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Sommario

Recentemente abbiamo assistito ad un consistente avanzamento nell’ambito

dell’Intelligenza Artificiale. Sono state sviluppate applicazioni che sono ca-

paci in molti casi di superare le capacità umane in diversi tipi di compiti,

come nel caso di GO, un gioco da tavolo [70]. Abbiamo anche assistito

ad uno sviluppo di prototipi per la guida autonoma [47], compravendita

automatica di azioni nell’ambito finanziario [53], robot industriali e dome-

stici [44]. Queste applicazioni sono spesso troppo complesse per essere risolte

con un generico software scritto con l’aiuto di un esperto: è qui che entra in

gioco il machine learning, ossia l’apprendimento automatico. Spesso le tec-

niche di machine learning richiedono enormi risorse computazionali e grandi

quantità di dati: il nostro lavoro si propone di fornire un metodo che usi le

risorse computazionali e i dati in maniera efficiente. Tale metodo si colloca

nella classe di algorithmi di machine learning chiamata Reinforcement Lear-

ning [73]. Il reinforcement learning si occupa di risolvere problemi dove vi è

un agente immerso in un mondo che può osservare e nel quale può effettuare

azioni che ne modificano lo stato. Più precisamente, l’agente deve massimiz-

zare nel tempo un segnale di “reward” che dipende dallo stato e dalle azioni

intraprese dall’agente: tale segnale indica in genere se l’agente sta risolven-

do o meno il problema proposto. Esistono diverse metodologie per risolvere

problemi di RL. Il nostro metodo rientra più precisamente nella classe di

algoritmi Approximate Value Iteration [61], dove il cuore dell’algoritmo è

quello di stimare, tramite approssimazioni successive, il valore associato ad

ogni coppia di stato azione, in modo tale che sia poi possibile scegliere le

azioni che massimizzano l’accumulo di reward. Il nostro metodo Boosted

Fitted Q-Iteration (B-FQI) poggia su una solida struttura teorica, e adat-

ta un metodo già presente e molto conosciuto in letteratura nel supervised

learning al caso del reinforcement learning: il boosting. Il boosting consente

di utilizzare dei modelli più semplici che richiedono minori risorse computa-

zionali e che adattano dinamicamente la loro complessità in base al target

desiderato. Il nostro algoritmo introduce il boosting in modo efficiente nel
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reinforcement learning. Verrà fornita in questa sede una valutazione teorica,

affrontando sia come l’errore si propaga iterazione dopo iterazione, sia come

l’errore dipenda dalla corposità del dataset e dall’espressività dello spazio

funzionale. Infine riportiamo i risultati sperimentali, che supportano le ar-

gomentazioni teoriche per quanto riguarda la capacità di B-FQI di usare

modelli più semplici rispetto al generico AVI, e fornendo anche un’analisi

dal punto di vista dell’efficienza nell’uso dei dati. B-FQI risulta efficiente

per quanto riguarda l’uso di risorse computazionali, e merita sicuramente

ulteriori studi oltre quelli effettuati nella tesi presente.



Summary

In the recent years we have seen a general technological advance in the field

of Artificial Intelligence. Researchers and high-tech companies have devel-

oped many applications that are able to beat humans in different kind of

tasks, like for the board game GO [70]. We have also seen prototyping

autonomous vehicles [47], automatic financial traders [53], industrial and

domestic robots [44]. This kind of applications are often too complex to

be solved with a generic software wrote with the help of an expert: it is

here that machine learning starts to play its role. Very often machine learn-

ing requires enormous computational resources and big datasets: our work

aims to provide a method that efficiently uses computational resources and

data. This method belongs to the class of semi-supervised machine learning

algorithms called Reinforcement Learning [73]. The goal of Reinforcement

Learning is to provide a technique to solve problems where there is an agent

surrounded by an environment that it can both observe and interact by

means of actions. More in details the agent wants to maximize a reward sig-

nal, which depends by the actual state and performed actions: such signal

often indicates how well the agent is behaving. There are several ways to

solve reinforcement learning tasks. Our method belongs more precisely to

the class of algorithms named Approximate Value Iteration [61], where the

core is to estimate the value associated to each state-action pairs, in such

way that it will be possible to choose actions that maximize the reward it

receives over time. Our method Boosted Fitted Q-Iteration (B-FQI) relies

on a solid theoretical foundation, and adapts a preexisting and well known in

literature method of supervised learning, to the case of reinforcement learn-

ing: boosting [13]. Boosting allows using simpler models that require less

computational resources, and that dynamically adapts its complexity to the

desired target. Our algorithm introduces efficiently boosting in reinforce-

ment learning. We will provide here a theoretical analysis that will concern

both on how the error propagates through iterations, and on how error de-

pends on both the choice of the expressivity of the functional space and
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the size of the dataset. We eventually provide the empirical results, which

supports our theoretical statements for what concerns the ability of B-FQI

to use simpler models with respect to the generic FQI, and we provides also

an analysis from the data-efficiency point of view. B-FQI results to be ef-

ficient for what concerns the usage of computational resource and deserves

undoubtedly further studies beyond the ones developed in this thesis.
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Chapter 1

Introduction

“Alea iacta est”

Gaius Iulius Caesar

1.1 Contextualization

In the recent years, we have seen a general technological advance in the field

of Artificial Intelligence. There were developed some application that are

able to beat humans in different kind of tasks, like game playing [51], [70],

but also we have seen the prototyping of autonomous vehicles [47], auto-

matic financial traders [53], industrial and domestic robots [44]. All those

successful results were unimaginable a few years ago, and the main tech-

nologcal and scientific improvements that allowed to achieve such goals are

often in the field of Machine Learning (ML), and more in particular of Re-

inforcement Learning (RL). In fact, this kind of applications are often too

complex to be solved by a generic software programmed by an expert: there

is the need that the machine autonomously learns how to solve such difficult

tasks, from experience or other source of learning (like imitation learning).

The field of ML is very huge, and it is living in these years its golden age,

with a thousand of articles every year, and an impressively fast technologi-

cal advancement [40]. ML has become a very appealing way to solve many

problems and it has started to be used more and more often in very different

kind of applications. On the other hand, also ML has some drawbacks: it

often requires a huge amount of data and computational resources. This

drawback makes ML expensive, and while on one side it is appealing to

conduct research in order to solve complex tasks, on another side it is also



interesting to study a way to make ML lighter, requiring less computational

resources or data. In this work, we followed the second approach.

1.2 Goal

RL is a branch of ML where the main goal is to make an agent (e.g. a robot)

to observe an environment and choose some actions to perform in order to

maximize reward collection over a time horizon. The way the agent chooses

the actions it is called policy, and the main issue in RL is to find the so

called optimal policy that optimizes the reward function. There are several

ways to solve RL tasks, but they all can be divided in two main classes:

Value Based or Policy Based [73]. The value based methods are based

on a representation of the value function: a function that represents the

value of each different situation so that the agent will be able to choose the

proper action. The representation of the value function is often obtained by

means of a Supervised Learning (SL) method that is able to approximate

such function giving a set of data. Policy based methods use instead an

internal representation of the policy and they focus to find the optimal policy

without the value function. Actor-Critic method are mixed approaches,

where the core of the algorithm is to keep track of both the value function

and the policy representation. Value based methods are very important in

the literature: they have been deeply studied, and they are shown to reach

in some applications very impressive results. The goal of our thesis is to

provide an efficient way to solve RL task by means of a value based method.

1.3 Motivation

The recent advances in the field of RL are often related both to the tecnolog-

ical advances in terms of hardware (faster CPUs, more parallel computing,

more computational resources in general), and to the progress made in su-

pervised learning. Deep learning [48] is a clear example about the progress

made in the former field. There are a number of recent progresses in feature

extraction for image processing (like convolutional neural networks) [46],

for time dependencies extraction (deep recurrent neural networks) [34], but

also in dimensionality reduction with autoencoder [77], just to mention a

few. And of course all these progress had an impact in RL, like in Deep

Q-Network (DQN) [51] where convolutional networks are used. All these SL

methods are often very specific to the problem: we tackle the issue of high

dimensionality with ad-hoc techniques, using features extraction relying on
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our knowledge about the nature of the inputs. We wanted to find an efficient

way to solve RL tasks using our knowledge about some properties that are

shared among all the RL tasks, and in particulat using those properties that

are related to the value function. In fact, all the value based techniques

exploit mathematical properties (as we will see in Chapter 2) of the optimal

value function in order to find it. What we have found during our research,

is a method that exploits some properties of the optimal value function in

order to gain time efficiency. The strength of our solution is that it does not

depend on the nature of the problem (such as the nature of input), but is

instead a very general solution.

1.4 Outline of the Thesis

Boosted Fitted Q-Iteration(for short B-FQI) is a value based algorithm that

belongs to the class of Approximate Value Iteration (AVI) algorithms which

iteratively build an approximation of the value function. The main advan-

tage of B-FQI with respect to other AVI algorithm is that it should reach a

good approximation of the value function with less computation. This result

is achieved basically by decomposing the optimal value function as the sum

of different terms each one of those can be approximate with simple models,

requiring in this way less computing effort. General AVI methods in fact

require to approximate each iteration the whole value function, even when

the approximation of the value function is good and thus it does almost not

change from one iteration to the next one: B-FQI instead of approximating

each iteration the value function, it approximates the so called “residual”

that consists in the difference between the current approximation of the

value function and the previous one. Approximating the residual gives sev-

eral benefits: the most easy to see is that the residual converges to zero

as the value function covnerges to the optimal one. The other advantage

is that the residual is easier to approximate even before approaching the

convergence. The reader may wonder why approximating the residual is in

general a simpler task with respect to approximating the whole value func-

tion: after all the residual is a difference between two complex functions,

and no-one can guarantee that the difference between two complex functions

is a simpler function. The key point is that the residual is the difference of

two related functions: in fact it is the difference of two consecutive approxi-

mations of the value function. Approximating the residual is not a new idea

in machine learning: boosting [14] is a SL technique that provides a general

meta algorithm to iteratively approximate the gradient of the loss function,

and it could be easily shown that when the error is the l2-loss, the gradient
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coincides with the residual [15]. The interesting feature of boosting is that

it produces an approximation of a target function by means of several weak

lerners where each of those is an approximation of the gradient, or in the

l2-boosting case, is an approximation of the residual. A weak learner is a

function approximator that uses a very simple model to approximate the

target function, and thus weak learners are in general very efficient. We can

show that B-FQI introduces boosting, and thus it approximates the residual

at each iteration by means of weak learners, gaining time efficiency. We

show in the next chapters the theoretical basis on which our method relies

on, and then we also will prove empirically its computing advantage.

In Chapter 2 we introduce the state of the art. This chapter could

be logically divided in two main parts: in the first part we introduce the

theory behind value based techniques in reinforcement learning, focusing on

AVI techniques, while in the second part we describe boosting, which is a

supervised learning techniques, giving an idea to the reader on why boosting

seems to be so effective. In Chapter 3 we display the theoretical analysis

of AVI methods and of B-FQI. In Chapter 4 we describe the experiments

that we performed and the empirical results. In Chapter 5 we derive our

conclusions and we outline the future research.
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Chapter 2

State of the Art

“Tell me and I forget, teach me and I may remember, involve me and I

learn.”

Benjamin Franklin

This chapter is devoted to the presentation of Reinforcement Learning.

We present in Section 2.1 the mathematical framework on which is based,

starting from the Markovian decision processes in Section 2.1.1, then show-

ing the main theoretical techniques of dynamic programming in Section

2.1.2 with a special focus on approximate value iteration on which this work

is based. We present some value-based algorithms used in Reinforcement

Learning with a special focus on an approximate value iteration technique

named Fitted Q-Iteration in subsection 2.1.3. In section 2.2 we present a su-

pervised learning technique that, in order to lower down the bias (which will

be introduced in Section 2.2.1), uses a linear combination of simple models

(weak regressor). In order to present boosting, we introduce in Section 2.2.1

the supervised learning setting, then we do a digression in Section 2.2.1

on the bias-variance trade-off which is one of the main issues in supervised

learning. In Section 2.2.2 we show what ensemble methods and boosting

methods are, while in Section 2.2.3 we introduce the functional gradient

view of boosting techniques. We eventually describe in Section 2.2.4 L − 2

Boost: a particular case of boosting which is suitable for a theoretical anal-

ysis and is the kind of boosting used in B-FQI.

2.1 The Reinforcement Learning Problem

Reinforcement Learning (RL) is one of the most active research areas in

artificial intelligence. It has been applied successfully on a number of dif-



Figure 2.1: Cart-Pole environment.

ferent control problems, such as job-shop scheduling [82], backgammon [74],

elevator control [17], machine maintenance [49], dynamic channel allocation

[71], airline seat allocation [33], and more recently on playing Atari games

[51], mastering the game of Go [70], just to mention a few. RL consists in

a computational approach to solve sequential decision problems where an

agent tries to maximizes a numerical reward by interacting with an environ-

ment through the usage of a set of actions. The goal is to find the so called

optimal policy which is basically a function that associates to each possible

observed state, the best action to choose in order to maximize the numerical

reward: in order to do that is not possible to just maximize the immediate

reward at each step; but very intuitively sometimes the agent must choose

an action that will make receive a low immediate reward, but which allows

to get higher future rewards.

Example. To give an example of a practical RL task (that will be also

discussed in details in the experimental section), we consider the Cart Pole

task, which consists in balancing a pole in upright position by the means of

the force to apply to a car where the pole is attached. The reward could

consists in a positive reward when the pole is with vertical position, while

a zero reward could be given when the pole falls. Thus the state observed

by the agent will be the position of the cart, the angle of the pole in respect

to the vertical, and the velocities of the cart and the angle of the pole. The

set of actions are the possible forces that could be applied to the cart. The

optimal policy will be in this case a function that has as input the observed

state (position, angle, velocities), and as output, the action that will make

the pole stay as long as possible up right, without making it fall.
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2.1.1 Markovian Decision Processes

A Markovian Decision Process (MDP) [5, 6] is a mathematical framework

that describes a sequential decision making problem in a kind of situation

where the outcomes are partially stochastic and partially influenced by the

decisions made.

For a space Σ, with σ-algebra σΣ, M(Σ) denotes the set of probability

measures over σΣ
1. B(Σ, B) denotes the space of bounded measurable func-

tions w.r.t. σΣ with bound B (B is omitted when is unknown). A discounted

MDP is a tuple (X ,A, P,R, γ, µ), where X is a measurable state space, A
is a set of actions, P : X ×A →M(X ) is the transition probability kernel,

R : X × A → R is the reward function2, γ ∈ [0, 1) is the discount factor,

µ :M(X ) is the probability of the initial state. Let r(x, a) = E [R(·|x, a)] to

be uniformly bounded by Rmax. A policy π : X × B(A) is a mapping from

X to a distribution over A. As a consequence of taking action At at Xt we

receive a reward signal Rt ∼ R(·|x, a) and the state evolves accordingly to

Xt+1 ∼ P (·|Xt, At).

The MDPs rely on the Markov assumption which states that the reward

function R and the transition probability P only depend on the actual state,

and is conditionally independent from the previous history.

P (xt+1|xt, at, xt−1, at−1, . . . , x1, a1) = P (xt+1|xt, at) (2.1)

R(xt, at, xt−1, at−1, . . . , x1, a1) = R(xt, at). (2.2)

From now on we will always make the assumptions of continuous state-

space and action-space and infinite horizon (there is no terminal state),

unless differently stated.

The Value Function

In the previous section we explained that the agent’s goal is to maximize a

numerical reward through its “life”. This is an informal definition, because it

does not precisely specify what the agent should precisely maximize. There

are several different objectives that can be defined. We introduce just two

of them: the Discounted Reward JπD and the Averaged Reward JπA:

JπD = E
x∼µ

[ ∞∑
t=1

γt−1rt|x0 = x

]
(2.3)

1We strictly follow here the notation used in [23, 24].
2We could have defined R : X × A × X → R as some authors do, where R(x, a, y) is

the mean reward of the transaction from x to y by means of choosing action a. Actually

it is possible to re-define R(x, a) =
∫
X R(x, a, y)P (y|x, a)dy.
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JπA = E
x∼µ

[∑T
t=1 rt
T

|x0 = x

]
. (2.4)

From now on, we will assume that the discounted reward is used, aver-

aged reward is reported only for sake of completeness. We define the return

vt at time step t as:

vt =

∞∑
k=0

γkrt+k+1. (2.5)

We can see that γ close to zero will lead to a “myopic evaluation” in

the sense that the agent will seek to find a policy that maximizes the close

upcoming rewards, while with a γ close to one, the evaluation will be “far-

sighted”, leading the agent to find a policy that chooses actions in such a

way to also maximize the future rewards.

The state value function V ∈ V where V = {V |V : X → R} is the

expected return from the state x ∈ X :

V (x) = E [vt|xt = x] . (2.6)

This value always depends from the policy followed, because all the next

states depend on the policy used too. Let’s suppose that all the states and

the rewards are observed by means of a policy π. We indicate a functions

that specifies for each state s its expected utility obtained V π as the state

value function by following the policy π. Let’s also define the following

Rπ(x) =

∫
A
R(x, a)π(a|x)da (2.7)

P π(y|x) =

∫
A
P (y|x, a)π(a|x)da (2.8)

Rπ and P π correspond respectively to the expected reward and the ex-

pected transition probability when the policy π is followed. Then

V π(x) = E
π

[vt|xt = x]

= E
π

[rt + γvt+1|xt = x]

= E
π

[rt + γV π(xt+1)|xt = x]

=

∫
A
π(a|x)

(
R(x, a) + γ

∫
X
P (y|x, a)V π(y)dy

)
da

= Rπ(x) + γ

∫
X
P π(y|x)V π(y)dy (2.9)
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is the Bellman equation, and its solution V π(x) represents the expected

cumulative discounted return by following the policy π from the state x.

We also introduce in a similar way the action-state value function Qπ ∈ Q
where Q = {Q|Q : X ×A → R} and where Qπ(x, a) represents the expected

discounted reward of choosing the action a ∈ A over the state x ∈ X and

then following the policy π. Between Qπ and V π holds the following:

V π(x) =

∫
A
Qπ(x, a)π(a|x)da. (2.10)

It is possible to write Qπ in a recursive way, like we did for V π:

Qπ(x, a) = E
π

[vt|xt = x, at = a]

= E
π

[rt + γvt+1|xt = x, at = a]

= E
π

[rt + γQπ(xt+1, at+1)|xt = x, at = a]

= R(x, a) + γ

∫
X
P (y|x, a)V π(y)dy

= R(x, a) + γ

∫
X
P (y|x, a)

∫
A
π(a′|y)Qπ(y, a′)da′dy.(2.11)

Note that if you would like to compute the state-value function in the

case that the action space and the state space are discrete, we could rewrite

2.9 as a product of linear matrices where V π and Rπ are column vectors of

dimension |X |, while P π is a square matrix with |X | columns and rows:

V π = Rπ + γP πV π (2.12)

from which derives straight-forward the following solution:

V π = (I − γP π)−1Rπ (2.13)

This solution is not very appealing: it requires in fact a model of the

MDP, which is however very often unknown and it needs γ < 1 so that

I − γP π is invertible. We will see that V π and Qπ are very useful not only

because they permit to evaluate the performance of a policy over a state,

but also because through them we can compute V ∗ ∈ V and Q∗ ∈ Q that are

the state function and respectively the action-state value function computed

with the optimal policy π∗. In fact the state-value function defines a partial

ordering over policies [73]:

V π(x) ≤ V π′(x) with x ∈ X =⇒ π ≤ π′. (2.14)
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For any MDP there exists an optimal policy π∗ which is better or equal to

any other policy π, furthermore all the optimal policies achieve the optimal

state-value function and action-state value function:

V π∗ = V ∗ (2.15)

Qπ
∗

= Q∗. (2.16)

We define a greedy policy π with respect toQ as π(x) ∈ arg maxa∈AQ(x, a),

and we can state that π∗(x) ∈ arg maxa∈AQ
∗(x, a). One of the most in-

teresting properties of MDPs is that there always exists an optimal policy

that is deterministic [73]. This restricts a lot the space search of the opti-

mal policy: we can just focus on deterministic policies. To give an intuitive

idea on why there always will be a deterministic optimal policy that solves

an MDP, we can easily see that if there is an optimal policy it has to be

deterministic in those states where the action-state value function assumes

different values. On the contrary it is possible that a policy is stochastic on

a state where the respective action-state value function evaluated in such

state assumes the same value for all different actions: but in this case also

the deterministic choice to choose one of those actions will always be an

optimal choice. We can also observe that V ∗ and Q∗ satisfy the following

Optimality Bellman equations:

V ∗(x) = max
a∈A

R(x, a) + γ

∫
X
P (y|x, a)V ∗(y)dy (2.17)

Q∗(x, a) = R(x, a) + γ

∫
X
P (y|x, a) max

a′∈A
Q∗(y, a′)dy. (2.18)

Furthermore, we can notice from equations (2.17) and (2.18) that |V ∗|
and |Q∗| are bounded by Rmax

1−γ , we can show this by contradiction:

Proof. Let us suppose by absurd that there exists x, a and ε > 0 such that

Q∗(x, a) ≥ Rmax+ε
1−γ then for any x, a holds:

Q∗(x, a) = R(x, a) + γ

∫
X
P (y|x, a) max

a′∈A
Q∗(y, a′)dy (2.19)

≤ Rmax + γ
Rmax + ε

1− γ
(2.20)

=
Rmax + γε

1− γ
, (2.21)

which is clearly a contradiction (we always assume γ < 1).
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Bellman Operators

Bellman Operators are the main core of all value-based RL techniques. Their

properties permit to develop algorithms that infer the optimal policy with

nice convergence properties. Bellman Operators are unary operators and

they can be defined in V or Q with similar meanings.

Definition 1. Bellman Operator in Q
Let (Q, d) be a non-empty complete metric space with a operator T π : Q →
Q.

(T πQπ)(x, a) = R(x, a) + γ

∫
X
P (y|x, a)

∫
A
π(a′|y)Qπ(y, a′)da′dy

.

Definition 2. Bellman Optimality Operator in Q
Let (Q, d) be a non-empty complete metric space with a operator T ∗ : Q →
Q.

(T ∗Q)(x, a) = R(x, a) + γ
∫
X P (y|x, a) maxa′∈AQ(y, a′)dy .

The Bellman operator in Q (Definition 1) and the Bellman Optimality

operator inQ (Definition 2) are respectively a compact form of the equations

(2.11) (2.18), and equivalent operators in V could be argued for V π and V ∗

by the equations (2.9) and (2.17).

We will show now the properties of the Optimality Bellman Operator

in Q, that actually applies also for all the Bellman Operators previously

defined:

Property 1. Monotonicity

Given Q1, Q2 ∈ Q the operator T ∗ is said to be monotone:

Q1 ≤ Q2 =⇒ T ∗Q1 ≤ T ∗Q2

.

Property 2. Max-Norm Contraction

Given Q1, Q2 ∈ Q the operator T ∗ is said to be a Max-Norm Contraction:

‖T ∗Q1 − T ∗Q2‖∞ ≤ γ‖Q1 −Q2‖∞

.
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Proof. We show the proof in the case of the Bellman Optimality operator

T ∗ in Q:

‖T ∗Q1 − T ∗Q2‖∞

= max
x∈X ,a∈A

R(x, a) + γ max
a1∈A

∫
X
P (y|x, a)Q1(y, a1)dy

−R(x, a)− γ max
a2∈A

∫
X
P (y|x, a)Q2(y, a2)dy

= γ max
x∈X ,a∈A

max
a1∈A

∫
X
P (y|x, a)Q1(y, a1)dy

−max
a2∈A

∫
X
P (y|x, a)Q2(y, a2)dy

≤ γ max
x∈X ,a∈A,a1∈A

∫
X
P (y|x, a) (Q1(y, a1)−Q2(y, a1)) dy

≤ γ max
x∈X ,y∈X ,a∈A,a1∈A

Q1(y, a1)−Q2(y, a1) (2.22)

= γ‖Q1 −Q2‖∞. (2.23)

The inequality (2.22) holds keeping in account that P (y|x, a) is a proba-

bility function, and therefore
∫
X P (y|x, a) (Q1(y, a1)−Q2(y, a1)) dy is equiv-

alent to the weighted average of Q1(y, a1) − Q2(y, a1) and obviously the

average of some values can always be upper-bounded by the max of those

values.

Theorem 1. Banach Fixed Point

If T ∗ is a contraction mapping, then it admits a unique fixed-point Q∗ in Q.

Furthermore, Q∗ can be found as follows: start with an arbitrary element

Q0 ∈ Q and define a sequence {Qn} by Qn = T ∗(Qn−1), then Qn → Q∗

[38].

What Theorem 1 states is, in more practical words, that if the operator

T ∗ is a contraction, then we can choose from a random point Q ∈ T ∗ and

apply iteratively the operator T ∗ to end up in a point (close as desired) to

its fixed point Q∗.

Property 3. Unique Fixed Point

As stated in Theorem 1 the operator T ∗ has a unique fixed point if ∃!Q ∈ Q
:

T ∗Q = Q

and
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• the fixed point of T π defined in V is V π;

• the fixed point of T ∗ defined in V is V ∗;

• The fixed point of T π defined in Q is Qπ;

• The fixed point of T ∗ defined in Q is Q∗.

Each point stated in Property 3 comes respectively from the equations

(2.9),(2.17), (2.11) and (2.18) in conjunction with Theorem 1 which ensures

that those points are unique.

The Bellman Optimality Equations are non-linear thus they can not be

solved in closed form. There are a number of ways to solve them, and we

can actually divide such ways in three different branches: Dynamic Program-

ming, Linear Programming and RL. Dynamic Programming requires the full

knowledge of the model in order to solve the MDP, and it is the starting

point for developing the theory of RL. That is why we will introduce it in

the next section.

2.1.2 Dynamic Programming

Dynamic Programming (DP) [37] [6] is a very broad and general technique

to solve complex mathematical problems by breaking down the problem in

sub-problems, solving each sub-problem and then recombining the partial

solutions. DP can be applied to those problems that satisfy the followings

properties:

1. Optimal Substructure: the problem could be divided in sub-problems,

and the combination of the optimal solutions of such problems is the

optimal solution of the whole problem.

2. Overlapping Sub-problems: the same sub-problem recurs many times,

so we can cache its solution, and reuse whenever it is required. In this

way we can speed up the computation.

DP is used for a number of different problems like scheduling algorithms,

string algorithms (e.g., sequence alignment), graph algorithms (e.g., shortest

path algorithms), graphical models (e.g., Viterbi algorithm), bioinformatics

(e.g., lattice models), just to mention a few. DP applies also to MDPs, in

fact we can observe that Bellman Equations are recurrent, and the value

functions are a way to keep track of the partial solution found.

DP in the case of MDPs assumes the full knowledge of the model, and

it can solve two different kinds of problem:
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1. Prediction: where the input is an MDP < X ,A,P,R, γ, µ >, a policy

π and the output is the state value function V π.

2. Control : where the input is an MDP < X ,A,P,R, γ, µ > and the

output is the optimal state value function V ∗ and the optimal policy

π∗.

Policy Iteration

Policy Iteration (PI) [37] [73] is a method to solve MDPs that decomposes

the control problem in two different stages: a stage of policy evaluation and

a stage of policy improvement.

The policy evaluation is a prediction problem where we compute the

value function from an MDP and a policy. To solve this problem we could

iterate the Bellman Operator for V π from a value function V0, and then

Vk+1 = T πVk, so that, after enough iterations we get Vk ≈ V π

The policy improvement stage generates a better policy. We can state

that:

Theorem 2. Policy Improvement

Let π and π′ be a pair of deterministic policies such that:

Qπ(x, π′(x)) ≥ V π(x) , ∀x ∈ X

then

V π′(x) ≥ V π(x)

.

Proof.

V π(x) ≤ Qπ(x, π′(x)) = E
π′

[rt+1 + γV π(xt+1)|st = s]

≤ E
π′

[
rt+1 + γQπ(xt+1, π

′(xt+1))|xt = x
]

≤ E
π′

[
rt+1 + γrt+2 + γ2Qπ(xt+2, π

′(xt+2))|xt = x
]

≤ E
π′

[rt+1 + γrt+2 + . . . |xt = x] = V π′(x). (2.24)

This allows us to write the policy improvement step, that is a greedy-

policy with respect to Q:
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Algorithm 1: Policy Iteration

Data: R, P
Result: π

1 k ← 0;

2 initialize π0;

3 V0 ← 0 ;

4 for i = {1 . . . N} do

5 Vt(x)← V πt−1(x);

6 πt(x)← arg maxa∈AR(x, a) + γ Ex′∼P (·|x,a) [Vt(x
′)];

7 end

8 Return π = πN ;

π′(x) = arg max
a∈A

Q(x, a) = arg max
a∈A

Rπ(x, a) + γ

∫
X
P (y|x, a)V (y)dy.

(2.25)

The PI algorithm so basically iterates a step of policy evaluation and a

step of policy improvement:

π0
PE−−→ V π0 PI−→ π1

PE−−→ V π1 . . .
PE−−→ V ∗.

When we perform the policy evaluation step, a question automatically

arises: how many iterations do we have to iterate in order to have a good

evaluation of V π? We could stop the number of iteration when ‖Vk+1−Vk‖∞
becomes lower than a certain threshold, however is this procedure really

necessary? Do we really have a good approximation of V π?

Value Iteration

Value Iteration (VI) [5] instead of explicitly representing the policy, it ex-

ploits the Bellman Optimality operator, in order to achieve a faster conver-

gence. In fact, at every iteration, the VI algorithm performs the improve-

ment of the value function, without loosing time on estimating the value

function associated to an intermediate policy. The core of a Value Iteration

algorithm can be represented by an equation Vk+1 = T ∗Vk. It will produce

a sequence like the following one:

V0
VI−→ V1

VI−→ . . .
VI−→ V ∗.

VI converges to the optimal V ∗ thanks to the previously described prop-

erties of the Bellman Optimal Operator:

15



Algorithm 2: Value Iteration

Data: R, P
Result: π

1 k ← 0;

2 V0 ← 0 ;

3 for i = {1 . . . N} do

4 Vt ← T ∗Vt−1;

5 end

6 Define as π(x)← arg maxa∈AR(x, a) + γ Ex′∼P (·|x,a) [VN (x′)]

Theorem 3. VI Convergence 1

VI converges to the optimal state-value function V ∗:

lim
k→∞

Vk = V ∗.

Proof.

‖Vk−V ∗‖∞ = ‖T ∗Vk−1−T ∗V ∗‖∞ ≤ γ‖Vk−1−V ∗‖∞ ≤ · · · ≤ γk‖V0−V ∗‖∞.
(2.26)

Theorem 3 shows that VI converges always (since γ < 1), with a faster

convergence rate for small γ.

Theorem 4. VI Convergence 2 [7]

If ‖Vk − Vk−1‖∞ ≤ ε then ‖Vk − V ∗‖∞ ≤ 2εγ
1−γ .

Theorem 4 shows instead the convergence rate from the Bellman residual

perspective. We know intuitively, from the max-norm contraction property

of the optimality Bellman opertor, that if the magnitude of Vk−Vk−1 is high,

then we probably are far away from V ∗, and logically when the magnitude

of Vk − Vk−1 is small Vk should be close to V ∗. We can see from Theorem 4

that the error ‖Vk−V ∗‖∞ can be bounded by 2εγ
1−γ which suggests that Vk is

close to V ∗ when ε or γ are close to zero. The term γ
1−γ could be seen in fact

as a rescaling of the distance between value functions: two value functions

that can be considered close in a model where γ is low, could be considered

far in a MDP where γ is higher.

Approximate Dynamic Programming

We have assumed state space and action space to be continuous measurable

sets. This means that in order to represent functions over such spaces we
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need to resort to some function approximation technique. In RL this goes

under the name of Approximated DP (ADP). ADP is sometimes necessary

even when the spaces are discrete but highly dimensional. In this scenario we

cannot exploit fully informed tabular representation since the update cost is

polynomial in the number of states and actions. This approximator could be

seen as an Operator that projects the value function in its functional space.

In the case of the state value function we define Π : B(X ) → F where F is

the new functional space.

Norm We define the norm operator: ‖g‖p,µ = [
∫
g(x)pdµ(x)]1/p in the

case that µ is a distribution of probability, or ‖g‖p,µ = [
∑

x∈µ g(x)p]1/p in

the case µ is a set. Note that if µ̂ = {zi ∼ µ}i=1...N then E [‖f‖p,µ̂] = ‖f‖p,µ.

The operator works by minimizing the p-norm between the function f

that belongs to the functional space F and the target y that is the true

state value function:

ΠV = arg min
f∈F

‖f − y‖p,µ, y ∈ B(X ) (2.27)

or very similarly, in the case of action-state value function, we define the

approximator Π : B(X ×A)→ F :

ΠQ = arg min
f∈F

‖f − y‖p,µ, y ∈ B(X ×A). (2.28)

Asynchronous Dynamic Programming

Until this point we have described Synchronous DP in the sense that when

we wanted to apply a Bellman Operator to solve a control or a prediction

problem we needed two value functions, let’s suppose Vk and Vk−1, and we

compute Vk by applying the Bellman Operator on Vk−1, for example in AVI:

Vk = T ∗Vk−1. (2.29)

This way to perform computation is called “synchronous” because all

states could be updated in parallel:

Vk(x) = (T ∗Vk−1)(x). (2.30)

We could speed up the computation by applying the Bellman Operator

“in place”. We keep only one value function V : any time we apply the

Bellman operator only for one state at time, and we replace the computed
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value with the previous value, so the next time we compute an update for

another state, the value function will be already improved. This concept is

known as bootstrap, because it is a kind of speculation: we try to update

the value-function as soon as possible. Asynchronous DP is guaranteed to

converge if we continue to update all the states. There are mainly two ideas

on how to select the states to update:

1. Prioritized Sweeping : we compute the Bellman Error ‖(TV )(s) −
V (s)‖∞, and we update first the states with the highest Bellman Error.

2. Real-Time Dynamic Programming : we can also update the state based

on a sampling of the trajectory (i.e., simulating the environment), so

that we update mainly the states that are relevant to the agent[6].

Full vs Sample Backup

The methods shown in the previous section describe a way to make DP more

efficient with the usage of approximation, or the usage of asynchronous back-

ups. Both the methods can reduce the memory usage and the computations,

but still they do not solve the curse of dimensionality when we perform a

backup: in case of a high number of states (as we mentioned earlier in the

case of discrete states, the number of states grows exponentially with the

number of variables). So each time we must perform an update (or backup)

we must solve an integral or a very long summation (in all the Bellman op-

erators we have
∫
X or

∑
X ). A way to solve also this problem is to not use

the reward function or the transition probability, but just a sample of them.

For example, let simulate the environment starting from x, a = π(a) and

observe r, x′ where r is the reward gained and x′ is the next state reached.

We can update the value of state x as follows:

V (x)← r + γV (x′) (2.31)

in order to estimate V π. In this way the cost of a backup is constant

independently of the complexity of the underlying MDP, furthermore, in

this case, no knowledge of the underlying MDP is required [6].

Approximate Value Iteration

We would like in this section to give a special focus on Approximate Value

Iteration (AVI) [63], the branch of algorithms on which is based this work.

AVI is an ADP method for VI. The main core of the algorithm is to ap-

proximate the Optimality Bellman operator with the projection operator

Π : V → F :
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Vk = ΠT ∗Vk−1. (2.32)

Thus Vk = arg minf∈F ‖T ∗Vk−1 − f‖p,µ. We know from the theory that

we could start from a random V0 and apply iteratively the Optimality Bell-

man operator. The same approach is exploited in AVI but the application

of the Optimal Bellman operator T ∗Vk−1 is projected onto the functional

space F .

In general, this algorithm does not converge, but we can analyze the

asymptotic behavior. Let us suppose that the approximation error is bounded

‖εk‖∞ ≤ ε where the approximation error is defined as:

εk = T ∗Vk − Vk+1 (2.33)

then, a bound on the error between the state value function of the policy

πk greedy w.r.t. Vk and the optimal state value function V ∗ is [7]:

lim sup
k→∞

‖V ∗ − V πk‖∞ ≤
2γ

(1− γ)2
ε. (2.34)

Fitted Value Iteration Actually we do not always have the Optimality

Bellman operator, because we do not have full knowledge of the model, thus

the only way is to use the approximate Optimality Bellman operator T̃ ∗.

We can construct T̃ ∗ by sampling r(x, a) ∼ R(x, a) and x′ ∼ P (x, a) and

then:

(T̃ ∗Q)(x, a) = r(x, a) + γmax
a′∈A

Q(x′, a′). (2.35)

We defined the approximated Optimality Bellman operator T̃ ∗ with the

action-value function, because in absence of the model, it is the only way

to derive the greedy policy. Several approaches based on the AVI-scheme

have been presented in literature, some examples are tree-based Fitted Q-

Iteration [20], multilayer perceptron-based Fitted Q-Iteration [66], regular-

ized Fitted Q-Iteration [22] and Fitted Q-iteration by Advantage Weighted

Regression [56]. All these approaches belong to the sampling-base fitted

value iteration (FVI) class. The main issue of FVI is that it may diverge

based on the approximator used [2, 8, 75, 32]. It is shown that the class of

averager approximators can be used safely, and no issue has been reported

with the usage of non-parametric regressor [58, 20, 66, 61].
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2.1.3 Reinforcement Learning

In Section 2.1.2 we studied the problem of solving MDPs with the knowledge

of the model (so knowing R and P ). It is not always possible to have R and

P , and even if it is, as we stated in Section 6, a sampling based method can be

used to lower down the computation, skipping integrals or long summations.

There are also techniques that do not make usage of either the model or a

value function, but that are just based on improving the policy. We can

summarize RL with the following categorization:

1. Model-Free vs Model-Based : For Model-Free are intended all those

techniques that do not require the knowledge of R or P , on the con-

trary the Model-Based techniques estimate a parametric model of R
and P .

2. On-Policy vs Off-Policy : An On-Policy algorithm will try to estimate

the value function V π by sampling from π (like SARSA), while an

Off-Policy algorithm will estimate V π using a different policy π′ (like

Q-Learning).

3. Online vs Offline: This concept is very analogous to the full vs sam-

ple backup already seen in sub-subsection 6. Online algorithm (like

Q-Learning) try to estimate the value function by sampling from the

environment, while Offline methods (like FQI) only use an already col-

lected datasets to find-out the optimal value-function. The advantage

of the Online methods is that they can explore and sample the most

interesting states, and learn “actively” on the environment, the draw-

back is that they are sensible to the “exploration-exploitation” trade-

off. The Offline methods are in general applicable on easier problems

where a random dataset (a dataset sampled with a random policy) is

enough to learn, the advantage of this solution is that is more stable

because it does not involve exploration. There is also a half-way be-

tween Online and Offline: the batch-sampling techniques (like DQN)

where the agent collects a dataset “online”, but it approximates the

value-function by sampling batches from this dataset.

4. Tabular vs Function Approximation: almost all the techniques that

involve discrete MDPs can work with Tabular techniques: we can store

the values of the states in a matrix, but in practice these techniques are

also used in very simple MDPs where the number of variables involved

for the representation of a state is very small. In real applications we

will always use Function Approximation, that is more problematic (it
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might introduce errors, instability, observability problems, ..) but it is

the only way to deal with complex domains.

5. Value-Based vs Policy-Based vs Actor-Critic: all the techniques that

are based on the value function are called Value-Based. In Value-Based

settings we must require that the optimal policy is deterministic, and

that the action-space is discrete, although could be difficult to de-

rive the policy from the value-function. Policy-Based techniques make

usage of a model of the policy, and they try to maximize the pol-

icy performance. They can work also with stochastic policies - making

Policy-Based also effective in Partial Observable MDPS, and they have

often nice convergency properties. Pure Policy-Based algorithms work

only with Monte-Carlo sampling, and this (as we will see later) will

introduce a lot of variance. Actor-Critic techniques are a good way to

combine the pros of the two kind of algorithms.

Monte-Carlo (in Policy Evaluation)

Monte-Carlo (MC) [73] is a technique that basically samples from the episode

and compute the value function by V (x) = Eπ
[∑T

t=0 γ
trt|xt = x

]
. It is a

Model-Free technique because it does not require knowledge of R or P ; it

learns from full episodes, thus it does not bootstrap; and it requires strictly

episodic MDPs (all episodes must terminate). Monte-Carlo could be very

appealing for its simplicity and it also shows a kind of robustness with non

Markovian settings because it does not make assumption of Markovianity.

The main drawback is that Eπ
[∑T

t=0 γ
trt

]
has a high variance because it

involves the summation of stochastic variables.

Temporal-Difference (in Policy Evaluation)

Temporal Difference (TD) [73] techniques are a collection of Online methods

that use the so-called TD-error rt + V (xt+1) − V (xt) to update the value

function:

V (xt) = V (xt) + α(rt + γV (xt+1)− V (xt)) (2.36)

where α is also known as learning rate. It is possible to show that if we

uses a dynamic value for α such that
∑

i αi = ∞ and
∑

i α
2
i < ∞ then the

equation (2.36) could be expressed as

V (xt) = E
π

[rt + γV (xt+1)] = E
π

[R(xt, π(xt)) + γV (xt+1)] . (2.37)

21



TD algorithm makes the usage of bootstrap, in fact it backups during

the episode. While Eπ [rt + γV (xt+1)] suffers less from high variance than

MC, unlike MC it has bias, because rt + γV (xt+1) it is an estimation of the

expected return, while vt it is exactly the expected return. A good way to

mix MC and TD is to use Eligibility Traces.

SARSA

We saw examples of MC and TD for prediction. SARSA [73] is a TD

algorithm for control and its name derives from the fact that it uses samples

of shape < s, a, r, s′, a′ > (where s and s′ are the current state and the next

state; r, a, a′ have always the usual meaning of observed reward and chosen

action both for a and a′. SARSA uses action-state value function Q instead

of state value function V because in control problems Q contains implicitly

also the policy by the following relation:

π(x) = arg max
a∈A

Q(x, a). (2.38)

SARSA during the running of an episode collects tuples of kind< x, a, r, x′, a′ >

where x = xt, a = π(xt), x
′ = xt+1, a

′ = π(xt+1) and r is the observed re-

ward of choosing a in the state x. SARSA uses the following update:

Q(x, a) = Q(x, a) + α(r + γQ(x′, a′)−Q(x, a)) (2.39)

where again α is the learning rate and r+γQ(x′, a′)−Q(x, a) is the TD-

error. The reason we say that SARSA is on-policy is that a′ is the action

that we choose for the next sampling x′, a′, r′, x′′, a′′. So far it seems to be

a policy evaluation problem: this is not true, because we are not using here

a fixed policy, but our policy is defined randomly with probability ε and

π(x) = arg max
a∈A

Q(x, a) (2.40)

with probability 1 − ε. The policy described is called ε-greedy policy.

The epsilon parameter is an exploration parameter that allows the policy

to visit new states. The ε parameter should move to 0, so that SARSA will

evaluate the greedy policy, converging so to the optimal one.

Q-learning

SARSA is a very nice algorithm but it is not able to converge to the optimal

policy while following a sub-optimal policy. Q-Learning [73] is an Off-Policy
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version of SARSA thus it is able to work even if it samples with a random

policy (provided that a random policy is able to visit all the states that are

required in the optimal trajectory). This is because instead of using the

action a′ chosen by the policy, it always uses maxa′∈AQ(x′, a′):

Q(x, a) = Q(x, a) + α(r + max
a′∈A

γQ(x′, a′)−Q(x, a)). (2.41)

This time the TD-error is r + maxa′∈A γQ(x′, a′)−Q(x, a).

Fitted Q-Iteration

Fitted Q-Iteration [20] [66] is an Off-Policy and Offline AVI method. The

core of the algorithm, like in the case of Q-Learning or SARSA is to evalu-

ate the optimal Q-value function Q∗. In ideal case, where we have perfect

knowledge of the MDP, we could iterate the following:

Qk = T ∗Qk−1. (2.42)

As we have seen in AVI methods, if we can not use a tabular approach

(i.e. in all real applications), we must use an approximator Π : (X × A →
R)→ F that projects T ∗Qk−1 onto a functional space F : X ×A → R (2.42)

by:

Qk = ΠT ∗Qk−1. (2.43)

The projection operator Π normally works by finding the function f ∈ F
that minimizes the error between such function and a given function g that

is the target function to approximate:

Π(g) = arg min
f∈F

‖g − f‖pp,µ (2.44)

(with ‖ · ‖p,µ as already described in Section 6 ). In the case of FQI,

what we minimize in practice is the Projected Bellman Error (PBE):

Π(T ∗Qk−1) = arg min
f∈F

‖T ∗Qk−1 − f‖pp,µ. (2.45)

We assumed so far to have perfect knowledge of the model, in fact we

are using the Optimality Bellman operator. This is not possible in most

of the cases, and what we do in practice is to use an approximation of the

Optimality Bellman operator T̂ ∗µ . We first have to collect a dataset µ = {<
xi, ai, ri, x

′
i >}i=1...N , often sampled from a random policy. The collection is
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Algorithm 3: Fitted Q-Iteration

Data: µ← {xi, ai, ri, x′i, ti}i=1...N

Result: π

1 k ← 0;

2 Q0 ← 0 ;

3 do

4 k ← k + 1 ;

5 for i = {1 . . . N} do

6 if ti is terminal then

7 yi ← ri;

8 else

9 yi ← ri + γmaxaQk(x
′
i, a);

10 end

11 end

12 Qk ← arg minf∈F ‖f(x,a)− y‖22;

13 while ‖Qk −Qk−1‖µ,∞ > ε;

14 Define as π(x) = arg maxa(x, a)

fixed and it never changes during the computations of the algorithm. Then

we can define T̂ ∗µ as:

(T̂ ∗µQk−1)(xi, ai) = ri + γmax
a∈A

Qk−1(x′i, a) (2.46)

where (xi, ai, ri, x
′
i) ∈ µ.

So we can eventually write the core of FQI:

Qk = ΠT̂ ∗µQk−1. (2.47)

2.2 Boosting

Boosting was introduced to answer to a question posed by Kearns and

Valiant[42] [43]: can a set of weak learners create a single strong learner?

With weak learner we refer to a learner that is able to perform slightly better

than a random guess. The answer is affirmative and it has been proved by

Robert Schapire in 1990 [67]. Boosting is a meta-algorithm that (linearly)

combines weak learners in a final strong classifier (or regressor). The most

famous boosting algorithm is for sure AdaBoost [25] which won in 2003 the
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ambitious Gödel Prize3. AdaBoost became so famous for its resistance to

over-fitting both for classification and regression problems. Boosting is often

compared to Bagging (Boosting Aggregation) [9], which works similarly to

Boosting, producing a number of learners and then combining them, but

with a great difference: all the learners could learn in parallel, and they do

not depend from each other. This is actually not a small difference, because

the goal of bagging is to reduce the variance (enhancing the generalization)

- thus using complex models, fitting them with a random re-sampling of the

dataset, and then averaging them; while boosting normally works with weak

(simple) learners and each one depends from the previous one, and then by

recombining them linearly enhancing their ability to well fit the dataset.

We will see in section 2.2.1 that in order to have a good model, we need to

have both a good fitting performance and a good generalization: these two

properties are somehow in contradiction, and they must be balanced appro-

priately. When a model fits too well the data then it learns the dataset used

to train it (and the noise associated to the data) and it will be not able to

generalize, while if it fits too poorly it simply means that the model is not

able to learn the dataset, and thus neither to predict new data. Boosting

in general enhance the fitting abilities of the learner, but it is also able to

approach “gently” a good generalization.

2.2.1 General Supervised Machine Problem

With Supervised Machine Learning (SML) [52] we generally refer to all

those techniques that try to predict a phenomenon by observing it. The

phenomenon is often stochastic even if it could be explained in a determin-

istic way, but the observations are sampled from a noisy source. In general,

SML (for regression problem) deserves to find a function g that describes a

phenomenon f by means of a finite number of observations which are sam-

pled with an intrinsic source of noise. More formally, we have an input space

X that defines our set of possible inputs from which we believe it is possible

to predict the outcomes belonging to a target space Y , and the phenomenon

that we would like to observe and predict could be described by f ∈ F

where F = {f |f : X → Y } with a function g ∈ G where G ⊂ F . To achieve

3The Gödel Prize is an annual prize for the most oustanding papers in the field of

theoretical computer science. The prize is assigned jointly by European Association for

Theoretical Computer Science (EATCS) and the Association for Computing Machinery

Special Interest Group on Algorithms and Computational Theory (ACM SIGACT). The

name of the prize is in honour of Kurt Gödel, who was the first to propose the question

P versus NP which is still one of the most interesting opened question in the area of

theoretical computer science.
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this goal we use a dataset D = {(xi, yi)|xi ∼ X , yi ∼ Y(xi)}i=1...N where

X ∈ M(X) and Y : X → M(Y ). We assume that the generative model

could be defined as Y(x) = f(x)+E(x) where f(x) is the deterministic expla-

nation and E(x) is a source of noise with zero mean and σ2(x) variance thus

Var(Y ) = σ2 and E [Y (x)] = f(x). To derive g we use a stochastic process

G : D →M(G) that infers g from the dataset D. Very intuitively the more

complex is the functional space G from which g belongs, the more G will

be stochastic, and of course a simpler G leads a less variable G. We could

think about a process that tries to fit a line in a cloud of points: probably

the cloud of points could be fitted well by very few lines, and the outcomes

of G will be all very similar. If G is instead very complex, then will be a lot

of very different functions g that well fit this cloud of points. In the first

case, we say that our model over-fits because it has a small variance but a

high bias, while in the second case we say that our model over-fits because

it has a small bias but a high variance. When a model over-fit, it learns too

well how to fit the data in the dataset - thus it is too specific, while when it

under-fit, it does not learn enough: in both the cases it will leads to a poor

prediction. When the variance and the bias are in some way well balanced

so that the model does not have a high variance nor a high bias, the model

probably will have learned enough from the data but still maintaining a kind

of generality and thus a good prediction performance.

Bias-Variance Trade-off

What we explained in the previous section could be more formally expressed

as Bias-Variance trade-off [39].

Definition 3. Variance

Let x ∼ X where X is a stochastic variable, its variance it is defined as:

Var[x] = E
[
(x− E [x])2

]
= E

[
x2 + E [x]2 − 2xE [x]

]
= E

[
x2
]

+ E [x]2 − E
[
2xE [x]

]
= E

[
x2
]

+ E [x]2 − 2E [x]2

= E
[
x2
]
− E [x]2 . (2.48)

The variance indicates how much a phenomenon is variable, or in other

words how much the samples extract from a distribution are distant in av-

erage from their mean value.
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Definition 4. Bias

Let y be a target value and x ∼ X where X is a stochastic variable, the bias

of X on the target y is defined as:

Bias[x, y] = E [y − x] . (2.49)

The bias shows in average the offset between x and the target value y.

Very often we use Bias2(x, y) to indicate the distance from the mean point

x = Ex∼X [X] to the target y. Now we would like to decompose the mean

square error (MSE) of the model g to its target y in terms of bias and

variance, omitting for the sake of compactness the observed input x:

E
[
(y − g)2

]
= E

[
y2 + g2 − 2yg

]
= E

[
y2
]

+ E
[
g2
]
− E [2yg]

= Var[y] + y2 + Var[g] + E [g]2 − 2y E [g]

= Var[y] + Var[g] + (y − E [g])2

= Var[y] + Var[g] + E [y − g]2

= σ2 + Var[g] + Bias[y, g]2. (2.50)

Equation (2.50) shows that the error on predicting y with the model g

is the summation of the intrinsic stochasticity of the phenomenon σ2, the

stochasticity of the model Var[g] and the square of the bias of the model g in

predicting the target y. We can do nothing about σ because it is a property

of the phenomenon that we would like to predict, but we can instead reduce

the variability associated to the model by using a simpler model or reducing

the bias of the model by over-fitting: the two terms are thus in contrast and

while we try to reduce one term, the other will increase. What we have to

do is to find a combination that minimizes the sum of the two components.

2.2.2 Ensemble Learning and Boosting

Ensemble Learning [57] is a meta-algorithm that consists in generating a

learner that is composed by a set of individual regressors where each of them

is trained by re-sampling from the dataset. Boosting [13] is a particular

case of ensemble learning, where each learner depends from the previous

(the learning process can not be parallelized). More formally boosting is a

general procedure that constructs the function g as a linear combination of
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Figure 2.2: This picture shows the difference between variance and bias.

Figure 2.3: This picture shows how bias and variance vary in function of the complexity

of the model.
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many models gi. To produce any of those gi we use a base procedure G that

depends not only on the dataset D but also on the previous models. We

could further augment the dataset D with a weighting wj that dynamically

changes during each iteration. Lastly, we combine the function approximator

by combining linearly all the intermediates estimates:
∑M

j=1 αjgj(·). An

example is the following:

{(w1,i, xi, yi)}i=1...N
G−→ g1(·)

{(w2,i, xi, yi)}i=1...N
G−→ g2(·)

{(w3,i, xi, yi)}i=1...N
G−→ g3(·)

. . .

{(wM,i, xi, yi)}i=1...N
G−→ gM (·)

g(·) =
M∑
j=1

αjgj(·).

The above description of boosting is too general to be of any direct use.

Different specifications of the weighting mechanism as well the specifica-

tion of different linear coefficients are crucial, and define different ensemble

schemes. In most of the cases boosting methods are special cases of sequen-

tial ensemble schemes, where the data weights depend on the results of the

previous iteration. Very often the weights wj,i are chosen in such a way that

a sample becomes more important when it is miss-predicted by the previous

model.

2.2.3 Functional Gradient Descent

Breiman showed that AdaBoost can be represented as a steepest descent al-

gorithm in function space which we call functional gradient [11] [10]. Fried-

man, Hastie and Tibshirani then developed a more general statistical frame-

work which yields a direct interpretation of boosting as a method for func-

tion estimation [26]. They refer to “stage-wise additive modeling” where

the word additive does not imply that the model boosting methods exploit

their SML task by fitting a number of regressor and combining then linearly

(i.e. summing up them).

Let us consider a loss function ρ : Y N × Y N → R which defines in our

case a measure of the error between our model g evaluated in all the points

xi (which we denote by the column vector x) and all the targets yi (which

we denote by the column vector y). Let us consider a parametric function
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gθ1

gθ2

gθ3

gθ4
≈ gθ ∗

g

ΠΘ

GΘ-space

GD  F - space

Figure 2.4: The pictures show the GD algorithm, starting from a configuration θ1. Each

arrow shows the gradient step, which brings from θi to θi+1. The space represented is

the F space, but the gradient moves only in the GΘ space: GD aims to recover the

parameter θ∗ that represents the projection in GΘ of the true minimizer g of the loss

ρ.

g : Θ×X → Y which for a fixed set of parameters θ ∈ Θ could be denoted as

gθ ∈ GΘ where GΘ ⊂ F = {f |f : X → Y }. Our goal is to find a projection

of the function g ∈ F that minimizes (locally) the loss function ρ for a fixed

y in the functional space GΘ. A generic Gradient Descent (GD) [72] method

starts from a random set of parameters θ1, and then iterates the following:

θi = θi−1 − α
d

dθ
ρ(gθ(x),y)

∣∣∣∣
θ=θi−1

. (2.51)

Equation (2.51) shows that the parameters of the function are updated

iteratively following the opposite direction of the gradient of the loss function

ρ. This makes sense because in this way we will find some value for θ

that will locally minimize the loss function ρ. As we can see, GD finds a

sequence θ1, θ2, . . . , θn ≈ θ∗ where θ∗ is the configuration that minimizes

locally ρ(y, gθ∗(x)). The function gθ∗ belongs to the functional space GΘ ⊂
F , thus gθ∗ could be seen as a projection ΠΘF → GΘ. Figure 2.4 shows how

GD works.

The principle behind Functional Gradient Descent (FGD) [13] is very

similar, the goal is to find a function g by exploiting the gradient of the

loss, but in a very different way. Instead of finding a parameter θ for which
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Algorithm 4: Functional Gradient Descent

Data: x, y, ρ, G, M

Result: ĝM
1 j ← 0;

2 ĝ0 ← 0 ;

3 for i = {0 . . .M − 1} do

4 u← − ∂
∂gρ(y,g)

∣∣∣
g=ĝj(x)

;

5 gj ← arg ming∈G ‖g(x)− u‖;
6 ĝj+1 ← ĝj + gj ;

7 end

8 return ĝM ;

gθ ≈ g, we are interested in finding a non parametric function g ≈ g obtained

as the sum of individual gradients. We know that by truncating the first

order of the Taylor series that we can approximate a function by using its

derivative (or gradient):

g(x0 + ε) ≈ g(x0) + ε
d

dx
g(x)

∣∣∣∣
x=x0

. (2.52)

The FGD starts from a function ĝ0 ∈ G (where G ⊂ F ) which we can

suppose to be equal to zero (but it could be initialized randomly). At each

iteration FGD computes the gradient descent direction from ĝj in order to

minimize the error ρ(y, ĝj(x)):

u = − ∂

∂g
ρ(y,g)

∣∣∣∣
g=ĝj(x)

. (2.53)

We approximate the gradient with a function gj such that gj(x) ≈ u.

Note that this step is performed by a base-procedure (a SL algorithm) G
which could use either a parametric or a non-parametric learner.

As we see, in each iteration qj ≈ − ∂
∂gρ(y,g)

∣∣∣
g=ĝj(x)

thus ĝj+1 = ĝj −

∂
∂gρ(y, g)

∣∣∣
g=ĝj(x)

which for (2.52) corresponds a function closer to the target

function g.

In the method described a certain point represents a function ĝj , and to

approximate the function ĝj+1 it approximates the direction of the gradient

descent with gj and then ĝj+1 = ĝj + gj . Thanks to (2.52) we can see that

by approaching j → ∞, ĝj approximates the target model z as shown in

Figure 2.5.
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Ĝ0

Ĝ1

Ĝ2

Ĝ3

ĝ0

ĝ1

ĝ2

ĝ3

g0

g1

g2

g

FGD  F - space

Figure 2.5: The picture is a representation of the FGD algorithm. Here the full arrows

represent the gradients, while the dashed ones are the projection from the F space to

the space Ĝj = {ĝj} . The Ĝj space augment at each iteration, because every dot is

the summation by the dot at the step j − 1 and represents the function ĝj , while the

function gj are represented by the difference ĝj − ĝj−1 .

What it is really interesting is that FGD works directly in the F space

(that is also equivalent to say that works in the Y space because X is

fixed), and then projects the gradient found in the space G of the function

approximator. GD works in the space of parameters Θ, without projecting

the gradient. Performing the gradient in Y is better, because, in theory,

it will lead to find the real optimum, and it is a “natural choice”, while

performing the gradient in Θ makes the gradient move in a less natural

space, and by the way, the optimum gθ∗ that we found with GD is not the

target g.

The last advantage of FGD with respect to GD is that every time that

we iterate, the functional space of ĝj increases, so that ĝj can grow in the

direction of g. We refer to the functional space of ĝj by Ĝj = {ĝj}. Figure

2.5 actually shows how FGD works.

It comes with no surprise that Boosting is a good way to lower down the

bias, because it actually tries to always improve the miss prediction, moving

always closer to the target function g, and increasing at each iteration the

expressivity of the functional space, giving thus to the learner more chance

to approach g. Actually it is also interesting to see that the construction of

the final learner, is done by following a “smart” direction: the one of the
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gradient. So, we approach a low bias by starting from a learner with a small

variance too, and this is actually very different with respect to just picking

up a very complex model and trying to over-fit. We will see in the next

section that actually, the fact that the model is additive does not imply that

also the variance of the model sums up linearly: intuitively, the fact that

each learner depends by the previous ones combined also by the fact that

the gradient will become smooth and close to zero approaching the target

function g, is equivalent somehow to subtract some degrees of freedom in

the learning process.

2.2.4 L-2 Boost

The FGD algorithm described above is quite general and it allows different

loss functions. We would like to study the case of the L2 norm also called

square error. In the case of L2 norm, FGD results particularly simple and

intuitive, showing that at each iteration of the algorithm we are approx-

imating the residual between the target and the function fm. Let define

ρL2 = |f − y|2/2 [15], it is easy to show that:

d

df
ρL2(f, y) = f − y (2.54)

which let us derive u from Equation (2.53):

u = y − ĝj(x). (2.55)

The difference f − y could be seen as the error between the estimation

of y and f . The FGD in the case of L2-boost we know that at each step we

use the base-procedure G in order to find a function gj(x) ≈ u, where u is

previously defined in Equation (2.55).

L2-Boost iterates is an algorithm that refits multiple times the residual

[27]. When we sum up all the models, their variance does not sum up

linearly, because each model depends in some way on the previous one.

Very intuitively, the residual after some iterations will be smoother and

simpler. The complexity of the new combined model increases with respect

the singular models, and approaching j →∞, the variance of the j-th model

is bounded by the noise.

We would like to formally define the bias and the variation of the model.

To do this, we have to introduce some simplification. The first one, is to

hide somehow the variable x, because during the learning process x is fixed.

In fact, when we compute the gradient of ρ(y,g), the term g belongs to the

target space Y . We could so assume that the function gj does not belong to
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the space G (previously defined as a subset of F ) but to the space Y → Y

because gj could be seen as a translation of the output of ĝj . We can now

define the boosting operator at iteration j as Bj : Y → Y , and the operator

S : Y → Y mapping the responses y to some fitted values in Y .

Definition 5. Boosting operator [15]

The boosting operator Bj is defined as

Bj = I − (I − S)j+1. (2.56)

An easy way to show the effectiveness of L2-boost it to restrict the space

the learner S just in the case of linear and symmetric learner with engineval-

ues {λk; k = 1, . . . , n}, based on the deterministic input set x1, . . . , xn, then

the enginevalues of the L2-Boost operator Bj are {(1 − (1 − λk)j+1) : k =

1, . . . , n}.
Now we would like to write the MSE as a combination of bias and vari-

ance.

MSE(j, S; f, σ2) =
n∑
i

(xi − f(xi))
2 = Bias2(j, S; f) + Var(j, S;σ2)

and we can show that:

Bias2(j, S; f) =
1

n

n∑
i=1

(E [ĝj(xi)]− f(xi))
2

=
1

n
fTUdiag((1− λk)2j+2)UT f, (2.57)

Var(j, S;σ2) =
1

n

n∑
i

(ĝj(xi))

= σ2 1

n

n∑
k=1

(1− (1− λk)j+1)2. (2.58)

We can argue, under the assumptions made, that the bias component

of the error decays exponentially fast with respect to j, and the variance

increases exponentially slower with respect to j, and when j approaches to

∞ then the overall MSE converges to σ2, furthermore if there exists λk < 1

then there is a j such that at that iteration the MSE is strictly lower than

σ2. Moreover, let β = UT f = (β1, . . . , βn)T , if β2
k/σ

2 > 1/(1− λk)2 − 1 for

all k with λk < 1 then MSE improves over the linear learner S.

In other words, while the bias decreases exponentially fast, the variance

increases with exponentially diminishing terms[15].
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Algorithm 5: L2-Boost

Data: x, y, G, M

Result: ĝM
1 j ← 0;

2 ĝ0 ← 0 ;

3 for i = {0 . . .M − 1} do

4 u← y − ĝj(x);

5 gj ← arg ming∈G ‖g(x)− u‖;
6 ĝj+1 ← ĝj + gj ;

7 end

8 return ĝM ;

35



36



Chapter 3

Theoretical Analysis

Well, the way of paradoxes is the way of truth. To test reality we must see

it on the tight rope. When the verities become acrobats, we can judge them.

Oscar Wilde - The Picture of Dorian Gray

B-FQI is an algorithm that belongs to the class of AVI algorithms. As

explained in Chapter 2, AVI is a meta-algorithm that is based on an ap-

proximation built at each iteration of T ∗Qk−1. The difference among AVI

algorithms reside in how this approximation is performed and on how the

Optimality Bellman operator is exploited. In the class of FVI algorithms we

use the empirical Optimality Bellman operator which is based on samples.

FQI is a family of batch algorithms that combine the approximation inducted

by projecting at each iteration T ∗Qk−1 and the empirical Bellman operator

which is an approximation of the Optimality Bellman operator. There are

many FQI algorithms, and the main difference between those algorithms is

on how T ∗Qk−1 is approximated. In Section 3.1 we introduce the general

AVI procedure and the mathematical concepts that are exploited in the the-

oretical analysis of AVI methods, while in Section 3.2 we will present some

theoretical results of general AVI algorithm. We introduce in Section 3.4

Regularized FQI (R-FQI): an algorithm that introduces regularization in

the loss function relying on the idea that we can use a very complex approx-

imator, and avoid the overfitting by dynamically setting the penalization

coefficient which in practice restrict the functional space. We introduce in

Section 3.3 Value Pursuit Iteration (VPI) which is an approximate value it-

eration algorithm that finds a policy close to optimal one for problems with

large state space: it finds a good sparse approximation of the optimal value

function being almost insensitive to the number of irrelevant features, and

each iteration it enrich the functional space based on the currently learned



value function. Boosted FQI (B-FQI), introduced in Section 3.5, is an FQI

algorithm which approximate the Bellman residual instead of approximate

directly the value function, so that at each iteration can use a weak learner

and then it constructs an additive model from all the approximations of

the bellman residuals. The former technique could be seen as a boosting

method, with the only difference that here the target changes (but when

B-FQI converges, approaching k → ∞, the target not changes anymore)

thus B-FQI uses weak learners with the advantage of requiring less time in

the approximation phase, and plays the counterpart with respect to R-FQI

which do substantially the opposite since it uses complex functional spaces.

What R-FQI, PVI, and B-FQI share is the idea to dynamically adapt the

complexity of the functional space, overcoming the issue given by the fact

that the complexity of the value function is unknown and it changes iteraton

by iteration.

3.1 Introduction to the Mathematical Framework

In this section we introduce the notations and mathematical formalisms re-

quired in the rest of the chapter. Since the algorithms have a lot in common

(they all belong to the AVI family), they share a lot of mathematical ob-

jects, like how the dataset is generated, the use of the Optimality Bellman

operator or the empirical Optimality Bellman operator; and in order to ex-

ploit their theoretical analysis they all uses same mathematical concepts

like the concentrability. We try here to use for them the same mathematical

notation. We use the same notation as in Farahmand 2011 [21].

The MDP is the same as described in Chapter 2 with discrete action

space A. The dataset that the following technique use is not fixed but it

changes each iteration k (this is a general assumption used to derive theo-

retical results), and each state-action pair is drawn from a distribution µ ∈
M(X ×A) which could be seen as a distribution over the states µX ∈M(X )

where the action is sampled by a policy πb : X → M(A). The collection

of action-state pairs is defined as H
(k)
N = {(X(k)

i , A
(k)
i )|(X(k)

i , A
(k)
i ) ∼ µ}, and

the overall dataset is defined asD
(k)
Nk

= {(X(k)
i , A

(k)
i , R

(k)
i , X ′

(k)
i )|(X(k)

i , A
(k)
i ) ∈

H
(k)
i , R

(k)
i ∼ R(X

(k)
i , A

(k)
i ), X ′

(k)
i ∼ P (·|X(k)

i , A
(k)
i )}1.

As stated in Chapter 2, AVI is a meta-algorithm which produces at

each iteration an approximation of the application of the Bellman optimal

operator Qk ≈ T ∗Qk−1. Basically from how T ∗Qk−1 is approximated we

will have different FQI algorithm. To give some example Regularized FQI

1Sometimes we will omit k when it is not necessary or implicit.
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uses regularization in the loss function, Pursuit Value Iteration uses kernel

functions that are enriched iteration after iteration to represent Qk, and

B-FQI uses an additive model by approximating the Bellman Residual. In

the theoretical analysis of AVI, we assume to not know how T ∗Qk−1 is

approximate, all we need to know is the approximation error between Qk
and T ∗Qk−1 at each iteration k.

Definition 6. Approximation Error

Consider the AVI procedure and the sequence of action-value function es-

timates Q0, Q1, . . . , QK , in which Qk+1 is the result of approximately ap-

plying the Optimality Bellman operator to the previous estimate Qk , i.e.,

Qk+1 ≈ T ∗Qk. Denote the approximation error caused at each iteration by

εk = T ∗Qk −Qk+1 (k ≥ 0); ε−1 = Q∗ −Q0. (3.1)

Note that ε−1 = Q∗ −Q0 is introduced here for notational simplification (it

will be used in 3.4).

Concentrability. Very commonly in AVI we want to estimate the error

of approximation between two function (e.g., between Q∗ and Qk). Since

Q∗−Qk is not a real value, we generally want to compute the p-norm of the

difference between the two functions computed on a set of points or with

respect to a distribution. The error ‖Q∗ − Qk‖p,µ assumes different values

depending on the choiche of p and µ. Since we want to upper-bound the

error, we would like to give the appropriate error bounds with respect to the

norm and the distribution that we are using. In order to do that, we use

the concentrability measures. There are different concentrability measures,

we present here the ones that will be needed in the rest of this document.

Definition 7. One step concentrability (Definition 5.2 Farahmand 2011

[21]) Let µ be a distribution over the state-action pairs, (X,A) ∼ µ, µX be

the marginal distribution of X , and πb(·|·) be the conditional probability of A

given X. Further, let P be a transition probability kernel P : X×A →M(X )

and Px,a = P (·|x, a). Define the one-step concentrability coefficient w.r.t. µ

as

Cµ→∞ =

(
E

[
sup

(y,a′)∈X×A

∣∣∣∣ 1

πb(a′|y)

dPX,A
dµX

(y)

∣∣∣∣
]) 1

2

, (3.2)

where Cµ→∞ = ∞ if Px,a is not absolutely continuous w.r.t. µX for some

(x, a) ∈ X ×A, or if πb(a
′|y) = 0 for some (y, a′) ∈ X ×A.

Definition 8. Expected Concentrability of the Future State-Action Distri-

bution (Definition 3.1 Farahmand 2011 [21])
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Given ρ, v ∈ M(X × A),m ≥ 0 and an arbitrary sequence of stationary

policies (πm)m≥1, let ρP π1P π2 . . . P πm ∈M(X ×A) denote the future state-

action distribution obtained when the first state-action is distributed accord-

ing to ρ and then we follow the sequence of policies (πk)
m
k=1. For integers

m1,m2 ≥ 1 and policies π, π1, π2 define the following concentrability coeffi-

cients, which are used in the analysis of AVI:

cV I1,ρ,v(m1,m2;π) ,

(
E

[∣∣∣∣d(ρ(P π)m1(P π
∗
)m2

dv
(X,A)

∣∣∣∣2
]) 1

2

(3.3)

cV I2,ρ,v(m1;π1, . . . , πk) ,

(
E

[∣∣∣∣d(ρ(P πk )m1P πk−1P πk−2 . . . P π1

dv
(X,A)

∣∣∣∣2
]) 1

2

(3.4)

with (X,A) ∼ v. If the future state-action distribution ρ(P π)m1(P π
∗
)m2

(or likewise ρ(P πk )m1P πk−1P πk−2 . . . P π1) is not absolutely continuous with

respect to v, then take cV I1,ρ,v(m1,m2;π) =∞ and similarly

cV I2,ρ,v(m1;π1, . . . , πk) =∞.

Empirical Bellman Operator Until now we have seen the error given

by the approximation of Qk, and basically this error is caused by the pro-

jection of T ∗Qk onto a functional space. There is another source of error

that is strictly connected by the used of a finite dataset. In fact, in our

application, we do not know what is the precise definition of the Bellman

operator, because we do not have access to the analytical definition of the

model. What we can do is to approximate the Bellman operator by using

samples generated from the model. With the distribution already defined µ,

we construct H
(k)
Nk

which contains state-action pairs, and then we generate

(assuming to have a generative model), a dataset D
(k)
Nk

which contains also

the next states and the rewards observed.

Definition 9. Empirical Optimality Bellman operator (Definition 5.2 [21])

Let D
(k)
Nk

= {X(k)
i , A

(k)
i , R

(k)
i , X ′

(k)
i }

Nk
i=1 be a set of transitions such that

(X
(k)
i , A

(k)
i ) ∼ µ,R(k)

i ∼ R(·|X(k)
i , A

(k)
i ) and X ′

(k)
i ∼ P (·|X(k)

i , A
(k)
i ) and de-

fine H
(k)
Nk

= {(X(k)
1 , A

(k)
1 ), . . . , X

(k)
Nk
, A

(k)
Nk

)}. The empirical Optimality Bell-

man operator T̂ ∗k : HNk → RNk is defined as

(T̂ ∗Q)(X
(k)
i , A

(k)
i ) , R

(k)
i + γmax

a′∈A
Q(X ′

(k)
i , a′). (3.5)

We introduce here also the empirical Bellman residual:

%̃k , T̂ ∗Qk −Qk. (3.6)
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The whole class of Fitted Q-Iteration (FQI) algorithms [20, 66, 22, 24] is

based on using the empirical optimal Bellman operator in F . The correct-

ness of this procedure is guaranteed by E
[
T̂ ∗Qk(X

(k)
i , A

(k)
i )|X(k)

i , A
(k)
i

]
=

T ∗Qk(X
(k)
i , A

(k)
i ). Note that the same result holds for the Bellman residual

E
[
%̃k(X

(k)
i , A

(k)
i )|X(k)

i , A
(k)
i

]
= %k(X

(k)
i , A

(k)
i ).

3.2 Theoretical Analysis of AVI

The theoretical analysis is important both to understand the general prop-

erties and error bounds of AVI algorithms, and also to support new bounds

for each specific AVI algorithm. We report here all the results that are im-

portant for our analysis and to compare the AVI results with the algorithms

presented. The first result that we introduce is an important property of the

Optimality Bellman operator which states that the Optimality Bellman op-

erator is γCµ→∞-Lipschitz with respect to the Banach space of Q-functions

equipped with ‖ · ‖µ [21]. This property could be explicitly wrote as:

‖T ∗Q1 − T ∗Q2‖µ ≤ γCµ→∞‖Q1 −Q2‖µ. (3.7)

This property shows that the bellman operator is γCµ→∞ contractive in a

normed space ‖ · ‖µ. This property will be extensively used in the error

propagation analysis of B-FQI.

3.2.1 Error Propagation

With the error propagation analysis we want to upperbound the error at

the iteration k with respect to the approximation error committed in the

previous iterations. This is done assuming to know the Optimality Bellman

operation T ∗ and to derive Qk with an approximation error as defined in

Equation (3.1). Note that the definition given by Equation (3.1) is general

and does not take in account on how the approximation between Qk and

T ∗Qk−1 is performed. Another assumption that we do is that the norm

operators works directly with the distributions µ without accounting for the

dataset generation and thus without the presence of an empirical Optimality

Bellman operator. Here we present the upperbound of the propagation error

in the case of AVI.

A first results is given by the following theorem:

Theorem 5. Bound on the Approximation error (Theorem 2 Farahmand

2012 [24])

Let (Qk)
K
k=0 be a sequence of state-action value functions and εk as defined
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by Equation (3.1). Let F |A| : X × A → R|A| be a subset of vector-valued

measurable functions. Then,

inf
Q′∈F |A|

‖Q′ − T ∗Qk‖µ ≤ inf
Q′∈F |A|

‖Q′ − (T ∗)k+1Q0‖µ +

k−1∑
i=0

(γCv→∞)k−i‖εi‖µ.

(3.8)

Theorem 5 shows that the minimum error in approximating T ∗Qk with

the functional space F |A| is bounded by the minimum error that will results

in projecting (T ∗)k+1Q0 and a linear combination of all the previous approx-

imation error ‖εi‖µ. This result is very interesting because upperbounds the

projection only thanks to the previous approximation errors, and the error

that would be committed by approximating (T ∗)k+1Q0.

We now introduce an interesting result on how the error propagates in

a general AVI procedure:

Theorem 6. Error Propagation for AVI (Theorem 3.4 Farahmand 2001

[21])

Let k be a positive integer, Qmax ≤ Rmax
1−γ , and ρ an initial state-action

distribution. Then for any sequence (Qi)
k−1
i=0 ⊂ B(X × A, Qmax) and the

corresponding sequence (εk)
k−1
i=0 defined in (3.1), we have

‖Q∗ −Qπk‖1,ρ ≤
2γ

(1− γ)2

[
2γkQmax + inf

g∈[0,1]
C

1/2
V I,ρ,µ(k; g)E1/2(ε0, . . . , εk−1; g)

]
,

(3.9)

where

C
1/2
V I,ρ,µ(k; g) =

(
1− γ

2

)2

sup
π′1,...,π

′
k

k−1∑
i=0

α
2(1−g)
k

∑
m≥0

γm
(
cV I1,ρ,µ(m, k − i;π′k)

+cV I2,ρ,µ(m+ 1;π′i+1, . . . , π
′
k)
) ]2

(3.10)

and E(ε0, . . . , εk−1; g) =
∑k−1

i=0 α
2g
i ‖εi‖

2
µ. Where

αi =


(1−γ)γk−i−1

1−γk+1 0 ≤ i < k,
(1−γ)γk

1−γk+1 i = k.
(3.11)

The result given by Theorem 6 shows that ‖Q∗−Qπk‖1,p is upperbounded

by two main terms: the first one depends by Qmax while the second depends

by the concentrability and the previous approximation error committed.
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3.2.2 Finite-Samples Error Analysis

The finite samples error analysis uses the empirical Optimality Bellman

operator introduced in Section 3.1 and deals with the fact that we have a

dataset composed by a finite number of samples, and thus here we keep

account of both the source of error derived by the approximation caused

by the fact that Qk is an approximation of Qk−1 and the fact that we use

here the empirical Optimality Bellman operator, which is an approximation

of the Optimality Bellman operator. We report from a work of Munos et

al. [55] an example of finite-sample bound for a generic AVI algorithm. In

order to define such bound we must introduce some concepts:

Definition 10. (E , q)-covering number

Let F be an infinite functional space. Let E > 0, q ≥ 1, x1:N , (x1, . . . , xN ) ∈
XN . The (E , q)-covering number is the smallest number m such that F(x1:N )

can be covered my m balls of the normed-space (RN , ‖ · ‖q) with centers in

F(x1:N ) and radius N1/qE. The (E , q)-covering number of F(x1:N ) is de-

noted by Nq(E ,F(x1:N )).

When X1:N are i.i.d with common underlying distribution µ then

E
[
Nq(E ,F(X1:N ))

]
shall be denoted by Nq(E ,F , N, µ). The logarithm of

Nq is called the q-norm metric entropy of F . The idea underlying the cover-

ing numbers is that what really matters when bounding maximal deviations

is how much the functions in the function space vary at the actual samples.

Of course, without imposing any conditions on the function space, covering

numbers can grow as a function of the sample size.

Theorem 7. Finite-Sample Bound for AVI Let Vmax = Rmax/(1 − γ), fix

a real number p ≥ 1, integer N ≥ 1, µ ∈ M(X ) and F ⊂ B(X ;Vmax).

Pick any V ∈ B(X ;Vmax) and let V ′(Xi) = arg minf∈F
∑N

i=1 |f(Xi) −
maxa∈AR

Xi,a +γV (Y Xi,a
i )|p where Xi ∼ µ, RXi,a ∼ R(·|Xi, a) and Y Xi,a ∼

P (·|Xi, a) for i = 1, . . . , N . Let N0(1
8(E4 )p,F , N, µ). Then for any E , δ > 0,

‖V ′ − TV ‖p,µ ≤ inf
f∈F
‖f − TV ‖p,µ + E (3.12)

holds with probability at least 1− δ provided that

128

(
8Vmax

E

)2p

(log(1/δ) + log(32N0(N))) < N, (3.13)

8(Rmax + γVmax)2

E2
(log(1/δ) log(8N |A|)) < 1, (3.14)

hold simultaneously.
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Theorem 7 shows clearly that the error between V ′ and T ∗V can be

bounded with probability at least 1 − δ by two terms: the first term is

the approximation error, while the second term E depends by the number

of samples in the dataset. The theorem also shows that, without taking

account of a logarithmic term, if δ is fixed then E scales linearly with N
1
2p .

3.3 Value Pursuit Iteration

Value Pursuit Iteration (VPI) [24] is an approximate value iteration algo-

rithm that finds a policy close to the optimal one, for large state-space

RL tasks. It works with a dictionary of features and finds a good sparse

approximation of the optimal value function. At each iteration the set of

features is augmented both with features that represent the value functions

found at the previous step and by those features that best approximate the

bellman residual. The goal is to find a sparse representation of the opti-

mal value function by using “smart features”, and to grow the functional

space in a convenient way. The sparsity in literature is commonly tackled

using regularization such as the L1-norm of the weights [45], [41] and [29].

Another approach is based on greedly adding atoms to the representation

of the target function. Examples of this approaches in SL are Matching

Pursuit and Orthogonal Matching Pursuit (OMP) [59] [18]. VPI has been

designed to address the problem of approximating the value function when

not much a priori knowledge is available. The core of VPI is the sparse fea-

ture selection provided by OMP: the algorithm works in theory even with a

countably infinite set of features. In practice we define a dictionary of fea-

tures D = {g1, g2, . . . } where every gi is a real valued function defined in the

state-action domain. The ideal situation is achieved when Q∗ =
∑

i≥1wigi
where only one of the weights wi assumes value one and the others are set

at zero. Of course we are not usually so lucky to have the optimal value

function in our dictionary, but in exact VI algorithms there is k such that Qk
explains a large part of T ∗Qk, so we could use the other features to explain

the bellman residual.

Dictionaries. Let H be a Hilbert space equipped with an inner product

norm ‖ · ‖. We call D = g1, g2, . . . with gi ∈ H a dictionary. The class

L1(D) = L(D, ‖·‖) consists of those functions f ∈ H that admit an expansion

f =
∑

g∈D |cgg with cg being absolutely summable [3]. The norm operator

is defined compactly as ‖f‖L1(D;Dn) , inf{
∑

g∈D |cg| : f =
∑

g∈D cgg} and

we may use ‖f‖L1(D;v) with a similar meaning. When we denote Dm, where

m represents the cardinality of D and with Dm,k we denote the k-th element
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Algorithm 6: Value Pursuit Iteration [24]

Input: Initial dictionary D0, number of dictionary atoms m, link

function {σi}m
′

i=1, state-action distribution v and number of iterations K.

Return: Qk;

Q0 ← 0;

D′0 ← ∅;
for k = 0, . . . ,K − 1 do

Construct the dataset D
(k)
Nk

Q̂
(0)
k+1 ← 0;

//Orthogonal Matching Pursuit loop

Normalize D0,m and D′k according to ‖ · ‖
D

(k)
Nk

and then call them Bk

and D′k;
for i = 1, . . . , c1n do

r(i−1) ← T̂Qk − Q̂i−1
k+1;

g(i) ← arg maxg∈Dk∪D′k
∣∣〈r(i−1), g

〉∣∣;
Q̂

(i)
k+1 ← Π(i)T̂ ∗Qk;

end for

i∗ ← arg mini≥1

{∣∣∣∣∣∣βQmaxQ̂
(i)
k+1 − T̂

∗Qk

∣∣∣∣∣∣2
D

(k)
Nk

+ c2(Qmax)i ln(n)/n

}
;

Qk+1 ← Q̂
(i)
k+1;

D′k+1 ← D′k ∪ {σi(βQmaxQk+1,Dk ∪ D′k)}m
′

i=1;

end for

of Dm. Furthermore L1,α = {h : ‖h‖L1(D;‖·‖) ≤ C and ‖f−h‖ ≤ Cm−α}.
We finally define the truncation operator βL : F → B(X ×A;L).

OMP algorithm works with two inner cycles: the outer one chooses the

function that best approximatesQk+1 among different candidates βQmaxQ̃k+1

and extends the dictionary D′‖+∞ ← D′‖ ∪ {σi(βQmaxQk+1;D‖ ∪ D′‖)}m
′

i=1.

The inner cycle generates iteratively Q̂
(i)
k by computing the residual r(i−1) =

T̂Qk − Q̂
(i−1)
k+1 and then finding the feature g(i) that minimizes the scalar

product with respect to r(i−1). Since every gi has been normalized at the

beginning of the iteration, the feature gi that best minimizes the scalar

product is the one that is more aligned to r(i−1) and Q̂
(i)
k+1 is the best linear

combination of {g(1), . . . , g(i)} that describes T̂ ∗Qk. All the procedure is

formally explained in Algorithm 6.
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3.3.1 Error Propagation

The actual error propagation bounds (at the best of our knowledge) are the

same bounds for AVI, thus they are not really specific for the VPI case.

In VPI article [24] is reported Theorem 6 which we already mentioned in

Section 3.2. We report here Lemma 1 from that article that actually is a

generic AVI bound that will be used in Theorem 8.

Lemma 1. Let (Qi)
k
i=0 ⊂ B(X × A;Qmax) be a Qmax-bounded sequence of

measurable state-action value functions. Define εi for 0 ≤ i ≤ k − 1 as in

Equation 3.1. Then:

‖Qk − T ∗Qk‖2v ≤
(1 + γC2

v→∞)

1− γ

[
k−1∑
i=0

γk−1−i‖εi‖2v + γk(2Qmax)2

]
. (3.15)

where Cv(m) , ‖d(v(Pπ
∗

))m

dv ‖∞.

Lemma 1 shows that the bellman residual in the normed space ‖ · ‖2v is

bounded by two terms both scaled by (1+γC2
v→∞)

1−γ : the first term is a linear

combination of the previous approximation errors, where each of them is

weighted by concentrability Cv(k − 1 − i) and by γk−1−i. We can notice

that the approximation errors in the previous iteration are more important

while the earlier ones decreases exponentially fast. The second term also

decreases exponentially fast and depends by Qmax.

3.3.2 Finite-Samples Analysis

We provide here an upper-bound of the performance loss ‖Q∗−QπK‖1,ρ. It

is important to notice that this error indicates the regret of following the

policy πK instead the optimal one when the initial state-action is distributed

according to ρ. In order to introduce the theoretical result provided in

“Value Pursuit Iteration” Farahmand et al. 2012 [24] we must enumerate

some assumptions:

1. The dataset D
(k)
n is defined as in Section 3.1 except for the size of the

dataset that is always fixed to n (Nk = n).

2. For any couple k 6= k′ where k, k′ ∈ {1, . . .K − 1}, datasets D
(k)
n and

D
(k′)
n are independent.

3. There exists a constant Qmax such that for any Q ∈ B(X ×A;Qmax),

|T̂ ∗Q(X,A)| ≤ Qmax for any X ∈ X , A ∈ A with probability 1.

4. For all g ∈ D0, ‖g‖∞ ≤ L <∞.
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5. The number of atoms m used from the dictionary D0 is m = dnae
for some finite a > 0. The numer of link functions m′ used at each

iteration is at most m/K.

6. At iteration k, each of the link functions {σi}m
′

i=1 maps βQmaxQk+1 and

the dictionary Dk ∪ D′k to an element of the space of vector-valued

Qmax-bounded measurable functions X × A → R|A|. At least one of

the mapping returns βQmaxQk+1.

Theorem 8. Finite-Sample Bound for VPI [24]

Consider the sequence (Qk)
K
k=0 generated by VPI Algorithm 6. Let the as-

sumptions stated above hold. For any fixed 0 < δ < 1, recursively define the

sequence (bi)
K
i=0 as follows:

b20 , c1Q
3
max

√
log(nKδ )

n
+ 3 inf

Q′∈BQmax (L1(D0,m;v))
‖Q′ − T ∗Q0‖2n,

b20 , c1Q
3
max

√
log(nKδ )

n
+

c2 min
{

inf
Q′∈BQmax (L1(D0,m;v))

‖Q′ − (T ∗)k+1Q0‖2v + C1(k)
k−1∑
i=0

γk−1b2i ,

C2

(
k−1∑
i=0

cv(k − 1− i)b2i + γk(2Qmax)2

)}
, (k ≥ 1)

for some c1, c2, c3 > 0 that are only functions of Qmax and L. Then for

any k = 0, . . . ,K − 1, it holds that ‖Qk+1 − T ∗Qk‖2v ≤ b2k, with probabil-

ity at least 1 − kδ
K . Furthermore, define the discounted sum of errors as

E(s) ,
∑K−1

k=0 α2sbk (for s ∈ [0, 1]). Choose ρ ∈M(X ×A). The ρ-weighted

performance loss of πK is the upper-bounded as

‖Q∗−QπK‖1,ρ ≤
2γ

(1− γ)2

[
inf

s∈[0,1]
C

1/2
V I,ρ,v(K; s)E1/2(s) + 2γKQmax

]
, (3.16)

holds with probability 1− δ.

Theorem 8 derives directly by the Theorem 6 where we redefine E as a

linear combination of the approximation error committed at each iteration.

Each approximation error is defined by bk. The terms bk are described with

two terms: the first term

√
log(nK

δ
)

n is the estimation error, while the second

term describes the approximation error. The first term inside min{·, ·} de-

scribes the error when we use the predefined dictionary D0,m to approximate

T ∗Qk (this could be seen thanks to Theorem 5), the second term is given
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by Lemma 1 refers to the error approximation in the earlier iterations: in

this way we consider only earlier Qk to approximate T ∗Qk while VPI uses

possibly other features that might lead a smaller function approximation

error.

3.4 Regularized Fitted Q-Iteration

Regularized Fitted Q-Iteration (R-FQI) [22]2 is a variation of FQI that in-

troduces regularization in the loss function. Regularization [68] is a term

that applies to the loss function in the case parametric regression, penalizing

parameters with high values:

θ = arg min
θ∈Θ

ρ(fθ,y) + λ‖θ‖pp (3.17)

where θ is a vector of parameters. This is done in order to “restrict”

the functional space, and thus to reducing the overfitting. The main idea in

R-FQI it to use a very complex model (in theory a universal functional ap-

proximator), and to find a regularization coefficient that could well balance

overfitting and bias in such way that during each iteration we have a good

approximation of the action-state value function. The advantage is that,

while with standard FQI we must choose the right complexity of the func-

tional space in order that it is enough expressive to represent the action-state

value function and enough simple to do not overfit, in Regularized FQI we

must choose a functional space enough expressive, but without restrictions.

The question now is on how to choose a regularization coefficient in order

to acheive a good approximation of the action-state value function.

We define here the loss function in the case of R-FQI:

ρk(Q) =
1

Nj

N∑
i=1

[r
(k)
i + γmax

a′∈A
Qk(x

′(k)
i , a′)−Q(x, a)]2. (3.18)

Let us suppose that Q ∈ H where H is an Hilbert space. Let the norm of

Q in H be the penalization and ker the Mercer kernel function. At iteration

each iteration k we must find:

Qk+1 = arg min
Q∈H

[
ρk(Q) + λ‖Q‖2H

]
. (3.19)

2The reader who wish to deepen regularization in RL, could read Farahmand’s Phd

dissertation “Regularization in Reinforcement Learning” [21]
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According to the Representer Theorem (for further information read

Scholkopf et al. [69]) we represent Qk as:

Qk(x, a) =

N∑
i=1

α
(k)
i ker((x

(k)
i , a

(k)
i ), (x, a)) (3.20)

where the vector αk ∈ RNk is the vector of the parameters at the k-

th iteration and α
(k)
i is the i-th item of such vector. We can now rewrite

Equation 3.19:

αk+1 = arg min
α∈RNk

1

Nk

∥∥rj + γK+α(k) −Kα
∥∥+ λαTKα (3.21)

with:

[K]h,l = ker(Zj,h, Zj,l), (3.22)

[K+]h,l = ker(Z
(j)
j,h , Zj,l), (3.23)

where Zj,i = (Xi(k) , A
(k)
i ), Z

(j)
j,i = (X ′

(k)
i , A

(k)
i ),

A
(k)
k,i = arg max

A∈A
Qk(X

′(k)
i , A)

and

r = (R
(k)
1 , . . . , R

(k)
Nk

)T .

3.4.1 Error Propagation in R-FQI

Like we have done previously in Section 3.2 we derive here the upperbound

of the error propagation. We use the same definition of approximation error

εk in Equation (3.1). For the sake of flexibility, we allow the user to choose

another distribution, v ∈ M(X ), that is used in assessing the procedure’s

performance, e.g. the stationary distribution induced by the optimal policy.

Theorem 9. Lp-Bound in R-FQI [22]

Consider a discounted MDP with a finite number of actions. Let p > 1.

Assume that both Qk and εk satisfy Equation (3.1) and that πk is a greedy

policy with respect to Qk. Fix k > 0. Define E0 = ‖ε−1‖∞ and εk =

max0≤k≤k ‖εk‖p,v. Then there exist constants C
(1,1)
µ,v and C

(2,1)
µ,v that only

depend on µ, v, γ and the MDP dynamics such that

‖V ∗ − V πk‖p,µ ≤
2

1− γ

[
γ
k
pE0 +

(
(1− γ)C(1,1)

µ,v

1
p + γC(2,1)

µ,v

1
p

)
εk

]
. (3.24)
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Theorem 9 shows that the difference between V ∗ and V πk is bounded

by two terms. The first term γ
k
pE0 says that the error is bounded by the

magnitude of the first error between Q∗ and Q0 but it exponentially de-

creases in the number of iteration. The second term says that the error

both depends by the magnitude of the worst approximation error and by

some constant that depends by the distributions µ and v. Theorem 9 sug-

gests that we should minimize εk, and thus we must choose an appropriate

λ (see Equation (3.19)).

3.4.2 Finite-Samples Analysis

The following finite-samples bound can be obtained generalizing Theorem

21.1 of [35] to an arbitrary reproducing kernel Hilbert space combining it

with Proposition 3 of [83]. In order to simplify the proof of the theorem

Farahmand et al., we made assumption of X = [0, 1]d and to have access of

a generative model. However, those assumptions are not essential and the

theorem could be extended to more general cases.

Theorem 10. R-FQI Approximation Error [22]

Assume X = [0, 1]d, ker ∈ Lip∗(s, C(X ,X )), s > d and Qk is such that

TQk ∈ H. Furthermore, (for the sake of simplicity) we assume that all the

functions involved in the regression problem (the reward function, Qk, and

the result of the optimization problem Qk+1) are bounded by some constant

L > 0. Let Qk+1 be a solution of (3.19) with some λ > 0. Then

‖Qk+1 − TQk‖2v ≤ 2λ‖TQk‖2H +
c1L

4

Nkλd/s
+
c2 log(1/δ)

NkL4
(3.25)

holds with probability at least 1− δ, for some c1, c2 > 0.

We can see that as λ increases, the first term increases too but the second

decreases (as d is positive and s > d). We can see that with λ = N
−1/(1+d/s)
k

the rate convergence is O(N
−1/(1+d/s)
k ) and this is the optimal rate.

3.5 Introduction to B-FQI

Boosted Fitted Q-Iteration (B-FQI) is an iterative offline algorithm that,

given a dataset of transitions, builds an approximation of the optimal action-

state value function by summing approximations of the Bellman residuals

at each iteration. The main advantage of such algorithm with respect to
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ordinary AVI methods is that the Bellman residual is an “easy” function

to approximate, and this could be indirectly shown by showing that B-FQI

is a boosting procedure. Introducing boosting in FQI gives us the typical

advantage of Boosting methods which consists in dynamically increasing the

functional expressivity following the descent direction of the gradient of the

loss. Another advantage is given by the combination of FQI and boosting.

In classical supervised learning setting there is no clear advantage in terms of

time in using boosting because even if it can exploit weak regressors, it also

introduces iterations. B-FQI instead gives a clear advantage in terms of time

because every AVI method has to perform iterations by definition, thus using

a weak regressor instead a more complex regressor must be advantageous in

terms of time. The advantage is particularly clear when B-FQI approaches

to the optimal value function: the bellman residual tends to be zero, while

when FQI as described in [20] approaches to the optimal value function, it

must approximate at each iteration the whole action-state value function. It

is interesting that B-FQI can be considered the counter-side of R-FQI since

that B-FQI increase its functional space complexity, while R-FQI starts from

a complex functional space, and restricts it by means of regularization.

3.6 Theoretical Analysis of B-FQI

Like in Section 3.4 we need to formalize how Qk+1 approximates T ∗Qk. In

order to do that we need to introduce a non-linear operator S : B(X ×A)→
F which projects an action-state value function onto a functional space

F ⊂ B(X ×A). The projection operator is defined as:

Sy = arg inf
f∈F

‖f − y‖2µ, y ∈ B(X ×A). (3.26)

The projection error is required to be bounded linearly with the magni-

tude of the target:

∃χ > 0 : ‖(I − S)y‖µ ≤ χ‖y‖µ ∀y ∈ B(X ×A). (3.27)

Let %k be the Bellman Residual:

%k , T ∗Qk −Qk. (3.28)

The estimate Qk+1 built by B-FQI is a generalized additive model [36]:

Qk+1 = Qk + S%k =
k∑
i=0

S%i, (3.29)
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Algorithm 7: Boosted Fitted Q-Iteration

Input: (D(i)
n )Ki=0, (βBi)

K
i=0, Q0 = 0;

for k = 0, . . . ,K do

%̃k ← T̂Qk −Qk (w.r.t. D(k)
n );

Qk+1 ← Qk + βBk arg inff∈F ‖f − %̃k‖D(k)
n

;

end for

return π̄(x) = arg maxaQK+1(x, a) ∀x ∈ X ;

obtained by fitting the Bellman residual at each iteration. Without loss

of generality we assume Q0(x, a) = 0 for any (x, a) ∈ X ×A.

3.6.1 Error Propagation

Like we have done previously for AVI R-FQI and for VPI, we bound the

error ‖Qk+1−Q∗‖∞ in terms of the previous error ‖Qk −Q∗‖∞. This error

bound is done very easily considering Equation (3.29) and the bound on the

projection operator S (Equation (3.27)), moreover we keep account of the

max-norm contraction property of the Optimality Bellman operator already

introduced in Chapter 2.

Theorem 11. Propagation Error

Let (Qi)
k
i=0 be a sequence of measurable action-value functions obtained

following the boosted procedure described in Equation (3.29) and let L =

γCµ→∞. Then, under assumption made in Equation (3.27)

‖Qk −Q∗‖µ ≤ ((1 + L)χ+ L) ‖Qk−1 −Q∗‖µ .

Proof.

‖Qk −Q∗‖µ = ‖Qk − T ∗Qk−1 + T ∗Qk−1 −Q∗‖µ
≤ ‖Qk−1 + S%k−1 − T ∗Qk−1‖µ + ‖T ∗Qk−1 −Q∗‖µ
≤ χ ‖%k−1‖µ + L ‖Qk−1 −Q∗‖µ (3.30)

≤ (1 + L)χ ‖Qk−1 −Q∗‖L + L ‖Qk−1 −Q∗‖µ (3.31)

where (3.30) follows (3.27) and (3.7) while inequality (3.31) is a consequence

of the fact that

‖%k‖µ ≤ ‖T ∗Qk − T ∗Q∗‖µ + ‖T ∗Q∗ −Qk‖µ
≤ (1 + L) ‖Qk −Q∗‖µ (3.32)

that again is a consequence of (3.7).
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First of all, notice that when S = I (i.e., χ = 0) we correctly obtain the

usual convergence rate of value iteration. On the other cases, similarly to

SL [14], we can still converge to the target (here Q∗) given that the operator

I − S is sufficiently contractive.

Corollary 1. Given the settings of Theorem 11, the sequence (Qi)
k
i=0 con-

verges to Q∗ when

χ <
1− γCµ→∞
1 + γCµ→∞

.

and

γCµ→∞ < 1.

Corollary 1 shows us that if the approximator S has a relative error

χ <
1−γCµ→∞
1+γCµ→∞

and combined with a concentrability measure Cµ→∞ < 1/γ,

then B-FQI converges.

3.6.2 τ−Greedy Policies

Recently, Munos et al. [54] have analyzed the use of τ -greedy polices for

control purposes in off-policy learning. Inspired by such paper, by exploiting

their definition in l∞-norm, we show that is possible to use τ -greedy policies

in AVI. In our work we provided error propagation bounds both for general

AVI and for B-FQI. We introduce the non-greedy policy πk which is τ -far

away from the greedy policy with respect to Qk:

Definition 11. τ -greedy policy [54]

Consider a non greedy policy πk which is τ far away from the greedy policy

with respect to Qk:

T πkQk ≥ T ∗Qk − τk‖Qk‖∞e (3.33)

where e is the vector with 1-components.

τ-greedy policies. We show here a bound for non-greedy policies in the

general case of AVI. As far as we know this bound is not present yet in the

literature:

Theorem 12. Consider ξk = T πkQk−Qk+1 as the approximation error with

respect to the bellman operator πk where πk is τ -greedy (Equation (3.33)).

The error Qk+1 −Q∗ is bounded by:

‖Qk+1 −Q∗‖∞ ≤ ‖ξk‖∞ + τk‖Qk‖∞ + γ‖Qk −Q∗‖∞. (3.34)
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Proof. The proof could be split in the upperbound and lowerbound deriva-

tion, which are completely symmetric. For sake of completeness we report

here both.

Upper bound

Qk+1 −Q∗ = Qk+1 − T πkQk + T πkQk −Q∗

≤ (‖Qk+1 − T πkQk‖∞ + ‖T πkQk −Q∗‖∞)e

= (‖ξk‖∞ + ‖T πkQk − T ∗Qk + T ∗Qk −Q∗‖∞)e

≤ (‖ξk‖∞ + ‖T πkQk − T ∗Qk‖∞ + ‖T ∗Qk −Q∗‖∞)e

≤ (‖ξk‖∞ + τk‖Qk‖∞ + γ‖Qk −Q∗‖∞)e. (3.35)

Lower bound

Qk+1 −Q∗ = Qk+1 − T πkQk + T πkQk −Q∗

≥ −(‖Qk+1 − T πkQk‖∞ + ‖T πkQk −Q∗‖∞)e

= −(‖ξk‖∞ + ‖T πkQk − T ∗Qk + T ∗Qk −Q∗‖∞)e

≥ −(‖ξk‖∞ + ‖T πkQk − T ∗Qk‖∞ + ‖T ∗Qk −Q∗‖∞)e

≥ −(‖ξk‖∞ + τk‖Qk‖∞ + γ‖Qk −Q∗‖∞)e. (3.36)

The last passages Equations (3.35), (3.36) are derived by the max-norm

contraction property of the bellman operator, and thanks to Equation (3.33).

Now we can see that both the bounds derive the same bounds point-wisely.

We can thus same that:

‖Qk+1 −Q∗‖∞ ≤ ‖ξk‖∞ + τk‖Qk‖∞ + γ‖Qk −Q∗‖∞ (3.37)

which is the statement of the theorem.

Theorem 12 shows that the error between Qk+1 and Q∗ could be bounded

the composition of three terms: the approximation error ‖ξk‖∞, the τ -

distance of the non-greedy policy, and the previous error ‖Qk −Q∗‖∞.

We can derive also the relative bound for B-FQI:

Theorem 13. Propagation Error with non-greedy policies for B-FQI

Consider a sequence of policies (πi)
k
i=0 that are non-greedy w.r.t. the se-

quence (Qk)
k
i=0 of Q-functions obtained following the boosting procedure

Qk = Qk−1 + Sηk−1 (3.38)

where ηk , T πkQk−Qk is the residual computed with the non-greedy Bellman

operator. Assume the policies πk are τk-away from the greedy policy w.r.t.
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Qk, so that T πkQk ≥ T ∗Qk − τk ‖Qk‖∞ e, where e is the vector with 1-

components. Then for any k > 0

‖Qk −Q∗‖∞ ≤ ‖(S − I)ηk−1‖∞ + γ ‖Qk−1 −Q∗‖∞ + τk ‖Qk−1‖∞ . (3.39)

Proof. We split here the proof in two parts: the first part is devoted to

upperbound Qk −Q∗ and the second one to lowerbound the same quantity.

Lower bound. Notice that

Qk −Q∗ = Qk ± T πk−1Qk−1 ± T π
∗
Qk−1 −Q∗

≥ Qk − T πk−1Qk−1 − τk−1 ‖Qk−1‖∞ e
+γP π

∗
(Qk−1 −Q∗) (3.40)

= (S − I)(T πk−1Qk−1 −Qk−1)− τk−1 ‖Qk−1‖∞ e
+γP π

∗
(Qk−1 −Q∗), (3.41)

where (3.40) follows from the definition of T π
∗

and τ -away from the greedy

policy

T πkQk ≥ T ∗Qk − τk ‖Qk‖∞ e ≥ T
π∗Qk − τk ‖Qk‖∞ e,

while (3.41) is proved from

Qk+1 − T πkQk = Qk + S(T πkQk −Qk)− T πkQk
= (S − I)(T πkQk −Qk).

Upper bound. Let us derive an upper bound of the same quantity.

Let π̄k be the greedy policy associated to Qk, then T π̄kQk ≥ T πQk, for any

policy π.

Qk −Q∗ = Qk−1 + S(T πk−1Qk−1 −Qk−1)−Q∗

= Qk−1 ± T πk−1Qk−1 + S(T πk−1Qk−1 −Qk−1)−Q∗

= (S − I)(T πk−1Qk−1 −Qk−1) + T πk−1Qk −Q∗

≤ (S − I)(T πk−1Qk−1 −Qk−1)

+T π̄k−1Qk−1 − T π̄k−1Q∗

= (S − I)(T πk−1Qk−1 −Qk−1)

+γP π̄k−1(Qk−1 −Q∗) (3.42)

since T πQ∗ ≤ Q∗ for any π. Combining the above (3.42) with (3.41) we

derive the result.
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We can compare here the results of Theorem 13 with the relative Theo-

rem 12. The results is coherent if wee keep in account that:

‖ξk−1‖∞ = ‖T πk−1Qk−1 −Qk‖∞
= ‖T πk−1Qk−1 − (Qk−1 + S(T πkQk−1 −Qk−1))‖∞ (3.43)

= ‖ηk−1 − Sηk−1‖∞
= ‖(S − I)ηk−1‖∞.

Passage (3.43) is the application of the definition of Qk in this contest

(Equation (3.38)). This result plays the same role of Theorem 11 and shows

that by behaving τ -greedly we have a linear additive cost proportional to τ .

The advantage respect the general AVI procedure is that ηk should tend to

zero when B-FQI converges, thus, also (S − I)ηk should converge for how

operator S is defined and bounded. ξk could be defined, for a general FQI

procedure, as ξk = T πkQk − ST πkQk, and for how S is define, there is no

guarantee that ξk converges to zero.

Approximation of the residual. While previous results were somehow

expected to hold as a consequence of the results in SL, we now show how the

approximation error due to the fitting of the Bellman residual propagates.

Until now we used S to represent the projection of the Bellman Residual

onto the functional space F by minimizing a norm computed under the dis-

tribution µ. This operator is somehow theoretical, in reality we must use an

operator that minimizes the norm computed on samples. We introduce here

the nonlinear operator Ŝ : B(X × A) → F which represents the regression

step, and the truncation operator βBk which is a truncation operator:

Ŝy = arg inf
f∈F

‖f − y‖2
D

(k)
Nk

. (3.44)

We define here %̂ as the truncated projected empirical Bellman residual

(as defined in Equation 3.6):

%̂ = βBk Ŝ%̃k

= βBk arg inf
f∈F

‖f − %̃k‖2D
(k)
Nk

= βBk arg inf
f∈F

Nk∑
i=1

1

Nk

∣∣∣f(X
(k)
i , A

(k)
i )− %̃k(X

(k)
i , A

(k)
i )
∣∣∣2 , (3.45)

which is used to update the approximation of T ∗Qk:
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Qk+1 = Qk + βBk Ŝ%̃k =
k∑
i=0

%̂i, Qk+1 ∈ Hk+1. (3.46)

Now we have a complete definition of B-FQI algorithm, taking in account

all the sources of error (Algorithm 7). Note that the introduction of the

truncated projected Bellman residual %̂k ∈ B(X ×A, Bk) is required for the-

oretical guarantees, while H ⊂ B(X × A) is a function space that possibly

increases its complexity over time. This increment can be seen as a proce-

dure of altering the underlying function space and, potentially, increasing

the richness of Hk at each iteration. Now suppose that our function space

F is Glivenko-Cantelli, i.e., the error due to the empirical process goes to

zero at least asymptotically. The preservation theorem [76] states that, un-

der mild assumptions, the space obtained by the sum of Glivenko-Cantelli

functions is still Glivenko-Cantelli. This means that if we start from a suffi-

ciently powerful functional space, the boosting procedure at least preserves

its properties. Although this does not provide any insight about the “in-

creased” complexity of Hk, it shows the soundness of boosting. In practice

this means that B-FQI is able to learn complex, nonparametric approxima-

tions of Q∗ over time. Additionally, the update procedure is computationally

efficient since it can rely on specialized batch algorithms available for several

regression techniques. In SL the boosting procedure comes at an increased

computational cost since it should estimate k > 1 regressors. Even if re-

gression tasks become simpler at each successive iteration, the complexity

is proportional to the number of steps [14]. In our settings, we enjoy the

benefits of exploiting a richer approximation space, without paying any ad-

ditional cost, since the number of regression tasks is the same as in the other

Fitted Value Iteration methods. In particular, we can see B-FQI as a single

boosting procedure with time-varying target: Yk+1 = T ∗Qk (while in SL

the target is fixed). This aspect prevents to directly reuse results from SL.

We want to show that every iteration of B-FQI is equivalent to L2-boost

procedure:

Theorem 14. Each iteration of B-FQI is equivalent to one L2-Boost pro-

cedure

Let

Qk+1 = Qk + βBk Ŝ%k (3.47)

where at each iteration k, T̂ ∗Qk is the target, Qk is the actual approxima-

tion, and βBk Ŝ is the base procedure; then Qk+1 is equivalent to one-step

L2-boost.
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Proof. Let us define the L2-loss as

ρ(y, f) =
1

2
(y − f)2 (3.48)

Since our target is T̂ ∗Qk(x,a) where x = (X
(k)
1 , . . . , X

(k)
Nk

) and

a = (A
(k)
1 , . . . , A

(k)
Nk

), The Functional Gradient Descent described by Algo-

rithm 4 requires to compute

u = − ∂

∂f

1

2
(T̂ ∗Qk(x,a)− f)2

∣∣
f=Qk(x,a)

(3.49)

yields

u = T̂ ∗Qk(x,a)−Qk. (3.50)

The boosting algorithm requires to approximate the residual u with a base

procedure Ŝ, and then add the approximation to the actual model:

Qk+1 = Qk + βBk Ŝu. (3.51)

As we can notice u = %k and Equation (3.51) is equivalent to Equation (3.47).

As our loss was a L2 loss, our approximation is equivalent to one step of

L2-Boost.

Theorem 14 shows that B-FQI performs at every iteration a step L2-

Boost, which does not means that the overall algorithm perform a L2-Boost

procedure, because at each iteration the target T̂ ∗Qk changes. We can also

notice that when B-FQI converges, T̂ ∗Qk ≈ T̂ ∗Qk+1 which means that the

target is almost always the same, thus, approaching the convergence, B-FQI

behaves approximately like a L2-Boost algorithm.

For a sequence (Qi)
k
i=0 denotes the approximation error as:

εk , %k − βBk Ŝ%̃k, (3.52)

so that Qk+1 = T ∗Qk−εk . The result we are going to provide is the boosted

counterpart of Theorem 5. Here we want to bound the minimum error that

we commit by projecting the residual T ∗Qk −Qk in the functional space F .

This result is very important because it gives us also a way to later bound

the error with the empirical norm ‖ · ‖
D

(k)
Nk

.

Theorem 15. Let (Qi)
k−1
i=0 be a sequence of state-action value functions,

(εi)
k−1
i=0 be the corresponding sequence as defined in (3.52). Define %∗k ,
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(T ∗)k+1Q0 − (T ∗)kQ0 and L = γCµ→∞. Let F ⊆ B(X × A) be a subset of

measurable functions. Then,

inf
f∈F
‖f − (T ∗Qk −Qk)‖µ ≤ inf

f∈F
‖f − %∗k‖µ

+(1 + L)
k−1∑
i=0

Lk−1−i ‖εi‖µ . (3.53)

Proof. In order to bound inff∈F ‖f − %k‖µ we pick any f ∈ F and by triangle

inequality we have that:

‖f − %k‖µ ≤ ‖f − %
∗
k‖µ + ‖%∗k − %k‖µ . (3.54)

Since by [21], T is L , γCµ→∞-Lipschitz w.r.t. ‖·‖µ, we can bound ‖%∗k − %k‖µ
as follows:

‖%∗k − %k‖µ ≤
∥∥∥(T ∗)k+1Q0 − T ∗Qk

∥∥∥
µ

+
∥∥∥(T ∗)kQ0 −Qk

∥∥∥
µ

≤ L
∥∥∥(T ∗)kQ0 −Qk

∥∥∥
µ

+
∥∥∥(T ∗)kQ0 −Qk

∥∥∥
µ

= (1 + L)
∥∥∥(T ∗)kQ0 − (T ∗Qk−1 + εk−1)

∥∥∥
µ

≤ (1 + L)

(∥∥∥(T ∗)kQ0 − T ∗Qk−1

∥∥∥
µ

+ ‖εk−1‖µ
)

≤ (1 + L)

(
L
∥∥∥(T ∗)k−1Q0 −Qk−1

∥∥∥
µ

+ ‖εk−1‖µ
)

≤ (1 + L)

(
L

(
L
∥∥∥(T ∗)k−2Q0 −Qk−2

∥∥∥
µ

+ ‖εk−2‖µ
)

+ ‖εk−1‖µ
)

≤ . . . ≤ (1 + L)
k−1∑
i=0

Lk−1−i ‖εi‖µ . (3.55)

The statement follows directly from the combination of inequalities (3.54)

and (3.55).

Previous theorem shows how the approximation error of the Bellman

residual in the boosted scenario relates to the Bellman residual of Value

Iteration (%∗k) and the errors in earlier iterations. We can see that the error

‖εk‖2µ is bounded by inff∈F ‖f−%∗k‖2µ which is the minimum error committed

by projecting %∗k onto the functional space F by minimizing the squared

norm ‖·‖µ. The interesting part is that %k converges to zero for k → 0, which

suggests us that our functional space should be able to well approximate
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functions around zero. ‖εk‖2µ is also bounded by a linear combinations of

‖εj‖2µ which suggests us (with no surprise) that previous approximation error

should be as small as possible to achieve a good approximation, and also

Cµ→∞ (which is implicitly hidden in L) should be preferable close to zero.

This bound will play an important role in the derivation of the finite-sample

error bound (Theorem 16).

3.6.3 Finite-Sample Error Analysis

In this section, we derive an upper bound to the difference between the

performance of the optimal policy and the performance of the policy learned

by B-FQI at the k-th iteration. Such upper bound depends on properties of

the MDP, properties of the approximation space and the number of samples.

Since B-FQI is an AVI algorithm, we can bound the performance loss at

iteration k (‖Q∗ −Qπk‖1,ρ) using Theorem 6.

Although the bound in Theorem 6 is shared by all the AVI approaches

(e.g., FQI, VPI, B-FQI), for each approach is possible find specific bounds of

the approximation errors εk made at each iteration k. The following theorem

provides an upper bound to ‖εk‖2µ for the case of B-FQI:

Theorem 16. Let (Qi)
k
i=0 be the sequence of state-action value functions

generated by B-FQI using at each iteration i a dataset D(i)
n = {X(i)

s , A
(i)
s , R

(i)
s

, X ′s
(i)}ns=1 with i.i.d. samples (X

(i)
s , A

(i)
s ) ∼ µ, X ′s

(i) ∼ P (·|X(i)
s , A

(i)
s ) and

R
(i)
s ∼ R(·|X(i)

s , A
(i)
s ) for s = 1, 2, . . . , n, where each dataset D(i)

n is indepen-

dent from the datasets used in other iterations3. Let εi , %i− %̂i (0 ≤ i ≤ k),

%∗k , (T ∗)k+1Q0 − (T ∗)kQ0, and %̃k , T̂ ∗Qk − Qk. Let F ⊆ B(X ,A) be a

subset of measurable functions. Then,

‖εk‖2µ ≤ 4 inf
f∈F
‖f − %∗k‖

2
µ + 4(1 + L)2

k−1∑
i=0

L2i
k−1∑
j=0

‖εj‖2µ

+
24 · 214B4

k

n

(
log 42e+ 2 log(480eB2

kn)VF+

)
where L = γCµ→∞, Bk = max(‖%̃k‖∞ , 1), and VF+ is the VC dimension of

F+ that is the class of all subgraphs of functions f ∈ F (see Chapter 9.4

of [35]).

Proof. Since by previous definitions ‖εk‖2µ = ‖%k − %̂k‖2µ and %̂k = βBk Ŝ%̃k =

βBk arg inff∈F ‖f − %̃k‖
2

D(k)
n

, and given that |%̃k| ≤ Bk = max(‖%̃k‖∞ , 1), we

3The indipendence of the datasets at different iterations can be relaxed as done in

Section 4.2 of Munos et al. 2008 [55].
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can use Theorem 11.5 in [35] to upper bound the above regression error as

follows:

‖εk‖2µ = ‖%k − %̂k‖2µ
≤ 2 inf

f∈F
‖f − %k‖2µ

+
24 · 214B4

n

(
log 42e+ 2 log(480eB2n)VF+

)
.

Using Theorem 15 and the Cauchy-Schwartz inequality to bound the first

term completes the proof.

The above theorem shows that the error of B-FQI at each iteration k

can be bounded by the sum of three main terms, that, respectively, are: the

approximation error in function space F of the Bellman error at the k-th

iteration of VI, the propagation error that depends on the errors at previous

iterations, and the estimation error induced by having a finite number of

samples. The main differences between this result and related results pre-

sented in [23, 21, 24] are in the approximation and estimation errors. In

B-FQI, %∗k and ‖%̃k‖∞ take the role played, respectively, by (T ∗)kQ0 and

Qmax in other FVI approaches, enjoying the advantage of being bounded by

smaller constants. For what concerns %∗k, assuming that Q0 is initialized at

zero for any state-action pair, it is known that ‖%∗k‖∞ ≤ γkRmax. In order

to upper bound ‖%̃k‖∞ we first introduce the following Lemma, that bounds

the supremum norm of the Bellman residuals at iteration k.

Lemma 2. Let (Qi)
k−1
i=0 be a sequence of state-action value function, (εi)

k−1
i=0

be the corresponding sequence as defined in (3.52), then

‖%k‖∞ ≤ (1 + γ)
k−1∑
i=0

γk−i−1 ‖εi‖∞ + γkRmax.

Proof.

‖%k‖∞ = ‖T ∗Qk −Qk‖∞

= sup
x,a

∣∣∣∣r(x, a) + γ

∫
X
P (dy|x, a) max

a′
Qk(y, a

′)−Qk(x, a)

∣∣∣∣
= sup

x,a

∣∣∣∣r(x, a) + γ

∫
X
P (dy|x, a) max

a′

(
T ∗Qk−1(y, a′)− εk−1(y, a′)

)
− (T ∗Qk−1(x, a)− εk−1(x, a))|

≤ (1 + γ) ‖εk−1‖∞ + sup
x,a

∣∣∣∣γ ∫
X
P (dy|x, a)

(
max
a′

(
T ∗Qk−1(y, a′)

)
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−max
a′′

(
Qk−1(y, a′′)

))∣∣∣∣
≤ (1 + γ) ‖εk−1‖∞

+γ sup
x,a

∣∣∣∣∫
X
P (dy|x, a)

(
max
a′

∣∣T ∗Qk−1(y, a′)−Qk−1(y, a′)
∣∣)∣∣∣∣

≤ (1 + γ) ‖εk−1‖∞ .+ γ ‖%k−1‖∞ .

By unfolding the recursion and noting that ‖%0‖∞ ≤ Rmax when Q0 is

initialized to zero for each state-action pair, the lemma is proved.

Leveraging on the previous Lemma, we can provide a bound to ‖%̃k‖∞.

Lemma 3. Let (Qi)
k−1
i=0 be a sequence of state-action value function, (εi)

k−1
i=0

be the corresponding sequence as defined in (3.52), then

‖%̃k‖∞ ≤ (1 + γ)

k−1∑
i=0

γk−i−1 ‖εi‖∞ + γkRmax + 2Rmax.

Proof.

‖%̃k‖∞ =
∥∥∥T̂Qk −Qk∥∥∥

∞
= sup

x,a,x′,r

∣∣∣∣r + γmax
a′

Qk(x
′, a′)−Qk(x, a)

∣∣∣∣
= sup

x,a,x′,r

∣∣∣∣r + γmax
a′

(
T ∗Qk−1(x′, a′)− εk−1(x′, a′)

)
− (T ∗Qk−1(x, a)− εk−1(x, a))

∣∣∣∣
≤ (1 + γ) ‖εk−1‖∞ + 2Rmax

+γ sup
x,a.x′

∣∣∣∣(max
a′

(
T ∗Qk−1(x′, a′)

)
−
∫
X
P (dy|x, a) max

a′′

(
Qk−1(y, a′′)

))∣∣∣∣
≤ (1 + γ) ‖εk−1‖∞ + 2Rmax

+γ sup
z

max
a′

∣∣T ∗Qk−1(z, a′)−Qk−1(z, a′)
∣∣

= (1 + γ) ‖εk−1‖∞ + 2Rmax + γ ‖%k−1‖∞ .

Finally, using Lemma 2 we get the statement.

From the stated results, it can be noticed that when the errors at pre-

vious iterations is small enough, B-FQI can achieve an upper bound to the

estimation error at iteration k similar to other FVI methods, but needing

fewer samples since the range of the target variable is smaller.
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Chapter 4

Empirical Results

“They believed that prediction was just a function of keeping track of things.

If you knew enough, you could predict anything. That’s been cherished sci-

entific belief since Newton.

‘And?’

Chaos theory throws it right out the window.”

Ian Malcom, Jurassic Park1

In this chapter we provide the experimental settings and the empirical re-

sults. In Section 4.1 we introduce the technology details of the framework

developed in order to run the experiments, explaining how we implemented

such framework and how we optimized computations (further delails can be

found in Appendix A). In Sections 4.2, 4.3, 4.4, we define the RL tasks that

are used to compare B-FQI and FQI. In this chapter we provide two differ-

ent analysis: a view on how B-FQI and FQI behave with different model

complexity is provided in Section 4.5 while a comparison on how the two

algorithms behave with different dataset sizes is provided in Section 4.6. In

Section 4.7 we compare B-FQI and FQI in the challenging environment of

the bicycle.

1The reader may notice that this citation is an unhappy choice for introducing the

empirical results (even thought that in this thesis prediction plays a fundamental role).

The author would like to reassure the reader that the experiments gave quite satisfying

results, and of course none of the environment tested was chaotic. The citation it is both

inspired by the fact that the author believes that programming is a chaotic process - but

we leave this analysis for further studies, and by the love for the chaos theory, which makes

human life more challenging and more beautiful as one could expect.



4.1 Technology Details

In order to develop and test B-FQI we designed a powerful framework called

iFQI, which provides an implementation of both FQI and B-FQI, allows the

user to run a number of different experiments by writing a proper configu-

ration file, and collects all the observed variables on files. iFQI is wrote in

python (2.7), uses NumPy (1.12.0) [78] for matrix calculus, Keras (1.2.1)

[16] for Neural Networks with Theano (0.8.2) [1] back-end for symbolic com-

putations, SciKit-learn (0.17.1) [60] for extremely randomized trees (Extra-

Trees) [28] and for the dataset reshaping and OpenAI Gym (0.7.1) [12] for

running RL tasks. iFQI is thought to be a flexible framework, allowing the

users to define new environments, use different kinds of regressors and write

other RL algorithms.

Structure of iFQI iFQI is organized in different modules: envs, model,

experiment, evaluation and ifqi. Module envs is a collection of environ-

ments: some of these environments are wrote by us, while others are just

a wrap of OpenAI Gym environments. Module model is a collection of the

available regressors. In this document we refer to B-FQI as a variation of

FQI, but in the code we found more convenient to see FQI as a unique al-

gorithm that receives a normal regressor or a “boosted” regressor (which in

the code’s nomenclature is called “ensemble”). In this way we could let the

regressor perform data reshaping, optimization of the computations, and to

sum up the results provided by the regressors when a prediction is required.

We must also introduce here the concept of action-regressor which corre-

sponds in our code to a collection of regressors, where each one of them

approximates the value function of a particular action. experiment class is

responsible of reading the configuration file and preparing the experiment

accordingly. Module evaluation collects the datasets and evaluates the

policy found at the i-th iteration. Module ifqi simply implements the FQI

algorithm, abstracting from the kind of regressor used, thus in practice could

also be used as B-FQI.

Optimizing B-FQI In Chapter 3 we saw that B-FQI at the iteration k

express Qk+1 = Qk + Ŝ%̂k, where %̂k = T̂ ∗Qk − Qk =
∑k−1

i=0 %̂i and S%̂k =

arg minf∈F ‖%̂k−f‖DkNk
. This implies that in order to fit S%̂k, we requires to

sum up k approximation terms. This could become a problem since it implies

that B-FQI requires quadratic time considering the overall fitting phase

while FQI requires only linear time with respect to the number of iterations.

This issue could be circumvented by storing the output of Qk−1(X
(k−1)
i )
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and then reusing it to compute Qk(X
(k)
i ) = Qk−1(X

(k)
i ) + %̂k−1 since D

(k)
Nk

=

D
(k−1)
Nk−1

and X
(k)
i = X

(k−1)
i because the dataset never changes through the

iterations. The same reasoning can not be applied in the prediction phase,

in fact Xi is assumed to be unseen. This is a problem, because in the

prediction phase we must compute and sum the output of a number of

regressors, and it could be that the sum of the simpler model of B-FQI

requires more time than computing only one output of a more complex

model of FQI. Since the complexity of the models used by B-FQI is kept

constant iteration by iteration, there will be an iteration k∗ such that the

sum of k∗+1 simpler models will requires more time than FQI. The problem

could be solved by parallelizing the prediction of k models, so that also

the prediction phase of B-FQI will potentially cost less with respect to the

prediction of FQI. In practice, the parallelization introduces an overhead,

and in our case the computations were faster without parallelization, because

our models were too simple and the number of models was not high enough

to bypass the overhead. We still want to mention this possibility, because in

more challenging environments parallelization could play an important role.

A pseudo-code of the optimized implementation of B-FQI could be found in

Appendix A.

4.2 Swing-Up Pendulum

Swing-Up Pendulum [19] is a classical RL problem. It consists in a pendulum

fixed in one of its extremity. The goal is to swing up the pendulum in a

vertical position and prevent it to fall. The system is controlled through the

continuous torque applied to the pendulum. The pendulum is more formally

described by the following dynamics2:

θ̇t+1 = θ̇t −
3g

2l
sin θt + π +

3

ml2ut
dt (4.1)

θt+1 = θt + ∆tθ̇t, (4.2)

where ∆t = 0.05, g = 10, m = 1, l = 1 and µ = 0.01. The scalar

value u ∈ [−2, 2] represents the torque. There is not an absorbing state,

and the episode has a fixed duration of 200 steps. The discount factor is

γ = 1. The state is described by (cos(θ), sin(θ), θ̇), and the initial state

is drawn uniformly from {(cos(θ), sin(θ), θ̇)|θ ∈ [−π, π], θ̇ ∈ [−1, 1]}. The

2We use here the dynamics used by the OpendAI Gym’s implementation Pendulum-v0,

which are slightly different by the one used by Doya et al. [19].
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θ

goal position

Figure 4.1: Here an example of swing pendulum both with displacement θ from the

vertical axis, and in its goal position (with θ = 0).

training set is composed by random episodes, where the action is sampled

uniformly from [−2, 2] at each step. Notice that we just use two discrete

actions (that correspond to the borders of the interval) for the computation

of T̂ and the greedy policy. Since the initial state is randomly selected,

in the evaluation phase we average the performance over 5 episodes. We

average every evaluation among 5 different episodes.

4.3 Cart-Pole

Cart-pole [4]3 problem consists in balancing in upright position a pole at-

tached to a cart moving on a frictionless track. The cart can be controlled

by means of a discrete force of 10N that is possible to apply both to the

left or to the right of the cart. The goal is to keep the pole in vertical posi-

tion between |θ| ≤ 12π/180 where |θ| is the angle between the pole and the

upright position. Moreover the cart moves on the track between |z| ≤ 2.4

where z indicates the horizontal position of the cart. When one of the two

conditions fails, the episode terminates. The reward function is expressed

3Actually the dynamic described by Barto et al. [4] in his article both the track and the

joint between the cart and the pole have a small friction (figure 2.1). In the implementation

Cartpole-v0 of OpenAi Gym, which makes reference to those article, they use simpler

dynamics that do not make usage of friction. We report here the dynamics used by OpenAI

gym, since we also used those dynamics.
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in function of the angle θ, and more precisely r = cos(15θ)4. The dynamics

are described by:

δt =
F +mlθ2 sin θ

mc +m
, (4.3)

θ̈t =
g sin θ − cos θδ

l
[

4
3 −

m cos2 θ
mc+m

] , (4.4)

z̈t =
F +ml[θ̇t

2
sin θt − θ̈t cos θt]

mc +m
, (4.5)

where g = 9.8m/s2 corresponds to the gravity acceleration, mc = 1kg to

the mass of the cart, m = 0.1kg to the mass of the pole, l = 0.5m to half

of the pole length, and F corresponds to the force applied to the cart. The

dynamics are updated every ∆t = 0.02 seconds, thus θt+1 = θt+∆tθ̇t, θ̇t+1 =

θ̇t + ∆tθ̈t, zt+1 = zt + ∆tżt and żt+1 = żt + ∆tz̈t. The state is encoded by

(z, ż, θ, θ̇). During the evaluation the initial state is sampled uniformly from

{(z, ż, θ, θ̇)|(z, ż, θ, θ̇) ∈ [−0.05, 0.05]4} while during the collection of episodes

for the dataset the initial state is sampled uniformly from {(z, ż, θ, θ̇)|z ∈
[−2.4, 2.4], ż ∈ [−3.5, 3.5], θ ∈ [−0.05, 0.05], θ̇ ∈ [−3.0, 3.0]}. The episodes

for the dataset are collected using a random policy.

4.4 Bicycle Balancing

Bicycle Balancing [64] [20]5 is another classical problem, where the goal is to

drive a bicycle without falling. The state is described by x = (θ, θ̇, ω, ω̇, ψ)

where θ describes the front wheel angle from the straightforward direction

and θ̇ is its angular velocity, ω is the angle that represents the tilt of the

bike’s frame from the vertical axis and ω̇ is its angular velocity, ψ is the angle

between the frame of the bicycle and the x-axis (the bicycle rides on the

x − y plane). There are 9 possible actions {(d, T )|d ∈ {−0.02, 0, 0.02}, T ∈
{−2, 0, 2}} where d describes the displacement of the rider respect the bicycle

frame and T the torque applied to the handlebars.

The episodes terminates when |ω| ≥ 12π/180. We redefined the reward

as r = −|ω| 180
12π so that the reward is always between 0 and −1 (since |ω| ≤

12π
180 ). When the bicycle falls, the episodes terminates with a reward r = −1.

The dynamic is described by:

4We use r = cos(15θ) instead of r = cos(θ) because |θ| ≤ 12π/180 and thus 0.978 ≤
cos(θ) ≤ 1, while since |15θ| ≤ π, cos(15θ) could range from −1 and 1.

5The implementation of the dynamics are slightly different between Ernst et al. [20]

and Randløv et al. [64]. We used the ones described by Ernst et al.
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Figure 4.2: Bicycle from the top: Here we can observe the bicycle frame which forms

the angle ψ with the x-direction, while θ represents the direction of the front wheel

with respect to the direction of the frame.

ω

x-y plane

Figure 4.3: Bicycle from front view: Here we can observe the bicycle forming an angle

of ω with respect to the vertical axis.
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ωt+1 = ωt∆tω̇t, (4.6)

ωt+1 = ω̇t + ∆t(
1

Ibc
(Mhg sin(ϕt)− cos(ϕt)

(Idcσ̇θ̇t + sign(θt)v
2(invrft + invrbt) +MhinvrCMt)))), (4.7)

θt+1 =

{
θt + ∆tθ̇t if |θt + ∆tθ̇t| ≤ 80

180π,

sign(θt + ∆tθ̇t)
80
180π if |θt + ∆tθ̇t| > 80

180π,
(4.8)

θ̇t+1 =

{
θ̇t + ∆tT−Idvσ̇ω̇tIdl

if |θt + ∆tθ̇t| ≤ 80
180π,

0 if |θt + ∆tθ̇t| > 80
180π,

(4.9)

xbt+1 = xbt+1∆tv cos(ψt), (4.10)

ybt+1 = xbt+1∆tv sin(ψt), (4.11)

ψt+1 = ψt+1 + ∆tvsign(θt)vinvrbt , (4.12)

with

ϕt = ωt +
arctan(dt + wt)

h
, (4.13)

invrft =
| sin(θt)|

l
, (4.14)

invrbt =
| tan(θt)|

l
, (4.15)

invrCMt =


1√

(l−c)2+ 1
invrbt

2

if θt 6= 0,

0 otherwise,

(4.16)

where wt is a uniform noise drawn from the interval [−0.02, 0.02], ∆t =

0.01, v = 10/3.6,g = 9.82, dCM = 0.3, c = 0.66, h = 0.94, Mc = 15,

Md = 1.7, Mp = 60.0, M = Mc + Mp, 0.34, σ̇ = v/r, Ibc = (13/3Mch
2 +

Mp(h+dCM )2)), Idc = M2
d r

2, Idv = 9/4M2
d r

2 and l = 1.11. The initial state

during the collection of the random episodes for the training set is sampled

uniformed from {(θ, θ̇, ω, ω̇, ψ)|θ = θ̇ = ω = ω̇ = 0, ψ ∈ [−π, π]} while for

evaluation we evaluated with one initial state x ∈ {(θ, θ̇, ω, ω̇, ψ)|θ = θ̇ =

ω = ω̇ = ψ = 0}. In order to make the computation faster, we evaluated

the bicycle with some difference with respect to Ernst et al. [20]

1. Ernst et al. consider the episode finished either when the bicycle falls

or when it rides for 50000 steps. We instead let the episode ends after

“only” 5000 steps (which correspond to 50s),

2. Ernst et al. evaluate the policy from 9 different initial states which

differs only for a different ψ. We instead evaluate once with ψ = 0:
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this should not change the expected value of Jπ because ψ does not

effect the future rewards.

4.5 Complexity Analysis

The goal of the complexity analysis is to study how the algorithms FQI

and B-FQI perform with different model complexity. In order to do this we

use models with different complexity that share the same hyper-parameters

for both FQI and B-FQI and we measure the performance by varying the

number of neurons in the case of Neural Network [31] and the maximum

depth of the Extra-Trees [28].

Swing-Up Pendulum In the case of Swing-Up pendulum we collected

10 datasets of 2000 episodes to average the results. We perform one test

with a comparison between Neural Networks and one with Extra Trees.

The hyper parameters of the neural networks were found by means of a

genetic algorithm [50]6. The neural networks has only one layer with sigmoid

as activation function. The number of neurons is not fixed, as we use it

as a measure of the complexity of the functional space. The weights are

initialized with glorot uniform, and trained with MRSProp [31]. We used

early stopping [30]7 to decide when to stop the algorithm with patience = 5

and δmin = 0.06, with a batch size of 2000 and a validation set of 10%. The

extra-trees ensemble is composed of 30 regressors with a minimum number

of samples per split of 4 and a minimum number of samples per leaf of 2. The

complexity analysis shows that B-FQI achieves an optimal performance with

less complex model with respect to FQI, in fact, as we can see in Figures 4.4,

4.5, B-FQI requires more or less 5 neurons for achieve an high performance

in contrast to FQI which requires 11 neurons to behave similarly. The same

happends with Extra-Trees: B-FQI requires a max depth of 9 while FQI of

13.

Cart-Pole In the case of Cart-Pole we collected 10 datasets of 2000 episodes

to average the results. We performed one test with a comparison between

Neural Networks and one with Extra Trees, both with the usage of the ac-

tion regressor (already introduced in Section 4.1). The hyper-parameters

of the Neural Networks were found by means of a genetic algorithm. The

Neural Networks has only one layer with sigmoid activation. The number of

6The implementation details are provided in Appendix.
7We provide an explanation of early stopping in Appendix.
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neurons is not fixed, as we use it as a measure of the complexity of the func-

tional space. The weights are initialized with Glorot Uniform, and trained

with RMSProp. We used Early Stopping to decide when to stop the algo-

rithm with patience = 600 and δmin = 0.58, with a batch size of 2000 and a

validation set of 10%. The extra-trees ensemble is composed of 30 regressors

with a minimum number of samples per split of 4 and a minimum number

of samples per leaf of 2. The complexity analysis (Figures 4.6, 4.7) shows

clearly that in the case of extra-trees B-FQI achieves the optimal policy with

a simper model (we could say with max depth 5), while FQI to reach the

same performance needs a model with max depth 13. The analysis with the

neural networks shows instead that both the algorithms perform similarly

with respect to complexity.

Results The complexity analysis shows in the case of swing-up pendulum

that B-FQI achieves an optimal performance with less complex model with

respect to FQI, in fact, as we can see in Figures 4.4, 4.5, B-FQI requires more

or less 5 neurons for achieve an high performance in contrast to FQI which

requires 11 neurons to behave similarly. The same happends with Extra-

Trees: B-FQI requires a max depth of 9 while FQI of 13. The experiment

with cart-pole (Figures 4.6, 4.7) shows clearly that in the case of extra-trees

B-FQI achieves the optimal policy with a simper model (we could say with

max depth 5), while FQI in order to reach the same performance needs a

model with max depth 13. The analysis with the neural network is less clear,

because the results are very similar. This former result could be explained

by considering that both the algorithms seem to perform very well with

few neurons (and this could be explained because we are using the action

regressor, which probably helps).

4.6 Samples Analysis

The goal of samples analysis is to compare the difference of performance

between FQI and B-FQI as a function of the dataset dimension. In order to

make a fair comparison, we select from the previous analysis, two different

models for FQI and B-FQI that perform similarly with a dataset of 2000

episodes, and then we measure the performance at the last iteration with

datasets of different number of episodes. Each value plotted is averaged by

30 datasets of the same size.

Swing-Up Pendulum Both for FQI and B-FQI we selected the simplest

(in terms of complexity) model with a performance higher than −1.5. The
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Figure 4.4: Swing-up model complexity: score of the greedy policy at last iteration

(K) w.r.t. model complexity and iterations for neural networks (left column) and extra-

trees (right column). The heatmap Difference show the score JπK
diff = JπK

B-FQI − J
πK

FQI.
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Figure 4.5: Swing-up model complexity: score of the greedy policy at iteration 20

(Jπ20 w.r.t. the model complexity (left: neural networks, right: extra-trees). Confidence

intervals at 95% are shown.

selected configurations are the following ones. The number of neurons in

Neural Networks is 5 for B-FQI and 11 for FQI, while the max depth of

the Extra Trees is 6 and 13 for B-FQI and FQI, respectively. All the other

parameters are as described before.

Cart-Pole Differently from Swing-Up Pendulum, we used two different

thresholds for extra-trees and neural networks, in order to pick up models

that in the worst case disadvantage B-FQI. We selected the simplest model

complexity that achieved 190.0 at the 10-th iteration in the case of neural

networks, that results to be 2 neurons for B-FQI and 4 neurons for B-

FQI, while we used 198.0 as threshold for extra-trees which turned out to

correspodt 6 as max depth for B-FQI and 14 for FQI.

Results The samples analysis shows in this case of swing-up pendulum

that B-FQI seems to use more efficently the number of samples: in fact

even using a lower-complexity model, we can see from Figure 4.8 that B-

FQI almost always beat FQI. In the case of cart-pole shown in Figure 4.9,

the result is less clear since both FQI and B-FQI gives similar results. The

difference between the results of the two experiments could be explained by

the fact that it was impossible to choose two models for FQI and B-FQI that

performed perfectly equally with a datasets of 2000 episodes, thus in some

cases (like in cart-pole) we have choosen a model that penalizes too much

B-FQI. Another reason could be that effectively there is not a difference

between FQI and B-FQI with respect the efficency of data usage: while

boosting methods are well known for efficency in terms of model complexity,
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Figure 4.6: Cart-Pole model complexity: score JπK obtained by the algorithms ap-

plying the greedy policy πK in the cart-pole balancing experiments with neural networks

(left column) and extra trees ensembles (right column) measured w.r.t. the number of

iterations K and model complexity. The heatmap called Difference show the score

JπK

diff = JπK

BFQI − J
πK

FQI .
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Figure 4.7: Cart-Pole model complexity: score Jπ10 obtained by the algorithms ap-

plying the greedy policy π10 in the cart-pole balancing experiments with neural networks

(left) and extra trees ensembles (right). Level 95% confidence intervals are shown.
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Figure 4.8: Swing-up sample complexity: score of the greedy policy at iteration 20

(Jπ20 w.r.t. the dataset size (left: neural networks, right: extra-trees). Confidence

intervals at 95% are shown.

it is not clear wether boosting provides data efficiency.

4.7 The Bicycle experiment

We finally performed an experiment with the bicycle balancing problem to

show the difference between B-FQI and FQI in a more challenging envi-

ronment. The experiment is performed both for extra-trees and for neural

networks. In the case of extra-trees we used the same configuration of Ernst

et al. [20], except for the max depth of 17 which is not defined in their

paper. For Neural Network, we used a model with 2 layers of 10 sigmoidal

neurons. The genetic algorithms selected δmin = 0.011 and patience = 75

as parameters for the Early Stopping. In figure Figure 4.10 we can see that
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Figure 4.9: Cart-pole sample complexity: score Jπ20 obtained by the algorithms in the

cart-pole balancing experiments applying the greedy policy π20 learned using datasets

of increasing size with neural networks (left) and extra trees ensembles (right). Level

95% confidence intervals are shown.
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Figure 4.10: Bicycle performance: score of the greedy policy πK as a function of the

iterations with neural networks (left) and extra-trees (right). Confidence intervals at

95% are shown.

B-FQI performs very well and approaches the optimal policy on the 15th

iteration with Extra Trees, while with the same configuration FQI perform

very poorly. The fact that FQI performs such bad is due to the fact that

we have introduced max depth of 17 while Ernst et al. [20] does not define

a max depth allowing the trees to grow as much is required. With Neural

Networks both B-FQI and FQI perform well without a significant differ-

ence. In Figure 4.11 we can see the average number of steps for the same

experiments.
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Figure 4.11: Bicycle Steps: Number of steps in which the bicycle moves without falling

during an episode obtained by the algorithms in the bicycle balancing experiments

applying the greedy policy πK learned using neural networks (left) and extra trees

ensembles (right). Level 95% confidence intervals are shown.
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Chapter 5

Conclusion and Future

Works

“E infine

candida e lieve

si scioglie, la neve.

(Candid and mild,

eventually melts,

the snow.)”

Silvia Bradanini

The goal of our work was to provide an efficient way to solve RL tasks

possibly finding an ad-hoc learner that exploits the properties that are

shared among all those tasks. We focused on the already existing class

of value iteration algorithms, and in particular of Fitted Q-Iteration, which

is simple to analyze since avoids the exploration-exploitation trade-off and

it consists in iterating the empirical optimality Bellman operator and an ap-

proximation phase. The main question was on how, knowing the properties

of the bellman operator, we could derive a smart function approximator.

Actually, before approaching to the current solution, we studied different

solutions, like for example to reuse features of a neural network between on

iteration and the following one: is in fact clear that one of the most interest-

ing property of AVI methods is that the action-state value function found

at one iteration could be used to explain the value function in the following

one. We found out that a very effective way to solve our problem was to

introduce an incremental learner that at each iteration was approximating

the bellman residual. We know from RL theory that the Bellman residual

should converge to zero, moreover we know from SL that there is a class of



boosting algorithms that uses models composed by weak regressors where

each regressor learns the residual: this class is the L2-Boost class. We pro-

vided the theoretical propagation error bounds showing what conditions are

required for B-FQI to converge and what error is provided with the case of

non-greedy bellman operator. The theoretical finite-sample analysis shows

that the error bound could be decomposed in three components that are

related to the error committed in approximating the residual, the approxi-

mation error committed the previous iteration and a term that involves the

functional complexity and the number of samples. This former result shows

clearly the advantage of approximating the residual, because when the algo-

rithm converges, the Bellman residual %∗k converges to zero, and the common

sense suggests that the approximation complexity should be very small. The

same analysis suggests that fewer samples are required for approximating

the residual for the same reason. We also provided by means of experiments

two different studies: the complexity analysis and the sample analysis. The

empirical results shown that B-FQI always approaches to the optimal value

function with a model that is simpler (or in the worst-case equivalent) with

respect to the model used by FQI, showing that our supposition was correct,

while the results from the sample analysis are not so clear yet. B-FQI re-

sults to be a very interesting algorithm, and it deserves surely further study.

While will be necessary maybe to enrich both our theoretical analysis and

our empirical results (testing B-FQI in with more challenging RL tasks and

providing a better samples analysis), it will be necessary also to expand our

studies in order to provide a more general and efficient algorithm. With

“more general” we mean that actually B-FQI belongs to the class of FVI

algorithms, but would be nice to provide the correspective algorithm also for

online methods. We also said that we would like to provide a more efficient

version of the algorithm: it is in fact evident that the weakness of B-FQI is

that it uses regressors of same complexity through all the iterations. It is

clear that the Bellman residual tends to be more complex in earlier itera-

tions, while it becames simpler iteration by iteration. We should find a way

to dynamically restrict the functional space both to provide a more robust

algorithm and to save more computational resources.

Increasing time efficiency. There are a lot of euristic ways to dynam-

ically change the complexity of the functional space in order to save time.

Very unfortunately it is difficult to derive an analytic formula for which it is

possible to find a way to increase the time efficiency and at the same time

restrict the functional space. It really depends by the regressor that we are

using: in the case of an Extra-Tree we might want to reduce the max-depth

80



of the trees while in the case of neural networks the number of neurons.

This requires that B-FQI must be able to detect without a theoretical sup-

port how to restrict the functional space. We propose here two different

solutions: the first one is a version of B-FQI that uses at each iteration

two learners, one slighlty more expressive that the other. We compare the

accuracy of both the learners: if the accuracy is very similar, in the next

iteration we keep the learner with lower complexity and we introduce also

a new regressor with less expressivity, discarding the regressor with higher

complexity. The second technique that we propose is to use boosting also

for approximating the Bellman residual, using very weak regressor as base

procedure in such the way that when the Bellman residual is close to zero

the boosting procedure will fit it in very few iterations, using also a very

limited functional space.

More theoretical approaches. Another way could be to provide regu-

larization, like is it done in R-FQI, in such the way that the regularization

coefficient adapts dinamically in order to restrict the functional space avoid-

ing the overfitting. This method is very interesting, because it is applicable

to all parametric regressors, providing a more sophisticated way to restrict

the functional space, and maybe it would allow to find an optimal way to

dynamically change the penalization coefficient and thus to dynamically re-

strict the functional space. Very unfortunately, while this seems a good way

to provide a robust algorithm from the theoretical point of view, it will not

provide time efficiency.
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propagation for approximate policy and value iteration. In NIPS, pages

568–576. Curran Associates, Inc., 2010.

[24] Amir Massoud Farahmand and Doina Precup. Value pursuit iteration.

In NIPS, pages 1349–1357, 2012.

[25] Yoav Freund and Robert E Schapire. A desicion-theoretic generaliza-

tion of on-line learning and an application to boosting. In European

conference on computational learning theory, pages 23–37. Springer,

1995.

[26] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive

logistic regression: a statistical view of boosting (with discussion and

a rejoinder by the authors). The annals of statistics, 28(2):337–407,

2000.

[27] Jerome H Friedman. Greedy function approximation: a gradient boost-

ing machine. Annals of statistics, pages 1189–1232, 2001.

[28] Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely random-

ized trees. Machine learning, 63(1):3–42, 2006.

[29] Mohammad Ghavamzadeh, Alessandro Lazaric, Rémi Munos, and Matt
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Appendix A

About the Implementation

We describe here more in detail the practical implementation that we used.

We will use pseudo-code in order to represent in a more compact and ab-

stract way the main ideas, allowing us to focus only on such passages that

we think to be more interesting. However, the implementation is available

at https://github.com/teopir/ifqi/tree/tosatto. We present three

classes that will be useful for the reader to understand the key point of our

implementation: FQI, ActionRegressor and EnsembleRegressor.

The class FQI provides a general FQI algorithm abstracting from the

kind of regressor used: in this way it is possible to both use it for run B-FQI

or classic FQI.

In our code we use many kinds of regressor: all of them must implement

the method fit which accepts two arguments X and Y and finds a function

f such that it minimizes f(X) − Y and a method predict which accepts

only one argument X and it returns f(X). In our implementation we added

an optional argument to predict that allows to optimize computations.

We provide a sort of optimization relying on the fact that during a single

iteration of FQI we pass always the same X to the regressor, thus is possible

to save at every call of the fit procedure the partial summation S in such

way to avoid to computing every time the previous bellman residuals. The

ActionRegressor class uses different regressor for each action: this kind of

regressor is particularly suited when the action space is discrete. The main

idea behind this class is again to relieve FQI from this work.
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Algorithm 8: FQI

Data: x is the column vector of current states, a is the column

vector of actions, r is the column vector of reward signal, y is

the column vector of next states, t is a column vector

indicating with 1 when y is absorbing, 0 otherwise and

regressor is our approximator

1 Procedure FQIIteration()

2 q ← r + γ(1− t) maxa∈A regressor.predict([y, a], optimize=true);

3 X[0]← x;

4 X[1]← a;

5 regressor.fit(X, q);

6 end

Algorithm 9: EnsembleRegressor

1 regressorList ← [];

2 Procedure Fit (X, Y )

3 regressor ← newRegressor();

4 regressor.fit(X, S − Y );

5 S ← S + regressor.predict(X);

6 regressorList.append(regressor) ;

7 end

8 Function Predict (X, optimize=false)

9 if optimize then

10 partialSum ← 0;

11 for regressor ∈ regressorList do

12 partialSum ← partialSum + regressor.predict(X);

13 end

14 return partialSum;

15 else

16 return S;

17 end

18 end
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Algorithm 10: ActionRegressor

1 regressor ← |A| new regressors;

2 Procedure Fit (X, Y )

3 for a ∈ A do

4 index ← where X[:, 1] = a;

5 regressors[a].fit(X[index,0], Y [index]);

6 end

7 end

8 Function Predict (X, optimize=false)

9 for a ∈ A do

10 indexes ← where X[:, 1] = a;

11 regressors[a].fit(X[indexes], Y [indexes]) predict[a] ←
regressors[a].predict(X[indexes,0], optimize);

12 end

13 end
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Appendix B

Early Stopping

Early Stopping [65] is a form of regularization used to avoid overfitting. It

is used with those learners that approximate the target function iteratively,

providing at each iteration a better approximation. Early stopping pre-

vents such learners approaching to a function that fits too well the dataset

by preventing in advance that the training error decreases too much. This

technique is often associated with gradient methods [80], but it has also

been used with boosting methods [81]. What is interesting about early

stopping, is that it keeps in account the validation error : the error commit-

ted on predicting samples that were not used for training the learner. This

is made because, even if the training error should in theory always decrease

approaching to an asymptotic error, the validation error after a decreasing

phase starts to increase again: this behavior is devoted to the bias-variance

trade-off (Figure B.1). What we would like to do in order to prevent overfit-

ting, is to stop the training algorithm when we believe to have reached the

minimum validation error (thus a good generalization). Since early stopping

is a meta-algorithm it does not define the so called stopping criterion. Lutz

Prechelt shows in his article “Early Stopping - but when?” [62] that the

choice of a right stopping criterion is crucial.

The implementation of early stopping that we are using in our code

is provided by Keras [16] and it uses two main parameters to answer the

question “when to stop?”. We say that the training is improving during the

iteration k if the validation error at iteration k is lower than the validation

error at the previous iteration decreased by δmin. We will stop the training if

it is not improving for p consecutive iterations where p is also called patience.
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Iterations
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Early Stopping

validation error

training error

Figure B.1: Early Stopping: it is possible to see here that while the training error tends

to decrease, the validation error at a certain point starts to increase. From this point

we say that the learning process starts to overfit, this is the right point where to stop

the training algorithm.

Algorithm 11: Early Stopping

Data: A patience p, a minimum improvement δmin, and a regressor.

1 noImprovement← 0;

2 previousLoss← +∞;

3 while noImprovement < p do

4 validationLoss← regressor.train();

5 if validationLoss < previousLoss− δmin then

6 noImprovement← 0;

7 else

8 noImprovement← noImprovement+ 1;

9 end

10 end
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Genetic Algorithm

With Genetic Algorithms [79] we refer to a class of optimization algorithms

that are inspired by the natural process of selection. Genetic algorithms

proceed by means of an intelligent random search that generates a bunch of

solutions. The search starts by generating some random solutions. These

former are evaluated and some of them are selected by means of a stochastic

process that gives higher pobability to the best ones. The new solutions

are generated with a procedure inspired by the sexual reproduction from

a combination of two previous selected solutions (the parents). A further

randomization is provided by perturbing the new solutions with random

mutations. Then the algorithm iterates this procedure in order to gener-

ate each time new solutions. Genetic algorithms are very powerful because

they generally are very robust to noise, they can deal with large state space

and they do not require particular objective function, unlike it happens for

Gradient Descent algorithm, which requires differentiable loss function. Ge-

netic algorithms proceed usually with a population of candidate solutions

that are often called individuals. Each individual is described by its chro-

mosome that determine its behaviour. The “goodness” of each individual is

evaluated by means of a fitness function, the goal of the genetic algorithm

is to find individuals with higher fitness. The fitness is usually the objective

function in our optimization problem. The genetic algorithm proceeds by

means of iterations that are called epochs. In each epoch, every individual

belonging to the population is evaluated, then we select with high proba-

bility individuals with high fitness (selection phase). We then combine the

chromosomes of the selected individuals in order to generate new individu-

als: the combining procedure is also called crossover. In order to overcome

the possibility to stuck in a local optimum, we introduce a stochastic mu-

tation of the chromosome of the individuals - which consists in modifying
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Algorithm 12: Genetic Algorithm

1 Start: Generate random population with n chromosomes;

2 repeat

3 Fitness: Evaluate the the fitness of each chromosome in the

population;

4 newPopulation← {};
5 for n− k times do

6 Selection: Select two parents from the population according

to their fitness;

7 Crossover: With a crossover probability cross over the

parent to form a new offspring;

8 Mutation: With a mutation probability, mutate some allele

in the individual;

9 newPopulation← newPopulation ∪ {newIndividual};
10 end

11 Elitism: Add to newPopulation the k best individuals from

population;

12 population← newPopulation;

13 until some criterion is accomplished ;

randomly with low probability some chromosomes. Sometimes, in order to

preserve the optimal solution found we select the k best individuals at each

epoch: this practice is called elitism.

In our experiments we used a genetic algorithm to infer the parame-

ters δmin and patience for the early stopping and also the activation func-

tion of a neural network composed by two layers of 10 neurons each, with

the goal to find a configuration that was able to well represent the value

function with the classic FQI. The chromosomes were encoded with five

genes: (f, aδmin
, bδmin , apatience, bpatience). The activation function was en-

coded by f which can assume three different values: 0 for tanh, 1 for

sigmoid and 3 for relu. δmin is encoded as δmin = aδmin
10bδmin where aδmin

∈
{10, 11, . . . , 99} and bδmin

∈ {−3,−4, . . . ,−15}. patience is encoded δmin =

apatience10bpatience + 11 where apatience ∈ {10, 11, . . . , 99} and bpatience ∈
{−1, 0, 1}. This way to encode δmin and patience gives us the chance to

explore a big range of numbers using two digit precision. The selection is

exploited in a very näıve way: the parents of the new individuals of the

future generation are selected with equal probability from the 50% best in-

1We add +1 in the formula to avoid the case that of a patience = 0.
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dividuals. This selection process turned out to be effective in our problem.

There are several ways to exploit crossover when we use integer numbers to

encode chromosomes. We sampled the genes of the new individual randomly

from the interval between the values for that gene of the parents: this seem

a good way to mix exploration and exploitation. The probability of intro-

ducing a mutation in a new individual is quite high (p = 0.8), and when a

mutation happens, every gene has a probability of 0.2 to mutate: this al-

lows also multiple mutations in a chromosome. A mutation with probability

0.8 introduces an high rate of exploration, but this effect is balanced with

the presence of elitism, which preserves the 20% of the best individuals in

the next population and from the selection, which discards the 50% worst

individuals. The size of the population is 20 and this value is chosen to best

exploit parallelization on our server. The fitness function is computed as the

mean discounted reward at the last iteration in 10 different runs of FQI on

the chosen environment, using different datasets from the ones used in our

experiments (but generated in the same way). The choice of averaging the

discounted reward was both to provide stability in the genetic algorithm (the

fitness procedure is less variable), and also in order to prevent the genetic

algorithm to find parameters that works well only for a particular dataset.

We want to underline that the genetic algorithm finds the parameters (acti-

vation function, δmin and patience) that optimize the performance of FQI: in

this way, since our objective is to show that B-FQI works better (under same

conditions) with respect to FQI, we provide pessimistic results, and when

B-FQI performs better than FQI it can not be imputed to the introduction

of this optimization procedure.


