for detecting

cropped and recompressed image block,” in 2007 IEEE International

Conference on Acoustics, Speech and Signal Processing - ICASSP ’07,

vol. 2, pp. II–217–II–220, April 2007.

[7] C. Pasquini, G. Boato, and F. Perez-Gonzalez, “Multiple jpeg compres-

sion detection by means of benford-fourier coefficients,” in 2014 IEEE

International Workshop on Information Forensics and Security (WIFS),

pp. 113–118, Dec 2014.

69

https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node234.html
https://users.cs.cf.ac.uk/Dave.Marshall/Multimedia/node234.html
http://www.dspguide.com/ch27/6.htm
http://www.dspguide.com/ch27/6.htm

[8] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut and paste

tampering by means of double-jpeg detection and image segmentation,”

in Proceedings of 2010 IEEE International Symposium on Circuits and

Systems, pp. 1687–1690, May 2010.

[9] T. Bianchi and A. Piva, “Image forgery localization via block-grained

analysis of jpeg artifacts,” IEEE Transactions on Information Forensics

and Security, vol. 7, pp. 1003–1017, June 2012.

[10] Z. Fan and R. de Queiroz, “Maximum likelihood estimation of jpeg

quantization table in the identification of bitmap compression history,”

in Proceedings 2000 International Conference on Image Processing (Cat.

No.00CH37101), vol. 1, pp. 948–951 vol.1, 2000.

[11] T. Point, “Tutorials point-learn dip-sobel operator,” 2017. Available at

https://www.tutorialspoint.com/dip/sobel_operator.htm.

[12] K. T. Tan and M. Ghanbari, “Measuring blocking artefacts using har-

monic analysis,” Electronics Letters, vol. 35, pp. 1322–1323, Aug 1999.

[13] H. Farid, “Digital doctoring: can we trust photographs?,” in Deception:

From Ancient Empires to Internet Dating, Stanford University Press,

2009.

[14] Z. Fan and R. L. de Queiroz, “Identification of bitmap compression

history: Jpeg detection and quantizer estimation,” IEEE Transactions

on Image Processing, vol. 12, pp. 230–235, Feb 2003.

[15] T. Bianchi and A. Piva, “Detection of nonaligned double jpeg compres-

sion based on integer periodicity maps,” IEEE Transactions on Infor-

mation Forensics and Security, vol. 7, pp. 842–848, April 2012.

[16] A. Bovik, “Introduction to image compression,” in Handbook of Image

and Video Processing (Second Edition), Communications, Networking

and Multimedia, pp. 641 –, Burlington: Academic Press, second edi-

tion ed., 2005.

[17] Z. Wang, A. C. Bovik, and B. L. Evan, “Blind measurement of blocking

artifacts in images,” in Proceedings 2000 International Conference on

Image Processing (Cat. No.00CH37101), vol. 3, pp. 981–984 vol.3, 2000.

70

https://www.tutorialspoint.com/dip/sobel_operator.htm

71

[18] H. Liu and I. Heynderickx, “A no-reference perceptual blockiness met-

ric,” in 2008 IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 865–868, March 2008.

[19] S. Tjoa, W. S. Lin, H. V. Zhao, and K. J. R. Liu, “Block size forensic

analysis in digital images,” in 2007 IEEE International Conference on

Acoustics, Speech and Signal Processing - ICASSP ’07, vol. 1, pp. I–

633–I–636, April 2007.

[20] B. Li, Y. Q. Shi, and J. Huang, “Detecting doubly compressed jpeg

images by using mode based first digit features,” in 2008 IEEE 10th

Workshop on Multimedia Signal Processing, pp. 730–735, Oct 2008.

[21] J. M. Campanario and M. A. Coslado, “Benford’s law and citations,

articles and impact factors of scientific journals,” Scientometrics, vol. 88,

no. 2, pp. 421–432, 2011.

[22] X. Feng and G. Doërr, “Jpeg recompression detection,” in SPIE Con-

ference on Media Forensics and Security, 2010.

[23] Z. Qu, W. Luo, and J. Huang, “A convolutive mixing model for shifted

double jpeg compression with application to passive image authentica-

tion,” in 2008 IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 1661–1664, March 2008.

[24] G. Schaefer and M. Stich, “Ucid - an uncompressed colour image

database,” 2003.

	Abstract
	Acknowledgment
	Introduction
	Motivation Behind Image Forensics
	Problem Statement and Contribution
	Structure of the Thesis

	Background
	JPEG Compression
	JPEG Introduction
	Luminance/Chrominance Space Transformation
	Discrete Cosine Transform
	Quantization
	Coding

	JPEG Forensics
	JPEG Compression Detection
	JPEG Double Compression Detection
	JPEG Multiple Compression Detection
	Tampering Localization

	JPEG Compression Detection
	Pixel Domain Compression Detection
	Pixel Domain Cropped Image Detection
	Pixel Domain Improved Cropped Image Detection
	Transform Domain Compression Detection

	Implementation and GUI
	Experimental Software
	Compressed Image Detector GUI Implementation

	Experimental Results
	Dataset Generation
	Evaluation Metrics
	JPEG Compression Detection With A Priori Grid Information
	Pixel Domain Compression Detection
	Transform Domain Compression Detection

	JPEG Grid Position Estimation
	JPEG compression detection in the wild

	Conclusion and Future Works
	Bibliography

