
POLITECNICO DI MILANO
Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica e Informazione

A comparison of different neural networks

for agricultural image segmentation

AI & R Lab

Laboratorio di Intelligenza Artificiale

e Robotica del Politecnico di Milano

Relatore: Ing. Matteo Matteucci

Tesi di Laurea di:

Stefano Cereda

Matricola 837031

Anno Accademico 2015-2016

A Mario Locati

Sommario

In questa tesi vengo confrontate diverse reti neurali nell’ambito della segmen-

tazione di immagini agricole. L’automazione di alcune operazioni frequenti in

agricoltura può infatti portare ad importanti benefici sia dal punto di vista eco-

nomico che ambientale. Attraverso l’uso di immagini provenienti da dataset

rivolti al problema dell’identificazione di malerbe e all’identificazione di frutti

maturi, vengono confrontati sia classificatori basati su un insieme di features

sia diverse architetture neurali. Scopo della tesi è individuare l’architettura

neurale più idonea a questi scopi, sia dal punto di vista dell’accuratezza

metrica sia dal punto di vista della qualità visiva delle maschere di segmen-

tazione prodotte. Vengono inoltre confrontate la complessità temporale e la

dipendenza a variazioni degli iperparametri delle varie reti. Le architetture

confrontate comprendono un approccio di tipo sliding window, una rete pura-

mente convoluzionale e diverse reti ricorrenti. Vengono inoltre sperimentate

architetture che combinano i diversi approcci.

I

Abstract

In this work we compare several neural networks for agricultural images

segmentation. The automation of some agricultural tasks can, in fact, lead

to both economical and environmental benefits. By using datasets for both

the problem of weed detection and growth status recognition, we compare

baseline classifiers based on fixed sets of hand-crafted features with several

deep neural architectures. Aim of the thesis is therefore to identify the

best suited architecture both from a metrical and a qualitative point of

view. Moreover, we compare the temporal complexity and the dependence to

hyperparameters variations. The implemented neural networks comprehend a

sliding window network, a purely convolutional network and several recurrent

networks. Moreover, we try to combine the different approaches.

III

Ringraziamenti

Desidero ringraziare tutti coloro che mi hanno aiutato durante lo sviluppo di

questo lavoro.

Innanzitutto ringrazio il mio relatore, professor Matteucci, per avermi

dato la possibilità di lavorare ad un progetto con importanti risvolti pratici e

per avermi fornito il supporto di cui avevo bisogno. Ringrazio inoltre Marco

Ciccone e Francesco Visin per avermi guidato nell’utilizzo di cineca e delle

reti ricorrenti.

Proseguo ringraziando Sebastian Haug e Grzegorz Cielniak, sia per aver

condiviso i loro dataset sia per avermi aiutato nell’utilizzo delle loro tecniche.

Un ringraziamento speciale va agli amici che mi hanno aiutato sia in

questo lavoro sia nei cinque anni passati: Alessandro, Andrea, Leonardo,

Matteo e Valerio. Avete reso migliori questi anni.

Ringrazio inoltre tutte le persone che mi hanno indirizzato verso questo

percorso, in particolare la professoressa Sallitto, la professoressa Salone e il

professor Rota Sperti.

Vorrei infine ringraziare le persone a me più care: i miei amici, i miei

genitori, Francesca e Beatrice per avermi sempre sostenuto, supportato e

sopportato.

V

Contents

Sommario I

Abstract III

Ringraziamenti V

Acronyms XI

1 Introduction 1

1.1 General overview . 1

1.2 Brief description of the work 3

1.3 Structure of the thesis . 6

2 State of the art 9

2.1 Precision agriculture . 9

2.1.1 Biological morphology 10

2.1.2 Spectral characteristics 10

2.1.3 Visual texture . 11

2.1.4 Classification without segmentation 11

2.1.5 Dataset . 12

2.2 Classifiers working with features 13

2.2.1 Random forest . 13

2.2.2 Support vector machines 14

2.2.3 Gradient boosted trees 15

2.3 Deep neural networks . 15

2.3.1 U-Net . 16

2.3.2 ReNet . 16

2.3.3 ReSeg . 17

2.3.4 Common tricks to avoid overfitting 17

2.3.5 Training algorithms 18

2.3.6 Activation functions 20

VII

2.3.7 Weight initialization 21

2.3.8 Visualization techniques 22

3 Proposed system 25

3.1 Datasets description . 25

3.1.1 CWFID . 25

3.1.2 Broccoli dataset . 26

3.2 Adopted metrics . 27

3.3 System description . 28

3.3.1 Hand crafted features subsystem 28

3.3.2 Deep Networks . 37

3.4 Differences for the Broccoli dataset 40

3.5 Data augmentation techniques 43

4 Performed experiments 45

4.1 Broccoli dataset annotation 45

4.2 System training . 46

4.2.1 Background removal 46

4.2.2 Classifiers . 48

4.2.3 Neural networks . 61

5 Comparison of results 77

5.1 Comparison of hyperparameters dependence 77

5.2 Feature analysis . 79

5.2.1 Minimize output error 79

5.2.2 Maximize neuron output 84

5.3 Number of parameters . 88

5.4 Comparison of training time 88

5.5 Comparison of classification time 90

5.6 Comparison of segmentation performance 91

5.6.1 Qualitative comparison of segmentations 94

5.7 Smoothing tile probabilities 98

5.8 Summary of comparison . 100

5.8.1 Feature based classifiers VS neural networks 100

5.8.2 Sliding window approach VS full-image segmentation . 101

5.8.3 Convolutional VS recurrent networks 101

5.8.4 U-ReNet VS ReSeg . 102

5.8.5 U-ReNet VS U-ReNet2 102

5.8.6 ReSeg VS ReConv . 103

5.8.7 ReConv VS ReConcat 103

6 Conclusions and future developments 105

6.1 Summary of obtained results 106

6.2 Future developments . 107

Bibliografia 109

A Tuning of network’s hyperparameters 115

A.1 Learning rate selection . 116

A.2 l2 term selection . 118

A.3 Coarse hyperparameter tuning 120

A.4 Finer hyperparameter tuning 127

Acronyms

In this work we will sometimes use the following acronyms:

CWFID Crop/Weed Field Image Dataset used for the weed recognition

problem [15]

SFO Scale Free Only, indicating the scale invariant subset of

features as defined in Table 3.1 on page 33

RFC Random Forest Classifier

SVM Support Vector Machine

XGB Gradient boosted classifier implemented with the XGBoost

library

SWind Sliding Window network like the one proposed in [36]

U-Net U shaped neural architecture like the one proposed in [37]

U-ReNet Novel neural network that mixes the U-shaped architecture of

U-Net with the ReNet layer

U-ReNet2 U-ReNet variation with a different number of neurons on each

layer

ReSeg The recurrent network proposed in [53]

ReConv The ReSeg network stacked on top of pre trained convolutional

layers

ReConcat The ReConv network with an input concatenation

XI

Chapter 1

Introduction

“If God said in plain language, “I’m giving you a choice, forgive or die,” a

lot of people would go ahead and order their coffin.”

The secret Life of Bees

1.1 General overview

Fine-grained image classification and segmentation (i.e., pixel-wise classi-

fication) have received considerable attention in the late years: the joint

conditions of having large amounts of data and great computational resources

lead the research toward complex convolutional neural networks classifiers

that broke the records on many image classification competitions ([19], [49],

[17]). One of the field that could receive a great benefit from these technolo-

gies is agriculture, where the automation of some tasks can lead to reduced

costs both environmentally and economically.

In the context of agriculture automation, weed detection plays a relevant

role. In order to achieve better crop yields, weeds must be removed so as

to leave more nutrients to the interesting plants. This is typically done

by spraying agricultural chemicals all over the field, which poses many

environmental and economical concerns. In fact, considering that just some

parts of the field are covered with weeds, a great amount of herbicides is

wasted. Moreover, the soil and the crops get damaged by those chemicals. A

solution is therefore to separately classify each plant and spray the herbicide

just on the weeds, but, since doing this manually requires costly hand work,

the automation of such a task is really interesting.

Another relevant problem is the automation of harvesting, which can also

lead to economical advantages. The harvesting process can be conducted in

two ways: in “slaughter harvesting” an entire field is harvested in a single

pass, whereas selective harvesting methods choose only mature crops. This

second method has clearly some advantages, but requires a system able not

only to detect crops, as done in the weed detection problem, but also to

estimate their growth stage so to separate and harvest only the mature ones.

The simplest way to acquire data that can be processed to detect the

interesting plants is to take some images while going trough the field and

process those images in real time. The aim of the current thesis is therefore

to compare several methods for agricultural image segmentation both on the

problem of weed detection and selective harvesting.

The system we propose is able to perform segmentation on images taken

in a real field, under artificial lighting, and containing red and near-infrared

channels or red, green and blue channels. We also investigate whether the

addition of a depth channel can easily lead to substantial improvements in

terms of classification accuracy. The system is able to distinguish between

soil, weeds and crops when performing weed detection and to detect crops

when performing selective harvesting. The separation between different kinds

of weeds and the estimation of the growth stage of the crops is left to future

development.

We have compared several classifiers: a random forest classifier; a support

vector machine; a gradient boosted classifier and several deep neural networks.

The aim is to select the best suited neural architecture.

For the weed detection problem, the system has been trained and tested

on CWFID [15], a recently released public dataset consisting of 60 images

collected in an organic carrot field under artificial lighting. Given the small

dimension of the dataset, we heavily exploited data augmentation techniques

for the neural network training, thus also testing the ability of the various

architectures to extract relevant informations from a small number of images.

For the selective harvesting problem, the system has been trained and tested

on the Broccoli dataset [22], a 3D dataset from which we have extracted

300 2D RGB images. In order to increase the quality of the data, we have

created a 2D specific ground truth by manually annotating each image. We

have also tested whether the addition of a fourth channel representing the

distance from the camera leads to better classification accuracies.

The system performance has been measured according to the metrics

proposed in [15], we have also evaluated how each classifier is sensible to

hyperparameter variations and tried to visualize the features extracted by

the deep networks.

Future development should be focused toward the ability of distinguish

different kind of weeds and to recognize the growth status of a crop. During

2

our experiments we also noticed that a different metric could help to better

highlight the differences between the classifiers. Moreover, our experiments

suggest that a proper mix of the presented architectures would maintain the

main benefits of each network.

1.2 Brief description of the work

The detection of weed can be divided into two different problems. The first

one is to detect weeds between crop rows or between widely spaced crop

plants. The second one is to recognize weeds mixed with plants at random

positions, which is a more complex task as we do not have any a priori

information about weed position and can exploit just the plant’s image in

order to classify it. This work is focused on the second problem.

A peculiarity of the weed recognition field is the difficulty of collecting

data. In fact, the image acquisition process is difficult, as it requires complex

hardware, access to farm and must be synchronized to the crop growth stage

(once a year for many cultures). Moreover, experts are needed to define a

suitable ground truth. In order to solve those problems, a public dataset has

been recently released by Haug and Ostermann [15], providing data that can

be used to develop classifiers and to compare their performance.

The dataset consists of 60 images taken in an organic carrot field with

the presence of intra-row and close-to-crop weeds. The images are composed

by a red and a near-infrared channel and each image comes with a vegetation

mask and a crop/weed pixel-based annotation. Along with the dataset the

researchers also provided some initial results and proposed some metrics in

order to produce comparable results.

Similarly to the automation of weed detection, automatic selective har-

vesting can lead to economical benefits. For this task we have used the

Broccoli dataset [22]: a dataset of 3D images taken in several broccoli fields.

The authors also provided 2D images of one field, which we have used for

our work: we have selected 300 images and manually annotated each one of

them. The task of distinguish a broccoli head from the surrounding leaves is

pretty easy, but the idea is to be able to separate the mature heads. This

requires to be able to give an accurate estimate of the head dimension, which

implies being able to recognize an head even when it is occluded by leaves.

Therefore, when annotating the images, we have tried to annotate the full

heads, even in the areas where they are covered by leaves and therefore not

visible.

The system we implemented exploits a pipeline similar to the one proposed

by Haug et al. [16], where a similar problem was addressed. The first step

3

of the cited pipeline is the removal of the soil, which produces a mask for

the vegetation. A grid is then applied on the masked image, and for each

keypoint located over a biomass pixel a tile is extracted. The tile represents

the neighborhood of the central point and is thus used to extract several

features, which are given to a random forest that discriminates between the

available classes. The resulting probability is assigned to the central pixel

and, once all the grid points have received their probability, they are used

to compute all the remaining pixels by performing a spatial smoothing and

then using a nearest neighbor interpolator.

Our system also contains different classifiers and a novel smoothing

process. Moreover, our system can classify an image using several “deep”

neural networks, meaning that the original image is directly segmented at

pixel level. The resulting annotation can be easily mixed with the result of a

feature based classifier.

For what concerns the features computed on the tiles, we have considered

the work of Hall et al. [13], where different features for leaf classification are

compared. The idea is to understand which set of features is more robust

to condition variations such as translation, scaling, rotation, shading and

occlusion. To do that, random forests have been trained using different sets

of features. The researchers showed that the best solution is to use the last

layer of a convolutional network and a scale-robust subset of the features

adopted in [16].

Potena, Nardi, and Pretto [36] pushed further the deep neural network

approach, proposing a system composed by two neural networks. The

vegetation mask is firstly computed using the same approach of [16], but

using a more conservative threshold. The mask is then cleaned by extracting

a tile over each pixel and running a convolutional neural network to clean out

false positives. From the resulting mask they extract some connected regions,

and in each region some points are randomly sampled. Around each point

a tile is extracted and it is given to another convolutional neural network

that discriminates between soil, crop and weed. Each region is then classified

using majority voting over its randomly sampled points. In our system we

have implement a similar network.

Another network that we tested is similar to the one proposed by Ron-

neberger, Fischer, and Brox [38] while developing a classifier for biomedical

image segmentation. This network uses a different approach: the image is

run just through a single fully convolutional neural network without having

to extract tiles nor to further process the result. This kind of approach is

more elegant as it avoids repeating the same calculations over and over again

as it would occur in a purely sliding window approach. Compared to the

4

approach used by Potena, Nardi, and Pretto [36], it is also more precise as

every pixel of the image is considered instead of just some randomly sampled

regions.

Visin et al. proposed [52] an alternative deep neural network architecture

for object recognition. This architecture, called ReNet, can be used as

a replacement for the convolution+pooling layers commonly used in deep

convolutional neural network. It works by exploiting four recurrent neural

networks that sweep horizontally and vertically in both directions across

the whole image, thus extracting more long distance informations than a

convolutional network, which exploits just local informations. By stacking

three ReNet layers on top of each other, the authors propose a state of the art

network for image classification. Visin et al. also proposed ReSeg [53], a deep

neural network architecture that makes use of multiple ReNet layers and of

an upsampling layer to perform image segmentation. The authors tested the

architecture on more datasets, finding that this architecture can receive an

advantage in the performance when stacked on the top of some pre-trained

convolutional layers. We have therefore tested both the architectures and

also tried to combine them with the U-Net one.

In this work we propose a system able to segment agricultural images

using a pipeline that combines the approaches of the cited works. The system

is composed both of deep neural networks and of classifiers working on a

fixed set of hand crafted features computed on tiles extracted from a grid.

The results of the different subsystems are averaged and spatially smoothed

to produce a pixel-wise classification.

We have experimented both with the set of features proposed in [16] and

the ones selected in [13]. Those features can be given to different classifiers:

a random forest, a gradient boosted forest and a support vector machine.

As for the neural networks, we have implemented a network like the one

proposed in [36], working on the same tiles used to extract the features using

a sliding window approach, and other networks working on the full image.

Moreover, we have implemented a slightly modified version of U-Net [38],

two variations of the U-Net architecture using ReNet [52] layers instead of

convolutions, two version of the ReSeg [53] architecture, one of which exploits

the first layers of U-Net, and a last network where the output of the ReSeg

network (stacked on top of the convolutional layer) is concatenated to the

input image before computing the output so to produce a more accurate

result.

The output of the classifiers working on the tiles can be averaged and

spatially smoothed to reduce the noise in the predictions. Afterwards a

nearest neighbor interpolation is used to obtain pixel-wise predictions. At

5

this point, the results of the networks that produce a full scale segmented

image can be averaged to produce the final segmentation mask.

We have then evaluated the various classifiers, comparing them both

from the point of view of metrical results and from a purely qualitative

analysis of the produced segmentation masks. Moreover, we have compared

the temporal complexity and the dependence to hyperparameters variations.

We are interested in several comparisons. More specifically, we want to

better understand the differences between the sliding window approach and

the direct segmentation of an entire image, to compare convolutional and

recurrent neurons and to see whether the upsampling strategy adopted by

U-Net is better that the direct upsampling used in ReSeg. Moreover, for the

Broccoli dataset, we investigated whether the addition of a depth channel

can easily improve the performance.

We have found that an U-shaped architecture, like U-Net proposed in

[37], generally delivers the best performances. However, the ReNet layer

[52] is able to better detect the shape of broccoli heads, which is important

in order to compute their size and their growth status. Albeit we have

already implemented two networks that mix these ideas, future developments

should also try to investigate whether an U-shaped network consisting of

both recurrent and convolutional neurons could lead to better results.

1.3 Structure of the thesis

This work is structured in the following way:

• in Section 2 we give a preliminary introduction to the problem of

agricultural image segmentation, analyzing the current state of the art.

Moreover, we introduce the neural architectures and methodologies

exploited in the current work;

• in Section 3 we give a detailed explanation of the various components

present in our system, also describing the adopted metrics and the

decisions taken during the implementation;

• in Section 4 we report the practical experiments we have performed to

build our system, such as the dataset annotation and the training of

the classifiers;

• in Section 5 we compare, from several point of views, the obtained

classifiers;

6

• in Section 6 we summarize the obtained results and propose future

extensions of the work;

• in appendix A we report some data that justify the decisions taken

during the training process explained in Section 4.

7

8

Chapter 2

State of the art

“But that’s the wonderful thing about man; he never gets so discouraged or

disgusted that he gives up doing it all over again, because he knows very well

it is important and worth the doing.”

Fahrenheit 451

In this section we report the current state of the art. More specifically, we

are interested in two fields: precision agriculture and deep neural networks.

2.1 Precision agriculture

Several technological innovations can help to obtain a sustainable growth of

agriculture. In this work we are mainly concerned with the recognition of

weeds and the recognition of harvestable plants and both problems requires

the ability to recognize and classify the single plants. Therefore we have

considered previous works in both the domains.

Automatic weed detection is a problem that is being addressed since 1991,

when Thompson, Stafford, and Miller [51] understood the great economic

and environmental potential of automated selective spraying of weeds in

agricultural fields. A general overview of weed control systems can be found

in [44], where the whole weed control pipeline is analyzed: guidance systems,

recognition of plant species, removal mechanisms and GPS mapping. In this

work we are concerned only with the plant recognition problem. As reported

in the cited works, many visual characteristics have been used to identify

plant species, and they can be divided into three broad categories: biological

morphology, spectral characteristics and visual texture.

2.1.1 Biological morphology

For what concerns biological morphology, most of the proposed systems work

at leaf geometry level, while plant geometry is exploited less frequently. A

detailed overview of such systems can be found in [4]. Generally speaking,

those kind of systems achieve really high recognition rates under ideal

conditions, but strive to adapt to real situations, where plants are occluded

or overlapping. In order to better deal with variability, Søgaard [46] proposed

a system based on active shape models. The shape models describe the leaf

shape and whole plant structure. The classification process is based both

on the amount of deformation required to obtain an optimum fit and on

the final level of match between the deformed shape and the plant being

identified.

Lee, Slaughter, and Giles [24] used the watershed algorithm in order to

separate occluded leaves. The idea is to consider the image as a topographical

surface where the proximity of each pixel from the background represents its

elevation. Starting from the local minima, the image gets flooded and dams

are built where two different lakes merge. At the end, those dams provide

separation lines, each region is considered as a single leaf and can be classified.

In order to avoid over separation of the leaves, they smoothed the distance

image by performing a morphological opening before the flooding step. Berge,

Aastveit, and Fykse [2] used shape parameters to detect broad-leaved patches

in cereal crop. Success rate was between 84 and 90%.

Knowledge about leaf orientation and height can help to obtain more

robust classification. Sanchez and Marchant [40] described the possibility

of detecting weeds by a fixed threshold on plant height on stereoscopic

images of plants in laboratory conditions. Nielsen et al. [29] studied the

detection of weeds among tomato plants by analyzing stereoscopic images

acquired in the field by a trinocular camera. The authors recognized the

negative effect of ground irregularity on classification. Piron, Der Heijden,

and Destain [33] proposed to compute a “corrected plant height” parameter

to accurately represent plant height taking into account ground irregularities.

The introduction of this parameter pushed the overall accuracy of their

system from 66% to 83%.

2.1.2 Spectral characteristics

Methods based on spectral characteristics are appealing as they are robust to

partial occlusion, in addition they tend to be less computationally intensive.

Many studies have used various kinds of indexes, typically ratios of broadband

reflectance values in visible and near-infrared lights. Scotford and Miller [41]

10

gave a list of the most commonly studied indexes. The idea is to exploit

the fact that chlorophyll reflects the near-infrared light and absorbs the red

one. Therefore, as the biomass density increases, the red vs. near-infrared

ratio changes and it can be exploited to separate vegetation from soil. In

fact, this is done as a first step in most of the systems based on biological

morphology. Similarly, different types of soil and different crops can also have

small spectral characteristics differences that can be exploited. However, few

studies have achieved good accuracies by exploiting color segmentation alone

to distinguish crops from weeds.

Guerrero et al. [12] combined color informations with support vector

machines, developing a system able to detect plants even when they are

covered with dirt or soil. Feyaerts and Van Gool [9] developed a spectrograph

able to discriminate beets from five weed species. Classification accuracy

was good (up to 86%), however, it required six narrow spectral bands, which

is impractical. Piron et al. [34] proposed a combination of three wide-band

filters to detect weeds located within carrot rows and found a classification

accuracy of only 72%.

2.1.3 Visual texture

A few studies have tried to identify plant species by computing visual textures.

Shearer and Holmes [42] developed a classification method based on color co-

occurrence matrices in intensity, hue and saturation spaces. Eleven textural

features were extracted from each co-occurrence matrix, obtaining an overall

classification accuracy of 91%. However, the computation of the features was

really expensive, and the authors suggested to use a smaller set of texture

features. Meyer et al. [27] also used co-occurrence matrix, extracting four

textural features to classify grass and broadleaf categories of plants, with

classification accuracies of 93 and 85%, respectively. The time required to

classify an image ranged from 20 to 30 seconds. Lottes et al. [25] proposed

a classification system based on [16], computing more features. In order

to compute statistical features for the texture, they employ Local Binary

Patterns (LBP) according to Ojala and Pietikäinen [30].

2.1.4 Classification without segmentation

Many of the systems that can be found in the literature work by exploiting

spectral characteristics to separate soil from vegetation and then computing

morphological and textural features on the vegetation to discriminate the

single plant. Being based on morphological characteristics, such an approach

works very well in ideal conditions, but needs to be refined when the leaves

11

are occluded or overlapping. Most of the systems presented so far work by

trying to separate overlapping and occluded leaves, for example by using

watershed algorithm or with morphological openings and closures of the

image. Instead of separating and labeling each plant, Cheng and Matson [5]

proposed a different solution: they first detect the corner points (i.e. tips of

leaf) using Harris Corner Algorithm. Afterward, they extract some features

from tiles built around the corners. The features are evaluated and the

corner classified. As a final step, to clean the results, they apply DBSCAN

to remove noise.

Haug et al. [16] also showed that it is possible to achieve a good accuracy

by computing features of patches representing the neighborhood of sparse

keypoints. Once removed the background soil, they generate a sparse grid

over the image. Every keypoint of the grid that is above a vegetation

pixel is considered as the center of a tile that is used to extract some

features to classify the keypoint. The results are then spatially smoothed

and interpolated to produce a pixel-wise classification. The same approach

has been used by Lottes et al. [25], implementing a similar system with much

more features.

Potena, Nardi, and Pretto [36] also proposed a system that does not

need to explicitly deal with overlapping leaves. Their system is based on two

neural networks. The first one (reported in Figure 2.1) is able to discriminate

between soil and vegetation by using a sliding window approach. Using the

classified points, the system identifies connected regions in the vegetation

and randomly selects some points in each region. Around each point a patch

is extracted, which is then given to the second neural network (reported

in Figure 2.2) to separate crop from weeds. As a final step, each region is

labeled by means of majority voting among its pixels.

2.1.5 Dataset

In machine vision, open datasets play an important role as they open chal-

lenging questions to a wider community and allow direct comparison of

different algorithms to the state of the art. However, for agricultural task

there are not many available datasets. Söderkvist’s Swedish leaf dataset [45]

was one of the first available datasets and contains leaf images of Swedish

trees. The Flavia dataset by Wu et al. [54] is a newer popular dataset for leaf

classification tasks. Kumar et al. developed a smartphone application for leaf

classification called Leafsnap [21] and published their dataset. However, the

availability of dataset for real-life agricultural tasks is much more limited.

Haug and Ostermann recently released CWFID [15], a dataset with 60

12

Figure 2.1: Convolutional network used in [36] to remove the soil. Image taken from
[36]

Figure 2.2: Convolutional network used in [36] to classify the patches. Image taken
from [36]

images taken under artificial lighting in an organic carrot field containing a

red and a near-infrared channel. Being the only public dataset available for

weed detection, it has been adopted for the current work. Along with the

dataset, the authors also provided some initial results and some metrics so

to make it possible to compare different classifiers.

Kusumam et al. [22] developed a classifier able to recognize harvestable

broccoli heads in real fields and made their dataset publicly available. The

dataset consists of several videos captured with a Kinect 2 in various broccoli

fields under artificial lighting conditions, therefore providing RGB images

with a 1920× 1080 pixels resolution and a 512× 242 depth resolution.

2.2 Classifiers working with features

Features extracted from images must be given to a classifier in order to derive

a suitable prediction for the image. Several classifiers can be used, in this

work we have used random forest classifiers, support vector machines and

gradient boosted trees. Since the present work is focused on neural networks,

these classifiers should be considered baselines.

2.2.1 Random forest

Random forest are an ensemble of decision trees. A decision tree [28] can be

represented as a set of if-then rules. Each node in the tree specifies a test of

some attributes, and each branch descending from that node corresponds

13

to one of the possible values for this attribute. An instance is classified by

starting at the root node of the tree, testing the attribute specified by this

node, then moving down the tree branch corresponding to the value of the

attribute in the given example. This process is then repeated for the subtree

rooted at the new node. At the end, a leaf node will provide the classification

of the given instance. In order to build the tree, each split is computed by

selecting the attribute that brings to the highest information gain, which

can be measured in different ways.

Random forests [10] are a substantial modification of the bagging schema

applied to decision trees. Bagging is a technique that works by building

many models and then average their results to decrease the final variance.

In order to build different models, each model is trained by using a different

subset of the available data (bootstrap). Moreover, random forests introduce

another technique to further reduce variance: for each tree, before computing

each split, a subset of the available features is randomly selected. In the end,

the results of the various trees can be combined by means of majority voting.

Moreover, by counting the fraction of trees that voted for a class, they can

be easily used to provide a probability estimate.

An important feature of random forests is their use of out-of-bag samples:

the error estimate for a given observation can be obtained by averaging

the results of those trees corresponding to bootstrap samples in which the

observation did not appear. An out of bag error estimate is almost identical

to that obtained by N-fold cross-validation, but is much faster to compute.

2.2.2 Support vector machines

A support vector machine performs binary classification by finding the

hyperplane that provides the best separation between the samples of two

classes. This is done through the concept of margin, which is defined as the

smallest distance between the decision boundary and any of the samples [3].

In support vector machines the decision boundary is chosen to be the one

for which the margin is maximized.

The decision boundary is linear in the feature space, but, by exploiting

the kernel trick [3], it can be made nonlinear in the input space.

Platt scaling can be used to produce a probability estimate for a given

sample [35]. The basic idea is to take the outputs of the support vector

(i.e., distances from the decision boundary) and use them to fit a logistic

regression model. In this way, the support vector outputs are transformed

into class probabilities.

14

2.2.3 Gradient boosted trees

Boosting builds a powerful model by ensembling several weaker models.

Differently from bagging, it does not work by randomly selecting a different

bootstrap for each model but, instead, the various models are built sequen-

tially and each time the samples are selected according to the performance

of previous models (i.e., misclassified samples are more important).

Gradient boosting combines this idea with a differentiable loss function,

selecting, at each step, the weak classifier that mostly reduce the loss. More-

over, by exploiting the differentiability of the loss function, each classifier

can be assigned a weight that maximally reduce the loss [10].

2.3 Deep neural networks

In the last years, deep convolutional networks have outperformed state of

the art classifiers in many visual recognition tasks. Even if they have been

introduced a long time ago [23], their recent fame is mostly due to the

availability of both large datasets and massive amounts of computational

powers. The impressive result obtained by Krizhevsky, Sutskever, and Hinton

[19] have been achieved by training a network with 8 layers with 1 million

training images. Since then, even larger and deeper networks have been

trained.

Convolutional networks have been firstly applied on image classification

tasks, where the goal is to assign a label to an image. However, in many

tasks, the desired output is a class assigned to each pixel of the image, which

goes under the name of image segmentation. One of the techniques that can

be applied to segment images is the so called sliding window approach, as

done in [36] when segmenting agricultural images. The idea is to extract

a window around each pixel, and use a convolutional network to classify

the window. The result is assigned to the central pixel and the window is

moved to the next pixel. The advantage of this approach is that it allows

to use already existent architectures and, moreover, it increases the amount

of available training data, due to the vast overlap of the windows. The

disadvantage is that this approach is slow, as the network must be run again

for every window.

The sliding window approach also contains a trade-off between the use of

context information that is available with larger patches and the localization

accuracy that is possible with smaller patches. To overcome this limitation,

classifiers that work with features from various layers have been recently

proposed [14].

15

Figure 2.3: U-net architecture. Image taken from [37]

Moreover, it is possible to stage an upsampling layer after some convo-

lutional layers, thus directly obtaining a segmentation mask for the whole

image. This approach also contains a trade-off. In fact, to extract more

complex features we would need to employ more convolutional layer, but

this would make harder to accurately upsample the annotation.

2.3.1 U-Net

While developing a system for biomedical image segmentation, Ronneberger,

Fischer, and Brox [37] proposed a fully convolutional neural network com-

posed by a contracting path able to capture context and a symmetric expand-

ing path that enables precise localization. This approach allows to directly

segment an entire image without extracting any window. Heavily relying on

data augmentation techniques, they showed how the network can be trained

end-to-end with very few images (their training data consisted of 30 images),

obtaining a network that outperformed the prior best method based on a

sliding window approach, while also being faster. The network architecture

can be found in Figure 2.3.

2.3.2 ReNet

Visin et al. proposed [52] the ReNet layer, a recurrent neural architecture

that can be used as a drop-in replacement for the usually adopted convolu-

16

Figure 2.4: ReNet architecture. Image taken from [52]

Figure 2.5: ReSeg architecture. Image taken from [53]

tion+pooling layer. The layer consists of four recurrent neural networks that

sweep over the whole image vertically and horizontally. This architecture

allows each feature activation to be a function of the whole image, thus

capturing long distance dependences, in contrast with the convolutional

approach that works with a local context window. Stacking this kind of

layers with some fully connected layer, it is possible to obtain a state of

the art network for image classification. The architecture presented in the

cited work is reported in Figure 3.10 and is composed of three ReNet layers

followed by three fully connected layers.

2.3.3 ReSeg

Visin et al. used their work on ReNet to propose ReSeg [53], a recurrent

network able to perform image segmentation. The network is composed by 3

successive ReNet layers and an upsampling layer that brings the image back

to its original size. The authors also showed how adding some pre-trained

convolutional layers at the beginning of the network can help to maximize its

performance and obtain a state of the art network for image segmentation.

The architecture presented in the cited work is reported in Figure 2.5.

2.3.4 Common tricks to avoid overfitting

As said, the recent successes of the deep nural networks are mostly due

to the conjunct availability of very large dataset and massive amounts of

computational power. However, obtaining an agricultural dataset is a really

hard task, and thus the availability of training data for this work is much

limited. Being the current work based on small datasets [15] [22], it is crucial

17

to exploit all the techniques that can help to reduce overfitting during the

training phase and successfully train a network with few images.

Szegedy et al. showed [50] that an efficient way to reduce the number

of parameters in a network while maintaining the same expressive power

is to substitute n× n convolutions with an n× 1 layer followed by a 1× n
layer. This allows to have an activation function with the same spatial

extent in the input image, while having less parameters to train and an

additional non-linear stage. With the same principle, small convolutions

should be preferred to large ones. For example, a 5× 5 convolution involves

25 parameters and can be substituted with two 3× 3 ones that have just 9

parameters each. Those convolutions can then be factored in 3× 1 and 1× 3

convolutions, with 3 parameters each. From the original 25 parameters we

have thus moved to 12, simplifying the learning process.

Patrice Y. Simard showed [32] how elastic distortions can be used to

generate additional data. The idea behind is to slightly distort the images

to augment the available amount of data, this is done by generating random

displacement fields ∆x(x, y) and ∆y(x, y) which represent, for every pixel

(x, y), how it should be moved to its new position (i.e. (x, y) becomes

(x + ∆x(x, y), y + ∆y(x, y)). The two fields are then convolved with a

gaussian of standard deviation σ. With higher values of σ this is similar

to a translation, while smaller values recall a random field. Intermediate

values looks like an elastic deformation, we provide some sample images in

Figure 3.13c and Figure 3.13d on page 44.

Another commonly used technique that helps to reduce overfitting is

dropout [48]. This technique consists in randomly shutting down the output

of some neurons during the training phase. This makes it impossible for

the network to build specialized paths that just recognize the input data.

Another view of the technique is related to bagging: shutting down some

paths we always train a different network. Therefore, in the final network we

will have several different networks, each one trained on a slightly different

training dataset.

2.3.5 Training algorithms

In order to train a neural network it is necessary to have an algorithm

that allows to update the weights following the loss gradient w.r.t. the

parameters1.

The most basic approach is to simply change the parameters along the

1All the reported formulas have been adapted from the slides of Stanford’s course
CS231n [7].

18

negative gradient direction. If we define the parameter vector as ω and the

loss gradient w.r.t. ω as ∂L the update becomes:

ω− = LR · ∂L,

where LR, the learning rate, is an hyperparameter. A usually faster conver-

gence can be reached by considering the momentum update, where basically

the negative gradient is used as a force, thus building up a velocity for the

parameters vector and avoid getting stuck in local optima:

v = µ · v − LR · ∂L,

ω+ = v.

A slightly different approach is Nesterov momentum, whose core idea is

to evaluate the gradient after having considered the momentum, therefore

evaluating it closer to our next position:

ω′ = ω + µ · v,

v = µ · v − LR · ∂L(ω′),

ω+ = v.

All this approaches need a learning rate: an hyperparameter that is

multiplied by the negative gradient in order to obtain the actual weight

update. An higher learning rate will help to converge faster, but it can

overshoot the target and thus not converge at all. On the other hand, a

smaller learning rate will make convergence slower and can get stuck in

local minima. Intuition suggests that it is good to have a high learning

rate during the first optimization steps and progressively reduce it in later

steps. The strategy used to decrease the learning rate is an hyperparameter

itself and its tuning is an expensive process, therefore much work has been

done to propose methodologies that can adaptively tune the learning rate,

and even do so per parameter. Those methods usually requires additional

hyperparameters, but the idea is that they will perform acceptably on a

broader range of hyperparameters, thus making the selection process easier.

Adagrad [8] keeps track of per-parameter sum of squared gradients, using

it to modify the learning rate. The parameters that have already received

high gradients will have a reduced learning rate, while the parameters that

19

receive small or infrequent updates will have a boosted learning rate:

cache+ = ∂L2,

ω− =
LR · ∂L√
cache+ ε

.

where ε is a small value (i.e., somewhere between 10−4 and 10−8) to avoid

divisions by zero. The drawback is that this method is usually too aggressive

and stops the learning too soon.

RMSProp tries to solve this issue by keeping a moving average of squared

gradients:

cache = decay · cache+ (1− decay) · ∂L2.

ω− =
LR · ∂L√
cache+ ε

.

Adam [18] is another method that looks like RMSProp combined with

momentum:

m = β1 ·m+ (1− β1) · ∂L,

v = β2 · v + (1− β2) · ∂L2,

ω− =
LR ·m√
v + ε

.

The actual formula is slightly different as in the first epochs the vectors m

and v are both initialized to zero and thus require a correction mechanism.

Recommended values in the paper are ε = 10−8, β1 = 0.9, β2 = 0.999. In

practice Adam is currently recommended as the default algorithm to use,

and often works slightly better than RMSProp.

2.3.6 Activation functions

An artificial neuron works by performing the weighted sum of its inputs (plus

a bias) and by transforming the result with an activation function, which

must be differentiable. Moreover, it is common to use a non-linear activation

function, since, otherwise, the resulting network would be equivalent to a

linear combination of the inputs2.

The sigmoid function has been widely used historically since it has a

nice interpretation as the firing rate of a neuron: from not firing at all (0) to

fully-saturated firing at an assumed maximum frequency (1). In practice,

the sigmoid non-linearity has recently fallen out of favor and it is rarely ever

used. It has two major drawbacks:

2As for the learning algorithms, we refer to the CS231n course material [7].

20

• It saturates killing the gradients. When the neuron’s activation goes in

either one of the tails, the local gradient becomes nearly zero. Therefore,

when back propagating the gradients, a saturated neuron effectively

“kill” the gradient and almost no signal will flow through the neuron to

its weights and recursively to its data.

• It is not zero-centered. This is a problem because, if a neuron receives

data that are always positives, it will force its weights to be all updated

either in a positive or in a negative way. This inconvenience is mitigated

by the fact that, once these gradients are added up across a batch of

data, the final update for the weights can have variable signs.

The Tanh function is also a commonly used nonlinearity. As the sigmoid

neuron, its activations saturate, but, unlike the sigmoid neuron, its output is

zero-centered.

The Rectified Linear Unit (ReLU) has become very popular in the last few

years. It computes the function f(x) = max(0, x). It has several properties:

• It greatly accelerates the convergence of stochastic gradient descent

compared to the sigmoid/tanh functions [19].

• Can be implemented by simply thresholding a matrix of activations at

zero.

• Unfortunately, ReLU units can “die”. A large gradient flowing trough

a ReLU may modify its weights in such a way that the neuron will

never activate again on the entire dataset. From that point on, the

gradient flowing through the unit will always be zero. With a proper

setting of the learning rate this is less frequently an issue.

In practice, ReLU is currently the recommended nonlinearity.

2.3.7 Weight initialization

Before starting to train the network, its parameters have to be initialized.

The first idea that one could have is to initialize all the weights to zero,

expecting that, at the end of training, the number of positive parameters

will be approximately equal to the number of negative ones. This would

be a great mistake, since, if all the parameters are equal, all the neurons

compute the same output and, therefore, the same gradients, leading to the

same parameter updates.

Therefore, in order to introduce an asymmetry, it is common to initialize

the weights to small random values sampled from a Gaussian distribution

with unitary variance.

21

The problem of the previous solution is that the variance of a neuron

output grows with the number of its inputs, which has been empirically

proven to slow down the rate of convergence [7]. The raw activation value

s of a neuron (i.e., before the nonlinear function) is computed as the inner

product s =
∑n

i ωixi between the weights ω and input x. Assuming zero

mean inputs and weights we can thus compute the variance of s:

V ar(s) = V ar(

n∑
i

ωixi)

=
n∑
i

V ar(ωixi)

=

n∑
i

[E(ωi)]
2V ar(xi) + [E(xi)]

2V ar(ωi) + V ar(xi)V ar(ωi)

=
n∑
i

V ar(xi)V ar(ωi)

= (nV ar(ω))V ar(x)

We can thus see that, if we want s to have the same variance of its input x,

then we have to make sure, during initialization, that the variance of ω is

1/n, which can be obtained by sampling each weight from a Gaussian with

standard deviation equal to
√

1/n.

Notice that the assumption of zero mean inputs does not always hold.

For example, ReLU units do not have a zero average. He et al. derived [17]

an initialization specifically for ReLU neurons, reaching the conclusion that

the variance of ω should be equal to 2/n.

2.3.8 Visualization techniques

One of the main drawbacks of neural networks is that they work like black-

boxes. We give them an input image and obtain a classification without

knowing which kind of features are being exploited. Therefore, a lot of recent

works have focused on finding ways to visualize the features extrapolated by

deep neural classifiers [7].

One of the first methods [11] consists in finding, in the dataset, the

samples that maximally activate some neurons. The idea is to take a neuron

and use it as a feature detector: its output is evaluated in a large set of

held-out regions proposals which are then sorted according to the activation

of the neuron. By looking at the proposals with the highest score it is possible

22

to form an idea of the feature extracted by the neuron.

Other methodologies focus in finding images that are classified in a similar

way by the network. For instance, [20] considers the activations of the last

fully connected layer as an high dimensional vector. For different images, they

compute the euclidean distance between the two vectors and thus understand

which images are considered similar by the network. Similarly, t-SNE [26]

can be used to visualize high dimensional datapoints by projecting them in

a two or three dimensional space conserving, locally, pairwise distances.

Neural classifiers can also be understood trough occlusion sensitivity [56]:

by systematically occluding with a gray square different parts of the input

image and monitoring the output of the classifiers it is possible to produce

an heat map that shows how much every part of the image is important for

the final classification. In this way, it is possible to understand if the network

is effectively recognizing the object or just the surrounding context.

All this methods requires to use existing images. However, there is also a

common methodology that consists in the direct visualization of the convolu-

tional weights [20]. Usually this is done just for the first convolutional layer

as its weights are easy to understand since they capture easily recognizable

shapes like oriented edges and opponent colors. The subsequent layers can

also be visualized, but their interpretation becomes more challenging since

they are based on the previous layers. Moreover, this visualization works just

with convolutional networks and is difficult to adapt to factored convolutions.

There are also some visualization methods ([56], [43], [47]) that exploit the

differentiability of the networks. In fact, what is usually done, during training,

is to compute the derivative of the loss w.r.t. the network’s weight. However,

it is also possible to compute the derivative of the loss w.r.t. the input image

and thus visualize the gradient of a specific neuron, understanding which

part of the image is exciting it. Since the correct backpropagation formula

for ReLU leads to noisy images, the cited works propose modified versions

that increase the visual quality and thus actually show what is liked by a

neuron.

Following the same approach, it is possible [43] to actually compute an

image that maximizes a class score. In fact, once we have the gradient of

an output neuron w.r.t. the image, it can be used to modify the image

so to increase the class score. This, in principle, would allow us to find

an image that, according to the network, optimally represents its abstract

idea of the class. However, the results tend to be a bit noisy since high

frequency informations tend to excite more the neurons and thus are boosted

in this backpropagation. The most basic solution consists in adding an l2
regularization term so to prefer sparse input images. Another solution [55]

23

consists in blurring the image after each update (to increase the importance

of low frequency informations) and put to zero every pixel with a small norm

(to increase sparsity).

In our work, we have tried to adapt the last two methodologies to our

segmentation problem.

24

Chapter 3

Proposed system

“Andrew: But is there a line? You know, maybe you go too far, and you

discourage the next Charlie Parker from ever becoming Charlie Parker?

Terence Fletcher: No, man, no. Because the next Charlie Parker would never

be discouraged.”

Whiplash

In this section we describe the various parts of the proposed system.

3.1 Datasets description

We have trained and tested our system on two datasets: CWFID [15] and

the Broccoli dataset [22].

3.1.1 CWFID

The CWFID dataset [15] is composed of 60 1296×966 pixels images containing

red and near-infrared channels. A sample image can be seen in Figure 3.1,

where the near-infrared channel has been mapped to the green one and the

red channel has been mapped to the red and blue ones.

CWFID is a public dataset created with the aim of making it possible to

compare different classification systems for the agricultural domain. There-

fore, in the proposing article, the dataset has been released with a specific

splitting to be used. More precisely, the 60 images contained in the dataset

can be split in two ways:

1. the first 20 images for training, the last 40 for testing;

2. 40 randomly selected images for training and the remaining 20 for

testing.

Figure 3.1: CWFID image 027 as an example

For the first splitting there are some initial results shipped with the dataset,

for the second one there is still no result publicly available. We have therefore

used both the proposed splittings, the first one to make our results comparable

to the available ones and the second one to see how much the various networks

suffer from the lack of big training datasets. From the training datasets of

both the splittings we have selected some images for validation purposes.

More specifically, we have selected the images 6, 12 and 18 for the first

splitting and the images 11, 20, 41 and 52 for the second splitting.

3.1.2 Broccoli dataset

From the original Broccoli dataset we have derived 300 1920× 1080 RGB

images plus a depth channel with a resolution of 512× 242 pixels. A sample

image can be seen in Figure 3.2.

We have also tried to see whether the addition of the depth information

can lead to substantially better results. This has been done by building a

fourth channel representing the distance of the pixel from the camera. Since

the depth and the color camera are placed in different position and have a

different resolution, the depth channel is defined only for the central part

of the image. Experiments shown that the the depth channel contains too

much noise and thus does not help to segment images when used in their

raw version.

For the Broccoli dataset we can only compare to the results released in [22],

that have been obtained on 3D cloudpoints and with different ground truth

annotation data, therefore the results are comparable just on a qualitative

basis. From 300 images we have selected the first 150 images as training, the

following 50 for validation and the remaining 100 for testing. The splitting

has been done in a sequential way as the images are overlapping.

26

(a) Broccoli image 001 (b) Depth channel of image 001

Figure 3.2: Broccoli image 001

3.2 Adopted metrics

To measure the performance of the various classifiers on the CWFID dataset,

we have adopted the metrics proposed in [15]. In detail, the system is

measured in two stages: the first metric measures how much the system is

able to separate the vegetation from the surrounding soil, whereas the second

metric measures the ability of the system to correctly classify the various

kinds of vegetations.

The first metric is the Jaccard index, and is computed as

segacc =
truepos

truepos + falsepos + falseneg

(where the positive class is the vegetation and the negative is the soil) and

averaged across all the test images.

The second set of metrics is composed by the average accuracy, precision,

recall and f1 score averaged across all the test images. Considering that we

have already measured the ability to discriminate the soil, those metrics are

evaluated just on the vegetation pixels. Therefore we measure them only on

the intersection between our vegetation mask and the ground truth for the

same mask. The problem becomes binary and we consider the weed as the

positive class. The metrics are thus computed as:

accuracy =
truepos + trueneg

truepos + trueneg + falsepos + falseneg
,

precision =
truepos

truepos + falsepos
,

recall =
truepos

truepos + falseneg
,

f1 =
2× precision× recall
precision+ recall

.

27

In [15] a border of 40 pixels is masked and ignored during the evaluation

phase as the proposed system is not able to produce predictions there. Our

system, instead, is able to produce accurate results even on the border of the

images, but in order to have comparable results we adapt to the proposed

evaluation model and mask the border.

For the Broccoli dataset we cannot use this evaluation as we do not have

a three class problems, but a binary one. Therefore we just evaluate accuracy,

precision, recall and f1 considering the broccoli heads as the positive class

and removing a 40 pixels border around the images.

3.3 System description

This work is focused on the comparison of different classifiers for agricultural

tasks. In order to compare them we have implemented a common system

where new classifiers can be easily integrated and cooperate with existing

ones. The system we propose can be divided in two separate subsystems: one

based on neural networks and a more traditional one working on handcrafted

features used to produce baseline results. The general structure of the system

can be observed in Figure 3.3. The two subsystems are identified by the left-

and right-side of Figure 3.3 and can be run independently.

To better explain the various stages of the pipeline, here we will present

it assuming that the system is working on an image taken from CWFID.

Images from the Broccoli dataset are treated in a similar way, the differences

will be detailedly explained in Section 3.4.

3.3.1 Hand crafted features subsystem

The first subsystem contains most of the ideas that can be found in other

state of the art systems. The pipeline is the following:

• the input image is transformed into a grayscale one computing a spectral

index;

• the greyscale image is used to compute a mask that removes soil;

• the mask is cleaned to reduce false positives;

• a grid is drawn on the image;

• a tile is extracted above every unmasked (i.e., vegetation) keypoint1;

1With keypoints we mean the intersection points identified by the grid.

28

Original image

Greyscale
NDVI image

Masked
NDVI image

Masked
NDVI tiles

Tile features

Classifiers

Tile probabilities

Neural networks

Image prob-
abilities

Tile probabilities

Tile probabilities

Smoothed tile
probabilities

Image prob-
abilities

Segmented image

Compute NDVI

Otsu

Build grid and extract tiles

Compute tile features

Average

NN interpolation Average

Figure 3.3: General architecture of the implemented system

29

• the NDVI channel of the tile is used to extract some features;

• the features are given to several classifiers;

• the results of the various classifiers are averaged and assigned to the

center of the tile;

• the probabilities are spatially smoothed;

• each point of the image is assigned a probability using nearest neighbor

interpolation.

NDVI

As a first step, the system has to be able to distinguish vegetation from

soil. To do that, the different reflectance of vegetation and soil in the red

and near-infrared light is exploited [41]. To highlight this difference, the

2-channels images are transformed into single-channel ones by computing

the Normalized Difference Vegetation Index (NDVI) at each pixel:

INDV I =
INIR − IR
INIR + IR

Where IR and INIR respectively indicates the red and the near-infrared

channels of the image. A sample image can be seen in Figure 3.4a.

Binary mask for vegetation

The information obtained from NDVI is used to compute a binary mask.

Since NDVI indicates how much the near-infrared channel is different from

the red one, it can be used to identify vegetation areas. An higher NDVI

thus indicates that an area is more probably vegetation. To obtain a binary

mask, a threshold for NDVI has to be selected. As proposed in [16], the

threshold value is selected using Otsu’s method [31]. An example image can

be seen in Figure 3.4b.

Mask cleaning Since the obtained mask contains some noise, we propose

two different strategies to remove it.

Minimum Near Infra Red Value The masking procedure is based

on the difference between the red and the near-infrared channel, but does

not consider their absolute values. Therefore, the mask also includes dark

pixels if their NIR channel is slightly above the red one. A simple strategy

30

(a) NDVI (b) Uncleaned mask

(c) Mask cleaned NIR ≥ 74 (d) Mask cleaned neural network

Figure 3.4: Computing the mask for image 027

to get rid of them is to remove all pixels whose NIR value is below a certain

threshold. Experiments (reported in Section 4.2.1) have shown that a good

value for the threshold is 74. An example of a cleaned mask can be seen in

Figure 3.4c.

Neural Network Potena et al. proposed [36] to use a lightweight

convolutional neural network to clean the mask. We implemented a similar

network: first we clean the mask imposing a more conservative minimum

NIR value (using a threshold of 65), then, in order to classify a pixel, we

extract a 15x15 tile around it and feed it to a convolutional neural network.

Since repeating this process for every pixel would be really demanding, the

tiles to classify are extracted so as to be non overlapping and the result is

applied to the entire tile. However, this approach remains relatively slow

and moreover it does not lead to substantially better results as reported in

Section 4.2.1. Therefore, it is not used in the default configuration of the

system. The network structure is reported in Figure 2.1. An example of a

mask cleaned using this approach can be seen in Figure 3.4d.

31

(a) Centers of tiles in black (b) Overlapping tiles in white

Figure 3.5: Extracting the tiles from image 027

Image tiling

The binary mask is then used to extract smaller tiles from the image as

proposed by Haug et al. [16]. This approach allows to classify the image

without having to explicitly deal with overlapping leaves. Differently from

Haug et al., we use a thicker grid, as it produces better results at the expense

of a slight increase in computational demands. A grid with a spacing of

10x10 pixels is drawn on the image. Each intersection point that is above

soil (i.e. black mask) is discarded, while all the other points are considered

as centers of 80x80 tiles. Each tile will be classified separately and the result

will be assigned to the central pixel. The effect of this step can be seen in

Figure 3.5

Features extraction

Each tile is used to compute a set of features. As proposed by Hall et al. [13],

our system can work with two sets of features. The main one is the same

proposed by Haug et al. [16] and reported in Table 3.1, the second one is the

subset of those features that are robust to scale variation. Experiments have

shown that the smaller set provides better results, as reported in Section 4.2.2.

Moreover, the usage of a smaller number of features makes the system faster.

The idea is to have a set of features that is fast to compute and is very

resilient to condition variation, therefore our system does not contain complex

features working on the texture of the leaves like the ones proposed by Lottes

et al. [25]. Figure 3.6 contains the morphological objects used to compute

the features.

32

Table 3.1: Computed features

fi Description Scale invariant

f1 perimeter (length of contour) no
f2 area (number of pixels covered by leaf) no
f3 length of skeleton no
f4 compactness (area / perimeter2) yes
f5 solidity (area / area of convex hull) yes
f6 convexity (perimeter / perimeter of convex hull) yes
f7 length of skeleton / perimeter yes
f8 minimum of vegetation pixel intensities yes
f9 maximum of vegetation pixel intensities yes
f10 range of vegetation pixel intensities yes
f11 mean of vegetation pixel intensities yes
f12 median of vegetation pixel intensities yes
f13 standard deviation of vegetation pixel intensities yes
f14 kurtosis of vegetation pixel intensities yes
f15 skewness of vegetation pixel intensities yes

Classifiers

The computed features are used to train several baseline classifiers. The

system can be easily extended to incorporate new classifiers, we have trained

a random forest classifier, a support vector machine classifier and a gradient

boosted classifier. All the classifiers produce as output the probabilities for

the tile of being soil, crop or weed. In fact, even if they are used just on

points that are masked as vegetation by the previous steps, the addition of a

soil class helps to further reduce the number of misclassified points.

Averaging probabilities

Every classifier outputs three probabilities (i.e., soil/weed/crop) for every

keypoint of the grid. The probabilities of various classifiers are simply

averaged at each keypoint. All the keypoints whose biggest probability

corresponds to soil are added to the binary mask. The other points keep their

weed probability so to discriminate between crop and weed. In Figure 3.7a

is visible the output of this process on a sample image when averaging the

outputs of the three classifiers.

33

(a) NDVI (b) Contour and convex hull (c) Skeleton

Figure 3.6: NDVI index, contour, convex hull and skeleton of a CWFID tile used to
compute the features

Spatial smoothing

In order to better exploit the local informations, Haug et al. proposed [16] to

spatially smooth the probabilities using a Markov Random Field. To keep

low the classification time we propose to use a simpler smoothing process.

The idea is to remove outliers by exploiting the information provided by

nearby keypoints. In fact, given that the tiles are overlapping, a keypoint

is represented by more than one tile. The smoothing process we propose

works as reported in Algorithm 1. This approach is much faster than the

one proposed by Haug et al. [16], although it is not as accurate.

For each keypoint we consider its neighbors and compute the average

probabilities among all of them. The probability of each keypoint in the

neighborhood is then updated as the average between its current value and

the computed average. The whole process is repeated more times. The

result of the spatial smoothing process is visible in Figure 3.7b and is mostly

noticeable for the lowest and uppermost plants on the right side of the image.

Interpolation

At this point we produce a pixel-wise classification using both the binary

mask and the smoothed probabilities. All the unmasked (i.e., vegetation)

points receive the probability of the closest keypoint that has not been

classified as soil. At the end, all the unmasked points that have a probability

greater than 0.5 are considered as weed points, the others as crop. The effect

of the interpolation is visible in Figure 3.7e, while the final classification is

reported in Figure 3.7f.

34

Algorithm 1 Spatial smoothing of tile probabilities

Require: prob img: an image with the dimension of the original image
whose values are -2 on all non keypoints, -1 on keypoints predicted as soil,
[0, 1] elsewhere

Require: x cons, y cons: positive integers representing the spatial extent
of the smoothing process

Require: repetitions: positive integer representing the number of repetitions
of the algorithm

if repetitions = 0 then
return prob img

end if
for (y,x) representing every available keypoint in the image do
tot← 0
num← 0
for each keypoint in y + y cons, x+ x cons do

if keypoint prob 6= −2 ∧ keypoint prob 6= −1 then
tot← tot+ keypoint prob
num← num+ 1

end if
end for
if num > 0 then
avg ← tot

num
for each keypoint in y + y cons, x+ x cons do

if keypoint prob 6= −2 ∧ keypoint prob 6= −1 then
keypoint prob← avg+keypoint prob

2
end if

end for
end if

end for
return smooth(prob img, x cons, y cons, repetitions - 1)

35

(a) Aggregated weed probabilities (b) Smoothed weed probabilities

(c) Detail of Figure 3.7a (d) Detail of Figure 3.7b

(e) NN interpolation (f) Final classification

Figure 3.7: Classification of image 027

36

5x5

5x5

/2

/2

conv.
layers

26

26

f.c.
layers

384 192 3

in tile
dimension

80x80

40x40

Input

Output

Figure 3.8: Sliding window architecture. A blue square is a convolutional layer, red
means max-pooling, violet is fully connected

3.3.2 Deep Networks

Our system contains several deep neural networks. Their results can be

combined with the one produced by the hand crafted features based subsystem

or used on their own. We have experimented with four architectures and

with some minor modifications, obtaining in total seven different networks.

Sliding window convolutional neural network

The first network follows the approach proposed by Potena, Nardi, and

Pretto [36], and is composed by 2 5× 5 convolution+pooling layers followed

by a batch normalization layer and three fully connected layers as reported in

Figure 2.2. Figure 3.8 depicts the same network using the notation that we

will also employ for the other networks. The only difference with the original

network is the size of the input patches: we kept it to 80 × 80 pixels to

better integrate it with the rest of the system. The network takes as input a

window and produces a class output which is assigned to the central keypoint.

Differently from Potena, Nardi, and Pretto, who are using randomly sampled

points to extract the windows, we use the same keypoints that are used to

compute the hand crafted features, thus making it easier to combine the

output of this network with the output of the more traditional classifiers.

37

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

/2

/2

/2

/2

*2

*2

*2

*2

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x1
conv.
layers

25

25

26

26

27

in img.
dimension

640x480

320x240

160x120

80x60

40x30

Input Output

Figure 3.9: U-Net like architecture. A blue square is a convolutional layer, red means
max-pooling, green upconvolutional, grey concatenation

U-Net network

The U-Net architecture proposed by Ronneberger, Fischer, and Brox [38] has

been implemented with some minor modifications. From the architecture

reported in Figure 2.3 we have moved to the one depicted in Figure 3.9.

More specifically, we have reduced the number of convolutional filters

to reduce the memory footprint. The padding of the convolutional layers

has been modified to maintain the size of the images, given that in our task,

differently from the one addresed in [38], we also have to produce precise

predictions close to the borders of the images. Moreover, we have factored

the 3 × 3 convolutions in two subsequent 1 × 3 and 3 × 1 convolutions as

proposed by Szegedy et al. [50] to reduce the number of parameters and thus

make the learning process easier.

To further reduce the memory requirements, the images are subsampled

to half the size along every dimension before being fed to the network and the

output is correspondingly upsampled. Apart from this, the network works on

full size images, making the use of keypoints and tiles superfluous. However,

if wanted, the network can also produce keypoint probabilities by averaging

the predictions of the points in a window drawn around the keypoints. In

this way, the results of this network can be smoothed and interpolated like

38

the ones produced by the hand crafted features based subsystem.

The adopted nonlinearity is ReLU [19] and the weight initialization

strategy is He Normal [17].

Recurrent networks

Basing on the works [52] [53] by Visin et al., we have experimented several

recurrent network. From [52] we have taken the ReNet layer, which is

composed by 4 recurrent neural networks that sweep the image both vertically

and horizontally. In this way, each pixel’s activation function depends upon

the whole image, instead of the neighboring of the pixel as it happens with

convolutional layers. Given that, in its default configuration, the ReNet layer

reduces the dimension of the network by a factor of 2, it can be used as a

drop-in replacement for the usually adopted convolution+pooling layers. In

our experiments, we have tried to use these layers in the contracting path

of the U-Net architecture, experimenting with the number of hidden units

of the network. For the expanding path of the network we have kept the

convolutional layers as, ideally, an activation function with a small spatial

extent is better suited for an upsampling job. We will refer to these networks

as U-ReNet and U-ReNet2, where the former indicates the network where

the number of hidden units of the ReNet layers is kept fixed while the latter

indicates the network with a varied number of hidden units. More specifically,

the number of hidden units follows the same scheme adapted for the U-Net

network. Figure 3.10 shows the architecture of this network.

For what concerns the ReSeg [53] network, it is composed by three ReNet

layers followed by an upsampling layer. Firstly we have experimented the

network on its own, then we have tried to preprocess the input data with

some pretrained convolutional layers, as suggested in the paper presenting

ReSeg. For those convolutional layers, we have used the pre-trained layers of

U-Net. The original ReSeg architecture is reported in Figure 2.5, while the

architecture with the convolutional layers is reported in Figure 3.11.

As a final experiment, we have tried to ease the job of the upconvolu-

tional stage by using a concatenation layer combining the output of the

upconvolutional layer with the input. In this way, the output layer can use

the input image to better follow the borders of the image and thus produce

more accurate results. The architecture is reported in Figure 3.12

39

*2

*2

*2

*2

*2

*2

*2

*2

*2

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x1
hid. units
for U-ReNet1
and U-ReNet2

50 − 25

50 − 25

50 − 26

50 − 26

50 − 27

in img.
dimension

640x480

320x240

160x120

80x60

40x30

Input Output

Figure 3.10: U-ReNet architecture. A blue square is a convolutional layer, yellow
represents a ReNet layer, green is upconvolutional and grey concatenation. On the
left is reported the number of hidden units for the two networks tested, the number of
convolutional layers is the same used in the U-net like network

3.4 Differences for the Broccoli dataset

The Broccoli dataset presents some peculiarities that involved making some

modifications to the presented architecture. As a first thing, the Broccoli

dataset is composed by RGB images, thus having one more channel than the

CWFID images, which are composed by a red and a near-infrared channels.

Moreover, the images of the Broccoli dataset do not contain much soil but

contain many leaves. Combining this with the fact that no thresholding

technique resulted in a good elimination of the little soil present without

substantially removing areas of broccoli heads, we decided to treat the

problem as a 2 classes segmentation problem: we just separate broccoli heads

from the rest of the world (i.e. soil and other vegetation). Therefore we have

to use an unmasked picture while extracting the tiles, which leads to a really

big dataset in terms of training samples. Since this is not ideal in terms of

memory efficiency, we have also tried to use the U-Net network (with a very

low threshold probability of 20%) in order to reduce the dataset size. This

mimics the idea presented in [36], where a lightweight network is used to

preprocess the images and to remove soil. Our network is not lightweight

40

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

/2

/2

*32

1x1
conv.
layers

25

25

26

hid.
units

90 90 90

in img.
dimension

640x480

320x240

160x120

80x60

40x30

20x15

Input Output

Figure 3.11: ReSeg + convolution architecture. A blue square is a convolutional
layer, yellow represents a ReNet layer, green is upconvolutional and red is max pooling.
Considering the image starting from the yellow layers, it depicts the ReSeg network

and it is not removing soil, but the goal is, in both the cases, to reduce the

number of tiles to be classified. Therefore, since we already have a trained

network, we can use it in conjunction with a really low threshold to mimic a

lightweight network.

Furthermore, the tile-based classifiers have not been trained for the depth-

enriched version of the Broccoli dataset due to their really high computational

cost.

The greyscale image used to extract the features cannot be computed

using NDVI, since we have no near infrared channel. We have therefore

adopted the combined index proposed in [12], which is based on three different

indexes. More specifically, starting from an RGB images with values in 0-255

ranges, first we compute the normalized values in 0-1 ranges:

Rn =
R

Rmax
, Gn =

G

Gmax
, Bn =

B

Bmax

41

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

1x3 3x1 1x3 3x1

/2

/2

*32

1x1
conv.
layers

25

25

26

hid.
units

90 90 90

in img.
dimension

640x480

320x240

160x120

80x60

40x30

20x15

Input Output

Figure 3.12: ReSeg + convolution +concatenation architecture. A blue square is a
convolutional layer, yellow represents a ReNet layer, green is upconvolutional, grey is
the concatenation layer and red is max pooling

and then normalize again in a relative way:

r =
Rn

Rn +Gn +Bn
, g =

Gn
Rn +Gn +Bn

, b =
Bn

Rn +Gn +Bn
.

The indexes that will be combined (excess green, color index of vegetation

extraction, vegetative) are computed as [12]:

ExG = 2g − r − b,

CIV E = 0.441r − 0.811g + 0.385b+ 18.78745,

V EG =
g

rαb1−α
,

with α = 0.667.

42

And, at last, the indexes are combined as [12]:

COM = 0.36ExG+ 0.47CIV E + 0.17V EG.

This combined index is then used to compute the features of Table 3.1,

exactly like the NDVI index is used for CWFID.

3.5 Data augmentation techniques

Given the small number of training data available, data augmentation tech-

niques have been used heavily. More specifically, each image is mirrored

horizontally, vertically and diagonally while building the dataset. Moreover,

during training time, each image is randomly perturbed in several ways:

1. a random translation is applied in both the x and y directions;

2. a random value is added to all the pixels on all the channels;

3. an elastic transformation is applied;

4. all the networks contain a gaussian noise layer.

In this way, the networks are trained by never seeing the same image more

than one time, implicitly augmenting the number of training data. In order

to further prevent overfitting, we also apply dropout on the last layer and an

l2 regularization term. Experiments shown that the regularization term is

not really important to prevent overfitting, whereas the elastic deformation

and the dropout are much more useful hyperparameters.

As explained in Section 2.3.4, the effect of the elastic transformation

depends on the chosen value for σ: lower values are more similar to a

random field, while bigger values are similar to a translation. We have thus

experimented the usage of two possible values for σ so to obtain both the

effects on all the networks except for the sliding windows one. In fact, since

it works with overlapping tiles, the effect of the translation is useless. The

effects of the various techniques are reported in Figure 3.13.

43

(a) Shift (b) Random value added

(c) Elastic deformation σ = 0.15 (d) Elastic deformation σ = 0.75

(e) Detail of Figure 3.13c (f) Detail of Figure 3.13d

Figure 3.13: Distortions of image 027

44

Chapter 4

Performed experiments

“Sometimes it seems as though each new step towards AI, rather than pro-

ducing something which everyone agrees is real intelligence, merely reveals

what real intelligence is not.”

Gödel, Escher, Bach: An Eternal Golden Braid

In this section we report the various steps that we have taken in order to

materially implement the proposed system.

4.1 Broccoli dataset annotation

From the 3D data provided in the Broccoli dataset we have extracted 2D

images suitable for our networks. The dataset also contained a ground truth

in a point cloud format. As suggested by the authors of the dataset, we did

not convert this information in a 2D segmentation mask, but instead we

created from scratch the annotation images.

The final goal of an automated harvesting system is to distinguish har-

vestable plants, which implies being able to compute the growth status of a

plant even when it is occluded. In the case of broccoli, this means being able

to compute the dimension of the heads even when they are covered by other

leaves. Therefore, we have selected 300 images from the dataset and created

their annotation mask using LabelMe [39], trying to annotate as broccoli

heads even the parts of the images where we thought a broccoli head was

present behind the leaves. A sample annotation is reported in Figure 4.1b.

(a) Image (b) Annotation

Figure 4.1: Annotation for Broccoli image 001

Table 4.1: Background removal with Otsu’s tresholding for the CWFID dataset

Split Jaccard Recall

1 0.77625577 0.95806455
2 0.77294238 0.96049285

4.2 System training

In this subsection we report the details common to the training of all the

classifiers on all the datasets.

4.2.1 Background removal

By background removal phase we refer here to the first stage of the features

based classification pipeline and not to the final ability of the system to

discern soil from vegetation. In fact, later stages of the pipeline can still

classify a point as soil. For this stage we have thus selected the Jaccard index

as a main metric, but, since at this point we can accept to classify a soil

point as vegetation (whereas the contrary would be irreversible), we have

also considered the recall, trying to preserve all the vegetation points. This

stage has thus to be considered as a really fast way to reduce the workload

of the later classifiers, which, being more complex, are better at recognizing

soil, but would also be expensive to use on the entire images.

On the CWFID dataset, we have first measured the metrics on the

vegetation mask obtained when just using the NDVI index and the Otsu’s

thresholding. The results are reported in Table 4.1.

In order to produce a cleaner mask, we have tried to impose a minimum

value for the near-infrared channel, obtaining the results reported in Table 4.2

for the first split of CWFID. We have thus selected a minimum value of 74.

In Table 4.3 are reported the results for the second split, where a similar

trend is found, thus confirming the choice for the minimum value.

46

Table 4.2: Cleaning the background mask with a minimum NIR value on CWFID split 1

Min NIR Jaccard Recall

0 0.77625577 0.95806455
10 0.77625577 0.95806455
30 0.78089942 0.95806455
50 0.83112937 0.95806455
60 0.86640958 0.95806455
65 0.88361181 0.95732255
70 0.88776956 0.94872807
72 0.88854491 0.94471073
73 0.88885944 0.94251554
74 0.88892176 0.94027644
75 0.88882208 0.93788907
80 0.88594178 0.92389516
90 0.86154118 0.88167802

Table 4.3: Cleaning the background mask with a minimum NIR value on CWFID split 2

Min NIR Jaccard Recall

0 0.77294238 0.96049285
10 0.77294238 0.96049285
30 0.77746836 0.96049285
50 0.82479751 0.96049285
60 0.86169192 0.96049285
65 0.87954406 0.9598068
70 0.88545427 0.95216339
72 0.88689477 0.948672
73 0.88755181 0.94681879
74 0.8880013 0.94487607
75 0.88826237 0.94281095
76 0.88847851 0.940691
77 0.88851354 0.93846262
78 0.88846831 0.93615789
79 0.88821345 0.93366474
80 0.88768638 0.93106618
90 0.87110011 0.89640984

As an alternative cleaning methodology, we have experimented the solu-

tion proposed by Potena, Nardi, and Pretto. On the first split of CWFID, we

have decided to first clean the mask with a lower minimum near-infrared value

(65) so to obtain a good recall and then we have trained the neural network

47

Table 4.4: Number of training samples (tiles) for the various datasets

Dataset Number of training samples

CWFID 1 20 040
CWFID 2 40 318
Broccoli 263 176

reported in Figure 2.1. We then tested its performance on the same dataset,

obtaining a Jaccard index of 0.88821345 and a recall of 0.93366474. Since

those results are not better than the ones obtained with the minimum NIR

value, and moreover they drastically augment the computational complexity,

we decided to not experiment further with this approach.

For the Broccoli dataset, we did not produce a separate ground truth

for the soil. In fact, broccoli images do not contain much soil and thus the

reduction in the computational time from its removal would be smaller with

regard to the one obtained in CWFID, where the soil composes the vast

majority of the images. However, we experimented the use of the U-Net

network to remove some tiles from the dataset: by using a very low threshold

on the output of U-Net, we are able to keep the vast majority of the image

while discarding the leaves points about which the network is absolutely sure

that they are not part of a broccoli head. This strategy (with a threshold of

20% that allows to obtain a recall greater than 0.99 with an accuracy of 0.8)

has been applied to the 2D Broccoli dataset, while for the dataset with the

depth channel we have decided to not implement the tile-based classifiers,

given the really bad performances that they exhibited in the 2D Broccoli

dataset. This strategy is similar to the one proposed in [36], but, instead of

using a lightweight neural network, we use a more complex one imposing a

low threshold.

4.2.2 Classifiers

Once obtained the masks for the vegetation, we have drawn a sparse grid

over the images with a spacing of 10× 10 pixels. Among all the keypoints,

we have selected the keypoints above the pixels identified as vegetation and

extracted their surrounding tiles. Those tiles have then been used to compute

the features reported in Table 3.1, so as to create a training dataset for the

classifiers. In Table 4.4 is reported the number of tiles (and therefore of

training samples) for the various datasets.

We now explain in detail the steps taken for the training of the various

classifiers.

48

Table 4.5: Hyperparameters of the random forests

Dataset Parameter Value OOB accuracy

CWFID split 1
Number of trees 990

90.34%Splitting criterion gini
Number of features sqrt

CWFID split 1 SFO
Number of trees 690

90.64%Splitting criterion entropy
Number of features sqrt

CWFID split 2 SFO
Number of trees 830

88.80%Splitting criterion entropy
Number of features log2

Broccoli SFO
Number of trees 350

98.50%Splitting criterion entropy
Number of features log2

Random Forests

For the hyperparameters selection, we had to decide:

• the number of features considered at each splitting. We just evaluated

two choices: the log2 and the square root of the original number of

features;

• the criterion used to compute the information gain obtained from a

splitting. We evaluated the gini index and the entropy;

• the number of trees in the forest.

To do that, we built 4 models (with all the possible combinations of

splitting criterion and considered features) and progressively added trees

to each model. At each step we evaluated the out of bag error rate (i.e.

1− accuracy) (explained in Section 2.2.1), obtaining the results reported in

Figure 4.2.

From the comparison of Figure 4.2a and Figure 4.2b it can be seen that

the usage of a larger set of features does not result in a smaller error. We

have therefore decided to use just the scale invariant features for the training

of the random forests on the other datasets.

From these results, we selected the hyperparameters yielding the lowest

out of bag error and saved the corresponding model. The selected hyperpa-

rameters and the corresponding errors are reported in Table 4.5.

49

(a) CWFID split 1 using all features

(b) CWFID split 1 using scale free features

(c) CWFID split 2 using scale free features

(d) Broccoli using scale free features

Figure 4.2: Exploration of the random forest hyperparameters
50

Table 4.6: SVM for CWFID split 1 with all the features. Selection of the kernel functions

Kernel average accuracy accuracy std

linear 77.27% 2.57%
polynomial 77.72% 3.31%

radial basis 78.62% 2.71%
sigmoid 66.87% 0.01%

Table 4.7: SVM for CWFID split 1 with scale invariant features. Selection of the kernel
functions

Kernel average accuracy accuracy std

linear 76.89% 2.55%
polynomial 77.57% 3.25%

radial basis 78.51% 2.74%
sigmoid 66.87% 0.01%

Support vector machines

The tuning of the SVM hyperparameters consisted in a two phases process.

First we selected the kernel function, then we proceeded to tune the other

hyperparameters. The research of the optimal hyperparameters has been

staged on a progressive scale from coarse to fine. In order to evaluate the

goodness of the hyperparameters we have evaluated the accuracy of each

model with a 5-fold cross validation schema. Before being fed to the model,

the data have been preprocessed so to obtain a zero mean and a unitary

variance.

In the following tables (from Table 4.6 to Table 4.9) are reported the

results obtained while deciding the kernel functions for the various datasets.

We have thus decided to use radial basis functions while training the

models for the CWFID dataset and to just use a linear classifier for the

Broccoli dataset. Once decided the kernels, we have tuned the other hy-

perparameters. For the radial basis function we tuned C and γ, while for

the linear version we tuned both an l1 and an l2 penalization term and

tried to see whether we could benefit from the introduction of a class weight

in order to counterbalance the unbalanced classed. The tables from 4.10

to 4.13 contain the results of this optimization phase. As happened with

the random forests, from the comparison of Table 4.10 and Table 4.11 we

can see that the introduction of additional features does not result in a

better classification accuracy. Moreover, from the comparison of Table 4.10,

Table 4.11 and Table 4.12 we can see that on all the versions of the CWFID

51

Table 4.8: SVM for CWFID split 2 with scale invariant features. Selection of the kernel
functions

Kernel average accuracy accuracy std

linear 79.00% 1.93%
polynomial 79.77% 2.13%

radial basis 81.12% 2.07%
sigmoid 68.07% 0.01%

Table 4.9: SVM for Broccoli with scale invariant features. Selection of the kernel
functions

Kernel average accuracy accuracy std

linear 91.40% 0.61%
polynomial 90.89% 0.51%
radial basis 91.36% 0.67%

sigmoid 78.34% 0.01%

dataset the classifier reached their optimum with similar hyperparameters,

thus indicating that those values are good for the specific problem.

52

Table 4.10: Tuning SVM on CWFID 1 all the features

C γ acc. avg acc. std

0.1 1.0 69.13% 0.97%
0.1 0.1 77.23% 2.96%
0.1 0.01 76.14% 3.39%
1.0 1.0 73.10% 1.04%
1.0 0.1 78.42% 2.77%
1.0 0.01 77.98% 2.86%
5.0 0.006 78.75% 2.82%
5.0 0.01 78.97% 2.77%
5.0 0.02 78.99% 2.63%
8.0 0.008 78.86% 2.65%
8.0 0.01 78.94% 2.71%
8.0 0.013 79.00% 2.67%
9.0 0.011 78.99% 2.61%
9.0 0.01 78.98% 2.71%
9.0 0.009 78.91% 2.70%
10.0 1.0 70.82% 1.91%
10.0 0.1 77.03% 2.19%
10.0 0.02 78.93% 2.49%
10.0 0.013 78.94% 2.60%
10.0 0.011 78.99% 2.64%
10.0 0.01 79.01% 2.68%
10.0 0.009 78.91% 2.69%
10.0 0.008 78.89% 2.72%
10.0 0.006 78.86% 2.68%
10.0 0.002 78.12% 2.84%
10.0 0.005 78.80% 2.84%
10.0 0.02 78.74% 2.41%
10.0 0.01 78.99% 2.57%
10.0 0.006 78.86% 2.69%
11.0 0.011 78.98% 2.62%
11.0 0.01 78.99% 2.67%
11.0 0.009 78.96% 2.66%
13.0 0.008 78.90% 2.66%
13.0 0.01 79.00% 2.60%
13.0 0.013 78.86% 2.52%
20.0 0.002 78.43% 2.85%
20.0 0.005 78.87% 2.58%
20.0 0.01 78.96% 2.59%
50.0 0.002 78.77% 2.76%
50.0 0.005 78.93% 2.60%
50.0 0.01 78.80% 2.35%

Table 4.11: Tuning SVM on CWFID 1 SFO

C γ acc. avg acc. std

0.1 0.1 77.09% 3.08%
0.1 1.0 70.24% 1.39%
0.1 10.0 66.87% 0.01%
1.0 0.002 76.03% 2.97%
1.0 0.01 77.75% 2.81%
1.0 0.1 78.43% 2.73%
1.0 1.0 73.44% 1.25%
1.0 10.0 66.87% 0.01%
5.0 0.002 77.22% 2.83%
5.0 0.01 78.74% 2.74%
5.0 0.1 77.68% 2.25%
10.0 0.002 77.80% 2.78%
10.0 0.004 78.23% 2.67%
10.0 0.01 78.88% 2.68%
10.0 0.02 78.82% 2.52%
10.0 0.1 77.18% 2.13%
10.0 1.0 70.83% 2.13%
10.0 10.0 66.87% 0.02%
15.0 0.006 78.85% 2.64%
15.0 0.01 79.00% 2.63%
15.0 0.013 78.96% 2.63%
17.0 0.008 78.91% 2.65%
17.0 0.01 79.08% 2.60%
17.0 0.011 79.00% 2.63%
20.0 0.004 78.53% 2.64%
20.0 0.006 78.92% 2.62%
20.0 0.008 78.98% 2.63%

20.0 0.01 79.03% 2.61%
20.0 0.011 78.97% 2.60%
20.0 0.013 78.81% 2.52%
20.0 0.02 78.58% 2.45%
25.0 0.008 79.06% 2.59%
25.0 0.01 79.01% 2.59%
25.0 0.011 78.83% 2.56%
30.0 0.006 78.94% 2.58%
30.0 0.01 78.91% 2.54%
30.0 0.013 78.77% 2.44%
50.0 0.004 78.84% 2.53%
50.0 0.01 78.76% 2.41%
50.0 0.02 78.45% 2.40%

Table 4.12: Tuning SVM on CWFID 2 SFO

C γ acc. avg acc. std

0.1 0.1 80.49% 2.02%
0.1 1.0 75.17% 0.68%
0.1 10.0 68.08% 0.00%
0.5 0.005 79.68% 2.00%
0.5 0.01 80.20% 2.01%
0.5 0.02 80.48% 2.05%
1.0 0.002 79.26% 1.96%
1.0 0.005 80.05% 2.03%
1.0 0.01 80.40% 2.03%
1.0 0.02 80.63% 2.06%
1.0 0.1 81.18% 2.16%
1.0 1.0 77.53% 1.49%
1.0 10.0 68.06% 0.01%
5.0 0.002 80.12% 1.94%
5.0 0.005 80.48% 1.98%
5.0 0.01 80.74% 1.94%
5.0 0.02 81.05% 1.95%
5.0 0.04 81.22% 2.00%
5.0 0.1 80.79% 2.19%
7.0 0.028 81.19% 1.91%
7.0 0.04 81.24% 1.96%
7.0 0.066 81.06% 2.11%
10.0 0.002 80.30% 2.00%
10.0 0.01 80.91% 1.99%
10.0 0.02 81.19% 1.93%
10.0 0.028 81.23% 1.92%
10.0 0.04 81.31% 1.97%
10.0 0.066 81.01% 2.12%
10.0 0.1 80.42% 2.11%
10.0 1.0 73.82% 1.20%
10.0 10.0 68.04% 0.06%
12.0 0.028 81.25% 1.92%
12.0 0.04 81.27% 1.97%
12.0 0.066 81.00% 2.13%
15.0 0.02 81.20% 1.86%
15.0 0.04 81.22% 1.95%
15.0 0.1 80.14% 2.04%

Table 4.13: Tuning SVM on Broccoli SFO

Class weight l1 l2 acc. avg acc. std

No 0.1 0.0 91.36% 0.01%
No 1.0 0.0 91.36% 0.56%
No 10.0 0.0 91.36% 0.56%
No 100.0 0.0 91.36% 0.56%
No 0.0 0.1 91.36% 0.56%
No 0.0 1.0 91.35% 0.57%
No 0.0 10.0 91.35% 0.56%
No 0.0 100.0 91.35% 0.56%
Yes 0.1 0.0 88.09% 0.43%
Yes 1.0 0.0 88.11% 0.42%
Yes 10.0 0.0 88.12% 0.42%
Yes 100.0 0.0 88.12% 0.48%
Yes 0.0 0.1 88.17% 0.42%
Yes 0.0 1.0 88.20% 0.42%
Yes 0.0 10.0 88.20% 0.43%
Yes 0.0 100.0 88.20% 0.42%

53

Gradient Boosted Trees

For the gradient boosted trees we have tuned the hyperparameters with a

sequential approach, using a 5-fold cross validation to measure the f1-score.

The followed approach is reported below1:

1. Using an high learning rate, select the number of trees.

2. Select the maximum depth and the minimum number of child of the

trees.

3. Tune γ.

4. Recalibrate the number of trees.

5. Tune the subsampling and colsampling hyperparameters.

6. Select an l1 and an l2 regularization terms.

7. Lower the learning rate and recalibrate the number of trees.

For the selection of the number of trees we have followed an iterative approach:

starting from an empty forest we added one tree per time until the cross

validation score did not improve for 50 rounds.

For the score, we have selected the f1-score instead of accuracy as done

for the other classifiers. This is due to the fact that accuracy gave results

really similar to f1, except for some configurations where it was really noisy.

In the following pages we report the training details for the various datasets.

1The code used for the hyperparameters selection has been adapted from [6].

54

CWFID split 1 using all the features

Starting with a learning rate of 0.5 we have

selected 379 trees, we have then tuned the depth

and the minimum child weight:

Max depth min child w F1 avg F1 std

1 3 0.64747 0.06858

1 5 0.64628 0.07049

1 7 0.64900 0.06798

1 8 0.64968 0.06934

1 9 0.64870 0.06869

2 7 0.65241 0.06760

2 8 0.65568 0.06645

2 9 0.65124 0.07024

2 10 0.64809 0.06900

3 3 0.64426 0.06672

3 5 0.64308 0.06949

3 7 0.64765 0.06834

3 8 0.64930 0.07324

3 9 0.65180 0.06741

3 10 0.64971 0.07378

4 8 0.65040 0.06930

4 9 0.64641 0.06935

4 10 0.64856 0.06927

5 3 0.64745 0.06739

5 5 0.64670 0.06401

5 7 0.65150 0.07140

5 9 0.64858 0.06987

Then we have tuned γ:

γ F1 avg F1 std

0 0.65568 0.06645

0.1 0.65004 0.07024

0.3 0.64542 0.06846

0.6 0.64410 0.07195

1.2 0.64894 0.07113

2.5 0.64741 0.07131

5.0 0.64514 0.07437

10.0 0.64657 0.08842

20.0 0.64366 0.09013

Using the found values, we recalibrated the

number of trees to 272 and tuned the subsample and

the colsample hyperparameters:

Colsample subsample F1 avg F1 std

0.6 0.6 0.65124 0.07104

0.6 0.7 0.65014 0.06922

0.6 0.8 0.64427 0.06840

0.6 0.9 0.64665 0.06801

0.7 0.6 0.64558 0.07332

0.7 0.7 0.64497 0.06831

0.7 0.8 0.64757 0.07087

0.7 0.9 0.64822 0.06861

0.75 0.75 0.65578 0.06703

0.75 0.8 0.65460 0.06495

0.75 0.85 0.64954 0.06901

0.8 0.6 0.64587 0.06435

0.8 0.7 0.64890 0.06884

0.8 0.75 0.65578 0.06703

0.8 0.8 0.65460 0.06495

0.8 0.85 0.64954 0.06901

0.8 0.9 0.65057 0.07368

0.85 0.75 0.64915 0.06989

0.85 0.8 0.65413 0.06623

0.85 0.85 0.64945 0.06858

0.9 0.6 0.64897 0.06896

0.9 0.7 0.65211 0.06782

0.9 0.8 0.64881 0.06728

0.9 0.9 0.65109 0.06939

At last we tuned the l1 and l2 terms:

l1 l2 F1 avg F1 std

0.00001 0.00001 0.64923 0.06815

0.01 0.00001 0.64904 0.07029

0.1, 0.00001 0.64663 0.06853

10 0.00001 0.64777 0.07192

100 0.00001 0.64650 0.07173

1000 0.00001 0.57881 0.12107

0.00001 0.01 0.64801 0.06892

0.01 0.01 0.65072 0.06668

0.1 0.01 0.64571 0.06714

10 0.01 0.64619 0.07167

100 0.01 0.64691 0.07311

1000 0.01 0.57881 0.12107

0.00001 0.1 0.64813 0.06364

0.01 0.1 0.65111 0.06987

0.1 0.1 0.65227 0.06688

10 0.1 0.64817 0.07340

100 0.1 0.64853 0.07287

1000 0.1 0.57881 0.12107

0.00001 10 0.64641 0.07499

0.01 10 0.64857 0.07582

0.1 10 0.64633 0.07169

10 10 0.64745 0.07521

100 10 0.64947 0.07562

1000 10 0.57804 0.12172

0.00001 100 0.62461 0.10363

0.01 100 0.62461 0.10363

0.1 100 0.62504 0.10400

10 100 0.62389 0.10497

100 100 0.62347 0.10392

1000 100 0.56540 0.12516

0.00001 100000 0.08801 0.00005

0.01 100000 0.08801 0.00005

0.1 100000 0.08801 0.00005

10 100000 0.08801 0.00005

100 100000 0.08801 0.00005

1000 100000 0.08801 0.00005

0.05 0.05 0.64533 0.07003

0.1 0.05 0.64969 0.07097

0.5 0.05 0.64906 0.07099

0.05 0.1 0.65010 0.06762

0.1 0.1 0.65227 0.06688

0.5 0.1 0.64954 0.07248

0.05 0.5 0.65109 0.07082

0.1 0.5 0.65027 0.07239

0.5 0.5 0.64549 0.07156

0.07 0.07 0.65234 0.06813

0.1 0.07 0.64944 0.06658

0.2 0.07 0.65017 0.06671

0.07 0.1 0.64927 0.07059

0.1 0.1 0.65227 0.06688

0.2 0.1 0.65138 0.06737

0.07 0.2 0.64396 0.07147

0.1 0.2 0.64997 0.06681

0.2 0.2 0.65057 0.06585

Finally, we have lowered the learning rate to

0.05 and recalibrated the number of trees to 763 es-

timators.

55

CWFID split 1 using just scale invariant features

Starting with a learning rate of 0.5 we have

selected 290 trees, we have then tuned the depth

and the minimum child weight:

Max depth min child w F1 avg F1 std

1 3 0.64301 0.06722

1 5 0.64281 0.06746

1 7 0.64516 0.07104

1 9 0.64217 0.07531

2 9 0.64744 0.07204

2 11 0.64292 0.07018

2 13 0.64418 0.06953

3 3 0.63884 0.06813

3 5 0.64435 0.06581

3 7 0.64525 0.07036

3 8 0.64481 0.06911

3 9 0.64610 0.07009

3 10 0.64104 0.06876

3 11 0.64720 0.06772

3 13 0.64353 0.06959

4 7 0.64570 0.06758

4 8 0.64100 0.06976

4 9 0.64957 0.06672

4 10 0.64510 0.06931

4 11 0.64164 0.07269

4 13 0.64064 0.07277

5 3 0.63559 0.07063

5 5 0.63845 0.06802

5 7 0.64244 0.06814

5 8 0.64162 0.07178

5 9 0.64355 0.07042

5 10 0.64714 0.06926

Then we have tuned γ:

γ F1 avg F1 std

0 0.64957 0.06672

0.1 0.64934 0.07000

0.3 0.64139 0.06993

0.6 0.64421 0.06922

1.2 0.63599 0.07513

2.5 0.64522 0.07245

5.0 0.63990 0.08091

10.0 0.64129 0.08442

20.0 0.63757 0.09299

Using the found values, we recalibrated the

number of trees to 136 and tuned the subsample and

colsample hyperparameters:

Colsample subsample F1 avg F1 std

0.6 0.6 0.64116 0.06766

0.6 0.7 0.63554 0.07299

0.6 0.8 0.63720 0.07255

0.6 0.9 0.64034 0.06974

0.7 0.6 0.63893 0.07104

0.7 0.7 0.64227 0.07060

0.7 0.8 0.63986 0.07217

0.7 0.9 0.63854 0.07593

0.75 0.75 0.64116 0.07321

0.75 0.8 0.63986 0.07217

0.75 0.85 0.64147 0.07165

0.8 0.6 0.64238 0.07133

0.8 0.7 0.64435 0.06714

0.8 0.75 0.64226 0.07141

0.8 0.8 0.64905 0.06642

0.8 0.85 0.64104 0.07009

0.8 0.9 0.64270 0.64270

0.85 0.75 0.64307 0.06879

0.85 0.8 0.64277 0.07353

0.85 0.85 0.64216 0.06968

0.9 0.6 0.64042 0.07220

0.9 0.7 0.64330 0.07175

0.9 0.8 0.64277 0.07353

0.9 0.9 0.64502 0.07025

At last we have tuned the l1 and l2 terms:

l1 l2 F1 avg F1 std

0.00001 0.00001 0.63958 0.07114

0.01 0.00001 0.64339 0.06984

0.1 0.00001 0.64428 0.07228

10 0.00001 0.64464 0.07126

100 0.00001 0.64299 0.07651

1000 0.00001 0.54692 0.13432

0.00001 0.01 0.63875 0.07111

0.01 0.01 0.64632 0.07175

0.1 0.01 0.64976 0.06870

10 0.01 0.64497 0.07201

100 0.01 0.64533 0.07707

1000 0.01 0.54692 0.13432

0.00001 0.1 0.64285 0.06840

0.01 0.1 0.64298 0.07132

0.1 0.1 0.64961 0.06961

10 0.1 0.64369 0.07323

100 0.1 0.64400 0.07545

1000 0.1 0.54692 0.13432

0.00001 10 0.64269 0.07307

0.01 10 0.64494 0.07364

0.1 10 0.64306 0.07608

10 10 0.64646 0.07296

100 10 0.64766 0.07512

1000 10 0.54585 0.13453

0.00001 100 0.62013 0.09983

0.01 100 0.62013 0.09983

0.1 100 0.62013 0.09983

10 100 0.62106 0.09766

100 100 0.62315 0.10211

1000 100 0.53372 0.13731

0.00001 1000 0.08801 0.00005

0.01 1000 0.08801 0.00005

0.1 1000 0.08801 0.00005

10 1000 0.08801 0.00005

100 1000 0.08801 0.00005

1000 1000 0.08801 0.00005

0.05 0.001 0.64439 0.06985

0.1 0.001 0.64663 0.07292

0.5 0.001 0.64263 0.07024

0.05 0.01 0.64074 0.07092

0.1 0.01 0.64976 0.06870

0.5 0.01 0.64338 0.06968

0.05 0.05 0.64316 0.07121

0.1 0.05 0.64364 0.07422

0.5 0.05 0.64080 0.07050

0.07 0.005 0.64610 0.07196

0.1 0.005 0.64352 0.06807

0.2 0.005 0.64468 0.07201

0.07 0.01 0.64500 0.06995

0.1 0.01 0.64976 0.06870

0.2 0.01 0.64295 0.06983

0.07 0.02 0.64590 0.07056

0.1 0.02 0.64493 0.06541

0.2 0.02 0.64340 0.07267

Finally, we have lowered the learning rate to

0.05 and recalibrated the number of trees to 809 es-

timators.

56

CWFID split 2 using just scale invariant features

Starting with a learning rate of 0.5, we have

selected 412 trees, we have then tuned the depth

and the minimum child weight:

Max depth min child w F1 avg F1 std

3 1 0.66304 0.05306

3 3 0.66228 0.05655

3 5 0.66214 0.05584

5 1 0.65925 0.05238

5 3 0.65693 0.05272

5 5 0.65799 0.05356

7 1 0.65922 0.05374

7 3 0.65953 0.05520

7 5 0.65802 0.05227

9 1 0.66219 0.05195

9 3 0.66065 0.05291

9 5 0.66065 0.05154

9 9 0.65971 0.05110

11 1 0.66370 0.05530

11 5 0.66194 0.05384

11 9 0.65894 0.05338

13 1 0.66157 0.05554

13 5 0.66366 0.05284

13 9 0.66011 0.05213

Then we have tuned γ:

γ F1 avg F1 std

0 0.66370 0.05530

0.1 0.65785 0.05308

0.3 0.66126 0.05435

0.6 0.66019 0.05428

1.2 0.65960 0.05427

2.5 0.66133 0.05328

5.0 0.66674 0.05347

10.0 0.66872 0.05802

20.0 0.67255 0.05512

30.0 0.67240 0.05984

50.0 0.66149 0.06154

70.0 0.65226 0.06326

Using the found values, we recalibrated the

number of trees to 150 and tuned the subsample and

colsample hyperparameters:

Colsample subsample F1 avg F1 std

0.6 0.6 0.66903 0.05882

0.6 0.7 0.66963 0.05799

0.6 0.8 0.67122 0.05941

0.6 0.9 0.66900 0.05998

0.7 0.6 0.66703 0.05641

0.7 0.7 0.67187 0.05556

0.7 0.8 0.67221 0.05782

0.7 0.9 0.66896 0.05678

0.8 0.6 0.66997 0.05692

0.8 0.7 0.67318 0.05591

0.8 0.8 0.67159 0.05627

0.8 0.9 0.67170 0.05738

0.9 0.6 0.67301 0.05741

0.9 0.7 0.67057 0.05455

0.9 0.8 0.67216 0.05798

0.9 0.9 0.67048 0.05493

At last we have tuned the l1 and l2 terms:

l1 l2 F1 avg F1 std

0.00001 0.00001 0.66898 0.05565

0.01 0.00001 0.67083 0.05541

0.1 0.00001 0.66985 0.05985

10 0.00001 0.67173 0.05889

100 0.00001 0.66632 0.05964

100000 0.00001 0.27002 0.00001

0.00001 0.01 0.66851 0.05773

0.01 0.01 0.66938 0.05820

0.1 0.01 0.66824 0.05802

10 0.01 0.67193 0.05934

100 0.01 0.66632 0.05964

100000 0.01 0.27002 0.00001

0.00001 0.1 0.66660 0.05656

0.01 0.1 0.66681 0.05911

0.1 0.1 0.66723 0.05574

10 0.1 0.67158 0.05899

100 0.1 0.66631 0.05988

100000 0.1 0.27002 0.00001

0.00001 10 0.66933 0.05669

0.01 10 0.66867 0.05779

0.1 10 0.66623 0.05845

10 10 0.66900 0.06098

100 10 0.66525 0.05881

100000 10 0.27002 0.00001

0.00001 100 0.64934 0.05517

0.01 100 0.64934 0.05517

0.1 100 0.64934 0.05517

10 100 0.65049 0.05629

100 100 0.65083 0.05653

100000 100 0.27002 0.00001

0.00001 100000 0.07951 0.00001

0.01 100000 0.07951 0.00001

0.1 100000 0.07951 0.00001

10 100000 0.07951 0.00001

100 100000 0.07951 0.00001

100000 100000 0.07951 0.00001

Finally, we have lowered the learning rate to

0.05 and recalibrated the number of trees to 761 es-

timators.

57

Broccoli using just scale invariant features

Starting with a learning rate of 0.8, we have

selected 140 trees, we have then tuned the depth

and the minimum child weight:

Max depth min child w F1 avg F1 std

1 2 0.87184 0.00936

1 3 0.87184 0.00936

1 4 0.87186 0.00936

1 5 0.87186 0.00936

1 7 0.87186 0.00936

2 2 0.87080 0.01015

2 3 0.87120 0.01001

2 4 0.87083 0.00991

3 1 0.86874 0.00986

3 3 0.86880 0.00977

3 4 0.86892 0.00931

3 5 0.86936 0.00961

3 7 0.86907 0.00983

4 4 0.86679 0.00927

4 5 0.86607 0.00962

4 7 0.86672 0.00980

5 1 0.86244 0.00903

5 3 0.86257 0.00911

5 5 0.86335 0.00988

7 1 0.85713 0.00904

7 3 0.85657 0.00827

7 5 0.85766 0.00908

9 1 0.85297 0.00889

9 3 0.85333 0.00887

9 5 0.85324 0.00775

Then we have tuned γ:

γ Average F1 score F1 score std

0 0.87186 0.00936

0.1 0.87186 0.00936

0.3 0.87186 0.00936

0.6 0.87186 0.00936

1.2 0.87186 0.00936

2.5 0.87186 0.00936

5.0 0.87186 0.00936

10.0 0.87182 0.00959

20.0 0.87201 0.00905

30.0 0.87199 0.00935

50.0 0.87198 0.00975

70.0 0.87174 0.00923

Using the found values, we recalibrated the

number of trees to 166 and tuned the subsample and

colsample hyperparameters:

Colsample subsample F1 avg F1 std

0.6 0.6 0.87194 0.00987

0.6 0.7 0.87153 0.00976

0.6 0.8 0.87170 0.00975

0.6 0.9 0.87212 0.00988

0.7 0.6 0.87192 0.00953

0.7 0.7 0.87178 0.01013

0.7 0.8 0.87197 0.00968

0.7 0.9 0.87196 0.01013

0.75 0.85 0.87187 0.00992

0.75 0.9 0.87196 0.01013

0.75 0.95 0.87202 0.00960

0.8 0.6 0.87172 0.00983

0.8 0.7 0.87168 0.00988

0.8 0.8 0.87177 0.01030

0.8 0.85 0.87223 0.01021

0.8 0.9 0.87222 0.00983

0.8 0.95 0.87190 0.00985

0.85 0.85 0.87189 0.01025

0.85 0.9 0.87203 0.00982

0.85 0.95 0.87169 0.00978

0.9 0.6 0.87190 0.00974

0.9 0.7 0.87181 0.01030

0.9 0.8 0.87182 0.01000

0.9 0.9 0.87203 0.00982

At last we have tuned the l1 and l2 terms:

l1 l2 F1 avg F1 std

0.00001 0.00001 0.87212 0.01025

0.01 0.00001 0.87193 0.01022

0.1 0.00001 0.87225 0.01030

10 0.00001 0.87193 0.01020

100 0.00001 0.87251 0.00968

1000 0.00001 0.87221 0.00914

0.00001 0.01 0.87205 0.00997

0.01 0.01 0.87192 0.01023

0.1 0.01 0.87213 0.01025

10 0.01 0.87187 0.01013

100 0.01 0.87230 0.00947

1000 0.01 0.87221 0.00914

0.00001 0.1 0.87176 0.01038

0.01 0.1 0.87182 0.01048

0.1 0.1 0.87226 0.00998

10 0.1 0.87236 0.01039

100 0.1 0.87236 0.00966

1000 0.1 0.87229 0.00917

0.00001 10 0.87231 0.00985

0.01 10 0.87231 0.00985

0.1 10 0.87231 0.00976

10 10 0.87227 0.00982

100 10 0.87228 0.00956

1000 10 0.87233 0.00919

0.00001 100 0.87244 0.00939

0.01 100 0.87244 0.00939

0.1 100 0.87237 0.00937

10 100 0.87252 0.00935

100 100 0.87275 0.00961

1000 100 0.87232 0.00923

0.00001 1000 0.43929 0.00000

0.01 1000 0.43929 0.00000

0.1 1000 0.43929 0.00000

10 1000 0.43929 0.00000

100 1000 0.43929 0.00000

1000 1000 0.43929 0.00000

50 50 0.87246 0.00955

100 50 0.87251 0.00962

500 50 0.87272 0.00960

50 100 0.87252 0.00945

100 100 0.87275 0.00961

500 100 0.87276 0.00961

50 500 0.87267 0.00927

100 500 0.87271 0.00965

500 500 0.87276 0.00946

Finally, we have lowered the learning rate to

0.05 and recalibrated the number of trees to 819 es-

timators.

58

Features importance

From the training of the random forests and the gradient boosted trees we

have derived the importance of the various features.

As visible2 in Figure 4.3, the removal of the scale dependent features is

justified by their marginal importance. The only relevant feature in fact is f2,

which is the area of the region identified as vegetation, but, since this value

largely depends on the position of the keypoints, it can be hypothesized that

the classifiers are using this feature with a low threshold to easily remove

the remaining soil. Conversely, when also considering Figure 4.4 it can be

seen how the features f9 and f13 are really important for all the classifiers.

Interestingly, feature f13 becomes fundamental for the Broccoli dataset, as

visible in Figure 4.5. Being both those features based on the NDVI value,

it could be interesting to see whether a different index could lead to better

results. Another really important feature is f4, which is the compactness (area

/ perimeter2) of the tile and thus represent a morphological characteristic.

2We remind that a list of the features is reported in Table 3.1 on page 33

59

(a) RFC (b) RFC SFO

(c) XGB (d) XGB SFO

Figure 4.3: Features importance on CWFID split 1

(a) RFC SFO (b) XGB SFO

Figure 4.4: Features importance on CWFID split 2

(a) RFC SFO (b) XGB SFO

Figure 4.5: Features importance on the Broccoli dataset

60

4.2.3 Neural networks

When training the neural networks we have followed a common approach so

to better highlight their differences. Using the training and the validation

datasets we have tuned the hyperparameters measuring the log loss and

the accuracy. Since we are more interested in having networks that are

accurate on the vegetation we also measured the two metrics on the masked

vegetation.

The approach we used is the following3:

1. Putting all the hyperparameters to zero, we did a single epoch to select

a good learning rate. A single epoch is enough to exclude the ranges

that lead to a gradient explosion or that are too small and thus do not

substantially modify the parameters.

2. Resetting all the parameters of the network, we did another training

epoch to select the l2 term, selecting a value bringing to a difference

between the loss on the validation and the loss on the training sets

without degrading too much the performance.

3. We then performed 3 epochs of training for 20 times, resetting the

parameters each time. All the hyperparameters, except for the learning

rate and the l2 term, have been sampled randomly on a coarse scale.

We then selected some good ranges for all the hyperparameters looking

for low validation losses in conjunction with higher training losses.

4. We repeated the last step but for 10 epochs around the found ranges,

selecting the set of hyperparameters bringing to the lowest validation

loss.

5. We then actually trained the networks until convergence was visually

reached, which usually took around 200 epochs, selecting the epoch

with the best result on validation as our final model.

The results of the hyperparameters selection are reported in Appendix A.

Before presenting the graphs of the training processes, we report a legend

explaining the meaning of the various colors in Figure 4.6 and an explanation

of the various hyperparameters:

• LR: the learning rate:

• l2: the weight decay multiplier;

3The training methodology has been adapted from the material of Stanford’s CS231n
course [7].

61

Figure 4.6: Training graphs legend

• GS: the σ value for the gaussian noise layer of the network;

• OD: dropout value for output layer;

• D1D: dropout value for the first dense layer;

• D2D: dropout value for the second dense layer;

• EL S: σ value for the elastic deformation;

• EL A: α value for the elastic deformation;

• AR: absolute maximum random value added to all channels;

• SR: maximum value for the random shift.

Sliding window convolutional neural network

The first network resulted being very sensible to the hyperparameters selec-

tion. In fact, we had to train it three times on the second split of CWFID in

order to obtain good results.

With the hyperparameters reported in Table 4.14 we have trained the

sliding window network, obtaining the results depicted in Figure 4.7. From

the observation of the graphs, it can be easily seen the extreme variability

exhibited by this network. In fact, on the first split of CWFID the network

reaches a good validation accuracy, even if the loss grows dramatically.

However, the high instability of the network to hyperparameters variations

can be best seen on the second split of CWFID: in the first two attempts, in

fact, the network is not learning at all.

The Broccoli dataset was less problematic, as the network is able to

clearly reach an optimum before starting to get worse. It can also be noticed

that, albeit the validation loss explodes, the validation accuracy remains high.

This could be linked to the fact that the dataset may contain some windows

whose content is, in the vast majority, different from the central pixel, which

is used to annotate the window. Therefore the network effectively learns

to correctly classify those windows, but, since their annotation is wrong,

the loss starts to get worse and worse since it is not limited, whereas the

62

Table 4.14: Hyperparameters for the sliding window network

Dataset LR l2 GS OD D1D D2D EL S EL A AR

CWFID1 0.00050000 0.00001000 0.06 0.76 0.18 0.37 10.99 53.80 0.48
CWFID2 1 0.00002000 0.00010000 0.12 0.42 0.44 0.47 46.82 87.44 0.74
CWFID2 2 0.00046017 0.00077041 0.28 0.75 0.46 0.18 99.08 3.02 0.85
CWFID2 3 0.00002142 0.00027067 0.00 0.40 0.37 0.83 25.76 62.10 0.10
Broccoli 0.00002000 0.00010000 0.03 0.57 0.74 0.19 42.21 119.33 0.12

accuracy is bounded. However, for the second CWFID split, the network

reaches a good performance just one time on three trials, even when just

considering the validation accuracy.

Moreover, this network is working with overlapping tiles, therefore the

dataset has a really big dimension in memory. This problem made it impossi-

ble for us to train the network on the Broccoli dataset with the depth channel,

since the memory required to load the dataset was not available. A solution

could be to avoid keeping in memory the entire dataset, but this would slow

down the training. The computational cost on the Broccoli dataset and

the really high hyperparameters dependence are the main drawbacks of this

network.

63

(a) CWFID 1

(b) CWFID 2 1

(c) CWFID 2 2

(d) CWFID 2 3

(e) Broccoli

Figure 4.7: Training of sliding window network
64

Table 4.15: Hyperparameters for U-Net

Dataset LR L2 GS OD EL S EL A AR SR

CWFID1 0.00050000 0.00000001 0.54 0.45 15,67 47 0.08 0
CWFID2 1 0.00020000 0.00001000 0.64 0.74 13,94 84,92 0.55 16
CWFID2 2 0.00020000 0.00001000 0.04 0.80 19,76 87 0.37 57
Broccoli 0.00020000 0.00010000 0.23 0.76 12,54 34 0.60 47
BroccoliD 0.00050000 0.01000000 0.58 0.59 11,78 65,52 0.11 78

U-Net network

Using the hyperparameters reported in Table 4.15 we have trained the

network as detailed in Figure 4.8. Like for the previous network, it can be

seen that the Broccoli dataset is the easiest case, while the second split of

CWFID is the most problematic. In fact, even this network required to be

trained a second time in order to reach an optimum. However, the difference

in the two results here is not as dramatic as it was for the previous network.

Moreover, it is visible how on the second split of CWFID the network’s

accuracy reaches a plateau before jumping rapidly on a higher level (around

epoch 250 in Figure 4.8b and epoch 70 for Figure 4.8c). This is a peculiarity

that will be also present in the other networks, and could be indicating that

the U-shaped architecture reacts slowly to the creation of a really useful

implicit feature as the information has to be backpropagated through an

high number of layers.

65

(a) CWFID 1

(b) CWFID 2 1

(c) CWFID 2 2

(d) Broccoli

(e) Broccoli Depth

Figure 4.8: Training of U-Net
66

Table 4.16: Hyperparameters for U-ReNet

Dataset LR L2 GS OD EL S EL A AR SR

CWFID1 0.0005 0.0000001 0.72 0.55 15,53 43 0.14 49
CWFID2 0.0002 0.0001 0.39 0.75 14,73 75,55 0.78 88
Broccoli 0.0002 0.001 0.40 0.52 49,88 20,26 0.88 57
BroccoliD 0.0005 0.00000001 0.56 0.31 59 14 0.57 86

U-ReNet network

Using the hyperparameters reported in Table 4.16 we have trained the

network as detailed in Figure 4.9. By visually comparing this graphs to the

U-Net ones we cannot appreciate significant differences. Interestingly, the

plateau phase is still present. Differently from U-Net, this network reached

good performance at the first training. This suggest a better resilience

to hyperparameters variations, but we will better investigate this in later

sections. Since the validation accuracies are not substantially different from

the ones obtained with U-Net, we can hypothesize that, in our problems, the

annotation of a single pixel mostly depends on its neighbors and thus we are

not able to take advantage from the high distance dependences found by the

ReNet layers.

67

(a) CWFID 1

(b) CWFID 2

(c) Broccoli

(d) Broccoli Depth

Figure 4.9: Training of U-ReNet

68

Table 4.17: Hyperparameters for U-ReNet2

Dataset LR L2 GS OD EL S EL A AR SR

CWFID1 0.0005 0.0000001 0.56 0.59 11,89 48,19 0.10 65
CWFID2 0.0002 0.0001 0.12 0.14 19,52 55,630 0.45 77
Broccoli 0.0002 0.0001 0.31 0.40 28,89 22,54 0.03 57
BroccoliD 0.0005 0.00000001 0.20 0.52 11,75 59,89 0.53 98

U-ReNet2 network

Reminding that this network is equal to the last one except for the number

of hidden units, we report in Figure 4.10 the graphs of the training obtained

with the hyperparameters depicted in Table 4.17. The results are not

substantially different, suggesting that the number of hidden units is not a

critical hyperparameter for the network performance. The main difference

between U-ReNet and U-ReNet2 resides in the time needed to train the

networks, as will be examined in a later section.

69

(a) CWFID 1

(b) CWFID 2

(c) Broccoli

(d) Broccoli Depth

Figure 4.10: Training of ReNet2

70

Table 4.18: Hyperparameters for reseg

Dataset LR L2 GS OD EL S EL A AR SR

CWFID1 0.0005 0.000001 0.28 0.27 15,77 84 0.21 58
CWFID2 0.0002 0.0001 0.58 0.42 11,75 60,60 0.15 16
Broccoli 0.0002 0.0001 0.49 0.75 15,52 77,50 0.10 46
BroccoliD 0.0005 0.0000001 0.27 0.70 16,26 18,65 0.02 50

ReSeg network

Using the hyperparameters reported in Table 4.18 we have trained this

network as detailed in Figure 4.11. Even for this network we see that the

Broccoli dataset is the easiest case. Interestingly, the plateau phase is not

present, which corroborate our hypothesis that the plateau arises from the

U-shaped structure of U-Net and U-ReNet. The main difference between

U-ReNet and ReSeg is in the upsampling strategy, which is more complex in

U-ReNet. The validation accuracies are not substantially different between

the two architectures, therefore we will later analyze better the differences.

71

(a) CWFID 1

(b) CWFID 2

(c) Broccoli

(d) Broccoli Depth

Figure 4.11: Training of ReSeg

72

Table 4.19: Hyperparameters for ReConv

Dataset LR L2 GS OD EL S EL A AR SR

CWFID1 0.0005 0.00000001 0.29 0.72 11,83 13,66 0.11 50
CWFID2 1 0.00002 0.000001 0.57 0.71 20,67 94 0.33 71
CWFID2 2 0.0005 0.00000001 0.77 0.53 12,60 79,51 0.01 49
Broccoli 0.0002 0.001 0.49 0.70 43,83 42,67 0.43 95
BroccoliD 0.0005 0.00001 0.37 0.27 16,20 45,34 0.28 82

ReConv network

Using the hyperparameters of Table 4.19 we have trained the network obtain-

ing the results of Figure 4.12. We remind that this network works like ReSeg

but it receives as input the image as preprocessed by the first 3 layers of U-

Net. From the validation datasets we can already see that this configuration

is not as good as the previous ones, a sign that the features extracted by the

convolutional layers are not good as an input to the ReSeg network. This can

probably be explained by the fact that, differently from what happens in [53],

our convolutional layers come from an U-shaped network and therefore may

not contain sufficient information to reconstruct the image. In other words,

since U-Net can retrieve the shape of the image using the concatenations from

the contracting to the expanding path, it is possible that the convolutions

just learn to extract some implicit features, therefore loosing the ability to

reconstruct the original image as needed for image segmentation. On the

other hand, this could also be due to the factorization of the convolutions,

which therefore demands further analysis.

73

(a) CWFID 1

(b) CWFID 2 1

(c) CWFID 2 2

(d) Broccoli

(e) Broccoli Depth

Figure 4.12: Training of ReConv
74

ReConcat network

When adding a concatenation with the input on top of ReConv, we started

from the parameters of ReConv, using the same hyperparameters. The

results of the training processes are visible in Figure 4.13. The difference

with ReConv is that this network is able to better follow the input image,

resulting in a slightly increase in the segmentation accuracy. Nonetheless,

this network still suffers from the poor performance of ReConv.

75

(a) CWFID 1

(b) CWFID 2 1

(c) CWFID 2 2

(d) Broccoli

(e) Broccoli Depth

Figure 4.13: Training of ReConcat
76

Chapter 5

Comparison of results

“Marvin: That ship hated me.

Ford: Ship? What happened to it? Do you know?

Marvin: It hated me because I talked to it.

Ford: You talked to it? What do you mean you talked to it?

Marvin: Simple. I got very bored and depressed, so I went and plugged myself

into its external computer feed. I talked to the computer at great length and

explained my view of the universe to it.

Ford: And what happened?

Marvin: It committed suicide.”

The Hitchhiker’s Guide to the Galaxy

In this section we critically analyze, from various perspectives, the classifiers

that we have implemented.

5.1 Comparison of hyperparameters dependence

The various networks exhibit a different resilience to the selection of the

hyperparameters: some of them are really sensible and thus perform well just

on a small range of values, whereas other networks have the great advantage

of achieving good performances on a broader range of hyperparameters values.

To further highlight this, we have used the data reported in appendix A

to produce the graphs reported in Figure 5.1 and Figure 5.2, where, for

every dataset, we report the minimum, the maximum, the average and the

standard deviation of the validation loss that has been obtained by the various

networks in the hyperparameters selection stage. As the loss is measured

without considering the l2 term, the results are directly comparable.

From the analysis of Figure 5.1, it is visible that, in every situation,

the sliding window network has the greatest variability, therefore making it

(a) CWFID 1 (b) CWFID 2

(c) Broccoli (d) Broccoli depth

Figure 5.1: Validation loss after 3 epochs of training. Minimum, maximum, average
and standard deviation of validation loss on logarithmic scale

(a) CWFID 1 (b) CWFID 2

(c) Broccoli (d) Broccoli depth

Figure 5.2: Validation loss after 10 epochs of training. Minimum, maximum, average
and standard deviation of validation loss on logarithmic scale

crucial to select a proper set of hyperparameters. The other networks are

more or less equivalent, with U-ReNet and U-Net usually achieving the best

results. These results are confirmed in the finer tuning stage, reported in

Figure 5.2, with the exception of the BroccoliDepth dataset where U-ReNet

78

has an higher variance. However, considering that the graphs are plotted on

a logarithmic scale, we must notice that this higher variance is not nearly as

bad as the one exhibited by the sliding window network.

Nonetheless, we must notice that the sliding window network has the

tendency to obtain a really high loss even when the accuracy remains good,

as explained in Section 4.2.3.

5.2 Feature analysis

As said before, we have decided to implement just a small set of handcrafted

features hoping that more complex ones could have been identified by the

neural networks. Moreover, one of the things we noticed while examining

the importance of the hand crafted features (Section 4.2.2 on page 59) was

that the two most important features were based on the colors of the images

and the third one was a morphological property. It is therefore interesting to

investigate which kind of features are being learned by the various networks.

We have explored two ways to visualize the extracted features:

• the first strategy consists in finding an image that, once fed to the

network, produces a segmentation similar to a given one;

• the second strategy consists in visualizing the gradient of a given neuron

so to understand what excites it.

5.2.1 Minimize output error

The first visualization can be obtained by starting from an empty image and

computing the output of the network. The difference between the output and

a given segmentation image is considered a loss, which is used to compute

the derivative w.r.t. the input image pixels and correspondingly update the

image. By repeating this procedure we obtain an image which, according to

the network, represents the given segmentation. This strategy is useful to

obtain an image that represents the abstract idea of a class according to the

specific network. From a practical point of view, the loss has to be modified

in order to make the image more pleasurable to the eye. In fact, the plain

gradient of the loss would contain much high-frequency information and,

therefore, the method would produce an image that exactly matches the

given segmentation but is meaningless to the eye. Most of the previous works

that focused on this kind of representations were conceived for classification

networks, therefore we have tried to adapt them to segmentation networks.

In fact, in segmentation problems a loss is specified for every pixel of the

79

output image and, when back-propagated, it affects multiple input pixels.

From a practical point of view, this leads to noisy gradients that must be

smoothed.

More specifically, following the pseudocode reported in Algorithm 2, we

start from an all-zero image and compute its loss and the respective gradient.

Then, in order to smooth the gradient, we compute two layers of the laplacian

pyramid [1]. We update the gradient by adding the two pyramidal layers, thus

giving more importance to the low frequency features and then normalize

the gradient to unitary variance. After that, we put to zero all the gradient’s

points whose absolute value is lower than a small threshold, which we fixed

to 0.05 times the mean of the image taken in absolute value. We then update

the image using this gradient and the Adam update scheme, with β1 = 0.2,

β2 = 0.5, LR = 0.1 and ε = 10−8 for 10 epochs. The values have been chosen

just by trial and error trying to produce good-looking pictures.

Algorithm 2 Minimize output error

Require: image: the (empty) image that has to be optimized
Require: target: the annotation that is used for the optimization of image
Require: net: a differentiable function (neural network) that, given an

image, produces a target
for epoch in 1...10 do
output← net(image)
loss← cross entropy loss(output, target)
gradient← ∂loss

∂image
l← laplacyan pyramid(gradient)
gradient← gradient+ l(1) + l(2)
gradient← gradient

std(gradient)

th← 0.05 ·mean(|gradient|)
for point in gradient do

if |gradient[point]| < th then
gradient[point]← 0

end if
end for
image← adam update(image, gradient)

end for

For the sliding window network, this approach can be adapted by using

a class instead of a segmentation map and thus optimize a tile instead of an

image.

In Figure 5.3 we report the images optimized with the networks trained

on the first CWFID split. They are not much interpretable, but still they

allow us to make some comparisons. The most important thing is that, more

80

(a) Original annota-
tion (b) SWind soil class (c) SWind weed class (d) SWind crop class

(e) U-Net (f) U-ReNet (g) U-ReNet2 (h) ReSeg

(i) ReConv (j) ReConcat

Figure 5.3: Optimizing for CWFID annotation 001

or less, all the networks seem able to recover the structure of the image,

except for the ReConv network. This ability is an indication that the network

is able to extract enough specialized features to capture the image content.

The fact the ReConv is unable to recover the image confirms the results

found during the training phase, where we hypothesized that this network is

unable to extract sufficiently expressive features. The ReConcat network,

conversely, is able to reconstruct the image, but this is probably mostly due

to the direct concatenation, which would still imply that the ReConv network

does not contain paths that embed the image’s informations. For the sliding

window network, the difference between the two vegetation classes is not so

clear, but it seems to involve both the color and the shape.

The results for the second CWFID split (Figure 5.4) are visually more

interesting. First of all, we still see the inability of ReConv to reconstruct the

image and the better job done by ReConcat, thus confirming that ReConv

does not have an adequate expressive power. Moreover, it is clearly visible

the difference between the convolutional and the recurrent networks, where

the former is really good at detecting borders trough the color contrast,

whereas the latter exploits long distance relationship to detect the shape of

the leaf. Interestingly, the recurrent networks seems to be mostly based on

81

(a) Original annota-
tion (b) SWind soil class (c) SWind weed class (d) SWind crop class

(e) U-Net (f) U-ReNet (g) U-ReNet2 (h) ReSeg

(i) ReConv (j) ReConcat

Figure 5.4: Optimizing for CWFID annotation 002

horizontal patterns.

The results for the Broccoli dataset are reported in Figure 5.5. We can

observe that the sliding window network is mostly exploiting the color in

order to distinguish between the classes. All the other networks seem to

be trying to detect round shaped objects in correspondence of the broccoli

heads, which is reasonable.

82

(a) Original annota-
tion

(b) SWind soil class (c) SWind weed class

(d) U-Net (e) U-ReNet (f) U-ReNet2 (g) ReSeg

(h) ReConv (i) ReConcat

Figure 5.5: Optimizing for Broccoli annotation 001

83

5.2.2 Maximize neuron output

To obtain this visualization we start from an existing image and compute

the output up to a certain layer. We then select a channel of the layer and

compute its gradient w.r.t. the input image, thus obtaining an image that

represent how we should modify the input image in order to increase the

output and make stronger the implicit feature detected by the convolutional

layer at the selected layer/channel. This visualization helps to understand

what is being detected by a neuron, and therefore to see which kind of

features are being extracted by the network. The resulting image, in fact,

will have an higher value in the regions where the gradient is stronger,

therefore identifying which regions mostly affect the implicit feature. Since

we have multichannel images, the output will also tell us which channel we

have to increase so to boost the feature. In order to produce better looking

pictures, we have adopted the guided backrprop [47] variation to compute

the gradient of the ReLU units. For graphic reasons we have lightened the

images and increased the contrast just to make them more interpretable,

since the resulting images are pretty dark.

For space reasons we cannot report all the neurons of all the networks,

therefore we just display the positive gradient of some neurons for the

networks trained on the second split of CWFID to give an idea of the kind

of features extracted by the various networks. All the examples have been

made using the annotation of the second image of CWFID, which we report

in Figure 5.6.

For the U-Net network, we report in Figure 5.7 some images taken from

neurons located in the pooling and upsampling layers. The first layers of the

network are used to extract some really simple, color based, features used to

discriminate soil and vegetation (Figure 5.7b) and also to detect left and right

borders of the leaves (Figure 5.7a and Figure 5.7c). The network progressively

learns to extract more complex features, for example at the third pooling

layer it is already detecting the whole borders of leaves in a pretty accurate

way (Figure 5.7d). At the next layer the network is still detecting borders,

but it has also developed enough features to discriminate between different

leaves (Figure 5.7e and Figure 5.7f). In the upsampling path the network uses

the learned features to compute the final segmentation image by separately

identifying the entire plants (Figure 5.7g and Figure 5.7h). We can thus

say that this network is mostly reasoning in terms of leaves shape and color,

from the analysis of Figure 5.7b we can also hypothesize that the network is

extracting a sort of texture of the leaves, but this features is not present in

the subsequent layers.

84

(a) Image 2 of CWFID
(b) Segmentation of CW-
FID image 2

Figure 5.6: CWFID image 2: original image and ground truth annotation.

(a) 1@Pooling1 (b) 2@Pooling1 (c) 9@Pooling1

(d) 4@Pooling3 (e) 0@Pooling4 (f) 7@Pooling4

(g) 1@Upsampling3 (h) 2@Upsampling3

Figure 5.7: U-Net trained on CWFID2. Gradients of some neurons, labels are meant as
neuron@layer

Due to their recurrent nature, the results obtained for the ReNet-based

architectures are not so easily interpretable. In fact, the gradient in a pixel

is the effect of the activation of many, possibly distant, other pixels and

therefore the images are interpretable just on the very first layers where they

are mostly exploiting local informations. Nonetheless, we will report some of

them.

Some neurons from the U-ReNet network are shown in Figure 5.8. This

85

(a) 7@ReNet1 (b) 8@ReNet1

(c) 9@ReNet2 (d) 7@ReNet3

Figure 5.8: U-ReNet trained on CWFID2. Gradients of some neurons, labels are meant
as neuron@layer

network mostly relies on the borders of the leaves to classify them, in fact, as

visible in Figure 5.8a the network is computing a sort of low relief of the image.

Figure 5.8b clearly shows the underlying structure of the network, which is

based on a set of recurrent neurons sweeping the image both horizontally

and vertically: the presence of neighboring pixels with contrasting colors

suggests a feature that detects borders. In Figure 5.8c and Figure 5.8d we

see that the network is also utilizing colors to detect the plants.

In Figure 5.9 we display some neurons taken from later layers of U-ReNet2.

In Figure 5.9a and Figure 5.9b it is visible that the network is exploiting the

color contrast in order to detect the borders of the leaves. Figure 5.9c and

Figure 5.9d have been taken from the output layer and thus represent how

we should change the image in order to make the network more sure about

the final segmentation. The images are not very clear, but it is interesting

to notice that the main difference between the images is located in the area

where there should be a weed. This indicates that, in order to make that

area more weed-like, the network would like to see a change in the same area.

This is an indication that the network is effectively recognizing the plant

and not just the surrounding context like it would happen if the network

was overfitting (consider that the given annotation was part of the training

dataset).

The ReSeg-based networks are even less interpretable than the U-ReNet

ones, so we show just a couple of neurons in Figure 5.10, so to notice that

they maintain the vertical/horizontal structure that arise from the ReNet

86

(a) 0@Upsampling3 (b) 2@Upsampling3

(c) 1@Output (d) 2@Output

Figure 5.9: U-ReNet2 trained on CWFID2. Gradients of some neurons, labels are meant
as neuron@layer

(a) 0@ReNet1 (b) 1@ReNet2

Figure 5.10: ReSeg trained on CWFID2. Gradients of some neurons, labels are meant
as neuron@layer

layers.

87

Table 5.1: Number of parameters

Network CWFID Broccoli BroccoliD

SWind 10 011 267 10 012 674 -
U-Net 503267 503330 503426

U-ReNet 1 224 611 1 225 778 1 226 978
U-ReNet2 1 218 083 1 218 818 1 219 586

ReSeg 1 212 963 1 214 362 1 216 042
ReConv 2 201 459 2 201 194 2 201 290

ReConcat 2 201 465 2 201 200 2 201 298

5.3 Number of parameters

An important aspect of the various networks is the number of parameters.

Ideally we would like to have a network that reaches optimal segmentation

accuracies with a few number of parameters, since this would mean a lower

training and prediction time. Moreover it would ease the training process

by making the network less prone to overfitting. The number of parameters

for the various networks is reported in Table 5.1, from its analysis we can

see that the simplest network is the U-Net one, whereas the sliding window

network, albeit its simple structure, is, by far, the most complex one. This

is in accordance with the fact that, for this network, we did not perform

any convolution factorization. Moreover, the fully connected layers involve a

really big number of parameters.

5.4 Comparison of training time

In Table 5.2 we report the time needed to train each network on the various

datasets. The train has been performed on the Galileo system from cineca,

equipped with a NVidia Tesla K80 gpu. Since some networks required to

be trained multiple times, we will report here just the time employed for

the train that yield the best result in terms of validation loss. Moreover, we

consider the train time just up to the epoch that we selected as the best

considering its validation loss.

Given that the selection of the optimal epoch is a noisy process, in

Table 5.3 we also report the average time per epoch of each configuration.

By analyzing the tables we can say that the sliding window network and

the U-Net architecture are the fastest, while the ReNet-based networks pay

the fact of not being easily parallelizable: in fact, as outlined in [52], the

recurrent networks have a sequential nature and thus we cannot fully take

88

Table 5.2: Training time in hours

Network CWFID1 CWFID2 Broccoli BroccoliD

SWind 3.5 10.4 2.0 -
U-Net 5.0 15.1 11.3 15.6

U-ReNet 13.7 39.0 23.6 9.34
U-ReNet2 13.5 37.0 22.5 21.8

ReSeg 11.2 37.4 19.5 20.6
ReConv 8.19 17.0 15.1 4.9

ReConcat 7.46 16.4 3.24 11.0

Table 5.3: Average training time per epoch in seconds

Network CWFID1 CWFID2 Broccoli BroccoliD

SWind 98 273 268 -
U-Net 126 273 205 298

U-ReNet 262 530 440 542
U-ReNet2 249 470 404 392

ReSeg 270 459 355 392
ReConv 150 309 271 264

ReConcat 151 345 233 245

advantage of the GPU parallelism. When comparing the sliding window

network with the U-Net architecture, we must consider their different nature:

the former works on tiles, while the latter receives the full images. Therefore,

U-Net will take the same time on all the images, whereas the sliding window

approach requires to have a smart way to preprocess the images and select

just the relevant tiles. For example, in the Broccoli dataset we do not remove

the background and, therefore, for each image we have a lot of overlapping

tiles, which requires the network to repeat the same computations over and

over again, thus slowing down the training process.

Moreover, loading all the tiles of an image can be demanding in terms of

memory and thus require a powerful GPU. We can thus conclude that the

sliding window approach is convenient when an easy and fast method to clean

the images is available, whereas it is better to use U-Net when the images

cannot be cleaned and all pixels must be processed. For what concerns the

recurrent networks, we can say that ReConv is the fastest network, which

is expected given that is has less layers. Moreover, U-ReNet2 is faster than

U-ReNet, which, again, is in accordance with the fact that it has less hidden

units in the first layers (where the image is bigger) and more neurons in the

89

Table 5.4: Average image classification time on Cineca server in seconds

Network CWFID1 CWFID2 Broccoli BroccoliD

RFC 3.53 3.46 58.57 -
SVM 3.46 3.97 59.71 -
XGB 3.24 3.16 60.28 -

SWind alone 3.49 4.77 14.36 -
SWind U-Net - - 2.94 -

U-Net 0.54 0.73 2.07 1.25
U-ReNet 0.82 1.22 2.16 1.33
U-ReNet2 0.84 0.81 1.96 1.31

ReSeg 0.68 0.83 1.85 1.23
ReConv 0.56 0.63 1.89 1.03

ReConcat 0.52 0.68 1.88 1.08

Table 5.5: Average image classification time on laptop in seconds

Network CWFID1 CWFID2 Broccoli BroccoliD

RFC 5.13 5.18 97.48 -
SVM 5.38 5.86 96.50 -
XGB 5.23 4.88 99.75 -

SWind alone 4.12 4.33 77.65 -
SWind U-Net - - 9.69 -

U-Net 1.25 1.36 2.94 2.03
U-ReNet 2.15 2.28 3.68 2.63
U-ReNet2 1.83 1.76 3.32 2.36

ReSeg 1.94 1.91 3.36 2.46
ReConv 1.19 1.17 2.91 1.99

ReConcat 1.45 1.27 2.91 1.97

last layers, where the image size has already been reduced.

5.5 Comparison of classification time

Another interesting measure is the time needed to classify an image with

each classifier, as this affects the real-time applicability of the system. As this

process, in principle, has to be carried out in field, we report in Table 5.4 the

time needed by the same system we used for training and also, in Table 5.5,

the time needed by an average laptop equipped with an NVidia GeForce

740M as it is more similar to an hypothetic real-life in-field device. The

classification time does not include the time needed to compile the networks.

90

Interestingly, the baseline classifiers are not faster than the networks on

CWFID and they are dramatically slower on the Broccoli dataset. This

is due to the fact that the tiles are hugely overlapping, which, even if it

is an advantage in terms of accuracy, is also really painful in terms of

computational performance. On the CWFID dataset this disadvantage is

compensated by the fact that we have a fast way to remove the soil and thus

evaluate just a small subset of the available tiles. The sliding window network

is affected by the same problem, however, since it runs on a GPU, the massive

parallelization alleviates the problem. It is also interesting to notice that,

on the Broccoli dataset, it is faster to run the U-Net network and use its

result to produce a mask image and thus reduce the number of windows to

be classified by the sliding window approach. Among the other networks, the

ReConv and ReConcat architecture are the fastest. This is explained by the

fact that they have the most shallow structure and, moreover, the recurrent

layers work on a preprocessed image, which is therefore smaller. However, as

we will see later, those two architectures do not reach optimal segmentation

accuracies, and therefore we have to also analyze the other ones. U-Net

is, as expected, faster than U-ReNet architectures and it is also nearly as

fast as the ReConv networks. We can thus conclude that, time-wise, U-Net

architecture is the best solution.

5.6 Comparison of segmentation performance

Once obtained the various classifiers, we have evaluated their performance

on the test set. This evaluation is performed at pixel level on full-sized

images. Therefore it involves an upsampling process for the networks and

an interpolation for the baseline classifiers as explained in Section 3.3. The

smoothing is still not applied.

In Table 5.6 we report the results obtained on the first split of CWFID,

where there is not a clear winner. The sliding window network is the

most balanced of all, since it reaches good performances on all the metrics.

Conversely, the U-Net is the worst one as it is biased toward the weed class

and annotates as weed more than it should.

In Table 5.7 we report the results obtained on the second split of CWFID.

The increased size of the training dataset gives an advantage to all the

classifiers, but the neural networks receive a greater boost and outperform

the baseline classifiers. Here we can say that U-Net is the most suited

network for the job. It still has a tendency to be biased toward the weed class

but, apart from precision, it greatly outperforms all the concurrents in every

metric. It is worth mentioning the fact that U-ReNet reaches acceptable

91

Table 5.6: Segmentation results on CWFID1

Classifier Accuracy Precision Recall F1 Jaccard

[15] 0.859 0.796 0.808 0.802 -

RFC 0.843 0.848 0.888 0.849 0.866
SVM 0.861 0.846 0.916 0.860 0.866
XGB 0.851 0.838 0.920 0.859 0.866

SWind 0.857 0.830 0.950 0.865 0.866
U-Net 0.773 0.775 0.929 0.821 0.866

U-ReNet 0.808 0.801 0.954 0.846 0.866
U-ReNet2 0.809 0.815 0.925 0.839 0.865

ReSeg 0.843 0.855 0.895 0.851 0.865
ReConv 0.817 0.820 0.927 0.843 0.865

ReConcat 0.838 0.822 0.944 0.856 0.866

Table 5.7: Segmentation results on CWFID2

Network Accuracy Precision Recall F1 Jaccard

RFC 0.855 0.886 0.888 0.881 0.879
SVM 0.870 0.887 0.911 0.894 0.879
XGB 0.852 0.884 0.890 0.880 0.879

SWind 0.885 0.925 0.897 0.903 0.879
U-Net 0.897 0.886 0.972 0.922 0.879

U-ReNet 0.863 0.873 0.942 0.898 0.879
U-ReNet2 0.873 0.895 0.915 0.897 0.879

ReSeg 0.854 0.860 0.946 0.894 0.879
ReConv 0.737 0.770 0.883 0.809 0.879

ReConcat 0.743 0.769 0.846 0.799 0.879

level of performance on both the splits, which means that it suffers the lack

of training data less than U-Net. In conclusion we can say that, depending

on the size of the available training data, the sliding window network and

U-Net should be the preferred architectures for CWFID.

When analyzing the results for the Broccoli dataset, reported in Table 5.8,

the small gap between the convolutional and the recurrent networks is no

longer present. In fact, U-ReNet2 seems the best architecture, achieving

good results on all the metrics. This may be an indication that, for this job,

the ability of the recurrent networks to capture long distance dependences is

useful, thus making the ReNet based architecture the best choice. Another

relevant observation regards the sliding window network: as said, we have

tested it both when used alone and when staged after the U-Net network

92

Table 5.8: Segmentation results on Broccoli

Network Accuracy Precision Recall F1

[22] 1 - 0.952 - -

RFC 0.952 0.562 0.345 0.414
SVM 0.946 0.477 0.388 0.417
XGB 0.882 0.212 0.466 0.288

SWind alone 0.633 0.106 0.833 0.187
SWind U-Net 0.986 0.959 0.755 0.841

U-Net 0.988 0.924 0.842 0.878
U-ReNet 0.984 0.870 0.813 0.835
U-ReNet2 0.989 0.895 0.889 0.888

ReSeg 0.986 0.882 0.834 0.854
ReConv 0.974 0.783 0.683 0.724

ReConcat 0.973 0.785 0.649 0.701

Table 5.9: Segmentation results on BroccoliD

Network Accuracy Precision Recall F1

U-Net 0.983 0.877 0.786 0.819
U-ReNet 0.980 0.911 0.687 0.776
U-ReNet2 0.985 0.918 0.785 0.842

ReSeg 0.987 0.902 0.833 0.864
ReConv 0.975 0.794 0.693 0.735

ReConcat 0.975 0.787 0.708 0.741

so to have a mask and reduce the number of windows to be classified. It is

visible that, when used alone, the network does not absolutely reach a good

performance level. Therefore, the results obtained by the sliding window

network on preprocessed images can be mostly attributed to the U-Net

network. We can thus conclude that U-ReNet2 vastly outperforms the sliding

window approach.

In Table 5.9 we report the results obtained on the Broccoli dataset

enriched with the depth channel. The first relevant comment is that those

results are worse than the ones obtained without the depth channel. This is

probably due to two problems:

• the depth channel is really noisy;

• our architectures mix the depth with the color channel.

1We remind that those results have been obtained using cloudpoint data and different
ground truths

93

The second issue is the most relevant. In fact, we have stacked the depth image

as a fourth channel and thus it was involved in all the neural computations.

Therefore, it is hard for the networks to extract some depth-related features

and use them. Moreover, the color-based features also receive an additional

channel that slows them down and adds noise to the process. Therefore,

we cannot evaluate the gain given by the depth information, but we can

treat these results as an additional experiment that confirms the results

found when using the 2D images only. With this in mind, we can observe

that the ReSeg network obtains the best results and that U-ReNet2 is also

very good. We can therefore conclude that, accuracy wise, the ReNet-based

architectures are the best for the Broccoli dataset.

5.6.1 Qualitative comparison of segmentations

The segmented images can also be evaluated from a qualitative point of

view. In fact, the same metrical result can be obtained in several ways. For

instance, imagine we have a CWFID image containing 4 plants, none of

which is weed. Imagine also that we have two hypothetic classifiers: the

first one labels as crop three plants and as weed the fourth one, whereas

the second classifiers labels all the plants as crop, except for some randomly

placed pixels that are labeled as weed. The first classifier would lead to the

destruction of a crop plant, whereas the error of the second classifier could

be easily recovered by filtering on the dimension of the predicted weed. The

same problem is present in the Broccoli dataset: our final goal, in fact, is to

predict the growth stage of the broccoli heads and, therefore, it is important

to produce an annotation that can be used to measure their size. This means

that a good annotation is not an annotation that reaches high scores on all

the metrics, but an annotation that “looks nice” and closely matches the

borders of the heads. Moreover, it is important to evaluate how the various

networks react to the occluded part of the leaves.

Albeit this difference is not captured by the adopted metrics, we can

qualitatively evaluate the segmented images in order to see if the various

classifiers are more prone to specific kinds of error.

The classifiers trained on the first split of CWFID do not present substan-

tial differences. We can see (images from 5.11c to 5.11f) that the classifiers

that are based on tiles have a tendency to produce highly fragmented anno-

tation, which is the practical reason that justifies the smoothing process.

It is also interesting to notice that the ReSeg based networks (images

from 5.11j to 5.11l) produce annotations whose boundaries are straight lines

that follows an horizontal or vertical pattern. This is justified by the nature

94

(a) Image (b) Ground truth (c) RFC (d) SVM

(e) XGB (f) SWind (g) U-Net (h) U-ReNet

(i) U-ReNet2 (j) ReSeg (k) ReConv (l) ReConcat

Figure 5.11: Classification of CWFID image 027

of the underlying recurrent networks and by the upsampling process. In fact,

the output of these networks is heavily upsampled in a single passage, and

thus it can’t be smooth. This suggests that the upsampling process adopted

in the U-ReNet architecture is useful to produce better looking annotations,

whereas the concatenation trick implemented in the ReConcat network is

not enough.

From the analysis of the annotations produced by the classifiers trained on

the second split of CWFID (Figure 5.12), we observe a similar pattern: the tile

based classifiers are really noisy and the ReSeg based networks produce non

smooth boundaries. We can thus conclude that, from qualitative observations,

the U-shaped networks produce the best results on the CWFID images.

The outputs for the Broccoli dataset (Figure 5.13) are quite different

from the CWFID ones. As a first thing, it is clearly visible that the tile based

classifiers achieve really bad performances, as resulted from the analysis of

the metrics. The sliding window network actually reaches a good precision,

but from visual inspection it is visible that the annotations have a really low

quality. This problem can arise from the fact that, differently from CWFID,

here it is important to classify the whole plant, producing nicely looking

masks that can be used to compute the size of the broccoli heads. Therefore,

if a classifier receives just a small window, it cannot exploit the surrounding

95

(a) Image (b) Ground truth (c) RFC (d) SVM

(e) XGB (f) SWind (g) U-Net (h) U-ReNet

(i) U-ReNet2 (j) ReSeg (k) ReConv (l) ReConcat

Figure 5.12: Classification of CWFID image 032

context to ease the decision process. In other terms, when classifying a

window that has been extracted at the center of a broccoli head, it just

looks like a big green square, which is not dramatically different from a

big leaf. Therefore all the features that exploit the contour cannot be used

and the classification task is more demanding since it can only exploit color

informations. This is in accordance with the feature importance analysis

that we reported in Section 4.2.2, where it resulted that, for the Broccoli

dataset, the classifiers were mostly based on a color feature. Conversely, the

other networks can easily exploit the local context and therefore produce

way better segmentations. Following these reasoning, we can also justify

the fact that the ReNet-based architectures achieved better scores on the

metrics. In fact, due to their ability of identifying long distance dependences,

they can exploit this context more easily than the convolutional networks.

Nonetheless, the U shaped architecture of U-Net allows to obtain very good

results and it becomes the best solution when paired with the ReNet layer

as done in U-ReNet.

As it happened in CWFID, the ReSeg architecture, due to its upsampling

process, produces annotations with non smooth boundaries, but here the

problem is more serious since a smooth boundary would make it easier to

compute the size of the crop. When moving to the ReConv network the result

96

(a) Image (b) Ground truth (c) RFC (d) SVM

(e) XGB (f) SWind (g) U-Net (h) U-ReNet

(i) U-ReNet2 (j) ReSeg (k) ReConv (l) ReConcat

Figure 5.13: Classification of Broccoli image 245

(a) Image (b) Ground truth (c) U-Net (d) U-ReNet

(e) U-ReNet2 (f) ReSeg (g) ReConv (h) ReConcat

Figure 5.14: Classification of Broccoli image 245 also using depth channel

becomes really bad, indicating that, for the Broccoli dataset, the features

extracted by the U-Net network are really unsuited as a preprocessing step

for the ReSeg network.

A similar result is obtained on the depth enriched version of the Broccoli

dataset. We can thus conclude that, from a qualitative point of view, U-ReNet

produces the best results on both the datasets.

97

Table 5.10: Smoothing parameters

Dataset Classifier X Y R

CWFID1

RFC 2 2 1
SVM 3 4 5
XGB 2 2 1

SWind 2 3 5

CWFID2

RFC 2 2 1
SVM 4 3 5
XGB 4 3 5

SWind 2 2 1

Table 5.11: Average image classification time on Cineca server in seconds when using
spatial smoothing

Network CWFID1 CWFID2

RFC 3.30 3.34
SVM 3.41 3.57
XGB 3.74 3.06

SWind alone 2.85 5.47

5.7 Smoothing tile probabilities

The performance of the tile based classifiers can be increased by applying

a spatial smoothing. The effect of this step is to reduce the high frequency

variations in the predictions of the classifiers, thus producing better segmen-

tations. We have tuned the parameters of Algorithm 1 for each classifier on

both the CWFID splits, looking for the values bringing to the best F1 score

on train images. We have selected the F1 score since it is a good balance

between precision and recall. The optimal values are reported in Table 5.10,

where X and Y represent the number of tile considered by the smoothing

algorithm and R is the number of repetitions. This process has not been

performed for the Broccoli dataset, where the results obtained by tile-based

classifiers are really bad and far from being recoverable with a smoothing.

With the found parameters, we have re-evaluated the tile-based classifiers

on the CWFID dataset.

The first thing that we need to evaluate is the increase in the computa-

tional complexity that comes from the smoothing stage. In fact, preliminary

experiments shown that the smoothing process proposed in [16] is too slow for

real-time applications. From the comparison of Table 5.11 with Table 5.4 on

98

Table 5.12: Segmentation results on CWFID1 using spatial smoothing

Classifier Accuracy Precision Recall F1 Jaccard

RFC 0.861 0.857 0.909 0.864 0.866
SVM 0.894 0.895 0.936 0.908 0.866
XGB 0.868 0.847 0.936 0.871 0.866

SWind 0.875 0.843 0.970 0.881 0.866

Table 5.13: Segmentation results on CWFID2 using spatial smoothing

Classifier Accuracy Precision Recall F1 Jaccard

RFC 0.871 0.897 0.900 0.893 0.879
SVM 0.894 0.904 0.930 0.910 0.879
XGB 0.893 0.913 0.923 0.906 0.879

SWind 0.895 0.934 0.906 0.911 0.879

page 90 it is visible that the additional smoothing stage performed with our

algorithm does not affect the computational time in an appreciable way, since

the visible variations are more likely to be arising from random fluctuations

depending on the server workload.

From the comparison of Table 5.12 and Table 5.6 on page 92 we can see

how effective is the smoothing process, granting, on average, an improvement

of 2.15% in terms of accuracy 2. With this additional step, the support

vector machine becomes the best classifier on the first split of CWFID.

Similarly to what observed for the first CWFID split, the comparison of

Table 5.12 and Table 5.6 on page 92 results in a considerable increase in all

the metrics 3. However, none of the tile-based classifiers outperforms the U-

Net architecture. In summary, the smoothing improves the performance even

on the second split, but the neural networks still reach better performances.

The last comparison regards the visual differences in the produced seg-

mentations. As visible in Figure 5.15 and Figure 5.16, the smoothing process

reduces the high frequency variations in the predictions. However, it is also

visible that this process is just useful to remove outliers and increase the

metrics, but it is not increasing the real quality of the recommendations.

2The smoothing process proposed in [16] achieve an accuracy improvement of 2.3%
3The average accuracy improvement on CWFID2 is 3%

99

(a) RFC smooth (b) SVM smooth (c) XGB smooth (d) SWind smooth

Figure 5.15: Classification of CWFID image 027 with smoothing

(a) RFC smooth (b) SVM smooth (c) XGB smooth (d) SWind smooth

Figure 5.16: Classification of CWFID image 032 with smoothing

5.8 Summary of comparison

After having analyzed all the various aspects of the networks, we can now

directly compare them so to summarize the peculiarities of each network.

5.8.1 Feature based classifiers VS neural networks

This work is concerned with the comparison of neural network architectures

for agricultural image segmentation tasks. However, the first comparison must

be done with the feature-based classifiers that we implemented as baselines. In

fact, those classifiers are able to achieve really good performances, especially

on the small datasets, where neural networks suffer the most. However, we

must also notice that, even on the smaller CWFID split with just 20 training

images, the neural networks achieve a level of performance comparable to

the one obtained by the feature-based classifiers. This is especially true for

the sliding window network, which is able to fully take advantage from the

overlapping of the tiles.

Moreover, on the second CWFID split, which is still a very small dataset,

the feature-based classifiers do not substantially improve their performances,

whereas the neural networks are able to fully take advantage from the

additional data and constantly outperform the feature-based classifiers, even

if the training data is limited to just 40 images. This shows that, through a

severe use of data augmentation techniques, deep neural networks can be

successfully trained even on small datasets.

100

5.8.2 Sliding window approach VS full-image segmentation

Once decided to use a neural network, one must decide the kind of strategy to

adopt for segmentation. The sliding window approach usually reaches good

segmentation accuracies, which is mostly due to its implicit augmentation

of the available data. In fact, being based on overlapping tiles, the same

pixel is used in several computations, and thus the network can be trained

more easily without incurring in severe overfitting. However, relying on

overlapping data has also negative consequences. First of all, it requires a

way to efficiently get rid of unnecessary tiles, so to reduce both the training

dataset dimension and the classification time. This in turn requires to either

have a segmentation mask for the soil, which can be obtained only with costly

handwork, or to have a vegetative index that can be efficiently thresholded.

If a segmentation mask for the soil is not available, the network still

reaches good accuracies, albeit this comes at the expense of a dramatic

increase in both memory and temporal requirements. Another disadvantage

that arises from the tiled nature of this classifier is its inability to vary the

size of the local context used to classify a point. In fact, the tile dimension is

a really important hyperparameter and choosing a too small value can lead

to bad results, as happened on the Broccoli dataset.

Summarizing, the sliding window approach is a good choice to segment

small plants when just few images are available, their vast majority is

composed by soil and there is an efficient way to remove it. Those limitations

may seem severe, but this is precisely the case of CWFID1 and therefore

ideally corresponds to a real-life application.

5.8.3 Convolutional VS recurrent networks

One of the things we investigated is whether this specific domain can benefit

from the usage of recurrent neural architectures. The ReNet layer, in fact,

can be used as a drop-in replacement for the usually adopted convolution

+ pooling layers, with the advantage of being able to identify long distance

relationship. However, the segmentation of an agricultural image may not

require those relationship, making the usage of ReNet a disadvantage. In

fact, it must also be underlined that the recurrent layers have a greater

temporal complexity since they cannot be parallelized. Moreover, the U-

shaped architecture of U-Net, in principle, allows to easily exploit both short

and long distance relationship.

When comparing the results of U-Net to the ones obtained by the ReNet

based network, we must distinguish between the two datasets that we em-

ployed. In fact, on CWFID2 U-Net resulted being the best architecture,

101

while U-ReNet was the best for the Broccoli dataset both in metrical and

qualitative terms. On CWFID1 the best network resulted being the slid-

ing window one, but U-ReNet reached an acceptable level of performance,

whereas U-Net resulted being the worst one. As we said, for the Broccoli

dataset it is very important to precisely identify the whole head so to be

able to measure its dimension.

We can therefore conclude that the recurrent layers are better suited for

the Broccoli dataset, since they can easily detect the correct shape of the

plants, whereas, for U-Net, it is a bit harder. Moreover, U-ReNet reached

acceptable level of performance on every dataset. Therefore it should be

considered as a good standard solution on every dataset.

5.8.4 U-ReNet VS ReSeg

After having proposed the ReNet layer and the ReNet network [52] for image

classification, the same authors proposed ReSeg [53], which basically stages

an upsampling layer on top of 3 ReNet layers to perform image segmentation.

This upsampling is a really demanding task, since it is required to reconstruct

a full scale segmentation image from a severely downsampled image. On

the other hand, the equivalent problem for the convolutional networks has

been solved in many ways, one of which is the U-Net architecture. We have

thus proposed the U-ReNet architecture, where the ReNet layer is used in an

U-shaped architecture, and, therefore, we are interested in comparing this

upsampling strategy to the simpler one adopted in ReSeg.

From qualitative analysis, it resulted evident that the U-ReNet archi-

tecture performs a better job in the upsampling path, producing smoother

boundaries. Moreover, this advantage does not come at the expense of a

considerably greater computational complexity. In fact, the greater time

employed by the U-ReNet architecture to produce an annotation probably

comes, in its greatest part, from the fact that it has more ReNet layers w.r.t.

ReSeg. This ability to produce smoother boundaries can be important in

tasks where it is needed to accurately determine the shapes of the objects,

such as in the Broccoli dataset, and it also allows to reach better metrical

results on CWFID.

5.8.5 U-ReNet VS U-ReNet2

We have implemented two versions of U-ReNet: in the first one we have used

the same number of hidden units for all the layers of the network, whereas in

the second one we have adopted the strategy that is usually employed with

convolutional networks, i.e. increase the number of neurons in deeper layers.

102

It is interesting to see whether this strategy also works with the ReNet layers,

since the two networks have a similar number of parameters, but distributed

in a really different way across the layers.

Experimental results confirmed the applicability of this strategy to recur-

rent networks. In fact, the two networks always obtained comparable results,

but ReNet2 resulted being faster both during training and prediction. It is

therefore recommended to always adapt this scaling strategy.

5.8.6 ReSeg VS ReConv

The authors of ReSeg showed that its results can be improved by stacking

it on top of pre trained convolutional layers. This was not the case in our

experiments, which can be explained in two ways:

• as a first hypothesis, it could be that our convolutional network does

not extract sufficiently abstract features that can be used by the ReNet

layers;

• in alternative, it could be that the factorization of the convolutions

makes our features unsuitable for the ReNet layers.

The first hypothesis is the least interesting, since it implies that the advantage

from using convolutional layers just depends on the specific task and thus

one just needs to try it. Conversely, the second hypothesis is more intriguing

and absolutely demands further research.

5.8.7 ReConv VS ReConcat

The main weakness of ReConv resides in the upsampling strategy that from

a really small image has to go back to the original size. We experimented

whether the addition of a concatenation layer that unites the input image with

the upsampled output before computing the actual output of the network

can help to ease this process.

Given the bad results obtained by ReConv, it is difficult to say whether

this strategy was really helpful and, therefore, it requires further analysis.

103

104

Chapter 6

Conclusions and future

developments

“Mia: Don’t you hate that?

Vincent: What?

Mia: Uncomfortable silences. Why do we feel it’s necessary to yak about

bullshit in order to be comfortable?

Vincent: I don’t know. That’s a good question.

Mia: That’s when you know you’ve found somebody special. When you can

just shut the fuck up for a minute and comfortably enjoy the silence.”

Pulp Fiction

In the present work we have compared several neural networks in the task

of agricultural image segmentation. We have considered both the problem

of weed detection and automated harvesting. For the first problem we have

used CWFID [15], while for the latter we extracted 300 2D images from the

Broccoli dataset [22] and manually annotated each one of them.

In order to have a baseline to compare against, we implemented a pipeline

similar to the one proposed in [16], incrementing the number of classifiers

and proposing a faster smoothing algorithm.

We have compared the sliding window approach to the direct, full-size

image segmentation implementing networks as the one proposed in [36] and

U-Net [37]. We have compared convolutional networks to recurrent ones,

using the ReNet layer [52] and the ReSeg network [53]. We have proposed

a novel architecture that mixes the U-shaped structure of U-Net with the

ReNet layer in order to see whether it could achieve better upsampling results

than ReSeg. For the ReSeg network, we have also tested it when stacked

on top of some convolutional layers taken from U-Net. In order to produce

more accurate segmentations, we have also tested whether concatenating

the input image with the upsampled annotation before computing the real

output eases the upsampling process.

6.1 Summary of obtained results

Experimental results shown that, using just 20 training images, the base-

lines achieve slightly better results than the neural networks. Conversely,

with 40 images the neural networks are already able to achieve consistently

better results, while the baseline classifiers are unable to sufficiently exploit

the additional data. Moreover, the neural networks are able to produce

segmentations in a considerably shorter time.

The sliding window approach resulted convenient in a really specific

situation: the recognition of small weeds when few training images are

available and there is an efficient way to preprocess the images so to remove

soil. In fact, being tile-based it is not really good at correctly detecting

the real shape of broccoli heads, which is important to recognize their

growth stage. The reached performance also depends on the size the tiles,

which is an important hyperparameter. Moreover, when run on the entire

images, the sliding window approach becomes extremely slow due to the

severe overlapping of tiles. Like the baseline classifiers, it did not achieve a

consistent performance increase from the additional training data.

The recurrent networks resulted being slower than the convolutional ones.

Moreover, their ability to identify long distance relationship did not result in

consistently greater accuracies, since the U-Net architecture can also exploit

them. It is however to notice that our U-ReNet architecture achieved better

results in the reconstruction of broccoli heads shapes, which also translated in

higher metrical results. It is also to notice that U-ReNet reached good results

on both the splits of CWFID, thus resulting a well balanced architecture.

Our U-ReNet architecture outperformed the ReSeg one, producing more

accurate results both from a metrical and a qualitative point of view. More-

over, we have seen that, by varying the number of hidden units in the

recurrent layers, the U-ReNet architecture can be made faster.

The combined use of U-Net and ReSeg did not result in positive results,

and the reason needs to be further investigated.

We can thus conclude that, for agricultural images segmentation tasks

with deep neural networks, U-Net and U-ReNet are the most promising

architectures, whereas the sliding window approach should be preferred on

small datasets for weed detection.

106

6.2 Future developments

From a practical point of view, this work needs to be extended so to be able

to distinguish different kind of weeds and to estimate the growth status of

the crops. This will require to extend the manual annotation to include this

new data. For the weed recognition problem, this will be done on a new

bigger dataset that is currently being published.

During the networks evaluation we have tried to visualize the extracted

features, which proved to be hard on the recurrent networks. This was due

to the fact that the gradient of a pixel is related to the activation of many,

possibly distant, neurons. Future experiments should thus try to modify the

backpropagation of recurrent layers so to produce better looking gradients

and make easier the interpretation.

Moreover, from the qualitative analysis of the produced segmentation

images, we have noticed that the same metrical result can be obtained in

really different ways, it should therefore be interesting to investigate whether

a different metric would solve this problem.

We have also tried to embed the depth channel, obtaining negative

results. This is probably due to the fact that our architectures just stacked

the depth information as a new image channel. Future extensions should try

to implement an architecture where the depth channel is kept separate and

see whether this allows to obtain an increase in the accuracy.

Moreover, our experiments can be summarized by saying that, for agri-

cultural segmentation tasks, the best suited architectures are U-Net and

U-ReNet. It would therefore be interesting to create a novel architecture

that mixes the two approaches. More specifically, we are thinking about an

U-shaped network where, at each level, are present both convolutional and

recurrent neurons. By building two parallel networks, one working on color

images and one on the depth channel, and combining them when producing

the final annotation, it should be possible to obtain optimal results on every

task, while also partially maintaining the speed of the convolutional layers.

Another interesting development regards the Broccoli dataset. Its images,

in fact, are regularly overlapping. This information could be exploited by

using several images to detect the same broccoli head. A similar approach

has been implemented in [22], by discarding points that are detected as

broccoli heads in a low number of frames. The same approach can be easily

applied to our networks, but more complex ones could also be interesting. For

example, multiple frames could be simultaneously given to a single network

to produce the annotation for the central frame, thus effectively evaluating

the same pixels from different perspectives.

107

108

Bibliography

[1] Edward H Adelson et al. “Pyramid methods in image processing”. In:

RCA engineer 29.6 (1984), pp. 33–41.

[2] TW Berge, AH Aastveit, and H Fykse. “Evaluation of an algorithm

for automatic detection of broad-leaved weeds in spring cereals”. In:

Precision Agriculture 9.6 (2008), pp. 391–405.

[3] Christopher M Bishop. “Pattern recognition”. In: Machine Learning

128 (2006).

[4] Ralph B Brown and Scott D Noble. “Site-specific weed management:

sensing requirements-what do we need to see?” In: Weed Science 53.2

(2005), pp. 252–258.

[5] Beibei Cheng and Eric T Matson. “A Feature-Based Machine Learning

Agent for Automatic Rice and Weed Discrimination”. In: International

Conference on Artificial Intelligence and Soft Computing. Springer.

2015, pp. 517–527.

[6] Complete Guide to Parameter Tuning in XGBoost. url: https://www.

analyticsvidhya.com/blog/2016/03/complete-guide-parameter-

tuning-xgboost-with-codes-python/.

[7] CS231n: Convolutional Neural Networks for Visual Recognition. url:

http://cs231n.stanford.edu/.

[8] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive subgradient

methods for online learning and stochastic optimization”. In: Journal

of Machine Learning Research 12.Jul (2011), pp. 2121–2159.

[9] Filip Feyaerts and Luc Van Gool. “Multi-spectral vision system for

weed detection”. In: Pattern Recognition Letters 22.6 (2001), pp. 667–

674.

[10] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements

of statistical learning. Vol. 1. Springer series in statistics Springer,

Berlin, 2001.

109

https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/
http://cs231n.stanford.edu/

[11] Ross Girshick et al. “Rich feature hierarchies for accurate object de-

tection and semantic segmentation”. In: Proceedings of the IEEE con-

ference on computer vision and pattern recognition. 2014, pp. 580–

587.

[12] José Miguel Guerrero et al. “Support vector machines for crop/weeds

identification in maize fields”. In: Expert Systems with Applications

39.12 (2012), pp. 11149–11155.

[13] David Hall et al. “Evaluation of features for leaf classification in chal-

lenging conditions”. In: 2015 IEEE Winter Conference on Applications

of Computer Vision. IEEE. 2015, pp. 797–804.

[14] Bharath Hariharan et al. “Hypercolumns for object segmentation and

fine-grained localization”. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2015, pp. 447–456.

[15] Sebastian Haug and Jörn Ostermann. “A crop/weed field image dataset

for the evaluation of computer vision based precision agriculture tasks”.

In: European Conference on Computer Vision. Springer. 2014, pp. 105–

116.

[16] Sebastian Haug et al. “Plant classification system for crop/weed dis-

crimination without segmentation”. In: IEEE Winter Conference on

Applications of Computer Vision. IEEE. 2014, pp. 1142–1149.

[17] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification”. In: Proceedings of the IEEE

international conference on computer vision. 2015, pp. 1026–1034.

[18] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic

Optimization”. In: CoRR abs/1412.6980 (2014). url: http://arxiv.

org/abs/1412.6980.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet

classification with deep convolutional neural networks”. In: Advances

in neural information processing systems. 2012, pp. 1097–1105.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet

Classification with Deep Convolutional Neural Networks”. In: Ad-

vances in Neural Information Processing Systems 25. Ed. by F. Pereira

et al. Curran Associates, Inc., 2012, pp. 1097–1105. url: http://

papers.nips.cc/paper/4824-imagenet-classification-with-

deep-convolutional-neural-networks.pdf.

110

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

[21] Neeraj Kumar et al. “Leafsnap: A computer vision system for auto-

matic plant species identification”. In: Computer Vision–ECCV 2012.

Springer, 2012, pp. 502–516.

[22] Keerthy Kusumam et al. “Can you pick a broccoli? 3D-vision based

detection and localisation of broccoli heads in the field”. In: Intelligent

Robots and Systems (IROS), 2016 IEEE/RSJ International Conference

on. IEEE. 2016, pp. 646–651.

[23] Yann LeCun et al. “Backpropagation applied to handwritten zip code

recognition”. In: Neural computation 1.4 (1989), pp. 541–551.

[24] Won Suk Lee, DC Slaughter, and DK Giles. “Robotic weed control

system for tomatoes”. In: Precision Agriculture 1.1 (1999), pp. 95–113.

[25] P Lottes et al. “An Effective Classification System for Separating Sugar

Beets and Weeds for Precision Farming Applications”. In: Proceedings

of the IEEE Int. Conf. on Robotics & Automation (ICRA). 2016.

[26] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data us-

ing t-SNE”. In: Journal of Machine Learning Research 9.Nov (2008),

pp. 2579–2605.

[27] GE Meyer et al. “Textural imaging and discriminant analysis for

distiguishing weeds for spot spraying”. In: Transactions of the ASAE

41.4 (1998), p. 1189.

[28] Tom M Mitchell et al. Machine learning. 1997.

[29] Michael Nielsen et al. “Detecting leaf features for automatic weed

control using trinocular stereo vision.” In: Proceedings of the 7th In-

ternational Conference on Precision Agriculture and Other Precision

Resources Management, Hyatt Regency, Minneapolis, MN, USA, 25-

28 July, 2004. Precision Agriculture Center, University of Minnesota,

Department of Soil, Water and Climate. 2004, pp. 1016–1031.

[30] Timo Ojala and Matti Pietikäinen. “Unsupervised texture segmenta-

tion using feature distributions”. In: Pattern Recognition 32.3 (1999),

pp. 477–486.

[31] Nobuyuki Otsu. “A threshold selection method from gray-level his-

tograms”. In: Automatica 11.285-296 (1975), pp. 23–27.

[32] John Platt Patrice Y. Simard Dave Steinkraus. “Best Practices for

Convolutional Neural Networks Applied to Visual Document Analysis”.

In: Institute of Electrical and Electronics Engineers, Inc., 2003. url:

https://www.microsoft.com/en-us/research/publication/best-

111

https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/
https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/

practices-for-convolutional-neural-networks-applied-to-

visual-document-analysis/.

[33] Alexis Piron, F van Der Heijden, and Marie-France Destain. “Weed

detection in 3D images”. In: Precision agriculture 12.5 (2011), pp. 607–

622.

[34] Alexis Piron et al. “Selection of the most efficient wavelength bands

for discriminating weeds from crop”. In: Computers and Electronics in

Agriculture 62.2 (2008), pp. 141–148.

[35] John Platt et al. “Probabilistic outputs for support vector machines

and comparisons to regularized likelihood methods”. In: Advances in

large margin classifiers 10.3 (1999), pp. 61–74.

[36] C. Potena, D. Nardi, and A. Pretto. “Fast and Accurate Crop and Weed

Identification with Summarized Train Sets for Precision Agriculture”.

In: Proc. of 14th International Conference on Intelligent Autonomous

Systems (IAS-14). 2016.

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convolu-

tional networks for biomedical image segmentation”. In: International

Conference on Medical Image Computing and Computer-Assisted In-

tervention. Springer. 2015, pp. 234–241.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convo-

lutional Networks for Biomedical Image Segmentation”. In: MICCAI.

2015.

[39] Bryan C Russell et al. “LabelMe: a database and web-based tool for

image annotation”. In: International journal of computer vision 77.1-3

(2008), pp. 157–173.

[40] AJ Sachez and John A Marchant. “Fusing 3D information for crop/weeds

classification”. In: Pattern Recognition, 2000. Proceedings. 15th Inter-

national Conference on. Vol. 4. IEEE. 2000, pp. 295–298.

[41] IM Scotford and PCH Miller. “Applications of spectral reflectance

techniques in northern European cereal production: a review”. In:

Biosystems engineering 90.3 (2005), pp. 235–250.

[42] Scott A Shearer and RG Holmes. “Plant identification using color

co-occurrence matrices”. In: Transactions of the ASAE 33.6 (1990),

pp. 1237–1244.

112

https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/
https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/
https://www.microsoft.com/en-us/research/publication/best-practices-for-convolutional-neural-networks-applied-to-visual-document-analysis/

[43] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep

Inside Convolutional Networks: Visualising Image Classification Models

and Saliency Maps”. In: CoRR abs/1312.6034 (2013). url: http:

//arxiv.org/abs/1312.6034.

[44] DC Slaughter, DK Giles, and D Downey. “Autonomous robotic weed

control systems: A review”. In: Computers and electronics in agriculture

61.1 (2008), pp. 63–78.

[45] Oskar Söderkvist. “Computer vision classification of leaves from swedish

trees”. In: (2001).

[46] Henning Tangen Søgaard. “Weed classification by active shape models”.

In: Biosystems engineering 91.3 (2005), pp. 271–281.

[47] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Con-

volutional Net”. In: CoRR abs/1412.6806 (2014). url: http://arxiv.

org/abs/1412.6806.

[48] Nitish Srivastava et al. “Dropout: a simple way to prevent neural

networks from overfitting.” In: Journal of Machine Learning Research

15.1 (2014), pp. 1929–1958.

[49] Christian Szegedy et al. “Going deeper with convolutions”. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 2015, pp. 1–9.

[50] Christian Szegedy et al. “Rethinking the Inception Architecture for

Computer Vision”. In: CoRR abs/1512.00567 (2015). url: http://

arxiv.org/abs/1512.00567.

[51] JF Thompson, JV Stafford, and PCH Miller. “Potential for automatic

weed detection and selective herbicide application”. In: Crop Protection

10.4 (1991), pp. 254–259.

[52] Francesco Visin et al. “ReNet: A Recurrent Neural Network Based

Alternative to Convolutional Networks”. In: CoRR abs/1505.00393

(2015). url: http://arxiv.org/abs/1505.00393.

[53] Francesco Visin et al. “ReSeg: A Recurrent Neural Network for Object

Segmentation”. In: CoRR abs/1511.07053 (2015). url: http://arxiv.

org/abs/1511.07053.

[54] Stephen Gang Wu et al. “A leaf recognition algorithm for plant classifi-

cation using probabilistic neural network”. In: 2007 IEEE international

symposium on signal processing and information technology. IEEE. 2007,

pp. 11–16.

113

http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1505.00393
http://arxiv.org/abs/1511.07053
http://arxiv.org/abs/1511.07053

[55] Jason Yosinski et al. “Understanding neural networks through deep

visualization”. In: arXiv preprint arXiv:1506.06579 (2015).

[56] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding

convolutional networks”. In: European conference on computer vision.

Springer. 2014, pp. 818–833.

114

Appendix A

Tuning of network’s

hyperparameters

In the following pages we report the results of the hyperparameter selection

stage for the neural networks. In all the following tables the word loss is

meant as loss - l2 loss so that it is possible to evaluate the true loss of the

network without caring for the weight decay term.

116 Appendix A. Tuning of network’s hyperparameters

A.1 Learning rate selection

We started by doing a single epoch

to select the learning rate:
Network Dataset LR Train loss Val loss

SWind

CWFID1

1e-8 3.272 3.506

1e-7 3.121 3.174

1e-6 2.041 1.278

1e-5 0.942 1.054

1e-4 0.682 0.978

1e-3 0.639 0.907

1e-2 3.792 1.210

CWFID2

1e-7 1.643 1.512

1e-6 1.006 0.875

1e-5 0.695 0.486

1e-4 0.583 0.390

1e-3 0.599 0.463

1e-2 2.459 1.007

1e-1 90.321 101.071

Broccoli

1e-7 1.686 1.597

1e-6 0.977 0.618

1e-5 0.479 0.361

1e-4 0.354 0.311

1e-3 0.379 0.381

1e-2 3.621 0.631

1e-1 60.153 0.623

UNet

CWFID1

1e-8 1.072 1.071

1e-7 1.072 1.071

1e-6 1.069 1.065

1e-5 1.012 0.999

1e-4 0.790 0.390

1e-3 0.684 0.345

1e-2 7.997 9.210

CWFID2

1e-7 1.114 1.106

1e-6 1.107 1.094

1e-5 0.905 0.687

1e-4 0.591 0.443

1e-3 0.451 0.413

1e-2 8.447 9.210

1e-1 nan nan

1e0 nan nan

Broccoli

1e-7 1.042 1.029

1e-6 0.932 0.852

1e-5 0.532 0.245

1e-4 0.292 0.112

1e-3 0.143 0.093

1e-2 0.931 0.931

1e-1 0.933 0.931

1e0 nan nan

BroccoliD

1e-8 0.422 0.417

1e-7 0.420 0.414

1e-6 0.401 0.372

1e-5 0.224 0.173

1e-4 0.129 0.041

1e-3 0.091 0.051

1e-2 0.915 0.931

1e-1 0.929 0.931

1e0 nan nan

U-ReNet CWFID1

1e-8 1.076 1.072

1e-7 1.075 1.071

1e-6 1.070 1.060

1e-5 0.991 0.823

1e-4 0.496 0.429

U-ReNet

CWFID1

1e-3 0.443 0.369

1e-2 8.506 9.231

1e-1 9.007 9.210

1e0 11.265 11.626

CWFID2

1e-7 1.096 1.097

1e-6 1.091 1.088

1e-5 0.984 0.954

1e-4 0.477 0.444

1e-3 0.387 0.372

1e-2 10.794 12.924

1e-1 11.357 12.935

1e0 9.164 9.210

Broccoli

1e-7 0.648 0.646

1e-6 0.630 0.601

1e-5 0.334 0.183

1e-4 0.147 0.081

1e-3 0.099 0.036

1e-2 0.850 0.931

1e-1 1.028 1.030

1e0 0.929 0.931

BroccoliD

1e-8 0.693 0.693

1e-7 0.692 0.690

1e-6 0.674 0.655

1e-5 0.372 0.187

1e-4 0.180 0.085

1e-3 0.114 0.042

1e-2 0.922 0.931

1e-1 17.264 17.490

1e0 0.931 0.931

U-ReNet2

CWFID1

1e-8 1.104 1.104

1e-7 1.104 1.104

1e-6 1.103 1.102

1e-5 1.089 1.048

1e-4 0.580 0.430

1e-3 0.482 0.347

1e-2 0.925 0.411

1e-1 10.817 11.626

CWFID2

1e-7 1.091 1.099

1e-6 1.085 1.094

1e-5 1.010 1.086

1e-4 0.591 0.471

1e-3 0.424 0.455

1e-2 8.754 9.210

1e-1 11.370 12.935

1e0 11.438 12.935

Broccoli

1e-7 0.665 0.663

1e-6 0.649 0.621

1e-5 0.304 0.148

1e-4 0.151 0.075

1e-3 0.101 0.038

1e-2 0.919 0.931

1e-1 17.267 17.490

1e0 0.931 0.931

BroccoliD

1e-8 0.688 0.686

1e-7 0.686 0.684

1e-6 0.674 0.657

1e-5 0.372 0.189

1e-4 0.180 0.092

1e-3 0.115 0.049

1e-2 15.368 17.490

1e-1 17.148 17.490

1e0 0.931 0.931

117

ReSeg

CWFID1

1e-8 1.055 1.061

1e-7 1.053 1.057

1e-6 1.035 1.022

1e-5 0.904 0.781

1e-4 0.549 0.430

1e-3 0.463 0.514

1e-2 0.601 0.392

1e-1 10.804 11.626

CWFID2

1e-7 1.135 1.135

1e-6 1.082 1.062

1e-5 0.803 0.698

1e-4 0.484 0.474

1e-3 0.412 0.328

1e-2 0.551 0.346

1e-1 11.281 12.935

1e0 nan nan

Broccoli

1e-7 0.771 0.753

1e-6 0.693 0.612

1e-5 0.380 0.211

1e-4 0.139 0.079

1e-3 0.071 0.041

1e-2 0.227 0.163

1e-1 nan nan

1e0 nan nan

BroccoliD

1e-8 1.393 1.385

1e-7 1.369 1.338

1e-6 1.154 0.940

1e-5 0.456 0.245

1e-4 0.220 0.139

1e-3 0.106 0.054

1e-2 0.088 0.039

1e-1 0.981 0.931

1e0 nan nan

ReConv

CWFID1

1e-8 1.615 1.559

1e-7 1.603 1.535

1e-6 1.492 1.325

1e-5 0.944 0.700

1e-4 0.648 0.478

1e-3 0.577 0.478

1e-2 1.220 0.984

1e-1 10.919 11.626

CWFID2

1e-8 1.131 1.069

1e-7 1.116 1.045

1e-6 1.005 0.923

1e-5 0.719 0.709

1e-4 0.532 0.468

1e-3 0.505 0.467

1e-2 1.166 1.554

1e-1 9.056 9.210

1e0 9.110 9.210

Broccoli

1e-7 1.373 1.335

1e-6 0.924 0.594

1e-5 0.323 0.197

1e-4 0.177 0.113

1e-3 0.102 0.074

1e-2 0.212 0.182

1e-1 0.953 0.931

1e0 0.938 0.931

BroccoliD

1e-8 1.297 1.328

1e-7 1.253 1.239

1e-6 0.914 0.659

1e-5 0.335 0.211

1e-4 0.187 0.123

1e-3 0.105 0.080

1e-2 0.179 0.102

1e-1 0.928 0.931

1e0 1.062 0.931

Basically the learning rate is 1e-

3 everywhere, except for a couple

of configurations. For the config-

urations having their best at 1e-4

(like the sliding window network)

we kept it, as a lower learning rate

does not prevent us from reaching

an optimum, even if at the expense

of a slower convergence. The config-

urations with an optimum in 1e-2

(like ReSeg) are more problematic

as a too high learning rate can dam-

age the learning process more easily.

We have kept the optimum values

everywhere, but, as we will se later,

when further exploring the hyperpa-

rameters we have decided to lower

the 1e-2 to 1e-3.

118 Appendix A. Tuning of network’s hyperparameters

A.2 l2 term selection

After having selected the learn-

ing rate, we reset the network to

perform a single epoch for the l2
term. The weight decay term is not

really useful to control overfitting,

but instead it is used as it helps to

avoid instability in the last training

epochs [53].
Network Dataset l2 Train loss Val loss

Deep1

CWFID1

1e-8 0.784 1.087

1e-7 0.675 1.273

1e-6 0.676 0.921

1e-5 0.689 0.899

1e-4 0.720 1.106

1e-3 0.726 1.086

1e-2 0.691 1.004

1e-1 0.727 0.954

1e0 0.799 0.890

CWFID2

1e-7 0.638 0.433

1e-6 0.643 0.426

1e-5 0.652 0.427

1e-4 0.784 0.557

1e-3 2.096 1.902

1e-2 14.781 14.027

1e-1 118.262 95.161

1e0 901.069 649.761

Broccoli

1e-7 0.357 0.314

1e-6 0.349 0.310

1e-5 0.366 0.335

1e-4 0.498 0.469

1e-3 1.805 1.756

1e-2 14.007 12.899

1e-1 99.520 67.554

1e0 731.302 479.974

Deep2

CWFID1

1e-8 0.482 0.328

1e-7 0.583 0.335

1e-6 0.683 0.333

1e-5 0.534 0.342

1e-4 0.618 0.356

1e-3 0.617 0.360

1e-2 0.604 0.347

1e-1 0.935 0.759

1e0 1.065 1.056

CWFID2

1e-7 0.403 0.387

1e-6 0.477 0.406

1e-5 0.528 0.406

1e-4 0.855 0.696

1e-3 3.301 2.465

1e-2 19.220 9.894

1e-1 116.132 26.605

1e0 946.900 151.710

Broccoli

1e-7 0.106 0.024

1e-6 0.112 0.025

1e-5 0.122 0.030

1e-4 0.123 0.030

1e-3 0.126 0.037

1e-2 0.130 0.047

Deep2

Broccoli
1e-1 0.127 0.033

1e0 0.131 0.035

BroccoliD

1e-8 0.102 0.043

1e-7 0.118 0.037

1e-6 0.112 0.057

1e-5 0.108 0.039

1e-4 0.132 0.110

1e-3 0.120 0.099

1e-2 0.116 0.034

1e-1 0.115 0.069

1e0 0.111 0.037

U-ReNet

CWFID1

1e-8 0.436 0.343

1e-7 0.486 0.335

1e-6 0.530 0.354

1e-5 0.496 0.350

1e-4 0.508 0.337

1e-3 0.499 0.341

1e-2 0.633 0.378

1e-1 1.014 0.985

1e0 1.063 1.052

CWFID2

1e-7 0.424 0.394

1e-6 0.497 0.385

1e-5 0.597 0.524

1e-4 1.255 0.931

1e-3 5.101 2.490

1e-2 28.719 6.325

1e-1 231.670 30.104

1e0 2148.754 219.669

Broccoli

1e-7 0.114 0.043

1e-6 0.123 0.042

1e-5 0.122 0.059

1e-4 0.133 0.042

1e-3 0.121 0.039

1e-2 0.144 0.057

1e-1 0.119 0.044

1e0 0.131 0.063

BroccoliD

1e-8 0.105 0.040

1e-7 0.137 0.085

1e-6 0.111 0.052

1e-5 0.108 0.045

1e-4 0.125 0.076

1e-3 0.118 0.070

1e-2 0.113 0.053

1e-1 0.100 0.043

1e0 0.117 0.071

U-ReNet2

CWFID1

1e-8 0.523 0.366

1e-7 0.663 0.350

1e-6 0.622 0.372

1e-5 0.650 0.357

1e-4 0.691 0.379

1e-3 0.664 0.357

1e-2 0.712 0.375

1e-1 0.990 0.936

1e0 1.070 1.062

CWFID2

1e-7 0.462 0.424

1e-6 0.499 0.432

1e-5 0.623 0.505

1e-4 1.242 0.903

1e-3 4.901 2.410

1e-2 27.675 5.835

1e-1 222.747 27.270

1e0 2079.762 209.561

119

U-ReNet2

Broccoli

1e-7 0.122 0.061

1e-6 0.146 0.059

1e-5 0.159 0.072

1e-4 0.152 0.045

1e-3 0.152 0.066

1e-2 0.158 0.062

1e-1 0.143 0.064

1e0 0.156 0.086

BroccoliD

1e-8 0.099 0.042

1e-7 0.111 0.055

1e-6 0.109 0.064

1e-5 0.124 0.069

1e-4 0.119 0.078

1e-3 0.117 0.074

1e-2 0.119 0.060

1e-1 0.114 0.069

1e0 0.113 0.093

ReSeg

CWFID1

1e-8 0.630 0.518

1e-7 0.563 0.659

1e-6 0.467 0.380

1e-5 0.502 0.406

1e-4 0.486 0.597

1e-3 0.532 0.505

1e-2 0.550 0.454

1e-1 0.868 0.982

CWFID2

1e-7 0.395 0.334

1e-6 0.407 0.344

1e-5 0.519 0.488

1e-4 1.308 1.077

1e-3 6.327 3.617

1e-2 33.796 7.206

1e-1 254.592 28.851

1e0 2384.357 227.877

Broccoli

1e-7 0.077 0.037

1e-6 0.073 0.044

1e-5 0.074 0.041

1e-4 0.072 0.037

1e-3 0.072 0.038

1e-2 0.074 0.040

1e-1 0.075 0.048

1e0 0.074 0.048

BroccoliD

1e-8 0.192 0.087

1e-7 0.109 0.044

1e-6 0.210 0.183

1e-5 0.206 0.191

1e-4 0.221 0.198

1e-3 0.207 0.198

1e-2 0.206 0.191

1e-1 0.214 0.194

1e0 0.210 0.186

ReConv

CWFID1

1e-8 0.527 0.409

1e-7 0.524 0.515

1e-6 0.509 0.438

1e-5 0.522 0.415

1e-4 0.550 0.414

1e-3 0.566 0.384

1e-2 0.577 0.480

1e-1 0.732 0.721

1e0 0.979 1.050

CWFID2

1e-8 0.515 0.431

1e-7 0.528 0.505

1e-6 0.576 0.534

1e-5 0.752 0.709

1e-4 2.574 2.307

1e-3 12.810 7.786

1e-2 46.822 8.059

1e-1 230.377 4.685

ReConv

CWFID2 1e0 2047.240 19.388

Broccoli

1e-7 0.084 0.081

1e-6 0.084 0.071

1e-5 0.091 0.071

1e-4 0.084 0.070

1e-3 0.088 0.067

1e-2 0.083 0.080

1e-1 0.084 0.072

1e0 0.082 0.070

BroccoliD

1e-8 0.085 0.072

1e-7 0.084 0.070

1e-6 0.081 0.065

1e-5 0.084 0.064

1e-4 0.081 0.075

1e-3 0.081 0.064

1e-2 0.089 0.065

1e-1 0.088 0.072

As visible, the weight decay term

does not have a great influence on

the overfitting and lower values are

generally better.

120 Appendix A. Tuning of network’s hyperparameters

A.3 Coarse hyperparameter tuning

Using the selected values for the learning rate and the l2 term, we have

performed 3 epochs of training choosing all the hyperparameters at random on

a broad scale. Since the sliding window network has a set of hyperparameters

different from the other networks, we report it separately.
Dataset GS OD D1D D2D EL S EL A AR Train loss Val loss

CWFID1

0.69 0.86 0.30 0.19 35.01 31.84 0.08 0.851 7.940

0.35 0.81 0.35 0.48 99.35 55.65 0.12 0.841 34.890

0.08 0.88 0.36 0.38 63.75 81.10 0.04 0.814 1.032

0.30 0.93 0.27 0.25 7.54 41.82 0.69 0.919 0.963

0.60 0.64 0.54 0.36 3.95 47.49 0.48 0.847 16.613

0.65 0.28 0.51 0.29 20.77 81.45 0.61 0.852 16.329

0.71 0.61 0.48 0.14 10.21 46.58 0.10 0.810 4.747

0.75 0.46 0.10 0.79 99.64 52.14 0.21 0.847 137.385

0.24 0.58 0.13 0.42 36.60 94.12 0.82 0.901 0.974

0.83 0.31 0.81 0.38 45.07 64.70 0.00 0.824 18.374

0.42 0.20 0.50 0.73 18.47 56.52 0.21 0.845 58.103

0.95 0.73 0.52 0.02 19.75 5.80 0.95 0.895 24.401

0.46 0.61 0.55 0.53 78.49 20.61 0.14 0.845 34.013

0.24 0.89 0.03 0.39 61.78 64.19 0.06 0.845 16.106

0.41 0.13 0.46 0.42 51.73 10.71 0.51 0.847 14.929

0.32 0.07 0.13 0.23 18.31 57.41 0.72 0.850 0.942

0.67 0.65 0.34 0.88 90.73 55.82 0.59 0.851 117.816

0.39 0.05 0.08 0.07 25.84 42.53 0.11 0.702 3.132

0.51 0.57 0.18 0.46 73.33 8.59 0.82 0.883 2.477

0.11 0.86 0.05 0.96 10.49 81.28 0.03 0.860 105.262

CWFID2

0.24 0.37 0.24 0.74 5.75 81.88 0.90 1.066 2.309

0.59 0.32 0.57 0.42 11.60 27.74 0.13 1.020 3.404

0.43 0.75 0.53 0.82 20.20 83.52 0.06 1.145 3.962

0.60 0.65 0.20 0.78 66.07 98.74 0.91 1.130 2.735

0.38 0.27 0.76 0.44 60.25 93.23 0.85 1.174 2.350

0.13 0.06 0.58 0.66 50.74 93.56 0.34 1.046 1.495

0.26 0.44 0.19 0.55 4.18 18.28 0.23 0.988 3.861

0.68 0.07 0.87 0.92 51.83 55.68 0.49 1.274 4.475

0.69 0.70 0.90 0.97 86.74 20.84 0.00 2.102 3.359

0.15 0.58 0.83 0.48 98.92 55.36 0.34 2.379 2.482

0.51 0.22 0.82 0.79 98.61 45.56 0.98 2.370 2.624

0.98 0.86 0.20 0.68 80.88 0.39 0.35 1.224 4.375

0.64 0.59 0.76 0.53 58.98 81.65 0.15 1.592 5.547

0.27 0.52 0.13 0.19 29.44 49.92 0.09 1.008 4.778

0.86 0.12 0.20 0.57 94.02 22.67 0.86 1.067 3.006

0.14 0.65 0.59 0.35 59.34 29.64 0.05 1.117 2.860

0.38 0.16 0.98 0.05 91.69 10.87 0.27 2.096 3.687

0.57 0.35 0.49 0.36 9.48 85.94 0.63 1.133 2.618

0.10 0.87 0.55 0.14 14.59 15.92 0.49 1.237 1.111

0.12 0.00 0.87 0.05 97.56 3.44 0.59 1.294 1.093

Broccoli

0.08 0.16 0.77 0.04 30.17 71.05 0.52 0.803 0.811

0.16 0.04 0.49 0.35 76.90 21.28 0.64 0.788 1.682

0.81 0.42 0.20 0.08 58.45 31.43 0.79 0.782 3.874

0.84 0.36 0.34 0.43 0.81 78.76 0.37 0.781 7.616

0.22 0.27 0.04 0.42 97.45 68.57 0.86 0.774 3.616

0.19 0.69 0.42 0.28 67.77 8.96 0.74 0.819 1.564

0.63 0.20 0.67 0.27 53.18 16.90 0.05 0.670 6.547

0.23 0.28 0.79 0.46 19.09 22.75 0.84 0.872 1.856

0.72 0.89 0.75 0.65 24.16 78.38 0.82 0.834 4.683

0.43 0.80 0.53 0.85 51.07 23.86 0.19 0.825 6.617

0.56 0.79 0.18 0.79 84.20 45.25 0.43 0.814 6.462

0.73 0.24 0.42 0.04 29.88 31.87 0.88 0.794 5.151

0.10 0.54 0.66 0.15 29.69 95.14 0.03 0.616 1.226

0.02 0.38 0.36 0.04 24.06 68.45 0.06 0.507 0.501

0.15 0.05 0.67 0.31 87.92 3.46 0.17 0.732 4.942

0.28 0.69 0.21 0.09 65.56 42.17 0.82 0.792 4.264

A.3. Coarse hyperparameter tuning 121

Broccoli

0.27 0.87 0.51 0.61 99.84 28.37 0.69 0.825 5.948

0.61 0.37 0.42 0.80 56.58 76.07 0.21 0.802 5.297

0.39 0.82 0.20 0.16 25.14 68.68 0.40 0.797 7.553

0.71 0.79 0.41 0.70 62.35 47.59 0.45 0.812 6.053

All the other networks are on the following table:
Network Dataset GS OD EL S EL A AR SR Train loss Val loss

UNet

CWFID1

0.61 0.36 48.57 97.36 0.44 55 0.886 0.795

0.34 0.83 81.24 91.51 0.45 16 0.900 0.850

0.63 0.29 89.79 52.25 0.03 44 0.321 0.324

0.04 0.43 13.44 59.07 0.86 64 0.962 0.986

0.31 0.44 5.12 50.57 0.65 15 0.935 0.932

0.49 0.79 92.85 47.20 0.55 21 0.938 0.987

0.82 0.19 60.56 79.30 0.82 87 0.958 0.940

0.65 0.61 82.04 27.72 0.56 28 0.938 0.887

0.81 0.47 85.53 50.77 0.55 26 0.957 0.953

0.77 0.75 10.82 53.10 0.70 5 0.939 0.948

0.89 0.03 62.75 48.64 0.02 6 0.318 0.313

0.70 0.00 94.43 24.09 0.70 13 0.948 0.945

0.14 0.10 32.49 3.75 0.08 40 0.418 0.361

0.20 0.69 85.00 98.95 0.13 21 0.625 0.359

0.38 0.08 88.24 87.87 0.02 35 0.323 0.325

0.88 0.35 0.61 81.98 0.48 62 0.798 1.010

0.75 0.26 77.06 82.04 0.71 58 0.952 0.924

0.51 0.55 43.20 49.61 0.41 22 0.900 0.935

0.26 0.18 71.54 91.21 0.25 47 0.814 0.768

0.70 0.14 92.08 9.91 0.97 48 0.980 1.012

CWFID2

0.82 0.65 55.21 80.36 0.71 37 0.972 1.031

0.40 0.31 27.43 13.50 0.20 32 0.470 0.463

0.60 0.19 53.28 40.90 0.21 53 0.617 0.505

0.38 0.19 74.63 24.43 0.82 18 0.991 1.074

0.15 0.66 13.81 15.64 0.43 38 0.883 0.748

0.06 0.01 59.98 53.01 0.01 75 0.346 0.364

0.08 0.82 25.44 97.80 0.69 64 0.969 1.026

0.22 0.79 85.52 25.42 0.51 28 0.914 1.007

0.25 0.31 81.36 93.05 0.54 17 0.940 0.893

0.64 0.88 94.69 48.41 0.77 63 0.985 1.025

0.24 0.16 81.89 25.18 0.43 17 0.922 0.886

0.58 0.38 87.93 17.94 0.75 26 0.987 1.038

0.96 0.27 7.12 44.25 0.45 41 0.914 0.977

0.46 0.98 81.37 70.52 0.26 82 0.676 0.551

0.93 0.41 7.22 61.46 0.11 60 0.407 0.478

0.92 0.16 97.66 54.72 0.22 83 0.708 0.616

0.16 0.23 21.32 34.90 0.78 44 0.973 1.066

0.84 0.48 64.21 57.63 0.63 70 0.942 1.002

0.19 0.42 77.18 41.75 0.50 19 0.929 1.024

0.75 0.23 61.41 34.05 0.92 89 0.996 1.061

Broccoli

0.64 0.85 65.78 20.79 0.51 6 0.048 0.051

0.30 0.65 10.21 41.01 0.12 81 0.052 0.040

0.06 0.52 28.27 63.74 0.39 98 0.082 0.061

0.17 0.87 51.73 83.96 0.76 51 0.109 0.092

0.09 0.41 13.82 36.76 0.45 42 0.090 0.064

0.65 0.28 15.15 78.35 0.59 13 0.123 0.067

0.39 0.38 76.35 4.41 0.64 34 0.089 0.049

0.47 0.46 47.69 71.15 0.58 43 0.096 0.057

0.36 0.29 35.53 21.28 0.26 41 0.072 0.102

0.83 0.23 75.52 70.77 0.26 27 0.082 0.067

0.29 0.19 28.85 23.20 0.84 78 0.139 0.103

0.03 0.67 45.33 40.84 0.90 51 0.128 0.075

0.46 0.33 96.37 84.06 0.17 17 0.068 0.051

0.56 0.35 68.22 30.21 0.12 69 0.063 0.060

0.69 0.33 39.24 25.83 0.68 38 0.122 0.133

0.42 0.74 78.00 11.09 0.52 92 0.110 0.090

0.86 0.07 26.32 72.59 0.21 96 0.094 0.105

0.60 0.13 49.31 88.81 0.07 27 0.065 0.043

0.53 0.80 23.47 39.24 0.70 22 0.111 0.055

0.69 0.54 14.99 34.89 0.04 27 0.051 0.031

122 Appendix A. Tuning of network’s hyperparameters

UNet BroccoliD

0.81 0.01 4.19 48.69 0.15 68 0.062 0.042

0.62 0.44 82.75 70.39 0.52 18 0.061 0.052

0.74 0.55 38.96 53.23 0.66 2 0.071 0.066

0.13 0.98 56.70 27.60 0.76 39 0.150 0.141

0.07 0.21 73.11 67.63 0.24 50 0.119 0.103

0.49 0.88 85.60 48.79 0.31 89 0.122 0.104

0.70 0.08 93.34 17.03 0.61 18 0.120 0.126

0.08 0.16 84.08 54.84 0.35 72 0.129 0.139

0.35 0.17 92.73 52.92 0.33 19 0.075 0.074

0.24 0.92 7.03 91.88 0.93 64 0.148 0.132

0.64 0.62 4.23 69.72 0.61 56 0.154 0.139

0.73 0.89 93.24 50.54 0.56 94 0.136 0.162

0.95 0.51 52.20 43.15 0.75 59 0.151 0.148

0.73 0.86 45.14 98.61 0.61 93 0.143 0.152

0.87 0.57 12.80 95.70 0.02 86 0.064 0.045

0.91 0.71 32.22 4.03 0.78 78 0.133 0.208

0.06 0.15 50.67 30.70 0.39 10 0.083 0.085

0.69 0.83 96.81 46.33 0.53 43 0.137 0.160

0.10 0.37 12.97 43.12 0.60 46 0.129 0.131

0.36 0.51 97.23 9.55 0.55 90 0.148 0.144

U-ReNet

CWFID1

0.37 0.24 56.57 89.86 0.85 22 0.962 0.981

0.28 0.62 79.69 21.44 0.54 9 0.947 0.935

0.33 0.07 81.30 57.90 0.92 12 0.967 0.961

0.39 0.77 67.09 87.02 0.37 88 0.895 0.826

0.80 0.69 43.41 79.56 0.71 36 0.940 0.963

0.13 0.90 41.16 17.93 0.56 50 0.939 0.909

0.20 0.59 41.47 21.81 0.28 46 0.764 0.496

0.61 0.18 74.88 12.85 0.92 97 0.970 1.003

0.47 0.15 37.77 93.54 0.83 34 0.965 0.960

0.55 0.02 28.03 14.94 0.45 71 0.899 0.879

0.92 0.68 34.32 51.53 0.75 79 0.933 0.997

0.94 0.32 52.75 48.55 0.30 33 0.821 0.708

0.57 0.24 43.05 71.38 0.16 4 0.648 0.435

0.75 0.34 90.48 50.18 0.50 14 0.917 0.925

0.21 0.86 71.78 64.77 0.42 86 0.925 0.821

0.75 0.57 0.48 3.55 0.05 52 0.395 0.352

0.54 0.22 17.59 30.56 0.11 60 0.431 0.370

0.79 0.43 94.76 79.91 0.33 68 0.873 0.800

0.75 0.40 8.17 15.40 0.55 86 0.930 0.935

0.19 0.60 16.05 79.20 0.43 26 0.917 0.943

CWFID2

0.38 0.92 74.71 9.25 0.31 17 0.870 0.868

0.57 0.23 30.09 45.56 0.63 77 0.966 1.049

0.53 0.33 60.24 21.81 0.89 36 0.996 1.063

0.56 0.93 11.23 17.39 0.57 19 0.972 1.024

0.95 0.79 43.77 24.58 0.26 98 0.874 0.801

0.86 0.63 79.68 99.19 0.59 88 0.955 1.040

0.04 0.17 7.18 10.01 0.80 68 0.969 1.012

0.41 0.23 72.27 14.49 0.39 74 0.943 0.921

0.75 0.92 41.71 83.91 0.04 54 0.572 0.470

0.56 0.14 87.84 12.28 0.58 74 0.978 1.008

0.91 0.43 2.73 98.88 0.21 72 0.920 0.640

0.52 0.84 91.75 42.38 0.51 74 0.985 1.006

0.08 0.85 4.27 0.85 0.51 39 0.964 1.022

0.71 0.52 46.23 1.74 0.53 26 0.964 0.974

0.30 0.20 40.59 15.64 0.95 4 0.977 1.064

0.26 0.79 3.00 31.33 0.93 98 0.979 1.048

0.11 0.93 38.42 19.75 0.37 53 0.936 0.975

0.69 0.27 60.23 76.11 0.29 79 0.928 0.898

0.18 0.30 44.34 36.60 0.39 33 0.967 1.000

0.92 0.91 20.08 9.84 0.83 29 0.984 1.400

Broccoli

0.80 0.76 46.74 26.34 0.19 55 0.053 0.065

0.10 0.35 53.30 33.30 0.37 18 0.080 0.081

0.73 0.33 76.35 28.54 0.06 90 0.067 0.086

0.05 0.58 47.57 45.47 0.40 91 0.100 0.091

0.50 0.46 44.62 13.10 0.56 90 0.143 0.120

0.56 0.21 42.96 47.69 0.04 89 0.061 0.042

0.25 0.09 12.64 3.67 0.77 5 0.134 0.163

A.3. Coarse hyperparameter tuning 123

U-ReNet

Broccoli

0.46 0.58 87.34 41.56 0.89 32 0.150 0.129

0.02 0.77 53.63 68.06 0.87 20 0.162 0.151

0.27 0.48 42.49 49.08 0.88 49 0.149 0.126

0.33 0.10 90.35 76.70 0.04 56 0.049 0.044

0.47 0.31 2.83 41.03 0.11 34 0.068 0.057

0.76 0.12 35.00 63.71 0.28 21 0.066 0.081

0.51 0.53 51.64 24.99 0.55 50 0.118 0.138

0.72 0.52 26.71 55.75 0.68 70 0.147 0.140

0.72 0.31 21.72 89.86 0.47 35 0.106 0.103

0.53 0.29 53.91 22.84 0.51 12 0.091 0.078

0.65 0.18 12.20 88.17 0.51 60 0.113 0.117

0.23 0.55 11.52 77.36 0.41 65 0.091 0.160

0.65 0.17 56.48 48.39 0.83 51 0.151 0.127

BroccoliD

0.68 0.61 58.15 10.50 0.79 10 0.068 0.077

0.20 0.05 63.95 45.50 0.63 91 0.098 0.084

0.17 0.22 41.77 73.00 0.96 85 0.152 0.172

0.91 0.39 53.36 92.88 0.96 31 0.149 0.143

0.77 0.50 39.27 51.33 0.49 24 0.079 0.089

0.41 0.76 65.97 64.62 0.78 65 0.156 0.153

0.63 0.35 35.62 81.66 0.86 25 0.156 0.139

0.68 0.88 77.15 17.97 0.44 73 0.088 0.108

0.06 0.50 84.66 2.17 0.38 81 0.123 0.132

0.65 0.01 50.00 47.44 0.40 38 0.094 0.073

0.63 0.20 66.88 31.61 0.44 91 0.097 0.090

0.25 0.60 72.59 3.86 0.57 87 0.112 0.089

0.99 0.95 38.27 86.44 0.62 93 0.146 0.133

0.83 0.38 34.64 33.82 0.44 73 0.099 0.081

0.83 0.79 50.85 55.84 0.16 35 0.071 0.077

0.29 0.38 10.65 99.77 0.33 21 0.119 0.100

U-ReNet2

CWFID1

0.50 0.69 77.03 62.85 0.65 90 0.969 0.980

0.24 0.98 84.49 8.52 0.44 81 0.912 0.866

0.03 0.91 4.58 82.85 0.46 17 0.911 0.842

0.51 0.54 66.78 0.43 0.99 49 0.990 1.007

0.66 0.06 42.48 48.84 0.55 46 0.952 0.923

0.67 0.01 97.42 12.72 0.08 21 0.524 0.387

0.00 0.35 7.09 80.23 0.38 26 0.859 0.809

0.82 0.18 67.78 89.82 0.36 25 0.854 0.615

0.04 0.53 38.01 51.88 0.72 11 0.953 0.932

0.69 0.66 40.65 98.03 0.53 32 0.929 0.945

0.32 0.18 54.61 24.82 0.91 37 0.991 0.989

0.30 0.25 41.07 40.23 0.40 88 0.877 0.751

0.12 0.30 61.88 13.64 0.56 25 0.940 0.857

0.28 0.40 84.79 95.09 0.97 84 0.963 0.971

0.70 0.24 1.78 65.94 0.96 69 0.963 1.033

0.56 0.79 65.78 24.85 0.39 70 0.937 0.819

0.92 0.63 53.62 42.86 0.46 90 0.923 0.882

0.38 0.38 29.59 75.47 0.02 84 0.350 0.345

0.35 0.76 75.34 9.37 0.68 62 0.956 0.963

0.65 0.13 21.07 86.99 0.89 0 0.960 0.973

CWFID2

0.31 0.75 77.39 37.35 0.05 43 0.802 0.811

0.74 0.18 55.11 62.49 0.74 17 1.389 1.511

0.78 0.36 54.48 24.23 0.37 86 1.340 1.334

0.01 0.04 3.32 71.61 0.70 78 1.404 1.438

0.31 0.74 58.06 12.54 0.93 68 1.430 1.485

0.61 0.83 14.96 50.77 0.69 18 1.399 1.429

0.45 0.73 78.65 88.81 0.71 90 1.388 1.391

0.50 0.05 58.47 6.13 0.16 31 1.060 1.022

0.90 0.57 92.63 74.55 0.17 58 1.167 1.028

0.71 0.00 53.16 53.07 0.27 0 1.313 1.133

0.77 0.20 50.87 52.32 0.92 1 1.489 1.565

0.13 0.32 97.66 14.25 0.90 67 1.470 1.489

0.76 0.70 85.89 29.15 0.03 1 0.855 0.878

0.70 0.04 99.71 62.52 0.04 32 0.856 0.891

0.46 0.74 73.14 37.80 0.25 7 1.211 1.150

0.46 0.06 12.77 47.56 0.96 13 1.446 1.510

0.51 0.97 44.80 41.69 0.91 36 1.436 1.476

0.57 0.05 50.20 85.36 0.66 38 1.398 1.418

124 Appendix A. Tuning of network’s hyperparameters

U-ReNet2

CWFID2
0.75 0.92 97.61 35.07 0.26 30 1.236 1.030

0.63 0.39 48.69 18.15 0.93 89 1.428 1.464

Broccoli

0.73 0.35 58.02 63.38 0.68 39 0.070 0.100

0.79 0.22 16.07 17.61 0.24 60 0.077 0.079

0.32 0.48 74.47 37.81 0.13 70 0.066 0.053

0.37 0.01 57.26 95.67 0.01 63 0.041 0.040

0.34 0.86 22.75 47.64 0.78 88 0.150 0.127

0.28 0.06 37.96 99.35 0.70 3 0.094 0.099

0.10 0.78 22.97 63.88 0.25 47 0.070 0.084

0.23 0.29 80.30 62.34 0.47 18 0.076 0.088

0.20 0.17 48.18 13.93 0.68 73 0.119 0.118

0.23 0.16 82.43 89.11 0.84 11 0.148 0.136

0.47 0.59 88.61 87.36 0.17 56 0.064 0.061

0.83 0.46 93.68 72.91 0.49 30 0.087 0.089

0.51 0.06 85.90 66.43 0.22 93 0.084 0.072

0.67 0.27 25.87 95.07 0.01 63 0.040 0.053

0.62 0.63 49.06 29.85 0.54 68 0.097 0.103

0.70 0.07 29.10 16.86 0.18 41 0.061 0.059

0.59 0.80 55.85 85.32 0.85 32 0.152 0.253

0.45 0.84 34.88 30.13 0.52 76 0.111 0.110

0.69 0.49 0.88 34.02 0.82 95 0.165 0.156

0.75 0.78 37.37 24.24 0.51 89 0.086 0.086

BroccoliD

0.23 0.74 88.93 61.38 0.49 41 0.055 0.061

0.88 0.99 15.71 38.66 0.72 79 0.149 0.152

0.13 0.05 16.32 6.29 0.45 28 0.084 0.076

0.05 0.50 29.17 93.90 0.98 72 0.163 0.156

0.76 0.86 56.36 53.25 0.60 72 0.136 0.137

0.16 0.84 20.36 22.25 0.56 83 0.133 0.111

0.19 0.40 17.91 99.25 0.29 76 0.072 0.067

0.75 0.49 60.29 49.78 0.90 91 0.164 0.164

0.59 0.28 41.14 69.27 0.52 91 0.135 0.159

0.09 0.14 36.61 42.47 0.15 26 0.053 0.056

0.92 0.18 74.49 51.53 0.84 86 0.171 0.161

0.68 0.70 65.81 83.26 0.74 1 0.129 0.083

0.48 0.60 80.30 77.27 0.64 14 0.118 0.113

0.73 0.41 49.84 24.79 0.80 54 0.161 0.164

0.27 0.37 77.27 0.80 0.30 2 0.069 0.080

0.78 0.39 81.90 9.76 0.74 8 0.128 0.121

0.21 0.94 89.30 29.41 0.63 86 0.136 0.108

0.14 0.82 85.33 77.70 0.01 90 0.043 0.043

0.74 0.18 0.40 13.97 0.63 85 0.185 0.161

0.51 0.59 3.45 83.05 0.51 61 0.159 0.159

ReSeg

CWFID1

0.61 0.57 81.59 43.81 0.94 3 1.017 0.950

0.59 0.64 73.52 1.99 0.68 26 0.993 1.010

0.25 0.82 44.81 59.02 0.57 64 1.143 1.327

0.20 0.90 97.69 51.49 0.70 95 1.067 1.248

0.09 0.48 86.80 85.84 0.61 38 1.105 0.975

0.29 0.88 89.92 11.93 0.16 60 0.996 1.016

0.89 0.03 75.55 80.00 0.59 86 1.148 1.113

0.90 0.35 61.04 70.08 0.16 55 0.986 1.044

0.75 0.54 90.50 20.71 0.04 87 0.421 0.403

0.28 0.94 76.16 48.01 0.29 91 1.112 1.235

0.45 0.15 69.39 31.39 0.44 52 1.016 1.033

0.89 0.03 96.48 19.12 0.10 89 0.449 0.436

0.27 0.60 29.59 77.10 0.93 87 0.985 1.112

0.29 0.66 53.26 60.30 0.75 74 1.053 1.057

0.64 0.28 8.18 75.54 0.41 60 1.075 1.132

0.20 0.28 40.06 80.47 0.05 76 1.036 1.083

0.21 0.77 35.57 98.28 0.23 20 0.962 1.098

0.44 0.47 13.08 27.14 0.93 12 1.061 1.754

0.86 0.10 43.41 90.49 0.77 49 1.102 0.961

0.66 0.20 45.55 51.45 0.55 5 0.974 0.951

CWFID2

0.52 0.26 72.95 50.54 0.22 14 1.174 1.111

0.91 0.65 77.50 42.04 0.82 11 1.798 1.693

0.05 0.02 41.38 94.20 0.93 63 1.826 1.775

0.02 0.58 11.49 76.23 0.74 98 1.660 1.581

0.68 0.60 42.44 78.99 0.75 98 1.669 1.491

A.3. Coarse hyperparameter tuning 125

ReSeg

CWFID2

0.09 0.51 64.23 71.37 0.20 95 1.331 1.276

0.20 0.48 63.56 15.15 0.04 84 1.183 1.110

0.26 0.19 49.06 70.41 0.59 20 1.637 1.661

0.72 0.40 85.85 16.08 0.10 58 1.212 1.174

0.22 0.06 31.86 0.06 0.09 13 1.171 1.092

0.44 0.68 29.51 14.80 0.56 61 1.591 1.399

0.79 0.94 9.28 50.63 0.73 73 1.770 1.758

0.47 0.88 33.22 47.17 0.32 86 1.360 1.328

0.76 0.51 7.66 90.74 0.35 7 1.342 1.289

0.74 0.36 45.69 92.72 0.65 16 1.611 1.522

0.67 0.28 91.07 70.21 0.83 19 1.753 1.718

0.95 0.26 20.40 76.16 0.65 48 1.589 1.558

0.70 0.76 25.82 21.07 0.11 17 1.247 1.174

0.56 0.89 2.93 12.69 0.41 23 1.473 1.371

0.10 0.56 12.97 74.16 0.75 81 1.734 1.728

Broccoli

0.60 0.45 23.96 65.82 0.55 96 0.122 0.121

0.61 0.53 95.57 0.30 0.59 83 0.121 0.129

0.31 0.82 69.89 87.74 0.08 11 0.065 0.048

0.69 0.73 53.53 88.86 0.01 80 0.058 0.040

0.69 0.74 30.67 33.29 0.09 19 0.063 0.054

0.14 0.48 49.09 48.53 0.31 54 0.082 0.077

0.05 0.42 66.36 20.00 0.11 68 0.069 0.054

0.61 0.02 1.24 39.77 0.07 87 0.117 0.068

0.41 0.33 4.68 34.86 0.88 98 0.169 0.148

0.83 0.34 19.04 81.62 0.76 29 0.173 0.180

0.90 0.77 69.79 82.91 0.76 72 0.150 0.134

0.18 0.52 16.41 70.13 0.46 35 0.116 0.096

0.54 0.69 20.75 43.85 0.14 77 0.078 0.067

0.40 0.34 30.77 63.63 0.06 33 0.066 0.052

0.17 0.24 62.35 89.40 0.59 16 0.149 0.118

0.61 0.33 66.74 31.01 0.08 69 0.071 0.052

0.57 0.33 25.19 67.41 0.64 22 0.122 0.124

0.33 0.32 85.56 59.34 0.56 53 0.136 0.108

0.20 0.85 25.89 25.21 0.50 95 0.119 0.103

0.02 0.59 62.39 88.81 0.28 81 0.084 0.076

BroccoliD LR=1e-2

0.21 0.75 98.49 40.48 0.42 9 0.205 0.195

0.23 0.10 76.88 63.69 0.55 96 0.212 0.197

0.91 0.27 31.30 18.81 0.45 95 0.212 0.199

0.13 0.96 81.94 47.56 0.51 97 0.231 0.197

0.65 0.96 54.45 18.69 0.03 53 0.210 0.193

0.91 0.65 52.29 31.69 0.06 54 0.210 0.200

0.09 0.50 61.90 1.98 0.72 55 0.213 0.202

0.32 0.85 85.52 74.21 0.06 46 0.128 0.183

0.65 0.02 40.55 91.54 0.24 70 0.211 0.194

0.85 0.20 47.85 78.88 0.27 59 0.212 0.194

0.03 0.16 54.22 70.56 0.79 80 0.214 0.200

0.56 0.24 56.97 20.03 0.83 90 0.213 0.204

0.91 0.32 85.34 69.15 0.93 61 0.212 0.200

0.20 0.09 29.59 30.01 0.69 9 0.208 0.208

0.86 0.26 60.53 18.95 0.95 64 0.210 0.197

0.91 0.63 35.57 76.79 0.15 84 0.145 0.134

0.83 0.86 91.27 67.07 0.76 55 0.214 0.205

0.86 0.38 1.53 90.51 0.53 43 0.276 0.208

0.30 0.11 9.93 93.70 0.38 73 0.218 0.205

0.08 0.94 53.46 27.21 0.55 1 0.207 0.187

BroccoliD LR=1e-3

0.41 0.35 26.96 82.69 0.95 65 0.142 0.183

0.67 0.45 2.35 81.29 0.50 11 0.125 0.099

0.02 0.15 95.98 82.86 0.15 49 0.065 0.053

0.74 0.38 99.41 88.64 0.83 23 0.106 0.080

0.79 0.42 22.36 40.16 0.17 67 0.070 0.053

0.73 0.00 50.67 81.61 0.43 52 0.086 0.070

0.62 0.37 48.93 8.55 0.02 77 0.059 0.045

0.76 0.84 8.59 18.07 0.80 1 0.135 0.108

0.33 0.25 85.51 40.95 0.54 83 0.091 0.079

0.59 0.69 0.78 57.82 0.35 5 0.200 0.152

0.82 0.16 9.44 34.76 0.53 83 0.096 0.115

0.52 0.29 34.39 93.01 0.44 92 0.092 0.086

126 Appendix A. Tuning of network’s hyperparameters

ReSeg BroccoliD LR=1e-3

0.67 0.33 16.70 86.71 0.33 65 0.086 0.140

0.55 0.86 66.23 81.30 0.53 70 0.097 0.082

0.35 0.28 66.60 23.21 0.04 74 0.063 0.056

0.50 0.82 40.53 38.24 0.55 53 0.098 0.081

0.70 0.89 27.54 38.03 0.97 13 0.187 0.157

0.72 0.91 22.14 54.49 0.47 21 0.086 0.079

0.79 0.34 7.29 24.66 0.38 20 0.081 0.076

0.55 0.77 89.45 84.20 0.46 31 0.087 0.074

ReConv

CWFID1

0.34 0.96 44.37 75.21 0.54 83 0.847 0.794

0.74 0.19 96.00 33.47 0.32 69 0.704 0.475

0.78 0.71 9.66 93.70 0.59 64 0.878 0.732

0.52 0.08 12.50 19.86 0.93 84 0.921 0.961

0.33 0.29 86.58 79.17 0.09 51 0.466 0.409

0.33 0.05 80.11 33.68 0.93 74 0.935 0.895

0.16 0.22 39.20 54.01 0.13 54 0.494 0.406

0.99 0.10 3.29 65.50 0.90 32 0.903 0.919

0.66 0.71 19.20 29.85 0.71 36 0.921 0.734

0.50 0.11 68.38 49.50 0.56 16 0.867 0.668

0.67 0.68 53.74 68.84 0.64 41 0.897 0.750

0.30 0.42 4.83 70.48 0.42 28 0.896 0.778

0.15 0.30 26.56 39.52 0.56 99 0.908 0.576

0.14 0.17 25.63 8.58 0.79 35 0.938 0.936

0.49 0.63 89.15 2.71 0.09 45 0.471 0.422

0.51 0.11 66.80 9.23 0.08 66 0.448 0.443

0.93 0.50 99.22 34.40 0.84 79 0.939 0.829

0.63 0.86 6.77 36.01 0.22 46 0.503 0.429

0.64 0.05 10.72 16.37 0.99 86 0.932 0.936

0.86 0.50 23.18 51.45 0.00 4 0.384 0.428

CWFID2

0.73 0.89 75.46 88.85 0.08 45 0.418 0.437

0.48 0.30 43.23 89.37 0.07 26 0.415 0.554

0.66 0.40 34.67 22.31 0.15 59 0.454 0.474

0.64 0.93 53.32 0.07 0.39 46 0.930 0.949

0.11 0.69 6.29 32.79 0.81 32 0.919 1.070

0.19 0.00 85.11 32.41 0.88 12 0.951 0.975

0.85 0.30 32.38 61.00 0.14 80 0.457 0.477

0.81 0.53 10.43 7.13 0.45 54 0.934 0.973

0.77 0.14 0.44 5.93 0.48 93 0.934 1.021

0.58 0.71 17.85 55.09 0.73 27 0.924 1.002

0.27 0.33 79.93 58.12 0.20 67 0.494 0.545

0.25 0.86 23.13 95.34 0.60 76 0.938 0.982

0.95 0.38 5.41 66.28 0.98 8 0.926 0.966

0.58 0.52 64.17 9.90 0.62 24 0.942 0.960

0.36 0.49 71.47 71.99 0.20 74 0.486 0.543

0.20 0.38 63.56 70.36 0.83 46 0.928 0.993

0.38 0.47 35.32 27.27 0.24 31 0.458 0.453

0.15 0.34 3.28 86.45 0.01 52 0.472 0.607

0.21 0.08 46.55 45.91 0.19 66 0.522 0.641

0.64 0.15 82.63 57.97 0.64 88 0.949 1.128

Broccoli

0.23 0.56 7.30 18.36 0.39 27 0.082 0.070

0.53 0.22 45.15 67.67 0.23 99 0.083 0.066

0.54 0.60 9.68 88.30 0.70 38 0.090 0.077

0.69 0.95 10.99 95.66 0.64 19 0.090 0.071

0.84 0.03 89.71 83.81 0.87 85 0.085 0.076

0.08 0.63 68.06 55.45 0.78 68 0.085 0.069

0.04 0.07 42.65 64.11 0.92 22 0.084 0.076

0.59 0.81 57.25 44.16 0.83 50 0.082 0.069

0.73 0.52 40.73 59.96 0.30 65 0.084 0.072

0.85 0.91 85.47 7.61 0.87 59 0.085 0.068

0.15 0.10 48.56 37.93 0.06 88 0.081 0.066

0.46 0.14 84.25 6.41 0.69 67 0.084 0.074

0.78 0.67 86.70 18.95 0.75 57 0.083 0.069

0.73 0.32 1.07 20.35 0.49 81 0.118 0.085

0.02 0.19 93.27 13.81 0.70 46 0.081 0.068

0.23 0.80 48.99 95.91 0.72 55 0.085 0.070

0.75 0.39 99.05 50.80 0.69 0 0.076 0.069

0.15 0.50 47.40 37.79 0.68 26 0.083 0.071

A.4. Finer hyperparameter tuning 127

ReConv

Broccoli
0.59 0.92 96.31 50.56 0.58 94 0.085 0.067

0.00 0.60 57.42 6.58 0.74 2 0.076 0.068

BroccoliD

0.27 0.87 6.24 6.24 0.17 31 0.081 0.064

0.38 0.12 0.06 24.28 0.42 40 0.245 0.195

0.81 0.55 90.63 39.11 0.48 93 0.094 0.072

0.04 0.73 51.51 65.13 0.45 92 0.092 0.071

0.28 0.24 49.81 21.40 0.37 34 0.085 0.069

0.51 0.82 92.24 71.37 0.61 87 0.094 0.070

0.81 0.52 13.19 47.70 0.87 38 0.179 0.162

0.77 0.76 15.47 30.68 0.09 10 0.079 0.063

0.22 0.09 36.96 20.36 0.30 73 0.085 0.067

0.66 0.81 52.73 56.47 0.28 44 0.083 0.066

0.92 0.13 91.48 22.22 0.46 96 0.099 0.074

0.35 0.21 72.56 70.38 0.41 53 0.090 0.067

0.34 0.17 85.74 95.01 0.18 34 0.084 0.070

0.17 0.80 49.85 56.93 0.43 68 0.089 0.069

0.23 0.73 0.23 2.89 0.78 61 0.148 0.101

0.39 0.93 8.15 61.35 0.44 70 0.095 0.075

0.78 0.48 72.87 92.97 0.95 24 0.128 0.087

0.58 0.61 25.69 96.18 0.94 87 0.148 0.091

0.25 0.98 93.87 90.01 0.88 56 0.115 0.085

0.74 0.22 17.38 95.72 0.26 60 0.087 0.067

A.4 Finer hyperparameter tuning

Using the results of the previous section, we have selected the configurations

yielding to good results in terms of validation accuracies and used them to

select finer ranges for the hyperparameters. We then performed 10 epochs of

training randomly selecting the hyperparameters in this finer ranges.
Dataset GS OD D1D D2D EL S EL A AR Train loss Val loss

CWFID1

0.06 0.76 0.18 0.37 10.99 53.80 0.48 0.796 0.957

0.25 0.88 0.26 0.35 28.22 71.51 0.49 0.845 1.089

0.20 0.72 0.21 0.28 32.88 55.57 0.37 0.800 0.978

0.23 0.95 0.34 0.35 18.44 54.87 0.52 0.845 0.967

0.05 0.77 0.23 0.44 5.82 62.36 0.66 0.848 0.961

0.30 0.59 0.20 0.34 37.51 72.88 0.30 0.809 19.603

0.24 0.57 0.26 0.31 39.23 66.04 0.43 0.804 1.620

0.25 0.94 0.16 0.32 37.55 84.99 0.28 0.845 9.909

0.13 0.71 0.25 0.42 29.61 55.98 0.30 0.799 1.409

0.33 0.64 0.26 0.31 11.69 73.03 0.19 0.824 6.990

CWFID2

0.19 0.70 0.43 0.65 46.24 42.90 0.86 1.064 1.284

0.15 0.33 0.70 0.62 91.07 17.66 0.52 1.020 1.164

0.11 0.74 0.56 0.28 59.05 17.65 0.42 0.980 1.030

0.18 0.88 0.67 0.17 70.15 5.59 0.48 1.084 1.228

0.13 0.52 0.40 0.68 18.83 16.84 0.66 1.010 1.087

0.12 0.42 0.44 0.47 46.82 87.44 0.74 0.975 1.017

0.22 0.54 0.40 0.57 47.81 41.77 0.84 1.005 1.382

0.21 0.52 0.80 0.47 6.52 38.59 0.80 1.047 1.121

0.23 0.77 0.82 0.20 21.99 95.11 0.39 1.066 1.224

0.18 0.26 0.32 0.49 7.23 23.47 0.81 0.967 1.313

Broccoli

0.07 0.61 0.74 0.24 23.21 104.29 0.04 0.567 0.587

0.10 0.45 0.56 0.16 19.49 107.89 0.00 0.426 5.435

0.03 0.57 0.74 0.19 42.21 119.33 0.12 0.614 0.572

0.20 0.50 0.74 0.17 37.46 115.10 0.12 0.649 5.509

0.10 0.56 0.71 0.14 21.73 115.07 0.04 0.516 1.733

0.19 0.54 0.71 0.08 16.79 101.72 0.13 0.636 8.254

0.06 0.59 0.62 0.13 19.84 80.15 0.01 0.413 1.253

0.20 0.61 0.59 0.09 25.13 80.85 0.02 0.488 3.677

0.10 0.53 0.56 0.09 21.38 103.08 0.03 0.453 10.302

0.17 0.48 0.64 0.12 20.43 112.03 0.10 0.583 2.539

128 Appendix A. Tuning of network’s hyperparameters

All the other networks are on the following table:
Network Dataset GS OD EL S EL A AR SR Train loss Val loss

UNet

CWFID1

0.16 0.41 73.07 52.95 0.03 28 0.289 0.317

0.47 0.45 67.83 77.84 0.11 23 0.315 0.324

0.49 0.63 25.35 17.32 0.07 14 0.315 0.325

0.19 0.11 82.19 87.77 0.02 47 0.270 0.325

0.44 0.06 66.25 32.99 0.10 7 0.316 0.322

0.54 0.45 67.42 46.75 0.08 0 0.317 0.313

0.47 0.02 78.82 94.18 0.10 46 0.319 0.324

0.20 0.50 65.45 46.53 0.11 29 0.327 0.326

0.46 0.27 26.15 24.40 0.14 43 0.369 0.338

0.16 0.24 20.10 48.03 0.11 8 0.321 0.329

CWFID2

0.64 0.74 13.08 84.31 0.55 16 0.410 0.438

0.24 0.87 88.39 22.73 0.74 61 0.441 0.597

0.37 0.35 12.76 64.92 0.41 37 0.361 0.451

0.42 0.33 15.22 72.45 0.74 24 0.549 0.584

0.13 0.54 20.51 53.37 0.78 24 0.622 0.576

0.55 0.23 84.64 74.43 0.74 59 0.748 0.780

0.41 0.64 89.80 7.23 0.73 44 0.636 0.601

0.38 0.49 12.45 79.42 0.80 48 0.761 0.834

0.62 0.80 17.74 62.90 0.55 16 0.438 0.462

0.16 0.47 94.42 92.41 0.42 64 0.387 0.467

Broccoli

0.39 0.64 48.83 44.34 0.33 40 0.029 0.041

0.31 0.37 48.07 27.87 0.58 32 0.034 0.061

0.01 0.76 12.19 34.07 0.60 47 0.039 0.041

0.37 0.69 49.83 69.54 0.69 32 0.037 0.052

0.12 0.53 75.52 43.98 0.68 45 0.035 0.064

0.43 0.73 22.52 49.57 0.60 35 0.034 0.045

0.23 0.59 23.51 69.66 0.67 46 0.036 0.070

0.13 0.45 11.92 23.02 0.50 38 0.033 0.041

0.52 0.41 49.96 69.75 0.52 47 0.039 0.043

0.23 0.31 54.33 33.96 0.54 32 0.032 0.037

BroccoliD

0.58 0.59 11.40 65.44 0.11 78 0.030 0.024

0.53 0.68 11.55 99.14 0.95 42 0.044 0.046

0.41 0.73 8.78 71.79 0.15 41 0.033 0.048

0.37 0.87 77.47 76.36 0.78 24 0.037 0.041

0.47 0.62 77.40 72.71 0.82 34 0.039 0.041

0.37 0.79 9.14 64.48 0.56 47 0.042 0.034

0.83 0.70 13.10 70.84 0.62 83 0.055 0.069

0.41 0.83 78.76 52.03 0.60 36 0.036 0.032

0.36 0.73 83.20 71.08 0.92 28 0.036 0.043

0.64 0.41 76.90 84.61 0.66 50 0.040 0.036

U-ReNet

CWFID1

0.51 0.53 54.64 31.26 0.13 58 0.330 0.327

0.61 0.36 2.75 28.64 0.15 50 0.321 0.349

0.20 0.46 25.00 62.86 0.08 22 0.304 0.384

0.62 0.55 53.82 43.22 0.14 49 0.325 0.325

0.38 0.42 44.49 65.92 0.30 16 0.342 0.348

0.49 0.37 12.48 26.00 0.27 19 0.330 0.341

0.35 0.50 42.45 46.78 0.22 6 0.376 0.360

0.64 0.35 43.72 24.74 0.19 59 0.342 0.352

0.30 0.21 50.12 54.53 0.27 49 0.341 0.347

0.67 0.56 58.06 28.80 0.16 51 0.338 0.332

CWFID2

0.39 0.75 14.09 75.47 0.78 88 0.351 0.414

0.23 0.64 37.55 31.00 0.88 90 0.443 0.451

0.52 0.90 35.35 52.16 0.86 77 0.745 0.702

0.40 0.66 14.54 0.44 0.78 0 0.642 0.658

0.30 0.52 73.23 55.60 0.67 76 0.366 0.422

0.48 0.89 44.31 70.46 0.40 61 0.334 0.447

0.89 0.34 23.64 66.72 0.76 0 0.827 0.782

0.24 0.35 71.60 65.71 0.74 23 0.395 0.460

0.38 0.71 32.13 62.67 0.67 57 0.389 0.449

0.61 0.41 10.68 84.51 0.49 70 0.338 0.437

Broccoli

0.43 0.32 88.60 36.03 0.13 11 0.021 0.056

0.54 0.35 84.98 16.22 0.57 22 0.029 0.045

0.24 0.48 48.03 17.42 0.32 50 0.028 0.045

0.40 0.52 88.30 26.95 0.88 57 0.037 0.049

0.66 0.57 53.01 20.76 0.09 71 0.026 0.034

A.4. Finer hyperparameter tuning 129

U-ReNet

Broccoli

0.47 0.25 44.80 25.35 0.42 57 0.029 0.044

0.26 0.46 49.92 20.94 0.09 56 0.026 0.035

0.29 0.44 84.64 44.48 0.25 65 0.028 0.041

0.53 0.33 89.13 25.97 0.79 28 0.036 0.054

0.52 0.24 81.50 45.44 0.41 70 0.030 0.041

BroccoliD

0.55 0.78 71.24 41.58 0.45 53 0.021 0.039

0.56 0.31 59.35 14.73 0.57 86 0.025 0.038

0.27 0.75 27.91 45.52 0.51 79 1.010 0.931

0.20 0.57 57.58 28.89 0.48 52 0.021 0.045

0.26 0.57 31.47 31.87 0.48 76 0.027 0.058

0.56 0.51 31.89 33.00 0.56 87 1.010 0.931

0.62 0.34 71.59 46.32 0.59 40 0.026 0.046

0.78 0.56 51.81 28.14 0.44 56 0.024 0.052

0.54 0.49 62.42 46.44 0.50 57 0.023 0.045

0.36 0.55 12.81 33.95 0.59 85 0.040 0.066

U-ReNet2

CWFID1

0.26 0.54 71.39 68.38 0.35 52 0.364 0.360

0.39 0.56 15.67 30.17 0.35 24 0.527 0.408

0.46 0.73 86.64 70.17 0.29 60 0.415 0.383

0.27 0.57 75.61 10.25 0.24 39 0.361 0.346

0.51 0.42 94.44 83.08 0.13 79 0.350 0.365

0.66 0.50 72.44 54.91 0.22 59 0.389 0.363

0.29 0.73 34.45 36.94 0.10 78 0.367 0.355

0.82 0.26 9.69 78.47 0.34 57 0.557 0.447

0.56 0.59 89.49 19.06 0.10 65 0.348 0.324

0.32 0.46 11.37 48.29 0.17 29 0.325 0.362

CWFID2

0.42 0.58 7.23 21.41 0.42 51 0.634 0.685

0.03 0.60 77.13 67.31 0.68 9 1.057 1.079

0.12 0.14 52.31 63.50 0.45 77 0.645 0.719

0.37 0.07 12.73 45.36 0.98 9 1.081 1.094

0.04 0.06 19.18 54.82 0.78 6 0.834 0.800

0.30 0.06 50.07 17.02 0.76 60 1.078 1.022

0.14 0.32 9.94 34.40 0.86 59 0.918 0.983

0.11 0.27 0.37 59.53 0.59 82 0.895 1.101

0.01 0.51 74.14 39.75 0.45 87 0.653 0.716

0.39 0.28 19.43 55.87 0.66 41 0.658 0.692

Broccoli

0.48 0.10 20.23 34.34 0.16 63 0.026 0.037

0.46 0.44 21.31 49.46 0.11 45 0.024 0.036

0.52 0.43 65.79 27.96 0.12 79 0.025 0.036

0.31 0.40 28.23 54.86 0.03 57 0.022 0.028

0.63 0.54 50.06 36.86 0.14 63 0.027 0.041

0.69 0.31 57.14 34.90 0.25 64 0.028 0.044

0.39 0.11 89.04 22.45 0.12 67 0.025 0.043

0.58 0.52 20.25 49.08 0.09 93 0.026 0.033

0.48 0.27 71.15 42.30 0.10 60 0.025 0.041

0.47 0.09 81.74 24.16 0.06 61 0.024 0.032

BroccoliD

0.22 0.80 11.72 66.36 0.41 14 0.021 0.046

0.26 0.49 65.68 86.41 0.57 86 1.011 0.931

0.46 0.82 12.84 99.01 0.40 95 0.025 0.041

0.47 0.75 18.95 89.64 0.60 95 0.029 0.042

0.39 0.34 82.05 72.13 0.57 60 0.028 0.058

0.20 0.52 11.38 59.09 0.53 98 0.030 0.038

0.42 0.74 19.69 50.07 0.50 38 0.027 0.063

0.20 0.88 75.74 89.56 0.40 10 0.021 0.045

0.44 0.56 17.83 88.82 0.42 12 0.024 0.057

0.48 0.53 73.85 52.58 0.62 34 0.027 0.058

ReSeg

CWFID1

0.64 0.26 84.60 64.99 0.68 74 0.431 0.359

0.28 0.27 77.79 84.04 0.21 58 0.342 0.299

0.29 0.48 28.57 98.05 0.45 87 0.379 0.316

0.16 0.38 18.72 68.53 0.66 79 0.421 0.364

0.25 0.18 87.86 95.04 0.75 79 0.563 0.402

0.22 0.54 87.52 36.99 0.86 62 0.930 0.855

0.38 0.50 88.72 89.88 0.76 83 0.670 0.472

0.62 0.69 14.04 21.53 0.71 68 0.636 0.443

0.88 0.55 27.69 22.68 0.43 62 0.397 0.365

0.89 0.39 78.61 17.43 0.34 67 0.377 0.328

CWFID2
0.38 0.76 11.62 57.59 0.71 85 0.995 0.995

0.54 0.34 17.44 22.07 0.42 37 0.878 0.868

130 Appendix A. Tuning of network’s hyperparameters

ReSeg

CWFID2

0.55 0.26 20.69 55.56 0.33 18 0.842 0.934

0.49 0.79 26.83 62.51 0.26 64 0.774 0.799

0.61 0.64 19.34 89.33 0.61 58 0.852 1.047

0.48 0.27 10.36 87.34 0.65 55 0.871 0.945

0.58 0.42 11.28 60.40 0.15 16 0.732 0.759

0.15 0.75 27.52 80.89 0.56 19 0.847 0.916

0.19 0.52 23.92 29.64 0.70 64 0.876 0.933

0.59 0.55 25.42 49.41 0.63 44 0.925 0.956

Broccoli

0.45 0.79 52.61 53.44 0.11 39 0.042 0.041

0.32 0.50 27.26 70.04 0.10 23 0.040 0.037

0.26 0.68 24.35 76.63 0.13 56 0.041 0.038

0.42 0.78 57.58 30.03 0.13 77 0.041 0.037

0.25 0.42 50.95 55.37 0.11 60 0.042 0.041

0.41 0.45 15.62 77.65 0.10 23 0.042 0.043

0.36 0.63 55.96 82.82 0.13 33 0.042 0.040

0.49 0.75 52.23 50.90 0.10 46 0.040 0.036

0.31 0.79 53.35 34.04 0.11 65 0.040 0.036

0.21 0.48 27.71 88.37 0.15 19 0.039 0.043

BroccoliD

0.19 0.47 92.69 36.93 0.16 50 0.037 0.034

0.17 0.39 73.57 42.23 0.13 53 0.038 0.033

0.15 0.33 98.89 81.43 0.18 58 0.038 0.035

0.27 0.60 16.35 18.04 0.02 50 0.034 0.029

0.42 0.31 83.37 42.51 0.14 75 0.041 0.035

0.58 0.26 91.76 83.01 0.10 59 0.041 0.033

0.02 0.45 26.05 65.59 0.01 61 0.033 0.029

0.53 0.42 20.51 22.30 0.06 53 0.037 0.029

0.16 0.35 25.66 95.05 0.11 69 0.042 0.036

0.09 0.43 17.54 88.45 0.00 57 0.035 0.030

ReConv

CWFID1

0.76 0.53 83.40 23.58 0.08 59 0.349 0.453

0.29 0.72 11.18 13.03 0.11 50 0.398 0.383

0.84 0.61 21.63 62.71 0.10 72 0.463 0.434

0.54 0.62 82.86 66.20 0.09 42 0.425 0.388

0.33 0.66 12.38 75.38 0.12 53 0.452 0.398

0.36 0.44 78.81 39.62 0.06 64 0.413 0.408

0.80 0.40 34.24 82.58 0.03 45 0.354 0.456

0.59 0.29 20.75 50.41 0.19 55 0.445 0.448

0.85 0.63 11.90 33.42 0.11 69 0.414 0.389

0.81 0.34 76.71 68.59 0.05 67 0.334 0.474

CWFID2

0.67 0.53 60.53 51.01 0.01 49 0.330 0.315

0.78 0.87 11.94 79.45 0.21 67 0.898 0.974

0.37 0.70 80.13 50.70 0.08 44 0.913 0.935

0.52 0.47 63.07 37.35 0.18 52 0.909 0.933

0.60 0.39 61.50 93.35 0.21 40 0.916 0.990

0.82 0.31 82.42 89.43 0.04 34 0.901 0.947

0.36 0.62 60.34 38.54 0.16 45 0.908 0.928

0.74 0.44 80.62 83.55 0.16 64 0.918 0.973

0.73 0.53 81.35 50.38 0.16 64 0.922 1.008

0.53 0.49 20.76 53.83 0.14 47 0.899 0.965

Broccoli

0.77 0.46 47.54 69.32 0.38 96 0.074 0.063

0.28 0.17 95.71 65.19 0.74 82 0.077 0.064

0.38 0.78 45.69 56.48 0.52 65 0.074 0.070

0.76 0.27 81.04 44.97 0.23 78 0.074 0.061

0.66 0.14 42.72 66.25 0.23 60 0.074 0.060

0.45 0.17 43.51 42.08 0.36 79 0.075 0.062

0.73 0.46 81.31 56.43 0.68 68 0.075 0.081

0.23 0.87 43.25 42.72 0.33 62 0.076 0.062

0.22 0.75 89.92 54.97 0.77 60 0.074 0.066

0.49 0.70 83.80 67.46 0.43 95 0.075 0.062

BroccoliD

0.36 0.33 25.39 26.11 0.25 50 0.077 0.067

0.51 0.56 79.63 46.99 0.32 84 0.078 0.078

0.46 0.88 82.03 34.22 0.35 67 0.084 0.072

0.50 0.28 16.48 45.83 0.20 74 0.076 0.063

0.61 0.45 19.68 44.42 0.23 69 0.075 0.067

0.47 0.76 8.70 86.38 0.33 66 0.088 0.076

0.73 0.57 8.19 40.89 0.33 72 0.086 0.069

0.37 0.82 19.01 83.59 0.31 72 0.078 0.065

0.37 0.27 20.88 34.92 0.28 82 0.077 0.062

A.4. Finer hyperparameter tuning 131

ReConv BroccoliD 0.71 0.78 22.28 41.84 0.39 78 0.080 0.065

The training has then been performed by using the found hyperparameters

and dividing the learning rate so to avoid selecting a too high value. The

learning rate has been divided by a factor of 2 or 5 depending on the dataset.

	Sommario
	Abstract
	Ringraziamenti
	Acronyms
	Introduction
	General overview
	Brief description of the work
	Structure of the thesis

	State of the art
	Precision agriculture
	Biological morphology
	Spectral characteristics
	Visual texture
	Classification without segmentation
	Dataset

	Classifiers working with features
	Random forest
	Support vector machines
	Gradient boosted trees

	Deep neural networks
	U-Net
	ReNet
	ReSeg
	Common tricks to avoid overfitting
	Training algorithms
	Activation functions
	Weight initialization
	Visualization techniques

	Proposed system
	Datasets description
	CWFID
	Broccoli dataset

	Adopted metrics
	System description
	Hand crafted features subsystem
	Deep Networks

	Differences for the Broccoli dataset
	Data augmentation techniques

	Performed experiments
	Broccoli dataset annotation
	System training
	Background removal
	Classifiers
	Neural networks

	Comparison of results
	Comparison of hyperparameters dependence
	Feature analysis
	Minimize output error
	Maximize neuron output

	Number of parameters
	Comparison of training time
	Comparison of classification time
	Comparison of segmentation performance
	Qualitative comparison of segmentations

	Smoothing tile probabilities
	Summary of comparison
	Feature based classifiers VS neural networks
	Sliding window approach VS full-image segmentation
	Convolutional VS recurrent networks
	U-ReNet VS ReSeg
	U-ReNet VS U-ReNet2
	ReSeg VS ReConv
	ReConv VS ReConcat

	Conclusions and future developments
	Summary of obtained results
	Future developments

	Bibliografia
	Tuning of network's hyperparameters
	Learning rate selection
	l2 term selection
	Coarse hyperparameter tuning
	Finer hyperparameter tuning

