
i
i

“thesis” — 2017/4/6 — 17:13 — page 1 — #1 i
i

i
i

i
i

POLITECNICO DI MILANO

SCUOLA DI INGEGNERIA INDUSTRIALE E DELL’INFORMAZIONE

COMPUTER SCIENCE AND ENGINEERING

MASTER’S THESIS

ENERGY-AWARE RUN-TIME MANAGEMENT OF

DISTRIBUTED MOBILE DEVICES

Author:

dott. Michele Zanella

Student ID (Matricola):

836604

Supervisor (Relatore):

Prof. William Fornaciari

Co-Supervisor (Correlatore):

Ph.D. Giuseppe Massari

A.Y. 2015/2016

i
i

“thesis” — 2017/4/6 — 17:13 — page 2 — #2 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 1 — #3 i
i

i
i

i
i

Beauty is more important in
computing than anywhere else in
technology because software is so
complicated. Beauty is the ultimate
defence against complexity

David Gelernter

Di imparare non si finisce mai, e quel
che non si sa è sempre più importante
di quello che si sa già

Gianni Rodari

i
i

“thesis” — 2017/4/6 — 17:13 — page 2 — #4 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page I — #5 i
i

i
i

i
i

Contents

List of Figures III

List of Tables IV

Acknowledgment V

Abstract (Italian version) IX

Abstract X

1 Introduction 1
1.1 The era of mobile devices . 1
1.2 Distributed systems . 6
1.3 Mobile devices and Pervasive Distributed Computing System . . 10
1.4 Android Operating System . 13
1.5 Thesis structure, novelty and contribution 18

2 State of the Art 21
2.1 Mobile distributed computing approaches 21
2.2 Computation offloading for mobile systems 27
2.3 Run-time resource management 33

3 System Design 37
3.1 Capability model . 37
3.2 The application profiler . 41
3.3 The proposed management model 43

I

i
i

“thesis” — 2017/4/6 — 17:13 — page II — #6 i
i

i
i

i
i

Contents

4 Integration with the BarbequeRTRM 49
4.1 The BarbequeRTRM . 50
4.2 The proposed architecture . 53
4.3 BestWing distributed device selection policy 66
4.4 Android BarbequeRTRM API 71
4.5 Application launching schemes 73

5 Experimental Results 79
5.1 Introduction . 79
5.2 Results . 87

6 Conclusions and Future Works 111
6.1 Conclusions . 111
6.2 Future works . 113
6.3 Future improvements . 117

Appendices 119

A Android 119
A.1 Android manifest . 119
A.2 Android Features model . 121
A.3 Android Service . 122
A.4 Android system information and control 124

B GoogleRPC 127
B.1 Protocol Buffers . 127
B.2 GRPC . 128

C Listings 133
C.1 BarbequeRTRM AgentProxy gRPC interface 133
C.2 Android BarbequeRTRM API 135

Bibliography 141

II

i
i

“thesis” — 2017/4/6 — 17:13 — page III — #7 i
i

i
i

i
i

List of Figures

1.1 Transistor counts for integrated circuits Moore’s Law 2
1.2 Maximum clock frequency and number for smartphones trend . . 5
1.3 Advertised hosts growth in DNS 8
1.4 Distributed system layers . 9
1.5 Pervasive Distributed Computing System 12
1.6 Android software stack . 14
1.7 Android processes and tasks management 15
1.8 Application’s Activity class diagram 16
1.9 Android Power Management architectures 17

2.1 DPartner: on-demand remote invocation design pattern 29

3.1 Capability definition . 38
3.2 Application profiler workflow 41
3.3 Capabilities and application management model 44
3.4 State diagram of a managed Android application 46

4.1 RTLib Abstract Execution Model (AEM) 51
4.2 The proposed architecture of the BarbequeRTRM 54
4.3 Users, applications and BarbequeRTRM modules interaction . . 56
4.4 Applications enabling and registering 58
4.5 Distributed topologies . 62
4.6 BarbequeRTRM distributed architecture 63
4.7 BarbequeRTRM Hardware Platform Integration Layer architecture 64
4.8 Battery scaling function . 68

III

i
i

“thesis” — 2017/4/6 — 17:13 — page IV — #8 i
i

i
i

i
i

List of Figures

4.9 Energy Consumption Index values 69
4.10 Barbeque Service and proxy API class diagram 71
4.11 Applications remote launching 75
4.12 Simple Client-Server game scheduling 77

5.1 Cpufreq file structure . 81
5.2 Device power setup . 83
5.3 Benchmarks energy consumption trend 88
5.4 MobileXPRT2015 Applications EDP models comparison 93
5.5 PCMark 2.0 Applications EDP models 94
5.6 Nexus 5 benchmarks models error 95
5.7 Odroid-XU3 benchmarks models error 96
5.8 Image processing applications EDP model 97
5.9 Image processing applications model error 97
5.10 Video processing applications EDP model 98
5.11 Video processing applications model error 98
5.12 Energy efficiency in battery discharging and voltage trends . . . 100
5.13 Policy effects on device lifetime and execution performance . . . 101
5.14 BestWing selection process time composition 108
5.15 Time composition of specific policy steps 109
5.16 Device selection policy scalability 110

6.1 Application partitioning . 114
6.2 Application tasks offloading . 116

A.1 Android Service lifecycle . 123

B.1 Google gRPC overview . 128

IV

i
i

“thesis” — 2017/4/6 — 17:13 — page V — #9 i
i

i
i

i
i

List of Tables

1.1 Desktop and notebook Personal Computers CPUs specifications . 4
1.2 Smartphones SoC and CPUs architecture specification 6

2.1 Offloading tools partitioning level and process 28

3.1 Capabilities and Android features mapping 42

5.1 Software information of tested devices 80
5.2 Nexus 5 benchmarks pseudo-applications EDP measurements . . 90
5.3 Odroid-XU3 benchmarks pseudo-applications EDP measurements 90
5.4 Measurements standard deviation range 91
5.5 Device lifetime and performance speed-up measurements 102
5.6 Devices setup in policy execution test cases 104
5.7 Applications for the policy execution test cases 104
5.8 Scenarios for the policy execution test cases 104
5.9 Policy execution test case 1 . 105
5.10 Policy execution test case 2 . 106
5.11 Policy execution test case 3 . 107

V

i
i

“thesis” — 2017/4/6 — 17:13 — page VI — #10 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page VII — #11 i
i

i
i

i
i

Acknowledgments

Al termine di questo percorso vorrei innanzitutto ringraziare tutto il laboratorio
HeapLab del Politecnico di Milano, gruppo di ricerca con il quale ho lavorato nel
contesto e durante la stesura di questo lavoro di tesi, soprattutto per come mi ha
accolto e supportato: in particolare il relatore prof. William Fornaciari, il corre-
latore Ph.D. Giuseppe Massari per la sua notevole e non comune disponibilità ad
aiutarmi, incoraggiarmi e a sopportare settimane di correzioni, Simone Libutti,
Federico Terraneo e Federico Reghenzani, con il quale in parte ho condiviso
anche il percorso di studi.

Inoltre vorrei ringraziare i miei genitori, Antonella e Lucio, che hanno creduto
nelle mie capacità, mi hanno sempre supportato con ogni mezzo durante gli studi
e mi hanno dato questa possibilità. Mia nonna Maria Luisa, mia zia Santina e i
miei parenti che mi hanno sempre incoraggiato in questi anni.

Un ringraziamento particolare vorrei dedicarlo a don Ivano Tagliabue che è
stato ed è tutt’ora una guida per il mio cammino e con cui ho avuto modo di
confrontarmi in questi anni. E sicuramente non posso mancare di ringraziare
Daniele, Davide e Ilaria, Michele, Simone e Ilaria, innanzitutto per la loro ami-
cizia, per i momenti e le bevute di questi anni e poi per il loro continuo supporto
e sostegno, specialmente negli ultimi mesi.

Infine vorrei ringraziare anche coloro con i quali ho condiviso direttamente
questi cinque anni di studio, lezioni, esami e progetti, in particolare Alessandro,
Andrea, Claudio, Elena, Massimo e Walter.

Certamente se sono arrivato fin qui è anche grazie a tutti voi che siete in
queste poche righe e anche a tutte le altre persone che qui non ho nominato ma
che sono state presenze attive in questi anni. E come disse una volta una mia
professoressa al termine del liceo: “Ora inizia l’avventura più bella”.

VII

i
i

“thesis” — 2017/4/6 — 17:13 — page VIII — #12 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page IX — #13 i
i

i
i

i
i

Sommario

NEGLI ultimi anni, si è osservata una crescita esponenziale del mercato
dei dispositivi mobili come smartphone e tablet. In questo contesto, è
rilevante osservare con quale frequenza gli utenti di smartphone sosti-

tuiscono il proprio dispositivo. Secondo uno studio dell’International Telecom-
munication Union, infatti, questo accade mediamente ogni 20 mesi. L’effetto
collaterale di questo trend è la gestione dello smaltimento di un numero sempre
crescente di dispositivi elettronici in molti casi ancora perfettamente funzionanti.

Questa tesi si pone l’obiettivo di proporre una soluzione per mitigare tale
problema. Più in dettaglio crediamo che attraverso un cambio di paradigma,
sia possibile perseguire un duplice obiettivo: 1) estendere la vita dei dispositivi
mobili riducendo la quantità di rifiuti elettronici prodotti; 2) avere la possibilità
di aumentare le prestazioni delle applicazioni attraverso l’esecuzione parallela
su più dispositivi.

In quest’ottica, il paradigma proposto è caratterizzato da due elementi: 1)
l’interconnessione di più dispositivi mobili in una rete locale (domestica o azien-
dale); 2) la presenza sui dispositivi di un software di gestione delle risorse com-
putazionali al fine di gestire questo tipo di sistema distribuito secondo un obiet-
tivo di massimizzazione dell’efficienza energetica. Dal punto di vista dell’u-
tente ciò che accade è che l’interazione con un singolo dispositivo viene estesa
attraverso l’utilizzo trasparente di più dispositivi.

Questa tesi presenta una estensione del framework Barbeque Run-Time Re-
source Manager per gestire l’esecuzione di applicazioni Android su più disposi-
tivi. A tal riguardo viene proposta anche una estensione dei concetti di device
capability e features connessi all’esecuzione di applicazioni su sistemi Android.

IX

i
i

“thesis” — 2017/4/6 — 17:13 — page X — #14 i
i

i
i

i
i

Sommario

Il concetto centrale è quello di Capability, ossia una rappresentazione aggre-
gata dello stato delle risorse, delle Features hardware esposte dai sistemi Android
e delle condizioni energetiche e termiche del dispositivo. Questo modello intro-
duce, quindi, una dipendenza tra le funzionalità offerte da un dispositivo e il suo
stato a runtime. In tal senso la nozione di Capability ci permette di individuare
una serie di dispositivi candidati all’esecuzione di una applicazione.

Il framework BarbequeRTRM si fa carico della selezione dei dispositivi e
della gestione delle loro risorse. A tal riguardo il framework è stato esteso per
poter operare in maniera distribuita.

Un ulteriore contributo è stato lo sviluppo di una politica di selezione orien-
tata all’efficienza energetica, integrata in BarbequeRTRM. Tale politica sfrutta
una caratterizzazione a priori dell’efficienza energetica delle singole applicazio-
ni per ogni dispositivo. Per fare ciò sono state utilizzate due suite di benchmark
attraverso le quali, in una seconda fase, si è effettuato inoltre un processo di
classificazione di applicazioni reali.

L’implementazione attuale della soluzione proposta rappresenta una "proof-
of-concept" dell’esecuzione di applicazioni mobili in maniera distribuita. I risul-
tati sperimentali ottenuti dimostrano inoltre che, oltre ad aumentare l’utilizzo dei
molteplici dispositivi mobili di cui un utente può disporre, l’approccio proposto
ci permette di incrementare sensibilmente la durata della batteria dei disposi-
tivi tra il 10% e il 30%, al costo di una perdita di performance tollerabile per
applicazioni che non hanno vincoli real-time.

X

i
i

“thesis” — 2017/4/6 — 17:13 — page XI — #15 i
i

i
i

i
i

Abstract

IN the latest years, we observed an exponential growth of the market of the
mobile devices. In this scenario, it assumes particular importance the rate
at which the smartphones are replaced. According to the International

Telecommunicaton Union, in fact, this happens every 20 months, on average.
The side effect of this trend is to deal with the disposal of an increasing amount
of electronic devices which, in many cases, are still working.

This thesis aims to propose a solution to mitigate this problem. More in de-
tail, through a change of paradigm, it is possible to achieve a two-fold objective:
1) extend the mobile devices lifetime; 2) enable a new opportunity to deploy
mobile applications on distributed devices.

In this sense, the proposed paradigm is characterized by two elements: 1) the
interconnection of mobile devices in a local network (domestic or corporate); 2)
the availability of a resource manager software to manage the distributed system
according to an energy-efficiency maximization objective. From the user-stand
point the interaction with a single device is extended through a transparent use
of multiple devices.

This thesis presents an extension of the Barbeque Run-Time Resource Man-
ager framework to manage the execution of Android applications over multiple
devices. In this regard, we presented an extension of the device capability and
features concepts related to the execution of applications in Android systems.

The key aspect is the concept of device Capability which is an aggregated
representation of specific resources status, available hardware Android Features
and power conditions of the device. This model introduces a dependency be-
tween the device functionalities and its run-time status. In this sense the defini-

XI

i
i

“thesis” — 2017/4/6 — 17:13 — page XII — #16 i
i

i
i

i
i

Abstract

tion of Capability allows to identify a set of available devices for the execution
of an application.

The BarbequeRTRM framework is the software layer in charge to select the
devices for the application execution and to manage their resources. In this re-
gard the framework has been extended to operate in a distributed fashion.

A further contribution of this thesis is the development of an energy-efficiency
oriented device selection policy, implemented as a framework plugin. The policy
exploits an a-priori energy-efficiency characterization of the single application
execution over different devices. In order to do this, we exploited two benchmark
suites from which we have: 1) extracted energy-efficiency profiles; 2) performed
a classification process of real applications.

The current implementation represents a "proof-of-concept" of the execution
of mobile application in a distributed context. Moreover, the obtained experi-
mental results show that, as well as increasing the utilization of multiple mobile
devices available to the single user, using an energy-efficiency approach consid-
erably increases the device lifetime between 10% and 30%, despite a tolerable
performance loss for applications that do not have real-time constraints.

XII

i
i

“thesis” — 2017/4/6 — 17:13 — page 1 — #17 i
i

i
i

i
i

CHAPTER1
Introduction

1.1 The era of mobile devices

From 1945 to about 1985 computing systems was very expensive and bulky, their
performance were very low compared to the current computers. However since
80s, development of these systems has been subject to a great speed up mainly
due to two technological improvements. The first one has been the progress of
the silicon industry thanks to which microprocessors with increasing capabilities
have been made available with reduced costs and size with respect to previous
decades. The second improvement has been the introduction of high-speed wired
and wireless networks, which allowed different machines in the same building to
exchange information in a few microseconds. With the passing of years, the per-
formance gains and the miniaturization of processors have followed the Moore’s
Law1 shown in Figure 1.1 accordingly leading to high speed technological im-
provements never reached in other fields.

In the latest decades, the hardware miniaturization has led to the possibility
of integrating complex digital systems into battery-powered devices. From the
fusion between the first mobile phones and personal mobile computers of 90s a
new type of computing device has been created.

1Moore’s law is the observation, made by Gordon Moore, that the number of transistors in a dense
integrated circuit doubles approximately every eighteen/twenty-four months

1

i
i

“thesis” — 2017/4/6 — 17:13 — page 2 — #18 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.1: Transistor counts for integrated circuits plotted against their dates of intro-
duction. The curve shows Moore’s law - the doubling of transistor counts every two
years. The y-axis is logarithmic, so the line corresponds to exponential growth.

Definition 1.1.1. A Mobile Device is an highly portable battery powered com-
puting system that can include a screen, some sensors, wireless network adapters
and a software stack.

The first devices, known as PDAs2, were mainly pocket-size tablet comput-
ers, often equipped with touchscreen input panel and a wireless network inter-
face. In the late 2000s the first smartphones made their appearance. They put
together the telephony and PDA’s worlds and starting a more and more expansive
and competitive market.

These devices have some features in common that we can summarize as fol-
low:

• Portability: mobile computing systems should enable ease of use in mov-
able environment

• Connectivity: the possibility of connecting to other devices through a wire-
less network without affecting the Quality of Service

2Personal Digital Assistants

2

i
i

“thesis” — 2017/4/6 — 17:13 — page 3 — #19 i
i

i
i

i
i

1.1. The era of mobile devices

• Interactivity: this feature can be viewed both as the possibility that an user
can interact with the device and as the possibility to enable social interac-
tion with other users

• Self-operativity: each device is a self-contained system, including all the
technology to supply the expected functionalities.

Nowadays mobile and personal devices are becoming more pervasive than
ever. According to Gartner institute3, global smartphones sales reached 1.423
millions units in 2015, 1.495 millions units in 2016 and 70.5% of market share.
Similarly wearable devices sales counts 232 millions units in 2015 and are esti-
mated to grow up to 322.69 millions units in 2017. Conversely PCs sales went
down to 275.8 millions units from 363.8 millions in 2011.
Mobile devices represents an interesting field of study not only for its perva-
siveness but also for security challenges and social factors. In fact, people use
their personal mobile devices for many aspects of their life and in a lot of var-
ious context. They incentive social interaction because of their interconnection
through the Internet. This latter point can be exploited by different perspectives,
both in a communication-related fashion and in a computational-based one. We
decided to focus on this last point, in fact the increased tasks that these devices
have to perform requires manufacturers to design and implement more and more
powerful and efficient System-on-Chip (SoC). The hardware and the computing
resources currently available on such devices make them capable of executing
multi-threaded performance-hungry applications. However, despite the grown
computational capabilities, the mobile nature makes them constrained by battery
technology and capacity.

Another problem that arises from such pervasiveness of mobile devices is
their heterogeneity: both hardware and functional. They are present under dif-
ferent forms, such as smartwatch or tablets, and they are composed by a widely
variety of processors, sensors and GPUs4. This heterogeneity is addressed by
Operating Systems developers and vendors which take care of managing such
hardware variety in a transparent way for end-users and applications developers.
In spite of hardware market, Operating Systems (OS from now on) field is less
heterogeneous and three main products dominate the global mobile market: An-
droid OS, iOS and Windows. A worth to be considered fact is that, according
to International Data Corporation (IDC)5 Smartphone OS market Share, up to
second quarter 2016 87.6% of smartphones share the Android Operating Sys-

3www.gartner.com
4Graphics Processing Unit
5https://www.idc.com/

3

www.gartner.com
https://www.idc.com/

i
i

“thesis” — 2017/4/6 — 17:13 — page 4 — #20 i
i

i
i

i
i

Chapter 1. Introduction

tem, while considering also tablets, according to NetApplications statistics6, the
percentage is about 66.36%. Started by Andy Rubin, Rich Miner, Nick Sears
and Chris White as an advanced operating systems for digital cameras it was
acquired by Google Inc. in July 2015, Android OS is part of the Android Open
Source Project7 and it is based on the Linux kernel. Nowadays it is available in
different releases targeting on smartphones, tablets, TVs, automotive and wear-
able devices.
This large spread of the same Linux-based OS across multiple devices is an enor-
mous advantage both for applications developers and especially for our purpose.

The rapid increase of sales is connected partially to the rate at which users re-
place their mobile devices. Regarding this aspect a worth to be considered data
comes from the International Telecommunication Union. According to them,
the average rate at which smartphones are replaced by the respective owners is
around 20 months. The consequence of this is an increasing amount of unused
devices populating our houses or destined to disposal. In fact people often re-
place their personal device even if they are still working and could be exploited
for some computational work.

1.1.1 The evolution of computational power in mobile devices

Model Release Date Clock Freq (MHz) # of cores
Core i7-2600S (Low Power) January 2011 2800 4
Core i7-2960XM (Notebook) September 2011 2700 4
Core i7-2700K October 2011 3500 4
Core i7-3960K November 2011 3300 6

Table 1.1: A list of some available general purpose Intel CPU’s clock frequency in 2011.

In the previous section we mentioned the high speed at which processors
performance increased in few years. In particular for mobile devices the perfor-
mance improvements involve different aspects.
Looking at Figure 1.2 we can see the trend of the maximum clock frequency
in smartphones CPUs over the years. It appears quite clear that until 2011 the
CPU clock frequency was relatively low respect to standard desktop or laptop
PC processors shown in Table 1.1. Since 2012 onward, clock speed consider-
ably increased of a factor of 1.5 and than it remained stable.

The graph in Figure 1.2 shows another change in the CPU architecture. Start-
ing from 2011 in fact, as it happened for processors of PCs and servers, the power

6http://www.netapplications.com/
7https://source.android.com/

4

http://www.netapplications.com/
https://source.android.com/

i
i

“thesis” — 2017/4/6 — 17:13 — page 5 — #21 i
i

i
i

i
i

1.1. The era of mobile devices

Figure 1.2: The evolution of maximum clock frequency and number of cores of smart-
phone’s CPUs over years.

consumption connected to high clock speed overcame the benefit of the achieved
performance. For this reason processors manufacturers changed the approach by
designing and implementing parallel architectures.
Moreover, for energy efficiency purpose, some manufacturers started from 2012
to implement a SoCs8 integrating two heterogeneous single-ISA multi-core pro-
cessors: a low power (usually called "LITTLE") and a high-performance one
(called "big"). An example of this implementation is the Samsung Exynos 5

Octa SoC, featuring a 1.8 GHz quad-core ARM Cortex-A15 as a big CPU clus-
ter and a 1.2 GHz quad-core ARM Cortex-A7 as LITTLE CPU cluster (e.g.,
ARM big.LITTLE [2]).
Table 1.2 shows a list of smarthpones with the related SoC and processors spec-
ifications.

The frequency clock increase was accompanied by improvements on chip
architectures that augmented the Floating-Point Operations per cycle (from now
on FLOPs). These two improvements enable the possibility to make smartphones
processors able to perform billions FLOPs per second consuming less power. For
example, known the equation of FLOPs per second [3]

FLOPS = sockets ∗ cores
socket

∗ clock ∗ FLOPs
cycle

(1.1)

8A System-on-a-Chip is a circuit that integrates all components and peripherals into a single chip [1].

5

i
i

“thesis” — 2017/4/6 — 17:13 — page 6 — #22 i
i

i
i

i
i

Chapter 1. Introduction

Model Year SoC Big Little CPU Clock Freq (MHz) # of cores

Samsung Galaxy S7 2016 Snapdragon 820
2.15 GHz Kryo 2150 2
1.44 GHz Kryo 1440 2

Huawei P9 2016 HiSilicon Kirin 955 2.5 GHz Cortex-A72 2500 4

Apple iPhone 7 2016 Apple A10 Fusion
2.34 GHz ARMv8-A 2340 2

Apple "Zephyr" 2

HTC One M9 2015 Snapdragon 810
1.5 GHz Cortex-A53 2000 4
2 GHz Cortex-A57 2000 4

Apple iPhone 6S 2015 Apple A9 1.85 GHz ARMv8-A "Twister" 1850 2

Samsung Galaxy S6 2015 Samsung Exynos 7 Octa 7420
2.1 GHz Cortex-A57 2100 4
1.5 GHz Cortex-A53 1500 4

HTC One M8 2014 Snapdragon 801 2.5 GHz Krait 400 2500 4
Apple iPhone 6 2014 Apple A8 1.4 GHz ARMv8-A "Typhoon" 1400 2

Samsung Galaxy S5 2014 Samsung Exynos 5 Octa 5422
1.9 GHz Cortex-A15 1900 4
1.3 GHz Cortex-A7 1300 4

LG Nexus 5 2013 Snapdragon 800 2.3 GHz Krait 400 2270 4
Apple iPhone 5S 2013 Apple A7 1.3 GHz Apple Cyclone 1300 2

Samsung Galaxy S4 2013 Samsung Exynos 5 Octa 5410
1.6 GHz Cortex-A15 1600 4
1.2 GHz Cortex-A7 1200 4

LG Nexus 4 2012 Snapdragon S4 Pro 1.5 GHz Krait 1500 4
Samsung Galaxy S3 2012 Samsung Exynos 1.4 GHz Cortex-A9 1400 4
Apple iPhone 4S 2011 Apple A5 800 MHz ARM Cortex-A9 800 2
Samsung Galaxy S2 2011 Samsung Exynos 1.5 GHz dual-core ARM Cortex-A9 1500 2
LG Nexus One 2010 Snapdragon QSD8250 1 GHz Qualcomm Scorpion 1000 1
Nokia C5 2010 / 600 MHz ARM11 600 1
Apple iPhone 3GS 2009 Samsung S5PC100 600 MHz ARM Cortex-A8 600 1
HTC Dream 2008 / 528 MHz Qualcomm MSM7201A ARM11 528 1
Apple iPhone 2007 / 412 MHz ARM11 76JZF-S 412 1

Table 1.2: The bestseller smartphones SoC and processor architecture specification
from 2007 up to 2016

a Quad-core Cortex-A57 with 2.1 GHz clock frequency executes 8 Single
Precision FLOPs at cycle, that theoretically is 67.2x109 FLOPS.

The performance reached by these devices can be transposed also for tablets
and partly to other mobile devices, so that they can be exploited to perform also
computational intensive workloads as it will be explained in the next chapters.

1.2 Distributed systems

Over years a lot of definitions of distributed system has been provided, Tanen-
baum and Van Steen [4] proposed the following one that we took for our treat-
ment:

Definition 1.2.1. A Distribued System is a collection of independent hardware
systems that appear as a single coherent system to the user.

The main characteristic that is specified by this definition is that the dis-
tributed nature of the system is transparent to the user. This last does not know
the architecture or the heterogeneous components of the system, because it seems
to act as a whole, unique system.

As well as the definition of a distributed system, other two related concepts
can be introduced from the literature: the notion of Distributed Computing and
Distributed Networking.

Definition 1.2.2. Distributed Computing also refers to the use of distributed

6

i
i

“thesis” — 2017/4/6 — 17:13 — page 7 — #23 i
i

i
i

i
i

1.2. Distributed systems

systems to solve computational problems. In distributed computing, a problem is
divided into many tasks, each of which is solved by one or more computers. [5]

Definition 1.2.3. Distributed Networking is a distributed computing network
system, said to be "distributed" when the computer programming and the data
to be worked on are spread out over more than one computer. Usually, this is
implemented over a network. [6]

The study of distributed systems started in 1960s, where concurrent processes
communicated by message-passing infrastructures. The development of tech-
nologies for the creation and the configuration of local-area networks (LAN)
represented an important factor that contributed to the spread of these kind of
systems.
The advent of powerful multi-core microprocessors slew down the interest in
distributed systems to achieve parallelization and multi-threading, due to the fact
that they were more complex to manage and had some critical issues about data
consistency and power consumption. However, when the physical and power
limits of silicon manufacturing process began to appear and, as already men-
tioned in Section 1.1, parallel architectures gained interest, the idea of distribut-
ing computational tasks over different interconnected systems returned fully in
the spotlight of both research and industry.
Moreover, the advent of Internet with the possibility of having a unique global
network increased drastically the development of distributed systems. The Inter-
net itself indeed can be seen as a huge distributed system composed by registered
Web Servers and hosts. The Figure 1.3 shows the growth of DNS9 advertised
hosts over years according to the latest Internet Domain Survey of the Internet
Systems Consortium (January 2016) [7], while in 1993 there were about 2 mil-
lion hosts registered, up to the survey’s date there were about 1 billion hosts,
with a growth rate of about 10% per year until 2015.

Getting actual advantages from distributed systems requires some properties
to hold:

• Accessibility: it refers to the possibility to access and share "resources" in
an user-friendly, efficient and controlled way

• Transparency: as aforementioned it means that the system does not show
its distributed nature and appears as a single system to the users. The trans-
parency affects different sides of a distributed system, so we can have dif-
ferent types of transparency: access, location, migration, relocation, repli-
cation, concurrency, failure, persistence

9Domain Name System

7

i
i

“thesis” — 2017/4/6 — 17:13 — page 8 — #24 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.3: Number of hosts advertised in DNS through years. Data source: Internet
Systems Consortium [7].

• Openness: it relies on the concept of interface definition. Interfaces allow
to define only the service that are available into a system without further in-
formation on how the service is implemented, so that different entities can
expand the system by re-implementing services in another ways. This kind
of property enables entities interoperability and applications portability

• Scalability: at first it involves the capability and ease of the system to adapt
its size according to the number of resources or users. Secondly it requires
that a system can be scalable in term of geographic and administrative span.
The major challenge on this objective is to find a good trade-off between
scale and performance

• Maintainability: it requires an high grade of ease at which a system can
be updated, upgraded or fixed. How a complex system is designed and its
modularity degree have a severe impact on this objective.

Since nodes of a distributed systems can be heterogeneous both on the soft-
ware and the hardware side, the aforementioned properties require the imple-
mentation of several abstraction layers. In Figure 1.4 we can see that the upper
layer is made of applications. This is the layer that interacts with the users. Then
the lower layers are constituted by the operating systems and low-level commu-
nication modules. Halfway between these layers the middleware represents the
logical implementation of the distributed system from the application perspec-

8

i
i

“thesis” — 2017/4/6 — 17:13 — page 9 — #25 i
i

i
i

i
i

1.2. Distributed systems

Figure 1.4: The layers of a distributed system with a middleware that exposes the same
interface to all applications on different nodes.

tive. It provides in fact the communication interface to the applications and hides
the underlying hardware and OS heterogeneity. The figure shows different nodes
featuring different hardware and OSs, running a not distributed application (Ap-
plication 1) and a distributed one (Application 2). The user of the second appli-
cation is not aware of the fact that the execution of the application is performed
on multiple nodes. Furthermore, the instances of the second application com-
municates to each other through the same interface exposed by the middleware
layer which directly interact with the underlying OSs.

Among the different typologies of distributed systems, for our purpose we
will focus on and combine two of them. The first type is the distributed com-
puting system, which main goal is to execute computational intensive tasks with
high performance requirements. Generally speaking such a system can be cluster-
based or grid-based, depending on whether the set of connected machines is
in the same network, sharing the same hardware and OS configuration, or it is
spread across different administrative domains with heterogeneous hardware and
software configurations [8].
The second type we consider is the so-called pervasive (or ubiquitous) distributed
system: the main characteristic is that the system is part of the environment and
the computing can occur using any device, anytime and everywhere without a

9

i
i

“thesis” — 2017/4/6 — 17:13 — page 10 — #26 i
i

i
i

i
i

Chapter 1. Introduction

direct human control a part from the initial setting. Grimm et al. [9] indicate
three main requirements for pervasive systems:

1. Context-awareness: the system is aware of the continuous changes of the
environment in which it works and reacts consequently

2. Versatility and flexibility: different users can use different devices in differ-
ent ways

3. Sharing as default: easiness of accessing, storing and sharing the acquired
information.

Typical scenarios for these systems are the domestic and health care ones. It is
increasingly common to have a lot of interconnected devices (such smartphones,
PDAs, smart TVs, lights and sensors network) in people’s domestic context that
collaborate as an unique system to control and manage the environment or to as-
sist the user through, for example, recommender systems. Part of this technology
exploits the well-known Internet of Things.
On the other hand the low cost and size of such devices allow them to be ex-
ploited for health care purpose to constantly monitor the health status of patients
without the need of hospitalization, maintaining them in a life context that it is
as normal as possible. Anyway, one of the main challenges of the pervasive sys-
tems is the instability of its components, because they are mobile or embedded
devices.
Finally, the other types of distributed systems that we do not treat include, among
others, distributed information systems to manage large quantity of data.

For our work we combined the two aforementioned types to exploit the ad-
vantages of a Pervasive Distributed Computing System.

1.3 Mobile devices and Pervasive Distributed Computing System

As previously said the pervasiveness of personal mobile devices is very strong
and their number is continuously growing. This leads to an high rate of devices
renewal and abandonment as well as an electronic device disposal problem.
Despite their different hardware capabilities (e.g., screen resolution, camera qual-
ity, sensor availability, . . .) a set of these devices can share the same operating
system (e.g., Android) such that it is possible to rely on the same software stack
on a wide variety of devices, allowing us to seamlessly deploy applications on a
device or another.

In such a scenario we should also take into account the typical constraints of
mobile devices, concerning thermal and energy management. Most of them are

10

i
i

“thesis” — 2017/4/6 — 17:13 — page 11 — #27 i
i

i
i

i
i

1.3. Mobile devices and Pervasive Distributed Computing System

powered by batteries which have a limited charge-time and they need to be used
sparingly, or maybe they consume a lot of power and they should be used only
in case of real need. Furthermore mobile devices are usually fan-less devices so
there is also a thermal management mandatory task to be considered. Finally,
as addressed by Subsection 1.1.1, modern devices include multi-core CPUs and
embedded GPU that can be exploited at different levels to perform computational
tasks.
In this regard, a distributed rearrangement of mobile devices can lead to improve-
ments in terms of energy efficiency and heat dissipation, thanks to task offloading
and dynamic load balancing.

These considerations lead to a change of paradigm in which different per-
sonal devices are interconnected to configure a single distributed mobile systems
to achieve a two-fold objective:

1. Extend the device lifetime by reusing old and abandoned devices to em-
brace Green computing purposes

2. Enable a new opportunity to deploy mobile applications on distributed de-
vices.

This vision aims at maximize the device utilization but also to scale applica-
tion performance through multiple nodes (i.e., devices) exploiting by smart de-
vice management policies taking into account also thermal and energy budget
management objectives. To meet these requirements we formulated our defini-
tion of a Pervasive Distributed Computing System starting from the definition of
Distributed System, Distributed Computing and Distributed Network presented
previously:

Definition 1.3.1. A Pervasive Distributed Computing Network System is a dis-
tributed system of interconnected personal devices of a network, in which the
main goal is to distribute or migrate the computational load between them.

The Figure 1.5, shows an implementation of such a system exploiting differ-
ent personal devices such as smartphones, Desktop and laptop PCs, Android TV
and tablets.

In a scenario like this, we could start addressing problems like defining a
novel programming paradigm and design a inter-device run-time layer in charge
of handling the task placement in a distributed fashion. In Chapter 2 we will
discuss the task offloading that is a typical approach that could be enhanced by
our work.

11

i
i

“thesis” — 2017/4/6 — 17:13 — page 12 — #28 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.5: The representation of a Pervasive Distributed Computing System in a Local
Area Network context.

1.3.1 Challenges of a Pervasive Distributed Computing System

There are some practical challenges and technical issues that we need to over-
come in order to effectively exploits devices in a distributed manner.
First of all the distributed nature of the system requires a specific management
strategy. In particular how the device network is created, how devices communi-
cate in the network and, last but not least, how the decisions are taken are three
requirements that play an important role in the system design.
The network creation involves the devices discovery and negotiation protocol
and the topology of the network. When the network is created and a set of
devices are connected they should be able to communicate through a specific
protocol (e.g., RPC10, Message-Passing, stream, multicasting . . .).
Then, from the run-time management perspective it is important to define if the
system must operate according to a centralized, a fully-distributed or an hybrid
architecture. While the first is less complex to manage because one node acts

10Remote Procedure Call

12

i
i

“thesis” — 2017/4/6 — 17:13 — page 13 — #29 i
i

i
i

i
i

1.4. Android Operating System

as a coordinator for other nodes, the others two solutions are more flexible but
challenging. As it will be exposed in Subsection 4.2.4 we choose an hybrid ar-
chitecture for our purposes, but we expect to develop our run-time management
strategy in order to support all the three configurations.

The aforementioned challenges are in common among all the distributed sys-
tem, being each mobile device a remote system (node). However, for distributed
systems based on mobile devices, the run-time management strategy must take
into account the not uniform distribution of capabilities and the current status of
all the available devices.
Moreover, we must guarantee a proper synchronization (e.g., avoiding resource
starvation, efficient election algorithms), consistent executions and fault- toler-
ance, given the unreliable nature of battery-powered devices [10, 11]. All this
without breaking the security requirements, which must be considered an hard
constraint.

1.4 Android Operating System

In Section 1.1 we mentioned the Android OS as the most spread mobile OS. In
this section, we want to give a briefly overview of its architecture, since it is the
software platform on top of which we developed our approach.
The Android OS was initially developed by Andy Rubin, Rich Miner, Nick Sears
and Chris White by October 2003 and then it was acquired by Google Inc. in
July 2005, that made its source code released under an open source license to
encourage large community to develop community-driven projects and for bug
or flaws finding purpose.
The Android OS has an high flexibility and portability due to the fact that its
kernel is Linux-based. This is also one of the motivation behind the choice to
use Android device for our purposes.
In May 2015 Google announced Brillo, a lightweight version of Android that
uses only lower levels of the software stack without providing a GUI to target on
the "Internet of Things" (IoT) embedded systems.

As we can see in Figure 1.6 there are four main layers in the Android software
stack. The lower one is the aforementioned Linux kernel with Android-specific
extension for memory, power and device drivers management.
On top of the kernel there are the middleware layer. This layer is composed by
native Libraries and APIs. For example we can find a custom libc library devel-
oped by Google specifically for Android within the Bionic library project11 and
the SQLite library.

11 https://android.googlesource.com/platform/bionic/

13

https://android.googlesource.com/platform/bionic/

i
i

“thesis” — 2017/4/6 — 17:13 — page 14 — #30 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.6: The Android software architecture. The marked Resource Manager is a
singular case of homonymy, because it refers to application’s images or strings re-
sources and not to system hardware resources.

Although the Android Native Development Kit (NDK) enabled support for appli-
cations written completely in C or C++ languages, the OS does not support the
full set of standard GNU libraries of standard Linux systems.
Included in the middleware layer there is also the run-time environment that
is based on a set of virtual machines architecture that are in charge to run the
Java-coded applications. Until version 5.0, the process virtual machine was the
Dalvik one, which performed a just-in-time compilation of the Java bytecode to
a Dalvik Executable code. Since version 4.4 (optionally) and version 5.0 (of-
ficially), the Android Runtime (ART) uses an ahead-of-time compilation of the
application bytecode into machine code at the installation stage. At time of writ-
ing the Java Core libraries of the virtual machine are still based on the Apache
Harmony project 12.

12https://harmony.apache.org/

14

https://harmony.apache.org/

i
i

“thesis” — 2017/4/6 — 17:13 — page 15 — #31 i
i

i
i

i
i

1.4. Android Operating System

Figure 1.7: Processes and tasks management in Android. It highlights the difference
between processes and tasks in the Android terminology.

Finally, the Hardware Abstraction Layer (HAL) completes the middleware layer.
It provides standard interfaces for specific type of hardware components to the
higher-level Java layer.

The two top layers consist of Java based software, i.e. the user-level appli-
cations and the underlying application framework. The latter provides a set of
managers and interfaces that are exploited by the application developers to exe-
cute the code in the Android environment and get access to the OS features and
the hardware capabilities of the device.
On top there is the application layer that contains all the Android applications.
These can be classified according to their installation mode in two types: the
System Apps and the third-party applications. The former are included with the
platform and providing also various functionalities that can be accessed also by
the other type applications.

Comparing the execution of Linux and Android applications, one main dif-
ference regards the control of their life cycle. In the Android environment in fact
the applications must implement a set of callback methods representing a specific
execution status, that the OS calls according to events due to the user interaction.
Moreover, there are little differences on the processes, virtual machines and tasks
management [12]. In particular on Android a Java virtual machine is instantiated
for the execution of a process and every component of an application is asso-
ciated with exactly one process, that is the default process for all components.
Anyway an application can spawn some of its component to more processes or
exploiting multi-threading in the same process. Tasks otherwise contain only a
particular type of component (i.e., activities) but they can belong to different ap-
plication processes. Tasks can be seen in the applications overview screen and

15

i
i

“thesis” — 2017/4/6 — 17:13 — page 16 — #32 i
i

i
i

i
i

Chapter 1. Introduction

Figure 1.8: To create a new activity a developer has to extend the Activity base class
provided by the Android SDK.

they are used basically as a logical history of user action or when an application
uses the feature of another application creating an instance of them. For example
in Figure 1.7 Application A has its default process and a remote process in which
a background service is running. Application A’s task contains its activity com-
ponent. Furthermore the Application A uses a feature of a System Application
B and so the OS create the default process and an instance of the activity of the
Application B. Then this new activity is added to the Application A’s task.

Finally, we mentioned the fact that an application is composed by different
components. Such component can be distinguished mainly between two types:
Activity and Service.
Briefly an Activity is a single screen with a user interface [13]. Applications
usually are composed by different activities to allow user to perform different
specific operation. Anyway these activities are all independent to each other and
can be started multiple times by other applications. To create a new activity, de-
velopers have to extend the Activity base class overriding its lifecycle methods
if needed as shown by the class diagram of Figure 1.8.
Conversely a Service has no GUI but they can interact with the user through no-
tifications and they are designed to perform background operations for an indef-
inite amount of time. To avoid exceeding in details Services are deeply exposed
in the Appendix A.3.

Android Power Management

Being Android a system targeting on mobile devices it comes that power man-
agement is one of the most features that the OS must provide. As shown by
Figure 1.9 the Android power management strategy acts on a multi layer ba-
sis. At kernel level for instance the power management infrastructure embeds
the Linux Power Management framework and adds some customization with the

16

i
i

“thesis” — 2017/4/6 — 17:13 — page 17 — #33 i
i

i
i

i
i

1.4. Android Operating System

Figure 1.9: The interaction between the power management modules through different
layers.

objective of minimizing the system power consumption by switching off unused
components.
The entire management strategy is based on wake locks: applications must re-
quest CPU resource through the API framework and native Linux libraries in
order to keep processor on, otherwise Android tries to take the CPU or periph-
erals into a suspend state. There are four type of wake locks that an application
can request, the hardware components are then managed according to the type
of locks still active:

• PARTIAL_WAKE_LOCK: it ensures that the CPU is on

• SCREEN_DIM_WAKE_LOCK: it ensures that the screen is on

• SCREEN_BRIGHT_WAKE_LOCK: it ensures that the screen brightness is

17

i
i

“thesis” — 2017/4/6 — 17:13 — page 18 — #34 i
i

i
i

i
i

Chapter 1. Introduction

on at full

• FULL_WAKE_LOCK: it ensures that the full device is on, including back-
light and screen.

To allow applications to interact with the power driver and wake lock features,
Android exposes a driver Java class in its Application Framework layer called
Power Manager. Further details on wake locks architecture can be found in
[14–16].

We presented the power management of Android to give a completed treat-
ment of the platform and to make the reader aware of the state-of-the-art system
architecture related to power and energy topics. We are conscious about the
power management issues related to thermal and performance that can be further
investigate, but in this work we concentrated only on the energy point of view.

1.5 Thesis structure, novelty and contribution

This thesis aims to propose a change of paradigm to give an answer to some of
the aforementioned challenges of a Pervasive Distributed Computing System. In
particular the proposed paradigm is characterized by two elements:

1. The interconnection of mobile devices in a local network (domestic or cor-
porate)

2. The availability of a resource manager software to manage the distributed
system according to an energy-efficiency maximization objective.

In this sense the thesis presents an extension of the Barbeque Run-Time Resource
Manager [17] to manage the execution of Android applications. The key aspect
is the concept of device Capability that introduces a dependency between the
device functionalities and its run-time status.

One of the main problem managing the execution of Android applications is
that they are independent from our management system. Our solution ensures
backward compatibility with pre-existing applications and allows applications
developers not to change the way in which they make Android applications. To
do this, we propose an application profiler that links the application information
and required functionalities defined in the manifest.xml file and the Capabilities
concept.

Finally, we enable the applications remote launching scenario across multiple
Android devices by implementing a distributed version of the BarbequeRTRM
that exploits an energy-efficiency oriented policy to select the device in which the
application is executed. We have profiled two benchmark suites to characterize

18

i
i

“thesis” — 2017/4/6 — 17:13 — page 19 — #35 i
i

i
i

i
i

1.5. Thesis structure, novelty and contribution

the energy-efficiency of the single applications, proposing a classification model
for non-benchmark applications.

To summarize, the novelty contributions are:

• Porting a distributed run-time resource manager on Android devices to
manage local resource allocation and to monitor device status

• Enabling the management of the execution of Android applications through
the novel concept of Capability

• Exploiting applications remote launching through an energy-efficiency ori-
ented policy

• Proposing a classification of the Android application based on their energy
efficiency profile

• Achieving a first step towards a green approach for computational tasks in
an environment pervaded by personal devices, enabling users to reuse their
available devices

• Enabling future more complex techniques of application’s tasks offloading
in a Pervasive Distributed Computing System of Android devices.

In Chapter 2 it is presented the state of the art regarding the mobile dis-
tributed computing approaches, the computation offloading for mobile systems
and the resource management, highlighting the similitudes, limits and novelty
with respect to our solution. The Chapter 3 exposes the system design, including
the concept of Capability, the application profiler and the resource-aware abstract
model to manage Capabilities, Android applications and resources. Furthermore,
Chapter 4 presents the integration of our model with the BarbequeRTRM, high-
lighting the system architecture and the device selection policy. Moreover it
presents an Application Programming Interface (API) that can be used by third-
party application developers to interact with our system. In this sense the Chapter
exposes some uses-cases enabled by our thesis. The experimental setup and re-
sults are exposed in the Chapter 5 focusing on the profiling of applications energy
efficiency, the effects introduced by an energy-efficiency resource management
approach and the testing and performance measurements of the policy. Finally,
the Chapter 6 contains the thesis conclusions. It also discusses about challenges
and improvements that can be covered by future works.

19

i
i

“thesis” — 2017/4/6 — 17:13 — page 20 — #36 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 21 — #37 i
i

i
i

i
i

CHAPTER2
State of the Art

This Chapter presents, with an historical and taxonomic approach, the state of the
art related to the issues mentioned in the previous chapter. In particular the first
part, covered by Section 2.1, concerns the main approach related to the mobile
distributed computing: we present the main architectural solutions that enable
the use of mobile devices as distributed system.

The second part, covered by Section 2.2, presents a survey of the main tech-
niques of applications energy and byte-code profiling used by refactoring tools
to enable the computation offloading. It presents also some real implemented
offloading systems.

Finally, the Section 2.3, exposed briefly an overview of some works related
to the resource management problem both in the mobile and distributed fields.

2.1 Mobile distributed computing approaches

In recent years early studies began to explore the idea of implementing the dis-
tributed computing paradigm in systems based on mobile devices [18]. The ap-
proaches and depicted scenarios are however quite different from each other.

The wireless network improvements led researchers to create distributed sys-
tems that cooperate in computational-intensive tasks and to coin some paradigms.

21

i
i

“thesis” — 2017/4/6 — 17:13 — page 22 — #38 i
i

i
i

i
i

Chapter 2. State of the Art

For example, in the opportunistic computing paradigm [19, 20], mobile devices
are connected in an ad-hoc local wireless network to take advantage of com-
puting resources of other devices. The most recent proposal in this direction is
the AnyRun Computing (ARC) [21] system, which dynamically selects the best
device for offloading the execution of tasks.

In what follows, we present some recent and noticeable solutions for mo-
bile systems that exploit some well-known distributed infrastructures and ap-
proaches. They can be divided mainly in five categories, based on the computing
paradigm they exploit:

• Transparent Computing

• Flexible Computing

• Voluntary Computing

• Enterprise Computing

• High-Performance Computing

• Mirroring.

It is also common to find service-oriented architectures as they enable an
high level of transparency for the user, and they are easily extensible with new
services and interfaces. An example of a service-oriented approach can be found
in [22]. The authors proposed a Web Service Initiation Protocol (WIP) inte-
grated in Android, making the device a web service SOA-based platform with
real-time communication capabilities. This solution uses a proprietary applica-
tion, the 2SAP, to perform the service discovery and registration. It does not
allow to include developer-extension of the application, and the services can be
managed only through the given application proxy. Moreover, the solution does
not consider the availability of computing resources and energy budget, because
the exposure of the service is not linked to the capabilities of the device.

2.1.1 Transparent Computing

A service-oriented approach that must be aware of the system resources is pre-
sented in [23], where the concept of transparent computing [24] is transposed to
the mobile world. Its goal is to provide users with transparent services: users
only concern whether they can get the service or not, but no need to know the
underlying details. To do this, the solution requires a lightweight terminal with-
out an operative system installed in advance. The software stack, including the
operating system, the applications and the data is downloaded from a remote

22

i
i

“thesis” — 2017/4/6 — 17:13 — page 23 — #39 i
i

i
i

i
i

2.1. Mobile distributed computing approaches

server as a virtual machine, on the basis of the user requirements and the com-
puting resources availability. In terms of security there is also the possibility of
introducing different authority provisioning to different resources and services.
Unfortunately, this approach requires the devices to be configured in an Inter-
net connected and lightweight mode. Therefore stock devices are not suitable.
Furthermore, there is no mention of energy-aware run-time management of the
device.

The distributed aspect of this approach is given by the possibility of having
the same services available for different terminals. However this is not properly
what we intend as "distributed computing", because the computation is not dis-
tributed among devices but, more precisely, it is done locally once the service or
the application is loaded on the single device.

2.1.2 Elastic Personal Computing

Based on the concept of Flexible Computing [25] this paradigm takes advantages
of interconnected devices, basing on the fact that in many cases processing data
in-place and exchanging them directly between devices can overcome bandwidth
limitations, hence resulting in a more efficient approach with respect to offload-
ing the entire job to a remote server.

Daniel Dìaz-Sàanchez et al. [26] proposed the Light Weight Map Reduce
(LWMR) framework that enables the possibility of submitting a job by any de-
vice or group of devices, collecting the outcome and delegate tasks to other de-
vices upon battery, network or location changes. This refines the Elastic Comput-
ing concept exposed in [27], providing a mobile version of the Hadoop MapRe-
duce framework.

A previous work is the Hyrax system [28] that allows computing jobs distri-
bution porting the Hadoop on an Android interconnected devices network. The
centralized-architecture limitations of Hyrax are then overcame by MC2 [29],
which makes possible to setup of personal cloud computing systems made by
nearby mobile devices. MC2 provides the possibility to create private or public
cloud service.

Elespuru [30] instead, investigates the feasibility of using smart mobile de-
vices in a MapReduce system. The author implements a client-server MapRe-
duce system for mobile devices which shows that devices are capable of perform-
ing at roughly an order of magnitude slower than the traditional clients, demon-
strating that a large portion of processing can be moved to them, if enough exist
at a given time to perform the necessary workload.

Finally, another worth to be mentioned work is GEMCloud [31], whose main

23

i
i

“thesis” — 2017/4/6 — 17:13 — page 24 — #40 i
i

i
i

i
i

Chapter 2. State of the Art

objective is to exploit mobile devices to execute computationally intensive and
parallel tasks with a high degree of energy efficiency. The system is made by
a central server and a database in charge of discovering available devices onto
which deploying tasks. On the device side, a client application makes the de-
vices visible or not, according to the device status, e.g. CPU and memory usage,
battery level, and running applications. However what it is still missing in this
solution is the possibility of implementing a task placement or scheduling pol-
icy, aiming at optimizing a metric, like performance maximization or energy
consumption minimization.

The main difference of these works from our solution is that we do not want
only to split and submit jobs to a device network and collect the outcome, but also
we want to perform a complete launching of a task or application into another
device that is more energy efficient and that has the capabilities to run it.

2.1.3 Volunteer Computing

The so-called volunteer computing [32] started in 1996 and the term had been
introduced by Luis F. G. Sarmenta. In this approach users make their devices
available for hosting external computational intensive tasks. It became more and
more attractive for the users so that some projects received considerable media
attention, such as SETI@home [33] and Folding@home [34].

The most representative framework enabling this paradigm is BOINC [35],
started as a project for researchers to exploit processing power of personal com-
puter around the world it has been extended by the NativeBOINC project [36] for
Android devices. Similarly [37] links the BOINC middleware and the concept
of volunteer computing to the mobile world.

In [38] the volunteer computing paradigm has been extended to mobile de-
vices not connected to Internet, exploiting WiFi Direct to setup point-to-point
connections. The device (node) can therefore become a distribution point or a
simple proxy node towards Internet. The main goal of the solution is to extend
the task distribution network, with an eye on device applications and resources
management.

Another extension of the volunteer computing paradigm is REPC [39], a
generic “randomized” task assignment framework that exploits mobile devices
for participatory computing. REPC is another example of server-based dis-
tributed system. A centralized server in fact, hosts the execution of a Task Man-
ager, in charge of assigning tasks to participatory devices. The overall goal is to
guarantee the completion of a given minimal number of tasks, minimizing the
number of tasks assigned per device. The central server is involved also in the

24

i
i

“thesis” — 2017/4/6 — 17:13 — page 25 — #41 i
i

i
i

i
i

2.1. Mobile distributed computing approaches

estimation of the run-time statistics regarding the tasks execution.

2.1.4 Enterprise Computation

The idea of using mobile devices for distributing computational load has found
interest also in the enterprise world. Arslan et al. in [40, 41] proposed a dis-
tributed computing infrastructures using smartphones in enterprise context. The
main idea is to use the enterprise devices of employees to perform computation
while they are recharging, instead of the company servers, in order to reduce en-
ergy consumption and costs. Although the solution is quite complete and takes
into account also device computation capability and power status, the application
context is closely linked to enterprise workloads. Moreover, the client-server ar-
chitecture represents a limitation in terms of scalability and flexibility. Another
lack of this solution is the fact that the computation capability of the device is
evaluated by the server by estimating the task completion time from previous
tasks execution. It does not rely instead on a resource manager instance, run-
ning on the device that can expose capabilities and perform local optimizations,
taking into account also the workload launched on the device by the user. More-
over, the recharging status is the only condition for which the mobile device is
considered available.

2.1.5 High-Performance Computing (HPC)

The High Performance Computing (HPC) area had also considered mobile de-
vices as computational nodes of a parallel system. In this regard, the Droid-
Cluster proposal [42] shown a feasibility with collaborative Android systems
and Message Passing Interface (MPI) used as reference programming paradigm.
DroidCluster claims to be non-invasive, i.e., the framework does not interfere
with the devices primary function. Obviously, in this case the target workload is
made by parallel HPC applications, and no resource management is considered.

2.1.6 Mirroring strategies

The last approach we want to consider is the Google cast solution [43], because
in the application sharing scenario it is similar to our proposal. It differs from
our solution in two aspects. First, Google cast is a mirroring: the mobile de-
vice or laptop is the sender that controls the playback and the TV is the receiver
which displays the content. All the user interactions and most of the user in-
terfaces take place on the sender device rather than on the TV. Our solution
performs a sort of migration instead: the mobile device is the launcher which
discovers and launches a specific application and the TV or another device is the

25

i
i

“thesis” — 2017/4/6 — 17:13 — page 26 — #42 i
i

i
i

i
i

Chapter 2. State of the Art

computing element in which the entire application is launched and computed.
The availability of a single application is subjected to the availability of some
Capabilities which depends from device’s resources, features and power condi-
tions and availability. The second difference from Google Cast solution is that
due to hardware and resource limitations, there are certain restrictions placed
on applications supporting Google Cast. The Cast device is a low-power device
with memory, CPU and GPU limitations, so the receiver application should be
lightweight. All the interactions with the application must be done through a
sender application. Google Cast supports a single concurrent media stream play-
back in the audio and video tags, while in our vision devices can be anything
and also more power and resources availability, if they are convenient, are advis-
able and better accepted when migration target is selected. The interaction must
be done through the computing device or through a custom-controller device (if
designed). Our solution can support more concurrent stream, according to the
available Capabilities.

2.1.7 Experimental results and limitations

Analyzing the previous works we noticed that they do not consider some aspects
of the devices that could be interesting to study in deep. First of all they do
not perform resource and energy management and optimization at single device
level: [40], [39] and [31] are the only that consider device resource capabilities
even if in the first work estimation is done remotely by the server basing on
previous tasks completion time and in the second one it is delegated to a local
"passive" application. Starting from our work it will be interesting to investigate
how a local resource manager affects resources utilization and remote server
decision.

A local resource manager could also act as a decision-maker for device elec-
tion during tasks distribution, monitoring device resources and energy and per-
forming optimal task distribution to other devices or servers. Moreover the most
of solutions rely on a single device that acts as a "supernode" and make decision,
while recently research is moving on investigate a multi-agent context in which
nodes cooperate and make decision in a fully distributed-way.

Finally, no previous solutions consider the management and optimization of
Android application but mainly distributed-designed or HPC applications. Fu-
ture research is going to concentrate on studying in deep the possible interactions
between HPC and device applications and their management strategies.

26

i
i

“thesis” — 2017/4/6 — 17:13 — page 27 — #43 i
i

i
i

i
i

2.2. Computation offloading for mobile systems

2.2 Computation offloading for mobile systems

The offloading is a practice studied from mid 1990s, consisting of executing part
of an application (a specific task) on a secondary computing device or system.

Since the energy budget management is still a challenging activity due to
limitations of battery technology as stated by [44], a possible exploitation of task
offloading can be the pursuing of a device lifetime extension goal, by scheduling
the task execution on a remote server providing higher performance.

Before going through the various solutions it is necessary to clarify the dif-
ference between offloading practice and other type of distributed computing ap-
proaches. As exposed by [45] offloading is not a classic client-server architecture
because the device is not a thin client and it can decide whether delegate the com-
putation to the server or do it locally. Moreover, it differs from load balancing
techniques used in grid computing because with the former the offloaded tasks
are migrated to servers that are not in the same computing environment. An
exception can be found exploiting mobile distributed computing because in this
case the offloaded tasks are migrated to other personal devices.

Looking at the research since nineties onward, we can group literature works
in three different categories: feasibility studies, decision algorithms and frame-
work proposals.

Regarding the first category, most of the feasibility studies have been pro-
posed before the year 2000 [46–54].

Since 2000s onward, more works on policies and decision algorithms started
to appear. The proposed algorithms aims at managing or adapting the exe-
cution of the mobile applications, on the basis of three different approaches:
program partitioning [55–63], energy-aware execution [64, 65] and context-
awareness [66–69].

A policy for task offloading decision is typically driven by two objectives

• Performance improvement: meeting response time requirements, meeting
real-time constraints, enabling context-awareness

• Energy saving: extending battery life, achieving green-computing purpose.

Recently, some frameworks for mobile computing offloading have been pro-
posed and gained attention. In what follow we discuss about some implemented
tools those enable the computation offloading. Mainly offloading is performed
on cloud-based systems, exploiting the computational power of high perfor-
mance servers, although some recent works aim at exploit an interconnected
mobile device as a cloud system: probably this will be the future research sce-
nario. Between the various technological improvements that contributed to the

27

i
i

“thesis” — 2017/4/6 — 17:13 — page 28 — #44 i
i

i
i

i
i

Chapter 2. State of the Art

Year Paper Tool name
Partitioning

Level Process
2002 [59] J-Orchestra VM Manual
2004 [71] Cloudlets Class –
2010 [72] MAUI Method Manual
2011 [73] µcloud Class Manual
2011 [74] CloneCloud Thread Automatic
2012 [75] MACS Class Manual
2012 [76] COMET Thread –
2012 [62] DPartner Class Automatic
2012 [77] ThinkAir Method/VM Manual
2012 [78] Chen et al. Method/VM Manual
2015 [79] Jade Class Manual
2016 [21] ARC Method Automatic
2016 [80] COMPSs-Mobile Method Manual

Table 2.1: Offloading tools partitioning level and process

grow of offloading interest there are wireless network bandwidth increasing, mo-
bile agents development and the rebirth of virtualization [45].

Regarding the development of Mobile Cloud Computing-applications Orsini
et al. [70] identified six main requirements that are involved in: availability,
portability, scalability, usability, maintainability and security. Among these to
reach scalability requirement one of the most used approach is to partition the
application into tasks of different granularity level although it involves some
major difficulties such as:

• Correctness: identifying which parts of the application have to run locally
on the device

• Effectiveness: avoiding that network delay caused by the offloading is
greater than the reduced execution time

• Adaptability: offloading adaptation to applications user requirements and
run-time environment changes.

Application partitioning and offloading can be performed at class or method
level to obtain a more fine-grained resource allocation. Table 2.1 shows further
analyzed tools and their corresponding partitioning level and process. It can be
noticed that works originally concentrated at VMs and class level, while in recent
years they exploited the method-level partitioning both relying on programmers
annotations or on automatic partitioning tools [81]. In what follow we will pro-
vide a taxonomy partition of some noticeable works that perform application
partitioning and offloading.

28

i
i

“thesis” — 2017/4/6 — 17:13 — page 29 — #45 i
i

i
i

i
i

2.2. Computation offloading for mobile systems

centering

Figure 2.1: DPartner: on-demand remote invocation design pattern [62].

2.2.1 Server-based architecture

The first noticeable work that handles application partitioning we can find is
J-Orchestra [59]. It is a tool that partitions any Java applications at bytecode
level, providing a GUI to ask programmers to manually select the “offloadable”
classes, but does not consider the mobile applications and devices.

In 2010 Cuervo et al. presented the MAUI system [72], a server-based sys-
tem that enables fine-grained energy-aware offload of mobile code to a server
infrastructure. It embraces the programmer-guided partitioning approaches in
which the programmer can annotate the method that can be offloaded for remote
execution. MAUI has a client-server architecture: the server acts as a coordina-
tor for the offloading decision and local resources management for the incoming
request. Four important goals are reached by this work: code portability ex-
ploiting partitioning for .NET applications, programming reflection, type safety
and methods profiling through serialization to determine its network shipping
costs. However, it is not considered the real scalability and usage of the cloud
infrastructure.

In [62] authors proposed an automatic tool (DPartner) to refactor the Android
application’s bytecode to enable task offloading. The tool performs various anal-
ysis on the application bytecode: detecting which classes are movable, making
these latter able to offload through a novel proxy and endpoint software design
pattern (Figure 2.1). The refactored application package file is then deployed in
form of a Java archive file for the device and movable Java bytecode classes for
the remote server. The decision about offloading classes is based on a static anal-
ysis about performance and power consumption of the bytecode execution [82].
The endpoint then is in charge of monitoring the top n computational intensive
classes, executing a prediction algorithm and handling the actual communica-
tion between classes. A major goal reached by this work is the fact that unlike

29

i
i

“thesis” — 2017/4/6 — 17:13 — page 30 — #46 i
i

i
i

i
i

Chapter 2. State of the Art

ThinkAir or MAUI it is transparent to the developer and it does not require any
input or environmental conditions as CloneCloud does.

Eom et al. [83] presented MALMOS, a machine-learning task offloading
scheduler. This framework enables a dynamic adaptation of the scheduling de-
cisions based on the observation of correctness of the previous offloading deci-
sions. In this work, authors integrated their system with the DPartner partition-
ing tool, improving the need of user-input and static decision rules previously
required by DPartner.
The major drawback of these solutions is that, albeit some offloading tools re-
trieve dynamically the status of the device, however they depend on static pre-
defined rules, application pre-processing or user-input to make decisions on whet-
her and where to offload.

2.2.2 Cloud-based architecture

The main difference between cloud-based and server-based solutions is that the
former uses remote cloud services that are not necessarily in the same environ-
ment of the device. Whereas cloud-based systems are highly scalable, server-
based systems can perform local computations. This makes them less flexible,
but it also minimizes network latencies.

Cloudlet model coined and presented by Satyanarayanan et al. in 2004 is
one of the first work that exploits cloud-based architecture. Cloudlet is a mo-
bile small-scale cloud datacenter that is usually located closer to the personal
devices environment than common cloud infrastructures (i.e., in the same Local
Network). The study shows the limitations of a WAN-based solutions from the
perspective of the communication latency impacting on the usability and respon-
siveness of mobile applications. The solution uses a VM approach over target
devices to encapsulate and separate the guest software environment from the
permanent host software environment of the cloudlet infrastructures.

In [74] it is introduced the CloneCloud famework. It is a cloud-based tool
extracting binary pieces of a given process to potentially execute on a virtual
smartphone clone. The clone would run on a cloud to speed-up the overall pro-
cess execution. Unlike MAUI, CloneCloud does not require developer’s help or
code annotation, because it performs an offline static analysis of different run-
ning conditions of the binary on both the target smartphone and the cloud. The
outcome of this analysis populates a database composed by the pre-computed
partitions of the binary that should be migrated.
The main lack of this approach is the need of input and environmental condi-
tions, and consecutively their limitation, to perform the offline analysis for every

30

i
i

“thesis” — 2017/4/6 — 17:13 — page 31 — #47 i
i

i
i

i
i

2.2. Computation offloading for mobile systems

application built. At run-time, the profiler collects data from execution time and
energy consumption both in the mobile device and server context. This in order
to construct a cost model for the application, according to different scenarios.
The offloading decision is based on the optimal solution calculated relying on
both the static analysis and the dynamic profiling and it is performed by migrat-
ing a thread from the mobile device to the clone in the server.

In 2012 Kosta et al. proposed the ThinkAir framework [77] that is a cloud-
based framework that improves the idea of MAUI and CloneCloud projects. In
particular it addresses the MAUI’s lack of scalability using VMs approach and
eliminates the restrictions of offline static analysis of CloneCloud by adopting
an online method-level offloading. The framework provides to the developers an
API to sign which method they want to make offloadable and a specific compiler
to translate the annotated code. The offloading is driven by an Execution Con-
troller that takes decision basing on the current environment data and method’s
invocation history considering previous execution time and energy consumption.
It is interesting the possibility for the user to set a policy among proposed ones.
The framework provides also hardware, software and network profilers to collect
various data and feed the energy estimation model used by the offloading policy.

2.2.3 Opportunistic computing paradigm

A first recent work that moves the approach from a centralized cloud archi-
tecture to a distributed mobile architecture is the AnyRun Computing system
(ARC) [21,63]. It explores the opportunistic computing paradigm [19,20], where
mobile devices are connected in an ad-hoc local wireless network to take advan-
tage of computing resources of other devices. The major differences from the
previous solutions are that cloud or server based systems suffer from a lack of
flexibility, because of the need of a specific piece of computing infrastructure
known a priori. Moreover they have hidden latencies and energy cost due to the
networking communication and servers power consumption. Recent years im-
provements on hardware performance of devices made possible to get over those
limitations, by using mobile devices instead of servers. In this direction, ARC
provides a framework to refactor the code of the application to make classes
and methods offloadable to any close device and a inference engine, based on
Bayesian statistics, that decides whether and where to offload the method.
Recently the authors extend the refactoring process starting from the compiled
application by extracting the portable offloadable code and embedding the task
code in an Android Application Package.

Another recent work that exploits the Mobile Cloud Computing paradigm is

31

i
i

“thesis” — 2017/4/6 — 17:13 — page 32 — #48 i
i

i
i

i
i

Chapter 2. State of the Art

COMPSs-Mobile [80]. It is a framework that transposes the COMPSs program-
ming model [84] to the mobile world. This model abstracts application devel-
opers from the parallelization and distribution details. COMPSs applications are
composed by annotated methods, called Core Element (CE), those can run in
parallel. The framework partitions the original Android applications during the
building process, by replacing CE invocations from asynchronous tasks. This
tasks are then coordinated at run-time by the toolkit basing on energy, economic
and temporal cost prediction of hosting and offload a task execution. Moreover
the system comprises a check-pointing and restore mechanism to avoid full re-
execution of the application if some nodes fail.
This work marks the frontier of future offloading techniques that exploit inter-
connected mobile devices as a cloud system albeit it does not exploit all capa-
bilities of devices, such as GPUs or dynamic resource provisioning with a local
resource manager.

2.2.4 Overall results and limitations

Due to the heterogeneous benchmarks and devices used by the different works
it is impossible to compare their results. Anyway it appears evident the benefit
of using the offloading for mobile devices both for execution time and energy
saving objectives so that it will be a promising research line for next years.

However, as stated by [70], while coexistence and deployment are reaching
high results, adaptation scenarios and ease of use require further investigation.
For this reason research can reasonably be focused on effective distributed re-
source management strategy, hosted on the mobile device. This should improve
context-awareness and offloading policies. Certainly opportunistic offloading
can get enormous advantage from this vision because of the possibility to enrich
the instances of the resource manager towards an intelligent multi-agent system,
that could cooperate to achieve energy-efficient performance speed-up.

32

i
i

“thesis” — 2017/4/6 — 17:13 — page 33 — #49 i
i

i
i

i
i

2.3. Run-time resource management

2.3 Run-time resource management

Since the appearance of Multi/Many-Core architectures the research interest in
Run-Time Resource Management increased to get the maximum in terms of per-
formance, reliability, fault-tolerance and security, meeting the resource requests
of the applications over more and more complex systems [85].
The resource management area faces the so-called resource allocation problem
to provide an efficient assignment of resources to jobs [86]. The "runtime"
adjective denotes the ability to perform such allocation dynamically during the
execution of the system and applications.

As stated by [17] virtualization was the first attempt to resource management
because it provides resource partitioning and isolation. However this approach
was not really beneficial due to "hypervisor" overheads. Similar but with lower
overhead was the solution proposed by the Linux Containers (LXC) [87], albeit
it did not support reconfigurability and adaptivity of the partitions and did not
provide a full-hardware virtualization.
From StarPU [88,89] on we can find frameworks that target heterogeneous multi-
core architectures1 [90] to obtain performance maximization and load balancing.
Qilin et al. [91] went further introducing adaptive mapping for NVIDIA CUDA
to react to runtime environments changes (i.e. hardware/software configura-
tions).
The scheduling decisions can be taken accordingly to an offline profiling and
static properties of the applications [92] or a run-time monitoring of application
performance goal as implemented for homogeneous systems [93–95]. These
works provide scheduling strategies basing on power consumption optimization,
especially for real-time systems, checking the application performance require-
ments.

The topic of run-time management is still in the research spotlight, in fact,
in recent year the BarbequeRTRM framework has been developed and contin-
uously extended by the Barbeque Open Source Project (BOSP) [96] to meet
application reconfigurability and resources allocation multi-objective scheduling
for both homogeneous and heterogeneous architectures. This is the framework
we intend to extend for our purpose and further details will be given in chapter
4.

1Unlike homogeneous platforms, heterogeneous architecture are composed by a CPU and an hardware
accelerator.

33

i
i

“thesis” — 2017/4/6 — 17:13 — page 34 — #50 i
i

i
i

i
i

Chapter 2. State of the Art

2.3.1 Distributed resource management

In recent years the research on multi/many-core architecture resource manage-
ment led to identify two main points of improvement to use the available cores
efficiently. The first one is the principle of malleable (or reconfigurable) ap-
plications [97, 98] that can adapt their parallelism and resources configuration
dynamically.
The second improvement regards the fact that a centralized management of large
number of resources and cores is becoming unfeasible in term of allocation prob-
lem complexity and efficiency. In fact for these systems research is moving to-
wards a more scalable distributed approach [99].

For high-throughput distributed computing systems, heterogeneity of resourc-
es and distributed ownership obstacle the formulation of an uniform allocation
algorithm. In this scenario a proposed solution is to distribute the ownership
of resources, so that the owner can define access and usage policies, for exam-
ple limiting them to a specific user-group membership or in a time constrained
period [86].

In the grid-computing environment there are higher latency and lower fre-
quency utilization changes that allow more complex distributed procedures for
the resource management as we can found in Arms [100] and in [101]. This type
of approach anyway is not suitable for embedded on-chip many-core systems
due to its complexity.

Kobbe et al. tried to solve this limitation proposing DistRM, a decentralized
online resource manager based on a multi-agent system [102, 103]. The gen-
eral idea is to deploy one intelligent agent per application that acts as a resource
manager and that aims at speeding-up its application by reconfiguring it to use
available cores on the chip. Among the improvements reached by this solution
there is the distribution over the whole chip of the resource management com-
munications overhead instead of concentrating only in one point.

Finally, distributed approaches are becoming exploited also in the energy-
awareness field in order to minimize the management overhead and face the
highly flexible computing infrastructure typical of energy-aware systems [104].

2.3.2 Resources Management for Mobile Systems

The energy-budget management limitations of mobile systems suggests us to
further investigate the possibility of employing a run-time resource manager on
each device in charge of performing task allocation and hardware configuration
decisions. This in order to maximize an energy efficient exploitation of the dis-
tributed devices and increase user satisfaction.

34

i
i

“thesis” — 2017/4/6 — 17:13 — page 35 — #51 i
i

i
i

i
i

2.3. Run-time resource management

Energy management on mobile devices has a recent research history, in par-
ticular we can find works that concentrate on estimating and modeling the ap-
plications energy consumption in order to identify energy-hungry tasks or piece
of code. The eCalc profiler [105] achieves lightweight fine-grained estimates of
application energy usage analyzing execution traces of the developed application
without an expensive monitoring equipment. Basing on the execution trace it can
also provide fine-grained feedback on the structure of the code to the developer.
A more recent work [106] aims at relating hardware energy consumption to high-
level application code inferring a fine-grained energy model based on the concept
of "energy operations" identified directly from the source code. The novelty of
this approach is that the authors identify a set of source-level operations (such as
multiplications, method invocations. . .) that are easier to be interpreted by the
developer and find their correlations to the energy cost by analyzing various of
well-designed execution cases.

Moreover, there are some works that investigate the relation of energy con-
sumption of smartphones with the operational status of the device and try to
extrapolate an energy model of device components to aid creation of Green
Software solution [107]. In fact, typically, in environments with power-limited
sources, operating systems perform efficient power management strategies to re-
duce power consumption during idle time or low source level at the expense of
latency and performance. This is done by shutting off unused components, set-
ting their economy operation modes and performing system hibernation [108].

Our work aims at enabling an integration among all these approaches through
an offline applications performance profiling that can be used by run-time re-
source management techniques that controls the hardware components of the
device.

35

i
i

“thesis” — 2017/4/6 — 17:13 — page 36 — #52 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 37 — #53 i
i

i
i

i
i

CHAPTER3
System Design

Managing Android applications in a transparent way led us to introduce a novel
concept of Capability. This chapter exposes the conceptual design of our system.
First of all, Section 3.1 presents the Capability definition and related concepts;
Section 3.2 is deputed to explain the importance of the applications profiler and
how it works regarding to the Android environment. Finally, Section 3.3 argues
about the Capabilities, applications and resources management model, that is
how the system in a conceptual view takes into account Capabilities in order to
perform operations on applications and their required resources.

3.1 Capability model

During the design phase of our work we faced the problem of encapsulating hard-
ware requirements for a generic Android application that it would be transparent
for users and developers. Our objective was to keep the back-compatibility with
applications written for older Android version and at the same time enabling the
possibility to manage in a fine-grained way the resources of the device. Cur-
rently, the Android system performs a soft-check on device hardware compati-
bility with applications. In fact it relies on a filtering mechanism based on the

37

i
i

“thesis” — 2017/4/6 — 17:13 — page 38 — #54 i
i

i
i

i
i

Chapter 3. System Design

Figure 3.1: Diagram showing what a Capability represents. The blue color refers to
the Android framework layer; the red color regards the hardware-related layer; the
green color refers to the new Capabilities layer.

available hardware features1 of the device. Anyway this type of features are stat-
ically embedded in the device but not information are taken into account about
their utilization or run-time availability.
Moreover, the concept of feature alone is not sufficient to specify application
requirements or constraint because it does not include information about, for ex-
ample, the power needed by a specific feature to work properly.
For these reasons we define the novel concept of Device Capability that includes
all the aforementioned information, as shown in Figure 3.1, and it is defined as
follow:

Definition 3.1.1. A Device Capability is an aggregated representation of de-
vice’s specific resources status, available Android standard features and power
conditions.

The main idea is that if a specific Capability is available, then its subtended
resources, features and power conditions are guaranteed.
A Capability can be exclusive or shared, depending if its use can be shared
among different requesters (shared) or not (exclusive).
The idea is to think the entire model as a Service-oriented architecture in which
the services are the Capabilities that a device can expose and that the resource
manager can manage and take into account to schedule and to distribute the work
among the different devices.

A key aspect is the connection between the Capabilities and the applications:
this is initially made by mapping the Android features used by the single appli-
cation with the Capabilities that subtend those features and then possibly adding
user-defined Capabilities, so that a single application uses a set of required or

1see Appendix A.2 for more information about

38

i
i

“thesis” — 2017/4/6 — 17:13 — page 39 — #55 i
i

i
i

i
i

3.1. Capability model

optional Capabilities. The fact that a Capability is optional means that the ap-
plication does not require it to run, but it could use it to perform for example
some optional operations or to increase the accuracy of some outputs (e.g., using
fine-grained location through wifi or 3G). Moreover, since a Capability can be
defined also with some resources related, there is the possibility to have fine-
grained resource requirements for an application.

A single Capability subtends one or more Android features, which can be
required or optional: this mapping is shown in Table 3.1 and stored in a easily
editable .xml file. This file is organized according to the example of Listing 3.1,
each Capability as well as by features, can be defined by some resources with the
minimum value required, declared as string representation which follows the pat-
tern sys.component.component (from now on we refer to this representation with
the name Resource Path), and a device status condition in which the Capability
can be considered available (e.g., minimum battery charge value, maximum tem-
perature value...).
At current state the resources and power status requirements related to the single
Capability are calculate empirically.

Listing 3.1: Sample Capabilities XML definition file

1 <?xml version="1.0"?>
2 ...
3 <system name="NEXUS5_0"> <!−− STATIC CAPABILITIES DEFINITIONS −−>
4 < capabilities >
5 < capability type="SCREEN">
6 <resources>
7 <resource id="sys.cpu.pe" value_min="80" required=" false " />
8 <resource id="sys.gpu.pe" value_min="60" required=" false " />
9 </ resources >

10 < features >
11 < feature name="android.hardware.screen . portrait " required ="true" />
12 < feature name="android.hardware.screen . landscape" required =" false " />
13 </ features >
14 < status >
15 < battery value_min="16"/>
16 </ status >
17 </ capability >
18 ...
19 </ capabilities >
20 </system>
21 ...

More formally, let be:

• F a set of device features {f1, f2, . . . , fn}

39

i
i

“thesis” — 2017/4/6 — 17:13 — page 40 — #56 i
i

i
i

i
i

Chapter 3. System Design

• R a set of hardware resources (e.g CPU, memory, etc..) represented as a
pair 〈Resource Path, value〉

• P a set of power status (e.g. temperature, etc. . .) represented as a pair
〈status, value〉

• B a set of battery status (e.g. level, plugged, etc. . .) represented as a pair
〈status, value〉.

we can define the Capability concept as a sextuple

c = 〈Fc
r,F

c
o,R

c
r,R

c
o,P

c,Bc〉 (3.1)

where F c
r , F

c
o ⊆ F , Rc

r, R
c
o ⊆ R, P c ⊆ P and Bc ⊆ B. From now on the r sub-

script denotes required components while the o subscript denotes the optional
ones.
For convenience we label as C = {c1, c2, . . . , cn} the set of all defined capabili-
ties.
Since a capability can be exclusive or shared we label as Cexcl and Cshr the two
set of capabilities respectively such that Cexcl, Cshr ⊂ C and Cexcl ∩ Cshr = ∅

Following the same formal notation an application can be defined as a tuple

App = 〈CApp
r ,CApp

o 〉 (3.2)

where Cr ⊆ C are the required capabilities and Co ⊆ C are the optional ones.
We denote by A the set of all developed applications.

Finally, we can represent a device through two definitions. The first models
a base device as a decuple

Dev = 〈CDev
e ,RDev

d ,FDev
d ,ADev

d ,ADev
e ,RDev

a ,PDev
a ,BDev

a 〉. (3.3)

The symbols with the d subscript denotes sets which contain elements that are
fixed device hardware or software equipment (i.e., installed), the e subscript de-
notes sets which contain elements that are enabled by the user and the a subscript
denotes sets which contain elements that are effectively available for use.
The second definition defines an extended device concept that includes also avail-
able capabilities and applications, i.e. computing by the resource manager, by
adding the sets Ca, Cb (i.e., the set of booked capabilities) and Aa to the 3.3:

Dev′ =〈CDev′

e ,RDev′

d ,FDev′

d ,ADev′

d ,ADev′

e ,CDev′

a ,CDev′

b ,RDev′

a ,

PDev′

a ,BDev′

a ,ADev′

a 〉.
(3.4)

40

i
i

“thesis” — 2017/4/6 — 17:13 — page 41 — #57 i
i

i
i

i
i

3.2. The application profiler

Figure 3.2: The applications profiler steps to retrieve Capabilities requirements and to
export the profile file from the application Manifest.

In both definitions the following conditions must hold:

• Cb, Ca ⊆ Ce ⊆ C

• Ra ⊆ Rd ⊆ R

• Pa ⊆ P

• Ba ⊆ B

• Aa ⊆ Ae ⊆ Ad ⊆ A.

We denote by D the set of all base devices and D′ the set of all extended devices.
Moreover, we say that Devi ∼= Dev′i if they differ only for the Ca, Cb and Aa

sets.

3.2 The application profiler

To help Android developers to create compatible Android applications we pro-
pose an application profiler that parses the Android Manifest.xml file of the ap-
plication (defined by the developer and explained in the Appendix A.1) to extract
the initial set of information required to identify the Capabilities of the applica-
tion. The manifest can be retrieved from any Android Application Package (APK)
through the ApkTool 2 software that unpacks and decodes the binary resources
and file structure of a given application.

2https://ibotpeaches.github.io/Apktool/

41

https://ibotpeaches.github.io/Apktool/

i
i

“thesis” — 2017/4/6 — 17:13 — page 42 — #58 i
i

i
i

i
i

Chapter 3. System Design

Capability Explicitable Resources Exclusive Required Features Optional Features
SPEAKER Yes No .output /
SCREEN Yes Yes .screen.landscape .screen.portrait
CONNECTIVITY_BT Yes No .bluetooth .bluetooth.le

CONNECTIVITY_WIFI Yes No .wifi
.wifi.direct

.location.network

SENSORS No Yes .sensor

.sensor.accelerometer
.sensor.barometer
.sensor.compass

.sensor.gyroscope
.sensor.light

.sensor.proximity
.sensor.stepcounter
.sensor.stepdetector

CAMERA No Yes .camera
.camera.autofocus
.camera.flash
.camera.front

NFC No Yes .nfc .nfc.hce
LOCATION No No .location .location.gps
INFRARED No Yes .consumerir /
MICROPHONE No Yes .microphone /
TELEVISION Yes Yes .type.television /

TELEPHONY No Yes .telephony
.telephony.cdma
.telephony.gsm

.location.network
TOUCHSCREEN No Yes .touchscreen .faketouch
MUSIC_HP Yes No .audio.pro .output
MUSIC_LL Yes No .audio.low_latency .output

Table 3.1: Mapping between Capability and Android Features
(android.hardware)

The profiler performs four main operations summarized in Figure 3.2. First of
all it retrieves all the Capabilities explicitly defined, both required or optional.
These Capabilities can be further defined in detail by the developer overriding
their standard resources or device’s status requirements.
Secondly, the profiler retrieves all the explicited features (required or not). These
information should be currently provided by the developer to allow the applica-
tions store to show device-compatible applications only.
Moreover, since some Android permissions (see Appendix A.2) imply the access
to specific hardware features, the profiler is able to retrieve implicit features from
declared permissions basing on the mapping done by Google [109]. In this case,
the features are considered as required.
Finally, the profiler maps all the found features to the corresponding Capabilities
through the mapping shown in Table 3.1.

The output of the profiler is an .xml file shown in Listing 3.2. The file
contains the name and the package of the application, that will be used by the
system to perform operation on it, and all the required or optional Capabilities.
At this point it is possible for developers to manually add specific resources
or power status constraints for each Capability (e.g., as done in lines 6–8 of
Listing 3.2), otherwise the resource manager will consider the static definitions

42

i
i

“thesis” — 2017/4/6 — 17:13 — page 43 — #59 i
i

i
i

i
i

3.3. The proposed management model

mentioned in Section 3.1.

Listing 3.2: Sample Application XML definition file

1 <?xml version=’1.0’ encoding=’utf−8’?>
2 ...
3 < application name="YouTube" package="com.google.android.youtube">
4 < capabilities >
5 < capability type="CONNECTIVITY_WIFI" required="true"/>
6 <resources>
7 <resource id="sys. net" value_min="70"/>
8 </ resources >
9 < capability type="NFC" required="true" />

10 < capability type="SCREEN" required="true"/>
11 < capability type="CAMERA" required="false"/>
12 </ capabilities >
13 </ application >
14 ...

3.3 The proposed management model

After that the concept of Capability has been introduced, it is possible to explain
the general management model implemented in the BarbequeRTRM. This model
is shown in Figure 3.3.

3.3.1 Capabilities management model

At application level, the application profiler is in charge to identify the Capabil-
ities of the application, whereas the user can decide which applications register
under the control of the resource manager.
At device level, similarly, Capabilities are first enabled by the user, who can
decide which Capabilities can be managed by the resource manager. How to
perform this operation is explained in Section 4.2. Then the resource manager
computes all the available Capabilities of the device checking for each Capabil-
ity that its features, resources and power status requirements are available in the
device.

The key aspect is that Capabilities availability is dynamic: Capabilities for
instance are booked by the application scheduler. In this case exclusive Capabil-
ities are assigned to one process only and made unavailable. Their availability
is recomputed by the resource manager each time they are requested (e.g., dur-
ing the applications filtering operation). Moreover, changes in device’s power
conditions or resources status also affect Capabilities availability.

43

i
i

“thesis” — 2017/4/6 — 17:13 — page 44 — #60 i
i

i
i

i
i

Chapter 3. System Design

Figure 3.3: The entire capabilities and application management model. The blue
color refers to the Android features and permission layer; the red color regards the
hardware-related layer; the green color refers to the novel Capabilities layer.

More formally, the capabilities filtering operation can be modelled with the
following function:

CapFiltering:D → D′

Dev 7→ Dev′
(3.5)

Such that:

• Dev ∼= Dev′

• ∀ci ∈ CDev′
a

• ∃cj ∈ CDev
e | ci = cj

• ∀rk ∈ Rci
r ,∃rh ∈ RDev′

a | ResSat(rk, rh)

• ∀fk ∈ F ci
r ,∃fh ∈ FDev′

d

• ∀pk ∈ P ci ,∃ph ∈ PDev′
a | PowerSat(pk, ph)

44

i
i

“thesis” — 2017/4/6 — 17:13 — page 45 — #61 i
i

i
i

i
i

3.3. The proposed management model

• ∀bk ∈ Bci ,∃bh ∈ BDev′
a | BatterySat(bk, bh).

Where ResSat(r1, r2) is a function that defines if the resource requirements of
pair r1 are satisfied by the requirements of the resource pair r2.
The PowerSat(p1, p2) is a function that defines if the power requirements of
pair p1 are satisfied by the power requirements of pair p2.
The BatterySat(b1, b2)is a function that defines if the battery requirements of
pair b1 are satisfied by the battery requirements of pair b2.

Given two pairs as 〈statusi, valuei〉 the satisfaction relation can be defined
as:

∀status1,∀status2,∀value1,∀value2
Sat(〈status1, value1〉, 〈status2, value2〉)⇔

status1 = status2 ∧ value2 > value1

(3.6)

Finally, the resource manager maintains different views of all enabled and
available Capabilities, in this way they can be used to filter the runnable applica-
tions as explained below.

3.3.2 Android applications management model

While applications that are integrated with the resource manager usually follow
an execution model, that in the case of the BarbequeRTRM is called Abstract Ex-
ecution Model3, one of the main problem managing Android application is that
they are not developed according to this model so we cannot have the full control
during execution and it is not possible to communicate with the application, for
example, to adapt the execution to the set of resources actually assigned or to
drive the resource manager with information about the current performance re-
quirements. This limitation leads to design a new dedicated management model.

The main effort is to allow the management of Android application together
with the management of integrated BarbequeRTRM applications. First of all,
to distinguish between these two types of applications, it is introduced the at-
tribute reconfigurable in the application definition: the standard Android appli-
cations are tagged as non-reconfigurable, while the BarbequeRTRM integrated
applications can be tagged both reconfigurable or not. Moreover a lightweight
implementation of the execution model, called Execution Context in the Barbe-
queRTRM jargon, is associated to the Android application, this allows to make
the application managed by the resource manager core modules and fitted for the
scheduling and execution flow.

3See Section 4.1 for further details

45

i
i

“thesis” — 2017/4/6 — 17:13 — page 46 — #62 i
i

i
i

i
i

Chapter 3. System Design

Figure 3.4: State diagram of a managed Android Application. The white states are the
application state itself as view by the manager, the red states are the application’s
Execution Context state

Once an application is profiled by the application profiler (seen in Section
3.2) and enabled in the system, it is ready to be managed by the resource man-
ager. During the start-up the latter takes all the .xml configuration files of the
enabled applications and for each one it keeps track of all the declared Capabili-
ties, as well as other information such as name and package. Then it creates on-
the-fly a single static resources configuration, called Application Working Mode
(AWM). This will be used by the Schedule Policy to assign correctly the required
resources and Capabilities. The static configuration is created according to these
steps:

1. For each required Capability take the user-defined resource constraints

2. If some required Capability has not user-defined resource constraints, take
the resource constraint of the static Capability definition (as exposed in
Section 3.1)

3. For each specific resource type sum all the required values from different
Capabilities.

Once the above steps are completed the application is Registered into the
resource manager. It means that the application execution will be managed by
the BarbequeRTRM. The other status are shown in Figure 3.4.

After the application and Capabilities initialization phase is completed a filter
is in charge to check the available capabilities of the device and the required
capabilities of each application to set an application in the Available state. Once
an application is marked as available it can be exposed to other BarbequeRTRM
instances on other devices and possibly scheduled.

46

i
i

“thesis” — 2017/4/6 — 17:13 — page 47 — #63 i
i

i
i

i
i

3.3. The proposed management model

Formally, the application filtering operation can be modelled with the fol-
lowing function:

AppFiltering:D → D′

Dev 7→ Dev′′
(3.7)

Such that:

• Dev ∼= Dev′′

• ∃Dev′

• Dev′ = CapFiltering(Dev)

• ∀Appi ∈ ADev′′
a , ∃Appj ∈ ADev′′

e | Appi = Appj

• ∀Appi ∈ ADev′′
a , ∀ck ∈ CAppi

r ,∃ch ∈ CDev′
a | ck = ch.

Before an application is actually launched it has to be scheduled by the Sched-
ule Policy, so a new Execution Context (EXC) is created and its status set to DIS-
ABLED. Then the EXC is enabled and is set to READY state, which means that
it has to be considered during the scheduling process. A new scheduling event is
thrown by the system.
The Schedule Policy retrieves a view of all Capabilities and resources allocation
and takes care of recomputating a new allocation considering the ready appli-
cations. When the scheduling is completed and committed, the EXC is set to
RUNNING and the application is in the Started state.
At the end of the execution the EXC of the application is set to DISABLED
and destroyed, while the application can return to the Registered state and its
resources and Capabilities released. An application can switch between the Reg-
istered and Available states depending on the currently availability of device
Capabilities.

3.3.3 Resources management model

In this model resources are associated to a Capability demand that can be re-
quired or optional. The difference is that, if a Capability requires a particular
resource minimum value, the scheduler has to give to the application that mini-
mum quota of resource, while if the resource is demanded as optional the sched-
uler may try to give it to the application in a best-effort way not guarantying that
the demand is satisfied.
To effectively allocate resources to the applications we exploit Linux Control
Groups even if the Android Linux kernel does not have a full support of all the

47

i
i

“thesis” — 2017/4/6 — 17:13 — page 48 — #64 i
i

i
i

i
i

Chapter 3. System Design

subsystems included in the framework. In particular at time of writing the only
subsystems available by default are cpu, cpuacct, freezer. The former al-
lows us to set the share of CPU time to assign to tasks in the same cgroup. The
second subsystem is used to generate reports on CPU resources used by tasks in
a cgroup. The last one enables the possibility of suspending tasks execution and
resume it later (e.g., for migration or scheduling purposes).
In order to set the group of resources assigned to a task we need to retrieve its
PID4 and write it into the cgroup_name/tasks file.

Other than performing resource allocation, the Android extension of the Bar-
bequeRTRM allows us to set the clock frequency of the CPU cores. Since An-
droid is based on Linux, the run-time resource manager exploits the interfaces
provided by the cpufreq framework exploiting a DVFS approach [110, 111].

4Process Identification Number

48

i
i

“thesis” — 2017/4/6 — 17:13 — page 49 — #65 i
i

i
i

i
i

CHAPTER4
Integration with the BarbequeRTRM

In this Chapter we explain how we implemented the aforementioned conceptual
model with the BarbequeRTRM. After a brief overview of the actual resource
manager architecture and features (Section 4.1), we expose the novel architec-
tural modules we have introduced in our work. In particular Section 4.2 treats
the different aspects of the integration: it starts with a brief overview of the man-
agement of applications that are integrated with the Abstract Execution Model
(AEM) of the BarbequeRTRM; then it considers the extension to manage also
non reconfigurable generic Android applications. Furthermore, it introduces the
Barbeque daemon service module and how it cooperates with the native Barbe-
queRTRM. Finally, because this is one of the first work that exploits and en-
hances the distributed implementation of the BarbequeRTRM, the Subsection
4.2.4 concludes considering the distributed resource management architecture of
the resource manager.
The developed device selection policy for application offloading is explained in
Section 4.3, while Section 4.4 discusses about the API we made available for
developers of third-party applications in order to exploit the integration with the
resource manager. Finally, the Section 4.5 focuses on some application launch-
ing schemes that can take advantage of the integration with the BarbequeRTRM
and explains in depth the distributed mechanism enabled and implemented by

49

i
i

“thesis” — 2017/4/6 — 17:13 — page 50 — #66 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

our work providing also a possible use case scenario.

4.1 The BarbequeRTRM

The Barbeque Run-Time Resource Manager has been developed and continu-
ously expanded by the Barbeque Open Source Project team [96] within Politec-
nico di Milano. The main goal of this project is to exploit run-time resource
management taking care of both applications Quality-of-Service (QoS) require-
ments and dynamic resources availability. Moreover, the BarbequeRTRM is
written in C/C++ language and is conceived to run in the user-space exploit-
ing OS libraries: this allows the resource manager to abstract from the under-
lying platform leaving the Linux OS kernel in charge of communicate directly
with the hardware [17, 112]. For this reason its application context spaces from
energy-constrained embedded systems to High Performance Computing, mak-
ing portability one of its main feature and supporting both homogeneous and
heterogeneous platforms [113,114]. At the time of writing the resource manager
supports different hardware platforms [115, 116]. One of the main contribution
of this work is to port a full version of the resource manager to the Android plat-
form to support mobile oriented platform, like ARM big.LITTLE based SoC.

The BarbequeRTRM was initially born as a centralized approach that has
been then refined to support a distributed hierarchical mode. This work goes in
the direction of further developing distributed resource management strategies.
The framework is highly modular and easily extensible thanks to a plugin-based
architecture for adding policies and features. The KConfig configuration tool
allows to build only selected modules basing on the user and platform require-
ments.

One of the peculiar ideas of the resource manager is to support applications
that could reconfigure themselves at run-time adapting the configuration to the
set of assigned resources. To enable this capability the applications supported by
the BarbequeRTRM must be developed to be executed according to the so called
"Abstract Execution Model", that will be better explained later. Applications can
expose to the resource manager several resources requests configurations, called
Application Working Modes (AWMs) in Barbeque jargon. Usually the AWMs
are provided by the developer basing on a design-time optimal identification of
a finite set of configurations exported in a file (a.k.a the Recipe) and are assigned
to the application by the resource manager. The applications, moreover, has a
set of tunable parameters called Operating Points (OPs) which are chosen by the
application itself depending on the assigned AWM to match an expected QoS1

1 Quality of Service

50

i
i

“thesis” — 2017/4/6 — 17:13 — page 51 — #67 i
i

i
i

i
i

4.1. The BarbequeRTRM

Figure 4.1: The RTLib AEM implemented by an integrated application.

for the end user. Generally a single AWM can support multiple OPs.
Since the applications have an active role on the self-adaptiveness of the system,
the BarbequeRTRM framework provides a Run-Time Library (RTLib) that pro-
vides interfaces, features and application-transparent communication channel to
allow interaction between the application and the resource manager.

Abstract Execution Model (AEM)

The reconfigurability property of an application required that its execution life-
cycle can be controlled by the resource manager which must be able to start,
stop, suspend or reconfigure the application and synchronize it with the dynam-
ical resource allocation. Moreover, the application itself may need a step in its
execution flow to verify if the current configuration match its requirements (QoS,
performance goals. . .).
To meet these requirements the RTLib provides the Abstract Execution Model
(AEM). It exploits an event-based programming model and contains a set of call-
back that are required to be implemented in the applications and in which the
application logic is split. A worth to be considered aspect is that the AEM is
very similar to the Android application execution model and for this reason a

51

i
i

“thesis” — 2017/4/6 — 17:13 — page 52 — #68 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

particular set of Android application can be easily adapted to be runtime man-
ageable.
The AEM is described in Figure 4.1. It can be seen as a state machine in which
each state (the white rectangles) correspond to a specific operational state of the
application. Each schedulable application need to instantiate a so-called Exe-
cution Context (EXC) which is an implementation of the AEM. Since the basic
implementation of the AEM is exported by the bbque::rtlib::BbqueEXC
class, developers must implement and instantiate a class derived from Bbque-

EXC.
Briefly, the main callbacks methods that a developer need to fill with the

application logic are:

• onSetup: since this method is called by the base class after the construc-
tor it should contain the application initialization code such as memory
allocation calls, variable initialization, opening input and output channels
and so on

• onConfigure: this method is called when the BarbequeRTRM assigns
a new AWM. It should contain all the code related to the applications pa-
rameters and components reconfiguration (e.g., threads, data structures. . .)

• onRun: this is one of the main method of the EXC and it is its entry
point. It must host all the code to actually execute a cycle of the application
computational task

• onMonitor: once a cycle of execution is performed, the application
should check if the level of QoS or performance has been achieved. De-
velopers can exploit this method to implement application-side run-time
management policy to face any possible response of this check. Moreover,
if there are no more data to be further processed the onRelease method
is called, otherwise application should check if resources are changed to
call the onConfigure method or the onRun one to perform another
computational cycle

• onRelase: if the workload is finished then the application should clear
its memory allocations, data structures or references. Developers has to put
inside this method the code to perform these kind of stuff.

Projects involved

The BarbequeRTRM is portabile and highly customizable. For this reason, it
was involved and extended in multiple European projects research (FP7 and

52

i
i

“thesis” — 2017/4/6 — 17:13 — page 53 — #69 i
i

i
i

i
i

4.2. The proposed architecture

H2020) that are related to embedded systems [117, 118], heterogeneous sys-
tems [119] and High Performance Computing [120]. These projects tackle dif-
ferent computing-related challenges, in particular energy-efficiency and thermal
management, as well as monitoring, modelling, prediction and decision support
for disaster management and health care applications.

Moreover, the framework supports different programming languages, such
as OpenCL, Java and OpenMPI, and different architectures as multi/many-cores
CPUs (e.g., ARM Cortex processors), hardware accelerators and GPUs (e.g.,
nVidia CUDA).

4.2 The proposed architecture

The highly modular architecture and the extensibility of the BarbequeRTRM
make it the ideal candidate for our purpose. To implement our conceptual model
into the resource manager we introduced new specific modules that can be en-
abled only during the deployment on Android devices. In this section we explain
the implemented modules and how they are involved in the management process.

As we can see in Figure 4.2, we can divide the system in three layers: the
blue one is the Application layer, the green one is the Resource manager layer
and the red one is the Hardware layer.

Regarding the Application layer we can notice that there are three different
types of management depending on the fact that the application has been im-
plemented according to the AEM or not. In particular we can have a standard
integrated applications that are the actual supported applications for multi-core
and HPC systems. They run in a standard EXC and are managed by the resource
manager by the RTLib as described in the previous section.
Then we can also have standard Android integrated applications, that is Java An-
droid applications written according to the AEM. They run into a special EXC
split between Java and Native layers. In the former the application communi-
cates with a service that through JNI calls communicates with the Native layer
where there is the implementation of the AEM; also in this case the resource
manager can manage the application through the RTLib. This type can be used
by Android applications implementing a stream processing paradigm. This work
re-enable the support for this kind of applications as briefly explained in the next
section.
The last type is the novel part and it concerns generic Android application that
does not follow the AEM and so they cannot be managed through RTLib. This
type of applications can communicate with the resource manager through a Bar-
bequeService daemon that they can bind (Figure 4.3) and whose API they can use

53

i
i

“thesis” — 2017/4/6 — 17:13 — page 54 — #70 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Figure 4.2: The proposed architecture of the BarbequeRTRM modules. The grayed
modules were already implemented, the colored modules are the new ones.

to retrieve some information. The communication between the resource manager
and the application through the Barbeque Service can be bidirectional (with the
binding explained before) or monodirectional (from the manager to the applica-
tion), the latter case is used to implement the management model of an applica-
tion explained in Subsection 3.3.2.

54

i
i

“thesis” — 2017/4/6 — 17:13 — page 55 — #71 i
i

i
i

i
i

4.2. The proposed architecture

The Resource manager layer shows part of the modules that compose the
core of the BarbequeRTRM: the grayed modules were already implemented
while the colored ones are introduced by this work. We can see that this layer is
split in three sub-layers: the applications integration layer, the core layer and the
hardware platform integration layer.
The applications integration layer is composed by two proxies, the Application
Proxy is used for the communication with the EXCs and so the AEM integrated
applications, while the new Android Application Proxy is used to communicate
with the Barbeque Service and indirectly with generic Android applications. It
receives and forwards requests from the daemon service to the core layer, dis-
patches application event notifications and forwards responses and commands to
the service.
Both proxies communicate with the core layer where there are the manager mod-
ules in charge of take different decisions. For our model the Android Application
Manager has a major relevance since it is in charge of performing the following
operations:

• Initializes the set of enabled Capabilities provided by the systems

• Registers the applications

• Requests the available features, resources and check the power status of the
device

• Computes all the available Capabilities

• Identifies the set of runnable applications filtering the available Capabilities
of the device

• Maintains a current view of the usage of the Capabilities

• Dispatches managed application life-cycle commands.

To perform its duty the Android Application Manager needs to communicate
with other BarbequeRTRM modules, in particular the Resource Accounter to re-
trieve the current resources available, the Battery Manager to retrieve the battery
status and the Android Application Proxy to send commands to the Barbeque
Service.
The hardware platform integration layer is implemented by the PlatformMan-
ager and other modules that are further explained in details. It exposes an in-
terface of the systems resources to the core layer and is in charge to redirect the
required operations to the proper layer’s submodules.

55

i
i

“thesis” — 2017/4/6 — 17:13 — page 56 — #72 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Figure 4.3: How the users and the applications interact with the daemon BarbequeSer-
vice and the SettingsActivity. Java and the Native modules are put in evidence.

As well as the presented layers and modules there is also a Settings Activity
that deserves a special explanation. This Activity allows the user to enable the
Capabilities and the applications that have to be managed by the resource man-
ager. It also starts for the first time the Barbeque Service, because it is required
by Android security protocol to enable the automatic start of the daemon after
the boot of the device. As shown in Figure 4.3, the settings and information are
stored in a SQLite database, which is the main method to store local data for
Android applications. The database is then opened and queried by the Android
Loader module, that is in charge also to load and to parse the Capabilities and
single application configuration (XML) files.

4.2.1 Integrated application management flow

In a work of 2012 [121] a lightweight version of the BarbequeRTRM was ported
for the first time on Android. That work aimed at managing Android stream pro-
cessing applications that are developed according to the AEM.
Unfortunately the Android support was not been carried out with the further
development of BarbequeRTRM and latest version and features were not avail-
able for Android environment. Since with our work we implicitly re-enable the
support also for this type of applications we briefly explain their management

56

i
i

“thesis” — 2017/4/6 — 17:13 — page 57 — #73 i
i

i
i

i
i

4.2. The proposed architecture

architecture.
As standard native AEM-integrated applications they run into an EXC, how-

ever they are written in Java so they cannot directly exploit the native Barbeque
RTLib framework. The proposed solution proposes a modified concept of EXC.
The main idea is to expose the RTLib functionality to the Java layer through a
service-based architecture as shown by the Figure 4.2. In the Java layer of the
EXC the application binds a developer’s custom Service which extends a basic
implementation of the Bbque Service, the daemon service started at boot time.
Its goal is to expose the RTLib methods to the Java layer by simply broadcasting
an Intent when an EXC callback is called by the BarbequeRTRM. This is one
of the event-based mechanism provided by the Android runtime framework to
achieve inter-process communication towards multiple instances. For this rea-
son, this class should be extended by the application developers to catch the
broadcast intent and to effectively implement the callback methods of the appli-
cation. Furthermore, the Bbque Service declares all the signatures corresponding
to the standard RTLib native functions. The real implementation of such func-
tions is in the standard RTLib of the native layer. The bridge between the Java
and the native context is made by Bbque_android::RTLib, which exploits
the JNI 2 library.

4.2.2 Non-integrated application management flow

In Chapter 3 we presented the lifecycle management model of a generic An-
droid application and now we explain how this model is implemented in Barbe-
queRTRM.
First of all the Android Application Manager retrieves the set of the enabled
applications from the Android Loader and registers them. The applications are
enabled by the user through the Setting Activity presented before, that retrieves
all the installed packages from the Android Package Manager. At this point the
Android Loader has to read from the settings database the enabled applications.
For each enabled application (Figure 4.4), it retrieves the application configu-
ration .xml file in the application assets folder, and parses this file creating the
application recipe and a static working mode, as explained in Subsection 3.3.2.
When all applications are registered, the Android Application Manager computes
the available applications set filtering the required Capabilites of the applications
and the available ones. At this point, the available applications can be scheduled
and started.

2Java Native Interface

57

i
i

“thesis” — 2017/4/6 — 17:13 — page 58 — #74 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Figure 4.4: The applications enabling and registering architecture.

When an application is launched, the resource manager handles the request.
In general the Barbeque Service is in charge of notifying to the Android Appli-
cation Proxy that a new application has to be started attaching some application
information such as name and package. The Android Application Proxy then
performs the following steps:

1. It creates a new Execution Context (EXC) with the application information
and its recipe

2. It enables the EXC

3. It notifies to the Resource Manager that a new application needs to be
scheduled.

To realize the management of resources and Capabilities the Resource Man-
ager, driven by the scheduling notification event, requests a rescheduling to the
Scheduler Manager which in turn invokes the currently plugged Schedule Policy.
This is in charge of retrieving Capabilities and resources system view3 from the
Android Application Manager and Resource Accounter respectively and com-
putes the binding between the application constraints and available Capabilities
and resources. When the scheduling is completed the policy leaves the control
again to the Resource Manager that invokes the Synchronization Manager, which
performs the commit phase: the scheduled views become effective in the system.

3 This is an overall system view which contains information about the current resources allocation and
availability

58

i
i

“thesis” — 2017/4/6 — 17:13 — page 59 — #75 i
i

i
i

i
i

4.2. The proposed architecture

Because of the particularity of Android applications it may not be possible for
the Android Platform Proxy to directly act on the resources. In fact we need
to know the PID of the applications we want to assign resources to, but if the
application is not already running we simply do not have this information. The
solution to this problem is faced by the Barbeque Service as explained below.

When the Synchronization Manager commits the Capabilities schedule view,
the Android Application Manager sends a start command for the scheduled ap-
plication to the Barbeque Service to effectively launch the application (through
the Android Application Proxy) and recomputes the available Capabilities and
the set of runnable applications.
Finally, the Barbeque Service is in charge of collecting the command messages
and if necessary starts the applications. At this point, it can wait for the PID of
the started applications and sends it back to the Android Application Manager,
that can invoke the Platform Manager to enforce the resource assignments.
As explained, this workflow is different from the Barbeque AEM, since the ap-
plication cannot be reconfigured at run-time.

4.2.3 The Barbeque Service

In the Java layer we implemented a daemon service called Barbeque Service
that acts as an interface towards Android. It allows the communication between
the resource manager and the Android applications (non-integrated or energy-
aware).

Goals

The Barbeque Service runs as a background Android service starting at boot time
and communicating with the native BarbequeRTRM daemon:

• To retrieve features of the device during the Android Application Manager
initialization through the Android Package Manager (see Appendix A.4.1)

• To expose a binding interface and API for other applications: with which
it is possible to retrieve available Capabilities, applications or other infor-
mation from the resource manager (see Section 4.4 for binding and API
details)

• To perform the application launch and retrieve its PID through the Android
Activity Manager (presented in Appendix A.4.2)

• To interact with the user via Notifications

• To set Android applications to "enabled" state.

59

i
i

“thesis” — 2017/4/6 — 17:13 — page 60 — #76 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Communication interface

The BarbequeRTRM and Barbeque Service intercommunicate through a RPC4

mechanism. Because of the heterogeneous context of the two components (the
resource manager is in the native layer while the service is in the Java one), we
decided to implement this RPC mechanism through the Google gRPC frame-
work. A practical tutorial about gRPC can be found in the Appendix B.
Google RPC exploits the Google Protocol buffers which allow to define a com-
munication interface through a .proto file written in a Interface Definition
Language (IDL). The general idea is to expose different communication services
that contain the remote available functions. The parameters and objects are de-
fined as Message type in the same file. The advantage of Protocol buffers is
that messages and RPC definitions are language independent, so the interfaces
are defined once in the IDL format, leaving to a compiler the burden of trans-
lating the definition into classes and methods language-specific. In addition the
code devoted to the serialization of the messages data structure is also automati-
cally generated.
Google RPC adds various plugins to manage the communication channels as
well as the server and client implementations.

For the communication between the Barbeque Service and the Barbeque An-
droid Application Proxy we defined the .proto interface file shown in Listing
4.1.
The interface includes the Android Application Control service which is imple-
mented on the Barbeque Service side and the Android Application Request ser-
vice that is implemented on the Android Application Proxy side.
The Android Application Control service exposes two remote functions:

• GetAvailableFeatures: to return the list of available features of the
device

• DoAction: it accepts an ApplicationControlMessage, which con-
tains the information about the application and the required action, and
returns a ReturnCode message. This function is called by the Barbe-
queRTRM to send a command to the BarbequeService.

The Android Application Request service, otherwise, defines other two remote
functions:

• GetAvailableApplications: to return a list of information of the
available applications

4 Remote Procedure Call

60

i
i

“thesis” — 2017/4/6 — 17:13 — page 61 — #77 i
i

i
i

i
i

4.2. The proposed architecture

• RequireAction: to require to the resource manager the action set in the
ApplicationControlMessage, passed as argument, and to return a
ReturnCode message. This function is called by the BarbequeService to
send an event request to the BarbequeRTRM.

Listing 4.1: Protocol buffer communication interface definition between the Barbeque

Service and the Barbeque Android Application Proxy

service AndroidApplicationControl {
rpc GetAvailableFeatures (EmptyParam) returns (stream Feature) {}

rpc DoAction(ApplicationControlMessage) returns (ReturnCode) {}

}

service AndroidApplicationRequest {
rpc GetAvailableApplications (EmptyParam) returns (stream AppInfo) {}

rpc RequireAction(ApplicationControlMessage) returns (ReturnCode) {}
}

message ApplicationControlMessage {
AppInfo info = 1;
enum Action {

START = 0;
STOP = 1;
REQUEST_SCHEDULE = 2;
REQUEST_STOP = 3;

}
Action action = 2;
int32 id = 3;

}
message AppInfo {

string name = 1;
string package = 2;
int32 pid = 3;

}
message Feature {

string feature_name = 1;
}
message ReturnCode {

int32 code = 1;
}
message EmptyParam {}
}

The possible actions are defined through an enum type into the Applica-
tionControlMessage:

61

i
i

“thesis” — 2017/4/6 — 17:13 — page 62 — #78 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Figure 4.5: The different distributed topologies available with BarbequeRTRM: a cen-
tralized version (figure a) and a fully-distributed one (figure b). Single-edge arrows
indicate a master-slave relationship.

• START: it is the application start command

• STOP: it is the application stop command

• REQUEST_SCHEDULE: it requires an application to be scheduled

• REQUEST_STOP: it requires an application to be stopped.

4.2.4 Distributed resource management

To enable our concept of a Pervasive Distributed Computing System, we had
to port the applications management into a distributed context. For this reason
the BarbequeRTRM has been extended to operate also according to a distributed
configuration. In this section we provide an overview of this distributed resource
management architecture.

In the distributed configuration, each device has a local running instance of
the BarbequeRTRM. The resource management strategy can work through a hi-
erarchical topology, in which one device acts as the "master" instance and co-
ordinate the other "slave" instances, or in a fully-distributed topology, in which
each device acts as autonomous agent and a coordination protocol is used to take
decision (Figure 4.5). The development contribution of this work has introduced
the possibility of adopting an hybrid topology. In this case, each device can act
as a coordinator towards other devices relatively to the local user-selected appli-
cation management, while the global resources management is a prerogative of
each BarbequeRTRM instance.

62

i
i

“thesis” — 2017/4/6 — 17:13 — page 63 — #79 i
i

i
i

i
i

4.2. The proposed architecture

Figure 4.6: The BarbequeRTRM distributed architecture

BarbequeRTRM distributed systems extension

Figure 4.6 shows the general concept of the BarbequeRTRM distributed archi-
tecture. In particular the Distributed Manager module in the BarbequeRTRM
core layer is in charge to manage the distributed group. In this sense, at time of
writing, it is planned to:

• Manage the system topology, implementing a management of the group
coordinator election algorithm

• Face changes in the available systems group (new systems discovery, nodes
failure management), implementing a discovery and join algorithms, fault-
tolerant mechanism and protocol

• Implement a coordinated decision protocol

• Implement a protocol to reach consistency and to collect the global status
and runtime statistics of the BarbequeRTRM instances.

The conceptual design includes the possibility to plug a Distributed Policy
which implements the aforementioned specific protocols so that they can be in-
terchanged on demand. The Distributed Manager communicates with the Re-
mote Platform Proxy which is a module of the Hardware Platform Integration
Layer providing the functions needed to get information from other remote in-
stances of the resource manager. The Agent Proxy plugin then implements the
communication interfaces based on gRPC as previously explained.

In this work the distributed configuration follows an hybrid topology, because
all the single instances of BarbequeRTRM are responsible for the global system

63

i
i

“thesis” — 2017/4/6 — 17:13 — page 64 — #80 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

Figure 4.7: The BarbequeRTRM Hardware Platform Integration Layer architecture

resources and the Capabilities concerning only the application they scheduled.
Moreover the set of interconnected devices is loaded by the Distributed Man-
ager from a configuration file which contains all the available devices and their
information. Currently, the only implemented functionalities of the Distributed
Manager are related to have a consistent view of all available devices and their
updated status and to manage remote device failure.

Hardware Platform Integration architecture

The conceptual diagram shown in Figure 4.7, describes the components of the
Hardware Platform Integration Layer after the introduction of the support for the
distributed systems.

The Platform Manager is the module that abstracts the underlying platform
hierarchy.

In BarbequeRTRM the hardware platform resources are provided in a trans-
parent way through the Platform Proxy interface that is effectively implemented
by the Local Platform Proxy and the Remote Platform Proxy. The former pro-
vides an access to the local machine’s resources (e.g., local CPU or OpenCL
devices), dispatching the required operations to the appropriate specific proxy.
These proxies can be easily added extending the Platform Proxy base class. For
the use-case scenarios in which BarbequeRTRM is adopted three local prox-

64

i
i

“thesis” — 2017/4/6 — 17:13 — page 65 — #81 i
i

i
i

i
i

4.2. The proposed architecture

ies are currently implemented: the Linux Platform Proxy which uses the Linux
Control Groups (cgroup) framework for the cores and memory allocation; the
OpenCL Platform Proxy devoted to assigning a specific GPU to an OpenCL ap-
plication; and the Android Platform Proxy, which has been introduced with this
work exploits cgroup management to assign CPU shared time, freeze processes
and the cpufreq framework to control the CPU frequency governor parameters.

Communication interface

At time of writing the Agent Proxy communication interface is under develop-
ment with the Google RPC framework, even if the plugin-based design allows
the utilization of different communication protocols.

For the communication between the BarbequeRTRM instances we define a
.proto interface shown in Listing C.1 of Appendix C.

It defines a single Remote Agent service implemented by each BarbequeRTRM
Agent Proxy instance. This service exposes various remote functions:

• GetSystemInfo: this function returns a SystemInfo object that
contains different information about the remote system (e.g., battery level,
recharging status, system name) and model

• GetAvailableApplication: it returns a list of information about
the available applications

• SetApplicationManagementAction: this function takes an Ap-

plicationManagementRequest as argument which contain a spec-
ified action to be performed. This function is called by the coordinator
BarbequeRTRM instance to perform the specified action for an applica-
tion on the remote BarbequeRTRM instances. The possible actions are
defined in the enum type of the ApplicationManagementRequest
but since this part of the system is in the early design step it may change or
be extended in further months. At this moment the message defines:

– START: it start an application on the target device

– STOP: it stop the execution of an application on the target.

• SetCapabilitiesViewManagementAction: it takes an Capa-

bilityManagementRequest as argument with a specified action in-
side and a set of Capabilities. It is called by the coordinator BarbequeRTRM
instance to perform operations on the remote Capabilities view. The avail-
able actions are defined in the ViewAction enum as:

65

i
i

“thesis” — 2017/4/6 — 17:13 — page 66 — #82 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

– GET_VIEW: it returns the specified view

– BOOK: it books the given capabilities of the specified view

– PUT_VIEW: it puts the given view

– COMMIT_VIEW: it performs the commit on the specified view.

• SetResourceManagementAction: this function accepts a Resource-
ManagementRequestwhich contains a set of CpuConfig object. This
object specifies the core number and a clock frequency value for that core.

4.3 BestWing distributed device selection policy

The resource manager needs a policy to face the problem of choosing in which
device launch a task. Since the goal of our work is to develop a "proof-of-
concept" of the architecture, in our scenario the policy takes care of launching
the entire application. Therefore, the policy is responsible of allocating the re-
quired resources and capabilities in an effective way. We developed a distributed
device assignment policy which performs some steps to detect the different avail-
able devices and to identify the best device for the offloading of each scheduled
application:

1. Retrieving the information about all interconnected devices from other Bar-
bequeRTRM instances, like the battery level or plugged status

2. Computing the lowest Energy Delay Product (EDP) factor (explained in
Subsection 5.2.1) and the corresponding CPU clock frequency for each
available device according to an energy-efficiency model

3. Calculating the Energy Consumption Index (further explained in Subsec-
tion 4.3.1) considering also the battery level of the evaluated system.
If the evaluated device is plugged and the temporary best does not, the for-
mer is marked as temporary the best. Otherwise the one with the lowest
index is marked as temporary best

4. For the device marked as temporary the best, the policy verifies if the re-
quested application is in the available applications set of the device

5. Once all systems have been considered, the policy takes the best device and
books the capabilities and resources required by the application (ResBook-
ing function further explained in Subsection 4.3.3)

6. Sending the launch request for the application to the selected device.

66

i
i

“thesis” — 2017/4/6 — 17:13 — page 67 — #83 i
i

i
i

i
i

4.3. BestWing distributed device selection policy

BestWing is a greedy policy since at each system-cycle it looks for the best
device. Moreover, some steps are optimized to minimize the lost time due to
communication latency or to avoid recomputation of information that are al-
ready available, as explained in Subsection 4.3.4. As stated, this is a sample
policy that exploits the aforementioned Android BarbequeRTRM architecture.
This enabling step allows to develop more sophisticated and efficient policies in
the future.

In a formal way, from the 3.7, 4.2 and 4.6 definitions, the schedule operation
can be modeled with the following function:

AppSchedule:A× ℘(D)→ D′

〈App,DevSet〉 7→ Dev′′
(4.1)

Such that:

• ∃Dev ∈ DevSet, ∃Dev′

• eDev,App = min
Devi∈DevSet

{eDevi,App}

• Dev′ = AppFiltering(Dev)

• App ∈ ADev′
a

• Dev′′ = ResBooking(Dev′, App).

Where eDev,App denotes the Energy Consumption Index as defined in the follow-
ing.

4.3.1 Energy Consumption Index

For the policy implementation we used an index to characterize with a "score"
the choice of a specific device. This in order to compare different devices and
find the best one for the application execution. The index is based on an energy
efficiency model that consider the Energy Delay Product (EDP) (whose mea-
surement is explained in Subsection 5.2.1) and the battery level of devices. The
lower is the index the higher is the probability that the policy will select the given
device.
We therefore defined the Energy Consumption Index (e) of device i for applica-
tion app as:

ei,app = α ∗Bi + β ∗min{Ei,app(f) ∀f ∈ Freqi} (4.2)

67

i
i

“thesis” — 2017/4/6 — 17:13 — page 68 — #84 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

g
(x

)
Battery normalized level

Figure 4.8: The graph of the actual g(x) Battery scaling function we selected for our
implementation.

As we can see, equation 4.2 is composed by two terms: the battery factor and the
energy efficiency factor. In particular the Bi is a function defined as following:

Bi = g(x) (4.3)

Where g(x) is a function that scales the score to the actual normalized battery
level. For our purpose we chose a function of type g(x) =

√
1− ||x|| where

x is the device battery percentage. In this way the 4.3, as shown by Figure 4.8,
decreases slower for high battery levels despite the 4.4 term, giving a lower (i.e.,
better) value to device with low EDP values than high battery levels in the index
calculation.

The second term of 4.2 represents the minimum EDP value – over all the ith
device available frequencies set Freqi – of the Ei,app(f) function defined as:

Ei,app(f) = EDPnormi,app
(f) + EDPnormi,com

(4.4)

Where EDPnormi,app
(f) is the normalized EDP value of the specific application

and device at frequency f , as defined in 5.4, while EDPnormi,com
is the normal-

ized EDP value for the communication operations. This last term is defined as
||Ecomi

∗ Tcom||, where Ecomi
is the energy consumed for data transmission op-

erations by device i and Tcom is the communication time overhead to launch an
application remotely.

The two terms are multiplied by the coefficients α and β which can be set
according to different balancing strategies, depending on which is the policy
goal: whether we want to give priority to the battery duration or the efficiency of
the application execution. The Figure 4.9 shows the different values of the index
with respect to the different normalized EDP and battery level in a balanced
strategy (α = β = 0.5) considering negligible the communication EDPnormi,com

term. It can be noticed that in the example configuration, until a certain threshold,
the computed ECI tends to make the policy select devices with low EDP values

68

i
i

“thesis” — 2017/4/6 — 17:13 — page 69 — #85 i
i

i
i

i
i

4.3. BestWing distributed device selection policy

Figure 4.9: The map of the different values taken by the Energy Consumption Index in
a balanced strategy considering negligible the communication operations EDP.

than an high battery level. For example considering a generic application, let
be A a device with 80% battery level and 0.6 EDP value and B a device with
30% battery level and 0.2 EDP value: in this case the policy will select B as
the best device due to its lower energy consumption index (eB = 0.518 while
eA = 0.523), that is what we pursue. However the selected function of 4.3
preserves a reasonable trade-off between battery level and energy efficiency. In
fact, continuing the previous example, a little less efficient (EC = 0.3) but more
charged (BC = 0.5) device C has a lower index than the others (eC = 0.503).

4.3.2 Capabilities booking

Once the best device is selected the policy takes care of booking the capabilities
defined by the application. This step achieves two objectives: firstly it updates
the availability of the target device capabilities set a new view, secondly it allows
to allocate the resource subsumed by the booked capabilities.

Formally, we can model the CapBooking function as following:

CapBooking:D′ × A→ D′

〈Dev,App〉 7→ Dev′
(4.5)

Such that:

1. Dev ∼= Dev′

69

i
i

“thesis” — 2017/4/6 — 17:13 — page 70 — #86 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

2. ∀ci ∈ CApp
r ,∃cj ∈ CDev′

b ∧ (ci ∈ Cexcl ⇒ ¬∃ck ∈ CDev′
a (ci = cj = ck))

3. ∀ci ∈ CApp
o ,∃cj ∈ CDev′

b ∧ (ci ∈ Cexcl ⇒ ¬∃ck ∈ CDev′
a (ci = cj = ck)).

The condition 3 defines the possibility to allocate the optional capabilities if they
are available.

4.3.3 Resources booking

For each booked capabilities the policy is in charge to allocate their subsumed
resources. We can model this operation through the following ResBooking func-
tion:

ResBooking:D′ × A→ D′

〈Dev,App〉 7→ Dev′′
(4.6)

Such that:

1. ∃Dev′

2. Dev′ = CapBooking(Dev,App)

3. ∀ci ∈ CDev′

b ,∀rj ∈ Rci
r ,∃rk ∈ RDev′

a , ∃rh ∈ RDev′′
a |

rj.ResPath = rk.ResPath = rh.ResPath ∧ rh.value = rk.value −
rj.value

4. ∀ci ∈ CDev′

b ,∀rj ∈ Rci
o , ∃rk ∈ RDev′

a ,∃rh ∈ RDev′′
a |

rj.ResPath = rk.ResPath = rh.ResPath ∧ rh.value = rk.value −
rj.value

5. Dev′ and Dev′′ differ only for the Ra set.

The dot symbol represents an access to the correspondent field of the resource
pair as defined in 3.1.
The condition 3 refers to the allocation of all the resources required by the capa-
bility. Otherwise, the condition 4 defines the possibility to allocate the resources
that are optional for the capability.

4.3.4 Policy optimizations

To avoid data recomputation and to minimize the communication latency lost
time we performed some optimizations to the policy steps as further explained:

• The local system is the best system as default

70

i
i

“thesis” — 2017/4/6 — 17:13 — page 71 — #87 i
i

i
i

i
i

4.4. Android BarbequeRTRM API

Figure 4.10: Barbeque Service and class diagram of API provided to enable the support
of third-party Android applications.

• To avoid unuseful recomputation the EDP calculation step is skipped if the
actual evaluated device is the same of the temporary best device

• If the temporary best device is plugged but the evaluated one is unplugged
the unplugged device is skipped.

4.4 Android BarbequeRTRM API

We extended the BarbequeRTRM framework providing a set of API to allow
third-party Android application to interact with the BarbequeRTRM. The API
includes a main Java class, the ServiceProxy, and a callback interface, the
ServiceReceiver. The former manages, in a transparent way to the devel-
oper, the binding operations and communications towards the BarbequeSer-
vice daemon, the latter provides a set of callback methods that are called by
the ServiceProxy.

The general idea, shown in Figure 4.10, is that the third-party application
instantiates a ServiceProxy object in its activity. The activity has also to
implement the ServiceReceiver interface callbacks to handler incoming
messages from the daemon.

Listing C.2 of Appendix C shows the binding interface exposed by the Bar-
beque Service daemon, whereas Listing C.3 of Appendix C shows the binding
operation in the proxy side (lines 29 – 41). With the ServiceProxy API, it is
very simple for an external application to do the binding with the daemon service
and, so, to use the resource manager API.

To maintain the external application completely unaware of the underlying
binding operation, the ServiceProxy class implements some public methods

71

i
i

“thesis” — 2017/4/6 — 17:13 — page 72 — #88 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

that can be invoked by the application:

• doBindService: to perform the daemon binding

• doUnbindService: to unbind from the daemon service.

The binding management can be summarized as follow. The Barbeque Ser-
vice overrides the onBind method which is called when the binding opera-
tion is requested by a component of the third-party application and it returns a
IBinder from its own Messenger member (line 9 of Listing C.2). Accord-
ingly the ServiceProxy class instantiates the messenger reference of the Bar-
beque Service from the same IBinder passed to the onServiceConnected
callback method (line 14 of Listing C.3). This is called once the binding opera-
tion is completed and the onBind function of the service returns the IBinder
object. Finally, the ServiceProxy calls the onServiceConnected call-
back of the ServiceReceiver interface (line 15). In this way the adopted
design approach makes all the above binding mechanism and protocol managed
transparently to the developers. The latter is only in charge to implement the
onServiceConnected callback to perform application-specific operations.

Once the binding is done, the third-party application and the daemon inter-
communicate through the ServiceProxy object which exchanges messages
directly with the daemon, exploiting the Messenger interface. A message con-
tains a RequestCode value that is provided by the daemon API and can have
attached a Bundle with different objects inside. At this step of development
we implemented a set of RequestCode that can be exploited by a third-party
launcher application:

• MSG_GET_APPLICATIONS: it is used to retrieve the available applica-
tions from the resource manager

• MSG_GET_CAPABILITIES: it is used to retrieve the available capabili-
ties of the device

• MSG_START_APP: it requires a specified application to start

• MSG_STOP_APP: it requires a specified application to stop

• MSG_START_APP_ERROR: it is generally sent by the resource manager
to notifies an error to the launcher during the starting of an application (e.g.,
if the activity is not found).

Listings C.4 and C.5 of Appendix C show sample sending and receiving mes-
sage handling.

72

i
i

“thesis” — 2017/4/6 — 17:13 — page 73 — #89 i
i

i
i

i
i

4.5. Application launching schemes

To keep the transparency of the communication the ServiceProxy class im-
plements some public methods invokable by the external application:

• getApplications: to retrieve the available applications

• startApplication: to start a specific application.

The ServiceReceiver interface defines the following main callbacks in-
voked by the ServiceProxy once an operation is completed:

• onApplicationsReceived: called once the applications are provided
by the resource manager. It accepts the retrieved list of information about
the application as parameter

• onStartAppError: called if an application fails to start

• onServiceConnected: called once the ServiceProxy completed
the binding with the Barbeque Service.

4.5 Application launching schemes

The Section presents two application launching schemes enabled by this work.
The schemes are effectively implemented for our test purposes through two
launchers that follow an energy-aware approach and exploit the BarbequeRTRM
API. The first schema is presented in the Subsection 4.5.1 and concerns the
launching of the application locally in the device. The second one, instead, is
a remote launching schema. In this way the Subsection 4.5.2 explains in depth
the distributed mechanism enabled and implemented by our work, providing also
a possible use case scenario.

As aforementioned, the following sample applications are two customized
Android launchers. As a launcher, it shows to the user a list or a grid of available
applications and allows it to start a selected application.
In Android OS the launcher can be customized by installing a custom one chosen
from a wide set from the marketplace. Anyway different smartphone manufac-
turers take the original Android OS image and develop it with own features,
system applications and also launcher.
Our approach is similar, because we can encapsulate our launcher in a cus-
tomized version of Android in which BarbequeRTRM is pre-installed as system
resource manager.

4.5.1 Local launching

In this scenario the launcher shows the applications installed on the device. The
novel approach is that the list will contain only applications made available by

73

i
i

“thesis” — 2017/4/6 — 17:13 — page 74 — #90 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

the resource manager. In fact, this launcher is resource and energy aware and
has some energy efficiency benefits because it does not show applications that
cannot be actually run in the device due to the current workload or low power
availability. It has also some user experience benefits, because being resource
and energy aware prevents an application to run slow or not in an optimal mode,
reducing the user experience and consuming uselessly power and resources of
the device.

With reference to Figure 4.10 our launcher implements the MainActivity
class. To perform its work the launcher, exploiting the BarbequeRTRM API,
binds the Barbeque Service daemon and communicates with it through a Ser-
viceProxy which uses a Messenger and a linked IBinder as exaplined
in Section 4.4. Listing C.6 of Appendix C shows the binding code from the
launcher side.

The activity of our application instances a ServiceProxy object and calls
its doBindService method which performs transparently the binding opera-
tion (line 12). Once the binding is done, the application can use the Service-
Proxy API methods to make request to the Barbeque Service daemon.

For example, Listing C.7 of Appendix C shows a sample request to obtain
available applications from the BarbequeRTRM: our launcher activity needs only
to call the getApplications method of the ServiceProxy object (line
14) and implements the onApplicationsReceived callback of the Ser-
viceReceiver interface to perform the required operations with the returned
information.

4.5.2 Remote launching

In this scenario the launcher shows the applications available also in other locally
interconnected devices in which the BarbequeRTRM is running. The selected ap-
plication can be launched also on another device because, for example, the user
wants a video application to run on an Android TV or because the device has a
low battery status and there are other unused close devices in which the applica-
tion can be run. The choice of the target device can be manually or automatically
set depending on the current policy activated in the BarbequeRTRM. In the first
case the launcher should allow the users to choose in which device they want to
launch the application (if necessary, passing also the data).
For our purpose we implemented the second case in an energy-efficient approach
which details are provided in the following section.

To implement this scenario, we can imagine an Android Custom Remote
launcher application. It uses the daemon API as the previous one, but now we

74

i
i

“thesis” — 2017/4/6 — 17:13 — page 75 — #91 i
i

i
i

i
i

4.5. Application launching schemes

(a) (b)

(c) (d)

Figure 4.11: The four main steps of an Android application remote launching. The red
circled device is the best selected by the schedule policy.

need to exploit the distributed features of the BarbequeRTRM. In this sense the
Section 2.2 presented the mobile offloading as one of the major research topic for
mobile systems in recent years. This work enables a first integration step of the
offloading approach with the BarbequeRTRM. In fact, the main lack of the state-
of-the-art approaches is the absence of the resource management perspective.
Moreover we provide a first implementation of a Pervasive Distributed Comput-
ing Network System through common personal devices. In this sense we started
to face the resource management problem also in service-based architectures of
smart environments [122].

To exploit the distributed features of the BarbequeRTRM it is required that
each device has an instance running and registered into one computing group.
Thanks to the hybrid architecture of our resource management strategy each in-
stance can take decision with respect to application which it has competence.
In particular a device D1 becomes the coordinator of application A1 if the user
interacts with the device D1 to start the application A1.

In the evaluated scenario the user selects the application through the Bar-
beque Remote Launcher which is very similar to the one presented in the previ-

75

i
i

“thesis” — 2017/4/6 — 17:13 — page 76 — #92 i
i

i
i

i
i

Chapter 4. Integration with the BarbequeRTRM

ous section.
Once the application is selected the coordinator BarbequeRTRM instance emits a
rescheduling event which cause the device selection policy to perform a reschedul-
ing considering also the new application. Figure 4.11 show the main step of the
remote launching process. First of all the BarbequeRTRM coordinator retrieves
the updated status of the connected devices (Figure 4.11a and 4.11b). Then the
policy calculates the best device into which launch the application (Figure 4.11c).
Finally, as shown by Figure 4.11d, the application is launched in the selected de-
vice (in this case a remote one).

To better understand a practical exploitation of our distributed system we
can think to a sample application, like a game, which is deployed on a dis-
tributed architecture. We can assume the application is composed by a Mas-
ter or Server package which performs the computing-intensive task and a Client
package which implements the user interface and can performs lightweight com-
puting tasks. The application can be launched either in the Server or in the Client
operational mode by the user.

In such a scenario the BarbequeRTRM could be set to manage the Server
package of the application so that the most energy-efficient device is selected
to run the Server instance while the Client side can be launched on the users
devices. The management process is shown in Figure 4.12. The Figure shows
an environment composed by three devices, named A, B and C, which run a
BarbequeRTRM instance each. Firstly, the user selects the game Server mod-
ule from the Launcher of Device C (Figure 4.12a). The launcher then forwards
the request to the BarbequeRTRM through the aforementioned API. When the
BarbequeRTRM has been notified it performs the policy steps to select the best
device (Figure 4.12b). At this point the coordinator BarbequeRTRM on Device
C performs all the required operations to launch the Server module application
on the Device A (Figure 4.12c). The last two steps concern the Client module of
the game. In particular the user receives the remote launching notification and
decides to launch the game Client module (Figure 4.12d). Once also the Client
module is running the user interacts directly with the Client module of Device C
which in turn can request computation and receive the outcome from the Server
module running in the Device A (Figure 4.12e). To simplify the scenario we as-
sume that the application instances are in charge to manage intercommunication
and running mode. However one of the main research topic on our work should
investigate the possibility to allow the BarbequeRTRM to interact with the ap-
plication and set its operational mode basing on the resource and energy context
changes.

76

i
i

“thesis” — 2017/4/6 — 17:13 — page 77 — #93 i
i

i
i

i
i

4.5. Application launching schemes

(a) The user selects the Server module from the
launcher of Device C.

(b) The BarbequeRTRM schedule the applica-
tion and selects the best device.

(c) The BarbequeRTRM launches the Server
module in the device A.

(d) The user launches the Client module in the
Device C.

(e) The user interacts with the Client which ex-
changes messages with the Server on device
A.

Figure 4.12: A simple game application distributed across the PDCN by the Barbe-
queRTRM.

77

i
i

“thesis” — 2017/4/6 — 17:13 — page 78 — #94 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 79 — #95 i
i

i
i

i
i

CHAPTER5
Experimental Results

The main goal of this Chapter is to present the experimental phase of our work.
The first part aim at providing an overview of the hardware and software setup
and measurements methodology, whereas the second part introduces the exper-
imental results about the benchmarks profiles, application classification, effects
introduced by our energy-aware approach and, finally, the resource management
overheads.

5.1 Introduction

During the experimental phase we were guided by four main questions that have
been raised during the design and implementation of the framework extension:

1. How can we measure the application energy efficiency?

2. What considerations can we make on the obtained models?

• Can we build a single general model?

• Can non-benchmark applications be classified according to the ob-
tained energy models?

3. What is the impact of adopting an energy efficiency approach in terms of
device lifetime and application performance?

79

i
i

“thesis” — 2017/4/6 — 17:13 — page 80 — #96 i
i

i
i

i
i

Chapter 5. Experimental Results

OS information NEXUS 5_5_0 NEXUS 5_6_0 ODROID-XU3
Android version 5.0 6.0.1 4.4.4
Linux Kernel version 3.4.0-ElementalX-N5-6.00 3.4.0-g7717f76 3.10.9-gefae4c9
Build version LRX21O MMB29K KTU84Q

Table 5.1: The table shows the software information of the two Nexus 5 and the Odroid-
XU3 used in our evaluation setup. The device name is used in our setup to distinguish
them according to their software version.

4. What are the overheads introduced by the resource management layers?

In the following pages we will provide detailed data and considerations to give
answers to the aforementioned questions.

Since we evaluated the implemented solution on real devices, in Subsection
5.1.1 we provide some details about the used devices, the distributed system
setup and the measurement methodology. Next, the Subsection 5.1.2 presents in
details the two benchmark suites we used in our experiments.

As anticipated in Section 4.3 we followed an energy efficiency-aware ap-
proach to guide the device selection and implement the BestWing policy. In this
regard Subsection 5.2.1 provides an overview of the energy efficiency objective
with respect to our problem.
The first goal of this experimental phase has been to extract an energy-efficiency
model from the different benchmark applications by profiling them in different
hardware configurations. In this sense, we built application-specific models and
a general one. In Subsection 5.2.2 we compare the two modelling approach and
discuss about generalization.
Furthermore, we have analyzed the device lifetime benefits introduced by our
energy-aware approach compared to the loss in terms of performance. The re-
sults are provided in Subsection 5.2.4.

Moreover, we profiled three non-benchmark applications to compare their
energy models with the benchmark one. This led us to define an approach in
which applications can be grouped into separate classes as explained in Subsec-
tion 5.2.3. In such a way the policy only needs to know the class of the applica-
tions to apply the correct model without the need of a new profiling activity.

The Subsection 5.2.5 concludes the Chapter and it regards the evaluation of
the device allocation policy. In particular, we evaluated the execution outcomes
over different scenarios and the overheads in terms of execution time and scala-
bility.

80

i
i

“thesis” — 2017/4/6 — 17:13 — page 81 — #97 i
i

i
i

i
i

5.1. Introduction

Figure 5.1: Cpufreq framework file structure

5.1.1 Experimental setup

For our testing purpose we have deployed the extended BarbequeRTRM on two
Nexus 5 devices [123] and an Odroid-XU3 development board [124]. The Nexus
5 is a smartphone producted by LG Electronics and marketed by Google Inc
from November 2013. It is powered by a 2.26 GHz quad-core Krait 400 CPU in
a Snapdragon 800 System-on-Chip with 2 GB of RAM and a 3.8V 2300 mAh
battery. It is also equipped with a 450 MHz Adreno 330 GPU.
The Odroid-XU3 is a development board powered by an ARM big.LITTLE tech-
nology on a Samsung Exynos5422 SoC with 2 GB of RAM. The "big" cluster is
composed by a 2.0 GHz quad-core Cortex A15 CPU, while the "LITTLE" cluster
is composed by a 1.4 GHz quad-core Cortex A7 CPU. It is also equipped with a
Mali-T628 MP6 GPU.
To make sure that the system overhead did not affect our measurements we in-
stalled three different rooted versions of the Android OS. Table 5.1 summarizes
the main software characteristics of the three devices.

In our implementation we exploited the Linux cpufreq framework to set the
cores clock frequency of the device. The choice of the frequency is limited to
a subset of them. Generally speaking the framework exposes a sysfs-based in-
terface shown in Figure 5.1. It provides a directory-based structure with some
files that contain the system information and setting parameters. In particular
the scaling_available_frequencies and scaling_available_governors contain the

81

i
i

“thesis” — 2017/4/6 — 17:13 — page 82 — #98 i
i

i
i

i
i

Chapter 5. Experimental Results

information about the available frequencies and governors1.
For the Nexus 5 the available frequencies are (in MHz): 300, 422.4, 652.8, 729.6,
883.2, 960, 1036.8, 1190.4, 1267.2, 1497.6, 1574.4, 1728, 1958.4, 2265.6. In-
stead, for the Odroid-XU3 the available frequencies can be set in steps of 100
MHz between the minimum and the maximum frequencies depending on the
considered cluster. In particular, for the "big" cluster the frequencies range from
1200 MHz to 2000 MHz and for the "LITTLE" cluster they range from 1000

MHz to 1400 MHz. For the profiling step of our experiments we used only a
subset of them as shown in Tables 5.2 and 5.3. Finally, the available governors
are [125]:

• Ondemand: it scales the frequency dynamically according to the current
load jumping to the highest frequency and then possibly backing off as the
idle time increases

• Conservative: it scales the frequency dynamically according to current load
in a more gradually way than "ondemand"

• Interactive: it is designed for latency-sensitive, interactive workloads. It
sets the CPU speed depending on usage like the "ondemand" and "conser-
vative" governors. However, it is more aggressive about scaling the CPU
speed up in response to CPU-intensive activity

• Userspace: it runs the CPU at user specified frequencies

• Powersave: it runs the CPU at the minimum frequency

• Performance: it runs the CPU at the maximum frequency.

The other files contains the current maximum, minimum frequencies and
governor setting. These are the files we modify in order to force the desired
frequency.

Distributed system setup

To setup our implementation of a Pervasive Distributed Computing Network Sys-
tem we interconnected the aforementioned devices through a wireless LAN. The
Nexus 5 is equipped with an on-chip Wi-fi 802.11 a/b/g/n/ac network interface,
while the Odroid-XU3 has needed to be extended with the optional Wifi Module
3 that is a Realtek RTL8188CUS-GR single-chip USB 2.0 network interface con-
troller supporting the IEEE 802.11 b/g/n standards. Anyway the wireless access

1Governors are power schemes for the CPU.

82

i
i

“thesis” — 2017/4/6 — 17:13 — page 83 — #99 i
i

i
i

i
i

5.1. Introduction

(a) (b)

Figure 5.2: Custom power supply and measurement setup for one of the Nexus 5 used in
the energy consumption profiling. The red circle in Figure 5.2a highlights the power
connectors attached to the Odroid Smart Power, shown in Figure 5.2b.

point of our infrastructure has a 802.11 a/b/g interface so the maximum through-
put of the network is limited to 54 Mbit/s using the 2.4 GHz bandwidth. The
consequent low throughput allows us to evaluate the maximum communication
overhead that would be reasonably caused by the hardware limitation.
The different devices are statically registered in each BarbequeRTRM instance.
To evaluate the scalability of the policy with respect to the number of available
devices, we deployed the BarbequeRTRM also on other Odroid-XU3 board and
two smartphones.

Measurements setup

To measure the energy consumption of the application, in the profiling step we
performed a custom setup for the Nexus 5. We removed the device battery and
supplied the power with an Odroid Smart Power meter2 through direct power
lines connection as shown by Figure 5.2. It provided a fixed voltage to the device
and collects at run-time the current, power and energy consumption values that
can be logged in a file through an USB interface.
During the measurements we supplied the device with a fixed 4.2V voltage. The
higher voltage value with respect to the battery nominal one is necessary to force
the Android battery manager to interpret the current voltage as a about 50% of
battery level. Moreover we switched off the wireless interface of the device,
set to 50% the display brightness and deactivated the brightness auto-adjusting
feature to avoid measurement bias due to external factors.
The Odroid-XU3 was powered directly through the aforementioned Smart Power

2http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137361754360

83

i
i

“thesis” — 2017/4/6 — 17:13 — page 84 — #100 i
i

i
i

i
i

Chapter 5. Experimental Results

with a voltage set to 5V.
Since we measured the energy consumed by the benchmark in different core
frequency configurations, we set the clock of the cores to a specific frequency
taken from the governor available frequency pool, setting the scaling governor
to userspacemode to grant us a complete control of it. Moreover, we disabled
the mpdecision userspace daemon of Android, which is in charge to switch
off the unused CPUs [110] and to avoid computation environment and power
changes during our measurements. On the Odroid-XU3 board we measured each
cluster separately, keeping online only their respectively cores.
Finally, due to thermal security mechanism of the SoC to test the device at the
maximum clock speed we had to set up an artificial cooling system to avoid an
automatic and unpredictable reduction of the clock frequency.

5.1.2 Benchmarks

Since our goal is to create an energy-efficiency model to manage common An-
droid applications we exploited two Android device benchmark suites: the Mo-
bileXPRT2015 [126, 127] and the PCMark 2.0 [128]. They are composed by
different pseudo-applications which simulate interactive or common tasks and
test different hardware features and computing performance of the device. The
benchmarks can be run by launching the entire set of part of it. In the first
case the benchmark run all the pseudo-applications and computes a final overall
score. The second case allows the user to select only a subset of the pseudo-
applications to test. In what follow we presents in detail the two benchmark
suites. Due to Android compatibility problem we cannot run the PCMark 2.0
suite on the Odroid-XU3 since it requires a 5.0 or higher OS version, while
the official support for the Odroid-XU3 provided only OS images until version
4.4.4. Anyway, since our work aim at being an initial exploration of the profiling
methodology we can make some comparisons and considerations only on the
MobileXPRT2015 results.

The MobileXPRT2015 benchmarks suite

The MobileXPRT2015 is developed by the BenchmarkXPRT Development Com-
munity and released in 2015. It is composed by five pseudo-applications that
mirror common mobile workloads:

• Apply Photo Effects: it applies four photo effects (Sepia, Vintage, Vignette,
and Grayscale) to five 8-megapixel photos each

• Create Photo Collages: it creates five photo collages with four photos in

84

i
i

“thesis” — 2017/4/6 — 17:13 — page 85 — #101 i
i

i
i

i
i

5.1. Introduction

each one. Before including the photo in the collage it applies effects to each
of them. The dataset used is the same of the previous pseudo-application

• Create Slideshow: it creates a slideshow video from a photo album and an
audio file of 327 KB in a H.264 MPEG-4 compression format at a reso-
lution of 720p. The photo used by this test are the same of the previous
pseudo-applications

• Encrypt Personal Content: it encrypts with an 256 bit key AES3 algorithm
two sets of six files and then it decrypts them. The first set of files includes
five photos and an MP3 audio file. The second set is composed by five
photos and an MP4 video. The total size of the pre-encryption files is 165
MB

• Detect Faces to Organize Photos: it recognizes faces into a set of seven
photos with a size range from 0.3 megapixels to 2.8 megapixels.

The benchmark calculates a performance score basing on a comparison to a
calibration system4 as follows:

1. For each pseudo-applications it calculates how many times the calibration
system (Tc) is slower with respect to the evaluated one (Td): aApp =

Tc

Td

2. It calculates the geometric mean of all the ratios, rounding it to two decimal
places: geomean = (

∏N
i=0 ai)

1
N for N = 5

3. It multiplies the result by 100: score = geomean ∗ 100.

The PCMark 2.0 benchmarks suite

The PCMark 2.0 benchmark suite is developed by Futuremark which creates
industry standard benchmarks since 1997. Similarly to MobileXPRT2015 the
suite provides an environment to test performance and battery life of Android
devices simulating common tasks. Moreover it provides to the user some useful
tools to analyze the results through an hardware monitoring chart which show
the load, temperature and frequency of the CPU during the workload.
The Work 2.0 performance benchmark is a part of the PCMark 2.0 suite and
comprises five common productivity tasks, for further details refer to the official
technical guide:

3Advanced Encryption Standard
4The calibration system is a Motorola DROID RAZR M (Qualcomm MSM8960 Snapdragon S4Plus

Dual Core at 1.5 GHz) running Android JB 4.1.2

85

i
i

“thesis” — 2017/4/6 — 17:13 — page 86 — #102 i
i

i
i

i
i

Chapter 5. Experimental Results

• Web Browsing: it renders a pre-loaded web page performing scrolling,
zooming and content searching through the Android WebView view. Fi-
nally it edits and adds an image re-rendering the page

• Video Editing: it plays, edits and saves a video using the OpenGL ES 2.0

MediaCodec API and the Google Exoplayer media player. All video files
are encoded with the H.264 MPEG-4 AVC compression format and tested
at different frame rates and resolutions (from 30 FPS at 1270x720 to 60

FPS at 3200x1800)

• Writing: it opens, edits and saves two documents using the Android native
EditText view and PdfDocument API. Then it encrypts, decrypts and ren-
ders the PDF in a RecyclerView. The first document is a 2.5 MB ZIP file
containing a 100 KB text file and two 1.2 MB images. The second docu-
ment is a 3.5 MB ZIP containing a 90 KB text file, a 1.6 MB image and a
1.9 MB image

• Photo Editing: it opens, edits and saves a set of 4 megapixel JPEG images.
The test uses four APIs (android.media.effect, android.renderscript,android-
jhlab and android.graphics) to filter and manipulate the 4 megapixels im-
ages

• Data Manipulation: it parses data from four file formats (CSV, XML,
JSON and Protocol Buffers). Then it presents the data with dynamic and
animated charts using the open-source MPAndroidChart library interacting
with them through animations and common simulated gestures.

The benchmark calculates a performance score starting from the pseudo-
applications score. Higher score means better performance. The global score
can be summarized by the following equation:

Work2.0score = geomean(WebBrowsing2.0, V ideoEditing,

Writing2.0, PhotoEditing2.0, DataManipulation)
(5.1)

Where geomean refers to the standard geometrical mean formula. The pseudo-
applications specific scores take into account time spent to perform the required
tasks and frame rate measurements. More details can be found in the official
manual.

86

i
i

“thesis” — 2017/4/6 — 17:13 — page 87 — #103 i
i

i
i

i
i

5.2. Results

5.2 Results

In this Section we present and comment the results obtained from our experi-
ments to give answers to the questions raised at the beginning of the Chapter.
The first question is covered by the Subsection 5.2.1, whereas Subsections 5.2.2
and 5.2.3 aiming at giving detailed results for the second question. Finally, the
third and fourth questions are treated by Subsections 5.2.4 and 5.2.5.

5.2.1 Applications energy efficiency profiling

The goal of this Subsection is to provide a brief overview of the energy effi-
ciency problem in the application execution. To let our BestWing policy to work
properly, we profiled the energy efficiency of the aforementioned benchmarks
applications according to different CPU frequency settings on different devices.
In this regard, we used the Energy Delay Product (EDP) as a metric, originally
proposed by Horowitz [129]. The efficiency is measured in terms of delay until
the execution has been completed: it is defined as the product of the energy con-
sumed in an application execution to its execution time. To weight performance
versus power a parameter w has been introduced as a power of the time factor by
Brooks and Cameron [130, 131]. In this model the parameter can be exploited
dynamically to make the profile more application’s use-case dependent, varying
it according to the performance and Quality of Service (QoS) constraints of the
application.
Generally speaking the EDP curve is represented by the following equation [132]:

EDP = E ∗ Tw where w = 1, 2 or 3 (5.2)

Observing Figure 5.3, which refers to the Nexus 5 measurements, we notice
that according to our expectations the energy consumed in an application execu-
tion decreases as the frequency decreases until a certain frequency. For the Mo-
bileXPRT2015 benchmark suite this frequency varies between 729.6 MHz and
1036.8 MHz depending on the single pseudo-application. For the PCMark 2.0
suite is instead at 729.6 MHz, commonly to almost all the pseudo-applications.
Beyond these thresholds the energy consumption inverts its trend and starts to
increase.
In fact, despite the lower energy demand of the CPU, the computational time
required to perform an execution cycle increased. This makes the background
services and tasks, that are commonly performed, more influent in the energy
consumption point of view, because they are monitored for a longer time. We
can model this observation with the following equation, that shows the energy

87

i
i

“thesis” — 2017/4/6 — 17:13 — page 88 — #104 i
i

i
i

i
i

Chapter 5. Experimental Results

(a)

(b)

Figure 5.3: The figures shows the energy consumption of the single pseudo-applications
of the two benchmarks suites measured on the Nexus 5.

consumption of an monitored execution (Eexe) based on the application execu-
tion time and the set clock frequency f .

Eexe(f) = Es(f) + Eapp(f) (5.3)

88

i
i

“thesis” — 2017/4/6 — 17:13 — page 89 — #105 i
i

i
i

i
i

5.2. Results

Where Es is the System Energy, that is the energy consumed by the system ser-
vices and background tasks during the monitored execution, while Eapp is the
effective energy consumed by the monitored application.
For our purpose, we assume Es constant for all the experimental executions.

Once we determined the application energy consumption and the execution
times for each available CPU frequency configuration, we took the mean values
of the different observations. Then, starting from 5.2, we calculated the normal-
ized EDP using the following equation:

EDPnormapp(f) = ||Ẽexe(f) ∗ T (f)w|| (5.4)

Where T is the application execution time and w is the weight parameter. For
our purpose we decided not to focus on performance in particular but to give to
energy and performance the same weight by setting the w parameter equal to 1.
Anyway as previously mentioned, future research efforts could investigate the
possibility to exploit this parameter in order to explore dynamic profiles to fit the
application-specific performance and QoS requirements.

Finally, we interpolated the various EDP points to extract the model with its
coefficients. These data are then added into a specific EDP models file that the
resource manager will use for the policy (as explained in Subsection 5.2.3). The
file is structured into different sections, one per application class, as shown by
Listing 5.1.

Listing 5.1: BarbequeRTRM EDP models configuration file

1 <BarbequeRTRM version="1.0">
2 <class name="Video_processing">
3 <edp−model>
4 <device model="NEXUS_5" type="POLYNOMIAL">
5 < coefficient value="0.6862" exp="0" x="0"/>
6 ...
7 </device>
8 </edp−model>
9 ...

10 </ class >
11 </BarbequeRTRM>

5.2.2 Benchmarks and applications EDP models

As previously said we run different execution tasks of the benchmarks in vari-
ous frequency configurations to extrapolate their EDP models. In particular we
performed 10 executions for each frequency configuration, for a total of 1100

89

i
i

“thesis” — 2017/4/6 — 17:13 — page 90 — #106 i
i

i
i

i
i

Chapter 5. Experimental Results

Application
Frequencies (MHz)

300 729.6 1036.8 1267.2 1574.4 1958.4 2265.6*
Photo effects 1 0.53 0.47 0.50 0.54 0.59 0.61
Photo collages 1 0.55 0.50 0.56 0.59 0.61 0.67
Slideshows 1 0.43 0.33 0.36 0.33 0.34 0.35
Encryption 1 0.37 0.28 0.29 0.27 0.27 0.26
Face recognition 1 0.56 0.53 0.56 0.61 0.63 0.72

MobileXPRT2015 1 0.45 0.37 0.39 0.39 0.41 0.42

Web Browsing 0.77 0.56 0.66 0.74 0.82 0.95 1
Video Editing 0.72 0.70 0.72 0.76 0.80 0.95 1
Writing 1 0.40 0.33 0.34 0.31 0.33 0.37
Photo Editing 1 0.44 0.46 0.49 0.49 0.48 0.60
Data Manipulation 0.97 0.59 0.65 0.74 0.74 0.84 1

PCMark2.0 1 0.58 0.59 0.63 0.64 0.71 0.81

Table 5.2: The normalized EDP values of the pseudo-applications of the MobileX-
PRT2015 and PCMark 2.0 benchmark suites for each evaluated frequency of the
Nexus 5.

Application
Frequencies (MHz)

"big" cluster "LITTE" cluster
1200 1400 1600 1800 2000 1000 1200 1400

Photo effects 0.89 0.86 0.89 0.94 1 1 0.87 0.80
Photo collages 0.87 0.86 0.85 0.88 1 1 0.90 0.87
Slideshows 0.83 0.79 0.80 0.82 1 1 0.86 0.78
Encryption 1 0.91 0.90 0.93 1 1 0.81 0.69
Face recognition 0.84 0.85 0.86 0.89 1 1 0.88 0.79

MobileXPRT2015 0.90 0.86 0.87 0.90 1 1 0.86 0.77

Table 5.3: The normalized EDP values of the pseudo-applications of the MobileX-
PRT2015 benchmark suite for each evaluated frequency of the Odroid-XU3 CPU
clusters.

pseudo-applications executions (i.e., 700 on the Nexus5 and 400 on the Odroid-
XU3) plus 220 entire benchmarks executions (i.e, 140 on the Nexus 5 and 80

on the Odroid-XU3). Then, we performed the Rank Sum Wilcoxon test [133]
between the various frequency repeated measurements population to verify if
the shift for the population represented by one frequency versus the other is a
result of the frequency scaling. Moreover, the outcomes allow us to attest that
our results are significant at p < 0.05. Finally, we report the standard devia-
tions in the Table 5.4. It is comprised between 0.316 and 7.103 for the execution
time measurements, while they range between 3x10−4 and 6x10−3 for the energy
consumption measurements. The obtained overall EDP values are presented in
in Tables 5.2 and 5.3.

90

i
i

“thesis” — 2017/4/6 — 17:13 — page 91 — #107 i
i

i
i

i
i

5.2. Results

Benchmark
Energy consumption Execution time

Min Max Min Max
MobileXPRT2015 0.00032 0.0031 0.316 7.103

PCMark2.0 0.00052 0.0059 0.422 3.259

Table 5.4: The minimum and maximum standard deviations of the execution time and
energy consumption for all the applications, benchmarks and frequency configura-
tions measurements.

We can make some observations about the EDP profiles shown in Figures 5.4
and 5.5. In particular Figure 5.4 makes a comparison between the EDP model
of the Nexus 5 and the two clusters of the Odroid-XU3 board regarding to the
MobileXPRT2015 benchmark applications. First of all, we can notice that both
the profiles has a similar trend, in fact for each lowest frequency the EDP value
is always the worst due to the penalty introduced by the high execution times
added to the energy consumption that, as explained in Subsection 5.2.1, is not a
monotonic decreasing function of the frequency, but it re-increases below a fre-
quency threshold.
Moreover, we can notice an high discrepancy between the two devices profiles
in terms of efficiency. One of the possible reason of such outcome could be that
since the Nexus 5 is a commercial product its hardware architecture is more op-
timized and the platform-specific software stack of the Android build has been
implemented more accurately (e.g., with a more aggressive power management,
more frequency scaling points availability, etc. . .) than in the Odroid-XU3,
which is a development-purpose board. Anyway, these results justify the need to
have a device-specific profile for each application because of architectures and
drivers peculiarities of the various devices.
Finally, we can make a comparison between the two clusters of the Odroid-XU3
board. In fact, we profiled them has two distinct systems in order to provide
a characterization of both architectures for our model. In this sense, in line
with our expectations, the profiles of the "LITTLE" cluster has a better energy-
efficiency for almost all the applications with respect to the "big" one. Con-
versely the two architectures are specular in term of efficiency, in fact the "LIT-
TLE" cluster is more efficient at the highest frequency (1400 MHz) while the
"big" cluster has is best efficiency in the middle-low range (1400–1600 MHz)
following the general trend of the Nexus 5.

Our modeling methodology followed a bottom-up approach: we started to
profile the energy consumption of the single pseudo-applications to calculate
their normalized EDP values for the tested frequencies and to obtain their mod-
els. Then we considered the data related to the entire benchmark suites to build

91

i
i

“thesis” — 2017/4/6 — 17:13 — page 92 — #108 i
i

i
i

i
i

Chapter 5. Experimental Results

a "global model".
From the pseudo-applications and the benchmarks EDP models shown in Figures
5.4, 5.5 and their comparison errors of Figures 5.6 and 5.7, we can observe that,
for certain classes and architectures, the application specific model and the global
model are comparable. In particular for the Nexus 5 the Slideshows and Encryp-
tion applications have a model close to the MobileXPRT2015 global model, with
an error less than 10% on average. While for the PCMark 2.0 benchmark suite
only the Data Manipulation pseudo-application model can be compared with a
contained error (< 10%). As shown by Figure 5.6 other models comparisons
produce mean errors between 10% and 30%. These error percentages lead to a
not negligible error of approximation such that we concluded that globalizing the
model is not feasible.
Conversely, for the Odroid-XU3 board all the pseudo-applications have a model
close to the MobileXPRT2015 global one with a restrained error (< 10%). Any-
way, as opposed to the Nexus 5 analysis, error peaks can be noticed for the
Encryption and the Slideshows applications.
At time of writing, however, we do not have access to the performance counters
of the hardware to determine which is the cause of such a difference in term of
accuracy between the models and for this reason this aspect would need to be
further investigate.

92

i
i

“thesis” — 2017/4/6 — 17:13 — page 93 — #109 i
i

i
i

i
i

5.2. Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: The comparison between the Nexus5 and the Odroid-XU3 EDP models
of the pseudo-applications (from 5.4a to 5.4e) of the MobileXPRT2015 benchmark
obtained in our tests. Figure 5.4f is the global model of the benchmark suite.

93

i
i

“thesis” — 2017/4/6 — 17:13 — page 94 — #110 i
i

i
i

i
i

Chapter 5. Experimental Results

(a) (b)

(c) (d)

(e) (f)

Figure 5.5: The EDP models of the pseudo-applications (from 5.5a to 5.5e) of the PC-
Mark 2.0 benchmark obtained in our tests. Figure 5.5f is the global model of the
benchmark suite.

94

i
i

“thesis” — 2017/4/6 — 17:13 — page 95 — #111 i
i

i
i

i
i

5.2. Results

(a)

(b)

Figure 5.6: The percentage errors between the pseudo-applications EDP models and
the respective global benchmark one. All the graphs refers to the Nexus 5 device.

95

i
i

“thesis” — 2017/4/6 — 17:13 — page 96 — #112 i
i

i
i

i
i

Chapter 5. Experimental Results

(a)

(b)

Figure 5.7: The percentage errors between the pseudo-applications EDP models and
the respective global benchmark one. The first graph (Figure 5.7a) refers to the
"big" cluster of the Odroid-XU3, while the second graph (Figure 5.7b) refers to the
"LITTLE" cluster.

96

i
i

“thesis” — 2017/4/6 — 17:13 — page 97 — #113 i
i

i
i

i
i

5.2. Results

Figure 5.8: The EDP model of the Image Processing application class extracted by
averaging the three EDP models of the image processing pseudo-applications.

Figure 5.9: The averaged percentage errors between the Image Processing application
class model and the EDP models of the image processing pseudo-applications.

5.2.3 Application classification

Looking at the applications models of the Nexus 5 of Figures 5.4 and 5.5, it
can be noticed that the pseudo-applications that perform image processing has a
similar model. From this observation this step of our experimental phase aimed
at assessing if the models extracted from the benchmarks pseudo-application can
be applied to other applications and organized in classes.

Initially we extracted a model from Photo Editing, Photo Effects and Photo
Collages pseudo-applications to generalize the Image Processing Applications
class as shown in Figure 5.8. Observing the Figure 5.9 it can be noticed that

97

i
i

“thesis” — 2017/4/6 — 17:13 — page 98 — #114 i
i

i
i

i
i

Chapter 5. Experimental Results

Figure 5.10: The graph shows the EDP models of the video player applications ex-
tracted by our tests compared to the video editing pseudo-application EDP model.

Figure 5.11: The figures shows the percentage errors between the video players and the
video editing pseudo-application EDP models.

the average of the errors between the general model and the single ones is very
restrained, in fact is less than 3%. Since there was a first confirmation about our
intuition, we took these results as a first sight to further verify our approach.

In this sense we profiled three non-benchmark video player applications which
has not been used for the EDP models characterization – the ES Media Player,
the Google Photo Player and the VLC Player – to play a 210 seconds video en-
coded with the H.264 MPEG-4 AAC compression format at 30 FPS at 1920x1080
of resolution. The measurement of the time spent by the players to play the video
comprises also the initial loading time which varies basing on the different clock
frequency configurations.
Then, we compared the players and the PCMark 2.0 Video Editing pseudo ap-

98

i
i

“thesis” — 2017/4/6 — 17:13 — page 99 — #115 i
i

i
i

i
i

5.2. Results

plication models to identify a possible Video Processing applications class. The
results of Figure 5.10 show a similarity between the four models with less than
6% mean error (Figure 5.11).
The error is due mainly to the fact that the video player applications perform
only a reproduction of the video file, while the pseudo-application performs also
time-varying and editing operations on the video file. Anyway, for all the appli-
cations the time composition is dominated by the reproduction task so that we
can consider them comparable. Moreover, it can be noticed that from an energy-
efficient frequency selection point of view the curves have their minimum points
between 0.68 − 0.72 EDP values and between 550 − 750 MHz so the error is
negligible (< 3%).

All the above considerations led us to propose a classification model for the
Android applications. In this sense an application can be classified according to
its main task and managed with a class-specific model that we can provide to the
resource manager (e.g., Image processing, Video processing).
Here below (Listing 5.2) we show how the application class is encoded into a
specific attribute of the application configuration file.

Listing 5.2: Sample Application XML definition file focused on the class attribute.

1 <?xml version=’1.0’ encoding=’utf−8’?>
2 <BarbequeRTRM version="1.0">
3 < application name="ES Media Player" package="... " class ="Video_processing">
4 ...
5 </ application >
6 </BarbequeRTRM>

Finally, whereas the application cannot be classified, a special section of the
configuration file can be added to specify its EDP model as shown in Listing 5.3.

Listing 5.3: Sample Application XML definition file focused on the edp-model section.

1 <?xml version=’1.0’ encoding=’utf−8’?>
2 <BarbequeRTRM version="1.0">
3 < application name="PCMark2.0" package="...">
4 <edp−model>
5 <device model="NEXUS_5" type="POLYNOMIAL">
6 < coefficient value="1.8685" exp="0" x="0"/>
7 ...
8 </device>
9 </edp−model>

10 ...
11 </ application >
12 </BarbequeRTRM>

99

i
i

“thesis” — 2017/4/6 — 17:13 — page 100 — #116 i
i

i
i

i
i

Chapter 5. Experimental Results

(a) MobileXPRT2015

(b) PCMark 2.0

Figure 5.12: The device lifetime and voltage measurements during continuous runs of
the benchmark suites on the Nexus 5. The Figures highlight the comparison between
the case in which no CPU settings are applied and the case in which the BestWing
CPU settings are adopted. Top Figure 5.12a refers to the MobileXPRT2015 suite,
whereas Figure 5.12b refers to the PCMark 2.0 suite.

5.2.4 Energy efficiency benefits and performance drawbacks

One of the step of our experimental phase was to evaluate how the adoption of
an energy efficiency approach impacts on the lifetime and the performance of the
device selected by the policy. In this sense we measured and compared the device
lifetime and the score computed by the benchmark suites by running them in a
continuous way on the Nexus 5. We tested two cases: first by using the standard

100

i
i

“thesis” — 2017/4/6 — 17:13 — page 101 — #117 i
i

i
i

i
i

5.2. Results

Figure 5.13: The percentage of device lifetime increasing and application performance
loss with respect to the standard and energy-efficiency approaches.

Android resource and CPU management; then adopting the resources allocation
and frequency scaling derived from the aforementioned energy efficient models
and set by the BestWing policy.

From Figure 5.12 we can notice that the discharging rate and voltage trend
are affected by the adoption of the policy. Firstly, the voltage is more stable
due to fixed frequency setting, which reduces the fluctuations due to a frequent
CPU frequency switching [134]. Secondly, despite the common constant trend,
an energy-efficient approach led to a low discharging rate which results in an
increased device lifetime. This result is highlighted by the Figure 5.13, which
shows that from the battery point of view the device lifetime is increased be-
tween 12% and 36%, which confirms the main objective of the energy-efficiency
approach. On the other hand, the same Figure shows also the impacts on the
performance side. In this sense, as we expected, we obtained a loss in term
of execution performance score. Specifically, in our tests it stands between the
42% and 48% for the PCMark 2.0 and MobileXPRT2015 benchmark suites re-
spectively. This results in an increased execution time: from our observations
the delay is limited between 111s and 117s. Anyway, from an efficiency point
of view these values represents the best trade-off between the energy consumed
and the computing performance. In fact, any other configuration would affect
negatively the energy or the performance side.

The results obtained in our experimental context are summarized in Table 5.5
and can be commented also according to the user experience point of view, mak-
ing two considerations. First, the user can experience an absolute non-negligible
increasing of the device lifetime, in the test case between about 30 and 72 min-
utes. Secondly, the performance loss cannot be considered in an absolute way, in
fact the importance of the computational performance is application-dependent.

101

i
i

“thesis” — 2017/4/6 — 17:13 — page 102 — #118 i
i

i
i

i
i

Chapter 5. Experimental Results

Metrics (average)
MobileXPRT2015 PCMark2.0

No-policy Policy Speed-up No-policy Policy Speed-up
Device lifetime 4h39′ 5h13′ +12.2% 3h19′ 4h31′ +36.1%

Performance Score 241 126 −47.7% 3530.2 2059.3 −41.7%
Execution time 122.09s 238.61s +48.8% 513.34s 624.34s +17.8%

Table 5.5: The measurements obtained from the two benchmark suites with respect
to both the Android standard energy and resource management and the energy-
efficiency approach.

This is confirmed by comparing how the execution time increasing and the per-
formance score loss are related in the two benchmarks. In fact for the MobileX-
PRT2015 they are directly related, while for the PCMark 2.0 they are very differ-
ent due to the heterogeneity of the computing settings (e.g., different frame rates)
that are tested and that are affected by the frequency scaling in different way. The
above considerations lead to considerate the energy-efficiency approach impacts
as globally positive. In particular, it is very suitable for applications that do not
have real-time or response constraints to extend the lifetime of devices minimiz-
ing the performance loss.

5.2.5 Device selection policy overhead

The last step of our experimental phase aim at characterizing the policy in terms
of its performance and overheads. Firstly we perform an evaluation on the device
selection process over different test cases and scenarios. Then we treat about the
time composition and performance of the policy steps. Finally we evaluate the
scalability issues of the policy.

Policy execution

We evaluated the execution and the output of the BestWing policy over three test
cases:

1. All devices are unplugged (i.e., battery powered)

2. Device 4 is plugged

3. Devices 1 and 4 are plugged.

Tables 5.6 and 5.7 show the devices and applications setup in the test cases.
In each test case the policy has been executed over 24 scenarios to evaluate its
behavior by permuting the different battery values to the devices as shown by
Table 5.8. To compute the Energy Consumption Index of each device we con-

102

i
i

“thesis” — 2017/4/6 — 17:13 — page 103 — #119 i
i

i
i

i
i

5.2. Results

sidered the EDP profiles that were introduced in Subsection 5.2.1 and shown in
Figure 5.4.

We can make some observations about the obtained outputs. First of all, in
Table 5.9 we can notice how the policy selects the device according to its ECI
when all devices are unplugged. In fact, for example in the scenario S1 the low
ECI of device D1 due to its high battery level (95%) and low EDP values for
all the applications made it the most suitable to be selected by the policy, as we
expected. Moreover, we can also observe that both in scenario S18 and S24

the battery level has a lower weight than the EDP value in the computation of
the ECI of devices. In fact, for the application A3 the policy selects the device
D1 and D2 respectively despite their battery level (60%) is much lower than the
device D4 battery (95%). Anyway those devices has a better ECI due to their
low EDP optimal value (i.e., 0.31 at frequency 2265 MHz instead of 0.78 at 1400
MHz).

From Table 5.10 we can verify the trivial case in which the policy selected
always the device D4 because it is the only one plugged, in line with our expec-
tations.

Finally, Table 5.11 shows the behavior of the policy when there are two
plugged devices. In this case, we can make the same observations of Table 5.9,
considering that devices D1 and D4 have the priority over the others. In fact,
for example in the scenario S18 the policy acts as expected selecting the device
D1 for the application A3 due to its best EDP value (0.31 at 2265 MHz) despite
the high battery level of device D4 (95%). Same considerations for the scenario
S16, where, differently from the first table, the device D2 cannot be selected
because is unplugged.

103

i
i

“thesis” — 2017/4/6 — 17:13 — page 104 — #120 i
i

i
i

i
i

Chapter 5. Experimental Results

ID Device
D1 Nexus 5
D2 Nexus 5
D3 Odroid XU3 "big"
D4 Odroid XU3 "LITTLE"

Table 5.6: The devices setup used in the
policy execution test cases.

ID Application
A1 Photo Effects
A2 Photo Collages
A3 Slideshows
A4 Encryption
A5 Face Recognition
A6 MobileXPRT2015

Table 5.7: Applications used in the pol-
icy execution test cases.

Scenario
Device battery level (%)
D1 D2 D3 D4

S1 95 75 60 35
S2 95 75 35 60
S3 95 60 75 35
S4 95 60 35 75
S5 95 35 75 60
S6 95 35 60 75
S7 75 95 60 35
S8 75 95 35 60
S9 75 60 95 35
S10 75 60 35 95
S11 75 35 95 60
S12 75 35 60 95
S13 60 95 75 35
S14 60 95 35 75
S15 60 75 95 35
S16 60 75 35 95
S17 60 35 95 75
S18 60 35 75 95
S19 35 95 75 60
S20 35 95 60 75
S21 35 75 95 60
S22 35 75 60 95
S23 35 60 95 75
S24 35 60 75 95

Table 5.8: Battery level scenarios de-
scription for the policy execution
test cases.

104

i
i

“thesis” — 2017/4/6 — 17:13 — page 105 — #121 i
i

i
i

i
i

5.2. Results

Scenario A1 A2 A3 A4 A5 A6

S1 D1 D1 D1 D1 D1 D1
S2 D1 D1 D1 D1 D1 D1
S3 D1 D1 D1 D1 D1 D1
S4 D1 D1 D1 D1 D1 D1
S5 D1 D1 D1 D1 D1 D1
S6 D1 D1 D1 D1 D1 D1
S7 D2 D2 D2 D2 D2 D2
S8 D2 D2 D2 D2 D2 D2
S9 D1 D1 D1 D1 D1 D1
S10 D1 D1 D1 D1 D1 D1
S11 D1 D1 D1 D1 D1 D1
S12 D1 D1 D1 D1 D1 D1
S13 D2 D2 D2 D2 D2 D2
S14 D2 D2 D2 D2 D2 D2
S15 D2 D2 D2 D2 D2 D2
S16 D2 D2 D2 D2 D2 D2
S17 D1 D1 D1 D1 D1 D1
S18 D4 D4 D1 D4 D4 D4
S19 D2 D2 D2 D2 D2 D2
S20 D2 D2 D2 D2 D2 D2
S21 D2 D2 D2 D2 D2 D2
S22 D2 D2 D2 D2 D2 D2
S23 D2 D2 D2 D2 D2 D2
S24 D4 D4 D2 D4 D4 D4

Table 5.9: Device selection for tested applications in the scenarios of the policy execu-
tion test case 1.

105

i
i

“thesis” — 2017/4/6 — 17:13 — page 106 — #122 i
i

i
i

i
i

Chapter 5. Experimental Results

Scenario A1 A2 A3 A4 A5 A6

S1 D4 D4 D4 D4 D4 D4
S2 D4 D4 D4 D4 D4 D4
S3 D4 D4 D4 D4 D4 D4
S4 D4 D4 D4 D4 D4 D4
S5 D4 D4 D4 D4 D4 D4
S6 D4 D4 D4 D4 D4 D4
S7 D4 D4 D4 D4 D4 D4
S8 D4 D4 D4 D4 D4 D4
S9 D4 D4 D4 D4 D4 D4
S10 D4 D4 D4 D4 D4 D4
S11 D4 D4 D4 D4 D4 D4
S12 D4 D4 D4 D4 D4 D4
S13 D4 D4 D4 D4 D4 D4
S14 D4 D4 D4 D4 D4 D4
S15 D4 D4 D4 D4 D4 D4
S16 D4 D4 D4 D4 D4 D4
S17 D4 D4 D4 D4 D4 D4
S18 D4 D4 D4 D4 D4 D4
S19 D4 D4 D4 D4 D4 D4
S20 D4 D4 D4 D4 D4 D4
S21 D4 D4 D4 D4 D4 D4
S22 D4 D4 D4 D4 D4 D4
S23 D4 D4 D4 D4 D4 D4
S24 D4 D4 D4 D4 D4 D4

Table 5.10: Device selection for tested applications in the scenarios of the policy exe-
cution test case 2.

106

i
i

“thesis” — 2017/4/6 — 17:13 — page 107 — #123 i
i

i
i

i
i

5.2. Results

Scenario A1 A2 A3 A4 A5 A6

S1 D1 D1 D1 D1 D1 D1
S2 D1 D1 D1 D1 D1 D1
S3 D1 D1 D1 D1 D1 D1
S4 D1 D1 D1 D1 D1 D1
S5 D1 D1 D1 D1 D1 D1
S6 D1 D1 D1 D1 D1 D1
S7 D1 D1 D1 D1 D1 D1
S8 D1 D1 D1 D1 D1 D1
S9 D1 D1 D1 D1 D1 D1
S10 D1 D1 D1 D1 D1 D1
S11 D1 D1 D1 D1 D1 D1
S12 D1 D1 D1 D1 D1 D1
S13 D1 D1 D1 D1 D1 D1
S14 D1 D1 D1 D1 D1 D1
S15 D1 D1 D1 D1 D1 D1
S16 D4 D4 D1 D4 D4 D4
S17 D1 D1 D1 D1 D1 D1
S18 D4 D4 D1 D4 D4 D4
S19 D1 D1 D1 D1 D1 D1
S20 D1 D1 D1 D1 D1 D1
S21 D1 D1 D1 D1 D1 D1
S22 D4 D4 D4 D4 D4 D4
S23 D1 D1 D1 D1 D1 D1
S24 D4 D4 D4 D4 D4 D4

Table 5.11: Device selection for tested applications in the scenarios of the policy exe-
cution test case 3.

Time overhead

We evaluated the BestWing policy performance by analyzing its time composi-
tion with respect to six different steps both in the local and remote launching
scenarios:

• System Information update: the time required by the schedule to retrieve
the updated information about the available devices

• EDP computation (per-device): the time spent by the policy to calculate
the minimum EDP value and the optimal frequency for a single device

• Remote applications availability verification (per-device): the time taken
to verify if the application is available in the current evaluated device

• Application launching: the time required to launch the application on the
selected device

107

i
i

“thesis” — 2017/4/6 — 17:13 — page 108 — #124 i
i

i
i

i
i

Chapter 5. Experimental Results

Figure 5.14: Time composition of a single application scheduling respect to the launch-
ing mode. *The EDP calculation is considered per system. **The time to update
System Information is considered per single remote system.

• Cores clock frequency setting: the time required by the Platform Manager
to set the clock frequency for the selected device

• Capabilities booking: the time spent by the policy to perform the synchro-
nization phase to book the allocated Capabilities to the starting application.

As highlighted by the Figure 5.14 the time composition is dominated by the
three steps (85% – 95% of the time) that require a network communication. In
particular the system information update depends on the total number of avail-
able devices. Moreover, the remote applications availability verification step is
performed only if the system index is the temporary best and in the worst case
is performed for all the available devices. The launching step instead, strongly
depends on whether the application is launched on the local device or on a re-
mote one. The Figure 5.14 shows that in the remote scenario the launching takes
about the 50% of the total time. The gap is due to the overhead introduced by
network operations over the fixed Android system launching time loss.
All the discussed data refer to a test case, over 100 policy executions for each
scenario, implemented with two available devices and a single scheduled appli-
cation which results in a policy average execution time of 413ms for the local
launching scenario and 591ms for the remote launching one. Since some steps
depend strongly on the total number of available devices we will discuss about
scalability in the following pages.

Finally, we investigated in detail the three aforementioned dominating steps

108

i
i

“thesis” — 2017/4/6 — 17:13 — page 109 — #125 i
i

i
i

i
i

5.2. Results

System
Information

Update

Remote Available
Applications
Verification

Application
Launching

Figure 5.15: The time composition of the policy steps highlighting the overhead due to
the network communication.

(system information update, remote applications availability verification and ap-
plication launching) to identify the reason behind the high time consumption. As
highlighted by Figure 5.15, which provides in detail their time composition, the
overhead is actually introduced by the network operations (e.g., gRPC commu-
nications, etc. . .). Totally the network data transmission time loss is included
between 69ms and 185ms compared to the actually computation time which is
between 1ms and 3ms for the first two steps and about 100ms for the third one.
Although during measurements we noticed that absolute network times can differ
due to current workload status and clock frequency of the remote device during
the RPC invocation, they still remain an order of magnitude rather than the ab-
solute computation times. Obviously, making the above considerations we have
to keep in mind that we are considering the worst case due to a low throughput
of the wireless communication channel as explained in Subsection 5.1.1. Fi-
nally, we should consider the overhead introduced by the Android software stack
which has not been originally thought for HPC use cases. First of all because all
the calls from the applications and services side pass through the Java framework
API, introducing a delay in the calling chain. Next, the overhead is caused by the
virtualization of the Java system services in charge to manage the API requests.
This may contribute in affecting the operations performance during gRPC calls.

Scalability evaluation

We evaluated the scalability of the BestWing policy by measuring the time to
retrieve the remote devices status with respect to the number of the available

109

i
i

“thesis” — 2017/4/6 — 17:13 — page 110 — #126 i
i

i
i

i
i

Chapter 5. Experimental Results

Figure 5.16: The trend of the time overhead due to the update the system information by
the resource manager with respect to the number of devices in the distributed system.

devices in the Pervasive Distributed Computing Network System. We selected
this particular policy step because it is the only one that is performed on all the
available devices and it is required every time the policy is run. Moreover, it
dominates the time composition of the selection process and so it impacts sig-
nificantly in the policy execution time with compared to other steps as we have
seen in Figure 5.14. Anyway similar considerations can be made for the worst
cases of the other two steps. As shown by the Figure 5.16 the trend of the over-
head increases polynomially with respect to the number of devices selected from
2 to 5 devices for network operations, while it increases linearly for the battery
status computation so that the latter remaining negligible for our analysis. The
results reveal that for a small network made of no more than 5 devices, such as
a possible home setup, the delay introduced by the policy should be tolerated by
the user, but in more complex and large computing network a more performing
systems status update strategy has to be adopted in order to not introduce unac-
ceptable overhead. In fact between 2 and 4 available devices the policy is delayed
by a maximum of 600ms which maintains the overall device selection and ap-
plication launching operations within 1 − 1.5s. This time is quite similar to the
second response time limit (∼ 1s) described by Nielsen [135] which maintains
the users flow of thought uninterrupted even they notice the delay. Furthermore,
the time widely respects the users attention time threshold of 10s. With 5 or
more available devices the delay introduced by the policy seriously affects the
user experience. In fact, the fast growth of the delay due to the polynomial trend
makes the application response time rapidly exceed the 10s Nielsen’s limit so
that, without a sort of feedback provided to the user, the latter experiences the
delay and issues related to application responsiveness.

110

i
i

“thesis” — 2017/4/6 — 17:13 — page 111 — #127 i
i

i
i

i
i

CHAPTER6
Conclusions and Future Works

In this Chapter we discuss some final remarks and present some challenges that
would be interesting to address in future developments of our work. The Section
6.1 presents a final summary of our work with some considerations for further
developments in the actual research context.
Otherwise, the Section 6.2 presents some future challenges related to the Android
applications management and optimization approaches. Finally, the Section 6.3
exposes some open issues that are not covered by our work and some improve-
ments that can be covered by future works.

6.1 Conclusions

In this work we have considered the increased pervasiveness and computational
capabilities of personal devices as an interesting chance to achieve a two-fold
objective:

1. Extend the device lifetime by reusing old and abandoned devices to em-
brace Green computing purposes

2. Enable a new opportunity to deploy mobile applications on distributed de-
vices.

111

i
i

“thesis” — 2017/4/6 — 17:13 — page 112 — #128 i
i

i
i

i
i

Chapter 6. Conclusions and Future Works

In this scenario we performed a change of paradigm with a distributed rearrange-
ment of mobile devices that can lead to improvements in terms of energy effi-
ciency. In this regard, we introduced the Pervasive Distributed Computing Net-
work System concept which enables task offloading and dynamic load balancing
through a set of locally interconnected personal devices.

In this first step of the development we focused on the challenge of porting
and extending a run-time distributed resource manager, the BarbequeRTRM, on
different Android devices to run Android applications in an energy efficient way
by scheduling them on the local or a remote device.
We started designing a model to manage the execution of Android applications
from a resource utilization perspective. For this purpose we extended the notion
of Capabilities which allows the encapsulation of the hardware requirements
of the application in a transparent way with respect to users and developers.
Moreover, the Capabilities are also used by the resource manager to have a global
representation of the device status.

To face the main challenge of managing applications that do not support run-
time reconfiguration or do not have API to interface with, we extended the Bar-
bequeRTRM architecture with some modules. They allow the BarbequeRTRM
to filter available applications basing on Capabilities availability and to perform
some operations on them (e.g., making them runnable on a specific device, allo-
cating specific resources, etc. . .).
Furthermore we provided a set of API for developers who want to implement
energy-aware applications that can interact with the BarbequeRTRM.

The next step of our work regards the interaction of the different instances
of the BarbequeRTRM that run on different devices to actually enable a dis-
tributed resource management strategy. At this regard our work is one of the
first that introduces and exploits the distributed modules of the resource manager
implementing a RPC communication interface and an hybrid distributed system
management topology.

Eventually, we focused on developing a first device selection policy, called
BestWing, to select the best device in term of energy efficiency for the execution
of a specific application. The selection of the metrics to be considered in the best
device choice was one of the most challenging step.
Since our objective has been the energy efficiency, we evaluated the energy effi-
ciency of different hardware configurations for a specific set of applications. We
started by profiling some benchmark applications that simulate typical mobile-
oriented workloads to obtain specific energy efficiency models.
We have noticed a similarity between the models of the image processing bench-

112

i
i

“thesis” — 2017/4/6 — 17:13 — page 113 — #129 i
i

i
i

i
i

6.2. Future works

marks so we profiled three non benchmark video player applications performing
similar task to verify if we could obtain a workload classification to exploit in
the policy. This has been obtained for the image processing and video processing
applications with a restrained error.
Such models have been used by the BestWing policy to compute a custom-
defined Energy Consumption Index to score the different devices taking into
account also their battery and plugged status.
In this regard, the experimental phase of our work includes some measurements
on the policy overhead and a discussion about the benefits and drawbacks in
terms of device lifetime and application performance introduced by adopting an
energy-efficiency model. In particular, as well as increasing the utilization of
multiple mobile devices available to the user, the proposed approach increases
the device lifetime between 12% to 36%, making it very suitable for applications
that do not have real-time or response constraints. Moreover, we tested the pol-
icy in various scenarios with different device configurations and we investigated
the time composition of the different steps of the selection process making some
considerations about some critical issues, such as the scalability with respect to
the number of the device registered in the system.

In conclusion, being the computation offloading problem one of the most
active fields of study in the last years, we expect that the focus on this topic
will move towards a more balanced approach between local systems and Cloud
solution, which require high network bandwidth and have a cost. In this sense
the possibility to manage the device through a resource manager according to
an energy and performance-aware approach will be an additional key factor that
would introduce further benefits, as we have shown.

6.2 Future works

At the current state, our work enables the possibility to manage monolithic An-
droid applications through a resource manager over a network of interconnected
devices. Overcoming the limitation of a single entire application launching
would open up interesting challenges on different use cases scenarios. In this
Section we provides some possible approaches for future works that exploits our
management model and aim at optimizing the energy consumption and compu-
tation performance of every applications.

6.2.1 Application profiling

The first approach aims at improving the current application profiling methodol-
ogy. In fact the models we extracted can be further refined in order to make the

113

i
i

“thesis” — 2017/4/6 — 17:13 — page 114 — #130 i
i

i
i

i
i

Chapter 6. Conclusions and Future Works

(a)

(b)

Figure 6.1: The application partitioning process at two different levels. In the Figure
6.1a the application is partitioned at class levels, while in the Figure 6.1b it is parti-
tioned at method (or task) level. In both cases the partitioned components are divided
into two categories basing on the fact that they can be offloaded or not.

classification more precise. We suggest one directions that can be exploited by
research of next years. The general idea is to consider the application Capabili-
ties as a discriminant to classify the applications with their purpose typology. In
this sense a detailed Capabilities energy model has to be formulated. Then the
applications can be compared according to their Capabilities specification and
classified accordingly. In this way the energy model of the single class can be
inferred by the composition of the single Capabilities ones.

Finally, another improvement regards the characterization of the time and
percentage usage of the single capabilities by the application in order to allow a
weighted dynamic capabilities allocation approach of the policy.

6.2.2 Application partitioning

This approach concerns the possibility of profiling and partitioning the Android
applications at different level (e.g., class, methods etc. . .) to generate small
blocks of code that can be run independently in different devices as shown in
Figure 6.1. In Section 2.2 we exposed an overview of different state-of-the-art
tools that allow this type of operations. One possible direction of our research

114

i
i

“thesis” — 2017/4/6 — 17:13 — page 115 — #131 i
i

i
i

i
i

6.2. Future works

line could be an exploitation and evaluation of those tools to retrieve any critical
issues. A further step would involve the development of a new distributed pro-
gramming framework to make applications partitionable and reconfigurable. In
this way the application would become resource-aware and it could be possible
to exploit all the novel functionalities of the BarbequeRTRM: in particular the
management of the offload of its high intensive computational tasks as explained
below.

6.2.3 Application tasks offloading

Once the application is successfully partitioned in blocks of code that perform
different tasks it would be challenging to extend our model to give to the Barbe-
queRTRM the responsibility for managing the different blocks of the application.
In such scenario the resource manager would select the best devices in which the
different piece of codes can be launched and allocate specific resources on them
basing on the required Capabilities related to the specific block.
The Figure 6.2 shows an example of the remote task offloading techniques through
a Pervasive Distributed Computing System enabled by the BarbequeRTRM in-
stances running on different personal devices [136].

6.2.4 BarbequeRTRM as Android resource manager

To allow the BarbequeRTRM to manage the entire device resources allocation
in an effective way it would be interesting to embed it in a custom version of
the Android Operating System. In this way it can act both as system resource
manager and also as application manager.
To perform this merging it can be noticed that the lifecycle of a standard Android
application is very similar to the BarbequeRTRM AEM. In this sense, it would
be trivial to map some application callback with the AEM ones and to give to the
resource manager the full control of the application schedule. Otherwise the big
effort would consist in the modification of the Android Application framework.

115

i
i

“thesis” — 2017/4/6 — 17:13 — page 116 — #132 i
i

i
i

i
i

Chapter 6. Conclusions and Future Works

(a) At the beginning the user selects the Application 2
in the Device A through the launcher.

(b) The BarbequeRTRM schedules the Appli-
cation 2 main activity in the Device A after
checking other devices status.

(c) The Application 2 and its tasks are started
in the Device A

(d) the BarbequeRTRM decides to offload a
task of the Application 2 to the Device B

(e) Finally the Device B creates the environ-
ment for the Application 2 and starts the
remote task

Figure 6.2: The application task offloading process. At the end of the final step the
remote task directly returns the results to the Application 2 main thread on Device A.

116

i
i

“thesis” — 2017/4/6 — 17:13 — page 117 — #133 i
i

i
i

i
i

6.3. Future improvements

6.3 Future improvements

Although our work is quite complete regarding the application remote launching,
it is an initial step and some details have been deliberately omitted due to time
and effort constraints. In what follows we present some critical issues that has to
be addressed in future developments (and in which the author hope to be involved
in).

6.3.1 Device profiling

To improve our Capabilities model and their resource specification it would be
interesting to profile and inspect in depth single device features and hardware
components. In this way a device profiler can stress and test resources constraints
related to the single feature and components utilization. The result of this analy-
sis can be further integrated into the Capabilities specifications according to their
features and hardware requirements set.

6.3.2 Device selection policy

First of all the implemented device selection policy faces the device selection
and resource allocation in a greedy way for a single application but it has some
critical issues regarding multiple applications or tasks scheduling in the same de-
vice. In this sense an effective policy should be developed. Moreover the policy
has some communication latencies that cause it to be not suitable with a large
number of interconnected devices.
To face the first problem it would be required an allocation model that sat-
isfy multiple constraints. This is a well-known problem in Cloud and high-
performance distributed computing contexts so a deep study of the literature will
give an acceptable research starting point.
The second problem is more difficult to solve because the communication la-
tency does not directly depend on the policy but on the communication protocol
used and the network infrastructure. Working on the policy a possible solution
can go through a fully-distributed scheduling approach in which all devices co-
operates with a lightweight message passing communication protocol to make
scheduling decision and conflicts avoidance. In such a way it would be evalu-
ated if the overhead produced by this mechanism is less than the one introduced
by the RPC approach.
Finally, there are some main aspects about Capabilities that are not considered by
our solution and that should be further investigate to implement other policies.
Some topics can be the following: dynamic run-time Capabilities allocation,

117

i
i

“thesis” — 2017/4/6 — 17:13 — page 118 — #134 i
i

i
i

i
i

Chapter 6. Conclusions and Future Works

considering device saturation and workload for multiple applications allocation,
introducing an usage-based weight for Capabilities allocation, etc. . .).

6.3.3 Distributed system management

Regarding to the distributed system management some issues have not been ad-
dressed by this work but we consider them prioritary for future development. In
particular there are two aspects that have to be covered: the distributed group
management and the system security.

In our architecture the management of the distributed group is delegated to
the Distributed Manager that was presented in Subsection 4.2.4. Since in the
context of this work it was partially implemented, there are some details that has
not been treated: the discovery mechanisms and fault tolerance protocol.
The Distributed Manager, at time of writing, does not support any automatic dis-
covery mechanism and systems available in a group are provided statically with
a configuration file. Enabling a dynamic management of the distributed group
would be an interesting feature in a real use-case scenario. Moreover in a task
offloading context it would be necessary a fault-tolerance protocol to maintain
consistent the data involved in the computation. A first step could be an experi-
mental implementation of well-know protocols that are already implemented in
the literature of distributed systems.

Finally, since data are passed through various nodes a worth to be considered
aspect is the group and communication security. Firstly it would be required
a secure protocol to recognize allowed devices that can join the computational
group. Secondly it would be exploited the security channel communication of
Google gRPC which support different authentication and encryption mechanism
such as SSL/TLS or token-based.

118

i
i

“thesis” — 2017/4/6 — 17:13 — page 119 — #135 i
i

i
i

i
i

APPENDIXA
Android

A.1 Android manifest

Every Android application requires an AndroidManifest.xml [137] file in its root
directory. It is used by the Android system to retrieve essential information about
the application. Among other things the manifest:

• Contains the name of the Java package of the application, which is an
unique identifier for the application

• Contains all the components of the application (activities, services, broad-
cast receivers, etc.) and the classes that implement a specific component

• Determines which processes will host application components

• Declares the permissions required by the application

• Declares the permissions that others are required to have in order to interact
with the application’s components

• Declares the minimum level of the Android API required by the application

• Can declare the device optional or required features by the application

• Lists the libraries that the application must be linked against.

119

i
i

“thesis” — 2017/4/6 — 17:13 — page 120 — #136 i
i

i
i

i
i

Appendix A. Android

The manifest is a .xml file structured as shown in Listing A.1:

Listing A.1: AndroidManifest.xml structure

1 <?xml version="1.0" encoding="utf−8"?>
2

3 <manifest>
4

5 <uses−permission /> <!−−PERMISSIONS DECLARATION−−>
6 <permission />
7 <permission−tree />
8 <permission−group />
9 < instrumentation />

10 <uses−sdk />
11 <uses−configuration />
12 <uses−feature /> <!−−FEATURES DECLARATION−−>
13 <supports−screens />
14 <compatible−screens />
15 <supports−gl−texture />
16

17 < application >
18

19 < activity > <!−−ACTIVITY DECLARATION−−>
20 < intent− filter >
21 <action />
22 <category />
23 <data />
24 </ intent − filter >
25 <meta−data />
26 </ activity >
27

28 < activity −alias>
29 < intent− filter > . . . </ intent − filter >
30 <meta−data />
31 </ activity −alias>
32

33 <service> <!−−SERVICE DECLARATION−−>
34 < intent− filter > . . . </ intent − filter >
35 <meta−data/>
36 </ service >
37

38 < receiver >
39 < intent− filter > . . . </ intent − filter >
40 <meta−data />
41 </ receiver >
42

43 <provider>
44 <grant−uri−permission />
45 <meta−data />

120

i
i

“thesis” — 2017/4/6 — 17:13 — page 121 — #137 i
i

i
i

i
i

A.2. Android Features model

46 <path−permission />
47 </ provider>
48

49 <uses−library />
50

51 </ application >
52

53 </manifest>

The core components of an application are activated by intents: a bundle
of information describing a desired action, data, a category of component that
should perform the action and other pertinent instructions. Android finds an
appropriate component to respond to the intent, launches the found component
and passes it the Intent object. Components expose the kinds of intents they can
respond to through intent filters in the manifest.

Regarding to permissions, they are restrictions that limit the access to a part
of the code or data on the device. Each permission is identified by a unique
label. If an application needs access to a feature protected by a permission, it
must declare that it requires that permission. In some cases, the installer asks the
user whether to grant the requested permission or not. It is possible to declare
custom permissions.

A.2 Android Features model

A feature is a single hardware or software component of a device [109]. In
the AndroidManifest.xml file it is possible to declare a feature that is used by
the application through the tag <uses-feature>. The element offers a re-
quired attribute that lets you specify whether the application requires and can-
not function without the declared feature or whether it prefers to have the feature
but can function without it. If the attribute is omitted, it is assumed that the fea-
ture is required. This element has an important role in letting the application
describe the device-variable features that it uses.

An important and debatable issue is that <uses-feature> elements are
only informational: the Android system itself does not check for matching fea-
ture support on the device before installing an application. Only the Google Play
performs this check when it presents to the user the installable applications. To
determine an application feature compatibility with the device, it compares the
features required by the application and the features available on the device.

Features can be explicitly declared or implicit evaluated. An explicitly de-
clared feature is one that the application declares in a <uses-feature> el-
ement in the manifest. An implicit feature is one that an application requires

121

i
i

“thesis” — 2017/4/6 — 17:13 — page 122 — #138 i
i

i
i

i
i

Appendix A. Android

in order to function properly, but that is not declared in the manifest file. It is
possible to discover an application implied feature requirements by examining
the <uses-permission> elements declared in the manifest file. If an ap-
plication requests some hardware-related permissions, it can be assumed that the
application uses the underlying hardware features and therefore requires those
features.

A full features reference can be found at [109] webpage.

A.3 Android Service

A Service is an application component that can perform long-running operations
in the background and does not provide an user interface [138]. A service can be
started by another application and continues to run in the background even if the
user switches to another application. Additionally, a component can bind to a ser-
vice to interact with it and performing inter-process communication (IPC). The
different between "started" and "bound" services is that the former are started
by an application component calling startService() and they run in indef-
initely even if the component that started them is destroyed. The second type are
bound by an application calling bindService() and they run only as long as
another application component is bound to them, unless they have been "started"
before the binding.

To create a service it is necessary to create a sublcass of the Service class.
Then, it should override some callback methods to handle service lifecycle and
provide a mechanism for components to bind the service. These callbacks are:

• onStartCommand() called when another component calls startSer-
vice()method. Using this method stopSelf() or stopService()
methods are necessary to stop the service

• onBind() called when another component invokes the bindService()
method. The implementation of this method must provide an IBinder in-
terface that clients use to communicate with the service

• onCreate() called by the system when the service is created for the first
time

• onDestroy() called by the system when the service is no longer used
and is being destroyed.

A bound service is an implementation of the Service that allows other
applications to bind it and interact with it [139]. To provide binding, it is nec-
essary to implement the onBind() callback method. This method returns an

122

i
i

“thesis” — 2017/4/6 — 17:13 — page 123 — #139 i
i

i
i

i
i

A.3. Android Service

IBinder object that defines the programming interface that clients can use to
interact with the service.
When a client wants to bind a service, it has to call the bindService()

method and provides an implementation of the ServiceConnection inter-
face. When the system creates the connection between the service and the ap-
plication, the onServiceConnected() callback method is called to deliver
the IBinder that the client can use to communicate with the service.
There are three ways to define the interface exposed by the service to communi-
cate with the application:

1. Extending the Binder class for private service within the same applica-
tion

2. Using a Messenger to work across different processes

3. Using a AIDL to handle multiple requests simultaneously.

Finally we provide in Figure A.1 the lifecyle of a started service that allows
binding operations.

Figure A.1: The lifecycle for a service that is started and also allows binding (derivative
work from Free Electrons [140])

123

i
i

“thesis” — 2017/4/6 — 17:13 — page 124 — #140 i
i

i
i

i
i

Appendix A. Android

A.4 Android system information and control

The Android API exposes some classes to retrieve system information and to
control different aspects of the system.

A.4.1 Android PackageManager

This class provides various kind of information related to the application pack-
ages that are currently installed on the device [141]. The main methods of the
PackageManager that can be invoked are:

• queryIntentActivities(...): it retrieves all activities that can
be performed for a given intent

• getInstalledPackages(...): it returns a list of all packages that
are installed on the device

• getLaunchIntentForPackage(...): useful method to retrieve a
ready intent to launch a front-door activity in a package. It looks first for a
main activity in the category CATEGORY_INFO and next in the category
CATEGORY_LAUNCHER

• setApplicationEnabledSetting(...): this can be used to set
the enabled setting for an application. If an application is disabled it cannot
be launched by Android.

A.4.2 Android ActivityManager

This class provides methods to interact with the overall activities running in the
system [142]:

• getMemoryInfo(): it returns information about the memory state of
the system

• getMyMemoryState(): it returns global memory state information for
the calling process

• getProcessMemoryInfo(int[] pids): it retrieves information about
the memory usage of one or more processes

• getRunningAppProcesses(): this can be used to retrieve a list of
application processes that are running on the device containing also their
package names and process PIDs.

124

i
i

“thesis” — 2017/4/6 — 17:13 — page 125 — #141 i
i

i
i

i
i

A.4. Android system information and control

A.4.3 Android.os package

The Android.os package provides basic operating system services, message pass-
ing and inter-process communication interfaces on the device. In this package
we can find:

• The IBinder interface used when an application binds a Service to enable
a lightweight remote procedure call through a Binder

• The Messenger class: a reference to a Handler which others can use to
send message to it. This is used to allow message-based communication
across processes and it uses a Binder to perform the communication

• The PowerManager class that gives the control of the power state of the
device providing information about interactive state and power-save mode
state of the device [143]

• The BatteryManager class: it provides a method to query battery and
charge properties [144]

• The Process class, some tools for managing OS processes [145]. It is
possible to kill or send a signal to a particular process knowing its PID and
set the priority (Linux based) of a specific thread.

125

i
i

“thesis” — 2017/4/6 — 17:13 — page 126 — #142 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 127 — #143 i
i

i
i

i
i

APPENDIXB
GoogleRPC

B.1 Protocol Buffers

Protocol buffers are language-neutral and platform-neutral automated mecha-
nisms to serialize structured data for use in communication protocols, data stor-
age and more [146]. Their main advantage is that the developer defines how the
data has to be structured once, then it can easily use the source code automati-
cally generated by the compiler to write and read the data to and from different
streams through a variety of languages.
The information are defined in a protocol buffer message type in .proto files.
Each message is a structured record of information with a series of name-value
pairs as shown in Listing B.1.

Listing B.1: Simple Protocol Buffers message definition

1 message SystemInfo {
2 int32 battery_level = 1;
3 bool is_plugged = 2;
4 string system_name = 3;
5 string system_model = 4;
6 repeated int64 available_frequency = 5;
7 }

127

i
i

“thesis” — 2017/4/6 — 17:13 — page 128 — #144 i
i

i
i

i
i

Appendix B. GoogleRPC

Figure B.1: The gRPC architecture between two device. The server-side is implements
a C++ gRPC server while in the client-side there is an Android-Java gRPC Stub.
They exchange protocol buffer messages to each other.

In this example, we want to define a SystemInfo message that contains
some numbered fields specified by a name, a value type and other types of at-
tributes (e.g. repeated, optional or required). Moreover, protocol buffers allow to
structure the data hierarchically by specifying other message name in the value
type of a field.
Once the message is defined the compiler generates the data access classes.
These provide simple getters and setters for each field and some methods to
serialize and parse the message structure to/from raw bytes. At this point the de-
veloper can use these classes in the application following the language-specific
syntax as shown in Listing B.2.

Listing B.2: C++ utilization of the generated Protocol Buffers class

1 SystemInfo system_info ;
2 system_info . set_battery_level (50) ;
3 system_info . set_is_plugged (0) ;
4 system_info .set_system_model("NEXUS_5");
5 // Writing the message to an output stream
6 fstream output ("myfile" , ios :: out | ios :: binary) ;
7 system_info . SerializeToOstream(%output);

Currently the version 3 of Protocol Buffers supports a lot of languages as
C++, Java, Python, Ruby, JavaScript, C#.

B.2 GRPC

Like other type of RPC systems, in gRPC a client application can directly call
methods on a server running on a different machine as if it was a local object
[147]. In gRPC the main concept is the definition of a service which is made
available by a server application and wraps the methods that can be invoked
remotely. As shown in Figure B.1 the server implements the interface and runs
a gRPC server to handle client requests, while the client instantiates a stub that
provides the same methods provided by the server. To support cross-platform

128

i
i

“thesis” — 2017/4/6 — 17:13 — page 129 — #145 i
i

i
i

i
i

B.2. GRPC

implementations and a lot of variety of languages gRPC exploits the Protocol
Buffers as IDL for the communication messages and services interface definition.

The gRPC services are defined in ordinary .proto files. Each service con-
tains the available RPC methods with their parameters and return types. These
last are specified as protocol buffer messages. Listing B.3 shows an example of
a service and rpc definition.

Listing B.3: Simple gRPC service interface definition

1 service RemoteAgent {
2 rpc GetSystemInfo(GenericRequest) returns (SystemInfo) {}
3 }
4

5 message GenericRequest {
6 uint32 sender_id = 1;
7 }
8

9 ...

We defined the RemoteAgent service which exposes a GetSystemInfo
rpc method. This last accepts a GenericRequest parameter which is a sim-
ple protocol buffer message defined in the same file. The method returns a Sys-
temInfo message that it was defined in Section B.1.

At this point the protoc protocol buffer compiler, extended with a special
gRPC plugin, generates the code from the proto file. The gRPC plugin lets the
compiler to generate also the client and server code which is used by the devel-
oper to write the application code.

B.2.1 RPC typology

GRPC allows to define different type of service methods:

• Unary RPCs: the most simple rpc in which the client sends a single request
to the server and gets a single response from it. This is the one implemented
in the example of Listing B.3

• Server streaming RPCs: this type allows the client to send a single request
to the server. This last responds with a sequence of messages through a
read-only stream

• Client streaming RPCs: this type provides to the client a writable stream to
send a sequence of messages to the server. The client waits until the server
reads all the messages to gets its single response

129

i
i

“thesis” — 2017/4/6 — 17:13 — page 130 — #146 i
i

i
i

i
i

Appendix B. GoogleRPC

• Bidirectional streaming RPCs: two independent read-write streams are
provided to both the client and the server so that they can exchange se-
quences of messages in whatever order they like. In this case the order of
messages in each stream is preserved.

Moreover, RPCs can be performed in two mode:

• Synchronous: the current thread of the client is blocked until a response
arrives from the server

• Asynchronous: the client continues its work until a response interrupt ar-
rives from the server.

B.2.2 Example tutorial

To better understand how the gRPC framework works we briefly present a simple
implementation of a server and client applications which are simplify and extrap-
olated from our work. In this example we refer to the gRPC service defined in
Listing B.3.

We decide to implement a C++ server and a Java client exploiting the gener-
ated protocol buffers and gRPC classes.

Server side implementation

Listing B.4: server.h header file. RemoteAgentImpl class definition

1 ...
2 class RemoteAgentImpl final : public RemoteAgent::Service {
3 ...
4 }

Listing B.5: server.cc source file. GetSystemInfo method implementation

1 #include <server .h>
2

3 RemoteAgent::Status RemoteAgentImpl::GetSystemInfo(ServiceContext∗ context ,
4 const GenericRequest∗ request ,
5 SystemInfo∗ system_info) override {
6 system_info−> set_battery_level (GetBatteryLevel ()) ;
7 system_info−>set_is_plugged(GetIsPlugged()) ;
8 system_info−>set_system_model(GetSystemModel());
9 return Status :: OK;

10 }
11 ...

130

i
i

“thesis” — 2017/4/6 — 17:13 — page 131 — #147 i
i

i
i

i
i

B.2. GRPC

The server side code is shown in Listings B.4 and B.5. We defined a Re-
moteAgentImpl class that implements the generated synchronous Service
interface in the server.h header file. The service method GetSystemInfo
is then implemented in the server.cc file overriding the generated one. It
accepts a context object for the RPC, the GenericRequest protocol buffer
request and a SystemInfo protocol buffer to fill in with the response informa-
tion. The method then call different utility functions to populates the fields of
the response object. It eventually returns an OK status code to communicate to
the gRPC that it has finished and that the SystemInfo object can be returned
to the client.

Once all the service methods are implemented, we can add some code in the
server.cc to start up the gRPC server.

Listing B.6: server.cc source file. gRPC server start up.

1 ...
2 void RunServer(){
3 std :: string server_address (" 0.0.0.0:50051 ") ;
4 RemoteAgentImpl service() ;
5

6 ServerBuilder builder ;
7 builder .AddListeningPort(server_address , grpc :: InsecureServerCredentials ()) ;
8 builder . RegisterService (&service) ;
9 std :: unique_ptr<Server> server (builder .BuildAndStart ()) ;

10 server−>Wait();
11 }

As shown in Listing B.6 to build and start the server we used the Server-
Builder factory object. It requires an instance of the RemoteAgentImpl
class to register the implemented service. Moreover, we have to specify through
the AddListeningPort method the address and port we want to use to listen
for client requests. Finally we build and start the server and block the thread until
the process is killed.

Client side implementation

In the client side we just need to create the stub object, which represents the
service locally, and a gRPC channel to communicate with the server.

Listing B.7: Client.java source file. gRPC channel creation.

1 public class RemoteAgentClient{
2 String host = " 0.0.0.0 " ;
3 int port = 50051;
4 // The gRPC channel

131

i
i

“thesis” — 2017/4/6 — 17:13 — page 132 — #148 i
i

i
i

i
i

Appendix B. GoogleRPC

5 private final ManagedChannel channel;
6 // The gRPC stub
7 private final RemoteAgentBlockingStub blockingStub;
8

9 public RemoteAgentClient(){
10 channel = ManagedChannelBuilder.forAddress(host, port) . build () ;
11 blockingStub = RemoteAgentGrpc.newBlockingStub(channel);
12 }
13 ...
14 }

As shown in Listing B.7, first of all we created an unsecure gRPC chan-
nel specifying the server address and port. Then we created the blocking1 stub
using the newBlockingStub method provided by the auto-generated Re-

moteAgentGrpc class.

Listing B.8: Client.java source file. GetSystemInfo method invocation.

1 public class RemoteAgentClient{
2 ...
3 public SystemInfo GetSystemInfo(){
4 GenericRequest request ;
5 SystemInfo systemInfo ;
6 request = GenericRequest.newBuilder() . setSenderId (getMyId()) ;
7 try{
8 systemInfo = blockingStub .getSystemInfo(request) ;
9 } catch (StatusRuntimeException e) {

10 // Log message
11 return ;
12 }
13 return systemInfo ;
14 }
15 }

At this point we can create and populate the request protocol buffer Gener-
icRequest object through a factory object provided by the gRPC generated
APIs. Finally we can invoke the GetSystemInfo method on the blocking
stub as calling a local method, passing the request object. It in turn returns a
SystemInfo object or throws an exception if any error occurs (Listing B.8).

1synchronous

132

i
i

“thesis” — 2017/4/6 — 17:13 — page 133 — #149 i
i

i
i

i
i

APPENDIXC
Listings

C.1 BarbequeRTRM AgentProxy gRPC interface

Listing C.1: Protocol buffer communication interface definition between the Barbe-

queRTRM instances

service RemoteAgent {
rpc GetSystemInfo(GenericRequest) returns (SystemInfo);
rpc GetAvailableApplications (GenericRequest) returns (stream AppInfo);
rpc SetApplicationManagementAction(ApplicationManagementRequest) returns

(GenericReply);
rpc SetCapabilitiesViewManagementAction(CapabilityManagementRequest) returns

(GenericReply) {};
rpc GetResourceStatus(ResourceStatusRequest) returns (ResourceStatusReply) ;
rpc GetWorkloadStatus(GenericRequest) returns (WorkloadStatusReply);
rpc SetResourceManagementAction(ResourceManagementRequest) returns (GenericReply) {};
...

}

message AppInfo {
string name = 1;
string package = 2;
int32 pid = 3;

}

133

i
i

“thesis” — 2017/4/6 — 17:13 — page 134 — #150 i
i

i
i

i
i

Appendix C. Listings

message SystemInfo {
int32 battery_level = 1;
bool is_plugged = 2;
string system_name = 3;
string system_model = 4;
repeated int64 available_frequency = 5;
repeated string available_capability = 6;

}

message ApplicationManagementRequest {
uint32 sender_id = 1;
AppInfo info = 2;
enum Action {

START = 0;
STOP = 1;

}
Action action = 3;
int32 awm_id = 4;

}

message Capability {
string name = 1;
bool set_available = 2;

}

message CapabilityManagementRequest {
uint32 sender_id = 1;
int32 view = 2;
repeated Capability capability = 3;
enum ViewAction {

GET_VIEW = 0;
BOOK = 1;
PUT_VIEW = 2;
COMMIT_VIEW = 3;

}
ViewAction view_action = 4;

}

message GenericRequest {
uint32 sender_id = 1;

}

message GenericReply {
num Code {

OK = 0;
AGENT_UNREACHABLE = 1;
AGENT_DISCONNECTED = 2;
REQUEST_REJECTED = 3;

}

134

i
i

“thesis” — 2017/4/6 — 17:13 — page 135 — #151 i
i

i
i

i
i

C.2. Android BarbequeRTRM API

Code value = 1;
int32 extraValue = 2;

}

message ResourceStatusRequest {
uint32 sender_id = 1;
string path = 2;
bool average = 3;

}

message ResourceStatusReply {
uint64 total = 1;
uint64 used = 2;
uint32 degradation = 3;
uint32 temperature = 4;
uint32 power_mw = 5;
uint64 frequency = 6;

}

message ResourceManagementRequest {
repeated CpuConfig cpu_config = 1;

}

message CpuConfig {
uint32 cpu_nr = 1;
uint64 cpu_freq = 2;

}

...
}

C.2 Android BarbequeRTRM API

Listing C.2: Binding interface exposed by the Barbeque Service daemon

1 ...
2 public class BarbequeService extends Service {
3 ...
4 public final Messenger mMessenger =
5 new Messenger(new IncomingHandler());
6 ...
7 @Override
8 public IBinder onBind(Intent intent) {
9 return mMessenger.getBinder();

10 }
11 ...
12 }

135

i
i

“thesis” — 2017/4/6 — 17:13 — page 136 — #152 i
i

i
i

i
i

Appendix C. Listings

Listing C.3: Barbeque Service binding operation (proxy side)

1 public class ServiceProxy {
2 private Context context ;
3 private ServiceReceiver mApp;
4 private Messenger mService = null ;
5 private boolean mIsBound;
6 private final Messenger mMessenger =
7 new Messenger(new IncomingHandler());
8 private ServiceConnection mConnection =
9 new ServiceConnection() {

10 @Override
11 public void onServiceConnected(
12 ComponentName name,
13 IBinder service) {
14 mService = new Messenger(service) ;
15 mApp.onServiceConnected();
16 Log.i (TAG,"Service Attached!") ;
17

18 try {
19 Message msg = Message.obtain(
20 null ,
21 MSG_REGISTER_CLIENT);
22 msg.replyTo = mMessenger;
23 mService.send(msg);
24 } catch (RemoteException e) {
25 // ...
26 }
27 }
28 };
29 public void doBindService() {
30 Intent serviceIntent = new Intent () ;
31 serviceIntent .setComponent(
32 new ComponentName(
33 " it . polimi .bosp.barbequedaemon",
34 " it . polimi .bosp.barbequedaemon.BarbequeService"));
35 if (!mIsBound) {
36 if (context . bindService (
37 serviceIntent ,
38 mConnection,
39 Context .BIND_ADJUST_WITH_ACTIVITY)) {
40 Log.i (TAG, "Binding success !") ;
41 mIsBound = true;
42 } else {
43 // ...
44 }
45 }
46 }
47 }

136

i
i

“thesis” — 2017/4/6 — 17:13 — page 137 — #153 i
i

i
i

i
i

C.2. Android BarbequeRTRM API

Listing C.4: getApplications Message handling (ServiceProxy side)

1 ...
2 public ServiceProxy {
3 ...
4 public void getApplications () {
5 if (mIsBound) {
6 try{
7 Message msg = Message.obtain(
8 null ,
9 MSG_GET_APPLICATIONS);

10 Log.i (TAG, "Requesting applications ... ") ;
11 msg.replyTo = mMessenger;
12 mService.send(msg);
13 } catch (RemoteException e) {
14 // Nothing
15 }
16 }
17 }
18 class IncomingHandler extends Handler {
19 @Override
20 public void handleMessage(Message msg) {
21 switch (msg.what) {
22 case MSG_GET_APPLICATIONS:
23 Log.i (TAG, "Receiving applications ... ") ;
24 Bundle bundle = (Bundle) msg.obj;
25 mApp.onApplicationsReceived(bundle
26 . getStringArrayList (APPLICATIONS_LIST)
27 . toString ()) ;
28 break;
29 // Other cases
30 }
31 }
32 }
33 }

137

i
i

“thesis” — 2017/4/6 — 17:13 — page 138 — #154 i
i

i
i

i
i

Appendix C. Listings

Listing C.5: getApplications Message handling (Barbeque Service side)

1 ...
2 public class BarbequeService extends Service {
3 ...
4 private List<Messenger> mBoundApplicationsList =
5 new ArrayList<>();
6 class IncomingHandler extends Handler {
7 @Override
8 public void handleMessage(Message msg) {
9 Messenger app = msg.replyTo;

10 String appName;
11 Bundle bundle;
12 switch (msg.what) {
13 case MSG_GET_APPLICATIONS:
14 // Client request
15 // to obtain available applications
16 // Service responds to the client application
17 // the list of available applications
18

19 Log.i (TAG, "Sending available applications ... ") ;
20 // Sending the ArrayList to the requesting
21 // application through a Bundle
22 bundle = new Bundle();
23 bundle. putStringArrayList (
24 APPLICATIONS_LIST,
25 getAvailableApplication ()) ;
26 sendMessage(
27 app,
28 Message.obtain(
29 null ,
30 MSG_GET_APPLICATIONS,
31 bundle)) ;
32 break;
33 // Other cases
34 }
35 }
36 private void sendMessage(Messenger app,Message msg) {
37 try {
38 app.send(msg);
39 } catch (RemoteException e) {
40 // The client is dead. Remove it from the list .
41 mBoundApplicationsList.remove(app);
42 }
43 }
44 }

138

i
i

“thesis” — 2017/4/6 — 17:13 — page 139 — #155 i
i

i
i

i
i

C.2. Android BarbequeRTRM API

Listing C.6: Barbeque Service binding operation (application side)

1 ...
2 public class MainActivity
3 extends AppCompatActivity
4 implements ServiceReceiver{
5 ...
6 private ServiceProxy mService;
7 ...
8 @Override
9 protected void onResume() {

10 super .onResume();
11 // Binding BarbequeService
12 mService.doBindService() ;
13 }
14 @Override
15 public void onServiceConnected() {
16 // Do stuff here
17 }
18 ...

Listing C.7: getApplications Message handling application side)

1 ...
2 public class MainActivity
3 extends AppCompatActivity
4 implements ServiceReceiver {
5 private Button mApplicationsButton;
6 @Override
7 protected void onCreate(Bundle savedInstanceState) {
8 mApplicationsButton =
9 (Button) findViewById(R.id. applications_button) ;

10 mApplicationsButton. setOnClickListener (
11 new View.OnClickListener() {
12 @Override
13 public void onClick(View v) {
14 mService. getApplications () ;
15 }
16 }
17) ;
18 }
19 @Override
20 public void onApplicationsReceived(List<AppInfo> applicationsList) {
21 // Do stuff with the retrieved applications list
22 }
23 }

139

i
i

“thesis” — 2017/4/6 — 17:13 — page 140 — #156 i
i

i
i

i
i

i
i

“thesis” — 2017/4/6 — 17:13 — page 141 — #157 i
i

i
i

i
i

Bibliography

[1] C. Brandolese and W. Fornaciari. Sistemi Embedded. Pearson, 2007.

[2] ARM. big.little technology: The future of mobile. ARM, 2013.

[3] M. R. Fernandez. Nodes, sockets, cores and flops, oh, my. http://en.community.
dell.com/techcenter/high-performance-computing/w/wiki/2329.
Accessed: 2017-03-03.

[4] A.S. Tanenbaum and M. Van Steen. Distributed Systems. Pearson Ed., 2007.

[5] B. Goddfrey. A Primer on Distributed Computing. 2008.

[6] B. Praveen and G. Matish. Security enhancement in distributed networking. IJCSMC,
2015.

[7] ISC. Internet systems consortium. https://ftp.isc.org/www/survey/

reports/current/. Accessed: 2016-10-30.

[8] F. Berman, G. Fox, and A. J. G. Hey. Grid Computing: Making the Global Infrastructure
a Reality. John Wiley & Sons, Inc., New York, NY, USA, 2003.

[9] R. Grimm et al. System support for pervasive applications. ACM Trans. Comp. Syst.,
2004.

[10] Y. Gu et al. An empirical study of high availability in stream processing systems. Middle-
ware ’09, 2009.

[11] Z. Zhang. A hybrid approach to high availability in stream processing systems. ICDCS
’10, 2010.

[12] B. Philips, C. Stewart, B. Hardy, and K. Marsicano. Android Programming, The Big Nerd
Ranch Guide. Pearson, Atlanta, GA, USA, 2015.

[13] Google Inc. Activity. https://developer.android.com/reference/

android/app/Activity.html. Accessed: 2017-03-01.

141

http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
http://en.community.dell.com/techcenter/high-performance-computing/w/wiki/2329
https://ftp.isc.org/www/survey/reports/current/
https://ftp.isc.org/www/survey/reports/current/
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

i
i

“thesis” — 2017/4/6 — 17:13 — page 142 — #158 i
i

i
i

i
i

Bibliography

[14] J.S. George. Android power management. http://www.slideshare.net/

jerrinsg/android-power-management. Accessed: 2017-03-01.

[15] M. Hsu and J. Huang. Power management from linux kernel to android.

[16] S. Brahler. Analysis of the android architecture. Project report - Karlsruher Institu fur
Technologie, 2010.

[17] P. Bellasi et al. A rtrm proposal for multi/many-core platforms and reconfigurable appli-
cations. ReCoSoC, 2012.

[18] D. Datla et al. Wireless distributed computing: A survey of research challenges. IEEE
Commun. Mag. 50, 2012.

[19] M. Conti et al. From opportunistic networks to opportunistic computing. IEEE Commun.
Mag. 48, 2010.

[20] M. Conti and M. Kumar. Opportunities in opportunistic computing. IEEE Computer,
2010.

[21] A. Ferrari, S. Giordano, and D. Puccinelli. Reducing your local footprint with anyrun
computing. Computer Communications, 2016.

[22] C. Wu and L. Li. Wipdroid – a two-way web services and real-time communication en-
abled mobile computing platform for distributed services computing. Services Computing,
2008. SCC ’08. IEEE International Conference on, 2008.

[23] Y. Xiong, S. Huang, and M. Wu. Shared resource and service management for mobile
transparent computing. High Performance Computing and Communications & 2013 IEEE
International Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013
IEEE 10th International Conference on, 2013.

[24] Y.X. Zhang. Transparent computing: concept, architecture and example. Chinese Journal
of Electronics, 2004.

[25] D.F. Parkhill. The challenge of the computer utility. Addison-Wesley Pub. Co. Reading,
MA, 1996.

[26] D. Dìaz-Sàanchez et al. Flexible computing for personal electronic devices. 13 IEEE
International Conference on Consumer Electronics (ICCE), 2013.

[27] J. Wernsing. Elastic computing: A framework for transparent, portable, and adaptive
multi-core heterogeneous computing. SIGPLAN Not. 45, 2010.

[28] E.E. Marinelli. Hyrax: Cloud computing on mobile devices using mapreduce. Master’s
thesis, Carnegie Mellon University, 2009.

[29] P. Jain et al. Mc2: On-the-fly mobile compute cloud for computational intensive task.
ICARE, 2013.

[30] P.R. Elespuru, S. Shakya, and S. Mishra. Mapreduce system over heterogeneous mobile
devices. In 7th IFIP WG 10.2 Int. Workshop Softw. Technol. Embedded Ubiquitous Syst.,
2011.

[31] H. Ba et al. Mobile computing - a green computing resource. In IEEE WCNC, 2013.

142

http://www.slideshare.net/jerrinsg/android-power-management
http://www.slideshare.net/jerrinsg/android-power-management

i
i

“thesis” — 2017/4/6 — 17:13 — page 143 — #159 i
i

i
i

i
i

Bibliography

[32] D.P. Anderson. Volunteer computing: The ultimate cloud. Crossroads 16, 16, 2010.

[33] D.P. Anderson. Seti@home: An experiment in public-resource computing. Comm. ACM
45, 2002.

[34] FoldingHome project. Foldinghome. http://folding.stanford.edu/5. Ac-
cessed: 2016-10-30.

[35] BOINC. BOINC. http://boinc.berkeley.edu. Accessed: 2016-10-30.

[36] M. Szpakowski. Native boinc for android. http://nativeboinc.org. Accessed:
2016-10-30.

[37] J.R. Eastlack. Extending volunteer computing to mobile devices. Master’s thesis, New
Mexico State University, 2011.

[38] C. Funai et al. Extending volunteer computing through mobile ad hoc networking. 2014
IEEE Global Communications Conference, 2014.

[39] Z. Dong et al. Repc: Reliable and efficient participatory computing for mobile devices.
IEEE int. Conf. Sensing, Communication and Networking, 2014.

[40] M.Y. Arslan et al. Computing while charging: Building a distributed computing infras-
tructure using smartphones. In 8th International Conference on Emerging Network Ex-
periments Technology, 2012.

[41] Y. Mustafa et al. Cwc: A distributed computing infrastructure using smartphones. IEEE
TRANSACTIONS ON MOBILE COMPUTING, 2015.

[42] F. Busching, S. Schildt, and L. Wolf. Droidcluster: Towards smartphone cluster computing
- the streets are paved with potential computer clusters. In ICDCSW ’12, 2012.

[43] Google Inc. Chromecast. https://developers.google.com/cast/. Accessed:
2017-03-20.

[44] E. Eason. Smartphone battery inadequacy. http://large.stanford.edu/

courses/2010/ph240/eason1/. Accessed: 2017-03-01.

[45] K. Kumar et al. A survey of computation offloading for mobile systems. Mobile Netw.
Applications, 2013.

[46] G.H. Forman and J. Zahorjan. The challenges of mobile computing. Computer 27, 1994.

[47] A.D. Joseph et al. Rover: a toolkit for mobile information access. ACM symposium on
operating systems principles, 1995.

[48] D. Kotz et al. Agent tcl: targeting the needs of mobile computers. IEEE Internet Comput-
ing 1, 1996.

[49] B.D. Noble and M. Satyanarayanan. Experience with adaptive mobile applications in
odyssey. Mobile Netw Appl 4, 1999.

[50] C.E. Perkins. Handling multimedia data for mobile computers. Computer software and
applications conference, 1996.

[51] J.E. White. Mobile agents. Software Agents, MIT Press, 1997.

143

http://folding.stanford.edu/5
http://boinc.berkeley.edu
http://nativeboinc.org
https://developers.google.com/cast/
http://large.stanford.edu/courses/2010/ph240/eason1/
http://large.stanford.edu/courses/2010/ph240/eason1/

i
i

“thesis” — 2017/4/6 — 17:13 — page 144 — #160 i
i

i
i

i
i

Bibliography

[52] D. Wong. Java-based mobile agents. Com ACM 42, 1999.

[53] D. Wong et al. Concordia: an infrastructure for collaborating mobile agents. International
workshop on mobile agents, 1997.

[54] P. Bellavista, A. Corradi, and C. Stefanelli. Mobile agent middleware for mobile comput-
ing. Computer 34, 2001.

[55] G. Chen et al. Study energy trade offs in offloading computation/compilation in java-
enabled mobile devices. IEEE Trans Parallel Distrb Sys 15, 2004.

[56] Z. Li, C. Wang, and R. Xu. Energy impact of secure computation on a handheld device.
IEEE international workshop on workload characterization, 2002.

[57] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices:
a partition scheme. International conference on compilers, architecture, and synthesis for
embedded systems, 2001.

[58] Y. Nimmagadda et al. Realtime moving object recognition and tracking using computation
offloading. IEEE international conferenced on intelligent robots and systems, 2010.

[59] E. Tilevich and Y. Smaragdakis. J-orchestra: automatic java application partitioning. Eu-
ropean conference on object-oriented programming, 2006.

[60] C. Wang and Z. Li. Parametric analysis for adaptive computation offloading. ACM SIG-
PLAN conference on programming language design and implementation, 2004.

[61] C. Xian, Y.H. Lu, and Z. Li. Adaptive computation offloading for energy conservation on
battery-powered systems. International conference on parallel and distributed systems,
2007.

[62] Y. Zhang. Refactoring android java code for on-demand computation offloading. ACM,
2012.

[63] A. Ferrari, D. Puccinelli, and S. Giordano. Code mobility for on-demand computational
offloading. IEEE, 2016.

[64] P. Rong and M. Pedram. Extending the lifetime of a network of battery-powered mo-
bile devices by remote processing: a markovian decision-based approach. Conference on
design automation, 2003.

[65] N. Seshasayee et al. Energy aware mobile service overlays: cooperative dynamic power
management in distributive systems. International conference on automatic computing,
2007.

[66] X. Gu et al. Adaptive offloading inference for delivering applications in pervasive com-
puting environments. IEEE International conference on pervasive computing and com-
munications, 2003.

[67] S. Gurun and C. Krintz. Addressing the energy crisis in mobile computing with developing
power aware software. Technical report, Department of Computer Science, University of
California, Santa Barbara, 2003.

[68] S. Gurun, C. Krintz, and R. Wolski. Nwslite: A light-weight prediction utility for mobile
devices. International conference on mobile systems, applications and services, 2004.

144

i
i

“thesis” — 2017/4/6 — 17:13 — page 145 — #161 i
i

i
i

i
i

Bibliography

[69] R. Wolski et al. Using bandwidth data to make computation offloading decisions. IEEE
international symposium on parallel and distributed processing, 2008.

[70] G. Orsini, D. Bade, and W. Lamersdorf. Context-aware computation offloading for mo-
bile cloud computing: Requirements analysis, survey and design guideline. The 12th
International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2015),
2015.

[71] M. Satyanarayanan et al. The case for vm-based cloudlets in mobile computing. IEEE
Pervasive Computing, 2004.

[72] E. Cuervo et al. Maui: Making smartphones last longer with code offload. MobiSys’10,
2010.

[73] V. March et al. mcloud: towards a new paradigm of rich mobile applications. Procedia
Computer Science, 2011.

[74] Chun B.G. et al. Clonecloud: elastic execution between mobile device and cloud. In Sixth
conference on Computer systems, ser. EuroSys ’11, 2011.

[75] D. Kovachev, T. Yu, and R. Klamma. Adaptive computation offloading from mobile de-
vices into the cloud. Parallel and Distributed Processing with Applications (ISPA), IEEE
10th International Symposium on, 2012.

[76] M.S. Gordon et al. Comet: code offload by migrating execution transparently. In 10th
USENIX conference on Operating Systems Design and Implementation, 2012.

[77] S. Kosta et al. Thinkair: Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading. INFOCOM, 2012 Proceedings IEEE, 2012.

[78] E. Chen. Offloading android applications to the cloud without customizing android. Per-
vasive Computing and Communications Workshops (PERCOM Workshops), 2012.

[79] H. Qian and D. Andersen. Jade: reducign energy consumption of android app. Int. J.
Network. Distrib. Comput (IJNDC) 3, 2015.

[80] F. Lordan and R.M. Badia. Compss-mobile: parallel programming for mobile-cloud com-
puting. IEEE/ACM International Syumposium on Cluster, Cloud and Grid Computing,
2016.

[81] J. Liu et al. Application partitioning algorithms in mobile cloud computing: Taxonomy,
review and future directions. Journal of Network and Computer Applications, 2015.

[82] W. Binder et al. Using bytecode instruction counting as portable cpu consumption metric.
Elettronic Notes in Theoretical Computer Science, 2006.

[83] H. Eom et al. Malmos: Machine learning-based mobile offloading scheduler with misc
training. 3rd IEEE International Conference on Mobile Cloud Computing, Services, and
Engineering, 2015.

[84] F. Lordan et al. Services: An interoperable programming framework for the cloud. Journal
of Grid Computing, vol. 12, n.1, 2014.

145

i
i

“thesis” — 2017/4/6 — 17:13 — page 146 — #162 i
i

i
i

i
i

Bibliography

[85] K. Krauter, R. Buyya, and M. Maheswaran. A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and Experience,
32(2):135–164, 2002.

[86] R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed resource management
for high throughput computing. In High Performance Distributed Computing, 1998. Pro-
ceedings. The Seventh International Symposium on, pages 140–146. IEEE, 1998.

[87] V. Damen. Introducing Linux virtual containers with LXC. 2010.

[88] C. Augonnet et al. A unified runtime system for heterogeneous multi-core architectures.
Euro-Par 2008 Workshops-Parallel Processing, 2009.

[89] C. Augonnet et al. Starpu: a unified platform for task scheduling on heterogeneous mul-
ticore architectures. Concurrency and Computation: Practice and Experience, 2011.

[90] A.P.D. Binotto et al. Effective dynamic scheduling on heterogeneous multi/manycore
desktop platforms. 22nd International Symposium on Computer ARchitecture and High
Performance Computing Workshops, 2010.

[91] C.K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on hterogeneous multipro-
cessors with adaptive mapping. Microarchitecture, MICRO-42, 2009.

[92] A. Bahga and V.K. Madisetti. A dynamic resource management and scheduling envi-
ronment for embedded multimedia and communication platforms. Embedded Systems
Letters, IEEE, 2011.

[93] E. Bini et al. Resource management on multicore systems: the actors approach. IEEE
Micro, 2011.

[94] X. Fu and X. Wang. Utilization-controlled task consolidation for power optimization in
multi-core real-time systems. In 2011 IEEE 17th International Conference on Embedded
and Real-time Computing Systems and Applications, 2011.

[95] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time cpu scheduling for mobile
multimedia systems. ACN SIGOPS Operating Systems Review, 2003.

[96] BOSP. The barbeque opensource project. http://bosp.dei.polimi.it/. Ac-
cessed: 2017-03-30.

[97] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling parallelizable
tasks. In Proceedings of the Fourth Annual ACM Symposium on Parallel Algorithms and
Architectures, SPAA ’92, pages 323–332, New York, NY, USA, 1992. ACM.

[98] D. G. Feitelson et al. Theory and practice in parallel job scheduling. In Proceedings of the
Job Scheduling Strategies for Parallel Processing, IPPS ’97, pages 1–34, London, UK,
UK, 1997. Springer-Verlag.

[99] K. Wang, X. Zhou, H. Chen, M. Lang, and I. Raicu. Next generation job management
systems for extreme-scale ensemble computing. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing, pages 111–114.
ACM, 2014.

146

http://bosp.dei.polimi.it/

i
i

“thesis” — 2017/4/6 — 17:13 — page 147 — #163 i
i

i
i

i
i

Bibliography

[100] F. Berman et al. Adaptive computing on the grid using apples. IEEE Trans. Parallel
Distrib. Syst., 14(4):369–382, April 2003.

[101] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson, and G. R. Nudd. Arms: An agent-based
resource management system for grid computing. Sci. Program., 10(2):135–148, April
2002.

[102] N. R. Jennings, K. Sycara, and M. Wooldridge. A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, January 1998.

[103] S. Kobbe et al. Distrm: Distributed resource management for on-chip many-core systems.
In Proceedings of the Seventh IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis, CODES+ISSS ’11, pages 119–128, New York,
NY, USA, 2011. ACM.

[104] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future generation computer
systems, 28(5):755–768, 2012.

[105] S. Hao et al. Estimating android applications’ cpu energy usage via bytecode profiling.
GREENS, 2012.

[106] X. Li and J. P. Gallagher. Fine-grained energy modeling for the source code of a mobile
application. arXiv, 2016.

[107] L. Corral, A. B. Georgiev, A. Silitti, and G. Succi. A method for characterizing energy
consumption in android smartphones. GREENS, 2013.

[108] C. Margi, K. Obraczka, and R. Manduchi. Characterizing system level energy consump-
tion in mobile computing platforms. GREENS, 2012.

[109] Google Inc. uses-feature. https://developer.android.com/guide/

topics/manifest/uses-feature-element.html, 2016. Accessed: 2017-03-
01.

[110] A. Carroll and G. Heiser. Unifying dvfs and offlining in mobile multicores. Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2014.

[111] M. Altieri et al. Coupled voltage and frequency control for dvfs management. Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2014.

[112] P. Bellasi, G. Massari, and W. Fornaciari. Effective runtime resource management using
linux control groups with the barbequertrm framework. ACM Transactions on Embedded
Computing Systems (TECS), 2015.

[113] G. Massari et al. Extending a run-time resource management framework to support opencl
and heterogeneous systems. PARMA-DITAM, 2014.

[114] S. Libutti, G. Massari, and W. Fornaciari. Addressing task co-scheduling on multi-core
heterogeneous systems: An energy-aware perspective. HIPEAC Workshop on Energy
Efficiency with Heterogeneous Computing (EEHCO), 2015.

147

https://developer.android.com/guide/topics/manifest/uses-feature-element.html
https://developer.android.com/guide/topics/manifest/uses-feature-element.html

i
i

“thesis” — 2017/4/6 — 17:13 — page 148 — #164 i
i

i
i

i
i

Bibliography

[115] W. Fornaciari et al. Runtime resource management for embedded and hpc systems. In
7th Workshop on Parallel Programming and Run-Time Management Techniques for Many-
core Architectures and the 5th Workshop on Design Tools and Architectures For Multicore
Embedded Computing Platforms, 2016.

[116] R. Vavrik et al. Precision-aware application execution for energy-optimization in hpc
node system. High Performance Energy Efficient Embedded Systems (HIP3ES), HiPEAC,
2015.

[117] 2Parma. Parallel paradigms and run-time management techniques for many-core archi-
tectures. http://2parma.microlab.ntua.gr/. Accessed: 2017-03-30.

[118] HARPA. Harnessing performance variability. http://www.harpa-project.eu/.
Accessed: 2017-03-30.

[119] Contrex. Design of embedded mixed-criticality control systems under consideration of
extra-functional properties. http://www.harpa-project.eu/. Accessed: 2017-
03-30.

[120] MANGO. Mango: exploring manycore architectures for next-generation hpc systems.
http://www.mango-project.eu/administrativedata. Accessed: 2017-
03-01/.

[121] A. Troina. Android run-time resource management - jni based integration of the barbe-
quertrm framework. Maester’s thesis - Politecnico di Milano, 2012.

[122] A. Urbieta, G. Barrutieta, J. Parra, and A. Uribarren. A survey of dynamic service compo-
sition approaches for ambient systems. In Proceedings of the 2008 Ambi-Sys Workshop on
Software Organisation and MonIToring of Ambient Systems, SOMITAS ’08, pages 1:1–
1:8, ICST, Brussels, Belgium, Belgium, 2008. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering).

[123] Lg and Google Inc. Nexus 5. http://www.lg.com/us/cell-phones/

lg-D820-Sprint-Black-nexus-5. Accessed: 2017-03-20.

[124] ODROID. Odroid-xu3. http://www.hardkernel.com/main/products/

prdt_info.php?g_code=g140448267127. Accessed: 2017-03-20.

[125] D. Brodowski and N. Golde. Linux cpufreq. https://www.kernel.org/doc/

Documentation/cpu-freq/governors.txt. Accessed: 2017-03-03.

[126] BenchmarkXPRT Development Community. Mobilexprt2015. http://www.

mobilexprt.com/. Accessed: 2017-03-22.

[127] A. Morgan. Benchmark selection guide, vol. 1. https://www.slideshare.net/
k12blueprint/understanding-benchmarks. Accessed: 2017-03-15.

[128] Futuremark. Pcmark2.0. www.futuremark.com. Accessed: 2017-03-22.

[129] M. Horowitz, T. Indermaur, , and R. Gonzalez. Low-power digital design. In IEEE
Symposium on Low Power Electronics. Institute of Electrical and Electronics Engineers
(IEEE), 1994.

148

http://2parma.microlab.ntua.gr/
http://www.harpa-project.eu/
http://www.harpa-project.eu/
http://www.mango-project.eu/administrativedata
http://www.lg.com/us/cell-phones/lg-D820-Sprint-Black-nexus-5
http://www.lg.com/us/cell-phones/lg-D820-Sprint-Black-nexus-5
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=g140448267127
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
http://www.mobilexprt.com/
http://www.mobilexprt.com/
https://www.slideshare.net/k12blueprint/understanding-benchmarks
https://www.slideshare.net/k12blueprint/understanding-benchmarks
www.futuremark.com

i
i

“thesis” — 2017/4/6 — 17:13 — page 149 — #165 i
i

i
i

i
i

Bibliography

[130] D. Brooks et al. Power-aware microarchitecture: design and modeling challenges for
next-generation microprocessors. IEEE Micro 20, pages 26–44, 2000.

[131] K.W. Cameron et al. Poster: high-performance, power-aware distributed computing
framework. In Proceedings of the International Conference on High Performance Com-
puting, Networking, Storage, and Analysis (SC). ACM/IEEE, 2004.

[132] J. H. Laros III et al. Energy Delay Product, pages 51–55. Springer London, London,
2013.

[133] LM LaVange and G. Koch Gary. Rank score tests. Circulation 114, pages 528–2533,
2006.

[134] Y. Chen, E. Macii, and M. Poncino. A circuit-equivalent battery model accounting for the
dependency on load frequency. In Proceedings of the Design, Computation and Test in
Europe, 2017.

[135] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[136] G. Massari, M. Zanella, and W. Fornaciari. Towards distributed mobile computing. 2nd
Workshop on Mobile Systems Technologies, 2016 (in publishing).

[137] Google Inc. App manifest. https://developer.android.com/guide/

topics/manifest/manifest-intro.html, 2016. Accessed: 2017-03-01.

[138] Google Inc. Services. https://developer.android.com/guide/

components/services.html, 2016. Accessed: 2017-03-01.

[139] Google Inc. Bound services. https://developer.android.com/guide/

components/bound-services.html, 2016. Accessed: 2017-03-01.

[140] FreeElectrons. Freeelectrons. http://free-electrons.com/. Accessed: 2016-
10-30.

[141] Google Inc. Packagemanager. https://developer.android.com/

reference/android/content/pm/PackageManager.html, 2016. Ac-
cessed: 2017-03-01.

[142] Google Inc. Activitymanager. https://developer.android.com/

reference/android/app/ActivityManager.html, 2016. Accessed:
2017-03-01.

[143] Google Inc. Powermanager. https://developer.android.com/reference/
android/os/PowerManager.html, 2016. Accessed: 2017-03-01.

[144] Google Inc. Batterymanager. https://developer.android.com/

reference/android/os/BatteryManager.html, 2016. Accessed: 2017-03-
01.

[145] Google Inc. Process, 2016. Accessed: 2017-03-01.

[146] Google Inc. Protocol buffer. https://developers.google.com/

protocol-buffers/. Accessed: 2017-03-01.

[147] Google Inc. Grpc. http://www.grpc.io/. Accessed: 2017-03-01.

149

https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/components/bound-services.html
https://developer.android.com/guide/components/bound-services.html
http://free-electrons.com/
https://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/reference/android/app/ActivityManager.html
https://developer.android.com/reference/android/app/ActivityManager.html
https://developer.android.com/reference/android/os/PowerManager.html
https://developer.android.com/reference/android/os/PowerManager.html
https://developer.android.com/reference/android/os/BatteryManager.html
https://developer.android.com/reference/android/os/BatteryManager.html
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
http://www.grpc.io/

	List of Figures
	List of Tables
	Acknowledgment
	Abstract (Italian version)
	Abstract
	Introduction
	The era of mobile devices
	Distributed systems
	Mobile devices and Pervasive Distributed Computing System
	Android Operating System
	Thesis structure, novelty and contribution

	State of the Art
	Mobile distributed computing approaches
	Computation offloading for mobile systems
	Run-time resource management

	System Design
	Capability model
	The application profiler
	The proposed management model

	Integration with the BarbequeRTRM
	The BarbequeRTRM
	The proposed architecture
	BestWing distributed device selection policy
	Android BarbequeRTRM API
	Application launching schemes

	Experimental Results
	Introduction
	Results

	Conclusions and Future Works
	Conclusions
	Future works
	Future improvements

	Appendices
	Android
	Android manifest
	Android Features model
	Android Service
	Android system information and control

	GoogleRPC
	Protocol Buffers
	GRPC

	Listings
	BarbequeRTRM AgentProxy gRPC interface
	Android BarbequeRTRM API

	Bibliography

