
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

MONITORING MODERN DISTRIBUTED

SOFTWARE APPLICATIONS: CHALLENGES AND

SOLUTIONS

Doctoral Dissertation of:
Marco Miglierina

Supervisor:
Prof. Elisabetta Di Nitto
Tutor:
Prof. Carlo Ghezzi
The Chair of the Doctoral Program:
Prof. Andrea Bonarini

2016 – XXVIII

Abstract

THE advent of cloud computing brought a huge change in the software
release cycle. It triggered an exponential shift towards paradigms
where hardware could be treated just like software, i.e., accessible

via API calls. Resources, such as servers or network gateways, became
volatile artifacts. Deployments procedures, which could previously only be
performed manually, became fully automatable. This brought an increasing
number of companies to release faster and respond to market demand at an
unprecedented rate.

This thesis tries, first, to highlight why monitoring is an essential part
of the software release cycle and why it should be considered a first class
citizen, even more so in the aforementioned context. It highlights what we
believe to be the most important challenges that monitoring tools develop-
ers have to address today that were not addressed by established monitoring
tools that had been used for years. These challenges are addressed by our
approach and runtime platform, Tower 4Clouds, a multi-cloud monitoring
platform developed as part of this thesis. The solution mainly focuses on
configuring the runtime monitoring since the first design phases, starting
from Quality of Service (QoS) requirements definition on top of a provider
independent model of the software system. The runtime platform is able
to cope with the heterogeneity and the ephemerality of the resources being
monitored. With Tower 4Clouds, the user is able to define the QoS re-
quirements of a software system and configure runtime monitoring without
bothering where the system will be deployed. At runtime, Tower 4Clouds
is able to autonomously reconfigure itself when the system changes or is

I

migrated to another cloud provider.
In the second part, the thesis moves the focus from the challenges that

monitoring tools developers have to address to the ones that monitoring
tools users have to cope with. In order to understand the existing issues
an empirical study was conducted in order to discover main obstacles in-
dustries are facing in monitoring their software systems. For such purpose,
more than 140 practitioners from various industries were surveyed. Results
showed that effective monitoring is still a difficult task, hardly affordable
by small and medium enterprises with few resources and expertise. A huge
number of monitoring tools, both commercial and open-source ones, pro-
liferated in the last few years. However, no clear established solution has
yet arisen. Big enterprises with high expertise such as Google, Facebook or
Netflix are able to develop their own solutions to readily identify and even
prevent problems or to highlight users needs, often sharing some of their
tooling open-source. Enterprises with big resources and high reliability re-
quirements, such as banks, usually pay for expensive commercial solutions.
All the other companies either do not monitor, implement custom solutions
or use some custom composition of monitoring tools among the hundreds
of existing ones. The study, after trying to identify main challenges in the
adoption of monitoring, is used to evaluate Tower 4Clouds and how it is
able to address such problems.

In the third part, the thesis addressed such open challenges by propos-
ing Omnia, an approach for structured monitoring configuration and rollout
based around a monitoring factory, i.e., a re-interpretation of the factory
design-pattern for building and managing ad-hoc monitoring platforms.
Comparing with practitioner surveys and the state of the art, Omnia shows
the promise of delivering an effective solution that tackles the steep learning
curve and entry costs needed to embrace cloud monitoring and monitoring-
based DevOps continuous improvement.

II

Contents

1 Introduction 1
1.1 Challenges . 3
1.2 Contribution of the thesis 5
1.3 Structure of the thesis . 6

2 Background 9
2.1 What is monitoring? . 9
2.2 Why monitoring? . 10
2.3 Monitoring terminology 12
2.4 Monitoring dimensions . 13
2.5 Requirements for a monitoring platform 14
2.6 The MODAClouds FP7 IP European project 17

3 Related Work 21

4 The Tower 4Clouds Approach 29
4.1 Overview of the approach 29
4.2 Ticket Monster: an itinerary example 33
4.3 Our approach in action . 36

4.3.1 Provider independent multi-cloud modeling 36
4.3.2 Modeling QoS constraints and monitoring rules . . . 37
4.3.3 System and application level data collection 40
4.3.4 Elastic runtime monitoring 41

III

Contents

5 Modeling with Quality in Mind 43
5.1 The base meta-model . 43
5.2 QoS constraints specification 45
5.3 The monitoring rules language 47

5.3.1 Monitoring rules generation from QoS constraints . . 49
5.4 Configuring data collectors 50

6 A Multi-Cloud Monitoring Platform 51
6.1 A stream reasoner at the core 52
6.2 An elastic platform . 53
6.3 Designed for heterogeneous environments 54
6.4 An extensible framework 55

6.4.1 Implementing Data Collectors 55
6.4.2 Implementing actions 58

6.5 Metrics observer . 59
6.5.1 Saving historical data 59

7 Evaluation 63
7.1 Abstract from heterogeneity and prevent lock-in 64
7.2 Elastically adapt to ephemeral and dynamic systems 64
7.3 Limit the requirements on the data collector side to improve

portability . 66
7.4 Provide an extensible platform able to cope with future evo-

lutions and interoperate with existing tools 68
7.4.1 Imperial College London 68
7.4.2 BOC Group . 69
7.4.3 Softeam . 70
7.4.4 Sintef . 70
7.4.5 SeaClouds . 70

7.5 Timely provision required information for reacting before
end-user perception . 71

7.6 Scalability . 71
7.7 Other requirements . 72
7.8 Threats to Validity . 75

8 The State of Practice: an Industrial Survey 77
8.1 Research Questions . 77
8.2 Research methods and approach 78
8.3 In-person interviews results 81
8.4 Survey . 83

8.4.1 Data acquisition . 83

IV

Contents

8.4.2 Data sampling . 84
8.4.3 Results . 90

8.5 Discussion . 94

9 Towards Omnia: a Monitoring Factory for Quality-Aware DevOps 97
9.1 Research Playground . 98

9.1.1 Domain Assumptions 99
9.1.2 Motivations . 99

9.2 The Omnia approach . 100
9.2.1 The monitoring interface 102
9.2.2 The monitoring factory 105

9.3 Discussion and Future Work 108

10 Conclusion 109

Bibliography 113

A Ticket Monster Instrumentation 117

B Industrial Survey: Additional Resources 119
B.1 In-person interview questions 119
B.2 In-person interview answers 120

V

CHAPTER1
Introduction

In 2006, Amazon launched the first widely accessible cloud computing in-
frastructure service [18]: Elastic Compute Cloud. The need for a new server
in which to deploy a new application became a simple API call. That server
would cost few cents per hour until needed and the user would be charged
at the end of the month on his credit card. Then, via another API call it
could be shut down and the user would stop paying. Since then, software
development and its release cycle in the industries have been dramatically
changing. This novel compute model was soon implemented in different
flavors by other big players such as Microsoft and Google. The hosting
solutions proliferated and any developer with Internet access and a credit
card could easily deploy large distributed software systems in minutes. In
2013, Docker came along [19], an open source project that automates the
deployment of applications inside Linux containers by means of a simple
API. Among several advantages, Docker made deployment time of a new
service drop from few minutes to few seconds. In 2014 Amazon launched
AWS Lambda [20], the first widely adopted implementation of the Server-
less architecture, which introduced a new deployment model where appli-
cation significantly depend on third-party services or on custom code that is
run in ephemeral containers [21]. Developers deploy pieces of code which

1

Chapter 1. Introduction

run in few milliseconds, just the time to respond to an event, and they are
charged per a hundred milliseconds.

The overviewed technological advancements are just some of the in-
novations that changed how software is built and released. Computing
resources have been abstracted away, they became utilities, not anymore
physical servers which every company had to acquire upfront. Deploy-
ments procedures which were previously performed manually are now au-
tomated so that an increasing number of industries are able to perform tens
of deployments per day. In order to compete with the agility that big play-
ers are pushing forward, high levels of automation and effective monitoring
of the system became some of the most important requirements for any IT
department. Automation is needed to deploy new versions of a service in a
safe and reproducible way. Monitoring is required to assess the quality of
service and the user experience in order to understand and solve problems
and take business decisions fast.

As discussed throughout this thesis, experience shows that effective mon-
itoring is still a difficult task, hardly affordable by small and medium enter-
prise with few resources and expertise. A huge number of monitoring tools,
both commercial and open-source ones, proliferated in the last few years, as
a clear response to the need for modern solutions that can keep up with the
aforementioned evolution. However, no clear established solution has yet
arisen. Big corporations with high expertise such as Google, Facebook or
Netflix are able to develop the appropriate solutions for their scales. Enter-
prises with big resources and high reliability requirements, such as banks,
usually pay for expensive commercial monitoring solutions. All the other
companies either do not monitor, they implement custom solutions or use
some custom composition of monitoring tools among the thousands of ex-
isting ones.

In this scenario, the focus of this work is, first of all, to highlight the
importance of monitoring. We try to support our claim that monitoring
is a fundamental asset of the software development cycle and should be
considered a first class citizen, just like automated testing, integration and
deployment. We try to identify why existing monitoring tools are not able
to satisfy the current technological advancements and the challenges de-
velopers of monitoring tools are facing. Then, we propose a solution able
to addresses these challenges and provide future research directions on the
matter. Next, we move from the challenges that have to be addressed by
monitoring tools developers to the challenges that monitoring tools users
have to deal with. For the purpose, we conducted an empirical study on
the state of practice. We were interested in understanding how industries

2

1.1. Challenges

are currently monitoring and handling incidents in their software systems
in order to find unexplored challenges and further validate our solution,
checking whether the proposed approach addresses some of the challenges
users are experiencing. Finally, we prototyped a solution that tries to ad-
dress the most impactful challenges, which we perceived being mainly the
lack of standards, affecting the integration among developers, operators and
business teams, and the growing number of monitoring tools coming out ev-
ery other day. This solution offers an approach, called Omnia, whose key
objective is reducing the learning curve and entry-cost to monitoring tech-
nology. Its main contributions consists of two major parts: (1) a common
monitoring interface for developers and a (2) monitoring factory for sys-
tem administrators that helps building a monitoring system from existing
monitoring tools implementing such common interface.

1.1 Challenges

This thesis was developed in the context of the MODAClouds FP7 IP1 Eu-
ropean project. MODAClouds (MOdel-Driven Approach for design and ex-
ecution of applications on multiple Clouds) had the main goal of “providing
methods, a decision support system, an open source IDE and run-time envi-
ronment for the high-level design, early prototyping, semi-automatic code
generation, and automatic deployment of applications on multi-Clouds with
guaranteed QoS”. Researchers contributing to these project agreed that
cloud computing is a major trend in the ICT industry that can bring huge
benefits especially to small and medium enterprises (SMEs) [33]. On the
other hand, partners identified the lack of interoperability between clouds as
a major issue that brought several open challenges such as vendor lock-in,
risk management and quality assurance. Within this context, the following
challenges for the design of a suitable monitoring platform were collected.

• The high market demand for cloud hosting solutions that could reduce
both costs and time to market resulted in a context where each provider
is offering heterogeneous solutions in terms of technologies, abstrac-
tion level, performance and costs. An increasing number of systems
are developed as integrations of several systems (System of Systems),
managed by different providers, with different priorities and release
cycles. Some services may be geographically distributed on different
data centers. Moreover, there is no stable hierarchy among resources

1www.modaclouds.eu

3

www.modaclouds.eu

Chapter 1. Introduction

since different deployment models are used and new ones appear ev-
ery day.

Requirement 1.1.1. A modern monitoring system should be able to
cope with this heterogeneity, offering a way to abstract from complex-
ity and prevent lock-in.

• Cloud computing brought a deployment model where resource are be-
coming more and more ephemeral. The things being monitored are
not static servers anymore but can scale up or down in minutes, sec-
onds or even milliseconds.

Requirement 1.1.2. Monitoring tools should be able to seamlessly
operate on systems that are continuously evolving, with minimal or no
manual intervention. Elasticity is today a first class citizen among the
requirements of a monitoring system.

• Not all cloud services offer the same flexibility. For example, services
may run on platforms where agents cannot bind to addresses or cannot
rely on specific libraries.

Requirement 1.1.3. Data collection protocols should be portable and
have few requirements client side.

• Evolution is so fast that each new technology or platform disrupt the
previous under multiple aspects (e.g.: price, ephemerality, scale). Sub-
sequently new vendors and monitoring tools appear in each generation
trying to take over the new market share [30].

Requirement 1.1.4. A monitoring platform should be extensible in
order to easily adapt to new requirements and to integrate with new
tools and technologies.

• New techniques, process and automation tools for increasing the speed
to market are spreading across industries, especially driven by the
DevOps movement. Splitting the system into microservices managed
by independent teams, applying continuous delivery and feature flags,
allows to push new features to production in seconds. Final users have
become used to high level of performance and easily switch to com-
petitors when availability issues are perceived. Developers should be
able to check whether the new version caused problems before users
can perceive it and rollback if needed [30].

4

1.2. Contribution of the thesis

Requirement 1.1.5. Data collection should offer configurable fre-
quency, according to requirements for each metric, and push-based
so to account for events and not only on statistics.

1.2 Contribution of the thesis

There are four major contributions in this thesis. The first two contributions
address challenges relative to the current technological advancements and
therefore related to monitoring tools design and development. The other
two contributions are instead related to the challenges that monitoring tools
users encounter and aim at understanding and helping the usability of ex-
isting solutions. This thesis main contributions are:

1. A model-based approach to help configuring runtime monitoring since
the design time, starting from QoS requirements definition on top of
a provider independent model of the system to be monitored. The
configuration is based on a rule language which can be used to de-
fine what to monitor, how data should be filtered and aggregated, what
conditions should be verified and what actions to perform (Chapter 5).

2. A runtime multi-cloud monitoring platform configured according to
the rules defined at design time, automatically adapting to system
changes and providing a portable data collection protocol able to col-
lect data on both Platform as a Service (PaaS) and Infrastructure as a
Service (IaaS) solutions (Chapter 6). The platform is extensible and
proved to be easy adaptable and integrable into different usage sce-
nario by more than one industry (Chapter 7).

3. An overview of the state of practice in industries, based on in-person
interviews and a survey filled in by 141 participants from the industry,
which provided insight on current practices regarding monitoring and
incident handling (Chapter 8).

4. The novel concept of monitoring factory, a re-interpretation of the
factory design-pattern for building and managing ad-hoc monitoring
platforms (Chapter 9).

Preliminary studies and initial implementations for the first two contri-
butions have been published in the proceedings of the 2nd International
Workshop on Ordering and Reasoning (OrdRing 2013) [44] and in the pro-
ceedings of the 3rd Workshop on the Management of resources and services

5

Chapter 1. Introduction

in Cloud and Sky computing (MICAS 2014) [29]. A journal paper regard-
ing such contributions has been submitted for publication in IEEE Transac-
tions on Software Engineering. The final implementation of the monitoring
platform has been release open source on Github2 together with a website3

with documentation and examples and a dissemination video4. The third
contribution has been submitted for publication in Empirical Software En-
gineering. The fourth has accepted for publication in the 3rd International
Workshop on Quality-Aware DevOps (QUDOS 2017).

1.3 Structure of the thesis

This thesis is structured as follows:

• Chapter 2 has the main objective of a creating a common background
regarding monitoring, proposing, first, a definition and reasons sup-
porting why monitoring is fundamental in today’s software release cy-
cle as a normal prosecution of validation and verification techniques
into the runtime. Then, we report the terminology and the properties
that are useful throughout the thesis.

• Chapter 3 surveys whether and how the state of the art addresses the
challenges identified in Section 1.1 both from the industrial and the
academic point of view.

• Chapter 4 presents the Tower 4Clouds approach at high level. Then an
itinerary example is described that will be used to aid the discussion
throughout the thesis. We identify monitoring requirements for this
example and, finally, we describe how the approach would be applied
to it.

• Chapter 5 details the design phase of the approach proposed in this
thesis: the modeling approach for the software system, the QoS con-
straints and for monitoring rules. Finally, we describe how data col-
lectors should be configured in order to correctly work during the run-
time.

• Chapter 6 describes the runtime platform, its core components, how
the adaptation works, how it can be extended and how can be inte-
grated with existing solutions.

2https://github.com/deib-polimi/tower4clouds
3http://deib-polimi.github.io/tower4clouds/
4https://www.youtube.com/watch?v=cizhWQpY1rk

6

https://github.com/deib-polimi/tower4clouds
http://deib-polimi.github.io/tower4clouds/
https://www.youtube.com/watch?v=cizhWQpY1rk

1.3. Structure of the thesis

• Chapter 7 evaluates our approach, checking how the challenges ex-
posed in Section 1.1 are addressed.

• Chapter 8 reports the work done to understand the state of practice,
that is, whether and how industries monitor their system and resolve
incidents, as well as challenges they meet when using existing moni-
toring solutions. We report the process we faced to perform this em-
pirical study and the results from both in-person interviews and from
an online survey to which 141 practitioners accepted to respond.

• Chapter 9 describes the ongoing work regarding the Omnia approach.

• Chapter 10 concludes the thesis and report ongoing work on the open
challenges that were highlighted during the empirical study and not
yet addressed by either our approach and existing solutions.

7

CHAPTER2
Background

The aim of this Chapter is to create a common background regarding mon-
itoring. Section 2.1 focuses on finding a general definition of monitoring.
Section 2.2 aims at identifying the reasons why monitoring is fundamental
when running and maintaining software systems. Section 2.3 provides a
list of recurring terms and their definitions. Section 2.4 defines properties
of the different monitoring tools useful to provide dimensions for their clas-
sification. Finally, Section 2.5 presents a list of candidate requirements for
building a monitoring platform.

2.1 What is monitoring?

Monitoring is a very general term whose origin comes from the Latin verb
monere which means “to warn” or “to advise”. The current definition on
Oxford Dictionaries [8] is “to observe and check the progress or quality
of (something) over a period of time”. Restricting the domain to the engi-
neering field, the subject being monitored is usually a system composed of
components. Thus, monitoring can be redefined as “the action of observing
and checking the behavior and outputs of a system and its components over
time” [46]. Several other definitions of monitoring can be found, among

9

Chapter 2. Background

both academics and practitioners, when talking about monitoring software
systems. Here two examples are reported. They will be discussed in order
to reach a reference definition of monitoring for this thesis.

• Bertolino [27] defines monitoring as observing “the spontaneous be-
havior of a system” and, given a specification of desired properties,
checking “that such properties hold for the given execution”.

• Fatema et al. [35] define monitoring as a “process that fully and pre-
cisely identifies the root cause of an event by capturing the correct
information at the right time and at the lowest cost in order to deter-
mine the state of a system and to surface the status in a timely and
meaningful manner”.

Observing a system without knowing what to check, what the correct be-
havior is, is not very useful. Therefore, what these definitions add is of fun-
damental importance, that is, verifying consistency with predefined objec-
tives (or specifications). Moreover, monitoring, as intended in this thesis,
refers to the observation of a system in its spontaneous behavior. As high-
lighted by Bertolino [27] this last aspect is what differentiates monitoring
from testing, where instead the system is set into a synthetic environment
in order to reproduce a specific behavior which is not spontaneous. The
definition proposed by Fatema et al. certainly reports desirable properties
for a monitoring system, however, since this Section is aiming at finding
a general and shareable definition, optional requirements are not going to
be considered. In fact, a monitoring system could be used just to check
whether a requirements is satisfied without being able to provide the root
cause. Correctness, timeliness and cost effectiveness, as well, are important
but not mandatory. Therefore, this thesis reference definition of monitoring
will be:

Definition 2.1.1. Monitoring is the action of observing the spontaneous
behavior and the outputs of a system and its components for checking con-
sistency with a given specification.

2.2 Why monitoring?

Every person building a new product is supposed to ask himself two ques-
tions: “am I building the product right?” and “am I building the right prod-
uct?”. By means of these two questions Boehm [28] informally defined
software verification and validation, respectively. MonitoringSoftware ver-
ification consists in checking that the software is compliant with the spec-

10

2.2. Why monitoring?

ification. Software validation consists in checking that the final product
fulfills its intended use.

According to the reference definition of monitoring we provided in Sec-
tion 2.1, monitoring is an action that covers verification, since it aims at
offering instruments to check the consistency with a specification. Most
verification techniques such as theorem proving, model checking, testing
and code reviews, address the design time. They all aim at universal verifi-
cation. Universal verification is impossible since it is often infeasible or too
expensive to predict all possible states and environments the software is go-
ing to go across. Replicating during development the same exact conditions
that the system will encounter once in production is hard. Besides, software
requirements change very rapidly and continuously. Thus software needs
to keep adapting and evolving after the first release. Also, it is often the
case that there is no single organization in control and systems have to rely
on third-party services, whose QoS is seldom guaranteed and can only be
monitored during the runtime. Sudden changes in third-party services QoS
often require adaptation, such as scaling up or migration, which requires
to be automated in order to prevent service disruption. Clearly, automation
cannot work effectively without runtime monitoring information. Finally,
releasing perfect software requires infinite development time. It is always
a matter of tradeoffs, since unreleased software is clearly not very useful.

Monitoring enables continuous verification where design time verifica-
tion is extended after deployment. It is a required technique to verify if
problems arise during the runtime, after the software has been deployed.
This is the only way to verify the satisfaction of requirements on traces
which were not tested ahead. Once a problematic trace is detected, it can
be used to create a new test, reproducing the detected issue, and avoid future
regressions [45].

As experience shows [34, 43, 49] there is no single solution able to dis-
cover all bugs, multiple techniques must be used in combination in order to
maximize as many faults as possible. Monitoring, should therefore be used
to complement the design time verification and not to substitute it.

Finally, with the advent and large adoption of cloud computing the need
for monitoring became even more important. As highlighted by Aceto et al. [22],
this new computing model where resources can be acquired on demand
and payed for the actual usage allows to reduce costs by actuating efficient
capacity and resource planning and management. In order to do so, it is
required to monitor costs and actual usage of resources so that automa-
tion can come into play. Moreover, performance offered by third-party ser-
vices needs to be monitored in order to check if Service Level Agreements

11

Chapter 2. Background

(SLAs) are satisfied.

2.3 Monitoring terminology

This Section provides a list of definitions of terms that are going to be used
throughout this thesis, with the intent of sharing a common vocabulary.

• Metric: a measurable property of a phenomenon that can be quantita-
tively determined. Example: response time is a metric measuring the
“elapsed time between the end of an inquiry or demand on a computer
system and the beginning of a response” [40].

• Monitoring datum: a single measurement of a metric. Example: the
authentication service took 100 ms to respond.

• Resource: anything that can be monitored and, consequently, the
source of a monitoring datum. Example: a web server, a database
or a virtual machine.

• Event: any significant change in the state of a resource, which is usu-
ally identified by a monitoring datum and metadata about the context.
Example: memory utilization is above the maximum threshold.

• Action: a response to a monitoring datum (or event) [54]. For ex-
ample, an action could be the aggregation of a datum with previously
received data, or the scaling up of the number of virtual machines.

• Monitoring rule: a recipe with instructions for the platform on what,
how and when to collect and analyze data, and what actions should be
taken in case specified conditions are met.

• Monitoring tool: a software component offering some monitoring
functionality.

• Monitoring platform: the entire set of software components (e.g.,
monitoring tools, queues, databases) that provide all the monitoring
functionalities that are required by a company.

• Data collector: a monitoring tool in charge of collecting monitoring
data from a resource, often called monitoring agent.

• Data analyzer: a monitoring tool that processes collected monitoring
data, offering different functionalities such as filtering and aggregat-
ing.

12

2.4. Monitoring dimensions

• Metrics observer: whatever component or service capable of receiv-
ing and consuming monitoring data.

2.4 Monitoring dimensions

Whenever referring to monitoring and involved tools, a wide set of tech-
nologies, responsibilities, functionalities and categories is comprehended.
Not all kind of monitoring tools are the same, neither they all have the same
purposes. This Section defines properties and roles that are going to be used
for classifying tools throughout this thesis.

A first dimension which is important to specify when classifying moni-
toring tools is the one based on the role they have in the monitoring activ-
ity. According to the classification introduced by Barrat [26], a monitoring
tool can perform one or more of the following actions on monitoring data:
(i) collect, (ii) transport, (iii) process, (iv) store, (v) present. What to col-
lect means is defined in Section 2.3, i.e., to get monitoring data from a
resource. A data collecting tool is usually either a daemon running on the
monitored host or an agent scraping data from monitoring APIs exposed
by the resource being monitored (e.g., Java Management Extension, JMX).
Monitoring data can also be collected via code instrumentation, develop-
ers may use APIs to collect data. A tool transporting monitoring data is
able to move data from a tool to another. Some tools may have transport
capabilities implemented ad hoc, others may use existing general purpose
solutions such as message brokers. Monitoring data per se is useless if it is
only collected, it needs to be used for a purpose. Data can be processed, for
example, to extract higher level knowledge from raw data or to verify con-
ditions on it. Data can also be stored, for example in a time series database,
or it can be presented to the user, for example via a dashboard, and let a
human understand problems and patterns and take actions. Processing can
be executed either in a distributed way or centrally on a single server. Dis-
tributed processing means analyzing data on several machines in parallel
and eventually aggregate results on a single host. This solution can reduce
network traffic and is more scalable, however it prevents more sophisticated
processing algorithms which cannot be parallelized. Centralized process-
ing requires data to be transported to a server where it is aggregated and
analyzed.

Robinson [48] classifies monitoring tools based on their task, as well.
In his paper he defines four different layers: the Event layer, which com-
prehend all services used for collecting, transporting, filtering and storing
monitoring data or events; the Model layer, where events and monitoring

13

Chapter 2. Background

data are interpreted according to models; the Presentation layer, where ser-
vices present analysis to developers; finally, the Application layer where
application specific services, supported by the model layer, allow to present
and control the software system.

Besides classifications based on roles, there are other classifications
identified in literature [22] mainly focusing on how data is collected from
resources. Collection can be either passive, also known as non-intrusive,
or active, also known as intrusive. It is passive when there is no need to
modify the resource in order to be monitored. Collecting data about the
network activity through packet sniffing, for example, is considered to be
passive. On the opposite, active monitoring is performed when the resource
requires some modification for exposing data to the data collector (e.g.,
API). Another dimension of classification in collection techniques is push-
mode versus pull-mode. Monitoring data can either be pushed to or pulled
by a monitoring tool.

Another dimension that is considered in this thesis is stateful vs. state-
less processing. A tool, for example, can maintain information about the
state of resources, a model or inter-relationships among components. On
the opposite, if no information is maintained across subsequents events, the
tool is said to be stateless. Stateless tools are easier to scale.

A further classification concerning how monitoring data is processed is
the expressive power of the configuration language, which actually tells
what a user can do with monitoring data. A configuration language may
allow to (i) report time series with a configurable granularity, (ii) offer
statistical aggregation capabilities (e.g.: maximum, minimum, average),
(iii) define thresholds, (iv) define alarms or actions to be taken under given
circumstances, (v) provide filtering capabilities.

Last, from the business perspective, a tool in general can be classified
in terms of its licensing model, i.e., open-source vs commercial, and its
deployment model, i.e., self-hosted vs cloud.

2.5 Requirements for a monitoring platform

In this section we aim at providing a comprehensive list of requirements for
monitoring platforms according to a literature review [22, 35, 53] and their
definitions.

Portability [35, 53] Applications can be deployed on multiple kinds of
platforms. In the case of multi-cloud applications, the same service could
be developed to run on totally different hosting solutions. Monitoring tools

14

2.5. Requirements for a monitoring platform

should therefore be able to operate on heterogeneous environments.

Interoperability [35, 53] Monitoring should work across heterogeneous
data centers in order to provide users the possibility to run their application
on multiple clouds or hybrid solutions.

Archivability [35] Being able to access historical data and perform post-
mortem analysis to learn from past failures and errors is an important re-
quirement for a monitoring system.

Elasticity [22,35] Monitoring tools should continuously operate, without
interruption and without any manual reconfiguration, in case of dynamic
environments such as the cloud, where resources are volatile and the archi-
tecture is subject to sudden changes.

Scalability [22,35,53] The monitoring system should guarantee to work
no matter the workload.

Affordability [35] The cost requirement is usually a trade-off which ev-
ery company should face. Open-source solutions are becoming more and
more popular. The growing number of contributors, even from large com-
panies such as Google and Microsoft, allow to use high-standard software
for free. However, the support is often required by most companies and
they are usually willing to pay.

Non-intrusiveness [22, 35] A monitoring system, should not interfere
with the normal functioning of the application being monitored, therefore
it should use as little resources as possible.

Multi-tenancy [35] Cloud providers offer multi-tenant environments where
multiple users usually share the same physical resources. A good monitor-
ing platform should be able to provide visibility to both the cloud provider
and its users, maintaining the respective required isolation. Cloud providers
should be able to know the actual resource usage for each tenant to guar-
antee SLAs, while users should be able to gather information about their
system and possibly an aggregated view of shared resources.

Customizability [35,53] Monitoring solution are more desirable if users
have the possibility to configure runtime monitoring as they like and ac-
cording to their requirements. A customizable monitoring tools should for

15

Chapter 2. Background

example offer the possibility to add custom metrics, manipulate such met-
rics with powerful and feature rich configuration languages, attach custom
and third-party tools in a modular fashion.

Comprehensiveness [22, 53] A monitoring system should be able to
monitor multiple kind of resources, both physical and virtual, multiple lay-
ers and platforms, multiple cloud providers.

Extensibility [22, 35, 53] A monitoring system is extensible if it easy to
add functionalities or support for additional platforms or cloud providers,
for example, via plug-ins.

Usability [35] A monitoring system is usable if it easy to install and in-
tegrate with the monitored application without interfering excessively with
developers main business, offering simple, possibly self-service, insights
of the application to whoever require monitoring information. Monitoring
should also be easy to maintain during the evolution of the application and
the changes in requirements.

Adaptability [22] A monitoring system is adaptable if it can automat-
ically configure itself to reduce its intrusiveness at runtime, finding the
right balance between monitoring requirements and invasiveness towards
the running system.

Timeliness [22, 53] A timely monitoring system is able to provide the
required information when it is actually needed and useful.

Autonomicity [22] Besides offering visibility of the system to a QoS
engineer, an important requirement for a monitoring system is that of using
monitoring data to automatically remediate system failures.

Resilience [22] A resilient monitoring system is able to continue to work
or automatically recover from a complete or partial failure of some of its
components.

Reliability [22] A reliant monitoring system is able to provide its service
under stated conditions for a specified period of time.

16

2.6. The MODAClouds FP7 IP European project

Availability [22] An available system provides its functionality when-
ever requested by the user. A monitoring system should in general be more
available than the system being monitored. Having for example the same
monitoring system deployed on the same cluster of the deployed applica-
tion, is a major problem in case the cluster goes down.

Accuracy [22] An accurate monitoring system is able to provide accu-
rate metrics, which means that they are as close as possible to the real value.

Among this list of requirements identified from literature, we mainly
covered the ones we described in Section 1.1, namely: interoperability,
elasticity, portability, extensibility and timeliness. These requirements were
chosen according to the challenges identified by partners of the MODA-
Clouds project, whose objectives and its relation with this work are overviewed
in Section 2.6.

2.6 The MODAClouds FP7 IP European project

In this section an overview of the MODAClouds FP7 IP European project
main goals is given as well as an overall description of the concepts and
building blocks of the MODAClouds framework. This section will help the
reader to better understand the focus of the work proposed in this thesis.

The main goal of MODAClouds is to provide methods, a decision sup-
port system, an open source IDE and run-time environment for the high-
level design, early prototyping, semi-automatic code generation, and au-
tomatic deployment of applications on multi-Clouds with guaranteed QoS.
Model-driven development combined with novel model-driven risk analy-
sis and quality prediction will enable developers to specify Cloud-provider
independent models enriched with quality parameters, implement these,
perform quality prediction, monitor applications at run-time and optimize
them based on the feedback, thus filling the gap between design and run-
time. Additionally, MODAClouds provides techniques for data mapping
and synchronization among multiple Clouds.

All involved partners, coming from both the academia and industrial
world, designed and implemented throughout a period of 3 years a set of
tools (i.e., the MODAClouds MultiCloud DevOps Toolbox, Figure 2.1).
The main elements of such toolbox are the following:

• Creator 4Clouds an Integrated Development Environment (IDE) for
high-level application design;

17

Chapter 2. Background

Venues
Multi-Cloud DevOpsIdentify & Select Multi-

Cloud Best Execution Venue
from Business Perspective

4Clouds

Energizer
Multi-Cloud DevOpsExecution, Monitoring &

Self-Adaptation Platform & IDE

4Clouds

ADDapters
Multi-Cloud DevOpsReach Multi-Clouds Agility by

Adding IaaS/PaaS Adapters

4Clouds

Dev
Tools to empower Development Teams
to allow the agnostic creation of Cloud
Applications for Multi-Clouds, taking
into account Business and Technical

requirements early in the process with
seamless integration with runtime
operations to improve app cycle.

Ops
Tools to energize operations with

Multi-Cloud Agility, QoS Monitoring
and Self-Adaptation that seamlessly
integrate with Dev Teams to allow

better applications performance and
meet business needs

Tower
Multi-Cloud DevOpsMonitor and Analyze

Performance and QoS rules to
embrace Multi-Cloud Agility

4Clouds

CloudML
Multi-Cloud DevOpsMulti-Cloud Agnostic Modeling

Language

4Clouds

SpaceDev
Multi-Cloud DevOpsQoS Prediction &

Topology Optimization

4Clouds

Creator
Multi-Cloud DevOpsAgnostic & QoS/SLA

ready Multi-Cloud
Modeling & Deployment IDE

4Clouds

MODAClouds provides methods, a decision
support system, an open source Integrated
Development Environment (IDE) and Run-
time Environment for the high-level design,

early prototyping, semi-automatic code
generation, and automatic deployment of

applications on multi-Clouds with
guaranteed Quality of Service (QoS).

MultiCloudDevOps.com

Solutions for Multi-Cloud

Venues
Creator

Energizer

Biz

Dev

Ops

Multi-Cloud DevOps
solutions for

MODAClouds

DataMapping
Multi-Cloud DevOpsCreate better data structures to maximize

runtime performance

4Clouds

SpaceOps
Multi-Cloud DevOpsQoS for Self-Adaptation

Optimization

4Clouds

Figure 2.1: The MODAClouds MultiCloud DevOps Toolbox

• Venues 4Clouds a decision support system that helps decision makers
identify and select the most suited execution environment for Cloud
applications, by considering technical and business requirements;

• Energizer 4Clouds a Multi-Cloud run-time Environment providing
automatic deployment and execution of applications with guaranteed
Quality of Service (QoS) on compatible Multi-Clouds.

The Tower 4Clouds monitoring platform, which is the main contribution
of this thesis, is part of Energizer 4Clouds.

The MODAClouds framework is supported since the design time by 3
main models:

• the Cloud-enabled Computation Independent Model (CCIM), to de-
scribe an application from the business perspective;

• the Cloud-Provider Independent Model (CPIM), to describe cloud con-
cerns related to the application in a cloud agnostic way;

• the Cloud-Provider Specific Model (CPSM) to describe the cloud con-
cerns needed to deploy and provision the application on a specific
cloud.

18

2.6. The MODAClouds FP7 IP European project

Each one of these models is composed by a set of submodels that provide
details about usage scenarios, service orchestration, data models, deploy-
ment models and QoS models.

The MODAClouds Model-Driven Development approach relies on the
so called MODACloudsML which integrates a set of domain-specific lan-
guages. These languages cover the specification of both functional and non
functional aspects of multi-cloud application. This three levels architecture
provide users the ability to design multi-cloud applications in a provider-
independent way.

Public deliverables of the project are available online1 and a book was
published [33].

1http://www.modaclouds.eu/publications/public-deliverables/

19

http://www.modaclouds.eu/publications/public-deliverables/

CHAPTER3
Related Work

This chapter overviews some of the most popular monitoring tools as well
as academical approaches and prototypes with the intent of checking whether
and how the challenges discussed in Section 1.1 have been addressed. This
Section does not aim a comprehensive survey of existing solutions. Other
works [22, 35, 47, 52] already deeply analyzed and classified the state of
the art of monitoring frameworks. This section only reports representative
examples that helped identifying the open issues. For the purpose, part of
the contribution brought by the aforementioned works will be used. Ta-
ble 3.1 provide a summary of all tools and their classification based on the
dimension introduced in Section 2.4.

Nagios

One of the most popular monitoring tool is Nagios [7], an open source
monitoring and alerting solution released in 1999. It is an all-in-one solu-
tion, covering all roles listed in Section 2.4 (i.e., collect, transport, process,
store and present). Data collection is performed via scripts, or monitor-
ing checks, periodically scheduled by the server, that provide OK, WARN-
ING and CRITICAL flags. Data collection can be both active and passive:

21

Chapter 3. Related Work

some checks are executed on agents distributed with the system, others are
probing resources remotely. Data processing is therefore mostly distributed
across resources. A rich community provides several Nagios plugins open
source. Transportation is implemented by using either standard protocols
such as ICMP, SSH or SNMP, or their custom Nagios Remote Plugin Ex-
ecutor (NRPE). Local (client-side) checks results are stored in a file pe-
riodically retrieved via TCP from the server. No discovery mechanism is
implemented, therefore both knowledge about the monitored system and
their interdependency must be explicitly stated in the server configuration.
A dashboard is provided to visualize checks results. Graphing and trending
utilities can be added through plugins. Historical data is saved on rotat-
ing log files, however can be exported to external SQL data base through
a plugin. Nagios Core is provided open source, however a commercial en-
terprise edition with additional support tools for large scale deployments is
also offered.

Pros. Offering a very simple interface for checks it is very extensible and
supported by a strong open source community.

Cons. Since it was built before the cloud advent, it was initially developed
for static servers, so it does not consider ephemerality and elasticity by de-
sign. Also, the pull based approach together with the active checks mech-
anism initiated by the server is not scalable when the number of resources
grows.

Sensu

Sensu [14] is an open source monitoring platform, released in 2013, sharing
several concepts with Nagios approach and their check plugins, however,
being a much more recent product, it was built with an eye to modern sys-
tems. Sensu aimed at offering a monitoring solution focused on the elastic-
ity and the scalability of modern software architectures. In contrast to Na-
gios, which is an all-in-one solution, Sensu’s main functionality is to route
monitoring data. In particular, it covers the collect role by reusing the same
specification of Nagios for checks, so to exploit Nagios huge community
artifacts. Moreover, client side agents push data to the server (instead of
being pulled by it) via a message broker (e.g., RabbitMQ [11] or Kafka [1])
that completely decouples components. The state is maintained externally
in a Redis [12] database so that servers are completely decoupled and easy
to scale. Configuration and checks can be installed both from the server
and from the client (through some configuration and management tool such
as Chef [2] or Puppet [10]). Sensu clients and Sensu servers are decoupled,

22

the workload is distributed among clients where checks are evaluated and
results are sent to the server via the queue, where multiple kind of handlers
can be configured to react on events.

Pros. It was built with cloud applications in mind, using a push based
mechanism with publish subscribe patter, so it is elastic to changes and
scalable. Also, it uses the same checks protocols used by Nagios, and pro-
vide plug-in architecture also for filters and handlers, therefore, extensibil-
ity is one of its strengths.

Cons. Agents require to bind to a port for communicating with the server,
which could not be possible on some hosts, therefore it lacks in portability.
It is a piece of a monitoring platform, configuration and management tools
as well as other monitoring tools must be connected to create a full working
platform. This flexibility can actually be considered an advantage by those
who are looking for flexibility, while it may be considered a disadvantage
for those who want a simple setup process.

Collectd

Collectd [3] is a widespread monitoring tool which collects system perfor-
mance statistics and its main role is that of collecting data. Its strength
relies in performance and portability, since it is written in C and has very
low CPU footprint and even with very short monitoring intervals. Commu-
nity provided plugins are used to monitor multiple kind of resources. It also
offers a good transport mechanism (Collectd binary protocol) to route data
to other instances and multiple ways of storing data (e.g., RDD files). How-
ever it provides limited processing functionality and it does not present data
by means of graphs, therefore additional tools must be connected to cover
the complete monitoring stack. For example it can be integrated with both
Sensu and Nagios by means of the collectd-nagios check plugin.

Pros. It is flexible, extensible and highly supported by the community.

Cons. Similar to Sensu, it is just a piece of a platform, plug-ins, configura-
tion and other tools must be added to make it useful. Also, it does not offer
a capability to add metadata to monitoring data by default.

Graphite

Graphite [6] is a popular time-series database and graphing tool which of-
fers a very simple API for pushing data to it and renders graphs of this data
on demand through a customizable web based dashboard. It is composed
of three software components:

23

Chapter 3. Related Work

• carbon, a daemon listening for monitoring data,

• whisper, the database library for storing time-series data,

• graphite webapp, the web application rendering graphs on-demand.

Metrics pushed to Graphite contain metadata about resources according to
the schema chosen by the user. Each metric is stored in a path according
to the name of the metric, each component being delimited by dots (e.g.,
“server1.webapp1.cpu”).

Pros. It is very popular, performant and has a very powerful query lan-
guage.

Cons. Monitoring data meta-data are expressed using the metric path pro-
tocol, which imposes a predefined schema based on the ordering. Every
team could easily create its own schema and cause data misalignment. The
dashboard looks quite old.

Grafana

Grafana [5] is a popular open source graphing tool which can be used with
multiple data sources. It was born and is often known as an alternative
to the graphite web application, with a richer and nicer dashboard. Since
version 4.0 is also offering alerting capabilities. Today it can be attached to
most of the famous time series databases, such as InfluxDB, OpenTSDB or
even Amazon CloudWatch. Community plugins are growing at rapid pace.

Pros. Very nice looking interface, plug-in based and highly supported by
the community.

Cons. It is simply a dashboard with alerting capabilities, does not provide
collecting capabilities, a backend storage is required.

Riemann

Riemann [13] is an event-based open source tool for monitoring distributed
system. It has a very high throughput (a million of events per second at sub-
millisecond latencies on commodity hardware), it is highly configurable
and written in Clojure, which is also the base language for the DSL used for
configuration. Events are pushed to Riemann, processed and then exported
to other systems, very similarly to a router. Each received event is added to
one or more streams. Indexes are maps used to maintain the last received
event for each host/service pair until it is invalidated by a timeout (TTL).

24

Pros. It is flexible, highly scalable and extensible.

Cons. It is not an all-in-one monitoring solution, it can be used as a router
or data analyzer. Configuration is done via Clojure code, which make it
flexible but requires upfront investment in learning and writing the config-
uration.

StatsD

StatsD [15] is an open source daemon, developed by Etsy, listening for
monitoring data and sending aggregates to one or more pluggable backends
(e.g., Graphite). The main strengths of StatsD are:

• simplicity, it is very simple to instrument code,

• ubiquity, there are client libraries for multiple languages,

• small footprint, clients have negligible overhead.

Pros. Very simple and compact protocol.

Cons. It is just a collector and aggregation point. It support metrics ac-
cording to graphite metrics path schema, without tags support by default.

Prometheus

Prometheus [9] is an all-in-one monitoring platform, open sourced in 2015.
Even though it is very recent, it goes against the current monitoring tools’
trend of using a push based mechanism. Instead, it resemble Nagios in
how monitoring information is retrieved from resources being monitored.
The main difference with the data collection activity is that instead of us-
ing check scripts, Prometheus only collects time series data from a set of
instrumented targets over the network. Moreover, all metrics are collected
via HTTP, in a parallel and more efficient way than Nagios.

Pros. There is no central server, every team can deploy its instance and
start monitoring instrumented target. It is an all-in-one monitoring tool
with its own dashboard, storage and configuration language.

Cons. It must rely on resource discovery tools and it does not deals with
events but only with aggregations. Meta-data regarding the resources being
monitored is not univocally defined, it lacks a central source of knowledge
and it is still entirely conveyed with the datum. Every team could easily
create its own tags and cause data misalignment.

25

Chapter 3. Related Work

JCatascopia

JCatascopia [51] is a cloud monitoring platform, which copes with the
volatility of resources by implementing a self-registration protocol together
with a heart-beat mechanism that allow automatic agents discovery and re-
moval. It also features an adaptive filtering capability which avoids to send
monitoring data if there is little variance with the previous value sent. This
allows to reduces costs and overhead. The configuration language is based
on the Metric Subscription Rule Language, a DSL they defined to instruct
the platform what to collect, how to filter metrics and aggregate them, and
what actions to perform according to conditions.

Pros. It is elastic and scalable platform with a powerful and simple con-
figuration language.

Cons. The configuration language explicitly targets resources by ID, there-
fore the language does not provide the flexibility required to address ma-
chines by class or resources. Moreover, agents require to bind to a port for
communicating with the server, which could not be possible on some hosts.

Dautov et al.

Dautov et al. [31] proposed an autonomous framework where monitoring
data is annotated with semantic information using the Resource Description
Framework (RDF) language specification and semantic query languages,
such as C-SPARQL [24] and SWRL [16], are used to implement reasoning
against streaming information.

Pros. This approach is valuable since it enables semantic inference and
reasoning on monitoring data, based on a background ontology. A back-
ground ontology can store inference rules to define the subclass or the con-
tainment relationships.

Cons. The usage of a general purpose language such as C-SPARQL re-
quires high level of expertise. The expressiveness of the underlying query
language and the ability to reason on both static and stream knowledge
affects considerably the scalability. There are however ongoing studies on
how to parallelize the computation to increase the scalability [41].

The Multi-layer Collection and Constraint Language (mlCCL)

The Multi-layer Collection and Constraint Language (mlCCL) [25] is an
extensible language for defining how to collect, aggregate, and analyze run-
time data in a multi-layered system. ECoWare is an event correlation and

26

aggregation framework that supports mlCCL. Data in mlCCL is described
as Service Data Objects (SDOs), which are timestamped and exchanged
via an event bus. SDOs also carry an instanceID, that is a unique ID iden-
tifying the specific service call. The approach distinguishes between two
different sources: messages refer to the request or response messages that
are exchanged during service invocations and indicators represent informa-
tion obtained periodically about a service.

Pros. The proposed framework and language address heterogeneity by pro-
viding multi-layered indicators: Key Performance Indicators for software
services metrics and Resource Indicators for infrastructure service metrics.

Cons. The approach does not consider ephemerality of modern cloud so-
lutions since resources are addressed by ID.

ReMinds

REquirements Monitoring INfrastructure for Diagnosing Systems of Sys-
tems (ReMinds) [53] is a framework for developing monitoring solutions
for systems of systems (SoS). Its main focus is industrial automation, where
multiple heterogeneous systems require to be monitored. ReMinds pro-
poses the definition of domain specific event based models for the integra-
tion of multiple probes collecting events from systems written in different
languages and at different level of abstractions. The proposed language al-
lows to predicate on top of such high level event model and monitor the
correctness of the SoS system.

Pros. ReMinds addresses the problem of monitoring heterogeneous systems
by using a unified event model for integrating events and predicate at high
level of abstraction.

Cons. The approach does not addresses the ephemerality of modern cloud
systems.

27

Chapter 3. Related Work

Tool
C

ollect
Transport

Process
Store

Present
N

agios
A

ctive
/Passive,Pull

N
R

PE
/

IC
M

P
/

SSH
/

SN
M

P
D

ecentralized,Stateless
L

og
files

/SQ
L

(plugin)
D

ashboard
/

G
raphing

(plu-
gin)

Sensu
A

ctive,Push
R

abbitM
Q

/K
afka

D
ecentralized,Stateless

R
edis

N
.A

.
C

ollectd
A

ctive,Push
B

inary
protocol

N
.A

.
R

D
D

files
N

.A
.

G
raphite

N
.A

.
N

.A
.

C
entralized,

A
PI

for
filter-

ing
and

aggregating
W

hisper
G

raphite
W

ebapp

G
rafana

N
.A

.
N

.A
.

C
entralized,statistics

N
.A

.
G

rafana
W

ebapp
R

iem
ann

N
.A

.
T

C
P,U

D
P,W

ebsockets
C

entralized,Stateful
M

ost
recent

inform
ation

is
m

aintained
in

m
em

ory
N

.A
.

Statsd
N

.A
.

U
D

P
C

entralized,Statistics
N

.A
.

N
.A

.
Prom

etheus
A

ctive
/Passive,Pull

H
T

T
P

C
entralized,

SQ
L

like
lan-

guage
forfiltering,aggregat-

ing,alerting

L
evel

D
B

for
indexes,

cus-
tom

storage
layerforsam

ple
data

N
.A

.

JC
atascopia

A
ctive,Push

H
T

T
P,pub/sub

C
entralized,

C
ustom

D
SL

(M
etric

Subscription
R

ule
L

anguage)
for

filtering,
ag-

gregating
and

configuring
actions

M
ySQ

L
N

.A
.

D
autov

etal.
N

.A
.

H
T

T
P

C
entralized,

Stateful,
C

-SPA
R

Q
L

and
SW

R
L

sem
antic

languages
for

per-
form

ing
inference,

filtering,
aggregating

R
D

F
triple

store
N

.A
.

m
lC

C
L

A
ctive,Push

Publish/Subscribe
E

vent
B

us
C

entralized,
Stateless,

cus-
tom

D
SL

for
collecting,ag-

gregating
and

analyzing

persistent
storage

w
ith

24h
rotation

C
ustom

dashboard
for

event
correlation

R
eM

inds
A

ctive,Push
Socket,JM

S,R
M

I
C

entralized,
Stateless,

D
SL

for
crosscutting

constraints
validation

O
racle

/Postgres
/M

ySQ
L

,
M

ongoD
B

,H
D

FS
C

ustom
dashboards

for
m

anaging
constraints,

review
ing

events
and

vio-
lations,

visualizing
runtim

e
events

Table
3.1:

Tools
classification

28

CHAPTER4
The Tower 4Clouds Approach

In this Chapter we aim at providing an overall description of the core con-
tribution of this thesis: the Tower 4Clouds approach for designing and mon-
itoring multi-cloud applications.

In Section 4.1 we provide a high level overview of the Tower 4Clouds
approach and show how it integrates within the entire MODAClouds frame-
work. Next, we will present Ticket Monster, a Java EE demo application
developed by JBoss1, and its candidate monitoring requirements. Such
application will be used as main itinerary example throughout the thesis
to simplify the discussion and provide practical usage scenarios on how
to monitor an application that can be deployed on multiple clouds (Sec-
tion 4.2). Finally, Section 4.3 will show how the proposed approach can be
applied to our itinerary example, from the design through the runtime.

4.1 Overview of the approach

Our approach enforces developers to consider monitoring a first-class citi-
zen in the application development cycle. Quality of Service (QoS) should
be considered since the first phases, when requirements are elicited and

1http://www.jboss.org/ticket-monster/

29

http://www.jboss.org/ticket-monster/

Chapter 4. The Tower 4Clouds Approach

defined in a specification. Once the application specification is defined is
translated into an abstraction of the real application: a model. According
to our approach, QoS requirements (or QoS constraints) should be mod-
eled together with the application by annotating the modeled components.
These annotations would be the starting point for configuring the monitor-
ing activity and guarantee the satisfaction of non-functional requirements
during the runtime. Tower 4Clouds only addresses QoS requirements that
can be quantitatively determined. Some non-functional requirements (e.g.,
usability, security or compliance) cannot be thoroughly described by means
numerical values and are out of the scope of this work.

The Tower 4Clouds approach is based on the following concepts:

• the base meta model, which is a set of classes and relationships among
these classes that are common to all software systems and that can be
monitored;

• the application specific meta model, which is an extension of the base
meta model with classes relative to the domain of the application being
designed;

• the deployment model, which is an instance of the application specific
model, it describes a deployment scenario of the application being
modeled and has a one to one mapping with MODAClouds models
(Section 2.6);

• QoS constraints, which are annotations on top of the deployment model,
specified by the QoS engineer, describing the allowed values for a
given QoS metric;

• monitoring rules, which are annotations on top of the deployment
model, used by the QoS engineer to configure the runtime monitor-
ing in order to guarantee the satisfaction of QoS constraints;

• the runtime model, which is an instance of the deployment model,
representing a running application, automatically kept synchronized
with the actual deployment by the Tower 4Clouds framework;

Modeling QoS constraints is the first step of our approach. Within the
MODAClouds framework, such constraints are annotated on top of com-
ponents modeled in the cloud-independent models (i.e., CCIM and CPIM,
described in Section2.6). Components that can be annotated are named, ac-
cording to our reference terminology (Section 2.3), resources, which rep-
resent things that can be monitored. Examples of resources are a service or
a virtual machine.

30

4.1. Overview of the approach

Resource

QoS
Constraint

Resource

QoS
Constraint

Monitoring
Rule

derivedBy
targets

targets

Figure 4.1: Monitoring rule generation from a QoS constraint

Resource

QoS
Constraint Monitoring

Rule
derivedBy

targets

targets

Resource

QoS
Constraint

Edited
Monitoring

Rule
derivedBy

targets

targets

New
Monitoring

Rule
targets

Figure 4.2: Monitoring rule edit and creation

Once QoS constraints are modeled, monitoring rules for checking the
satisfaction of such constraints can be automatically generated via a model
to model transformation we specified. This transformation was also imple-
mented in form of a Java library that can be integrated in any Java modeling
framework (Figure 4.1). Monitoring rules are recipes that are used to con-
figure runtime monitoring. They allow to instruct the platform targeting
resources at different levels of abstractions. A rule can, for example, target
a whole class of resources (e.g., all virtual machines) or resources belong-
ing to a type of resources (e.g., all web servers). Monitoring rules that are
automatically generated from QoS constraints are created in order to have
the platform check and alert when the respective QoS constraints are vio-
lated. Generated rules have default configurations which can be edited by
the user. Moreover, the user can add new ones in order to customize run-
time monitoring (Figure 4.2). For example, he can change how often the
rule should be evaluated or add additional actions to be executed when the
QoS is violated. We will provide a detailed specification of the monitoring
rules language in Chapter 5.

31

Chapter 4. The Tower 4Clouds Approach

loop

MODAClouds DeployerMODAClouds IDE
User

startDeployment

uploadDeplModel

deploy

Clouds Hypervisors Monitoring Platform

Multi-Cloud App
startInstances

<< create >>

provisionServices

startMonitoring
installMonitoringRules

sendMonData

Figure 4.3: Sequence diagram of the multi-cloud application deployment and monitoring
rules installation

Besides monitoring rules, in order for our runtime monitoring platform
to be able to monitor resources, data collectors must be deployed together
with the application. According to our reference terminology (Section 2.3),
data collectors are software components in charge of collecting monitoring
data from a resource. They should be modeled, and possibly monitored, as
any other resource belonging to the application.

Within the MODAClouds framework, the entire design process has been
integrated in the MODAClouds IDE Creator 4Clouds [36]. Once a first
release of the application is completely modeled and binaries have been
released on an artifact repository, the user can deploy the application and
the monitoring rules. Both actions are triggered within the IDE. The de-
ployment of the multi-cloud application is managed by the MODAClouds
deploying service CloudML 4Clouds [37]. Both CloudML 4Clouds and
Tower 4Clouds are supposed to be already up and running. A sequence
diagram describing at very high level how this integrated process works is
depicted in Figure 4.3.

Figure 4.4 depicts the Tower 4Clouds runtime architecture. The Man-
ager is the component in charge of the management of the platform. It is
responsible of configuring other components according to monitoring rules
and managing the resources model. It offers both a REST API for tools
integrations (e.g., with an IDE) and a Web application for manual man-
agement. The Data Analyzer, as defined in Section 2.3, is the component
responsible of processing monitoring data, filtering and aggregating it, and

32

4.2. Ticket Monster: an itinerary example

Resources

Manager installRules()
addObserver()

sendData()

register()
retrieveConfig()

heartbeat()

configure() triggerActions()

Metrics
ObserversMetrics
ObserversMetrics
ObserverssendData()Data Analyzer

Metrics
ObserversMetrics
ObserversData
Collectors

Figure 4.4: Tower 4Clouds runtime platform architecture

sending results to metrics observers. A Metrics Observer is any component
that can receive metrics from the Data Analyzer. Finally, Data Collectors
are components that are distributed on the resources being monitored.

The Tower 4Clouds runtime platform is able to autonomously react to
changes in the system without interrupting monitoring. Whenever new re-
sources are started, the existing configuration described by the monitoring
rules will be applied also to the new entry.

The platform was designed so to be easily extensible in order to be able
to interoperate with existing monitoring and alerting tools. Support for
some of the most common protocols (e.g., Graphite, Influxdb) were added
by simply implementing the provided serialization interfaces. Support for
some of the most common collecting tools (e.g., Collectl and Sigar) were
added by wrapping them using our data collector library.

The entire design and deployment phase can be continuously iterated.
As the application evolves and new features are developed, the QoS Engi-
neer is required to maintain QoS constraints and monitoring rules aligned
with model changes. A modeling IDE, such as the one provided by the
MODAClouds framework, can help identify issues and inconsistencies in
the model. Once a new release is ready to be deployed, the set of rules will
be updated as well and monitoring will be setup for the new application
version.

4.2 Ticket Monster: an itinerary example

When looking for an example application that could guide the discussion
throughout the thesis we aimed at finding an existing solution that could
be deployed on multiple clouds, both on PaaS and IaaS, in order to be able

33

Chapter 4. The Tower 4Clouds Approach

to describe how our approach can help addressing not only multi-cloud
hosting, but also heterogeneous deployments. The application had also to
be open source, so that we could be able to instrument it for collecting
application level metrics.

We selected Ticket Monster2, a Java EE 6 demo application developed by
JBoss with the purpose of demonstrating how to build modern web applica-
tions. The application is an online ticketing broker. It met our requirements
since it is open source3 and because a Java EE application can be deployed
both on an application server within any virtual machine and on PaaS such
as OpenShift4. Moreover, it is a moderately complex application, and not
just a toy application.

The application provides both an end user and an administrator interface.
End users can:

• look for current events;

• look for venues;

• select shows (events taking place at specific venues) and choose a per-
formance time;

• book tickets;

• view current bookings;

• cancel bookings.

We reported in Figure 4.5 the end user use case diagram published on JBoss
website. Administrators can:

• add, remove and update events;

• add, remove and update venues (including venue layouts);

• add, remove and update shows and performances;

• monitor ticket sales for current shows.

We reported in Figure 4.6 the administrator use case diagram published on
JBoss website.

The application was developed using Java EE 6 services to provide busi-
ness and persistence functionalities, such as CDI, EJB, JPA. JPA specifica-
tion allows to connect to several relational databases, such as PostrgreSQL

2http://www.jboss.org/ticket-monster/whatisticketmonster/
3https://github.com/jboss-developer/ticket-monster
4https://www.openshift.com

34

http://www.jboss.org/ticket-monster/whatisticketmonster/
https://github.com/jboss-developer/ticket-monster
https://www.openshift.com

4.2. Ticket Monster: an itinerary example

Figure 4.5: Ticket Monster end user use case

Figure 4.6: Ticket Monster administrator use case

35

Chapter 4. The Tower 4Clouds Approach

Figure 4.7: Ticket Monster architecture

or MySQL. JBoss developed four different UIs: two for the end-user (a web
app and a mobile app), one for administration and one for monitoring sales.
The architecture published on JBoss website is reported in Figure 4.7.

4.3 Our approach in action

A booking application such as Ticket Monster, is often subject to spiky
traffic loads. In fact, tickets for events are usually sold in limited quantities.
Therefore, as soon as new ones become available, there is often a huge
number of requests coming to the server. Monitoring is essential to have a
clear feedback on users experience, high latencies can ultimately result in
loss of money.

In this section we aim at describing the Tower 4Clouds approach, ap-
plied to the Ticket Monster itinerary example we described in Section 4.2.
The objective is to highlight the contribution from the user perspective,
postponing to the next chapters the details of our solution.

4.3.1 Provider independent multi-cloud modeling

A provider independent multi-cloud model of the application is required
in order to correctly design QoS constraints and monitoring rules accord-
ing to the Tower 4Clouds approach. We started modeling Ticket Monster
according to the IaaS deployment model (Figure 4.8). We represent re-
sources managed by the provider with gray boxes. In the case of IaaS, vir-
tual machines are the managed resources. We modeled two types of virtual
machines, one hosting the database and one hosting the core application.

36

4.3. Our approach in action

WebVM

Data Collector

Java Virtual
Machine Java EE AS Ticket Monster

DBDBVM

Data CollectorJava Virtual
Machine

Figure 4.8: Ticket Monster IaaS deployment model

Ticket Monster requires a Java EE application server. Both the data col-
lector developed for the MODAClouds project and the Java EE application
server requires the Java virtual machine to run.

As anticipated, the Ticket Monster application can also run on a Java EE
compatible PaaS solution. A PaaS can usually offer both the database and
the application container. However, for the demonstration purposes of this
work, we designed the entire system to have a common shared database
on a IaaS provider and have only the Java application deployable on both
PaaS and IaaS. The deployment model with both PaaS and IaaS hosting is
represented in Figure 4.9.

We now have a model of an application that can be deployed migrated
from one cloud to another or even simultaneously run multiple clouds.

4.3.2 Modeling QoS constraints and monitoring rules

We can now add a QoS constraint on the response time. The Ticket Monster
application is annotated with a constraint stating that the 95th percentile of
the response time should never exceed 5 seconds (Figure 4.10) The required
rule is automatically generated as shown in the figure. The generated rule
is automatically performing the action of producing a new metric named

37

Chapter 4. The Tower 4Clouds Approach

Java EE AS Ticket Monster

DBDBVM

Data CollectorJava Virtual
Machine

Figure 4.9: Ticket Monster mixed IaaS and PaaS deployment model

WebVM

Data Collector

Java Virtual
Machine Java EE AS Ticket Monster

DBDBVM

Data Collector

RTConstraint:
Metric: ResponseTime
Aggregation: 95th Percentile
Max: 5.000 ms

targets

RTConstraint_Rule:
TimeStep: 10 s
TimeWindow: 60 s
Metric: ResponseTime
Aggregation:
 - Function: 95th Percentile
Condition: METRIC > 5000 ms
Actions:
 - OutputMetric(RTContraint_Violation)
Enabled: True

derivedBy

targets

Java Virtual
Machine

Figure 4.10: Ticket Monster with QoS constraint on the response time

38

4.3. Our approach in action

JavaHeapUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: JavaHeapUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgJavaHeapUsage)
Enabled: True

WebVM

Data Collector

Java Virtual
Machine Java EE AS Ticket Monster

DBDBVM

Data Collector

RTConstraint:
Metric: ResponseTime
Aggregation: 95th Percentile
Max: 5.000 ms

targets

RTConstraint_Rule:
TimeStep: 10 s
TimeWindow: 60 s
Metric: ResponseTime
Aggregation:
 - Function: 95th Percentile
Condition: METRIC > 5000 ms
Actions:
 - OutputMetric(RTContraint_Violation)
Enabled: True

derivedBy

targets

AvgRTRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: ResponseTime
Aggregation:
 - Function: Average
 - GroupBy: CloudProvider
Actions:
 - OutputMetric(AvgResponseTime)
Enabled: True

targets

targets

RAMUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: RAMUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgRAMUsage)
Enabled: True

targets

targets

CPUUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: CPUUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgCPUUsage)
Enabled: True

targets

targets

Java Virtual
Machine

targets

Figure 4.11: Ticket Monster with additional monitoring rules

RTConstraint_Violation which can be observed by any metric observer. A
metric observer could be a dashboard, which switches a red light on when
such violation is received, or else a mail notification service. The rule can
be changed on all of its fields except for the ones inherited from the QoS
constraint (underlined and grayed out in the figure). For example time steps
and time windows can be changed in order to have either a finer or coarser
granularity.

A notification is useful, however the user should also have some context
to diagnose the root cause of the identified violation. For this purpose, some
other metrics that the user can correlate with the raise of such event can be
monitored. For example, in Figure 4.11 we added some manual monitoring
rules to instruct the monitoring platform to monitor the CPU and RAM
usage of virtual machines as well as a rule for monitoring the Java heap
memory usage. These metrics can then be plotted on a dashboard.

Going back to the PaaS version of the model, system metrics such as
CPU and RAM usage are usually not accessible, therefore monitoring rules
for these metrics will not have any effect on such deployment. However, ap-
plication level metrics remain the same and there is nothing else to change.
Figure 4.12 shows the part of the mixed PaaS and IaaS model with required
monitoring rules for monitoring the response time.

39

Chapter 4. The Tower 4Clouds Approach

JavaHeapUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: JavaHeapUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgJavaHeapUsage)
Enabled: True

Java EE AS Ticket Monster

DBDBVM

Data Collector

RTConstraint:
Metric: ResponseTime
Aggregation: 95th Percentile
Max: 5.000 ms

targets

RTConstraint_Rule:
TimeStep: 10 s
TimeWindow: 60 s
Metric: ResponseTime
Aggregation:
 - Function: 95th Percentile
Condition: METRIC > 5000 ms
Actions:
 - OutputMetric(RTContraint_Violation)
Enabled: True

derivedBy

targets

AvgRTRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: ResponseTime
Aggregation:
 - Function: Average
 - GroupBy: CloudProvider
Actions:
 - OutputMetric(AvgResponseTime)
Enabled: True

targets

RAMUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: RAMUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgRAMUsage)
Enabled: True

targets

CPUUsageRule:
TimeStep: 10 s
TimeWindow: 10 s
Metric: CPUUsage
Aggregation:
 - Function: Average
 - GroupBy: VirtualMachine
Actions:
 - OutputMetric(AvgCPUUsage)
Enabled: True

targets

Java Virtual
Machine

targets

Figure 4.12: Ticket Monster with monitoring rules on the mixed PaaS and IaaS model

4.3.3 System and application level data collection

In the previous section the Ticket Monster example was modeled together
with monitoring information. Among the software components, a Data
Collector was modeled. The data collector we referred is a daemon that
was developed together with Imperial Collage London, integrating exist-
ing monitoring tools, such as Sigar and Collectl, for their usage within the
Tower 4Clouds framework (see Section 6.4.1). CPU, RAM and JVM met-
rics can be collected using this data collector. In order to collect application
level metrics, however, this data collector cannot be used since the code re-
quires to be instrumented.

In order to instrument Java applications we developed a library which
exploits reflections and aspect oriented programming to lighten developers
effort. In this section we provide a description of how we enabled response
time monitoring in Ticket Monster.

The Java data collector is able to monitor Java EE applications by simply
weaving in code at runtime before and after the execution of methods with
JAX-RS annotations (i.e., GET, POST, PUT and DELETE endpoints) and
measure the duration. The developer is only required to add a few lines of
code to be executed when the application is launched, in order to configure
the data collector with information regarding the monitored resource and

40

4.3. Our approach in action

Figure 4.13: Metrics tab on the Tower 4Clouds Manager administration page

the Tower 4Clouds Manager endpoint. This information can be simply
provided via environment variables. Finally, the package containing the
classes to be monitored must be specified.

The source code of the class that was added to Ticket Monster in order
to instrument it with our Java Data Collector library is available in Ap-
pendix A.

4.3.4 Elastic runtime monitoring

Once the multi-cloud provider independent model and monitoring rules are
designed and code is instrumented, the application is ready to be deployed
and monitored. As soon as the application and the data collectors are started
they will contact the Tower 4Clouds manager and update the central model
with the existing resources. Periodically, they will reconnect to the server
to notify their liveness and retrieve updated configuration. Once monitor-
ing rules are installed, data collectors will start sending data as specified.
By means of the Manager administration web page the user can review
monitoring rules, exposed metrics and the runtime model of the system.
Under the Metrics tab of the administration web page (Figure 4.13) a user
can attach metrics observers to route metrics generated by the monitoring
rules to other monitoring tools. For example we attached Graphite as ob-
server of the average RAM usage metrics and have them plotted on Grafana

41

Chapter 4. The Tower 4Clouds Approach

Figure 4.14: Plotting metrics to Grafana

(Figure 4.14). Our monitoring platform is able to elastically adapt to de-
ployment changes such as scaling activity or migrations, without any need
to either restart it or modify the configuration. In the following two chapters
we will report implementation details of our Tower 4Clouds solution.

42

CHAPTER5
Modeling with Quality in Mind

This Section provides details regarding the Tower 4Clouds approach as far
as the modeling phase is concerned. The model defined during the de-
sign phase allows the runtime platform to be aware of the semantics behind
the monitored resources. The meta-model we specified in Section 5.1 de-
scribes classes and relationships among resources and is required by the
user to correctly model the system, QoS constraints and monitoring rules.
In Section 5.2, we define QoS constraints and how they can be modeled. In
Section 5.3 we provide the specification of the monitoring rules language,
how rules can be obtained from QoS constraints and how runtime monitor-
ing can be modeled. Finally, we describe how to model and configure data
collectors (Section 5.4).

5.1 The base meta-model

The base meta-model is a set of classes and relationships among these
classes that describes common concepts among all software systems. The
base meta-model proposed by Tower 4Clouds approach is depicted in Fig-
ure 5.1. First, the class Resource is defined as the parent class describing
anything that can be monitored. All other classes available in the meta-

43

Chapter 5. Modeling with Quality in Mind

providedMethodslocation

location

requiredComponents

Service

0..∞

1..∞

Resource

vendor

Internal
Component

External
ComponentVM

Location Vendor Component Method

ExternalService InternalServiceExternalVMInternalVM

Figure 5.1: The Tower 4Clouds base meta-model

model are subclasses of the Resource class. The base meta-model defines
the following additional classes:

• Component, a general class representing any subsystem. Each com-
ponent can be either a VM (i.e., a virtual machine) or a Service (i.e.,
a running software application). Each component can also be either
provided by a third-party vendor (ExternalComponent) or managed
by the application provider (InternalComponent). Moreover, both ser-
vices and virtual machines can be either external or internal compo-
nents.

• Method, a class representing operations, or functions. A service can
provide multiple methods.

• Vendor, a class representing a third party provider. This is also a re-
source since an aggregated monitoring datum can refer to a vendor
(e.g., the average CPU on a single cloud provider).

• Location, a class representing a physical or virtual area where virtual
machines are located. This is also a resource since an aggregated mon-
itoring datum can refer to a location (e.g., the average CPU on a single
location).

44

5.2. QoS constraints specification

ExternalVM

DBVM

InternalService

JavaVirtual
Machine

requiredComponents

DataCollector

requiredComponents

DB

requiredComponents

ExternalService

JavaEEAS

TicketMonster

requiredComponents

requiredComponents

Figure 5.2: Base meta-model extension derived from Ticket Monster model

When a Tower 4Clouds user is designing his application and deployment
model, he is actually extending this application independent meta-model
with application specific classes and relationships. If we took, for example,
the mixed IaaS and PaaS version of the deployment model of Ticket Mon-
ster, depicted in Figure 4.9, the underlying extension would be as shown in
Figure 5.2.

Within the MODAClouds project, the UML specification was used as
base modeling language, given its popularity. However, UML deployment
model diagram does not have any concept of inheritance, therefore the mod-
eling capabilities offered by the Tower 4Clouds approach are limited when
using such specification and new classes can only be direct children of the
base meta-model classes. However, our approach allows to define more
complex hierarchies which will offer much more flexibility when defining
monitoring rules. For example, the model depicted in Figure 5.2 can be
further extended by creating a class JavaApplication as common superclass
of both the TicketMonster and the DataCollector internal services.

We will see in the next sections how this is an advantage when modeling
QoS constraints and monitoring rules.

5.2 QoS constraints specification

During the design phase, users can annotate resources with QoS constraints.
QoS constraints are defined by the target resource, the metric name to

45

Chapter 5. Modeling with Quality in Mind

InternalService

JavaVirtual
Machine JavaApplicationrequiredComponents

TicketMonster DataCollector

Figure 5.3: Example of model which cannot be represented in UML

which the constraint is enforced and the set (or range) of acceptable values.
The target resource is any class within the ones specified in the applica-

tion specific meta-model. As we said in Section 5.1, in the UML deploy-
ment model diagram there is no concept of inheritance, therefore annotating
the resources will limit QoS constraints to target only the direct children to
the base meta-model classes. However, the Tower 4Clouds approach does
not enforce this limitation and the target can be any class within the model.
For example, a QoS constraint could target the InternalVM class, so that
the constraint will be applied to all its subclasses. Also, going back to the
example in Figure 5.3 a QoS constraint could target the JavaApplication
class so that the constraint can be specified once for every Java application.

The metric name is a string which identifies a metric. Such field can be
any name among the ones provided by the data collectors that will be used
during the runtime. A list of provided data collectors and available metrics
is reported in Section 6.4.1.

Acceptable values is a set of number whose units is dependent on the
specific metric and data collector implementation. It is usually expressed
by expressing a maximum or minimum value.

Within the MODAClouds project context, the same QoS constraints de-
fined here are also used at design time by the Creator 4Clouds module
Space4Clouds [23] in order to derive a deployment configuration capable
of minimizing the cost of the cloud infrastructure and maintain the desire
QoS.

46

5.3. The monitoring rules language

Via the model-to-model transformation defined in Section 5.3.1, the in-
formation provided by QoS constraints is used to automatically generate
monitoring rules specifying how the runtime platform will check whether
these constraints are violated.

5.3 The monitoring rules language

Monitoring rules allow to define since design time how Tower 4Clouds
should behave at runtime, by directly annotating the modeled resources.
The language aims at enabling users to easily predicate over a multi-cloud
environment at different levels of granularities. Rules instruct how and
what resources should be monitored, whether any aggregation should be
performed, whether any condition should be verified and what actions should
be performed.

Monitoring rules are automatically generated from QoS constraints.
Since rules are used not only to check constraints but also, for example,
to aggregate and generate new metrics to be sent to observers, the user can
also create rules from scratch that are not related to a QoS constraint.

Like QoS constraints, monitoring rules target resources by class, at dif-
ferent levels of abstractions. The same discourse highlighted in Section 5.2
is still valid for rules, that is, the UML diagrams are limited in compari-
son to the capabilities offered by the Tower 4Clouds approach. Monitoring
rules, as well as QoS Constraints, can target any class of the application
specific model obtained by extending the base meta-model, as described in
Section 5.1.

In addition to what QoS constraints provide, monitoring rules also offer
the ability to target resources by ID. IDs are only known at runtime and is
the unique name of an instance of a resource. This usage is useful only at
runtime, when resources are already instantiated and IDs are known. This
last feature clearly limits the flexibility of the approach, however we think
it may be required in some cases and we provided this functionality.

When targeting a resource by class, all resources of the instances of the
class are monitored according to the rule. Multiple targets can be listed in
the same rule.

Besides the targets, the monitoring rules language provide the following
fields:

• id, the unique identifier of a rule.

• timeStep, the interval in seconds between two following evaluation of
the rule.

47

Chapter 5. Modeling with Quality in Mind

Table 5.1: Available aggregate functions

Aggregate Function Name Description Required Parameters
Average Average value none
Max Maximum value none
Min Minimum value none
Count Number of monitoring data none
Sum Sum of all values none
Percentile Percentile of the order given

by the parameter
thPercentile: integer in
[0,100]

• timeWindow, time range in seconds in which monitoring data should
be considered at each evaluation step.

• enabled, specifies whether the the platform should start evaluating the
rule as soon as the rule is installed (rules can be enabled and disabled
at runtime).

• metric, the name of the metric to be collected together with any pa-
rameter required to configure data collection.

• aggregation, an optional field, it specifies the name of the aggregate
function to be computed on the windowed monitoring data at each
evaluation. This aggregation will be executed server side in order to
enable the aggregation among different sources. Table 5.1 lists avail-
able aggregate functions. The user can also define an optional group-
ingClass field, which tells the platform how the aggregation should
be partitioned. This grouping is made possible by the semantic model
that is kept alive at runtime which identifies every resource and put it
in relation with other resources. Therefore, a user can, for example,
group by virtual machine and the resulting output will be one monitor-
ing datum for each virtual machine. If no grouping class is specified,
data coming from target resources will be aggregated all together. Fi-
nally, when the aggregation field is omitted, no aggregation will be
performed and the rule will predicate on top of raw data, which means
that the condition will be evaluated on every datum and actions will
be executed for each datum.

• condition, an optional field, a boolean condition to be verified at every
time step on either the result of the aggregation, in case it is specified,
or else on raw data. It allows the user to tell the platform to check
a condition and execute actions only if the condition is satisfied. If
the condition is omitted, actions are executed at every iteration. The

48

5.3. The monitoring rules language

condition is verified against the aggregated value, within each group
(if the grouping class is specified) and at every evaluation of the rule,
that is every timeStep. If no aggregation is specified the condition is
verified for each datum. The condition should respect the following
grammar:

< c o n d i t i o n > : : = <term > | <term > ‘ | | ’ < c o n d i t i o n >

<term > : : = < f a c t o r > | < f a c t o r > ‘&&’ <term >

< f a c t o r > : : = <atom > | ‘ ! ’ < f a c t o r > | ‘ (’ < c o n d i t i o n > ‘) ’

<atom > : : = <var > < o p e r a t o r > <var >

<var > : : = ‘METRIC’ | < dec imal >

< o p e r a t o r > : : = ‘ >= ’ | ‘ <= ’ | ‘= ’ | ‘ < > ’ | ‘ > ’ | ‘ < ’

• actions, a list of actions which should be executed at each evaluation
step. If a condition is specified in the rule, the actions are executed
only in case the condition is satisfied. We defined a general purpose
action which is OutputMetric. This action simply allows to expose
the resulting metric to metrics observers (see Section 6.5). The list of
the actions that are currently implemented, together with a description
of how new actions can be implemented is available in Section 6.4.2.
In order to create parametrized actions, we defined two placeholder
that can be used within actions parameters fields: METRIC and RE-
SOURCEID. METRIC is the placeholder for the computed value. RE-
SOURCEID is a placeholder for the id of the incoming monitoring da-
tum, if no aggregation is specified, or the id of the resource for which
the aggregation is grouped by, if aggregation and groupingClass are
defined. If the aggregation is specified without any grouping class
then RESOURCEID has no value and the user should put a hardcoded
value.

5.3.1 Monitoring rules generation from QoS constraints

A set of monitoring rules is automatically generated starting from QoS con-
strained. Such rules will instruct the platform on how to generate events for
such constraints in case they are violated. Such events can be observed by
any interested metric observer. Monitoring rules are generated according
to the following conventions:

1. the acceptable values or range for the constraints is negated and will
constitute the condition under which the actions in the rule are exe-
cuted;

49

Chapter 5. Modeling with Quality in Mind

2. an action that outputs a violation metric is defined by default, with the
metric name being the name of the QoS constraint with the “_viola-
tion” suffix appended to it;

3. time windows is set to 60 second by default

4. time step is set to 10 seconds by default;

5. rules are enabled by default, which means that they will start being
evaluated as soon as installed.

After the rules have been generated from QoS constraints, the user can
modify the generated rules or create new ones.

5.4 Configuring data collectors

Once rules have been modeled we need to include in our system data col-
lectors that can actually produce the metrics required by rules. There are
very few requirements on how a data collector should be built. In general
they can either be standalone components or a libraries.

For the purposes of the MODAClouds project we developed a library
for monitoring Java applications that can provide application level metrics
such as response time and throughput1. In order to monitor system level
metrics a data collector was developed with the Imperial College London
as our project partner2. This is a standalone Java application that requires
to be running on every resource instance that needs to be monitored.

Data collectors are detailed in Section 6.4.1.
Data collectors will require at runtime information about the resource

being monitored via environment variables. This information can be eas-
ily conveyed by configuration and management tools. Within the MODA-
Clouds project, we used CloudML 4Clouds for the purpose and it was per-
formed by attaching to the required components the following properties:
env:MODACLOUDS_TOWER4CLOUDS_VENDOR_ID = ${this.provider.id}
env:MODACLOUDS_TOWER4CLOUDS_EXTERNAL_VM_ID = ${this.host.name}
env:MODACLOUDS_TOWER4CLOUDS_EXTERNAL_VM_TYPE = ${this.host.type.name}
env:MODACLOUDS_TOWER4CLOUDS_INTERNAL_SERVICE_ID = ${this.id}
env:MODACLOUDS_TOWER4CLOUDS_INTERNAL_SERVICE_TYPE = ${this.type.name}

Data collectors require this information not only for sending the resource
id within monitoring data but also to send the Tower 4Clouds server se-
mantic information on how the resource being monitored is related to other
components in the model.

1http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-
app-dc.html

2https://github.com/imperial-modaclouds/modaclouds-data-collectors

50

http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-app-dc.html
http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-app-dc.html
https://github.com/imperial-modaclouds/modaclouds-data-collectors

CHAPTER6
A Multi-Cloud Monitoring Platform

Tower 4Clouds is a multi-cloud monitoring platform specifically because it
deals with both the heterogeneity and the ephemerality of multi-cloud ap-
plications. As we introduced in Chapter 4.1, a runtime model is maintained
alive so that it represents the evolution of the system being monitored and
allow the Data Analyzer to interpret monitoring data according to moni-
toring rules. Such runtime model is an instance of the application specific
meta-model defined by the user starting from the base meta-model as we
described in Section 5.1.

Tower 4Clouds is also highly extensible, making it easy to adapt to in-
teroperate with multiple existing solutions.

Figure 6.1 depicts the runtime architecture of the platform and will be
used as reference representation throughout the chapter. An overview of
the components was provided in Section 4.1. In this section we are going
to provide more details of the single components, how their functioning
addresses the challenges brought by the multi-cloud environments and ex-
amples of implementations for both Data Collectors, Metrics Observers and
Users. In Section 6.1 we provide details regarding the Data Analyzer and
how preliminary results from the Stream Reasoning research area was ex-
ploited for the purposes of our approach. We then describe how ephemeral-

51

Chapter 6. A Multi-Cloud Monitoring Platform

Manager installRules()
addObserver()

sendData()

register()
retrieveConfig()

heartbeat()

configure() triggerActions()

Metrics
ObserversMetrics
ObserversMetrics
ObserverssendData()Data Analyzer

External VM

Java EE AS

Ticket Monster

Sys Data
Collector

App Data
Collector

Data
Collectors

Graphite

InfluxDB

RDF History
DB

Manager
Web UI

Creator
4Clouds

Figure 6.1: Tower 4Clouds runtime architecture

ity (Section 6.2), heterogeneity (Section 6.3) and extensibility (Section 6.4)
are addressed. Finally, in Section 6.5 we show what Metrics Observers are
and how existing tools can be attached to metrics.

6.1 A stream reasoner at the core

Given our modeling approach 5.1 and our monitoring rules language 5.3,
the Data Analyzer had to address the following requirements:

• it had to be able to reason on top of both streaming (i.e., monitoring
data) and static knowledge (i.e., the runtime model);

• it had to support inference rules in order to correctly interpret the sub-
class relation (i.e., if a resource is an InternalVM, then it is also a VM)
or transitive properties (i.e., if a resource X is located in Location A,
and A is located in B, then the resource is also located in B);

• it had to be able to perform statistic aggregations;

• it had to be able to verify conditions.

Stream reasoning is a novel research area which integrates results from
both stream processing and semantic web areas [32]. Researcher in this
area proposed a continuous query language (i.e., C-SPARQL) and a tool
(i.e., rsp-services-csparql) for reasoning upon streaming information based
on background knowledge [24]. Reasoning is performed upon information

52

6.2. An elastic platform

structured according to the Resource Description Framework (RDF) lan-
guage specification. Since both RDF and the C-SPARQL language were
able to satisfy our requirements for data analysis, we adopted and extended
the rsp-services-cpsarql so to integrate it as data analyzer of our Tower
4Clouds runtime monitoring platform.

Although C-SPARQL is a very powerful general purpose query lan-
guage, it is too complex to be adopted by all developers and operators. The
monitoring rules language we defined in Section 5.3 creates an abstraction
layer specific for monitoring that is then translated into C-SPARQL queries
by the Manager component. Data collectors specification is also creating an
abstraction layer from RDF both for easing the creation of new Data Col-
lectors and for reducing network traffic. In fact, RDF is a very expressive
language, though verbose. Therefore, Data Collectors send monitoring data
in a more compact JSON serialization format. The original rsp-services-
csparql was then modified so to parse monitoring data in JSON format and
convert into RDF format before processing happens. Moreover, informa-
tion regarding the resources being monitored is also sent by Data Collectors
in JSON format to the Manager when registered. The Manager is then re-
sponsible of updating the RDF knowledge base maintained locally by the
Data Analyzer (i.e., the rsp-services-csparql).

6.2 An elastic platform

In Section 2.5 we defined elasticity as the ability for a monitoring platform
to continuously operate, without interruption and without any manual re-
configuration, in case of changes in the environments. Tower 4Clouds is
able to address the intrinsic dynamicity of modern cloud applications by
means of a passive discovery mechanism, where Data Collectors are re-
sponsible of updating the central runtime model with information regard-
ing the resource they monitor. The configuration is provided by monitoring
rules, which predicate on the design time meta-model of the system. This
approach allows the monitoring platform to continuously operate, without
reconfiguration.

The first implementation of the discovery mechanism was implemented
by integrating the platform with CloudML 4Clouds [29]. A REST API
was implemented and exposed by the Tower 4Clouds Manager to add and
remove resources. CloudML 4Clouds, which already maintained its own
version of runtime model of the deployed application, was extended so to
actively notify Tower 4Clouds server when changes occurred. However,
this implementation was preventing our approach to address the interoper-

53

Chapter 6. A Multi-Cloud Monitoring Platform

ability requirement. In fact, it would be more challenging to integrate the
platform with different discovery tools.

Therefore, in the final implementation, we moved the responsibility of
updating Tower 4Clouds runtime model to Data Collectors. Data Collec-
tors already implement a specification for sending metrics, and a Java li-
brary was developed, therefore it was more convenient to implement also
this functionality on their side. Each Data Collector is responsible of up-
dating the central runtime model with information regarding the resource
it monitors by communicating it to the Manager. Data collectors will then
notify their liveness via a heartbeat mechanism. If within the configured
time to leave (TTL), no heartbeat is received by the Manager, respective
resources will be deleted from the runtime model.

6.3 Designed for heterogeneous environments

While designing the communication protocol between the Data Collec-
tors and the other components of the Tower 4Clouds platform we had to
consider that not all cloud services offer the same features and flexibil-
ity. Multi-cloud applications are distributed across heterogeneous resources
with different capabilities. For example, a PaaS solution may not allow a
service to bind to a specific port, or else, a firewall in a IaaS cluster may
block most of the incoming traffic. Therefore, in order for our monitoring
platform to guarantee comprehensiveness (as defined in Section 2.5), the
communication protocol had to minimize the requirements on the client-
side. For this reason, our Data Collectors specification enforces a monodi-
rectional communication protocol with both the Manager and the Data An-
alyzer. There are no requirements on Data Collectors host for listening to
incoming connections.

Besides technological challenges, heterogeneity of cloud resources brings
a complexity which may challenge the extensibility and maintainability of
the system as far as monitoring is concerned. Describing heterogeneous re-
sources with different hierarchies and relationships is easier with an under-
lying runtime model (Section 5.1), since it does not force users to hardcode
the hierarchy into metrics names. The underlying meta-model can be ex-
tended whenever new technologies appear by adding new classes and new
relationships. Old monitoring data will maintain their semantic meaning.
Suppose, for example, that we were using the Graphite metric path to de-
scribe a monitoring datum regarding the response time of an application
running on a virtual machine. The metric name would be something like:
vm1.app1.login.responsetime. Then suppose that we want to change the

54

6.4. An extensible framework

deployment of the application and run it into a Docker container instead of
using virtual machines. We would need to update the metric schema, and
the new metric would be: vm1.container1.app1.login.responsetime. Since
the Graphite metric path hierarchy is merely based on ordering this would
add complexity when it is needed to compare new metrics with old ones.
Such problem is more recently solved by tagged based metrics, where meta-
data schema does not rely on ordering. However, we believe the flexibility
brought by RDF and our approach using a central runtime model is even
more powerful:

• meta-data is not carried with the metric, therefore there is no need to
agree on a common metric schema on the client side;

• new technologies can be integrated in existing meta-models and mon-
itoring setup by using the inheritance provided by our framework:
a Container service can be defined as a subclass of the InternalVM
class, or a Amazon Lambda Function could be integrated as a subclass
of both a Method and ExternalComponent, allowing existing rules tar-
geting virtual machines and methods to seamless integrate these new
technologies.

6.4 An extensible framework

Given the huge number of existing monitoring solutions today, it is funda-
mental for a new platform to be able to potentially interoperate with at least
the most popular ones. In this section we overview the extensibility pro-
vided by our runtime platform by showing how new Data Collectors, new
actions and new metrics observers can easily be implemented or integrated.

6.4.1 Implementing Data Collectors

New Data Collectors can be easily implemented by using the provided
data-collector-library. The library offers a DCAgent class which is re-
sponsible of managing the communication with the server. Once started it
will first take care of contacting the Manager, registering an object named
DCDescriptor containing the information about the Data Collector, what
metrics it is able to collect and containing the information of the resources
it monitors. The DCAgent will take care of respecting the proposed spec-
ification, sending heartbeats to the Manager to notify about its health and
check if the monitoring configuration was updated by the installation of
new monitoring rules.

Here we list the main methods exposed by the DCAgent public interface:

55

Chapter 6. A Multi-Cloud Monitoring Platform

p u b l i c vo id s e t D C D e s c r i p t o r (DCDesc r ip to r d C D e s c r i p t o r) ;

p u b l i c b o o l e a n s h o u l d M o n i t o r (Resource r e s o u r c e ,
S t r i n g m e t r i c) ;

p u b l i c vo id addObse rve r (O b s e r v e r o b s e r v e r) ;

p u b l i c Map< S t r i n g , S t r i n g > g e t P a r a m e t e r s (Resource r e s o u r c e ,
S t r i n g m e t r i c) ;

p u b l i c vo id send (Resource r e s o u r c e , S t r i n g m e t r i c ,
O b j e c t v a l u e) ;

setDCDescriptor is used to configure the Data Collector. shouldMonitor is
a method offered to ask if the Data Collector should send monitoring data
regarding a specific resource and a specific metric. This method is used for
example in one of the Data Collectors we implemented for monitoring the
response time of a method. Whenever a method is called, if shouldMonitor
is true, the data is sent otherwise nothing happens. In order for a Data
Collector to be notified about any change in the monitoring configuration,
it can register an observer through the addObserver method. When the
DCAgent, after a synchronization with the server, identifies a change, all
observers are notified. Note that here we are talking about the Java concept
of observer, it does not related any how with the concept of monitoring
observer we defined in Section 2.3. Through the method getParameters the
Data Collector can extract the parameters that were specified by the user
in the metric field of the installed monitoring rule. Such parameters could
specify for example the sample time, or the sample probability. Finally,
the send method is used to actually send a monitoring datum to the Data
Analyzer.

Our App Data Collector1 (depicted in Figure 6.1) exploits reflections
and aspect oriented programming for collecting monitoring data from Java
applications. The available implementation currently support the following
metrics:

• ResponseTime: the interval between the invocation of a monitored
method and the time when the method returns;

• EffectiveResponseTime: the response time minus the time spent for
remote executions. Remote are explicitly decorated by the user via
instrumentation.

1http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-
app-dc.html

56

http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-app-dc.html
http://deib-polimi.github.io/tower4clouds/docs/data-collectors/java-app-dc.html

6.4. An extensible framework

• Throughput: the rate of calls to a monitored method in number of
requests per second.

The Sys Data Collector2 (depicted in Figure 6.1) was developed together
with the Imperial College London for the MODAClouds project. The fol-
lowing 12 different Data Collectors were included in a single agent able to
offer all the metrics provided by these tools:

• JMX,

• Collectl,

• Sigar,

• MySQL,

• Log file parser,

• Flexiant Cloud monitor,

• Amazon EC2 CloudWatch,

• Cost monitor,

• Detailed cost monitor,

• Availability monitor,

• Start-up time monitor,

• EC2 spot price monitor,

• Haproxy log monitor.

Finally, a cluster level Data Collector was developed for demonstrating
further the extensibility of our approach3. The integration experiment was
conducted with Flexiant cloud provider which as a MODAClouds partner
exposed APIs for retrieving monitoring data in form of CSV files. The
following metrics are provided by the Data Collector (the first five referring
to physical nodes:

• CPUUtilization;

• RamUsage;

• Load;
2https://github.com/imperial-modaclouds/modaclouds-data-collectors/wiki
3http://deib-polimi.github.io/tower4clouds/docs/data-collectors/

flexiant-dc.html

57

https://github.com/imperial-modaclouds/modaclouds-data-collectors/wiki
http://deib-polimi.github.io/tower4clouds/docs/data-collectors/flexiant-dc.html
http://deib-polimi.github.io/tower4clouds/docs/data-collectors/flexiant-dc.html

Chapter 6. A Multi-Cloud Monitoring Platform

InternalVM

Node

Rack Cluster

vms

nodes nodes

Figure 6.2: Extension of the base meta-model required by the cluster level data collector

• TXNetwork;

• RXNetwork;

• StorageCluster;

• RackLoad.

For the purpose the base meta-model (Section 5.1) was extended with the
following classes (see Figure 6.2:

• Node, an internal component which contains multiple virtual machines;

• Rack, an internal component which contains multiple nodes;

• Cluster, an internal component which contains multiple nodes.

6.4.2 Implementing actions

New actions to be used in monitoring rules can be easily implemented in
Tower 4Clouds by creating a new Java class with the desired name, extend-
ing the AbstractAction class. The abstract methods to be implemented by
the new action are:

Set < S t r i n g > ge tMyRequ i r edPa r s () ;

Map< S t r i n g , S t r i n g > g e t M y D e f a u l t P a r a m e t e r V a l u e s () ;

C o l l e c t i o n <? e x t e n d s Problem > v a l i d a t e (M o n i t o r i n g R u l e r u l e ,
L i s t < Moni to r ingRu le > o t h e r R u l e s) ;

vo id e x e c u t e (S t r i n g r e s o u r c e I d , S t r i n g va lue ,
S t r i n g t imes t amp) ;

58

6.5. Metrics observer

The first method should return the set of parameters required by the action.
The second should return the default values for each of the parameters.
The validate method let the user implement any validation this new action
should pass in order to be installed. The rule parameter in validate method
is the current rule being installed, while otherRules are all rules that already
installed. Given, for example, the EnableRule action implementation, val-
idate is checking if the rule to be enabled is actually installed. Finally, the
execute method is the code to be run whenever the condition is verified.
This method is passed as parameter all the information regarding the ag-
gregated monitoring datum computed by the rule in case it is required by
the action.

Actions that were developed are listed in Table 6.1.

6.5 Metrics observer

Once a new metric is generated by means of an OutputMetric action in a
monitoring rule, a metric observer can be attached. A metric observer is
simply any service listening on a port to either HTTP, TCP or UDP connec-
tions, and able to parse any of the implemented serialization formats.

The implemented serialization formats that we implemented4 in our Data
Analyzer (i.e., the rsp-services-csparql are the following:

• RDF/JSON, the default format provided by the rsp-services-csparql;

• Graphite, for sending metrics to the popular time series database Graphite
(depicted in Figure 6.1);

• TOWER/JSON, a simple JSON serialization;

• INFLUXDB, for sending metrics to the more recent Influxdb time se-
ries database (depicted in Figure 6.1).

6.5.1 Saving historical data

Among the metrics observers, we implemented a service which records
observed metrics as well as timed snapshots of the runtime model, the RDF
History DB5 (depicted in Figure 6.1).

Historical data is of high importance to be able to do ex post analysis.
Deeper understanding of failures in the past can be obtained, identifying

4http://deib-polimi.github.io/tower4clouds/docs/data-analyzer/
serialization-formats.html

5http://deib-polimi.github.io/tower4clouds/docs/observers/rdf-history-
db/

59

http://deib-polimi.github.io/tower4clouds/docs/data-analyzer/serialization-formats.html
http://deib-polimi.github.io/tower4clouds/docs/data-analyzer/serialization-formats.html
http://deib-polimi.github.io/tower4clouds/docs/observers/rdf-history-db/
http://deib-polimi.github.io/tower4clouds/docs/observers/rdf-history-db/

Chapter 6. A Multi-Cloud Monitoring Platform

Table 6.1: Available actions (* = mandatory parameters)

Action name Description Required Parameters
OutputMetric Generate a new mon-

itoring datum
resourceId: resource id name (de-
fault: RESOURCEID)
metric*: new metric name
value: metric value (default: MET-
RIC)

RestCall Execute a rest call method*:
{PUT,POST,GET,DELETE}
url*: the endpoint url
content: the body of the request

EnableRule Enable a rule id*: the id of the rule to enable

DisableRule Disable a rule id*: the id of the rule to disable

CloudMLCall Issues a command to
CloudML 4Clouds,
usually to perform a
deployment change

ip: ip address of CloudML 4Clouds
(default: 127.0.0.1)
port: port of CloudML 4Clouds
(default: 9030)
command*: command to be issued
(possible values: SCALE, BURST)
type*: type of resource that will be
considered
n: number of instances to add (neg-
ative numbers allowed; default: 1)
cooldown: seconds to wait before
re-enabling the action (default:
600)

60

6.5. Metrics observer

the root-cause and trying to avoid the problem in the future. Also, useful
information on how to better exploit resource, or understand if a new release
caused a performance degradation.

For this purpose, we created an observer able to store monitoring data
in their native RDF format, together with their timestamp, in an RDF triple
store (e.g., Apache Fuseki). Monitoring data is periodically split into sep-
arate RDF graphs for performance reasons. Every graph has a timestamp
with the time in which it was created and contains only monitoring data
within the interval. Such interval can be configured based on the amount of
data the platform is supposed to ingest.

However, monitoring data per se would not make any sense by itself,
since we need the runtime model of the application to interpret it. We
therefore saved the entire changelog of the runtime model as well. Deltas
are stored by the Manager in a new graph every time a change is made,
together with a timestamp. Periodically (1 hour by default), a complete
snapshot is taken as well in order to construct the runtime model state at a
given point in time faster.

We did not created a higher level language to query the historical data
base, since historical analysis was not the main focus of this work, so
SPARQL query language should be used.

61

CHAPTER7
Evaluation

The objective of the evaluation is that of validating that our approach suc-
cessfully addressed the challenges and relative requirements identified in
Section 1.1, namely:

• abstract from heterogeneity and prevent lock-in (Requirement 1.1.1),

• elastically adapt to ephemeral and dynamic systems (Requirement 1.1.2),

• limit the requirements on the data collector side to improve portability
(Requirement 1.1.3),

• provide an extensible platform able to cope with future evolutions and
interoperate with existing tools (Requirement 1.1.4),

• timely provide required information for reacting before end-user per-
ception (Requirement 1.1.5).

Evaluation for these requirements is mainly empirical, based on the ex-
perience of different users which tested and integrated our solution accord-
ing to their business and technical requirements.

63

Chapter 7. Evaluation

Then, we will run some experiments to evaluate the major current draw-
back of our solution which is strictly bounded to the current state of the art
of RDF Stream Reasoners, which affects scalability.

Finally, we discuss about the remaining requirements listed in Section 2.5,
how we addressed or could be addressed in a production ready solution.

7.1 Abstract from heterogeneity and prevent lock-in

The heterogeneity of today’s hosting solutions and available services is ad-
dressed by the platform via a provider independent model based approach
where complex systems can be modeled exploiting the runtime inference
capabilities of our Data Analyzer. Inheritance allows to describe resources
abstracting away from details and simplify user perception of the whole
system. Monitoring rules address these classes, at any level, so that mon-
itoring can be configured at the most appropriate level of abstraction. The
underlying RDF model representation of the system enables multiple inher-
itance, so that a resource can be both an Authentication Service, an Internal
Component and a Java Application and rules can target any of these classes.
Moreover additional inference rules can be added to the knowledge base,
such as transitive properties. We claim that provider independent modeling
and the specified monitoring rule language able to target different level of
abstraction guarantee the platform the flexibility to work in heterogeneous
environments and prevents lock-in. To support our claim an example of
heterogeneous deployment was shown in Section 4.3.2, where the Ticket
Monster application was modeled, first, for a IaaS provider with qos con-
straints and rules. Then, the same application was modeled for a mixed
IaaS and PaaS deployment. In the second case we were able to reuse most
components and the same qos constraints and rules, with the exception of
those targeting hidden resources (i.e., PaaS infrastructure).

7.2 Elastically adapt to ephemeral and dynamic systems

In order to evaluate elasticity we had to verify that the platform was able to
cope with both the cloud dynamism and the changes in monitoring require-
ments. We therefore first assessed that the runtime model was correctly
updated while monitored resources changed. Once the model was updated,
respective data collectors located on those resources were correctly config-
ured and start monitoring. Next, we assessed that installing and removing
rules at runtime worked properly and data collectors were correctly notified
about the change of requirements. For our experiments we deployed both

64

7.2. Elastically adapt to ephemeral and dynamic systems

0 10 20 30 40 50 60
1

33
65
97
129
161
193
225
257
289
321
353
385
417
449
481
513
545
577
609
641
673
705
737
769
801
833
865
897
929
961
993

Seconds

N
um

be
r	o

f	V
M
s

Model	Update	Time

Wait	Time Update	Time

Figure 7.1: Model update time in seconds after starting one thousand virtual machines

the Manager and the Data Analyzer on an AWS t2.medium virtual machine
in Ireland.

In the first experiment we simulated the startup of a single virtual ma-
chine with a data collector deployed on it collecting the CPU utilization.
Such virtual machine was running in Italy on a laptop, in order to simulate
a multi cloud scenario where monitored resources can be located on dif-
ferent networks. The model was correctly updated with the new VM after
1180 ms after startup, 1030 ms being the network delay. In the second ex-
periment we drastically increased the number of simulated virtual machines
up to one thousand. Figure 7.1 shows the that we started all the machines in
less than 15 seconds (a machine is started when the light gray bar begins)
and it took around 50 seconds to have the model completely updated (which
is when all the dark gray bars end). Currently, as soon as the Manager com-
ponent receives a registration request from a Data Collector, the required
update query is immediately created and performed to update the runtime

65

Chapter 7. Evaluation

model. Model updates are serially executed. However, queries could be
easily aggregated by the Manager, for example every second, to reduce the
waiting time and increase performance. It is also noteworthy to consider
that starting 1000 thousand machines at once is a very extreme case even
for huge companies and a 50 seconds delay before starting to monitor can
be ignored.

We ran another experiment to check if the model is updated correctly af-
ter resources expire and we shut down all one thousand machines at once.
In such case, there is a configuration trade off between traffic cost and ac-
curacy. An accurate model allows to have exactly the existing resources
modeled and analysis is more performant compared to keeping all expired
resources in the model. However, since the platform is able to work fine
even if the model contains expired resources, we do not need to set the
keep alive period to be very frequent. In our experiment we configured data
collectors to synchronize with the server every 60 seconds. If no communi-
cation happens within 120 seconds, those resources are flagged as expired.
Server side, a single thread checks every 60 seconds what are the expired
resources and delete all of them in a single query. Therefore there is only
one single call to the Data Analyzer which is able to remove all one thou-
sand virtual machines from the model in less than a second when the query
is issued.

Finally, we wanted to check if the platform is elastic when the moni-
toring configuration changes. We ran an experiment with fewer machines,
just a hundred, in order not to incur in scalability problems and have this
evaluation run in normal conditions. We installed a Monitoring Rule to ask
all data collectors running on each virtual machine to send CPU utilization
to the server and then uninstalled it after a hundred seconds. Figure 7.2
shows the results. At time 0 the rule is installed. Within 60 seconds all data
collectors are configured and start sending metrics. After 100 seconds the
rule is uninstalled and within 60 seconds all data collectors stop sending
data.

7.3 Limit the requirements on the data collector side to im-
prove portability

Data collector protocol requires a monodirectional communication towards
the server. There is no need for a data collector to bind to a specific port,
the responsibility is moved entirely to the client side. Data collectors au-
tonomously connect to the server side for self-registering, communicating
resources being monitored, retrieve the configuration, send monitoring data

66

7.3. Limit the requirements on the data collector side to improve portability

0 20 40 60 80 100 120 140
1
6
11
16
21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96

Monitoring	Reconfiguration	Time

DCs	Sending	CPU	After	Rule	Installation DCs	Sending	CPU	After	Rule	Uninstalled

Figure 7.2: Monitoring reconfiguration time for one hundred data collectors after rule
installation and uninstallation

67

Chapter 7. Evaluation

and notify their liveness.
We claim this approach addresses the portability requirement since it is

possible to push data even from PaaS solutions.

7.4 Provide an extensible platform able to cope with future
evolutions and interoperate with existing tools

Extensibility and interoperability were validated empirically by asking sev-
eral users, which did not know the platform in detail, to try to adapt and ex-
ploit Tower 4Clouds capabilities to address their case study requirements.
We report here in this Section all users experiments and the feedback we
received. Part of the evaluation is available in the MODAClouds public
deliverable regarding the evaluation report [38].

7.4.1 Imperial College London

At Imperial College London1, a PhD student managed to build several data
collectors thanks to our data collector library. He first integrated Sigar and
Collectl for host level data collection. Then created data collectors for col-
lecting JVM metrics provided via JMX, MySQL metrics accessible via the
SHOW GLOBAL STATUS query, application level metrics via an ad hoc log parser
configured via a regular expression provided as parameter to the monitor-
ing rule, Amazon Cloud Watch metrics and AWS costs via their public API,
application and virtual machine availability via custom health checks.

After building these data collectors they wanted to exploit the platform
to aggregate such monitoring metrics from all monitored resources and
have them sent to a custom observer which was able to infer higher level
knowledge via statistical analysis in order to obtain forecasts and correla-
tions between metrics.

The interaction during the integration process did not require too many
iterations. The provided Java library was easy to use to integrate all the
existing agents with the platform and did not require more than one week
of work.

The main benefit Tower 4Clouds offered to such integration was the ag-
gregation, filtering and routing capability offered by Tower 4Clouds off the
shelf. Thanks to the data collector library heterogeneous metrics coming
from multiple data collectors were uniformed and made accessible via a
single rule language.

1https://www.imperial.ac.uk

68

https://www.imperial.ac.uk

7.4. Provide an extensible platform able to cope with future evolutions and
interoperate with existing tools

Figure 7.3: BOC Group integrated monitoring solution

7.4.2 BOC Group

BOC2 has been using Nagios and Icinga for infrastructure monitoring for
some years and its DevOps team has acquired the know-how required to
use these tools. In the context of the MODAClouds European project they
wanted to integrate the results of the Tower 4Clouds approach into their
development and operational activities. They did not want to waste the
expertise on the previous platform, therefore they decided to keep the Na-
gios and Icinga frontend interface, while integrating Tower 4Clouds data
collection, transportation and processing mechanism. The key benefit they
experienced from using Tower 4Clouds was the ease of creating new data
collectors for extracting data from their application logs without any devel-
opment effort, simply by configuring monitoring rules.

Another relevant benefit offered by Tower 4Clouds for BOC was the
ability to use a single data collection technique that could then be processed
and delivered to different tools (such as Nagios, Icinga or Graphite), with-
out replicating the collectors.

Their integrated solution is depicted in Figure 7.3.
They were able to integrate the platform based on the provided docu-

mentation and it required only one hour of personal interaction with one of
the employees and a couple of email exchanges.

2https://uk.boc-group.com

69

https://uk.boc-group.com

Chapter 7. Evaluation

7.4.3 Softeam

Given the QoS constraint and the monitoring rule specifications and our
monitoring rule library, Softeam3 managed to integrate the modeling phase
of our approach inside their modeling tool (Creator 4Clouds). Given our
Manager API specification they also added a plugin in their IDE to allow
the QoS engineer to publish the modeled monitoring rules to the running
monitoring system by simply pushing a button.

They were also in the process of building a cloud version of their mod-
eling IDE, namely Constellation, where they also implemented a custom
dashboard which was easily attached as observer to Tower 4Clouds in or-
der to show monitoring data about their tool when running.

Tower 4Clods was therefore integrated so that the monitored application
was also providing a monitoring interface, proving the high interoperability
of our platform.

7.4.4 Sintef

Given the specification of our data collectors, Sintef4 was able to extend
its deployment tool with the ability of defining environment variables that
could be used to configure data collectors with information about the model
when the application was deployed.

7.4.5 SeaClouds

SeaClouds5 European project integrated Tower 4Clouds with Apache Brook-
lyn and used it as main monitoring platform in their project.

They did not used the entire feature set provided by our approach, how-
ever they automatized the deployment of data collectors based on the met-
rics defined on monitoring rules.

Moreover, they did not use UML as modeling specification but a simpler
modeling language provided by Apache Brooklyn which is compliant with
Tosca specification6.

3http://www.softeam.com
4https://www.sintef.no
5http://www.seaclouds-project.eu
6https://www.oasis-open.org/committees/tosca/

70

http://www.softeam.com
https://www.sintef.no
http://www.seaclouds-project.eu
https://www.oasis-open.org/committees/tosca/

7.5. Timely provision required information for reacting before end-user
perception

7.5 Timely provision required information for reacting before
end-user perception

Monitoring rules partially address the challenge by providing a config-
urable evaluation time step and time window. Our platform does not pro-
vide event based notification, however if it is important for a metric to be as
fresh as possible, the time step can be setup even to 1 second and the rule
would be evaluated every second. This would clearly impact scalability as
detailed in Section 7.6 and tradeoffs must be made.

7.6 Scalability

There are still few works considering to use a stream reasoning approach as
a possible solution to aid monitoring cloud applications and this is mainly
due to the technological gap which prevents to use stream reasoners in the
big scale. The expressiveness of the underlying query language and the
ability to reason on both static and stream knowledge affects considerably
the scalability. There are however ongoing studies on how to parallelize the
computation to increase the scalability [41].

We wanted to assess how the current performance constraints affect the
functionality of the current platform. Supposing we have R monitoring
rules, each to be evaluated on average every S seconds, the average execu-
tion time T of each rule cannot be greater than S

R
.

We first tested the execution time of a single monitoring rule aggre-
gating the CPU utilization of an increasing number of virtual machines.
The virtual machines were simulated, and their respective data collectors
were sending a monitoring datum every 10 seconds. The rule had a time
window of 60 seconds and was periodically executed every 60 seconds.
Figure 7.4 shows the results. We can see that the execution time of a sin-
gle rule increases exponentially with the number of monitored resources.
When monitoring 1000 resources the average execution time is around 7.7
seconds, which means we have an upper limit of 60s

7.7s
≈ 7.8 installable

monitoring rules of this kind. If we had 500 resources to be monitored the
upper limit would raise up to 60s

2.2s
≈ 27.3 monitoring rules. These results

clearly highlight that scalability is an issue for big systems and something
to be addressed in the future work.

Finally, we tested the scalability of the execution time of monitoring
rules, by keeping the number of monitored resources constant and increas-
ing the number of rules installed simultaneously. We ran 3 experiments
with 100, 250 and 300 rules uniformly distributed in time and with both

71

Chapter 7. Evaluation

0

1

2

3

4

5

6

7

8

9

1 10 100 500 1000

Ex
ec
ut
io
n	
Ti
m
e	
(s
ec
on
ds
)

Number	of	VMs

Rule	Execution	Time

Figure 7.4: Average rule execution time of a single monitoring rule with an increasing
number of monitored virtual machines

time step and time windows of 60 seconds, while monitoring the CPU uti-
lization of 100 simulated virtual machines. The theoretical upper bound
for such scenario, given the previous experiment where a rule predicating
on the CPU utilization of 100 VMs had an average execution time around
0.2s, would be 60s

0.2s
= 300 rules. This result is reflected in the experiment

shown in Figure 7.5, which highlight that when 300 rules are installed the
platform saturates resources.

7.7 Other requirements

The implemented platform was built for the purposes of a research project
so it is hard to evaluate affordability which is usually related to the pricing
model of the monitoring solution. However, since our solution maintains
the model alive at runtime, monitoring data does not have to carry the entire
information about the resource but only its id, affordability was addressed
by reducing the traffic load which is usually billed by cloud providers based
on the size of transferred data.

Non-intrusiveness is clearly a requirement which depends on how each
data collector is implemented. Famous and battle-tested tools we integrated
such as Collectl and Sigar have very low overhead as they are written in C

72

7.7. Other requirements

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec
ut
io
n	
Ti
m
e	
(se

co
nd
s)

Time	(minutes)

Rule	Execution	Times	(100	rules)

0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec
ut
io
n	
Ti
m
e	
(se

co
nd
s)

Time	(minutes)

Rule	Execution	Times	(250	rules)

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ex
ec
ut
io
n	
Ti
m
e	
(se

co
nd
s)

Time	(minutes)

Rule	Execution	Times	(300	rules)

Figure 7.5: Rules execution times over 20 minute experiment monitoring CPU utilization
of 100 virtual machines installing 100, 250 and 300 rules with 60 seconds time window
and 60 seconds time step

73

Chapter 7. Evaluation

and have been used and improved for many years7. The Java application
level data collector we developed uses AspectJ which add negligible over-
heads8 and its impact on normal functioning of the application depends
on how the data collector developer use it. We avoided intrusiveness by
limiting the number of synchronous operations and performing expensive
operations, such as sending data to the data analyzer, asynchronously.

Multi-tenancy was partially addressed in our work. A data collector was
developed to monitor also physical hosts on Flexiant Cloud through the API
they exposed for us and by extending the meta-model with the new Cluster,
Rack and Node classes. This extension allowed to aggregate monitoring
data from multiple virtual machines by node. However the experiment was
limited to only one cloud, and there was no information about tenants. In
order to thoroughly address multi-tenancy, the base meta-model should be
extended with a Tenant class and information regarding which resource
belongs to which tenant should be provided to data collectors.

Adaptability is partially addressed. Monitoring rules actions can be used
to change how data is collected in response to certain conditions. However
this kind of adaptation is delegated to the QoS engineer and it is not auto-
matically offered by the platform.

Autonomicity is addressed in the runtime platform thanks to the actions
that the QoS engineer can set in monitoring rules. In the current implemen-
tation only one action for automatic remediation was implemented. The ac-
tion allows to scale up or down the number of machines using the MODA-
Clouds deployment tool CloudML 4Clouds in response to events. However,
given the platform modularity, new actions can be added. It is worth notic-
ing however, that the autonomicity that Tower 4Clouds can provide is only
threshold based. In order to exploit more advanced techniques that involve
machine learning algorithms, for example, ad hoc tools should be built and
use the provided APIs to extract the required information from the platform,
i.e., attaching as observer to retrieve streaming monitoring data, query the
model current status, query the history database via SPARQL queries.

At state of the art, there are several techniques used for production ready
tools to address resiliency, reliability and availability. However, they were
not implemented since it was out of the scope of this work. For example,
availability could be addressed by creating a master-slave architecture on
the server-side, replicating both the manager and the data analyzer. The
model is slowly changing so it is easy to synchronize multiple instances

7http://collectl.sourceforge.net/Performance.html
8http://www.eclipse.org/aspectj/doc/released/faq.php#q:

effectonperformance

74

http://collectl.sourceforge.net/Performance.html
http://www.eclipse.org/aspectj/doc/released/faq.php#q:effectonperformance
http://www.eclipse.org/aspectj/doc/released/faq.php#q:effectonperformance

7.8. Threats to Validity

of replicated stores. State of the art tools for service discovery (such as
Consul [4] or ZooKeeper [17]) can be used to make data collectors com-
municate with the master server.

Finally, accuracy is not directly addressed since the focus was on mon-
itoring definition and the platform and not on data collection methods and
their accuracy.

7.8 Threats to Validity

The Tower 4Clouds approach aims at raising the attention to QoS monitor-
ing since the first phases of the development in order to improve the feed-
back loop since the first runtime deployments. Besides the performance
and scalability issues we investigated in this chapter we believe the major
threat to validity for the approach is the applicability of such an approach
to a real industrial scenario. Current release cycles are very demanding in
terms of time to market and most of the software companies do not spend
time modeling their system or are not aware of the QoS requirements since
the first phases of development.

As we presented in this evaluation chapter, feedback was received from
use case providers which participated to the MODAClouds research project.
However, the feedback is limited to the applicability of the approach to
prototypes and not to real world scenarios.

75

CHAPTER8
The State of Practice: an Industrial Survey

In this chapter we describe the empirical study we conducted to discover
the challenges practitioners are addressing by using existing monitoring
solutions.

The main objective of the study is to identify what are the main chal-
lenges that industries are facing today while monitoring their software sys-
tems and how they handle incidents. For the purpose, a survey was con-
ducted in order to assess tooling and methodologies currently used by in-
dustries to monitor their IT systems, understanding what people, tools and
processes are involved in observing and managing both the quality of ser-
vice and the experience perceived by users and to collect the open chal-
lenges.

Finally we aim at verifying whether the Tower 4Clouds approach can
help satisfying some of the identified challenges.

8.1 Research Questions

Given the challenges and the importance of monitoring, this empirical study
aims at understanding the following questions in today’s companies:

• Q1. Is monitoring actually perceived as a fundamental asset?

77

Chapter 8. The State of Practice: an Industrial Survey

• Q2. To what extent do companies monitor their software systems and
how?

• Q3. How are incidents discovered and handled?

• Q4. What are the roles of people involved with monitoring?

• Q5. What are the most critical challenges perceived when trying to
make a system observable?

• Q6. Does Tower 4Clouds provide any contribution that may help com-
panies?

Asking to a broad sample of people to understand, try and test Tower
4Clouds would be unfeasible and we would have reduced the participation.
Therefore, question Q6 was not explicitly asked in this research study. We
tried to answer ourself after analyzing the results.

8.2 Research methods and approach

In this study we aimed at having a complete and comprehensive overview
of the the practical use of monitoring in the industries. Therefore, there was
the need for reaching the biggest number of companies across several areas
and sizes. We decided to build a standardized form with closed questions
to be shared across several broadcasting channels. The target goal was to
gather feedback from at least 100 companies.

Research questions in Section 8.1 are very broad questions and required
to be detailed in more specific and closed questions. However, there was
little knowledge about the actual perception of today’s industries about the
matter. Therefore, with the intent of being as unbiased as possible, the study
was conducted iteratively, starting from the main research questions, run-
ning few in-person interviews and gradually extracting the most valuable
questions for the final survey.

The complete study design is here described in detail:

1. Starting from the above research questions (Q1-Q6), a list of open
questions was prepared to be used as starting point for discussion.
The purpose of these questions was to guide the discussion to under-
stand the company main business, the role of the interviewee within
the company and their software product. Then, they would help the
interview to go through the practices, tools and people involved in the
operations, maintenance and incident handling. Finally, they had to
guide the discussion to have the interviewees expose problems and

78

8.2. Research methods and approach

open points regarding the available monitoring tools and practices.
The fifteen questions that were prepared are reported in Appendix B.1.

2. For the first phase we aimed at selecting companies developing and
maintaining software systems covering the following architectural
styles:

• microservices architectures, since they are an increasingly popu-
lar development approach and monitoring is challenging because
of their intrinsic distributed nature;

• multi-tenant hosting, since companies offering multi-tenant solu-
tions need to take special care of monitoring in order to guarantee
the SLA agreed with the different users when resources are shared
among them;

• sensor networks, since they have particular requirements such as
energy efficiency constraints and unreliable infrastructures, re-
quiring special monitoring attention.

Moreover, companies were chosen also to cover the following areas
that are orthogonal to the previous classification:

• web applications, where monitoring is fundamental to provide
required quality of service to users, which can cope with often
unpredictable traffic spikes;

• real-time services (e.g., gaming or trading), where timing con-
straints need to be monitored;

• technology providers, which are offering software solutions, in-
stalled on customers machines, and may provide support for mon-
itoring on heterogeneous hosting solutions.

Among the fourteen contacts we initially identified, seven accepted to
participate. Among the selected architectures, sensor networks was
not covered as well as real time services from the selected areas.

3. The fifteen questions were shared with the contacts together with the
invitation to participate in the study. This allowed them to better iden-
tify the most qualified person for the interview and to gather informa-
tion in advance if needed.

4. In-person interviews were scheduled and took about one hour each.
When face to face meetings were not possible for time or spatial con-
straints, conference calls were organized. Anonymized summaries are
reported in Appendix B.2.

79

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.1: Screenshot of the Survey online form.

5. Interviews were analyzed in order to obtain first exploratory feedback
and hypothetical answers to the main research questions (Q1-Q6).
This analysis allowed to better identify closed questions and hypoth-
esis to be verified across a bigger set of candidates during the second
phase.

6. An online form with closed answers was prepared (Figure 8.1). The
survey consisted of three sections: the first asking for information
about the respondent role and the company; the second focused on
understanding the software system architecture, its development and
its releasing process; the last section about how monitoring is done
and how incidents are solved.

7. The form was perfected iteratively in order to improve clarity and
avoid ambiguities. First, it was shared among some colleagues of
my research group, which were asked to review it by trying to fill
it and provide feedback. Then, it was shared with some colleagues
outside my research group for a further review process. Finally, the
survey was sent to the people that were involved in the first phase of
in-person interviews to begin collecting answers and check the first
answer set and any provided comment or question to further verify
possible problems.

8. The final form consisted of 38 questions and was prepared using a

80

8.3. In-person interviews results

Google Form1. The estimate time for answering was estimated to be
15 minutes. 141 Responses were collected by sharing the submission
link via multiple broadcasting channels:

• personal contacts or their acquaintances;
• posts on social medias such as Facebook and Twitter;
• requests to advertise the form via mailing lists and communi-

ties (e.g., we asked several meetup organizers around the world,
which are focused on monitoring, to share the survey among their
participants);

• posts on Reddit, under /r/sysadmin and /r/devops sub-
reddits.

The form was left open for answers for around two months.

8.3 In-person interviews results

Table 8.1 summarize the sample that was considered for in-person inter-
views.

These interviews were useful to gather an initial feedback on monitoring
in the industries. We started from these responses to collect a first set of
considerations to be verified on a larger sample during the second phase.
Insights will reference research questions listed in Section 8.1 (Q1-Q6).

First, the interest in monitoring exceeded our expectation (Q1). All in-
terviewees considered monitoring a fundamental practice. It is performed
in different ways, but all of them are doing it (Q2) and, most of all, no one
asserted that monitoring is useless or that is not worth investing on it.

Small companies usually prefer cloud hosting solutions and tend to ex-
periment with more recent technologies (e.g., Docker containers) and pat-
terns (e.g., microservices). There is usually one team taking care of both
development and operations (Q4). They do not invest much in monitoring,
rather they prefer to use solutions that are available at small cost and with-
out implying excessive effort (Q2). Incident handling is mainly diagnosed
by means of manual log analysis (Q3). The most important metrics are
availability and their product-specific business metrics.

In medium companies developers and operators are usually separated
teams which have different responsibilities. Usually only operators receive
alerts from the monitoring system (Q4). Operators are skilled enough to
setup a monitoring platform using one or more open source monitoring

1https://goo.gl/forms/UHY1PUEXVm64yhKF3

81

https://goo.gl/forms/UHY1PUEXVm64yhKF3

Chapter 8. The State of Practice: an Industrial Survey

Table 8.1: Interviewees sample. Clarification: when a company has multiple ongoing
projects the study refer to a single project. IT headcount is the number of IT people
working on the selected product.

ID Domain Role Total/IT
headcount Product Architecture Software stack Monitoring stack

I1 Travel CTO 100/10
B2B and
B2C web
services

Microser-
vices

Scala/Java, Akka,
Docker

containers,
Amazon EC2

Amazon Cloud Watch,
custom availability

checks

I2 Software

Research
Software

Engineer in
Innovation

Lab

100/5

Stream
processing

tool for
news

validation
(prototype)

Event driven,
microser-

vices Java, MongoDB Custom code
instrumentation

I3 Software System
Architect 200/150

SaaS
services for
enterprises
business
manage-

ment

3-tier,
multi-tenant

DB

Java, Tomcat,
C++, SQL Server,

HAProxy,
Linux/Windows,
third party IaaS

Focused on DB metrics,
Graphite, Grafana,

Nagios, Icinga, ELK
stack

I4 Software Chairman,
CTO 5/3

SaaS rec-
ommending
system for
business
manage-

ment

monolith
with

Multi-tenant
DB

Java, Google App
Engine, Google

SQL

Focused on DB and
business metrics,
Google Analytics,

Google App Engine
Dashboard

I5

Software
/ Hard-
ware

Distin-
guished
Engineer

~400.000

Enterprise
infrastruc-
ture system

Mainframe
solution N/A

Proprietary monitoring
tools, analysis and

alerting tools for all IaaS
and PaaS services they

provide

I6

Software
/ Hard-
ware

Solution
architect ~100.000

N/A
(general
interview
regarding
multiple

customers)

N/A N/A

Financial corporations
buy expensive and

sophisticate on premise
monitoring tools such as

Dynatrace. Other
companies prefer

monitoring as a service
with small setup efforts.

Most companies use
custom solutions with
general purpose and
already known tools

such as relational
databases and

spreadsheets for data
analysis

I7 Finance CTO 40/5 e-payment
platform

Microser-
vices

Java, third party
services (e.g.,
Google API),

relational
database, Amazon
S3, Amazon EC2,

Amazon SNS

Amazon Cloud Watch,
manual log checking
(soon moving to ELK
stack), custom library

pushing metrics to
Cloud Watch and/or to

report table

82

8.4. Survey

tools for both system and application metrics and metrics can be shown
on dashboards, usually accessed by operators only. Logs are collected and
accessed using the ELK stack (Q2).

Large companies usually manage more complex systems and therefore
tend to invest in more sophisticated monitoring solutions. Also, compa-
nies where incidents can cause huge losses prefer to pay for monitoring
solutions and related support. These expensive solutions allow them to use
advanced machine learning and big data techniques for analyzing monitor-
ing data (Q2).

In all companies, alerts are mainly sent via email or via SMS in case of
critical issues (Q3). If there is any automatic remediation based on some
monitoring check, it involved only restarting a service or scaling up and
down hosts (Q3). Issue detection is mainly based on threshold, only com-
panies with strong IT departments or those investing a lot for third party
monitoring tools have more sophisticated machine learning tools for de-
tecting problems (Q2, Q3). In most of the cases custom code is used and
monitoring data is analyzed using tools that are not monitoring-specific like
relational databases or spreadsheets (Q2).

During the interview I3 a limitation of today’s monitoring tools is iden-
tified, which is the lack of standards and integration. The company use
different data collecting tools on the same machines with different scopes,
with data flowing through different paths according to different protocols.
Some metrics even overlap between each other.

This is for example a challenge addressed by Tower 4Clouds (Q6) since
it enforces the usage of the same protocol for sending data to one single data
analyzer which is then able to route processed data to different destinations
according to monitoring rules.

Another challenge that was identified during this first phase is the high
market demand and competitiveness. Startups (interview I7) or emerging
companies (interview I1) that are trying to address new market opportuni-
ties, require a speed to implement new features that delays the application
of quality assurance techniques unless they require very small setup efforts
(interview I6).

8.4 Survey

8.4.1 Data acquisition

During the two months of data acquisition the responses trend was moni-
tored in order to understand what were the most impactful communication

83

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.2: Survey responses rate over time.

techniques as a parallel study and the resulting trend is depicted in Fig-
ure 8.2. The trend clearly highlights three spikes that are related to two dif-
ferent advertising actions. The first, in the beginning of August, when the
message was broadcast to around 250 personal contacts, requesting them
to share the research survey to any of their acquaintance working in IT.
The second a couple of days later when the same message was broadcast
to around 100 other personal contacts. The third in the middle of Septem-
ber when the research was advertised on Reddit under the /r/sysadmin
subreddit, which counted around 150.000 readers and revealed to be the
most impactful channel.

8.4.2 Data sampling

After two months around 141 responses were collected. The sample re-
vealed to be quite distributed in terms of industries types as can be seen
in Figure 8.3. 43.7% belongs to technological industries. The rest is dis-
tributed among several areas: financial services, telecommunications, health
care, consumer care and others.

Figure shows that the sample is well distributed with reference to the
size of the companies. 25% are under 20 employees, 21% are between 21
and 100, 22% between 101 and 500, 22% between 501 and 10.000 and the
remaining 10% over 10.000.

In terms of IT department size (Figure 8.5) 30% of the companies has
less than 5 IT employees, 26% between 6 and 20, 18% between 21 and 100,
the remaining 26% has an IT bigger than 100 employees.

84

8.4. Survey

Figure 8.3: Industry types distribution.

Figure 8.4: Industry sizes distribution.

85

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.5: IT sizes distribution.

Respondents were usually covering multiple roles, however 96% of them
were either developers, system administrator or devops engineer. Among
these, 39% covered exclusively a development role, 14% exclusively a sys-
tem administration role, 12% exclusively a devops role.

Software systems are distributed as depicted in Figure 8.6, more than a
quarter of the companies develop enterprise software.

Architectural choices distribution is depicted in Figure 8.7.
Most software systems are composed of a small number of deployable

components: 72% have less then 10 components, with 38% having less than
3 components. 20% have between 11 and 50 components, the remaining
8% over 50 components.

Figure 8.8 depicts the hosting solutions adopted by the interviewees.
36.17% of them use the public cloud, 11.4% of which using it as the only
hosting solution for their entire system.

Regarding the deployment solution there is a considerable percentage of
companies that deploy on bare metal and on IaaS (Figure 8.9). However a
good sample of companies using also more ephemeral solutions or higher
abstraction layers took part to the survey.

We also collected a subjective score of the automation level of the re-
lease cycle (Figure 8.10), the release rate 8.11 and, finally, the average
workload their systems undergo (Figure 8.12). Only 4 companies re-
lease more than 10 times per day. These are large companies, two of them
having more than 100.000 employees. They all use SOA architectures with
hundreds of services, serving thousands of requests per seconds. Only one
company releases less than once a year. It is a medium technological com-

86

8.4. Survey

Figure 8.6: Software systems distribution.

Figure 8.7: Software architectures distribution. Clarification: a system can use multiple
architectures

87

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.8: Hosting solutions distribution.

Figure 8.9: Deploying model distribution.

88

8.4. Survey

Figure 8.10: Rates distribution for the level of automation in the release cycle. Average
score is 2.83.

Figure 8.11: Release rates distribution.

89

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.12: Workload distribution in terms of users requests per second.

pany with a small IT following a relatively big system composed of 20 to
50 components, privately hosted, serving hundreds of requests per second.

8.4.3 Results

Results given from the third section are going to be analyzed by considering
each of the research questions listed in Section 8.1.

Q1. Is monitoring actually perceived as a fundamental asset? The
large participation to the survey, even though the number of questions was
high, is a first indicator of the interest that monitoring has across the in-
dustries. Nevertheless, when the respondents were asked whether they had
planned to improve their monitoring asset (question C21), 12.8% of them
answered “No, because investing time and money on monitoring is not per-
ceived as a profitable investment”. According to our data, this perception
can be found more concentrated in companies

• managing a smaller number of components,

• hosted on private clouds,

• with smaller automation processes in action and

• releasing less often.

90

8.4. Survey

These companies also resulted to give the observability of their system a
lower score (2.59) than the average of the entire sample (3.1). From the
answers they gave, these companies experience longer unavailability time
on average, when incidents occur:

• more than 20 minutes in 84% of such companies, against 63% of the
entire sample;

• more than 1 hour in 39% of such companies, against 28% of the entire
sample.

Also, the average time to diagnose the cause of an incident is negatively
impacted in these set of companies which do not consider monitoring worth
the investment: only 28% of them are able to diagnose a problem in less
than 20 minutes, against the 44% of the entire sample.

Q2. Do all companies monitor their software systems and how? 18%
of the surveyed companies do not have any deployed system for monitoring,
they are used to manually check via terminal commands such as ping, ssh or
grep if there is any problem and why. These companies have usually small
systems: 60% of them manage between 1 and 3 components, 32% between
4 and 10. They also have slow release rates compared to companies that
practice continuous delivery. In fact, no one releases more than once a day.
However, such companies are subject to small workloads and together with
the limited complexity of the system they manage to have fewer incidents
on average. Nonetheless, when incidents occur they usually experience
longer unavailability time.

Moreover, 38% of the entire sample use no third-party monitoring tools.
They only use internally developed solutions: besides manual inspection,
some a third of these companies develops a custom dashboard.

Among the companies using third party tools for monitoring purposes,
the most used ones are: Google Analytics (18%), Nagios (16%), MySQL
(14%), Grafana (12%), Amazon CloudWatch (11%). However the mon-
itoring tools offer is really fragmented among both commercial and open
source solutions, with no clear winner.

Finally, it is worth considering, that almost 50% of all the surveyed com-
panies release new features or new components with monitoring in mind,
releasing new monitoring configurations or features specific for the new
piece of the system.

Q3. How are incidents discovered and handled? 70% of surveyed com-
panies use emails among the alerting techniques. 57% discover problems

91

Chapter 8. The State of Practice: an Industrial Survey

Figure 8.13: Distribution of the techniques in place to discover incidents in companies.
Interviewee could select multiple answers if multiple techniques were used.

by actively inspecting logs or graphs. The third most frequent way of how
employee are alerted is directly from customers. The complete distribution
is depicted in Figure 8.13 The release of buggy core components is consid-
ered the most common cause for an incident by 38% of the respondents.
The distribution of the other causes is depicted in Figure 8.14. The release
of buggy core components requires manual intervention for 60.1% of the
companies. For about half of the sample, manual intervention is also re-
quired for wrong configuration updates, filling of the disks and hardware
damage. Automatic remediation (or partial mitigation) is instead common
for about 40% of the cases in the case of CPU or memory resource satura-
tion.

Q4. What are the people involved with monitoring? Monitoring was
once considered an operator business. However data shows that this trend
is changed since in about 63% of the companies developers access mon-
itoring information and can receive alerts. In 16% of the cases also the
business access monitoring information and, differently from our expecta-
tion, in 31.06% of the companies business can receive alerts.

Q5. What are the most critical challenges perceived when trying to
make a system observable? The last question in the survey asked the in-
terviewees what were the main obstacles they perceived to be preventing
the adoption of monitoring. Figure 8.15 shows the results. 50% of the in-

92

8.4. Survey

Figure 8.14: Distribution of the most common cause for incidents according to intervie-
wees.

Figure 8.15: Distribution of challenges perceived by interviewees in the adoption of mon-
itoring.

93

Chapter 8. The State of Practice: an Industrial Survey

terviewees perceive the lack of standards as the main obstacle. This aspect,
together with the proliferation of tools, each one bringing new protocols
and schemas, is undoubtedly one of the most critical challenges. Last, they
are hard to use, which actually supports what the in-person interviews high-
lighted, that is, self-service and easy to setup solutions are preferred.

Q6. Does Tower 4Clouds provide any contribution that may help com-
panies? In order to address the proliferation of tools it is fundamental at
least to provide extensible platforms, so that new adopters can integrate
some of their tooling and reuse part of the acquired skills. Even though
this does not solve the problem, it is a requirement almost all most recent
tools (e.g., Sensu or Grafana) dealt with, and Tower 4Clouds is built to be
extensible as well.

Probably, the main contribution that Tower 4Clouds brings to the chal-
lenges highlighted during this study is towards standardization. In fact,
even though we provide yet again a new communication protocol and a new
way of describing data, our approach could provide hints to the definition
of a new standard, at least within the same organization:

• The definition of a base meta-model which is proposed with the ap-
proach is creating a shared ontology which can be cooperatively ex-
tended;

• within an organization the explicit definition of a domain specific
model which is then used by the monitoring platform is another step
towards standardization of names and relations within the same com-
pany.

In modern companies, developing using microservices architectures, with
one team responsible for each microservice, monitoring is an orthogonal
tool, used and required by all teams. This is why it is so important to have
shared vocabulary.

8.5 Discussion

This survey helped identifying the state of practice and the main challenges
industries are facing when approaching monitoring. The main challenges
that monitoring tools users encounter can be summarized as:

• C1. Lack of standards. There is no standard protocol for sending
monitoring data and no standard schema for declaring them.

94

8.5. Discussion

• C2. Strong dependencies among teams. Monitoring is a support ser-
vice, required by all other services composing the system. Changes
to the monitoring platform affect all other teams focusing on those
services.

• C3. Fast evolution and tools proliferation. There are new technologies
and new environments coming out every other day, together with a
new monitoring tool.

• C4. Lack of reusability. Each company creating its preferred mon-
itoring infrastructure is implementing its own automation scripts for
deploying and configuring it.

To our knowledge, these challenges are not yet addressed by any re-
search approach and we tried to address them in a recent work we described
in Chapter 9.

95

CHAPTER9
Towards Omnia: a Monitoring Factory for

Quality-Aware DevOps

In Chapter 8 we observed that effective monitoring is still a difficult task,
approached in several heterogeneous ways. Although a huge number of
monitoring tools, both commercial and open-source ones, proliferated in
the last few years, there is no holistic framework that drives the embracing
of standardized solution for monitoring.

The monitoring platform we developed for this thesis, Tower 4Clouds,
introduces a novel approach where quality of service is given high rele-
vance since the first design phases. However, the approach is subject to the
limitations discussed in Chapter 7. The platform requires a high learning
curve and may not be applicable to industrial scenarios as is.

The main objective of this chapter is to present an initial investigation
of a monitoring solution, by offering an approach called Omnia, whose
key objective is reducing the learning curve and entry-cost to monitoring
technologies.

Omnia is an approach that assists system administrators in deploying
a monitoring system and developers in configuring and accessing moni-
toring information, exploiting DevOps practices such as infrastructure-as-

97

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

code (IasC) and automation [55]. Omnia consists of two major parts: (1)
a monitoring interface for developers that helps using monitoring systems,
independently of the specific implementation, and (2) a monitoring factory
for system administrators that helps building a monitoring system that is
compatible with such interface, leveraging existing monitoring tools. Our
approach is a reinterpretation of the factory pattern [39]. Similarly to the
famous design pattern, our monitoring factory creates a concrete implemen-
tation of a monitoring system (by automatically composing and configuring
existing monitoring tools) and users refer to it using a common monitoring
interface that is independent of the actual implementation.

Together with the implementation of the tool, we also propose the def-
inition of a common reference vocabulary for resources being monitored
and general purpose metrics, versioned with the Omnia source code and to
which every component should adhere when integrated with our tool. Al-
though many research works exist in the scope of monitoring research (e.g.,
as highlighted by several surveys in the field [22,35]), a fundamental lack in
the monitoring research scenario is the definition of a reference dictionary.

On the one hand, the approach proposed in this chapter helps system
administrators address the multitude of available tools and easily setup a
monitoring system. On the other hand, Omnia assists all software practi-
tioners throughout all phases of their monitoring infrastructure life cycle
(e.g., dashboard configuration, data exchange, analytics representation and
more) providing to the entire organizational structure a single protocol, a
common vocabulary and a versionable monitoring configuration language,
compatible with any monitoring system deployed via the Omnia monitor-
ing factory.

In conclusion, comparing the proposed research solution with challenges
and pitfalls observed in industrial practice (see Section 8), we argue that al-
though in a prototype stage, Omnia and connected technical contributions
offer a valuable basis to enter the complex and often (very) expensive world
of monitoring infrastructures for cloud applications.

9.1 Research Playground

This section outlines the organizational and socio-technical scenario that
Omnia was designed to address. More in particular, we elaborate on the
domain assumptions typical of the scenario we have in mind. Even though
the approach could be extended to different usage scenarios, for the design
of an initial prototype we consider a scenario in which a cloud application
is structured according to the microservices architecture pattern along with

98

9.1. Research Playground

Prod
Mgr UX Dev QA DB

Admin

Product Team

Product Team

Product Team

A
P
I

Sys
Admin

Net
Admin

SAN
Admin

Platform Team

Figure 9.1: Team organization at Netflix. Retailored from [42]

the typical organizational-social structure [50] connected to that pattern -
the scenario we address is tailored from the one adopted at Netflix [42]
(Figure 9.1).

9.1.1 Domain Assumptions

Omnia assumes that each product team is responsible for its own product
(or service), which is implemented as a microservice, for which source-
code is maintained in a separate versioned repository and following an
organization where development and deployment cycles are still indepen-
dent from each other. Conversely, the platform team is cross-functional: it
is in charge of supporting product teams providing infrastructure support,
e.g., via APIs, orchestration software, middleware and similar technology.
Such platforms are either managed by a public cloud provider, managed
in-house, or a mix of these two. However, according to Netflix, there are at
least three key properties that shall define the platform usage: “API-driven,
self-service and automatable” [42].

9.1.2 Motivations

Standardizing a way to describe what every product team would like to
see and be notified about is definitely challenging, since every monitoring
tool has its own peculiarity and is usually focused on delivering value from
a specific perspective. For example, a graphing tool may be able to plot
multiple time series on the same graph for simplifying the comparison, or
some analysis tool may be able to compute prediction or perform statistics
that another tool is not able to perform. Or else, some tool may be able to
send app notifications while another is only able to send emails.

With Omnia, our goal is to find a reasonable subset of standard features
a company with small to medium cloud resources (e.g., personnel, exper-

99

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

tise, consultancy, budget or otherwise) would like to have available, from
a monitoring perspective. Omnia assumes that, stemming from these stan-
dard features, that very same company can gradually and incrementally: (a)
add new features to its own indoor monitoring “language"; (b) push moni-
toring tool vendors to implement the missing ones or alternatively, (c) elab-
orate further on their own monitoring (micro)services to fulfill new feature
requests.

In this scenario, every product team can describe its monitoring configu-
ration using a versionable configuration language, which we call monitoring-
configuration-as-code, and keep that code versioned together with its ser-
vices code in the root of its repository. The next section elaborates further
on this key idea, which constitutes the basis of the Omnia approach.

9.2 The Omnia approach

In this section we provide an overview of Omnia to showcase its benefits,
more details are provided in the following sections.

Considering an organizational and social structure like the one we de-
scribed in Section 9.1.1, we describe how monitoring and its management
is addressed today and how it can be addressed with our approach.

Figure 9.2 depicts a fictional scenario where a company with low budget
constraints wants to monitor its microservices architecture using existing
open source monitoring tools. After studying existing solutions, the plat-
form team decides to build a monitoring system composed of 3 different
components on the server side: the temporal database TDB X for storing
historical data, the Dashboard X for exposing time-series in form of graphs
via a web interface, and Alerting X for sending notifications to product
teams. Moreover, the team decides to adopt Agent X as data collectors to
be run as daemons on the hosts.

On the left of Figure 9.2 the reader can look at how the adoption would
work according to the classical approach. The platform team has to learn
how to use the different tools, configure and deploy them. The platform
team would then ask product teams to instrument their microservice with
a vendor dependent instrumentation library, i.e., the TDB X Lib. Product
teams have to learn how to configure and use the graphical user interfaces
provided by the deployed monitoring tools in order to setup their graphs
and alerts. The entire process requires a steep learning curve and most of
the work is manual or can be automated using custom scripts.

By using Omnia, on the other hand, most of the process is automated.
The platform team has to describe the system using the proposed infras-

100

9.2. The Omnia approach

T
I

M
E

CLASSICAL APPROACH OMNIA-BASED APPROACH

Legend:
Team

Monitoring
System v1

Monitoring
System v2

Microservice Omnia codeInstrumentation
library

manual action

automated action

Product Team
Alfa

Service Alfa
v0.1

TDB X Lib

Dashboard
X

TDB X

Platform
Team

learn, configure, view

pushData

learn, code, release

Agents X

pushData

learn, configure, deploy
Alerting X

sendAlerts

learn, configure
Product Team

Alfa

Service Alfa
v0.1

Omnia Lib

Dashboard
X

TDB X

Platform
Team

view

pushData

learn, code, release

Agents X

pushData

Alerting XsendAlerts

Omnia CLI

omnia.yml

omnia.admin.yml
v1

learn, use learn, code

parse
parse

configure, deploy

Product Team
Alfa

Service Alfa
v0.1

Omnia Lib

Monitoring
Tool Y

Platform
Team

view

Agents Y

configure, deploy
pullDatapushData

omnia.yml

sendAlerts

Omnia CLI omnia.admin.yml
v2parse

codeuse

parse

Product Team
Alfa

Service Alfa
v0.2

AgY Lib

Monitoring
Tool Y

Platform
Team

learn, configure, view
learn, code, release

Agents Y

learn, configure, deploy

pullData
pushData

sendAlerts

Figure 9.2: Comparison between the classical approach and the Omnia approach when
adopting different monitoring solutions.

tructure-as-code approach. The automated setup and deployment is car-
ried out transparently by the Omnia Command Line Interface (CLI), using
a convention-over-configuration approach. Product teams describe their
graphs and alerts using the proposed configuration-as-code approach and
keep the file versioned in their code base.

After few months of practical experience with the installed monitoring
system, performance problems as well as usability issues are raised and
the platform team decides to switch to a more simple all-in-one monitoring
solution, offering storing, graphing and alerting features in a single appli-
cation and using a pull strategy for retrieving data instead of having agents
pushing data to the time series database (bottom side of Figure 9.2). On the
left side, we can see how the migration process would work in a classical
scenario. Most of the effort carried out by all teams is thrown away, and an
additional learning step is required. The platform team has to configure the
new platform and deploy it. Product teams have to release a new version
of the microservice with a new instrumentation library, i.e., AgY Lib, has
to learn how to use the new graphical interface of Monitoring Tool Y and
reconfigure all required graphs and alerts.

By using Omnia, on the other hand, no additional learning step is re-

101

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

Product Team

Product Team

Product Team

Omnia
protocol

omnia.yml

Product Team
Omnia

Vocabulary

Platform Team

omnia.admin.yml

Omnia CLI

Monitoring
System

Monitoring
Interface

Monitoring
factory

Figure 9.3: Omnia technological contributions, depicted in blue

quired. Product teams are not even required to touch their code. They just
start using the new dashboard, with the same kind of graphs they defined for
the first version of the platform already available. Alerts will be received
as well as configured in the previously released configuration-as-code file.
The platform team only requires to update the infrastructure-as-code file
and trigger a new deployment phase via the Omnia CLI.

Both the product- and the platform-team workflows can be reiterated
multiple times independently.

In the following sections we are going to detail the technological contri-
butions we overviewed in the above example scenario. Figure 9.3 depicts
such contributions and highlights how such decoupling between teams is
obtained.

9.2.1 The monitoring interface

The Omnia vocabulary

The Omnia vocabulary is a dictionary of terms defining naming conven-
tions for resource types and metrics that are common to all applications. It
is supposed to be extended and maintained together with Omnia develop-
ment and the addition of tools and libraries. Whenever Omnia is extended
for supporting a new collecting tool, a mapping between such tool vocabu-
lary and the Omnia one should be found and a translation implemented. If
some metric or resource is missing, this should be added to the Omnia vo-
cabulary. The same is valid when building instrumentation libraries. Users
can obviously specify custom metrics, but meta-data such as the applica-
tion name should be added to monitoring data, possibly in a transparent
way, using terms from the Omnia vocabulary.

Here is a first version of the Omnia vocabulary with some examples of
resources definitions:

102

9.2. The Omnia approach

Resource Description
host a physical or virtual machine
service an application
service_id a unique identifier for an instance of an application
container_id a unique identifier for a Linux container
container_image a Linux container image

Metrics can be categorized according to the resource being monitored.
For example, here is a short list for host and Java metrics:

Host metrics Java metrics
cpu_usage_user heap_memory_usage
cpu_usage_system thread_count
cpu_usage_idle loaded_class_count
mem_used garbage_collection_time
mem_used_percent thread_count

The Omnia protocol and instrumentation libraries

The Omnia protocol specifies how monitoring data should be serialized and
sent by data collectors to the other tools composing the monitoring system.
We decided to adopt an existent and widely adopted protocol, that sup-
ported multidimensional meta-data in form of key values, since we could
rely on existing community provided libraries and ease the adoption of in-
dustries. Such protocol is the Statsd protocol, with Influxdb tagging exten-
sion1.

Once a protocol is defined, it is important to maintain instrumentation li-
braries that adhere to such protocol and enforce Omnia conventions. There
exist an ever growing number of languages and frameworks, and each com-
bination of these requires a library. A Omnia-compatible instrumentation
library must adhere to the following mandatory requirements:

• MR1. Use the Omnia protocol, i.e., the Influx Statsd protocol to seri-
alize metrics and send metrics;

• MR2. Use the common Omnia vocabulary (Section 9.2.1) for decorat-
ing metrics with meta-data;

• MR3. Set http://collector:8125 as default endpoint for sending met-
rics.

1https://www.influxdata.com/getting-started-with-sending-statsd-metrics-
to-telegraf-influxdb/

103

https://www.influxdata.com/getting-started-with-sending-statsd-metrics-to-telegraf-influxdb/
https://www.influxdata.com/getting-started-with-sending-statsd-metrics-to-telegraf-influxdb/

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

Also it should adhere to the following optional requirements:

• OR1. Require the least possible instrumentation effort and overhead
to product teams;

• OR2. Offer an API that is not supposed to change in the near future;

• OR3. Favor convention over configuration, for example by automati-
cally inferring meta-data to be added to monitoring data.

For a first prototype, a Java library for the Spring Cloud framework2 was
developed3. Instrumentation only requires to add a Maven4 dependency to
the project and decorate the main application class with the @EnableOm-
nia annotation. This would automatically enables the collection of default
Spring Boot Actuator metrics5 (e.g., heap memory usage or thread count)
to the default endpoint (i.e., http://collector:8125) and the addition to all
metrics of the service and service_id meta-data. Moreover, developers can
easily describe additional custom metrics, such as the number of payments
processed by the service instance, using the API provided by the Spring
Boot Actuator library as described in the following example.
@Service
p u b l i c c l a s s MyService {

p r i v a t e f i n a l C o u n t e r S e r v i c e c o u n t e r ;

@Autowired
p u b l i c MyService (C o u n t e r S e r v i c e c o u n t e r) {

t h i s . c o u n t e r = c o u n t e r ;
}

p u b l i c vo id pay () {
t h i s . c o u n t e r . i n c r e m e n t (" payments ") ;

}
}

Listing 9.1: Custom metrics instrumentation

In the prototype developed for this work, additional system level meta-data
such as the host name where the service is running, will be added to each
metric by the data collector (or agent).

Monitoring-configuration-as-code

The omnia.yml file is a versionable YAML file used for configuring runtime
monitoring, such as metrics time series to be plotted or alerts.

2http://projects.spring.io/spring-cloud/
3https://github.com/mmiglier/omnia-spring-boot
4https://maven.apache.org
5https://docs.spring.io/spring-boot/docs/current/reference/html/

production-ready-metrics.html

104

http://projects.spring.io/spring-cloud/
https://github.com/mmiglier/omnia-spring-boot
https://maven.apache.org
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html

9.2. The Omnia approach

The first version of the omnia.yml is composed of two sections: (1) the
dashboard section, where things to be visualized are described, and (2) the
action section, where things to be done in response to events are config-
ured. The dashboard can be composed of different kind of graphs, such as
time series or pie charts. In the action section, product teams can describe
actions such as email or SMS notifications, but could also adaptive actions
to be triggered.

An example of omnia.yml file is shown in the following listing:
d a s h b o a r d :

t i m e s e r i e s :
− m e t r i c : payments

compute : r a t e
− m e t r i c : java_heap_memory
− m e t r i c : cpu

compute : a v e r a g e by h o s t
− m e t r i c : ram

a c t i o n s :
e m a i l :
− c o n d i t i o n : h t t p _ e r r o r s / h t t p _ r e q u e s t s > 0 . 1

Listing 9.2: omnia.yml file for monitoring configuration.

The file shall be automatically validated during automatic integration
tests. Also, the file shall favor convention over configuration: every missing
piece of information shall be configured using standardizable defaults.

Whenever a new version of the omnia.yml file is pushed, Omnia will
update the product team specific dashboard together with any alert spec-
ified in the document. If this configuration file was standard and shared
among tools, the monitoring team would be free to update the tool set of
monitoring tools without interfering with the product teams work. During
a first phase, interpreters and translators should be provided to compile the
standard configuration file into the tool specific configuration format, with
the hope an increase of popularity of the standard format, it may become
widely adopted.

9.2.2 The monitoring factory

Monitoring-infrastructure-as-code

The omnia.admin.yml file depicted in Figure 9.3 is a file where the mon-
itoring system is described as infrastructure-as-code and product teams
repositories are listed. The first prototype of this file was inspired by the
docker-compose.yml files used by Docker6 to describe containers architec-
tures, from which we took the simplistic approach.

6www.docker.com

105

www.docker.com

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

This configuration file is composed of 3 parts (1) the provisioner, where
the platform team is supposed to specify the provisioner the Omnia CLI
should use to provision the monitoring system, (2) the tools section, where
the platform team has to list the monitoring tools, the functionalities they
offer and their interconnections, and (3) the team_repos section, where
product teams repositories are listed.

We here provide an example of omnia.admin.yml file:
p r o v i s i o n e r :

name : do c ke r
a r g s :

username : m m i g l i e r
i m a g e s _ t a g : l a t e s t

t o o l s :
t e l e g r a f :

p r o v i d e s :
− a g e n t

p u s h e s _ t o :
− i n f l u x d b

i n f l u x d b :
g r a f a n a :

p u l l s _ f r o m :
− i n f l u x d b

p r o v i d e s :
− d a s h b o a r d
− a c t i o n s

t e a m s _ r e p o s :
− " g i t h u b . com / m m i g l i e r / omnia−examples / s e r v i c e 1 "
− " g i t h u b . com / m m i g l i e r / omnia−examples / s e r v i c e 2 "
− " g i t h u b . com / m m i g l i e r / omnia−examples / s e r v i c e 3 "

Listing 9.3: An example of omnia.admin.yml file.

The Omnia CLI

The Omnia CLI is the actual monitoring factory, the application that is used
by the platform team to deploy a monitoring system that implements the
monitoring interface according to the omnia.admin.yml (see Figure 9.3).
The application exposes three simple commands:

• compile, the CLI parses the omnia.admin.yml file, retrieves omnia.yml
files from team repositories and creates the required configuration files
required by the chosen provisioner to deploy the monitoring system;

• deploy: the CLI deploys the monitoring system using the API offered
by the chosen provisioner;

• stop: the CLI stops the monitoring system using the API offered by
the chosen provisioner.

106

9.2. The Omnia approach

The platform is written in Go7 and is easily extensible with new pro-
visioners and new monitoring tools by using the Go template package8.
During compilation time, both provisioner’s and tools’ configuration files
are generated from templates by applying to them a data structure gener-
ated from the omnia.admin.yml and the omnia.yml files. Besides templates
for configuration, a developer extending Omnia CLI with a new tool has to
create a setup.sh and a run.sh script, which will be executed for setting up
the tool and running it respectively.

Starting from the monitoring-infrastructure-as-code example in Listing 9.3,
the Omnia CLI will generate the following docker-compose.yml file after
compilation:

v e r s i o n : ’2 ’
n e t w o r k s :

d e f a u l t :
e x t e r n a l :

name : m o n i t o r i n g
s e r v i c e s :

c o l l e c t o r :
image : t e l e g r a f : 1 . 1
p o r t s :
− " 8 0 9 2 : 8 0 9 2 / udp "
− "8 09 4 : 80 94 "
− " 8 1 2 5 : 8 1 2 5 / udp "

volumes :
− " . / t e l e g r a f / e t c : / e t c / t e l e g r a f : ro "
− " / : / r o o t f s : ro "
− " / s y s : / r o o t f s / s y s : ro "
− " / p roc : / r o o t f s / p roc : ro "
− " / e t c : / r o o t f s / e t c : ro "
− " / v a r / run / d oc k e r . sock : / v a r / run / d o ck e r . sock : ro "

e n v i r o n m e n t :
− HOST_MOUNT_PREFIX=/ r o o t f s
− HOST_PROC=/ r o o t f s / p roc
− HOST_SYS=/ r o o t f s / s y s
− HOST_ETC=/ r o o t f s / e t c

e n t r y p o i n t : / b i n / sh
command : −c " s l e e p 10 s && t e l e g r a f "

i n f l u x d b :
image : i n f l u x d b : 1 . 1
p o r t s :
− "8 08 6 : 80 86 "

g r a f a n a :
image : g r a f a n a / g r a f a n a : 4 . 0 . 2
p o r t s :
− " 8 0 : 3 0 0 0 "

volumes :
− " . / g r a f a n a / e t c : / e t c / g r a f a n a : ro "
− " . / g r a f a n a / run . sh : / run . sh : ro "

7https://golang.org
8https://golang.org/pkg/text/template/

107

https://golang.org
https://golang.org/pkg/text/template/

Chapter 9. Towards Omnia: a Monitoring Factory for Quality-Aware
DevOps

cmd : " / run . sh "

Listing 9.4: docker-compose.yml file generated from the omnia.admin.yml file in
Listing 9.3

A prototype implementation of this component has been released on GitHub9.

9.3 Discussion and Future Work

The approach proposed in this chapter is still lacking an extensive eval-
uation. However, we believe it addresses the challenges identified in the
research study presented in Chapter 8. The lack of standards is faced by
introducing a common API and a simple DSL for building and configur-
ing monitoring infrastructures using existing open source monitoring tools.
The proposed approach also decouples development teams since they are
not bound to a specific monitoring infrastructure, they use a the Omnia in-
terface for sending data and the Omnia configuration language to declare
what they need. Such decoupling helps operators as well, since they can
more easily experiment with new monitoring tools without having devel-
opers to change their repositories.

The work has been presented in a paper submitted to the 3rd Interna-
tional Workshop on Quality-Aware DevOps (QUDOS 2017)10 where we
hope to receive a first feedback.

As future work it is our intention to create and foster the growth of an
open-source community around the concept introduced as part of this chap-
ter, empirically evaluating the approach by looking at the feedback we may
receive from practitioners.

9https://github.com/mmiglier/omnia
10http://qudos2017.fortiss.org

108

https://github.com/mmiglier/omnia
http://qudos2017.fortiss.org

CHAPTER10
Conclusion

This thesis focused on monitoring modern distributed applications, inves-
tigating challenges for both monitoring tools developers and users, and
proposing possible solutions. We claimed that monitoring is fundamental
for having a fast feedback from production, as a continuation of verification
and validation in the runtime.

Tower 4Clouds is an approach and a platform we proposed to solve the
identified challenges listed in Section 1.1. The following requirements have
been addressed:

• Abstract from heterogeneity and prevent lock-in (Requirement 1.1.1).
It was addressed by proposing a model based approach for describ-
ing the software system, QoS constraints and monitoring rules in a
provider independent way and investing different abstraction layers.

• Elastically adapt to ephemeral and dynamic systems (Require-
ment 1.1.2). It was addressed by implementing an autonomous dis-
covery mechanism where data collectors actively inform the server of
their existence and update the runtime model of the system.

• Limit the requirements on the data collector side to improve portabil-
ity (Requirement 1.1.3). It was addressed by defining a monodirec-

109

Chapter 10. Conclusion

tional protocol specification for data collectors which does not asks
for requirements such as port binding on the client side.

• Provide an extensible platform able to cope with future evolutions and
interoperate with existing tools (Requirement 1.1.4). It was addressed
by offering a flexible and extensible framework which allowed to in-
tegrate existing monitoring tools and implement additional actions.

• Timely provide required information for reacting before end-user per-
ception (Requirement 1.1.5). It was partially addressed by allowing
the user to configure the evaluation frequency of monitoring rules.

Next, an industrial survey was run with the objective of understanding
what challenges monitoring tools users are perceiving. The study was con-
ducted by first personally interviewing 7 practitioners. This allowed us to
have a first perception of the state of practice and guided us to the formula-
tion of an online form which was answered by 141 practitioners around the
world. The survey allowed us to answer to the following questions:

• Q1. Is monitoring actually perceived as a fundamental asset? The
high participation to the study revealed a widespread interest in mon-
itoring. Among the surveyed companies only 13% does not consider
monitoring worth the investment. However, these very companies re-
sult to have lower availability.

• Q2. Do all companies monitor their software systems and how? Even
though monitoring is considered to be important, its setup is often im-
mature: several companies only perform manual checks via terminal
(18%), 36% does not use any third party monitoring tool, they develop
their own scripts and dashboard. Finally, among the ones that use third
party monitoring tools, there is no de facto standard, every company
seems to create its personal composition of tools.

• Q3. How are incidents discovered and handled? Incidents are discov-
ered mainly via automatic emails, by manual inspecting logs or graphs
or directly from customers. Most of the problem are solved manually,
while automatic remediation is mainly based on scaling up and down
machine, based on CPU and memory thresholds, or by restarting ser-
vices.

• Q4. What are the people involved with monitoring? We discovered
that it is quite common today to have developers and even the business
to receive alerts about incidents.

110

• Q5. What are the most critical challenges perceived when trying to
make a system observable? The proliferation of tools without stan-
dards defined and the lack of usability are the most critical challenges
perceived by monitoring tools users.

• Q6. Does Tower 4Clouds provide any contribution that may help com-
panies? Tower 4Clouds provides a contribution by creating an exten-
sible framework and proposing hints to a possible way of standardiza-
tion.

Open challenges identified from the survey are the following:

• C1. Lack of standards. There is no standard protocol for sending
monitoring data and no standard schema for declaring them.

• C2. Strong dependencies among teams. Monitoring is a support ser-
vice, required by all other services composing the system. Changes
to the monitoring platform affect all other teams focusing on those
services.

• C3. Fast evolution and tool proliferation. There are new technologies
and new environments coming out every other day, together with a
new monitoring tool.

• C4. Lack of reusability. Each company creating its preferred mon-
itoring infrastructure is implementing its own automation scripts for
deploying and configuring it.

These challenges are, to our knowledge, currently unsolved. In Chapter 9
we have presented the Omnia approach that addresses, at least partially,
these challenges.

Omnia is an approach and a tool with the key objective of reducing the
learning curve and entry-cost to monitoring technologies. The concept of
monitoring factory was introduced, as a reinterpretation of the famous de-
sign pattern where the concrete implementation of a monitoring system is
kept hidden to developers via a common monitoring interface. Deployment
and configuration of the monitoring platform is automated via the simple
API offered by the monitoring factory we presented. System administra-
tors can leverage the proposed monitoring-infrastructure-as-code to easily
compose the set of existing monitoring tools to use and configure their roles
and interconnections.

Our monitoring interface allows to separate the development workflow
of the core application from the monitoring system, increasing agility and

111

Chapter 10. Conclusion

reduce effort required. The monitoring factory permits to switch across
different monitoring solutions, automating the deployment of a solution
that is compliant with our monitoring interface.

The approach is mainly ongoing work and is still lacking an extensive.
As future work it is our intention to create and foster the growth of an open-
source community around the concept introduced, empirically evaluating
the approach by looking at the feedback we may receive from practitioners.

112

Bibliography

[1] Apache kafka. http://kafka.apache.org.

[2] Chef. https://www.chef.io.

[3] Collectd. https://collectd.org.

[4] Consul. https://www.consul.io.

[5] Grafana. http://grafana.org.

[6] Graphite. http://graphite.readthedocs.org.

[7] Nagios. https://www.nagios.org.

[8] Oxford dictionaries. https://www.oxforddictionaries.com.

[9] Prometheus. https://prometheus.io.

[10] Puppet. https://puppetlabs.com.

[11] Rabbitmq. http://www.rabbitmq.com.

[12] Redis. http://redis.io.

[13] Riemann. http://riemann.io.

[14] Sensu. https://sensuapp.org.

[15] Statsd. https://github.com/etsy/statsd.

[16] Swrl: A semantic web rule language combining owl and ruleml. http://www.w3.org/
Submission/SWRL/.

[17] Zookeeper. https://zookeeper.apache.org.

[18] Announcing amazon elastic compute cloud (amazon ec2) - beta. https://aws.amazon.
com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-
compute-cloud-amazon-ec2---beta/, 2006 (accessed September 6, 2016).

[19] Docker: Automated and consistent software deployments. https://www.infoq.com/
news/2013/03/Docker, 2013 (accessed September 19, 2016).

[20] Release: Aws lambda on 2014-11-13. https://aws.amazon.com/releasenotes/
AWS-Lambda/8269001345899110, 2014 (accessed September 19, 2016).

113

http://kafka.apache.org
https://www.chef.io
https://collectd.org
https://www.consul.io
http://grafana.org
http://graphite.readthedocs.org
https://www.nagios.org
https://www.oxforddictionaries.com
https://prometheus.io
https://puppetlabs.com
http://www.rabbitmq.com
http://redis.io
http://riemann.io
https://sensuapp.org
https://github.com/etsy/statsd
http://www.w3.org/Submission/SWRL/
http://www.w3.org/Submission/SWRL/
https://zookeeper.apache.org
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://aws.amazon.com/about-aws/whats-new/2006/08/24/announcing-amazon-elastic-compute-cloud-amazon-ec2---beta/
https://www.infoq.com/news/2013/03/Docker
https://www.infoq.com/news/2013/03/Docker
https://aws.amazon.com/releasenotes/AWS-Lambda/8269001345899110
https://aws.amazon.com/releasenotes/AWS-Lambda/8269001345899110

Bibliography

[21] Serverless architectures. http://www.martinfowler.com/articles/
serverless.html, 2016 (accessed September 19, 2016).

[22] Giuseppe Aceto, Alessio Botta, Walter de Donato, and Antonio Pescapè. Cloud monitoring: A
survey. Computer Networks, 57(9):2093 – 2115, 2013.

[23] Danilo Ardagna, Michele Ciavotta, Giovanni Paolo Gibilisco, Riccardo Benito Desantis, Giu-
liano Casale, Juan F. Pérez, Francesco D’Andria, and Román Sosa Gonzalez. Qos assessment
and sla management. In Elisabetta Di Nitto, Peter Matthews, Dana Petcu, and Arnor Solberg,
editors, Model-Driven Development and Operation of Multi-Cloud Applications, chapter 4,
pages 31–41. Springer International Publishing, 2016.

[24] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle, and Michael
Grossniklaus. Querying rdf streams with c-sparql. SIGMOD Rec., 39(1):20–26, September
2010.

[25] Luciano Baresi and Sam Guinea. Event-based multi-level service monitoring. In 2013 IEEE
20th International Conference on Web Services, pages 83–90, June 2013.

[26] Joshua Barratt. Getting more signal from your noise. http://serialized.net/2011/
02/getting-more-signal-from-your-noise/, 2011.

[27] Antonia Bertolino. Software testing and/or software monitoring: Differences and commonali-
ties. Jornadas Sistedes, 2014.

[28] Barry W. Boehm. Verifying and validating software requirements and design specifications.
IEEE software, 1(1):75, 1984.

[29] Lorenzo Cianciaruso, Francesco di Forenza, Elisabetta Di Nitto, Marco Miglierina, Nicolas
Ferry, and Arnor Solberg. Using models at runtime to support adaptable monitoring of multi-
clouds applications. In Symbolic and Numeric Algorithms for Scientific Computing (SYNASC),
2014 16th International Symposium on, pages 401–408. IEEE, 2014.

[30] Adrian Cockroft. Monitoring challenges. Monitorama, 2016.

[31] Rustem Dautov, Iraklis Paraskakis, and Mike Stannett. Utilising stream reasoning techniques
to underpin an autonomous framework for cloud application platforms. Journal of Cloud Com-
puting, 3(1), 2014.

[32] Emanuele Della Valle, Stefano Ceri, Davide Francesco Barbieri, Daniele Braga, and Alessan-
dro Campi. A First Step Towards Stream Reasoning, pages 72–81. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[33] Elisabetta Di Nitto, Peter Matthews, Dana Petcu, and Arnor Solberg. Model-Driven Develop-
ment and Operation of Multi-Cloud Applications. Springer International Publishing, 2017.

[34] Frank Elberzhager, Jürgen Münch, and Vi Tran Ngoc Nha. A systematic mapping study on the
combination of static and dynamic quality assurance techniques. Inf. Softw. Technol., 54(1):1–
15, January 2012.

[35] Kaniz Fatema, Vincent C. Emeakaroha, Philip D. Healy, John P. Morrison, and Theo Lynn. A
survey of cloud monitoring tools: Taxonomy, capabilities and objectives. Journal of Parallel
and Distributed Computing, 74(10):2918–2933, 2014.

[36] Nicolas Ferry, Marcos Almeida, and Arnor Solberg. The modaclouds model-driven devel-
opment. In Elisabetta Di Nitto, Peter Matthews, Dana Petcu, and Arnor Solberg, editors,
Model-Driven Development and Operation of Multi-Cloud Applications, chapter 3, pages 21–
30. Springer International Publishing, 2016.

[37] Nicolas Ferry and Arnor Solberg. Models@runtime for continuous design and deployment.
In Elisabetta Di Nitto, Peter Matthews, Dana Petcu, and Arnor Solberg, editors, Model-Driven
Development and Operation of Multi-Cloud Applications, chapter 9, pages 77–89. Springer
International Publishing, 2016.

114

http://www.martinfowler.com/articles/serverless.html
http://www.martinfowler.com/articles/serverless.html
http://serialized.net/2011/02/getting-more-signal-from-your-noise/
http://serialized.net/2011/02/getting-more-signal-from-your-noise/

Bibliography

[38] Nicolas Ferry, Arnor Solberg, Pooyan Jamshidi, Rasha Osman, Weikun Wang, Stepan Seycek,
Vanessa Gligor, Roi Sucasa, and Antonin Abhervé. Modaclouds evaluation report: Final ver-
sion, 2015.

[39] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: Elements
of reusable object oriented software, 1995.

[40] IBM. IBM Dictionary of Computing. McGraw-Hill, Inc., New York, NY, USA, 10th edition,
1993.

[41] Alessandro Margara, Jacopo Urbani, Frank van Harmelen, and Henri Bal. Streaming the web:
Reasoning over dynamic data. Web Semantics: Science, Services and Agents on the World
Wide Web, 25(0), 2014.

[42] Tony Mauro. Adopting microservices at netflix: Lessons for team and pro-
cess design. https://www.nginx.com/blog/adopting-microservices-at-
netflix-lessons-for-team-and-process-design/, 2015 (accessed January
16, 2017).

[43] Steve McConnell. Code Complete, Second Edition. Microsoft Press, Redmond, WA, USA,
2004.

[44] Marco Miglierina, Marco Balduini, Narges Shahmandi Hoonejani, Elisabetta Di Nitto, and
Danilo Ardagna. Exploiting stream reasoning to monitor multi-cloud applications. In
Irene Celino, Emanuele Della Valle, Markus KrÃ¶tzsch, and Stefan Schlobach, editors, Or-
dRing@ISWC, volume 1059 of CEUR Workshop Proceedings, pages 33–36. CEUR-WS.org,
2013.

[45] Alessandro Orso. Monitoring, analysis, and testing of deployed software. In Proceedings of the
FSE/SDP Workshop on Future of Software Engineering Research, FoSER ’10, pages 263–268,
New York, NY, USA, 2010. ACM.

[46] Greg Poirier. Monitoring is dead, long live monitoring. Monitorama, 2016.
[47] Rick Rabiser, Sam Guinea, Michael Vierhauser, Luciano Baresi, and Paul GrÃ 1

4
nbacher. A

comparison framework for runtime monitoring approaches. Journal of Systems and Software,
125:309 – 321, 2017.

[48] William Robinson. A roadmap for comprehensive requirements modeling. Computer,
43(5):64–72, May 2010.

[49] Forrest Shull, Victor R. Basili, Barry W. Boehm, A. Winsor Brown, Patricia Costa, Mikael
Lindvall, Daniel Port, Ioana Rus, Roseanne Tesoriero, and Marvin V. Zelkowitz. What we
have learned about fighting defects. In IEEE METRICS. IEEE Computer Society, 2002.

[50] Damian Andrew Tamburri, Patricia Lago, and Hans van Vliet. Organizational social structures
for software engineering. ACM Comput. Surv., 46(1):3, 2013.

[51] Demetris Trihinas, George Pallis, and Marios D. Dikaiakos. Jcatascopia: Monitoring elasti-
cally adaptive applications in the cloud. In CCGRID’14, pages 226–235, 2014.

[52] Michael Vierhauser, Rick Rabiser, and Paul Grünbacher. Requirements monitoring frame-
works: A systematic review. Information and Software Technology, 2016.

[53] Michael Vierhauser, Rick Rabiser, Paul Grünbacher, Klaus Seyerlehner, Stefan Wallner, and
Helmut Zeisel. Reminds : A flexible runtime monitoring framework for systems of systems.
Journal of Systems and Software, 112:123 – 136, 2016.

[54] John E. Vincent. Monitoring sucks - watch your language. http://lusislog.
blogspot.it/2011/07/monitoring-sucks-watch-your-language.html,
2011 (accessed November 14, 2016).

[55] Liming Zhu, Len Bass, and George Champlin-Scharff. Devops and its practices. IEEE Soft-
ware, 33(3):32–34, 2016.

115

https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
https://www.nginx.com/blog/adopting-microservices-at-netflix-lessons-for-team-and-process-design/
http://lusislog.blogspot.it/2011/07/monitoring-sucks-watch-your-language.html
http://lusislog.blogspot.it/2011/07/monitoring-sucks-watch-your-language.html

APPENDIXA
Ticket Monster Instrumentation

In this appendix chapter we provide a code snippet to show how the Ticket Monster Java EE example
application, introduced in Section 4.2, can be instrumented using our Java data collector. It suffices
to add the following class:

package org . j b o s s . j d f . example . t i c k e t m o n s t e r . m o n i t o r i n g ;

i m p o r t i t . p o l i m i . t o w e r 4 c l o u d s . j a v a _ a p p _ d c . P r o p e r t y ;
i m p o r t i t . p o l i m i . t o w e r 4 c l o u d s . j a v a _ a p p _ d c . R e g i s t r y ;

i m p o r t j a v a . u t i l . HashMap ;
i m p o r t j a v a . u t i l . Map ;

i m p o r t j a v a x . s e r v l e t . S e r v l e t C o n t e x t E v e n t ;
i m p o r t j a v a x . s e r v l e t . S e r v l e t C o n t e x t L i s t e n e r ;
i m p o r t j a v a x . s e r v l e t . a n n o t a t i o n . WebLis t ene r ;

i m p o r t o rg . j b o s s . j d f . example . t i c k e t m o n s t e r . r e s t . B a s e E n t i t y S e r v i c e ;
i m p o r t o rg . s l f 4 j . Logger ;
i m p o r t o rg . s l f 4 j . L o g g e r F a c t o r y ;

@WebListener
p u b l i c c l a s s C o n f i g u r a t i o n I n i t i a l i z e r imp lemen t s S e r v l e t C o n t e x t L i s t e n e r {

@Override
p u b l i c vo id c o n t e x t D e s t r o y e d (S e r v l e t C o n t e x t E v e n t s c e) {

R e g i s t r y . s t o p M o n i t o r i n g () ;
}

117

Appendix A. Ticket Monster Instrumentation

@Override
p u b l i c vo id c o n t e x t I n i t i a l i z e d (S e r v l e t C o n t e x t E v e n t s c e) {

Map< P r o p e r t y , S t r i n g > a p p l i c a t i o n P r o p e r t i e s = new HashMap<
P r o p e r t y , S t r i n g > () ;

a p p l i c a t i o n P r o p e r t i e s . p u t (P r o p e r t y . ID , l o a d V a r i a b l e ("
MODACLOUDS_TOWER4CLOUDS_INTERNAL_SERVICE_ID" , " _ i c 1 "))
;

a p p l i c a t i o n P r o p e r t i e s . p u t (P r o p e r t y . TYPE , l o a d V a r i a b l e ("
MODACLOUDS_TOWER4CLOUDS_INTERNAL_SERVICE_TYPE" , "WebApp
")) ;

a p p l i c a t i o n P r o p e r t i e s . p u t (P r o p e r t y . EXTERNAL_VM_ID,
l o a d V a r i a b l e ("MODACLOUDS_TOWER4CLOUDS_EXTERNAL_VM_ID" ,

"_vm1")) ;
a p p l i c a t i o n P r o p e r t i e s . p u t (P r o p e r t y . EXTERNAL_VM_TYPE,

l o a d V a r i a b l e ("MODACLOUDS_TOWER4CLOUDS_EXTERNAL_VM_TYPE
" , "WebVM")) ;

a p p l i c a t i o n P r o p e r t i e s . p u t (P r o p e r t y . VENDOR_ID, l o a d V a r i a b l e
("MODACLOUDS_TOWER4CLOUDS_VENDOR_ID" , " _cp1 ")) ;

S t r i n g mpIP = l o a d V a r i a b l e ("
MODACLOUDS_TOWER4CLOUDS_MANAGER_IP" , " l o c a l h o s t ") ;

S t r i n g mpPort = l o a d V a r i a b l e ("
MODACLOUDS_TOWER4CLOUDS_MANAGER_PORT" , " 8170 ") ;

R e g i s t r y . i n i t i a l i z e (mpIP , I n t e g e r . p a r s e I n t (mpPort) ,
a p p l i c a t i o n P r o p e r t i e s ,

B a s e E n t i t y S e r v i c e . c l a s s . g e t P a c k a g e () .
getName () , f a l s e , t r u e) ;

R e g i s t r y . s t a r t M o n i t o r i n g () ;
}

p u b l i c s t a t i c S t r i n g l o a d V a r i a b l e (S t r i n g var iab leName , S t r i n g
d e f a u l t V a l u e) {

i f (System . g e t e n v () . c o n t a i n s K e y (va r i ab l eName)) {
r e t u r n System . g e t e n v (va r i ab l eName) ;

}
r e t u r n d e f a u l t V a l u e ;

}

}

Listing A.1: Ticket Monster instrumentation code

The code in such class is mainly composed of configuration retrieval from the environment regarding
the monitored resource, the Tower 4Clouds manager endpoint and finally the code required to specify
the package where annotated classes can be found. At runtime, each method with any of the JAX-
RS annotations (i.e., GET, POST, PUT and DELETE endpoints) will have its duration measured and
collected.

118

APPENDIXB
Industrial Survey: Additional Resources

B.1 In-person interview questions

The list of 15 open questions used for the in-person interviews follows:

1. Can you describe your business and the high level architecture of your core software system
in that business?

2. What are the most important runtime metrics you monitor for your core business? Among
these metrics, which are those that you use to assess the reliability of your system, if any?

3. Do you have any issue-detection mechanism, e.g., alarm-raising based on some metrics-
threshold? Can you provide incident examples? Who is notified in these cases and how?

4. Assume there is a problem (e.g.: some alarm goes off), what is the incident-handling proce-
dure that you follow to react?

5. Do you have any automatic adaptation based on monitoring data? Which adaptation mecha-
nism requires human intervention instead?

6. Is there anything that could be automated which is now performed manually?

7. Are developers kept in the operations loop and accounted for the functioning of what they
built or monitoring is just an operations business?

8. Can you describe your monitoring infrastructure?

9. How do you instrument code for collecting application level metrics?

10. How do you instrument machines for collecting host resources?

11. Where are monitoring and reliability checks executed (e.g., client vs. server side)?

119

Appendix B. Industrial Survey: Additional Resources

12. How is monitoring data transferred from data collectors to the monitoring server?

13. Are your monitoring data stored for supporting historical analyses? If yes, how is your his-
torical monitoring data stored?

14. If you maintain historical monitoring data, how do you use it?

15. Do you see any way of improvement of the monitoring activity which you cannot find in
existing monitoring tools?

B.2 In-person interview answers

An anonymized summary of the seven in-person interviews follows:

1. I1. The first respondent is the CTO of a medium traveling company. The company has
a small IT department of around 10 people working as a unique development and opera-
tion team. They develop and maintain the platform required for selling travels for their own
company. The development of their latest products was exploiting recent technologies like
Amazon EC2 for the hosting, docker for containerization of their services and micro-service
as architectural style. Monitoring was not perceived as a core activity since they claimed to
be in a yet immature development phase. Monitoring for them consisted merely on default
metrics offered by their cloud provider (i.e.: Amazon Cloud Watch) and availability checks.
Incidents are mainly resolved looking at logs stored on machines. In the short time they are
mainly interested in business metrics to understand better what users expect from them and
what problems they encounter in terms of content satisfaction.

2. I2. The second interviewee is a research software engineer working in the R&D department
of a medium company, where only initial prototypes are developed and therefore they are in-
terested only on a premature analysis of the monitoring activity in case the product becomes
a commercial product. The ongoing project consisted in developing a live data analysis tool
able to process news from multiple sources at high rate. The only monitoring they had in place
was a custom sensor measuring the queues lengths for automatic remediation to prevent over-
loading and ensure results timeliness. Initial monitoring requirements for a production ready
version would be metrics for guaranteeing high availability and fault tolerance. This would
require automatic remediation such as auto scaling, load balancing and automatic restart and
therefore data collectors for measuring required metrics (e.g.: availability, latency, memory
utilization).

3. I3. The third interviewee is a system architect in a medium technological company offering
SaaS services for enterprises business management. They deploy their product on top of
both Windows and Linux virtual machines by means of Puppet scripts. Their monitoring
is mainly focused on database related metrics since their SQL servers are the critical part
for their business. Important metrics are, therefore, related to disk, caching, requests and
processes on these servers, besides the classical CPU and memory utilization. Numerical
data is stored on Graphite and shown on Grafana dashboards. All metrics, including binary
checks, are managed via Nagios and Icinga. They have some automatic remediation which
usually involves trying to restart the machine before emailing operators. Logs are managed by
means of the ELK stack. Developers do not receive alerts, though they work side by side with
operators when required. A feature they claim to miss in their monitoring stack is the ability
of combining historical data storage and graphing in one system easily. They currently use
different collecting technique on the same machines for different technologies and scopes,
some agents are collecting the same metrics and sending them in multiple ways instead of
using a unified approach.

120

B.2. In-person interview answers

4. I4. The fourth interviewee works in a Small enterprise composed of 5 employees, they offer a
SaaS solution over Google PaaS solution. Besides availability, their main monitoring concern
is about business metrics, monitored via Google Analytics. They claim they currently do
not need any further metrics since most of the QoS is guaranteed by the Google platform.
Performance metrics such as latency is offered by the provider and is occasionally monitored
to understand if there is some query optimization required.

5. I5. The fifth interviewee works in a large technological company selling both hardware and
required middleware to customers for running their business. They provide monitoring out of
the box. He considers the most important runtime metrics to be machine memory, memory
profile, paging, memory leaks checks, CPU activity, disks activity, throughput and latency.
At the application level is important to monitor JVM metrics in case of Java applications,
heap size, transactions and http requests. Their tools offer configurable alerting tools based
on threshold. They also offer some advanced AI prediction algorithm trained on historical
data. They provide some automatic remediation based such as automatic archiving when file
system is full, or automatic switch to backup services in case of availability issues. According
to him future improvements will be in the AI field for prediction and diagnosis.

6. I6. The sixth interviewee is working in another large technological company selling their
products either on premise or as a service. In his experience with several customers he saw
that financial companies are the ones that spend the most for monitoring since unavailability
issues can cause huge loss of money. Therefore they buy very is reflected in how these
companies usually address monitoring. They usually prefer monitoring as a service solutions,
with small setup efforts required. Once complexity arise, then companies tend to invest in
more sophisticated solutions. They also observed that most of the comp anies write custom
code for monitoring, they store data in excel or relational database, based on their skills,
and analyse data on demand. The interviewee considers the following metrics to be usually
the most important ones for their customers: page response time, page requests, number of
page requests, number of page responses. Issue detection is mostly based on thresholds and
alarms are sent via email or SMS, according to problem severity. They also offer machine
learning tools for recognizing common patterns. The most common alerts refer to lack of
disk space. In fact, one of their major investments is on capacity planning. Other common
alerts are caused by CPU or memory saturation. Unpredicted bugs on new releases often
cause loops or memory leaks. Automatic remediation is often performed by restarting the
machine or the service, almost nobody does automatic rollback to previous or safe versions
because it may cause problems with data bases schema. Internally they are experimenting
with advanced machine learning tools that are able to directly contact the responsible team
and is showing to improve the MTTR (Mean Time To Repair) by 40 times. The company
sees AI and automation as one of the most impacting developments in the near future for
monitoring and incidents handling.

7. I7. The last interviewee is the CTO of a small startup with less than 50 employee offering
financial services via mobile applications. Their backend is deployed on Amazon Web Ser-
vices. They currently count 26 thousands users with an average of 500 thousands requests
per day. The most important metrics are availability and the number of malformed requests
which is monitored for security purposes. Errors are checked by manually looking at logs on
the machines even though they plan soon to move to the ELK stack. Logs are automatically
backed up on Amazon S3. The worst accident they experienced was caused by an expired
certificate which back then was manually maintained by an employee who had left the com-
pany. We monitor CPU using Amazon Cloud Watch and we have a threshold for scaling up
but it never happened so far.

121

	Introduction
	Challenges
	Contribution of the thesis
	Structure of the thesis

	Background
	What is monitoring?
	Why monitoring?
	Monitoring terminology
	Monitoring dimensions
	Requirements for a monitoring platform
	The MODAClouds FP7 IP European project

	Related Work
	The Tower 4Clouds Approach
	Overview of the approach
	Ticket Monster: an itinerary example
	Our approach in action
	Provider independent multi-cloud modeling
	Modeling QoS constraints and monitoring rules
	System and application level data collection
	Elastic runtime monitoring

	Modeling with Quality in Mind
	The base meta-model
	QoS constraints specification
	The monitoring rules language
	Monitoring rules generation from QoS constraints

	Configuring data collectors

	A Multi-Cloud Monitoring Platform
	A stream reasoner at the core
	An elastic platform
	Designed for heterogeneous environments
	An extensible framework
	Implementing Data Collectors
	Implementing actions

	Metrics observer
	Saving historical data

	Evaluation
	Abstract from heterogeneity and prevent lock-in
	Elastically adapt to ephemeral and dynamic systems
	Limit the requirements on the data collector side to improve portability
	Provide an extensible platform able to cope with future evolutions and interoperate with existing tools
	Imperial College London
	BOC Group
	Softeam
	Sintef
	SeaClouds

	Timely provision required information for reacting before end-user perception
	Scalability
	Other requirements
	Threats to Validity

	The State of Practice: an Industrial Survey
	Research Questions
	Research methods and approach
	In-person interviews results
	Survey
	Data acquisition
	Data sampling
	Results

	Discussion

	Towards Omnia: a Monitoring Factory for Quality-Aware DevOps
	Research Playground
	Domain Assumptions
	Motivations

	The Omnia approach
	The monitoring interface
	The monitoring factory

	Discussion and Future Work

	Conclusion
	Bibliography
	Ticket Monster Instrumentation
	Industrial Survey: Additional Resources
	In-person interview questions
	In-person interview answers

