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Abstract

Multirobot systems are formed by a number of robots which cooperate to

achieve a common goal. They show flexibility in adapting to different sit-

uations and settings, like those involving the exploration of an unknown

environment. In order to accomplish this task, the system requires an ex-

ploration and a coordination strategy to decide where each agent should

move, as well as a communication strategy to efficiently share information

between robots and a possible Base Station. All the communication strate-

gies proposed in literature use a single communication strategy. The goal of

this thesis is to develop a multirobot system for exploration that can per-

form an online switch of communication strategies. Specifically, we develop

a system that switches, during the exploration, between two communication

strategies, using an estimate on the percentage of the environment explored

so far to decide when each strategy should be employed. Results show that

the implemented system can reach a better trade-off, with respect to the

state of the art systems, between time taken to explore the environment,

distance traveled by the robots, and disconnection time with the Base Sta-

tion.

I





Sommario

I sistemi multirobot sono formati da robot che cooperano per raggiungere

un obiettivo comune. Nel corso del tempo si sono mostrati flessibili e in

grado di svolgere molteplici compiti, come quello di esplorare un ambiente

sconosciuto. Per fare ciò, un sistema multirobot richiede una strategia di es-

plorazione e coordinamento per decidere dove si devono muovere gli agenti,

nonché una strategia di comunicazione per scambiare informazioni tra di

loro e una possibile Base Station, la quale, per tutti i sistemi proposti in

letteratura viene decisa all’inizio dell’esplorazione e mantenuta per tutta la

durata L’obiettivo di questa tesi è di sviluppare un sistema multirobot che

permetta il cambio online tra diverse strategie di comunicazione durante

l’esplorazione di un ambiente inizialmente sconosciuto. In particolare, ab-

biamo sviluppato un sistema che, durante il corso dell’esplorazione, cambia

tra due strategie di comunicazione, utilizzando una stima sulla percentuale

dell’ambiente esplorato per decidere quando ciascuna della strategie deve es-

sere utilizzata. I risultati mostrano che il sistema implementato ottiene un

miglior bilanciamento, rispetto agli approcci dello stato dell’arte che impie-

gano una sola strategia di comunicazione, fra tempo impiegato per esplorare

l’ambiente, distanza percorsa dai robot e tempo di disconnessione con la

Base Station.
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Chapter 1

Introduction

In multirobot systems, a group of robots coordinates in order to reach a

common goal. Recently, they have received special attention, given their

flexibility in adapting to different situations and settings, such as explor-

ing an unknown environment, or operating in a search and rescue setting.

Sometimes, they also need to deliver collected information to a Base Station

(BS). To do so, the system requires an exploration and coordination strategy

to decide where the robots should move, as well as a communication strat-

egy, which decides how and when the robots are required to connect and

communicate, over a short range RF (Radio Frequency) channel, between

them and the BS.

Exploration, coordination, and communication strategies in multirobot

systems have been widely studied in the literature. In particular, differ-

ent approaches have been proposed to cope with different communication

models, connectivity constraints, and the need to deliver information to a

fixed BS. A multirobot system employs only one of these two approaches:

one based on a periodic connectivity constraint and one based on a con-

tinuous connectivity constraint. When dealing with a periodic connectivity

constraint, we can find strategies like that of [30], which leaves robots free to

explore the environment and only requires them to deliver the information

to the BS when an event occurs. This kind of communication strategies

belongs to the category of Rendezvous (RV) strategies. On the other side,

when dealing with a (almost) continuous connectivity constraint, we have

strategies like [5], in which robots maintain a connected chain with the BS

throughout the course of the exploration of an unknown environment. This

type of strategies belongs to the category of Multi-hop strategies (MH).
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It has been observed that different communication strategies are well

suited for different stages of exploration. In particular, in [1], a conjecture

is advanced that a MH strategy is well suited for initial and final stages of

exploration, while a RV strategy is more convenient in the middle of the

exploration. The goal of this work is to empirically investigate the afore-

mentioned hypothesis presenting an exploring multirobot system that can

employ different communication strategies during an exploration mission

and evaluate its efficiency when exploring an unknown environment.

In particular, we present a policy that gives the possibility to switch

between different communication strategies, during the exploration of an

unknown environment and without having to pause the mission. The deci-

sion on which communication strategy should be employed is based on the

environment and mission status and it is decided in a centralized way by

the BS. We also extend this model so it can work with two communication

channels. This means that the robots not only use a short range RF channel

to communicate, but they can also use in addition a second communication

channel with a longer range, but a limited bandwidth (i.e, the robots and

the BS cannot exchange information such as the partial maps of the envi-

ronment on it). With this second channel the BS is able to communicate

information in a synchronous way to all the robots (e.g., a signal to alert

the robots to switch communication strategy).

We instantiate a possible implementation of our policy. Following the

observations made in [1], we develop a policy that performs a switch from

the starting MH strategy presented in [5] to the RV strategy explained in [30]

after the initial stage of the exploration mission. Then, it switches back to

the MH strategy in the final stage of the exploration mission. The decision

of which strategy to employ is based on the estimate of the percentage of

the total area of the environment known at the BS. This value is compared

with two parameters (α and β) that represent the thresholds to change com-

munication strategy. Since the value of the total area of the environment

is usually unknown during an exploration, we utilize an estimate of it to

compute the percentage of the explored environment and we compare this

prediction with the thresholds to decide when the switch should take place.

We use three different models to compute this prediction. The first one

uses the knowledge of the minimum bounding box of the environment to

estimate its unknown area. The other two models leverage information ex-
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tracted from a dataset of school buildings presented in [15]. The second

model considers the mean area over the environments in the dataset and

uses it as the estimate of the total area of environment the system is ex-

ploring. The third method computes the absolute error, between the real

value of the area of the environment and the predicted one, made during a

set of exploration runs with the method presented in [14]. Then it trains a

neural network model to obtain a function that predicts this absolute error

according to a given amount of explored environment. The system uses this

curve to sample a value of area in a uniform interval around the value of

the currently known area. The actual estimate of the total area of the envi-

ronment is returned computing the median value over the last m estimates

computed as before.

We test these models and the switch of communication strategies on a

simulator with different environments. The experimental results show that

our system with online switch of communication strategies can provide a

more efficient trade-off between the time taken to explore the environment

and the time in disconnection among the robots with respect to state of the

art communication strategies which usually optimize only one of the metrics

above. Since our idea of online switch policy has not been fully exploited,

further areas of improvement can be investigated. Possible future work

could include the extension of our policy to include more general switching

conditions, for example using information not related to the progress of ex-

ploration.

This work has the following structure. Chapter 2 gives a detailed overview

of the state of the art in terms of exploration, coordination, and communi-

cation strategies, along with a presentation of indoor semantic mapping and

generative models to predict unknown parts of the environment. In Chap-

ter 3, we present the problem of online switch of communication strategies

from a formal stance and define the goal of our research. Chapter 4 presents

our solution to the problem in terms of an online switch policy between the

Multi-hop strategy and the Rendezvous one and discusses the choice of a

suitable estimator for modeling the area of the environment. In Chapter 5,

the software architecture is presented. In particular we give a short overview

of the MRESim software for multirobot simulation, before moving to the im-

plementation details of our policy. Chapter 6 presents the experiments made

to test our policy and compares the results in different settings. Chapter 7

summarizes the purpose and the outcomes of this thesis. Some suggestions

for future work are also proposed.
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Chapter 2

State of the art

In this chapter we present the state of the art in terms of exploration, co-

ordination, and communication strategies for multirobot systems, focusing

specifically on the issue of communication strategies. Then, we give an

overview of semantic mapping models and how generative models can pro-

vide predictions about unexplored parts of environments.

2.1 Exploration, coordination, and communication

in multirobot systems

Multirobot systems are systems where a group of robots coordinates them-

selves to achieve a common goal. One of the most important field in which

multirobot systems are employed is the exploration of an unknown envi-

ronment. Exploration of initially unknown environments is an online task

in which autonomous mobile robots coordinate themselves in order to effi-

ciently discover free spaces and obstacles. Often, they are also required to

communicate their collected data to a Base Station (BS), which is in a fixed

position of the environment (possibly the starting one), where, for example,

a human operator can keep track of the progress that are made. In order to

achieve these results the system should have:

• An exploration strategy, which is used by robots to decide where

they should move. The main goal is to move to the frontiers of the

environment (i.e., the boundary between mapped and unknown space)

in order to complete the exploration of the environment minimizing

some kind of measures like the time required, as it is shown in [35].
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• A coordination strategy, with which the group of robots decide

where every member should be placed to accomplish the exploration

mission. This form of coordination is often developed assuming the

possibility of communicating without limit. However in real world

settings, this chance is not always given.

• A communication strategy that deals with the problem to deter-

mine how the robots should exchange information. This part is really

predominant in real world application, because the robots are not al-

ways given the possibility to communicate with another due to limita-

tions on the communication systems or peculiarity of the environment.

It is important to remark that exploration, coordination, and commu-

nication strategies in multirobot systems are not separate entities, but, on

the contrary, they are tightly bound. An exploration strategy relies on the

presence of a coordination strategy, which works on the assumption of a

specific communication strategy employed by the system.

From an abstract stance, the exploration problem can be represented

as it is shown in [6]. Assume to have a bi-dimensional environment E and

assume time is discretized in steps. A set of n robots, R = {r1, r2, .., .rn}
is able to move in the E. For any time t, call pti ⊂ E is the portion of the

environment know by robot i. The map, representing the portion of the

environment perceived by robots at time t̄, is given by:

M t̄ =
⋃

i=0...n

⋃
t=0...t̄

pti (2.1)

The exploration is complete when there is a time t̄ where M t̄ = E. The

problem of an exploration strategy in multirobot systems is to find, at any

time t or after a given temporal deadline, which frontiers (which are the

borders between M t̄ and E) a robot should reach next, while optimizing a

performance measure (such as time required and distance traveled to com-

plete exploration). The decision on which frontiers to choose and where each

robot goes form the exploration and coordination strategies and they can

be considered the “intelligence” of the system.

This aspect of the exploration and coordination strategies in multirobot

systems has been widely studied in literature and it is possible to find two

main approaches. The first approach is based on a market principle, in

which robots place bids on subtasks of the exploration effort (which are the

frontiers of the known part of the environment) as in [29], [10]. These bids
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are typically based on values such as expected information gain and travel

cost to a particular location in the environment, and the frontiers may be as-

signed in a distributed fashion among team members, or by a central agent.

When strength of communication is factored into the bids, robots avoid ar-

eas outside of communication range.

Another common strategy is to use utilities of the frontiers, as it is ex-

plained in [35], which can easily be extended for use by multiple robots, like

it is shown in [7]. Similar to bids described above, utilities of individual

frontiers may include a factor related to likelihood of communication suc-

cess, so robots are less likely to explore areas that take them out of the team

communication range.

Having this idea in mind, we can now apply this system to the case of a

multirobot exploration with limited communication as in [24]. The authors

present different solutions to solve the problem of exploring an unknown

environment under the constraint of a limited wireless networking. For in-

stance, they illustrate a strategy in which the robots move freely in the

environment as a pack while maintaining communication with each other.

Different solution can be presented to solve problem of exploration under

the assumption of limited communication, but all of them bring same con-

sequences to the whole system. First of all, two robots, at a given time step

t, can have different knowledge of the environment, so that there should be

a map-merging algorithm that works when the two reconnects. Moreover,

this can lead to degradation of performances if the coordination mechanism

is not carefully implemented.

Secondly, robots can predict, using a communication model, when and

where they are able to communicate with other teammates. However, this

prediction could turn out to be wrong and this can have a significant impact

on the performance of the system itself. In order to reduce this degradation

a conservative assumption over the capabilities of the robots to communi-

cate can be made, as it is shown in [2].

Third, in real world settings, additional constraints can be imposed over

the communication of the system. For example, a human operator could be

interested to receive periodically a video stream from robots cameras. This

scenario can lead to systems in which all the robots need to build a chain of

locally communicating teammates to relay the video stream from the point



8 Chapter 2. State of the art

of interest, as in [18].

To investigate this problem further on, we start by illustrating the com-

munication models addressed in the literature and then moving to explain

the main communication strategies.

2.1.1 Communication models

A typical mobile robot used in exploration tasks is usually able to exchange

information with its teammates and possibly with a Base Station (BS), over

a radio channel, such as WiFi, whose quality degrades with the distance and

the presence of obstacles. Given this fact, the communication model refers to

the prior knowledge the robot has on the communication capabilities, which

it exploits during the decision on where to go next. This decision can be

critical because, for instance, a robot can predict to be able to communicate

with another robot only basing on the fact that they are mutually visible

and within some range. This communication model can lead to a robust

multi-hop chains in case we need a stable video stream between a location

of interest and the BS. As it is shown in [6], the communication model can

be categorized in:

• None: the robots do not make any assumption on whether they are

able or not to communicate between two given positions.

• Line-of-sight (LoS): a robot can communicate with one of its team-

mates if the line connecting their positions is entirely contained in

the free space of E, as it is shown in [2]. Usually the line has also a

maximum length d.

• Circle: a robot can communicate with one of its teammates within a

fixed maximum distance d, whether or not the presence of obstacles,

as it is shown in [28].

• Signal: a robot ri can communicate with a robot rj with a probability

that depends on the estimated signal power between the position of ri
and the position of rj . This model takes into account the degradation

of the signal. for example derived from the encounter of obstacles.

This model is further investigated in [34].



2.2. Multi-hop strategies 9

2.1.2 Communication strategies

The other dimension related to the communication is the connection require-

ments to which a system should comply to accomplish the exploration goal.

This could be divided in three main categories:

• None: robots are not required to communicate.

• Rendezvous (RV): robots must regain connection with teammates

according to a particular policy triggered by some kind of events, such

as the discovery of new information about the environment, or simply

striking a particular time.

• Multi-hop (MH): each robot must maintain connection with its

teammates (as well as the BS), either in a direct connection or in

a multi-hop fashion.

We can note that the most interesting strategies are the Rendezvous and

the Multi-hop ones, because they add increasing levels of constraints on how

the exploration strategy can choose the prominent frontiers to visit.

It is important to note that, to best of our knowledge, all the multirobot

systems proposed in the literature employ only one of the above communica-

tion strategies at a time. For example, a multirobot system can explore an

environment using a Multi-hop strategy from the beginning to the end of the

mission or otherwise it can use a Rendezvous strategy. This, as said before,

can have an impact on how the exploration goes on and how the system

performs. There are some systems where both strategies can be used, as

in [1], but the switch is done off-line, so that, during an exploration run,the

system just uses one of them.

2.2 Multi-hop strategies

Multi-hop (MH) strategies are communication strategies that comply with

the constraint that all the robots and the base station must be always con-

nected one another. This type of constraint can be seen in two different

ways: either it can be a continuous connectivity constraint or a recurrent

connectivity one.

The constraint of continuous connectivity means that all the robots must

be connected with each other throughout the whole exploration of the envi-

ronment. Moreover, they must maintain connection with the Base Station
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for the same time. This constraint is ideal for situation in which an operator

at the BS wants to have a video stream of a point of interest or simply keep

track of the exploration in real-time.

A specific implementation of this strategy is explained in [18] and it

is generally known as Leader-Follower (LF). The authors address the prob-

lem of maintaining a robust high-bandwidth radio frequency communication

link between a mobile robot and its BS. The solution uses a number of au-

tonomous mobile relay nodes to form an ad-hoc network. The followers

follow the leader and automatically stop where needed to maintain connec-

tivity between the lead robot and the BS.

A similar solution is addressed in [1], where the robots try to cope with

some teammate failures and form a robust network where the failure of a

relay does not influence the connectivity constraints. The robots form a

robust ad-hoc network where there is at least two possible paths to commu-

nicate with any robot. In this case, if one of the relays suffers a failure the

BS remains connected with the leader.

Another important achievement of this work is the ability to have multi-

ple leaders at the same time. The system deploys at any given time the

maximum possible leaders according to the constraint of robustness and

continuous connectivity.

The second constraint that falls in the MH strategy is the recurrent con-

nectivity constraint. This constraint can ensure situational awareness of the

robots without excessively constrain the exploration task like the continuous

connectivity. In this method, the robots are required to be in communication

any time new information is gathered. Under such a scheme, the constraint

can be thought in an online fashion, allowing the robots to be disconnected

for arbitrary long periods of time, if during that time no new information

about the environment is discovered and provided that they are able to

communicate with the BS as soon as new information is collected. However,

it can be useful to note that time frame when the robots are disconnected

is usually small and a disconnection can happen only when a robot has to

move from a location already fully explored to a new unexplored one.

In the system explained in [5], the authors build a multirobot system un-

der the recurrent connectivity constraints. The solution proposed constructs

a graph keeping track of the frontiers already explored and of the current

ones and it deploys the robots in a way that they are always connected to
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the BS and at the same time they explore the most promising frontiers. This

deployment is computed using an approximate solution of the Steiner tree

problem(i.e, given a subset of vertices, find a minimum-cost subtree that

connects them) and then assigning the robots to the vertices minimizing the

total distance traveled.

An interesting feature of this solution is the ability to compute the deploy-

ment in an asynchronous way, meaning that new plans can be submitted to

arbitrary groups of robots as soon as they become ready. This feature can

speed up considerably the performance of the whole multirobot system in

terms of time taken for exploration.

2.3 Rendezvous strategies

Rendezvous (RV) strategies are communication strategies that work under

some kind of event-based connectivity constraint. This type of constraint

means that the robots are free to move in the environment, accordingly to

their exploration and coordination strategies, but they must regain connec-

tion with a group of their teammates or the BS as soon as a particular

condition is met which is triggered by some kind of events. The strike of

this task can be triggered essentially in two ways, either by the substantial

gain of new information or on a periodic time basis. The term rendezvous

itself has been proposed in [26], with the meaning of a meeting point for

a group of robot. Here it is used with a wider approach to denote all the

strategies that deal with the aforementioned constraints.

RV strategies can be divided into different groups based on the agree-

ments the robots have on the way they must reconnect. It is important to

consider that most of the RV strategies already implemented are built on

the following assumption. It is not needed that the totality of the robots

has to reconnect when the event is triggered, but only the agents that have

reached an agreement on that particular event have to regain connection.

Given this fact, the two main groups in which we can divide the Rendezvous

strategies are the implicit and explicit ones.

2.3.1 Explicit RV strategies

An explicit RV strategy is an agreement between a group of robots on where

to meet when an event that triggers the reconnection occurs. This type of
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strategy can work on the top of different types of events, such as periodic

reconnection events or the gain of new information. A good example of a

fairly simple RV strategy is [12], where the authors change the continuous

connectivity constraint in favor of a more relaxed version which implies a

periodic reconnection by the group.

The idea lying beyond the approach is the following: at fixed time intervals

all the robots must reconnect themselves and possibly with the BS in order

to share new information they gained exploring the environment on their

own. Then they agree on where everyone should continue their exploration

and decide when and where the next meeting should happen.

Explicit RV strategy can be seen also in a different way. The authors

of [8,9] propose a strategy, called Role-Based Exploration (RB), in which ev-

ery robot of the group is assigned with a specific role, either it is an explorer

or a relay. The task of an explorer is to explore the farthest reaches of the

known environment, while the task of a relay is to ferry information back

and forth between explorers and the BS, by meeting the explorer periodi-

cally at a rendezvous point and returning to the BS. The agreement between

robots of different roles comes in the form of when and where to meet. The

relays and the explorers compute a point, called rendezvous point, where

they are able to meet and then set a period of time in which the explorers

try to gain new knowledge on the environment and the relays go back to the

BS to communicate the newest information.

This basic structure can be improved adding a more complex hierarchy

in terms of explorers and relays. For example, if the rendezvous point is

very far from the BS, the system can build a chain of relays to exchange

information faster. This approach has been also shown in [1], which builds

a dynamic chain of relays to support the exploration of a group of explorers.

In RB exploration a crucial point is the selection of the rendezvous point,

which can lead to a degradation of performance if not carefully chosen.

In [13], the authors introduce a novel way of computing them that can

be also extended to situations where the environment changes dynamically,

while the exploration takes place, for instance due to the collapse of a wall

in an hazardous setting.
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2.3.2 Implicit RV strategies

On the other side, there are the implicit Rendezvous strategies. This type of

communication strategies differ from the explicit ones because the robots do

not agree by themselves on a location or a time to meet, but on the contrary

they agree only with the BS to fall back to report new information as soon

as an event that triggers the reconnection occurs. In this type of strategy,

the event can be either a periodic time reconnection event or a more sophis-

ticated one, like the discovery of information about the environment.

The strategy proposed in [30] falls in the latter category. The authors

propose a system where all the robots are considered explorers, so that no

hierarchy is given a priori. Any robot agrees with the BS, at the beginning

of the exploration, to go back when the information gain related to their

knowledge of the map is greater than a given threshold. The robots are given

the possibility to communicate and coordinate in a completely distributed

way, so that, if two robots meet, they can merge their maps and update

their own knowledge of the environment.

From a formal stance, the strategy works this way. Before the start of the

exploration the user sets a target information ratio targetInfoRatio ∈ (0; 1],

which gets propagated to all agents in the team. For each agent i, let

infBasei be the information i believes the BS to have in a given time. This

value is obtained from communicating with the BS itself or with other agents

that have communicated more recently than agent i. Let infNewi be the

information about the environment that i knows excluding infBasei and

excluding information that the robot i has give to other agent to relay to

the BS.

During the exploration task, each robot can be in two stance: either

it is exploring the environment or it is returning to the BS to relay the

information. A robot i only decides to fall back to the BS if

|infBasei|
|infBasei|+ |infNewi|

< targetInfoRatio (2.2)

where |infBasei| and |infNewi| are the utilities of infBasei and infNewi

accordingly.

An interesting behavior observed in this system is the following. For

higher values of target information ratio and high number of agents, at the

start of exploration all the robots go off to explore new frontiers and collect
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information. However, as the exploration effort goes deeper into the envi-

ronment, a number of agents end up acting as dedicated relays, simply going

back and forth between the base station and the other exploring robots. At

late stages of exploration the agents tend to form a chain of relays, where

only few robots are explorers, as if they were in an explicit RV strategy,

but in this case there is no explicit agreement on where or when the robots

should meet.

This strategy behaves as follows. A number of robots meet while return-

ing to the BS to deliver their information. While they are in communication

range, they exchange information and the robot nearest to the BS assumes

the responsibility of delivering back the combined new information back.

After that, the “relay” agent moves towards the area with the most promis-

ing frontiers, but since it has the same knowledge of the agents it previously

met, it will likely go to the same frontiers the other robots are headed, meet-

ing them, or another robot, on its way.

In terms of performance, as the authors note in [30], the system is very

scalable. Even with using a high value of targetInfoRatio (which means

that the robots have to return more often to the BS), it is possible to note

that the whole system, in most of the settings, performs better or at least it

has comparable performance with an explicit RV strategy, where the robots

need to meet on a periodic time basis. The major drawback, however, is

in terms of assurance of a periodic update at the BS, due to the fact that

the system does not take into account any time constraint while computing

when a robot should go back to relay the information. However, using higher

values of the parameter constrains the robots to return more frequently to

the BS and so having a relatively small time interval between two consecu-

tive updates at the BS.

2.4 Semantic mapping and generative models

In robotics,maps are broadly used to represent the environment in which

a mobile robot or, in general, an intelligent agent has to operate. Such

maps can represent different aspects of the environment as, for example, the

metrical description of a level of a building or the information about the

structure of the environment in terms of rooms and corridors. According

to [22], a map can belong to one (or more) of these types:
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• Metric map: it describes the environment showing which areas are

free and which ones are occupied (as an example, by the presence of

an obstacle, such as a wall). There are numerous ways to represent a

metric map: the most used is the grid map, in which the environment

is divided in a set of regular cells, which contain the probability to

encounter an obstacle.

• Navigation map: it describes the environment in the form of nav-

igation goals by a robot, which can be specific locations in the en-

vironment. It is represented as a graph built as the robot explores

the environment, where the nodes represent free space and edges are

paths from a free space to another. A new free space navigation node

is placed in the map whenever the robot has traveled a certain distance

from the closest existing node. The final graph serves for planning and

autonomous navigation in the already visited part of the environment.

• Topological map: it describes the environment in terms of a graph

consisting of nodes and links, which represent rooms in the environ-

ment and their connectivity, respectively. The structure of the topo-

logical graph is built based on the assumption that the transition be-

tween two rooms happens through a door. This allows to reason on a

human-like qualitative segmentation of an indoor space into distinct

regions.

It is useful to note that all these maps, beside the metric one, are built on

the top of the previous ones. For instance, the navigation map is linked

with the metric one, because each node of the graph is assigned a position

in metric coordinates, while the topological map can be seen as a more ab-

stract representation of the navigation graph, where the nodes are grouped

by their position in the environment.

2.4.1 Semantic mapping of indoor environment

Semantic mapping of an indoor environment refers to the task of building

representations of this environment that associate spatial concepts with spa-

tial entities. In particular, it is possible to associate labels (for instance, they

represent the function of a room, such as kitchen or bedroom) to a node in

the topological map. Usually this type of maps are paired with the others

to leverage their information in various fields. For instance, a robot can use

knowledge obtained from the metric map (such as the frontiers) combined

with the semantic information about the environment in order to improve
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path planning or exploring first the important rooms of the building.

A well known way to build semantic maps is to use information on sen-

sors installed on a mobile robot or, possibly, on a multirobot system. An

example of this approach is given in [17]. The author presents different

approaches to enable a mobile robot to categorize places in indoor environ-

ment. All of them are implementation of supervised learning techniques,

such as AdaBoost. The objective is to give the robots the possibility to rep-

resent the environment in a similar way humans do.

The process of building semantic maps, however, does not only rely on

information extracted from sensors. In [11], the authors propose a sys-

tem, where a metric, topological and semantic representation of the envi-

ronment is coupled with natural language information derived from sensors

like microphones. The algorithm is able to extract semantic proprieties of

human-centered concepts combining the natural language descriptions with

images and laser-based classifications. This leads to an improvement of the

accuracy of the achieved spatial-semantic representation of the environment.

Semantic mapping can be used as one of the inputs of an exploration

and coordination strategy. In [32], the authors consider this problem in the

setting of a multirobot system. To better distribute the robots over the

environment and to avoid redundant exploration of the same places, they

take into account the type of place a potential target is located in. This

approach can lead to better performance compared to a traditional coordi-

nation strategy.

A particular type of the exploration problem is the search and rescue

setting, where robots need to explore an hazardous environment finding

possible survivors. Semantic mapping can be useful there, as it is shown

in [23]. The authors leverage the information given a priori by semantic

mapping to to push robots to explore relevant areas of initially unknown

environments. The system also proposes to speed up the exploration of spe-

cific areas by using semantic information both to select locations to visit

and to determine the number of robots to allocate to those locations.

Most of the methods used to perform semantic mapping of an environ-

ment use information extracted from sensors and Machine Learning tech-

niques, such as supervised learning, to extract useful features to classify

portions of the environment. An example is presented in [25], where the au-
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thors use a boosting technique and train a classifier with features extracted

from vision and laser range data. This approach turns out to be efficient in

labeling parts of the environment already visited by the robots, but it fails

in predicting the label and the topological structure of the environment.

This is due to the fact that all these methods assign labels on the basis of

sensor readings acquired in the current environment and of models trained

on sensory data acquired in previous runs of the robot.

2.4.2 Generative models

As already said, while semantic mapping models perform well in standard

settings, one of their main drawbacks is their little ability to reason on the

unvisited part of the environment. To overcome this limitation, some exten-

sions to the semantic mapping framework have been proposed. For instance,

in [21], the authors present a probabilistic semantic mapping framework that

applies semantic labels to different kind of environment features. The map

is represented as a probabilistic chain graph model and is adapted at run-

time according to the data perceived by the sensors. The chain graph is able

to predict the existence of a feature in the unknown environment and can

extend the semantic map accordingly. For instance the method is able to

predict the presence of the presence of a room of certain category in the un-

explored space. In order to do so, the method hypothesizes possible rooms

configuration in the unexplored part of the environment and then return a

probability that a room of a given category is present summing the proba-

bilities in each hypothesized configuration.

Another approach is reported in [11], where the system integrates met-

ric, topological, and semantic representations with information derived from

natural language descriptors obtained from human users. This is done us-

ing a factor graph formulation of the semantic properties and inferring these

properties by combining natural language descriptions and image- and laser-

based scene classification. The result is a method that can infer the existence

and location of room given a natural language sentence.

A totally different approach is the one that belongs to the category of

generative models. A generative model is a mathematical instrument which

models an unknown distribution and can be used to sample data from that

distribution, starting from given parameters. This category of models is

completely different from the previous ones, because it does not only rely
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on any sensor data as a direct source of knowledge for semantic labeling.

Instead, it operates at a higher level of abstraction reasoning on rooms

contained in a knowledge base, that can be obtained without the use of

robots.Subsequently, information from sensors data can be integrated to

make the prediction more accurate.

This type of integration is what we can find in [3], in which the authors

consider a knowledge base containing more than 38, 000 rooms representing

university campuses. Each floor of the building is represented as a graph,

where nodes are rooms labeled according to their function and edges refer

to a direct path between rooms. The most frequent patterns of rooms are

then extracted using an algorithm for finding the most frequent subgraphs.

Using this information, and given a partial map of a known area, the pro-

posed method predicts both the topology and the labels of unvisited rooms

by identifying the most common subgraphs that partially overlap the partial

map.

We can find a similar approach in [15], where the authors propose a

system based on a generative model that is able to represent the topolog-

ical structures and the semantic labeling schemas of buildings, while it is

also able to predict the structure and the schema for unexplored portions of

these environments. The environments are represented as undirected graphs

where nodes are rooms and edges the connections between them. Given an

initial knowledge base of graphs and relying on a spectral analysis of these,

the system segments each graph for finding significant subgraphs and clus-

ters them according to their similarity. The prediction on the unvisited part

of the environment is eventually generated by sampling subgraphs from clus-

ters and connecting them.

The method proposed in [14] is a direct application of [15]. The authors

proposed a generative model that follows the general pattern of Constructive

Machine Learning (CML), where the ultimate goal of learning is not to find

good models of the data but instead to find one or more particular instances

of the domain which are likely to exhibit desired properties, while selectively

sampling from an infinite or exponentially large instance space. A building

is represented as an undirected graph which shares the same properties of

the previous one. Then the authors implement the method described in [15],

distinctively focusing on building types, namely on specific classes of building

that share the same structures, as it is presented [16]. Though this method

needs better results, it advocates the potential of using high-level semantic
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knowledge to predict the structure of unknown parts of indoor buildings in

order to improve exploration and search.
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Chapter 3

Problem formulation

In this chapter we present a formal definition of the problem addressed in

this work. We start by defining the area of research and then we list the

assumptions underlying our work and set the thesis goals.

3.1 Multirobot exploration

As we already stated in Chapter 2, one of the most important fields in

which multirobot systems are employed is the exploration task in an un-

known environment. Multirobot systems need exploration, coordination,

and communication strategies in order to be able to manage the exploration

task assigned. The first two categories of strategy (namely, exploration and

coordination) can have different practical implementations, but they essen-

tially leverage on information about the environment in order to be as fast

as possible in fully discovering the environment, while trying to travel the

less distance as possible in order to save energy.

This problem requires some kind of trade-off in order to find a suitable

solution. It can be easily imagined that not always the fastest strategies can

lead to the least distance traveled by the whole system. The difficulty in

finding a good solution increases if we consider that the whole system has

to comply with a communication model and a consequent communication

strategy.

In the literature, different solutions have been proposed to tackle the

problem of dealing with a communication constraint while exploring the en-

vironment. This constraint often takes into account that the robots should
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maintain a connection with a Base Station to keep it informed. This con-

nection can be in a form of continuous or recurrent connection or it can be

an event-based connection. The solutions adopted can fall in a Multi-hop

(MH) strategy, if they deal with the continuous constraint, or in a Ren-

dezvous (RV) strategy, if they deal with an event-based constraint, we have

already seen in Chapter 2. It is important to remark that, to the best of our

knowledge, no system is able to decide, at run time, which strategy needs

to be adopted in order to achieve the best performance.

3.2 The problem and the goal

The work we propose tries to cope with the problem of building a multirobot

system which is able to explore an unknown environment using different

communication strategies. We aim to identify under which conditions one

strategies should be preferred over another. Before explaining in a more

rigorous and detailed way the formulation of the problem, we are going to

present some important assumptions we have made in this work.

3.2.1 Assumptions

Robots The first important set of assumptions we have to make is about

the robots. In this work we consider to have a multirobot system in which a

team R = {r1, r2, ..., rn} of mobile robots are exploring an initially unknown

environment. Moreover we have another agent, which plays the role of a BS,

at the starting position of the exploration. The BS is incapable of moving

and it needs to receive updates about the mission status and the exploration

task, so it must be able to communicate with the robots.

The robots are able to move around in the free space of the environment

and they are equipped with sensors, such as laser scanners and cameras,

which are the input of the SLAM (simultaneous localisation and mapping)

module. On the other side, the BS does not have any sensor and it relies only

on the robots to perceive the environment. We assume the SLAM module to

provide reasonably accurate localisation. This can be considered a realistic

assumption, because recent approaches, such as those purely basing on scan-

matching, as it is explained in [20], or on particle filters (like in [33]), are

considered robust when dealing with noisy data. This assumption gives us

the possibility to focus our work specifically on the decision process, instead
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of dealing with noisy data that require filtering.

Communication A second set of assumptions can be made about the

communication between robots (including the BS). All the robots ()and con-

sequently the BS) are equipped with RF transceivers (e.g., WiFi). These

transceivers are typically assumed to have an unlimited bandwidth channel

in which the robots can exchange information. In the literature, it has been

shown that this assumption can hold even in real setting. For instance, in [5],

the authors show that this assumption does not affect the performance of a

real multirobot system.

The transceivers have a maximum communication radius d which can

vary according to the environment. We employ a communication model

to infer the possibilities of two robots to communicate with each other.

We decide to adopt the Signal strength model, presented in Section 2.1.1,

in which two robots can communicate based on the signal strength power

between their positions. The communication strength we adopt is defined

in [4] and works as follows:

S = Pd0 − 10×N × log10

dm
d0
×min(nW,C)×WAF, (3.1)

where Pd0 is the signal strength at the reference distance d0, N is the rate

of the path loss, dm is the distance, nW is the number of obstructing wall,

WAF is the wall attenuation factor, and C is the maximum number of wall

where the attenuation factor needs to be considered.

We use this model because it takes into account the degradation derived

by the encounter of obstacles and so it models a real setting in a better

way. Another reason to choose this communication model is the possibility

to further constrain it in special cases, for example, using a shorter distance

Line-of-Sight. We assume, moreover, the communication to be perfect. This

means that if the model guarantees that two agents can communicate, they

are actually able to do it and there is no loss of information over the channel,

meaning that all the information sent is always delivered.

We want to add another important assumption about the communica-

tion. We assume that the robots and the BS are equipped with a second

communication channel. This special channel has a very limited bandwidth,

but a very large range of communication and it is able to cover the whole

environment. This communication channel cannot be used to send normal
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information about the environment, such as the partial maps, but the BS

can use it to alert all the agents of particularly critical situations that have

just happened.

Environment A last set of assumptions has to be made over the envi-

ronment. In this work, we are going to focus our studies only on a subset

of all the possible environments. The environments we choose are indoor

environments. These environments can have different shapes and different

layouts, but they all share the feature of being formed by spaces that can be

essentially mapped in rooms or corridors. Moreover, we assume that these

environments are static during the exploration task, meaning that they are

not changing over the progress of the exploration. Lastly, we assume these

environments to two-dimensional and formed of a single floor. However,

extensions of the following method to three-dimensional environments is

straightforward.

3.2.2 Online switch of communication strategies

As already mentioned before, the aim of this work is to build a system that

is able to work under different communication strategies during the explo-

ration of an unknown environment. We call this feature online switch. An

online switch is a particular policy that enables a multirobot system to work

under different communication strategies. An important remark of this pol-

icy is the ability to switch the communication scheme during the exploration

task of the robots, without having to stop the system and setup again a new

connection. This behavior places our approach on an orthogonal plane with

respect to the literature characterization of communication strategies. The

strategy produced by our policy, as a matter of fact, cannot be considered

neither a pure Rendezvous strategy nor a pure Multi-hop one. On the con-

trary, it originally works using strategies from both of the categories in the

same exploration run.

A good choice for an online switch policy is to change between a MH

strategy and a RV one. For instance, consider a system that needs to min-

imize for efficiency reason the time not in communication with the BS and

it deploys the robots using a MH strategy, so it can have a reliable stable

channel to send the information. During the exploration run, the system

wants to change communication scheme to be able to minimize the time

taken to explore the environment. Since this metric is conflicting with the
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previous one, the system decides to find a suitable trade off. The robots

are no longer required to have a continuous connection with the BS. A MH

strategy is not able to relax this constraint to free the robots to explore

the environment. Our policy, on the other side, can switch the communica-

tion scheme to a RV strategy in order to have only periodic updates at the

BS. Doing this, the robots have more freedom to explore the environment

without having to maintain connection with the BS. If, at the end of the

exploration, the system needs to form again a multi-hop chain, the robots

will regroup and switch back to a MH strategy. The signal to inform the

robots to regroup can be broadcast over the second communication channel,

in order to shorten the time needed to regroup.

The system decides to switch between the two different communication

strategies using a policy, which analyzes the state of the system Env, as

well as the mission status M , and returns which communication strategy the

system must employ. We define the set of all the N possible communication

strategies, CommStrategies = {cs1, cs2, ..., csn}. At any time step t the

system evaluates the information it receives from the environment, the status

of the mission, and the previous communication strategies to decide the

communication strategy it needs to employ, cst. The policy switch is defined

as it follows,

cst = switch(Env,M, cst−1), cst ∈ CommStrategies, (3.2)

where cst−1 ∈ CommStrategies, is the previous communication strategy.

cst = cst−1 means that the system is not required to change the commu-

nication and it keeps using the previous one, while cst 6= cst−1 means that

the system has to actually switch from a communication strategy to another.

For instance, if we recall the aforementioned example of the switch from

a MH strategy to a RV one, the set of the possible communication strategies

is formed by CommStrategies = {MH,RV }. The switch between the MH

strategy and the RV strategy happens when switch(Env,M,MH) = RV

and conversely for the other switch.

3.2.3 Goals

The primary aim of a switching communication strategy is to give the sys-

tem the capability to adapt its communication strategy in order to react

to particular features that can arise during the exploration of an unknown
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environment. For instance, we can consider a particular exploration set-

ting, such as search and rescue. In this setting, it can be useful to have a

video streaming of an interesting target, while the robots are free to move

in the environment. The strategy produced from our policy has the ability

to deploy an ad hoc MH strategy for the only purpose of the video stream,

while for the rest of the exploration the robots can move using a RV strategy.

Another important aim is the following. In the literature, it has been

shown that based on which communication strategy is used, the perfor-

mance of the system can be different, as we can see explained in [1]. The

classical performance metrics, whose are the time taken to fully explore an

environment, the distance traveled by the robots, and the time not in com-

munication with the BS, are conflicting objectives to minimize, so it does

not exist a strategy that can minimize all of the three above. For example,

the MH strategies are meant to minimize the time not in communication,

but doing this the time taken to fully explore the environment is usually

greater than the time taken using a RV strategy, which works in the op-

posite way. Our combined strategy, because of the heterogeneous nature of

the communication scheme, presents a trade-off that will be compared with

state-of-the-art strategies according to the above metrics.
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Proposed solution

In this chapter we present the solution elaborated to the problem formulated

in Chapter 3. We present a logical view of the solution implemented given

an instantiation of the original problem.

4.1 Switch strategy between MH and RV

In Chapter 3, we have given a formal definition of what an online switch

policy for communication strategies is and we have defined the goal of our

research along with the main modules needed to accomplish it. Here we

present a specific implementation of the policy for the considered switch

strategy, in the form of a switch between communication strategies of differ-

ent categories. Recalling what said in Chapter 2, the communication strate-

gies can be divided in two main categories, which are Multi-hop strategies

and Rendezvous strategies. Our choice of implementation is to choose two

communication strategies, one for each category, and instantiate a switch

communication strategy following the formal definition given. We start with

discussing the selection of the Multi-hop and Rendezvous strategies.

4.1.1 Selection of Rendezvous strategy

In Chapter 2, we have given a broad presentation of what, in the literature,

we can consider a Rendezvous (RV) strategy. A RV communication strategy

works under the periodic connectivity constraint, which gives the robots the

capability to explore the environment farther than their maximum commu-

nication range while being able to regain connection with the BS to inform
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it of the exploration status on a periodic basis or when a particular event

occurs.

In this work, we rely on a specific implicit RV strategy, which is the one

proposed in [30]. This strategy does not instantiate a hierarchy in the team

of the robots, considering all of them as explorers. The robots agree with

the BS to go back to communicate the information gathered during explo-

ration only when the amount of collected information is greater than a given

threshold decided at the start of the exploration. Following this strategy,

an emergent behavior appears. Some robots, even if they were all initially

considered explorers, begin to act as dedicated relays going back and forth

between the BS and the prominent frontiers where, during this travel, they

meet the other teammates. Furthermore, they often behave as a chain of

relays at the later stages of exploration.

In [30], the authors compare the performance obtained with this strat-

egy against that obtained with an explicit RV strategy, which is called Role-

Based exploration (RB), that can be found in [9]. In RB exploration, every

agent of the team has a defined role (i.e., it is a relay or an explorer). The

results show that the implicit RV strategy is faster to fully explore the en-

vironment than the explicit one. This is thanks to the fact that it does

not designate a number of agents to be used only as relays throughout the

exploration run, which results in a more efficient use of resources. Moreover,

the comparison of the total knowledge at the BS, when the robots reach the

complete exploration, yields similar results. This can lead to time not in

communication between the agents and the BS similar in the two strategies.

Based on these observations, we choose the strategy explained in [30], based

on the fact that it is able to explore the environment faster without sacri-

ficing too much the connectivity.

4.1.2 Selection of the Multi-hop strategy

The second strategy we choose belongs to the category of Multi-hop (MH)

strategies. Recalling the literature, a communication strategy is considered

to be a MH one when it deals with a continuous connectivity constraint or

a recurrent connectivity one. While the former one constrains the robots to

be always connected to the BS, the latter one requires the whole team to be

in communication with the BS only when an agent is at a frontier, giving the

possibilities to arbitrarily long disconnections while the robots are moving
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in already explored parts of the environment.

As a candidate of this category of strategies, we choose the one presented

in [5], which works as follows. The authors propose a method to deploy a

connected chain of robots while they explore an unknown environment. An

important achievement, stated by the authors, is the ability of the system to

compute the deployment of the robots in an asynchronous manner, as soon

as a set of robots is “ready” (i.e., it has accomplished the goal given by the

BS).

We choose this connectivity constraint and this particular strategy for

a number of reasons. The choice of a recurrent connectivity constraint is

made because, even if it does not guarantee a connection at any time step,

it allows a good situational awareness at the BS. As a matter of fact, the

disconnections are always temporary and for short periods of time. In [5],

the authors compare their method with the one presented in [30]. Surpris-

ingly, their performance is similar if the system redeploys the team as soon

as one robot is ready. Based on these observations we choose the strategy

explained above as our MH strategy.

During the development of the MH strategy, we apply a further con-

straint on the MH part of the communication. As stated in Chapter 3, we

use the Signal strength model to represent the presence of a communication

channel between two agents. In this phase, we constrain the communication

model of the MH strategy to be as much conservative as possible while doing

its deployment. We choose to adopt a Line-of-Sight (LoS) communication

model for the deployment. This means that two robots can communicate

only when they can see each other within a maximum distance d. The

deployment uses this model to compute a conservative placement, underes-

timating the communication capabilities of the whole team. We make this

decision in order to avoid possible situations in which the model states that

the communication is possible, while actually it is not.

4.1.3 Connection issues during the switch

The switch between the two strategies is not a straightforward process. Both

the switches, i.e., from RV to MH and vice versa, have some technical diffi-

culties to overcome. Most of them are due to the completely different nature

of the communication scheme they employ and to the need to exchange of
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information to coordinate the switch.

The easiest switch to perform is the one when the system changes from

a MH strategy to RV one. The reason is that we can simply relax the con-

nectivity constraint. Moreover, at the time of the switch, the robots are all

connected to the BS, therefore all the robots can immediately be aware of

the fact that the switching is taking place. The only technical problem is due

to a peculiarity of the MH strategy. In order to compute the deployment,

the strategy keeps a list of the frontiers visited and uses them as possible

placements for the robots. The RV strategy needs to be extended to keep

track of the frontiers visited by each robot and to communicate them to the

BS when they are in communication.

The opposite switch (i.e., from the RV strategy to the MH strategy),

needs further precautions. We assume to have an up and running RV strat-

egy, in which every robot keeps track of the frontiers it has already explored

and, any time it communicates with the BS, delivers the list of the frontiers

visited. When the policy at the BS decides to switch to the MH strategy,

the system moves to a wait state. In this state, the BS communicates to

all the robots connected to employ a MH strategy. Since not all the robots

can possibly be connected at that time, the ones that are in range stop

their tasks and wait until all the team regain connection with the BS. This

happens because some robots at that time are outside the communication

range of the others and the first time they regain connectivity and become

aware of the change in the communication strategy is when they go back to

the BS to deliver information.

The aforementioned behavior happens due to the fact that the system

moves from a relaxed version of the connectivity constraint to a more tight-

ened one. If we assume to have only a single communication channel with a

limited range, the only possibility for completing the switch from RV to MH

is to wait until the last robot has eventually regained connection with the

BS. However, if the system can employ a second communication channel,

which meets the requirements explained in Chapter 3 (i.e., sufficient range

to cover the whole environment, but limited bandwidth), the BS can lever-

age this channel to alert in a synchronous way all the robots of the team.

This works as it follows. The BS, once it knows it has to switch to the

MH strategy, broadcasts an alert message over the second communication

channel. All the robots receive the message, stop their current task, and

move back to the BS. As soon as the last robot is connected, the BS replans
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the deployment of the team following the MH strategy.

4.1.4 Policy selection

The last part left to discuss about our solution, is the development of a

suitable policy. Recalling what said in Chapter 3, a policy is a function

which gives as output the communication strategy the robots have to use

according to the current state of the mission. In order to have a running

implementation of a switch communication strategy, we need a policy which

determines what communication strategy has to be employed at any time

step.

We define our policy starting from the observation reported in [1]. The

author notes that different communication strategies have better perfor-

mance according to the stage of the exploration. This means, that it does

not exist a communication strategy which outperforms all the others in an

exploration task.

Based on this, the author of [1] raises an hypothesis for which MH strate-

gies are better suited for the earlier and later stages of the exploration, while

RV strategies perform better in the middle of the exploration. This can be

intuitively explained as it follows. At the beginning of the exploration, the

two strategies have similar performance, because robots starts close to the

BS, so we have a high number of explorers and a low number of relays in MH

strategies, and high frequency updates in RV strategies. As the exploration

goes deeper, MH strategies need to employ more relays to maintain con-

nection with the BS and less robots can actually explore the environment.

On the other hand, RV strategies are not required to maintain a connection

with the BS; this frees up more robots to move in the environment pursuing

their exploration tasks. At final stages of exploration, it usually happens

that only small parts of the environment are still unknown and a small num-

ber of robots can easily explore them. Relays in the RV strategies are thus

required to cover great distances to travel back and forth rendezvous points,

while in MH strategies the information is delivered instantaneously to the

BS, speeding up the conclusion of process.

We follow this hypothesis and model a policy in which a MH strategy is

used at the beginning of the exploration, followed by a RV strategy which

switches back to the Mh strategy while the system approaches the later stage
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of the exploration. To implement this behavior, we define two parameters, α

and β, fixed at the beginning of the exploration. α represents the threshold

used to move from the first MH strategy to the RV strategy. β represents

the threshold used to switch back from the RV strategy to the second MH

strategy. Recalling the notation of Chapter 3, the set of strategies will be

CommStrategies = {MH,RV }. The system decides to employ a different

communication strategy following this scheme:

switch(Env,M, curr) =


RV, if α ≤ fsw(Env,M, curr) < β

MH, otherwise

, (4.1)

where fsw(Env,M, curr) is a function we use to model the status of the

exploration and curr is the current communication strategy.

4.2 Modeling the prediction

The last part of our solution focuses on how we can give a suitable value

to the switch parameters α and β, and consequently to fsw(Env,M, curr).

These two parameters should be related to the progress of the exploration,

specifically representing a threshold on the percentage of area already ex-

plored (hence, α, β, fsw(Env,M, curr) ∈ (0; 1]). In order to this, we must

have an a priori knowledge of what is the extension of the environment

against which the amount of mapped are is compared. Obviously, the total

area the robots have to explore is unknown and, therefore, it is impossible

to compute the percentage of the environment already known, based on the

real area of the exact environment.

Starting from this assumption, we find a suitable prediction of the total

area of the environment, Â, using different models. From them, we derive,

at any time step, an estimate of the percentage of the area already explored,

which we use as our fsw(Env,M, curr), as it follows,

f̂sw(Env,M) =
ExplArea

Â
, (4.2)

where ExplArea is the amount of area of the environment explored so far.

This value is later compared with parameters α and β in order to decide

which strategy the system should employ.
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The models we present use features of the environment that can be ob-

served without fully exploring it. They leverage a priori knowledge on the

type of the environment using semantic mapping and generative models.

4.2.1 Data analysis

In order to find interesting features to use in our prediction models, we

focus on a specific type of environments, which is school buildings. Some

previous works, presented in [14, 15], has already focused their attention to

this particular building type. In particular, the authors present a generative

model which is able to make predictions about the unexplored part of the

environment, starting from an explored subset of it.

The dataset we use consists of about 50 floors from different schools.

For all of them, we have the area of the floor and at least one full explo-

ration run on it. The exploration runs are sampled three times each and

for every sample, the method presented in [15] extracts predictions about

the unknown part of the environment. We process these data to extract the

percentage of the environment known when the sample is made, the predic-

tion of the total area of the environment given we have explored that part

of the environment, and the error between the prediction and the real area.

Starting from these data, we define three estimators to infer the value of the

percentage of the area known.

4.2.2 Bounding box estimator

The first estimator is the bounding box estimator. This model does not

exploit any knowledge derived from the dataset, but, on the other hand,

it leverages information that can be derived directly from the environment.

Suppose to have the possibility to receive some aerial pictures of the environ-

ment from above. These pictures show the general shape of the buildings,

but they do not give any information about what the robots are going to

find inside the building.

The bounding box estimator takes as input this information to com-

pute the minimum bounding rectangle. This is the rectangular box with the

smallest area that completely contains the outer perimeter of the building.

We take the area computed in this way as our prediction of the actual area
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Figure 4.1: Distribution of areas (in m2) of the environments in the dataset

of the environment and we derive the percentage known from it.

The prediction we extract from this method is always an overestimate of

the actual area of the environment, because it simply considered the smallest

box fully containing the environment. Hence, the area will be always larger

than the actual value, because the estimator does not take into account the

shape of the environment. Therefore, this method is expected to yield good

results when it deals with environments that have a rectangular-like shape

without “holes” (i.e., they do not have any unexplorable part inside the

building). In those cases, the bounding box estimator is expected to return

a predicted area for the environment which is only a slight overestimate of

the actual area.

4.2.3 Mean area estimator

The second estimator is the mean area estimator. The method computes

its estimate using the values of the area of every environment we have in

the dataset. From these values we extract the average area of the whole

dataset, Â, and we use it as our prediction of the total area of the environ-

ment. Then, we use this value to compute the predicted percentage of the

environment we have explored.

Differently from the bounding box estimator, we cannot bound the error

of the estimate of the mean area estimator. Therefore, it is not possible to
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state if the prediction will underestimate or overestimate the actual area of

the environment. Moreover, the mean estimator, although being a simple

method to infer a prediction on the total area of the environment, is not

robust to the presence of outliers in the dataset.

Based on these observations, we can state that the mean estimator is

expected to work well when the dataset presents a low value of standard

deviation on the areas of the environments. In this case, even if the mean

is a biased estimator, the methods yields a prediction close to the actual

value. This gives us another point to focus our research only a specific type

of building (whose representatives are supposed to have less variance with

respect to the mean), instead of a bigger heterogeneous dataset.

4.2.4 Area estimator from prediction error

The last model we present is the area estimator from prediction error. This

model, instead of computing at the beginning of the exploration an estimate

of the total area of the environment, computes iteratively a prediction of the

area during the exploration. In order to do so, the model simulates the error

of predicting the area, at any step, made by a generative model which esti-

mates the total area of the building given the part of the building already

explored, using the method introduced in [15]. Since the model presented

in [15] requires, in order to infer knowledge on the explored environment, a

complete semantic map of it, and since building a complete semantic map

of the environment lies outside the scope of this thesis, we approximate its

behavior by using a model that, given the explored area, produce an esti-

mate of the total area of the environment. This estimate is similar to the

one that can be computed with the generative model of [14].

Specifically, the model takes the information extracted from some sam-

pled exploration runs in the dataset. From these, it computes the absolute

error ε(p) (where p is the percentage of area already explored), between the

actual area of the environment and the estimated area by every sample with

the aforementioned method. These results are then used as input feature

vector for a neural network regressor, which outputs the predicted error ,

ε̂(p), over the exploration run for the whole dataset, composed by the pre-

diction of the total area of a building obtained with the method of [14].

We choose as our neural network model a Multi-Layer Perceptron (MLP).
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Figure 4.2: Prediction of the absolute error over the estimated area using a neural

network

This model is formaed by a defined number of single perceptrons disposed

on different hidden layers. We choose to use the implementation given by

the scikit-learn Python library, which is presented in [19]. For regression

problem with MLP, every perceptron learns a target function f(x), starting

from a set of training examples (x1, y1), (x2, y2), . . . , (xn, yn), and outputs

the prediction for an unknown input x in the form ŷ = f(x) (because of

the fact the problem is a regression problem, the activation function is the

identity function). More specifically, we choose the implementation of ML-

PRegressor proposed in [27], which describes an MLP regressor with a single

hidden layer of 100 perceptrons. We choose as our optimization algorithm

Limited memory BFGS (L-BFGS), which uses the approximation of the in-

verse of the Hessian matrix (i.e., the second-order partial derivative of a

function) to perform parameters updates. The choice is made because it is

stated in [27] to converge faster and perform better with limited datasets

with respect to the others optimization algorithms proposed in scikit-learn

library.

In Figure 4.2, we can see the result of the regression made on the dataset

we consider, using training samples in the form (pi, ε(pi)) and a target func-

tion which is ε̂(p). Then we use the target function learned during the

simulation in the following way. At every time step t, we compute the esti-

mate of the area of the environment, sampling from an uniform distribution
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U(a, b), whose support is:

a = max[ExplArea, (1− ε̂(p))×A]

b = (1 + ε̂(p))×A
(4.3)

where ExplArea is the area explored until now and A is the target area.

This value, At, is then stored along with the last m estimates in the buffer

Ā. The actual prediction, Â, is then computed extracting the median value

of the stored estimates.

Since the estimate varies slightly during different prediction, we choose

to store the last estimates and not only to return the latest one, because,

in this way, we can filter out the error made during the sampling of the

values, by smoothen the different predictions, which can be noisy, and using

only their average. In order to reduce possible noise, we check for a possible

switch every Ts = bm/2c cycles instead of every one. The choice of returning

the median value can be explained in a similar way. Thanks to the fact that

the median estimator is an unbiased estimator over a set of sample, it is

expected to be lees prone to possible fluctuations derived from the sampling

error we make using this model.

The area estimator from prediction error is expected to perform well on

the whole dataset, assuming that we use a suitable number of predictions

when we compute the median, in order to remove as much as possible the

noise of the sampling.
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Chapter 5

System architecture

In this chapter we present the architecture of the system, in terms of mod-

ules we have implemented for our research. We start by briefly describing

MRESim, which is the simulator we use to develop the system. Then, we

overview the main module implemented to enable the switch of communi-

cation strategies.

5.1 MRESim

MRESim is a simulator that has been specifically developed for multirobot

systems employed in an exploration task. The simulator has been proposed

and widely discussed by its authors in [31]. Here, we present a brief overview

of the system in terms of its main modules.

MRESim is a discrete time simulator which works from a two-dimensional

grid representation. At each time step, the simulator moves the robots to

their new positions, updates their sensor information, simulates communi-

cation between the robots, and outputs the current state of the simulation.

All the robots process their next step (i.e., the next position they move)

simultaneously. Since this tends to be the most computationally intensive

part of each time step, planning robot movements in parallel allows the sim-

ulator to take advantage of multi-core CPUs. Other events at each time

step are processed sequentially.

Environments in MRESim can be uploaded from text-based or PNG files.

The environments are occupancy grid models, with each cell being either

free or an obstacle.
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Algorithm 1 Simulation cycle of MRESim, taken from [31]

procedure simulationCycle(R)

for all ri ∈ R do

while distance moved(ri) < max speed(ri) do

nextStep = ri.takeStep();

5: if isV alid(nextStep) then

move(ri, nextStep);

. simulate sensing

rangeData = findRangeData(ri, nextStep);

ri.receiveRangeData(rangeData);

else

10: ri.setError(True);

break;
. simulate communication

for all ri ∈ R do

for all rj ∈ R, i 6= j do

if isInRange(ri, rj) then

15: ri.receiveMessage(rj .createMessage());

rj .receiveMessage(ri.createMessage());

5.1.1 Simulation cycle

In Algorithm 1 it is presented the pseudo code for a single simulation cycle

of MRESim. The sequence of decisions is the following. Each robot decides

where to move next, using the function takeStep. If the robot has a path to

its destination, it keeps following it. Otherwise, it replans its path. The ex-

ploration strategy selects the best destination for the robot and generates a

path. In order to be more efficient in selecting a destination, the exploration

strategy can use all the information known by the robot about locations of

its teammates, as well as any agreement made in previous communication

with the BS or the other robots. This information is not globally available,

but it is communicated when in range.

Once a robot has performed its step, the simulator provides sensor data

from the new location. This sensor data are generated using raytracing from

the robot’s location at 1-degree intervals for a maximum of 180 degrees with

a field of view centered around the current heading of the robot, simulating

a real laser scan. A maximum sensor range can be configured for each robot,
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Figure 5.1: MRESim when the system is employing a MH strategy. We can note that

the current frontiers at the BS (in purple) correspond to the area known by the BS (in

yellow)

allowing for heterogeneity of sensors in the team. The robot, subsequently,

turns these measurements into a polygon of free space (inner area), detect-

ing the obstacles, detected as edges of the polygon. This polygon is merged

in an occupancy grid. When two robots are within communication range of

one another, they can decide to exchange their local maps in the form of

occupancy grids.

Finally, the communication is simulated. MRESim supports a wide range

of communication models, such as the ones presented in Chapter 2, which

are static circle, Line-of-Sight, and an implementation of the Signal strength

model. In principle, messages from both robots are exchanged only when

they are sufficiently close, i.e., when the communication model predicts that

the two robots are in range.

5.1.2 Realism of the simulation

MRESim does not take into account a number of factors that a multirobot

system in the real world has to consider. The most important ones are:

• There is no sensor noise. In real settings, sensors can provide inexact

data. For instance, laser scans can have spurious measurements either

at maximum or at minimum range.

• Environments are two-dimensional and flat. In real scenarios this is

almost never the case.
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Figure 5.2: MRESim when the system is employing a RV strategy. The white area is

the portion of the enivronment known by some agents but not already communicated

to the BS

• The time is discretized. Real robots would run their own procedures,

taking different amounts of time to do the processing and would not

always move the same distance in each time segment.

• Communication is perfect. In real applications, communication is vari-

able over time and it is usually difficult to predict.

Although having some drawbacks, MRESim is a reliable tool to compare

results from different exploration algorithms, as it is stated in [31].

5.2 SwitchStrategy

We implement the switch of communication strategies inside MRESim. To

do so, we develop a new strategy which works on the top of the ones already

implemented. In MRESim, every exploration strategy is required to have

two mandatory functions, which are takeStep and replan. The robots use

these two functions to move in the environment and to plan the path to

their goals, respectively. We develop a strategy in which the output of the

planning is different based on the state in which the robots are.

In SwitchStrategy, every robot is assigned to a state. In every cycle,

a robot can be in a MultiHop (Figure 5.1) state, in a RendezVous (Figure

5.2) state, or in a Wait state. These states are assigned by the BS at the

beginning of the simulation cycle. Based on this fact, the takeStep function
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Figure 5.3: Switch from MH strategy to RV one

decides which of the already implemented functions the robot has to use.

This means that in each cycle a robot can move using a MH strategy, a RV

strategy, or it can perform no move.

Another important module of our implementation is the mechanism to

switch between different strategies. This is done inside the simulation cycle

by the BS, which is the only responsible of which communication strategy

the team employs. After the simulated communication, the BS compares

the two parameters, α and β, with the current exploration progress. If the

conditions for a switch of strategy are met, the BS reopens the communica-

tion channel and sends its decision to the robots connected. In the case of a

switch from MH strategy to RV strategy, shown in Figure 5.3, the BS alerts

the robots to switch their state to RendezVous and, starting from the next

cycle, the team employs a RV communication strategy.

The opposite case, from a RV strategy to a MH strategy, is shown in

Figure 5.4. The BS alerts all the robots that are in its communication range

to switch their state to Wait. The robots in this state stop their current

task and move back to the BS until they are in communication range and,

then, they do not move. The BS keeps sending this message in the following

cycles, until all the robots are in range and in a wait state. When the team is

finally reunited, the BS send a message to switch the state to MultiHop, al-

lowing the replan of the deployment of the robots in a MH strategy starting

from the next cycle. If the system employs the second communication chan-

nel, the BS broadcasts over such channel the signal to switch their states to
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Figure 5.4: Switch from RV strategy to MH one

Wait. The robots go back to the BS and then wait that all members of the

team regain connection.



Chapter 6

Experimental results

In this chapter we present the experiments performed in order to evalu-

ate the performance of our approach. We start by illustrating the setting

in which our experiments have been made. Then, we explain our evalua-

tion procedure as well as the fixed and variable parameters in the evaluation.

6.1 Experimental settings

Among the different possible settings, we decide to use a multirobot simula-

tor to evaluate the performance of our approach. The simulator we choose

is MRESim, which has been introduced in the previous chapter. This choice

has been made because, despite not giving a completely realistic simulation,

MRESim is a well suited tool to compare different exploration strategies.

We choose to focus our attention on a specific type of environment, in or-

der to comply with the prediction of the environment area made in Chapter

4. We decide to focus our attention on indoor environments, in particular

school buildings, taken from the dataset used in [15]. The dataset contains

the original floor plan of every environment. Since MRESim accepts only

text files or PNG files with predefined dimensions as its environments rep-

resentation, we convert the original floor plans in images of 800×600 pixels.

Based on this definition of the environment, we define our multirobot

system. We have a team composed by a fixed number of robots, which is

6, and a Base Station. The robots have simulated laser scan sensors, whose

data are given in input to the SLAM modules (which is explained in Section
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Figure 6.1: Environment westasheville

3.2), with a range of 90 pixels and a field of view of 120 degrees. The BS, on

the contrary, is not equipped with any sensors and relies on the robots to get

information from the environment. The robots and the BS are also equipped

with two simulated RF communication systems. The first, which is the one

the agents use to communicate standard information, has a maximum range

of 90 pixels and employs a Signal strength communication model, which

is constrained to a LoS model with the same range when the MH strategy

computes the deployment of the robots. The second communication channel,

which is the one the BS uses to broadcast the regroup information, employs

a Static Circle communication model with a range of 800 pixels, in order to

be sure to reach all the robots at the same time.

Given the fixed maximum size of the environments in the simulation, this

setting is static throughout the experiments. In real cases, however, given

the different dimensions of the environments, the same values in pixels can

represent sensors and RF transmitters with different ranges in real environ-

ments. We do not consider this fact a limitation of our results, because the

goal of these experiments is to investigate a conjecture made in [1] that is

given based on a general multirobot system.

During the exploration we keep track of the information logged by the

robots and the BS. Firstly, we log the data about the percentage of area

explored by each robot, as well the percentage of the area known to the BS

at each time step., at each time step. We use this information to evaluate

the time taken to fully provide knowledge of the entire environment to the

BS, for every simulation run. Secondly, we keep track of the distance trav-

eled by the robots at each time step. At the end of exploration, the total

distance traveled by the system is the sum of the distance traveled by every
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Figure 6.2: Environment indianhead

robot. At last, we log the incremental time not in communication with the

BS for every robot. This is defined as it follows. At any time step, if the

robot is not in communication with the BS (either in direct communication

or by means of other teammates which serve as relay), its time not in com-

munication is incremented by one. At the end of the exploration, we want

to analyze the mean time not in communication at every time step.

6.2 Evaluation procedure

Given the fact that we consider the metrics discussed above, which are the

time taken to explore the environment, the time not in communication with

the BS, and the total distance traveled by the robots, we decide to structure

our evaluation procedure in the following way.

The main question we should answer from a design point of view is which

value of α and β are best suited for a particular environment. We choose a

set of pair (α, β) taken from the interval (0; 1] with a fixed step of 0.1. This

procedure is employed for all the different prediction models, including the

perfect oracle. This method is then replicated using the second communi-

cation channel.

We present the result using heatmaps, in which every pair of α and β

corresponds to a point in the heatmap. We group the simulation runs based

on the environment and the prediction model. We, also, normalize the re-

sults in order to extract comparable figures between different environments.

We use a conventional color code for our heatmaps, using a gradient that

varies from green to red, through yellow. The meaning is that the results
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Figure 6.3: Environment henderson

in the green area are the best for that metric, while a red color means that

the performance is negative with respect to the other results on that envi-

ronment. We also extract average performance of the strategy, combining

all the different environments.

The normalization procedure of the results works as follows. For every

performance metric we collect the logged data from the simulations on every

pair (α, β). Then, we compute the maximum and the minimum value among

all the prediction models and normalize the performance for any pair of

parameters in the interval [0; 1] in the following way:

rn =
r −min(R)

max(R)−min(R)
(6.1)

where R = {RP , RM , RBB, RE} represents the set of all the results for every

pair (α, β) with every model for a given metric, and r ∈ R is the results for

a given pair (α, β). Then, the average performance for all the environments

is computed in a similar way, summing the results for every environment

explored and then normalizing them in the same way.

6.3 Parameters

Before starting any simulated exploration run, the system needs to receive

several inputs to set some fixed and varying parameters in MRESim. Most

of them are used to set thresholds required by the communication strategies

the system employs. The fixed parameters are:

• Target Information Ratio: as we already presented in previous

chapters, this is used by the RV strategy to decide when the robots
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should go back after they explore a portion of the environment. In

[30], the authors show that the performance of a system employing

this strategy are better or at least comparable with the performance

of an explicit RV strategy. We choose a value of targetInfoRatio of

0.80 because it is a good balance between pushing the exploration

farther and maintaining a periodic connection with reasonably short

time interval.

• Replanning Threshold: this parameter is meant to be used when

the system is employing the MH strategy. It represents the minimum

number of robots in ready state (i.e., that have reached their destina-

tions) that the BS has to wait before replanning. We choose to set

this parameter to 1, meaning that the BS computes a new deploy-

ment as soon as only one robot is ready. This value has been chosen

based on the observations in [5], where the authors state that, with

this replanning threshold, the system has the best performance.

• Communcation parameters: here we group all the parameters re-

lated to the Signal strength model and the LoS model introduced in

Section 3.2. For the Signal strength, as reference distance d0 we choose

the maximum distance at which two agents can communicate, which

is 180px. The signal strength at the reference distance Pd0 is equal at

−92 dB. Our path loss factor N is equal to 2 and the maximum number

of walls C is equal to 4. Finally, we choose a wall attenuation factor

WAF of 3. For the LoS model employed during the MH strategy, we

choose as maximum distance d for the communication the maximum

range at which two agents can communicate, which is 180px.

Moreover, for every simulation we have a pair of parameters, which are

α and β, that vary from a simulation run to another. We decide to model

this behavior imposing that these pairs must have a feasible assignment,

α < β, reflecting the conjecture proposed in in [1] where the MH strategy

must come before the RV strategy. We choose to have values that can only

vary with a fixed quantity. We use a fixed step of 0.1, because it gives us

a good flexibility in terms of coverage of the values in the interval (0; 1],

without having too much simulations to run.

With the area estimator from prediction error we add two more parame-

ters which are the number of samples m used to compute the median and the

time interval Ts between two consecutive check for a switch at the BS. We fix

the time interval as half of the buffer size for every simulation, Ts = bm/2c.
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Figure 6.4: Environment scuola

6.4 Results

In this section we present extensively the results obtained by our method.

Before doing this, we contextualize some important definitions about the

chart we display. As it was stated before, our results will be presented using

heatmaps, which have a color convention to represent the performance of

the system according to a pair of parameter α and β. In the heatmaps, we

can find important points which can be used to have a better understanding

of the results. In the top left corner, we find the performance for the simula-

tion with α = 0.1 and β = 1.0, which can be seen as a full RV strategy, since

the first switch is extremely close to the beginning of the simulation and the

second one is never employed. On the bottom left corner (and more in gen-

eral on the diagonal), we find results where the pair of values is in the form

β = α+ 0.1. These simulations have the same behavior of a full MH strat-

egy, because the parameters have similar values and the RV strategy behaves

more like a few random steps in the environment, rather than a structured

exploration strategy. We state that, whichever prediction model we use, the

pair (α, β) = (0.1, 1.0) and pairs (α, β) = (k, k + 0.1), k ∈ [0.1; 0.9] are the

performance bounds of our strategy.

6.4.1 Perfect oracle model

We start to present our results showing the performance of the system when

the switch is driven by a model where the predicted area of the unexplored

environment is the real area. This means that the estimate gives no error.
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Figure 6.5: Average performance of the perfect model

Although not being applicable in settings where it is not possible to know

the area of the environment a priori, it is useful to test the performance of

the system against possible different communication strategies. It also gives

us baseline results which can be useful to compare the different prediction

models we employ.

In Figure 6.5, we present the average results for the three performance

metrics we take into account for the perfect oracle. The first thing we can

note is that we have two conflicting results to optimize, as we already said

in Chapter 3. These are the time taken to explore the environment and the

time not in communication between the robots and the BS. We also note

that the distance traveled seems to follow the same behavior of the time

taken to explore the environment.

Focusing on the time taken to explore the environment and on the dis-

tance traveled, we note that the best performance is provided by strategies

where there is a notable difference between the values of α and β. We can

say that the best results come in the interval of α ≤ 0.5 and β > 0.7. We

view these results as a consequence of the fact that, for these values, the

RV communication strategy is dominant, allowing the robots to explore the
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environment faster than using the MH strategy to communicate.

The best performance and our lower bound is indeed the pair of values

(0.1, 1.0), while the worst ones (i.e., upper bound) are when the difference

between the parameters is minimal, (α, α+ 0.1). This prove our hypothesis

that the performance of our approach is in the middle between a pure MH

strategy and a pure RV one.

Analyzing the second performance metric, which is the distance traveled

by the group of robots, we find that it is somewhat similar to the time taken

to explore the environment. This cannot be considered a surprising result,

because the more time the system needs to explore the environment, the

longer the robots have to travel. As a consequence, that trying to minimize,

with our composed strategy, either the time taken to explore the environ-

ment or the distance traveled, affects in a positive way the other metrics.

Focusing on the last metric, which is the time not in communication

between the robots and the BS, we find a complete different scenario. Here,

the results obtained are the inverse of those relative to the time taken to ex-

plore the environment, which means that we cannot optimize both of these

performance metrics, but we should find a trade-off between the two.

This conflicting nature is widely observable if we focus our attention on

the upper and lower bound on this last performance metric. The best results

are obtained with lower values of both α and β. This behavior reflects the

fact that the strategy that optimizes the time not in communication is the

MH strategy, where the communication is enforced to be almost continuous.

In Figure 6.6, a comparison is made between a system with the second

communication channel (Figure 6.6b) and a system without it (Figure 6.6a).

On the top the average time taken to explore the environment is reported,

while on the bottom it is reported the time not in communication between

the robots and the BS. Focusing on the latter one, we can notice that the

second communication channel gives the system a slight, but significant, re-

duction in the time the robots are disconnected.

This behavior happens because, when the BS broadcasts the alert mes-

sage to regroup to the robots,they immediately go back to the BS and, by

doing so, minimize the time required to establish again a complete con-

nection among the while group. Such improvement, given by the second
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Figure 6.6: Comparison between time taken to explore the environment (top) and time

not in communication (bottom), using the second communication channel (b) or not

(a)

communication channel, seems to be greater when parameters are in the

range α ≤ 0.4 and β ≤ 0.7.

Moreover, using a second communication channel in this way seems not

to have particular influence on the time taken to explore the environment.

As a matter of fact, the results with or without the second communication

channel are almost identical. Given these facts, it seems that using a sec-

ond communication channel does not affect the performance of exploration,

while reducing the average time the robots are disconnected using a better

regrouping capability.

6.4.2 Bounding box estimator

The second model we investigate is the bounding box estimator. As we

stated in Section 4.2.2, this prediction model is the simplest we utilize and

it is essentially an overestimate of the actual area of the environment. Due

to this fact, the performance can be completely different from the perfect

oracle.
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Figure 6.7: Average performance of the bounding box model

In Figure 6.7, we show the average normalized performances of the

bounding box model. Focusing on the time taken to explore the environment

and the total distance traveled by the team, we can note that they behave in

a similarly to each other and minimizing one of them yields good results also

for the other. The first observation we can state is that, in this case, the area

in which the system yields better results (namely, the green area) seems to

be larger with respect to the perfect oracle model. Also, this area is slightly

moved from values where the RV strategy is predominant (for instance the

strategies with α low and β = 1) to pair of values when α < 0.5 and β ≥ 0.6.

These results seem to confirm that the bounding box model performs

good with combinations of parameters. Consider that the bounding box

model overestimates the environment. This overestimate is translated, in

terms of switch of communication policy, to an overestimate of the switch-

ing parameters. In this case, when an exploration run is approaching to

discover the whole totality of the environment, the estimator can state that

the percentage of the environment explored is much smaller than i actually

is. This leads to never employ the second MH strategy, because the thresh-

old β is never met by the estimated percentage of the area.
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Figure 6.8: Comparison between time taken to explore (on top) and time not in com-

munication (on bottom) of two environments. (a) is Figure 6.4 and the bounding box

estimator slightly overestimates the actual area. (b) is Figure 6.1 and the bounding

box estimator is less efficient in predicting the actual area

Focusing on the time not in communication, we can observe the same

problem of the other metrics. The best results are yielded in the top right

corner and in the bottom left one. This follows the previous observation

on thresholds that are never reached. For instance, the best performance is

yielded with α = 0.9 and β = 1, because this strategy, using the bounding

box estimator, is behaving as a pure MH strategy, in which the time not in

communication is always optimized.

With the bounding box estimator, finding a suitable trade-off, between

the time taken to explore the environment and the time not in communica-

tion between the robots and the BS, seems to be very difficult, because the

pairs of parameters that have suitable performance for all the metrics are

hard to find.

In order to confirm this hypothesis, we investigate the difference that

can be found in a set of different single environments. In Figure 6.8, we

compare the results on two different environments with respect to the time
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taken to explore the environment and the time not in communication. In

Figure 6.8a, we have an environment (Figure 6.4) where the bounding box

estimator seems actually able to give a good prediction of the actual area.

In Figure 6.8b, the model overestimates the actual area of the environment

(which is presented in Figure 6.1).

We can notice that the results seem to be very different in the two envi-

ronments. In particular, it seems that, the more the prediction overestimates

the total area of the environment, the more freedom we have in selecting

values for the parameters without penalizing too much the time taken to

explore the environment. When we analyze the time not in communication

between the robots and the BS, it seems that we have different results based

on how much the prediction is wrong. With a bigger error, the best re-

sults are given by values of α, β ≥ 0.5, while, when the error is smaller, the

heatmap resembles the results of the perfect model. This behavior seems

to confirm the hypothesis that the overestimate of the predicted area leads

to a set of scenario where the parameter β is never reached, causing better

performance related to exploration time, but negative one in maintaining

connection with the BS.

Furthermore, we want to investigate wether the peculiar features of the

environment can affect, rn not, the prediction obtained using the bounding

box estimator. We choose to analyze the shape of the environment because

it is the most important feature the model takes into account.

In Table 6.1, we present the average prediction error of the bounding box

model on different shapes of environments. The results show that, as long as

the environments have a rectangular shape, the bounding box model returns

a prediction of the area that is a slight overestimate of the real value, and

so we can consider this estimate as reliable. When the shape of the environ-

ment starts to be more complex, the error of the prediction increases and

the estimate becomes less reliable. This can lead to say that the bounding

box model is a reliable estimator only if we have rectangular-shaped build-

ings because, in these situations, it tends to return a slight overestimated

prediction of the actual area of the environment.
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Shape

Rectangular T-like H-like

Avg. error (%) 28.41% 102.54% 48.74%

Table 6.1: Average prediction error for different shape

6.4.3 Mean area estimator

The next model we investigate the performance of is the mean area estima-

tor. Recalling what we have said in Chapter 4.2.3, the mean area estimator

gives a prediction of the actual area of the environment computing the mean

area over a dataset. This type of estimate is certainly affected by the outliers

of the dataset, but it is fairly simple to compute and implement.

In Figure 6.9, it is presented the average performance in terms of time

taken to explore the environment, distance traveled by the robots, and time

not in communication between the robots and the BS. Focusing on the time

taken, the behavior we notice is that, on average, the system seems to have

better results when parameter α has a low value, while β is close to 1.0.

The worst performances, on the other side, are when the system employs a

strategy similar to a full MH one (i.e., the pairs of values on the diagonal).

These results seem similar to those of the perfect oracle and they seem to

confirm the goodness of this model in predicting the area of the environment.

Considering the distance traveled we can see that the area where the system

performs better resembles that in which the time taken to explore is better.

With respect to the time not in communication between the robot and

the BS, we find that the system has good performance with most of the

values for the parameters. Specifically, the he set of experiments where the

performance is worst is very limited to situations where α has a low value

(≤ 0.4) and β is exactly 1.0, that is where the system behaves more similarly

to a plain RV strategy, instead of a mixed one.

With this specific model, it seems that it is easier to find values that can

represent a good trade-off between the need to explore the environment as

fast as possible and the need to maintain a connection as stable as possi-

ble. Without being the best in any of the metrics, values like α = 0.4 and

β = 0.8, seem to reach good performance in both of them, sacrificing some

speed in exploring the environment to maintain a better connection between

the robots and the BS, and vice versa.
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Figure 6.9: Average performance of the mean area estimator model

Furthermore, given the nature of the model, we want to analyze perfor-

mance obtained on specific environments in extreme cases. The aim is to

verify how much the model can be trusted when the estimate made turns

out to be substantially wrong. In Figure 6.10, a comparison is made be-

tween different exploration runs on two environments. Figure 6.10a shows a

setting (Figure 6.2) in which the mean area estimator is actually an overes-

timate of the real area of the environment, while in Figure 6.10b, the model

underestimates the actual value of the area of the environment (which is

presented in Figure 6.3).

Comparing the results found, we observe different behaviors. When the

mean area estimator returns a value that overestimates the real value of

the area of the environment, the results seem to be similar to those of the

bounding box estimator. A significant number of different pairs of values of

the parameters returns performance closer to the best one, if we consider

the time taken to explore the environment. When we take into account the

time in disconnection with the BS, the majority of the pairs analyzed yield

an overall negative performance. This behavior seems to recall the bounding

box estimator and they are actually quite similar. In both cases it happens
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Figure 6.10: Comparison between time taken to explore (top) and time not in communi-

cation (bottom) of two environments (Figures 6.2 and 6.3), using mean area estimator

that, due to the fact that the prediction is an overestimate of the actual area,

the system never switches from the RV strategy to the MH one, resulting in

faster overall exploration, but losing connectivity with the BS.

On the contrary, when the model underestimates the actual area of the

environment we have a completely different behavior. In terms of speed of

exploration, the best results are essentially with pairs of parameters where

β = 1.0, while the others are generally negative. Considering the time not

in communication between the robots and the BS, the result is the opposite.

Only simulations where β = 1.0 have a negative performance relatively on

this metric, while pretty much all the other pairs yield good results. The

behavior can be explained as follows. Because of the fact that the mean

area estimator gives a prediction that actually underestimates the real area,

the system anticipates the time of the switches. As a matter of fact, the

switch from the RV strategy to the MH one happens before it is supposed

to happen and this fact leaves more time to the robots to operate in MH

strategy, allowing the whole team to be more connected with the BS. The

only simulations that are not affected by this behavior are the ones when

the RV strategy is not required to switch back to the MH one, because the

parameter β is set to 1.0.
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The considerations made on single environments shows that the mean

area estimator seems to be a reliable model on average, which has simi-

lar performances to the perfect oracle in terms of time taken to explore

the environment and disconnection with the BS. In most of the cases, it

seems that is possible to find a good trade-off between the two metrics. On

the other side, the model seems to show its weakness when the environment

it deals with a completely different size with respect of the dataset analyzed.

6.4.4 Area estimator from prediction error

The last model we analyze is the area estimator from prediction error. This

model differs from the previous one because it does not return a fixed value

at the beginning of the exploration. Instead, it computes, at each time step,

a new estimate of the total area of the environment using a prediction of

the absolute error made in estimating the area.

To do so, we star from a method that is able to predict the total area

of the environment given a partial exploration, [14]. Such method requires

a semantic map of the environment to compute the prediction of the area.

In order to approximate the application of such method without the burden

of having to calculate the complete semantic map, we model the perfor-

mance of the method while estimating the area. This is done, as explained

in Section 4.2.4. by fitting a neural network, which, from a set of inputs

of punctual absolute error on a given percentage of exploration, (p, ε(p)),

extracts a model of the error ˆε(p) that can, reasonably, be performed by

the method [14] on estimating the area. Then, it predicts the value of the

area sampling with this error in an uniform interval around a goal area and

returns the actual estimate computing the median on the last m samples.

Figure 6.11 presents the average normalized performance for the error

estimator computing the median on the last 70 samples. What we can ob-

serve from the results is the following. If we analyze the time taken to

explore the environment, there seems to be a clear distinction between the

pairs of parameters that perform negative and the ones whose performance

is good. We could place the separating line on β ' 0.6 and state that every

combination of parameters (α, β),with ≥ 0.6 has performance close to the

best one. This result could be explained as follows. Using the median on

the last m samples along with the fact that the system checks if it has to
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Figure 6.11: Average performance normalized for the area estimator from prediction

error using the median on the last 70 samples

change communication strategy every Ts cycles instead of every time step,

creates a system that is less reactive in adapting to a possible switch of

communication strategy.

Considering the time not in communication between the robots and the

BS, the same behavior observed before appears. In fact, also with this met-

ric, it is possible to quite clearly bound the set of simulations in which the

system has the best performance against the one in which the system has

the worst one. Here we can place the separation at 0.5 ≤ β ≤ 0.6. All the

pair of values above this line have negative to worst performance in terms of

communication capabilities, while the others yield good results. This seems

to reinforce the hypothesis above, i.e., this setting results into a system less

reactive on possible changes of the communication strategy.

In order to further investigate this issue, we run simulations where the

length of the buffer in which we store the samples varies and we compare

their normalized results. Figure 6.12 presents a comparison between a pre-

diction error estimator with a median on 70 samples (Figure 6.12a) and a

median on the last 30 samples (6.12b). Considering the time not in commu-

nication, when the model uses less samples to compute the predicted area
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Figure 6.12: Time taken to explore the environment (top) and time not in communi-

cation (bottom) for different sample’s buffer size, using area estimator from prediction

error model

of the environment, the system has slightly worse performance with respect

to the situation when the buffer size is bigger. The line delimiting the good

and negative performance is similarly placed (β ' 0.4). Considering the

time taken to explore the environment, it seems that using a larger buffer

to store the samples results in slightly better performance overall. Even if

using a smaller buffer seems to help on lower values of parameters, the best

performance in this metric are given by a larger size buffer.

This pattern seems to be confirmed throughout the experiments. As

a matter of fact, it seems that reducing the size of the buffer affects the

performance too. As we include less samples in the buffer the performance

degrades until a limit point in which the prediction becomes noisier and it

might happen that consecutive predictions yield opposite results. In that

case, the system is stuck in a loop. For instance, considering the limit case

of a single element buffer and checking for the switch at every time step,

we could have situations in which the system keeps switching strategy be-

tween MH strategy and RV one and vice versa, because the predicted area

is floating around one of the switch parameter. This loop can eventually be

resolved or continue.
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Adding samples to the buffer and computing the median, along with

checking for the switch not each time step, seems to partially solve this

issue, but at the same time it introduces the drawback of a system less

responsive to the switching condition. Moreover, computing the median is

useful to filtering noisy data, but, at the same time, if the error is high

(like in some of our simulations), limiting the effect of a number of mispre-

dicted samples becomes more difficult. Therefore, it seems necessary to find

a suitable number of samples that can work as a trade-off between avoiding

possible loops and using too many samples. We find that in our settings a

good choice is between 30 and 70 samples in the buffer with checking for

switch every 15 to 35 cycles.

The combination of this model and our policy seems not to work com-

pletely flawless. Using the percentage of area explored to choose when the

system has to switch between different communication strategies, along with

a prediction of the total area of the environment dependent to exploration

progress might lead to the aforementioned issue with never-ending loops.

6.4.5 Models comparison

After having presented the performance obtained with all the models, we

want to compare them to see how they perform against each other. We

use as baseline for the comparison the perfect oracle. Doing this, we can

evaluate how much the models differs from the perfect setting.

We start by comparing the perfect oracle model with the bounding box

estimator. Looking at Figure 6.5 (perfect oracle) and Figure 6.7 (bounding

box estimator), it seems that using the bounding box estimator gives the

advantage of having more pairs of values of parameters that perform better

with respect to the perfect model when the need is to be quicker in exploring

the environment. Because of the fact that the model returns an overesti-

mate we are less constrained in choosing α and β to have a good performing

system. When we take into account the time not in communication and the

need to maintain the robots connected with the BS, this model seems to

show its weakness, performing significantly worse than the perfect oracle,

due to the overestimate of the area of the environment. This model has

an edge, however, when the environments has a rectangular dense shape,

like shown in Figure 6.8a, where it seems to yield a similar, if not better,
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performance than the perfect oracle.

Considering the performance of the mean area estimator (Figure 6.9)

against the perfect model, it seems that the mean area estimator has an

overall performance that is similar to the perfect one. The area in which

they perform well has a similar shape and spans relatively on the same pairs

of values for the parameters α and β. Moreover, it seems that the mean

area estimator can be a good choice if we want to have a trade-off between

the speed in exploring the environment and the need to be connected to

the BS. However, even if the general performance is similar to the baseline,

the model shows its weakness in extreme cases. As a matter of fact, when

the area of the considered environment is close to the estimated mean, the

model predicts in a good way the real outcome, while, as it is shown in Fig-

ure 6.10, when the considered environment has an actual area that deviates

from those present in the dataset used to train the estimator, the model has

difficulties. Overestimating or underestimating with this model seems to be

an issue to deal with.

When we consider the area estimator from prediction error (Figure 6.11)

against the perfect model, different considerations can be made. Before

starting comparing the models, we must choose the number of samples m

that should be stored when making the prediction and the interval Ts the

system uses to check if it has to switch communication strategy. The choice

of these two additional parameters adds further complexity to the system

and changes the behavior of the proposed policy. If the choice is not wise,

we can experience issues with loops switches between a strategy to another

and back. When a suitable number of samples and time interval are chosen,

the results shows that this model seems to perform well considering the time

taken to explore the environment, because the less reactivity of the whole

system is translated in more freedom of exploration which results in faster

exploration progress. The model might not perform good in terms of con-

nection between the robot and the BS, where only a small number of pairs

of values of parameters α and β maintain a connection of similar quality to

the best result in the perfect model.

Comparing the models to each other, it emerges that each of them can

address specific situations. The bounding box model seems to be useful when

no data are available on the type of building and the robots cannot utilize

previous knowledge such as dataset, but only aerial pictures of the area. The

mean estimator seems to be a good choice when the system has a previous
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knowledge in terms of type of building it is visiting. The area estimator from

prediction error can be useful if the we can limit the variance of the samples

and the noise on the prediction, resulting in a fast but less connected system.

Lastly, we want to summarize what we have found about the second com-

munication channel. Throughout the experimental session we employ the

second communication channel in addition to the normal one. The results,

like in Figure 6.6, seems to show that, overall, using a second communica-

tion channel, to alert the robots of an imminent switch, has an edge in terms

of improving connection capabilities. The robots stay connected for more

time with the BS, while maintaining similar performances in terms of time

taken to explore an environment. Given these facts, it seems that the second

communication channel should be employed when there is the possibility. A

possible drawback of employing it is that it could be an expensive addition

to a multirobot system and therefore it cannot be applied to all the possible

settings.
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Chapter 7

Future work and conclusions

This thesis has investigated a possible solution to trade-off between con-

flicting objectives in multirobot systems that have to explore an unknown

environment as fast as possible while trying to be as much connected as

possible to a Base Station (BS) placed at starting position of the group.

We followed the hypothesis suggested in [1], according to which, in such a

multirobot system, different communication strategies work well in different

phases of the exploration. Specifically, a Multi-hop communication strategy

(in which robots have to maintain a continuous connection with the BS)

should be employed at the beginning of the exploration, followed by a Ren-

dezvous one (in which the robots are required to report to the BS only from

time to time) in the middle of the task, and finally concluding with a Multi-

hop strategy. After having formulated the problem a multirobot exploring

system addresses, we designed a general policy in which the switch between

two communication strategies is based on the exploration status. Then, we

instantiated a solution in which the switch between the Multi-hop strategy

and the Rendezvous one is done according to an estimate of the percentage

of the area of the environment already explored. We modeled the unknown

total area of the environment with a bounding box model, a mean estimator

(calculated on a dataset), and a prediction of the error between the estimate

of the area and the actual one during previous estimate. Moreover, we ex-

tended the system to work with a second communication channel, that acts

as a synchronous broadcast channel for the group.

The experimental evaluation has been conducted using MRESim to sim-

ulate a multirobot system in an exploration setting. These experiments have

been performed in numerous indoor environments taken from a dataset of
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schools and have evaluated our prediction models against a perfect oracle.

The results showed the following behaviors:

• The bounding box estimator seems to be a good method when no data

are available on the type of environment and the robots cannot utilize

previous knowledge such as datasets, but only aerial pictures of the

area. Even if the predictions made are always an overestimate of the

actual area, the method is not restrictive on the choice of the parame-

ters. The possible drawback seems to be the negative performance on

maintaining the connectivity of the team.

• The mean area estimator seems to be a good model when the system

has some sort of previous knowledge on the type of environments it has

to explore. To maximize its performance, a dataset as homogeneous as

possible is required. Under this condition, this model achieves similar

results as the perfect oracle model.

• The area estimator from prediction error might be useful if we are able

to manage the complexity introduced by the samples’ buffer and the

time interval after which the switch is checked. If, with an accurate

choice of the values for these two parameters, the system can limit

the variance of the samples and the noise of the prediction, the model

yields good results in terms of time taken to explore the environment.

In general, however, the combination of a switch and a prediction both

dependent on the exploration progress can cause failure in the system.

• Using a second communication channel can help the system to re-

duce the time not in communication between the robots and the BS,

enabling faster switches between RV strategy and MH strategy. How-

ever, its deployment it is not always possible due to peculiarity of the

environment or an excessive cost for the infrastructure.

Overall, the experimental evaluation has shown that a composition of com-

munication strategies, although not being the best in any performance met-

rics, might be considered a good all-around communication strategy when

the goal is to optimize multiple metrics, such as exploring the environment in

less time as possible while trying to maintain a reliable connection to the BS.

In order to confirm our findings, further work is needed. We list here

possible future works for our system.

• Extension of the policy: in this work we analyzed a specific policy,

based on the percentage of the total area explored, for switching be-
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tween different communication strategies. An extension, following the

general function presented in Chapter 3, is possible, allowing to work

with an arbitrary number of switches and with conditions different

from the area of the environment. This could lead to a more general

framework for mixed communication strategies.

• Employing other prediction models for the total area of the

environment: the prediction models presented here are simple mod-

els used to verify our initial hypothesis. Different prediction models

for the total area of the environment could be used and analyzed.

• Extension on the team composition: this thesis has extensively

analyzed a system with a fixed number of homogeneous robots. Fu-

ture work can explore different initial team configurations as well as

heterogeneity among the team to split the exploration effort based on

the capabilities of different agents.

• Second communication channel: future work can more extensively

investigate the topic of using a second communication channel to make

the team more responsive in switching, building on the preliminary

results we have found.
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[17] Óscar Mart́ınez Mozos. Semantic Labeling of Places with Mobile Robots.

Phd thesis, Albert-Ludwigs-Universität Freiburg, 2008.

[18] Hoa G. Nguyen, Narek Pezeshkian, Anoop Gupta, and Nathan Farring-

ton. Maintaining communication link for a robot operating in a haz-

ardous environment. In Proc. ANS 10th International Conference on

Robotics and Remote Systems for Hazardous Environments, volume 10,

pages 256–263, 2004.
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Appendix A

Further environments used

Figure A.1: Environment battlecreekhs
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Figure A.2: Environment herndon

Figure A.3: Environment plans
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Figure A.4: Environment rockisland

Figure A.5: Environment scuolasconosciuta
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Figure A.6: Environment vipiteno
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