
POLITECNICO DI MILANO
Corso di Laurea magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

Hybrid Malware Analysis Interface to Simplify
Reverse Engineering and Crowd-Sourcing

Relatore: Prof. Stefano Zanero
Correlatore: Dott. Mario Polino

Tesi di Laurea di:
Emanuele Tironi, matr. 823335

Anno Accademico 2015-2016

Abstract

Malicious software, or malware, are one of the most serious threats
related to computer systems. Every day the number of threats dramati-
cally increase since malware authors are motivated by the financial gains.
Being able to quickly analyze and understand the behavior of those
threats is key to move forward in this adversarial battle. Analysts em-
ploy techniques mainly belonging to two general categories: static and
dynamic analysis. Static methods analyze the code of a malware, they
have full code coverage but they are slow and they can be easily rendered
ineffective by obfuscation or packing techniques. Dynamic methods an-
alyze the execution flow of a running program but some malware can
avoid this kind of analysis by refusing to execute in a controlled environ-
ment. It is possible to combine these two methods, performing what is
called hybrid analysis: a technique that exploits the advantages of static
and dynamic analysis while, at the same time, mitigating their short-
comings. The complexity of the reverse engineering task, that requires
a large skill set, and the large number of malicious samples compared
to the number of analysts are major disadvantages toward the goal of
finding signatures to detect malware. Hereby, we present a tool that
allows to take advantage of the analyses results of Jackdaw, a tool that
performs hybrid analysis, in a reverse engineering task on a malware,
showing the behaviors and their semantic descriptions that are imple-
mented in the sample, in order to help the analysts performing static
analysis. Moreover, our tool renders Jackdaw partially crowd-sourced,
allowing analysts to improve the behaviors by adding or editing their
descriptions.

2

Estratto

Al giorno d’oggi i programmi malevoli, noti anche come malware,
sono una delle principali minacce ai sistemi informatici e ai dati pri-
vati dei loro utenti. I malware sono lo strumento con cui i criminali
informatici perpetrano un ampio spettro di attività illegali, dall’invio di
e-mail di spam al denial of service, rivelandosi una profittevole fonte di
guadagno per i loro sviluppatori, tanto che si può parlare dell’ascesa di
un vero e proprio mercato nero, un esempio può essere quello dei ran-
somware, un tipo di malware che si è diffuso in modo estensivo negli
ultimi anni e che cifra i file presenti su un computer, tenendo a tutti gli
effetti come ostaggi i dati della vittima, finché essa non paga un riscatto.
Non solo il numero di nuovi malware è in costante aumento, al ritmo
di un milione di nuovi campioni ogni giorno, considerando anche che
le vecchie versioni vengono costantemente aggiornate per poter evadere
le nuove misure di sicurezza, questo significa che gli analisti hanno un
elevato numero di malware da analizzare per poter trovare delle carat-
teristiche distintive, o firme, per poter poi fare una rilevazione corretta
dei singoli campioni in futuro. Per poter trovare le firme gli analisti
cercano un insieme di azioni che vengono eseguite dal malware e che
definiscono il suo comportamento. Questo tipo di analisi viene fatta a
mano ed è molto complessa, inoltre il grande numero di campioni da
analizzare e le tecniche impiegate per contrastare gli sforzi degli analisti,
cifrando e comprimendo il codice, fa si che siano necessari strumenti
efficaci, veloci e precisi. In generale le tecniche per poter effettuare anal-
isi su malware si dividono principalmente in due categorie, ognuna coi
suoi vantaggi e svantaggi: analisi statica e analisi dinamica. L’analisi
statica consiste nell’analizzare il codice macchina o sorgente di un mal-
ware, eseguendo un processo di ingegneria inversa utilizzando strumenti
come i disassembler. Ha il vantaggio di poter analizzare completamente
il codice del campione in esame, ma è un processo lungo e difficile an-
che con strumenti all’avanguardia, inoltre è reso ancora più complesso
da tecniche che cifrano o comprimono il codice rendendolo impossibile
da analizzare. L’analisi dinamica consiste nel lasciare eseguire un mal-
ware all’interno di un ambiente controllato, detto sandbox, e di analiz-
zare le azioni che intraprende, in questo modo si superano le limitazioni
dell’analisi statica ma non si ha la certezza che tutte le caratteristiche del
campione siano state osservate, inoltre alcuni malware sono in grado di
riconoscere quando eseguiti in una sandbox e nel caso si inibiscono.

Un buon compromesso tra analisi statica e analisi dinamica è quello
di utilizzare strumenti, come Jackdaw, che effettuano quella che viene
chiamata analisi ibrida. Jackdaw trova gruppi di chiamate alle funzioni
di sistema (le WinAPI) connesse da dipendenze dati, fatte dal binario

3

sotto esame. Questi gruppi vengono chiamati comportamenti, in quanto
definiscono cosa fa il binario una volta eseguito. Inizialmente Jackdaw
esegue del clustering su dati, dei grafi di flusso di controllo, ottenuti da
analisi statica, sfruttando anche delle dipendenze tra funzioni scoperte
durante l’analisi dinamica del campione, quindi ,per ogni cluster, estrae
dei gruppi significativi di chiamate agli API che saranno poi i comporta-
menti. Infine, Jackdaw assegna ad ogni comportamento una descrizione
che definisce a livello semantico quello che il comportamento stesso fa in
termini di funzioni. Per fare ciò cerca in Stackoverflow tutte le domande
relative agli API che descrivono il comportamento ed estrae i loro tag.
Alla fine di questo processo Jackdaw ha costruito un database di com-
portamenti e delle loro descrizioni. Con questo lavoro presentiamo un
strumento in grado di fornire un aiuto agli analisti di malware che stanno
effettuando un lavoro di ingegneria inversa su un file, semplificandone
il processo, integrando i risultati dell’analisi ibrida di Jackdaw in stru-
menti che rappresentano lo stato dell’arte nell’ambito dell’analisi statica,
il tutto senza che gli utenti debbano condividere i campioni che stanno
analizzando. Inoltre, tramite questo lavoro, ci proponiamo di rendere
Jackdaw uno strumento crowd-sourced, ovvero gli utenti che lo utiliz-
zano contribuiscono al loro miglioramento aggiungendo descrizioni ai
comportamenti o modificando quelle esistenti qualora non siano cor-
rette. Vista l’importanza e l’aiuto che una buona visualizzazione può
dare nell’analisi statica abbiamo adottato varie tecniche per migliorare
l’esame dei malware: i comportamenti vengono visualizzati sotto forma
di grafi nei quali i nodi rappresentano le chiamate di sistema, e sono ar-
ricchiti con informazioni riguardanti le chiamate stesse, e i collegamenti
sono le dipendenze dati tra loro; per aiutare l’analista, il nostro stru-
mento permette di evidenziare tutte le istruzioni relative a un compor-
tamento selezionato con lo stesso colore che viene associato al compor-
tamento stesso e che non cambia tra un’analisi e l’altra. Inoltre, quando
una istruzione del malware viene selezionata il nostro strumento mostr-
erà in automatico a quali comportamenti appartiene. Infine sono state
sviluppate funzioni aggiuntive che permettono di migliorare la parte di
crowdsourcing, introducendo, oltre alla possibilità di modificare o ag-
giungere descrizioni per i comportamenti, anche il fatto di poter votare
quelle che meglio li descrivono e la possibilità di inserire descrizioni pri-
vate.

4

Contents

Contents 5

List of Figures 7

1 Introduction 1

2 State of the art 4
2.1 BinDiff and BinNavi . 4
2.2 IDA Pro . 6
2.3 Jackdaw . 7

2.3.1 Sample analysis and fingerprints extraction 7
2.3.2 Clusterization and behavior extraction 8
2.3.3 Semantic tagging . 9

3 Approach 11
3.1 Overview . 11
3.2 Disasming . 12
3.3 Querying for behaviors . 13
3.4 Behaviors visualization . 14
3.5 Behaviors Descriptions . 17
3.6 Functions for Registered Users 18
3.7 Login and Registration . 19

4 Implementation 21
4.1 Implementation details . 21

4.1.1 Plugin setup . 21
4.1.2 Server setup . 23
4.1.3 Database . 23
4.1.4 Communication protocol 26
4.1.5 Disasm and fingerprints extraction 26

5

4.1.6 Sending the fingerprints to the server and behavior re-
trieval . 27

4.1.7 Behaviors visualization 29
4.1.8 Graph visualization . 31
4.1.9 Descriptions visualization 32
4.1.10 Description addition 33
4.1.11 Description editing . 34
4.1.12 Description voting . 35
4.1.13 File Upload . 36
4.1.14 Groups Management 36
4.1.15 Registration . 38
4.1.16 Log in . 40

4.2 Semantic tagging . 40
4.3 External Tools . 41

4.3.1 Disasm . 41
4.3.2 QT and Pyside . 41
4.3.3 MongoDB . 42

5 Performance tests 43
5.1 Testbed . 43
5.2 Results . 44

6 Conclusions, limitations and future works 48
6.1 Limitations and future works 48
6.2 Conclusions . 48

Bibliography 50

6

List of Figures

2.1 BinDiff . 5
2.2 BinNavi . 5
2.3 IDA Pro graph view . 6
2.4 Example of a Stackoverflow post 10

3.1 Scheme of the architecture . 12
3.2 The Behaviors View . 15
3.3 Components interactions . 15
3.4 Filtering of Behaviors . 16
3.5 Code highlighting . 17
3.6 The Descriptions Window . 17
3.7 Descritpions editing . 18
3.8 Descriptions voting . 19

5.1 Performance: timestamps . 44
5.2 Performance: total times - files size 45
5.3 Performance: percentage of time for each step 46
5.4 Performance: total times - graphs size 46
5.5 Performance: total times - number of behaviors 47

7

Chapter 1

Introduction

Malicious softwares, commonly known as Malware, are a widespread threat
over computer systems and their users’ information. Malware is the tool used
by cybercriminals to perpetrate a wide range of malicious intents, from send-
ing spam emails to denial of service, revealing to be a profitable source of
money, to the point that we can talk about a rise of a proper underground
economy, an example of which could be ransomwares, a kind of malware that
became extremely common in the latest years: they encrypt files on a com-
puter, holding the victim’s data hostage until a ransom is paid. The number of
new malware is constantly increasing, sources talk about one million of new
threats emerging every day1, and old samples are constantly updated in order
to evade the existing security measures, this means that analysts have to deal
with a large number of malicious programs to analyze in order to find distinc-
tive features, or signatures, for an effective detection. To deal with this kind of
problems it is necessary for the analysts to find a set of actions, a sequence of
events, that the malware performs once running in the infected environment.
This sequence of events is what is called a behavior. This analysis is accom-
plished by hand and the significant number of malicious programs relative
to the number of analysts, and the obfuscation techniques, lead the malware
analysts to the need to have faster, better and more precise tools available to
them.

The common techniques employed in malware analysis are usually divided
in two main categories, dynamic analysis and static analysis, and both of them
have their own strengths and weaknesses. Static analysis is the analysis of the
code of a malware by means of tools like the disassemblers, that show the
machine code of a binary file. This kind of process has full code coverage

1http://blog.trendmicro.com/malware-1-million-new-threats-emerging-daily/

1

CHAPTER 1. INTRODUCTION

but it is a hard and slow, even with state of the art tools, and it is made
difficult by the use of obfuscation or packing techniques that confuse the
code or encrypt it. Dynamic analysis, on the other hand, is the observation
of how a running program behaves in a safe, monitored environment, or
sandbox. This kind of analysis overcomes eventual obfuscation techniques
that their creator may have used to render difficult an eventual analysis of
the program code, but it does not have full code coverage, that is that some
of the function of the malware may not be executed and therefore some of
its properties remain undiscovered. As we said, in both cases cybercriminals
have many resources they can use in order to avoid the analysis process, such as
packing and obfuscation, to make the code harder if not impossible to analyze
in order to counteract static analysis, or anti-debugging and anti-sandboxing
techniques, that make the malware sensible to the environment in which it is
running in order to avoid dynamic analysis in controlled environments.

A good compromise between static and dynamic analysis is to use tools,
such as Jackdaw, that exploit the advantages and mitigate the disadvantages
of both the two methods, performing what is called hybrid analysis.

Jackdaw finds groups of data-related system calls (in particular WinAPI
calls) invoked by the binary, these groups are called behaviors, as they de-
fined what the binary file does once running. At first Jackdaw clusterizes data
obtained by static analysis (some control flow graphs) exploiting taint depen-
dencies discovered during dynamic analysis, then it extracts representative
groups of API calls for each obtained cluster, these models are the final be-
haviors. Finally Jackdaw assigns to each behavior a semantic description, that
is a tag that describes the behavior in natural language, generated by querying
a database of Stackoverflow posts searching for questions related to the APIs
that describe the behavior and extracting their tags.

At the end of this process Jackdaw has built a database filled with behaviors
and their semantic descriptions.

The first goal of this thesis is to provide an aid to malware analysts perform-
ing a reverse engineering task on a file, simplifying the reverse engineering
process, by means of integrating the results of Jackdaw’s analysis into other
popular tools used by analysts, all of this without having the users to share
their samples, either for security reasons or because companies are reluctant
to share new samples, but instead by computing, on the client machine, the
list of fingerprints, that are sub-control flow graphs whose nodes are the calls
to the WinAPIs, that appear in the binary file. The second goal of our work
is to render Jackdaw a crowd-sourced tool, users can in fact improve Jackdaw

2

CHAPTER 1. INTRODUCTION

results, enhancing the descriptions associated to the behaviors.
The possibility of taking advantage of Jackdaw’s hybrid analysis results

takes the shape of a plug-in that integrates in an existing software and which
provides the users with a list of the behaviors found in the analyzed malware
and their semantic descriptions, and a server back-end, which handles the
requests from the plug-in and queries the behaviors’ database. The plug-in
allows users to navigate the graphs of those behaviors that have been found
in the binary file and to see their APIs, that are the nodes of such graphs,
and their significant parameters. Also, given the significant advantage that a
good visualization method has in the reverse engineering process, the plug-in
improves the disassembly view by detecting if a selected instructions belongs
to a behavior, and in that case showing its graph, or, when a graph is opened
by the user, by coloring all those lines of assembly code that belong to that
behavior. In this way it is much faster to recognize a behavior in a malicious
software by means of static analysis with a disassembler: the analyst does not
have to manually analyze an extensive number of lines of code to find the
behaviors that characterize the binary, it is enough that those same behav-
iors had been found in other samples analyzed by the Jackdaw tool-chain and
the plug-in will highlight them with different colors. Moreover the plug-in is
meant to be a collaboration tool: analysts can enrich and improve the existing
results, correcting or adding new semantic descriptions to those known be-
haviors that may be mistakenly tagged by the automatic process or for which
a description had not been found and making the new modifications available
to everyone or to closed teams.

Existing tools developed in our same line of works are described in State
of the art (Chapter 2); the general approach to the problem of integrating
Jackdaw’s results in a disassembler, of behaviors visualization and of creating
a collaborative tool for analysts, is described in Approach (Chapter 3); in Im-
plementation (Chapter 4) we discuss the implementative details of the tool we
developed; we performed some performance tests that are discussed in Chap-
ter 5; in Chapter 6 we discuss the conclusions of our work, the limitations
and the future works.

3

Chapter 2

State of the art

Several tools have been developed in order to perform and simplifying the
reverse engineering task such as those using directed graphs to represent bi-
nary files, a technique that has been proven useful in analyzing malicious
softwares [1][2] and diffing binary files [3]. Among these tools there are the
open-source tools by Zynamics: BinDiff [4], which allows to discover dif-
ferences in two binary files showing a graph-based view of the samples, and
BinNavi [5] that allows to annotate the control flow graph of disassembled
code and to share analyses results among a group of analysts. Moreover, Bin-
Navi ships an IDA Pro plugin useful to import disassemblies generated in
IDA. The analysis with this kind of tools is still, however, manual and can
be time consuming, even if it is possible to involve debuggers such as GDB.
Another tool, Jackdaw, has been implemented to overcome the limitations
of static and dinamic analysis by performing hybrid analysis. Jackdaw can
automatically extract the behaviors of binary files and it can assign them a
semantic description.

2.1 BinDiff and BinNavi

BinDiff and BinNavi are both tools from Zynamics. BinDiff allows, by means
of a graphic interface, to see the differences between two versions of a binary
file, in order to quickly find similarities and differences in disassembled code,
and to find vulnerabilities by comparing a patched version of a binary file and
an un-patched one. The two versions are placed side by side in a symmetrical
layout, as can be see in Figure 2.1. BinNavi, shown in Figure 2.2 is an IDE for
binary analysis. It allows users to navigate the control flow graphs of binary
files, to edit and annotate them and share analyses results within a group of

4

CHAPTER 2. STATE OF THE ART

analysts. However, with BinNavi, the analysts must find the behaviors by
hand by reverse engineering the code, and the annotations are specific of a
binary file and are not used to enhance the behaviors that could be found
again in future analyses on different files.

Figure 2.1: BinDiff: the graphs of two versions of a file are placed side by
side.

Figure 2.2: BinNavi: it allows to navigate, edit and annotate the CFG of a
binary file.

5

CHAPTER 2. STATE OF THE ART

2.2 IDA Pro

The Interactive Disassembler [6] is a software used to generate assembly lan-
guage source code from machine-executable code and to explore binary pro-
grams. IDA Pro is considered the state of the art disassembler and it is one
of the main tools used for the static analysis process. Also, IDA Pro can
decompile a file, converting executable programs into a human readable C-
like pseudo-code, however this function it is limited by many factors, besides
being ineffective in case of obfuscated or packed code: in case of manually
crafted code the results are not as good as for code generated by compilers,
moreover it does not support exception-handling, it does not perform type
recovery and global program analysis.

IDA Pro provides a graph view, shown in Figure 2.3, which displays the
control flow graph of the malware, and in which functions are represented as
a collection of nodes and edges. Nodes represent basic blocks and edges are
the cross-references between them. A basic block is set of instructions that
has a single entry (the first instruction of the block) and a single exit (the
last instruction of the block), also every instruction transfer the control of
execution to exactly one successor within the block.

Figure 2.3: IDA Pro graph view

Moreover, if the analyzed binary is not obfuscated in some way, IDA Pro
provides a list of API calls by looking at the Import Address Table. However,

6

CHAPTER 2. STATE OF THE ART

is up to the analyst to figure out the dependencies between the calls and the
relative behaviors. This is the point we try to improve: by taking advantage
of the results obtained by Jackdaw, our plugin is capable to find the behaviors
automatically, significantly simplifying the work of the analyst.

2.3 Jackdaw

There have been previous attempts to automate malware analysis, for instance
one of the previously existing tools developed on this line of work is Reani-
mator [8]: it recognize different implementations of the same dynamic pat-
terns, or behaviors, in a set of malware files, discovering functionalities that
could have been remained hidden during a dynamic analysis, however it is
not completely automated since it is necessary to manually specify those be-
haviors. Other analysis tools are based on the extraction of sub-Control Flow
Graph for the static analysis and, as showed in [9], these sub-graphs are ro-
bust against polymorphism (different versions of the same algorithms), and
this is a major advantage against malware authors’ practice of changing their
code to fool anti-malware static signatures. This evolution of code in mal-
ware families is the subject of Beagle [10], a tool that periodically downloads
newer versions of a given malware and compares them with the older ones by
means of static and dynamic analyses. In order to perform its analyses, Beagle
needs a set of behaviors that, however, as in Reanimator, need to be manually
defined.

Jackdaw is a hybrid analysis tool meant to automate the malware analysis
process. Unlike Reanimator and Beagle, Jackdaw has the capability of au-
tomatically extracting the behaviors and they are enriched with information
obtained analyzing more implementations of the same behavior. Moreover
Jackdaw associates a semantic tag, that is a meaning, to each behavior, render-
ing them more “user friendly” and to the reach of less experienced analysts.

2.3.1 Sample analysis and fingerprints extraction

Jackdaw uses the open source sandbox Cuckoo [11] to perform the first part
of its analysis: the samples are loaded and the system checks their entropy:
if it is too high it could be a sign of obfuscation and the sample is analyzed
by PINDemonium [12], an unpacker for windows executables which dumps
the memory of the process and rebuilds the binary.

7

CHAPTER 2. STATE OF THE ART

Cuckoo, with the Jackdaw modules, outputs the results of the taint analy-
sis, with the API calls executed by the sample and the dependencies between
them, and the fingerprints. The fingerprints are sub-Control Flow Graphs
(CFG), described in [9], of the analyzed malware, indexed with their hashes.
The main CFG is generated by data flow dependencies while the sub-CFGs
are generated by recognizing them in different malware. Since only the se-
mantics of the API calls are important to Jackdaw’s analysis to create the be-
haviors, the names of the API calls can be normalized by stripping them from
the suffixes that specify either the mode in which that same call is executed
or a new version of the call (“A” for Ansi, “W” for Unicode and “Ex” for
Extended). In addition to the names of the APIs, the names and the values
of their parameters are also extracted, since some of them may be significant
for the analysis.

2.3.2 Clusterization and behavior extraction

At this point only the taints that presents some fingerprints are significant
since the next step is to group similar sequences of data-flow dependent API
calls. The one-pass clustering algorithm is based on the ECM algorithm and
it is applied to an input stream of data (Algorithm 1). In order to decide
whether a sub-graph can be part of an existing cluster or if it has to be a new
one, it is necessary to use some kind of similarity measure: for this purpose the
similarity between the sub-graphs is measured using the Jaccard’s Similarity
(2.1).

J(A,B) =
|A ∩B|
|A ∪B|

(2.1)

Jackdaw now has to extract the rules that characterize each cluster. For
this, the first adopted heuristic is the frequency with which an API appears in
a given cluster – always keeping in mind the sequences of data-flow dependent
APIs – that is an API is considered representative of a cluster if it appears more
frequently than a threshold f=0.75 in that cluster.

Once the most representative APIs are found, Jackdaw merges those clus-
ters whose representative APIs has the same function names, obtaining in this
way a graph showing also relationships between different behaviors.

8

CHAPTER 2. STATE OF THE ART

Algorithm 1 Clustering algorithm based on ECM
1: Input : dataflow set; clusterset = {c1 . . . cl}
2: for all t ∈ dataflow set do
3: for i ∈ {1 . . . l} do
4: sj ← J(t, ci)
5: end for
6: si∗ ← argmax(si)
7: if si∗ > u then
8: ci∗ ← ci∗ ∪ {t}
9: else

10: new cl+1

11: cl+1 ← {t}
12: clusterset← clusterset ∪ cl+1

13: l← l + 1
14: end if
15: end for

2.3.3 Semantic tagging

Jackdaw must now tag each behavior with a semantic description, that is a set
of keywords obtained by all the single APIs that compose the behavior. For
this purpose, Jackdaw searches in a dump of Stackoverflow posts for the API
names and their relevant parameters. A post in Stackoverflow has a title, a
body and a set of tags, as shown in Figure 2.4; Jackdaw searches for the APIs,
which describe the behavior, in these fields and then it assigns a score to each
post retrieved based on the keywords that same post has been tagged with by
the user who submitted it: a score of +1 is given to those tags that appears
in a previously defined list of interesting tags; a score of -1 is given to those
trifling tags that are not useful to define the behavior.

Only those posts whose score is positive are marked as relevant and then
each tag is weighted with with the post score as:

Score(tag, post) =
Score(post)

N
Found(tag, post)

where Score(post) is the overall score of the post, N is the total number

of relevant posts and Found(tag, post) ∈ 0, 1 and it is 1 only if the tag is
contained in the post.

Then a vote for each tag is computed as

9

CHAPTER 2. STATE OF THE ART

V ote(tag) =
∑

post∈allPosts

Score(post)

building in this way a ranked list of tags associated to the given behavior.

Figure 2.4: Example of a Stackoverflow post

At this point the behaviors and their semantic descriptions are ready to be
used and this is the main goals of this thesis: making the behaviors available
to analysts who are performing static analysis, enriching the features of IDA
Pro, and eventually making Jackdaw in some way crowd-sourced, giving the
possibility to the analysts to correct wrong behaviors and adding new ones.

10

Chapter 3

Approach

3.1 Overview

The general approach to the problem of using Jackdaw’s hybrid analysis re-
sults into the process of reverse engineering has been to write a plugin for an
existing software that is already used by analysts in the field, in this way users
can still make use of tools they are used to, but with the advantage to have an
additional aid in the analysis process, coming from our plugin.
The idea is that users can see all the behaviors and their descriptions of the
binary they are analyzing, while looking at the assembly instructions. In this
way it is possible to see which instructions originates which behaviors. More-
over, since it is possible that some of the descriptions may be inaccurate or
wrong for some of the behaviors, the plugin gives the users the ability to mod-
ify or to add new descriptions, as it can be seen in Figure 3.7, improving the
results provided by Jackdaw’s automated analysis and, in this way, making
Jackdaw a partially crowdsourced analysis tool.

Since the results that the plug-is is meant to show are provided by Jackdaw,
that is running on a remote server, and the database of behaviors is on a remote
location as well, the architecture used to implement our tool is client-server,
in which the plug-in is the client and the server back-end we implemented
answers to the plugin requests, acting as a middle layer between the plugin
and the database, always checking the user status (registered, not-registered)
in order to give the correct set of descriptions associated to a given behavior
and to allow some advanced functions that are available only to registered
users. Also the server has the task to return results that are easy for the client
to handle, striping useless informations from the answers or re-arranging the
information to be returned in a way that the client can easily parse and use.

11

CHAPTER 3. APPROACH

An overview of the various components and the connections between them is
represented in figure 3.1: on the client machine the sample is loaded in IDA
Pro to be analyzed; our plugin wraps Disasm, that is executed on that same
sample to retrieve its fingerprints, and communicates with the server backend
over a secure TCP channel in order to send the fingerprints and retrieves the
graphs; the backend queries the database for the behaviors that are generated
by the Jackdaw’s analysis and sends back the response to the plugin.

Figure 3.1: Scheme of the architecture

3.2 Disasming

When it is activated, the first step the plugin performs is the execution of Dis-
asm [9], provided with the plugin, on the analyzed sample. Disasm produces
a list of fingerprints, that are sub-control flow graph of size 10, containing
also information about the instructions that implement them, each one asso-
ciated to the corresponding offsets of the entry points of those functions that
belong to the Data Flow Graph characterizing that fingerprint. Therefore the
presence of Disasm on the analysis machine is a requirement for the proper
functioning of the plugin. The alternative would have been to submit the

12

CHAPTER 3. APPROACH

whole binary file to the server and extract there the fingerprints. We decided
to execute the disasming process on the analysis machine, with the plugin, for
two reasons: the main one is that some companies or analysts are reluctant
to share new samples of malware they are analyzing, so with the method we
have implemented these people can use our tool as well; the second reason
is because submitting the fingerprints is much more convenient than submit-
ting the whole binary to the server: in terms of performances it is faster to
just execute Disasm on the client than uploading the binary file and extract-
ing the fingerprints on the server; in terms of security the malicious sample
does not leave the analysis machine, which is supposed to be a confined and
isolated environment.

3.3 Querying for behaviors

As we described in Section 3.1, the next step is to send the fingerprints to the
server in order to find the corresponding behaviors saved in the database.

For the database it has been decided to use MongoDb [13], a non-relational
dbms that stores data into bson documents divided into collections. The main
collections that have been identified are: the one containing the behaviors, in
which each document must have 1) the path to the .gpickle file of the be-
havior and 2) the fingerprints associated to the behavior; the one containing
the semantic descriptions of the behaviors, where each document represent a
single semantic tag (we could have grouped all the descriptions relative to a
single graph in a single document, but in this way the queries that the server
would have had to make in order to add a new description or to edit an exist-
ing one, would have been more complex); and the one containing the users
registered to our tool. During the implementative process other collections
have been added to support the multiple functions that are available to the
plugin: a collection to store descriptions voted by each user and one to store
the open sessions of logged users. We decided not to put the votes directly in
the descriptions collection to avoid to have complex documents in it, and in
this way there is no useless data returned from the database when the server
queries only for the descriptions. Also, in the collection for the users we de-
cided to store groups of users, this because, as described in session 3.6, it is
possible to make a description private by tagging users or groups, and in order
to avoid tagging conflicts, it is not possible to have a user and a group with the
same username/name, and having them in the same collection means to use
a single simple query to check if a user or a group already exists when another

13

CHAPTER 3. APPROACH

potential user is registering themselves, or when a group is being created.
The details of the structure of the database and its collections are discussed

in details in the Implementation chapter (Chapter 4).
The server queries for the behaviors graphs and their descriptions (the se-

mantic tags associated to those graphs), and then returns the parsed results
to the client. The results are composed in a way that it should be more con-
venient for the client to parse it, by coupling each behaviors to its list of
descriptions, instead of returning the two separated lists and leaving to the
client the task to search and retrieve the correct descriptions for each behav-
ior returned. Also, the server needs to know the status of the user, if they
are logged in or not, in order to show the correct set of descriptions (some of
them may be private and available only to certain users).

3.4 Behaviors visualization

As soon as the plugin receives the complete response from the server, it parses
the results, opens a new view, side by side to the assembly code view, and
it visualizes a list of all the behaviors found inside the binary under analysis.
An example, in which it has been analyzed a binary file that performs some
operations on the Windows’ registry, is shown in Figure 3.2. The complete
sequence of steps the plugin makes, and the interaction between the compo-
nents of our system up to this point is showed in Figure 3.3: the user invokes
the plug-in from the UI or from a keyboard shortcut; the plug-in executes
Disasm on the binary file under analysis and it retrieves the output with the
fingerprints that are then sent to the server; the server, upon receiving the
request makes a query to the database of behaviors and returns the results to
the client which displays them in a dedicated view.

14

CHAPTER 3. APPROACH

Figure 3.2: Behavior View on the right of the disassembled code

User Plugin Server Database

Start()
ExecuteDisasm()

SendFingerprints()
GetBehaviors()

ReturnBehaviors()
ReturnBehaviors()

VisualizeBehaviors()

Figure 3.3: Interaction between plugin, server and database.

At this point the automatic tasks that the plugin performs since its activa-
tion are completed; the can now interact with the UI in order to fully take
advantage of the advanced functions that our tool can perform: the integra-
tion with the asm view, described in Section 3.4, the possibility to see a more
detailed list of descriptions for each behavior, described in Section 3.5, and
other features, described in Section 3.6 that are available only for registered

15

CHAPTER 3. APPROACH

users.
Once the list of behaviors has been loaded, the user can start interacting

with them and with the plugin, meaning that all the further functions im-
plemented are executed only when the user requests them. However, after
the behavior has been loaded, the plugin hooks itself on the IDA view show-
ing the assembly instructions of the analyzed binary file, intercepting mouse
clicks on the lines of code. If the highlighted instruction is in a function that
implements one or more behaviors found in the file, the plugin filters the list
of graphs showing only those behaviors, as shown in figure 3.4.

Figure 3.4: Clicking on the instruction at .text:010092DE the list of be-
haviors is filtered and it shows only those two graphs to whom that instruction
belongs.

Users can see the graph of a behavior found in the analyzed binary file by
double-clicking its entry in the Behavior View. In that case the plugin will
open another view showing a visual representation of the graph. The graph
is interactive, this means that by clicking its nodes it is possible to see every
interesting attribute of such node; moreover, when a node is selected, the
plugin highlights all the assembly lines in the main view that implement the
behavior in question, as shown in figure 3.5.

The synchronization of the two views is useful in order to see in a more
immediate way what some instructions are doing or which lines of code ex-
ecute certain functions and it is supposed to be a major aid to the manual
analysis process. Each behavior has a color associated that is generated using
the hash of the behavior itself, in this way every behavior will have the same
color every time it is encountered, not only on the same sample, but on every
binary file that implements it.

16

CHAPTER 3. APPROACH

Figure 3.5: Clicking on a entry in the BehaviorsView opens the graph and
highlights the instructions.

3.5 Behaviors Descriptions

In the Behaviors View (that can be seen in Figure 3.2) it is shown a list of
colored entries (the colors are the same discussed in Section 3.4), one of each
behavior, labeled with a number and with an overview of the behavior’s most
high-scored descriptions. To see the complete list of semantic descriptions the
user can click on the “Description” button after having selected a behavior. At
that point the plugin opens a new window, as shown in figure 3.6. We opted
for a pop-up window instead of another view in order to avoid to over-load
the user interface with too many opened tabs and sub-tabs.

Figure 3.6: The Descriptions Window

In the Description Window it is possible to see all the relevant tags, and
their edited versions, associated to the selected behavior. Also, every descrip-
tion has two scores: the first one it is calculated by the semantic tagging
algorithm, and it is set to 0 in case a description has been manually inserted

17

CHAPTER 3. APPROACH

by a user; the second one is the user-score, that is the number of users that con-
sider such description fitting correctly the behavior (this feature is discussed
in more details in Section 3.6). Moreover it is possible to see which are the
original descriptions found for the behavior by Jackdaw and which are the
ones added by human analysts, the firsts are in fact marked by the icon .
Also, registered users have available a wider set of functions, such as upvoting,
editing and inserting new descriptions (see Section 3.6).

3.6 Functions for Registered Users

Since one of the goals of this thesis is to improve and correct the results ob-
tained automatically by Jackdaw, more features have been implemented and
are available to logged-in users from the Descriptions Window. If a user finds
that the all the descriptions that are already available are not fitting the given
behavior, they can add new descriptions themselves; or they can improve the
existing descriptions editing them: in this case the new description does not
substitute the old version but it is added to the list and the wrong one is
marked as “edited”, we adopted this choice in order to avoid user from mis-
takenly editing correct descriptions, deleting the right ones, and in order to
maintain a history of edits. In Figure 3.7 it is possible to see how description
can be edited or how a new one can be added.

Figure 3.7: An example of how a tag can be edited. At the bottom of the
form there is the inputbox from which it is possible to add completely new
descriptions.

Moreover, logged-in users can upvote a tag. This means that if a user
finds that a semantic description is particularly fitting the behavior, they can
increase its user-score, as shown in Figure 3.8. If a user clicks on a vote button
for a description they already voted for, that vote is canceled and the score is
decreased by 1. This because we wanted to avoid multiple votes to a single

18

CHAPTER 3. APPROACH

description from a single user and to give the users the possibility to eventually
remove a vote they mistakenly gave.

Figure 3.8: The tag “registry” is upvoted and its userscore is 1

Also, the new descriptions can be public or private. While public descrip-
tions can be viewed by anyone, private descriptions can be seen only by those
users who was tagged at the moment the description was being written and
submitted. Users are tagged using the “commercial at” @ followed by the
username of the user that is meant to be tagged: @username. In order to sim-
plify the tagging process, especially when the number of users is fairly large
or when working in teams, we added the options of creating and managing
groups of users. In this way, instead of tagging the individual users one by
one, it is possible to tag the whole group at once.

Finally, it is possible that for a sample under analysis in IDA there could
not be any behavior found, maybe because it presents completely new behav-
iors that Jackdaw haven’t discovered yet in the past analyses. In this case it is
possible to contribute to the behaviors database by submitting the sample to
the analyses server. On the client side the user can select the file they want to
upload from a simple file dialog, browsing through the file system. On the
server side, once the sample is received, the backend automatically queue the
analysis of the file simply using the command-line utility submit.py, provided
with Cuckoo.

The server is responsible for checking on the correctness of the requests. If
a user is trying to perform one of the previous actions without being registered,
the server returns an error message. If the user is trying to insert a description
that already exists for that behavior, the request is simply ignored. If the word
following the “commercial at” does not correspond to a user or a group, the
tag is ignored and the server considers it part of the description that is being
inserted.

3.7 Login and Registration

From the Plugin Main View it is possible for the user to either Login or
Register. The login allows users to access to the extra features described in

19

CHAPTER 3. APPROACH

Section 3.6. The registration process consists in two steps: at first the user
compiles the registration form — with username, password and email — and
submit the data. When the server receives a registration request it validates
the data checking whether the e-mail or the username are not already being
used by other users (and in case of the username, if it is not already used as
a Group Name, in order to avoid tagging conflicts), if this is the case or if
the credentials inserted to login are wrong, an appropriate error message is
returned, otherwise, if all data submitted is correct, it sends a confirmation
email to the user who ends the process by visiting the confirmation url.

A more in-depth description of the implementative details of all the fea-
tures available in our tool can be found in Implementation (Chapter 4).

20

Chapter 4

Implementation

In this chapter we will discuss the implementative details of our tool. In
Section 4.1 we’ll explain how the plugin client has been implemented using
the IDA SDK and how it interfaces with IDA Pro (Subsection 4.1.1), how the
server backend has been implemented and of what parts it comprises (4.1.2),
how the database is structured (Subsection 4.1.3) and how all these three
elements communicate with each other. Moreover, always in Section 4.1, we
discuss in details how every function available to users is implemented. In
Section 4.2 we explain how we improved the semantic tagging algorithm and
finally, in Section 4.3 we discuss the external tools used in the implementation
process.

4.1 Implementation details

4.1.1 Plugin setup

The IDA SDK offers two ways of loading the plugin on IDA startup. The
first one is used returning the flag idaapi.PLUGIN KEEP from the init method
in the plugin class, it allows to keep the plugin in memory, but this is not
necessary for our purpose, since we only need our tool to run when explicitly
called by the user and since we do not need to hook onto the IDA processor
module but only with the IDA database (of disassembled instructions). The
second way of enabling an IDA plugin is the one we used: by returning the
idaapi.PLUGIN OK flag IDA unloads the plugin from memory after the startup,
but it remembers that the plugin needs to work with the IDA database. Also,
since IDA executes on startup everything in the init method, we could not
insert the calls to the core functions of the plugin into the plugin main class,

21

CHAPTER 4. IMPLEMENTATION

so the method that starts the Disasming process and its following functions
is bound to a keyboard shortcut and to a toolbar action.

This is how the plugin main file Jackdaw.py is structured:
#PLUGIN MAIN CLASS
class JackdawPlugin(idaapi.plugin_t):

#MANDATORY METHODS
def init(self):

return idaapi.PLUGIN_OK

def term(self):
pass

#THE MAIN LAUNCHER METHOD
def launcher():

execute_disasm()
query_results()
visualize_behaviors()

if __name__ == ”__main__”:
create_actions()
bind_actions_to_launcher_method()

In this way, only the user can activate the core functions of the plugin,
by executing one of the actions, while the only thing that IDA executes auto-
matically is the binding of such actions.

Note that the possibility to add an action to the IDA toolbar has been
added only from IDA Pro 6.71, this means that the only way to activate the
plugin in older version of the program is to use the entry from the Plugins
menu or from a keyboard shortcut.

1http://www.hexblog.com/?p=886

22

CHAPTER 4. IMPLEMENTATION

The overall directory structure of the plugin is the following:

IDA Plugins folder/

Jackdaw.py

jdaw/

data/

disasm x86/

disasm x64/

disasm.py

connector.py

view.py

utils.py

Jackdaw.py is the file that IDA needs in order to load the plugin and to bind
the actions on startup, while the folder jdaw contains the proper plugin core
files, the data subfolder containing the icons used for the user interface, and
the two versions (32bit and 64bit) of Disasm.

4.1.2 Server setup

We implemented the server using the SocketServer Python library. In par-
ticular we used the TCPServer class and, in order to serve multiple requests in
asynchronous mode, the ForkingMixIn class; also, the TCP socked is wrapped
with ssl protocol. The server listens on a predefined port (the default port is
5000, it is possible to define an alternative port on server startup) for requests
from the plugin clients.

When a new user registers to the service, the server sends them a confir-
mation email: this means that the server needs access to a smtp server. It is
possible to specify url and port of the smtp server and the name and password
of the mailbox used to send the confirmation emails, on server startup.

The server needs also access to a second port used to show a html page of
registration confirmation when a new user clicks on the confirmation links
in the confirmation email.

4.1.3 Database

As DBMS we used a MongoDB [13] instance with 5 collections. The first
one is the behaviors collections, this is its scheme:

23

CHAPTER 4. IMPLEMENTATION

{
_id,
graph,
fingerprints,

}

in which id is the unique identifier assigned from MongoDB to the docu-
ment, graph is the path to the .gpickle file on disk in which the graph is
stored, and fingerprints is a list of all the fingerprints associated to the be-
havior. This collection has also an index on the fingerprints that is necessary
to speed up the queries.

The descriptions are stored in a separate collection and they have the fol-
lowing structure:

{
_id,
tag,
author,
score,
user_score,
graph_id,
edit,
(private,)

}

in which tag is the description itself, author is the username of the user who
inserted the description or “Jackdaw” if the description was found using the
semantic algorithm, the score field is the score computed by the semantic
algorithm (if the description has been inserted by a user the value of this field
is 0), user score is the total upvotes that the description has from the users,
graph id is the id of the graph in the behavior collection to which the de-
scription in object is associated, the edit field indicates whether a description
is an edit to another one or not: in case it is, the field contains the descrip-
tion that has been edited. Finally some of the descriptions may have the field
private that is a list of usernames of those users that are the only ones who
can see such descriptions. In order to improve performances on the queries,
this collection has also an index on the graph id field.

A separate collection has been used to keep track of the votes of the single
users. This was necessary in order to avoid that users could vote multiple
times on a single description, and to eventually give the users the possibility
to remove the vote they had given to a description. The votes collection is
empty at the beginning and a new document is created for a user the first

24

CHAPTER 4. IMPLEMENTATION

time such user upvotes a description.
The structure of the documents in this collection is the following:

{
_id,
user,
graph_id: [descriptions]

}

This document contains user that is the username of the user, and a list of
graph ids with the descriptions that has been upvoted by the user for that
graph. Every time a user votes for a description for a new behavior (a behavior
that is not already in the votes document), a new graph id: [description]
pair is added to the document, otherwise, if the graph id is already present,
only its list of descriptions is updated.

Another collection used in our database is necessary to store the registered
users and also, as we discussed in Approach (Chapter 3), the groups of users.
This is the structure of the documents in this collection:

{
_id,
username,
type,
(pwd,
email,)
(users,
admin,)

}

where username is the user’s username or the name of the group, type indicates
whether it is a group or a user; the fields pwd and email are present only if the
object is a user and they contains the salted and hashed password and the user
email; the fields users and admin are present only if the object is a group and
they contain the list of users in the group and the group admin.

Finally another collection has been used in order to keep track of the
open sessions, that is the users that are logged in the application. This is
the following structure of the documents of such collection:

{
_id,
session-id,
username,
date,
ip,

}

25

CHAPTER 4. IMPLEMENTATION

session-id is a random generated string encoded in base64 that is created
at the moment the user logs in (see Session 4.1.16), the date field contains
the time the user logged in with YYYY:MM:DD hh:mm:ss format, and ip is the
ip address from which the user has logged in.

4.1.4 Communication protocol

As we already stated in Section 4.1.2, the main communication protocol used
between server and client is TCP. However we developed a communication
protocol that works over the TCP channel in order to parse and send messages
between client and server. Messages are packed as format strings, using the
struct Python library. Every message has an header that contains the full
message length and the message code. The header is the first thing that gets
unpacked once a new message is received, either by the client or by the server,
and it is used as an aid for the parsing process and for an additional integrity
check. The message code identifies the kind of query (if it has been sent by
a plugin client) or the kind of response (if it has been sent by the server to a
client), and it determines how the rest of the message needs to be unpacked.

4.1.5 Disasm and fingerprints extraction

The first step that get executed when the plugin is activated is the extraction
of the fingerprints from the analyzed binary file, using Disasm.

Before executing Disasm, however, the plugin needs to retrieve from IDA
the path to the binary file that is currently being analyzed, using the idc.GetInputFilePath()
method from the IDAPython idc library.

Disasm is executed by the plugin using the subprocess library and its out-
put is read and parsed into two dictionaries: the first one has the fingerprints
as keys and the offsets as values; the second dictionary is the opposite: it has
the offsets as keys and the fingerprints that have those offsets as values.

Disasm outputs a string with the following format:
fingerprint1,offsetA,offsetB,offsetC,...
fingerprint2,offsetA,offsetB,offsetE,...
...

While the two dictionaries have the following structure:
dic1 = {

fingerprint1: [offsetA, offsetB, offsetC, ...],
fingerprint2: [offsetA, offsetD, offsetE, ...],

26

CHAPTER 4. IMPLEMENTATION

...
}

dic2 = {
offsetA: [fingerprint1, fingerprint2, ...],
...
}

The choice of using this couple of dictionaries has been made in order to
improve the performances in other functions that the plugin has to perform
later on.

4.1.6 Sending the fingerprints to the server and behavior retrieval

The next step is to send the fingerprints to the server and retrieve the asso-
ciated behaviors. The plugin organizes the fingerprints generated by Disasm
into a comma separated list, and that is the main part of the message that is
going to be sent. Since some of the description associated to the behaviors
may be private, it is necessary to include in the message the session-id of the
user, if they are logged in, or None if they are not. In this way the server will
know the status of the user, and by using the session-id, if it is not None, it
can retrieve the user’s username and select the correct descriptions that have
to be returned to the client. The final message can then be sent to the server.
This is the structure of the message:

0
Tot msg len Query type SessionID len SessionID Fingerprints len Fingerprints︸ ︷︷ ︸

4 bytes
︸ ︷︷ ︸

4 bytes
︸ ︷︷ ︸

4 bytes
︸ ︷︷ ︸
SessionID len bytes

︸ ︷︷ ︸
4 bytes

︸ ︷︷ ︸
Fingerprints len bytes

The message is then sent over the TCP channel and as soon as the server
receives it it starts unpacking it. The server reads and unpacks the first 8 bytes
of the message, the first 4 bytes are the length of the total message and the
server uses them for an integrity check, the second 4 bytes are the query code:
they encode the type of the message that is being received. The code for the
query for retrieving the behaviors and their descriptions is 01.

Now the server knows the query code requested by the client and it can
execute the respective function. The first step at this point is to unpack the
rest of the message, if the structure of the message is not what expected given

27

CHAPTER 4. IMPLEMENTATION

the query code, the server returns an error message. The elements expected
here are the session-id length, the session-id, the length of the comma sepa-
rated sequence of fingerprints and the sequence itself. The two lengths are
necessary in order to unpack the session-id and the fingerprints, because it is
not possible to know their lengths a priori.

Once the session-id and the fingerprints are unpacked, the server parses
the sequence of fingerprints, that is in string format, in a Python list, and
then it queries MongoDB for the graphs in the behaviors collection using the
index on the fingerprints:

fingerprints_list = fingerprints_seq.split(”,”)
graphs = behaviors_collection.find(

{”fingerprints”: {”$elemMatch”:
{”$in”: fingerprints_list}
}}).hint([”fingerprints”, 1])

Once all the graphs are retrieved, the server collects all their ids in a list
graph ids and another function query for descriptions() uses it for query-
ing the respective descriptions. This function is wrapped in a Python decora-
tor that checks whether the user is logged in or not, and if they are it retrieves
the username using the session-id from the sessions collection in MongoDB;
this because some of the descriptions associated to some of the behaviors may
be private, so the MongoDB query must include this information: the server
queries all those descriptions that are not private or that are private but the
user’s username is in the field private (see 4.1.3):

descriptions = descriptions_collection.find(
{”$and”:[

{”graph_id”: {”$in”: graph_ids}},
{”$or”: [

{”private”: {”$exists”: False}},
{”private”: username}
]

}
]}).hint([”graph_id”,1])

Now the server has all the documents containing the descriptions, this doc-
uments need now to be parsed to remove useless information (in order to
reduce the size of the message that the server has to send back to the client)
and it needs to include a flag upvoted on those descriptions that has been up-
voted by the user. To do so the server queries for the user’s document in the
votes collection, and then it iterates on all the description, removing the field
”author” if it is not ”Jackdaw” or the user themselves, adding the field voted

28

CHAPTER 4. IMPLEMENTATION

and grouping those description belonging to the same graph. At this point
the server has a Python list containing all the documents of the behaviors
graphs and a dictionary in which the keys are the graph ids and the values are
the descriptions, now it has to load the graphs from their files on disk and
then it has to associate the behaviors to their respective descriptions. Note
that an alternative approach would have been to query the descriptions for
every graph one by one, in order to have them already associated in couples
(graph, descriptions), but this would have significantly increased the number
of accesses to the database. The server iterates on the list of graphs, loads the
single graph from disk opening its .gpickle file, retrieves its descriptions from
the dictionary and parse them in json format. While the server iterates on
the graphs it packs both the behaviors and their descriptions, and it starts to
build the string (the message) that has to be returned to the client.

1: message← ‘‘”
2: procedure GenerateReturnMessage(graphs, descriptions)
3: for all graph in graphs do:
4: g ← LoadGraphFromDisk(graph)
5: d← Descriptions(graph.graph id) ▷ Get description from descriptions

dictionary

6: packed graph← Pack(g)
7: packed description← Pack(d)
8: packed couple← Concatenate(packed graph, packed description)
9: message← Concatenate(message, packed couple)

10: end for
11: end procedure
12: return message

At this point the server adds the header to the main message. The header
contains the length of the total message, the code of the response (in this way
the client knows how to unpack it), and, only for this kind of response, the
total number n of couples graph-descriptions that are present in the message
(this makes the unpacking process on the client much easier). After the header
is added, the message is sent on the TSL/SSL-wrapped TCP channel, back to
the plugin client that is waiting for the response.

4.1.7 Behaviors visualization

The unpacking process on the clients works exactly in the same way as on
the server, as described in Section 4.1.6: the plugin unpacks the header first,

29

CHAPTER 4. IMPLEMENTATION

reading the total length of the message and performing an integrity check, the
response code, and, with the proper response code, the number of couples
graph-descriptions.

If the response code is an error code the plugin shows the relative error
message, otherwise it starts unpacking the rest of the message. Knowing in
advance how many n pairs graph-descriptions there are makes the unpacking
process a simple matter of iterating n times on the remaining part of the
received message, and unpacking one pair at each cycle. In this passage the
plugins builds also a list of all the fingerprints found in the returned behaviors,
to have this list is useful because before opening the new Behavior View the
plugin generates a list containing the intersections of the fingerprints found
by Disasm and those present in the behaviors returned from the server:

intersection_list = [fingerprint for fingerprint in
behaviors_fingerprints if fingerprint in disasm_fingerprints]

After all the pairs graph-descriptions are unpacked, the plugin opens a new
IDA view. This new view extends the class idaapi.PluginForm made available
by IDAPython/IDA SDK. The use of this class extension is necessary in order
to fully integrate the results into IDA. The behavior view is opened side by
side to the IDA Main View (called “IDA View-A”), this is done with the
idaapi.set doc pos method and passing it the correct flag accordingly to the
placement we want:

idaapi.set_doc_pos(”Behaviors view”, ”IDA View-A”,
idaapi.DP_RIGHT)

The Behaviors View created by the plugin contains the user button, a search
box, a Qt ListWidget, and a button that visualizes the descriptions of a se-
lected behavior. The user button is used to login or to register, or, if the user
is logged in, it shows the user username and it opens a menu from which it
possible to access to the Groups Management view or to log out. The search
box it is useful to filter behaviors by name, by api, by descriptions or other
attributes.

The Qt ListWidget is populated with all the behaviors found for the an-
alyzed binary file: each behavior is labeled by a number and by a list of its
most high-scored descriptions, in order for the user to have an overview of
the behaviors descriptions without opening the descriptions window.

Also, each behavior is colored with a unique color generated before the
view is opened. The colors are generated by hashing the graph and by taking
3 bytes of the obtained hash, that is 6 hex digits or the encoding of a color in

30

CHAPTER 4. IMPLEMENTATION

hex format. The color is then brightened if it is too dark, this step is necessary
in order to keep everything readable. Remembering that a color in hex format
is a triplet RGB in which every component is a number ranging from 0 to
ff, or 255 in decimal, we used the Equation 4.1 to determine if a color was
too dark to maintain readability of information computing the Luma (Y’), a
value that represents the perceived brightness of a color2. For our purposes,
we found that considering colors as “bright” when their Luma is higher than
a threshold=125 leads generally to good readability. In case of a “dark” color
its values of R, G and B are increased until its Luma value is equal or higher
than our threshold.

Y ′ = 0.299 ∗R+ 0.587 ∗G+ 0.114 ∗B (4.1)

Upon creating the Behaviors view, the plugin hooks itself onto the IDA-
Main View, this is done by extending the IDAPython class idaapi.IDAViewWrapper.
This hooking is necessary to have a more complete integration between the
Jackdaw results and the code of the binary the user is analyzing: the plugin
intercepts all the mouse clicks on the IDA Main View, in particular on the
lines of assembly code, and, if the selected lines belongs to some of the be-
haviors, the plugin updates the list of behaviors with the interesting ones. In
order to do this we exploit the fact that IDA generates the flow chart of the
analyzed binary.

In details, when the user clicks on a line of code, the plugin retrieves
the flow chart of the binary from IDA, then it searches in the graph for the
block in which there is the selected line of code and once it finds it, the
plugin retrieves the entry point of the block. The entry point is the instruc-
tion whose offset is one of those to which Disasm may have associated some
fingerprints, so the plugin retrieves the fingerprints associated to that entry
point from the dictionary {offset: list of fingerprints} described in Sec-
tion 4.1.5. However not all the fingerprints found by Disasm may be as-
sociated to a behavior returned to the server, so in order to select only the
interesting fingerprints, the plugins checks for every one of them that it is
also in the intersection list that has been generated previously.

4.1.8 Graph visualization

Since each behavior is a graph whose nodes are the called APIs characterizing
such behavior, it is useful to see such graph. Every behavior entry in the

2http://www.poynton.com/ColorFAQ.html

31

CHAPTER 4. IMPLEMENTATION

QListWidget on the Behaviors view is linked to a double click action: if the
user double clicks on a selected behavior the plugin will open another view
showing the generated graph. This Graph View is stacked in a new tab over
the Behaviors view tab, and it is created as an extension of the IDAPython
GraphViewer class, this makes the integration into IDA and the generation
of the graph much easier, however it does not allow much control over the
graph itself.

In the generated graph every node represents a called API, and the text in
every node shows the name of the API and its type (registry, file, etc.). To
see more attributes of an API call it is possible to click on its node: the se-
lected node is updated with all the attributes belonging to its API call. Also,
at this point, the plugin makes use of the hooking on the IDA Main View
once more: when the user clicks on a node the plugins highlights every line
of assembly code in the IDA Main View belonging to that behavior. The
lines that have to be colored are found using the IDA flow graph. For every
single one of the fingerprints in the selected behavior, the plugin retrieve its
offsets from the {fingerprint: list of offsets} dictionary described in Sec-
tion 4.1.5, ignoring those fingerprints that are not in the dictionary, then,
for every offset, it searches in the flow graph for the basic block containing it,
and every line in that block is colored.

4.1.9 Descriptions visualization

To see all the descriptions for a given behavior and to interact with them, we
implemented a Descriptions Window that can be accessed by a button from
the Behaviors View or by left-clicking on the behavior graph and selecting the
option in the contextual menu.

The Descriptions Window presents a Qt QTreeWidget containing all the
descriptions, and an input box used to insert new ones. The main items in
the TreeWidget are all the actual descriptions, whether they are original or
edits to other ones. The children to the main items are their edits. The tree
never exceeds this two levels: when a description that is an edit to another
one is edited in its turn, the new modification is inserted as a main item in
the TreeWidget, and as child to the main item of the edited description. We
adopted this choice to avoid a deep level of nesting of edits. Every item in
the tree widget is a custom QTreeWidgetItem: besides containing the text of
the description it also has an icon that indicates if the description has been
found by the tagging algorithm, two buttons to edit the description and to

32

CHAPTER 4. IMPLEMENTATION

upvote it, and an icon that indicates if the description is private or not.
Pressing the edit button adds a temporary child QTreeWidgetItem to the

selected description. This custom item contains an inputbox, in which the
user can insert their edit, and two buttons to confirm or discard the edit. If
the user confirms the edit is sent to the server and, when the server confirms
the insertion of the corrected description, the temporary child is removed and
the correction is inserted as explained before.

4.1.10 Description addition

From the Descriptions Window it is possible to insert a new description for
a given behavior. The text of the new description must be typed in the QLi-
neEdit widget and such description is inserted when the user press the insert
button. At this point the plugin starts building the message to send to the
server: the message includes the session-id of the user, the id of the behavior,
and the text of the description. The structure of the message is exactly the
same as the one described before: the header contains the total length and
the message code (in this case 02), and every other information is preceded
by its length, in order for the server to correctly unpack the message.

Once the server receives the message from the client over the TCP chan-
nel, it starts unpacking it as already described: it first reads the header, with
the length and the message code, and then, based on the code, calls the
ins description method, which unpacks the rest of the message, reading the
session-id, the id of the behavior and the text of the new description.

The session-id is used to check that the user is logged in. Since the possi-
bility to add a new description is given only to those users who are registered
into the application, if the session-id is empty or if it is wrong (it does not
match to any of the sessions that are actually in the sessions collection in Mon-
goDB) the server returns an error message to the client. After this first check,
the server parses the message text in order to read some eventual tagged user.
Since the tagging is done by typing the commercial at followed by a username
or a groupname, we used a regular expression to retrieve all the instances of
this kind of construct and to build a list of them:

possible_users = [user for user in re.findall(r”[@]\S*”,
description_text)]

Now the server has a list of possible usernames or groupnames. To verify if
they are actual users or groups the server needs to query the users collection
in MongoDB:

33

CHAPTER 4. IMPLEMENTATION

actual_users_or_groups = users_collection.find(
{”username”: {”$in”: possible_users}})

In this way, of all the strings preceded by a @ sign we now only have those
who are registered users or groups (remember that the users and the groups
share the same collection in the database).

At this point the server creates the new object to add to the database as a
new description by setting the its text and the id of the behavior, and initializ-
ing both the score and the user score to 0. Also, if actual users or groups is
not empty, the server marks the new description as private, adding the tagged
users to the private field and the tagged groups to the groups field. The de-
scription is then added to the database by means of a query to the descriptions
collection. If the addition is successfully completed, a confirmation message
is packed and returned to the client that updates the list of descriptions it
has for the behavior, and adds the new description to the QTreeWidget in the
Descriptions Window.

4.1.11 Description editing

The mechanism for the editing of an existing description is mostly like the
one described in Section 4.1.10 for the insertion of a new description, but
with minor differences.
In this case the editing is performed by clicking on the edit button of the
description the user want to modify. A new temporary custom child QTreeWid-
getItem is added to the description, and the user can insert the text of the
modification in the QLineEdit that the child includes. The modification is
confirmed by clicking on the confirm button on that same custom child item,
otherwise the user can discard the modification pressing the cancel button.
If the edit is confirmed, the plugin creates the message to send to the server.
This message includes the session-id, the old description and the new one,
and then the plugin adds the header with the total length and the query code
(in this case 03).

Upon receiving the message, the server unpacks it as previously described
and, since the description editing is a function available only to registered
users, if the session-id is None or if it does not exists in the sessions collection, an
error message is returned to the plugin client. Regarding the private attribute,
the edits to an existing description inherit the same private status of their
parent description, that is that the edits to a private description are private
and only the users tagged in such description can see it; moreover, the edits

34

CHAPTER 4. IMPLEMENTATION

to a public description must be public too and eventual tags are ignored and
considered part of the description. This is done by querying the existing
description and retrieving its private status before inserting its edited version.
At this point the server can add the edit as if it was a new description, with
the scores set to 0, the id of the behavior and the author of the edit, but with
the difference that the edit field contains the old description.

If the query used to insert the edited description into the descriptions col-
lection is successful, the server returns the confirmation to the plugin client,
which updates the descriptions it has with the new one, and it shows it in the
Descriptions Window as a parent item and a child item of the edited descrip-
tion.

4.1.12 Description voting

In order to for the users to help colleagues in the reverse engineer process,
it is possible for them to vote those descriptions that better fit a particular
behavior. The upvote is done by clicking on the respective vote button that
every parent item in the QTreeWidget in the Descriptions Window has.

When a user votes for a description, the plugin sends the vote to the server
in the form a message with the code 07 and in which the plugin packs the
session-id, the description that is being upvoted and the id of the behavior
that description belongs to.

As usual the server unpacks the message and makes sure that the session-
id is not None and that it exists in the sessions collection. At this point, if the
user is correctly logged in, the server updates the user-score of the upvoted
description.

First, the server retrieves the votes of the user from the votes collection,
then it makes sure that the description that has been upvoted is not already in
the retrieved votes; if this is the case the server consider the action as an “undo
vote”: the vote is canceled and the user-score of the description is decreased
by 1. Otherwise, if the user has never upvoted the description before, the
user-score is increased by 1.

If the upvote process is successful, the server returns a message to the
client with the updated value of the user-score; the clients then updates the
user-score in the Descriptions Window and in the data it has in memory.
As usual, if the upvote process is not successful, the server returns an error
message that the client shows to the user with a idc.Warning.

35

CHAPTER 4. IMPLEMENTATION

4.1.13 File Upload

As we discussed in Section 3.6 in Approach, it is possible to submit a file to
be analyzed by Jackdaw. Clicking on the Upload Button in the main view of
our plugin opens new window that presents the option to open a file dialog,
in which it is possible to select a file on the file system, and an upload button.
After having selected the file to submit with the file dialog, the user can press
the upload button and at this point the plugin opens a session to the remote
xmlrpclib server and sends the file. Once the server receives the sample it
simply stores it and submits it to Cuckoo’s analysis queue using submit.py.

4.1.14 Groups Management

Pressing on the user button on the main plugin view, the Behaviors View,
shows a menu with the Groups Management entry, selecting it opens a new
Groups Window from which it is possible to create new groups, and to add or
remove users from existing groups.

Every group management-related query that is sent to the server has two
query codes. The first one is 08, and it indicates that the request is relative
to a group; the second one is the query sub-code, and indicates which action
must be performed on the group: 01 gets all groups of a user; 02 adds a user
to a group; 03 removes a user from a group; 04 creates a new group. When
the server receives a message with code 08 it calls the manage groups requests
method, a handler of the groups-related queries, which parses the rest of the
message, reads the query sub-code, and calls the respective function.

When the Groups Management windows is opened, the plugin asks the
server for the groups in which the user is in, so it sends on the TCP channel
a message with the session-id, the sub-code 01, and, in the header, the total
length and the query code 08.

The server unpacks the message and uses the session-id to check if the user
is logged-in, and, if that is the case, to query the users collection and get all
the groups of which the user is a member.
Once all the groups are retrieved, the server parses them in a dictionary with
the following structure:

{group_name: {”users”: [list_of_users], ”admin”: group_admin
}, }

Then, the server dumps the dictionary in .json format and packs it with
the Python struct library, it adds the header and sends the message back

36

CHAPTER 4. IMPLEMENTATION

to the plugin, that will parse the response and load the .json string into a
dictionary.

TheGroupsManagement window is an extension of the idaapi.PluginForm
class and it is composed by an inputbox from which it is possible to add new
groups, and a Qt QTreeWidget that contains custom items. The main items
in the tree widget are the groups of which the user is a member, while the
children items of each of the groups are the other members of such groups.

The group items have a button from which it is possible to add new users,
while the user items have a button from which it is possible to remove the
respective user from the group. These two operations are available only to the
admin user, that is the user who created the group in the first place.

When the users creates a new group by typing the name in the input box
in the Groups Management window and pressing the New Group button, a
message is sent to the server with the sub-code 04, the session-id and the
group name. After the server receives it, and after it has checked that the
session-id exists in the sessions collection, it must check that the group name
is not already used by another user or group with a simple query to the users
collection. If the name is available the server creates the group by adding a
new document in the users collection with the following structure:

{
”username”: name_of_the_group,
”type”: ”group”,
”users: [user_that_is_creating_the_group],
”admin”: user_that_is_creating_the_group,

}

The users contains only one user (the admin that is creating the group) and
it is up the admin to add other users to the group.

If the group creation is successful, an acknowledgement is returned to the
plugin that shows the new group into the Group Management window.

Pressing the Add User button adds a temporary child item, of the same
type of the one described in Session 4.1.11, to the group item in the tree view.
The admin user types the username of the user they want to add to the group,
and then they press the confirm button. The plugin packs a message with the
08 code in the header, the 02 sub-code, the session-id, the username of the
new member and the group name. As usual every string part of the message is
preceded by its length in order for the server to correctly unpack the message.
The server makes sure of the correctness of the session-id, and then it checks
first that the group and the new member in the message exist as group and

37

CHAPTER 4. IMPLEMENTATION

user respectively in the users collection, and then if the session-id belongs to
the admin of the group. If this series of checks is successful the new member
is added to the group by a simple update query to the users collection:

users_collection.update(
{”$and”: [{”username”: group}, {”type”: ”group”}]},
{”$push”:{”users”: username}})

At this point the server must updates all the descriptions in which the
group has been tagged by adding the new member to the list of users of the
private field.

descriptions_collection.update(
{”groups”: group},
{”$push”:{”private”: username}}

)

If the updates are successful, the server returns a success message and the
plugin removes the temporary child from the group item in the tree widget
and adds a new user item.

The removal of a user from a group works exactly in the same way. The
only differences are that the query sub-code included in the message is 03
and that the update queries to the users and descriptions collections have the
command $pull instead of $push.

4.1.15 Registration

The registration process is not mandatory for a user, but it is necessary in
order to use all the functions available in the plugin. The registration form
is accessible from the main plugin view, the Behaviors View, from the user
button, that will show the text “Log in”. To register, the user must insert the
desired username, the email, the password and the password confirmation.
The username and the email fields are validated by two masks on the respective
QLineEdit:

rx_user = QtCore.QRegExp(”ˆ[A-Za-z0-9]+(?:[_-][A-Za-z0
-9]+)*$”)

rx_mail = QtCore.QRegExp(”ˆ[a-zA-Z0-9_.+-]+@[a-zA-Z0
-9-]+\.[a-zA-Z0-9-.]+$”)

This means that the username must only contain alphanumeric characters,
the underscore and the minus characters. The regex on the mail field makes
sure that the email address has the correct format local-part@domain-part. If
all the fields are correctly validated, the plugin packs and sends a message to

38

CHAPTER 4. IMPLEMENTATION

the server with the code 06. The message contains the username, the password
encoded in base64, and the email address. The password is not hashed client-
side, but the message is sent on the SSL-wrapped TCP channel.

When the server receives the message, it unpacks it, it decodes the base64
version of the password, and it performs the same validations the plugin did
on the username and the email. Moreover it checks if the username is already
taken or not, or if the email address is already associated to another user and,
if these are the cases, an appropriate error message is returned to the plugin
and showed to the user.

If all the validations checks succeed, the password is salted and hashed
with

hashed_password = bcrypt.hashpw(password, bcrypt.gensalt(14))

Then, the server generates a token of N BYTES=128 with the M2Crypto library
or, if M2Crypto is not available, with the OpenSSL library:

try:
from M2Crypto.m2 import rand_bytes as randbytes

except:
from OpenSSL.rand import bytes as randbytes

token = base64.b64encode(randbytes(N_BYTES))

The user then is added to the database in the users collection and its document
has a pending field containing the token.

The token is used to confirm the registration: an email is sent to the ad-
dress the user specified at the registration step, the servers uses an external
smtp server for this step. The address of the smtp in ip:port format defaults
to the Google mails servers, smtp.gmail.com:587, while the name of the mail-
box and its password must be specified on the server startup.

The email contains a link with the format domain.com/token=randomstring
that the user can use to confirm the registration. The server listens on a https
port with a ConfirmationHandler class that we built by extending the Base-
HTTPServer.BaseHTTPRequestHandler. The handler parses the parameters in
the url, getting the token. Every other parameter is ignored, and if the token
is not in the parameter list or if the token does not match any pending users,
an error is showed in the html page.

Once the server has the token it queries the users collection to retrieve the
respective user and to updates it removing the pending field from it.

Every user with a pending field is considered not registered and they can-
not login or use the advanced functions of the plugin.

39

CHAPTER 4. IMPLEMENTATION

4.1.16 Log in

The login form, like the registration form, is accessible by clicking on the user
button on the Behaviors View.

To login, the user must insert the username and the password. The pass-
word is encoded in base64 and then the plugin starts preparing the mes-
sage to send to the server. The message has the code 04 and contains the
username and the password. The server unpacks the message and it checks
if the decoded inserted password and the password in the users collection
(hashed password) match for the given username. The comparison is made
with:

hmac.compare_digest(bcrypt.hashpw(inserted_password,
hashed_password), hashed_password)

If the comparison is successful the server generates a random 128 bytes
string, in the same way as described in 4.1.15. This string is encoded in base64
and used as a session-id. The session is added to the sessions collection and
the server generates a cookie that is returned to the client. The cookie contains
the username, the session-id, and the login time.

Once the plugin client receives the message from the server and unpacks
it, it saves the cookie in a Jackdaw sub-folders in Applications Data directory,
and it is used to retrieve the session-id every time the plugin makes a request
to the server.

Once the user has logged in, the user button on the Behaviors View shows
the username, and the login/registration function in the menu is replaced by
the Log Out action.
The Log Out function sends a message to the server with the code 05 and the
session-id. The server unpacks the message as usual and checks if the session-
id matches a logged in user in the sessions collection, and if it does, the server
deletes the correspondent document. If this step is successful an acknowledge
message is sent back to the plugin, which, at this point, deletes the cookie that
has been saved on login.

4.2 Semantic tagging

The semantic tagging algorithm has been revisited and slightly improved.
The first version of the algorithm searched Stackoverflow and then it scored
the posts it found based on three sets: interesting tags, trifling tags and a black-
list set.

40

CHAPTER 4. IMPLEMENTATION

The score of a posts is increased for everyone of its tags that is in the Interest-
ing tags set, and it is decreased for everyone of its tags that is in the trifling
tags set. Finally the blacklist set is used to remove all those tags that do not
describe the behavior.
The downside of this method is that given the large number of Stackoverflow
posts to search in, the number of posts returned from the initial query can be
large, leading to a large number of tags remaining after the blacklisting.
The first obvious step to improve the algorithm was to improve the three lists
by adding more trifling and blacklist tags. Second, since the stackoverflow
dump is loaded in a MongoDB collection we thought of taking advantage of
the queries capabilities of MongoDB in order to reduce the number of docu-
ments found from the search query. We introduced a second blacklist that is
used in the initial search query to MongoDB: with a single query we search
for all those documents that contains the data from the behavior we need to
describe (API names, registry keys, parameters, etc) but that do not contains
any of the words in the new blacklist. In this way the number of documents,
on which is applied the scoring function, is way smaller.

4.3 External Tools

4.3.1 Disasm

Disasm [9] is the utility used to extract the fingerprints from binary files.
Since Disasm was meant to be compiled, and used, on Linux, while the IDA
plugin has been developed on Windows, despite the fact that the plugin it-
self should work on every operating system that supports IDA, we needed
to recompile Disasm using Cygwin, a Linux-like environment. Disasm has
been compiled on both the architectures available of Windows 7, resulting
in two version of Disasm: 64bit and 32bit. The plugin recognize the archi-
tecture of the OS in which it is being executed and it automatically uses the
corresponding version of Disasm.

4.3.2 QT and Pyside

IDA User Interface is built using the cross-platform QT framework [15], and
plugins built for IDA can take advantage of this by using the same framework,
whose dlls are shipped with IDA itself. Since the Jackdaw plugin is written
in Python it was necessary to use a binder library to use Qt and the one used
by IDAPython and the one used to develop the user interface of the plugin is

41

CHAPTER 4. IMPLEMENTATION

Pyside [16]. However, from IDA 6.9 the binding library used by IDAPython
is PyQt, that is most updated and compatible with the latest version of the QT
framework. This means that in order to use the plugin with the most recent
versions of IDA it is necessary to add the new library PyQt to its imports.

4.3.3 MongoDB

The DBMS used is MongoDB. MongoDB stores json-like objects, called
bson, with dynamic schemas in collections; since it does not use a traditional
table-based structure it is considered a NoSQL database. MongoDB offers
a python driver that is necessary to interface our plugin with the database
itself. Every query to MongoDB returns a cursor object, that is defined by the
MongoDB documentation as a pointer to a result set of a query. However,
most of the times the cursor is converted by the server in other data structures,
for instance, a convenient way is to convert the cursor into a python list:
list results = list(mongo cursor).

42

Chapter 5

Performance tests

We performed some tests in order to measure the times taken by our tool
for visualizing the behaviors of a file in IDA Pro. We expect that for larger
files, which are more likely to implement more behaviors, the time taken to
visualize the results is longer than for smaller samples, measured from the
instant in which the user clicks on the the toolbar button to start the process.

5.1 Testbed

The performances are measured using IDA Pro 6.7 installed in a VirtualBox1

virtual machine to which we dedicated 2 cores and 1600MB of ram. We
analysed a total of 194 files with various sizes, ranging from about 40kB to
about 11MB. The samples have been downloaded from VirusTotal2 and we
selected only Windows PE (Portable Executable) files detected as malicious by
more than 15 source. We took three timestamps along the whole automatic
workflow, as shown in Figure 5.1: the first one at the end of the disasming
process, as soon as the fingerprints are sent to the server; the second time
is measured on the server side, starting from when a request with the finger-
prints is received to when the results with the behaviors found in the database
are sent back to the client; the third interval measures the time taken by the
plugin to parse the results received from the server and to visualize them in
the dedicated view in IDA Pro.

Moreover we recorded the number of behaviors retrieved for every binary
file, its size in term of nodes and in term of attributes. Also, since we needed
to measure the only performances of our tool, we made sure to wait for the

1https://www.virtualbox.org/
2https://www.virustotal.com/

43

CHAPTER 5. PERFORMANCE TESTS

Figure 5.1: Timestamps taken for the tests

IDA’s initial auto-analysis to be completed before clicking the button to start
the plugin, in this way it was not slowed down and the timings we took were
not influenced by other IDA functions.

5.2 Results

We can start analyzing the results by giving an overview of the total times
taken by the whole process in function of the size of the analyses files, the
graph obtained is shown in figure 5.2

As we can see the general trend confirms what we expected: the larger
the files the longer the process would take. However we can see that there is
a lot of noise, especially for larger files. This can be explained by making a
consideration first: as we can see in figure 5.3 the step that takes the longer to
complete is the parsing and visualization of data on the plugin. On very small
files (less then 100kB) it takes on average about the 35% of the whole process
(and, considering that for such small files the total time taken is short, we can
consider the parsing time as negligible as well), while on larger files the parsing

44

CHAPTER 5. PERFORMANCE TESTS

Figure 5.2: Total analyses times in function of the files size

of the behaviors on the client could reach the 97% of the total time, and in
this case we are talking about several minutes. This means that the parsing
and the visualization step has a great impact on the whole performance of
our tool. After this consideration we can analyze the noise in the data and
we can trace it to two main factors: there could be larger files for which few
behaviors are found, in this case the parsing process on the client is quicker
than for some of the smaller files in which more behaviors are recognized; the
second factor is the complexity of the behaviors, and then the size of their
graphs: some of the files have more complex behaviors than others that have
their same size or that are even bigger, this means that the parsing process
takes longer, increasing the total duration of the analysis, as we can see in
figure 5.4, where we plotted the time taken for the whole process in function
of the mean graph size, computed as described in 5.1.

MeanGrapSize =
Nattrs

Nbehaviors
(5.1)

where Nattrs is the total number of attributes from all the graphs found in
the binary file, and Nbehaviors is the total number of behaviors found in the
binary file.

We can observe the same phenomenon in figure 5.5: generally the time
taken for the complete process increases with the number of behaviors found
in the sample, however we can see a lot of noise and also some outliers, es-

45

CHAPTER 5. PERFORMANCE TESTS

Figure 5.3: Percentage of time taken by each step of the process

Figure 5.4: Total times in function of the size of the graphs

pecially when the number of graph retrieved is large (more than 200): in
these cases the parsing is much faster because the graph are simpler, so the
visualization happens before despite the large number of graphs listed in the
Behaviors View.

46

CHAPTER 5. PERFORMANCE TESTS

Figure 5.5: Total times in function of the number of behaviors

We can also compute the average time needed by our tool to retrieve and
parse each behavior by dividing the total time taken for the whole process to
complete by the number of behaviors found in the analyzed binary file. For
very small files (less then 150kB) the mean time for behavior is about 0.184s,
for files between 150kB and 1MB the mean time for behavior rises to 0.884s,
for files larger than 1MB the mean time for behavior is about 2.480s. These
times takes in consideration the disasming process, for which it is more likely
to take more in larger files.

47

Chapter 6

Conclusions, limitations and
future works

6.1 Limitations and future works

The main limits of this work are due to its integration with IDA Pro. If on
one side this is a major advantage, because users can still use IDA as their
main analysis tool, on the other end, on an implementative point of view, we
have to made the most by using the current IDA SDK, undergoing the lim-
itations about manipulating the user interface, especially regarding the asm
view (the IDA main view) and the functions available to draw and visualize
custom graphs. Maybe future versions of the SDK will be enriched with more
API in order to expose more functionalities and at that point both the inte-
gration with the IDA Main View and the visualization of the graphs of the
behaviors can be improved. Another limitation comes from the fact that IDA
Pro is single threaded, with very basic support for the development of multi-
threaded plugins, this means that when our plugin executes some functions,
the IDA UI freezes until the task is completed. Finally there could be added
more functionalities for the registered users, in order to improve even more
the collaborative side of our tool.

6.2 Conclusions

The greatest contribution of this work to Jackdaw is the development and
implementation of a tool able to visualize the behaviors, that are the results
of the analysis of the tool-chain, of a binary file in a way that can be useful
to human analysts who are statically analyzing malware disassembling them.

48

CHAPTER 6. CONCLUSIONS, LIMITATIONS AND FUTURE
WORKS

The aid provided by our solution could, in the first place, lead to a significant
decrease of the time needed for an analysis, and then to a reduction of the skill
set required to perform this kind of task, increasing the number of people able
to do this kind of analyses. The solution we proposed in this thesis is designed
to enhance an existing tool, IDA Pro, in this way analysts can simply keep
using a powerful software they are already used to, while taking advantage of
the additional benefits that Jackdaw and our plugin introduce.

The second contribution to the Jackdaw project is that of making it par-
tially crowd-sourced and, in a way, a collaboration tool for analysts. The
semantic descriptions can be improved by users and shared among groups of
people, while introducing a voting system that is necessary in order to keep
some sort of reliability of the descriptions. In this way Jackdaw can still be
used to provide the ground information (the behaviors extracted by its auto-
mated analyses and tagged with the semantic algorithm) that is then improved
by those analysts who are referring to it for the static analysis.

49

Bibliography

[1] F-Secure weblog. A different look at Bagle. 23 September 2015. url:
www.f-secure.com/weblog/archives/00000662.html.

[2] F-Secure weblog. Graphing Malware. 25 October 2005. url: www.f-
secure.com/weblog/archives/00000324.html.

[3] T. Dullien, R. Rolles. “Graph-based comparison of Executable Ob-
jects.” In: Symposium Sur La Securite Des Technologies De L�Information
Et Des Communications (SSTIC). 2005.

[4] Zynamics.BinDiff. 2005. url: www.zynamics.com/bindiff.html.

[5] Zynamics. BinNavi. 2011. url: www . zynamics . com / binnavi .
html.

[6] Hex-Rays. IDA Pro. 2015. url: www.hex-rays.com/products/
ida.

[7] Mario Polino, Andrea Scorti, Federico Maggi, and Stefano Zanero.
“Jackdaw: Towards Automatic Reverse Engineering of Large Datasets
of Binaries.” In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer. 2015, pp. 121–143.

[8] Paolo Milani Comparetti, Guido Salvaneschi, Engin Kirda, Clemens
Kolbitsch, Christopher Kruegel, and Stefano Zanero. “Identifying dor-
mant functionality in malware programs.” In: 2010 IEEE Symposium
on Security and Privacy. IEEE. 2010, pp. 61–76.

[9] Christopher Kruegel, Engin Kirda, Darren Mutz, William Robertson,
and Giovanni Vigna. “Polymorphic worm detection using structural
information of executables.” In: International Workshop on Recent Ad-
vances in Intrusion Detection. Springer. 2005, pp. 207–226.

50

www.f-secure.com/weblog/archives/00000662.html
www.f-secure.com/weblog/archives/00000324.html
www.f-secure.com/weblog/archives/00000324.html
www.zynamics.com/bindiff.html
www.zynamics.com/binnavi.html
www.zynamics.com/binnavi.html
www.hex-rays.com/products/ida
www.hex-rays.com/products/ida

BIBLIOGRAPHY

[10] Martina Lindorfer, Alessandro Di Federico, Federico Maggi, Paolo Mi-
lani Comparetti, and Stefano Zanero. “Lines of malicious code: in-
sights into the malicious software industry.” In: Proceedings of the 28th
Annual Computer Security Applications Conference. ACM. 2012, pp. 349–
358.

[11] Cuckoo Sandbox. 2014. url: www.cuckoosandbox.org.

[12] STEFANO D’ALESSIO and SEBASTIANO MARIANI. “PinDemo-
nium: a DBI-based generic unpacker for Windows executables.” In:
(2016).

[13] MongoDB. 2009. url: https://www.mongodb.com/.

[14] Python. 2016. url: https://www.python.org/.

[15] QT. 2014. url: https://www.qt.io/.

[16] Pyside. 2016. url: www.pyside.org.

51

www.cuckoosandbox.org
https://www.mongodb.com/
https://www.python.org/
https://www.qt.io/
www.pyside.org

	Contents
	List of Figures
	Introduction
	State of the art
	BinDiff and BinNavi
	IDA Pro
	Jackdaw
	Sample analysis and fingerprints extraction
	Clusterization and behavior extraction
	Semantic tagging

	Approach
	Overview
	Disasming
	Querying for behaviors
	Behaviors visualization
	Behaviors Descriptions
	Functions for Registered Users
	Login and Registration

	Implementation
	Implementation details
	Plugin setup
	Server setup
	Database
	Communication protocol
	Disasm and fingerprints extraction
	Sending the fingerprints to the server and behavior retrieval
	Behaviors visualization
	Graph visualization
	Descriptions visualization
	Description addition
	Description editing
	Description voting
	File Upload
	Groups Management
	Registration
	Log in

	Semantic tagging
	External Tools
	Disasm
	QT and Pyside
	MongoDB

	Performance tests
	Testbed
	Results

	Conclusions, limitations and future works
	Limitations and future works
	Conclusions

	Bibliography

