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Abstract 

 
End stage uremic patients number continues to increase involving high percentages of 
elderly, predisposed to comorbidities. Considering the high number of functions carried 
out by the kidneys, it can be easily understood how a kidney impairment could involve the 
whole body and in its most severe form becomes incompatible with the survival. Dialysis 
is the elective treatment for chronic kidneys diseases: it artificial substitutes the renal 
functions of removing waste and excess water from the blood. The tolerance to the 
treatment can vary among different individuals, also in the presence of similar prescriptions 
due to the peculiar patient-machine interaction. Intradialysis hypotension (IDH) is one of 
the main short – term hemodialysis complications, occurring in 25-30% of cases and there 
are no standardized clinical protocols that provide an accurate blood pressure monitoring 
and the preventive  
The goal of the research is to develop new instruments for the evaluation of the dialysis 
treatment in order to enable its automatic management. The study has been developed in 
collaboration with four clinical centres between Italy and Switzerland inside the DialisYS 
project. The development of innovative indexes has been based data on recorded during 
real hemodialysis treatments. A Federated DataBase System (FDBS) approach has been 
adopted to construct a common data repository. The storage system has been built by the 
Dialysis Data Infrastructure (DDI), a unique multilevel standardized data structure 
supported by the Dialysis MATlib (DM), an embedded Matlab® library, that’s able to 
threat and manage data in the different formats collected from 4 different clinics. The 
Dialysis Data Infrastructure currently contains the acquisition of 1020 dialysis sessions 
performed on a total of 145 patients A statistical analysis has been conducted on the 
collected data in order to find the potential risk factor related to IDH onset. both at early 
stages and during the treatment. A predictive index, J, in two version J1 andJ2 was defined 
as a weighted patient-specific combination of potential risk factors in order to predict the 
IDH onset at the early stage of the treatment. The indexes has been also tested in their 
predictive ability, experimenting also different threshold for the prediction. 
The statistical analysis performed considering the intra-treatment period has also a 
multiparameter criterion, for the intra-treatment identification of IDH onset has been also 
developed Besides the inferential statistical analysis a machine learning approach has been 
tested to predict IDH event from pre-dialysis conditions and considering the IDH prediction 
as a binary classification problem. Three different algorithm has been explored for the 
prediction of IDH event as result of a binary classification problem: Random Forest, 
Artificial Neural Networks and Support Vector Machines. The considered dataset 
presented unbalanced classes: the class of interest (i.e. sessions with hypotension events) 
was only about the 10% of the total. In order to get effective learning from the data, 
minority class oversampling was required. Different techniques (e.g. bootstrap, SMOTE) 
combinations were tested and compared. The results show that J1 index allow predicting 
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the 77% of the IDH events, when the threshold is set equal to 1. The use of center specific 
thresholds allows slightly improving index specificity and sensitivity, but does not 
substantially alter the results. Indeed the multiparameter criteria allows to identify the 
75,56%of sessions with hypotension as defined by IDH-D, with the 24,44% of false 
positives. Among the tested machine learning algorithm, the SVM model balanced with 
high minority class SMOTE and no majority class down sampling techniques, shows the 
best performance and the smallest variability interval (e.g. overall accuracy: 88.26% ± 
2.80%). In conclusion this work provides a set of indexes and alghorithms for the prediction 
of the IDH onset during the dialysis treatment. They represent a first step in the direction 
of a better an more personalized dialysis treatment. 
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Chapter 1 – Anatomy and Physiology 
 

 

1.1 The urinary system  

1.1.1 The kidneys 

The urinary system (Figure 1.1), whose main function is the elimination of waste 
and excess fluid, consists of two kidneys connected to the bladder by the ureters, 
which carry urine produced there.  
The kidneys are two symmetrical organs located in the back-peritoneum at the 
level of inner coast and in the adult each has a weight of about 250g[2]. 
Each kidney is about 12cm long and weights about 150g and it is situated at the 
level of the twelfth thoracic vertebra.  
Kidneys work by filtering blood: their key role is to maintain homeostasis. 
Homeostasis mean the maintenance of nearly constant conditions in the internal 
balance of water and metabolites [3].  
The principal kidneys functions are: 

• water content regulation;  
• electrolyte balance in body fluids by controlling the concentrations of 

[Ca 2+], [Na +],[ K +], [Cl ⁻], [HCO 3 ⁻], [H +], [Mg 2+], [PO4
3 ⁻], 

glucose, amino acid uric acid and urea by means of integration of 
processes of filtration, reabsorption and secretion at the level of the 
nephron; 

• acid-base equilibrium maintenance; 
• metabolic catabolites excretion;  
• hormones synthesis and secretion 

They are also responsible for toxic materials (e.g. protein metabolism catabolites 
such as urea, creatinine and uric acid) elimination from the body through the 
urine.  
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As the main function of kidneys is regulating concentrations of substances in the 
blood, a high blood flow to the kidney is essential. Renal blood flow usually 
amounts to about 1200 ml / min, accounting for approximately 21% of cardiac 
output [9]. 
The rate of cardiac output through the kidney is called the renal fraction [5].  
The renal artery within the kidney is divided into smaller and smaller vessels as 
they sink into the renal cortex-giving rise to afferent arterioles and further branch 
into the glomerular capillaries.  
 

 
 

Figure 1.1. Kidney longitudinal section, showing the major blood vessels arrangement 

Kidneys are placed on either side of the abdominal aorta.  
There are two main branches of the abdominal aorta called the renal arteries  
(Figure 1.1). The renal artery branches out to form the afferent arterioles, which 
then form the glomerular capillaries of individual glomeruli. The glomerular 
capillaries then join to form the efferent arterioles, which in turn diffuse into 
peritubular capillaries and the vasa recta.  
The blood leaves the kidney through two renal veins, one from each kidney, 
which carries the blood back to the vena cava and then back up to the heart.  
Blood flow to the kidneys is dependent on hydration and cardiac output.  

 
 

1.1.2 The nephron 

The kidney is composed of about 1,000,000 to 1.2000000 of nephrons, which 
constitute the functional and structural unit of the renal system. 
The nephron, in Figure 1.2, is constituted by a spherical structure, called the 
Malpighi corpuscle, where it is produced the glomerular filtrate, and a tubular 
part, the renal tubule, responsible for the reabsorption and processing of the 
filtrate up to the production of urine.  
The corpuscle is constituted by the glomerulus, which is a dense network of 
capillaries that filters the plasma, and the Bowman's capsule, which surrounds 
the glomerulus and collects the filtrate [3].  
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Figure 1.2. Structure of the Bowman’s capsule 

. 
The glomerulus is the part of the nephron responsible, through pressure of 
gradients, of the ultrafiltration of plasma. 
The glomerulus filters all the molecules below the molecular size of albumin (64 
kDa), pass the filter and enter the into the tubule where It is converted into urine 
[4]. 
The peritubular capillaries in turn feed into the venous system of vessels to form 
the renal vein-protruding organ always through the hilum. 
Renal circulation is the only one in the body that it has two capillary networks, 
glomerular and peritubular, arranged in series.  
The afferent and efferent arterioles help regulate hydrostatic pressure in both 
capillary networks; adjusting the resistance, the kidney controls the speed of 
filtration to glomerular capillary level and / or reabsorption of the peritubular 
capillaries in response to the needs of homeostasis of the body. 
Due to the pressure in its capillaries, the glomerulus works by determining a 
continuous filtration; the peritubular capillary system, by virtue of its low 
pressure, runs continuously attracting liquid in the capillary [2]. 
All molecules below the molecular size of albumin (that is, 68 kDa)[4] passes 
into the proximal tubule and the loop on Henle the filter and enter a long tubule 
in which the filtered fluid is converted into urine on its way to the pelvis of the 
kidney called ‘distal tubule’. 
The ‘distal tubule’ consists in the proximal convoluted tubule, the loop of Henle 
and the distal convoluted tubule.  
The tubular epithelial cells reabsorb water, small proteins, amino acids, 
carbohydrates and electrolytes, thereby regulating plasma osmolality, 
extracellular volume, blood pressure and acid–base and electrolyte balance [3].  
Non-reabsorbed compounds pass from the tubular system into the collecting 
ducts to form urine.  
The space between the tubules is called the interstitium and contains most of the 
intrarenal immune system, which mainly consists of dendritic cells, but also of 
macrophages and fibroblasts (Figure 1.2)[4]. 
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1.2 Renal Failure 

Any deficit in kidneys power to eliminate toxic substances (e.g. urea, creatinine, 
phosphates and other corporeal acids) or to correctly re-absorb water and 
nutrients, resulting in the inability to maintain constant the composition of blood 
and fluid balance, is definable as renal failure [12].  
Renal failures can be classified as acute (ARF) or chronic (CRF). 
The main consequences of renal functionality loss are alterations to: 

• Blood acidity and composition: lower concentration of red blood cells 
platelets determines anemia and tendency to bleeding; 

• Peripheral nervous system: lower arts pain and burning sensations; 
Digestive system: xerostomia, gastritis;  

• Cardiovascular system: arterial hypertension, heart failure; 
• Hydroelectric and bone metabolism: hyperpotassemia, hypocalcemia, 

hyperphosphatemia, bones decalcification; 
• Carbohydrate metabolism: hyperglycemia and, therefore, diabetes 

propensity; 
• Lipid metabolism: fat cells increasing concentration in blood; 
• Immune system: lower metabolic defenses. 
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1.2.2 Acute Renal Failure 

The acute renal failure causes can be grouped into three main categories: 
• prerenal acute renal failure, resulting from reduced blood flow to the 

kidneys. It can be caused by heart failure with reduced cardiac output, 
low blood pressure, or by conditions associated with decreased blood 
volume (eg severe hemorrhage); 

• intrarenal acute renal failure, caused by internal damage to the kidney 
itself; 

• postrenal failure, which involves the obstruction of the urine collection 
system and can  occur anywhere, from the cups to the exit routes from 
the bladder, whose main causes are kidney stones,. 

In the presence of acute renal failure, the primary physiological effect is the 
retention of water into the blood and the interstitium, altered electrolytes and 
metabolic waste products concentration, with consequent hypertension and 
edema due to the overload of water and salts. 
It is to notice that a high potassium concentration can cause such an arrhythmias 
that compromise the cardiac function. 
Since the kidneys are not able to eliminate the necessary quantity of hydrogen 
ions, patients with acute renal failure develop metabolic acidosis, which may 
worsen hyperkaliemia and even be lethal. In severe cases of acute renal failure 
the total anuria, if not corrected by dialysis, can lead to death within few days 
[1,7]. 
  

 
1.2.3 Chronic renal failure 

Chronic kidney failure stands for a loss of kidney function that occurs over a 
prolonged time [14]. 
The loss of renal function may be due to previous episodes of acute renal failure 
with subsequent long-term kidney damage or to diseases that lead to the 
progressive deterioration of the kidney such as primary kidney diseases 
(glomerulonephritis) or secondary disorders such as diabetes, hypertension, or 
auto-immune disorders [11].  
Chronic kidney disease is common and may go undiagnosed until the process is 
advanced. CKD is more frequent in the elderly patients.  
However, while younger patients with CKD are typically affected by a 
progressive loss of kidney function, 30% of patients over 65 years of age with 
CKD have stable a disease [11]. Unfortunately, many patients with chronic 
kidney disease, will progress to the stage of end stage renal disease (ESRD). 
The possibility to early diagnose the kidney disease is very helpful preventing 
the progression of the patient's kidney deterioration. 
Chronic renal failure in its final stage is identified as end-stage renal failure, a 
condition in which kidney function is reduced to less than 10% [15]. 
People with permanent kidney failure need dialysis or a transplant to substitute 
the functions of their failed kidneys. 
Renal pathologies are one of the main causes of death and invalidity in all the 
developing countries, all over the world considering that about 1 in 10 people 
have some degree of chronic kidney disease (CKD)[5].  
Nephrons cannot regenerate, hence with renal injury, disease or normal aging, 
their number decreases [1]. 
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1.3 Replacement of renal functions 

The replacement therapy of renal function is generally based on two treatments, 
the transplant and the dialysis. 
In general, the choice of the treatment can be the result of various factors, as 
affect the decision-making process in which the economic clinical and 
organizational aspects should be considered. 
The new kidney is placed in the front of the abdomen and the artery, vein and 
ureter of the kidney are respectively connected to an artery, a vein and bladder 
of the recipient.  
 

1.3.1. Kidney Transplantation 
The kidney transplant replaces all kidney function, and corrects the CKD better 
than any type of dialysis, with a high success rate (graft survival at one year after 
transplantation is 92% in Italy and 96.3 % in Europe). 
Also organ functions are maintained for many years. The kidney to be 
transplanted can be removed from a living donor (usually a family member, even 
unrelated as in the case of married couples) or from a deceased donor. In the first 
case it is easier to plan and carry out the operation, also getting a better survival 
of the transplanted kidney (organ with a half-life of 27 years for patients with 
HLA-identical donor compared to 13 patients with a cadaveric transplant) [20]. 
 

1.3.2.  Dialysis therapies 
Dialysis is a therapy that allows purifying the blood from harmful substances 
and rebalances the body's fluids.  
This treatment tries to mimic what happens physiologically in the human body. 
Dialysis has two main objectives: 
• the elimination of toxic substances, such as potassium and urea from the 

patient's blood or adding solutes, such as bicarbonate to the patient's blood; 
• the removal by ultrafiltration of the excess fluids that are accumulated in 

the body.  
The details of the dialysis treatment are exposed in the next paragraph. 
 

1.4 The dialysis therapy 

Considering the high number of functions carried out by the kidneys, it can be 
easily understood how kidney impairment should involve the whole body and in 
its most severe form becomes incompatible with the survival. 
For this reason when the renal function is reduced, it is necessary to act with a 
therapy which allows the purification of the blood with the use of an artificial 
kidney. 
If the loss of renal function is irreversible it is necessary to perform dialysis 
periodically to keep the patient alive.  
In broad terms, the process of dialysis involves bidirectional movement of 
molecules across a semi-permeable membrane.  
Clinically, this movement takes place in and out of blood, across a 
semipermeable membrane.  
The two main mechanisms underlying dialysis are the diffusion and the 
convection, which opposes the oncotic pressure of the blood proteins.  
The physiological and physiochemical principles that regulates the process of 
dialysis are: 

• Diffusion: is the process of solute movement on a concentration 
gradient and is caused by the random movement of the solute molecules 
striking and moving across the membrane. It regard lo molecular weight 
solutes   
 

����� = ��∆	 = 
��2∆���∆	                                  1.1 
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where the solute flux jsol is proportional to the membrane permeance PL 
and to the concentration gradient ∆C. The permeance is directly 
proportional to membrane diffusion coefficient Dm and to the total pores 
area nπr2. It is inversely proportional to the diffusion distance ∆X; 

• Convection: is the movement of solute molecules dragged by the 
solvent movement due to pressures gradient. 
The transport of any solute molecule is dependent on the ratio among 
the size of the molecule and those of the pores. 
Similarly, the electrical charge and the shape of the molecule also 
determine the rate of transport across the membrane. 
The equations that regulated convection are: 

���
� = ��∆� = 
��48�∆�∆�                            1.3 
 

����� = −��(∆� − �∆�)                                 1.4 
 

where the convection fluxes jconv and jsolv are defined as the product of 
the membrane filtration factor Lp and the pressure gradients.  
The filtration factor is directly proportional to the pores number (n) and 
size (r) while it is inversely proportional to the fluid viscosity µ and the 
convection distance ∆X.  

Solutes convection is determined only by hydraulic (p) pressures, solvent 
convection is given by the balance between hydraulic and osmotic (π) pressures. 
The coefficient σ , is the Staverman coefficient that considers that the 
membrane is not fully permeable at certain solutes by which there will be a 
different osmotic gradient [21]. The total pressure acting over the fluid is the 
result of osmotic force and mechanical hydrostatic pressure: the solvent is 
forced across a semipermeable membrane leading to a partial fluid removal. 
This phenomenon is called ultrafiltration and is commonly accomplished by 
lowering the hydrostatic pressure of the dialysate compartment of a dialyzer, 
thus allowing fluids to move from the plasma to the dialysate. 
All the dialysis systems currently available on the market are able to only 
partially replace the purifying function of the kidney, not the production of 
hormones for which it is often necessary to provide with drugs (vitamin D, 
erythropoietin). 

 
1.3.1. Peritoneal Dialysis 

The peritoneal dialysis instead exploits the semi-permeability of the peritoneum 
and the difference of osmotic pressure that is created between the blood and 
dialysate (Figure 1.5).  
The dialysis solution is injected into the abdomen of the patient via a peritoneal 
catheter, placed under local anesthesia side navel. 
The substances presents in the blood migrate through the peritoneum to the 
dialysis solution that, after a contact period of 4-6 hours, is replaced.  
This process takes place from 4 to 6 times per 24 hours.  
The peritoneal dialysis attenuates symptoms of uremia and has less stressful 
effect on the organism, because the patient performs it daily and autonomously. 
At the same time, however, it requires particular care and attention of the 
catheter, to avoid contamination of the peritoneum and consequent peritonitis. 
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Figure 1.5 Peritoneal dialysis 

 
1.3.2. Hemodialysis 

Hemodialysis is currently the most widely used substitution treatment in the  
world. The therapy is usually performed thrice a week for 3-4 
hours/each session.  
This method meets the clinical needs of both the acute and chronic patients, but 
usually has a higher cost with respect to other methods. 
Hemodialysis is performed by the dialysis machine, to which the patient is 
connected during a hemodialysis session. Hemodialysis system is made by the 
components [18], shown in Figure 1.6: 
 

 

Figure 1.6 Hemodialysis Circuit 

• a blood circuit: where flows the patient's blood; 
• a pump to extract the blood from the patient 
• a dialysis fluid circuit;  
• a monitor for the setting-up and the control of the treatment parameters; 
• a mass exchanger: the dialyzer or dialysis filter. 
Hemodialysis is usually performed in the hospital (on the contrary of  peritoneal 
dialysis) or from specialized (public or private) centers, with a scheduling of 3 
weekly sessions, during an average of 4 hours (3 to 5 hours) each. 
The blood and the dialysis solution are pumped by the dialysis machine inside 
the filter, composed of two compartments. The blood compartment that 
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consists of several thousand hollow fibers (from six thousand to twelve 
thousand), with a diameter of just over a hair, said just capillaries, all 'inside of 
which flows the blood; the high number of fiber is needed to guarantee 
a large exchange surface; 
The dialysis solution is flowing all around the capillaries, forming 
the compartment of the dialysis fluid. 
This means that the membrane formed by the walls of the capillaries always 
separates the two fluids and the molecules pass from one compartment to another 
by virtue of the difference in concentration between the two compartments. 
During dialysis blood is drawn from the body and is continuously purified with 
a speed of roughly 300 mL / min; to avoid blood coagulation, heparin is infused, 
before the blood enters the dialyzer. 
To connect the patient to the machine a specific vascular access is required. 
The vascular access is usually achieved through arteriovenous fistula (FAV), 
shown in Figure 1.3, an anastomosis between vein and artery generally 
performed in the brachial area between radial artery and cephalic vein.  
This strategic surgically allows the arterialization the vein in order to make 
possible a greater flow sampling in an easily accessible vase and more resistant 
to frequent needle insertions (Figure 1.7) 
 

 

    Figure 1.7 Arterio-Venus Fistula 

There are different types of hemodialysis therapies, among them: 
• Standard hemodialysis (HD): the purification process is mainly based 

on diffusion, with higher efficiency in low molecular weight catabolite 
(Es. urea, creatinine) removal.  
The convection, is present even if it is not the prevailing 
phenomenon. Standard hemodialysis is currently known as bicarbonate 
dialysis, as a dialysis solution containing sodium bicarbonate is used. 

• Hemofiltration (HF) technique exclusively convective rarely 
used. High porosity membranes were here used and applying an 
adequate trans-membrane pressure it is possible to remove a high 
volume of water, in the order of tens of liters per session, together with 
the in it dissolved substances. Since such a high fluid loss is not 
sustainable by the human body, it is necessary to reinfuse the most of 
the volume filtered with an adequate flow of substitution fluid. It is 
indicated in hemodynamically unstable patients. 

• The Hemodiafiltration (HDF) is a mixed dialysis method, obtained by 
the balanced combination of diffusion and convection. The diffusion 
allows the purification from low molecular weight catabolites, while 
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the convection allows the purification from the medium-molecular 
weight substances.  
Reinfusion can be performed, as for hemodiafiltration, both pre-filter 
and post-filter.  
It is thus possible to distinguish two types of HDF:  the HDF with pre 

– dilution where the infusion of dialysate is made upstream to the 
dialyzer: this technique is generally prescribed for patients with 
reduced blood flow or high hemoconcentration so as to limit the 
increase in the transmembrane pressure to avoid intradialytic 
complications. 
The other type is the HDF with post – dilution: this is the case by which 
the substitution fluid is mixed with the blood just before being released 
back into the patient.  
The high ultrafiltration can induce clots or hemolysis within the 
capillaries of the filter, with consequent increase in the transmembrane 
pressure and risk of clogging of capillaries and of loss of the membrane 
proteins with impaired osmotic balance. 
With the pre-dilution in the convection-diffusion ratio it is privileged 
before removing macromolecules but the blood is more diluted, 
making the process of diffusion less effective.  
With the post-filter reinfusion instead the spread since the blood 
reaches the filter undiluted and clearance of low / medium molecular 
weight is greater than hemodialysis. The risk is, however, that the 
blood can clot into the dialyzer. 
The HDF allows removing not only low molecular weight solutes, as 
happens for hemodialysis, but also medium  / high molecular weight, 
such as beta-2-microglobuline (11, 8 kDa) [22]. 
The term On-Line indicates the production in situ of the reinfusion 
liquid for the patient. The dialysis solution is online prepared by the 
machine by dilution of a concentrated bag. 
This technique is very useful in patients requiring a high purification. 

• Acetate free biofiltration (AFB) is a dialysis mixed diffusive-
convective method characterized by the use of a dialysis solution 
swabs-free (or acetate or bicarbonate) [21,23].  
AFB is the analogous of hemodiafiltration, regarding the purification 
principles, the main difference compared to HDF is that in this 
technique is sub-ministered intravenously [23]. The dialysis bath is 
completely free of buffer and involves the separation of the 
mechanisms for the acquisition and transfer of the bicarbonate.  
In particular sodium is acquired from the blood only through the 
infusion after dilution.  There is a control system of the bicarbonaturia. 
This technique allows two different types of treatment: constant 
potassium or potassium profile [23].  
. 
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1.4. Complications during dialysis therapies 

Although hemodialysis is the most widely used therapy to treat the end stage 
renal failure, and technology advances  have improved the quality of dialysis 
sessions, this type of treatment is not without risk and can have numerous 
symptoms intra- and inter-treatment, mostly related to subtraction of liquids and 
to the electrolytic rebalancing. 
The most prevalent dialysis complication are related to pressure imbalances 
(whether hyper- or hypotension), which brings to severe damage to the body, 
especially the cardiovascular system, increasing patient mortality and morbidity. 
The inter-dialysis blood pressure affects about 50% of patients on dialysis and 
while it has multifactorial pathogenesis,  the dominant cause is the increase in 
blood volume from one session to the other [25].  
There might be may be hypertensive episodes during the session due, for 
example, to the incorrect concentration of the dialysate (not patient specific). 
The intra-dialysis hypotension (IDH) affects 20% - 30% of the sessions [24] [25] 
and consists of a reduction of excessive blood volume compared to the 
adaptability of the cardiovascular response [27] [25].  
The IDH is accompanied by symptoms such as sweating, nausea, vomiting, 
epigastric pain, yawning, blurred vision, and convulsive events [26], leading to 
the premature end of the session. 
This lead to a not complete removal of excess fluid.  
Despite pressure control mechanisms, dialysis can lead to complication during 
the treatment as severe intra-dialysis hypotension and hypertension and 
hypertensive crisis in the inter-dialysis period. 
In addition to these problems the onset of fever (due to bacterial infections) or 
bleeding (often caused by the administration of heparin to prevent thrombus 
formation in the catheter) is not uncommon, especially in patients who have 
central venous catheter[27] 
During a hemodialysis session, destabilizing events could occur such as: 
• Arterial hypotension is the most frequent complication.  

Hypotension is the consequence of the failure to adapt to the reduction of the 
vascular circulating blood mass, if the dehydration is too rapid or 
excessive. The pressure drop is often preceded by repeated yawning, 
decreased blood flow provided by the vascular access, accompanied by 
cramps, nausea, vomiting. 

• Hemorrhage: the uremic patient shows an increased risk of spontaneous 
bleeding, more frequently borne in the gastrointestinal tract. There could be 
also not uncommon blood losses caused by technical problems on the 
dialysis monitor (lines or filter rupture), or from the point of insertion of 
needles. 

• Muscle cramps: it affects more frequently in the legs, with painful 
contractions of the calf muscles They are caused by very high 
ultrafiltration or by low concentration of sodium in the dialysate 

• Air embolism: caused by penetration of air in the blood circuit. This are 
rare complication but also the most dangerous for the patient. 

During the dialysis treatment also technical incidents can occur on equipment 
such as clots in the circuit, breaking in hemodialysis filters. 
 
 
 
 
 
 

 



Chap 2- Hypotension during dialysis 
 

 12 

 

Chapter 2 – Hypotension during dialysis  
 
 

 

2.1 Introduction 

Despite notorious technological progress that improved dialytic-treatment’s 
safety, the operation is never risk-free and Intra-Dialysis Hypotension (IDH) is 
one of the most relevant short-term complications of hemodialysis, which occurs 
in 25-30% of the cases [28].  
The intra-dialysis hypotension consists of a significant drop in pressure during 
the dialysis session, often accompanied with symptoms such as cramps, 
weakness and vomiting [29]. 
In the long-term chronic fluid accumulation, caused by the interruption in 
advance of dialysis sessions due to IDH, can lead to IDH and increase cardiac 
output, leading to hypertrophy of the left ventricle [30]. 
The IDH can also cause a reduction in diastolic blood pressure and heart 
perfusion, which in turn can lead to myocardial ischemia.  
The chronic IDH has been also linked to the development of cardiac fibrosis, 
which predisposes to the onset of arrhythmias. 
IDH onset is more frequently found in the standard thrice-weekly hemodialysis 
treatment rather than in short daily or nocturnal treatment because the former 
type of treatment requires a higher dose of ultrafiltration [29]. 
On the long-term, frequent hypotension episodes may lead to permanent 
damages to heart and intestines, in addition to risk of arteriovenous fistula 
occlusion [32]. 
In most cases IDH events entails early discontinuation of treatment, resulting in 
failure to achieve the dry weight of the patient and bad blood purification [33]. 
In recent years, IDH prevention has been highly investigated. 
This highlighted the necessity of a better evaluation of patient’s dry weight, a 
correct regulation of dialysate temperature, a particular dialysate sodium 
concentration (DSC) and an online monitoring of blood volume (BV).  
One of the open challenges is to determine, before the hemodialysis session, the 
probability that the patient will suffer intra-dialytic hypotension. 
The main obstacle in reaching this goal lies in IDH onset, that is not always 
observable through external manifestation, because some patients do not show 
any precursor symptoms.  
In general, IDH clinical treatment procedures consider the reduction of hematic 
flow in the extracorporeal circuit, the reduction of ultrafiltration rate and the 
increase in volemia.  
This is achievable either through the administration of liquids or the infusion of 
a hypertonic solution able to facilitate the fluid’s osmotic flow from 
extravascular to intravascular compartment, in order to increase blood volume 
and pressure [32].  
These actions are necessary when symptoms are manifest, although it is 
desirable to prevent hypotension episodes rather than correct them. 
The patient’s peculiar reaction to the treatment implies difficulties in preventing 
IDH episodes. 
Hypotension short-term consequences are general malaise, nausea, vomit and 
fainting; such symptoms are not only draining for the patient but also tough to 
be managed by clinicians.  
Moreover, given that IDH often causes premature interruption of dialysis 
session, patient’s blood may not be adequately purified. 
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All this increases the risk of cardiovascular morbidity and mortality. 
An inadequate cardiac filling, due to a reduction in the central blood volume, it’s 
considered to be its most etiological factor.  
Koch and Ritz et al [33] reported that the risk of cardiac death is increased when 
two or three hypotensive episodes occurred per week, but their relatively small 
study failed to show significant differences in BP during hemodialysis between 
patients who died of myocardial infarction and survivors. 
IDH prevention indeed stands in a great effort in order to decrease mortality 
during the session. 
 

2.2 Clinical Definition of hypotension 

Despite hypotension is still one of the most common acute complication that 
occurs during hemodialysis, there is currently a strong lack of clinical techniques 
to detect its onset during the conventional treatment. . 
There isn’t a universally recognized clinical definition of IDH. 
Mancini et al. [32] proposed a definition of hypotension, based on the following 
three conditions on arterial pressure and clinical records: 
Standing to Mancini, IDH can occur by one of the following conditions: 

• if the predialysis systolic arterial pressure (SAP) is greater than 100 
mmHg, each episode with SAP less of 90 mmHg, without any associated 
clinical event; 

• if (SAP) predialysis is less than 100 mm Hg, each reduction of SAP of 
at least 10% with reference to the associated disorders; any reduction of 
SAP of 25% or more compared to the predialysis value with typical 
symptoms, specific for the  interventions to the applicants. 

There are simple definitions of IDH, given by Bayya et al., as the reduction of 
SAP by 20% [33].  
The methods should differ depending on whether the target is to predict an acute 
episode or not IDH. 
 

2.3. Pathophysiology of IDH  

The factors involved in the onset of hypotension in patients undergoing dialysis 
are due both to clinical conditions (e.g. presence of vascular or cardiac diseases, 
neuropathology, anemia) and treatment settings  
In particular the causes of hemodialysis-induced hypotension are multifactorial 
and related to the interaction between the patient and the dialysis procedure [34] 
[36]. 
Indeed, the rate and amount of ultrafiltration will influence the patient’s fluid 
status; on the other side, the patient’s compensatory response to hypovolemia 
will determine the clinical manifestations of IDH[41].  
The mechanisms of IDH are complex. 
Several agents are involved in the pathogenesis of dialysis discomfort, that 
interfere with optimal fluid removal and reducing the efficacy of the treatment 
[40]; a decrease in intravascular circulating blood volume caused by imbalanced 
ultrafiltration rate (UF) and plasma refilling rate (PR) is the most important one 
[41]. 
An alteration in cardiovascular regulatory mechanisms, such as increased heart 
rate, contractility and peripheral vascular tone, that controls the blood volume 
balancing could led to hemodialysis-induced hypovolemia [42]. 
 

2.4. Body Fluids Dynamics during hemodialysis 

The body fluids are distributed in two main compartments: 
- Extracellular - 
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- Intracellular 
The extracellular compartment in turn comprises the interstitial liquid and blood 
plasma. 
In a normal adult of 70 kg of weight, the total amount of liquid is on average 
60% of body weight [2]. 
This percentage may vary with age, sex and degree of obesity. 
The extracellular fluid compartment includes:  

• the interstitial fluid, which it makes up about three-quarters of the 
extracellular fluid ;and it’s the fluid external to the cells 

• the plasma, which constitutes about one quarter of the extracellular 
fluid: it is in dynamic equilibrium with the interstitial fluid, by which 
exchanges solutes through the pores of the capillary membranes. 

These pores are permeable to almost all solutes present in the extracellular fluid, 
except that the protein.  
In this way the liquid of the extracellular compartment are mixed continuously, 
so that the plasma and interstitial fluid compositions remain similar, with the 
exception of the proteins that are more concentrated in the plasma.  
The extracellular fluid also contains large amounts of sodium and chlorine ions, 
discrete quantities of bicarbonate ions, but only small amounts of potassium, 
calcium ions, magnesium, phosphates and organic acids. 
The intracellular compartment instead is constituted by the liquid contained 
within the body's cells and corresponds to approximately 28 of the 42 liters of 
total body water. The two compartments are separated from highly selective 
membranes highly permeable to water and impermeable to most of the body 
electrolytes.  
The extracellular volume and blood volume, that is, the hemodynamically active 
part of the extracellular volume, are normally maintained rigorously constant by 
fine adjustments in renal excretion of water and catabolites. 
In hemodialysis these volumes depend, by the water and solutes and on the other 
by the dialysis procedure. 
Particularly blood volume subtraction in uremic patients evoke a series of 
cardiovascular reflex in response to the changes in fluido-dynamic and osmotic 
equilibrium. 
The most important mechanism is the increase in arteriolar tone.  
This increase on the one hand helps to prevent an excessive lowering of blood 
pressure and on the other reduces the venous pressure, favoring by elastic 
"recoil" elastic the venous return to the heart and the maintenance of the cardiac 
output. 
On the other hand the reduction of the pressure in the capillaries (direct 
consequence of arteriolar vasoconstriction) alters Starling of forces facilitating 
the vascular refilling. 
It is intuitive that the time factor, that is, the ultrafiltration rate, assumes a 
fundamental importance in the tolerance of the volume subtraction. 
That’s why the intervention of the compensation factors will be more effective 
as smaller the hemodynamic stress imposed by the dialysis procedure will be.  
A too high ultrafiltration rate can induce hypotension phenomena [22]. 

 
2.4.1 Cardiovascular response and the plasma refilling (PR)  

Blood pressure regulation in the human body, is controlled by the autonomic 
nervous system, by the cooperative action of receptors, nerves, and hormones to 
balance the effects of the sympathetic nervous system, which tends to raise blood 
pressure, and the parasympathetic nervous system, which lowers it [41].  
Low-pressure volume’s receptor resides in the heart atria and in the vena cava: 
they are sensitive to variations of blood volume filling of the central venous 
system.  
Baroreceptors are instead sited on the carotid bifurcation and on the aortic arch: 
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they are sensitive to a variation in the pressure of the central arterials system.  
Both the receptors, in rest conditions, have an inhibitory effect on the 
cardiovascular centre that modulates sympathetic system and vascular 
resistances activity [42].  
 

 
Fig.2.1 mechanisms involved in the body response to the decrease in blood circulating 
volume, as a consequence of high ultrafiltration during dialysis[41]. 
 
So the body reacts to blood uptake with a series of reflex control, to compensate 
the decrease in blood volume. Particularly these controls acts on three 
fundamental and correlated mechanisms [43].  
Support of the venous return to fill the cardiac cavity.  

• Increase of the hearth rate and of the fibre’s contraction force, with the 
aim to increase the cardiac output, even in reduced ventricular filling 
conditions.  

• Increase vascular resistances, so to reduce venous capacity and to fill the 
cardiac output between the vascular districts, with attention to critical 
organs (e.g. the brain) perfusion [40]. 

The most important consequence of the described strategies is the onset of a 
plasma refilling flux from the interstitial to the vascular compartment.  
During HD, the fluid is removed by UF from the intravascular compartment. 
Thus the capillary pressure is going to reduce altering the Starling equilibrium 
(Figure 2.2).  
The fluid transfer between the interstitial to the vascular compartment is called 
plasma refilling (PR)[46] 
The flow intensity depends on the hydration status and on arteriolar tone,  
which determine the hydraulic pressure’s values at the vascular level. 
Vasoconstriction set a pressure drop into the capillaries that determines the 
fluid reabsorption, while the vasodilatation has the opposite effect.  
At the same time a high plasmatic osmolarity and a consistent presence of 
proteins can influence the plasma refilling [46]. 
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Fig.2.2 HD fluid removal by compartment models. During HD, the fluid is removed 
by UF directly from the intravascular compartment. The consequent fluid transfer from 
the interstitial to the blood compartment is called plasma refilling (PR)[41]. 
 

The failed activation of the mechanisms aimed at compensating the decrease in 
circulating volume affects the hemodynamic conditions of the patients during 
the sessions, exposing him/her to hypotension episodes.  
Cardiac underfilling and impaired cardiovascular compensatory mechanisms 
may trigger the sympato-inhibitory cardiodepressor Bezold–Jarish reflex[47]. 
The Bezold-Jartsch reflex originates in cardiac sensory receptors with non-
myelinated vagal afferent pathways [47] in the left ventricle, in- creasing 
parasympathetic activity and inhibits sympathetic activity. These effects 
promote reflex bradycardia, vasodilation and hypotension. 
 

 
 

Fig.2.3: Schema of the Bezold–Jarish reflex. 
 
 
The first receptors that intervene to contrast a blood volume decrease due to 
ultrafiltration are the low pressure-volume receptors, which increase the 
sympathetic activity. A higher reduction in volume activates also the 
baroreceptors, that over to exert a concurrent sympathetic activation, influence 
also the secretion of vasopressin (ADH).  
ADH induces an increase in vascular peripheral resistances so to reduce the 
pressure and the blood flow in the venous compartment where a consistent part 
of the total blood volume is contained.  
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The elastic force of venous walls prevails and, reducing the venous system 
capacity, supports the venous return and the cardiac output preservation [42]. 
The reduced circulating volume activates as well the normal cardiac response 
to hypovolemic that consists in a tachycardia followed by a reduction of hearth 
rate since new rest conditions will be reached, and on the other side in an 
increase in cardiac muscle contractility, aimed to increase the ejection volume 
and consequently the cardiac output. 
Hypotension during dialysis could be directly related to a reduction in blood 
volume or to a decrease in cardiovascular activation as a response to decreased 
cardiac filling.  
Patients may have inefficient compensatory mechanisms, such as sympathetic 
autonomic failure and increased parasympathetic activity, and thus be more 
sensitive to hypovolemia [45].  
Under conditions of hypovolemia, increased sequestration of blood in veins 
reduces cardiac filling, cardiac output, and blood pressure too. 
Adenosine release due to tissue ischemia may concur in the activation of the 
Bezold-Jarisch reflex, by a local reduction of norepinephrine [49]. 
Intradialytic hypotension is therefore more common in patients with 
cardiovascular disease and diabetes mellitus, because of their limited capability 
of physiological compensatory response. 
In conclusion, during a hemodialysis session, events like eating and changing 
the body position can be triggers for hypotension episodes that alter the blood 
pressure and sympathetic/parasympathetic balance. 
 

2.4.2. Risk connected to IDH in dialysis therapy 

Between two subsequent treatments, the uremic patients accumulates fluid, the 
entity of fluid weight increase depends on the patient’s diet and the renal residual 
function. During hemodialysis, these accumulated fluids (usually from 1 to 4 
liters) are removed by ultrafiltration. 
The long-term chronic fluid accumulation, caused by the interruption in a 
dialysis session, due to IDH, can lead to interdialysis hypertension and to an 
increased cardiac output, leading to hypertrophy of the left ventricle.  
This increases the risk of cardiovascular morbidity and mortality. 
IDH determines also a reduction in the diastolic blood pressure and heart 
perfusion, and consequently could lead to myocardial ischemia.  
Chronic IDH has also been linked to the development of cardiac fibrosis,  that 
predisposes to the onset of arrhythmias and then cardiovascular death (Figure 
2.4). 
Sudden cardiac death is a major cause of mortality of patients on dialysis (15% 
approximately) [50]. 
 
 



Chap 2- Hypotension during dialysis 
 

 18 

 
 
Fig.2.3 Mechanism of vascular instability related to IDH onset 
 
 
2.5. Clinical Management of hypotension  
An efficient treatment of IDH currently a great challenge in nephrology. 
Due to its multifactorial nature, an adequate therapy requires a multilevel 
strategy. 
In many hospitals, the IDH clinical management is done by Trendelenburg 
position, by which the body is set in a supine position with the feet higher than 
your head [36].  
Other methods of IDH treatment are mostly related to hemodialysis procedure.  
Particularly the use of sodium modelling profiles, higher sodium concentration 
in dialysate–especially at the beginning of the procedure and lower dialysis 
temperature are first therapeutic option for hypotension-prone patients [43]. 
Common strategies of long-term treatment and prevention of IDH include an 
accurate assessment of ‘dry weight’ [43] and patient education to avoid 
excessive intra-dialysis weight gain and no heavy meals during or just before the 
dialysis, adequate hypertension management sometimes it is necessary to skip 
or reduce drug dose on the day of dialysis session, use of bicarbonate dialysate 
buffer and biocompatible membranes. 
 

2.5.1 Ultrafiltration Rate Modulation 

Since the removal of body fluid during the dialysis procedure is often faster than 
the body ability to draw fluid from the interstitial space, the change of the rate 
and frequency of ultrafiltration (UF) may decrease the incidence of IDH[51].  
In particular, the treatment is more effective if greater quantities of blood volume 
are removed at the beginning of the session, when there is the greatest 
accumulation of fluid available to facilitate the "plasma refilling" phenomenon, 
and gradually the extracted quantity is reduced.  
An impulsive step indeed produces an opposite effect, encouraging 
hypotension. [49] [50].  
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2.5.2 Sodium Profiling 

At the beginning of dialysis, the removal of the blood volume and solutes leads 
to a fall of plasma osmolality, with a negative repercussions in the transition of 
the fluid from the intracellular to the extracellular space.  
The Dialysate Sodium Concentration (DSC) is closely related to the conductivity 
of the plasma [52] and has an indirect influence on the RBV, because it changes 
the osmolality of the plasma, which in turn controls the plasma refilling process 
[53].  
The sodium content in the dialysis fluid can be varied during the session to 
minimize the plasma osmolality decreases and the correlated (disequilibrium 
syndrome), and to facilitate the plasma refilling, allowing to better tolerating the 
ultrafiltration. 
The "sodium profiling" technique allows to vary the sodium concentration in the 
dialysis fluid during the session: at the beginning of treatment high sodium 
concentrations are maintained (> 145 mEq / L), to increase the osmolality of 
plasma and the passage of water from the interstitial space. 
Subsequently the sodium present in the dialysate is reduced, allowing the 
removal of the solute from the blood by a concentration gradient [31]. 
The difficulty of this method stands the correct choice of the profile to be adapted 
to the patient. 
A wrong profile, results in an accumulation of the solute in the blood. 
A high imbalance of the sodium concentration in the dialysate determines a 
significant increase in post - dialysis plasma sodium concentration and, 
consequently, can lead to a greater increase of weight intradialytic and thus to 
hypertension [54]. In particular the combination of sodium modulation 
monitoring and ultrafiltration rate has been shown to be particularly effective in 
different studies [28]. 
The increase in the sodium concentration in the dialysate can be particularly 
useful in preventing hypotensive episodes, when used combination with a high 
rate of ultrafiltration.  
This approach optimizes the plasma refilling when the reductions in plasma 
volume induced ultrafiltration are excessive, but it requires the ability to predict 
the final concentration of sodium in plasma determined by each particular profile 
[52].  Even thought, the reduction of the frequency of IDH thanks to the use of 
sodium profiles is not universally recognized: in a study of 2006, Moret 
concluded that the IDH can be reduced by 15% using the sodium profile [54], 
while another of Selby and colleagues in 2007 found no difference [59]. 
 

2.5.3 Dialysate Temperature Monitoring  

One of the most common ways to decrease the onset of hypotension and improve 
cardiovascular stability is the use of the dialysis liquid at 35 ° C, instead of at the 
standard temperature of 37 ° C. 
This correction reduces the onset of IDH at least 7.1 times than conventional 
hemodialysis. [57]  
During the dialysis treatment, in fact, the reduction of blood flow in the skin and 
muscles contributes to preserve the volume of the central plasma, which can 
result in an increase the in core temperature of the body, and in a consequent 
vasodilation. [58] 
Biofeedback systems have been developed to measure the temperature of the 
blood and transmit the information to the machine thermostats [34]. 
The goal is to modulate the temperature of the dialysate, keeping constant the 
body temperature. 
However, the working temperature must be adjusted and controlled in relation to the 
symptoms of hypothermia that the patient might show. 
A disadvantage in dialysate temperature monitoring is the increased risk of chills 
and cold feeling [59], which could generate discomfort for the patient during 
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treatment. 
 

2.5.4 Blood Volume Monitoring BVM 

The BVM has been developed to improve the attainment of the dry weight after 
the session and for the prevention of hypotensive episodes.  
The blood volume is calculated from the measurements of hematocrit or 
hemoglobin in the blood, it is lower for higher concentrations.  
The relative blood volume (RBV) is the measure of blood volume in a moment 
of time, and is expressed as a percentage of the predialysis volume. Several 
studies have shown that the RBV Profile rapidly decreases in sessions with IDH, 
and these changes can be used to prevent it [53,59]. 

 

2.5.5 "Fuzzy" Logic Automatic Monitoring 

Mancini and colleagues [52] studied the efficacy of an automatic control system 
for the stabilization of blood pressure (BP) by means of biofeedback (ABPS - 
automatic blood pressure stabilization).  
The system, based on the use of "fuzzy", is directly installed on the dialysis 
machine, and uses the instantaneous values of BP as input variables to adjust the 
rate of ultrafiltration rate (UFR)  
The machine requires to work two patient-specific data: the critical pressure 
value, that’s the maximum value that it’s supposed may arise IDH, and the 
maximum ultrafiltration rate that can be applied to the subject.  
In the case by which the threshold pressure is reached, the UFR is automatically 
stopped, to resume the situation of hemodynamic instability.  
This system, is a result of a multicenter study, and was effective in preventing 
IDH in subjects prone to hypotension, with a 25% of reduction of hypotensive 
episodes, that rises to 40% in the case of severe hypotensive crisis.  
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Chapter 3 – Clinical Variables  

related to Hypotension  
 
 
 

 

3.1 Introduction 

A condition of hypotension during the treatment could be usually associated to 
a particular physiological state of the patient and thus to a variation in different 
clinical variables. 
Nowadays, the clinical monitoring of the patient by sensors and electronic 
equipment connected to the machine allows having continuous real-time 
measurement of physical and chemical signals coming from the dialysis patient. 
On-line monitoring is thus possible for different clinical variables such as blood 
volume that characterize the circulatory system about IDH, in particular the 
temperature of blood, blood volume and bio-impedance, with the ultimate aim 
to find "actuators" variables to reduce the incidence of hypotension during the 
dialysis session [66].  
This could allow the automatic control of dialysis machine settings in order to 
guarantee a better management of dialysis IDH. 

 

3.2. Clinical Variables related to hypotension 

Numerous studies have analyzed the relationship between the variables that 
characterize the circulatory system and IDH [63]. 
Particularly blood pressure, blood temperature, relative blood volume (RBV), 
bio impedance, ECG and fotoplethismography  (PPG).  
Furthermore, in addition to the baroreflex sensitivity, other cardiovascular 
variables, that reflect the variability and the turbulence of the heart rate, have 
been used to study the feedback control of hemodialysis systems, in order to 
improve their performance [67].  

 

3.2.1 Blood pressure P 

Blood pressure is the first natural starting point to develop an algorithm for the 
on-line prediction and prevention of hypotension. 
Blood pressure is thus the eligible variable to be monitored during the sessions 
to understand the evolution of IDH onsets during the sessions. 
 

3.2.2. Blood temperature T 

The patient's temperature increases during hemodialysis. 
The hemodialysis increases body temperature as the blood, which normally 
flows on the body surface area to dissipate heat, remains in the central 
circulation to preserve the core of the plasma volume that is reduced after 
ultrafiltration. 
The sympathetic activity consequentially increases in response to ultrafiltration 
and leads to peripheral vasoconstriction, which reduces the heat dissipation 
resulting in an augmentation in body temperature [68]. 
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3.2.3. Relative Blood Volume 

The loss of blood volume that occurs during hemodialysis is a determining factor 
for the development of IDH [63]. The blood volume decreases as a result of 
ultrafiltration (UF) and, if the ultrafiltration rate (UFR) is greater than the plasma 
filling rate (PRR) and the cardiovascular compensatory mechanism that 
counteracts the hypovolemia is insufficient or compromise, IDH may arise. 
Thus, the calibration of the decrease in blood volume during the HD is an 
important target to prevent complications. Several non-invasive techniques that 
measures changes in the relative blood volume (blood relative value change, 
ΔRBV) during dialysis due to UF are based on the analysis of changes 
respectively of hematocrit (Ht), hemoglobin (Hb) or the concentration of the 
total plasma proteins.  
The changes of the concentration of blood constituents can reflect changes in the 
volume of blood if the total quantity of the blood components in the circulation 
is constant and the mix of the constituents is uniform throughout the vascular 
space [81]. During the ultrafiltration a compensatory mobilization of poor blood 
hematocrit from the microcirculation to the central circulation occurs and this 
dilution effect reduces the degree of hemo-concentration, causing a possible 
underestimation of the total ultrafiltration volume [28].  
When hematocrit and hemoglobin are measured at the beginning of a session, 
the patient usually passes from a prone to a supine position, then the recorded 
values are not stationary.  
Even postural changes during the session have a big effect on hematocrit and 
hemoglobin, but this effect cannot be prevented during a patient movement  
contemporary to the treatment. 
Given the many factors that affect hematocrit, hemoglobin and protein 
concentration during dialysis, it is not surprising that the RBV trends vary 
considerably patient to patients.  
Hemodynamic stability is not only determined by the performance of blood 
volume but also by the response of hypovolemia compensatory mechanisms.  
Such response is influenced by various factors that may differently affect the 
various dialysis sessions for the same patient. All these elements explain the little 
predictive power of RBV for dialysis hypotension. 
At the current state of art, the conducted studies have not been able to establish 
a close relationship between IDH and hypovolemic-induced UF: the reduction 
of blood volume at the time of symptomatic IDH does not differ significantly 
from what in the sessions without IDH [83].  
This suggests that hypotension cannot be predicted simply by checking if the 
relative volume of blood falls below a predetermined threshold.  
Rather, the threshold value is closely patient-dependent and therefore 
particularly difficult to be estimated.  
Best predictions have been obtained when the shape of the trend of RBV was 
analyzed in relation to certain features such as the decrease of the long-term 
variability [41]. In the individual patient, the continuous measurement of RBV 
would be a perfect tool for the prevention dialytic hypotension if the critical 
lowering of the pressure happen the increase of irregularities [87] and the 
increase in the time needed to switch from a linear decay to one exponential [78]. 
 

 
3.2.3. Bioimpedance 

The bioelectrical impedance measurements are non-invasive techniques to 
assess [71] the body hydration status. 
Impedance is decomposed into resistance (opposition to the intra and 
extracellular current flow) and reactance (capacitive component of cell 
membranes). 
Changes in body fluid volume (whole-body fluid volume) can be estimated by 
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measuring changes in impedance. 
In particular, an increase of impedance corresponds to a decrease of fluid 
volume. The contribution of the trunk and limbs to the body impedance is 
respectively 10% and 90% [72]. 
Impedance is measured by applying an alternate current, traditionally with a 
single frequency of 50 kHz, and using electrodes placed on the head and foot. 
Before being analyzed, impedance is normalized with respect to the height of 
the patient.  
Several studies have shown how impedance has been used for dry weight 
assessment, while very few studies have considered this method to predict the 
IDH.  
In early studies, the impedance has been associated with a very low predictive 
value (42%) and low sensitivity (66%).  
More recently, the bioelectrical impedance vector analysis has been suggested 
as a prediction method, but the potential of this method has not been investigated 
in detail [72,73]. 
 

3.2.4. Electrocardiographic variables 

Cardiac function in hemodialysis patients has been extensively studied, since 
cardiovascular problems cause about 50% of the deaths on the treatment [70]. 
Sudden cardiac death, ischemic heart disease and heart failure are the main 
causes of mortality. 
A deeper understanding of cardiac events is critical to improve patient 
management and may lead to the modification of the hemodialysis prescription 
in order to reduce the worsening of the disease. 
 
3.2.4.1 Hearth Rate Variability  

The analysis of HRV (heart rate variability, HRV) has proved to be a powerful 
noninvasive tool to quantify the neural mechanism that controls the 
cardiovascular system.  
The dynamics of HRV can be generally analyzed in the time domain or in the 
frequency domain, where the resulting power spectrum, by convention, is 
divided into a low frequency band (LF, 0.04 -0.15Hz) and high frequency (HF, 
0:15 to 0:40 Hz).  
These two bands are related respectively sympathetic and parasympathetic 
autonomic nervous system activity and the power ratio LF / HF is a spectral 
parameter, reflecting the sympatho-vagal balance [81].  
The literature shows that the LF components plays a dominant role as they  
represent of the compensatory autonomous mediated response  [80].  
The insufficient cardiovascular compensatory mechanisms that counteract the 
reduced blood volume, arterial and cardiopulmonary baroreceptor reflex lead to 
sympathetic and parasympathetic inhibition.  
As a consequence of these reflex, the LF component tends to dominate on the 
HRV spectrum during the analysis in the time domain) and the frequency 
domain, in which the resulting power spectrum, for convention, is divided into 
a low frequency band (LF, 0.04-0.15Hz) and high frequency band (HF, 0:15 to 
0:40 Hz).  
These two bands are related respectively to sympathetic and parasympathetic 
autonomic nervous system activity and the power ratio LF / HF is a spectral 
parameter for the sympathetic/parasimpathetic balance[81]. 
Studies carried out on HRV uremic prone (hypotension prone, HP) or resistant 
(resistant hypotension, HR) patients to hypotension, have concluded that the 
spectral parameters can distinguish between these two groups of patients using 
the power of LF/ HF power ratio [93].  
High values of this parameter have been reported  in sessions without 
hypotension, conversely lower values correspond to hemodialysis sessions with 
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hypotension [68].  
There is a statistical difference in the LF / HF ratio among patients HR and HP 
and a plausible threshold to distinguish between the two groups can be a value 
around 1.  
The HRV parameters alone, are not powerful enough to predict IDH, with 
acceptable clinical accuracy, they are still part of the physiological parameters 
that must be considered as online predictor. 
Although the frequency domain analysis seems to be the predominant approach 
for the HRV characterization, the analysis in the non-linear time domain 
represents an important approach that typically is based on entropy measures 
[80]. It has been shown that the Shannon entropy is strongly correlated to a 
change of the SAP during the hemodialysis session; leading to the conclusion 
that entropy measures maybe suitable predictors of propensity to hypotension 
during dialysis [90]. 
 

 3.2.4.2 Premature Ventricular Beats (PVB) 

The analysis of heart rate variability is not, able to treat the ectopic beats 
common in dialysis patients, and this makes this instrument not suitable to be 
elected as a marker for hypotension 
Premature ventricular beats (PVBs) are common in dialysis patients and increase 
during hemodialysis as potassium is removed [84].  
The results show that ventricular arrhythmias appear much more frequently 
during hemodialysis that in the post dialysis period [85].  
The presence of occasional VPBs can be detected by the HRV analysis, [97] 
coupled with the EBC (ectopic beat count), based on the time of onset of ectopic 
beats [96]. 
The EBC analysis tracks the average change in intensity of ventricular ectopic 
beats and "missing beats".  
The intensity of ectopic beats appears to greatly increase during acute 
symptomatic hypotension. This increase has been not observed in patients with 
stable blood pressure. It will not possible to establish an absolute threshold, since 
the number of these beats is patient - dependent and   differs between different 
treatments. 
The acute symptomatic hypotension requires a relative threshold, since the 
interesting thing is the change in intensity. The frequent presence of VPBs in 
dialysis patients gives the possibility possible to calculate parameters that 
characterize the turbulence of the heart rate (heart rate Turbulence, HRT), that 
is, the fluctuation in frequency triggered by a single VPB.  
Such turbulence is considered a blood pressure regulation mechanism, which in 
healthy subjects compensates hypotension induced VPBs, due to an accelerated 
of the breath rate. 
Several studies have claimed that HRT is one of the most powerful predictors of 
mortality and sudden cardiac death due to acute myocardial infarction [88]. 
For patients on hemodialysis, there are good reasons to believe that HRT could 
give significant clinically information because the autonomic neuropathy is 
associated with a marked drop in blood pressure.  
To date, only one study has addressed the question of whether a greater 
propensity to IDH is reflected in the HRT parameters [93].  
The results showed that the acceleration of the heart rate that follows a VPB is 
significantly lower in patients prone to IDH rather than patients not subject to 
hypotension, and both groups of patients showed a smoothed HRT according to 
standard criteria [99]. 

 
3.2.4.3 Baroreflex analysis 

The sensitivity of the arterial baroreceptor heart reflex (cardiac-arterial 
Baroreceptor Reflex Sensitivity BRS) is generally estimated using techniques 
that are based on non-invasive measurements of cardiac activity, such the 
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measurement of SAP [71].  
The slope of the regression curve between the measurements of the SAP and RR 
intervals is calculated in each one of the baroreflex sequences and the resulting 
gradients of all the sequences are averaged to produce an estimate of BRS. 
The evaluation of spontaneous BRS is interesting in IDH prone patients as the 
baroreflex arc is under the control of the autonomic system and sets the short-
term dynamics of blood pressure.  
Two studies in particular, have focused on the role of BRS in this group of 
patients.  
At first Chesterton [93] showed that the cold dialysate reduces the IDH 
asymptomatic and the absolute values of BRS not change significantly.  
Greater variability in BRS during the cold hemodialysis may suggest a better 
hemodynamic stability.  
Therefore, early identification of patients with reduced BRS variability may 
reduce the incidence of IDH individualizing therapy.  
Another study on BRS [94] investigated the contribution of a compromised BRS 
in the pathophysiology of IDH.  
The main result is that the BRS, measured at rest immediately before the start of 
session, is extremely heterogeneous and, therefore, cannot be identified 
individual hemodynamic response pattern, even in patients prone to 'IDH’. 
The baroreflex sensitivity may also be evaluated at different frequencies, based 
on a spectral coherence measure between the variability in the heart rate and the 
systolic blood pressure [87]. Using the LF and HF bands, as defined for the HRV 
analysis, BRS show significant differences in the HF band in HP prone and HR 
resistant patients [95].  
What can be finally considered is that the failure of the baroreflex function is a 
possible trigger of IDH element. 
Arterial and cardiopulmonary BRS can lead to the arousal of sympathetic and 
parasympathetic inhibition, resulting in higher LF power on the HRV spectrum.  
 
 

3.3. Electrolytic imbalances and dysrhythmias 

During a dialysis session hypotensive episodes can be induced by electrolyte 
homeostasis aberrations. 
Electrolyte homeostasis aberrations are often associated with alterations in 
cardiac conduction, which can cause, clinically relevant electrocardiographic 
changes. [97, 96].  
The   changes could reflect as dangerous cardiac dysrhythmias.  
Several author have studied the effects on the dialysis treatment of alterations in 
electrolyte unbalances. 
Particularly, the sudden decrease in potassium, in addition to an increase of 
ionized calcium in plasma [109], may increase the susceptibility to ventricular 
arrhythmias. In fact, the intra and extra-cellular concentrations of magnesium, 
calcium and potassium are important factors for the electrical stability of the 
myocardium. 
They are indeed involved in the determination of the normal cellular excitability, 
pulse propagation and regular ventricular recovery. 
Furthermore during the treatment the solutes in the blood affect the oncotic 
pressure of the plasma. 
This affects in the plasma refilling phenomenon, conditioning the exchanges 
between blood and dialysis liquid through the phenomena of diffusion and 
ultrafiltration.  
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  3.3.1 Potassium Ion unbalances  

Potassium is the major cation of intracellular fluid.  
Most of the potassium ion is allocated in the intracellular space (98%), while the 
remaining 2% is in the extracellular compartment.  
Potassium is a key electrolyte that helps maintaining the acid-base equilibrium, 
the osmotic pressure of the intracellular volume status and that promotes the 
action of the enzymes involved in cellular metabolism. 
It also plays a key role in the excitability of some cell types, including cardiac 
myocytes [97]. 
A reduction of extracellular potassium makes the cells less excitable, while its 
increase makes them more excitable up to a threshold value beyond which the 
excitability decreases rapidly. 
Potassium physiological levels in the blood are between 3.5 mmol / l and 5.0 
mmol / l [98]. So the abnormal blood concentrations of potassium could be 
classified as hypokalemia and hypekalemia  
It is usually considered hypokalemia a [K+]b<3,5 mmol/l, mild hypokalemia 
between 3.0 and 3.5 mmol / l and moderate hypokalemia on [K+]  between on 
2.5 and 3.0 mmol/l.  
Severe hypokalemia is defined for [K+]b<2,5 mmol/l. 
Such changes may cause dangerous arrhythmias, in particular: tachycardia / 
ventricular fibrillation; and  torsades de pointes[108]. 
The hyperkalemia is reached when the serum potassium concentration is greater 
than 5.0 mmol / l . 
It is classified as mild hyperkalemia for [K+]b between 5.0 and 5.9mmol/l, 
moderate between 6 and 6.4 mmol / l, severe than 6.5 mmol / l, hyperkalemia 
incompatible with the life of 10 mmol / l).  
Hyperkalemia modification could be registered on ECG changes [98].  
All clinical manifestations related to hypo/hyperkalaemia are conditioned by the 
velocity by which the alteration is established, the presence of underlying 
diseases, by co-administration of drugs. 
 

  3.3.2. Calcium ion unbalances 

Ca++ serum physiological values are in the range 1.15 to 1.29 mmol / l [100], 
although currently there is a tendency to consider hypocalcemia a ionized 
calcium concentration of less than 1.09 mmol / l [100].  
It is classified as a severe hypercalcemia level of Ca++ serum greater than 3.5 
mmol / l. 
 

3.3.3 Magnesium ion unbalances 

In general, hypomagnesemia is associated with far-reaching adversities during 
HD, including effects on the central nervous system (CNS), such as mental 
confusion, dysrhythmias and vasospasm, endocrine dysfunctions and muscular 
effects as weakness and bronchospasm.  
Lack of magnesium can also cause supraventricular or ventricular dysritmias. 
Hypomagnesaemia is often associated with hypocalcemia. 
The hypermagnesaemia occurs mainly in patients with renal failure whom are 
more usual to consume magnesium in diet [97]. 
For the electrolyte homeostasis equilibrium during the treatment, the magnesium 
and calcium concentration in the dialysate are important. 
Kyriazis et al. [75] reports that a dialysate solution with 0:25 mmol / L of Mg to 
1.25 mmol / L of Ca increases the risk of IDH, while use a solution with 0.75 
mmol / L of Mg (often accompanied 1.25 mmol / L of Ca) may instead decrease 
it.  
However, further studies are needed to confirm the role of magnesium on the 
hemodynamic stability. 
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3.3.4.  Potassium and calcium removal during hemodialysis and effects 

on the QTc wave 

Dysfunctions in electrolyte homeostasis determine cardiac problems that can be 
detected by the analysis of ECG signal due to a modification of the shape of the 
action potential wave. 
In particular, several studies have shown that durings hemodialysis treatment, a 
dilation of the QTc interval is registered by a 12-lead ECG This is called QTc 
dispersion [104-107].  
The dispersion of the QTc interval is therefore considered a marker of risk of 
ventricular arrhythmia and its prolongation has been linked in general to an 
increase of risk of sudden death [104,105].  
The increase in QTc dispersion during HD is primarily related to the diffusion 
process, in particular the removal of potassium, which must therefore be given 
special attention in the case of uremic patients with heart problems.  
The HD introduces a number of factors that can affect the QTc interval duration: 
the composition of body fluids, tissue hydration, electrolyte balance and 
adrenergic activation. Electrolytic disorders are one of the main factors that 
determine hemodialysis dependent QTc interval changes and ventricular 
arrhythmias, due to their involvement in the genesis, life, morphology and 
propagation of the action potential [104].  
In particular, the sudden decrease of potassium, in addition to an increase of 
ionized calcium in the plasma [109], may increase susceptibility to ventricular 
arrhythmias. In fact, the intra and extra-cellular concentrations of magnesium, 
calcium and potassium are important factors for the electrical stability of the 
myocardium, being involved in the determination of the normal cellular 
excitability, pulse propagation and regular ventricular recovery. Consequently, 
the imbalance caused from a hard drive is probably the main cause of the 
increase in QTc dispersion [105]. 
Cupisti et al. have observed an increase in this dispersion against a decrease in 
potassium and magnesium, and an increase of calcium and that the increase of 
QTc dispersion seems limited to the hemodialysis session, occurring in the first 
hour of treatment (abruptly reaches its maximum value is twice that of session 
end), when the removal of potassium is more rapid, and returning to baseline 
after two hours from the end of therapy [105].  
For patients on HD, the QTc prolongation is inversely related to the change of 
Ca2+ in plasma, suggesting that patients with the greatest variation of Ca2+ at the 
end of the session will have the greatest increase in QTc interval [110, 112]. 
 On the other hand, several authors have reported the removal of K+ as a 
fundamental factor in the induction of arrhythmia, associated with 
hemodialysis.  
Numerical simulations have predicted an action potential and a long QT 
critically when simultaneously considering a low level of K+ and Ca2+, 
suggesting that concurrent decrease their electrolytes have an arhythmogenic 
potential factor [104].  
The Ca2+ content in the dialysate should be designed not to critically lower the 
level of Ca2+ serum, especially in patients at risk of hypotension. 
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Chapter 4 – Data Management and  

Personalized medicine 
 

 

4.1 Personalization of the dialysis therapy 

Patient-centered care is a crucial point for the chronic kidney disease 
management [115].  
The clinical practice shows a great variability of tolerance to the treatment, even 
in the presence of similar prescriptions due to the peculiar patient-machine 
interaction  
The heterogeneity of the treatment approach among different dialysis centers, 
and the not homogeneous criteria for the choice of the therapy and for the IDH 
management is also an important point that address the fact that the dialysis 
therapy should be provided in the most personalized and patient-compliant way 
possible [116].  
This problem is emphasized in border areas where different National Health 
Systems adopts specific rules to guarantee the access to the treatment, make 
moreover difficult the mobility of the patients, with high negative impact on their 
quality of life. 
Not less important, it has to be underlined that patients on dialysis face a 
significant number of restrictions in daily life, as well as the physical and 
substantial time needed to follow dialysis treatments [115]. 
A significant improvement in the dialysis care provision, stands in the provision 
of a customize therapy for each patient toward a personalized approach. 
Due to rapid evolution of new technologies the concept of personalized medicine 
has evolved [117]. 
The availability of several new generation digital instruments and sensors make 
nowadays easier to produce and gather large number of clinical related data, not 
only referred to longitudinal trend in the pathology evolution, but also addressed 
to single treatments.  
Thanks to the use of large amounts of data, standard medical practice is moving 
from relatively ad-hoc and subjective decision making to evidence based and 
personalized healthcare [116]. 
The expansion of the medical record as well as the development of new methods 
for creating disease profiles constitute a challenge in the information technology 
filed. 
Over the past few decades, computers have been increasingly used in most areas 
of services and clinical business, with no exception for hospital management 
systems and sometimes renal units[116]. 
 

4.2 Patient mobility  

Patient mobility has only slowly emerged on the European health policy agenda. 
With the growing awareness of on well-being and the availability of several, 
easy to access, medical information’s (even if not always proper and appropriate, 
rather often partial), patients, when in need of medical treatment, increasingly 
act as informed consumers who claim the right to choose their own provider, 
including beyond their national borders.  
They are supported and encouraged in this by several factors and actors, the 
availability of internet on one side, and internationally trained health 
professionals on the other side. “Cross-border patient mobility” is the most 
commonly used expression within the EU to describe a social phenomenon that 
involves people crossing a border to receive health care [121]. 
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Patients are often unwilling to travel significant distances for care, but in some 
border regions in the EU the most accessible care happens to be in another 
Member State. European cross-border health care is the key to unlock this great 
potential, by facilitating the transfer of expertise and knowledge, by improving 
choice for patients, and by enabling greater efficiency in providing health care 
through cross-border cooperation [123].   
In 2011, the European Parliament and Council adopted the Directive on Patients’ 
Rights in Cross-border Healthcare, which sought to provide a clear legal 
framework and resolve ambiguities about the mechanisms involved in providing 
cross-border care (European Council, 2011) [123]. 
In such a way the goal is to obtain “personalized therapies” that could act “over 
the places”. 

 

4.3 Data sharing in renal facilities 

The technological evolution and production of data in the healthcare field has 
lead to the storage into public or private repository of even higher quantities of 
data related to patients and their pathological evolution.  
The public databases were usually shared through the web to be used by other 
scientists. 
The national and international renal registries use data collected by the renal 
medical centers and publishes annual data report based on this very large data 
set, but the majority of the data representations we see in nephrology today are 
simply visual representations of historical data [138].  
Biomedical research when coupled with the high speed processing technologies 
results in highly detailed datasets. 
Using data for decision-making is a key way to personalize medical treatments; 
the promise of data-driven decision-making could allow an improvement in 
kidney disease diagnostics and therapy and there is fast-growing enthusiasm for 
the notion of ``Big Data’’[139]. 
Big Data is an “information assets characterized by high volume, velocity and 
variety” that requires “specific technology and analytical methods for its 
transformation into value” (De Mauro et al) [133]. 
Big data analysis is an innovative approach in medical research, that try to infer 
knowledge from complex heterogeneous sources, by the analysis of patient/data 
correlations in longitudinal records trying to understanding unstructured clinical 
notes in the right context. 
The potential benefits of the analyses of large amount of data are real and 
significant; even if some initial successes have already been achieved, several 
technical threads must be overcome to fully show their potential.  
Main problems were indeed directly related to the data storage. 
Heterogeneity, scale, timeliness, and lack of proper common standards are 
typical problems that impede the extraction of the information from the data. 
This is particularly true dealing with data coming from dialysis unit, where the 
lack of proper exchange protocols between concurrent software vendors, results 
in a lack of interoperability within data coming from different dialysis machines 
[134].  
For these reasons, the development of a common framework to store the large 
amount of available clinical data related to treatment performances, could be 
complex and not straightforward.  
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4.4 Privacy Issues related to medical data 

The diffuse access to cheap data collection and processing technologies has 
allowed the availably of large volumes of but at the same time has raised   several 
privacy problems. 
Considering the very sensitive nature of medical data and easy dissemination of   
information on electronic format, clinical data from electronic medical records 
EHRs need a special  attention[124] 
As nowadays medical data are available by the EHR to be shared in common 
repository the HIS systems need to satisfy certain requirements in term of and 
the consistency of security policies [129]. 
The protection and security of personal information has thus became a critical 
point in the health sector. 
Several technique are nowadays available to grant clinical data security. 
De-identification and anonymization are two of the available strategies that 
remove any connection to the data and patient identity in electronic health record 
(EHR)[125] 
In particular:  

• De-identification is the removal or replacement of personal identifiers 
in order to make difficult any possible connection to  the individual and 
his or her data 

• anonymization refers to the irreversible removal of the link between the 
individual and his or her  medical record data  

These techniques allow clinical data to be used for research purposes and 
eventually shared among different center. 
Even if they assure a privacy level to the data in order to be share, they had to 
always accompanied by the   informed consent of the patients or a waiver from 
their IR[125]. 
 

4.5 The problem of data interoperability 

The possibility to gather and analyze accurate information at the right time from 
different sources as public healthcare information systems, opened the 
possibility to better orientate correct clinical assessments and related decisions.  
Furthermore, if information is shared across laboratories, and hospitals, patients 
could benefit of the same focused treatments even in different clinical centers. 
Data sharing can also increase public trust in clinical trials and conclusions 
derived from them by lending transparency to the clinical research process. 
Data from medical sources are voluminous, but they come from many different 
sources, not all commensurate structure or quality [140]. 
In  order to  share  health  information, the  HIS systems should  grant  a minimum  
level  of  interoperability.   
Rules  or  guidelines  at  the  national  level  should   mainly  aim   at   achieving   
essential   requirements   with   regard   to   semantic,   technical, organizational  
and  legal  interoperability[124]. 
While the data gathering at the hospital level is highly keen to provide detailed 
information about clinical parameters, very often this effort have the intrinsic 
limit of not being standardized among the different health care providers.  
The lack of standardization represents a great barrier to share data and this 
problem is very common in multicentric initiatives where different health 
information systems are involved.   
Each center in fact, could have various licensed software to produce clinical data 
and export it. The export formats should be different, and thus the final data 
cannot be easily merged in unique platforms. 
The integration of different data sources in common structures is highly 
connected to the concept of interoperability. 
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Interoperability can be defined as”the ability of different information technology 
systems and software applications to communicate, exchange data, and use the 
information that has been exchanged”[139]. 
Interoperability allows the different health information systems to work together 
and could bring several benefits to effective delivery of healthcare, individuals 
and communities. 
Through health care information exchange and interoperability indeed, 
clinicians everywhere can have a longitudinal medical record with full 
information about each patient. 
Conversely patient will have better information about their health status across 
organizational boundaries [140]. 
The need for interoperating systems is evident in several department of 
healthcare organizations. This is particularly the case of the dialysis facilities, 
where a huge gap on interoperable information systems is still present compared 
with the other medical fields. 
The different dialysis machine vendors in fact developed software for physician 
offices, and even more for hospitals often so customized that did not allow data 
interexchange between different clinical centres [142]. 

   

4.6. The federated database approach 

The creation of a shared platform between different health centers is a common 
problem in clinical data management.  
Most of the times, this problem is highly related to the lack data interoperability. 
Standing to the classification of Wang et al.[143], data interoperability could be 
implemented at different levels.  
The basic ones are the technical and syntactic inter-operabilities.  
The first is related to the physical connection and network connectivity among 
different data sources. The second indeed defines the structure or format of data 
exchange. 
If technical interoperability can be usually considered to be covered by the 
presence of a diffuse internet connection, the syntactical one is several times not 
granted on health data. 
As the clinic information systems produce data in different formats and 
extension, they have to be converted into a common standard format before 
being integrated in unique common structures. 
An effective shared data platform should definitively grant higher levels of 
interoperability. 
In particular these are the semantic interoperability, by which a common 
meaning of the data is defined and the pragmatic interoperability that allows a 
common utilization of the exchanged information by different users, with an 
high degree of consistency and easiness in updating. 
Such simple considerations show how the process of data integration from 
different data sources is not trivial and needs a conceptual model to be properly 
addressed. 
To achieve semantic interoperability, the systems involved must refer to an 
agreed authority, typically a terminology that clearly defines the meanings of the 
items carrying the information.  
In particular semantic interoperability lies into   

• syntax, the packaging and transmission mechanisms for data 
• semantic, the meaning of the data[147]. 

Semantic interoperability could be accomplished within different systems and 
conceptual models. 
In computer science a conceptual model can be defined as “the abstract and 
simplified representation of a system for some specific purpose by languages, 
figures, tables, or other suitable artifacts”[142]. 
Several studies on biodata, shows how conceptual models has been applied on 
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bio-databank by adding data about the data (metadata), linking each data element 
to a controlled, shared vocabulary (ontology) [147].   
An ontology is a formal description  of concepts in terms of entities and their 
relationship within a domain.[148] 
By the ontological model is possible to organize complex data in order to be 
machine readable, connecting of different type and from different sources. 
Regarding kidney. 
Ontologies in fact, could capture the structure of the domain, through the 
mechanism of conceptualization. This includes the model of the domain with 
possible restrictions. Formal specification in fact is required in order to be able 
to process ontologies and operate on ontologies automatically[148].  
Studies in these directions has been conducted in nephrology and dialysis by 
Goldbreich et al. [149] using the OWL DL and Protégé. 
The study showed that OWL DL supports powerful automatic reasoning, but it 
also arouses some difficulties, propagation of information between the different   
concepts of the information. 
In order to define innovative approaches on data integration and overcome the 
unsolved problems in dialysis data, the conceptual model that has been adopted 
to deal with data integration in the Dialysis Project has been the Federated 
Database System [144,145,146]. 
The term Federated Database System (FDBS) was coined by Hammer and 
McLeod (1979)[145] and Heimbigner and McLeod (1985)[145].  
It stands for a collection of “cooperating but autonomous component database 
systems (DBSs)” [146]. Since its introduction, the term has been associated to 
several different DBS architectures. 
A key characteristic of a federation, however, is the cooperation among 
independent systems, with controlled and sometimes limited integration of 
autonomous DBSs. Standing to its description it comes intuitive how the FDBS 
logic can be used to define the structure of a common repository for the data 
recorded in different dialysis units.  
These data have different and peculiar features and act as independent datapools.  
Their integration into a common storage infrastructure should be managed into 
different steps.  
First of all, an interoperability layer should work to convert into the common 

standard format all the not homogeneous data coming from different source. As 
a result of this process, a converted database, associated to each dialysis unit is 
obtained. 
Secondly, as each center has its own database, a federation mechanism should 
acts to merge all the data into a common data infrastructure. 
Figure 1 resume in a figure the concept of the common storage infrastructure in 
FDBS logic. 
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Figure 4.1: Common Storage infrastructure in FDBS logic 

  

4.7. Medical data analysis and mining  

The storage of data in commons structures lead to the possibility, to analyse data 
in a massive way in order to obtain useful information. 
This process is commonly known as data analysis or data mining. 
Data analysis, or data analytics, implies the inspection, transformation, and 
model of data  
Particularly data mining can be considered an application of data analysis that 
focuses on modeling and knowledge discovery for predictive rather than purely 
descriptive purposes [150]. 
Data mining, also known as knowledge discovery, allows a search, for valuable 
information, in large volumes of data, in order to find hidden patterns, 
correlation and useful information [151]. 
Applied to medical data, the main goal of data mining is to extract unknown 
information from dataset and transform it into an understandable knowledge for 
the clinicians [152]. 
Data analysis has multiple facets and approaches, encompassing diverse 
techniques. 
Standing to Berson et al. [153], these techniques can be classified in: 

• classical techniques: mainly based on inferential statistics, and 
statistical predictive models.  

• next generation techniques: commonly belong to the domain of 
Artificial intelligence, and Machine learning techniques. 

 

 

 

 



Chap 4- Data Management and Personalized medicine 
 

 34 

4.7.1 Inferential Statistic Analysis Approach 

Inferential statistical analysis are powerful technique that enables a researcher to 
draw meaningful conclusions from a study in which data are collected through 
observation, survey or experimentation[154] 
In particular in data related medical studies, it is quite reasonable to convert a 
medical problem into a statistical problem.  
On the inferential statistical approach each measured variable can be seen as a 
sample from a wider population identified by a probability distribution, that 
describes the physical process. 
Generally , biomedical data can be modelled both as variables characterized by 
normal or Gaussian distribution as well by a not normal distributions. 
Inferential statistical analysis, infers properties about these distribution by 
testing hypotheses and deriving estimators [156]. 
A hypothesis evidence in a sample of data to infer that a certain condition is true 
for the entire population.  
An hypothesis test examines two opposing hypotheses about a population: the 
null hypothesis and the alternative hypothesis. 
Usually the null hypothesis is a statement of "no effect" or "no difference".  
The verification of a hypothesis means its acceptance or rejection, to a 
predetermined level of probability by a test. The p-value furnishes the level of 
tolerance by which the null hypothesis could be rejected. Each statistical test has 
this value has a reference to reject the null hypothesis. 
The test depends on the normality of the analyzed distribution that has to be 
checked by a normality test. In statistic a normality test is able to determine if a 
data series can be modeled by a normal distribution and thus assumed as a 
complete random variable.  
Depending on the normality of the distributions parametric or non-parametric 
tests should be applied in order to assess the statistical difference between the 
two samples [155]. 
Inferential statistic techniques can help to assess strength of the relationship of 
cause- effect variables in multivariate datasets. 
In particular in the field of medicine and health, they can be used to predict the 
effects of several factors on a particular disease [154]. 

 
 

4.7.2  Machine Learning techniques 

Machine learning, is a branch of artificial intelligence (AI), that focus on finding 
algorithms capable of learning and/or adapting their structure based on a set of 
observed data, with adaptation done by optimizing over an objective or cost 
function [157]. In the past couple of decades it has become a common tool in 
almost any task that requires information extraction from large datasets [158]. 
One, of many applications of this approach is to create classifiers that can separate 
subjects into (usually) two or (rarely) more classes based on attributes measured 
in each subject.  
Machine learning techniques have raised an increasing interest in the biomedical 
community as they potentially offer the possibility to improve the sensitivity 
and/or specificity of detection and diagnosis of disease. 
Furthermore, the use of machine learning allows to search for patterns and 
relationships between medical variables and patient physiological states: for this 
reason the application of machine learning techniques has been highly increased 
in the clinical field [158]. 
A range of different problems that can be faced through machine learning is 
clearly large, and grows as a growing number of templates are discovered to 
address a large set of situations [159]. 
Particularly, Machine learning processes could be implied in two important 
operations: 
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• extraction of salient structure in the data from the simple raw data (feature  

   extraction problem); 
• inferring underlying organized class structure (classification problem). 
These two mechanisms can be highly useful in the prediction of events. 
A Machine learning approach can be especially useful in chronic diseases 
management where patho-physiological state of patients is steadily monitored in 
order to identify factors and anticipate the risky conditions. 
Machine learning is usually applied to observational data, where the predictive 
variables are not under the control of the learner, as opposed to experimental data, 
where they are [158]. 
As the inference statistic approach also machine learning techniques are based on 
the probabilistic model theory [158] and there is a lot in common between the 
two disciplines, in terms of both the goals and techniques used. 
Even though, there is a few significant differences of emphasis. 
The statistical approach, in facts starts from a hypothesis, as instance the 
existence of a correlation between variables and checks the validity of that 
hypothesis through hypothesis testing. 
In contrast, machine learning aims to use the data gathered from samples to come 
up with a description of the causes of the phenomenon [158]. 
The added value of machine learning techniques stand in the fact that automated 
techniques may be able to figure out meaningful patterns (or hypotheses) that 
may have been missed by the human observer[159]. 
In particular, machine learning techniques can be used when classical algorithmic 
solutions tent to be complex, there is lack of formal models, or the knowledge 
about the application domain is poorly defined [161]. 
This is the case of our study, where the acquired data refers not to a set of 
experiment but rather to clinical observations and no a priori models are known. 

 
 

4.7.3. Basic Concepts of Machine learning 

4.7.3.1. The learning problem 

The key feature of machine learning systems is their ability to automatically 
learn programs from data. 
In particular machine learning rise interest because it adapts the resolution 
strategies and algorithms to the features of the data. 
This is basically done by the process of learning, by which given  training data  
are expected to learn by an algorithm. 
In general a machine learning algorithm is said to learn from experience E with 
respect to some class of tasks T and performance measure P, if its performance 
at tasks in[161].  
This is the basic assumption of a machine learning problem, and the fundamental 
goal of machine learning is to generalize beyond the examples in the training set 
[161]. 
The task that machine learning addresses could be various, but in general it can 
be resumed in guessing a function f. 
The hypothesis about the function to be learned is denoted by h. 
Both f and h are functions of a vector-valued input X = (x1,x2, . . . ,xi, . . . ,xn) 
which has n components.  
The input vector is usually called as feature vector, input vector, pattern vector, 
sample, example, and instance.  
The components, xi, of the input vector are variously called features, attributes, 
input variables, and components. 
The function h is though to be implemented by a device that has X as input and 
h(X) as output. The output may be a real number, in which case the process 
embodying the function, h, is called a function estimator, and the output is called 
an output value or estimate. 
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Alternatively, the output may be a categorical value, in which case the process 
embodying h is variously called a classifier, a recognizer, or a categorizer, and 
the output itself is called a label, a class, a category, or a decision. 
An important special case is that of Boolean output values.  
This is the case of for example of binary classification problem.  
In its simplest form, the binary classification reduces to: 
 

! ∈ � ; $ ∈  ±1 => �($|!)                                        5.8 
 
given a pattern x drawn from a domain X, estimate which value an associated 
binary random variable y ∈ {±1} will assume. 
Binary classification problems fits very well in the modellization of diagnosis of 
a disease where the state of the patient are disease or no disease.[160]. 
A Boolean or binary predictor is also called concept learning, and the function 
is called a concept. 
Both f and h themselves may be vector-valued. We assume a priori that the 
hypothesized function, h, is selected from a class of functions H called 
hypothesis space[163]. 
Sometimes we know that f also belongs to this class or to a subset of this class. 
The function h is based on a training set, Ξ, of m input vector examples. 
 

 

Figure 4.2: Machine Learning problem 

 
There are two major types of learning processes. 
In one, called supervised learning, where the values of f for the m samples in the 
training set, Ξ. are known. 
In the other setting, termed unsupervised learning, we simply have a training set 
of vectors without function values for them. The problem in this case, typically, 
is to partition the training set into subsets, Ξ1, . . . , ΞR, in some appropriate way. 
As it posed the problem of learning through machine learning has normally three 
different phases: 

• the training phase, during which the model of learning is built using 
labelled data; 

• the testing phase, during which the model is tested by measuring its 
classification accuracy on with held labelled data; 

• the deployment phase during which the model is used to predict the 
class of unlabeled data. 

The three phases are carried out in sequence. 
Obviously different strategies and algorithms can be used to solve the learning 
problem. There are literally thousands available, and hundreds more are 
published each year [164]. But basically each one of them consist of a 
combination of just three components. 
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• representation. a classifier must be represented in some formal 
language that the computer can handle and belongs to a set of 
algorithms. This set coincides with the hypothesis space of the learner. 

• evaluation. An evaluation function (also called objective function or 
scoring function) is needed to distinguish good classifiers from bad 
ones. The evaluation function used internally by the algorithm could 
be different from the external one used for optimization 

• optimization, or a method to search among the classifiers in the 
language for the highest-scoring one. The choice of optimization 
technique is key to the efficiency of the learner, and also helps 
determine the classifier produced if the evaluation function has more 
than one optimum. 

The different machine learning techniques or learners could vary on the 
representation component. 
In the following paragraph the theoretical basis of the learners used in this work 
will be presented. 
 

4.7.4. Learners theoretical basis 

4.7.4.1.   Random Forests 

A random forest (RF) is a classifier consisting of a collection of tree-structured 
classifiers {h(x,Θk), k = 1,...} where the { Θk } are independent identically 
distributed random vectors and each tree casts a unit vote for the most popular 
class at input x (Breinman, 2001)[166]. 
The RF base learner is typically based on the methodology of CART [167], 
Classification and Regression Trees (CART) is a classification method which 
uses historical data to construct so-called decision trees. 
Decision trees classify instances by sorting them down a tree from the root to 
some leaf node, which provides the classification of the instance, splitting the 
learning sample into smaller and smaller parts [168].  
Based on this idea, RF is defined as a generic principle of randomized ensembles 
of decision trees [169]. 
Recent work in computational biology has shown an increased use of random 
forest, owing to its unique advantages in dealing with small sample size, high-
dimensional feature space, and complex data structures[169,170,171]. 
Furthermore RF can handle thousands of variables of different types with many 
missing values [165]. 
Considering a binary problem, each tree of the forest casts a unit vote, assigning 
each input (HD session in this case) to the most likely label class (1 or 0, i.e. IDH 
or not IDH respectively). 
The prediction of the random forest is obtained by a majority vote over the 
predictions of the individual trees (Figure 4.4). 
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Figure 4.4: Example of random for forest breast cancer diagnosis and prognostic [169] 

 

 

RF trees differs from CART as they are grown non-deterministically using a 
two-stage randomization procedure. 
In RF, for each split on each bootstrap tree, the algorithm randomly samples a 
subset of the input variables to be used as candidates for the split. 
Bootstrap methods take many repeated samples from the data with replacement, 
each time recording the predicted classification for each case. 
In particular the random forest ()1* is built from each bootstrapped data, by 
recursively repeating the following steps for each terminal node of the tree since 
the minumun node size nmin is reached: 

I. Select m variables at random from the p bootstapped 
II. Pick the best variable/split-point among the m 

III. Split the node into daughter node 
So for the kth tree, a random vector Θk is generated, independent of the past 
random vectors Θk, Θk-1 but with the same distribution; and a tree is grown using 
the training set and Θk, resulting in a classifier h(x, Θk) where x is an input 
vector. 
This is the basis for bagging (short for “bootstrap aggregation”; an early 
resampling-based method. proposed by Breiman in 1996 [172], that aims to 
improve the classification by combining classification of randomly generated 
training sets leading to an improvement for unstable procedures, such as 
regression trees. 
The purpose of this two-step randomization is to decorrelate trees so that the 
forest ensemble result with low variance [173]. 
When in facts, the inputs in the data set are highly correlated, this procedure 
addresses potential collinearity issues by giving each of the correlated predictors 
a chance to be used in different bootstrap trees. As decorrelation enhance 
accuracy , bootstrapping gives ongoing estimation of the generalization error of 
the combined ensemble of trees [173]. 
In general to define a random forest is necessary to include the follow main 
tuning parameters:. 

• Number of Trees:. the optimal number of trees in a random forest 
depends on the number of predictors: it needs to be at least one order of 
magnitude higher than the number of features in order exhaustively 
explore all the feature space during the forest building [174]. 

• Number of Predictors Sampled: the number of predictors sampled at 
each split would seem to be a key tuning parameter that should affect 
how well random forests perform. Sampling 2-5 each time is often 
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adequate. 
• Split criterion: For each node of the tree it is required to define the 

criterion for the identification of the optimal observation separation rule 

and creation of the consecutive nodes (as in II.).. 
The estimation of error is then almost unbiased, but it has high variability, 
producing non-reliable estimates [175]. In particular the error of a forest of tree 
classifiers depends on the strength of individual trees and correlation between 
them.  For each tree grown on a bootstrap sample, the error rate for observations 
left out of the bootstrap sample is called the “out-of-bag” error rate. 
The out-of-bag (OOB) error is the average error for each  calculated using 
predictions from the trees that do not contain  in their respective bootstrap 
sample. The out-of-bag (OOB) error is also a measure is a method of measuring 
the prediction error of random forests[166,175]. 
The biggest disadvantage of random forests is that the analysis, which  
aggregates over the results of many bootstrap trees, does not produce a single, 

easily interpretable tree diagram.. 

 

4.7.4.2. Artificial neural networks 

An Artificial Neural Network (ANN) is a learning algorithm that is inspired by 
the way of biological nervous systems, such as the brain, process information. 
In simplified models of the brain, it consists of an input layer of neurons (or 
nodes, units),or one or two(or even three) hidden layers of neurons and a final 
layer of neurons and a final layer of output neurons[176]. 
Each neuron receives as input a weighted sum of the outputs of the neurons 
connected to its incoming edges. 
Each connection is associated with a numeric number called weigh. 

The output hi of a neuron i is thus: 
 

+� =  �(� = 1,-��!� . (�+��)                              4.1 
 
where σ() is called activation (or transfer) function, N the number of input 
neurons Vij the weights, xj inputs to the input neuron and (�+�� the threshold 
terms of the hidden neurons. 
A neural network can be described as a directed graph whose nodes correspond 
to neurons and edges correspond to links between them (Figure 4.5). 
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Figure 4.5:Basic structure of a Neural Network[177] 

 

 
 
Based on the connection patterns and architecture, ANNs can be grouped into 
two categories: 

• Feed-forward networks: in which graphs have no loop 
• Recurrent (or feedback) networks, in which loops occur because of 

feedback connections 
Neural Network can potentially reproduce any boolean function 
Articial neural networks (ANNs) can be used as tools for prediction, 
classification, and decision support [178]. In medicine they have been applied 
successfully to several of  pattern analysis and diagnostic problems[179] 
Neural networks, provide good predictive accuracy in a wide variety of problem 
domains, but produce models that are notoriously difficult to understand.  
 

Rosemblat perceptron 

Rosenblatt’s perceptron (Rosemblatt, 1988) [180] is the simplest form of ANN, 
which consists in a single neuron receiving an input vector (x1, x2, ...,xn) and 
giving an output value back f(x). 
The input values correspond to the attributes, while the output is the prediction 
of the real target variable y. A weight wj is assigned to each of the n input 
connections[180]: 

/1!1 . /
!
 − 0 = 12 − θ                                  4.2 

An activation function g(·) and a distortion constant θ are defined. 
As it is the prediction for a new observation x 
Given these elements, the prediction for a new observation x works as it follows: 

�! = 3(/1!1 . /
!
 − 0) = 3(12 − θ)                      4.3 

The transfer function converts the linear combination of the inputs in a set 
composed by the target vales (v1, v2, …vH). 
The weight wj and distortion θ can be established by iterative algorithms for each 
sample xi. So, at each iteration the values w and are updated through recursive 
formulas based on the prediction error. 
Rosenblatt’s perceptrons can be combined to form a multi layered network 
capable to learn from complex processes. 
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Each node of the network works as a single Rosenblatt’s perceptron. 
These networks are composed by input nodes, hidden nodes and output nodes. 
For each observation the first ones receive the attributes values. 
Usually a network has the same number of input nodes and attributes. Hidden 
nodes compute values operations and transformations hidden in the network. 
Every node could be linked to input nodes, output nodes or other hidden nodes. 
Output nodes give back a value which corresponds to the target value prediction. 
The defined network is trained through a back-propagation algorithm, which is 
similar to the one illustrated for the Rosenblatt’s perceptron. 
The system begins with random weights at the connections between nodes. 
Data sets with known outcome are entered at the input nodes (training data set). 
The ANN compares its own output value with the known outcome and calculates 
an error value. The error will change as the weights at the nodes change. 
The ANN attempts to minimize the error by adjusting the weights according to 
the back-propagation algorithm. This process is repeated hundreds or thousands 
of times until a desired error level is achieved. 
Artificial neural networks have several advantages over conventional statistical 
techniques, such as multiple regression analysis [181]. They are more flexible 
for the user and can solve non-linear problems, and the learning mechanism can 
fit both classification and esteem problems. Furthermore, attribute selection can 
be automatically handled: low coefficients values are assigned to redundant or 
not significant attributes. Main drawbacks are long training times and results that 
are difficult to interpret. 
  

4.7.4.3.  Support vector machines 

Support Vector Machines are a learning tool originated in modern statistical 
learning theory. 
SVMs understanding can start from this simple concept: a simple way to classify 
a set of points in a plan is to draw a line and call points lying on one side positive 
and on the other side negative. If the two sets are well separated, one would 
intuitively draw the separating line such that it is as far as possible away from 
the points in both sets (Figure 4.6). 
 

Figure 4.6: Support Vector Machines basic concept[182] 

 
 

 
 
This intuitive choice captures the idea of margin separation [183]. 
Support vector machines (SVMs) realize this concept on a simple idea: map a n- 

dimensional input vector x ∈ Rn into a high dimensional (possibly infinite 
dimensional) feature space H by and construct an optimal separating hyperplane 
in this space. Different mappings construct different SVMs. 
When the training data is separable, the optimal hyperplane is the one with the 
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maximal distance (in H space) between the hyperplane and the closest image 
φ(xi ) of the vector xi from the training data [184]. 
 
SVM problem for a Binary classification 

SVM can be used for binary classification. 
The resolution problem for SVM for a binary classification can be defined as 
follow. 
Considering vector x ∈ Rn as a pattern to be classified, and let scalar y denote its 
binary class label (i.e., y ∈ {1, 0}). In addition, let {(xi, yi) = 1, 2, ..., l}, denote 
a given set of training examples. 
The problem is how to construct a classifier (i.e., a decision function), able to 
correctly classify an input pattern that is not necessarily from the training set.    
Linearly separable training patterns give the simplest case. That is, there exists 
a linear function of the form: 
 
�! = � = 1�4�$�5(!15(!1 . ) = �! = � = 1�4�$�6!�, ! . )   4.4  
Such that for each training example xi, the function yields f(xi) ≥ 0 for yi = 1, and 
f(xi) ≤ 0 for yi = 0. w represents the hyperplane angular coefficients while b 
indicates its constant term. 
In this way training examples from the two different classes are separated by the 
hyperplane solving the equation: 
 
�! = � = 1�4�$�5(!15(!1 . ) = �! = � = 1�4�$�6!�, ! . )      4.5 
 
For a given training set there may be infinite possible surfaces that divides the 
two classes setting to zero the empirical error on the training set. 
The SVM classification is however based on finding the optimal hyperplane: the 
one that maximizes the separating margin between the two classes. 
In other words, SVM finds the hyperplane that causes the largest separation 
margin between the decision function values belonging to the “borderline” 
examples from the two classes identified by two canonical hyperplane parallel 
to the separation surface itself. 
This examples are called support vectors and they result the most important 
examples in the training set since they alone determine the classification rule. 
The separation margin can be expressed as: 
 

δ = 2|/|   where ||w|| = � ∈ ,9�2                                                    4.6 
Mathematically, this hyperplane can be found by minimizing the following cost 
function: 

:! = 12/(/ = 12/2                                                               4.7 
Subject to the constraints: 

$/!� − ) ≥ 1                              i∈M                                 4.8 

 

The objective function corresponds with the margin maximization, expressed as 
its reciprocal minimization, while the constraints force each xi example to fall in 
the half-space corresponding to its yi class. 
This specific formulation may not be useful in practice since training data may 
not be completely separable by a hyperplane. 
Slack variables, denoted as di, can be introduced to relax the separation bounds 
considering misclassification errors chance. 
Accordingly, the cost function can be modified as follow, resulting in a more 
general optimization model: 
 

:/, ) = 12/2 . 	� = ����                                                 4.9 
 
The updated constrains are: 
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$�/!� − ) ≥ 1 − �� di   ≥0                                4.10 
 
The objective function is now composed by two terms: the first one expresses 
the separation margin reciprocal while the second one quantifies the empirical 
error. 
C is a user-specified, positive, regularization parameter that controls model 
generalization capacity and accuracy over training set. 
This modified cost function constitutes the so-called structural risk (4.9). 
The purpose of using model complexity to constrain the optimization of 
empirical risk is to avoid overfitting, a situation in which the decision boundary 
too well precisely corresponds to the training data thereby failing in perform well 
on future independent data sets. 
In formulation of SVM learning is based on the principle of structural risk 
minimization. 
Instead of minimizing an objective function based on the training samples (e.g. 
mean square error (MSE)), the SVM attempts to minimize a bound on the 
generalization error (i.e. the error made by the learning machine on test data not 
used during training). 
For a given training set there may be infinite possible surfaces that divides the 
two classes setting to zero the empirical error on the training set. 
The SVM classification is however based on finding the optimal hyperplane: the 
one that maximizes the separating margin between the two classes. 
In other words, SVM finds the hyperplane that causes the largest separation      
margin between the decision function values belonging to the " examples” from 
the two classes identified by two canonical hyperplane parallel to the separation 
surface itself. 
This examples are called support vectors and they result the most important 
examples in the training set since they alone determine the classification rule. 
The separation margin can be expressed as: 
 

�! = /(! . ) = 0                                                              4.11 
 
As a result, a SVM tends to perform well when applied to data outside the 
training set, finding an ideal equilibrium between empirical accuracy over the 
training samples and generalization capacity over new examples. 
Indeed, it has been reported that SVM-based approaches are able to significantly 
outperform competing methods in many applications. 
SVM achieves this advantage by focusing on the training examples that are most 
difficult to classify. 

�! = /(! . ) = 0                                                              4.12 
 
These “borderline” training examples are called support vectors. 
We could consider these support vectors as the most meaningful examples in the 
training set as they better represent the target classes characteristics. 
Although SVM modeling gives returns black box model support vectors could 
play an essential role in classification rules interpretation. 
Mathematically, this hyperplane can be found by minimizing the following cost 
function: 

�! = /(! . ) = 0                                                               4.13 
 
to fall in the half-space corresponding to its yi class. 
This specific problem formulation may not be useful in practice since training 
data may not be completely separable by a hyperplane. 
Slack variables, denoted as di, can be introduced to relax the separation bounds 
considering misclassification errors chance. Accordingly, the cost function can 
be modified as follow, resulting in a more general optimization model: 
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�! = /(! . ) = 0                                                                  4.14 

 
The updated constraints are: 
 

$�/!� − ) ≥ 1 − ��                                          4.15 

 
The objective function is now composed by two terms: the first one expresses 
by the separation margin reciprocal while the second one quantifies the empirical 
error. C is a user-specified, positive, regularization parameter that controls 
model generalization capacity and accuracy over training set. This modified cost 
function constitutes the so-called structural risk. 
The purpose of using model complexity to constrain the optimization of 
empirical risk is to avoid overfitting, a situation in which the decision boundary 
too well precisely corresponds to the training data thereby failing in perform well 
on future independent data sets. 
Linear separation surfaces result unsuitable in achieving a high accuracy 
classification in problems ruled by intrinsically non-linear regularity schemes. 
The linear SVM can be extended to non-linear classifier by using a nonlinear 
operator φ(·) to map the input pattern x into a higher dimensional space H. 
The operator φ(·) is a kernel k realization that project the non-linear pattern x 
from the attribute space into the feature space H where the optimal linear 
hyperplane can be determinate. 
Because the SVM approach is data-driven and model-free, it may have important 
discriminative power for classification, especially in cases where sample sizes 
are small and a large number of variables are involved (high-dimensionality 
space)[185]. 
 

  4.7.5. Overfitting 

One of the main issues in supervised machine learning, from labelled training 
data, is model overfitting. 
In machine learning, overfitting occurs when a learning model customizes itself 
too much to describe the relationship between training data and the labels. 
Specifically, overfitting occurs if the model or algorithm shows low bias but high 
variance [163]. If we consider a training set t ∈Tm and a class y and a classifier 
r, the “bias” of a solution f coincides with the approximation error defined as: 
 

=>� = 1�� = 1�(�!� − $�)2                             4.16 
 

and its “variance” with the sample error defined as is the mean error over the 
training sample: 

=�> = =�(!) − ε(�>(!))                                  4.17 
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Figure 4.9 depict graphically an overfitting case for a parabolic predictor 
 

Figure 4.9: Overfitting case for a parabolic predictor 

 

 
 

 

Overfitting tends to make the model very complex by having too many 
parameters. By doing this, it loses its generalization power, which leads to poor 
performance on new data. This leads to an identification attribute that will never 
correctly predict any examples outside the training set [165], 
The most obvious consequence of overfitting is poor predictive performance 
on the validation dataset as the prediction model overreacts to minor fluctuations 
in the training data- To reduce overfitting in noisy situations, has been  necessary 
to act on the training set for example operating cross-validation[164].  

 

4.7.6. Performance Evaluation of Machine Learning Algorithms 

Machine Learning algorithms can be evaluated on the basis of the confusion 
matrix and ROC curves[191]  
Figure 4.9 depicts the structure of a confusion matrix: the columns reports the 
Predicted Class while in the rows are the Actual Class. 
In the structure of the confusion matrix TN is the number of negative examples 
correctly classified (True Negatives), FP is the number of negative examples 
incorrectly classified as positive False Positives, FN is the number of positive 
examples incorrectly classified as negative (False Negatives) and TP is the 
number of positive examples correctly classified (True Positives). 

 
Figure 4.10: Confusion Matrix 

 

 
Confusion matrix can be used as basis to define performance evaluation for 
machine learning techniques. 
A first performance evaluator based on confusion matrix is the predictive 
accuracy defined as:  
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?��@�A�$ ?�� = ((� . (,)((� . B� . B, . (,)                                 4.18 

 

The Receiving Operation Characteristic (ROC) (Figure 4.10) [191] curve is a 
standard  technique for summarizing classifier performance over a range of 
trade-off between TP and FP error rates.  

 

Figure 4.11: ROC-Curve 

         

 

 

The ROC curve can furnish useful indicators to evaluate the classifier 
performances. ROC curves can be thought as representing the family of best 
decision boundaries for the relative costs of TO and FP. 
The x-axis of the ROC curve represents the %FP, intended as: 

 

%B� = B�((, . B�)                                                                             4.19 

 

The y-axis of the ROC is indeed the %TP: 
 

       %(� = (�((� . B,)                                                                           4.20 

     
As the point P(0,100) represents the scenario where all positive examples are 
correctly classified and no negative examples are misclassified as positive, and 
the line y=x , stand for the scenario of the randomly guessed class; the Area 
Under the Curve (AUC) can be considered an effective metric for the prediction 
accuracy obtained by ROC curve. 
The AUC of a classifier measures the probability that the classifier will rank a 
randomly chosen positive instance higher than a randomly chosen negative 
instance [192]. 
 

Precision and Recall  

The ROC curves are usually the most used method to evaluate results for the 
binary decision problems. However when with highly skewed and asymmetric 
dataset  precision, recall and F-measure [193,194] can offer a better evaluation. 
 Precision and recall can been obtained by the ROC curve as:  
 

��D�����
 = (�((� . B�)                                                               4.21 

 

�D�A�� = (�((� . B,)                                                              4.22 
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Precision or Confidence denotes the proportion of Predicted Positive cases that 
are correctly identified. 
Recall or Sensitivity is the proportion of real Positive cases that are correctly 
Predicted Positive. 
Neither of these takes into account the number of True Negatives, that indeed 
are considered in the F-measure, defined as: 
  

B − �DA�@�D = 1 . E2 ∙ �D�A�� ∙ ��D�����
 (E2 ∙ �D�A�� ∙ ��D�����
)                               

4.23 
 
The F-measure represents the trade-off among different values of TP, FP and 
FN. It is expressed as follows: F where β corresponds to the relative importance 
of precision respect recall and it is usually set to 1. 
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Chapter 5 – Materials and Methods 
 

 

5.1 Introduction 

The proposed work has been developed within the framework of the “DialysIS” 
Project. “DialysIS - Dialysis therapy between Italy and Switzerland” is an 
international project cofounded by Regione Lombardia and European Union, 
through the INTERREG operative cooperation program between the two 
countries (IT/CH 2007-2013). 
The project involves two reseach units of Politecnico di Milano (the Life Support 
System Unit at the department of Chemistry, Materials and Materials 
Engineering.and the Department of Management), and 4 dialysis units between 
Italy and Switzerland, namely Ente Ospedaliero Cantonale di Lugano (EOC), 
Switzerland, S.C. Nefrologia e Dialisi dell'A.O. della Provincia di Lecco, Italy  
Servizio di Nefrologia e Dialisi dell'A.O. di Como, Italy and Servizio di 
Nefrologia e Dialisi dell'A.O. di Varese, Italy. 
The main efforts of the project was the development of a common platform to 
share information and clinical protocols among the involved partners in order to 
enhance standardized personalization of the therapies and improve patient and 
clinician mobility. 
The Dialysis project operates on this framework, wanting to spread care 
provision even beyond transnational borders. The project is addressed to chronic 
uremic patient needing hemodialysis treatment to replace kidney functionality. 
In particular the project has pursuit the following main goals: 

• To develop and validate a computational models able to describe patient 
specific response to the treatment,  

• To implement an automatic control system based on pressure and 
biochemical signals. 

 To implement a Web platform, to share and allow the remote consultation of 
models and therapy protocols developed and applied during the study and also 
later. 
 To provide new protocols and instruments, allowing to personalize dialysis 
treatment. 
The web platform has been developed with the aim to ensure a better territorial 
continuity to the patient care.  
In the mean time, the web platform represents the tool allowing extracting data 
from a dedicated DataBase and using the  numerical model features as described 
in Chap 4.5.  
In the field of Dialysis treatments, the availability of different kind of therapies 
and the huge variability of therapy’s approaches in different clinical centers 
increase the complexity of the problem.  
The Dialysis project bases acts on the development of a common repository of 
patient data in order to share clinical data and protocols ensuring: a higher patient 
mobility as well the sharing of knowledge and clinical approaches among 
different clinical centers, operating on the same large catchment area. 

 

5.2 Dialysis Data Acquisition 

A basic point of the Dialysis project has been the collection of data from the  
different involved nephrology and dialysis units. DialysIS study was structured 
in three different phases. 
 Phase 1: acquisition of the complete set of data at Lecco and Lugano clinical 
centres. 
 Phase 2: acquisition of the complete set of data at Como and Varese clinical 
centres, acquisition of a small set of data (without  
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 blood composition monitoring) at Lecco and Lugano clinical centres 
 Phase 3: acquisition of the reduced set of data all over the involved centres, 
together with the bedside evaluation of final analysis.  

 

 5.2.1. Patient enrollement  

DialysIS database was compiled integrating treatment recorded data and patient 
specific parameters measures.  
For each patient, clinical records were also registered in order to have a better 
definition of their medical case.: 
The patients enrolled within the study were adult, undergoing dialysis therapy 
since at least 3 months, and wearing a artero-venous fistula used as vascular 
access (AVF) [195,116]. 
The 65% of them was male and 35% women. 
he medium age of the population was 70,07±10,89 with a dialysis 

age (time lasting rom the first treatment) of 61,5±10,89 months. 

The 31% are affected by diabetic nephropathy  and 90% shows 

heart disease. 

5.2.2 Data collection protocol 

Personal and anamnesis data have been recorded for each enrolled subject;. 
Additional data as clinical prescription, haematochemical data, machine 
acquisition data, hematochemical data have been recorded during each treatment 
sessions. 
A bio impedance test, to evaluate the hydration status has been performed at the 
beginning of the first session and at the end of the last one. The BNP level has 
been also evaluated at the start of the session. 
During each session, adversary odds, infusion and food and beverage  
consumption have been noted.  
Table 5.1, shows a synopsis of collected data. 
Data have been clustered by type/source and sampling frequency/timing. 
Together with patient data also suspicious or abnormal events during the  
treatments have been noted and registered in order to be part of useful information  
for the final platform.  
These information should be exploited to underline abnormal behaviour of the 
subject. 
At least 6 treatments session have been registered for each of the patient, and for 
12 of them the number of registered session rises to 8. 
Data have been acquired by the written consensus of the patients. 
The complete dataset   at present contains 808 dialysis sessions referred to 145 
patients. 
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Table 5.1: Synopsis of collected data[196] 
 

Type/Source  Sampling 

Freq./Timing 

Name[Unit] 

Personal Once a time Patient ID, Sex, Date of Birth, Height, Weight 

Anamnesic  Once a time and at 

each variation in the 

drug therapy 

Clinical History, Drug Therapies, Dialysis age 

Dialysis Machine  

 

1/min Ultrafiltration Rate (UF) [ml/h],  

Ultrafiltration Volume [ml], Weight loss [Kg], 

Dialysis fluid flow[ml/min],  

Dialysis fluid Temperature [°C],  

Hematic Flow [ml/min],  

Packed Cell Volume [%], 

Blood Temperature [°C],  

Relative Blood Volume (RBV)[%],  

Every 15 min Diastolyc pressure[mmHg], 

Sistolyc pressure [mmHg], Heart Beat [1/min] 

Hematochemical  Start Treatment 

Every hour  

End Treatment 

each session 

 

 

pH, pO2[mmHg], pCO2 [mmHg], 

Cumulative Blood Volume [ml], 

Hemoglobin blood conc.[g/l], 

Urea blood conc. [g/l], 

Blood Ionic Concentration of: 

Calcium Ion[ Ca2+] [mmol/l], 

Magnesium Ion [ Mg2+] [mmol/l], 

Clorum Ion [Cl-] [ml], 

Sodium Ion [Na+] [mmol/l]), 

Glucose Concentration[mmol/l] 

Start Treatment 

End Treatment 

each session 

Albumine blood conc.[g/l], 

Phosphorous ion blood conc.[ PO4-][mmol/l], 

dialysis fluid Fluid Concentration of: 

Calcium Ion[ Ca2+][mmol/l], 

Magnesium Ion [Mg2+][mmol/l], 

Clorum Ion [Cl-][ml],Sodium Ion[Na+][mmol/l] 

Start Treatment 

End Treatment  

only 1stsession 

Creatinine blood conc. [mmol/l], 

Beta-2 microglobuline blood conc.[ng/l], 

 

Patient Hydration 

Status Data 

Start 1st   Treat. 

End of last Treat. 

BNP [pg/mL] 

PTH  [ng/L] 

B2  [ng/L]  

Body Mass Index(BMI) [Kg/m2], 

Over Idration Index (OH) [l], 

% Over Idration Index (OH) [%], 

Lean Tissue Index (LTI) [Kg/m2], 

Fat Tissue Index (FTI) [Kg/m2], 

 

 
Other tests, such as PTH, β-2 microglobuline and creatinine blood levels have  
Been conducted both at the beginning and at the end of the monitored sessions  
and, if necessary, also after 1 or 2 months. 
Clinical manifestation of hypotension or abnormal event has been required to be 
registered by the clinical staff.  
The set of data has been designed in agreement with the clinicians in order to 
obtain a complete screening of the several etiological factors of IDH as describes 
in Chap 3.  
The collection of data has followed a share protocol between the involved 
clinical centers in order to ensure patients with homogeneous and quality 
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treatments and to improve the quality of data analysis collected during the study. 
Lecco Ethics Committee approved the latest version of the study description on 
31-05-2013. 
Following this approval was ratified by the Ethics Committees of the other three 
hospitals. 
 

5.3  Data collection Strategy – the Dialysis Data 

Infrastructure and Dialysis Matlib 

The main problem related to the collection of data coming from different clinical 
centres has been their storage within a common structure. 
Even if a common acquisition protocol was established, data have been supplied 
by the clinical centres in different and highly heterogeneous formats.  
Each centre was in fact equipped with different dialysis machine and each 
vendor promotes the use of different licensed software to manage the output 
clinical data. 
This problem is very common dealing with clinical data and can be identified as 
an interoperability problem. The strategy here adopted to solve this specific 
problem is the use of a Federate DataBase System (FDBS) as described in 
Par.4.4. 
One of the significant aspects of a FDBS is that a single component DBS can be 
autonomous in its local operations and at the same time participate in a 
federation. 
The DB federation has been achieved through the implementation of the Dialysis 
Data Infrastructure (DDI), the common data repository for all the involved 
centres. 
Figure 5.2 resumes the overall framework of the Dialysis Data Infrastructure and 
describes its interaction with the Dialysis Matlib. 

Figure 5.1: Dialysis Data Infrastructure Framework and interaction 
with Dialysis MATlib 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
5.3.1. The Dialysis Data Infrastructure 

The Dialysis Data Infrastructure has been designed to be a flexible tool both for 
the clinician and the researchers, supporting the sharing and the analysis of the 
clinical data recorded along the DialysIS project. 
The DDI allows handling the data coming from each specific dialysis unit 
separately and in a customized way. Despite that customization, these data can 
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be gathered into a common repository, constituting a federation structure. 
The DDI also allows extracting patient's specific data in order to perform 
personalized analysis.  
As depicted in Figure 5.1, the DDI provides 5 levels of data representation (DR1, 
DR2 , DR3,DR4, DR5). The first two directly related to the primary data sources, 
coming from the clinics.  
Level DR1 represents the raw data files as transmitted by the dialysis units.   
These data are usually exported from proprietary software or even manually 
reported by the clinicians and are characterized by highly inhomogeneous 
formats. 
The primary files of DR1 are stored and constantly uploaded on an online ftp 
repository,  whose organization reflects the classification by centres, as in Figure 
5.2. 

            Figure 5.2: ftp repository filesystem 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Each dialysis unit is associated to a unique centre’s folder in the file system. 
Each one of these folders contains also a CSF-CVS sub-folder, that's the 
repository for the Level DR2 data files. Level DR2 files are obtained by the 
conversion of original raw files into a Common Standard Format (CSF). CSF 
data are collected in tables, which will constitute a Common Database Schema 
(CDS) for the upper levels data structures. 
In the CDS, each table groups information depending on the same acquisitions’ 
source as described in Table 5.2.  
The passage from DR1 to DR2 represents a first step of data interoperability.  
In particular, interoperability is here achieved through the use of a common 
acquisition protocol among the different dialysis units, whose structure impact 
on the design choice for the CDS.  Data at DR2 level are saved in the specific 
folder of the ftp-repository as CSF-CSV (Common Standard Format CSV) input 
file, that are .CSV files in row-column format with point-comma column 
separator. Each CSF-CSV corresponds to one of the tables listed in Table 5.2.  
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Table 5.2: CSF table schema 

DR2 Table Name Acquisition Source  Description 

Anagrafica HIS*, Clinical Records Anagraphic/Anamnesic data 

info_sedute HIS, Clinical Records Prescriptions on the 
treatment 

dati_emogas_lab Hemogas Analyzer, Hospital 
Laboratory 

On-line hemato-chemical 
data 

dati_pressori Pressure Sleeve Pressure Sleeve on-line 
acquisitions 

dati_macchina Dialysis Machine Dialysis Machine on-line 
acquisitions 

dati_bcm Bioimpedenziometry Patient hydration Status got 
by bio-impedentiometry 

dati_dialisato Clinical Records Prescriptions on Dialisate 
Composition 

dati_sacca Dialisate bags datasheets Dialisate bags initial 
composition 

registro_eventi Clinical Records  Sessions event register  

 
Each table collects all the acquisitions referred to a specific patient.  
In order to preserve the integrity of the DB internal references, tables are filled 
following some few basic principles: 
- each patient is identified by a unique patientID composed by 5 alphanumeric 

characters: the first 2 are a couple of letters that identifies the clinical centre, 
the last 3 are digits representing a progressive number 

- each dialysis session, for each patient is identified by a progressive number 
The CSF-CSV files are named in a patient ID-oriented way as follow:  
                                 

      <nametable_patientID>.csv                         5.1       
The CSF-CSV input files represent a consistency layer for all the DDI.  
All the further layers, in fact are based on the CSF-CSV. 
For example, data in level DR3 are obtained by directly importing, filtering and 
harmonizing into Matlab® (Massachussets,US) the CSF-CSV (Figure 5.1). 
In the Matlab® workspace level DR3 data were then organized as table type 
variables (available since the R2013b version [136] of the software), used to 
store heterogeneous types of data, coming both from a text file or a spread sheet, 
in a uniform tabular format with rows and columns [136] 
Table type variables has been also used to reproduce the structure of the CDS in 
the Matlab® environment.  
In order to easily handle data analysis at different levels of aggregation, 3 
different kind of DR3 representation has been implemented. 
The first one is the DR3.1, containing data structured in patient single tables. 
The patient single table follows the CDS structure and will allow iterative 
operations on the data related to a specific acquisition source at the patient's 
level.  
Since they represent the more proximal import of the CSF-CSV input files into 
Matlab® workspace, the patient single tables inherit the same patientID-oriented 
organization and naming of level DR2. 
As depicted in Figure 1, patient single tables can be gathered in huger structures 
by the compress Dialysis Matlib macro-action.  
These huge structures are the DR3.2, also called bigblocks. 
DR3.2 provides each single dialysis unit of a unique database obtained by the 
aggregation of single tables of each one of the patients treated in the same unit 
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(db_lecco, db_lugano, db_como, db_varese). The aggregation maintains the 
CDS, but at this level the patientID organization were loss.  
Nevertheless the operation can be inverted by using the decompress Dialysis 
Matlib macro-action.  
The DR3.2 data structures can be used for specific analysis, targeted to single 
clinical centres.  
Moreover, the single dialysis unit databases can be federated into a main central 
data storage (DB_DialysIS), which collects all the acquired data. DB DialysIS 
can be used for general undifferentiated inquiries. 
For high personalized purposes indeed, there is the DR3.3 data structure type, or 
patient profile, in which data are represented as compact patient data-struct, that 
contains all the tables of all the CSD in one Matlab® variable.  
The patient ID identifies each ‘patient data-struct’, and each table will be 
accessible by the dot notation. DR3.3 format will facilitate personalization 
allowing an easy querying of patient specific data.  All the data at level DR3 are 
saved in ‘.mat’ files, stored in the common ftp repository in a proper folder. 
The ultimate levels of data representation in the DDI are the DR4 and DR5, both 
obtained from the DB_Dialysis using dedicated export actions. 
DB4 level stores data in the MySQL_DB_Dialysis, a MySQL® database, 
underpins a web platform, to be used as explained in the following paragraph.  
The DB5 allows indeed having all the DB_Dialysis tables as .CSV output files 
in the common standard format with dot-point as column separator. The basic 
storage infrastructure used to gather data from the different clinical centres was 
based on a MySQL®DMBS System, leading to a flexible common schema. 
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5.3.2. EER Schema of MySQL_DB_Dialysis 

Figure 5.3 reports the EER schema of the MySQL version of the DB_Dialysis 

Figure 5.3: EER schema of the implemented database 

 
 
 
 
 
 
 
                       
                     
 
 
 
 
 
 
 
 
 
 
 
 
The EER schema translates the CSD format into a relational schema.  
The schema design has been lead by some few basic principles, which are: 

• each patient is identified by a unique ID of 5 alphanumeric characters: 
the first 2 were a couple of letters identifies the clinical center, the last 3 
are digits representing a progressive number within the same center from 
1 to 50 (Es. LU001 refers to the first enrolled patient in Ente Ospedaliero 
Cantonale di Lugano). 

• each dialysis session, for each patient is identified by a increasing 
number,from 1 to n. Data are clustered by source/group of acquisition, 
so for example data coming from dialysis machine and hematochemical 
data are stored into two different relational tables. 

As can be seen the diagram doesn't show relationships.  
This choice is pretty unusual, with respect of the classical database structures, 
but has been done because the flexible structure has been realized only by a few 
number of essential association within variables distributed among tables. 
Each clinical or personal clinical data is identified by a unique ID number and 
associated to a specific couple patient/session.  
This allows to easy combine variables from tables sources in order to perform 
complex analyses. 
The described structure has been conceived to meet the demand of a common 
sharing platform for the clinical data, taking into account the non-homogeneous 
formats of the different data sources. 
 
5.3.3. The Dialysis MATlib 

The Dialysis MATlib is a customized library, implemented in Matlab® code, 
to manage data in the framework of the Dialysis Data Infrastructure.  
It acts on the raw data coming from the clinical units allowing converting, 
harmonizing and querying them in a versatile way in order to make them more 
interoperable. Dialysis MATlib follows the Extract, Transform, and Load (ETL) 
methodology logic. 
The ETL methodology is frequently used in database operations, mainly in data 
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warehousing and refers to three simple processes [197]: 
• extract, data from heterogeneous multiple data sources; 
• transform, data into a proper storage format; 
• load, the transformed data into a target database with a defined structure. 

The DialysIS MATlib implements these processes exploiting the features of the 
relational tables and their conversion into the Matlab® table type variables. 
The table data type indeed, allows to store variables that are either string or 
numbers in a unique rows and column-oriented structure.  
Through a dot notation is therefore possible to easily access to table rows and 
column, making data manipulation more simple and direct.  
Furthermore, the use of the vector and matrix transformations, typical of the   
Matlab® environment, allows an easier handling of data; errors correction, 
standardization and data format conversion can be massively performed using 
coding language instead of complex SQL queries. 
Depending on their specific functionality, Dialysis MATlib functions have been 
divided into 8 groups, which correspond to the macro-actions on the DDI 
showed in Figure 5.1.  
The description of the groups is reported in Table 5.2.  
The Macro-actions of the DialysIS MATlib cover all the data workflow within 
the DDI: they practically act as an interoperability layer of the FDBS logic 
described in Figure 4.1. 
More specifically, macro actions 0 and 1 build an interoperability layer. 
Interoperability is here obtained directly by the Matlab® code that performs 
differentiated operations depending on the received input data.  
The final outputs were tables in a standard format. Macro-actions 2 and 3 indeed 
act as federation layers. They coordinate the merging operations of dialysis 
units’ databases into a common data repository, the DB_Dialysis. 
An automatic data care process was performed by using an embedded 
architecture made by the interaction of the open source database management 
system (DBMS) LibreOffice Base, and ad-hoc developed Matlab® library 
(Dialysis Matlib) described in the following section. 
The process performed data cleaning and harmonization procedures and the 
standardization of the export format.   
On this way, it has been possible to guarantee the portability of storage data in a 
unique format, independently from the initial acquisition centre. 
 

5.4 Data Analysis - Introduction 
As discussed in Chapter 2.2 the hypotension onset in patients undergoing 
dialysis treatments can be due to several factors: related to the specific patient 
status (vascular and cardiac diseases, neuropathy, anemia, …), or to the 
treatment settings (sodium concentration, buffer composition, temperature of the 
dialysate, ultrafiltration rate, plasma refilling rate, type of membrane, type of 
nutrition and hydration, …).  
Considering the patient’s peculiar reaction to treatment, one of the open 
challenges is to quantify the risk of IDH onset, before the treatment start and 
then along the treatment. 
Furthermore, having IDH events a multivariate origin, it is important to consider 
a wide set of clinical variables in order to find specific predictors. 
The current work proposes two approaches of data analysis in order to predict 
IDH events (Figure 5.4)  
The two approaches has been theoretically described in par. 4.4. 
By them, the available data have been firstly analyzed by a classical inferential 
statistical approach in order to find out which variables from the available dataset 
would impact on the IDH onset. 
This approach first analysis led to the definition of two clinical criterions to 
identify at the early stage of a dialysis session (start) the risk of IDH onset and 
to predict the IDH events along the session (intra-dialysis). 
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A second approach has been pursued ,considering the onset of IDH as a “black 
box” modelled phenomenon. As the scarse “a prori knowledge” of the etiology 
was available, a greater focus has been given on the prediction rather than the 
description. 
For this reason, machine learning algorithms has been used, particularly random 
forest, artificial neural network and support vector machine has been tested. 

 
Figure 5.4: Approaches to IDH Prediction 

 

 
 

 
The performances of both the approaches has been evaluated on the available 
data, stored in the database, and pertaining to a total of 808 sessions, acquired 
by the different centers as follow: 

• Lugano: 20 patients, 148 sessions; 
• Lecco: 50 patients, 300 sessions; 
• Como: 30 patients, 180 sessions; 
• Varese: 30 patients, 180 sessions. 
 

5.4.1. Dataset restrictions and pre-filtering 

As described in Chap. 3 the causes of hypotension are multiple, the decrease in 
blood volume that occurs during hemodialysis is the main involved factor and 
different cardio-circulatory and hematochemical variables are involved in its 
manifestation. 
During the treatment, the ultrafiltration at the dialysis filter level imply a fluid 
withdrawal from the vascular compartment, which is usually compensated by a 
fluid refill (plasma refilling phenomenon) from the interstitial to the vascular 
compartment. An impairment in these two flow rates, (at dialysis filter and 
capillary membrane level respectively) can imply a plasmatic volume depletion 
and consequently IDH onset. 
This mechanism could lead both to impaired peripheral vasoconstriction, and 
autonomic dysfunction, that can be recognized in cardiac frequency and blood 
pressure abnormality [32].  
In chronic hemodialysis patients, risk factors of hypotension include also shifts 
in extracellular volume, osmolarity, and electrolytes, dialysis-induced 
temperature changes, and altered vasoregulation [540].  
On a clinical point of view, an accurate assessment of dry weight is crucial in all 
patients on dialysis and especially those patients prone to intradialytic 
hypotension [198]. 
This assumptions led to the selection of a subset of variables of interest all the 
variables registered in the DialysIS Database. 
In particular the set has included: the main plasmatic ions concentration (i.e. 
calcium [Ca++], magnesium [Mg++], potassium [K+], sodium [Na+]), 
hematocrit as seen in [35,36], and complex parameters such as inter-session 
Weight Gain (WG) and MAP. Weight gain and MAP were calculated starting 
from the parameters available in the database as follow. 
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GH = GD
� − G�IA�I                                            5.2 
 
where Wend  stands for the patient weight at the end of the previous dialysis 
session, Wstart represents the patient weight before the beginning of the current 
dialysis session, and the mean arterial pressure is calculated as: 
 

J?� = 23L� − 13��.                                   5.3 
 
where SP and DP stands for systolic and diastolic pressure, respectively. 
These selected set of parameters aim to integrate various possible IDH triggers 
such as blood volume, ultrafiltration rate, heart rate and arterial stiffness[32]. 
In order to avoid  
Since errors and outliers several times affect the collected data, a preliminary 
filter stage has been applied on the dataset in order to discard data corrupted or 
with values out of the physiological and the pathological ranges. 
Table 5.3 resumes the range limits, taken from the literature [198,199], used to 
implement the preliminary filtering stage: 
 

Table 5.3: Prefiltering limits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5.4.2. IDH Events identification – The IDH-D Criterion 

The identification, on the recorded data, of the real IDH events within each 
session has been performed using an ad-hoc designed criterion, called IDH-D. 
The criterion has been obtained from the ones proposes by Mancini et al. [32] 
and modified with a participatory revision with clinicians during the DialysIS 
Project in order to have a dependency only from the Systolic Arterial Pressure 
(SAP). 
This criterion allow the identification of an IDH event if the one or more of the 
following conditions occurs: 

D1: L?�(I) < 75%��L?�0  with the concurrent presence of clinical symptoms 

D2: L?�(0) ≥ 100��P3 ∧ L?�(I) ≤ 90��P3 

D3: L?�(0) < 100��P3 ∧ L?�(I) ≤ 90%��L?�0 with the concurrent 
presence of clinical symptoms or L?�(0) < 100��P3 ∧ L?�I ≤
80%��L?�(0) where SAP is the systolic arterial pressure evaluated at the 
beginning of the session (SAP(0)) and at the t time instant during the dialysis 
session (SAP(t)). 

  

Parameter (UM) Lower limit Upper limit 

Systolic Pressure 

(mmHg) 
70 180 

Diastolic Pressure 

(mmHg) 
50 110 

Weight Gain (Kg) 0 7 

[K+]  (mmol/l) 3.5 6.5 

[Mg+] (mmol/l) 0.74 1.2 

[Ca2+]  (mmol/l) 0.8 1.3 

[Na+] (mmol/l) 125 150 
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  5.4.3. Pre-dialysis Statistical analysis 

A first inquiry on the data was aimed on studying the influence of pre-dialysis 
conditions on the onset of IDH events during the treatment. 
The analysis has been focused on the subset of data described in 5.5.3 
considering the initial values of patient weight gain WG0 (with respect to the end 
of the previous session), electrolytes concentration in blood [Ca2+]0, [Mg2+]0, 
[Na+]0, [K+]0, [Cl-]0, [Urea[mmol/l])]0, mean arterial pressure [MAP]0. 
As these values were referred to the state of the patient at the beginning of the 
treatment, they have been considered as representative of the pre-dialysis patient 
conditions. 
 
5.4.3.1.Data Clustering 

The available data referred to a heterogeneous population of patients, thus before 
applying inferential statistical methods and hypothesis testing, the data  has been 
preliminary classified into groups. 
Since the main goal of the analysis was the study of the influence of predialysis 
conditions on intra-treatment hypotension onset, one of the classification criteria 
was based on the automatic recognition of IDH events, as described in 5.5.4. 
 
Figure 5.5: Data Clustering with two different dataset, dataset 1 HP/HR,  
       Dataset 2 IDHy/IDHn 
 

 
 

 
In particular 2 datasets has been created (Figure 5.5) following two classification 
By the first, the patient population has been split into 2 groups defined as 
Hypotension Prone (HP) patients, those who suffered of IDH in 2 or more 
sessions and Hypotention Resistant (HR) patients, whom showed at most 1 IDH 
episode. 
Consequentially, the whole dataset of session as been splitted into the two groups 
: the group of sessions belonging to HP patients and the group of sessions of HR 
patients. 
Figure 5.6, shows the classification algorithm for a typical patient. 
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Figure 5.6: Patient Classification Algorithm 

 

     

 

 

 

 

In the dataset 2, the single HD sessions were accounted, and the whole 
population of sessions was therefore divided in sessions characterized (IDHy) or 
not (IDHn) by the onset of IDH. 
The rational behind the two datasets is following idea: Dataset 1 wanted to focus 
more on the analysis of the impact of patient specific variables on IDH, rather 
than on Dataset 2 the goal of the analysis was more on finding which variables 
strictly related could impact on IDH onset.  
 

5.4.3.2, Inferential Statistical Analysis 

For each variable of the dataset, distinct acquired series has been created for 
every group. 
Identifying as <data> the generic variable, the series resulted in : <data>HR and 
<data>HP for the  dataset 1 clustering and <data>IDHy and <data>IDHn for the 
dataset 2 clustering. 
The main goal of this action was to verify the statistical difference of each <data> 
between the comparison groups.  
The statistical difference was assumed by testing the hypothesis that mean and 
standard deviation of the series were different between the groups.  
Depending on the Gaussian behavior, different test will be used to verify the 
hypothesis. 
For the <data> series normality has been verified with two different approaches, 
and consequently two strategies has been pursued to check the statistical 
difference.  
All the analysis has been conducted using Matlab® Statistical Toolbox [136]. 

 
Strategy 1:  A Shapiro-Wilk normality test (SW), with a p-value<0,05 has been 
applied on the two series in order to verify normality [200]. 
The Shapiro-Wilk test, has been chosen because often used as normality test for 
small samples from a minimum of 3 to a maximum of 5000 units [201]. 
The strategy has been applied over each parameter only on Dataset 1. 
Depending on the result of the Shapiro-Wilk normality test, parametric or non 
parametric tests to check the statistical difference was applied (Figure 5.6). 
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Figure 5.7: Data comparison algorithm between the two groups 

 

 

Table 5.4: resumes of the performed tests on the two groups of variables depending 
from the outcomes of the Shapiro-Wilk test. 

 
 PARAMETRIC NON PARAMETRIC 

Mean comparison 

H0 = population have 

the same mean 

value 

t-test Wilcoxon-Mann-Whithney 

Variance comparison 

H0 = population have 

the same variance 

ANOVA One-way Kruskal-Wallis 

 

 
Strategy 2: a second strategy was based on the Kolmogorov-Smirnov (K-S) test 
to check the normality of the series. The Kolmogorov-Smirnov test is a non-
parametric test to check normality on continuous one-dimensional probability 
distributions, which can be extended for the comparison of two independent 
samples. It measures a distance between the empirical distribution function of 
the sample and the cumulative distribution function of the reference distribution. 
Strategy 2 has been applied over each parameter on both Dataset 1 and 2.  
K-S test results drive the choice for the following inference tests as suggested by 
Mustery and Bacarea 2010 and reported in Figure 5.8 [202]. 
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Figure 5.8: Algorithm of inference test selection for data series[202] 

 
 

 

Since samples in Dataset 1 and 2 were not paired, one-way ANOVA and 
Kruskal-Wallis tests were performed [203] 
If the population distribution was found to be normal one-way ANOVA test was 
applied, otherwise the Kruskal-Wallis test was used. Both these tests aim to 
highlight parameters that could be statistically different between the HP/HR 
groups in Dataset 1 and IDHy/IDHn populations in Dataset 2, respectively. 
 

5.4.3.2. J index definition 

The final goal of the statistical analysis was to develop a unique parameter for 
the offline prediction of IDH events, which should took into account the 
influence of predialysis conditions on hypotension onset. 
This index, named Ji, to be evaluated at the beginning of each i session, has been 
defined as a weighted patient specific combination of the parameters that showed 
to be statistically different between the comparison groups, standing to the 
analysis described in 5.5.2.1 and Figure 5.5 ; these parameters were classified as 
influencing parameters IF (5.4) and would be the basic elements for the index 
composition. 
 

:� = � = 1,/�TB              5.4 
 
The two strategies applied for the inference testing analysis lead to two version 
of the Ji-index called respectively Ji1 and Ji2 referring to Strategy 1 and Strategy 

2. The performences of the two versions of the index will be exposed and 
discussed in Cap.6 – Results. 

 

5.4.3.3. Validation of the J-index 

The performance of Ji in the prediction of IDH events onset during the sessions 
has been investigated during the validation phase. 
Firstly, Ji index has been calculated for all the sessions of both the datasets, using 
3 previous sessions for the longitudinal analysis in weight calculation.  Parallel 
to the calculation of Ji, the presence of IDH events has been assessed using the 
IDH-D criterion. 
Then the IDH onset risk identified by the Ji-index evaluation has been compared 
with the real presence of IDH events results from  the IDH-D criterion.  
The accuracy of the J index has been evaluated in terms of number of false 
positive and negative determined by the index with respect with IDH episodes 
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clinically recorded and automatically identified in the database according to the 
IDH_D criterion, 

 

5.4.3.4. Centre dependent risk threshold assessment 

The effects of the specific protocols adopted to manage hypotension in the 
different centers have been studied analyzing the distribution of the Ji values. 
Aim of this approach is to evaluate how to optimize the Ji index prediction 
ability, identifying algorithms to set a center-dependent risk threshold. 
The average percentage of sessions characterized by IDH, based on literature 
data, is 25% [205]; we explore therefore the idea to use an alternative threshold 
set at the 75th percentile (Jth=I75)) of the Ji values distribution, in each one of the 
involved centers. The 75th percentile would allows identifying as at risk of IDH 
the 25% of the sessions, characterized by higher Ji; the threshold value changes 
depending on the width of the Ji distribution; this approach should allow 
increasing the probability to effectively match an IDH episode, if pointed out by 
abnormal patient-specific values of the influencing parameters. 
A second attempt has been done considering the percentage of sessions really 
characterized by IDH in each one of the centers (%IDHc – retrospective 
evaluation on the enrolled patient, to have a wider set of data); the threshold has 
been than set to the 1- %IDHc percentile (Jth=I(1-%IDHc)).  
The sensitivity, specificity, TP, FP, TN, FN, PPV, NPV of the Ji index have been 
assessed using the new thresholds and the results have been compared with those 
obtained with Jth=1. 
Intra-Dialysis Identifications and prediction of IDH onset.A second analysis, 
always based on a statistical approach, has been performed on the data recorded 
along the dialysis sessions. 
For a preliminary exploratory inquiry, a dataset restricted only to the data of the 
session performed at the Ente Ospedaliero Cantonale di Lugano (EOC), 
Switzerland, S.C and Nefrologia e Dialisi dell'A.O. della Provincia di Lecco has 
been used. 
The first study of the analysis has been the population composition assessment. 
Then, the distribution of data referred to Systolic Arterial Pressure (SAP), Mean 
Arterial Pressure (MAP), Heart Rate (HR), blood concentration of the main 
electrolytes and pH was evaluated. 
The final step of the analysis has been the design of a multiparameter criterion 
to identify hypotension during the treatment, by testing a set of single parameter 
criterion taken by literature. 
Data during this phase has been further filtered through an embedded Matlab® 
function according to the guidelines of the Italian Society for Hypertension 
[205]. 
Specifically: 

o SP, DP and Hearth Rate values has been filtered considering the 
following intervals 

� 50 mmHg<SP<300 mmHg 
� 40 mmHg<DP<150mmHg 
� SP<DP 
� 40 bpm<HR<150 bpm 

1. Blood volume data acquired using Gambro Dialysis Machines ( Città, 
stato), and exported from the Blood Volume Monitor (BVM) embedded 
into the machine has been processed by a 10 points Savitzky - Golay 
[208] smoothing filter (f= 21, k=8) to reduce noise while preserving 
frequency domain features of the original distribution. 
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5.4.4.  Intra-treatment Statistical Analysis 

A statistical study has been conducted on the dataset. 
The following parameters have been considered: 

� Systolic Arterial Pressure(SAP), analyzed on: 
o Intra-session trend 
o maximum intra-treatment variation peak (PMax), 
o difference between star and end values of each session (SE) 
o difference between the maximum value and the minimum 

value of each treatment (Max-min); 
� MAP and heart rate trend during the dialysis sessions; 
� [Ca2+], [Mg2+], [Na+], [K+], [Cl-] and pH during the dialysis sessions. 

The analysis has been performed on the whole analyzed population and among 
the population of patients within the same clinical centers. 
A comparison between couples of categories has been done for each parameter, 
following the subsequent clustering: 
A) By patient gender: men / woman 
B) By clinical status: diabetic/non diabetic, insulin-dependent diabetic/ non-

insulin-dependent diabetics, affected/not affected by cardiac diseases, 
hypertensive/non hypertensive; 

C) By chronological age (C.A): 40 <C.A.< 70 years old/ C.A. >70 years old 
D) By dialysis age (D.A):24 < D.A.<120 months/ D.A. > 120 months. 

F test has been used to compare variances, T test (no equal variance or equal 
variance, depending on the F-test and ANOVA two way results has been used). 
All the tests has been performed with a p-value of 0,05 and α=95%. 
The results of the analysis have been reported in Chapter 6 – Results. 
 

5.4.4.1. Design of multiparameter criterion to identify IDH during the 

treatment: effects of a single parameter variation 

First of all, a literature research has been conducted on the existent studies 
In particular three fitted criteria has been found and tested. 
Two of them was based on pressure values constrains: 

• SAP(0)140 criterion: the systolic arterial pressure variation is linked to 
the onset of intra-dialysis hypotension. 
Mancini et al. has proposed a criterion of identification of IDH events    
based on the SAP variation with respect to its predialysis value [32]. 
The criterion is based on the initial value of SAP detection of BP set 
point for patients, or the pressure value at which the person usually 
begins to show discomfort: 
 
 SAP(0)140 :           5.5

           

- If SAP(0)<140 mmHg, the BP set point is equal to SAP(0)-30 
mmHg 

- If SAP(0)≥140 mmHg, the BO set point  is equal to 110 mmHg 

 

The SAP(0)140 criterion has been implemented as a MATLAB® 
function in the MatLib and applied to the complete dataset. 
Its reliability has been tested comparing the prediction of SAP(0)140 
with the IDH events identified by the IDH-D criteria and compared to 
the clinical registers where symptoms / interventions / hypotension 
where reported by clinicians. 
The number of treatments identified by SAP(0)140  application but not 
reported by IDH-D has been quantified as a parameter of reliability. 



Chap 5- Materials and Methods 

 

 65 

The predictive ability of the criterion has been also evaluated , applying 
concurrently the other criteria. (RBV13 and ΔK +). 

• MAP30 criterion [208]: another method proposed in the literature for 
the detection of IDH, by Kinet et al. was based on the analysis of  MAP 
value. 

This criterion associate a reduction of MAP greater or equal to 30 
mmHg (5.5), with respect to its initial value to the risk of  IDH onset 
[208]. 

 
J?�30: J?�(I) ≤ J?�0 − 30 ��P3                       5.6 

 
The criterion has been implemented on Matlab® as a function of the MatLIB, 
tested for each session , the detected episodes have been compared with the IDH-
D criterion outputs.   
A third criterion was based on the variation of RBV: 

• RBV13 [63]: the loss of blood volume that occurs during the dialysis 
treatment is one of the main cause of IDH .The decrease of blood 
volume is associated with the ultrafiltration process. 

 
If the UF rate is greater than the plasma refilling rate (PR), the blood volume may 
decrease implying hypovolemia. When the cardiovascular compensatory 
mechanisms, which physiologically contrasts hypovolemia, are compromised, 
hypotension may occur [63]. 
The literature indicates a 14% variation in blood volume as a critical threshold 
for RBV values. Here a 13% threshold has been considered so as to identify at 
the earlier stage the IDH onset, when due to volume depletion. 
 

V*-13: V*-I ≤ 13% V*-(0)                                5.7 
 
The criterion has been implemented on Matlab® as a function of the MatLIB and 
tested for each session as SAP(0)140 with a comparison of the IDH identified in 
the available data using IDH-D  criterion.   
Besides the ones, found in the literature, two additional IDH prediction criteria 
have been developed within the Dialysis Project. 
The first one takes into account the hematic potassium concentration [K+] 
considered as a marker of arrhythmias. [87,63 106].  
In collaboration with the clinicians involved in the project and analyzing the trend 
of potassium concentration on the first hour of treatment, the following criteria 
has been proposed: 

ΔK+ criterion :        5.8 

1. [6.]�IA�I > 5�����: 6P1 . −6�IA�I.≥ 20%6�IA�I.; 
2. 3,5����� < [6.]�
�>�A�D < 5�����: 6P1 . −6�IA�I.≥

10%6�IA�I.; 
3. [6.]�IA�I ≤ 3,5�����; 

 
where [K+]start  is the initial value of potassium concentration, and  [K+]H1  is the 
concentration of potassium at the first hour of treatment. 
The initial value of potassium concentration defines the risk threshold for the 
concentration at first hour; this selective mechanisms results from the clinical 
practice: the assumption is that the higher is the initial potassium value, the 
highest is the tolerable variation.  
It should also to be highlighted that a fall of the potassium concentration below 
3.5 mmol / l is identified as hypokalemia [98,106].  
The defined ΔK+ criterion has been thus implemented as a Matlab® function and 
its performances in IDH identification compared with those of the other criteria. 
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Disrithtmia criterion: 

Another criteria developed within the Dialysis project is related to the presence 
of IDH related dysrhythmias. 
The analysis has been performed even if changes in the heart rate did not 
significantly differ between patients prone and resistant to IDH [209]. 
The HR series have been elaborated using an embedded MATLAB® function. 
First of all, HR series has been preconditioned through three steps: 

1. Value has been restricted within the physiological range (60-100 bpm); 
2. The mean (PV) and the standard deviation �PVAID of the values 

registered for all the session of each patient has been calculated; 
3. For each individual a patient-dependent range has been defined as 

(PV ± �PV): the aim was to consider the specific patient response to 
dialysis treatment; 

4. Each HRate series has been filtered within the patient specific range. 
 
A further criterion proposed to identify the risk of hypotension along the dialysis 
sessions, was: 

���20: PVAIDI ≤ 20%PVAID(0)                              5.7 

Any decrease of 20% in heart rate compared to the initial heart rate value HR0 
(both decrease or increase) could result in a risk of hypotension. 
The dim20 criterion has been further tested in combination with the previously 
exposed criteria. 
 
5.4.4.2. Design of multiparametric criteria predict IDH along the HD 

After the evaluation of the performance of indicators based on the observation 
of single parameters, also a composite criteria, based on the simoultaneous 
monitoring of multiple parameters  have been defined and tested. 
IDH risk can be associated to the following conditions: 
 
Multiparametric Criteria:           5.8 

 

1. If SAP(0) ≥140mmHg, SAP(t)≤110mmHg and in the mean time were 
registered a: 

• decrease of RBV≥13% and decrease of HR≥20% 
• warning 3,5����� < [6.]�
�>�A�D < 5�����: 6P1 .

−6�IA�I.≥ 10%6�IA�I . and ���20: PVAIDI ≤
20%PVAID(0) 
 

2. If 115 ≤SAP(0)≤ 140 mmHg and SAP(t) decrease > 23% and in the 
mean time were registered a: 

• decrease of RBV≥13% and decrease of HR ate ≥20% 
• warning  3,5����� < [6.]�
�>�A�D < 5�����: 6P1 .

−6�IA�I.≥ 10%6�IA�I . and 
 ���20: PVI ≤ 20%PV0 
 

3. If SAP(0) ≤ 115 mmHg, for ∆SAP(0)≥16% of the value at starting 
session. 
 

All over thesubcriteria, pressure variations has been considered with a tolerance 
of 2 mmHg.  
The multiparameter criterion has been implemented as a MATLAB® function. 
The prediction performances of this criterion has been tested, comparing the 
obtained results with the real IDH occurrence based on IDH_D criterion.  

5.5  Machine Learning Analysis Approach 
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5.5.1. Introduction 
 
Beside the classical statistical analysis a machine learning data mining approach 
has been applied on the available dataset 
In particular the machine learning approach has been tested to predict IDH event 
from pre-dialysis conditions and considering the IDH prediction as a binary 
classification problem as: 

x∈X ;y∈ {IDH, noIDH}=>p(y|X)                                        5.9 
. 
where the domain of y was IDH, noIDH and X the set of parameters belonging 
to the Dialysis-DB assumed to be influent on IDH onset. 
According to literature analysis and our operative requirements three different 
algorithm has been explored for the prediction of IDH event: Random Forest, 
Artificial Neural Networks and Support Vector Machines, that have been 
intensively described in Par 4.4.3. 

 
5.5.2. Algorithm implementation 

 5.5.2.1. Preprocessing 

A particularly important problem to work properly with machine learning 
techniques is working effectively with large data sets. 
Literature suggests that the predictive power of the classifiers is largely 
dependent on the quality and size of the training sample [210]. 
In particular several experiments have the tested evidenced that the variance of 
the classifier prediction can be expected to decrease as the cardinality of training 
set increase [211]. 
For this reason Dataset 2 has been considered the best candidate dataset in order 
to test and validate machine learning algorithms. 
Respect to the version used for the inferential statistical analysis, the dataset has 
been widened with further attributes, all of them referred to the pre-dialysis 
condition considered as the value of the series at t0. 
Definitely the complete set of attributes considered has been as in Table 5.4  : 

Table 5.4: Attributes of the revised Dataset 2 

Main plasmatic 

concentrations 

Calcium[Ca++] 

potassium [K+] 

magnesium[Mg++], 

Sodium[Na+] 

Additionary 

plasmatic 

concentration 

Clorine 

concentration[Cl-] 

 

Phosphates 

concentration 

Urea 

Concentration 

[Urea] 

Hematocrit Ht 

Sex Sex 

Weight Gain WG 

IDH during 

session 

IDHy 

 

As data were coming from clinical routine registrations, it is accounted that part 
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of them can be corrupted or affected by missing values. 
For this reason, even if a primary filter was performed by the Dialysis-Matlib 
functions a further pre-condition process has been done before the learning 
process in order to decrease the dataset avoiding variability, and grant machine 
learning models to be at the best possible performance [212]. 
Different strategies has been evaluated in order to obtain the desired result: 

• only examples with less than 10% missing values, for each attribute, 
were kept. 

• Hematocrit were then removed since a large measures amount (more 
than 30% over the total) was missing from the available database 

• Given the high variability in urea and phosphates concentration in 
blood values due to chronic kidney disease they were not filtered. 

The finally dataset consisted of 653 record, but one of the main problems 
regarded the presence of imbalanced dataset: less than 15% of the sessions  
belonged to the positive class of IDH (IDHy). 
 

 
5.5.2.2. Dataset Balancing 

The final obtained dataset resulted imbalanced: less than 15% of total example 
belonged to the positive class (IDHy). 
A dataset is imbalanced if the classification categories are not equally 
represented [212].  
Class imbalance is a problem for machine learning  algorithms.  
Classifiers generally perform poorly on imbalanced datasets because they are 
designed to generalize from sample data and output the simplest hypothesis that 
best fits the data, based on the principle of Occam’s razor [213,214]. 
Thus with imbalanced data, in a the simplest hypothesis is often the one that 
classifies almost all instances as negative[214]. 
Moreover, opposite to other machine learning applications, the medical 
diagnostic problem does not end once the model classifies new instances. That 
is, if the instance is classified as sick, or positive, (i.e. the most important class) 
the generated knowledge should be able to provide the medical staff with a novel 
point of view about the given problem [215].  
For these reasons different strategies have to be applied in order to maximize the 
minority class classification accuracy, since, in binary classification problems, 
the majority class accuracy is guaranteed by default. 
There are normally to ways to address class imbalance: one is to assign distinct 
costs to training samples and try to reduce the misclassification costs [216] 
The other indeed, acts on re-sampling the original dataset, either by over- 
sampling the minority class and/or under-sampling the majority class [218]. 
Two different oversampling techniques for the minority class and a related 
majority class downsampling have been combined, generating five different 
datasets from the starting one. 
The chosen oversampling techniques were: Bootstrap Resampling[218] and 
Synthetic Minority Oversampling Technique[216]. 
While Bootstrap Resampling consists in a simple random sampling with 
replacement, in SMOTE the minority class is oversampled by creating synthetic 
samples.  
Extra training data are obtained performing specific operations on real data. In 
particular in our case, examples have been generated by operating in feature 
space, rather than in data space, as the minority class was defined by the target 
variable.  
Oversampling was performed by taking each minority class sample and 
introducing synthetic examples along the line segments joining any/all of the k 
minority class nearest neighbors [k-class]. Depending on the amount of over-
sampling required, neighbors from the k nearest neighbors were randomly 
chosen. 
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The two different balancing techniques for the minority class have been 
combined with a related majority class down-sampling. The goal was to 
maximize the minority class classification accuracy, since, in binary 
classification problems, the majority class accuracy is guaranteed by default 
[220]. 
For the SMOTE synthetic sample generation k=5 nearest neighbours have been 
considered. 
Five different datasets have been generated from the starting one: 
• Dataset A: 500% minority class SMOTING and no majority class 

downsampling, resulting in 1118 examples; 
• Dataset B: 300% minority class SMOTING and relative majority class 

random dowmsampling, resulting in 745 examples; 
• Dataset C: 100% minority class SMOTING and relative majority class 

random dowmsampling, resulting in 366 examples; 
• Dataset D: 100% minority class Bootstraping and relative majority class 

random dowmsampling, resulting in 373 examples; 
• Dataset E: 50% minority class SMOTING and relative majority class 

random dowmsampling, resulting in 280 examples 
The availability of five synthetic datasets allowed investigating the classifier 
performance on different oversampling and down sampling combinations. 
 

5.5.2.3. Rapid Miner Implementation 

The whole algorithm implementations followed a common path in terms of 
attribute selection, model validation and evaluation. 
All the implementation has been pursued using the following schema Figure 
5.9: 

Figure 5.9:Algorithm implementation schema [] 

 

 

All data have been token from the Dialysis-DB through Matlab® and transferred 
to RapidMiner® Studio by a .CSV sheet to implement Machine Learning 
algorithms. 
RapidMiner® Studio (company, city, state) is a software platform that provides 
an integrated environment for machine learning, data mining, text mining, 
predictive analytics and business analytics [221]. 
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RapidMiner® allows to threat operations on data, as a blockchain allowing to 
manage complex operation in a simple way and has been chosen as the best 
solution to implement the machine learning algorithms on the present study. 
In the RapidMiner® studio environment, IDH events has been set as the target 
variable in the learning process while all the other attributes were specifically 
treated by each proposed classification algorithm. 
Random Forest, Artificial Neural Network and Support Vector Machine were 
trained and tested on each one of the dataset A, B, C, D and E. 

 

5.5.3.4. Overfitting avoidance strategy 

In order to avoid the overfitting a two step strategy has been adopted: the 
classifier has been first trained and tested through k-fold Cross Validation (CV) 
on the 90% of the entire dataset. 
The advantage of k-Fold Cross validation is that all the features in the dataset 
are eventually used for both training and testing 
In K-fold cross-validation (CV), we split the sample into K disjoint subsets Dh 

(h = 1, 2, . . . , K) of (approximately) equal size. 
The model is trained K times, each time leaving out one of the subsets from the 
training, but using only the omitted subset to compute the prediction error[221]. 
n K-fold cross-validation (CV), we split the sample into K disjoint subsets th.. 
Considering th(h = 1, 2, . . . , K) is the training set obtained by removing the h-th 
subset Dh and let m = n/K (n multiple of K) be the number of units in each subset. 
the k-CV-estimator is defined as the average error on the K analysis  committed 
by the classifiers A(-) in the corresponding partitions th. 
The k-cv prediction error estimator on the k-CV partition P on the total set of 
data Sn defined as follows [222]: 
 

=L
, , � = 16+ = 161��^I+ �($�, �!�)                       5.10 
 
If K equals the training sample size n, the strategy is known as ‘‘Leave-One-
Out’’ cross-validation (LOO) [222]. 
A k-cv prediction error estimator is an unbiased estimator of the prediction error 
ε on data sets of n—n/k size [223,224], but it is biased for ε on data sets of size 
n because only a subset of the instances with size n-n/k is used for training. 
The main problem with K-fold CV is that the training-sets t1, c2, . . . , tK are not 
independent samples, i.e. they have(n−2m) cases in common, and also the test 
sets th come from the same data [226]. This implies that the variance of ε can be 
very large, as no unbiased estimation of σ2(ε) is possible. 
As the variance of ε depends on the partition [221,224] as the estimation of ε,is 
important to define the right partition for the dataset. 
Many studies shows that K-fold CV shows lower variability than LOO[223] and 
that a reliable estimate of ε can be obtained with K = 10 for n > 100[225]. 
In this work a stratified 10-fold CV is used: k=10 is an adequate compromise 
between training sets overlap and prediction error variance while the stratified 
sampling allows to have folds containing approximately the same proportions of 
labels as the original dataset [226,221]. Even if the use of CV should provide an 
"overfitting free" model evaluation the resulting model has been tested again on 
the remaining 10% of the dataset, in order to provide further generalization 
capability. 
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5.5.3.5.  Random Forest implementation 

A 10-fold CV has been used, with k=10 as an adequate compromise between 
training sets overlap and prediction error variance while stratified sampling 
allowed to have folds containing approximately the same proportions. 
Thus for the implementation of the random forest 3 main tuning parameters has 
been set: 

• number of trees: as RF does not over fit or require a huge 
computational effort, tree number were set to 250,  rounding up the 
result of this simple algorithm: attributes number needs to be at least one 
order of magnitude higher than the number of features, in order to 
exhaustively explore all the feature space during the forest building. 

• bagging: the bagging of tree has been set standing that for each tree 
growth log(n)+1 attributes were selected among the n available 

• split Criterion: Gini Impurity Index was used to split the nodes; it is a 
measure of the feature impurity with respect to output classes 

  The feature with the highest Gini Index was chosen as split in that node. It is 
   defined as: 
 

H�
�_ = 1 − + = 1P�`             5.11 
 

where q is the considered node and ph, h2 H[1; 2; :::;H], is the relative 
frequency of target class value for the observations included in q; 

• Voting Strategy: confidence voting selects the class that has the 
highest accumulated confidence. 

The RF algorithm has been implemented through the software RapidMiner. 
Figure 5.10 shows the block-chain of the process. 
The first blocks represents the process of reading the data from the CSV files, 
the block “Split Data” indeed will split the database into basic elements. 

 

Figure 5.10: Implementation of the RF process through RapidMiner software 
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5.5.3.6.  Implementation of Artificial Neural Network Machine 

 
The implementation of the Artificial Neural Network algorithm required some 
additional pre-processing operations. 
In particular the missing values were replaced from the average values. 
Sex attribute, initially set as nominal, has been converted to numerical for the 
network creation. 
For the IDH prediction the choice has been done for the feedforward networks 
in which the underlying graph does not contain cycles[227,174]. 
As binary attribute it has been mapped as a 0,1 variable. 
The following parameters has been set: 

• Attributes Normalization: the ANN algorithm uses an usual sigmoid 
function as the activation function. The contribution of an input will 
heavily depend on its variability relative to other inputs. 
It becomes essential to rescale the inputs so that their variability reflects 
their importance. For lack of better prior information, it is common to 
standardize each attribute to the same range on the same standard 
deviation. The attribute value range has then been scaled to -1 and +1. 

• Training cycles: in back-propagation the output values are compared 
with the correct answer to compute the value of some predefined error-
function. The contribution of an input will heavily depend on its 
variability.The error is then feedback through the network. Using this 
information the process is repeated 500 times or less if the training error 
gets below to 105 

• Learning Rate: determines how much the weights are changed at each 
step, it affects the speed at which the ANN arrives at the minimum 
solution determines how much the weights are changed at each step. It 
affects the speed at which the ANN arrives at the minimum solution. If 
it is too high, the system will either oscillate about the true solution, or 
it will diverge completely. If the step-size is too low, the system will 
take a long time to converge on the final solution. It has been set to 0.2. 

 
 

Figure 5.11: Implementation of the ANN process through RapidMiner software 
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5.5.3.7.  Implementation of the Support Vector Machine 

 
SVMs are widely used in computational biology due to their high accuracy, their 
ability to deal with high-dimensional and large datasets, and their flexibility in 
modeling diverse sources of data [228,229]. 
SVM are particularly fitted for classification problems and in the recent years 
they have been used for several applications like handwritten digit recognition, 
object recognition, speaker identification, face detection in images, and text 
categorization. 
For these reason, they have been chosen to address the binary classification 
problem of IDH identifications. 
As for the ANN implementation also Support Vector Machine required the Sex 
attribute conversion from nominal to Boolean and the residual missing value 
replacement, the same strategy has been implemented as in the case of ANN 
[229]. 
Before the application of SVM a scaling procedure has been applied. 

 

Figure 5.12: Implementation of the SVM process through RapidMiner software 

    

 
The SVM learner has been implemented thanks to the LibSVM tool. 
The LibSVM was still available in the RapidMiner environment, and has been 
used to perform through aa normalization of all the attributes through the z 
trasformation. The outputs has been used to train the SVM. 
The statistical normalization converted the data into a normal distribution with 
mean=0 and variance=1. 
The used formula for the statistical normalization has been: 
 

> = (! − �)�                                                                          5.11 
 

where X is the attribute values vector, u the mean of attribute values and s its 
standard deviation. The SVM has been implemented using an RBF Kernel [229], 
to address non linearities between labels and attributes, without an high 
employment of setting parameters. 
In particular the used set of setting parameters has been: 

• γ gamma defines the influence of a single training example. It can be 
seen as the inverse of the influence radius of the samples selected by the 
model as support vectors. Technically large γ leads to high bias and low 
variance models while low γ defines models characterized by low bias 
and high variance 

• C is the parameters that, in soft margin cost function, controls the 
influence of each individual support vector. 

It trades of training examples misclassification against the decision surface 
simplicity. A low C makes the decision surface smooth, while a high C aims at 
classifying all training examples correctly by giving the model freedom to select 
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Best suiting and C values have to be determined. A grid-search strategy, in 
addition to ten-fold CV, has been applied: various pairs of (γ, C) have been  
tried and the one with the best CV accuracy is chosen. The optimization gave 
back different parameters for each dataset: 

• λ=0.3474 and C=1.5849 for Dataset A; 
• λ =0.1672 and C=1.5849 for Dataset B; 
• λ =0.0805 and C=7.9433 for Dataset C; 
• λ =0.7219 and C=1.5849 for Dataset D; 
• λ =0.7219 and C=1.5849 for Dataset E. 
 
 

5.5.3. Algorithm Performance Evaluation 

All the proposed algorithms performance were evaluated starting from confusion 
matrix analysis as explained in Chap 4.4. 
In particular for each classifier and for each dataset  AOC, Accuracy, precision, 
recall and F-measure have been evaluated. 
 

 

5.5.4. Algorithm Performance Comparison 

All the tested machine learning algorithms have been developed over the same 
training sets, exploring different datasets in order to test different balancing 
techniques , 

The performances of the different machine learning algorithms, and the different 
balancing techniques has been compared on the basis of  AOC, Accuracy, 
precision, recall and F-measure. 
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Chapter 6 – Results 
 
 

6.1 Inferential Statistics Approach 

6.1.2 Pre-dialysis period analysis 

The final goal of the statistical analysis was the development of a multifactorial 
index for the offline prediction of the IDH events risk. The index, named J, has 
been defined as a weighted sum of the parameters that showed to be statistically 
different, between the considered groups, as described in 5.4. The index want 
give the clinician a risk highlights already in the early phase of the treatment. 
The different strategies applied for the inference analysis lead to different 
versions of the J-index, respectively named J1 and J2 with reference to the applied 
Strategy 1 and 2. 
The prediction ability of both the J index’ versions has been evaluated in terms 
of accuracy and precision. 

 
6.1.1.1. Results from Strategy 1 

 
Figure 6.1.A and B graphically shows the results of the inferential statistical 
comparison 

 
 
 



Chap 6- Results 

 

 76 

 
Figure 6.1.A: Box plot Comparison of Ionic Concentrations 
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Figure 6.1.B: Box plot Comparison of MAP and ΔW 

 
The figure shows as the initial values of initial potassium concentration [K+]0, 
systolic (SBP) and diastolic (DBP) blood pressures, mean arterial pressure 
(MAP) and interdialysis (from the end of the previous session) weight gain (ΔW) 
result statistically different between the HP and HR patients.  
Specifically, in HP patients ΔW and the [K+]0, were significantly higher and 
blood pressure (SBP, DBP, MAP) significantly lower, if compared to those of 
the HR patients (p<0.01).  
Based on these results, the first version of the J index was defined as follow: 

 

ii

i

iii hp
MAP

MAP
W

W
K

K
J +

⋅
+∆⋅

∆
+⋅=

+ γβα
1                  6.1  

 

where K , ΔW   and MAP   are respectively the cumulative mean values for the 

potassium concentration, the weight gain and the mean arterial pressure of the 
patient at the beginning of the previously monitored sessions; Ki, ΔWi, MAPi are 
the same parameters, evaluated at the beginning of the current session and hpi is 
the hypotension proneness of each patient, evaluated taking into account the 
number of IDH detected during the last three previously monitored session 
[195]. 
α, β γ are the coefficients allowing to weight the influences of each equation 
term on the onset of hypotensive events during the current session: these 
coefficients could be dynamically adjourned based on the longitudinal analysis 
of [K+], SAP, DAP, and ΔW. 
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Figure 6.2: J1 index weight definition 1.RPPC calculation 2.Identification of the Cijk and BCPC 
on the basis of the RPPC, 3. Count of the nijk cases, 4. Definition of the Weight Coefficients on 
the basis of the Cijk cases,and nijk  

 
 

Figure 6.2. resumes the calibration process designed to weight coefficients. 
The process starts by considering the Reference Patient Profile Condition 
(RPPC), defined as the collection of the cumulative mean values of the 
influencing parameters, iteratively updates for each treatment starting from b to 
the k-1 treatment, where b is the number of the available treatments for the 
longitudinal analysis and k is the total amount of the monitored sessions for each 
patient. 
RPPC has been evaluated respectively for b equal to 3 and 5 sessions. 
The RPPC are the references for Basic Pre-Dialysis Conditions (BPDC). 
In particular, any variation of an influencing parameter from the RPPC defines 
a basic pre-dialysis conditions (BPCD), that  traduces a potential risk of 
hypotension related to a variation from a patient-specific physiological 
condition. 
The combination of the various possible BPCD represents the framework of the 
Cijk cases, a finite set of possible IDH causes that could lead to IDH at  the 
treatment start. 
The Cijk determine the values of the weight coefficients on the basis of number 
of previous hypotensive events related to the specific BPCDs (nijk) and the 
number of hypotensive events (N) registered on the whole population, as 
reported in Table 6.1[195]. 
Based on the approach on the definition of the index,  J1 index values higher than 
1 point out IDH risk on the incoming session. 
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Table 6.1: Collection of possible IDH causes (Cijk cases), 
 

Occurring BDPC  Cijk nijk α,β,γ 

None C000 n000  

BDPC1: 

 
C100 n100  

BDPC2: 

 
C020 n020  

BDPC3: 

 
C003 n003  

BDPC1&BDPC2: 

 

 

C120 n120  

BDPC1 & BDPC3 : 

 

 

C103 n103  

BDPC2 & BDPC3 : 

 

 

C103 n103  

BDPC1 & BDPC2 & BDPC3: 

 

 

 

C123 n123  

 
6.1.1.1. J1 index evaluation 

 
The prevalence of IDH, evaluated on the data available for each center, results 
to be 37.3% for Lugano, 9.4% for Como and Varese and 8% for Lecco.  
Table 6.2, section a. shows the results of the calculation of Ji on each involved 
center, when the threshold of J (Jth) is set equal to 1. 
The table reports the values of sensitivity, specificity, true and false positives 
and negatives, PPV, NPV, % of predicted IDH, determined comparing Ji outputs 
in terms of IDH risk and real IDH occurrence.  
Ji allows to predict real IDH events in almost the 77% of the cases. The data 
acquired in Lugano and Lecco Dialysis Units were the ones statistically analyzed 
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to identify the influent parameters (84 and 82% of the IDH events respectively 
predicted); the data acquired at Como and Varese Dialysis Units were instead 
used to verify the applicability of the index in different centers, that is confirmed 
by the satisfying performances of Ji in both the two new sets of data (63 and 68% 
of IDH events respectively predicted). 
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Table 6.2: Ji index performances in terms of sensitivity (Sens.), specificity (Spec.), 
true and false positive and negatives, Positive Predicted Values (PPV) and Negative 
Predicted Values (NPV), when: a. Jth =1; b. Jth= I75; c. 
 Jth= I(1-%IDHc). were used. 

 
 a. Jth = 1 Sens. Spec TP TN FP FN PPV NPV IDH*  

Lugano,CH  0.84 0.52 16 33 30 3 34.8 52.3 
16/19 

(84%) 

Lecco, I 0.82 0.84 9 107 20 2 31.0 84.3 
9/11 

(82%) 

Como, I  0.63 0.77 5 56 17 3 22.7 76.7 
5/8 

(63%) 

Varese, I 0.78 0.78 7 56 16 2 30.4 77.7 
7/9 

(78%) 

  b. Jth =I75 Sens. Spec TP TN FP FN PPV NPV IDH*  

Lugano,  0.53 0.84 10 53 10 9 50.0 84.1 
10/19 

(53%) 

Lecco, I 0.82 0.80 9 102 25 2 26.5 80.3 
9/11 

(82%) 

Como, I  0.63 0.79 5 58 15 3 25.0 79.5 
5/8 

(63%) 

Varese, I 0.78 0.82 7 59 13 2 35.0 81.9 
7/9 

(78%) 

c. Jth =I1-

%IDHc 
Sens. Spec. TP TN FP FN PPV NPV IDH* 

Lugano,  0.89 0.52 17 24 39 2 30.4 38.1 
17/19 

(89%) 

Lecco, I 0.82 0.91 9 115 12 2 42.9 90.6 
9/11 

(82%) 

Como, I  0.78 0.78 4 58 15 4 21.1 79.5 
4/8 

(50%) 

Varese, I 0.78 0.88 7 63 9 2 43.8 87.5 
7/9 

(78%) 

 

 

6.1.1.3. Center dependent risk threshold assessment 

Figure 6.2 shows the distribution of Ji values in each one of the involved dialysis 
centers: the Ji values of each monitored session are represented with blank 
circles, star-shaped symbols are superimposed to the blank circle, when the 
corresponding session is characterized by IDH. The prediction threshold Jth=1 is 
shown by a continuous line;  Jth=I75 as a dashed line; Jth=I(1-%IDHc). as a dash-
dotted line. The number of star-filled points over each threshold corresponds to 
the TP cases, the ones below to the FNs. The ability of Ji to highlight IDH risk 
in terms of sensitivity, specificity, TP, TN, FP and FN, when the new thresholds 
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were used, is summarized in Table 6.2, section b. and c. 
The use of Jth=I75 decreases the FPs in 3 centers out of 4, but does not improve 
either sensitivity or specificity. The TP and the sensitivity in Lugano results even 
worsened. 
The use of Jth=I(1-%IDHc) brings to improved or stable sensitivity, and allows 
improving specificity in 3 out of the 4 centers, with stable values in the other 
one. Average PPV and NPV slightly increase with the new thresholds, with no 
statistically significant differences[232]. 

 
Figure 6.3: Ji values distribution for Regional Hospital of Lugano, Switzerland (A);  
Dialysis Unit, A. Manzoni Hospital Lecco, Italy (B); Sant’Anna Hospital, Como, Italy 
(C) and Circolo Hospital and Macchi Foundation, Varese, Italy (D). The prediction 
threshold initially set at 1 is drawn as a continuous line. The dash-dotted line represents 
the 1- %IDHc quartile (Jth= I(1-%IDHc) the dashed line represents the 75th percentile for each 
Ji distribution (Jth=q(75)).  

 

 

6.1.1.2 Results from strategy 2 

As exposed in the previous chapter, in the Strategy 2 Kolmogorov-Smirnov and 
Kruskal-Wallis, statistical tests were performed over the attributes for both 
Dataset 1 and 2. 
Kolmogorov-Smirnov and Kruskal-Wallis results are here displayed together 
with the relative p-values and the consequent binary classification depending on 
the null hypothesis acceptance or refusal.  
The result is set to 0 if the null hypothesis cannot be rejected at the 5% 
significance level, 1 if the null hypothesis can be rejected at the 5% significance 
level. 
In particular: 

• K-S Null Hypothesis: a random sample X could behave as standard 
normal distribution; 

• K-W Null Hypothesis: independent samples from two or more groups 
come from distributions with equal medians. 

It follows that the samples of parameters characterized by the result 0 in 
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Kolmogorov-Smirnov come from normal distributions while the ones 
characterized by the result 1 do not come from normal distributions.  
In the same way the 0 value as result of the Kruskal-Wallis test identifies those 
parameters which are not statistical significant in describing the considered 
dataset; while 1 highlights instead those parameters which have a relevant role 
in describing the dataset. 

 
Dataset 1 

The population of the first dataset is divided in Hypotension Prone and 
Hypotension Resistant patients on the basis of IDH-D criterion described in 
§5.4.2.  
Tab.6.3 A and Tab.6.3 B displays the Kolmogorov-Smirnov test results for both 
Hypotension Prone and Hypotension Resistant patients: all attributes are 
characterized by very small, or even null, p-values, in both Hypotension 
Resistant and Prone populations, implying that all the attribute samples do not 
come from normal distribution.  
After the normality check, Kruskal-Wallis test for statistical significance were 
then performed.  
Its results are reported in Tab.6.3 C.  

 
        Table 6.3: Result of statistical test on Dataset 1  

A) K-S results for Hypotension Resistant (HP) patients data  
B) K-S results for Hypotension Prone (HR) patients data  

C) K-W results: HP vs HR 
                  A. 

 p-value Result 

[K+]   0 1 
[Na+] 0 1 
[Ca++] 9.1518×10−308 1 
[Mg++] 5.0082×10−215 1 
Ht 0 1 
ΔW 3.3000×10−258 1 
MAP 0 1 

 
                   B. 

 p-value Result 

[K+]   0 1 
[Na+] 0 1 
[Ca++] 4.6083×10−68 1 
[Mg++] 1.2867×10−247 1 
Ht 5.6914×10−106 1 
ΔW 1.7855×10−83 1 
MAP 5.2830×10−258 1 

 
                   C. 

 p-value Result 

[K+]   0.9567 0 
[Na+] 2.0035×10−14 1 
[Ca++] 0.0496 1 
[Mg++] 1.9728×10−9 1 
Ht 0.1402 0 

ΔW 0.2369 0 
MAP 1.3665×10−45 1 
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The analysis showed that Sodium, Calcium, Magnesium concentrations and the 
Mean Arterial Pressure significantly differs between the two groups. 

 
Dataset 2 
In the second dataset each single dialysis session is considered as a sample; the 
Sessions characterized by at least an IDH Event (IDH-y) were compared with the 
Sessions without IDH Events (IDH-n).  
The statistical analysis on the Dataset 2 is then aimed to highlight the parameters 
that results more physiologically relevant during an IDH event.  
The Kolmogorov-Smirnov test results are presented in Tab.6.2 A and Tab.6.2 B.  
Also in Dataset 2, in both the considered populations, each attribute is 
characterized by a very small p-value: the considered attributes samples do not 
come from normal distribution.  
The Kruskal-Wallis test for statistical significance was then performed; its 
results are reported in Tab.6.2 C. 
The most statistically significant parameters in describing IDH events seem to 
be the Sodium and Magnesium concentrations and the Mean Arterial Pressure 
(MAP). 
. 
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        Table 6.4: Result of statistical test on Dataset 2  

C) K-S results for Hypotension Resistant IDH-y sessions data  
D) K-S results for Hypotension Prone IDH-n sessions data  

C) K-W results: IDH-y vs IDH-n  
 
                 A. 

 p-value Result 

[K+]   2.3104×10−46 1 
[Na+] 5.3369×10−49 1 
[Ca++] 6.3977×10−38 1 
[Mg++] 8.3988×10−25 1 
Ht 1.1745×10−58 1 
ΔW 2.0590×10−52 1 
MAP 2.4225×1096 1 

 
 
                  B. 

 p-value Result 

[K+]   7.4118×10−306 1 
[Na+] 1.2894×10−308 1 
[Ca++] 9.5423×10−159 1 
[Mg++] 1.1427×10−127 1 
Ht 3.9794×10−202 1 
ΔW 0 1 
MAP 0 1 

 
                  C. 

 p-value Result 

[K+]   0.3902 0 
[Na+] 0.0055 1 
[Ca++] 0.7840 0 
[Mg++] 1.7960×10−7 1 
Ht 0.1402 0 

ΔW 0.2369 0 
MAP 1.3665×10−45 1 

 
J2 definition 

Based on the Strategy 2 results, a new version of the J index, called J2, has been 
implemented.  
The new index has been designed  taking into consideration that the pre-
treatment evaluation of J1 index into the everyday clinical practice highlights 
some potentially critical behaviors as a difficult threshold setting due to index 
linearity and an hp weight with regard to threshold assessment.  
J2 is defined as a sigmoid representing the actual patient conditions as shifted, 
depending on patient IDH history. The new index has been then defined as: 

 

ni hp
e

J +
+

=
−βα1

1
2        [ ]1,02 ∈iJ                  6.2 

 
where β is the independent variable, α controls sigmoid steepness and hp 
determines the shift.  
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The index can be viewed as a risk scale, where 1 stands for maximum IDH 
risk.  
α is the Weight Gain Parameter and expresses the role of inter-sessions weight 
gain and, indirectly, of intra-session blood volume removal. It is defined as: 

 

0240 W

Wtdial

∆

∆
=α                                           6.3 

 
where tdial is the treatment duration in minutes (i.e. a standard treatment is 
assumed to 240 minutes), ΔW   and ΔW0 are the patient mean and current 

weight gain, respectively. A higher weight gain or a short treatment time 
implies a higher ultrafiltration rate and therefore an higher IDH risk. This 
implies, on its time, a lower α value, driven by to a sigmoid shaping. 
β is the Blood Pressure Parameter, defined as: 

 

b
MAP

MAP
a +=

0

β                                     6.4 

 
a regulates index sensitivity, b is randomly chosen to include β in the interval 
[0, 10] while MAP   and  MAP0 are the averaged and current mean arterial 

pressures, respectively.  
The β coefficient imply that lower pre-session MAP values lead to higher IDH 
risk: this condition determines a β increase, and a higher J2 value in the IDH risk 
scale.  
The Hypotension Proneness Parameter is named hpi and quantifies the patient-
specific proneness to incur in hypotension during the treatment. 
This parameter is expressed as the number of IDH-free sessions between the 
current and the i-th ones.  

 

∑ −
= it

i ehp                                       6.5 

 
The negative exponential dependence from the time codifies that an hypothetic 
i-th IDH event can occur decrease with a inversely proportional relationship to 
the time t during the session. 

 
Results of J2 version testing 

J2 ability in the discrimination of IDH-y sessions, with respect to the IDH-n ones 
has been investigated. The index has been analyzed as one of the other 
parameters characterizing Dataset 2, following the Strategy 2 algorithm exposed 
in 5.4.2.  
A Kolmogorov-Smirnov test has been then primarily applied, to test the eventual 
normality of the distribution, followed by a Kruskal-Wallis test to effectively 
evaluate the discriminant power of J on IDH-y and IDH-n sessions (Table 6.5). 
The Kolmogorov-Smirnov test highlighted, as displayed in Tab. 6.3-A, that the 
J2 index sample do not come from a normal distribution. The Kruskal-Wallis test 
determined indeed the statistical relevance of the J2 index, as can be seen from 
Tab. 6.5-B. 
The box-plot related to the tests are displayed in the Appendix A. 
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Table 6.5: Result of statistical test on J2 

A. Kolmogorov-Smirnov results, J2 index 
B. Kruskal-Wallis results, J2 IDH-y vs J2 IDH-n 

A.  
 p-value Result 

J2  IDH-y 2.9500×10−27 1 
J2  IDH-n 1.1040×10−109 1 

 
B.  

 p-value Result 

J2  IDH-y  /IDH-n 1.6482×10−5 1 
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6.2. Intra-Dialysis Identifications and prediction of IDH 

onset. 

 
Here are presented the results obtained studying what happen during the 
dialysis. 
In particular in paragraph 6.2.1 the results on population analysis will be 
presented. 
Paragraph 6.2.2 reports the results of the IDH criteria evaluation.  
 

6.2.1 Population composition assessment 

The population composition assessment has shown that among the 20 patients 
recruited from the EOC center was 20: 7 females (35%) and 13 males (65%). On 
20 patients 7 was affected by diabetes mellitus and 5 of them were  insulin-
dependent; 17 patients have a more or less severe heart disease (85%), as many 
arterial hypertension. 
On a deeper analysis 7 patients were affected by diabetes, have heart disease and 
arterial hypertension (35%); 8 were both cardiac and hypertensive (40%); 2 
subjects had a heart disease but no diabetes or hypertension (10%) and as many 
suffer from high blood pressure but not diabetes or heart disease (10%). 
The age range was 42-90 years, with a mean age of 70 years; the range of dialysis 
age, intended as the time passed from the first treatment was 3-77 months, with 
an average of 49 months. All subjects underwent on HDF therapy. 
The number of patients recruited at the Dialisi dell'A.O. della Provincia di Lecco 
Patients were 50, and in particular 26 females (52%) and 24 males (48%). 
Individuals affected by diabetes mellitus type 2 were 16 on 50 (32%):  8 of them 
insulin-dependent. 30 of the treated patients suffered of less severe heart disease 
(60%), 40 arterial hypertension (80%). 
More precisely: 10 patients were both diabetics, that cardiac and hypertensive 
(20%); 4 were affected by diabetes and a heart disease (8%); 15 suffered of 
cardiac distress and hypertension (30%); 2 patients were diabetic but not 
hypertensive (4%); 5 subjects were hit by heart disease with no diabetes or 
hypertension (10%); 10 patients were hypertensive but not affected by heart-
disease or diabetes (20%). 
The age range is 48-88 years, with a mean age of 71.3 years; the range of dialysis 
age is 4-422 months, the average age is 70.22 months. Most of the subjects, 
namely 76%, was under SDH therapy (38 patients), while 12  underwent on HDF 
therapy (24%). 
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6.2.2 Intra-treatment Statistical Analysis – Relevant Results 

The analysis has outlined statistical differences between the clusters on the 
selected set of parameter.  
In particular with reference to: 
� Systolic Arterial Pressure (SAP): 

• Intratreatment trend: SAP is statistically different between the cluster 
of diabetic and non diabetics of EOC Lugano and between the HDF 
and HD patient of Lecco 

• maximum intratreatment variation peak (PMax): no statistical 
differences has been observed between the analyzed clusters, 

• intratradialysis variation ( start to end) of each session (SE): there 
were not statistical differences among the observed values and there 
aren’t correlation between the values 

• the difference between the maximum and the minimum values of each 

treatment (Max-min): there aren’t statistically significant differences 
between the clusters 

� MAP and HR: 
• Intratreatment trend: SAP is statistically different between diabetic 

and non diabetics of EOC Lugano and between the HDF and HD 
patient of Lecco 

• [Ca2+]: there aren’t statistically significant differences between the 
clusters  

• [Mg2+] and pH: cardiac patients denotes a significant statistical 
difference among control group and cardiac patients 

 
 

6.2.3 Single parameters criteria 

Here are reported and commented the results of the single criteria evaluation 
regarding the IDH criteria evaluation and the multicriteria evaluation 
The complete results are listed in Appendix B. 
 
6.2.3.1 SAP(0)140  criterion 

Table B.1 show the result of the of the application of the SAP(0)140  criterion 
SAP(0)140 in EOC Lugano and to the A.O. Lecco. 
The results shows the number of session identified by the SAP(0)140 in the 
conditions SAP(0)<140, SAP(0) ≥140 and in the whole SAP(0)140 form. 
Table B.1.A particularly reports the application of the criteria on session 
recorded at the EOC Lugano; SAP(0)140 identified IDH onsets when the BP set 
point has been reached on 65/150 sessions (43,33).  
More in deep, the 66,15 % of them, that correspond to 43/150 sessions (14,67%) 
has a SAP(0) < 140, indeed the remaining 33,85 (22/150) shows SAP(0) ≥140 
mmHg.  
Generally the number of session with SAP(0)≥140 are 38/150  (25,33%)., thus 
those with lower initial pressure are 112/150 (74,67%).  
Figure 6.3 graphically resumes the outcomes of the application of the criteria on 
the dataset:  
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Figure 6.4: Result of the application of SAP(0)140 Criterion 

 
In order assess the reliability of the SAP(0)140 criterion, the percentage of true 
positive (TP), false positive (FP), true negative(TN), false negatives (FN) and 
the assessment of Specificity and Sensibility, PPV and NPV with respect to the 
classification performed by IDH-D has been done. 
Table 6.6 reports the results of the analysis: 

 
Table 6.6: Results from the comparison between SAP(0)140  A and IDH-D criterion. 

 

 
 

The criteria  show an high specificity and high NPV value for both the data in 
EOC Lugano and A.O. Lecco, as can be shown in Figure 6.4 that reports the 
comparison of PPV and NPV values in the two centers.  

 

43,33%

16,55%

50%

60,64%

1,33% 2,46%

LUGANO LECCO

SAP(0)140 Criterion

%SAP_IDH/Tot %SAP_IDH/Synthoms

%SAP_IDH+Syntom/Tot

SAP 0 <140 %Sensitivity %Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 48,89 83,33 51,2 82 22 48,9 23 105 21

A.O. Lecco 55,00 96,20 55 96,2 11 55 9 228 9

Total 50,77 91,74 52,4 91,2 33 50,8 32 333 30

SAP 0≥ 140 %Sensitivity %Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 17,78 88,24 36,4 73,9 8 17,8 37 105 14

A.O. Lecco 25,93 91,70 25,9 91,7 7 25,9 20 221 20

Total 20,83 90,56 30,6 85,1 15 20,8 57 326 34

SAP 0 _140 %Sensitivity %Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 66,7 83,3 58,8 87,5 30 66,7 15 105 21

A.O. Lecco 62,07 88,31 38,3 95,2 18 62,1 11 219 29

Total 64,86 86,63 49 92,6 48 64,9 26 324 50
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Figure 6.5: Results from the comparison between MAP30 and IDH-D criterion. 

 
6.2.3.2  MAP30 Criterion 

Table B.2 reports the result of the application of the MAP30 criterion applied on 
both EOC Lugano and to the A.O. Lecco datasets. 
With respect to the EOC Lugano dataset, the MAP criterion has been able to 
identify as IDH affected 16/150 sessions (10,67%) in 8/20 patients (40%).  
Only 1 on 4 of these sessions have been reported on the clinical records (25%). 
The application of the criteria on the dataset of A.O. Lecco has shown that the 
criterion can to identify as IDH affected 28/284 session (9,86%) in 16/48 
patients (33,34%).  
No session reported on the clinical records has been correctly classified by the 
MAP30 criterion.  
Figure 6.5 graphically resumes the outcomes of the application of the criteria 
on the dataset:  

 

            
  Figure 6.6: Results from the comparison between MAP30 and IDH-D criterion. 

 
In order assess the reliability of the SAP(0)140 criterion, the percentage of true 
positive (TP), false positive (FP), true negative(TN), false negatives (FN) and 
the assessment of Specificity and Sensibility, PPV and NPV with respect to the 
classification performed by IDH-D has been done. 
Table 6.7 shows the results of the comparison 
Particularly: 

• with reference to the results for the EOC Lugano; 6 sessions have been 
classified as IDH affected using MAP30 out of the total of 16 classified 
by the IDH-D criterion (37.50%), (true positive) 

• with reference to the results of the A.O. of Lecco the RBV13 is able to 

0

20

40

60

80

100

EOC Lugano A.O. Lecco Total

SAP0_140 Criteria - PPV and NPV

PPV(%) NPV(%)

10,67% 9,86%

25%

45,45%
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recognize 9 sessions out of the total of 28 (32.14%), (true positive), 
indeed 19 sessions out of 28 results as false positives (67.86%). 

 
Table 6.7: Results from the comparison between MAP30 and IDH-D criterion. 

 

 
 
 

Figure 6.6 that reports the comparison of PPV and NPV values in the two 
centers. 
It can be seen that the criteria shows an high specificity and high NPV value 
for both the data in EOC Lugano and A.O. Lecco. 

 

 
Figure 6.7:  MAP30 PPV- NPV comparison 

 
6.2.3.3  RBV13 criterion 

Table B.3 reports the result of the application of the MAP30 criterion applied on 
both EOC Lugano and to the A.O. Lecco datasets. 
The application of the RBV criteron lead to the following results: 
on EOC Lugano dataset: 

• the criterion is able to identify 46/140 IDH session (33,45%) 
• the comparison with the clinical records shows that the criterion 

detects 1/ 4 sessions (25%) reported 
on A.O. Lecco dataset:   

• the criterion is able to detect 92/275 sessions (32,62%) in 
50/50 patients (100%) 

• the comparison with the clinical records shows that the criterion is able 
to identify 5/9 where the data on RBV was available (55,56%) in 3/5 
patient (60%). 

Figure 6.7 graphically depicts the obtained results: 
 
 

MAP 30 %Sensitivity %Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 37,5 86,45 22,2 93,1 6 37,5 10 134 21

A.O. Lecco 31,03 88,31 23,7 91,6 9 31 20 219 29

Total 33,33 87,59 23,1 92,2 15 33,33 30 353 50
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Figure 6.8: Results from RBV13 Criterion. 

 
In order assess the reliability of the RBV13 criterion, the percentage of true 
positive (TP), false positive (FP) true negative(TN), false negatives (FN) and 
the assessment of Specificity and Sensibility, PPV and NPV with respect to the 
classification performed by IDH-D has been done. The results are reported in 
Table 6.8: 

 

Table 6.8: Results from the comparison between RBV13 and IDH-D criterion 
 

 
 

Figure 6.8 that reports the comparison of PPV and NPV values in the two 
centers. 

 

 
 

Figure 6.9: RBV13 comparison between PPV and NPV 
 

RBV 13 %Sensitivity %Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 43,5 78,33 43,5 78,3 20 0,43 26 94 26

A.O. Lecco 15,22 70,11 15,2 70,1 14 0,15 78 183 78

Total 24,64 72,70 24,6 72,7 34 0,25 104 277 104
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6.2.3.4  ∆K+ criterion 

Table B.4 reports the result of the application of the MAP30 criterion  on both 
EOC Lugano and to the A.O. Lecco datasets. 
Its application lead to the following results:   
• on EOC Lugano dataset: 

- dK1 is able to identify 20/150(13,34%) session with dangerous 
variations of blood potassium concentration  

- dK2 is able to identify 65/150(43,34%) session with dangerous 
variations of blood potassium concentration  

- dK3 is able to identify 80/150(53,34%) session with dangerous 
variations of blood potassium concentration  

- totally the ∆K+ is able to identify 112/150 (74,67%) session with 
dangerous variations of blood potassium concentration  

- the comparison with the clinical records, shows that the criteria is able 
to identify 4/4 sessions reported.  

• on A.O. Lecco dataset:   
- dK1 is able to identify 43/296(14,53%) session with dangerous 

variations of blood potassium concentration dK2 is able to identify 
117/296 (39,53%) session with dangerous variations of blood 
potassium concentration  

- dK3 is able to identify 88/296 (29,73%) session with dangerous 
variations of blood potassium concentration  

- totally the ∆K+ is able to identify 169/296 (57,09%)  session with 
dangerous variations of blood potassium  

- the comparison with the clinical records, shows that the criteria is able 
to identify 3/11 (27,27%) sessions reported. 

Figure 6.10 reports graphically the results of the application of ∆K+ criterion 
on the dataset. 

 

 
 

Figure 6.10: Results of the application of the ∆K+ criterion 
 

In order assess the reliability of the ∆K+ 
 criterion, the percentage of true 

positive (TP), false positive (FP), true negative(TN), false negatives (FN) and 
the assessment of Specificity and Sensibility, PPV and NPV with respect to the 
classification performed by IDH-D has been done. The results are reported in 
Table 6.9: 
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Table 6.9: Results from the comparison between ∆K+  and IDH-D criterion 
 

 
 

Table 6.9 shows that: 
• with reference to the results for the EOC Lugano dataset; 31 sessions 

have been detected as IDH affected using the complete ∆K+ criterion 
on the total of 45 classified by the IDH-D criterion (68,89%)  

• with reference to the results of the A.O. of Lecco dataset; the ∆K+ 
criterion is able to recognize 13 sessions on the total of 29 (44,83%) 
that have been classified as IDH affected by the IDH-D criterion.  

Figure 6.11 that reports graphically the comparison between PPV and NPV 
values in the two centers. 

 

 
Figure 6.11: ∆K+   comparison between PPV and NPV 

. 
6.2.3.5 Dysrhythmia criterion 

Table B.5 reports the result of the application of the MAP30 criterion on both 
EOC Lugano and to the A.O. Lecco datasets. 
The results shows that: 

• on EOC Lugano dataset: 
- the criteria is able to identify 88/150 session classified as IDH by IDH-

D (58,67%)  
- the comparison with the clinical records shows that the criterion 

detects 1/ 4 sessions (25%) reported 
• on A.O. Lecco dataset:   

- the criterion is able to detect 92/275 sessions classified as IDH by 
IDH-D  (32,62%). 

- the comparison with the clinical records shows that the criterion is able 
to identify 5/9 sessions (25%) reported 

The criteria has been also tested considering both the variation on diminishing 
and increase of the 20% of cardiac rhythm and in particular: 

• on EOC Lugano dataset 
for HRate(t) ≤ 20% HRate(0) 

- the criterion is able to identify 62/150 session (41,34%) 
- the comparison with the clinical records shows that the criterion 

detects 1/ 4 sessions (25%) reported 

∆K+ Sensitivity Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 54,4 56,4516129 68,9 78,3 31 68,9 26 94 81

A.O. Lecco 44,83 63,1205674 44,8 70,1 13 44,8 78 183 156

Total 59,46 61,08 59,5 72,7 44 20,8 104 277 237
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for HRate(t) ≥ 20% HRate(0) 
• the criterion is able to identify 26/150 session classified as IDH by 

IDH-D    (54,17%) 
on A.O Lecco dataset 
for HRate(t) ≤ 20% HRate(0) 

• the criterion is able to identify 63/284 session classified as IDH by 
IDH-D  (21,18%)  

for HRate(t) ≥ 20% HRate(0) 
• the criterion is able to identify 64/284 session classified as IDH by 

IDH-D  (22,53%)  
 

In order assess the reliability of the dysrithmia 
 criterion, the percentage of true 

positive (TP), false positive (FP), true negative(TN), false negatives (FN) and 
the assessment of Specificity and Sensibility, PPV and NPV with respect to the 
classification performed by IDH-D has been done.  
The results are reported in Table 6.10: 

 
Table 6.10: Results from the comparison between  

dysrithimia  and IDH-D criteria 
 

 
 

Figure 6.12 reports graphically the comparison between PPV and NPV values 
in the two centers and in total. 

 

 

Figure 6.12: Dysrhytmia criterion  comparison between PPV and NPV 
  

Dysrhythmia Sensitivity Specificity PPV NPV TP %TP FN TN FP

EOC Lugano 41,9 56,4516129 57,8 72,3 26 68,9 36 94 81

A.O. Lecco 65,52 63,1205674 65,5 80,3 19 44,8 45 183 156

Total 60,81 61,08 60,8 72,7 45 20,8 104 277 237
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6.2.4  Comparison between the criteria performances and cross 

application 

The performances of the single criteria in term of IDH detected and false 
positives, have been compared. with the detection of IDH  by the IDH-D criteria. 
The results are shown in Table 6.11. 
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Table 6.11: Comparison between the criterions 

Predictive 

Criteria 

%IDH 

Identified 

 

%Sensitivity %FALSE_positives 

SAPₒ140 66,22% 64,86% 57,14% 

MAP30 20,27% 33,33% 65,90% 

RBV13 49,27% 24,64% 75,36% 

DIM20 60,81% 60,81% 64% 

ΔK⁺ 59,46%     59,46% 84,34% 

 
The comparison shows that the number of identified IDH stands around 50-
66% on the application of all the single criteria and signaled false positive are 
between 57%-74%. 
The criteria has been also tested in their cross application. 
Table 6.12 and 6.13 resumes synthetically the results of the cross application of 
the criteria: 

 

 
Table 6.12: Comparison between the criterions – true positives 

 

 
 
          45-70%   44%-30%  29-20%   

 
Table 6.13: Comparison between the criterions – false negatives 

 

 
      
        45-60%   61-80%  81-90%   
   

 
The combination of two criteria lead to lower identification of IDH events and 
to higher false negatives percentages. 
This results lead to the definition of a multiparametric criteria. 
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6.2.5.  The multiparametric criteria  

The multiparametric criterion as defined in 5.8 has been applied on the two 
datasets: the result of the application are reported in  
Table B.6. 
 Particularly the results shows that: 

• on EOC Lugano dataset: 
mc1: 

o the criteria has been able to identify 10 sessions with IDH; 8 
of them correspond to the IDH-D classification (80%) and 2 
are false positives (20%)  

mc2: 

o the criteria has been able to identify 22 sessions with 
IDH; 16 correspond to the IDH-D classification (72,72%) 
and 6 are false positives (27,27%) 

   mc3 

o the criteria has been able to identify 20 sessions with 
IDH; 17 correspond to the IDH-D classification (85%) 
and 3 are false positives (15%) 

the whole criteria 

o the criteria has been able to identify 52 sessions with     
IDH; 41 correspond to the IDH-D classification (78,85%) 
and 11 are false positives (21,15%). 

• on A.O. Lecco dataset 
mc1: 

o the criteria has been able to identify 11 sessions with 
IDH; 7 of them correspond to the IDH-D classification 
(63,64%) and 4 are false positives (36,36%); 

            mc2: 

o the criteria has been able to identify 14 sessions with 
IDH; 10 correspond to the IDH-D classification (71,43%) 
and 4 are false positives (28,57%) 

    mc3 

o the criteria has been able to identify 13 sessions with 
IDH; 19 correspond to the IDH-D classification (76,93%) 
and 3 are false positives (23,07%). 

the whole criteria 

o the criteria has been able to identify 27 sessions with 
IDH; 41 correspond to the IDH-D classification (71,05%) 
and 11 are false positives (28,95%). 

Totally the multiparametric criteria has been able to identify the 98.55% of 
sessions with hypotension as defined by IDH-D and with a percentage of 
24.24% of false positives.  

 

Table 6.14: Comparison between the criterions – true positives 

 

 
 

Figure 6.14 reports graphically the comparison between PPV and NPV values 
in the two centers and in total.  

Multiparam Sensitivity Specificity PPV NPV TP (SAP%TP FN TN FN 

EOC Lugano 39,5 90,5172414 37,8 78,3 17 91,1 26 94 11

A.O. Lecco 44,83 63,1205674 44,8 70,1 13 44,8 78 183 156

Total 40,54 69,02 40,5 72,7 30 44,8 104 277 167
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Figure 6.13: Multiparametric criterion-comparison between PPV and NPV 
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. 

6.3 Machine Learning Approach 

All the three different machine learning techniques (Random Forest, Artificial 
Neural Network and Support Vector Machine) were implemented over five 
different datasets (A, B, C, D, E), each of which was divided in a Validation 
(90% of the total) and in an Independent Testing (the remaining 10%) subsets 
in order to have an additional indicator for eventual model overfitting. 
Recalling the five datasets: 

• Dataset A: 500% minority class SMOTING and no majority class 
downsampling, resulting in 1118 examples; (higher samples, minority 
class SMOTING) 

• Dataset B: 300% minority class SMOTING and relative majority class 
random downsampling, resulting in 745 examples; 

• Dataset C: 100% minority class SMOTING and relative majority class 
random dowmsampling, resulting in 366 examples; 

• Dataset D: 100% minority class Bootstraping and relative majority 
class random downsampling, resulting in 373 examples; 

• Dataset E: 50% minority class SMOTING and relative majority class 
random downsampling, resulting in 280 examples 

The main evaluation parameters are here reported in Table 6.13 and 6.14. 
The complete Confusion Matrices and ROC Curves are listed in the Appendix 
“A2 Machine Learning”. 
Each model, in the implementation, validation and independent testing phases 
has been evaluated by the following parameters: 

• Overall Accuracy: quantifies how well a model correctly identifies a 
condition. It is defined as the portion of true results among the total 
number of examined cases; 

• Precision: is the fraction of retrieved instances that are considered 
relevant instances. In the following tables the precision values refer to 
the prediction target class: IDH events; 

• Recall: is the fraction of relevant instances that are true positives. In 
the following tables the recall values refer to the prediction target 
class: IDH events; 

• AUC: is defined as the area underlying the ROC curve. It can be 
considered as equal to the probability that the classifier will rank a 
randomly chosen positive instance higher than a randomly chosen 
negative one 

• f-measure: considers both precision and recall to compute a more 
general score. 
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6.3.1. Random Forest Evaluation 

Random Forest performance is summarized in Table 6.15. 
The best overall accuracy is achieved by the models developed over Dataset D 
and E, but these models appear to suffer of faint overfitting: particularly for 
Dataset E, the independent test highlights that all parameters, excluded the AUC, 
overrun the variability interval determined by the model validation.  
This could be attributed to the Dataset D and E small size. 
Dataset C model results unsatisfactory under every aspect: low accuracy, 
precision, recall, AUC and f-measure are combined with high variability 
intervals.  
When the model is validated over the Datasets A and B; high values of the 
performance parameters were achieved, with acceptable variability intervals. In 
general the model has higher recall values rather than prediction for all the 
datasets. This means that the model is reliable on identifying true positive 
conditions.   
In general all the obtained models are characterized by large variability intervals 
(e.g. from ±3.52% to ±8.22% for accuracy and from ±3.11% to ±9.09% for f-
measure), underling a strong correlation between the composition of the training 
sets and the model performances. 

 
Table 6.15: Result of evaluation of Random Forest Algorithm 

 

 
  

ACC PRC RCL AUC f-measure

Val. 77.31±4.08% 73.21% 85.89% 0.833±0.029 79.01±3.77%

Ind. 81.25% 76.06% 93.10% 0.871 83.72%

Val. 76.42±3.52% 71.32% 84.69% 0.844±0.042 77.42±3.11%

Ind. 77.03% 73.33% 86.84% 0.807 79.52%

Val. 70.21±6.09% 67.76% 67.76% 0.818±0.081 66.95±9.09%

Ind. 86.11% 88.89% 84.21% 0.913 86.49%

Val. 81.52±6.75% 77.98% 83.97% 0.913±0.048 80.70±7.41%

Ind. 78.38% 75.00% 83.33% 0.924 78.95%

Val. 84.05±8.22% 81.54% 86.89% 0.923±0.064 84.01±8.35%

Ind. 75.00% 60.00% 90.00% 0.878 72.49%

A

B

C

D

E
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6.3.2. Artificial Neural Network 

The results obtained evaluating the Artificial Neural Network approach are 
summarized in Table 6.16.  
The best overall accuracy is achieved when the model is trained over Dataset D 
and E, even if the variability intervals of accuracy, may suggest a marked 
dependence from the training sets. 
The results obtained during the independent testing over the Dataset D 
outperform those reached on the validation set, confirming this supposition.  
Furthermore, the model trained over Dataset C is characterized by a low 
accuracy (73.86%) and a high variability interval (±7.07%), highlighting how 
reduced datasets combined with the considered machine learning technique 
strongly strengthen the relationship between training set and model 
performances. The model obtained from Dataset A perform well both in terms 
of overall accuracy and class recall keeping narrow variability intervals. Class 
recall results acceptable for all the trained models since, as explained in the 
previous chapter, a high sensitivity test has been considered as a fundamental 
requirement during the implementation phase. 
Also for ANN, SMOTING technique for dataset balancing appears to grant most 
performant IDH predictions. 
Best results are obtained with no minority class downsampling. 
In general ANN has higher precision values rather than recall : the model is 
more powerful in identifying positive instances of IDH from the retrieved 
entries.  

 

 

Table 6.16: Result of evaluation of Artificial Neural Network Algorithm 

 
  

ACC PRC RCL AUC f-measure

Val. 80.69±3.57% 78.23% 84.80% 0.869±0.041 81.41±3.13%

Ind. 84.82 90.20% 79.31% 0.898 84.40%

Val. 78.36±3.61% 75.36% 81.25% 0.858±0.024 78.14±3.92%

Ind. 77.03% 75.61% 81.58% 0.846 78.48%

Val. 73.86±7.05% 70.89% 73.68% 0.829±0.060 72.30±7.23%

Ind. 77.78% 86.67% 68.42% 0.882 76.47%

Val. 81.17±4.39% 85.09% 87.82% 0.896±0.061 86.38±4.63%

Ind. 91.89% 89.47% 94.44% 0.921 91.89%

Val. 85.62±5.15% 82.58% 89.34% 0.874±0.045 85.54±5.64%

Ind. 82.14% 72.73% 80.00% 0.856 76.19%

A

B

C

D

E
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6.3.3 Support Vector Machine 

 
The Support Vector Machine models performances are summarized in Tab.6.17.  
The best results, in terms of overall accuracy, Area Under Curve and f- measure, 
are achieved when using the models developed over Dataset D and E. These 
performances, as obtained on Random Forest and Artificial Neural Network 
analysis, are characterized by large variability intervals, specifically with regard 
to the f-measure parameter.  
Both the models show class precision higher than class recall, achieving even 
the 100% in the independent testing phase. 
The model trained over Dataset C has the lowest performances among the 
considered datasets, remarking lack of predictive power. Furthermore, the 
independent test accuracy (75%) falls outside the variability interval identified 
during the validation phase (85.09%±8.01%), showing the possibility of model 
overfitting. Dataset B performances are acceptable for each evaluation 
parameter. Dataset A reached high performances characterized by narrow 
variability intervals (e.g. accuracy = 88.26% ± 2.80%) revealing a high 
independence from training set composition. 
Both the models obtained from Dataset B and A are characterized by class recall 
higher than class precision highlighting the high sensitivity of the considered 
models. 

 
Table 6.17: Result of evaluation of Support Vector Machine Algorithm 

 

ACC PRC RCL AUC f-measure

Val. 80.69±3.57% 78.23% 84.80% 0.869±0.041 81.41±3.13%

Ind. 84.82 90.20% 79.31% 0.898 84.40%

Val. 78.36±3.61% 75.36% 81.25% 0.858±0.024 78.14±3.92%

Ind. 77.03% 75.61% 81.58% 0.846 78.48%

Val. 73.86±7.05% 70.89% 73.68% 0.829±0.060 72.30±7.23%

Ind. 77.78% 86.67% 68.42% 0.882 76.47%

Val. 81.17±4.39% 85.09% 87.82% 0.896±0.061 86.38±4.63%

Ind. 91.89% 89.47% 94.44% 0.921 91.89%

Val. 85.62±5.15% 82.58% 89.34% 0.874±0.045 85.54±5.64%

Ind. 82.14% 72.73% 80.00% 0.856 76.19%

B

C

D

E

A
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6.3.4 Algorithm Performance Comparison 

Tables 6.18-6.22 reports the comparison of the performances among  machine 
learning algorithms and the different balancing techniques.  
The results, show that the best overall results were achieved by models trained 
over Dataset D and E(e.g. overall accuracy for SVM model: 92.50% ± 5.02% 
and 92.93% ± 4.38%, respectively).  
These datasets are the ones obtained through minority class oversampling with 
replacement and majority class down sampling. 
This procedure re-turned small datasets, leading to minority class information 
redundancy and majority class information loss.  
On the other hand, models trained and validated over the datasets obtained 
through SMOTE are generally less performing, but their results, characterized 
by tighter variability ranges, and can be considered as has having higher 
generalization error.  
Particularly Dataset A (Table 6.18), the one obtained through high minority class 
SMOTE and no majority class down sampling, has the best performance and 
smallest variability intervals (e.g. SVM model overall accuracy: 88.26% ± 
2.80%). 
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Table 6.18: Dataset A, performance comparison 

 
Table 6.19: Dataset B, performance comparison 

 
 

Table 6.20: Dataset C, performance comparison 

 
 

Table 6.21: Dataset D, performance comparison 
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Table 6.22: Dataset E, performance comparison 

 
 
  



Chap 7- Discussion 
 

 108 

Chapter 7 – Discussion 

 

7.1 Introduction 

The performed analyses has produced different outcomes, in particular:  
• Dialysis Database 
• Dialysis Matlib 
• J1 and J2 index for pre-dialysis IDH detection 
• A multiparametric criterion for the intra-dialysis IDH detection  
• Machine Learning Algorithms 

Those outcomes will be discussed in the further paragraphs. 

7.2 Dialysis Data Infrastructure and Dialysis Matlib 

The DDI and the Dialysis MATlib constitute a versatile tool to manage the 
clinical data of the Dialysis Project.  
The combination of these two elements has been used to overcome the hard data 
interoperability problems persisting among the data collections of the involved 
dialysis units. Currently, the whole system can perform 4 levels of 
interoperability by the definition of Wang et al. [143].  
Starting from the practical interoperability given by the diffuse internet 
connection, the presence of a common data format provides syntactic and 
semantic interoperability. The DDI and DDR platform ensures several levels of 
interoperability, from syntactical to practical. 
Practical interoperability has been particularly important in the Dialysis Project. 
Since the study involved different clinical units, it was central to give a tool 
capable to share analyses, mining and data management functionalities among 
heterogeneous users in different clinical centers [Error! Reference source not 

found.].   
A key element in the implementation of practical interoperability has been the 
definition of the possible macro-actions on the different datapools [116].  
The macroactions can be considered as the concrete implementation the 
interoperability and the federation layers described in Figure 1. They are 
performed by functions that have been coded in Matlab®.  
All the interoperability architecture has been designed on the basis of the 
federated approach, allowing a multiple hierarchies structure based on the DR 
levels. 
It can be argued that the idea of multiple hierarches is not new in the dialysis 
field and other  approaches are more common in literature. These approaches are 
mainly based on ontologies and controlled dictionaries [149].  
In this sense, the federated approach used for the construction of the  DDI, 
appears quite unusual and seems to  lack of portability. 
Nevertheless, the implementation of the DDI through the federated database 
approach as allowed to exploit the potentials of Matlab®. 
Once the data are translated into workspace variables, they are available to be 
treated as heterogeneous data in a vector-matrix logic. 
Furthermore they are available to be elaborated by Matlab® toolboxes.  
Currently, Matlab® is providing several toolboxes for large dataset management 
and exploratory analysis [136] like the Machine Learning, the Database and the 
SVM Toolboox. 
As the Dialysis MATlib provides a standardized input workflow, the DDI can 
be widened any moment with new data.  
Therefore these data could be treated in Matlab® by “MapReduce” and 
“memmap” functions [230]. These functions are suitable for analyzing large 
datasets that cannot fit computer's memory. Moreover, MapReduce can connect 
to the well-known big-data platform Hadoop [230]. So the use of MATLAB® 
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as main developing environment presented several advantages.   
 

7.3 Pre-dialysis Period 

7.3.1. Comments on Analysis - Strategy 1 

The statistical analysis of the clinical dataset allowed to define J1 (6.1) as 
predictive index of hypotension during the dialysis treatment.  
J1 resulted a multifactorial index, based on the weighted combination of the pre-
dialysis values of potassium concentration [K+], MAP, and weight gain (ΔW) 
taking into account also the proneness of the specific patient to IDH.  
These parameters results useful for their physiological and statistical relevance 
and their can be easily retrieved during daily clinical practice in dialysis units.  
J1 has been calculated at the beginning of each session, through non-invasive 
measurements. 
It’s structure givesthe clinician useful information on the probability of IDH 
onset during the specific treatment, that can be tuned and personalized to avoid 
IDH onset. 
Furthermore, J1 offers a personalized IDH risk assessment. 
The weight coefficients are indeed adjourned based on the longitudinal analysis 
of the influencing parameters. 
As described in Par 6.1.1. the weight coefficient calibration is based on  the 
cumulative mean, of the influencing parameter for the individual patient (RPPC), 
in a set of reference patient profile conditions that defines the normality of 
predialysis condition of each patient (BPDC). 
This means that the J1 prediction depends both by the clinical history of the 
patient and his conditions at start of the treatment. 
 The influence of each influencing parameter on the J1 index prediction is 
weighed in a different way according to the characteristics of each patient and 
to his proneness to hypotension. 
 On this assumptions, J1 thus results as weighted combination of the pre-dialysis 
parameter values  designed to be patient-depend and coherent to  
the multifactorial nature of the IDH onset.  
 

            
 

Figure 7.1: Ji sensitivity and specificity for the different centres  
and thresholds. Error bars represent the Confidence Interval at 99% (CI 99%)[231]. 

 
J1 has been assessed in its prediction abilities with different center depended 
thresholds Jth. 
The results showed that J1, when Jth=1, allows identifying, since the early stage 
of the sessions, the 77% of IDHs. 
Figure 7.1 shows that J1 sensitivity and specificity result always around 70- 80%, 
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independently from the inter-center variability.  
In the literature, screening tests characterized by similar performances were 
accepted for pathologies, like IDH, whose prevalence is under 30% (18-20).  
The use of a unique threshold (Jth=1) does not lead to the same performances in 
the different centers[232].  
This dependency can be statistically explained by the existence of a relationship 
among the prediction of a clinical test and the prevalence of the investigated 
pathology (here IDH) [233-235]. The different prevalence can be on its turn 
explained either by the not homogeneous patient characteristics or by the 
different protocols used to manage IDH in the different centers. 
Standing the absence of alternative reliable methods (gold standard) to evaluate 
the risk of IDH onset since the early stage of the HD treatment, the proposed 
index, based on easily measurable data, could be useful as a first screening for 
the clinician and the nurses that could benefit by the in-advance knowledge of 
the session-specific patient risk to develop IDH.  
A limit to the J1 use is that its calculation require data relative to at least 3 
previous sessions to identify the patient-specific weights of the index, thus 
implying the availability of a relevant database in the center. This limit could be 
overcome with the automation of the data recording process and the integration 
of data acquired from different devices, as the ongoing healthcare digital 
transformation encourages [196]. 

Furthermore J1  it presents  a difficult threshold setting due to index linearity; and an unbalanced hp 
weight that do not considers the evolution of the risk during the treatment.   

The linearity does not facilitate the possibility to add other influencing factors 
for an increased phenomena description 
. 

7.3.2. Comments on Analysis - Strategy 2 

Statistical tests were run over the two different datasets making possible to 
analyze the IDH distributions from two different perspectives: Dataset 1 allowed 
to consider the risk of IDH related to the patients proneness while Dataset 2 focus 
more on the physiological events connected to the single HD session.  
The preliminary Kolmogorov-Smirnov (K-S) normality tests highlighted the 
non-normality distributions for all attributes, in both datasets.  
Different pathologies and relative drugs use and dosage may have played a 
crucial role on these results.  
The Kruskal-Wallis and ANOVA tests to assess the statistical differences 
between the groups returned quite similar results: in both datasets Sodium and 
Magnesium Concentration and Mean Arterial Pressure resulted statistically 
different between the two groups.  
On Dataset 1 also Calcium showed to be statistically different, pointing out how 
the patient characterization could have different statistical dynamics with respect 
to the physiological description of IDH events. 
Analysing the complete results of the statistical analysis it can be pointed out 
that higher electrolytes concentrations and lower MAP, could characterize the 
Hypotension Prone and No IDH Events populations(Fig. A.1-A.4, A.7, A.8-
A.11, A.14).  
Particullarly, the analysis has permitted to propose a new index J2 (6.2) as an 
evolution of J1, based on the weighted combination of the pre-dialysis values of 
Mean Arterial Pressure and Inter- sessions Weight Gain and the treatment 
duration.  
J2 mathematical function consists in a sigmoid representing the present patient 
conditions shifted depending on patient IDH history: β is the independent 
variable, α controls sigmoid steepness and hp determines the shift. 
The new version of the index J2 tries to overcome the limits of J1. 
Firstly as it comes from the analysis of both Dataset 1 and 2, it considers both 
inter- and intra-patients variability. 
Compared to J1, J2 index can be viewed as a continuous risk scale, where 1 
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stands for maximum IDH risk, instead of a discrete prediction. 
Furthermore it modulates the hypotension proneness by the time tdial of the 
treatment, considering that the risk of IDH can decreases by the time during the 
session. 
Due to non linear formulation (6.2) it also allows to add futher parameters to the 
prediction. 
However, as can be seen in Attachment A Fig. A.15, even if J2 is able to 
discriminate between the HP and HR patients, the risk scale results quite short: 
most values are included in the interval 0.75−0.85 for both populations. 
 
 
 
 
 
81  
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7.4 Intradialysis-dialysis Period 

7.4.1 Population composition assessment 

The intra-treatment Statistical Analysis highlighted that the collected pressure 
data belongs to different populations for each of the performed clustering, with 
the exception of patients with different therapies (HDF vs HD), referring to the 
data pool in the center of Lecco.  
This result can be explained considering the high variability of the parameter 
within the treatments and between the subjects do to the highly-dependent 
patient response to the treatment, related to the specific conditions at the 
beginning session of the subject and his clinical picture - as well as to possible 
measurement errors.  
The intradialysis variations of pressure (difference between initial and final 
values, between the maximum and minimum values), and in particular the 
maximum (maximum pressure variation) are less disperse and more comparable.  
Considering the MAP trends indeed, difference between diabetic and non-
diabetics patients of EOC Lugano and between the HDF and HD patient of 
Lecco have been registered. However this is not possible to uniquely identify 
comparable categories and trends among the two centers. 
Similar conclusions can be reached regarding heart rate trends. 
For systolic pressure, MAP and heart rate it is not possible to identify 
significantly comparable categories. It then outlines a highly heterogeneous 
picture, that lead to consider an inter-treatment variation rather then a trend as a 
representative parameter of the session.  
The statistical study of the concentration values in the blood of the main 
electrolyte and the pH during the dialysis treatment, has not led to determine 
specific differences within the clusters, as the data are part of the same 
population.  
This can be attributed to significant intra- and inter-subject variability of these 
parameters, to the specific clinical condition of the patient at the beginning of 
the session (different for each treatment even for the same patient), and to the 
specific treatment conditions due to the different dialysis fluid composition used 
by the centers.  
Furthermore, the causes variations of the analyzed parameters; the variation of a 
single electrolyte has repercussions on others, thus resulting in an extremely 
complex system. 
In conclusion it was not possible to define clinical categories of patients for 
whom the analyzed parameters (pressure, heart rate, electrolytes, pH) have 
similar trends. The pool of patients is therefore to be considered 
heterogeneous. It is preferable to also analyze and compare variations of the 
parameters instead of their intradialytic trend. 
 

 
7.4.1 Intra-treatment IDH risk identification 

Standing to Table 6.11, the application of the tested predictive criteria shows 
low overall percentages of IDH identified (SAP(0)_140: 66,22% ; MAP30: 
20,27%; RBV13: 49,27%; dim20: 60,81% ; ∆K+ : 59,46%) and sensitivity 
(SAP(0)_140; MAP30: 33,33%;; RBV13: 24,64%; dim20: 60,81% ; ∆K+: 59,46%), 
accompanied with  high percentages of false positives(SAP(0)_140: 57,14%; 
MAP30:65,90%;;  dim20: 60.81%; RBV13: 75.36%; ∆K+: 84.34% ).  
It can ben therefore concluded that the single criteria do not have a sufficient 
predictive efficacy.  
Even the simultaneous application of two criteria do not detect a sufficient 
number of sessions with hypotension as defined by IDH-D (Table 6.12 and 6.13) 
even with a percentage of false positives below the 30%. 
This result has highlighted the need of a multiparameter criterion (Par. 5.5.3.4.) 
for the IDH risk assessment during the dialysis treatment. 
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In particular the multiparameter criterion, collects in a unique set of conditions 
that physiological parameters (systolic blood pressure, change in RBV, variation 
in the [K+] and Heart Rate), associated to the mayor determinants that contributes 
to the IDH risk [198,233].  

 
Figure 7.1: Decomposition of the IDH risk in  

two mayor determinants and associated physiological variables  

 
As indeed described in Par 2.3, hypotension is strictly related to an altered and 
pathological cardiovascular response to the decreased circulating volume 
induced by ultrafiltration. 
Furthermore, the variable used in the composition of the multiparameter criteria, 
can be considered as “sensor variables” [88] of one of more of the three controls 
acts exposed in Par 2.3. 
As instance, the variation of RBV can be associated to the venous return in the 
cardiac cavity, the variation of HR indeed describes the effects of the increased 
hearth rate due to the increase in the cardiac output. 
The multivariate criterion has been structured to reflect the physiological 
framework of causes to predict the IDH risk.  
The first risk assessment is performed: comparing the value of the Systolic 
Arterial Pressure at time t of the session with the initial value of SAP through 
the SAP(0)140 criterion 
SAP has been the eligible measure for the IDH management in several studies  
[ 32]. 
Considering this criterion it can be observed that for SAP(0)≥140, at the 
beginning of the session, the application of the SAP(0)140 conditions has been 
able to detect all the session classified as IDH by IDH-D (cfr Table X:X 
appendix C). 
For SAP(0)≤140, indeed the criteria has not been able to match all the IDH 
standing to the IDH-D definition and an high number of false positives has been 
detected. 
The SAP(0) 140 criterion, is thus selected for the session with SAP(0)≥140  when 
systolic starting pressure is greater or equal to 140 mmHg. 
A decrease over a threshold of SAP(t) ≤ 110mmHg has been also considered as 
risky for the onsets of hypotension. 
In the complementary case SAP(0) ≤140 two strategies have been implemented. 
For  115 ≤SAP(0) ≤140 mmHg, the risk of IDH is identified with a variation of 
23% of the value of SAP(0) 
For SAP(0)≥ 115 mmHg the risk of IDH is identified with a variation of 16% of 
the value of SAP(0) 
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The mere evaluation of the pressure drops from the initial value is not sufficient 
to detect hypotensive episodes without obtaining a high number of false 
positives.  
Thus, the multiparametric criteria provides the aggregation of other criteria to 
the SAP(0)140  
Particularly a second level of risk assessment has been added considering RBV13 
criterion and a decrease of HR equal to 20% with respect to HR(0). 
Those  conditions describe a typical state of hypovolemia with insufficient 
compensation by cardiovascular system (hypovolemic hypotension)[198,113].  
Alternatively the multiparametric criteria evaluates the combination of pressure 
variation together with the conditions expressed by the ∆K + criterion and the 
decrease greater or equal to 20% of HR. 
Potassium unbalances and heart rhythm variation may in fact cause hypotension 
and arrhythmia[98], in particular hypokalemia might affect the release of 
norepinephrine or otherwise impair autonomic reflexes.  
These conditions are associated to both the cases of SAP(0) greater than or equal 
to 140 mmgH and  115 ≤SAP(0) ≤140 mmHg. 
For SAP(0) ≥115 mmHg the evaluation of pressure is considered sufficient to   a 
risk of IDH onset.  
The multiparameter criterion thus defined has been able to identify the 98.55% 
of sessions with hypotension as defined by IDH-D and with a percentage of 
24.24% of the reported false positives.  
This assumptions shows how the application of a multiple combined criteria, 
rather than a single criterion lead to better performances in terms of reliability of 
the IDH prediction. 
However percentage of false positives, i.e. alarms that the system would produce 
on the basis of patient information, set at the beginning of session, it’s anyway 
high 
One possible interpretation of these results could be due to the fact that session 
that shows the predialysis conditions, leading to hypotension, but finally the 
compensatory mechanisms occurs in order to avoid the onset of hypotension. 
Furthermore clinical intervention by the nurses could occur during the session  
and vanish the progression through an hypotensive state. 
 
. 
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7.5 Machine Learning Approach 

A general overview of the results shows that SVM models outperform the RF 
and ANN ones in all the five cases. 
This consideration highlights, how SVM kernel non-linearity, used for SVM 
modelling perfectly adapts to the prediction problem complexity, and provides 
reliable results almost regardless from the size or composition of training 
data[236].  
Particularly the best overall accuracy has been obtained by SVM on Dataset D 
and E(e.g. overall accuracy for SVM model: 92.50% ± 5.02% and 92.93% ± 
4.38%, respectively):  these datasets have been rebalanced through minority 
class oversampling with replacement and majority class down sampling[231]. 
A further analysis highlights that, although all the considered parameters remain 
quite similar, ANN models reach better performance when developed over the 
bigger datasets (i.e. Dataset A Tab. 5 , Dataset B Tab. 6 , Dataset C Tab. 7), 
while RF models are able to guarantee much higher AUC values when trained 
over smaller sized datasets (i.e. Dataset D Tab. 8 , Dataset E Tab. 9). 
This could be ascribed to the Random Forest capability of growing efficiently 
even on less numerous training sets. On the other hand, a high data availability 
seems to benefit the backpropagation algorithm used in Artificial Neural 
Network training. 
A gold standard for the proposed applications in nephrology is hardly 
identifiable. Generally, given the high variety of studied pathologies and 
diseases, the performance of such models is highly variable.  
Referring particularly to IDH prevention, without focusing on a data mining 
approach, few relevant studies, principally based on real-time PPG and ECG 
signals, were found [68],[237][238]but they refer to the identification of IDH 
onset during the therapy.  
Trying to qualitatively compare the performances of the machine learning 
approach with those of the intra-dialysis PPG and ECG-based predictors, the 
here proposed predictor seems to be characterized by higher, and more 
generalizable, overall accuracy and AUC values.  
Specifically, in Sandberg et al. [239] have been achieved 0.93 (95% confidence 
interval 0.61-1.00) and 0.71 (95% confidence interval 0.56-0.80) AUC values 
for acute symptomatic and symptomatic IDH prediction respectively, while in 
[Sandberg et al. 2013] were reached 100% sensitivity and 93% specificity in 
predicting acute symptomatic IDH, and 71% sensitivity and 50% specificity in 
predicting symptomatic IDH.  
Furthermore, the machine learning predictor shows higher accuracy even if 
compared with J-index. J allows in fact identifying at the beginning of the 
session the 77% of the IDH events, even if asymptomatic, as considered by the 
IDH-D Dialysis Criteria. Averaged sensitivity and specificity were respectively 
77% and 73%, lower than those here obtained by the best performance of SVM 
on Dataset and in general by the overall performances through machine learning 
algorithms. 
Compared to the J-index analysis, it can be considered that the Machine 
Learning estimation has been performed only over Dataset 2: this implies that 
the intra-subject variability should be underestimated on the prediction done by 
machine learning , and thus that the performances of the J index and the Machine 
Learning algorithms could not be compared and that naturally Machine Learning 
algorithms brings to better performances. 
However, the intra-subject variability could be considered as part the single 
example variability (that is referred to the single session on Dataset 2), and thus 
stands in the features space. It does affect not affect indeed the true error related 
to the prediction. 
As boot the techniques – J index and address the prediction – address the same 
binary classification problem (IDH, noIDH), considering the same feature space 
(the influencing factors for each session), their performances can be compared. 
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It has also to be taken into consideration that PPG and ECG data are not available 
in the actual clinical practice and that their use will imply nurses extra-work, a 
barrier to the routinely use of the proposed strategies, while the predictive 
strategies proposed in this work are based over easy-access and non-invasive 
measures, determining a more effective IDH offline prediction tool for both 
patients comfort and clinical usefulness. 
The applied algorithm could achieve better performance through further 
parameters optimizations: more computational costing procedures (e.g. 
evolutionary or quadratic optimization)[240] may lead to better parameter values 
choices. For SMOTE balanced dataset, where  artificial data are produced , better 
perfomances can be obtained returning of the learner in presence of new set of 
data: as Snoeck et el suggest, a possible solution could be the use of Bayesian 
algorithms[241]. 
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Chapter 8 – Conclusions 

 
 
 
Intradialysis Hypotension is the most common adverse complication during 
hemodialysis. 
Its early prediction and prevention represent an important target for the 
development of optimized and personalized clinical protocols that allow to 
preserve the patient's medical condition on dialysis over time. 
In clinical practice, they are often only recognized once manifested.  
The multifactorial nature of IDH events onset requires the use of a  multivariate 
approach to deal with.  
Furthermore, where the IDH does not determine the occurrence of recognizable 
symptoms in the patient, they cannot be identified. 
Currently there is a lack of clinical predictive instruments that could allow 
clinicians to preventively manage the IDH onset. 
Thus, the current study has been focused on finding innovative clinical 
predictors of IDH events at the intra-dialysis and the pre-dialysis phase, bythe 
analysis and collection of a great amount of data. 
All the analysis have been executed within the Dialysis Project (Dialysis therapy 
between Italy and Switzerland), a multicentric study addressed defining 
protocols and standards to improve the dialysis therapies in the more efficacious 
and personalized way possible. 
The DialysIS  Project, has involved 4 clinical centers between Lombardy and 
Switzerland that has provided clinical data of patient on HD and HDF  treatment. 
All the data acquired has been stored, into a multilevel common data storage 
system that as allowed to share clinical data among the project partners 
overcoming the routinely problem of data interoperability among dialysis 
facilities[116]. 
The common platform has been built using a Federated Database System 
(FDBS) approach [145] by the implementation of the Dialysis Data 
Infrastructure (DDI), a unique multilevel standardized data structure supported 
by a Matlab® library, and the Dialysis MATlib (DM) a MATLAB-based mining 
library (Dialysis MATlib) that was able to convert, harmonize and query the raw 
data coming from the clinical units [1961] by an ETL logic. 
The development of a common platform  for data gathering was a necessary step 
to make possible, in a simple way and with appropriate statistical significance, 
the analysis of a large amount of data in order find out IDH predictors from the 
available data. 
Furthermore the multilevel DR structure has allowed the possibility to perform 
further analysis both at center and patient scale. 
Definitively, the collected data, referred to 818 session performed by 150 
patients and constitute the basis to develop the predictors of hypotensions. 
The predictors particularly have been developed by the data analysis performed  
Using two approaches, a classical inferential statistical one and a machine 
learning strategy. 
The conducted inferential statistical analysis, highlighted the recruited patients 
pool present an high heterogeneity and it has been difficult to identify specific 
comparable trends between the  parameters are and clinical categories. 
During the statistical analysis a new definition of hypotension has been used. 
The definition was based on the elaboration of  a set of criteria extracted from a  
literature study, that has been modified by a confrontation with the clinicians 
involved in the project. 
This indeed reflected the wide heterogeneity and the high peculiar patient-
response, even considering the possible and frequent errors of measurement 
during the acquisition phases.    
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Considering both, the intra-dialysis and the pre-dialysis phase, the statistical 
analysis, it is possible to highlight that the MAP (Mean Arterial Pressure), the 
Weight Gain and the concentration of electrolytes in blood (mainly Potassium) 
influence the onset of hypotension.  
These results can be hypothesized to be conduced to a physiological 
interpretation. 
As hypotensionmain occurs when compensatory mechanisms for hypovolemia 
are overwhelmed by excessive fluid removal: each one of of this “influencing 
factor” can be considered as a “sensor variable” of one or more cardiovascular 
control mechanism (c.f.r Par. 2.3) that intervene or faults during the dialysis 
ultrafiltration.  
On this assumption, and considering the multifactorial nature of IDH,  
multivariate criteria has been defined for both the intra-dialysis and predialysis 
phase. 
Particularly, the definition of the J indexes (J1 and J2) for the pre-dialysis phase   
and the multiparameter criterion for the intradialysis phase has been the main 
outcomes of the inferential statistical analysis  
J is a multifactorial index, that can be calculated at the beginning of each 
session, through non-invasive measurements and gives the clinician useful 
information on the probability of IDH onset during the specific treatment. 
This is a really important feature of the developed index in order to provide a 
personalization and an improvement of the dialysis therapy. 
The index has been proposed in two versions.  
The average sensitivity and specificity of the prediction are respectively 77 % 
and 73% when J1th=1[195].  
This value can be improved but its set a good start in order to provide clinical 
indicator of the IDH onset even better performance for the index could be 
obtained. 
Possible future improvements that will grant a better forecasting accuracy of the 
J index should include the automatic update of the registration information on 
the pre-dialysis patient. 
In this way the system will take into account also the intra-subject variability of 
the influencing parameters over the time due to the changes of subject conditions 
at the beginning of the session. 
Other improvement could lie in considering higher sampling frequencies for the 
HR, and more sample taken at the beginning of the treatment.  
In this case the sample taken at the start session might be particularly affected 
by the patient intra-variability, while repeated measurement in a few minutes 
could lead to have a less disperse evaluation of the patient status. 
Considering the statistical analysis on the intra-dialysis period, a multiparameter 
criteria has been developed. 
The multiparameter criteria, address the problem with a similar approach of the 
J indexes. It led to the identification of almost all the sessions with hypotension 
(as defined by IDH D) (98,55%), indicating an acceptable rate of false 
positives (24,24%). 
Besides  the inferential statistical analysis, a machine learning approach to IDH 
prediction has been investigated to assess the risk of IDH in the predialysis 
phase, testing  three different learners algorithms have been compared: Random 
Forest, Artificial Neural Network and Support Vector Machine.  
The tested algorithms showed high prediction performances in terms of accuracy 
and precision, even higher if compared with the J index prediction. 
Among the tested algorithm, Support Vector Machine resulted the overall  best 
one.  
During the dialysis treatment, the changes in concentration of intracellular and 
extracellular electrolytes may increase susceptibility to arrhythmias. 
It can be concluded the as the nature of IDH is multivariate, and the datasets 
showed a great variability, machine learning algorithms offers valuable tool  
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capable to predict IDH onset, even high data variability and cardinality. 
Despite the limits highlighted in the previous section, the comparison with 
similar studies [237] allow to consider the machine learning, a valuable data 
oriented tool for IDH dialysis prediction. 
In conclusion the J index. The multivariate criteria and machine learning 
algorithms provides the clinicians useful instruments for a better management 
and prediction of hypotension onset during dialysis treatment. 
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Figure A.1: Box plot Sodium Blood Concentration HR/HP 

 

    
Figure A.2: Box plot Potassium Blood Concentration HR/HP, Dataset 1 

 

 
Figure A.3: Box plot Calcium Blood Concentration HR/HP, Dataset 1 
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Figure A.4: Box plot  Magnesium Blood Concentration HR/HP, Dataset 1 

 

 

 
Figure A.5: Box plot  Hematocrit HR/HP, Dataset 1 

 

 
Figure A.6: Box plot Weight Gain HR/HP, Dataset 1 
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Figure A.7: Box plot MAP HR/HP, Dataset 1 

 

 

 
Figure A.8: Box plot MAP HR/HP, Dataset 1 

 

 

 

 
Figure A.9: Box plot Sodium Blood Concentration IDHy/IDHn, Dataset2 
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Figure A.10: Box plot Calcium Blood Concentration IDHy/IDHn, Dataset2 

 

 
 

Figure A.11: Box plot Magnesium Blood Concentration IDHy/IDHn, Dataset2 

 

 
 

Figure A.12: Box plot Potassium Blood Concentration IDHy/IDHn, Dataset2 
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Figure A.13: Box plot Hematocrit IDHy/IDHn, Dataset2 

 

 

 
Figure A.14: Box plot Weight Gain IDHy/IDHn, Dataset2 

 

 

 
Figure A.15: Box plot MAP IDHy/IDHn, Dataset2 

 



_________               Annex C 

 1

ANNEX B 
 

Table B1.1: Result of the application of SAP(0)140  Criterion 

Legend: 

#SAP_IDH/Tot = number of session identified as IDH by  SAP(0)140 / total sessio 

%SAP_IDH/Tot = percentage of sessions identified as IDH  by  SAP(0)140/ total 

session   

#SAP_IDH/#Syntom = number of session identified as IDH by  SAP(0)140 / number 

of session with syntoms  

%SAP_IDH/Tot = percentage of session identified as IDH by  SAP(0)140 / number of 

session with syntoms 

#Pz_IDH/Pz_Tot = n° of patients with IDH by  SAP(0)140  / Total_patients 

%Pz_IDH/Tot = % of patients with IDH  by  SAP(0)140/ Total_patients 

#Pz_IDH/Pz_Synt =n° of patients with IDH by  SAP(0)140 / Patient_ Patient with 

registered symptoms on medical records 

%iPz_IDH/Pz_Synt = n° of patients with IDH by  SAP(0)140 / Patient with registered 

symptoms on medical records 

 

A. Application to EOC Lugano 

 

E.O.C LUGANO #SAP_IDH/Tot %SAP_IDH/Tot #SAP_IDH/#Synt %SAP_IDH/Synt 

SAP(0)<140 43/150 28,67% 2/4 50% 

SAP(0)≥140 22/150 14,67% 0/4 0% 

SAP(0)140 65/150 43,33 2/4 50% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

#Pz_IDH/ 

#Pz_Synt 
%i_IDH/Tot 

SAP(0)<140 18/20 90% 2/4 50% 

SAP(0)≥140 11/20 55% 0/4 0% 

SAP(0)140 20/20 100% 2/4 50% 

 

B. Application to A.O. Provincia di Lecco 

A.O. LECCO     #SAP_IDH/Tot %SAP_IDH/Tot #SAP_IDH/#Synt %SAP_IDH/Synt 

SAP(0)<140 20/284 7,04% 2/11 18,19% 

SAP(0)≥140 27/284 9,05% 5/11 45,46% 

SAP(0)140 47/284 16,55% 7/11 60,64% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

##Pz_IDH/ 

#Pz_Synt 
%Pz_IDH/Tot 

SAP(0)<140 14/48 29,17% 2/5 40% 

SAP(0)≥140 16/48 33,34% 3/5 60% 

SAP(0)140 25/48 52,1% 4/5 80% 
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Table B1.2: Result of the comparison between SAP0_140 and IDH-D 

Legend: 
         For both Sessions and Patients 
# SAP(0)140∧ IDH D  = number of detections by both SAP(0)140 criterion and IDH-D 

# SAP(0)140∧ IDH D )/ IDH-D = fraction of detections by both SAP(0)140 criterion and IDH-D on the total of  

                      IDH-D detections 
# SAP(0)140∧ IDH D )/ IDH-D = percentages of detections by both SAP(0)140 criterion and IDH-D on the total of  

                      IDH-D detections 
 

A. SAP(0)140: SAP(0)<140 mmHg 
 

SESSIONS # SAP(0)140∧ IDH D # (SAP(0)140∧ IDH D)/ IDH-D %(SAP(0)140∧ IDH D)/ IDH-D 

EOC 

LUGANO 
22 22/45 48,89% 

A:O. LECCO 11 11/29 37,93% 

PATIENTS # SAP(0)140∧ IDH D # (SAP(0)140∧ IDH D)/ IDH-D %(SAP(0)140∧ IDH D)/ IDH-D 

EOC 

LUGANO 
13 13/15 86,67% 

A:O. LECCO 6 6/11 54,55% 

 
B. SAP(0)140: SAP(0)≥140 mmHg 
 

SESSIONS # SAP(0)140∧ IDH D # (SAP(0)140∧ IDH D)/ IDH-D %(SAP(0)140∧ IDH D)/ IDH-D 

EOC 

LUGANO 
8 8/45 17,78% 

A:O. LECCO 7 7/29 24,13% 

PATIENTS # SAP(0)140∧ IDH D # (SAP(0)140∧ IDH D)/ IDH-D %(SAP(0)140∧ IDH D)/ IDH-D 

EOC 

LUGANO 
5 5/15 45,45% 

A:O. LECCO 3 3/11 27,27% 
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Table B2.1: Result of the application of MAP30 Criterion 

 
# MAP30_IDH/Tot = number of session identified as IDH by  MAP30/ total sessio 

% MAP30_IDH/Tot = percentage of sessions identified as IDH  by  MAP30total 

session   

# MAP30_IDH/#Synt = number of session identified as IDH by  MAP30/ number of 

session with syntoms  

%MAP30_IDH/Tot = percentage of session identified as IDH by  MAP30/ number of 

session with syntoms 

#Pz_IDH/Pz_Tot = n° of patients with IDH by  MAP30/ Total_patients 

%Pz_IDH/Totv = % of patients with IDH  by  MAP30/ Total_patients 

#Pz_IDH/Pz_Synt =n° of patients with IDH by  MAP30/ Patient_ Patient with 

registered symptoms on medical records 

%Pz_IDH/Pz_Synt = n° of patients with IDH by  MAP30/ Patient with registered 

symptoms on medical records 

 

 

SESSIONS #MAP30_IDH/Tot %MAP30_IDH/Tot # MAP30IDH/#Synt % MAP30IDH/Synt 

EOC LUGANO 16/150 10,67% 1/4 25% 

A:O. LECCO 28/284 9,86% 5/11 45,45% 

PATIENTS #Pz_IDH/P_Tot %Pz_IDH/Tot 
#Pz_IDH/ 

#Pz_Synt 
%Pz_IDH/Tot 

EOC LUGANO 8/20 40% 1/4 25% 

A:O. LECCO 16/48 33,34% 4/5 80% 

 

 

Table B2.2: Result of the comparison between MAP30 and IDH-D 

 
Legend: 

         For both Sessions and Patients 
# MAP30∧ IDH D  = number of detections by both MAP30criterion and IDH-D 

# MAP30∧ IDH D )/ IDH-D = fraction of detections by both MAP30criterion and IDH-D on the  

              total of  IDH-D detections  

% MAP30∧ IDH D)/ IDH-D = percentages of detections by both MAP30 criterion and IDH-D on  

         the total of IDH-D detections 

 

 

 

 

SESSIONS # MAP30∧ IDH D # (MAP30∧ IDH D)/ IDH-D %(MAP30∧ IDH D)/ IDH-D 

EOC 

LUGANO 
6 6/45 13,33% 

A:O. LECCO 9 9/29 31,03% 

PATIENTS # MAP30∧ IDH D # (MAP30∧ IDH D)/ IDH-D %(MAP30∧ IDH D)/ IDH-D 

EOC 

LUGANO 
4 4/15 26,67% 

A:O. LECCO 6 6/11 54,55% 
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Table B3.1: Result of the application of  RBV13  Criterion 

Legend: 

#RBV13_IDH /Tot = number of session identified as IDH by  RBV13/ total sessio 

%RBV13_IDH /Tot = percentage of sessions identified as IDH  by  RBV13/ total 

session   

#RBV13_IDH /#Synt = number of session identified as IDH by  RBV13/ number of 

session with syntoms  

%RBV13_IDH /Tot = percentage of session identified as IDH by  RBV13/ number of 

session with syntoms 

# Pz _IDH /Pz_Tot = n° of patients with IDH by  RBV13/ Total_patients 

%Pz_IDH/Tot = % of patients with IDH  by  RBV13/ Total_patients 

#Pz_IDH/Pz_Synt =n° of patients with IDH by  RBV13/ Patient_ Patient with 

registered symptoms on medical records 

%iPz_IDH/Pz_Synt = n° of patients with IDH by RBV13 / Patient with registered 

symptoms on medical records 

 
 

SESSIONS #RBV13_IDH/Tot % RBV13_IDH/Tot # RBV13IDH/#Synt % RBV13 IDH/Synt 

EOC LUGANO 46/140 33,45% 1/4 25% 

A:O. LECCO 92/275 32,62% 5/9 55,56% 

PATIENTS #Pz_IDH/P_Tot %Pz_IDH/Tot 
#Pz_IDH/ 

#Pz_Synt 
%i_IDH/Tot 

EOC LUGANO 11/20 55% 1/4 25% 

A:O. LECCO 50/50 100% 3/5 60% 

 

Table B3.2: Result of the comparison between RBV13  Criterion 

 
Legend: 

         For both Sessions and Patients 
#RBV13∧ IDH-D  = number of detections by both RBV13  criterion and IDH-D 

# RBV13∧ IDH-D / IDH-D = fraction of detections by both RBV13 criterion and IDH- 

        D on the total of IDH-D detections 

% RBV13∧ IDH-D/ IDH-D = percentages of detections by both RBV13 criterion and  

       IDH-D on the total of  IDH-D detections 

 

 

SESSIONS #  RBV13∧ IDH D # ( RBV13∧ IDH D)/ IDH-D %( RBV13∧ IDH D)/ IDH-D 

EOC 

LUGANO 
20 20/42 47,62% 

A:O. LECCO 14 14/27 51,85% 

PATIENTS #  RBV13∧ IDH D # ( RBV13∧ IDH D)/ IDH-D %( RBV13∧ IDH D)/ IDH-D 

EOC 

LUGANO 
8 8 /15 55,33% 

A:O. 

LECCO 
7  7 /11 63,64% 
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Table B4.1: Result of the application of  ∆K+

 Criterion 

 
Legend: 

#∆K+_IDH /Tot = number of session identified as IDH by  ∆K+/ total session 

%∆K+ _IDH /Tot = percentage of sessions identified as IDH  by  ∆K+/ total session   

#∆K+_IDH /#Synt = number of session identified as IDH by  ∆K+ / number of session 

with syntoms  

%∆K+_IDH /Tot = percentage of session identified as IDH by  ∆K+/ number of 

session with syntoms 

#Pz_Tot = n° of patients with IDH by ∆K+/ Total patients 

%Pz_IDH/Tot = % of patients with IDH  by ∆K+/ Total patients 

#Pz_IDH/Pz_Synt =n° of patients with IDH by ∆K+ / Patient with registered 

symptoms on medical records 

%Pz_IDH/Pz_Synt = n° of patients with IDH by ∆K+ / Patient with registered 

symptoms on medical records 

 
A. Application to EOC Lugano 

 

EOC LUGANO # ∆K+_IDH /Tot % ∆K+_IDH /Tot # ∆K+_IDH/#Synt % ∆K+_IDH/Synt 

dK1 20/150 13,34%   

dK2 65/150 43,43%   

dK3 80/150 53,34%   

dKtot 112/150 74.67% 4/4 100% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

#Pz_IDH/ 

#Pz_Synt 
%i_IDH/Tot 

dK1 20/20 100%   

dK2 17/20 85%   

dK3 17/20 85%   

dKtot 20/20 100% 4/4 100% 

 



_________       Annex C 

 

___ 

 

 E  6

 
B. Application to A.O. Provincia di Lecco 

 

A.O. LECCO     #∆K+_IDH /Tot %∆K+_IDH /Tot #∆K+_IDH/#Synt %∆K+_IDH/Synt 

dK1 43/296 14,53%   

dK2 117/296 39,53%   

dK3 88/296 29,73%   

dKtot 169/296 57,09% 4/11 36.36% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

##Pz_IDH/ 

#Pz_Synt 
%Pz_IDH/Tot 

dK1 20/50 40%   

dK2 39/50 78%   

dK3 22/50 44%   

dKtot 43/50 86% 4/5 80% 

 

 
Table B4.2: Result of the comparison between Criterion 

 
Legend: 

         For both Sessions and Patients 
#∆K+ ∧ IDH-D  = number of detections by both ∆K+/ criterion and IDH-D 

#∆K+ ∧ IDH-D / IDH-D = fraction of detections by both ∆K+/ 3criterion and IDH- 

        D on the total of IDH-D detections 

% RBV13∧ IDH-D/ IDH-D = percentages of detections by both ∆K+/ criterion and  

       IDH-D on the total of  IDH-D detections 

 

 

 

 

 

 

SESSIONS  #∆K+ ∧ IDH D  #(∆K+ ∧ IDH D)/ IDH-D %(∆K+ ∧ IDH D)/ IDH-D 

EOC 

LUGANO 
31 31/45 68,88% 

A:O. LECCO 13 13/29 44,83% 

PATIENTS #∆K+ ∧ IDH D # (∆K+ ∧ IDH D)/ IDH-D %(∆K+ ∧ IDH D)/ IDH-D 

EOC 

LUGANO 
14 14/15 93,33% 

A:O. LECCO 8 8/11 72,73% 
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Table B5.1: Result of the application of  Dysritmia Criterion 

 
Legend: 

# Dim20IDH /Tot = number of session identified as IDH by Dysritmia Criterion / 

total session 

% Dim20IDH /Tot = percentage of sessions identified as IDH  by Dysritmia 

Criterion/ total session   

# Dim20IDH /#Synt = number of session identified as IDH by Dysritmia Criterion / 

number of session with syntoms  

%Dim20IDH /Tot = percentage of session identified as IDH by Dysritmia Criterion / 

number of session with syntoms 

#Pz_Tot = n° of patients with IDH by Dysritmia Criterion / Total patients 

%Pz_IDH/Tot = % of patients with IDH  by  Dysritmia Criterion / Total patients 

#Pz_IDH/Pz_Synt =n° of patients with IDH by  Dysritmia Criterion / Patient with 

registered symptoms on medical records 

%Pz_IDH/Pz_Synt = n° of patients with IDH by  Dysritmia Criterion / Patient with 

registered symptoms on medical records 

 
A. Application to EOC Lugano 

EOC LUGANO # Dim20IDH /Tot %Dim20IDH /Tot #Dim20IDH/#Synt 
%  Dim20IDH 

+_IDH/Synt 

HRate(t) ≤ 20 62/150 41,34%   

HRate(t) > 20 26/150 17,34%   

Dim20 88/150 58,67% 3/4 75% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

#Pz_IDH/ 

#Pz_Synt 
%Pz_IDH/Tot 

HRate(t) ≤ 20 17 85,00%   

HRate(t) > 20 8 40,00%   

Dim20 17/20 85% 1./4 25% 

 
B. Application to A.O. Provincia di Lecco 

AO LECCO # Dim20IDH /Tot %Dim20IDH /Tot #Dim20IDH/#Synt %Dim20IDH/Synt 

HRate(t) ≤ 20 63/284 22,18%   

HRate(t) > 20 64/284 22,53%   

Dim20 127/284 44,72% 10/11 90,90% 

 
#Pz_IDH/P_Tot %Pz_IDH/Tot 

#Pz_IDH/ 

#Pz_Synt 
%Pz _IDH/Tot 

HRate(t) ≤ 20 26 54,17%   

HRate(t) > 20 30 62,50%   

Dim20 41/48 85,42% 5/5 100% 
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Table B5.2: Result of the comparison between Dysritmia Criterion and IDH-D 

Legend: 

         For both Sessions and Patients 

# Dim20∧ IDH-D  = number of detections by both 

MAP30criterion and IDH-D 

# Dim20∧ IDH-D / IDH-D = fraction of detections by both 

MAP30criterion and   IDH-D on the total of IDH-D detections 

% Dim20∧ IDH-D/ IDH-D = percentages of detections by both 

MAP30criterion and IDH-D on the total of  IDH-D detections 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SESSIONS 
  Dim2# Dim200+ ∧ 

IDH D 
 #(∆K+ ∧ IDH D)/ IDH-D %(∆K+ ∧ IDH D)/ IDH-D 

EOC 

LUGANO 
26 26/45 57,78% 

A:O. LECCO 19 19/29 65,52% 

PATIENTS #∆K+ ∧ IDH D # (∆K+ ∧ IDH D)/ IDH-D %(∆K+ ∧ IDH D)/ IDH-D 

EOC 

LUGANO 
15 15/15 100% 

A:O. LECCO 10 10/11 90,90% 
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Table B6.1: Result of the application of  Multiparametric Criterion 

 

Legend: 

#MC_IDH /Tot = number of session identified as IDH by Multiparametric  

                             Criterion 

%IDH-D= number of sessions identified as IDH   

FP= number of false positives 

%FP = percentage of false positives 

 
A. Application to EOC Lugano 

 

LUGANO # MC_IDH  #IDH-D %TP (IDH-D) FP %FP 

Cr1 10 8 80,00% 2 20,00% 

Cr2 22 16 72,72% 6 27,27% 

Cr3 20 17 85,00% 3 15,00% 

TOT 52 41 78,85% 11 21,15% 

 

B. Application to A.O Lecco 

 

LECCO # MC_IDH  #IDH-D %TP (IDH-D) FP %FP 

Cr1 11 7 63,64% 4 36,36% 

Cr2 14 10 71,43% 4 28,57% 

Cr3 13 10 76,93% 3 23,07% 

TOT 11 7 63,64% 4 36,36% 

 

C. Application to EOC Lugano and A.O Lecco 

 

TOTAL # MC_IDH  #IDH-D %TP (IDH-D) FP %FP 

Cr1 21 15 71,43% 6 28,57% 

Cr2 36 26 72,22% 10 27,78% 

Cr3 33 27 81,82% 6 18,18% 

TOT 90 68 75,56% 22 24,44% 

 
 

 


































