
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell ’Informazione

Master of Science in Computer Engineering

Polo Territoriale di Como

Analysis and comparison of cross-platform

mobile development approaches

Supervisor:

Prof. Marco Brambilla

Master Graduation Thesis by:

Ardian Isufi, student id: 739977

Academic Year 2015-2016

POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell ’Informazione

Corso di Laurea Specialistica in Ingegneria Informatica

Polo Territoriale di Como

Valutazione e confronto di approcci di

sviluppo mobile cross-platform

Relatore:

Prof. Marco Brambilla

Tesi di Laurea Specialistica di:

Ardian Isufi, matricola: 739977

Anno Accademico 2015-2016

- To my wife, my children and my family for their endless support.
- To my late grandmother, the greatest influence in my life.

Abstract

The introduction of smart mobile devices (smart phones and tablets) has
increased rapidly the number of mobile users and mobile applications. Only
in 2016 around 224 billion mobile applications were downloaded worldwide,
mainly for the following three main different mobile operating systems: An-
droid, iOS and Windows Phone. Having more than one major mobile operat-
ing system, necessitates the development of mobile applications that will be
ready to be deployed in mobile devices with different mobile operating sys-
tem. A lot of efforts have been made lately to find tools that that can give
the option to the mobile applications developers to develop an application
that is compatible with more than one mobile OS, and these tools are known
as cross-platforms mobile development frameworks. There are different avail-
able cross-platforms in the market, and as the topic of this master thesis is
a detailed analysis and comparison of cross-platforms mobile development
approaches.

Throughout this thesis, besides analyzing cross-platform mobile develop-
ment approaches, our focus is oriented also on comparing two specific cross
platforms: Xamarin and PhoneGap, each of them representing different mo-
bile development approach, cross-platform native and hybrid mobile applica-
tions. The best way to do a proper comparison, besides relying on relevant
work is by designing and implementing a mobile application in both plat-
forms. During this research we design and implement a case study in both
Xamarin and PhoneGap and then based on the gained experience during
development experience we describe the comparison results according to the
following factors: Graphical User Interface, architecture, service and sensors,
local data storage and development efforts.

Keywords: mobile device, cross-platform, Xamarin, PhoneGap, plugin, mo-
bile development approach, android, iOS, windows phone.

i

Sommario

L’introduzione di dispositivi mobili intelligenti (smartphone e tablet) è au-
mentato rapidamente il numero di utenti di telefonia mobile e applicazioni
mobili. Solo nel 2016 intorno a 224 miliardi di applicazioni mobili sono stati
scaricati in tutto il mondo, in genere per i tre sistemi operative principali
(OS): Android, iOS e Windows Phone. Avere diversi sistemi operativi mo-
bili, significa che c’è sempre una necessità per le aziende di eseguire le proprie
applicazioni in sistemi operative diversi. Recentemente sono stati fatti molti
sforzi per trovare strumenti che in un certo modo può offrire la possibilità
agli sviluppatori di applicazioni mobili di sviluppare un’applicazione che è
compatibile con più di un sistema operativo mobile, e questi strumenti sono
noti come - cross-platform frameworks -. Ci sono diversi cross-piattaforme
disponibili sul mercato, e il tema di questa tesi è una dettagliata valutazione
e confronto di approcci di sviluppo mobile cross-platform.

In questo tesi, oltre alla valutazione degli approcci di sviluppo mobile
cross-platform, la nostra attenzione è orientata sul confronto di due cross-
platform: Xamarin e PhoneGap, ciascuna delle quali rappresentano un ap-
proccio diverso di sviluppo mobile e cio è cross-platform nativa (native-like)
e le applicazioni mobili ibridi. Il modo migliore per fare un confronto, oltre
alla fare un affidamento sul lavoro rilevante, è attraverso la progettazione
e l’attuazione stessa della applicazione mobile in entrambe le piattaforme.
In questa tesi abbiamo progettato e implementato un caso di studio sia di
Xamarin e di PhoneGap, e poi sulla base dell’esperienza acquisita durante
lo sviluppo abbiamo descritto i risultati del confronto basandosi nei seguenti
fattori: Interfaccia grafica utente, l’architettura, il servizio e sensori, archivi-
azione dei dati locali e tutti i sforzi attuati per ottenere un sviluppo.

Parole chiave: dispositivi mobili, cross-platform, Xamarin, PhoneGap,
plug-in, l’approccio di sviluppo mobile, Android, iOS, Windows Phone.

ii

Contents

Abstract i

Sommario ii

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Context . 1
1.2 Problem statement & proposed solution 2
1.3 Structure of the thesis . 4

2 Background 5
2.1 Introduction . 5
2.2 Mobile platforms chronology 5
2.3 Cross platforms mobile development 7

Native applications development 10
Cross-platform applications development 10
Hybrid applications development 11
Comparison of applications development techniques . . 12

2.4 Xamarin . 13
2.4.1 How does Xamarin work 14

2.5 PhoneGap . 16
2.5.1 How does PhoneGap work 17

3 Related work 20

4 Cross-platform approaches comparison method 29
4.1 Introduction . 29
4.2 Problem definition . 29
4.3 Proposed solution . 30

iii

CONTENTS iv

4.4 Comparison method . 31

5 Case study and implementation experience 36
5.1 Introduction . 36
5.2 Case study . 36

5.2.1 General description . 36
5.2.2 Requirements . 37
5.2.3 Assumptions and dependencies 38
5.2.4 Entity model . 39
5.2.5 Use cases . 43

5.3 Implementation of WebAPI 53
5.4 Implementation with Xamarin 55
5.5 Implementation with PhoneGap 58

6 Comparison results 60
6.1 Introduction . 60
6.2 Graphical User Interface . 60
6.3 Architecture . 61
6.4 Services and sensors . 62
6.5 Local data storage . 64
6.6 Development efforts . 65
6.7 Comparison conclusion . 66

7 Conclusion 67

Bibliography 69

Acknowledgments 71

List of Figures

2.1 Mobile platforms chronology 7
2.2 Global market share held by the leading smartphone operating

systems in sales to end users from 3rd quarter 2009 to 3rd
quarter 2015. Source:[1] . 8

2.3 Mobile applications development types. 9
2.4 Mobile applications development types comparison. 12
2.5 Xamarin mobile applications architecture. 15
2.6 Hybrid mobile applications architecture. 19

5.1 Entity Relationship diagram 42
5.2 Page diagram . 52
5.3 WebApi in our case study (PoiPolimi) 53

6.1 Same GUI implementation of our main page in Xamarin(A)
and PhoneGap(B). 61

6.2 Same camera access implementation of our case-study in
Xamarin(A) and PhoneGap(B). 63

v

List of Tables

3.1 Results of testing and evaluation of cross-platforms for mobile
application development according to paper [2]. 22

3.2 Results of testing and evaluation of cross-platforms for mobile
application development according to paper [3]. 23

5.1 Use case: Create new user account (UC01) 44
5.2 Use case: Login (UC02) . 44
5.3 Use case: View and modify user profile (UC03) 45
5.4 Use case: Search for PoI (UC04) 46
5.5 Use case: Search for PoI by PoI type (UC05) 46
5.6 Use case: List PoI close to me (UC06) 47
5.7 Use case: List of PoI reviewed by me (UC07) 47
5.8 Use case: View PoI details (UC08) 48
5.9 Use case: View PoI reviews (UC09) 48
5.10 Use case: View PoI photos (UC10) 49
5.11 Use case: View PoI review photos (UC11) 49
5.12 Use case: New review for specific PoI (UC12) 50
5.13 Use case: List of PoI reviewed by me (UC13) 51
5.14 Use case: Submit an already pending review. (UC14) 51

vi

Chapter 1

Introduction

1.1 Context

From the ancient times, mankind always has been pushed to create oppor-
tunities to solve different problems and requirements. If we go back in the
history of computers, we see that multiple steps are made with different
technologies to solve problems, precisely different algorithms and applica-
tions have been developed in different periods of time.

With the arrival of the personal computer and Graphical User Interface
(GUI) implementation, a world until then unknown to engineers but also to
the users opened in unpredictable way. Introduction of the Internet in the
90’s, changed also the types of requirements and distribution of the appli-
cations. A number of application start being developed through the Web
technology, through which there is no need for application to be installed
physically, in order to access it. Later, usage of smart phones and the in-
crease number of mobile users in a massive way, wrote a new page in the
history of the mobile application. Now the application began to be more
accessible to mobile portable devices such as:smart phone, tablet, etc.

Introduction of mobile devices, has increased rapidly the number of mo-
bile users. According to latest statistics [4], only in the market of the United
States in 2015, 51% of internet users were from mobile devices, 42% from
personal computers and 7% from other devices. Interestingly, in 2008 this
percentage was only 12%, while from other equipment occupied 80%.

Such a increase of mobile users is making them important user group in
terms of users segmentation. This user category is not a small number, and
what is more important, this is increasing in a fast way, thus marking the
need for mobile applications, applications developed to be deployed in mobile
device. Only in 2016 [5] world wide, were downloaded in total 224 billion

1

Chapter 1. Introduction

mobile applications.
Current mobile applications distribution market is divided by different

mobile operating systems (OS). According to [6], we have three major mobile
operating systems: Android by Google, iOS by Apple and Windows Phone
by Microsoft.

In terms of development, coding mobile applications for different plat-
forms and operating systems requires well trained staff for specific platform.
The furious rate of technological change and growth in the mobile market
has made it very challenging for developers to strategically plan a bespoke
project, not only from a technical standpoint, but also because the market
share for smartphones is changing rapidly between different systems [7].

Given the need for development in various markets and never forgetting
the 90’s inspiration from Java - ”Build Once, Run Anywhere”, market be-
gins to feel the first steps of cross-platform mobile development frameworks.
Cross-platform mobile development refers to the development of mobile ap-
plication that can be run in different mobile operating systems. Using a
cross-platform approach can decrease development time as a mobile appli-
cation is written once and deployed to multiple platforms as opposed to
developing an individual application for each environment [8].

During the recent years, many cross-platform mobile development frame-
work were born. Some of them are still in the market and some of them
have merged. Some of these are: Xamarin, initially created by Xamarin but
now owned by Microsoft, PhoneGap (Cordova) initally created by Nitobi but
then purchased by Adobe Systems, Appcelerator Titanium from Appceler-
ator, Corona by Corona Labs Inc., Sencha Touch by Sencha, RhoMobile by
Zebra Technologies etc.

1.2 Problem statement & proposed solution

Taking into account this growing mobile market and current use of cross-
platforms mobile development frameworks, we decided that the analysis and
comparison of cross-platform approaches to be the main focus of our research
for this master thesis.

The idea and the main purpose of this research is a thorough professional
analysis and comparison of these cross-platforms. A comparison, based on
arguments achieved after an evaluation but also a thorough study of the
current literature. Because current market is filled-in with a range of cross-
platforms mobile development frameworks, each with its specific features, for
comparison purpose in this thesis we will select only two of them. To achieve
more interesting and compact comparison, the choice of two platforms is

Master Thesis Page 2

Chapter 1. Introduction

based on several key factors such as: the type of product they are offering,
the financial cost to use them and their innovations in the market.

Xamarin and PhoneGap are our two approaches subject of comparison
for this master thesis. They are chosen specifically because of different plat-
form types, more precisely the type of product that is developed through
them. The mobile applications developed through PhoneGap is hybrid mo-
bile application, while Xamarin one is cross-platform cross-platform native
application.

Given the analysis of cross-platform mobile development approaches and
our implementation experience from case-study in two specific cross-platforms,
then the problem we are trying to solve in this thesis is as follow:

Taking into account the following factors:

• Graphical User Interface (GUI);

• Architecture;

• Services and sensors;

• Local data storage;

• Development efforts;

“Which of the cross-platforms mobile development frameworks,
compared in this thesis - each of them representing specific

mobile application approach, is the most convenient one for the
development of new mobile application?”

The best way to do a proper comparison, besides relying on relevant work
is by designing and implementing a case study - mobile application in both
cross-platforms development frameworks.

In our thesis we design and develop a “review” mobile application (our
case study) in both cross-platforms mobile development frameworks, and
based on our implementation (development) experience we group the com-
parison results according to the chosen factors.

Master Thesis Page 3

Chapter 1. Introduction

1.3 Structure of the thesis

This master thesis is organized in the following chapters:

• Chapter 1 – Introduction: This chapter gives the reader a general in-
troduction on the content of the master thesis.

• Chapter 2 – Background : We write general information about mobile
development and cross-platforms, and in last two sections, more specific
information for two selected cross-platforms, Xamarin and PhoneGap,
as part of our comparison for this master thesis.

• Chapter 3 - Related work : Briefly we mention some other works that
address the same problem.

• Chapter 4 - Cross-platform approaches comparison method : We write
about the problem statement and proposed solution together with de-
scription of comparison method.

• Chapter 5 - Case study and implementation experience: We explain in
details our case-study design and its technical implementation.

• Chapter 6 - Comparison results : A cross-platform mobile development
comparison for each factor individually based on our implementation
experience in Xamarin and PhoneGap.

• Chapter 7 - Conclusion: In short, it is summarized all the research,
conducted several months, which was the main aim of this master the-
sis.

Part of the thesis organization are also: a list of tables, list of figures and
bibliography that is used in this research master thesis.

Master Thesis Page 4

Chapter 2

Background

2.1 Introduction

In this chapter we give to a reader, general information about mobile develop-
ment and cross-platforms, and in last two sections, more specific information
for two selected cross-platforms, Xamarin and PhoneGap, as part of our
comparison for this master thesis.

2.2 Mobile platforms chronology

A mobile application is a computer program running on a mobile device and
presenting value to the mobile user [9]. The history of mobile application
(mobile app) begins with the history of invention of the first mobile devices,
obviously with the first mobile phones. In the beginning the aim of mobile
application was only the basic software for the mobile phone with the main
duties of sending and receiving calls.

In 1973, Motorola launched first portable phone. Developed by Dr Martin
Cooper, who set up a base station in New York, it was the first working
prototype of a cellular phone [10]. It took ten years for this prototype to
be the first commercially available mobile phone. First marketed in 1983,
it was 13 x 1.75 x 3.5 inches in dimension, weighed about 2.5 pounds, and
allowed you to talk for a little more than half an hour [11]. It was this
period, when big companies begin to develop the simplest mobile device
games, first interactive mobile applications, mobile applications other than
those for sending and receiving calls. It all started with the famous game
”Snakes”, appearing in earliest phones of Nokia. Other games also followed
later such as: Tetris and Pong.

With the introduction of handled computers, notably PDAs we see the

5

Chapter 2. Background

first popular handled computer applications. As more and more people be-
gan carrying handy devices with them, and mainly because by this time the
prices of this mobile devices (mobile phones and PDAs) dropped and bat-
tery improved, they began asking more features and games for their devices.
Keeping clients, but by not having the resources to develop every applica-
tion that is wanted by the user, was a struggle for the companies producing
mobile devices. They desperately needed a way to provide entertainment
to the user but not programming everything they wanted in the device. So
what they did is they turned to the internet. But this turn was not the best
option at that time because phones had low resolution screens, and websites
were heavy with colors, pictures and other type of files, not excluding also
the financial cost of the user for bandwidth requirement.

Solution to this problem was attempted to be given on June 26, 1997.
On that date, three industry heavyweights - Ericsson, Motorola, and Nokia
- an a relative unknown - Unwired Planet, now Phone.com - announced the
creation of a new technology for delivering Internet content to all types of
mobile and wireless devices [12]. This is the beginning of WAP or Wireless
Application Protocol. They start sharing information and create an open
standard through creation of WAP forum. Simply put, WAP was a stripped-
down version of Hypertext Transfer Protocol (HTTP), which is the backbone
protocol of the World Wide Web [13]. WAP sites were simpler that WWW
pages and it was a great opportunity for mobile companies, but the main
problem was that those who should deliver through WAP, they didn’t or
more precisely delivery was in a limited way.

But this was not enough. Users always wanted more graphic involved so
they can interact easily, but this was impossible with WAP technology. To
take advantage of these opportunities, Psion and the leaders in the mobile
phone industry - for example, Nokia, Ericsson and Matsushita (Panasonic) -
formed a joint venture, called Symbian, which was to take ownership of and
further develop the EPOC operating system core, now called Symbian OS
[14]. And this is the time when proprietary mobile platforms were born. They
were also other platforms in the market such as: Palm OS, RIM BlackBerry
OS, Java Micro Edition etc.

With the growing number of smartphones and other mobile devices (tablets)
other manufactures start moving to mobile market and thus creating their
proprietary mobile platforms as well. From the current biggest mobile plat-
forms the first one to be released was iOS (originally as iPhone OS) by Apple
in 2007, followed by Android by Google released in 2008 and Windows Phone
by Microsoft in 2010 as replacement of Windows Mobile.

Most platforms offers to software developers their programming environ-
ment and programming tools to be able to code specific applications for

Master Thesis Page 6

Chapter 2. Background

Figure 2.1: Mobile platforms chronology

specific platform. Software developers should have proper skills to be able to
code in specific platforms, ie to know Apple’s Objective C for iOS, Java for
Android or C# for Windows Phone.

2.3 Cross platforms mobile development

For software developers, designing and implementing good application archi-
tecture is paramount to success. Enterprise software architecture activities
must take into consideration myriad concerns when choosing an approach:
everything from technology standards to deployment options, potential user
profiles, expected user loads and don’t forget scalability, extendibility, and
maintainability [15]. Most of the above steps are closely linked with the
choice of platform for software development. Lately, besides the software
development platform, an important role is playing also the type of device
on which the application is deployed.

In the world of software development, including mobile applications, up
to recent times we had two main types of applications development: native
application and web-based application.

A native application is a program that is in the form of an executable file
in the machine language of the computer’s CPU. Native applications contrast
both with programs in an interpreted language such as Java and programs
in a machine language that is not understood by the computer’s CPU and

Master Thesis Page 7

Chapter 2. Background

thus require some form of emulation in order to run [16].
A web application is just an application that is deployed on the web. It

is a Web page, or series of Web pages, allowing users to accomplish a task
like obtaining information and forms, shopping, applying for a job, listening
to Internet radio, or any of the many activities possible on the web [17].

The same definition for native and web-based applications applies also for
mobile applications (mobile apps), with the only difference, the device where
the native application is deployed or web-based application is accessed is now
mobile device (tablet, smartphone etc.).

The fast-growing market for mobile devices, drives the need for faster
response by software development companies to develop mobile applications.

The history of the mobile applications development is closely linked with
mobile devices. With the born of mobile devices, emerged also mobile oper-
ating systems. But it is very interesting that mobile operating systems have
a weird history of their expansion in the market in different time periods,
namely the years. While some operating systems have increased their share
into the mobile market year after year, some have remained almost in the
same share of global markets with a narrowly positive or negative difference
over the years.

Figure 2.2: Global market share held by the leading smartphone operating
systems in sales to end users from 3rd quarter 2009 to 3rd quarter 2015.
Source:[1]

Given the current state of mobile share market expansion, there are cur-
rently in the mobile operating systems market two major mobile OS: Android
by Google and iOS by Apple. For a developer to be able to develop a mobile

Master Thesis Page 8

Chapter 2. Background

application in one of these platforms it is a must to have knowledge of a pro-
gramming language, the tool and the platform framework. Such a technique
for the development of mobile applications through vendor programming lan-
guage and tools is known as the development of native applications.

Given the increasing number of mobile users and high costs to develop
native applications, developers were really in front of a great dilemma, how to
develop mobile applications in one programming language, but the deployed
version to be compatible with more than one mobile operating system, espe-
cially to be able to be installed in devices with Android or iOS. The solution
to this problem is the raise of cross-platform development frameworks.

Cross-platform development consists in developing mobile applications in
one of the programming languages offered by cross-platform framework, and
ready to be deployed in more than one mobile OS.

Figure 2.3: Mobile applications development types.

Currently we can group cross-platform development applications in two
types: hybrid mobile apps and cross-platform apps. We call them cross-
platform, because they are behaving like native but are not developed through
native development environment with platform native programming lan-
guage. In some literatures they also are known as Native like Apps. Hybrid
mobile apps in other hand, are a special category of web applications that
extend the web-based application environment through their use of native
platform APIs available on a given device [18].

To summarize, the main types of mobile applications in terms of devel-
opment, we can group in the following main four categories:

• Native mobile applications (native apps);

Master Thesis Page 9

Chapter 2. Background

• Native cross-platform mobile applications (native-like apps);

• Hybrid mobile applications (hybrid apps);

• Web mobile applications (web apps);

Native applications development

One of the oldest ways of developing mobile applications, is the development
of native mobile applications. Native mobile applications are applications
developed based on tools and programming language recommended by the
platform, tool and language, running only on that specific platform. They
are installed on the device and can be run through the device operating sys-
tem. This type of application is packaged in a solution consisting essentially
of the code developed in specific programming language. Since they are de-
veloped only for specific platform, they can take full advantage of all device
capabilities, such as: geolocation, list of contacts, camera etc.

Because each platform has its runtime and its programming language,
then development of native mobile application does not allows code sharing
and reusing between platforms, meaning every developer or developer com-
munity needs prior knowledge of specific platform libraries and classes. This
implies higher development time and cost for the development community.
But beside this disadvantages they have also many advantages compared
to other types of mobile applications development. They are far better in
user experience, and have the highest performance possible, due to no ex-
tra layer involved. Development of mobile applications in iOS, is based on
either Objective-C or Swift. Android on the other hand uses Java as its
programming language.

Cross-platform applications development

Cross-platform apps are native mobile applications developed by cross-platform
frameworks and not platform-specific development environment. They are
compatible with more than a mobile operating system, being available to
download from different mobile app market such as: Apple Store or Google
Play Store. Developing and application through these cross-platform frame-
works, makes it possible code sharing and reusing. In some literature these
mobile apps may be recognized as a native like applications.

The product developed by cross-platform framework is truly native ap-
plication, and thus making it very different from hybrid mobile applica-
tions. Through cross-platform framework, applications development commu-
nity does not need to have prior technical and development (programming)

Master Thesis Page 10

Chapter 2. Background

knowledge for several platforms, but it will be enough to know the tools and
programming language offered by cross-platform.

All products use a sort of runtime or interpreter. This kind of runtime
or interpreter is used depending on the product and the target platform for
product development. To provide the possibility of code sharing and reusing
between platforms, for development of all products (for all platforms) it is
used a single programming language.

In general, we can divide cross-platform framework architecture in two
parts: code sharing and specific platform parts. Depending on the cross-
platform framework, code sharing may slightly changes, but in general the
following layers are included in the code sharing part: business logic layer,
domain layer, data access layer, service access layer and shared UI forms. In
other hand, specific platform application part, has the following: UI layer;
and platform specific code.

Because of this architecture, these applications have 100% access in device
native core APIs for each platform. This includes but is not limited to
native device functionalities such as camera, connection, contacts, file system,
geolocation, media, storage etc. Compared to mobile native applications
developed on platform-specific development environment, the development
of native cross-platform applications has a lower cost and development time,
and this entirely thanks to development in a single programming language.

Hybrid applications development

Hybrid mobile apps, are a special category of web applications that extend
the web-based application environment through their use of native platform
APIs available on a given device [18].

This type of mobile applications, itself contains coding in plain HTML,
CSS and JavaScript. The running logic behind of this kind of applications,
unlike web-applications where access to them is through the smartphone
mobile browser, is that accessing this type of application (hybrid mobile
apps) is done through downloading it as other native mobile applications.
Basically, the whole code (HTML, CSS and JavaScript) is packaged within
the application, and the wrapper is added to start a chromeless browser.
Hybrid apps use a web-to-native abstraction layer (also known as bdrige
layer) that allows JavaScript to access many device specific capabilities and
native APIs that re not generally accessible from the mobile web browser
alone [18], such as camera, contact, geolocation etc. For the community of
developers, this is a big relief, because all the previous knowledge used in the
development of web applications can also be used during the development of
hybrid mobile applications.

Master Thesis Page 11

Chapter 2. Background

So, a hybrid mobile app it is called hybrid, because it is a mobile web-
application, but it comes together with a new but very important part, native
part, called: the wrapper which is provided by chosen hybrid framework,
enabling this type of mobile application to be used in mobile application
stores.

Comparison of applications development techniques

Comparing different mobile development solutions/techniques it is never an
easy thing to do. To have a correct comparison, usually we have to rely
on some specific parameters, and then based on these parameters we get
a comparison result. The following criteria/parameters are used for this
comparison: development cost and time versus better user experience.

Figure 2.4: Mobile applications development types comparison.

According to our simple comparison, the cheapest solution in terms of
development cost and time (first criteria) is web-based application. This is
because developers code in one programming language and they deploy the
application on the server, from where users access it through their mobile
browsers. But user experience (second criteria) for this solution leaves much
to be desired. This is because user at the beginning of running the applica-
tion faces a big obstacle, to have always a connection to be able to run the
application. Another issue is compatibility with different browsers and the
lack of access to mobile device capabilities. Web-based applications cannot

Master Thesis Page 12

Chapter 2. Background

use mobile device capabilities such as: location (GPS), camera and other
important capabilities for the user.

The ability to use mobile device capabilities but keeping pretty much the
same development process as for web-based application but with a bit more
efforts, is positioning hybrid mobile application in better position compar-
ing to web-based position in terms of better user experience (better design,
interaction and ability to have access in mobile device capabilities such as:
camera, geolocation, contact list etc.). But since it needs extra efforts for
developers, that means the development cost and time is higher compared to
web-based apps. Also another factor is rendering speed, which in this case
is slower comparing to native and native-cross-platform mobile applications.

And almost same pattern goes also with last to types of mobile application
development types. Better use experience always means high mobile applica-
tion development costs and more time for development process. The highest
possible performance for mobile applications is guaranteed if the mobile app
is developed as native application, for example in the case of programming
games, then native application development is the choice. But the code shar-
ing is not possible for native application, and that means, developers have
to code the same code in different languages for different platforms.

So to summarize a general comparison, when it comes to decision for
which category of mobile application development to go, the real answer is:
there is never an easy decision and this is because there is no perfect solution
in the market. The choice is always depending on a lot factors and different
situations, that developers might face during the process of developing a
mobile application, but one thing is for sure, better user experience always
goes together with high costs.

2.4 Xamarin

Cross-platform apps are native mobile applications developed by cross-platform
frameworks. They are compatible with more than a mobile operating sys-
tem, being available to download from different mobile app market such as:
Apple Store or Google Play Store and install in more than one mobile op-
eratin system such as: Android and iOS. Developing an application through
these cross-platform frameworks, makes it possible code sharing and reusing.
Currently in the market we have different cross-platform frameworks mak-
ing possible the development of native-cross-platform mobile applications.
Among the most popular one is Xamarin. Xamarin allows development of
native-cross-platform mobile applications using the programming language
C#. Xamarin is unique in this space by offering a single language – C#,

Master Thesis Page 13

Chapter 2. Background

class library, and runtime that works across all three mobile platforms of
iOS, Android, and Windows Phone (Windows Phone’s native language is
already C#), while still compiling native (non-interpreted) applications that
are performant enough even for demanding games. Each of these platforms
has a different feature set and each varies in its ability to write native ap-
plications – that is, applications that compile down to native code and that
interop fluently with the underlying Java subsystem [19].

Integrated Development Environment (IDE) is an important part of ev-
ery development framework. Developers of Xamarin cross-platform mobile
applications can use currently two available IDE, Xamarin Studio and Vi-
sual Studio with Xamarin integration (Xamarin component within Visual
Studio). Depending on the usage of Integrated Development Environment,
users can develop mobile applications for one ore multiple platforms. Not all
commercial Xamarin products can run in all computer operating systems and
not all of them can produce an application that can run in multiple mobile
operating systems[20].

While Xamarin products such as: Xamarin.iOS, Xamarin.Android, Xa-
marin.Forms may run on Windows and Mac OS X, the same scenario is not
also possible for Xamarin Intergrated Development Environments, Xamarin
Studio and Visual Studio with Xamarin Integration. Indeed an IDE, Xa-
marin Studio is designed for both Mac OS X and Windows OS but Visual
Studio with Xamarin integration can be run only on Windows OS computers.
To develop for iOS on Windows computers there must be a Mac computer
accessible on the network, for remote compilation and debugging. This also
works if you have Visual Studio running inside a Windows VM on a Mac
computer [20].

2.4.1 How does Xamarin work

Writing mobile applications code through just a single programming lan-
guage, by making possible code reusing and code sharing through different
platforms, and at the same time implementing this code natively depending
on targeting platform, is making Xamarin as one of the most interesting and
attractive cross-platform framework in the market.

The main logic behind the working of Xamarin cross-platform framework
is by dividing the process of mobile applications development in main two
groups: Business Logic (including: business logic classes, database access,
network and other common features) and User Interfaces. In the first cat-
egory falls all of the mobile applications code that represents the way the
application should work, mainly the code behind the application that takes
care of the application events. Thanks to Xamarin, this code which it is

Master Thesis Page 14

Chapter 2. Background

known also as the core of every application (including mobile applications)
it is written in only one programming language – C#, and can be reused
or shared across all targeting platforms. The second category is known as
User Interfaces (UI). In this process, Xamarin implements and builds UI
controls. The main reason that makes Xamarin-based mobile applications
native-cross-platform or looking and behaving completely like other native
mobile applications with the only difference being developed not through
vendor IDEs, is exactly the way how Xamarin implements mobile applica-
tion UI controls. They are implemented natively for each platform such as:
iOS, Android or Windows Phone.

Figure 2.5: Xamarin mobile applications architecture.

Through Xamarin, developers community can use state of the art mobile
applications development architectural design patterns such as: Model View
Controller (MVC) or Model View ViewModel (MVVM). Layering the appli-
cation architecture is another benefit of Xamarin-based mobile applications
development. By using layering architecture for core functions, developer
community can re-use and share the code across different supported plat-
forms. Business Layer,Service Access Layer, Data Access Layer and Data

Master Thesis Page 15

Chapter 2. Background

Layer represents the core library of the application development.
Xamarin offers to developers community two ways of implementing na-

tive User Interfaces controls, either by adding them programmatically to the
application screen or adding these controls through visual designer by using
already well known function in computer applications: drag-and-drop. In
either way they are using native User Interface toolkits. These UI controls
known also as screen layouts are stored in their respective files depending on
targeting platform. In iOS they are stored as *.storyboard file, in Android
they are stored as *.axml files and in Windows Phone they are stored as
*.xaml files.

Compiling process of the Xamarin-based mobile application source code
is very interesting process. The C# source makes its way into a native app
in very different ways on each platform: iOS – C# is ahead-of-time (AOT)
cmpiled to ARM assembly language; Android – C# is compiled to IL and
packed with MonoVM + JIT’ing; and for Windows Phone – C# is compiled
to IL and executed by the built-in-runtime, and does not require Xamarin
tools [21].

Distribution of Xamarin-based mobile application development to the rel-
evant mobile application stores is the final step before the application can be
downloaded by the user and installed in his or her mobile device. Distribu-
tion process itself is not a complicated process but it must be noted that some
distribution requirements may be different according to mobile application
store and targeting platform. Android mobile applications can be distributed
through more than one mobile application store. They can be distributed in
Google Play, Amazon App Store for Android, Samsung Apps etc. iOS and
Windows Phone mobile applications in other hand can only be distributed
through platform operated mobile application stores: App Store for Apple
and Marketplace for Windows. While some mobile application stores have
very relaxed rules to check the mobile application before it is approved to be
distributed for that specific application store, other application stores have
more strict rules that application needs to pass. Before publishing mobile
application, for every store it is neccessary to create an account.

2.5 PhoneGap

Hybrid mobile apps, are a special category of web applications that extend
the web-based application environment through their use of native platform
APIs available on a given device [18]. They are coded in: HTML, CSS and
JavaScript, and later this code is packaged within the application, and the
wrapper is added to start a chromeless browser. Hybrid apps use a web-to-

Master Thesis Page 16

Chapter 2. Background

native abstraction layer (also known as bdrige layer) that allows JavaScript to
access many device specific capabilities and native APIs that re not generally
accessible from the mobile web browser alone [18], such as camera, contact,
geolocation etc. Currently in the market we have different hybrid applicatons
frameworks making possible the development of different cutting edge hybrid
mobile applications. Among the most popular one is PhoneGap. PhoneGap
allows development of hybrid mobile applications using JavaScript.

Taking into account that fact that PhoneGap is open source solution
do develop and build hybrid application with HTML, JavaScript and CSS,
means this is free for developers and companies. Actually with the current
license developers can companies can use PhoneGap to develop applications
that are for free or commercial use.

As an open-source framework, with possibility to use it for free, is making
PhoneGap one of the most used cross-paltform mobile development frame-
works. Especially this is true because users do not need to much more skills
than skills they have to build a mobile website.

As with any other framework and platform, also developing in Phone-
Gap needs some necessary tools. Currently PhoneGap offers: Desktop App
or PhoneGap CLI and PhoneGap Developer App. Desktop App is a drag
and drop option to create PhoneGap mobile application. Desktop app is as
alternative to PhoneGap CLI which is same function but with line interface
approach. On this other hand, PhoneGap Developer App is a mobile app
that runs on devices and allows you to preview and test the PhoneGap mobile
apps you build across platforms without additional platform SDK setup. It
automatically provides access to the PhoneGap core APIs providing instant
access to the native device features without having to install any plugins or
compile anything locally[22].

Designing and implementing a mobile application that is already build
using web-technologies, but same time the application needs to be deployed
to more than one mobile operating system (Android, iOS, Windows Phone
etc.), needs to access some features of mobile device such as: camera, gps or
calendar, and above all the development team has no time or it is costly to
learn new native programming languages, then the perfect tool to implement
this kind of mobile applications is PhoneGap.

2.5.1 How does PhoneGap work

PhoneGap is open source cross-platform mobile development framework to
build mobile applications using HTML (HyperText Markup Language), Java
Script and CSS (Cascading Sytel Sheet). In other words, PhoneGap is build-
ing hybrid mobile applications.

Master Thesis Page 17

Chapter 2. Background

Since mobile applications developed in PhoneGap are hybrid applications,
this means they are developed – designed and coded as any other mobile web
application, and later they are packaged and wrapped to a web view to start
a chrome less browser for any supported mobile operating system.

A web view is a native application component that is used to render web
content (typically HTML pages) within a native application window screen.
It’s essentially a programmatically accessible wrapper around the built-in
web browser included with the mobile device [22].

Taking this architecture into account, in principle we can divide they way
how PhoneGap works in three parts:

• Deigning and developing web application;

• Using PhoneGap APIs to have access device features such as: camera,
geolocation, file etc.; and

• Packing the already developed web application into mobile application
ready to be used on mobile device.

Designing and developing web application would not be any problem for
the developer or development team if necessary web skills are in place. So,
if there are good skills is HTML, CSS and JavaScript, basically if developers
can make a web application according to the user needs, they can be sure that
whatever web-application does, it will do also as mobile application packed
by PhoneGap.

No matter how good is designed and developed a mobile application,
running only in mobile browser, makes it impossible for the user to interact
with device components such as: files, contacts, camera or geolocation. So
to make a mobile application closer to the user needs, we need to have access
also in some of this device components. Through PhoneGap we can have
access in this components by using PhoneGap APIs.

Implementing a feature that needs access to mobile device sensor such as:
camera or geolocation is simple process as well. This can be done thanks to a
lot of plugins available through PhoneGap project. This is particularly done
using by calling API through JavaScript, and then application translates
into native API. PhoneGap supports different types of device features mean-
ing there are currently available APIs for the features such as: geolocation,
compass, camera, contacts, media, files, storage etc.

But by finishing mobile web application with or without access to mobile
device features, this mobile web application needs on more step to be ready
to be distributed to different mobile apps market and later to be used by the

Master Thesis Page 18

Chapter 2. Background

Figure 2.6: Hybrid mobile applications architecture.

user. This step is the one, where web application is packaged into application
and becomes ready to run on mobile device.

Each of the mobile device platforms supported by the PhoneGap project
has its own proprietary tools for packaging or building native applications
for its platform. To build a PhoneGap application for each supported mo-
bile platform, the application’s web content (the HTML, CSS, JavaScript,
and other files that comprise the application) must be added to an applica-
tion project appropriate for each mobile platform and the be built using the
platforms proprietary tools [22].

And of course as the last step, after having a hybrid application ready
to be used on targeted mobile operating systmes, is to distribute it. As for
Xamarin based mobile application development, distribution of the Phone-
Gap based mobile development application to the relevant mobile application
stores is the final step before the application can be downloaded by the user
and installed in his or her mobile device. PhoneGap based mobile appli-
cations developed for Android mobile operating system can be distributed
through more than one mobile application store such as: Google Play, Ama-
zon App Store for Android, Samsung Apps etc. iOS and Windows Phone
mobile applications in other hand can only be distributed through platform
operated mobile application stores: App Storeand Marketplace.

Master Thesis Page 19

Chapter 3

Related work

During the recent years, many cross-platform mobile development framework
were born. Some of them are still in the market and some of them have
merged. With the born of these cross-platforms, it has increased also the
interest for using them, more precisely, a various studies and analyses are
being made with the intention to see the difference and what this cross-
platform offers to the client.

Though not in the big numbers, still the are some studies published so
far where the main intention is the comparison of two different approaches
of the mobile applications development - native like / cross-platform na-
tive and hybrid, approaches that are represented by specific development
tools: Xamarin and PhoneGap. Most current published studies that aimed
to compare the two cross-platforms that are also the subject of our study
(this master thesis) mainly describe the comparisons made for more than
two cross-platforms and unlike the research conducted on this master study,
they lack in detailed analysis with a detailed description of the differences
and what is more important in almost all literature studied for the purpose
of this topic, they used different study method to reach to the final outcome.

Besides the vendor material or specific platform books for each of our
targeted cross-platforms, we were not able to find in big numbers previous
academic publications for the purposes of these cross-platforms comparison
or either comparison of more cross-platforms. During our research, we were
able to identify about single digit number of academic publications with the
aim of finding a solution to the same problem or closely related, to what is
the purpose of this master study. After finding them, these papers have been
studied as part of this master thesis.

Lack of big number of academic research papers in this field shows that
for such matter there is still room for future research, and especially taking
into account the fact that now Xamarin can be used free of charge through

20

Chapter 3. Related work

the Visual Studio Community Edition or Xamarin Studio for Mac computers,
making both platforms (ie Xamarin and PhoneGap) easy accessible by every
developer or development community.

Below we will mention each academic research (relevant work) used for
the purposes of this master topic. For each study separately will give a brief
description about the paper and what was the conclusion of the author /
authors.

In [2], Pavel Sergeyevich Ptitsyn and Dmitrv Vladimirovich Radko from
Research Institute of Semiconductor Engineering and Voronezh Innovation
and Technology Center, Russian Federation, are doing a analysis of cross-
platform technologies for mobile applications development.

Indeed they are not analyzing only Xamarin and PhoneGap but more
platforms that are currently in the market. Their analyses are based on the
following platforms: Appcelerator platform, Koneyone platform, PhoneGap,
IBM work light, Telerik platform, Xamarin and Rho mobile.

Besides giving a brief description for each platform, paper continues with
methodology, criteria and analysis results. According to the paper in the
testing and evaluation phases were involved four people/experts. Evaluation
of cross-platforms in this paper is done according to the main nine criterias,
and each criteria has some sub-criterias. For each sub-criteria, every cross-
platform could be evaluated with minimum 0 points and maximum 5 points.
Description of each point (from 0 to 5) is given as below:

• 0 - Absence of related functionality;

• 1 - Does not satisfy the requirements;

• 2 - Partially satisfies the requirements;

• 3 - Satisfied, but there are serious drawbacks;

• 4 - Satisfied, but there are minor drawbacks;

• 5 - Fully satisfies the requirements;

According to the authors: the final rating evaluated cross-platform tech-
nologies are the sum of estimates for all functional criteria. The maximum
possible overall rating of the technology equals the number of criteria multi-
plied by the maximum possible score is 235 (47 x 5). The averaged overall
rating, exhibited by the group of experts, was determined by the following
formula: Sum of final ratings of all experts divided by the number of experts.

Master Thesis Page 21

Chapter 3. Related work

Xamarin PhoneGap

Development environment 18 15
Project management tools 10 10
Testing environment 24 21
Publish and deploy applications 10 9
Analytic tools 20 3
Cross-platform development features 33 22
Visual design environment 23 18
Application store 8 0
The quality of the documentation and support 15 13

Total estimation 161 111

Table 3.1: Results of testing and evaluation of cross-platforms for mobile
application development according to paper [2].

Paper is presenting the evaluation results for all cross-platforms, but we
will present here only the results for Xamarin and PhoneGap. The evaluation
results for these two cross-platforms based on their analysis is as follow:

In the end the authors conclude that: the main objective was to deter-
mine the effectiveness of existing cross-platform technologies for mobile ap-
plications development in terms of flexibility mobile application development
process including such aspects as coding, debugging, testing, deployment [2].

And based in evaluation and testing criterias used in this paper, in general
Xamarin is more effective than PhoneGap.

In [3], Assist. Prof. Dr. Volkan Tunali from Celal Bayar University,
Turkey and Assoc. Prof. Dr. Senol Zafer Erdogan from Maltepe University,
Turkey are doing a comparison of popular cross-platform mobile application
development tools.

More precisely they are conducting a comparison of more cross-platform
mobile development tools. They are comparing: PhoneGap/Cordova, Xam-
arin, Appcelerator Titanium and Smartface App Studio. In this paper au-
thors claim to: provide a pragmatic comparison from different perspectives
like ease and cost of development including programming language and tool
support, end-product capability and performance, security and community
support.

Authors begin the paper by offering a brief description for four approaches
of mobile applications: mobile responsive web applications development, na-
tive applications development (platform-based native), hybrid applications
development and cross-platform native applications development. Paper goes
further by giving a description of compared platforms, describing criteria and

Master Thesis Page 22

Chapter 3. Related work

Xamarin PhoneGap

Output Native Hybrid

Supported platform
Cross-platform and OS
specific

Cross-platform

Single code base Only for Xamarin.Forms Yes
Development environ-
ment

Visual Studio or Xam-
arin Studio

Jetbrain Webstorm, Sublime
Text, Intel XDK, Eclipse

Development language C# HTML5, JavaScript, CSS
Design Editor Partially with designers Depends on tech
Code Based Design Edi-
tor

Yes Depends on tech

iOS development on
Windows

No (Workaround avail-
able with a Mac on net-
work)

No

Mac required for iOS
test and debug

Yes Yes

Developer adaption C# know-how Web know-how
Look and feel, sense, UX Native Native-like
UI Responsiveness Smooth Not smooth
Performance Faster Fast enough
Device specific features Yes Depends on tech
Device sensors Yes Needs plug-in
Offline storage Device storage Limited
Stability Higher Higher
Security Secure Depends on tech
Community Large Large

Technical support
Community and inex-
pensive

Community and inexpensive

Risk Dependency Browser compatibility issues

Table 3.2: Results of testing and evaluation of cross-platforms for mobile
application development according to paper [3].

comparison result. A list of criterias has been set and then all studied mobile
development cross-platforms are compared against these criteria.

For each comparing criterion is given an evaluation for all compared plat-
forms. Indeed, unlike in previous paper where the platforms for each criterion
receive a numerical grade (evaluation), in this case the assessment is not nu-
merical but is descriptive. Thus, making the selection a priori of the ’winner’

Master Thesis Page 23

Chapter 3. Related work

form the list of cross-platforms more difficult. Indeed by giving a descrip-
tion evaluation the selection of the best platform depends very well on the
development situation.

Result section of the paper presents the comparison results for all mo-
bile development cross-platforms according to the given criteria. Results are
shown in tabular form. Because the subject of this thesis is only comparison
between Xamarin and PhoneGap, here we are presenting only the compared
results for PhoneGap and Xamarin (table 3.2 [3]).

Comparison criterias include both functional and non-functional criteria
such as: look-and-feel, responsiveness, performance, stability and usage of
device sensors such as: camera, GPS etc.

According to the authors hybrid mobile development approach which in
this cases is represented by PhoneGap, it is very desirable taking into ac-
count the number of mobile platforms that are supported by it. But as
downsize it is mentioned that application developed through this are not na-
tive and user might experience problems when navigating through interface.
As for Xamarin, authors claim that is very good option for the developers
with programming experience in C# and also compared to PhoneGap, mo-
bile app developed by Xamarin is native. However according to authors if
Xamarin.Forms are not used, developers should still know to code for each
platform. They also claim that as disadvantage is that licenses should be pur-
chased separately for every targeting mobile operating system, a true fact at
the time when the paper was published, but since summer 2016, users can
use Xamarin.Forms free of charge (community version).

In conclusion according to this paper, authors claim that: Despite their
common objective, they all have distinctive features that make each one
superior and preferable to the others. Therefore, software vendors need to
understand the advantages and disadvantages of them, evaluate each one
considering their own specific development requirements and constraints, and
then make their choices wisely. Therefore, software vendors need to evaluate
each one carefully, and we believe that it is best to try the ones that seem
reasonable on small pilot projects to see if they are satisfactory in terms of
the criteria we described [3].

In [23], V.V. Gerasimov and S.S. Bilovol and K.V. Ivanova are doing a
comparative analysis between Xamarin and PhoneGap for .Net.

According to authors: Comparative analyses between technologies Xam-
arin and PhoneGap for .NET is discussed. The features of these technologies,
their advantage and disadvantages, their sphere of application and prospects
of their development are given[23].

Even though the authors claim that a comparative analyses is done, in-
deed the authors throughout the paper are not evaluating the cross platforms

Master Thesis Page 24

Chapter 3. Related work

against each other according to specific criteria, but they are describing each
cross-platform independently - separately, Xamarin and PhoneGap, by high-
lighting advantages and disadvantages for each platform. The only section
of the paper where a clear comparison between two platforms is done is con-
clusion. There, authors try to give an answer to the user for which platform
to use in which circumstances. But, lack of evaluation through some specific
criteria, makes the comparison result not clear enough.

Regarding the PhoneGap mobile application authors concludes that this
mobile application indeed is just a website (mobile website), but implemented
as mobile app through HTML Rendering Engine (WebView) with the inteface
created with HTML, CSS and JavaScript, a common interface that can be
shared across different mobile OS. But besides this, authors mention also the
well-known fact of PhoneGap, that PhoneGap mobile application despite
being a mobile website can use also mobile device hardware features such as:
camera, storage, GPS etc. All these features can be used through PhoneGap
plugins.

As for Xamarin authors mention the connection between the platform
and native API for mobile OS. Besides describing in technical way the ar-
chitecture of Xamarin, authors also mention the structure of the application
developed through Xamarin which is divided in two parts: platform specific
code and shared code. Xamarin.Forms is also described as the way for the
developers to create common user interface for all targeted mobile OS. By
using Xamarin.Forms according to this paper, the quantity of the shared
code has increased to 90%.

Cheap in developing user interface, a wide variety of available plug-ins
with various functionality with a quite good performance is how PhoneGap is
described by the authors. On other part, despite small number of supported
mobile operating systems, a powerful tool that provides .NET frameworks
and native libraries is how Xamarin is described by the authors.

Taking into account the final opinion of the authors for the compared
platforms in this paper, they conclude that for small cross-platforms mobile
applications a good solution is PhoneGap, while for large mobile applications
the better solution is Xamarin.

In [24], Mukesh Prajapati and Dhananjay Phadake from University of
Mumbai, Indida and Archit Poddar from Manipal University Jaipur, Indida
are conducting a study specifically on Xamarin cross-platform framework.

In fact, this paper does not compare the cross-platform frameworks for the
development of mobile applications, but it is a paper that explains specific
cross-platform – Xamarin in more details than other papers, which are part
of this related work. Here, authors provide explanations for this specific
framework, an explanation detailed in different section, where each section

Master Thesis Page 25

Chapter 3. Related work

represents one of the framework main components.
Besides the description of some techniques used for the development of

mobile applications in use before Xamarin is born, rest of the paper attempts
to describe the functioning of the cross-platform and that by dividing the
entire description in several categories, in order to be meaningful.

They begin this paper by explaining the architecture behind Xamarin,
by dividing it into several layers: User Interface, Application Layer, Business
Layer, Data Access Layer, Service Layer and Data Access Layer. It is also
worth mentioning that according to the authors, Xamarin supports both the
development of software development patterns: MVC and MVVM.

Authors go further by describing Xamarin features, starting with Xam-
arin.Android, a feature of which, according to the authors Xamarin offers
the possibility of developing mobile “native ” applications in the Android
platform by using the same controls that normally would be used in Java,
but now in this case all of these by using the programming language C#.

A description in the same way is given also for Xamarin.iOS, a feature
through which is given the possibility to the user to create native mobile
applications for iOS, where also here, developers can develop most of the
controls by using programming language C#, controls that normally would
need programming skills in X-Code or Objective-C.

An architecture and flow of processes is described separately for Xam-
arin.iOS and Xamarin.Android.

They also provide more information for the other Xamarin components
such as: Component Store and NuGet, places where developers can access
and download necessary development libraries for each mobile operating sys-
tem - platform, whether it is Android or iOS.

Authors also describe in more details one of the development patterns
for Xamarin cross-platforms mobile applications, pattern: MVVM - Model
View ViewModel. A pattern that separates the business logic, according
to the authors of the paper in two separate objects: View and ViewModel.
While User Interface View deals with the application, ViewModel main duty
is to handle the classes dealing with business logic of mobile application
developed by Xamarin.

Paper is concluded by the authors by providing a description for the an-
other component of Xamarin, one of the best used tool, called Xamarin.Forms
a tool that allows the creation of a UI layouts once and later can then be
distributed to all targeted mobile operating systems.

Although paper provides an interesting description of the Xamarin cross-
platform framework and its use in the development of mobile applications,
this paper or more precisely its findings do not rely on specific caste study
experience but is more a paper where its findings are based on researching

Master Thesis Page 26

Chapter 3. Related work

current literature and general experience by the authors.
In [25], Gatis Vitols, Ingus Smits and Aleksejs Zacepins from IT Com-

petence Centre, Latvia are describing their experience on issues that they
faced during the development of a hybrid mobile application case study with
PhoneGap: Insurance Mobile Application.

Also in this paper, authors are not evaluating different mobile develop-
ment cross-platforms frameworks, but they are letting us know their find-
ings of evaluation of PhoneGap – hybrid cross-platform mobile development
framework. Even though there is no comparison between different cross-
platform frameworks, their finding are quite good and they are used on the
practical experience during the development of one case study mobile appli-
cation: Baltic Insurance House (BAN). An application developed by using
the following technologies: HTML5, CSS3, JavaScript and jQuery. Primarily
the mobile application is developed to be used on mobile operating systems:
Windows Phone, to be followed also by other mobile operating systems such
as: Android and iOS.

This mobile application consists of four subsystems: SOS, branches of or-
ganization, buy insurance, settings. Application functionality includes navi-
gation options by using mobile device platform native features – Back button
and Home button, as well as touch navigation. In addition it handles con-
nection and automatic refresh of interactive map that shows locations of
organization branches. Also it has integrated purchase subsystem for BAN
services [25]. Two devices where used to test how the mobile application
behaves in real environment: LG Nexus 4 for Android and Nokia Lumia 820
for Windows Phone Operating System (OS).

After developing and testing the behavior of their case study applica-
tion in real environments - Android and Windows Phone, authors arrived in
some comparison conclusions between running this application in Android
and Windows Phone. In fact they are making nine comparison conclusions
regarding different components such as: functionality, rendering, user inter-
face and development efforts.

By summing them up, in terms of functionality authors find that it is
equal for both mobile operating systems. As for user interface and user
interaction they find that besides the application is working in both operating
systems there are still some concerns or some points to take into account
when developing with PhoneGap such as: call function is different, battery
level and time is not visible in both platforms when using all-device screens.
Also according to authors if the type of font is not preset then default fonts
are different in different operating system. In terms of development efforts,
authors claim that developers should be familiar with Android references to
element dimensions and requirement if application is targeting Android OS.

Master Thesis Page 27

Chapter 3. Related work

In the end authors conclusion is: Based on research authors can con-
clude that up to 95% of developed code is not sensitive on device, but 5% is
sensitive. This 5% consists of fonts, resolution and display size. If the ap-
plication supposed to display extensive amount of data simultaneously and
perform complicated calculations, native approach for development should
be considered. [25]

Even though this is a good paper in terms of professional findings during
development of hybrid mobile application, and indeed is doing a comparison
how the same application behaves in two different mobile operating systems,
it still lacks in terms of comparing PhoneGap with another cross-platform
framework currently in the market. Also the comparison between different
mobile operating systems for the mobile application developed in PhoneGap,
lacks a set of predefined criteria, where the product would be evaluated
against them.

Master Thesis Page 28

Chapter 4

Cross-platform approaches
comparison method

4.1 Introduction

In this chapter we give to a reader an idea about our problem definition and
proposed solution to the problem already defined, including the comparison
method description.

4.2 Problem definition

Taking into account current growing mobile market and current use of cross-
platforms, we decided that the issue of cross-platform approaches to be the
main focus of our research for this master thesis.

The idea and the main purpose of this research is a thorough professional
analysis and comparison of these cross-platforms. A comparison, based on
arguments achieved after an evaluation and thorough study of the current
literature. Because current market is filled in with a range of cross-platforms,
each with its specific features, to be more accurate in our thesis, we selected
only two for comparison. Selection of two platforms is based on several key
factors such as: the type of product offered, the financial cost of use of the
platform and their innovations in the market.

PhoneGap and Xamarin are our cross-platform mobile development ap-
proaches of whom will be subject of research-comparison for this master
thesis. They are chosen specifically because of different platform types, more
precisely the type of product that is developed through them. The product -
mobile application of PhoneGap is hybrid mobile application, while Xamarin
product is cross-platform application - cross-platform native application.

29

Chapter 4. Cross-platform approaches comparison method

Given the analysis of cross-platform mobile development approaches and
our implementation experience from case-study in two specific cross-platforms,
then the problem we are trying to solve in this thesis is as follow:

Taking into account the following factors:

• Graphical User Interface (GUI);

• Architecture;

• Services and sensors;

• Local data storage;

• Development efforts;

“Which of the cross-platforms mobile development frameworks,
compared in this thesis - each of them representing specific

mobile application approach, is the most convenient one for the
development of new mobile application?”

4.3 Proposed solution

The best way to do a proper comparison, besides relying on relevant work
is by designing and implementing a mobile application as case-study exclu-
sively for this thesis research. Then this mobile application to implement in
both our compared cross-platforms, Xamarin and PhoneGap, thus seeing the
similarities and differences.

For the case-study purposes we design and develop a review mobile ap-
plication - named: ReviewPOI. A mobile application with the main purpose
to give the users the possibility of knowing what was the opinion of other
users/visitors (their review) regarding a specific point of interest in a specific
place. A point of interest can be anything worth visiting in a town or city,
such as: hotel, restaurant, beach, museum etc. If a point of interest is not
in the system, users can add them. If however a point of interest is in the
system they can add a review about that specific point of interest. They can
see all the time reviews for any point of interest in the system.

Later, based on our development experience for our case study with both
compared cross-platforms, we group and evaluate the comparison results ac-
cording to the already selected factors determined in our problem definition.
For each comparison criteria we give an evaluation for both cross-platform
development frameworks.

Master Thesis Page 30

Chapter 4. Cross-platform approaches comparison method

4.4 Comparison method

Comparison of cross-platform mobile development frameworks is never an
easy process. To make a proper comparison we always should be based on
several specific comparison factors. And this makes the comparison result
closely related to the comparison factors we select.

Besides selecting comparison factors, another comparison issue is how we
evaluate the comparison subject against these factors.

In our case, in problem definition we defined five comparison factors:
Graphical User Interface (GUI), architecture, services and sensors, local data
storage and development efforts. Because our comparison subjects are Xam-
arin and PhoneGap, we evaluate these cross-platforms mobile development
approaches based on our implementation experience with these both cross-
platforms. More precisely the result of our comparison is based on our gained
experience with the five comparison factors during the implementation of our
case-study in these both platforms.

Below we describe in details how we evaluate our subject for each comparison
criterion individually.

Graphical User Interface (GUI) - is the first interaction between
the user and mobile application. A good, well designed and looking native
mobile app graphical user interface is one of the factors to increase the user
satisfaction.

The main purpose of this criterion is to see whether the user interface
of final product - mobile application, looks and behaves like native or not.
To arrive in better evaluation conclusion we compare cross-platforms mobile
development frameworks product according to the following features:

• Page and navigation types : main page types used in and by native
applications are: content page, master-detail page, navigation page,
tabbed page, and carousel page. In comparing this feature we will
take into account what types of pages can we use when we design and
implement a mobile application. Is it allowed for our project-mobile
application to use more than one page type or combination of different
page types or we should stick to one page type only?

• Page layouts : different page layouts are used and supported in native
mobile applications. They include but are not limited to: content view,
grid, scroll view and linear layout. In comparing this feature we will
consider whether we can use these layouts or not and if yes can we
combine more than layout type for the same project.

Master Thesis Page 31

Chapter 4. Cross-platform approaches comparison method

• Controls : GUI controls are features that through them, mobile user
feels the application. Different controls are supported by native mobile
application such as: entry, image, list, table, button etc. In comparing
this feature we will take into account whether the controls offered by
cross-platform mobile development framework are native looks like or
not.

• Themes : Using default theme of mobile operating system makes the
application to look and feel native. Theme is how the navigation, con-
trols and layouts are grouped and presented to the user. In comparing
this feature we will consider the default theme offered by cross-platform
mobile development framework and how native it looks like.

For evaluation purpose of this criterion, the cross-platform mobile develop-
ment framework with highest number of supported features is the better one
in terms of Graphical User Interface (GUI).

Architecture - Good and well-organized software structure is not only
important for the application functionalities but also for the maintenance
phase.

The main purpose of this criterion is to see what kind of application
architecture is possible by using each of the cross-platform mobile devel-
opment frameworks. To arrive in better evaluation conclusion we compare
cross-platforms mobile development frameworks architecture according to the
following features:

• Code sharing : is very important feature when developing mobile ap-
plications for multiple platforms (operating systems). Through code-
sharing we are able to code in one place and use the same code for every
platform without the need to adopt/change it for other platforms. In
comparing this feature we will consider how much share-code we can
have when developing cross-mobile application.

• Separation of responsibilities : is a process where it is allowed that each
component of application should perform well-defined purpose. In com-
paring this feature we will take into account if this feature is supported
by our compared cross-platform mobile development frameworks.

• Architecture patterns :Different architecture pattern are currently used
for application development. Common used patterns are MVC (Model,
View, Controller) and MVVM (Model, View, ViewModel). In compar-
ing this feature we will consider if any of this architecture pattern is
supported.

Master Thesis Page 32

Chapter 4. Cross-platform approaches comparison method

For evaluation purpose of this criterion, the cross-platform mobile develop-
ment framework with highest number of supported features is the better one
in terms of architecture.

Service and sensors - Accessing device APIs and consuming web-
services is another important feature when designing and implementing a
mobile application. A lot of applications require access at least to GPS or
camera and a lot of them nowadays consume data through web-service.

The main purpose of this criterion is to see how cross-platform mobile
development framework is accessing services and mobile device sensors. To
arrive in better evaluation conclusion we compare cross-platforms mobile de-
velopment frameworks access to services and mobile device sensors according
to the following features:

• Consuming web-service: There are different ways a platform or mobile
application consumes data web-services. But, more important is how
is the communication between application and web-service, i.e getting
the request and returning the desired result. In comparing this feature
we will consider whether it is possible to consume web-service and if
yes how easy is to implement it.

• Accessing GPS (geolocation): Accessing GPS (geolocation) of mobile
device is how cross-platform mobile development framework accesses
native feature of mobile device. In comparing this feature we will take
into account whether it is possible to access GPS and if yes what is
the way of getting the coordinates. Also the implementation easiness
is part of evaluation.

• Accessing camera: Taking picture from mobile device camera is also a
process that involves dealing with native feature of mobile device. In
comparing this feature we will consider whether is it possible to take
picture and if yes how do we get it and handle the picture. Also the
implementation easiness is part of evaluation.

• Accessing photos from photo album: Getting a picture from mobile
device photo album involves the process of accessing local files in mobile
device. In comparing this feature we will take into account whether it
is possible to select a picture from photo album and if yes how do we
get it and handle the picture. Also the implementation easiness is part
of evaluation.

Master Thesis Page 33

Chapter 4. Cross-platform approaches comparison method

For evaluation purpose of this criterion, the cross-platform mobile develop-
ment framework with highest number of supported features and easier imple-
mentation is the better one in terms of sensors and services.

Local data storage - Is not always a case where mobile application
reads or writes data to a database located somewhere on external server or
data webservice. In many cases there are different scenarios where users want
for a specific purpose either temporarily or permanently preserve some data
locally in mobile device.

The main purpose of this criterion is to see how cross-platform mobile de-
velopment framework handles local data and how we access them. To arrive
in better evaluation conclusion we compare cross-platforms mobile develop-
ment frameworks local data storage according to the following features:

• Type of local data storage: Currently there are different options to
save data locally in mobile device and this is heavily depending on the
cross-platform mobile development framework we choose. Key/Value
pair and SQLite are some of the types. In comparing this feature we
will consider what type of local data storage is offered and whether we
are obliged to use only one of them or combination between them, if
more than one local data storage type is offered.

• Structure of local data storage: Some type of local data storage are of
flat structure and some of them are real SQL-based databases. While
with flat data we cannot or it is very difficult to perform queries or
transactions with SQL-based databases is only SQL language knowl-
edge the skill that we need. In comparing this feature we will take into
account the complexity of local data storage.

• Local data storage size: Size of local data storage is another key con-
straint. In comparing this feature we will consider the maximum size
that it is allowed each type of supported local data storage.

• Implementation process : Accessing mobile device local data storage
is really an important feature, but the complexity of implementation
process is another factor that is influencing our evaluation. In some
cross-platforms the process is very easy and straight forward while for
some of them we need the help of some specific plugins. In comparing
this feature we will take into account the complexity of implementation
process.

Master Thesis Page 34

Chapter 4. Cross-platform approaches comparison method

For evaluation purpose of this criterion, the cross-platform mobile develop-
ment framework with highest number of supported features and easier imple-
mentation is the better one in terms of local data storage.

Development efforts - Development efforts and cross-platform com-
plexity are very important to developer or development team.

The main purpose of this criterion is to see how easy is to develop a
mobile application through cross-platform mobile development framework.
To arrive in better evaluation conclusion we compare development efforts
according to the following features:

• Development environment : Different cross-platform mobile develop-
ment frameworks are offering to the developer different development
environments. Some of them are offering their own Integrated Devel-
opment Environments (IDE) and some of them don’t. Beside develop-
ment process, another issue is how we can test the product, through
emulator, real device or any other way. In comparing this feature we
will consider the type of IDE is used and its complexity. Also run-
ning(testing) process of the mobile application is taken into account.

• Available documentation: Documentation is very important for every
developer, especially if the developer is new with specific technology
or when new features are implemented for specific technology. Each
platform it is offering its documentation usually through their web-
page. In comparing this feature we will consider the quantity and
quality of documentation available for each cross-platform.

• Development time: Time is another crucial factor when we develop an
application. In comparing this feature we will consider the time we
spent to implement our case study in each platform.

For evaluation purpose of this criterion, the cross-platform mobile develop-
ment framework with the best position in each feature is the better one in
terms of development efforts.

Master Thesis Page 35

Chapter 5

Case study and implementation
experience

5.1 Introduction

In this chapter we explain in details our case-study design and its technical
implementation. Because our case study development includes more than one
technology, we describe our case study implementation separately for each
involved technology. We start our implementation experience description by
explaining design and implementation of WebApi for handling data part of
the mobile application to proceed further with explanation of our experience
on the development of our case study through Xamarin and PhoneGap.

5.2 Case study

For the thesis research purposes we implement a case study, namely a review
mobile application - called: ReviewPOI. This is a mobile application devel-
oped in both cross-platform mobile development frameworks, whose main
purpose is to give the users the possibility of knowing what was the opinion
of other users/visitors (reviews) regarding a specific point of interest in a
specific place.

5.2.1 General description

In most cases, during our visits abroad or not, besides socialization factor the
main other purpose is sightseeing or shopping, mainly to visit other important
tourist points or how they are called in other name: point of interests. These
tourist points can be of different types, and visited by various groups or

36

Chapter 5. Case study and implementation experience

individuals according to their interest. They might be but not limited only to
the following categories: hotels, restaurants, pools, beach resorts, amusement
parks, airports, shopping malls etc.

As human beings, always before want to visit any particular place or
touristic object, we feel the need to have some advance information about
that visit. These advanced information can be mainly logistics information
such as: transport, surrounding area, safety. But besides logistics or safety
information, a different category of information is also important, and this is
the opinions of previous tourists about that place or object that we want to
visit, mainly how they described their experience and did that touristic spot
fulfilled their expectations. This type of information is called: review.

Given this type of information (reviews) in one side and the increasing
number of mobile devices users and using frequency on daily basis on the
other hand, we came to a decision, that precisely this issue, the issue of
reviewing touristic places (touristic points of interest) will be as the core of
our mobile application developed as a ’case -study’ for this master thesis.

Thus during this case study we design and develop a mobile applica-
tion that allows users to see what other users thought when they visited a
specific touristic point of interest. More precisely our case-study will deal
with reviews of any touristic point of interest. Besides viewing what other
users said, they can also give a grade and textual opinion about the touristic
points. Users can also take pictures and save them together with the review.
We call this mobile application: ReviewPOI.

5.2.2 Requirements

ReviewPOI should fulfill the following requirements:

• Application-ready to be installed in mobile device with any of the fol-
lowing OS - Android, iOS or WindowsPhone;

• Database stored in web server. Read and Write data to be performed
through web-service. In other words to be able to consume web-service.

• It should be possible to take photo directly from camera or read a photo
from photo album aready in device and also know the current location
of the user. So application should have access to device camera and
photos. Also should have access to geolocation.

• User should be able to save data also in local data storage, before
submitting them to the review database.

Master Thesis Page 37

Chapter 5. Case study and implementation experience

• Access to application is granted only to authorized users. Users to
authenticate through their username and password. For non-existing
users there should be a possibility to create a user account;

• User can search for their interested point of interest (PoI) through any
of the following ways:

– Search for PoI through free text search, by typing in full or just a
part of: name, location or description;

– Search for PoI through free text search, by typing in full or just a
part of PoI type;

– Get the list of all PoIs already reviewed by the user;

– Get the list of all PoIs close to user geo-location;

• User can view details of specific PoI, including description and photos;

• User can view all reviews and photos from reviews for specific PoI;

• User can add a review for specific PoI, including a picture. Before
submitting the review, user can save the review locally and after re-
checking it, can submit to the review database;

• User can modify his/her profile data, except username and password;

5.2.3 Assumptions and dependencies

The following assumptions are made for this mobile application:

• There is an internet connection during the time this mobile application
is used, always up and running;

• GPS (Geolocation) is available and enabled in device while this appli-
cation runs;

• Camera is available and enabled in device while this application runs;

Master Thesis Page 38

Chapter 5. Case study and implementation experience

5.2.4 Entity model

In this subsection through Entity-Relationship model we present a core of
our data model for our case study - ReviewPOI. Our data model for thesis
project consists of six entities - Poi, Poitype, Poiphoto, Review, Reviewphoto
and User. Each entity in our data model contains its own attributes. Entity
with the minimum number of entities is with two attributes, while the entity
with the maximum number of attributes is with thirteen.

Below we describe in details each entity and its attributes. Also the
Entity-Relationship diagram is presented to show cardinalities (Figure 5.1).

• Entity: User - points out general information about the user of the
system. Besides username and password it contains also contact details.

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new type user is inserted.

2. Username - type: string. Points out the username of the user.

3. Password - type: string. Points out the password of the user.

4. Displayname - type: string. Points out the name of the user that
he/she wants to be displayed.

5. Telephone - type: string. Points out the telephone number of user.

6. Website - type: string. Points out the website of the user.

7. Email - type: string. Points out the e-mail of the user.

• Entity: Poitype - points out types of different POIs. Point of Interest
(POI) can be: museum, lake, restaurant, hotel etc.

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new type of POI is inserted.

2. Name - type: string. Points out the name of the type of Point of
Interest such as: museum, lake, hotel etc.

• Entity: Poi - points out general data regarding Point of Interests. Has
the following attributes:

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new POI is inserted.

2. Name - type: string. Points out the name of Point of Interest.

3. Description - type: string. Points out a brief description regarding
the main characteristics of Point of Interest.

Master Thesis Page 39

Chapter 5. Case study and implementation experience

4. Location - type: string. Points out the name of the location where
a POI is located. It can be a city or a town.

5. Locationlatitute - type: decimal. Points out the exact latitude
coordinate of the POI as taken by GPS.

6. Locationlongitude - type: decimal. Points out the exact longitude
coordinate of the POI as taken by GPS.

7. PoitypeId - type: integer. Points out the type of Poi. It is a Id of
the poi type from entity: Poitype. Links Poi with Poi types.

8. UserId - type: int. It is id of the user who inserted POI in the
system. Links Poi with the user.

9. InsertedOn - type: datetime. Points out the exact date and time
when the POI has been inserted in the system.

• Entity: Poiphoto - points out photos for each Point of Interests. Has
the following attributes:

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new photo is inserted.

2. Photo - type: binary. Points out the photo of Point of Interest.

3. PoiId - type: integer. It is the Id of Poi to whom the photo
belongs. Links Photo with Poi.

4. UserId - typet: int. It is id of the user who inserted POI photo in
the system. Links Poiphoto with the user.

5. InsertedOn - type: datetime. Points out the exact date and time
when the POI photo has been inserted in the system.

• Entity: Review - points out reviews in details for each Point of Inter-
est. Has the following attributes:

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new review is inserted.

2. Title - type: string. Title given to the review by the reviewer.

3. Positivecomment - type: string. Points out the positive charac-
teristics regarding the POI given to the review by the reviewer.

4. Negativecomment - type: string. Points out the negative charac-
teristics regarding the POI given to the review by the reviewer.

5. Scoreone - type: int. Given score for this review for category one.

6. Scoretwo - type: int. Given score for this review for category two.

Master Thesis Page 40

Chapter 5. Case study and implementation experience

7. Scorthree - type: int. Given score for this review for category
three.

8. Scorefour - type: int. Given score for this review for category four.

9. Scorefive - type: int. Given score for this review for category five.

10. Scoreaverage -type: decimal. Average score of five scores.

11. PoiId - type: int. It is id of the Poi to whom the review belongs
to. Links Review with the Poi.

12. UserId - type: int. It is id of the user who inserted review in the
system. Links Review with the User.

13. InsertedOn - type: datetime. Points out the exact date and time
when the review has been inserted in the system.

• Entity: Reviewphoto - points out photos for each review of Point of
Interests. Has the following attributes:

1. Id - unique, type: integer. Autogenerated with autoincrement
every time a new photo is inserted.

2. Photo - type: binary. Points out the photo of review for Point of
Interest.

3. ReviewId -type: integer. Points out the Id of Review to whom
the photo belongs. Links Photo with Review.

4. UserId - type: int. Points out the id of the user who inserted POI
photo in the system. Links ReviewPhoto with the user.

5. InsertedOn - attribute of type: datetime. Points out the exact
date and time when the review photo has been inserted in the
system.

Master Thesis Page 41

Chapter 5. Case study and implementation experience

F
ig

u
re

5.
1:

E
n
ti

ty
R

el
at

io
n
sh

ip
d
ia

gr
am

Master Thesis Page 42

Chapter 5. Case study and implementation experience

5.2.5 Use cases

Besides describing our case study data model through Entity-Relationship
diagram, next stage is to describe our case study in proper way and this
is through Use case diagram. A use case generally describes the scenarios
and interactions that an actor (or user) has with your application, and a
use case diagram visually represents the actor and the application and the
interactions that occur between them [13].

Further in this section, we describe in details each use case.
For our case study in this master thesis, we have identified 14 use cases.
Each case study is described by the following features:

• Use case ID - Unique identification for each use case.

• Use case name - Unique name for each use case.

• Description - Description of what the user can do through this use case.

• Preconditions - Description of conditions that have to be met, to be
able to start successfully the use case.

• Basic flow - Description of all the necessary steps that have to be taken
by the user, for the use case to be completed successfully.

• Postconditions - Description of the system state at the end of the use
case.

• Open issues - Any possible open issue.

Master Thesis Page 43

Chapter 5. Case study and implementation experience

Use case ID: UC01

Use case name: Create new user account

Description:
Allows user to create a new account to log-in later
with it in the application.

Actor: User.
Precondition: Internet connection.

Standard flow:

1. This use case starts when user opens applica-
tion and tries to create new user account.

2. User enters his/her desired username and
password and also other optional data. Sys-
tem save the data in the system and creates
new user account for the user.

Postcondition:
User can log-in with his/her newly created account
if account has been registered successfully.

Open issues: None.

Table 5.1: Use case: Create new user account (UC01)

Use case ID: UC02

Use case name: Login
Description: Allows user to log-in with his/her credentials.

Precondition:
Internet connection.
User has already an account.

Standard flow:

1. This use case starts when user opens applica-
tion. A login page is displayed with the fol-
lowing required fields: username and pass-
word.

2. User enters correct username and password.
System checks user credentials and displays
main page of application if they are correct.

Postcondition:
User either has logged-in successfully and got access
in application, or log-in was unsuccessful.

Open issues: None.

Table 5.2: Use case: Login (UC02)

Master Thesis Page 44

Chapter 5. Case study and implementation experience

Use case ID: UC03

Use case name: My profile
Description: Allows user to modify optional data from profile.

Precondition:
Internet connection.
User has already logged in successfully.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page of his/her profile.

2. User sees his/her profile information. User
also can modify optional data such as: display
name, e-mail and website.

3. System updates data in the system if they are
modified by the user.

Postcondition:
User either has updated data and goes to main page
or an error is displayed.

Open issues: None.

Table 5.3: Use case: View and modify user profile (UC03)

Master Thesis Page 45

Chapter 5. Case study and implementation experience

Use case ID: UC04

Use case name: Search for POI

Description:
Allows user to search for POI list according to
search criteria (name, location and description).

Precondition:
Internet connection.
User has already logged in successfully.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page to search for POI.

2. User begins to enter the search phrase. Search
phrase can be: name, location or description
of the POI.

3. System gives to the user the list of PoIs.

Postcondition:
User either can get the list of PoIs or if there is no
POI gets the message that there is no PoI.

Open issues: Ordering list of PoI.

Table 5.4: Use case: Search for PoI (UC04)

Use case ID: UC05

Use case name: Search for PoI by PoI type

Description:
Allows user to search for POI list according to their
type.

Precondition:
Internet connection.
User has already logged in successfully.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page to search for POI
by the type.

2. User begins to enter the type in search phrase.

3. System gives to the user the list of PoIs.

Postcondition:
User either can get the list of PoIs or if there is no
POI.

Open issues: Ordering list of PoI.

Table 5.5: Use case: Search for PoI by PoI type (UC05)

Master Thesis Page 46

Chapter 5. Case study and implementation experience

Use case ID: UC06

Use case name: List PoI close to me

Description:
Allows user to see list of PoI close to his/her loca-
tion.

Precondition:
Internet connection.
User has already logged in successfully.
Geolocation (GPS) enabled.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page to see list of PoI
close to his/her current location.

2. System gives to the user the list of PoIs.

Postcondition:
User either can get the list of PoIs or if there is no
POI gets the message that there is no PoI.

Open issues: Ordering list of PoI.

Table 5.6: Use case: List PoI close to me (UC06)

Use case ID: UC07

Use case name: List of PoI reviewed by me

Description:
Allows user to see list of PoI already reviewed by
the user.

Precondition:
Internet connection.
User has already logged in successfully.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page to see list of PoI
already reviewed.

2. System gives to the user the list of PoIs.

Postcondition:
User either can get the list of PoIs or if there is no
POI gets the message that there is no PoI.

Open issues: Ordering list of PoI.

Table 5.7: Use case: List of PoI reviewed by me (UC07)

Master Thesis Page 47

Chapter 5. Case study and implementation experience

Use case ID: UC08

Use case name: View PoI details
Description: Allows user to see details of specific PoI.

Precondition:
Internet connection.
User already search for PoIs

Standard flow:

1. This use case starts after user search for list
of PoIs. User clicks the desired PoI and the
system redirects him to the page with details.

2. User sees details, including textual descrip-
tion, reviews and photos.

Postcondition: PoI details are shown.
Open issues: None.

Table 5.8: Use case: View PoI details (UC08)

Use case ID: UC09

Use case name: Reviews for specific PoI
Description: Allows user to see details reviews of specific PoI.

Precondition:
Internet connection.
User already is in page of PoI details.

Standard flow:

1. This use case starts after user is in PoI de-
tails. User clicks reviews.

2. System shows the list of reviews for that spe-
cific PoI.

Postcondition:
List of reviews is shown if there are reviews, else ’no
review’ message is shown.

Open issues: Review ordering.

Table 5.9: Use case: View PoI reviews (UC09)

Master Thesis Page 48

Chapter 5. Case study and implementation experience

Use case ID: UC10

Use case name: Photos specific PoI
Description: Allows user to see photos of specific PoI.

Precondition:
Internet connection.
User already is in page of PoI details.

Standard flow:

1. This use case starts after user is in PoI de-
tails. User clicks photos.

2. System shows the list of photos for that spe-
cific PoI.

3. User selects specific photo to see it.

Postcondition:
List of photos is shown if there are photos, else ’no
photo’ message is shown.

Open issues: Review ordering.

Table 5.10: Use case: View PoI photos (UC10)

Use case ID: UC11

Use case name: Review photos specific PoI
Description: Allows user to see review photos of specific PoI.

Precondition:
Internet connection.
User already is in page of PoI details.

Standard flow:

1. This use case starts after user is in PoI de-
tails. User clicks review photos.

2. System shows the list of photos from reviews
for that specific PoI.

3. User selects specific photo to see it.

Postcondition:
List of photos is shown if there are photos, else ’no
photo’ message is shown.

Open issues: Review ordering.

Table 5.11: Use case: View PoI review photos (UC11)

Master Thesis Page 49

Chapter 5. Case study and implementation experience

Use case ID: UC12

Use case name: New review for specific PoI
Description: Allows user to write a review for specific PoI.

Precondition:
Internet connection.
Camera available.
User already is in page of PoI details.

Standard flow:

1. This use case starts after user is in PoI de-
tails. User clicks new review.

2. System shows fields that user fills in for this
specific review. Fields can be textual or nu-
meric. User can also take a picture.

3. User fills in textual fields: tile of review, posi-
tive things, negative things.

4. User fills in numerical fields giving the grade
for the following parameters: position, trans-
portation, shops near by, clean and recom-
mendation.

5. If a picture is to be taken, user click camera
and takes the photo. If user wants to browse
for photo from files, he/she clicks pick a photo
and gets photo from files.

6. After user finishes with review, system saves
the review.

Postcondition:
Review is saved in local database and appears in
pending reviews.

Open issues: None.

Table 5.12: Use case: New review for specific PoI (UC12)

Master Thesis Page 50

Chapter 5. Case study and implementation experience

Use case ID: UC13

Use case name: List of my pending reviews

Description:
Allows user to see list of his/her pending reviews.
Pending reviews are reviews entered by the user for
specific PoI, but not yet submitted to the system.

Precondition:
Internet connection.
User has already logged in successfully.

Standard flow:

1. This use case starts after user is logged in.
User has to go to the page to see list of pend-
ing reviews.

2. System gives to the user the list of his/her
pending reviews.

Postcondition:
User either can get the list of pending reviews or if
there is no pending gets the message that there is
no pending reviews.

Open issues: Ordering list of PoI.

Table 5.13: Use case: List of PoI reviewed by me (UC13)

Use case ID: UC14

Use case name: Submit an already pending review
Description: Allows user to submit an already pending review.

Precondition:
Internet connection.
User has already selected specific review.

Standard flow:

1. This use case starts after user selected pend-
ing review.

2. System shows the user pending review with
all fields. User can modify anything if he/she
wants to and gives the command to submit it.

3. System saves the review in the system.

Postcondition: Review is submitted if no error occurred.
Open issues: None.

Table 5.14: Use case: Submit an already pending review. (UC14)

Master Thesis Page 51

Chapter 5. Case study and implementation experience

F
ig

u
re

5.
2:

P
ag

e
d
ia

gr
am

Master Thesis Page 52

Chapter 5. Case study and implementation experience

5.3 Implementation of WebAPI

Data access - reading and writing in a database always is one of the main
challenges during the process of design and implementation of an application.
But when an application is mobile, then it becomes even more complicated
considering that in this case we are dealing with different operating systems,
depending on where the mobile application is installed. To overcome this
and access our data regardless of client type, the best solution is webser-
vice. Through web service, app does not access directly database, but it
accesses web service and then web service returns to app the required data
in a predefined format, recently widely used in JSON.

Given this issue and also taking into account that one of the comparison
factors for this thesis is also consuming services, we decided to use web-
service for data access in our case-study. Our service (named: PoiPolimi)
is of type: REST (REpresentational State Transfer) and it is implemented
through Microsoft ASP.NET technology - ASP.NET Web API.

Figure 5.3: WebApi in our case study (PoiPolimi)

PoiPolimi is developed in programming language C# through Visual Stu-
dio 2015. Currently it is hosted in personal hosting: politema.ardianisufi.info,
a host offered by Godaddy. Data are presented to client in JSON. Below we
will give a brief description separately for each of the following webapi main
parts: database, model, controllers and calling webapi from the client.

Database - is implemented through Microsoft SQL Server and it is hosted
in personal account: ardianisufi.info. All tables in the database are identical
with the objects designed in our data model. Database contains in total six
table: Poi, Poitype, Poiphoto, Review, Reviewphoto and User. Each of these

Master Thesis Page 53

Chapter 5. Case study and implementation experience

tables contains a number of columns, identical with the number of attributes
described in our data model.

Model - is used to represent data in webapi. In our case the model rep-
resents objects of our database implemented in SQL Server. Besides having
six classes by representing our tables in database, for the purpose of not
exposing database entities to the clients we created DTOs – Data Transfer
Objects. By using DTO we were able to remove circular references, hide
properties that we thought user should not see and also use flatten object
that contains nested objects. Thus te response given to client is much more
understandable and clean. In our model we have 9 DTOs - GeneralStat,
Poictm, PoiDetails, PoiGeneral, PoiPhoto, PoitypeGeneral, ReviewGeneral,
Reviewphoto and User.

Controller - Controllers main task is to handle all HTTP requests.
Through controller we can return either a list of records or only a single
record. For querying data we used LINQ, and all queried data are put in
DTOs and thus in this format presented later to the client. In our case-
study we have implemented seven controllers: HomeController - querying
general data shown in default page of application, PoisController - handling
getting and storing pois, PoitypesControlles - showing poi types informa-
tion, PoiphotosController - handling photos of each poi, ReviewsController
and ReviewPhotosController handling getting and storing review information
and UsersControllers handling users information. Each controller represents
a main group of data of mobile application and contains a number of public
methods with or without expecting input parameters.

Calling WebApi from a client - by default is: [host]/api/controller/id,
where controller is the name of controller and id is id of specific data.
Through default pattern we can have maximum two get actions-all records
or single record by id. To have more flexible, better and friendly con-
troller design, we modified route definition. In this case we modified route
to the following: [host]/api/controller/action/id. In this case, right after
controller name we added customized action name, so now it is possible to
have more than one get action for controller. Moreover now we can have
customized public methods. For example, in our PoisController, we have
six customized get actions, each of them giving to the client a specific set
of data. One example in our webapi, could be searching all POIs close
to specific geolocation. In this scenario we have an action called: search-
forpoiclosetome with two input parameters: longitude and lattidue of spe-
cific location. The right way of calling webapi through the client would be:
[host]/Pois/api/0/searchforpoiclosetome/Lattitude/Longitude.

Master Thesis Page 54

Chapter 5. Case study and implementation experience

5.4 Implementation with Xamarin

Writing mobile applications code through C# and same time be able to reuse,
share and implement this code natively depending on targeting platform, is
making Xamarin as one of the most attractive cross-platform framework in
the market. Taking into account our development experience in C# program-
ming language, it did not take too much time to be familiar with Xamarin
and programming through it. Since the product is developed in C#, in par-
ticular - programming the business logic part of mobile application is same
as programming business logic in any other application in Visual Studio IDE.

General description of our case-study implementation experience is di-
vided in following sections, for the purpose of better understanding:

• Development environment,

• Use of programming language and technologies, and

• Project structure (classes, pages and methods).

Development environment
With Microsoft purchase of Xamarin platform, a lot has changed for the

better in terms of mobile applications development through Xamarin, es-
pecially for software developers who are familiar with or want to learn C#
programming language. Now Xamarin is available for free of charge through
two ways: as part of the Visual Studio Community IDE (Integrated Devel-
opment Environment) primarily for the Windows OS users, or as Xamarin
Community Studio IDE for Mac users.

In our case-study, since the operating system of the computer where devel-
opment has taken place is Windows 8.2, we installed Microsoft Visual Studio
Community IDE (free of charge) to write and compile code and also run in
Android emulator our mobile application based in case-study requirements.
All necessary Xamarin libraries are either installed together with IDE or can
be downloaded later at any stage.

Programming language and APIs
C# is the programming language we used to create our mobile application

in Xamarin – Visual Studio. C# is object-oriented programming language
with the aim of building applications primarily through Microsoft Visual
Studio.

Because the main logic behind the Xamarin cross-platform framework is
to divide the process of mobile applications development in main two groups:

Master Thesis Page 55

Chapter 5. Case study and implementation experience

Business Logic in one side - including: business logic classes, database access,
network and other common features, and User Interfaces in other side, also
the implementation of our application follows this pattern. As for software
architectural pattern we used MVVM : Model-View-ViewModel. All UI are
designed and implemented in XAML (Extensible Application Markup Lan-
guage) through Xamarin.Forms. Through Xamarin.Forms we were able to
create native User Interfaces with access to all native APIs, but this UIs were
created and maintained in only one place - shared code part of the applica-
tion. In other words, we created native UI only once and not specifically
for each targeting platform, but we were able to use them in all targeted
platforms.

Because besides the other requirements of our case study were also the
ability to take photo by using mobile device camera, get location coordinates
from mobile device GPS, save data locally and the ability to consume web-
services, to implement these features in our project we had to use also other
plugins that are especially implemented for Xamarin for these particular rea-
sons.

To serialize and de-serialize our objects to and from JSON because the
response from our webservice is always in JSON, we used Newtonsoft.Json.
For photos, particularly to be able to use device camera we used the special
plugin: Media, while for location coordinates we used plugin: Geolocator.
For local data storage we used SQLite.Net package.

Project structure
Xamarin is known as cross-platform mobile development that gives to

developer the opportunity to develop mobile applications where its controls
are mapped to native elements of targeted platform. Our project is created
as Xamarin.Forms project which means that through this way according to
Xamarin, we will be able to share over 96% of code across platforms.

When we created a Xamarin.Forms based project, named: ReviewPOI,
four main parts (folders) were created: Portable - where all the shared code is
placed and .Droid, .iOS and .WinPhone where any platform specific control
or feature is placed. In our case, besides implementing local data storage
through SQLite where we had to create an interface to allow us access in
specific platform native functionality, all other work is done in shared part
of the project.

Using MVVM architecture pattern, forced us to divide the code of the
project in three main parts: Model, View and ViewModel. For each part of
the model a folder is created and respective classes are placed within that
folder. This make the project maintenance easier, because whenever we want
to change something we know where the class is located.

Master Thesis Page 56

Chapter 5. Case study and implementation experience

Below we describe every part of our shared code in our project:

• Model - In Model we have all the classes that represent data that we
get or send to our data webservice. More precisely, we have six classes
that deal with data from web service - Poi, Poitype, Poiphoto, Review,
ReviewPhoto and User and the other only left class: ReviewLocalDB
interacting with our local database SQLite.

• View - is presentation of our mobile application to the user. In other
word here we save the layouts/pages of our application. All the pages
are created in XAML. In total we have 15 pages, each of them having a
specific duty. The names of the views are self descriptive. SignUp is the
page through which user create an account; Login presents the login
page; MainPage is the default page after successful login; MasterPage
is the master page of the project; SearchPOI is giving user opportunity
to search for POIs; SearchByType is giving user opportunity to search
for POIs by their type; CloseToMe lists POIs that are close to the
user in 5,000 m radius; ReviewedByMe lists POIs already reviewed by
the user; PendingReview lists pending reviews; Contacts give the user
oppurtunity to change some information from his account; PoiDetails
contains main data for specific POI. From here user can view reviews,
photos or add new review; PhotoPoi list photos for specific POI. Beside
photo there is also a description of review and author of the photo;
Photo list review photos for specific POI. Beside photo there is also
a description of review and author of the photo; Reviews list all the
reviews of specific POI; AddReview gives the opportunity to the user
to add new review with or without photo;

• ViewModel - Represents classes that serve as a link between Model
and View. In ViewModel we bind all the commands and public proper-
ties of the View, such as: buttons, lists, input text fields, image sources
etc. In our project we have created a VM class for each View. Also
here names are self descriptive, i.e LoginViewModel is VM for Login
View, CloseToMeViewModel is VM for ClosetoMe View etc.

• Other general classes and interfaces - Here we have one interface
and one class, both of them exclusively dealing with handling of local
database. Interface: ISQLite gives access to SQLite and class: Re-
viewLocalDatabase that represent databaseby containing methods for
creating new local review, get the list of local reviews and delete local
review.

Master Thesis Page 57

Chapter 5. Case study and implementation experience

5.5 Implementation with PhoneGap

Implementation of our case study in PhoneGap it was interesting for us and
this is because we did not have to much experience before in client side
programming. Because the final product developed in PhoneGap is known
as hybrid mobile application, then the necessary knowledge for this project
development were at least basic knowledge in HTML, CSS and JavaScript.
We used all of them in our case-study implementation.

In order to be better understood, we will divide the description of our
case-study implementation experience into following sections:

• Development environment,

• Use of programming languages and technologies, and

• Project structure (pages and functions).

Development environment
Because besides installation of the platform, PhoneGap does not offer

any of its development code editors, then this is left up to developers. To
write a project in PhoneGap a text editor for HTML, CSS and JavaScript
it is a must. As much professional is the editor, the easier is the work for
developers, especially if the editor offers the possibility of detecting the errors
during the programming process. But the editor is not the only necessary
step. Indeed, in addition to writing the code it is also necessary to create
and test the project through PhoneGap platform.

In our case-study, to write code we used Microsoft Editor known as Visual
Studio Code, while the process of installing PhoneGap has been a straight
forward and very user friendly, because now, Adobe PhoneGap offers a more
practical solution than it used to be before. While, previously for devel-
opment, we had to install PhoneGap CLI, now we have the possibility to
install - PhoneGap Desktop App, a solution that offers a ’user-friendly’ GUI
to create and maintain the project, off course by giving access to the all de-
sired plugins. After coding with one of the text editors, users can test the
product directly to a smart phone (an emulator is not necessary anymore).
So, all that we needed for our case-study implementation it was: Installing
PhoneGap Desktop on the computer, and installing PhoneGap Developer
App in our smart phone. We used smartphone: Samsung A5 with operating
system, Android, for testing the behavior of case-study implementation in
PhoneGap.

Master Thesis Page 58

Chapter 5. Case study and implementation experience

Programming languages and technologies
HTML is the language we used to create pages of our mobile application

that is developed based on the requirements of case-study. As a script lan-
guage to code different functions we used: jQuery (version: 1.11.3.min) and
JQuery Mobile (version: 1.4.5.min.js). For design and look of the pages, we
used: jQuery mobile CSS (version: 1.4.5.min), a css file already offered by
JQuery with the aim for mobile application to look as much native as it can.

Since our application is intended also to interact with the camera and
also the geolocation feature (GPS) of the mobile device, then we have used
two PhoneGap plugins for this reason: camera-plugin and geolocation-plugin,
each of them offering a connection between our mobile application and the
specific feature (taking photos and getting coordinates of current location)
of the mobile device on which our application is running.

Project structure
Our project in PhoneGap consists of several files, each of these files has

one or more tasks to perform, so our application to be functional. Below we
are explaining main tasks of the files.

• index.html - because our application in PhoneGap is designed and
implemented in Singe Page, this is the main page dealing with inter-
action between user and our mobile application. In this html are all
specific pages that we designed for this project. As in other standard
HTML document, this file is composed of: head and body. Besides
implementing forms and lists, necessary for our project it has also the
header with the option to go to the main menu or back button. Main
menu is designed independent of the pages within this file and it is
called the same menu by every page. Through this file we do also the
import of all script files (javascript files), necessary to take care of all
functionalities of our application.

• jquery.mobile-1.4.5.min.css - this is the deafult css file offered by
JQuery Mobile. We did not touch this file and indeed we just used it
as it is.

• jsp file (jquery scripts) - we have in total three main files that we use:
jsOnLoad.js, jsOnClick.js and fillMainMenu.js. In jsOnLoad we have all
the functions that return the results when the page is loaded. jsOnClick
has all the functions, run on click event of any button. fillMainMenu
has a duty to fill the main menu of application. Consume of rest web-
service for data handling is implemented in the functions in both script
files: jsOnLoad.js and jsOnClick.js through Ajax.

Master Thesis Page 59

Chapter 6

Comparison results

6.1 Introduction

The whole experience of design and implementation of our case-study in
two cross-platform mobile development frameworks and REST webservice is
done with the sole aim, so we could give a solution to the problem definition,
defined in the beginning of this master thesis.

Because the problem definition is to compare cross-platform development
frameworks according to specific factors, we will do a comparison for each
factor individually based on our implementation experience in Xamarin and
PhoneGap and then based on this result we will try give an answer for each
criteria individually where our subject stand and also to give an answer to
our problem definition.

6.2 Graphical User Interface

Graphical User Interface (GUI) is the first interaction between the user and
mobile application. A good, well designed and looking native mobile app
GUI is one of the factors to increase the user satisfaction.

Xamarin
All the pages and controls we created through Xamarin.Forms. In this

way we were able to create pages in one place and use them in all three
main platforms - Android, iOS and Windows Phone. In terms of page and
navigation types, Xamarin support all the pages in our criterion. Indeed we
were able to use two of them in our project: master-detail and navigation
page. In terms of page layouts, Xamarin supports also the types mentioned
in our criterion and here also we were able to use more than one layout. In

60

Chapter 6. Comparison results

Figure 6.1: Same GUI implementation of our main page in Xamarin(A)
and PhoneGap(B).

our implementation we used: linear and grid. In terms of control, Xamarin
controls are truly native. And finally, in terms of theme, Xamarin uses native
theme of operating system.

PhoneGap Taking into account that PhoneGap mobile app is ’hybrid’
application its GUI is composed of Web User Interface, meaning HTML and
Javascript (mobile JQuery in our case). This means that its UI is not native.
In terms of pages types and layouts they are all HTML pages. Even the
controls are HTML controls (input, button etc.). Even though lately there
are different packages or css that try to make the UI looks native, still the
look and feel are not native.

Comparison result Without any doubt, if the aim of application is to
look and behave native, for Graphical User Interface the choice is Xamarin
platform. And this is because pages through Xamarin.Forms are created
and rendered using native controls of targeted platforms. In the user point
of view, these pages and their controls are truly native, so users has truly
native experience.

6.3 Architecture

Good and well-organized software structure is not only important for the
application functionalities but also for the maintain phase. This applies also
to mobile application development, and depends heavily on the tools and
technologies we use to develop.

Master Thesis Page 61

Chapter 6. Comparison results

Xamarin
By using Xamarin platform, users are able to develop mobile applications

by using the programming language C#, that automatically means we are
dealing with: Object Oriented Programming. Through Xamarin it is possible
to use latest software design and development - architectural patterns such as
MVC (Model-View-Controller) and MVVM (Model-View-ViewModel). Us-
ing these patterns means that we can have separation of responsibilities. In
our case study we used MVVM pattern and were able to divide organize
classes and views accordingly. Also we were able to share the code more
than 90% of the case, where the only implementation that we had to imple-
ment an interface for each cross-paltform was local data storage. In terms of
complexity for the developer, the process is very easy and straight forward
if there is experience in object oriented programming.

PhoneGap
HTML, CSS and script files (JavaScript) is all that is necessary to know

to make a mobile application in PhoneGap. This means that here we do
not have any clear separation in terms of application architecture (exclud-
ing javascript platforms such as: AngularJS). All functionalities are within
javascript files.

Comparison result
For this particular criterion, Xamarin support all the features defined in

our comparison methods, while PhoneGap obviously fails to do so. Through
Xamarin you use very high grade of code-sharing, latest architecture patterns
and share of responsibilities is very well implemented. But again, if we
want a simple and lighter weight application then PhoneGap is good option.
If however we want more complex application, with good structure then
Xamarin platform is the one.

6.4 Services and sensors

Accessing device APIs and consuming webservices is another important fea-
ture when designing and implementing a mobile application. A lot of appli-
cations require to access at least GPS or camera and a lot of them nowadays
consume data through webservice.

Xamarin
There is no problem for Xamarin-based mobile app to access native capa-

bilities such as camera, geolocation, files etc. Also consuming data webservice

Master Thesis Page 62

Chapter 6. Comparison results

Figure 6.2: Same camera access implementation of our case-study in Xam-
arin(A) and PhoneGap(B).

is very easy process. In order for the developer to access native APIs, special
plugins are available so we use them in shared code but we access native
capabilities for every targeted platform. For camera and geolocation we used
two plugins: Plugin.Media and Plugin.Geolocator. By referencing them in
our project, with just few lines of codes we were able to get coordinates from
device, take photo and store in our application. Consuming webservice was
also very easy process. We had only to reference: Newtonsoft.JSON to se-
rialize and de-serialize the response. Calling webservice is possible through
HttpClient.

PhoneGap
By using plugins PhoneGap makes it very easy process accessing geolo-

cation (GPS) and camera of mobile device. We can access this capabilities
through the following plugins: plugin-camera to access camera of mobile de-
vice and plugin-geolocation to access - get coordinates from GPS of mobile
device. For consuming data webservice we use ajax. All this plugins should
be used within script file and putting them in action is very easy process by
writing just few lines of code.

Comparison result For this particular factor, based on our case-study
implementation, both platforms were almost equal and this is because we
were able to access camera, geolocation and consume service without any
problem. However we say almost equal because even here Xamarin has
slightly an advantage especially on consuming data service, because send-
ing, receiving and working with data from webservice is implemented in data
access layer. Other than that for camera and GPS there was no big difference.

Master Thesis Page 63

Chapter 6. Comparison results

6.5 Local data storage

Is not always a case that mobile applications read or write data to a database
located somewhere on external server or data web-service. In many cases
there are different scenarios where users want for a specific purpose either
temporarily or permanently preserve some data locally in mobile device. This
can occur for many reasons, and one of these may be, for certain processes
to avoid the need for Internet connection. In our case-study, we are dealing
with the scenario of saving review locally in mobile device storage before
submitting it to the server.

Xamarin
Xamarin offers minimum two ways of saving local data storages. For little

data we can use Application.Current.Properties through which we can same
simple Key-Value data pairs. Other Option is SQLite. This is particularly
important if we are dealing with big and structured data. In our case study
we used both ways. We stored in Application.Current.Properties few data
such as username of the user after logged in. This option was very easy to
implement by just declaring it. On the other side, implementing SQLite even
though was was easy to implement, it was not straight forward process - we
used SQLite to store and retrieve data about pending reviews of the user.
First we had to add in references sqlite.net, then to create and interface
that will give us access to SQLite. In our model we created the class that
represent our data, and also another class that handles main functionalities
(add and delete record or show the list of specific records). But as final
step before everything worked, was to add a class that will implement the
interface that we created before. This class will be created in every targeting
platform (Android, iOS), because we need to save the database locally. Then
we called methods to insert/delete sqllite data in our shared code normally
and without any problem.

PhoneGap
PhoneGap supports different local data storage options. Two of them

that are widely used are: LocaStorage and WebSQL. In our case-study we
used LocalStorage as our option. It is very easy implementation indeed,
because it is enough to declare localStorage.[name of varible] and give the
value. Variable can be any type: string, int or array. We used array to
store pending reviews, and string and integer for user information. The only
downsize is the maximum limit which is 5 MB.

Comparison result

Master Thesis Page 64

Chapter 6. Comparison results

Taking into account our implementation experience, for small amount
of local data there is no big difference between the cross platform mobile
development frameworks, since both of them supports Key/Value pair local
data storage. However if we work with bigger amount of data and we want to
implement queries and keep data in structured way, Xamarin is better option
with SQLite option, especially if we want to query or use transactions.

6.6 Development efforts

Time efforts and cross-platform complexity are very important to developer
or development team, while performance beside for the developer is also very
important to the user of mobile application.

Xamarin
For a software developer with solid experience in object oriented pro-

gramming, programming through Xamarin with C# is not a big issue. Pro-
gramming in Xamarin does not take more time than programming any other
application in development environment with object oriented programming
(C#) - even access to APIs is implemented very easily through plugins. Be-
cause Xamarin is offering its Integrated Development Environment (IDE)
through Visual Studio or Xamarin Studio, working on it and with it we
found very easy and user-friendly. In terms of documentation, a lot of doc-
umentation of the platform and with really good implementation examples
is available. All this documentation is free of charge and can be downloaded
any time through Xamarin webpage. Because the product is native, perfor-
mance is very good. In terms of testing, Xamarin is offering the possibility to
test the product through emulator during development, but also lately has
implemented: Xamarin test cloud, a place where you put the project and it
will be tested in around 2,000 real devices. This feature is free only for one
device hour per day, while other options are with payment.

PhoneGap
PhoneGap mobile application is hybrid application, and even though is

just HTML, CSS and Javascript to design and develop it you need these
skills. So if these skills are in place then it is not a problem to do a mobile
application. Indeed in our case-study from the moment we finalized the
website (application without api) it took less than a week to make it ready
to use in Android phone. In terms of IDE, PhoneGap does not offer any
IDE but developers can use any HTML/Script supported editors. But the
lack of documentation is still a issue for PhoneGap even though every day

Master Thesis Page 65

Chapter 6. Comparison results

the documentation is improving. PhoneGap based application in our case,
especially when we load data is taking a bit time to retrieve them. In terms
of testing, actually it is very user friendly because the product is tested in
real device. In our case we were able to test in our Samsung A5 phone. All
you need is PhoneGap Desktop and PhoneGap Developer installed in the
mobile device. It is worth mentioning that also Adobe PhoneGap offers their
cloud testing, but for free it is limited to only one private project.

Comparison result
In terms of Integrated Development Environment (IDE) complexity and

easiness of use with no doubt Xamarin is better one, because is user-friendly
and compact IDE with all what you need. The same thing we can say also for
documentation, because Xamarin documentation is well kept and has a lot of
real examples. In terms of time PhoneGap it might take less time to design
and develop if developer has basic knowledge in client programming but if
the developer has knowledge of object oriented programming then this does
not stand - easier with PhoneGap. From visual point of view, performance
is better in Xamarin.

6.7 Comparison conclusion

Implementation of our example in our two compared cross-platforms mobile
development framework has been a very positive experience but also not
forgetting the fact that had its own challenges. After the implementation
and analyzing our factors individually defined at the beginning of this master
thesis in problem definition, we can conclude that even though according
to our comparison method criteria the clear winner is Xamarin, because it
supported more features from our comparison criteria, still a priori we cannot
give an simple answer to the problem definition discussed at the beginning
of this master thesis. To decide which platform is more appropriate for
developers of mobile applications, we think that it depends on several factors
such as: the size of the application, the type of user interface, the targeted
performance, complexity and application structure and also the skills of the
development team. If the aim is to create a well-structured application, with
a native UI and a foreseen easy maintenance then definitely solution will be
Xamarin, on the other hand if the aim is to create a application of smaller
size (light application) where is not so critical the performance and native
UI then we still can go with PhoneGap.

Master Thesis Page 66

Chapter 7

Conclusion

Introduction of mobile devices, has increased rapidly the number of mobile
users. Such an increase of mobile users is making them important user group
in terms of user segmentation. In terms of development, coding mobile appli-
cations for mobile devices with operating systems requests well trained staff
on specific platform - framework. To overcome this problem, cross-platforms
mobile development frameworks were born. Cross-platform mobile develop-
ment refers to the development of mobile applications, ready to be installed
and run in mobile devices with different operating systems.

Throughout this thesis we were focused on comparing cross-platform mo-
bile development approaches, more precisely two cross platforms: Xamarin
and PhoneGap, each of them representing different mobile development ap-
proach. They were chosen specifically because of different platform types,
more precisely the type of product that is developed through them. The
product - mobile application of PhoneGap is hybrid mobile application, while
Xamarin product is cross-platform native application.

After initial discussions and literature review, we decided that the best
way to do a proper comparison, besides relying on relevant work was to design
and implement a case-study in both platforms. And indeed, we implemented
a case study, a review mobile application - called: ReviewPOI. ReviewPOI is
a mobile application that allows users to see what other users thought when
they visited a specific touristic point of interest. More precisely it is dealing
with reviews of any touristic point of interest. Besides viewing what other
users said, users themselves can also give a grade and textual opinion about
the touristic points.

Implementation of our example in two compared cross-platforms mobile
development frameworks has been a very positive experience but same time
also it was a challenge. Besides sending and receiving data, application is
accessing also camera, photo albums, geolocation and local data storage of

67

Chapter 7. Conclusion

mobile device. Based on this gained experience, besides writing briefly about
implementation in each technology, we tried to do a comparison according
to the following factors: Graphical User Interface, architecture, service and
sensors, local data storage and development efforts.

After implementing and analyzing our comparison factors individually,
we came to conclusion that a priori we cannot give an simple answer which
framework is better to be used to implement a mobile application. To decide
which platform is more appropriate for developers of mobile applications, we
think that it depends on several factors such as: the size of the application,
the type of user interface, the targeted performance, complexity and appli-
cation structure and also the skills of the development team. If the aim is
to create a well-structured application, with a native UI and a foreseen easy
maintenance then definitely solution will be Xamarin, on the other hand if
the aim is to create a application of smaller size (light application) where is
not so critical the performance and native UI then we can go with PhoneGap.

Master Thesis Page 68

Bibliography

[1] Global market share held by the leading smartphone operating sys-
tems in sales to end users from 3rd quarter 2009 to 3rd quarter 2015.
statista.com, 2016.

[2] P. S. Ptitsyn and D. V. Radko, Analysis of cross-platform technologies
for mobile applications development. ARPN Journal of Engineering and
Applied Sciences, 2016.

[3] V. Tunali and S. Z. Erdogan, Comparison of popular cross-platform mo-
bile application development tools. ResearchGate, 2015.

[4] R. Allen, Mobile Internet Trends Mary Meeker 2015. smartinsights.com,
2015.

[5] Number of mobile app downloads worldwide from 2009 to 2017.
statista.com, 2017.

[6] Statistics and facts about Mobile App Usage. statista.com, 2017.

[7] Software Development Discussion Paper. Blueberry Consultants.

[8] J. Zhang, J. Wilkiewicz, and A. Nahapetian, Mobile Computing, Appli-
cations, and Services. Springer, 2011.

[9] B. Unhelkar, Handbook of Research in Mobile Business: Technical,
Methodological, and Social Perspectives. IGI Global, 2009.

[10] D. Steinbock, The Mobile Revolution: The Making of Mobile Services
WorldWide. Kogan Page Limited., 2005.

[11] L. Darcey and S. Conder, The Android developer’s collection. Addison-
Wesley, 2012.

[12] S. Mann and S. Sbihli, The Wireless Application Protocol (WAP): A
Wiley Tech Brief. John Wiley and Sons, Ltd., 2000.

69

Bibliography

[13] J. Annuzi, L. Darcey, and S. Conder, Introduction to Android Applica-
tion Development. Pearson Education, Inc., 2014.

[14] M. Jipping, Smartphone Operating System Concepts with Symbian OS:
A Tutorial Guide. Symbian Software Ltd., 2007.

[15] S. Olson, J. Hunter, B. Horgen, and K. Goers, Professional Cross-
Platform Mobile Development in C#. John Wiley and Sons, Ltd., 2012.

[16] E. of the American Heritage Dictionaries, High Definition - An A to Z
Guide to Personal Technology. Houghton Mifflin Company, 2001.

[17] S. Boardman, M. Caffrey, and S. Morse, Oracle Web Application Pro-
gramming for PL/SQL Developers. Prentice Hall, 2003.

[18] N. Gok and N. Khanna, Building Hybrid Android Apps. O’Reilly Media,
Inc, 2013.

[19] “Introduction to xamarin.” https://developer.xamarin.com/

guides/cross-platform/getting_started/introduction_to_

mobile_development/. Last access: 2016.

[20] “Xamarin system requirements.” http://developer.xamarin.com/

guides/cross-platform/getting_started/requirements/. Last ac-
cess: 2016.

[21] “Understanding the xamarin mobile platform.” https://

developer.xamarin.com/guides/cross-platform/application_

fundamentals/building_cross_platform_applications/part_1_-_

understanding_the_xamarin_mobile_platform/. Last access: 2016.

[22] J. M. Wargo, PhoneGap Essentials: Building Cross-platform Mobile
Apps. Pearson Education Inc., 2012.

[23] V. Gerasimov, S. Bilovol, and K. Ivanova, Comparative analysis between
Xamarin and PhoneGap for .Net. System technologies, 2015.

[24] M. Prajapati, D. Phadake, and A. Poddar, Study on Xamarin cross-
platform framework. International Journal of Technical Research and
Applications, 2016.

[25] G. Vitols, I. Smits, and A. Zacepins, Issues of Hybrid Mobile Applica-
tion Development with PhoneGap: a Case Study of Insurance Mobile
Application. International Baltic Conference, Baltic DB and IS 2014,
2014.

Master Thesis Page 70

https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
https://developer.xamarin.com/guides/cross-platform/getting_started/introduction_to_mobile_development/
http://developer.xamarin.com/guides/cross-platform/getting_started/requirements/
http://developer.xamarin.com/guides/cross-platform/getting_started/requirements/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/
https://developer.xamarin.com/guides/cross-platform/application_fundamentals/building_cross_platform_applications/part_1_-_understanding_the_xamarin_mobile_platform/

Acknowledgments

I would like to start the acknowledgments by saying a big thank you to all
those people who made this thesis possible and an unforgettable experience
for me.

A special acknowledgment for Italy and Politecnico di Milano for giving me
the opportunity to study abroad. To meet and socialize with different people,
to learn different cultures and above all to study in such a well-ranked world
class university.

I would like to express my sincere gratitude to my advisor Prof. Marco Bram-
billa for his continuous support during this research, for his patience, moti-
vation, and knowledge. His guidance helped me a lot in writing of this thesis.
I could not have imagined having a better advisor for my master thesis.

A special acknowledgment also for my fellow colleagues for the endless profes-
sional discussions. I am very grateful also to my current employer: European
Union Rule of Law Mission in Kosovo for encouragement and practical ad-
vice.

Last but not least, I would like to thank my family: my wife Ardita and
my children Fron and Arb for their patience and endless support during my
studies. My parents and sisters, for their on-going support and big influence
in my personality. My uncle Florim, for teaching me that failure is never an
option.

71

	Abstract
	Sommario
	List of Figures
	List of Tables
	Introduction
	Context
	Problem statement & proposed solution
	Structure of the thesis

	Background
	Introduction
	Mobile platforms chronology
	Cross platforms mobile development
	Native applications development
	Cross-platform applications development
	Hybrid applications development
	Comparison of applications development techniques

	Xamarin
	How does Xamarin work

	PhoneGap
	How does PhoneGap work

	Related work
	Cross-platform approaches comparison method
	Introduction
	Problem definition
	Proposed solution
	Comparison method

	Case study and implementation experience
	Introduction
	Case study
	General description
	Requirements
	Assumptions and dependencies
	Entity model
	Use cases

	Implementation of WebAPI
	Implementation with Xamarin
	Implementation with PhoneGap

	Comparison results
	Introduction
	Graphical User Interface
	Architecture
	Services and sensors
	Local data storage
	Development efforts
	Comparison conclusion

	Conclusion
	Bibliography
	Acknowledgments

