
POLITECNICO DI MILANO
Master in Computer Science and Engineering

Dipartimento di Elettronica, Informazione e Bioingegneria

A Novel Cache Coherence Protocol to

Adaptively Power Gating LLC Banks

in Tile-based Multi-cores

Supervisor: Prof. William FORNACIARI

Assistant Supervisor: Dr. Davide ZONI

Master Thesis of:

Luca COLOMBO

Student n. 818211

Academic Year 2015-2016

Estratto in Lingua Italiana

Nell’epoca dei multi-core, l’ultimo livello di Cache (LLC) è una risorsa condi-

visa critica dal punto di vista energetico, prestazionale e in termini di spazio

che occupa all’interno del chip. La tendenza ad aumentare la dimensione della

cache per ridurre la contesa tra diverse applicazioni in esecuzione ha messo in

luce il partizionamento della cache come tecnica per allocare efficientemente

e dinamicamente lo spazio alle singole applicazioni. Infatti il sottoutilizzo

della cache rappresenta un problema attuale, motivando lo spegnimento di

alcune sue parti al fine di salvare energia.

Tale soluzione è possibile con cache monolitiche, mentre diventa imprati-

cabile con cache fisicamente divise in tanti piccoli banchi, per cui la riduzione

del consumo può essere eseguita solo a granularità di banco; a tale livello si

rende necessaria l’uso di un’architettura DNUCA (Dynamic Not Uniform Ca-

che Access), quindi un nuovo protocollo che assicuri la coerenza della cache.

La tesi propone FlexiCache, una nuova architettura per le cache in grado

di spegnere e accendere banchi di cache. Viene presentato un nuovo proto-

collo di coerenza basato sul MESI, che supporta la possibilità di spegnere

banchi di cache. Inoltre, vengono discusse una politica per il risparmio ener-

getico, cos̀ı come la logica addizionale per ottenere le informazioni di sistema.

In particolare, una dettagliata analisi dei banchmark permette di progettare

un’architettura agnostica dall’applicazione. Per ultimo, viene fornita una

completa analisi di fattibiltà, per rafforzare ulteriormente la validità della

soluzione proposta.

FlexiCache è stata valutata su un’architettura a 16 core eseguendo un

sottoinsieme delle applicazioni appartenenti alla suite Parsec3.0. FlexiCache

richiede in media il 30% in meno di energia rispetto a un protocollo MESI

tradizionale, con un degrado prestazionale minore del 5%.

i

Abstract

In the multi-core era, the Last Level Cache (LLC) is a critical, shared, plat-

form resource from the performance, the energy and the chip area viewpoints.

The trend of increasing the LLC size to reduce the contention between dif-

ferent running applications highlights the cache partitioning schemes as vi-

able technique to efficiency and dynamically allocate the LLC space to the

application from the energy-performance perspective. Although the cache

underutilization represents a standing issue that motivates the power-off of

the portion of the unused LLC to save energy.

Such a solution is viable within monolithic LLC design, while becomes

unfeasible when the LLC is physically split in multiple small banks for which

the power gating can only be exploited at bank level. By enforcing the

power gating mechanism at bank level, a Dynamic Not Uniform Cache Access

(DNUCA) architecture is enforced thus imposing a novel coherence protocol

to ensure the cache coherence.

The thesis proposes FlexiCache, a novel cache architecture that allows

to dynamically power-OFF and -ON different LLC banks. A novel MESI-

based inclusive coherence protocol is presented to support the LLC bank

powering-off capabilities. Moreover, the power gating policy as well as the

additional logic to gather the platform information are also discussed. In

particular, the in depth benchmark analysis allows to design an application

agnostic architecture. Last, a complete feasibility analysis is provided to

further strengthen the validity of the proposed solution.

FlexiCache has been validated on a simulated 16-core architecture execut-

ing representative applications from the Parsec3.0 suite. FlexiCache requires

30% less energy, on average, with respect to the traditional MESI protocol

with an average performance overhead within 5%.

iii

Acknowledgments

To my family, my real strength. Only one life will not be sufficient for me

to thank my parents, who have gave me the opportunities to do everything

I have wanted, who have always made me feel a priviliged person and who

have gave me a good life. I hope with my constancy and my work to have

rewarded in some way their choices and sacrifices made as parents. These

pages belong also to them.

To my sister Valentina, for her essential presence.

To my grandmother Palmira, who I think today would be proud of me.

To Mauro, Fabio and Andrea, more than mates. In you I have found a

true and sincere friendship.

To Simone, for his valuable advices.

To Davide, Matteo, Giorgio, Lara and Fabrizio, for their support.

To Marco, for his costant interest and all the talks at gym.

To Davide, for his hard teachings and his guidance.

To Luca, Giuseppe, Simone, Federico R., Michele, Francesca, Stefano,

Nicholas, Federico T. and all the people of the HEAP Lab, who have made

me feel part of an entire research group. Thank you all guys for the very

good moments and the laughs together.

To professor Fornaciari, for the opportunity of working in the branch of

research.

To all the people who, even once, have shown true interest during my

way.

v

Contents

1 Introduction 1

1.1 Problem Overview . 2

1.2 Goals and Contributions . 4

1.3 Thesis Structure . 5

2 Background and State of the Art 7

2.1 The Network-on-Chip . 7

2.2 Cache Hierarchy . 8

2.3 Coherence Protocols Basics 10

2.3.1 The MESI Protocol . 15

2.4 LLC Mapping and Non Uniform Cache Access (NUCA) Ar-

chitectures . 17

2.5 Energy Saving Techniques in the LLC 18

3 The FlexiCache Architecture: Coherence Protocol and Pol-

icy Architecture 27

3.1 Multicast Mechanism . 28

3.2 The Handshake Protocol . 30

3.3 The LLC Prefetch Scheme . 34

3.4 Policy Architecture . 36

3.4.1 The Reference Energy Model 36

3.4.2 Energy Saving Policy 39

3.4.3 Architecture Feasibility and Policy 45

3.5 Deadlock Avoidance Analysis 46

4 Experimental results 51

4.1 Simulation Setup . 51

4.2 Regression Tests . 55

vii

4.3 Energy and Performance Analysis 59

4.3.1 Time-based Detailed Analysis 61

4.4 Design Space Exploration (DSE) 64

4.4.1 Increasing the Size of LLC Cache 64

4.4.2 The Impact of LLC Prefetch Scheme 66

5 Conclusions and Future Works 69

5.1 Future Works . 70

Bibliography 71

List of Figures

1.1 Motivational example: Total Energy 2

1.2 Motivational example: Execution Time 3

1.3 Motivational example: Energy Delay Product 4

2.1 MESI L1 Cache Implementation 16

3.1 Baseline architectural overview 28

3.2 Multicast Mechanism, data not present 29

3.3 Multicast Mechanism, data present 31

3.4 Handshake mechanism . 33

3.5 The LLC Prefetch Mechanism 35

3.6 Deadlock scenario, example 1 47

3.7 Deadlock scenario, example 2 48

4.1 Workflow diagram . 54

4.2 Energy Analysis with Prefetch and 256kB bank size 60

4.3 Energy Analysis, Barnes with Prefetch and 256kB bank size . 62

4.4 Energy Analysis, Cholesky with Prefetch and 256kB bank size 63

4.5 Energy Analysis, Ocean Cp with Prefetch and 256kB bank size 65

4.6 Energy Analysis, with Prefetch and 1MB bank size 66

4.7 Energy Analysis, no Prefetch and 256kB bank size 67

ix

List of Tables

4.1 Experimental Setup. 52

4.2 Splash2x suite . 53

4.3 Energy-saving policy parameters 55

xi

Acronyms

NoC = Network-on-Chip

LLC = Last Level Cache

MC = Memory Controller

MHSR = Miss Handling Status Register

FSM = Finite State Machine

NUMA = Non Uniform Memory Access

NUCA = Non Uniform Cache Access

SNUCA = Static Non Uniform Cache Access

DNUCA = Dynamic Non Uniform Cache Access

CMP = Chip Multi-Processor

VNET = Virtual Network

HPC = High Performance Computing

RAM = Random Access Memory

SRAM = Static Random Access Memory

DRAM = Dynamic Random Access Memory

SWMR = Single Writer Multiple Reader

IPC = Instructions Per Clock

FIFO = First In First Out

xiii

Chapter 1

Introduction

The multi-cores represent the de-facto standard to execute multiple appli-

cations and eventually enhance the platform utilization while imposing the

share of several computing resources. For example the Last Level Cache

(LLC) is usually shared between all the CPUs, thus easily becoming the

performance bottleneck of the system. To this extent two different multi-

core design trends emerged to limit the performance overheads induced by

a shared LLC. First, the LLC size increased dramatically to make space for

data of different concurrent applications. Second, the LLC design shifted

from a monolithic LLC bank to multiple physically split LLC banks within

a single address space. This latter trend reduces the access contention to

the single LLC controller and allows the implementation of smarter data

placement policy to keep each cache lines closer to the CPU that is using it.

The increse of the LLC size demands for fresh cache management strate-

gies to optimally use the augmented resource. In this scenario, the cache

partitioning scheme highlights a viable methodology to adapt the LLC cache

space allocated to different applications that competes on the utilization of

the shared LLC. However, several proposals in the open literature highlight

the underutilization of the LLC [5, 18], thus the power gating mechanism is

exploited to power-off the unused cache slices to limit the leakage power while

preserving the overall system performance. The power gating of the LLC at

slice level represents a solution until the architecture has a single monolithic

LLC bank, while the current design trend is moving towards physically split

LLCs [1] to keep data closer to each CPU and reduce the pressure on the

single LLC interface / port. In such a scenario, a DNUCA approach is re-

quired to search data in the LLC. Moreover, a novel coherence protocol is

1

1.1. Problem Overview

Figure 1.1: Behavior of all benchmarks for what concerns the Total Energy with

different available LLC banks.

required to support the power gating of any LLC bank without violating the

coherence properties.

The thesis presents FlexiCache, a novel cache architecture that allows to

dynamically power-OFF and ON the LLC banks to save energy, while keeping

the overall system performance close to the performance level that is achieved

using a traditional coherence protocol, i.e., without power gating capabilities.

The motivational example as well as the possible energy-performance benefits

of such an architecture are discussed in Section 1.1. Section 1.2 highlights the

novel contribution of the research while the organization of the manuscript

is described in Section 1.2.

1.1 Problem Overview

The possibility to reduce the LLC size by power gating different LLC banks

greatly improves the energy consumption while negatively affecting the per-

formance. This section discusses the energy and performance metrics when

different subsets of LLC banks are power gated. In particular, a subset of

the Splash2x [31] are simulated on a 16-core architecture with 16 LLC banks

shared to all the cores where each core implements a private L1 cache.

2

1.1. Problem Overview

Figure 1.2: Behavior of all benchmarks for what concerns the Execution Time

with different available LLC banks.

Figure 1.1 reports the energy consumption of the multi-core per each con-

sidered benchmark. In particular, each benchmark has been simulated with

a different number of active LLC banks. For each simulation the number

of active LLC banks is kept for the entire simulation. For each simulation

the energy is normalized to the one consumed with all the LLC banks ac-

tive. In general, the reduction of the active LLC banks positively impact the

consumed energy. However, few benchmarks report an higher energy when

a single LLC bank is used instead of two or four banks due to the dramatic

increase in the execution time then increase the total consumed energy of

the benchmark.

As expected the reduction of the active LLC banks negatively impact the

execution time as reported in Figure 1.2. For each benchmark the perfor-

mance increases with the number of active LLC banks and a huge perfor-

mance drop is observed when a single LLC bank is active. Moreover, each

application highlights a specific performance overhead when executing with

a reduced number of active LLC banks. In general, a negligible performance

overhead is observed when the 8LLC bank configuration is used in place of

the 16LLC one. Although, ocean np and ocean ncp show a strong relation

between the performance metric and the number of active LLC banks.

3

1.2. Goals and Contributions

Figure 1.3: Behavior of all benchmarks for what concerns the Energy Delay Prod-

uct with different available LLC banks.

The observed data coupled with the contrasting optimization directions

for the energy and the performance eventually underpin the possibility of

an optimal LLC configuration, i.e., number of active LLC banks, to get the

optimal energy-performance trade-off. Figure 1.3 shows the Energy Delay

Product (EDP) for the same benchmarks and the same LLC configurations

already discussed. An optimal LLC configuration that minimizes the EDP

emerges for each application and seems to be application dependant. In the

rest of the manuscript the proposed architecture allows to optimally allocate

the LLC configuration to minimize the EDP product using an application

independent decision algorithm. In particular, the benchmark analysis will

highlight that the application behavior can be shadow within few architec-

tural parameters that makes the decision algorithm independent from the

specific running application.

1.2 Goals and Contributions

The thesis proposes a novel coherence protocol that allows to dynamically

resize the LLC size by power gating the LLC banks with 3 major contribu-

tions:

4

1.3. Thesis Structure

• a novel DNUCA coherence architecture based on the MESI coherence

protocol, which allows to switch on/off LLC banks without any restric-

tions to optimize the energy-performance trade off.

• a non-blocking handshake mechanism for power gating LLC banks

given a certain LLC configuration, i.e. the power state of all the LLC

banks of the system; power commands do not freeze the system, that

can execute the application during the LLC reconfiguration.

• a scalable and application independent policy architecture, that takes

into account architectural metrics, supported by a signaling network

with low overhead (i.e. few messages).

A 16-cores architecture is used, executing applications from the PAR-

SEC3.0 benchmark suite [31]. The obtained results highlight the benefit in

energy savings of 30% on average, while impacting on performance with a

less than 5% degradation.

1.3 Thesis Structure

The rest of the thesis is organized in 5 chapters. Chapter 2 overviews the

background of the work and the state of the art. Chapter 3 provides a detailed

description of our architecture and its novel contributions to the State of the

Art. Chapter 4 details the methodology validation providing results with

synthetic traffic and real applications. Chapter 5 points out conclusions and

some future works.

5

Chapter 2

Background and State of the

Art

This chapter describes the background of the work, to ease the reading of

the following chapters. In Section 2.1 is described the Network-On-Chip

interconnection, while Section 2.2, Section 2.3 and Section 2.4 discuss basics

about Cache architecture and hierarchy, with a brief description of MESI

Coherence Protocol. Finally, Section 2.5 suggests an overview of State of the

Art existing energy saving techniques for LLC.

2.1 The Network-on-Chip

The NoC is a scalable and reliable interconnect that allows its nodes to ex-

change data. A node can be both a CPU or a part of the memory subsystem.

The NoC is composed by routers, Network Interface Controllers (NICs)

and links. The first ones route data into the network. The second ones allow

the communication between a node and a router. Finally, links connect two

routers or eventually a router and a NIC.

Traditionally, the NoC splits each message from the memory subsystem

in multiple packets. Then each packet is eventually split in multiple flits to

better utilize the NoC resources.

The NoC is characterized by a topology, which defines the way routers

are interconnected to each others and how memory and CPU blocks are

attached to the NoC. The most common topologies used in NoC are mesh

[9], concentrated mesh [2], hybrid bus based [10, 30] and high radix [17].

7

2.2. Cache Hierarchy

Furthermore, another key aspect of a NoC is its routing algorithm. It

defines each source-destination path inside the NoC. Routing algorithms can

be deterministic [2] or adaptive [13, 11, 12], based on their capacity to alter

the path taken for each packet. The most used deterministic routing scheme

in 2D-meshes is XY routing; packets first go in the X direction and then in

the Y one.

NoCs can implement the VNET mechanism to support coherence proto-

cols and this is done in order to prevent the traffic from a VNET to be routed

on a different one, possibly causing dependencies between different kind of

coherence messages and generating deadlocks.

2.2 Cache Hierarchy

Historically, the main memory became a bottleneck for computer systems.

The cache hierarchy emerged to fill the gap between the CPU and the

main memory performance.

Cache memories exploit temporal and spatial locality. These are charac-

teristics observed statistically in applications, according to which distribution

in time and in space of memory accesses is not homogeneous.

Spatial locality states that an application accesses with a greater proba-

bility to addresses near the last ones accessed. On the other side temporal

locality states that an application accesses more often to addresses accessed

recently in time.

The objective of cache memories is to exploit these characteristics in order

to keep most recently accessed data and allow CPU fast accesses, avoiding

latencies caused by accessing the main memory.

Caches, despite a very low access time, are characterized by high costs in

terms of area and power consumption. This is specially true considering costs

and access times of the main memory. The causes of these disparities are the

different technologies that are used to build the two types of memory. Cache

memories are based on Static RAM technology (SRAM). This one uses flip-

flops, like a register file, it has non-destructive read-out and it is very fast, but

expensive. The main memory is based on Dynamic RAM (DRAM) instead;

it uses a single transistor to store each bit, has a simpler structure, allows

larger capacity chips but it has destructive read-out, requires regular refresh

and is slower.

8

2.2. Cache Hierarchy

Thus, the cache hierarchy is usually designed considering these features

and aiming to get a trade off between costs and performance. Accordingly, it

is organized into several levels. The closer ones to the core have to be smaller

and as fast as possible. Farther ones are bigger and have to provide blocks

to the higher layers.

The L1 cache, the closest one to the core, is private and is usually split

into data cache and instructions one. After that, we find the bigger, a little

bit slower L2 cache; there is no distinction between data and instructions

starting from there.

The number of cache levels is going to grow in the future; nowadays is

very common to find up to three layers. However, in our description the L2

cache is the Last Level Cache. The LLC can be designed private to the core

or shared between all the CPUs.

In order to exploit spatial locality, data are retrieved from memory and

stored in blocks (also called cache lines), which contain more contiguous

words. Traditionally a word can be sized to 32 or 64 bit, a block can be of

64 or 128 bytes, dependently on the processor architecture. When a word is

not found in the cache, it must be fetched from the memory and placed in

the cache before continuing and so its block is retrieved from memory. Each

cache line includes a tag; it identifies which address it corresponds to.

Depending on where a block can be placed, we can distinguish several

cache designs. Set associative caches define a set as a group of blocks in the

cache itself. A block is mapped onto a set by its address and then the block

can be placed anywhere in that set. The set of a line is usually computed

as the module of its address. If every set has n blocks, the cache placement

is called n-way set associative. The associativity of a set-associative cache is

the number of ways in a set and so it’s n itself.

Other types of cache designs can be explained starting from the definition

of set-associative one. In a direct-mapped cache every block is always mapped

to the same location, so it is like it has only one block per set. On the other

hand in a fully associative cache a block can be placed anywhere and so the

cache has only one huge set.

However, other categorizations are commonly used. Write-through caches

update main memory when data are updated in caches. A write-back cache

only updates the copy in the cache. When the block is about to be replaced,

it is copied back to memory.

One important measure is the miss rate; it is the ratio of the number of

9

2.3. Coherence Protocols Basics

accesses which does not find the requested block in cache divided by the total

number of accesses.

The various miss types are now described. Compulsory misses are the

ones caused by the fact that the first block access can’t be successful; lines

have to be requested in order to be loaded in cache. Capacity misses are the

ones that occur due to the limited capacity of the cache; the block has been

previously discarded to free space for another line. Considering not fully

associative caches, conflict misses are caused by the fact that a line may be

replaced due to conflicting blocks that map to its set and later retrieved.

Given a block address, it is composed by different parts which have their

own meaning and that are used to determine if the line is in cache.

The block offset is usually identified by the least significant bits. It is

composed by n = log2N bits, where N is the size of the block. The set index

determines in which set the block is and it is composed by the m = log2M

higher bits, where M is the number of cache sets. The remaining bits are

used for the tag.

The set index is used to determine the cache set. For each block in the

set, the associated tag and the one from the memory address are compared.

If there is not a match, the line is not in cache. Otherwise, the valid bit is

analysed. If it is true, the block is in the cache, otherwise it is not.

If the line at that address is in the cache, then the block offset from that

address is used to find the data within the cache block.

If the requested address is not in the cache, then it will be retrieved from

memory. As already said, other addresses will be retrieved from memory

together with the requested one, in the same block. This is done to exploit

spatial locality. The starting address is the one obtained replacing with zeros

the block offset part of the address. For the ending address, we replace the

block offset with all 1s.

2.3 Coherence Protocols Basics

As previously said, in the tiled multi-cores scenario a shared Last Level Cache

is usually used. In this kind of systems, each of the processor cores may read

and write to a single shared address space. Before aiming to reach any other

key property such as high performance, low power consumption and low cost,

for example, we have to provide correctness. Generally this problem can be

split in two important sub-issues: consistency and coherence.

10

2.3. Coherence Protocols Basics

Consistency has to define memory correctness; its definitions provide rules

about loads and stores and how they act upon memory. It is required that the

execution of a thread transforms a given input state into a single well-defined

output state and consistency models have to manage multiple threads; they

are usually able to reach their scope allowing many correct executions (due

to the fact that the multi-core architecture allows the concurrent execution

of multiple threads) and disallowing many (more) incorrect ones. The great

number of correct executions makes the job of defining correctness hard.

Cache coherence aims to make the caches of a shared-memory system

functionally invisible as is for caches in a single-core system; it is not strictly

required, however it helps in providing consistency.

In order to define what coherence is, we can use some invariants. The

most used one is the Single-Writer-Multiple-Reader (SWMR) invariant: for

any given memory location, at any given moment in time, there is either

a single core that may write (and also read) it or a number of cores that

may read it. In addition to this invariant, it is required that the value of a

memory location is properly and correctly propagated. So we can say that,

according the Data-Value Invariant, the value of the memory location at the

start of an epoch is the same as the value of the memory location at the end

of its last read-write epoch.

There are two ways of managing write requests in cache coherence proto-

cols and so we have two types of protocols: invalidation-based and update-

base ones.

In Update-based protocols cores can write on shared blocks. Changes

must be propagated to the copies in the L1 caches of the sharers. This can

be a promising mechanism because the new block is immediately provided

to cores. However the update operation is difficult to implement and main-

taining coherence can be difficult too.

Invalidation-based protocols, in order to write on a shared block, inval-

idate all the shared copies of it in L1 caches. Any successive request for

that block will be managed as a new coherence request and the line will be

retrieved by lower caches in the hierarchy. Obviously this can lead to a per-

formance degradation caused by the fact that the sharers may still need the

block. This means that the core will send a request to the L1, which does

not have the line and have to send an additional request to the LLC. More-

over there are even more penalties caused by the invalidation mechanism: an

invalidate message is sent to every core and the LLC bank have to wait all

11

2.3. Coherence Protocols Basics

the acknowledgments.

Some hybrid solutions exist; however almost all current systems use in-

validation based protocols. This is also assumed in the thesis.

Traditionally, the coherence protocols are implemented as Finite State

Machines to ensure the invariants. FSMs represent the evolution of the

block state in base of accesses and coherence actions performed to it. Each

state/event pair of the controller triggers a transition, that can lead to an-

other state and can imply some actions.

A coherence protocol is specified by its coherence controllers, i.e. cache

controllers.

A request and the successive messages exchanged to satisfy the request

are usually defined as a transaction.

The difference between coherence protocols is in the differences between

their controllers characteristics. These include different sets of block states,

transitions, events and transactions.

A block can be in steady states or in transient ones. A transient state

identifies a block for whom an event is waited. Stable states are the ones

that are not currently in the mid of a coherence transaction. Steady and

transient states depends on the protocol implementation.

However, there are four cache block characteristics that should be encoded

in the state: validity, dirtiness, exclusivity, and ownership. A valid block has

the most up-to-date data value. A cache block is dirty if its value is the most

up-to-date value, which differs from the value in the LLC/memory. Thus the

cache controller is in charge to answer to all the requests for the block. A

cache block is exclusive if it is the only privately cached copy of that block

in the system. A cache controller is the owner of a block if it is responsible

for responding to coherence requests for that block. The block can be dirty.

Accordingly, one of the design choices of a coherence protocol is the num-

ber of steady states the block can have. In particular choosing L1 cache

states is very important. The properties of each cache block are encoded

in order to represent its characteristics, which are the ones described above.

Typically the states introduced by [29] are used. Considering L1 caches, the

five typical states are M ,O,E,S and I. The basic ones are M , S and I.

The other ones depend on the specific protocol. States O and E are two

optimizations which can be used to extend the MSI protocol, thus obtaining

MOSI, MESI and MOESI protocols.

• M(odified): The block is valid, exclusive, owned. It can be dirty and

12

2.3. Coherence Protocols Basics

the only valid copy of the block with read-write permissions. The cache

must respond to requests for the block. The copy of the block at the

LLC/memory is potentially stale.

• S(hared): This cache has a read-only valid copy of the block. Other

caches may have valid, read-only copies of the block.

• I(nvalid): The block is invalid. The cache either does not contain

the block or it contains a potentially stale copy that can’t be read

or written. These two situations can be distinguished as not. The

first case can be denoted as Not Present state. We are not going to

distinguish these two states.

O and E states are optimizations. In a typical MOESI protocol they have

the following meaning:

• O(wned): The cache has a read-only copy of the block and it is valid

and owned. It may be dirty. It is not exclusive. The cache must respond

to requests for the block. The copy of the block in the LLC/memory

may be stale. Other caches may have a read-only copy of the block,

but they are not owners.

• E(xclusive): The cache has a read-only copy of the block and it is

valid, exclusive, and clean. No other caches have a valid copy of the

block. The one in the LLC/memory is up-to-date. There are protocols

in which the Exclusive state is not an ownership state. Here, when it

is in this state, a block is considered owned by the cache.

Concerning a coherence protocol, it is possible to have different type of mes-

sages and different types of events that can interact in the system and which

can cause state transitions. There are two possible types of messages: coher-

ence requests and coherence responses. The cache can receive a request in

order to obtain write permissions (GetX) or read requests (GetS). By send-

ing responses caches can send data, ACKS or coherence responses in order

to manage properly received requests.

The protocols FSMs also include transient states which are required to

solve the race conditions due to accesses to the same block by different cores.

After an L1 cache miss, a request is sent out to a specific node or can

be sent to all the caches in the system. Depending on this design choice,

13

2.3. Coherence Protocols Basics

the coherence protocol can be a directory protocol (first case) or a snoopy

protocol (the second case).

Snoopy protocols usually rely on a shared communication medium (typ-

ically a bus) which must have a total ordering of messages. Each cache con-

trollers FSM evolves depending on the block state. All the caches evolve to a

correct state and the protocol is designed to maintain the SWMR invariant.

The messages in the interconnect must be totally ordered. All the caches

must see the same message order. However this kind of shared interconnect

can heavily limit the architecture.

Directory protocol requests are sent to a single node and are managed

following the order of their reception at the node. Thus the interconnect is

not forced to provide the total message order property. Considering tiled

systems, the block is usually mapped in the same LLC bank and so to the

same tile. Requests for the block will be sent to that bank, which acts as a

home for the block. Thus, it is necessary to rely on a structure to keep track

of which cores are using specific blocks. This is the role of the directory, a

bit vector associated to each cache block; the size of the vector is equal to

the number of cores.

Directory protocols were ideated to overcome the Snoopy protocols lim-

its. However, their scalability is limited too. More cores the system has,

more area overhead is going to be introduced by the directory and this has

consequences on the power consumption too.

In tiled systems the directory structure is distributed in the LLC cache

banks. It is made of sharer vector, the steady and the transient states.

The vector of sharers, called sharing code, represents the biggest part of the

directory.

Several designs have been proposed to efficiently implement the sharing

code. It can be implemented as a a bit-vector having one bit for each private

cache in the system; if a private cache has a copy of a block, the corre-

sponding bit in the sharing code stored in the directory entry associated to

that block is set. This implementation, called full-map directory, provides

an exact representation of the private caches holding a copy of the block in

each moment, but its scalability is limited to tens of cores. We refer to this

protocols as directory-based protocols.

A solution for the limited scalability can be compressing the sharing code

and mapping more than one private cache to each bit; this reduces the accu-

racy of the directory information, since when a bit of the sharing code is set

14

2.3. Coherence Protocols Basics

it is not possible to determine which of the private caches mapped to that bit

actually have a copy of the block, so when the LLC has to communicate with

L1 caches to manage a request (i.e. it has to forward a request or send inval-

idation messages), it must send a message to all the caches mapped on that

bit. Thus, the more the sharing code is compressed, the more area overhead

is reduced. However, traffic increases, specially not useful traffic (messages

sent to nodes which are not sharers).

2.3.1 The MESI Protocol

The MESI protocol is composed of four steady states which give the name to

the protocol (see Section 2.3). Additional transient states are added to these

ones to complete the protocol Finite State Machine and to correctly manage

the different possible race conditions. However, this is the description of the

first cache level. Last Level Cache FSM is more complex and has to consider

what is happening in higher (closer to the CPU) cache levels. Some of the

L1 cache FSM transient states will be now detailed in order to show how

MESI protocol manages race conditions. Described states are useful to later

support the discussion on to the added multicast support.

Figure 2.1 shows a typical implementation of the MESI protocol finite

state machine for the L1 cache. It is a simplification of the GEM5 simulator

implementation of MESI directory protocol, which considers two levels of

cache: the per core private L1 cache and shared L2 one. This is a partial

and simplified representation of the L1 cache finite state machine. However,

shown transient states are useful to understand what is happening in the

system and how the L2 cache FSM is implemented. They are very important

in order to avoid race conditions and to manage situations in which the cache

is waiting for responses and/or data for a given line.

For example, in shown MESI FSM:

• IS means that a read request (GETS) has been issued for a cache

block not present in cache and awaiting for response. The cache block

is neither readable nor writeable.

• IM means that a write request (GETX) has been issued for a cache

block not present in cache and awaiting for response. The cache block

is neither readable nor writeable.

15

2.3. Coherence Protocols Basics

Figure 2.1: Simplified typical implementation of the MESI protocol; L1 cache

FSM, including main transient states.

• SM means that the cache block was originally in S state and then a

write request (UPGRADE) was issued to get exclusive permission for

the block and it is awaiting response. The cache block is readable.

• M I indicates that the cache is trying to replace a cache block in M

state and the write-back (PUTX) to the L2 cache’s directory has been

issued but awaiting write-back acknowledgment.

Considering the L2 cache controller, the stable states only are detailed

below. The interested reader can find a complete description of the L2 cache

controller in [26].

• NP means that the cache block is not present in LLC.

• SS indicates that the LLC block is valid and readable and that it

is present in potentially multiple private L1 caches, in only readable

mode. It is similar to the S of L1 cache finite state machine.

• M means that the cache line is not present in no L1 cache and so the

block has exclusive permission.

16

2.4. LLC Mapping and Non Uniform Cache Access (NUCA) Architectures

• MT means that the block is in one private L1 cache and it is the owner.

Any request from other L1 caches needs to be forwarded to the owner.

2.4 LLC Mapping and Non Uniform Cache

Access (NUCA) Architectures

Multi-core cache structures were usually designed to have uniform cache ac-

cess time regardless of the block being accessed. For those architectures, the

access time represented a significant bottleneck as the cache became larger,

due to the fact that it was sized to the worst access time in the system. Non-

Uniform Cache Access (NUCA) architectures split the cache into multiple

physical banks, in order to access the memory with an optimal cache latency

[19].

This idea has been developed through the years and there are different

ways in which NUCA architectures have been managed.

Static NUCA (SNUCA) architectures use static mapping policy to place

the blocks into the LLC: lines are mapped to their home bank depending

on their address. As already said, in split shared LLCs, the home bank is

the one that is in charge to host and manage the block. This policy should

evenly distribute blocks on the LLC banks; this is however not true in real

applications because memory accesses are never uniformly spread over the

memory address space. However, the position of the requesting core is not

taken into account by the mapping policy, thus it is possible to experience an

high latency due to the distance between home bank and the L1 requestor.

Dynamic NUCA (DNUCA) can dynamically place cache blocks between

the banks, thus the same line can be found in different banks over time.

This can be implemented dividing banks into banksets and introducing the

possibility of placing a block in any bank within a given bankset. However,

in these techniques the block has to be searched in the LLC before declaring

a cache miss. This implies that a search mechanism has to be implemented

in order to find a block. This is a key aspect due to the fact that a multicast

or eventually a broadcast can be very performance degrading.

The DNUCA approach was originally proposed for a single-core system

and then extended to multi-cores. Ping pong effects and race conditions can

make the design hard and the performance poor.

[19] and [6] show search policies are not trivial for NUCA caches. The

17

2.5. Energy Saving Techniques in the LLC

possibility of mapping data in more banks often implies the implementation

of block migration mechanisms in order to move data dynamically.

In DNUCA designs, many race conditions have to be solved in order to

guarantee correctness and prevent deadlocks. For example the False Miss

problem [15] has to be managed. As a consequence of the migration mech-

anism, there could be a time interval in which none of the banks involved

in the migration process is able to provide the requestor with the referred

block, thus resulting in a last-level-cache miss even if the block is actually on

chip.

Another common race condition that can occur is the Multiple Miss one.

When two or more processors simultaneously send a request for the same

block and it is not in cache, multiple LLC misses and multiple requests to

the main memory are sent for the same block. In this way, multiple copies

of the block are retrieved from the memory and this is a problem.

2.5 Energy Saving Techniques in the LLC

[5] presents an evaluation of UCAs (Uniform cache architecture) and NU-

CAs (Non uniform cache architecture), from the performance and the energy

consumption view point. After explaining how NUCA (both Static, where

lines are mapped in a single predetermined bank, and Dynamic, where a

line can dynamically migrate in different banks) architectures are fundamen-

tal for reducing the access latencies to L1’s lower level caches and how they

outperform UCA ones, they point out the large portion of space that in mod-

ern microprocessors L2 caches occupies, and consequently the big impact in

the total power consumption they have. This work focus on a more impor-

tant key point, that motivates also our work: in NUCA architectures energy

consumption is dominated by static component, due to leakage currents; es-

pecially in D-NUCA ones, despite of the major traffic and data movement

generated, energy consumption is in any case dominated by the static part.

So, in the context of cache energy savings, the reduction of static component

deserves most of the attention. Nevertheless, this work focuses on a single

processor system with a single L2 cache, internally divided in multiple banks

connected by a switched network; so they do not consider an architecture

where the L2 is physically partitioned and placed in different points, like

the tiles in the Network-On-Chip which we studied. Furthermore, in the

context of D-NUCA architectures, they consider movement and mapping of

18

2.5. Energy Saving Techniques in the LLC

data only in a group of banks and not, in a general way, in any of the bank

in the network: in our work we assume that a data can be placed in any of

the portion of the L2, depending on the configuration of the system.

[7] repeats as the most important component of chip power in Chip Multi

Processor is that of last level cache banks, due to the big portion of area they

occupy in the chip. In this work it is explained that the two most important

reduction of cache power techniques are of two types: controlling power sup-

ply or resizing directly the cache. Since different applications doesn’t need

the same space of memory (i.e. the same number of LLC banks), this work

focused on techniques that switch off the less utilized banks, to reduce the

total power consumption of the LLC cache. In particular, they start working

from an existing technique: a policy that monitors the performance degra-

dation of the system and that, based on a threshold value, decides if a bank

(in particular the less utilized) can be shutdown. This technique causes that

requests to the powered off bank are forwarded to another active one, called

the ”target” bank. Since this target bank has to manage the additional load

of the powered off bank, this paper tries to find an optimization for improving

its performance and by reducing forwarding cost. In particular, once a bank

is decided to be shutdown, the valid blocks of the selected bank are relocated

to its target bank and future request to this bank are forwarded. In our work

we decide to flush the cache to be shutdown and change the vision of active

L2s to map blocks, instead of forwarding requests. So, eventual blocks that

have to be reloaded in cache are distributed among all the available switched

on banks and they do not stress a particular target bank. Doing so, we

do not need any type of optimization for the target bank to better manage

the requests of one or more switched off bank. Moreover, our technique can

switch on/off different slices of L2, depending on the application behavior

and of its phases.

[14] tries to improve the idea of ”accounting cache” in order to save dy-

namic but also leakage power of a cache. The idea under accounting cache

is to split the ways of the cache in two partitions and to access in first place

only one of them, accessing the other only in case of a miss in the first par-

tition. Doing so, dynamic power due to access in the second partition is

avoided in a number of cases, but both partitions are kept active every time,

not saving leakage power. This mechanism is also ”phase adaptive”, i.e. the

number of ways inside each partition can change dynamically depending on

the needs of the application: by taking into account a cost function based

19

2.5. Energy Saving Techniques in the LLC

on dynamic power consumption, the best configuration is selected. So, the

improvement offered by this work is to make accounting cache more efficient,

considering and trying to save also leakage power: this is done by putting the

secondary partition in a drowsy state, powered at a lower level with respect

to the primary partition. Data are searched in the primary partition and,

only if not found then are searched in the second one; if data is found then

data is swapped with the first partition, otherwise an access to the lower

level of memory is needed. In general, this mechanism can add extra latency,

due to the fact that the second partition is accessed after the first one. The

cost function is computed with some extra logic and consider also, phase by

phase, the leakage power consumption. Again, this work focuses on the en-

ergy/power optimization of a cache at a way-granularity level. The scenario

considered is that of a single processor with a UCA private L2 cache and a

L3 cache, not taking into account a TCMP architecture, where L2 banks are

physically splitted.

[24] proposed a technique that control resizing of the cache at a way-level

granularity, trying to allocate the right portion of space to each thread for

improving energy efficiency and performance gain. The idea of this work is

to, starting from the working set size estimation based to the cache accesses

monitored in a certain period, by capturing misleading behaviour in the trend

of accesses, allocate the right number of ways to running threads. This is

made through a majority voting among locality assessment results of several

short sampling periods (called voting periods): this permits to detect excep-

tional behavior in the accesses and to ignore them in the decision of number

of ways to be allocated. The mechanism makes use of a sample period, during

which it collects cache accesses, and of an adaptation opportunity, in which

can decide effectively to change the number of allocated ways to each thread.

Three functions are used to support this second step: the first that decides

if a thread effectively needs more ways or not; the second that decides to

resize cache based only on the current signal or accounting also for the past

signals; the third and last considers to change the allocation of ways when all

of them are yet used and some thread requires more resources. Evaluation

is made by considering one only L2 cache and an incremental number cores

in the chip (1,2,4,6), so not considering a tiled CMP architecture. Also, the

focus is an optimization in the performance, not inspecting the power/energy

problem.

[23] studies the main problem of partitioning the shared last-level on-chip

20

2.5. Energy Saving Techniques in the LLC

cache among multiple competing applications. In this paper it is proposed

a partitioning mechanism based on utility, in the sense of benefit, and the

misses that the application has. The claim of this investigation is that it

makes sense to partition the cache based on how much the application is

likely to benefit from the cache rather than the application’s demand for

the cache. To partition the cache based on application’s utility for the cache

resource, they propose a Utility-Based Cache Partitioning (UCP). This mech-

anism exploits a monitoring circuit which is able to collect information about

utility of cache resource for all the running applications. This circuit is sep-

arated from the shared last-level cache, allowing it to collect informations

about every application for all the ways in the cache, independently of the

contention generated by other applications on other cores. Informations col-

lected by this circuit is then used by the partitioning algorithm to decide the

amount of cache allocated to each competing application. This circuit uses

an Auxiliary Tag Directory, which has the same associativity of the main tag

directory of the main tag directory of the shared cache, and hit counters of

the ways, one group for all the sets for optimizing the area overhead. Over-

head are then additionally reduced by sampling only few sets instead of all of

them. This work consider a bus-architecture with only one single processor

and a single L2 shared cache among all the cores, so it does not analyze a

tile chip multi processor architecture where the shared cache is physically

splitted in slices. Moreover, it does not study the energy/power optimization

in partitioning the cache, but it focuses only on the performance; finally,

the explained mechanism need less than 2kB of more space, due to all the

support structures to the mechanism.

[25] show a DNUCA solution for Tiled CMP systems. Several specific

problems of tiled-based architectures have been considered. T-DNUCA is

proposed to optimally place each block as close as possible to its requestor.

It splits the LLC in banksets. In case of an L1 cache miss, the requested block

can be in any L2-bank (more generally LLC-bank) of the selected bankset.

TDNUCA implements a multicast search mechanism within the bankset in

case of miss in the Manhattan-Closest Homebank (MCH) to the requestor.

The MCH is the closest bank in the bankset to the requestor. Moreover the

block is initially placed in this bank when it is fetched from memory. TD-

NUCA allows blocks migration (in the same bankset) to reduce the access

latency due to the distance between the L1 requestor and the LLC desti-

nation. Moreover, the migration policy tries to bring heavily used blocks

21

2.5. Energy Saving Techniques in the LLC

in the MCH. The cascading replacement is an additional supported feature;

instead of removing a block from the cache, TDNUCA tries to place it into

another peer bank (another bank of the same bankset), using the migra-

tion mechanism. This is achieved considering a certain cascading number.

A replacement with a consequent migration can cause another replacement

in the peer bank target. The cascading number is the maximum quantity

of replacements than can be consequentially caused. The cascaded block

policy ensures that a global victim will be removed instead of a local one.

TDNUCA improves access latency due to block migration and outperforms

Tiled SNUCA, considering this metric. However TDNUCA can increase miss

rate due to the migrated blocks that can cause LLC replacements. Cascad-

ing do not show significant improvements with small size applications or

ones with low temporal locality. Differently from our solution blocks can be

mapped and migrated only in the specific bankset and the initial mapping

is done according to the MCH, so the block can’t be migrated closer than

to the manhattan-closest homebank. Our solution is a completely DNUCA

one, where a block can reside potentially in any bank of the chip; our multi-

cast search can space from one single bank (optimal case) to the entire NoC

(bad case). Moreover, this work does take into account only a performance

analysis, not proposing anything to save power.

[4] proposes a solution which adapt the number of active ways w.r.t the

needs of the application. This mechanism, called way adaptable D-NUCA

(WA-DNUCA), mantains the same performance of a UCA and S-NUCA

scheme, while improving power savings. It switches on and off ways of a

d-nuca cache as a function of the associativity level needed by the execution

phase of the application: an algorithm tries to predict the working set size

of the application using two counters that consider hits in the first and the

farthest powered-on way. Every a certain number of hits, the ratio of the

counters is computed and evaluated between thresholds in order to decide the

optimal cache configuration for the next phase of the application (if switch

on/off a way or stay in the current configuration). This prediction mech-

anism can be implemented in hardware with three counters plus the logic

for the algorithm. The logic is said to be embedded in the cache controller.

Thresholds are heuristically computed based on the average behavior of the

considered benchmark.

[3] is strictly related to the ones presented by [4]. In particular the same

DNUCA configuration is considered and the mechanism proposed in [4] is

22

2.5. Energy Saving Techniques in the LLC

described again. In addition, metrics and thresholds used in the predictor

are detailed and motivated. Moreover, some results on multi-cores architec-

tures are shown. The elaborated algorithm to estimate parameters considers

an heuristic based on a reconfiguration event. Every K hits in LLC this

event is triggered and a metric is evaluated. In order to identify the best

reconfiguration sequence for the given workload and from this state, the exe-

cution is restarted in three different runs considering the same configuration

kept, a way switched on and a way switched off. At each step the selected

reconfiguration event places restrictions on the values of thresholds and at

the end a set of inequalities are obtained. If they are not solvable the set is

restricted and the accuracy is reduced. Otherwise thresholds are computed.

The metric used to determine the optimal sequence is miss rate However it

is possible to use other metrics such as IPC. Results of the works done on

multi-cores is also shown. Two cores with their private caches are attached

through a bus to the banked last level cache. Several applications of SPEC

CPU2000 suite are classified and grouped, in order to run simultaneously

benchmarks with variable requirements in terms of utilised ways. Results

show how average associativity achieved in the multi-core execution is lower

than the sum of the average associativities achieved in the single core execu-

tion. This is caused by the promotion mechanism and means that the Way

Adaptable technique can be adopted also in multi-cores.

So for both [4] and [3], these work consider a single L2 cache bank, made of

128 banks divide in 16 rows and 8 columns, not physically splitted in slices;

moreover, the power optimization is proposed at a way-granularity level.

Working-set-size estimation is made trough a thresholds based algorithm,

while our policy for system reconfiguration does not take into account any

type of threshold. A multi-core scenario is evaluated, but still considering one

bank of L2 internally splitted and considering a bus-based interconnection,

not considering for example a Network-on-Chip.

[18] analyzes and examines policies and implementations for reducing the

leakage power of a cache, by turning off and invalidating lines when they

contain data that probably will not be reused. The basis of the approach is

to consider the cache line usage: cache lines tipically firstly see a burst of

accesses and then a period of dead time between the last access and the time

when a new data is loaded in. The idea of this work is to switch off the line

during this dead period, so that leakage can be reduced. Some policies are

proposed for this purpose: the first is a time-based, called cache decay, which

23

2.5. Energy Saving Techniques in the LLC

switch off a line after an established number of cycles elapses since the last

access; each line is turned on until the static energy it has dissipated since the

last access is equal to the dynamic energy that would be dissipated if turning

the line off induces an extra miss. Switch off of a line is realized through the

”gated Vdd” technique while recency of a cache line’s accesses is realized with

binary counter, which is reset every time a line is accessed. If no accesses to

the cache line occur and it reaches its maximum value, than it means that

dead time is elapsed and so the cache line can be switched off. Since decay

intervals should be in the range of thousands of cycles and such large time

intervals are too much large to be counted by counters, a hierarchical counter

mechanism, where counters ticks at a much coarser level and a single global

cycle counter set up to provide the ticks for smaller counters of the cache-

lines, is used. Another implementation use a capacitor to store the recency

of a cache line’s access, by grounding the capacitor every time the line is

accessed and so discharging it. Adaptive implementation of decay cache is

also proposed, in which the decay interval is set initially with a value (also

wrong) and then is modified according to the behavior of the cache line.

Multiple levels of cache hierarchy and multiprogramming scenarios are also

cited. However, the main analysis evaluates a unique block for L2 cache and

focuses on a cache-line granularity switching on/off method.

[28] proposes a mechanism called Cooperative Partitioning. This mecha-

nism aims to partitioning the Last Level Cache in Chip MultiProcessors at

runtime, trying to reduce both dynamic and static energy and maintaining

performance. It forces data owned by each core to be way-aligned among all

the sets: energy savings are achieved in the dynamic part, because ways are

accessed only by the core that owns them effectively, and in the static part,

because whole ways unaccessed by any of the core are turned off. For doing

this, a component monitors cache usage and establishes the partition of cache

that fits demand of each core; then, this informations are used to effectively

reconfigure the partitions. Two additional registers for each way contains

access permission of that way for each of the core: these bits helps enforcing

the cache partitioning by restricting accesses of cores to only the ways that

they own; they allow energy savings because cores access only ways for which

they have permission; they enable to turn off way whose permission are reset,

meaning that none of the cores owns that way. Instead, reconfiguration of

the cache is done through a technique called ”cooperative takeover”; in this

technique, exploiting informations of the two registers mentioned above, two

24

2.5. Energy Saving Techniques in the LLC

cores (named the ’donor’ and the ’recipient’) cooperates together to transfer

the ownership of a certain way. In this scheme, an additional bit vectors is

used for ensuring to flush data towards the memory of the older owner of

the way. Two and Four-cores system are evaluated with the L1s private to

cores and a single shared L2 cache, connected together with a bus. Again,

this works do not consider the scenario of a single L2 physically splitted and

the granularity which is considered for energy savings is that of the ways.

25

2.5. Energy Saving Techniques in the LLC

26

Chapter 3

The FlexiCache Architecture:

Coherence Protocol and Policy

Architecture

This section presents FlexiCache, a scalable, inclusive coherence protocol ar-

chitecture to dynamically resize the LLC for energy-performance optimiza-

tion. The implementation is application agnostic and highly independent

from the architectural parameters. However, the exploited reference archi-

tecture used as a starting point to highlights the necessary changes intro-

duced with FlexiCache is depicted in Figure 3.1. The reference architecture

represents a generic tile-based multi-core with a private L1 cache level and

a shared but physically split LLC. A generic interconnection fabric without

global ordering capabilities is considered, to increase the re-usability of the

coherence solution. In particular, the described FlexiCache implementation

exploits a Network-on-Chip as the interconnection fabric between the L1s the

LLCs and the memory controllers. FlexiCache is made of four components

that work together to allow a dynamical resize of the LLC space by powering-

OFF and -ON the LLC banks to optimize the energy-performance trade-off.

The Multicast Mechanism, as described in Section 3.1, supports the DNUCA

architecture that emerges from an SNUCA system when the cache banks

can be switched OFF and ON at run-time. The LLC Prefetch Scheme (see

Section 3.3) complements the Multicast Mechanism to shadow the additional

overhead to locate the cache block within the LLC. In particular, the Multi-

cast Mechanism tries to speculatively fetch the required cache line from the

main memory without breaking the coherence properties. The Handshake

27

3.1. Multicast Mechanism

CPU
0

CPU
1

CPU
M

L1
0

L1
1

L1
N

Interconnect

LLC
0

LLC
1

LLC
O

Interconnect

MC
0

MC
1

MC
P

. . .

. . .

. . .

Figure 3.1: Baseline architectural overview, made of M CPUs, N private L1s, O

physically splitted LLC banks and P Memory Controllers.

Mechanism detailed in Section 3.2 is a non-blocking protocol integrated in

the coherence architecture that allows to dynamically reconfigure the LLC

by powering OFF and/or ON the target LLC banks. It is worth noticing the

Handshake Mechanism implements a non-blocking protocol that allows the

system to continue the application executing within an LLC reconfiguration

stage. Last, the Policy Architecture implements the actual decision policy

and the additional logic to gather the required system information to com-

pute the power commands, i.e., ON OFF, as well as the target LLC banks.

It is worth noticing the Policy Architecture makes FlexiCache an applica-

tion agnostic solution for inclusive cache coherent multi-cores with physically

split LLC banks. Moreover, an in depth deadlock freedom methodology is

described in Section 3.5 while the related results are devoted in Section 4.2.

3.1 Multicast Mechanism

The multicast mechanism enables the DNUCA support for the baseline MESI

architecture, thus allowing to map each cache line in the LLC. This aspect is

of primary importance to support the proposed cache architecture, that can

28

3.1. Multicast Mechanism

L1
0 LLC

0
MemCtrl

NP(A)

All_Nacks
GetS(A)

Data(A)
Data(A)

MISS_on
_load(A)

Nack

LLC
1

MC(A)

Mem
Fetch(A)

GetS(A)

NP(A)

Nack

Figure 3.2: Behavior of the L1 Multicast mechanism for supporting research of

cache line in lower level of cache, case data NOT present.

dynamically switch on and off different LLC banks. In particular, Multicast

mechanism is triggered at the L1 on a Miss event and a MC request is

propagated to the LLC active banks, seeking for the required data. The

response to the Multicast can be the required data sent by the LLC bank

that owns it or all Nacks. In the latter case a unicast request is issued to the

target LLC bank as discussed in the rest of the section.

Multicast has been integrated in the MESI cache coherence protocol with

changes in the L1 and LLC controllers, while no changes are required for

the Directory Controller. In particular, each cache line in the L1 has been

augmented with few bits used to store the LLC bank that owns the cache line

itself. These bits are meaningful if and only if the corresponding validity bit is

set, thus allowing other requests for the same cache line to be served without

issuing other multicast requests. In the case of a 4x4 topology this bits are

precisely equal to 4, so that it is possible to identify every of the 16 slices of

LLC cache where the block can be present; in general these bits are equal

29

3.2. The Handshake Protocol

to the logarithm of the number of active LLC banks. When the cache line

is evicted due to an Invalidation or a Replacement command, these bits are

reset, causing the issue of multicast request for future Load/Store requests

on that line. Each new L1 miss triggers a multicast action, eventually adding

itself to the LLC target requestor register if a multicast transaction is already

in progress for the same line.

In Figure 3.2 details the basics of the implemented multicast Mechanism.

Each LLC bank issues a NACK response since data A is not present in LLC.

The L1 keeps track of all incoming responses and eventually issues a unicast

request if all the responses to the Multicast are NACKs. The target LLC of

the unicast request is chosen, according to the address of the cache line and

the active LLC banks at that moment in the system. Since no bank has the

data, the one that receives the unicast request issues a fetch request of the

data to memory and, after receiving it, it forwards to the requesting L1.

In Figure 3.3 is described a different situation. In the same initial scenario

of Figure 3.2, one LLC bank has the requested data. The one which owns the

data verifies its presence and the Multicast request is managed following the

transitions and behavior established by the base MESI protocol. Since a LLC

bank has the data, sooner or later the L1 will receive it. In this second case,

the L1 can receive the data after (case ’1’ in Figure 3.3) or before receiving

the NACKs from all the remaining banks (case ’2’ in Figure 3.3); no matter

the order in which responses (data itself or NACK) are received, the L1 waits

all the responses before closing the Multicast transaction.

3.2 The Handshake Protocol

The Handshake Mechanism (HM) defines the extensions to the cache co-

herence protocol to change the LLC configurations. In particular, the LLC

configuration is defined as the state of each LLC bank that can be in ON

or OFF, i.e., power gated, state. Hence, the HM changes the actual LLC

configuration by issuing power-off/on commands to selected LLC banks.

At low level, the HM manages the LLC configuration change through a

sequence of three stages that implement a non-blocking update mechanism,

thus allowing the running application to continue its execution and without

freezing the entire system waiting for the new LLC configuration to take

place.

30

3.2. The Handshake Protocol

L1
0 LLC

0
MemCtrl

NP(A)

All_Nacks

MISS_on
_load(A)

Nack

LLC
1

MC(A)

HIT(A)

Data(A)

1

2

Figure 3.3: Implementation of the L1 Multicast mechanism for supporting research

of cache line in lower level of cache, case data present.

This section details the HM, while the policy that actually decides the

power commands to send to the LLC banks is discussed in Section 3.4.2.

Figure 3.4 overviews the HM as organized in three stages independently

from the chosen policy. It is worth noticing that the HM is implemented

in the memory controller (see MemCtrl in Figure 3.4) to enhance the flexi-

bility and scalability of the proposed solution as discussed in Section 3.4.3.

Moreover, the described HM sends a single power command to a single LLC

per each change of the LLC configuration, while the generalization is trivial

from the cache coherence viewpoint and is already supported by the proposed

architecture. The power command can be either power-off or power-on, to

force a specific target, i.e., LLC bank, to switch off or on, respectively. From

a different but related viewpoint, the power-on increases the LLC size while

the power-off decreases it.

In the Send-New-LLC-Conf-to-L1s stage the new LLC configuration is

sent to every L1 cache controller. Starting from the running LLC configu-

ration, the new one differs by one LLC bank that is either powered off or

31

3.2. The Handshake Protocol

on. Note that the new configuration is computed by the policy as discussed

in Section 3.4. The L1 cache controllers receive the new LLC configuration

at different time instants. Once an L1 controller receives the new LLC Con-

figuration message starts draining the active multicast transactions without

allowing newer ones. The multicast is detrimental during an LLC reconfigu-

ration phase and can induce protocol-level deadlock, thus before acknowledge

the new LLC configuration message each L1 controller waits the termination

of all the transactions, that started with a multicast and were active at the

time when the new LLC configuration message has been received. This means

that all the L1 misses are stalled until the new LLC configuration becomes

active, while all the other system transactions are not affected nor suffer any

performance degradation. Thus the HM is defined as a non-blocking LLC

reconfiguration protocol. Each L1 sends an acknowledgement message to

the memory controller once all the pending multicast transactions are over,

while the memory controller waits to collect all the acknowledgement before

moving to the next stage in the LLC reconfiguration. This behavior mimics

an hardware barrier to prevent the start of the LLC reconfiguration when

multicast requests are in progress thus preventing protocol-level deadlocks

as detailed in Section 3.5. The HM enters the Signal-Power-Cmd-to-LLC

stage once all the acknowledgement messages from the L1 controllers have

been collected. This stage actually signals the target LLC that has to ac-

knowledge at the end of its actuation phase. In particular, the target LLC

controller reacts to the power command message depending on its state: if in

OFF state, it starts activating the LLC bank while if in ON state, it starts

switching off the LLC bank. Note that the LLC cache controller is always

active and only the LLC cache memory is power gated, since it is actually

the critical source of leakage.

The LLC switch from the OFF to the ON state only requires the trigger

to the power gating network, thus the latency depends on the implemented

technology. Conversely, few changes are required for the cache coherence

protocol when the LLC bank is switched from the ON to the OFF state,

i.e., the LLC Dump stage. The LLC Dump stage is transparent to the rest

of the HM and it is performed by the switching OFF LLC bank that has

to write-back all its cache lines. In particular, each cache line that has the

validity bit set is a target of the LLC Dump mechanism. A cache line is

written back by forcing a replacement with a void cache line. From the

coherence protocol viewpoint the system is not frozen during the LLC Dump

32

3.2. The Handshake Protocol

L1
0

L1
1

MemCtrlLLC
newSysView

Multicast
draining sysViewAck

No more
multicast
from here

Power

On/Off

Switch completed

Dump
data/Switch
on period

use_newSysView

viewUpdated
viewUpdated

Restart
multicast

Send-New-LLC-
Conf-to-L1s

Signal-Power-
Cmd-to-LLC

Signal-Use-New-
LLC-Conf

New conf computed

Figure 3.4: Overview of handshake mechanism.

stage, thus unicast requests can reach the dumping LLC from the L1s and

the memory controllers. No multicast requests are possible, since the L1s

stall all the misses until to the end of the LLC reconfiguration. A unicast

request coming to a dumping LLC bank is processed depending of the state

of the required cache line highlighting three different scenarios:

• The cache line is present and not busy, thus the LLC controller

process the incoming request returning the data.

• The cache line is not present because it has already written back,

the LLC controller sends a message to the L1 telling to reissue the

request to a different LLC using the new configuration. This is critical,

since all the L1 controllers force a load of the cache line freshly from the

memory without having any other copy in the LLC cache, since the only

copy has been deleted by the dumping LLC. Moreover, each L1 that

is asking for a dump cache line is instructed to issue a get transaction

using the new configuration, thus all the L1s are loading one copy of

the data in a single LLC bank at most. Last, when the line is written

33

3.3. The LLC Prefetch Scheme

back all the L1 sharers are invalidated before, thus forcing them to

eventually request the same cache line to the new LLC controller.

• The cache line is busy because is either target of the dump action or

due to the processing of another unicast request. The LLC controller

respond with a retry message to the requesting L1 to avoid protocol-

level deadlocks. Moreover, the line can be in a dump state, thus the

next stable coherence state will be not present then the answer to a re-

issued request will fall in the cache line not present scenario described

above. Conversely, if the cache-line is in busy state due to the process-

ing of a previous unicast request, it can become available in the future

in a stable state, thus a subsequent request is served according to the

cache line is present scenario.

Once the LLC cache controller completes the LLC Dump stage acknowl-

edges the HM at the memory controller that can move to the final stage,i.e.

Signal-Use-New-LLC-Conf, of the HM LLC reconfiguration protocol that

signals to all the L1s to start using the new configuration and re-enable the

use of multicast mechanism. All the L1s acknowledge the HM to close the

handshake protocol.

3.3 The LLC Prefetch Scheme

The proposed LLC prefetch scheme allows to partially shadow the aug-

mented, worst-case requeston−miss-response latency induced by the multicast

mechanism. In particular, each coherence request from an L1 miss requires

a multicast action and eventually a unicast message to actually retrieve the

required data. Conversely, the LLC prefetch scheme starts fetching the cache

line before the multicast is over thus positively impacting the overall latency.

In particular, for each pair LLC configuration-required data address, a single

LLC bank is defined the Static NUCA (SNUCA) home bank, i.e., the bank to

which the get request should be directed if the system would not allow LLC

reconfigurations. The LLC SNUCA home bank for the requested multicast

address can take a memory prefetch action to preload the data, since if the

data is not present in all the other LLCs it receives a unicast get request

from the multicast requester. The LLC prefetch scheme is totally safe from

the protocol-level deadlock viewpoint, since the LLC configuration cannot

34

3.3. The LLC Prefetch Scheme

change when a multicast request is in progress, thus for a specific address

there is always the same LLC bank that acts as SNUCA home bank and trig-

gers the data prefetch. However, minor changes are required to the directory

L1
0 LLC

0
MemCtrl

NP(A) NP(A)

All_Nacks

Prefetch(A)

Data(A)

Data(A)

MISS_on
_load(A)

Nack

Nack

LLC
1

MC(A)

Mem
Fetch
(A)

1

2

GetS(A)

Data(A)

GetS(A)

Time
saved

Figure 3.5: The LLC Prefetch mechanism.

controller to avoid data duplications in the LLC, since the prefetching LLC

is not aware if another LLC bank already has a copy of the data. To this

extent the LLC prefetch scheme implements a speculative memory fetch and

the directory controller in front of the memory has to eventually sink the

prefetch request if the data is already present in the LLC, i.e., in a different

LLC. In particular, the directory controller sends a not acknowledge message

back to the prefetching LLC bank each time it has an entry for the requested

address.

Figure 3.5 details the eventually reduced latency due to the LLC prefetch

scheme. The L10 multicast for data A that is not present in the LLC. All

the LLCs notify with a message back to the L10, while LLC1 as the SNUCA

home for A tries to prefetch it. At the same time L10 collected the last

negative acknowledge message and triggers a unicast get request to the same

SNUCA home LLC bank that is already waiting for the prefetched data.

35

3.4. Policy Architecture

3.4 Policy Architecture

This section details the policy architecture as made of three parts. The ref-

erence energy model is discussed in Section 3.4.1 and represents the golden

model for the energy consumption of the considered architecture. It is used

to validate the power actions taken by the policy to optimize the overall

energy-delay product (EDP). Conversely, Section 3.4.2 describes the actual

decision policy that is responsible of taking the power command decision thus

dynamically changing the LLC size. The policy exploits different informa-

tion to estimate the consumed energy with respect to the statistics used to

compute the reference energy model. Those information are made available

to the policy through a low overhead signalling scheme that leverages the

already implemented NoC to convey the information to the policy controller.

The feasibility analysis as well as the details of such a signalling scheme are

presented in Subsection 3.4.3.

3.4.1 The Reference Energy Model

The total energy consumed by the application a that runs to completion on

the architecture is defined as:

Ea,tot =
∑

i∈{NoC,Cache,Mem}
j∈{Dyn,Leak}

Ea,i,j (3.1)

where for each sybsystem,i.e., NoC, cache hierarchy, memory controllers and

CPUs, both the dynamic (dyn) as well as the static (leak) energy contribution

are considered. It is worth noticing that the CPU energy is not considered

in this work and left as a future work.

In particular, Ea,tot,i, i ∈ 0, ..., N defines the energy consumed by the

application a during the observation window, i.e. epoch, i, thus allowing

to expand Equation 3.1 to highlight the consumed energy in a specific time

epoch as follows:

Ea,tot,t =
∑

i∈{NoC,Cache,Mem}
j∈{Dyn,Leak}

Ea,i,j,t t ∈ TimeEpoch (3.2)

Moreover, a different definition of the total energy required by the application

36

3.4. Policy Architecture

a that is equivalent to the one provided in Equation 3.1 is:

Ea,tot =
∑

i∈{NoC,Cache,Mem}
j∈{Dyn,Leak}

t∈0,..,N

Ea,i,j,t (3.3)

where t spans over all the time epochs of the application. Starting from the

overall definition of the energy required by an application a to execute, the

rest of this section details the energy contribution due to each subsystem.

In particular, the discussion is focused on the consumed energy per epoch

to enhance the readability of the policy description that operates a power

decision on an epoch base. Moreover, the energy defined over an epoch

allows to analyze the dynamic of the energy as a discrete temporal series.

For each cache bank b, the dynamic and static energy consumed within the

time epoch t are defined by Equation 3.4 and Equation 3.5, respectively.

Ecacheb,dyn,t = #Accesscacheb,t ∗DYNaccess (3.4)

Ecacheb,leak,t = Pcacheb,leak ∗ EpochLent (3.5)

In particular, Pcacheb,leak defines the average static power of the cache bank

during times the duration of the considered time epoch t, i.e., EpochLent.

Moreover, the total energy in the time epoch t due to the cache hierarchy is

defined as:

Ecache,tot,t =
∑

i∈{L1s,..,LLCs}

(Ei,dyn,t + Ei,leak,t) (3.6)

Moreover, the energy due to each memory controller m ∈ (1...M) in time

epoch t is defined as:

Ememm,tot,t = (Ememm,dyn,t + Ememm,leak,t) (3.7)

where the dynamic (Ememm,dyn,t) and static energy (Ememm,leak,t) for the mem-

ory controller are defined in Equation 3.8 and Equation 3.9, respectively.

Ememm,leak,t = Pmemm,leak ∗ EpochLent (3.8)

Ememm,dyn,t = readsm,t ∗ Eread memm + writesm,t ∗ Ewrite memm (3.9)

37

3.4. Policy Architecture

Moreover, the total energy in the time epoch t due to the memory con-

trollers m ∈ (1...M), is defined as:

Emem,tot,t =
∑

m∈{1,..,M}

(Em,dyn,t + Em,leak,t) (3.10)

Finally, the total energy in the time epoch t due to the interconnect, i.e.

to each router r ∈ {1, .., R} and link l ∈ {1, .., L} is defined as:

Enoc,tot,t =
∑

r∈{1,..,R}
l∈{1,..,L}

(Er,tot,t + El,tot,t) (3.11)

where the total energy of a single router r and a single link l is defined as:

Er,tot,t = Er,dyn,t + Er,leak,t (3.12)

El,tot,t = El,dyn,t + El,leak,t (3.13)

where, for what concerns a router, the static (Er,leak,t) and dynamic energy

(Er,dyn,t) are defined as:

Er,leak,t = Prouterr,leak ∗ EpochLent (3.14)

Er,dyn,t =readsr,t ∗ Er + writesr,t ∗ Ew + swInr,t ∗ Esw in+

+ swOutr,t ∗ Esw out + xbarr,t ∗ Exbar

(3.15)

where readsr,t, writesr,t, swInr,t, swOutr,t and xbarr,t are the number of

events of the different stages of the router r in epoch t. Er, Ew, Esw in, Esw out

and Exbar are the energies consumed by one single event of the respective

router stage.

For waht concerns a link, the static (El,leak,t) and dynamic energy (El,dyn,t)

are computed as:

El,leak,t = Plinkl,leak ∗ EpochLent (3.16)

El,dyn,t = Plinkl,dyn ∗ EpochLent (3.17)

where Plinkl,dyn is the dynamic power of one single link, assuming an average

utilization for all the links in a certain epoch.

38

3.4. Policy Architecture

Finally it will be show also the Energy Delay Product, a metric that con-

siders in a joint way both power and performance. EDP for an architecture

a and a benchmark b is defined as:

EDP (a, b) = EPI(a, b) ∗ CPI(a, b) (3.18)

where EPI(a, b) is the energy per instruction dissipated by the system in

the architecture a during the execution of application b, while CPI(a, b) is

the average number of clock cycles necessary to architecture a to execute an

instruction of benchmark b.

3.4.2 Energy Saving Policy

The general goal of the policy is to reason about different LLC configurations

and to take appropriate decisions regarding the state of the system, trying

to minimize the overall energy consumption.

It has to be established a practical and reliable way for comparing distinct

LLC configurations, in particular how many and which. For these reasons,

the energy-aware policy is delta based: it means that the energy consumption

of the current configuration of the system, i.e. how many energy the system

is consuming with the current number of active LLC banks, is compared

with the energy of the configurations that, starting from the current one,

would have one more (+1 hypothesis) and one less bank (−1 hypothesis).

This allows the policy to reason only about changes from the current con-

figuration, so to consider only three states of the LLC: the actual one and

the closest ones to it. Indeed, the reasoning would be unfeasible if all the

possible configurations were considered, making the policy too heavy.

The reasoning of the policy rests on estimations in energy consumption,

in particular on those of the three configurations mentioned above. Depend-

ing on the accuracy of these estimations, the policy can be more or less

effective. A critical aspect in the computation of these estimations is the

proper selection of the most important aspects of the system to track. Thus,

the energy estimations of the current, +1 and −1 configurations are based

on the statistic of replacement in the LLC banks, which are used as metric

for observing the system behavior. Indeed, LLC replacements have a direct

impact on the interconnect, because they affect the overall network traffic;

on the Memory, because they affect on the number of reads/writes towards

it; on the system performance, because replacements worsen the execution

39

3.4. Policy Architecture

time of the application; and on L1s, because replacements in LLC banks will

issue invalidation of the same data on the higher level of cache hierarchy,

making the data no more available for L1s.

The policy assumes the system, in each time window, to be in a con-

stant and stable state, i.e. with the system having a certain number of LLC

replacements. This is possible because the behavior of LLC replacements

changes slower than the policy actuation. This makes capture very well the

dynamic of the application.

Given the LLC replacements as the monitored metric to capture the be-

havior of the system, the energy consumption estimation of a certain config-

uration C of the LLC is computed as:

E(C) =
∑

i∈{NoC,Cache,Mem}

Ei(C) (3.19)

where Ei(C) is, following the same reasoning of the Reference Energy Model

described in Section 3.4.1, the estimated energy consumption of configuration

C for the interconnect, cache and memory component.

For the current configuration, the components are defined as:

ECache(current) = (LLCsOn ∗ Ebank on) + (LLCsOff ∗ Ebank off) (3.20)

EMem(current) =EmemWrite ∗ LLCs dirty replacement+
+ EmemRead ∗ LLCs replacement

(3.21)

ENoC(current) =ER+L ∗ nflit for pkt ∗HC ∗ (LLCs replacement+

+ Ŝ ∗ LLCs replacement)
(3.22)

Equation 3.20 evaluates the Cache component, by considering simply the

energy consumed by the powered on and powered off banks.

Equation 3.21 evaluates the Mem component, by taking into account

number of writes towards memory as result of dirty replacement in LLC, i.e.

replacement of modified data, and number of reads from memory as result

of data replaced and reloaded, according to the assumption that the system

is in a stable state.

Finally, Equation 3.22 evaluates the network-traffic energy consumption;

this is made by considering that previously replaced lines are reloaded in

40

3.4. Policy Architecture

LLC bank and then sent back to higher cache level components which owned

that cache line. ER+L is the summary energy for traversing a router and a

link; nflit for pkt is the number of flit for a packet; HC is the average Hop

Count that a flit has to traverse; Ŝ is a coefficient that capture the estimated

number of sharers to which the reloaded cache lines will be sent back again.

It is computed as follows:

Ŝ =

LLCsOn∑
b=1

ˆSr(b)

LLCsOn

(3.23)

i.e. as average overall the number of LLC banks of ˆSr(b), computed as:

ˆSr(b) = S(b) ∗ (
SrR(b)

Sr(b)
) (3.24)

which is the estimated replacement sharers for bank b.

S(b) is the average number of sharers for a line l in bank b. It is defined

as:

S(b) =

N∑
l=1

Sl(b)

N
(3.25)

where N is total number of lines in bank b, Sl(b) are the sharers of a line

l in bank b.

Sr(b) is the average number of sharers for a replaced line in bank b, defined

as:

Sr(b) =

M∑
l=1

Sl(b)

M
(3.26)

where M is the number of replacement observed in bank b.

SrR(b) is the average number of real sharers for a replaced line in bank b,

defined as:

SrR(b) =

M∑
l=1

SlR(b)

M
(3.27)

where SlR(b) is the number of Real sharers for a line l in bank b.

The distinction between sharers and Real sharers of LLC replacements

is due to the following reason: MESI protocol allows an L1 to silently evict

41

3.4. Policy Architecture

a cache line, i.e. to replace a line without informing the LLC bank which

contains that line too. This implies in other words that the LLC bank which

contains that cache line could potentially have, among the L1 sharers, some-

one which will not own anymore that block. Thus, the protocol has been

modified in a proper way, so that to distinguish between invalidation ack

message coming from L1s that effectively have from that which have not the

data. So, when a line in a LLC block is evicted, sharers indicates the shar-

ers according to the knowledge of the LLC bank, while Real sharers are the

L1s that, among the sharers, has not silently evicted (i.e. really owned) the

data.

So said, the ratio in Equation 3.24 takes into account the problem of silent

eviction of data explained before; it tries to compute, on the average number

of sharers for a replacement in bank b, how many of them were Real, i.e.

how many have not silently evicted the data and so they really owned it.

This ratio is then multiplied for the average number of sharers of the active

present lines in the LLC bank b.

Substantially ˆSr(b) tries to estimate how many Real sharer a line of LLC

bank b should have, based on the past history and the actual average number

of sharers; it estimates the number of real owners for a line in bank b to which

i should send again the line if the line was replaced at the moment of the

observation. For considering then the behavior of all the banks, Ŝ then is

computed.

For the +1 hypothesis configuration, energy components are defined as:

ECache(+1) =((LLCsOn + 1) ∗ Ebank on)+

+ ((LLCsOff − 1) ∗ Ebank off)
(3.28)

EMem(+1) =EmemWrite ∗ LLCs dirty replacement ∗ µ+

+ EmemRead ∗ LLCs replacement ∗ µ
(3.29)

ENoC(+1) =ER+L ∗ nflit for pkt ∗HC ∗ (LLCs replacement ∗ µ+

+ Ŝ ∗ LLCs replacement ∗ µ)
(3.30)

ECache(+1) is computed by assuming one more bank in the number of ac-

tive banks (and consequently one less bank in the switched off ones) w.r.t the

current configuration. EMem(+1) is computed as the current configuration,

42

3.4. Policy Architecture

with the difference that LLCs replacement and LLCs dirty replacement

are weighted by a coefficient µ, computed as:

µ =
(LLCsOn + 1)

n total LLCs
(3.31)

The idea behind this coefficient is to weight replacement according to

the hypothesis that one more bank would be powered on w.r.t the current

configuration. Assuming that the system would benefit from this additional

space, the most important aspect is that µ is able to differs situation in

which there are a small number of powered on banks from that in which

there are already a big available number of active banks. This aspect is

crucial for distinguishing situation in which one more active bank can be

more necessary than others. µ is a number less or equal to 1, closer to 0

as long as the number of active LLC banks is really small and closer to 1

with the increasing number of banks. It emphasizes the fact that, when the

system has a very small number of active LLC banks, it would really benefit

from one more active bank by decreasing of a big portion the number of total

replacement; on the other side, when the system has a number of active banks

very closer to the maximum number, one more active banks would improve

the number of replacement but not in the same manner as if we have only

one active bank, being the configuration very closer to the one with the

maximum available space. Finally, in ENoC(+1) is equal to ENoC(current),

with the difference that also here the replacement are weighted for the µ

coefficient.

Finally, for the -1 hypothesis configuration, energy components are com-

puted in this way:

ECache(-1) =((LLCsOn − 1) ∗ Ebank on)+

+ ((LLCsOff + 1) ∗ Ebank off)
(3.32)

EMem(-1) =EmemWrite ∗ (LLCs dirty replacement+Dlines)+

+ EmemRead ∗ (LLCs replacement+Dlines)
(3.33)

ENoC(-1) =ER+L ∗ nflit for pkt ∗HC ∗ ((LLCs replacement+Dlines)+

+ Ŝ ∗ (LLCs replacement+Dlines))
(3.34)

43

3.4. Policy Architecture

Algorithm 1 Energy-Aware Policy

1: E(current) := ECache(current) + EMem(current) + ENoC(current)

2: E(-1) := ECache(-1) + EMem(-1) + ENoC(-1)

3: E(+1) := ECache(+1) + EMem(+1) + ENoC(+1)

4:

5: if E(current) > E(+1) then

6: b := selectTargetBank(LLCs current config)

7: sendSwitchOn(b)

8: else

9: if E(current) > E(-1) then

10: b := selectTargetBank(LLCs current config)

11: sendSwitchOff(b)

12: else

13: noChange()

14: end if

15: end if

ECache(-1) now is computed by assuming one less bank in the number of

active banks (and consequently one more bank in the switched off ones) w.r.t

the current configuration. EMem(-1) takes into account additional dump

lines, the ones of the switched off bank. This value is represented by the

Dlines factor in the formula, computed as:

Dlines =

LLCsOn∑
b=1

lines(b)

LLCsOn

(3.35)

with lines(b) number of not null lines in bank b. So Dlines denotes the

average number of active entries among all the active LLCs. Finally, in

ENoC(-1) is taken into account the contribution of the average number of

lines that would be dumped by switching off one bank, through Dlines.

The reasoning of the energy-aware policy is detailed in Algorithm 1.

The selectTargetBank() function establishes to which LLC bank sending the

power command (On-Off); in the proposed policy, LLC banks are chosen

sequentially, in the sense that they are powered Off in a decreasing order

and they are powered On in an increasing order of LLC bank index b. The

noChange() function captures the situation in which a LLCs reconfiguration

is not needed.

44

3.4. Policy Architecture

3.4.3 Architecture Feasibility and Policy

Regarding the energy policy, two additional aspects have to be discussed.

The first is where the policy is placed; we have decide to put the reasoning

of the policy in the Memory Controller. This choice has been made with the

intent to make the system simple and scalable, being the policy placed in

only one point and allowing to modify and implement it only in one single

position.

The second aspect is that a Signaling Network is exploited to send probe

messages to the Memory Controller in charge of running the policy; the

important point is that it is used the existing network taken for general

injected traffic. This probe messages contain the most important statistics

that will be used in the computation made by the energy policy, for deciding

if and which LLC bank switching on/off. These probe messages can be sent

every predefined time interval elapses: this value can be established and

assigned inside the LLC Controllers.

The main statistics used by the policy and contained in each probe mes-

sages sent by the LLC Controllers are the following:

• number of replacements

• number of dirty replacements

• sharers of replacements

• Real sharers of replacements

• active entries in LLC bank

• average sharers for active entries in LLC bank

All these statistics are collected by the Controllers until the probe message

is sent to the memory controller, then they are reset and recollected for the

next time interval. Each of these statistics takes a certain number of bits

inside the probe message.

Assuming a 4x4 topology, the one considered in this work, for 256kB bank

size number of replacements and dirty replacement have been assumed not

to be greater than half of the bank size; so, this two statistics takes 11 bits

in the probe message, plus 1 bit for taking into account an overflow case.

Sharers, Real sharers and average sharers for active entries takes 4 bits, being

45

3.5. Deadlock Avoidance Analysis

the topology a 4x4. Active entries in the bank can be at most equal to the

number of lines of the bank: so it takes 12 bits which, for a 64B line size,

correspond to 4096 lines. These considerations make the probe messages of

48 bits.

For 1MB bank size assuming again a 4x4 topology, the differences w.r.t

to the previous case is in the replacements and dirty replacements, which are

considered taking 13 plus 1 bits, and in the active entries, which in this case

can be at most equal to 16384, thus resulting in 14 needed bits. This makes

the probe messages of 54 bits.

For both, they have to be considered also 4 bits to identify the Sender of

the message and 4 bits to identify the Receiver; moreover, 2 bits are used for

the type of flit and 6 bits for the type of message. This made, for the 256kB

and 1MB bank size cases, the probe message long 64 and 70 bits respectively,

thus fitting the general network message of 128 bits.

It is worth noticing that when a LLC bank is switched off, it is stopped

to send its probe messages; on the other side, when a bank is switched on, it

restarts to send probe messages.

3.5 Deadlock Avoidance Analysis

During the changing in the protocol behaviour, while implementing Multi-

cast, Handshake and Prefetch, some cases of deadlock have been solved. For

Multicast mechanism, deadlock-freedom is granted by waiting to get all the

responses from the LLC banks. Other requests for the same cache line are

stalled, waiting that multicast transaction finishes and that the line ends in

a steady state.

Another deadlock scenario is shown in Figure 3.6. In the Handshake

mechanism, unicast requests incoming to the target LLC bank during the

ON-OFF transition are managed depending on the state of the cache line

requested. If the cache line is in a transient state, request is bounced between

the L1 and the bank until the line will move in a steady state. If the cache

line is in a steady state, there can be two possibilities: the line is in a Not

Present state or is in a state different from Not Present. In the first case the

request is sent back to the L1, informing it to use the new configuration: this

is due to the the fact that the LLC bank is flushing its content for moving

in a Switched Off state, so it does not want to accept new request otherwise

it could not really reach convergence in the dumping of cache lines. In the

46

3.5. Deadlock Avoidance Analysis

L1

DumpingLLC
0LLC

1

1
3

2

2

4

Transient
state → NP

3

Figure 3.6: Possible deadlock in the handshake mechanism: (1) L1 makes a unicast

request to a LLC-0; (2) LLC-0 is dumping and the requested line is in a transient

state, so the request is bounced; (3) at a certain point the requested line moves in

Not Present state: the LLC-0 informs the L1 to use the new view; (4) L1 receive

the response from LLC-0 and retries its unicast request towards LLC-1.

second case the request, no matter the steady state in which the line is (SS,

M, etc.), is served: this is due to the fact that soon or later that line in the

bank will be dumped, and consequently will automatically be invalidated

in the sharing L1s. Finally as explained in Section 3.2, when the memory

controller sends a new configuration to the L1s, these have to drain and

complete their pending multicast requests before answering with an ACK

response. The reason is not immediate and it is explained by the Figure 3.7

. This picture represents the situation in which are present two L1s (L1-0

and L1-1, drawn on the outside) and two LLC banks (LLC-0 and LLC-1,

drawn inside). At the beginning of the transaction only LLC-0 is powered

on, while LLC-1 is switched off: this means that in the current view, L1-0

and L1-1 see in their last shared level cache only LLC-0 bank. First L1-0,

then L1-1, receive a LOAD request for data A but since they have not the

data, they trigger a multicast request towards all the active LLC banks, i.e

47

3.5. Deadlock Avoidance Analysis

L1
0

LLC
0

LLC
1 L1

1

MISS_on
_load(A)

MC(A)
NP(A)

Nack

OFF

ON

MC(A)

NP(A)

Nack

GetS(A)GetS(A)

All_Nacks

Figure 3.7: Possible deadlock in the handshake mechanism.

in our case only LLC-0. Since LLC-0 has not the data, in turn it answers

NACK, first to L1-0 then to L1-1 request. In the meanwhile, the memory

controller sends a Switch-On command to LLC-1 and at the same time a new

configuration to all the L1s. In the figure is shown what would happen if

multicast messages were allowed and triggered during a Switch-On/Switch-

Off transition of a LLC bank. The most important point is the following:

due to different reasons (the congestion of the network, the different position

of the L1s in the network, etc.) the message containing the new configuration

will not arrive at the same moment to the L1s. In our case this is translated

in the following scenario: after receiving the NACK response from LLC-0,

L1-0 has not received the new configuration yet and so it issues the unicast

request according to its configuration, which contains only LLC-0. On the

other side L1-1 receives the new view exactly during a multicast transaction

and, according to this new configuration, it issues the unicast request for the

same block asked by L1-0 to another LLC bank, in particular the switched

on one. This would lead the last shared level of cache to have two copies

of the same data placed in different positions, breaking the coherence and

48

3.5. Deadlock Avoidance Analysis

causing problems to the running application: this is not an allowed situation.

By stopping the new multicast request while draining the pending ones

when a L1 receives the first message of the handshake protocol containing the

new configuration, and by restarting them only when the memory controller

send the message that inform explicitly the L1s to start using it, we forces

the L1s to complete the requests that have been issued according to an older

configuration and then to restart the new requests according to the same

new one. By forcing the L1s to use the new configuration only when they

receive the explicit message from the memory controller, independently from

when they receive this message, we are sure that all the new requests will be

issued according to the same new view of the LLC.

49

3.5. Deadlock Avoidance Analysis

50

Chapter 4

Experimental results

In this chapter is presented the assessment of the proposed Switching On-Off

LLC bank mechanism, from the performance and energy view point. It will

be shown its behavior with a representative subset of the Slash2x benchmark

suite, discussing for every application the total energy consumption, and

detailing that of the three most important component of the system: cache,

interconnect and memory. Also, it will be reported the energy−delay product
as a power-performance aggregate metric. For every aspect a comparison

with a baseline MESI architecture will be shown, highlighting the differences.

It will be shown how the overall energy of the system is dominated by the

static energy of the cache banks and how the total consumption can be

improved, by giving to every application a number of banks that fits its

demand.

The rest of the chapter is organized as follows. Section 4.1 describes the

simulation setup, the target architecture and the benchmarks used. Sec-

tion 4.2 describes the executed tests for validating our mechanism. Sec-

tion 4.3 describes the obtained results and the improvement on energy con-

sumption. Finally Section 4.4 describes some design-space exploration, show-

ing how the behavior of the examined applications change with different ar-

chitectural parameters and motivating some aspects of our mechanism.

4.1 Simulation Setup

Our baseline architecture is a S-NUCA one with no possibilities of switching

on/switching off slice of Last Level Cache (the L2 in our scenario): given a

51

4.1. Simulation Setup

Processor Core 1GHz, In-Order X86 Core, 1 cycle

per execution phase

L1I Cache 32kB 8-way Set Associative

L1D Cache 32kB 8-way Set Associative

L2 cache 256kB per bank, 16-way Set Associative

Coherence Prot. MESI (3 VNET protocols,

4 VC per VNET protocol)

Memory Type DDR3 1600 x64

Topology 2D-mesh 4x4 at 16 Cores

Network frequency 2GHz

Channel width 128 bits

Flit size 16 byte

Technology 45nm at 1.0V

Real Traffic Subset of Splash2x benchmarks.

Table 4.1: Experimental setup: processor and technology parameters common to

the considered architectures.

certain size of the LLC Cache, every part will remain powered on, even if the

application will not need it. This baseline architecture is a MESI-based for

what concerns coherence of data. In the comparisons with our architecture,

we will refer to as ”MESI”. In our architecture this baseline has been enriched

with a multicast mechanism, then improved with a prefetch optimization, for

supporting the Dynamic mapping of data (as explained in Section 3.1 and

Section 3.3). Moreover, a Handshake mechanism for switching on-off portion

of LLC Cache has been added after, with the memory controller provided

with a policy controller for taking decisions (as explained in Section 3.2).

This policy controller contains all the logic of our energy-saving oriented

policy (Section 3.4.2). In the following pages, we will refer to it as ”Flexible

Cache” (FC). The static parameters embedded in our policy are summarized

in Table 4.3. The first two values are the static energy consumed by a

single LLC bank in powered on and powered off state respectively, while

the third value is the latency for switching-on a single bank. They have

been estimated looking at CACTI-P tool [20]. The remaining values have

been estimated looking at the statistics obtained by the simulations and the

configuration values of our architecture. Probe timeout is the time with

52

4.1. Simulation Setup

Splash2x Application Input Set Size

Barnes Simsmall Input Set Size;

16K Particles;

16 threads

Cholesky Simsmall Input Set Size;

13992x13992, NZ=316740;

16 threads

Fft Simsmall Input Set Size;

220 total complex data points;

16 threads

Fmm Simsmall Input Set Size;

16K Particles;

16 threads

Lu cb Simsmall Input Set Size;

512x512 Matrix, Block = 16;

16 threads

Lu ncb Simsmall Input Set Size;

512x512 Matrix, Block = 16;

16 threads

Ocean cp Simsmall Input Set Size;

514x514 Grid;

16 threads

Ocean ncp Simsmall Input Set Size;

514x514 Grid;

16 threads

Volrend Simsmall Input Set Size;

Head-Scaledown4;

16 threads

Water nsquared Simsmall Input Set Size;

83 Molecules;

16 threads

Water spatial Simsmall Input Set Size;

153 Molecules;

16 threads

Table 4.2: The used benchmarks taken from the Splash2x suite.

53

4.1. Simulation Setup

Event-Trace
Framework

GEM5

Mem.
Req.

Mem.
Resp.

Event Traces

Epoch-sampled
statistics

Graphs
Plotter

Power/Energy
Estimation

tools

Statistics
Parser

-Cache stats

-Mem stats

-NoC stats

Figure 4.1: Workflow representation.

which LLC controller send probe messages. The cache configuration is a

32KB L1I caches, a 32KB L1D caches and a 256KB LLC caches per bank.

The considered NoC topology is a 4x4 2D-mesh with 16 cores and NoC

routers with a 4 VC. The adopted memory type is DDR3 1600 x64 with 10

ns of static frontend and backend latency [16]. Eleven application form the

Splash2x benchmarks suite have been used for validating our architecture:

they are listed in Table 4.2.

A representation of the workflow can be seen in Figure 4.1 The archi-

tecture have been integrated in the GEM5 cycle accurate simulator, in an

enhanced version [33, 36, 34, 35, 32, 8]. It has been modified such that a

periodic dumping of the statistics is possible: setting a simulation parame-

ter, it is possible to decide how often during the simulation the statistic are

sampled. In this way, it is possible to obtain epoch − based statistics, with

an epoch as long as the value set in the parameter. This value corresponds

to Epoch time in Table 4.3 and for us is equal to 1ms. Applications of the

Splash2x have been simulated in GEM5 through SynchroTrace, a scalable,

54

4.2. Regression Tests

Parameter Chosen Value

Energy on state LLC bank 110 µJ

Energy off state LLC bank 10nJ

Switching on LLC bank latency 10 cycles (10ns)

Memory read energy 16nJ

Memory write energy 13nJ

Router + Link energy traversal 430pJ

Flit for 1 packet 10

Average Hop Count for 1 flit 3.5

Epoch time duration 1ms

Probe timeout 1ms

Table 4.3: Energy parameters embedded in our policy.

flexible, and accurate trace-based multi-threaded simulation methodology

[22]. Epoch-statistics have been processed and plotted with GNU Octave

plotting tool, obtaining all the graphs contained in this chapter; energy and

power value related to the Cache banks have been obtained from CACTI6.0

tool [21], while the NoC value related to energy/power of links and routers

have been obtained from the DSENT tool [27].

4.2 Regression Tests

To avoid deadlock in the coherence protocol modification, several tests have

been executed. Each step and addition w.r.t the baseline architecture has

been followed by a validation session, to verify the absence of deadlocks

and the strength of the protocol w.r.t to introduced changes. For Multicast

mechanism, the ruby mem test module has been executed exactly for this

purpose. The MemTest class, implemented in our used GEM5 simulator,

tests a cache coherent memory system by generating false sharing and veri-

fying the read data against a reference updated on the completion of writes.

Each tester reads and writes a specific byte in a cache line, as determined

by its unique id. Thus, all requests issued by the MemTest instance are a

single byte and a specific address is only ever touched by a single tester. In

addition to verifying the data, the tester also has timeouts for both requests

and responses, thus checking that the memory-system is making progress.

55

4.2. Regression Tests

When this timeout exceeds a certain threshold (set in the Controller of the

MemTest), an exception is raised signaling that a possible deadlock has been

detected.

The Handshake mechanism has been validated by embedding in the Policy

Controller first a Static then a Random decision maker. The Static policy

embeds in its logic a predefined number of choices that have to be executed.

This policy has been used to verify the most simple, basic and short sequences

of choices, so that in case of a deadlock it would have been easily reproducible.

The Random one instead validates the system by generating a sequence of

casual choices randomly generated. It has been used to verify more complex

sequence of choices, together with the durability and the strength of the

architecture. Moreover, it has suddenly been slightly improved with the

possibility of setting the probability with which a decision type is taken

(for example for every time a decision has to be taken, the probability of

switching-on can be set equal to 60% while switching-off equal to 40%). This

policy has also two variants: one that take another decision as soon as it

ends the last choice, another that can wait some time between every two

sequential decisions. Both the policies (Static and Random), independently

of the decision taken, can deal with only one bank at a time. Given this

two implemented policies, a set of tests has been executed and successfully

completed while running the ruby mem test module explained above. The

set of tests has been generated by exploring different scenarios and changing

some architectural parameters, started from a situation in which all LLC

banks are powered on. In detail, the tests are the followings:

Type Topology Test Time Mem size

Static 4x4 2D-Mesh Single Switch-Off of a

single LLC bank then

stop; made for LLCx

with x ∈ 0..15

0ms 500MB

Static 4x4 2D-Mesh Continuous Switch On-

Off of a single LLC

bank; made for LLCx

with x ∈ 0..15

0ms 500MB

56

4.2. Regression Tests

Static 2x4 2D-Mesh Sequential Switch-Off

from LLC0 to LLC6,

then Sequential Switch-

On from from LLC0 to

LLC6

0ms 500MB

Static 4x4 2D-Mesh Sequential Switch-Off

from LLC0 to LLC6,

then Sequential Switch-

On from from LLC0 to

LLC6

0ms 500MB

Static 4x4 2D-Mesh Sequential Switch-Off

from LLC0 to LLC14,

then Sequential Switch-

On from from LLC0 to

LLC14

0ms 500MB

Static 1x2 2D-Mesh Continuous Switch On-

Off of LLC0, L1=2kB,

LLC=4kB

0ms 64kB

Static 1x2 2D-Mesh Continuous Switch On-

Off of LLC1, L1=2kB,

LLC=4kB

0ms 64kB

Static 1x2 2D-Mesh Continuous Switch On-

Off of LLC0, L1=2kB,

LLC=4kB

1ms 64kB

Static 1x2 2D-Mesh Continuous Switch On-

Off of LLC1, L1=2kB,

LLC=4kB

1ms 64kB

Static 2x2 2D-Mesh Continuous alternate

Switch On-Off of LLC0

and LLC1, L1=2kB,

LLC=4kB

1ms 64kB

Static 2x2 2D-Mesh Continuous alternate

Switch On-Off of LLC0

and LLC1, L1=2kB,

LLC=4kB

5ms 64kB

57

4.2. Regression Tests

Static 2x4 2D-Mesh Continuous Switch On-

Off of LLC0

0ms 64kB

Random 2x4 2D-Mesh Switch On-Off random

LLC bank with different

probabilities (Switch Off

60%, Switch On 40%)

0ms 500MB

Random 4x4 2D-Mesh Switch On-Off random

LLC bank with different

probabilities (Switch Off

60%, Switch On 40%)

0ms 500MB

Random 4x4 2D-Mesh Switch On-Off random

LLC bank, taking a

minimum number of

Switched-On banks

equal to 8

0ms 500MB

Random 4x4 2D-Mesh Switch On-Off random

LLC bank, taking a

minimum number of

Switched-On banks

equal to 1

0ms 500MB

Random 4x4 2D-Mesh Switch On-Off random

LLC bank running all

the Splash2x applica-

tions cited in Table 4.2

to completion

0ms 8GB

The Prefetch improvement for Multicast mechanism has also been vali-

dated with two scenarios:

Type Topology Test Time Mem size

Static 1x2 2D-Mesh Continuous Switch On-

Off of LLC0

5ms 500MB

Random 4x4 2D-Mesh Switch On-Off random

LLC bank, taking a

minimum number of

Switched-On banks

equal to 1

1ms 500MB

58

4.3. Energy and Performance Analysis

4.3 Energy and Performance Analysis

Flexicache reduces the average number of active LLC banks (see Figure 4.2(a))

by adapting the LLC size to the requirements of the executing application.

Figure 4.2(a) highlights different class of applications with respect to the

memory requirements. Few benchmarks, e.g., ocean cp and ocean ncp high-

light a strong memory-bound behavior, with an average number of active

LLC banks of 14 and 15, respectively. Conversely, FlexiCache can greatly

reduce the number of LLC banks for the benchmarks with smaller mem-

ory requirements. For example, a single LLC banks is active on average for

volrend and two banks are used on average for fft.

Figure 4.2(c) shows the positive impact on the energy consumption due

to the reduced number of active LLC banks. In particular, the energy saving

is proportional to the average number of the switched off LLC banks. For

example, volrend is executed with a single, active LLC bank with a net en-

ergy saving greater than 60%. It is worth noticing that the energy saving is

kept proportional to the number of switched off banks until the performance

metric, i.e., execution time, is not affected. In particular, two different as-

pects negatively impact the performance metric: the multicast mechanism

and the limited LLC size.

First, FlexiCache can decide to switch off just one bank more when the

application is only asking for slightly more LLC space. However, the weight

of the additional switched off bank is bigger than the performance reduction

from the energy-delay viewpoint. Thus, the reduced LLC size increases the

LLC misses and consequently the memory accesses that impact the applica-

tion execution time.

Second, the multicast mechanism can indirectly impact the execution

time by affecting both the network and the queuing latency. However, the

overall system performance, i.e., execution time, are not affected until the

network is close to saturation. In this scenario, a memory-bound applica-

tion can severely contribute to the network saturation by enforcing an high

number of concurrently active multicast transactions. Moreover, a memory-

bound application is expected to prevent the LLC bank switch-off, thus each

multicast transaction will generate an high traffic volume due to the need of

addressing all the active LLC banks.

However, Figure 4.2(d) shows a performance overhead lower than 5%

for almost all the considered benchmarks, with two notable exceptions, i.e.,

59

4.3. Energy and Performance Analysis

(a) Average Number of ON Banks (b) Energy-Delay Product

(c) Total Energy Consumption (d) Execution Time

Figure 4.2: Behavior of all benchmarks for what concerns the Average Number of

ON LLC Banks, Total Energy Consumption and Execution Time with Prefetch

mechanism and 256kB bank size.

ocean cp and ocean ncp. An in-depth analysis discussed in Section 4.3.1 high-

lights the multicast as the main responsible for the performance overhead,

since it goes really near to saturate the interconnect resources because of the

high number of LLC bank requested. Moreover, the prefetch scheme pre-

sented in Section 3.3 allows to timely fetch data from memory during the

multicast instead of waiting for a possible, subsequent unicast get request,

thus shadowing part of the memory latency. Last, the considered intercon-

nect model does not support the broadcast/multicast mechanism, thus each

multicast request is injected into the interconnect as a chain of unicast re-

quests.

Figure 4.2(b) depicts the Energy-Delay-Product (EDP) normalized to the

baseline MESI architecture for all the considered benchmarks. FlexiCache

improves by 25% on average the EDP while for 6 out of 11 benchmarks the

improvement is greater than 50%. Once more, a net performance and energy

overhead is reported for both ocean cp and ocean ncp due to the impossibility

to save energy by switching off LLC banks and the net performance overhead

60

4.3. Energy and Performance Analysis

imposed by the overkilling multicast mechanism that can not benefit from

any interconnect multicast support.

4.3.1 Time-based Detailed Analysis

The results discussed in Section 4.3 overview the benefit of the proposed

methodology without providing any details on the adaptivity of the policy as

well as the contributions in terms of energy due to the different subsystems.

This section presents those details by splitting the energy consumption in

three terms to expose the contribution of the memory, the caches and the

interconnect. Moreover, the presented results show the time-based evolution

of those information side by side with the actions taken by the policy to

dynamically optimize the LLC size.

Three representative benchmarks are discussed in the rest of the sections

to summarize the main characteristics of all the analyzed applications even

if each application presents its own specific behavior.

Figure 4.3 reports the collected results for the barnes application showing

the time evolution of five different statistics. Figure 4.3(b), 4.3(c) and 4.3(d)

depict the evolution over time of the energy consumed by the entire LLC,

the memory and the interconnect, respectively. Moreover, Figure 4.3(a) re-

ports the number of active LLC banks and the total energy is shown in

Figure 4.3(e). Note that for each considered statistic both the MESI and the

FlexiCache architecture have been simulated and reported side by side.

The application traverses different execution phases with a configura-

tion stage at the beginning of the execution. The phases are periodic as

demonstrated by the consumed network energy in Figure 4.3(d) using the

FlexiCache architecture. Moreover, the energy due to the memory accesses

spikes before the beginning of each phase. However, each spike consumes less

energy than the previous one, since FlexiCache dynamically switches more

LLC banks to face the increased memory requirements. In particular, the

time periods where the NoC energy increases are correlated with the increase

in the multicast actions due to the limited L1 size that enforce replacements

of useful data. However, the L1 misses are correctly filtered by the LLC layer

without resorting to too many memory data fetches.

Figure 4.4 details the same information for the cholesky applications for

both the MESI and the FlexiCache architectures. Cholesky shows a differ-

ent behavior with respect to barnes, with a long phase that enables a single

61

4.3. Energy and Performance Analysis

(a) BARNES On LLC Banks per epoch (b) BARNES Cache Energy Consumption

per epoch

(c) BARNES Memory Energy Consumption

per epoch

(d) BARNES NoC Energy Consumption per

epoch

(e) BARNES Total Energy Consumption

per epoch

Figure 4.3: Behavior of Barnes benchmark for what concerns the Number of ON

LLC Banks, Cache/Memory/NoC Energy and Total Energy Consumption with

Prefetch mechanism and 256kB bank size.

62

4.3. Energy and Performance Analysis

(a) CHOLESKY On LLC Banks per epoch (b) CHOLESKY Cache Energy Consump-

tion per epoch

(c) CHOLESKY Memory Energy Consump-

tion per epoch

(d) CHOLESKY NoC Energy Consumption

per epoch

(e) CHOLESKY Total Energy Consump-

tion per epoch

Figure 4.4: Behavior of Cholesky benchmark for what concerns the Number of

ON LLC Banks, Cache/Memory/NoC Energy and Total Energy Consumption

with Prefetch mechanism and 256kB bank size.

63

4.4. Design Space Exploration (DSE)

master thread before spawning the working ones. In this scenarios, Flexi-

Cache can take advantage of its power gating capabilities to switch off up to

15 LLC banks without affecting the execution time. Moreover, the policy is

fast enough to track the evolution of the execution phase and consequently

adapting the number of active LLC banks.

Ocean cp represents the third type of application considered in this sec-

tion and the obtained results are reported in Figure 4.5. The high memory

requirements does not allow to effectively switch-off but few LLC banks for

the entire execution, thus a modest energy saving is obtained. Besides the

small L1 size triggers several multicast transactions that impose broadcast-

equivalent NoC traffic. Moreover, the energy due to the memory accesses for

MESI and FlexiCache are similar, since the application memory footprint

does not fit in the entire LLC. As a final remark, Figure 4.5(e) highlights

similar energy behavior for the two architectures while the excessive multi-

cast actions without a proper broadcast support at interconnect level severely

affect the NoC latencies thus degrading the overall execution time.

4.4 Design Space Exploration (DSE)

This section explores few design parameters to further strengthen the as-

sessment of the proposed FlexiCache. Results considering a bigger LLC

are presented Section 4.4.1, while Section 4.4.2 highlights the benefit of the

prefetcher hardware module presented in Section 3.3.

4.4.1 Increasing the Size of LLC Cache

FlexiCache allows to adaptively switch-off and on the LLC banks to save

energy without affecting the execution time, thus the use of bigger LLC

banks allows to increase the saved energy. Figure 4.6 reports four statistics

for all the considered benchmarks where each LLC bank is 1 MB: the average

number of active LLC banks, the energy-delay-product (EDP), the total

energy and the execution time. The comparison of the reported data with the

results in Figure 4.2 that are extracted considering an LLC bank size of 256kB

highlights three considerations. First, the average number of active banks

lowers with the LLC bank size. For example barnes requires 9 and 5 LLC

banks on average using an LLC bank size of 256kB and 1MB, respectively.

However, few benchmarks, e.g. ocean cp and ocean ncp, does not benefit

64

4.4. Design Space Exploration (DSE)

(a) OCEAN CP On LLC Banks per epoch (b) OCEAN CP Cache Energy Consump-

tion per epoch

(c) OCEAN CP Memory Energy Consump-

tion per epoch

(d) OCEAN CP NoC Energy Consumption

per epoch

(e) OCEAN CP Total Energy Consumption

per epoch

Figure 4.5: Behavior of Ocean Cp benchmark for what concerns the Number of

ON LLC Banks, Cache/Memory/NoC Energy and Total Energy Consumption

with Prefetch mechanism and 256kB bank size.

65

4.4. Design Space Exploration (DSE)

(a) Average Number of ON Banks (b) Energy-Delay Product

(c) Total Energy Consumption (d) Execution Time

Figure 4.6: Behavior of all benchmarks for what concerns the Average Number of

ON LLC Banks, Total Energy Consumption and Execution Time with Prefetch

and 1MB bank size.

from the increased LLC size since their required memory is still bigger than

it. Second, both the EDP and the total energy consumption is lower when a

bigger LLC bank size is implemented. In particular, the EDP improves for

ocean cp and ocean ncp move from 1.3 and 1.25 to 1.1 for both, thus assessing

the benefit of a bigger LLC. Third, it can’t be noticed significant differences

from the execution time view point. Only for volrend the execution time

really improves, passing from 1.08 to 1.02. For the remainings benchmarks

a slight degrade can be noticed. The performance degradation with a bigger

LLC could due to the higher contention to the cache controllers, as to the

limitations of our policy.

4.4.2 The Impact of LLC Prefetch Scheme

FlexiCache exploits a multicast mechanism to retrieve LLC data on an L1

miss since the possible switch on and off of different LLC banks make the

behaving as a DNUCA. However, the multicast actually probes the active

LLC banks to obtain the required cache line without enforcing any memory

66

4.4. Design Space Exploration (DSE)

(a) Average Number of ON Banks (b) Energy-Delay Product

(c) Total Energy Consumption (d) Execution Time

Figure 4.7: Behavior of all benchmarks for what concerns the Average Number

of ON LLC Banks, Total Energy Consumption and Execution Time WITHOUT

Prefetch, 256kB bank size.

fetch transaction. In particular, each multicast request blocks at the LLC

receiving banks that responds to the requestor with an ack/nack message

eventually adding the requested data if present.

The memory fetch is only triggered by a unicast request that is issued

once the original requestor has collected all the multicast nack messages, thus

when it is safe to retrieve a new copy of the requested data from the main

memory without duplicating it in the cache hierarchy. Such a behavior can

strongly delay the actual memory fetch thus potentially impact the execution

time. To this extent, the LLC Data Prefetching scheme has been described

in Section 3.3 as a technique to allow the prefetching of the required data

from memory at the time of the multicast, to partially shadow the memory

latency.

In order to show the benefit of the proposed LLC Data Prefetching tech-

nique, this section discusses the simulation results of the FlexiCache architec-

ture that does not implement the LLC Data Prefetching scheme as reported

in Figure 4.7. The prefetching scheme strongly impacts all the considered

67

4.4. Design Space Exploration (DSE)

metrics while not implementing it has a detrimental effect on the entire sys-

tem. In particular, the execution time is negatively affected due to the in-

creased latency before actually issue the memory fetch on an LLC miss. This

effect is magnified for those benchmarks that report an high number of LLC

misses, i.e., ocean cp and ocean ncp with a EDP degradation of 52% and

51% respectively when the prefetcher is not implemented. This is due to the

increasing in the Total Execution Time, which increases from 11% and 10%

to 25% for both. A slightly downgrade can be seen also for barnes and fmm.

68

Chapter 5

Conclusions and Future Works

The behavior of the applications influences in a critical way the utilization

of the Last Level Cache, depending on their working set size. For that appli-

cations that fit entirely in the LLC and do not need all the available space,

adapting the cache to their requirement can be a chance to save energy with-

out affecting the performance.

This work proposes FlexiCache, a novel cache architecture that allows to

dynamically resize the LLC in a multi-core with physically split LLC banks

that share a single address space. The LLC resize is achieved by powering

Off and On the LLC banks.

A novel coherence protocol is introduced to correctly manage the LLC

resize stage as well as the DNUCA architecture due to the dynamic change

of the LLC configuration. The novel coherence protocol is complemented

by an energy-aware policy and a complete signalling infrastructure to collect

valuable information to compute the power commands.

The policy exploits a utility metric to compute the power command,

i.e., ON or OFF, to be sent to the LLC banks. The utility metric sits on

the hypothesis that the application stays stable within the observation time

window. Thus, the number of replacements in the LLC represent the quantity

that influences the energy of the interconnect, the memory and the cache

hierarchy. In particular the number of replacements in the LLC is influenced

by switching ON or OFF the LLC banks.

It is worth noticing that even if the application changes the phase of

execution this model is still valid, since the dynamic of the application is

always orders of magnitude higher than the dynamic of the actuation system,

i.e., switch ON or OFF an LLC bank.

69

5.1. Future Works

The assessment is achieved considering a 4x4 NoC-based architecture us-

ing the Splash2x benchmarks from the parsec3.0 suite [31]. In particular,

three metrics are considered: the energy, the performance, i.e., execution

time to completion, and the energy-delay-product. Compared to the MESI

state of the art architecture, the results show an average use of 6-7 LLC banks

for the considered applications. It can be seen an improvement in the En-

ergy Consumption of 30% on average, with some applications reaching 50%

of energy savings. Performance are slightly affected, with degradation of less

than 5% on average. These two aspects translate in an improvement on the

Energy Delay product on average of 30%, reaching for some benchmarks an

improvement of 70%.

A Design Space Exploration is discussed, which shown an even better im-

provement in the Energy Delay Product of 50% on average with greater LLC

banks. Architecture without the Prefetch improvement for Multicast mecha-

nism has been explored, showing that by anticipating the fetch data request

from memory the execution time can be reduced, consequently improving the

performance. This can be clearly seen in the memory-bound applications, in

which the execution time worsens from 11% to 25%, impacting negatively on

the Energy Delay Product which reaches a 50% degradation w.r.t the 25%

of the architecture whit Prefetch.

5.1 Future Works

The present work proposed a new mechanism which allows to resize the LLC

at a bank-level granularity. The multicast mechanism can be improved, by

adding cooperation between cache levels.

The policy architecture enables further optimizations that are left as fu-

ture work. For example, the performance metric is not directly accounted

in the optimization. However, the presented results demonstrated the low

performance overhead of FlexiCache compared to the baseline MESI archi-

tecture.

The exploration of different algorithms to select the target LLC bank

represents an additional research extension that is also left as future work.

Last, the CPU energy should be included in the optimization to provide a

complete system-wide optimization that accounts not only for the uncore but

for the entire system.

70

Bibliography

[1] Rajeev Balasubramonian, Norman P. Jouppi, and Naveen Murali-

manohar. Multi-Core Cache Hierarchies. Morgan & Claypool, 2011.

[2] J. Balfour and W.J. Dally. Design tradeoffs for tiled cmp on-chip net-

works. In Proceedings of the 20th annual international conference on

Supercomputing, pages 187–198. ACM, 2006.

[3] A. Bardine, M. Comparetti, P. Foglia, G. Gabrielli, C. A. Prete, and

P. Stenstrm. Leveraging data promotion for low power d-nuca caches.

In Digital System Design Architectures, Methods and Tools, 2008. DSD

’08. 11th EUROMICRO Conference on, pages 307–316, Sept 2008.

[4] Alessandro Bardine, Manuel Comparetti, Pierfrancesco Foglia, Giacomo

Gabrielli, and Cosimo Antonio Prete. Way adaptable d-nuca

caches. Int. J. High Perform. Syst. Archit., 2(3/4):215–228, August

2010.

[5] Alessandro Bardine, Pierfrancesco Foglia, Giacomo Gabrielli, and

Cosimo Antonio Prete. Analysis of static and dynamic energy consump-

tion in nuca caches: Initial results. In Proceedings of the 2007 Workshop

on MEmory Performance: DEaling with Applications, Systems and Ar-

chitecture, MEDEA ’07, pages 105–112, New York, NY, USA, 2007.

ACM.

[6] B. M. Beckmann and D. A. Wood. Managing wire delay in large chip-

multiprocessor caches. In rocs. of the 37th International Symposium on

Microarchitecture, 2004.

[7] S. Chakraborty, S. Das, and H. K. Kapoor. Performance constrained

static energy reduction using way-sharing target-banks. In 2015 IEEE

71

BIBLIOGRAPHY BIBLIOGRAPHY

International Parallel and Distributed Processing Symposium Workshop,

pages 444–453, May 2015.

[8] S. Corbetta, D. Zoni, and W. Fornaciari. A temperature and reliabil-

ity oriented simulation framework for multi-core architectures. In 2012

IEEE Computer Society Annual Symposium on VLSI, pages 51–56, Aug

2012.

[9] W.J. Dally and B.P. Towles. Principles and practices of interconnection

networks. Elsevier, 2004.

[10] R. Das, S. Eachempati, A.K. Mishra, V. Narayanan, and C.R. Das.

Design and evaluation of a hierarchical on-chip interconnect for next-

generation cmps. In High Performance Computer Architecture, 2009.

HPCA 2009. IEEE 15th International Symposium on, pages 175–186,

Feb 2009.

[11] J. Duato. A new theory of deadlock-free adaptive routing in worm-

hole networks. Parallel and Distributed Systems, IEEE Transactions

on, 4(12):1320–1331, Dec 1993.

[12] J. Duato. A necessary and sufficient condition for deadlock-free adaptive

routing in wormhole networks. Parallel and Distributed Systems, IEEE

Transactions on, 6(10):1055–1067, Oct 1995.

[13] J. Duato and T.M. Pinkston. A general theory for deadlock-free adaptive

routing using a mixed set of resources. Parallel and Distributed Systems,

IEEE Transactions on, 12(12):1219–1235, Dec 2001.

[14] B. Fitzgerald, S. Lopez, and J. Sahuquillo. Drowsy cache partitioning

for reduced static and dynamic energy in the cache hierarchy. In 2013

International Green Computing Conference Proceedings, pages 1–6, June

2013.

[15] P. Foglia, F. Panicucci, and M. Prete C. A. an Solinas. Analysis of

performance dependencies in nuca-based cmp systems. pages 49–55,

2009.

[16] A. Hansson, N. Agarwal, A. Kolli, T. Wenisch, and A. N. Udipi. Sim-

ulating dram controllers for future system architecture exploration. In

72

BIBLIOGRAPHY BIBLIOGRAPHY

2014 IEEE International Symposium on Performance Analysis of Sys-

tems and Software (ISPASS), pages 201–210, March 2014.

[17] S.M. Hassan and S. Yalamanchili. Centralized buffer router: A low

latency, low power router for high radix nocs. In Networks on Chip

(NoCS), 2013 Seventh IEEE/ACM International Symposium on, pages

1–8, April 2013.

[18] S. Kaxiras, Zhigang Hu, and M. Martonosi. Cache decay: exploiting

generational behavior to reduce cache leakage power. In Proceedings

28th Annual International Symposium on Computer Architecture, pages

240–251, 2001.

[19] C. Kim, D. Burger, and Keckler S. W. An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches. In SIGOPS Oper.

Syst. Rev., vol 36, pages 211–222, October 2002.

[20] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. Cacti-

p: Architecture-level modeling for sram-based structures with advanced

leakage reduction techniques. In 2011 IEEE/ACM International Con-

ference on Computer-Aided Design (ICCAD), pages 694–701, Nov 2011.

[21] Naveen Muralimanohar and Rajeev Balasubramonian. Cacti 6.0: A tool

to understand large caches.

[22] S. Nilakantan, K. Sangaiah, A. More, G. Salvadory, B. Taskin, and

M. Hempstead. Synchrotrace: synchronization-aware architecture-

agnostic traces for light-weight multicore simulation. In 2015 IEEE

International Symposium on Performance Analysis of Systems and Soft-

ware (ISPASS), pages 278–287, March 2015.

[23] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared

caches. In 2006 39th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO’06), pages 423–432, Dec 2006.

[24] M. Sato, R. Egawa, H. Takizawa, and H. Kobayashi. A voting-based

working set assessment scheme for dynamic cache resizing mechanisms.

In 2010 IEEE International Conference on Computer Design, pages 98–

105, Oct 2010.

73

BIBLIOGRAPHY BIBLIOGRAPHY

[25] D. Shirshendu and K. Hemangee. Exploration of migration and replace-

ment policies for dynamic nuca over tiled cmps. pages 1–6, 2015.

[26] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory

Consistency and Cache Coherence. Morgan & Claypool Publishers, 1st

edition, 2011.

[27] C. Sun, C. H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L. S.

Peh, and V. Stojanovic. Dsent - a tool connecting emerging photonics

with electronics for opto-electronic networks-on-chip modeling. In 2012

IEEE/ACM Sixth International Symposium on Networks-on-Chip, pages

201–210, May 2012.

[28] K. T. Sundararajan, V. Porpodas, T. M. Jones, N. P. Topham, and

B. Franke. Cooperative partitioning: Energy-efficient cache partitioning

for high-performance cmps. In IEEE International Symposium on High-

Performance Comp Architecture, pages 1–12, Feb 2012.

[29] P. Sweazey and A. J. Smith. A class of compatible cache consistency

protocols and their support by the ieee futurebus. In Proceedings of the

13th Annual International Symposium on Computer Architecture, ISCA

’86, pages 414–423, Los Alamitos, CA, USA, 1986. IEEE Computer

Society Press.

[30] A.N. Udipi, N. Muralimanohar, and R. Balasubramonian. Towards scal-

able, energy-efficient, bus-based on-chip networks. In High Performance

Computer Architecture (HPCA), 2010 IEEE 16th International Sympo-

sium on, pages 1–12, Jan 2010.

[31] Xusheng Zhan, Yungang Bao, Christian Bienia, and Kai Li. Par-

sec3.0: A multicore benchmark suite with network stacks and splash-2x.

SIGARCH Comput. Archit. News, 44(5):1–16, February 2017.

[32] D. Zoni, S. Corbetta, and W. Fornaciari. Hands: Heterogeneous archi-

tectures and networks-on-chip design and simulation. In Proceedings of

the 2012 ACM/IEEE International Symposium on Low Power Electron-

ics and Design, ISLPED ’12, pages 261–266, New York, NY, USA, 2012.

ACM.

74

BIBLIOGRAPHY BIBLIOGRAPHY

[33] D. Zoni, J. Flich, and W. Fornaciari. Cutbuf: Buffer management and

router design for traffic mixing in vnet-based nocs. IEEE Transactions

on Parallel and Distributed Systems, 27(6):1603–1616, June 2016.

[34] D. Zoni and W. Fornaciari. Modeling dvfs and power gating actuators for

cycle accurate noc-based simulators. Journal of Emerging Technologies

in Computing Systems, pages 1–15, 2015.

[35] D. Zoni, F. Terraneo, and W. Fornaciari. A dvfs cycle accurate simu-

lation framework with asynchronous noc design for power-performance

optimizations. Journal of Signal Processing Systems, pages 1–15, 2015.

[36] Davide Zoni, Federico Terraneo, and William Fornaciari. A control-

based methodology for power-performance optimization in nocs exploit-

ing dvfs. Journal of Systems Architecture, pages 1–15, 2015.

75

