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Abstract

In order to face the growing challenges from air pollution, dependence on fossil
oil and greenhouse gas emissions, electric vehicles have attracted unprecedented
amount of global attentions from the governments, academia, industry, public

and environmental organizations. Electric racing becomes more popular under this
background: a new championship called Formula E has been held for three years
since 2014. An upcoming championship named Roborace in 2017 will be the first
global championship for autonomous electric race cars, which will open a new page
of racing. Electric racing is undoubtedly a good platform to draw the attentions of
the public on electric vehicles and also for testing and improving the most advanced
design and control technologies. Compared with conventional internal combustion
engine vehicles, electric vehicles can have very flexible powertrain topologies, which
can be 1-motor, 2-motor and 4-motor driving with different mounted positions, and
the transmissions can be single-speed or multi-speed. From the design point of view,
the selection of the powertrain layouts, the motors and transmissions can affect the
dynamic performance of the electric vehicles directly. As for control, different steering,
accelerating and braking operations will result different trajectories, velocity profiles
and lap time. Thus, the advanced design and control technologies are always expected.

Recognizing the limitations of the conventional powertrain design approaches, this
work is dedicated to achieving further improvements by proposing innovative optimal
design approaches of the electric powertrain, with an electric race car as the platform. In
order to test the performance of a designed powertrain, a corresponding control strategy
should be developed. However, there are various kinds of control approaches for the
electric vehicles, and accordingly, different control strategies may result in different
results with the same designed powertrain. Considering this, the optimal control of the
electric race car is coupled into the optimal design problem. The final results includes
both the optimal design and control solutions for different powertrain layouts.

In order to represent the vehicle behavior for cornering, braking, acceleration
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and comfort performance studies for four wheel driving vehicles with independent
suspensions more accurately, a 14-DOF vehicle model is necessary. In this work, a
14-DOF vehicle model together with a suspension model considering the details of
toe angle, camber angle, anti-roll force and suspension forces, are developed based on
Lagrangian dynamics. To accurately predict the behavior of a vehicle, it is also required
to estimate the external forces acting on the vehicle as precisely as possible. An
empirical tire model based on the well-known Magic formula equations is programmed
to calculate the tire forces. In particular, the tire model developed in MATLAB
supporting inputs of the standard ’.tir’ tire data file. In order to evaluate the effect
of design parameters of the motor and the transmission to the lap time of the race car,
the mass model of the motor and transmission mainly concerning the dependence of
the mass and output torque of the powertrain on the design parameters are derived. A
virtual driver model is also devised to track a given trajectory depicted in curvilinear
coordinate system based on the proposed control logic, and the obtained results are
served as the initial guess of the optimal powertrain design and control problem. Heavy
computing workload is a common issue in large scale optimization and optimal control
problem. In order to improve the computational efficiency, all of the mentioned models
programmed supports matrices operations. The entire vehicle model is validated with
a well-known vehicle dynamics simulator ’VI-CarRealTime’ developed by VI-Grade.

After a detailed reviewing of the numerical approaches for optimal control prob-
lems, a MATLAB software package for General DYNamic OPTimal control prob-
lems (abbreviated as GDYNOPT) based on direct collocation methods is developed.
GDYNOPT is implemented different transcription methods including both the local
collocation and global collocation approaches, differential methods including forward,
central, complex step and analytical differential methods. Moreover, it has the features
of automatic scaling based on linear scaling and a proposed average gradients scaling
approach, sparsity and supporting parallel computation.

The optimal powertrain design and control problems of the 1-motor driving, 2-
motor and 4-motor driving topologies based on the developed entire vehicle model
are formulated and solved with GDYNOPT based on an direct transcription method
for the first time with reference to the existing literature. In addition, an innovative
approach is proposed to smooth the control trajectories. The optimal powertrain design
parameters, control arcs and the optimal racing lines are obtained and analyzed with
different number of collocation nodes.

The obtained optimal design parameters in this work can be used as the reference for
the motor and transmission design of electric race cars, while the optimal control results
can serve as the benchmark to develop and evaluate the closed loop control strategy. In
addition, the obtained racing line and steering wheel angles can be used to train the
race car driver in a car simulator. The methodology proposed in this work can also be
applied in the design and control of the common type ICE vehicles, EVs and HEVs
with different driving profiles and objective functions.
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CHAPTER1
Introduction

1.1 Overview and background

Electric vehicles (EVs) first came into existence before the mid-19th century, which
have longer history than internal combustion engine (ICE) vehicles, and later were
manufactured by several companies of the USA, England, and France. EVs provided a
level of comfort and ease of operation that could not be achieved by the ICE vehicles
of the time when electricity was among the preferred methods for motor vehicle
propulsion. However, due to the poor performance of their batteries contrasting to
the rapidly developed ICE technology, EVs have almost disappeared from the global
scene from 1930 [1].

The extremely high energy and power density of gasoline and petrol with their
abundance and low price have made ICE the dominant propulsion solution of vehicles
for almost 100 years. Modern ICE vehicles have the performances of top comfort,
excellent dynamics and advanced safety with relatively low prices and have been the
most attractive transportation products. However, despite approximately a century-
long struggling to improve efficiency of ICE by the industry and academia, advanced
designed ICEs still suffer from incredibly low efficiency in the range from 30% to 44%,
which means that there is approximately 70% of the energy liberated by the combustion
is lost. The typical energy path in gasoline fueled internal combustion engine vehicles is
presented as Figure 1.1.The resulting situation is worse considering that the emissions
formed mostly of CO2, NOx, CxHy [2], CO and soot, which are the principle culprits of
air pollution and greenhouse effect.
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Figure 1.1: Typical energy path in gasoline fueled internal combustion engine vehicles [3]

Despite the dominance of ICE vehicles, electricity has remained its commonplace
in trains and other vehicle types, and later in the early 1970s, triggered by the energy
crisis, air pollution and greenhouse gas emissions, the world’s greatest carmakers,
governments, environmental organizations and academia started the rekindling of
interests in EVs. After decades of research and development, EVs has already
gained notable market share: by May 2015, more than 500,000 highway-capable
all-electric passenger cars and light utility vehicles have been sold worldwide since
2008 [4]. Cumulative global sales of all-electric cars and vans passed the 1 million unit
milestone in September 2016 [5]. However, high cost and short cycle life of batteries
have always been the problem hindering their developing process and penetration,
besides, complicated design and control of the flexible electric powertrain topologies
have highlighted their limitations. As addressed in [1], advanced energy sources
and intelligent energy management are key factors to enable EVs competing with
ICE vehicles, moreover, novel design and control approaches are essential for EV
engineering due to their fundamentally different characteristics compared with ICE
vehicles. In recent years, due to the advances of technologies and to face the more
severe challenges of energy and environmental crisis, EVs have aroused unprecedented
amount of attentions from the researchers and manufacturers all over the world.

A typical electric powertrain consists of energy storage system, DC/AC inverter,
electric motor, transmission and DC/DC converters will be introduced if hybrid energy
storage systems are adopted. The electric motor outputs propulsion/braking torque
by consuming/generating electrical energy from/to the energy storage system through
a controlled DC/AC inverter, which regulates the amount of power according to the
position of accelerator/brake pedal controlled by the driver. The propulsion system
consists of electric motors and transmissions, plays an important role in both the
dynamics and economic performances of an EV. The configurations of an electric
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propulsion system can be more flexible compared with conventional ones driven by
internal combustion engines, the possible configurations might be center drive, rear
drive, front drive and all wheel drive with different numbers and mounting positions
of the motors and transmissions. The possible topologies of the EVs are shown as
Figure 1.2. The optimal propulsion system of an EV should be able to exhibit the
best performance at aspects of dynamics, economic and handling with the least cost
and maintenance. All of these evaluation indexes are significantly influenced by the
configurations and related control strategies of the electric propulsion systems.

Energy 

storage 

system

Inverter

Transmission

Motor

Energy 

Storage

 system

Inverter

Transmission

Motor

Energy 

storage 

system
Inverter

Transmission

Motor

Energy 
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Inverter
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Motor

(a) (b)

(c) (d)

Figure 1.2: Possible configurations of electric propulsion system. (a) Rear wheel central drive, (b) Rear
wheel independent drive, (c) Four-wheel independent drive, (d) Four-wheel central drive

Motor racing is a platform to test the feasibility and practicality of the most advanced
technological innovations in vehicle industry. A lot of the most advanced technologies
of the day were gradually applied on civilian vehicles after being developed, validated
and improved on race vehicles, such as the turbocharging technology, the paddle
shifter technology and the air spring technology, etc. Motor racing has been playing
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4 CHAPTER 1. INTRODUCTION

an important role in the development of internal combustion engine powered ground
vehicles since the early 20th century. Similarly, electric vehicle racing can also
stimulate the academic organizations, manufacturers and customers to promote the
development and application of the electric vehicles [6]. The electric vehicle racing
events and categories has been increasing rapidly during the last decades. The inaugural
championship Formula-E officially sanctioned by the Fédération Internationale de
l’Automobile (FIA) started in Beijing September 2014 has successfully addressed its
main objective to represent a vision for the future of motor industry, serving as a
framework for R&D around the electric vehicle, accelerating general interest in these
cars and promoting clean energy and sustainability [7]. Electric race car might be the
most appropriate platform to realize and validate the most advanced technologies of
electric powertrain.

Most of the research interests on EVs are focused on battery management strategy
[8–10], electric motor control [11–13] and dynamics control [14–17]. Continuous
research on these topics have improved the energy efficiency and dynamic performance
of the EVs significantly. However, there are still some general recognized problems en-
trenched in the electric powertrain design and control, which hindering the developing
process and penetration of EVs.

1.2 Motivations and aims

Normally, the proper parameters of the motor and transmission are the primary
considerations to meet the performance requirements in electric vehicle design [18].
This is due to the fact that the power density, dynamic performance, energy efficiency
and cost of an electric powertrain rely heavily on the matching of the motor and
gearbox. Most of the electric powertrains are designed following a conventional method
that can be summarized into three steps [19–27]. The first step is to define the motor
power according to the requirements on dynamic performance with a simplified single
point-mass vehicle model. Then the motor will be chosen from the available products
of the manufacturers considering the power density and cost, etc. Generally, the last
step is to select the gearbox according to the torque-speed characteristics of the motor,
the required maximum speed and maximum torque on the wheels.

The limitations of the conventional approach are illustrated as follows. First,
the searching space of the powertrain design is limited only within the one of
transmissions since the motor is preselected. Second, relationship between the
concerned performances of the EV, the control strategies and the driving conditions
are not considered in detail throughout the design process. Recognizing the challenges
in design of the EVs, this work is dedicated to achieving further improvements by
proposing innovative optimal design approaches of the electric powertrain, with an
electric race car as the platform.

In order to test the performance of a designed powertrain, a corresponding control
strategy should be developed. However, there are various kinds of control approaches
for the electric vehicles [28–33] and accordingly, different control strategies may result
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in different results with the same designed powertrain. Considering this, the optimal
control of the electric race car is coupled into the optimal design problem in this work.
The final results will include both the optimal design and control solutions.

1.3 Contributions

The main contributions of this work are the formulating and solving of the optimal
electric powertrain design and control problems with a developed optimal control
software package in MATLAB . The details are elaborated as followings:
1) In the problem formulation part, in order to predict the overall vehicle behavior
for cornering, braking, acceleration and comfort performance for different propulsion
topologies with independent suspensions more accurately, a 14 DOF vehicle model
together with a suspension model considering the details of toe angle, camber angle,
anti-roll force, etc., is developed based on Lagrangian dynamics. To accurately predict
the behavior of a vehicle, it is also required to estimate the external forces acting on
the vehicle as precisely as possible. An empirical tire model supporting the inputs
of standard ‘.tir’ tire data file is programmed based on the full set Magic Formula
equations in MATLAB to calculate the tire forces .
2) In order to evaluate the effect of design parameters of the motor and transmission to
the dynamic performance of the race car, the mass model of the motor and transmission
mainly concerning the dependence of the mass and output torque of the powertrain on
the design parameters are derived.
3) A virtual driver model is devised to track a given trajectory depicted in curvilinear
coordinate system based on the proposed control logic. The obtained path following
results are served as the initial guess of the optimal design and control problems.
4) Heavy computational workload is a common issue in large scale optimization and
optimal control problem, in order to improve the calculation efficiency, the mentioned
14-DOF vehicle model, suspension model, tire model and the powertrain mass model
are all programmed in vector formats to support matrix operations. The entire
vehicle model is finally validated with a well-known vehicle dynamics simulator ’VI-
CarRealtime’ developed by VI-Grade.
5) A General DYNamic OPTimal control software package (abbreviated as GDYNOPT)
supporting parallel computing implemented with different kinds of direct transcription
methods, differential methods and the proposed projected automatic scaling method,
is developed to solve the formulated large scale optimal design and control problems
based on the NLP solver ‘IPOPT’ [34].
6) The optimal design and control problems of the 1-motor driving, 2-motor indepen-
dent and 4-motor independent driving electric powertrains based on the 14-DOF vehicle
model are formulated and solved with GDYNOPT based on direct methods for the first
time with reference to the existing literature. In addition, an innovative approach is
proposed to smooth the control trajectories. The optimal powertrain design parameters,
control arcs and the optimal racing lines are finally obtained and analyzed with different



i
i

“thesis” — 2017/6/27 — 19:58 — page 6 — #16 i
i

i
i

i
i

6 CHAPTER 1. INTRODUCTION

number of collocation nodes 1.

1.4 Outline

Chapter 2 provides the literature review of the optimal control theory and its numerical
approaches. The state-of-the-art vehicular optimal control is also reviewed and
analyzed to introduce the further improvement of this work.
Chapter 3 elaborated the derivation of the 14-DOF vehicle model, the implement of
the tire model, the development of the suspension model and powertrain mass model. A
virtual driver model is also developed to track a given trajectory depicted in curvilinear
coordinate system based on the proposed control logic. The validation results of the
whole vehicle model are finally demonstrated in different maneuvers.
Chapter 4 presents the development of software package GDYNOPT. The framework
of GDYNOPT, the detail implementation of the local collocation and global collocation
methods [35], the different differential methods, the proposed scaling method together
with the algorithm flowchart of GDYNOPT are depicted.
Chapter 5 gives the descriptions of the formulation and the solution of the optimal
powertrain design and control problems. The variables and constraints, simulation
settings, the proposed control smooth method are illustrated. Finally, the obtained
optimal design and control results are presented, analyzed and compared.
Chapter 6 summarizes the main findings of this research and presents the recommen-
dations for future work and developments.

1 In mathematics, a collocation method is a numerical solution of differential and integral equations. The main idea is to choose
a finite-dimensional space of polynomials up to a certain degree and a number of points in the domain (the chosen points are the so
called collocation nodes or collocation points), and to select the solution that satisfies the given equation at the collocation nodes.
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CHAPTER2
Optimal Control Theory

and its Application in Vehicles

2.1 Introduction

People are always trying to find a way to obtain the most they desired at the least
cost intentionally or unintentionally when they are doing something. The process
to explore and seek the best way to do things is indeed the optimization process.
Similarly, optimal control deals with the problem of finding a control strategy for a
given dynamic system such that a certain optimality criterion can be achieved. The
way to evaluate the optimality is by calculating the cost function (or performance
index) which is a function of state, control variables. The dynamic system is generally
described by a set of differential equations. While the control law is usually composed
of time-dependent and static variables, in particular, the static variables might be the
design variables of the system. Optimal control theory is an outcome of the calculus
of variations, with a history stretching back over 300 years. Leonhard Euler, the
Bernoulli brothers and Lagrange are the mathematicians who gave the foundations
of the calculus of variations. In the second half of the 19th century, other important
mathematicians contributed to the theorems of existence are Hamilton, Jacobi and
Weierstrass. However, interests on it actually mushroomed only with the advent of
the computer in the early 1960s, launched by the successful applications of optimal
trajectory optimization in aerospace [36].

The passage from calculus of variations to optimal control is attributed to the
Russian mathematician L.S. Pontryagin and the American mathematician Richard
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Bellman in the middle of last centenary [37]. The first mathematician is famous for his
Pontryagin’s maximum (minimum) principle, the proof of which is historically based
on maximizing the Hamiltonian. The class of indirect methods using the necessary
conditions of optimality of the infinite problem to derive a boundary value problem
(BVP) in ordinary differential equations (ODE) are based on the Pontryagin’s maximum
(minimum) principle. The second mathematician introduced dynamic programming
(DP) in 1953, which is another class of methods for optimal control problem. Later,
direct methods based on the direct transcription of the optimal control problem into
nonlinear programming (NLP) are introduced, different transcription approaches have
been intensively studied over the past decades. Up to this point, the numerical solutions
for the optimal control problem can be categorized as Figure 2.1.
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Figure 2.1: Numerical methods for optimal control problems

All of the three numerical approaches have their followers and have been improved
based on the state-of-the-art development of nonlinear programming and integration
of ordinary differential equations and differential-algebraic equations. As said by
John T.Betts, who is the author of the well-known textbook “Practical methods for
optimal control and estimation using nonlinear programming”: “Solving an optimal
control is not easy. Pieces of the puzzle are found scattered throughout many different
disciplines” [38]. Studies on the optimal control problems in different applications
and to solve them more quickly and more robustly are still a hot research topic. The
following sections starting with a general formulation of the Optimal Control problems
will give a more detail description of the three classes of methods. In addition, the
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relevant theory of NLP which is the basis of many optimal control problems is also
reviewed in this chapter.

2.2 General formulation

Without loss of generality, a constrained Bolza type optimal control problem can be
formulated as,

J =M(x(t0), t0, x(t f ), t f ,p) +

∫ t f

t0
L(x(t),u(t), t,p)dt (2.1)

subject to the dynamic constraints

ẋ = f(x(t),u(t)) (2.2)

the boundary constraints

bmin 6 b[x(t0), t0, x(t f ), t f ,p] 6 bmax (2.3)

and the path constraints

gmin 6 g[x(t),u(t), t,p] 6 gmax. (2.4)

The vector format state, control, and static variable can be written in a component
form respectively as:

x(t) =


x1(t)
...

xnx(t)

,u(t) =


u1(t)
...

unu(t)

,p =


p1

...

pnp

 (2.5)

The dimensions of the input and output variables in Equations (2.2), (2.3) and (2.4)
are separately given as:

f :Rnx × Rnu × R × Rnp → Rnx

g :Rnx × Rnu × R × Rnp → Rng

b :Rnx × R × Rnx × R × Rnp → Rnb

The terminal cost M in Equation (2.1) is usually called the Mayer term and the
integral cost L is the so called Lagrange term, while the combination of the both
terms is called a Bolza type optimal control problem. The cost function J is also
commonly called the performance index which is used to evaluate the quality of the
control or design solutions, Equation (2.2) is the differential equation that describes
the system dynamics, Equation (2.3) is the constraint function of the terminal states,
while Equation (2.4) is the constraint function of state and control trajectory at each
time step. The objective of optimal control is to define the state x(t) ∈ Rnx , control
u(t) ∈ Rnu , static parameter p ∈ Rnp , initial time t0, and final time t f , to minimize
the cost function J within the boundary constraints and path constraints, the schematic
diagram is demonstrated in Figure 2.2.
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Initial value 

of the state

x0

Boundary constraints 

b(x(t0), t0, x(tf) ,tf)

State trajectory 

x(t)

Control  trajectory

u(t)

Path constraints trajectory 

g(x(t), u(t), p)
Objective:

minimize J

within all 

the  bounds

t0 t tf

Figure 2.2: The variables and constraints of a continuous optimal control problem

Unless the system equations, along with the cost functional and the constraints, of
the formulated problems are very simple, numerical methods must be employed to solve
optimal control problems. With the development of economical, high speed computers
over the last few decades, it has become possible to solve complicated problems in a
reasonable amount of time. The followed sections will give a review of three common
types of numerical approaches for the Bolza type optimal control problem.

2.3 Indirect methods

The indirect methods are based on the classic theory of calculus of variations and on the
famous Pontryagin’s Maximum Principle, whose full generality was developed in the
middle of last centenary, starting with the work of Pontryagin and his coworkers [39].
One of the major achievements of their approach compared to the previous work is
the possibility to treat inequality path constraints. In indirect methods, an optimal
solution is found by satisfying first-order necessary optimality conditions instead of
minimizing a cost criterion directly as in direct methods. Depending on the given
optimal control problem, the necessary optimality conditions lead to a two-point or
multi-point boundary value problem (BVP). Applying the calculus of variations to
the optimal control problem given in Equations (2.1)-(2.4), the first-order necessary
conditions for an extremal trajectory can be obtained. These conditions are generally
derived with the augmented Hamiltonian functionH , which is defined as:

H(x, λ f , λg,u, t) = L + λT
f f − λT

g g (2.6)

where λ f (t) ∈ Rnx is the so called costate or adjoint variable associated with the
differential constraints, λg(t) ∈ Rng is the Lagrange multiplier associated with the path
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constraints. In a single phase optimal control problem without static parameters, the
first-order necessary conditions of optimality are given in the following descriptions.

The Euler-Lagrange equations are denoted as:

ẋ =
[∂H
∂λ f

]T
, x(t0) = x0 (2.7)

λ̇ f = −
[∂H
∂x

]T
, λ f (t f ) = M(t f , x(t f )) (2.8)[∂H
∂u

]T
= 0 (2.9)

where Equation (2.8) is often referred to as the adjoint equation (or the costate
equation).

The boundary condition for optimality at the initial and final point is:

b(x(t0), t0, x(t f ), t f ) = 0 (2.10)

where ν ∈ Rnb is the Lagrange multiplier associated with the boundary condition b.
The transversality conditions at the initial and final point are:

λ(t0) = −
∂M

∂x(t0)
+ νT ∂b

∂x(t0)
(2.11)

λ(t f ) = −
∂M

∂x(t f )
+ νT ∂b

∂x(t f )
(2.12)

H(t0) =
∂M

∂to
− νT ∂b

∂t0
(2.13)

H(t f ) =
∂M

∂t f
− νT ∂b

∂t f
(2.14)

The complementary slackness conditions, which are the conditions on the Lagrange
multipliers of the path constraints are given as:

λg(t) ≤ 0,when g(x,u, t) = 0, f or each path constraint (2.15)

λg(t) = 0,when g(x,u, t) > 0, f or each path constraint (2.16)

These formulated necessary conditions form a Hamiltonian boundary-value problem
(HBVP), which is often numerically solved for extremal trajectories by iterative
procedures. The optimal solution u∗ is then obtained by choosing the extremal
trajectory that minimizing the cost function within the feasible control setU, according
to the maximum (minimum) principle:

u∗(x, λ f , t) = arg min
u∈U
H (2.17)

Now, we can understand that the words indirect means that, an indirect method does
not attempts to find the minimum cost function directly, but by solving the necessary
conditions of optimality firstly. There are three most common approaches, single
shooting, multiple shooting, and collocation methods ban be used to solve the HBVP
numerically. The following subsections will give a description of each.
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2.3.1 Indirect Single Shooting

For simplicity and to set forth the basic procedures of indirect shooting methods, here
regard only the simplified optimal control problem without inequality constraints:

minimize :
∫ t f

t0
L(x(t),u(t), t)dt +M(x(t f ), t f ) (2.18)

subject to:
ẋ(t) = f (x(t),u(t), t), x(t0) = x(0) ( f ixed initial value) (2.19)

b(x(t f ), t f ) = 0 (terminal constraint) (2.20)

Suppose that (u∗, t f ) is an optimal solution, there must exist trajectories (x∗,u∗, λ∗, t∗f )
that satisfies the following Euler-Lagrange equations,

ẋ(t) =
[∂H
∂λ

(x∗(t),u∗(t), λ∗(t), t)
]T
, x∗(t0) = x0 (2.21)

λ̇∗f = −
[∂H
∂x

(x∗(t),u∗(t), λ∗(t), t)
]T
, λ∗f (t

∗
f ) = M(t∗f , x∗(t∗f )) (2.22)[∂H

∂u
(x∗(t),u∗(t), λ∗(t), t)

]T
= 0 (2.23)

and the transversal conditions,

H(t∗f ) =
∂M

∂t∗f
(t∗f , x∗(t∗f )) − ν

∗T ∂b
∂t∗f

(t∗f , x∗(t∗f )) (2.24)

b(x∗(t∗f ), t∗f ) = 0 (2.25)

The general idea of an indirect method is to supply an initial guess of λ∗(t0), ν∗, and
t∗f first, and then iteratively update the estimates to meet the transversal conditions:

F(λ∗(t0), ν∗, t∗f ) :=


λ∗f +

∂M

∂x
+ ν∗T

∂b
∂x

b

H +
∂M

∂t
+ ν∗T

∂b
∂t


t=t∗f

= 0 (2.26)

An algorithm based on Newton iteration implemented the indirect single shooting
method for the formulated optimal control problem is summarized as Algorithm 1.

The above are optimal control problems without inequality constraints and the
solutions of which consist of single arcs, the indirect shooting method proceeds by
iteratively updating the estimates of the costate variables at initial time, the Lagrange
multipliers and the terminal time. The situation becomes more complicated when either
terminal or inequality path constraints are applied. In this case, a tentative sequence of
constrained or unconstrained arcs together with the active terminal constraints should
be provided at first, then the control, state, adjoint, and multiplier functions which
satisfy the Euler-Lagrange equations are calculated. If the errors on the constraints are
not satisfied, a new tentative sequence of arcs should be provided for a new iteration
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2.3. INDIRECT METHODS 13

Algorithm 1: Indirect multi-shooting method

1 function IndirectShooting (λ0
f ,0, ν

0, t0
f )

Input : initial guess λ0
f ,0, ν

0, t0
f and terminal tolerance ε

2 for each i ∈ N do
3 Calculate the defects: F(λi

f ,0, ν
i, ti

f)
4 if ‖ F(λi

f ,0, ν
i, ti

f) ‖< ε then
5 return
6 end

7 Calculate the gradient of the defects:



∂F(λi
f ,0, ν

i, ti
f)

∂λ f ,0
∂F(λi

f ,0, ν
i, ti

f)

∂λ f ,0
∂F(λi

f ,0, ν
i, ti

f)

∂λ f ,0

8 Determine the search directions di
λ f
, di

λν
and di

t f
by solving the linear system:

∂F(λi
f ,0, ν

i, ti
f)

∂λ f ,0
∂F(λi

f ,0, ν
i, ti

f)

∂λ f ,0
∂F(λi

f ,0, ν
i, ti

f)

∂λ f ,0



T 
di
λ f

di
λν

di
t f

 = −F(λi
f ,0, ν

i, ti
f)

9 Calculate the new estimates:


λi+1

f ,0 = λi
f ,0 + di

λ f

νi+1 + νi + di
λν

ti+1
f = t0

f + di
t f

10 Update the iteration index: k = k + 1.
11 end

until all the errors are within the provided tolerance. For this approach, it is not
difficult to understand that the errors on constraints are generally very sensitive to
the initial values, and the convergence speed of the optimization also highly depends
on the initial guess. Successful use of the indirect single shooting method requires a
priori knowledge of the number of constrained arcs. The single shooting method has
the feature of simplicity, however, in some cases, this method will present numerical
difficulties when the forward simulation of the combined differential equitations are
ill-conditioned. In order to overcome the numerical difficulties, the collocation method
can be employed as an alternative.

2.3.2 Indirect Collocation

In an indirect collocation method, the differential equations composed of state and
costate variables are discretized in a series of subintervals, the state and costate
variables are approximated with piecewise polynomials. The Hamiltonian dynamics
are rewritten as defect constraints, which are large scale, but sparse nonlinear equations.
The obtained equation system can be solved with Newton’s method, in particular, the
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numerical accuracy and convergence speed highly depends on the position, the number
of discretization nodes and the order collocation schemes. Applications and more
discussions of the indirect collocation methods can be found in [40].

2.3.3 Indirect Multiple-Shooting

The multiple-shooting method is a kind of combination of the two approaches described
above, the fundamental idea of this method is to subdivide the time interval [t0, t f ]
into M + 1 shorter subintervals and employ the single shooting method within each
subinterval.

Denoting the state and costate variables with a combined vector zi = [x(t), λ f (t)]T ,
the basic procedures are summarized as Algorithm 2.

Algorithm 2: Indirect Multiple-shooting method

1 function IndirectMultipleShooting
Input : Provide artificial initial guess z0

i for each interval and the terminal tolerance ε, set i = 0
2 Divide the entire time intervals into m − 1 subintervals: t0 = t1 < · · · < t f

3 for each i ∈ N do
4 Solve the differential equations on each interval [ti, ti+1] numerically with the provided initial

guess of each interval, and get the integration ẑi;
5 Calculate the linkage constraints: F j(z1, ..., zm−1) = ẑi − zi+1

6 Calculate the transversal conditions of the terminal interval and combine the likage

conditions: F =



ẑ1 − z2

...

ẑm−2 − zm−1

λ f +
∂M

∂x
+ νT ∂b

∂x
b

H +
∂M

∂t
+ νT ∂b

∂t


7 if ‖ F ‖< ε then
8 return
9 end

10 Calculate the gradient of the defects:

11 Determine the search directions ∆z by solving the linear system: ∇F∆z = −F(z)
12 Calculate the new estimates: z = z + ∆z

13 Update the iteration index: k = k + 1.
14 end

Despite the increased size of the problem due to those introduced linkage variables
and its relying on forward integration, the multiple-shooting method is still an
improvement over the single shooting method and collocation method because it
inherits the advantages of both. It can rely on the existing forward solvers with inbuilt
adaptivity so that it can avoid numerical discretization errors, and it is able to deal better
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with unstable and nonlinear systems.
The main drawbacks of the shooting method are that: besides the need of specifying

very accurate estimates for the adjoint variables at initial time and entry times, another
severe drawback of indirect multiple shooting method is that a detail priori knowledge
of the structure of the optimal solution must be available.

2.4 Dynamic Programming

2.4.1 Dynamic Programming in continuous time

The fundamental idea of Dynamic Programming (DP) [41] is to introduce an optimal-
cost-to-go function J∗(x, t) and compute it recursively backwards, starting from a
known value at its end and applying the Principle of Optimality. Considering the typical
optimal control problem:

J∗(x(t), t) = min
u,x
{M(x(t f ), t f ) +

∫ t f

t
L(x(t), u(t), t)dt} (2.27)

the optimal-cost-to-go function can be rewritten as:

J∗(x(t), t) = min
u

{
M(x(t f ), t f ) +

∫ t+dt

t
L(x(t), u(t), t)dt +

∫ t f

t+dt
L(x(t), u(t), t)dt

}
= min

u

{∫ t+dt

t
L(x(t), u(t), t)dt + J∗(x(t + dt), t + dt)

}
(2.28)

taking the limit of the above equation, we can get:

J∗(x(t), t) = lim
dt→0

min
u
{L(x(t), u(t), t)dt + J∗(x(t + dt), t + dt)}

≈ lim
dt→0

min
u

{
L(x(t), u(t), t)dt + J∗(x(t), t) +

∂J∗

∂x
ẋdt +

∂J∗

∂t
dt

} (2.29)

Simplify the above equation, we can obtain the so called Hamilton-Jacobi-Bellman
(HJB) equation:

min
u

{
L(x(t), u(t), t) + J∗(x(t), t) +

∂J∗

∂x
f (x(t), u(t), t) +

∂J∗

∂t

}
= 0 (2.30)

Solve this partial differential equation backwards from the end of the time interval
on t ∈ [0, t f ] with J∗(x(t f ), t f ) =M(x(t f ), t f ), the optimal control u(t) can be obtained
from the Equation (2.31) subject to the relevant path constraints:

u∗(x(t), t) = arg min
u

{
L(x(t), u(t), t) +

∂J∗

∂x
f (x(t), u(t), t)

}
(2.31)

2.4.2 Dynamic Programming in discrete time

A typical optimal control problem in discrete time is denoted as:

J∗(x0) =M(x(N)) +

N−1∑
i=0

L(x(i), u(i), i) (2.32)
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subject to:
x(i + 1) = f (x(n),u(n), n) (2.33)

The cost-to-go function in discrete form can be defined as:

J∗(xk, k) =M(x(N)) +

N−1∑
i=k

L(x(i), u(i), i) (2.34)

The optimal-cost-to-go function can be written recursively backwards from the
terminal time N towards time 0:

J∗(x,N) =M(x)

J∗(x,N − 1) = min
u
{L(x(N − 1), u(N − 1), N − 1) +M(x(N))}

...

J∗(x, i) = min
u
{L(x(i), u(i), i) + J∗(x(i + 1), i + 1)}

(2.35)

The optimal control trajectory can be obtained by solving:

u∗(x, i) = arg min
u
L(x(i), u(i), i) + J∗(x(i + 1), i + 1) (2.36)

Dynamic programming (DP) is greatly advantageous because the HJB presents
both the necessary and sufficient conditions, the DP method is able to obtain the
global optimum even for a non-convex problem. For the linear quadratic regulator,
the HJB equations can be solved analytically or numerically by solving the Ricatti
equation. For general nonlinear optimal control problems, the optimal control
solutions can be obtained by numerically approximating the cost function, and solving
the first-order partial differential equations. Despite the powerful advantages, the
application of dynamic programming is only limited for small dimension problems
because it need huge amount of storage space even for a problem with quite few
variables. Computational complexity of the dynamic programming algorithm increases
exponentially with dimensionality of the state (the so called curse of dimensionality),
which makes it impractical in large-scale applications.

2.5 Direct methods

The direct methods have been studied extensively over the last 40 years, and have
been proved as successful tools for solving even complicated practical optimal control
problems. In a direct method, the original continuous optimal control problem is
transcribed into a finite dimensional nonlinear programming problem (NLP) which can
be then solved by some state-of-the-art NLP methods. The fundamental difference with
respect to the indirect method is that it dose not need to derive and solve the necessary
conditions but to evaluate the cost function directly. One of the important advantages of
the direct methods is that the inequality path constraints can be easily treated. Another
advantage is that they can be easily applied in problems described by DAE systems. On
the other hand, an obvious drawback of direct methods is that they provide only local
optimal solutions due to the discretization of the control problems and the NLP solvers.
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The direct methods can be categorized into three groups which are the single shooting,
multiple shooting, and collocation methods. The following sections will give a more
detail description of them respectively.

2.5.1 Direct Single Shooting

In direct single shooting methods [40], the control variables u are parameterized by a
finite set of parameters. Generally, the control variables are approximated by piecewise
polynomials, and different orders of polynomials may be used for different control
variables and/or for different control intervals, i.e., by linear, quadratic, B-spline or
Lagrange polynomials. The control trajectories of different degrees and continuity
orders are demonstrated in Figure 2.3.

t

u(t)

t0 t1 tk t −1 t = t

piecewise constant

piecewise linear with continuity

piecewise linear without continuity

piecewise quadratic with continuity

Figure 2.3: Examples of control trajectories [42]

The procedures of a direct single shooting method is summarized as Algorithm 3.

Algorithm 3: Direct Single-shooting method

1 function DirectSingleShooting

Input : Provide artificial initial guess of the parameters in the control trajectory parameterization
2 Divide the entire time intervals into N subintervals: 0 = t0 = t1 < · · · < tNn = t f

3 Approximate the control in each time interval with finite parameters q = [q0, ..., qN−1] of the
selected appropriate polynomials.

4 while The cost function is not optimal or any constraints are not satisfied do
5 Use numerical integral methods to get the state variables as a function of the finite control

paramters obtained in last step.

6 Evaluate the obtained NLP: min
q

{
M(x(t f , q)) +

∫ t f

0
L(x(t, q), u(t, q))dt

}
7 Evaluate the discretized path constraints and terminal constraints.

8 Update the approximation of q with NLP slovers
9 end
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There are several advantages of the direct single shooting method. First, only
very few degrees of freedom are used even for large system described by ordinary
differential equation (ODE) or differential-algebraic equations (DAE). Second, it is
easy to treat the active set changes. Third, it is possible to use the state-of-the-art
ODE/DAE solvers; Besides, the only variables of the NLP are the control parameters
q. However, sometimes it is difficult to find an optimal, or even a feasible solution
when the system is unstable or the response is undefined for some control parameters.
Moreover, the states may depend nonlinearly on the control parameters, without the
possibility of using knowledge of the state variables in initialization.

2.5.2 Direct Multiple Shooting

In a direct multiple shooting method which is originally developed in [43], the original
optimal control problem is transcribed into a finite dimensional NLP problem by
discretizing both the control and the state variables, which is also referred to full
discretization in literature. The typical procedures of the direct multiple shooting
method is summarized as Algorithm 4.

Algorithm 4: Direct Multiple-shooting method

1 function DirectMultipleShooting

Input : Provide artificial initial guess of the parameters in both the control and state trajectory
parameterization

2 Divide the entire time intervals into N subintervals: 0 = t0 = t1 < · · · < tNn = t f

3 Approximate the control variables in each time interval with finite parameters q = [q0, ..., qN−1] of
the selected appropriate polynomials.

4 Approximate the state variables in each time interval with finite parameters s = [s0, ..., sN−1] of the
selected appropriate polynomials.

5 while The cost function is not optimal or any constraints are not satisfied do
6 Use numerical integral methods to get the state variables as a function of the finite control and

state paramters obtained in last step.

7 Evaluate the obtained NLP: min
q,s

{
M(x(t f , q, s)) +

∫ t f

0
L(x(t, q, s), u(t, q, s))dt

}
8 Evaluate the discretized path constraints and terminal constraints.

9 Evaluate the discretized linkage constraints of the state variabls.

10 Update the approximation of q, s with NLP slovers
11 end

As we can see that the direct multiple shooting method can use the knowledge of
state variables in initialization since both state and control variables are parameterized.
The direct multiple shooting method is able to handle both the path and terminal
constraints more robustly with respect to the direct single shooting method, it is
capable to find the optimal solution even for unstable systems. However, for the
multiple shooting method, the size of the optimization problem is increased due to
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the approximation of the state variables and the introducing of continuity linkage
constraints of the state variables at each interval. The obtained NLP is not so sparse as
direct collocation methods. Besides, the convergence performance also depends on the
initial guess of the state parameters [40].

2.5.3 Direct Collocation

Direct collocation methods are another family of direct methods for the numerical
solutions of optimal control problems, which approximate the state and control
variables with specified functional forms. Direct methods of optimal control are
known as discretize-then-optimize methods [44]. All of the direct collocation methods
involve the discretization of the ODEs of the original problem, the dynamic differential
constraints are transcribed into a set of algebraic equality defects constraints after
discretization. The integrals associated with the problem can be computed with
some well known quadrature formulas. Considering the general single phase optimal
control problem formulated in Equations (2.1)-(2.3), the typical procedures of the direct
collocation methods of it are given in Algorithm 5.

Algorithm 5: Direct Collocation method

1 function DirectCollocation

2 Divide the entire time intervals into N subintervals: 0 = t0 = t1 < · · · < tNn = t f

Input : Construct and provide the initial value (optionally) of the NLP variables with the state,
control, static parameters and the terminal time at each
node:y = [x0,u0, x1,u1, ..., , xNn , xNn , t f , p]

3 while The cost function is not optimal or any constraints are not satisfied do
4 Evaluate the cost function: J =M(x(t0), t0, x(t f ), t f ,p) +

∫ t f

t0
L(x(t),u(t), t,p)dt

5 Evaluate the discretized constraints: c(y) = [ζ1, ...ζNn−1, g1, ..., gNn−1, b0, b f ].

6 Calculate the gradient of the cost function: ∇J

7 Calculate the jacobian matrix of the constraints function: ∇c

8 Update the NLP variables y
9 end

In particular, there are more options in the direct collocation methods for discretiza-
tion, which can be categorized into local collocation methods and global collocation
methods. The followed subsections will give some details of both.

2.5.3.1 Local Collocation

The mostly implemented local collocation methods are the Runge-Kutta (RK) methods
which are a popular family of one-step methods, with the given value of a vector xi at
time ti, a new estimates of xi+1 at time ti+1 can be obtained as Equation (2.37) within
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the RK schemes.

xi+1 = xi + hi

K∑
j=1

ω j f i j (2.37)

where

f i j = f (xi + hi

K∑
k=1

α jk f ik, ti + hiτi), 1 ≤ j ≤ K

with 0 ≤ τ1 ≤ ... ≤ τK ≤ 1, and K ≥ 1 is referred to the number of stages, RK schemes
differ in the choice of the parameters ω j, τi, and α jk, which are most conveniently
denoted with the so called Butcher array:

τ1 α11 · · · α1K
...

...
. . .

...

τK αK1 · · · αKK

ω1 · · · ωK

The schemes are referred to explicit if α j` = 0 for 1 ≥ j and implicit otherwise.
Different method can be obtained by wise choosing of these coefficients in the Butcher
array, the four common types of K stage Runge-Kutta schemes are represented in
following paragraphs [38].
1) The explicit Euler method

The explicit Euler method is an one-stage RK scheme, the Butcher array of which is

0 0
1

its common expression is:
xi+1 = xi + hi f i (2.38)

2) The implicit Trapezoidal method

The implicit Trapezoidal method is a two-stage RK scheme, the Butcher array of
which is

0 0 0
0 1/2 1/2

1/2 1/2

its common expression is:

xi+1 = xi +
hi

2
( f i + f i+1) (2.39)

3) The implicit Hermite-Simpson method

The implicit Hermite-Simpson method is a three-stage RK scheme, the Butcher
array of which is
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0 0 0 0
1/2 5/24 1/3 -1/24
1 1/6 2/3 1/6

1/6 2/3 1/6

its common expression is:

xi+1 = xi +
hi

6
( f i + 4 f̄ + f i+1) (2.40)

where: 
x̄ =

1
2

(xi + xi+1) +
hi

8
( f i − f i+1)

f̄ = f (x̄, ti +
hi

2
)

(2.41)

4) The explicit Runge-Kutta method

The explicit Runge-Kutta method is a four-stage RK scheme, the Butcher array of
which is

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

its common expression is:

xi+1 = xi +
hi

6
(k1 + 2k2 + 2k3 + k4) (2.42)

where: 

k1 = hi f i

k2 = hi f (xi +
1
2

k1, ti +
hi

2
)

k3 = hi f (xi +
1
2

k2, ti +
hi

2
)

k4 = hi f (xi + k3, ti + hi)

(2.43)

The widely used local Runge-Kutta methods are the trapezoidal method and the
Hermite-Simpson method, and have been successfully implemented to solve many
complicated problems [38, 45, 46].

2.5.3.2 Global Collocation

The global collocation methods mainly refer to the pseudospectral methods, which are
a particular type of direct collocation methods using orthogonal collocation points.
Pseudospectral methods were originally developed to solve the partial differential
equations in the 1970s and have risen to prominence as important numerical methods
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for solving optimal control problems over the last 20 years [47–52]. Compared with
local collocation methods, the pseudospectral methods use information over samples of
the entire spatial domain of the function to approximate its derivatives at the selected
orthogonal collocation points. The most appealing feature of the pseudospectral
method is that the approximation can converge at an exponential (or spectral) rate
which is a function of the number of the collocation nodes. Both the theory and
practice of approximation prove that the pseudospectral methods are very suitable
to approximate the smooth functions, differentiations and integrations related in the
optimal control problems. In pseudospectral methods, the state and control variables are
approximated with smooth Lagrange polynomials, and the differential equations at the
discretization nodes are easily obtained by multiplying a constant differentiation matrix
with the right-hand dynamic equations, while the integration of the cost function is
approximated by the Gauss quadrature method with spectral accuracy, which consists of
a weighted (quadrature weights) sum of the function values at the all the discretization
nodes. In cases of non-smooth functions, where global collocation is not suitable,
the multi-interval pseudospectral techniques have been proposed to perform the global
collocation within each subinterval [53].

There are three types of most commonly used collocation points which are the
Legendre-Gauss (LG), the Legendre-Gauss-Radau (LGR), and the Legendre-Gauss-
Lobatto (LGL) points defined on the domain [−1, 1]. The main differences among the
three sets of collocation points are their locations and the including of endpoints as
shown in Figure 2.4.

-0.5 0.50-1 1

Include ndpoint

Include left endpoint

Include oth endpoints

LGL

LGR

LG

τ

C
o
ll
o
ca
ti
o
n
P
o
in
ts

Figure 2.4: Differences Between LGL, LGR, and LG Collocation Points

The definition of the three types of collocation points (also called as nodes) are
related with a particular class of orthogonal polynomials which are the Legendre
polynomials, a N oder Legendre polynomial LN(τ) can be denoted as:
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LN(τ) =
1

2N N!
dN

dτN (τ2 − 1)N (2.44)

The locations, weights of quadrature and the differential matrices of the LG nodes
are given as followings.
• τk are defined as the zeros of LN+1(τ), k = 0, ...,N
• the weights of quadrature:

wk =
2

(1 − τ2
k)[L̇N+1(τk)]2

, k = 0, ...,N (2.45)

• the differential matrix:

Dki =


L̇N+1(τk)
L̇N+1(τi)

1
τk − τi

, i f k , i

τk

1 − τ2
k

, i f k = i
(2.46)

The location, weights of quadrature and the differential matrix of the LGR nodes are
given as followings.
• τk are defined as the zeros of LN(τ) + LN+1(τ), k = 0, ...,N
• the weights of quadrature:

wk =


2

(N + 1)2 , i f k = 0

1
(N + 1)2

1 − τk

[LN+1(τk)]2 , i f k = 1, ...N
(2.47)

• the differential matrix:

Dki =



−
N(N + 2)

4
, i f k = i = 0

Q̇(τk)
Q̇(τi)

1
τk − τi

, i f k , i

τk

1 − τ2
k

+
(N + 1)LN(τk)
(1 − τ2

k)Q̇(τk)
, i f 1 ≤ k = i ≤ N

0, otherwise

(2.48)

where Q(τ) = LN(τ) + LN+1(τ).
The location, weights of quadrature and the differential matrix of the LGL nodes are

given as followings.
• the location:

τk =


−1, i f k = 0

zeros o f L̇N(τ), k = 1, ...,N − 1

1, k = N

(2.49)

• the weights of quadrature:

wk =
2

N(N + 1)
1

[LN(τ)k]2 , k = 0, ...,N (2.50)
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• the differential matrix:

Dki =



−
N(N + 1)

4
, i f k = i = 0

LN(τk)
LN(τi)

1
τk − τi

, i f k , i

N(N + 1)
4

, i f k = i = N

0, otherwise

(2.51)

The above outlined only some conclusions of the three methods, more details
of approximating continuous functions using Legendre polynomials are not given.
Interested readers can refer to [54] for further detail derivation of the nodes, weights of
quadrature and differential matrix.

With the obtained collocation nodes, weights of quadrature and differential matrix,
we are ready to present the framework of transcription based on the pseudospectral
methods, whose general procedures are given as:
1) Compute the collocation nodes τ.
2) Transformation of the original time domain [t0, t f ] with a new independent variable
τ to [−1, 1]:

τ =
2

tN − t0
t −

tN + t0

tN − t0
, with tN ≡ t f (2.52)

3) Approximate the state variables the Lagrange basis polynomials φi:

x(τ) ≈ X(τ) =

N∑
i=0

φi(τ)Xi (2.53)

with

φi(τ) =

N∏
j=0, j,i

τ − τ j

τi − τ j
(2.54)

4) Approximate the control variables:

u(τ) ≈ U(τ) =

N∑
i=0

φk(τ)Uk (2.55)

5) Approximate state differentiations:

ẋ (τk) ≈ Ẋk =

N∑
i=0

φ̇i(τk)Xi =

N∑
i=0

DkiXi (2.56)

6) Approximate the system dynamics:

ζ =

N∑
i=0

DkiXi −
t f − t0

2
f (Xk,Uk, τk) = 0 (2.57)

7) Approximate the cost function with the Gauss-Lobatto quadrature:

J =M +
t f − t0

2

N∑
i=0

wiL (Xi,Ui, τi) (2.58)



i
i

“thesis” — 2017/6/27 — 19:58 — page 25 — #35 i
i

i
i

i
i

2.6. NLP 25

After transcription, the formulated problem can be solved with Algorithm 5. The
most important advantage of using pseudospectral discretization method is the spectral
accuracy in the discretization of the differential constraints and Gauss type integration.
However, the resulting Jacobian and Hessian matrices are denser than those obtained
by local collocation methods.

2.6 NLP

From the above section we can understand that the nonlinear programming algorithms
are the basis of many optimal control problems, thus, it is necessary to give a brief
review of the NLP methods. Considering a NLP aiming to find a n dimensional decision
vector y to minimize the given objective function:

min f (y) (2.59)

subject to the constraints:  g(y) = 0, g(y) ∈ Rng

h(y) ≤ 0, h(y) ∈ Rnh
(2.60)

2.6.1 Karush-Kuhn-Tucker (KKT) conditions

The Karush-Kuhn-Tucker (KKT) conditions [55] which are the necessary and sufficient
conditions for the optimality of a solution to a constrained nonlinear program are given
as follows:
• First-order optimality conditions

∇ f (y) + ∇g(y)Tλ + ∇h(y)Tµ = 0

µihi(y) = 0, i = 1, ..., nh

µ ≥ 0

h(y) ≤ 0

g(y) = 0

(2.61)

where ∇ f is a column vector, ∇g collect the gradient vectors of all output components

in the Jacobian matrix, ∇g = [
∂g
∂y

]T .

• Second Order Necessary Condition

wT
(
∇2 f (y) + ∇2 g(y)Tλ + ∇2h(y)Tµ

)
w ≥ 0 (2.62)

with ∇gi(y)T w and ∇h(y)T w.
• Second Order Sufficient Condition

wT
(
∇2 f (y) + ∇2 g(y)Tλ + ∇2h(y)Tµ

)
w > 0 (2.63)

with : 
∇gi(y)T w = 0 with λi > 0

∇gi(y)T w ≤ 0 with λi = 0

∇h(y)T w = 0

(2.64)
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2.6.2 Newton type methods for constrained NLP

The fundamental idea of the Newton type methods is to solve the nonlinear KKT con-
ditions with non-smoothness in different ways. There are two big classes of commonly
used algorithms for solving the NLP problems with inequality constraints, which are
known as the interior point (IP) methods and sequential quadratic programming (SQP)
methods. The main difference between the two kinds of methods is that they deal with
the non-smoothness of the KKT conditions in different manners.

2.6.2.1 Interior point (IP) method

1) Interior point (IP) method
In an IP method, a positive penalty factor ρ is introduced to penalize the solutions

that approaching the boundaries of the feasible region and to make sure the solution
remains within the feasible region. The value of ρ varies with the distance of constraint
function to the boundaries. For an interior point method, the iterations usually start with
a large value of ρ and the Newton’s method is often used to solve the resulting nonlinear
equation system, the penalty factor ρ is then iteratively decreased and estimated for each
iteration. The previously obtained solution will be the initial one for the next iteration.

The logarithmic barrier function based on the logarithmic interior function is given
as:

B(y, ρ) = f (y) − ρ
nh∑
i=1

log(hi(yi)) (2.65)

To solve the constrained NLP, a positive penalty factor µ is introduced in addition to
the typical KKT conditions. By adding convergence properties with relaxation factor s
the modified KKT conditions are given as:

∇ f (y) + ∇g(y)Tλ + ∇h(y)Tµ = 0

g(y) = 0

h(y) + s = 0

µs − ρ = 0

s ≥ 0

µ ≥ 0

ρ ≥ 0

(2.66)

The obtained nonlinear equations can be iteratively solved by Newton’s methods
[56]. First, the variables ∆y and ∆λ can be obtained by solving the reduced linear
system,  H G

GT 0

 ∆y
∆λ

 =

T1

T2

 (2.67)

where

H = ∇2
xL + ∇h(y)T

µs
∇h(y) (2.68)
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G = ∇g(y) (2.69)

T1 = −∇xL − ∇h(y)T s−1(ρ + µ∇h(y)) (2.70)

T2 = −g(y) (2.71)

L(y, λ, µ) = f (y) + λT g(y) + µT h(y) (2.72)

then, the slack variables s and corresponding multipliers µ can be computed with: ∆s = −g(y) − s − ∇g(y)∆y
∆µ = −µ + s−1ρ − µ∆s

(2.73)

The penalty factor ρ must converge to zero during the iterations, since the the
optimal point should satisfy the original KKT conditions. The penalty factor ρ can
be obtained with the primal-dual distance which can be expressed as a function of the
relaxation factor s,

ρ = σdp = σ
µts
niq

(2.74)

where σ is the so called parameter of the direction combination which defines the
trajectory of the optimal solution, dp is the primal-dual average distance, and niq

accounts for the inequality constraints.
The suggested range of σ is between 0 and 1, which represents a linear combination

of the affine scaling and centralization directions [57]. For the extreme conditions:
• σ = 0 corresponds to the affine-scaling direction where the optimal point is obtained
through solution of original KKT conditions without the penalty factor.
• σ = 1 corresponds to centralization direction where the non-optimal solution is found
with a primal-dual distance equal to the initial value of ρ

In a conventional primal-dual IP approach, σ is assumed to be a constant value
(generally close to 0.1) during the iterations. This results in a search direction
where 90% is defined towards the optimal point and 10% towards the trajectory of
centralization [58].

The widespread open source software IPOPT is well known for its successful
implementation of the IP method [34]. IPOPT is able to achieve the global solution
for convex problems, for non-convex problems it can provide a local solution but the
convergence to KKT conditions can still be proven and it performs very well in practice.

2.6.2.2 Sequential quadratic programming method

Sequential quadratic programming (SQP) is another iterative method for nonlinear
optimization. SQP methods are suitable for problems with twice continuously
differentiable objective function and the constraints. It solves an inequality constrained
quadratic programming problem obtained by linearizing the objective function and the
constraints in each iteration:

min
d
∇ f (y)T d + 1

2 dT
Hd

s.t. g(y) + ∇g(y)T d ≥ 0

h(y) + ∇h(y)T d = 0.

(2.75)
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where d is the search direction,Hk is the Hessian matrix.
For NLP with equality constraints, the Hessian H can be obtained in several

different manners. First, the exact Hessian can be calculated with

H = ∇2
xL(y, λ,µ) = ∇2

x, (2.76)

in this case, the second order sufficient conditions in Equation (2.63) are satisfied and
a local quadratic convergence can be obtained when the solutions are approaching the
optimal one. Second, for the optimization problems with the objective function form
f (y) =‖ r(y) ‖2, the Hessian is approximated by H = 2∇r(y)T∇r(y) in a Gauss-
Newton method, The advantage over the Newton method is that the second-order
derivatives ∇2r(y) are not calculated. However, if any residual component r(y) and/or
the corresponding curvature ∇2r(y) close to the solution is large, the Gauss-Newton
method will converge slower than the Newton method may or not even be locally
convergent. The third method is the widely used Quasi-Newton method with Broyden-
Fletcher-Goldfarb-Shanno (BFGS) approximation of the Hessian:

Hk+1 = Hk −
(Hkdk)(Hkdk)T

dT
kHkdk

+
zkzT

k

zT
k dk

(2.77)

where dk = yk+1 − yk, zk = ∇ f (yk+1) − ∇ f (yk). BFGS has proven to have good
performance even for non-smooth optimizations and it is one of the most popular
members of Quasi-Newton methods, however, the BFGS method are not guaranteed
to converge unless the function has a quadratic Taylor expansion close to an optimum.

A significant advantage of SQP is that feasible points are not required at any stage of
the process. It is more efficient than general NLP approaches and has been successfully
applied in a number of research and commercial algorithms [59]. However, SQP
can suffer from oscillations when approaching the optimal solution. A widely used
software based on SQP is SNOPT [59], which has been successfully applied in solving
many large scale NLP, moreover, it is also the implemented in some optimal control
softwares, such as GPOPS [60], TOMLAB [61], ASTOS [62].

2.7 Optimal control in vehicles

It is recognized that the development of optimal control theories and the relevant
numerical methods has been driven by its widespread applications in aerospace
engineering, i.e., low-thrust orbit transfer, launch vehicles, and supersonic aircrafts,
since early 1960s. In comparison, its application in vehicle is a little late, according to
the searchable literature, the earliest application of optimal control in vehicles stretch
back to the work of Ref. [63] in 1989, in which the authors used optimal control
theory with indirect methods to find the minimum manoeuvring time for a transient
vehicle model on a given path. Although it was not yet a breakthrough for more
accurate lap simulation due to its simplification of the vehicle model and tire model, it
pointed out the true nature of minimum lap time problem. In 1992, Ref. [64] solved
a minimum manoeuvring problem of a simple vehicle model on a hairpin conner with
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the sequential conjugate gradient-restoration algorithm proposed in [65, 66]. Later in
1996, Ref. [67] employed a 3-DOF vehicle model with simplified Magic Formula tire
model and formulated a minimum manoeuvring problem in a lane-change manoeuvre.
The normal loads acted on the tires were modeled in a quasi-static way considering
the longitudinal and lateral inertia forces, roll stiffness distribution and longitudinal
aerodynamic forces. The formulated optimal control problem was solved by with a
gradient algorithm which improves the control actions based on the linearization of the
expanded cost function around the current control and state variables. Later continuous
research on the vehicular optimal control problems can be reviewed according to the
applied approaches.

2.7.1 Vehicular optimal control with indirect methods

A research group in University of Padova has investigated the application of indirect
methods continuously since 1999. In [68], the optimal control problem of a motorcycle
on a s-shaped path of the circuit Mugello in Italy is formulated, the employed dynamic
model involves the longitudinal, lateral, yaw and roll movements. The formulated
optimal control problem is solved with an indirect method that converting the original
work into TVB problem. This work is really worthy of attention not only because of
its early application of the indirect methods but also the introducing of the curvilinear
coordinates system, which has been recognized as a very convenient way to describe
the position of a motorcycle or a vehicle on a given track. Latter, a series of work related
with optimal control problems of motorcycles [69–74] were published and solved with
indirect methods. In particular, the optimal solution in work [71] is obtained with an
optimal control toolbox developed by a research group from University of Trento based
on indirect method [72, 75]. According to the published literature, optimal control
of vehicles of University of Padova starts from the work [76], which investigated
the minimum time manoeuvre handling at the physical limits of the car. Minimum
maneouvring problems on different road surfaces with different drivetrain layouts were
formulated and solved with the indirect method [72, 75]. The work [76] is based on a
single track model with a simplified tire model and only longitudinal load transfer was
taken into account. Another work [77] published in the same year solved the minimum
lap time problem of a race series hybrid electric vehicle on the Mugello circuit based
on a 3-DOF vehicle model with the same toolbox mentioned above. Specially, this
work introduced the friction coefficients together with the normal load to constraint
the tire adherence inside their traction ellipse and there was no tire model employed.
In 2014, a methodology which combines numerically efficient modelling technique
and a 3D curvilinear coordinates technique for the road modelling was presented [32].
The minimum lap time problem of a GT car was formulated and solved with indirect
method [72, 75] as a case study, in which, a 3-DOF vehicle model with simplified
Magic Formula tire model was implemented. In work [78], they developed three
vehicle models: a 14-DOF vehicle model including longitudinal, lateral, vertical, roll,
pitch, yaw movements of the vehicle body, and rotational, vertical motions of the four
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wheels, however, the lateral and longitudinal motions of the wheels are neglected and
the details of suspension model are not presented. A 10-DOF vehicle model neglecting
the four vertical motions of the wheels and a 7-DOF vehicle model considering only
the longitudinal, lateral, yaw motions of the vehicle body and the four rotation motions
of the wheels. The minimum lap time problem of the three different vehicle models
on the Adria circuit are formulated and solved with the same optimal control toolbox
as they used before [72, 75]. The results they obtained showed that the 10-DOF and
14-DOF vehicle model produced almost the same results, but the former one reduced
the computing time by 43%, however, the optimal lap time achieved with the 7-DOF
vehicle model highlighted remarkable differences with the those obtained by the 14-
DOF and 10-DOF vehicle model, although the 7-DOF can reduced the computing time
by 63%. A latest work of this university is [79], in which, the minimum lap time optimal
control problem on Pista Azzurra circuit for a developed go-kart model was solved with
the same indirect method, the simulation results were compared with those obtained by
a real professional driver to validate the model. What’s more, the peculiar dynamics of
go-karts and focus to tire slippage dynamics were analyzed with the obtained optimal
control results.

2.7.2 Vehicular optimal control with direct methods

An early work using direct methods in a standard form in this area can stretch back
to the year 2000 [80–83], where direct multiple shooting methods were employed to
solve the minimum lap time problem of a 7-DOF vehicle model on a full lap. In
particular, the work in [82] studied the influence of the yaw moment of inertia on
cornering performance in a double lane change manoeuvre, and the resulting nonlinear
programming problem was solved with a SQP algorithm implemented in Matlab
Optimisation Toolbox in about 2 hours. In the thesis work [80], entire-lap optimal
control of a Formula one race car with the 7-DOF vehicle model was studied, as for
the tire forces, the Magic Formula tire model in the version of that time [84] was
employed. The computing time on the Barcelona track required between 28 and 60
hours to converge on a Sun Spark workstation, while the simulation time on the Suzuka
circuit was ahout 7 minutes for one iteration and between 7 to 10 hours for the full lap.
One thing should be noticed that this work implemented a SQP algorithm for large-
scale constrained optimization software SNOPT [85]. Subsequently, in work [86],
the above framework was applied to investigate the influence of vehicle mass on the
performance potential of a Formula One race car. The actual sensitivity on the Suzuka
circuit and Barcelcna circuit are obtained and analyzed. In addition, in the above work,
the initial guess of the states and controls was generated by a path following algorithm,
and the continuous optimal controls problem were discretized with the traveled distance
as variables. later related work from the same research group is described in [87],
where they used a similar vehicle model but a simplified tire model that handle the
combined slip condition by a simple ‘friction circle’ procedure. The influence of mass,
yaw inertia, roll moment distribution, longitudinal center of gravity location on the
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manoeuvre time, driven line and stability were investigated on two short manoeuvres.
As for the computing time, a full lap of the Jerez circuit with 10 m control spacing
and 250 m preview took approximately 8 hours with a Intel T7700 2.4 GHz processor.
Most recently, the work of a research group from University of Oxford made important
contributions to the research work in this area with direct methods [88–92]. The vehicle
model they used is a 7-DOF vehicle model similar with the one in [87], and tire model
is the same as [87]. In [88], the minimum lap time optimal control problem of a
Formula One race car on the ‘Circuit de Catalunya’ (Barcelona) track was formulated
and solved with a MATLAB-based optimal control transcription toolbox ICLOCS [46]
and a well-known NLP solver IPOPT [34], in which, the vehicular optimal control
problem was formulated in a more standard format taking into account also several
car set-up parameters. Moreover, the computing time was reduced within 1 hour with
acceptable accuracy by using a combination of a track description based on curvilinear
coordinates, analytical derivatives and a manual scaling method. In [89], kinetic
energy recovery systems (ERSs) were investigated and compared with hybrid kinetic
and thermal/heat ERSs respectively. In particular, a pseudospectral method based on
optimal control transcription toolbox GPOPS-II [93, 94] was implemented to solve the
formulated optimal control problem. The obtained results showed that the ERSs can
produce contemporary lap time with a two-thirds of the fuel reduced compared with
the earlier generation race cars. In [91], the optimal control of a Formula One car
on a developed three-dimensional (3D) track described by its geodesic and normal
curvatures, and its relative torsion [90] was studied. The comparative minimum-lap-
time results on the two-dimensional and 3D track ‘Circuit de Catalunya’ of Barcelona
were presented and compared.

2.7.3 Summery on vehicular optimal control

Applications of optimal control theory in vehicles haven obtained a lot of valuable
achievements, which can be used as the theoretical benchmarks for both the vehicle
(especially, the race car) control and design. According to the reviewed literature
above, the indirect methods solved the optimal control problem using 3-DOF, 7-DOF,
and 14-DOF vehicle models with tire models simplified in different levels. Indirect
methods are appealing because when a good initial guess is provided, the computation
can be very effective. However, as mentioned, the optimal solutions and computing
time are too sensitive to the initial guess and it is not easy to handle complicated
inequality constraints with the indirect methods. Besides, it is also not suitable for
problems that are not easy to obtain the analytical derivatives. In the case of direct
methods, the benefits incorporates the easy handling of inequality constraints and the
less sensitiveness to the initial guess. However, currently, the most complicated optimal
control problem using direct methods are based on the 7-DOF vehicle models with
different kinds of simplifications on the load transfer and tire models, which limited
the number of parameters that can be optimized and a more accurate representation
of the vehicle dynamics. Moreover, studies on electric vehicles with optimal control
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approaches are found in much less literature, only [95] and [30] presented some results
of the optimal torque control of a 4 independent-wheel-driving electric vehicle. The
implemented vehicle model in both work is the same 7-DOF vehicle model with
simplified tire model and load transfer model.
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CHAPTER3
Vehicle Modelling

3.1 Introduction

Vehicle modelling involves idealizing the real vehicle system into a set of equations of
motion. These equations are then solved by integrating methods to test the vehicle’s
performance with corresponding design or control solutions. The simplest vehicle
model is a point mass model with a single wheel and has two degrees of freedom
(DOF) which represent the lateral and longitudinal acceleration. Ref. [96] illustrates
that the yaw DOF can be added by extending the model to have two wheels, which
is commonly known as a single track model. The yaw moment are introduced to
calculate the yaw accelerations with a suitable value of yaw inertia. To improve its
accuracy and give a better estimation of the slip angles of the tyres, the single track
model can be extended to a two track model with four wheels. In order to evaluate
the normal load of each wheel, the load transfer in lateral and longitudinal directions
is then approximated by a quasi-static approximation [97]. The tire slip of each wheel
can be obtained with the velocity of the wheel center and angular velocity of each
wheel. The two track model is also called the 7 DOF vehicle model. In order to predict
overall vehicle behavior for cornering, braking, acceleration and comfort performance
studies for four wheel driving vehicles with independent suspensions more accurately,
a 14-DOF vehicle model is essential to be developed [98].

This chapter serves as the base of this PhD project and provides a detail description
of the developed models for the optimal powertrain design and control. A 14 DOF
vehicle model supporting vectorized computation together with a suspension model
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considering the details of toe angle, camber angle, anti-roll force, etc., were derived
based on Lagrangian dynamics. To accurately predict the behavior of a vehicle, it is also
required to estimate the external forces acting on the vehicle as precisely as possible.
An empirical tire model based on the well-known Magic formula equations [99] was
programmed to calculate the tire forces, in particular, the tire model developed in
MATLAB supporting inputs of the standard ’.tir’ tire data file. In order to evaluate the
effect of design parameters of the motor and the transmission to the lap time of the race
car, the mass model of the motor and transmission mainly concerning the dependence
of the mass and output torque of the powertrain on the design parameters were
derived. At last, a virtual driver model is devised to track a given trajectory depicted
in curvilinear coordinate system based on the proposed control logic. Tremendous
computing workload is a common issue in large scale optimization and optimal control
problem, in order to improve the calculation efficiency, the mentioned models are all
programmed in vectorized formats. The entire vehicle model developed in MATLAB
is finally validated with a well-known vehicle dynamics simulator ’VI-CarRealtime’
developed by VI-Grade.

3.2 14-DoF vehicle model

The configuration of the entire vehicle model is presented in Figure 3.1, the interactions
between the vehicle body, suspension, unsprung mass and tire model are demonstrated.

Tire model
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Figure 3.1: Configuration of the 14 DOF vehicle model

The inputs of the developed 14-DOF vehicle model are the steer wheel angle δi and
wheel torque Td,i, which will be different for different maneuvers. The spin motion of
each wheel is driven by the torque and longitudinal force acted on each. The inputs of
each tire model are the angular velocity of the wheel ωi , wheel center velocity Vu,i „
camber angle and normal load Fz,i, while the outputs are the tire forces and moments.
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The vertical motion of the each unsprung mass is driven by the normal force of the tire
road interaction and the vertical suspension force. While the 6 DOF of vehicle body are
driven by the longitudinal, lateral tire forces, aerodynamic forces and the suspension
forces acted on it.

3.2.1 Degrees of freedom

The 14-DOF vehicle model in this work represents the dynamic behavior of a simplified
vehicle consists of five rigid parts, one of which is the vehicle body (sprung mass), and
the left four are the connected 4 wheel parts (unsprung mass). As it is shown in Figure
3.2, there are 6 DOF of the vehicle body allows it to displace in the longitudinal, lateral
and vertical direction as weel as to roll, pitch and yaw. In this work, the four wheels are
supposed to be fixed with the chassis to move in the longitudinal and lateral direction
except their independent vertical and rotational displacement. Thus, the 4 wheel parts
have 2 DOF each, one allows the wheel to move in vertical direction with regard to the
vehicle body, and the other allows the wheel to rotate around the axle.

Figure 3.2: Degree of freedoms

There are two reference systems used to describe the 14 DOF, O−XYZ is the global
reference system to describe the absolute position of the mass center of the vehicle,
while Ob − xbybzb is the moving frame fixed on the mass center of the sprung mass to
describe the relative displacements.

The generalized coordinates are chosen and denoted with vector q :

q =

 qb

qu

 =

 [XA,b,YA,b,ZA,b, ϕ, φ, ψ]T

[θu f r, θu f l, θurr, θurl, zu f r, zu f l, zurr, zurl]T

 (3.1)

where the vector in the first row qb is composed by the six independent variables of the
rigid chassis, which are the absolute displacements of the center of gravity (CoG) in XA

, YA and ZA directions of the horizontal plane, and the rotations ϕ, φ, and ψ around the
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XA , YA, ZA axes respectively. The vector qu is composed by the vertical displacement
zui and rotation θu,i of each wheel.

The corresponding velocity vector is presented as:

q̇ =

 q̇b

q̇u

 =

 [ẊA,b, ẎA,b, ż, ϕ̇, φ̇, ψ̇]T

[żu f r, żu f l, żurr, żurl, θ̇u f r, θ̇u f l, θ̇urr, θ̇url]
T

 (3.2)

The dimensions of the race car in XY plane are presented as Figure 3.3. The relative
position of the wheel center in XY plane of the vehicle reference frame can be denoted
as:  xw

yw

 =


[l f , l f ,−lr,−lr]

1
2

[−w f ,w f ,−wr,wr]

 (3.3)

The vertical relative position of the unsprung mass zw in the vehicle reference frame
can be denoted with its absolute vertical position zu , xy position in the vehicle reference
frame and the roll angle, pitch angle, absolute vertical position:

zw = zu − (ywψ − xwφ + ZA,b) (3.4)

the corresponding velocity of the unsprung mass in the vehicle reference frame can be
denoted as:

żw = żu − (ywψ̇ − xwφ̇ + ŻA,b). (3.5)

Figure 3.3: Dimension of the race car in XY plane
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The motion equations of the 14-DOF vehicle model can be derived based on the
Lagrangian dynamics: 

d
dt

(
∂T
∂q̇b

)
−
∂T
∂qb

= Qb

d
dt

(
∂T
∂q̇u

)
−
∂T
∂qu

= Qu

(3.6)

where T is the kinetic energy of the system, Qb and Qu are the generalized forces
applied on the sprung mass and unsprung mass respectively.

3.2.2 Kinetic energy of the sprung mass

As aforementioned, the wheels are fixed with the vehicle body in xb − yb directions.
Based on this consideration, the kinetic energy of the sprung mass can be denoted as:

Tb =
1
2

VT
b [Mb]Vb +

∑ 1
2

VT
u,i[Mu,i]Vu,i (3.7)

where the symbols in the above equation will be described in the following paragraphs.
As shown in Figure 3.2, there are two reference systems used in this work: the global

(inertia) reference system fixed with the ground and the moving reference system fixed
on the vehicle body. The origin of the moving frame is located in the CoG of the sprung
mass, while the xb, yb and zb axes point forward the longitudinal, lateral and vertical
direction of motion. The two reference frame are connected with a transformation
matrix [hA,b]:

[hA,b] =



cosψ sinψ 0 0 0 0

− sinψ cosψ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(3.8)

The velocity of the vehicle body Vb in the moving frame can thus be denoted as:

Vb =



Vxb

Vyb

Vzb

ωxb

ωyb

ωzb


= [hA,b]



ẊA,b

ẎA,b

ż

ϕ̇

φ̇

ψ̇


= [hA,b]q̇b (3.9)

The velocity Vu,i of each unsprung mass is calculated with its relative position in the
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moving frame and the velocity vector of the vehicle body, which can be denoted as:

Vu,i =

 vux,i

vuy,i

 =

 1 0 0 0 zw,i −yw,i

0 1 0 −zw,i 0 xw,i





Vxb

Vyb

Vzb

ωxb

ωyb

ωzb


= [hb,u,i][hA,b]q̇b (3.10)

where vux,i and vuy,i are the longitudinal and lateral velocities of the unsprung mass in
the moving frame, while xw,i, yw,i and zu,i are the position coordinates of the unsprung
mass in the moving frame denoted by Equation (3.3). i = { f r, f l, rr, rl} means front
right, front left, rear right and rear left.

The mass matrix of the sprung mass [Mb] and each unsprung mass [Mu,i] are denoted
as Equation (3.11) and Equation (3.12) respectively.

[Mb] =



mb 0 0 0 0 0

0 mb 0 0 0 0

0 0 mb 0 0 0

0 0 0 Jxxb 0 0

0 0 0 0 Jyyb 0

0 0 0 0 0 Jzzb


(3.11)

[Mu,i] =

 mu,i 0

0 mu,i

 (3.12)

where mb is the mass of the sprung mass, Jxxb, Jyyb and Jzzb are respectively the inertias
of the sprung mass around the Ob − xb, Ob − yb and Ob − zb axles.

With the above items, the kinetic energy of the sprung mass can be written in a more
compact form:

Tb =
1
2

VT
b [Mb]Vb +

∑ 1
2

VT
u,i[Mu,i]Vu,i

=
1
2

q̇T
b [hA,b]T [Mb][hA,b]q̇b +

∑ 1
2

q̇T
b [hA,b]T [hb,u,i]T [Mu,i][hb,u,i][hA,b]q̇b

=
1
2

q̇T
b [Mgb]q̇b

(3.13)

The generalized mass matrix [Mgb] of the sprung mass is a function of the
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generalized coordinates ZA,b, ψ and zu , and can be derived as:

[
Mgb

]
=



mb +
∑

mu,i 0 0

0 mb +
∑

mu,i 0

0 0 mb∑
mu,izu,i sinψ −

∑
mu,izu,i cosψ 0∑

mu,izu,i cosψ
∑

mu,izu,i sinψ 0

−
∑

(mu,ixu,i sinψ + mu,iyu,i cosψ)
∑

(mu,ixu,i cosψ − mu,iyu,i sinψ) 0

∑
mu,izu,i sinψ

∑
mu,izu,i cosψ −

∑
(mu,ixu,i sinψ + mu,iyu,i cosψ)

−
∑

mu,izu,i cosψ
∑

mu,izu,i sinψ
∑

(mu,ixu,i cosψ − mu,iyu,i sinψ)

0 0 0∑
mu,iz2

u,i + Jxxb 0 −
∑

mu,ixu,izu,i

0
∑

mu,iz2
u,i + Jyyb −

∑
mu,iyu,izu,i

−
∑

mu,ixu,izu,i −
∑

mu,iyu,izu,i
∑

(mu,ix2
u,i + mu,iy2

u,i) + Jzzb


(3.14)

3.2.3 Kinetic energy of the unsprung mass

The kinetic energy of the unsprung mass is composed by the vertical and rotational
motion parts, which can be denoted as:

Tu =
1
2
ωT

u [Ju]ωu +
1
2

VT
uz[Mu]Vuz (3.15)

In this work, the inertia of the propulsion system is taken into account as a part of
the unsprung mass, the angular velocity ωu of the propulsion system and the unsprung
mass for a independent drive topology can be denoted as Equation (3.16).

ωu = [hu]


θ̇u f r

θ̇u f l

θ̇urr

θ̇url

 (3.16)

The inertia matrix Ju of the one-motor rear driving (1M-RWD), two-motor rear
driving (2M-RWD) and four-motor independent wheel driving (4M-IWD) topologies
can be denoted with a diagonal matrix respectively as Equation (3.17).

[Ju] =


diag{Ju, f r, Ju, f l, Ju,rr, Ju,rl, Jd}, 1M-RWD

diag{Ju, f r, Ju, f l, Ju,rr, Ju,rl, Jd,rr, Jd,rl}, 2M-RWD

diag{Ju, f r, Ju, f l, Ju,rr, Ju,rl, Jd, f r, Jd, f l, Jd,rr, Jd,rl}, 4M-IWD

(3.17)

where Ju,i is the rotational inertia of the unsprung mass, Jd,i is the rotational inertia of
each motor.



i
i

“thesis” — 2017/6/27 — 19:58 — page 40 — #50 i
i

i
i

i
i

40 CHAPTER 3. VEHICLE MODELLING

The transformation matrix [hu] used to calculate the angular velocities of different
propulsion systems is presented as Equation (3.18).

[hu] =





1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 i/2 i/2


, 1M-RWD



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 irr 0

0 0 0 irl


, 2M-RWD



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

i f r 0 0 0

0 i f l 0 0

0 0 irr 0

0 0 0 irl



, 4M-IWD

(3.18)

where id, i f r, i f l, irr and irl are the related transmission ratios.
The vertical velocity matrix Vuz, and the mass matrix [Mu] of the unsprung mass can

be denoted as:

Vuz=


żu f r

żu f l

żurr

żurl

 (3.19)

[Mu]=


mu f r 0 0 0

0 mu f l 0 0

0 0 murr 0

0 0 0 murl

 (3.20)

With the above terms, the kinetic energy of the unsprung mass is denoted as
Equation (3.21), and it can be derived as a function of the generalized coordinates
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and generalized mass matrix.

Tu =
1
2
ωT

u [Ju]ωu +
1
2

VT
uz[Mu]Vuz

=
1
2


θ̇u f r

θ̇u f l

θ̇urr

θ̇url


T

[hu]T [Ju][hu]


θ̇u f r

θ̇u f l

θ̇urr

θ̇url

 +
1
2


żu f r

żu f l

żurr

żurl


T

[I][Mu][I]


żu f r

żu f l

żurr

żurl



=
1
2



θ̇u f r

θ̇u f l

θ̇urr

θ̇url

żu f r

żu f l

żurr

żurl



T

 [hu]T [Ju][hu]

[Mu]





θ̇u f r

θ̇u f l

θ̇urr

θ̇url

żu f r

żu f l

żurr

żurl


=

1
2

q̇T
u [Mgu]q̇u

(3.21)

where [Mgu] is the generalized unsprung mass collecting only static values, it is denoted
as:

[Mgu] =

 [hu]T [Ju][hu]

[Mu]

 (3.22)

3.2.4 Generalized forces

The forces and torques acted on the sprung mass is illustrated as Figure 3.4. The vertical
forces includes the gravity of the sprung mass Gs, the four suspension forces Fbs,i, the
front and rear aerodynamic down forces Fdown, f and Fdown,r, and the anti-roll force Fatr,i.
Forces applied in the longitudinal direction are the four longitudinal tire forces Fx,i and
the aerodynamic drag force Fw. In lateral direction, there are only the four lateral tire
forces Fy,i. The torques applied on the unsprung mass are the four driving torques Td,i

transmitted by the shafts that connecting the wheels.
The aerodynamic drag and down forces are presented as :

Fdrag =
1
2

CdρAV2
x (3.23)

Fdown,i =
1
2

Cl,iρAV2
x (3.24)

where Cd is the drag coefficient, ρ is the air density, A is the vehicle effective area, Vx

is the vehicle longitudinal velocity, Fdown,i is the aerodynamic downforce, Cl,i is the lift
Coefficient, i = { f ront, rear}.
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Figure 3.4: Forces and torques applied on the sprung mass

The force matrix of including the forces and torques acted on the sprung mass in
each direction is denoted as:

Fb=



∑
(Fx,i cos δi − Fy,i sin δi) cosψ −

∑
(Fx,i sin δi + Fy,i cos δi) sinψ − Fw cosψ∑

(Fx,i cos δi − Fy,i sin δi) sinψ +
∑

(Fx,i sin δi + Fy,i cos δi) cosψ − Fw sinψ∑
Fbs,i − mg + Fdown, f + Fdown,r

−
∑

Fatr,iyu,i +
∑

Fbs,iyu,i +
∑

(Fx,i sin δi + Fy,i cos δi)ZA,b +
∑

Td,i sin δi∑
Fdown,ixu,i−

∑
Fbs,ixu,i −

∑
(Fx,i cos δi − Fy,i sin δi)ZA,b −

∑
Td,icosδi∑

Mz,i +
∑

(Fx,i sin δi + Fy,i cos δi)xw,i −
∑

(Fx,i cos δi − Fy,i sin δi)yw,i


(3.25)

The torques and forces applied on the unsprung mass is presented in Figure 3.5.

Figure 3.5: Forces and torque applied on the unsprung mass

The force matrix including the torques and forces applied on the unsprung mass can
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be denoted as

Fu=



Td, f r + My, f r − Fx, f rz f r

Td, f l + My, f l − Fx, f lz f l

Td,rr + My,rr − Fx,rrzrr

Td,rl + My,rl − Fx, f rzrl

Fatr, f r − Fbs, f r + Fz, f r − m f rg

−Fatr, f l − Fbs, f l + Fz, f l − m f lg

Fatr,rr − Fbs,rr + Fz,rr − mrrg

−Fatr,rl − Fbs,rl + Fz,rl − mrlg



(3.26)

where My,i is the rolling resistance moment, Fatr,i is the anti-roll force, Fz,i is the vertical
force applied by the ground, mi is the mass of each wheel.

The generalized forces can be derived based on the force analysis and virtual work
principle, which are presented in the following equations. The similar detail derivation
process can be referred to [98].

Qb =
∑

F
∂rb

∂qb
= Fb (3.27)

Qu =
∑

F
∂ru

∂qu
= Fu (3.28)

3.2.5 Lagrange’s equations

The generalized motion equations of the rigid sprung and unsprung mass are derived in
the form of Equation (3.29) according to the Lagrangian mechanics and D’Alembert’s
principle. In this work, we differentiate the generalized mass matrix directly instead
of calculating the partial differentials of the system kinetic energy to the time and
generalized coordinates separately, which is more efficient for derivation.

d
dt

(
∂T
∂q̇b

)
−
∂T
∂qb

= [Mgb]q̈b + [Ṁgb]q̇b −
1
2

q̇T
b [
∂Mgb

∂qb
]q̇b = Qb

d
dt

(
∂T
∂qu

)
−
∂T
∂qu

= [Mgu]q̈u + [Ṁgu]q̇u −
1
2

q̇T
b [
∂Mgb

∂qu
]q̇b = Qu

(3.29)

3.3 Suspension model

The suspension model in this section involves the calculation of spring forces, damping
forces, anti-roll forces, toe angles, camber angles and the steering angles. The
suspension model elaborated below is capable to described the behavior of both the
dependent and independent suspensions.

3.3.1 Spring and damping forces

The suspension force is composed by the spring force and damping force. When the
stiffness and damping ratio are constant values, the suspension force can be denoted as
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Equation (3.30), the spring force on the spring is denoted as a function of the stiffness
kbs,i and the deformation lbs,i of the spring, while the damping force is a function of
damping cd,i and velocity l̇d,i of the damper.

Fbss,i=kbs,i∆ls,i + cd,il̇d,i (3.30)

The spring stiffness can be a constant value or a nonlinear function of the
deformation, while the damping ratio can be a constant or a nonlinear function of
the damper velocity as shown in Equation (3.31), in which case the spring force and
damping force are respectively nonlinear functions of the deformation and damping
velocity.  kbs,i = f (ls,i)

cd,i = f (l̇s,i)
(3.31)

The nonlinear functions can also be described by tables and 1-D interpolations, for
instance, the damping force can be given as Figure 3.6.
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Figure 3.6: Damping forces of the front and rear damper

The deformation of the spring travel ∆ls,i is a function of wheel jounce ∆Di, which
can be calculated by a transmission ratio λs,i,

∆ls,i = λs,i∆Di (3.32)

where the wheel jounce ∆Di is the vertical movement of wheel or axle relative to the
vehicle reference frame, which can be defined as:

∆Di = zw,i − zw0,i (3.33)

while the deformation velocity of the damper can be denoted as:

l̇s,i = λs,iżw,i (3.34)

where zw,i is the vertical position of the unsprung mass in the moving frame, zw0,i is its
initial value.
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Finally, the suspension force acted on each wheel can be denoted as:

Fbs,i = λs,iFbss,i (3.35)

3.3.2 Anti-roll forces

In this work, the anti-roll bars are implemented to reduce the roll displacement of the
race car during fast cornering or over road irregularities. The anti-roll bar connects
opposite left and right wheels together through a short lever arm linked by a torsion
spring. Tacking the front axle as an example, the anti-roll force is a function of the
average jounce D̄l, f and delta jounce ∆Dl, f of the left and right wheels as denoted in
Equation (3.36), the anti-roll forces Fatr, f , Fatr,r can also be calculated with the given
parameter tables and a 2-D interpretation method such as in Figure 3.7.

Fatr, f = f (D̄l, f ,∆Dl, f ) (3.36)

where D̄l, f =
Dr, f + Dl, f

2
, ∆Dl, f = Dr, f − Dl, f , Dr, f and Dl, f are respectively the front

wheel jounce of the right and left side.
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Figure 3.7: Anti-roll forces of the race car

3.3.3 Camber angles

The camber angle γi can be denoted as a function of the wheel jounce and steering
wheel angle input by the driver,

γi = f (∆Di, δdriver) (3.37)

Similarly, the lookup table method based on the 2-D interpolation can be utilized to
calculated the camber angle as it is shown in Figure 3.8 and Figure 3.9.



i
i

“thesis” — 2017/6/27 — 19:58 — page 46 — #56 i
i

i
i

i
i

46 CHAPTER 3. VEHICLE MODELLING

W
he
el
jo
un
ce
(m
)

Steer wheel angle (deg)

0.04

0.02

-0.08
0

200

100
-0.02

0

-0.06

-100
-0.04

I
n
cl
in
a
ti
o
n
a
n
g
le

(r
a
d
)

-200

-0.04

-0.02

Figure 3.8: Inclination angle of right side
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Figure 3.9: Inclination angle of left side

3.3.4 Toe angles

Toe angle of each wheel is also considered in this suspension model, which is denoted
as a function of the wheel jounce,

ξi = f (∆Di) (3.38)

The toe angles can be calculated with the aforementioned 1-D interpolation method
as it is shown in Figure 3.10.
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Figure 3.10: Toe angle of the race car
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3.3.5 Steering angles

The steer angle of each wheel on the ground introduced by the driver is expressed as a
function of the wheel jounce and the steering-wheel angle input by the driver,

δd,i = f (∆Di, δdriver) (3.39)

Again, a 2D interpolation method can be used in this model to obtain the steering
angle on the ground δi with the presented data in Figure 3.11. The final steering angle
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Figure 3.11: Steering angle at ground

on the ground in the vehicle reference system is composed by the wheel spindle angle
and the toe angle:

δi = δd,i + ξi (3.40)

The tables describing the all of the above relationships can be obtained via
experiments in bench test.

3.4 Tire model

One of the important aspects in vehicle dynamics simulation is accurate modeling of
the tire-road interaction forces because the movement of the vehicle depends on the
forces and moments applied to the tires. Many reliable commercial vehicle simulation
software integrated the Magic Formula (MF) tire model developed by Pacejka [99].
The Magic Formula is a set of mathematical formula equations that are capable of
describing the basic tire characteristics for the interaction forces between the tire and
the road under several steady-state operating conditions.

In this section a semi-empirical tire model has been developed based on the full set of
magic formula (MF) equations [100], the forces and moments calculated from the MF is
shown in Figure 3.12. The longitudinal force Fx,i , lateral force Fy,i , overturning couple
Mx,i , rolling resistance moment My,i and aligning moment Mz,i of the tire are calculated
with the vertical force Fz,i , longitudinal slip κi , side slip angle αi and inclination angle
γi, wheel velocities vi as inputs, in this section i = {FR, FL,RR,RL}, which means front
right, front left, rear right and rear left.
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Figure 3.12: Forces, moments and kinematics variables of the tyre road contact

The contact point of the road and tire is the intersection of the wheel center plane,
road tangent plane and the plane through the wheel spin axis.

In this work, the effective radius Re,i of each tire in the above figure is denoted as:

Re,i = R0,i −
Fz0,i

Kt,i
(Dreff,iarctan(Breff,i

Fz,i

Fz0,i
) + Freff,i

Fz,i

Fz0,i
) (3.41)

where R0,i is the radius of the unloaded tire, Fz0,i is the nominal wheel load, Kt,i is the
vertical stiffness of the tire, Dreff,i is the peak value of effective rolling radius, Breff,i is
the low load stiffness effective rolling radius, Fz,i is the normal load of each tire, Freff,i

is the high load stiffness effective rolling radius.

3.4.1 Normal loads

The normal load acted on each tire is the summation of the suspension force, gravity of
the unsprung mass and the anti-roll force,

Fz,i = Fbs,i + mu,ig − Fzar,i (3.42)

3.4.2 Tire slip

The longitudinal slip κi in the contact point is denoted with the wheel center velocity
vwx,i, the wheel rotational velocity ωi in the wheel reference system, and the effective
rolling radius Re,i,

κi=
ωiRe,i − vwx,i

vwx,i
(3.43)

where vwx,i is the wheel center velocity in the wheel frame which can be denoted as:

vwx,i = vux,icosδi + vuy,isinδi

vwy,i = −vux,isinδi + vuy,icosδi
(3.44)

where vux,i, vuy,i are the velocity of the wheel center in the vehicle reference frame and
are derived in Equation (3.10).
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The lateral slip angle αi generates due to the tire carcass’s flexibility when there
is cornering operation, and it is defined as the angular difference between the wheel
traveling direction and the direction of the tread as shown in Figure 3.13. If the slip
angles of the rear tires are greater than the slip angles of the front tires, the vehicle is
said to be oversteering, while if the slip angles of the front tires are greater than the slip
angles of the rear tires, the vehicle is said to be understeering.

y
oC G

frd

byv

bxv

vwx,frvwy,fr

Fwx,fr Fwy,fr

vuy,fr

vux,fr

vw,fr

fra

Figure 3.13: Tire slip angle and the steering angle

There are two ways to calculate the lateral tire slip which leads to the same results,
the first one is to denote it with the wheel center velocity in the vehicle reference frame
and the steering angle, their relationship can be denoted as:

tan(δi + αi) =
vuy,i

vux,i
, (3.45)

where the slip angle can be derive as:

αi=−δi + arctan(
vuy,i

vux,i
) (3.46)

The other method is to denote it with the longitudinal and lateral velocity of the
wheel center in the wheel frame directly,

αi = arctan(
vwy,i

vwx,i
) (3.47)

3.4.3 Tire forces

With the parameters calculated above and the tire data file which collects all the
parameters needed by the MF tire model, it is ready to calculate the tire forces and
moments of the each tire now.

The longitudinal tire force in the contact point is:

Fx,i = (Dx,i sin(Cx,i arctan(Bx,iκi − Ex,i(Bx,iκxi − arctan(Bx,iκx,i)))) + S Vx,i)Gxα,i (3.48)

The lateral force in the contact point is:

Fy,i = (Dy,i sin(Cy,i arctan(By,iαi−Ey,i(By,iαi−arctan(By,iαi))))+S Vy,i)Gyκ,i+S Vyκ,i (3.49)
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The vertical tire force Fzt,i between the ground and the tire is calculated with the tire
vertical stiffness Kt,i and damping ratio Ct,i,

Fzt,i = Kt,i∆R,i + Ct,i∆Ṙi (3.50)

where ∆Ri is the vertical deformation of each tire and can be calculated with the original
radius of the tire and vertical position of the wheel center.

The overturing moment Mx is denoted as

Mx = −R0FZλMx(QS x1λMx − QS x2γ +
QS x3Fy

Fz0
) (3.51)

For tire data where FITTYP is equal to 5, the rolling resistance My is denoted as:

My = R0(S V x + KxS Hx) (3.52)

Otherwise:

My = −R0FZλMy{Qsy1 + Qsy2
Fx

Fz0
+ Qsy3|

Vx

Vre f
| + Qsy4(

Vx

Vre f
)4}. (3.53)

The self aligning moment Mz is denoted as

Mz0 = −tFy0 + Mzr (3.54)

where the meaning of all the above symbols are presented in Appendix A.
To improve the computation efficiency, the MF tire model is programmed in vector

format in MATLAB. The tire fores of the front and rear tires using in combined slip
conditions are demonstrated in Figure 3.14.
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Figure 3.14: Tire Forces of the front and rear tires



i
i

“thesis” — 2017/6/27 — 19:58 — page 51 — #61 i
i

i
i

i
i

3.5. MASS MODEL OF THE POWERTRAIN 51

3.5 Mass model of the powertrain

The powertrain modeling in this paragraph mainly concerns the dependence of the mass
of the powertrain on the design parameters.

3.5.1 Mass model of the Electric motor

The propulsion unit selected in this paper is the alternating current (AC) electric motor
due to its high power output and light weight. The relationship between the mass and
the maximum power Pmax and the base speed nbase is derived based on the fundamental
theory of AC motor design. Equation (3.55) to (3.60) are the basic reference equations
when design an AC motor [101],

P′ = NpEI (3.55)

E =
√

2π f NKwΦm (3.56)

Φm = BAFe (3.57)

I = JACu/2NNp (3.58)

P′ =
√

2Npπ f JKwBAFeACu (3.59)

P′ =
√

2Npπnb pJKwBAFeACu/120 (3.60)

where P′ is the apparent power, Np is the number of phases, E is armature electromotive
force, I is armature current, f is frequency of the current, N is the number of series-
connected turns of the stator, Kw is the winding factor, Φm is the maximum flux of one
pole, B is the flux density through the iron, AFe is the cross-sectional area of the iron,
J is current density, ACu is the total cross-sectional areas of the winding coil, p is the
number of pole pairs, nb is the base speed.

The maximum mechanical power Pmax of the motor can be obtained with the power
factor cosφ, the efficiency ηm and the apparent power P′,

Pmax=P′ηm cos φN/KE=
√

2mπnb pJKwBAFeACuηm cos φN/(120KE) (3.61)

where KE is the ratio of electromotive force to the terminal voltage, cosφ is the power
factor, which is typically given as 0.85 for induction motors.

The relationship between the power and the mass of the electric motor can be
derived based on the above equations. The cross-sectional area of the iron AFe and
the total cross-sectional areas of the winding coil ACu are proportional to the square of
the fundamental unit ‘Length’ respectively,

Pmax

nb
∝ AFeACu ∝ l2l2 (3.62)

The volume is proportional to the third power of the fundamental unit Length,

Vd ∝ l3 (3.63)
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based on Equations (3.61), (3.62) and (3.63), the mass of the electric motor can be
derived as

md = ρm(
Pmax

nb
)
3

/4 (3.64)

where md is the mass of the electric motor, ρm is the mass factor, l is the fundamental
unit ‘Length’.

3.5.2 Mass model of the Transmission

In general, the gearbox is one of the heaviest components of the powertrain, hence,
weight reduction of the gearbox is a top consideration of the vehicle design. Ref. [102]
proposed a method to reveal the relationships among the gear dimensions, transmitted
power, gear speed of the input shaft and gear ratio of a helical/spur gearset, the basic
equation is given as

d2
s w =

4774650P
Kn

(i + 1)3

i
(3.65)

where ds is center distance between the two shafts (mm), w is width of the gear (mm),
all the gears are assumed to have the same width in this research, P is the transmitted
power (kW), n is the rotational speed of input gear (rpm), K is the surface durability
factor (N/mm2), i is the gear ratio.

When the physical units of power and rotation speed are respectively kW and Rpm,
the torque on the input shaft Tin can be expressed as

Tin = 9549.3
P
n

(3.66)

by substituting into Equation (3.66), (3.65) becomes [102]:

d2
s w =

500Tin

K
(i + 1)3

i
(3.67)

The gear ratio and center distance can be expressed as Equations (3.68), (3.69)
respectively,

i =
do

din
(3.68)

ds =
1
2

(din + do) (3.69)

by combining Equations (3.68), (3.69) can be denoted in two forms,

ds =
1
2

(1 + i)din (3.70)

ds =
1
2

(1 +
1
i
)do (3.71)

where din is the diameter of the input gear (mm), do is the diameter of the output gear
(mm).

Substitute Equations (3.70) (3.71) into (3.67), we can get:

d2
inw =

2000Tin

K
(i + 1)

i
(3.72)
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d2
ow =

2000Tin

K
i(i + 1) (3.73)

the weight of one gear set can be derived as:

mg =
1
4
ψρπw(d2

in + d2
o). (3.74)

Combine Equations (3.72), (3.73) and (3.74), the weight of one gear set can be
expressed as

mg(i) =
500Tin

K
ψρπ(1 +

1
i

+ i + i2), (3.75)

and the weight of all the gear set in a gearbox can be estimated as

mgt =

Ng∑
j=1

mg, j (3.76)

where mg is the mass of one pair of gear set, ψ is the gear volume fill factor, ρ is the
mass density of the gear, mgt is the total mass of all the gear sets.

3.6 Track model

3.6.1 Curvature of the track

The XY coordinates of the Nurburgring circuit is presented in Figure 3.15. These data
can be obtained with GPS, or can be extracted and converted from the commercial or
open source map.
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Figure 3.15: The XY coordinates of the Nurburgring circuit

The curvature of the track can be calculated with the given X-Y coordinates with
Equation (3.77). The track can be described by its curvature and arc length in a
curvilinear coordinates system as it is presented in Figure 3.16, the origin position
is [0, 0].

C =
dx · ddy − ddx · dy

(
√

dx2 + dy2)
3
2

(3.77)
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where dx, ddx, dy, ddy are the first and second order gradients of the X-Y coordinates
respectively.
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Figure 3.16: Curvature of the track

3.6.2 Path following model

In curvilinear coordinates system, the vehicle’s position on the track can be described
by its traveled distance s, its normal distance to the reference trajectory n, and its
orientation angle θ at the current traveled distance. As it is shown in Figure 3.17.
The orientation angle is denoted as:

θ = ψ − χ. (3.78)

Figure 3.17: Vehicle position in curvilinear coordinates system

With Equation (3.80) and Equation (3.79), the derivative of the traveled distance ṡ
can be denoted as Equation (3.81) with the absolute longitudinal and lateral velocity of
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the vehicle in global reference frame.

ṡ − nθ̇ = dẊ cos θ + dẎ sin θ (3.79)

where θ̇ can be expressed as:
θ̇ = Cṡ (3.80)

the derivative of s is derived as:

ṡ =
dẊ cos θ + dẎ sin θ

1 − nC
(3.81)

The derivative of the normal distance ṅ can be denoted as Equation (3.82).

ṅ = dẊsinθ − dẎcosθ (3.82)

The derivative of χ can be denoted as:

χ̇ = ψ̇ − Cṡ (3.83)

Finally, there are 31 states variables of the 14-DOF model and trajectory tracking
information, the states vector is given as:

Xin = {ẊA,b, ẎA,b, ż, ϕ̇, φ̇, ψ̇, żu f r, żu f l, żurr, żurl, θ̇u f r, θ̇u f l, θ̇urr, θ̇url,

XA,b,YA,b, z, ϕ, φ, ψ, zu f r, zu f l, zurr, zurl, θu f r, θu f l, θurr, θurl, s, n, χ}
(3.84)

3.7 Driver model

The optimal design and control problems are solved by transcribing the original
continuous problem into finite dimensional NLP problem. For the NLP problem, all
of the variables, and constraints should have reasonable and valid boundaries, besides,
the initial guess also is very important to achieve a feasible solution or a fast converge
speed. In order to estimate the values of these boundaries and obtain a initial guess
of the transcribed NLP problem, it is necessary to develop a diver model to control the
race car move on the given track following the defined trajectory line. The driver model
developed in this section is composed by the longitudinal control and lateral control.

3.7.1 longitudinal control

The purpose of the longitudinal control is to let the race car following a given reference
longitudinal velocity which is based on the PID control logic and is presented in
Equation (3.85).

Td(n) = Kp

e(n) +
T
Ti

n∑
i=0

e(i) +
Td

T
[e(n) − e(n − 1)]

 (3.85)

where Td is the desired driving torque, n is the time step, e is the tracking error of
longitudinal velocity , Kp is the proportional gain, Ti is the integral time, and Td is the
derivative time.
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3.7.2 Lateral control

The lateral control aims at generating the appropriate steering angle, in order to control
the vehicle following the reference track. Considering the delayed response of the
vehicle, instead of using only proportional control, a lateral controller based on PD
control presented as is developed to track the given reference line accurately.

δ(n) = Kp1e1(n) + Kd1(e1(n) − e1(n − 1)) + Kp2e2(n) + Kd2(e2(n) − e2(n − 1)) (3.86)

where Kp1,Kp2 are the proportional gains, Kd1,Kd2 are the derivative terms, e1, e1 are
the normal distance and yaw angle tracking errors denoted as:

e1 = n, e2 = ψre f − ψ. (3.87)

Figure 3.18 presents the path following results of lateral preview control with
constant longitudinal speed Vx = 75km/h.

-400 -200 0 200 400 600 800 1000 1200 1400 1600

X (m)

-300

-200

-100

0

100

200

300

400

500

Y
(m

)

1801

 903

 674

   0  227  456

1127
1348

1576

20232247

2473

2702

2926

31493376

3602

3831

4053

4272

Road boundary

Road boundary

Road center line

Vehicle trajectory

Figure 3.18: Path following at speed Vx = 75km/h

3.8 Validation

The 14-DOF model developed in MATLAB is validated with the swept sine steering
and step steering manoeuvres based on a Formula 3 chassis. The simulation results are
compared with the commercial software VI-CarRealTime.

3.8.1 Step steer

The step steer input of the step steer manoeuvre starts from the 2s second and ends
at 3s with a steering amplitude of 30◦. The comparison of the wheel steering angles
on the ground, normal loads acted on tires, side slip angles, camber angles, spring
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forces, damping forces, tire lateral forces, yaw rate, lateral acceleration and roll angle
are demonstrated in Figure 3.19 to Figure 3.28, respectively.
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Figure 3.19: Step steer manoeuvre: Comparison of wheel steering angles on the ground
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Figure 3.20: Step steer manoeuvre: Comparison of normal loads acted on tires
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Figure 3.21: Step steer manoeuvre: Comparison of side slip angles
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Figure 3.22: Step steer manoeuvre: Comparison of camber angles



i
i

“thesis” — 2017/6/27 — 19:58 — page 59 — #69 i
i

i
i

i
i

3.8. VALIDATION 59

0 2 4 6 8

t (s)

800

900

1000

1100

F
bs
s
f
r
(N

)

0 2 4 6 8

t (s)

600

700

800

900

1000

F
bs
s
f
l
(N

)

0 2 4 6 8

t (s)

1200

1300

1400

1500

1600

F
bs
s
r
r
(N

)

0 2 4 6 8

t (s)

1100

1200

1300

1400

F
bs
s
r
l
(N

)

VI-CarRealtime

The developed

Figure 3.23: Step steer manoeuvre: Comparison of spring forces
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Figure 3.24: Step steer manoeuvre: Comparison of damping forces
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Figure 3.25: Step steer manoeuvre: Comparison of tire lateral forces
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Figure 3.26: Step steer manoeuvre: Comparison of yaw rate
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Figure 3.27: Step steer manoeuvre: Comparison of lateral acceleration
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Figure 3.28: Step steer manoeuvre: Comparison of roll angle

As demonstrated in Figure 3.19 to Figure 3.28, the simulation results in the step
steer manoeuvre of the developed 14-DOF vehicle model are highly consistent with
VI-CarRealTime.
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3.8.2 Swept sine steer

The swept sine steer manoeuvre is started at 2s with a longitudinal speed 80 km/h, a
steering amplitude is 30◦ and a steering frequency from 1 Hz to 8 Hz. The comparison
of the wheel steering angles on the ground, normal loads acted on tires, side slip angles,
camber angles, spring forces, damping forces, tire lateral forces, yaw rate, lateral
acceleration and roll angle in swept sine steer manoeuvre are demonstrated in Figure
3.29 to Figure 3.38, respectively. As demonstrated in the Figure 3.29 to Figure 3.38, the
simulation results in the swept sine steer manoeuvre of the developed 14-DOF vehicle
model are highly consistent with the ones obtained in VI-CarRealTime.
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Figure 3.29: Swept sine steer manoeuvre: Comparison of wheel steering angles on the ground
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Figure 3.30: Swept sine steer manoeuvre: Comparison of normal loads acted on tires
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Figure 3.31: Swept sine steer manoeuvre: Comparison of side slip angles
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Figure 3.32: Swept sine steer manoeuvre: Comparison of camber angles
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Figure 3.33: Swept sine steer manoeuvre: Comparison of spring forces



i
i

“thesis” — 2017/6/27 — 19:58 — page 65 — #75 i
i

i
i

i
i

3.8. VALIDATION 65

2 4 6
-100

-50

0

50

100

2 4 6
-100

-50

0

50

100

2 4 6
-100

-50

0

50

100

2 4 6
-100

-50

0

50

100

VI-CarRealtime

The developed

Figure 3.34: Swept sine steer manoeuvre: Comparison of damping forces
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Figure 3.35: Swept sine steer manoeuvre: Comparison of tire lateral forces
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Figure 3.36: Swept sine steer manoeuvre: Comparison of yaw rate
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Figure 3.37: Swept sine steer manoeuvre: Comparison of lateral acceleration
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Figure 3.38: Swept sine steer manoeuvre: Comparison of roll angle
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CHAPTER4
Development of a Software Package for General

Dynamic Optimal Control Problems

4.1 Introduction

A MATLAB software package for General DYNamic OPTimal control problems
abbreviated as GDYNOPT is developed in this work to solve the formulated optimal
powertrain design and control problems in Chapter 5. Figure 4.1 presents the sketch
of the developed MATLAB software package. GDYNOPT is implemented and flexible
with interface to different transcription methods including both the local collocation and
global collocation approaches, differential methods including forward, central, complex
step and analytical differential method based on MATLAB symbolic toolbox and with
features of automatic scaling based on the proposed average norm of gradient and linear
scaling, sparsity and parallel computing. GDYNOPT is mainly composed of three parts
which are the user defined, transcription and NLP solver part. In the user defined
part, the user should provide the initial guess, the bounds of the state, control, design
variables and constraints. The Lagrangian term L, Meyer termM of the cost function,
the dynamic equation f , the path constraints g, the linkage constraints ψ and the
boundary constraints b should also be provided in the developed function framework.
Besides, the user needs to set some parameters related with the optimization, i.e., the
transcription method mtrans, the differential method mdi f f , the number of collocation
nodes Nn, scaling setting scal, parameters to be plotted in the iterations plot , weights of
the to be smoothed control parameters wu, the meanings of other symbols are described
in the following sections. In the transcription part, the user requested settings will be
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realized and the formats of variables, functions will be transformed into the required
ones by the NLP solver. The different transcription methods, differential methods,
automatic scaling method, plot functions are all developed in the transcription part.
The last part of the software package is the NLP solver and the employed solver in this
work is IPOPT [34, 103].

NLP solver: 
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Figure 4.1: Sketch of the developed MATLAB software GDYNOPT
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4.2 User settings of GDYNOPT

To use this software package, the user need to supply the initial guess of the state x0,
control u0, terminal time t f 0 and the design variables p0 with the following dimensions:

x0 ∈ RNx,usr×nx

u0 ∈ RNu,usr×nu

p0 ∈ R1×np

t ∈ RNx,usr×1

t f 0 ∈ R
nt f

(4.1)

where Nx,usr is the number of nodes of the user provided state variables, Nu,usr is the
number of nodes of the user provided control variables, nx is the number of the state
variables of the dynamic equations, nu is the number of control variables, nt f is 1 if the
terminal time is also the parameters to be optimized otherwise it is 0, np is the number
of design parameters, Ri× j means a 2-dimensional matrix with i rows and j columns.
For the global transcription methods, the initial value of the starting and terminal time
of each phase will be generated by the GDYNOPT.

The dimension of the lower and upper bounds of the state x, control u, terminal time
t f , design variables p and the inequality constraints g are given as:

xmin ∈ R1×nx

xmax ∈ R
1×nx

umin ∈ R1×nu

umax ∈ R
1×nu

pmin ∈ R1×np

pmax ∈ R
1×np

t f min ∈ Rnt f

gmin ∈ R1×ng

gmax ∈ R
1×ng

(4.2)

where ng is the number of path constraint variables.
The user defined functions are the Lagrangian term L, Meyer term M of the

objective function, the first order dynamic constraint function f , the path constraint
function g and the boundary constraint function b, with the following input and output
dimensions:

L = Lagrange(x, u, t, p), {RNn × Rnx ,RNn × Rnu ,RNn × R,R × Rnp} −→ RNn×1

M = Meyer(x0, t0, x f , t f , p), {R × Rnx ,R,R × Rnx ,R,R × Rnp} −→ R

f = dyn(x, u, t, p), {RNn × Rnx ,RNn × Rnu ,RNn × R,R × Rnp} −→ RNn×nx

g = path(x, u, t, p), {RNn × Rnx ,RNn × Rnu ,RNn × R,R × Rnp} −→ RNn×ng

b = bound(x0, t0, x f , t f , p), {R × Rnx ,R,R × Rnx ,R,R × Rnp} −→ R2×nb

(4.3)
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where Nn is the number of the user set nodes. For the global transcription methods, the
linkage constraint ψ of each neighboring phases will be generated by the GDYNOPT.

In oder to improve the computing efficiency the author provided functions should
support vector or matrix operations and strictly obey the above requirements on the
dimensions of the functions’ inputs and outputs.

The other parameters that the user should set are list as Table 4.1:

Table 4.1: Optimization settings defined by the user

Parameters Meanings and settings

Niter The maximum iterations, the NLP solver will terminate when reach Niter

Nn The total number of collocation nodes determining the discretized step
Ns The total number of intervals when multiple phase control activated
scal Scale settings of the implemented automatic scaling, active: scal = 1, inactive: scal = 0
scalN Scale settings of the provided by the NLP solver, active: scalN = 1, inactive: scalN = 0
tolJ1 The absolute tolerance of the objective function
tolJ2 The acceptable tolerance of the objective function
tolc1 The absolute tolerance of the constraint function
tolc2 The acceptable tolerance of the constraint function
wu The weights of the controls to be smoothed, wu ∈ R

1×nu

plot The debug index, 1: means to plot and print the desired variables in command window, 0: inactive
para 1: means to use parallel computing, 0: means inactive
mtrans The transformation methods, choose one from { Hermite-Simpson, Trapezoidal, LGL and CGL }
mdi f f The differential methods, choose one from { Forward, Central, ComplexStep and Analytical }
mhes The methods to obtain Hessian, choose one from {Forward, Central, ComplexS tep and Analytical}

With the above user defined information, the transformation software need to
provide the initial guess, bounds of the variables and functions in the required formats
of the NLP solvers, besides, pass some user defined setting to the NLP solvers directly.
The manners to provide these variables and functions vary with the transformation
methods defined by the users, which are presented in the following sections.

4.3 Local collocation approach

4.3.1 NLP variables

In Trapezoidal approach and the Hermite-Simpson approach when the state and control
variables locating at the middle of the each sample interval are not parameters to be
optimized, the continuous state and control variables can be discretized over the whole
time interval in to Nn nodes with the linear interpretation method. The new independent
time samples are obtained by generating a linearly spaced vector on [t0, t f ] with length
Nn. The obtained variables are given in Equation (4.4).

x0 ∈ RNx,usr×nx

u0 ∈ RNu,usr×nu

p0 ∈ R1×np

t ∈ RNx,usr×1

t f 0 ∈ R
nt f

−→



x′0 ∈ RNn×nx

u′0 ∈ RNn×nu

p′0 ∈ R1×np

t′ ∈ RNn×1

t′f 0 ∈ R
nt f

(4.4)
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Subsequently, the discretized state, control variables at each node together with
the static parameters of the continuous optimal design and control problem can be
reconstructed as a column vector of NLP variables:

y =
[

x1,u, x2,u2, . . . , xNn ,uNn , t f , p
]T

(4.5)

where xi is the row vector of the state variables at node i with dimension 1 × nx, ui is
the row vector of the control variables at node i with dimension 1 × nu, t f is the final
time, p is the row vector of the design variables with dimension 1 × np. The dimension
of y is Nn(nu + nx) + nt f + np.The initial guess of the NLP variables y0 is obtained by
reconstructing the resulted variables in Equation (4.4).

For the Hermite-Simpson approach, when the control variables ū between the center
of each sample interval are chosen as the parameters to be optimized, the NLP variables
are given as:

y =
[

x1,u, ū1, x2,u2, ū2, . . . , ūNn−1, xNn ,uNn , t f , p
]T

(4.6)

In this case, the user should supply an initial guess of ūT
Ni
∈ R(Nn−1)×nu . The

dimension of the NLP variables will be Nn(2nu + nx) − nu + nt f + np.
When both the state x̄ and control ū variables between the center of each sample

interval are selected as the to be optimized parameters, the NLP variables will become
into:

y =
[

x1,u, x̄1, ū1, x2,u2, x̄2, ū2, . . . , x̄Nn−1, ūNn−1, xNn ,uNn , t f , p
]T

(4.7)

In this case, the user should supply both the initial guess of x̄T
Ni
∈ R(Nn−1)×nx and ūT

Ni
∈

R(Nn−1)×nu . The dimension of the NLP variables will be 2Nn(nu + nx)− nu − nx + nt f + np.
The lower bounds and upper bounds of the NLP variables given in Equation (4.2)

should be reconstructed and consistent with the constructed NLP variables.

4.3.2 Constraints

1) Defect constraints of the Hermite-Simpson approach
Based on the 3rd order Hermite interpolation, the state variable x̄ locating at the

middle of xk and xk+1, and its derivative ˙̄x can be separately denoted as:

x̄ =
1
2

(xk + xk+1) +
1
8

h( f (xk,uk, p) − f (xk+1,uk+1, p)) (4.8)

˙̄x =
3(xk + xk+1)

2h
−

f (xk,uk, p) + f (xk+1,uk+1, p)
4

(4.9)

The defects constraint ζk = ˙̄x − f (x̄, ū, p) at node x̄ based on the Hermite-Simpson
approach is finally derived as:

ζk = xk+1 − xk −
1
6

h( f (xk,uk, p) + 4 f (x̄, ū, p) + f (xk+1,uk+1, p)), ζ ∈ R(Nn−1)×nx (4.10)

In this work, the control variable ū located at the middle of the interval [xk, xk+1] is
simply implemented with the linear interpolation method, which is given by:

ū =
uk + uk+1

2
(4.11)
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There are two advantages of this approach, first, the dimension of the NLP variables
are significantly reduced compared with Equation (4.6) and (4.7); second, it is more
convenient to smooth the control variables by introducing penalty functions in the cost
function and supplying the relevant gradients.

The NLP solver will determine the variables [xk,uk, xk+1,uk+1, t f , p] to drive ζk

towards zero based on the supplied Jacobian and Hessian information during the
iteration process. Finally, the interpolate polynomials will be enforced to approximate
the true dynamics accurately.

For the numerical computation, of course one can follow the Equations (4.8)-(4.10)
step by step, however, in this case, it will introduce some repetitive computing which
will slow down the optimization iterations. A better solution is to take the advantage
of matrix operations in MATLAB. The state variable x̄, and control variable ū can be
obtained with:

x̄ = Ts1x +
h
8

Ts2 f (x,u, p) (4.12)

ū = Ts1u (4.13)

where f (x,u, p) ∈ RNn×nx is the system dynamics denoted as

f (x,u, p) =


f (x1,u1, p)

...

f (xNn ,uNn , p)

 =


f1(x1,u1, p) . . . fnx(x1,u1, p)

...
. . .

...

f1(xNn ,uNn , p) . . . fnx(xNn ,uNn , p)

 , f (x,u, p) ∈ RNn×nx ,

(4.14)
the transformation matrix Ts1 and Ts2 are given as:

Ts1 =


1 1 0 · · · 0 0

0 1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 1


, Ts1 ∈ R

(Nn−1)×Nn (4.15)

Ts2 =


−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −1 1


, Ts2 ∈ R

(Nn−1)×Nn (4.16)

The defect constraints ζ in Equation (4.10) can be computed with the matrix
operation:

ζ = Ts2x −
h
6

(Ts1 f (x,u, p) + 4 f (x̄, ū, p)), ζ ∈ R(Nn−1)×nx (4.17)

2) Defect constraints of the Trapezoidal approach
The defect constraints ζk of the Trapezoidal method are denoted as:

ζk = xk+1 − xk −
1
2

h( f (xk,uk, p) + f (xk+1,uk+1, p)), ζ ∈ R(Nn−1)×nx (4.18)
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Again, the defect constraints matrix ζ ∈ R(Nn−1)×nx can be calculated with a more
compact way:

ζ = Ts2x −
h
2

Ts1 f (x,u, p) (4.19)

where the state variable x ∈ RNn×nx , the control variable u ∈ RNn×nu , Ts1 and Ts2 are the
transformation matrix defined in the above paragraphs.
3) Path and boundary constraints

The path constraints g ∈ RNn×ng are the functions of state, control, design and
terminal time variables denoted ad Equation (4.20), while the boundary constraints
b ∈ R1×nb are the functions of initial and final state variables.

g(x,u, p) =


g(x1,u1, p)

...

g(xNn ,uNn , p)

 =


g1(x1,u1, p) . . . gng(x1,u1, p)

...
. . .

...

g1(xNn ,uNn , p) . . . gng(xNn ,uNn , p)

 , g(x,u, p) ∈ RNn×ng

(4.20)
After the presented constraints are obtained, the NLP constraints are ready to be

constructed as:

c(y) = [ζ1,1, . . . , ζ1,nx
, . . . , ζ(Nn−1),1, . . . , ζ(Nn−1),nx

,

g1,1, . . . , g1,ng
, . . . , gNn,1, . . . , gNn,ng

,

b1,1, . . . , b1,nb]
T , c(y) ∈ R((Nn−1)nx+Nnng+nb)×1

(4.21)

Both the lower and upper bounds of the defect constraints are zeros, while the
bounds of path and boundary constraints are set by the user in Equation (4.2). The
bounds of the NLP constraints are constructed consistently with Equation (4.21).

4.3.3 Jacobians

When the state and control located at the middle of each interval are not the to be
optimized parameters in the Hermite-Simpson approach, the Jacobian patterns of the
constraints are the same as the Trapezoidal approach, which are demonstrated in Figure
4.2.

As we can see, the Jacobian matrix Jac ∈ R((Nn−1)nx+Nnng+nb)×(Nn(nx+nu)+nt f +np) is
composed by the derivatives of the defect constraints, path constraints and boundary
constraints. The dimension of the full Jacobian matrix is huge, however, it is very
sparse and we can take advantage of this feature to save a lot of memory.
1) Jacobians of the defect constraints

Considering the fact that the integral step h =
t f − t0

Nn − 1
and ζ is a function of

[xa, xb,ua, ub, t f p] in both the Hermite-Simpson and Trapezoidal approaches, the
3-dimensional Jacobian matrix Jζ ∈ R

nx×(2(nx+nu)+nt f +np)×(Nn−1) of ζ ∈ R(Nn−1)×nx to the
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∂ζ /∂x1 ∂ζ/∂u1

∂ζ/∂tf

Size: nx+nu

∂ζ/∂x2 ∂ζ/∂u2 nx

∂ζ/∂x2 ∂ζ/∂u2 ∂ζ/∂x3 ∂ζ/∂u3

.
.
.

∂ζ/∂xNn∂ζ/∂uNn ∂ζ/∂p

∂ζ/∂tf ∂ζ/∂p

.

.

.

∂ζ/∂tf ∂ζ/∂p

∂ζ/∂xNs∂ζ/∂uNs

∂g/∂x1 ∂g/∂u1

∂g/∂tf

∂g/∂x2 ∂g/∂u2

. . .

∂g/∂xNn ∂g/∂uNn ∂g/∂p

∂g/∂tf ∂g/∂p

.

.

.

∂g/∂tf ∂g/∂p ng

∂b/∂x1
 nb

Size: nt+np

Nn( nx+nu)+nt+np

(N
n
-1

)n
x
+
N
n
n
g
+
n
b

∂b/∂xNn ∂b/∂tf ∂b/∂p

Figure 4.2: Jacobian patterns of the constraints

inputs can be given as:

Jζ =



∂ζ1

∂xa,1
, . . . ,

∂ζ1

∂xa,nx

,
∂ζ1

∂ua,1
, . . . ,

∂ζ1

∂ua,nu

,
∂ζ1

∂xb,1
, . . . ,

∂ζ1

∂xb,nx

,
∂ζ1

∂ub,1
, . . . ,

∂ζ1

∂ub,nu

,
∂ζ1

∂t f
,
∂ζ1

∂b1
, . . . ,

∂ζ1

∂bnb

∂ζ2

∂xa,1
, . . . ,

∂ζ2

∂xa,nx

,
∂ζ2

∂ua,1
, . . . ,

∂ζ2

∂ua,nu

,
∂ζ2

∂xb,1
, . . . ,

∂ζ2

∂xb,nx

,
∂ζ2

∂ub,1
, . . . ,

∂ζ2

∂ub,nu

,
∂ζ2

∂t f
,
∂ζ2

∂b1
, . . . ,

∂ζ2

∂bnb

..., . . . ,
...,

..., . . . ,
...,

..., . . . ,
...,

..., . . . ,
...,

...,
..., . . . ,

...

∂ζnx

∂xa,1
, . . . ,

∂ζnx

∂xa,nx

,
∂ζnx

∂ua,1
, . . . ,

∂ζnx

∂ua,nu

,
∂ζnx

∂xb,1
, . . . ,

∂ζnx

∂xb,nx

,
∂ζnx

∂ub,1
, . . . ,

∂ζnx

∂ub,nu

,
∂ζnx

∂t f
,
∂ζnx

∂b1
, . . . ,

∂ζnx

∂bnb


(4.22)

Here, we can again take advantage of the matrix operation, in this case, the
3-dimensional Jacobian matrix Jζ ∈ R

nx×(2(nx+nu)+nt f +np)×(Nn−1) can be obtained with
2(nx + nu) + nt f + np matrix operations by computing Equation (4.23).

Jζ =

[
∂ζ

∂xa,1
, . . . ,

∂ζ

∂xa,nx

,
∂ζ

∂ua,1
, . . . ,

∂ζ

∂ua,nu

,
∂ζ

∂xb,1
, . . . ,

∂ζ

∂xb,nx

,
∂ζ

∂ub,1
, . . . ,

∂ζ

∂ub,nu

,
∂ζ

∂t f
,
∂ζ

∂b1
, . . . ,

∂ζ

∂bnb

]
(4.23)

where 
xa = x(1 : (Nn − 1), :), xa ∈ R

(Nn−1)×nx

xb = x(2 : Nn, :), xb ∈ R
(Nn−1)×nx

ua = u(1 : (Nn − 1), :), ua ∈ R
(Nn−1)×nu

ub = u(2 : Nn, :), ub ∈ R
(Nn−1)×nu

(4.24)

We can see that the defect constraints ζ ∈ R(Nn−1)×nx is a function of [xa, xb,ua, ub, t f p],
the 3-dimensional Jacobian matrix Jζ ∈ R

nx×(2(nx+nu)+nt f +np)×(Nn−1) can be obtained by
2(nx + nu) + nt f + np times of matrix differential operations. However, in this case, there
will introduce repeatedly calling of the dynamic equations, which some times take long
time for computation.
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Taking the Trapezoidal approach for example, the following procedures can help to
reduce the computation time further. First, calculate the derivatives of ζ to x, u, and p,
let’s denote:

f ′xi
=
∂ f
∂xi

=



∂ f 1,1

∂x1,i
. . .

∂ f 1,nx

∂x1,i
...

. . .
...

∂ f Nn,1

∂xNn,i
. . .

∂ f Nn,nx

∂xNn,i


, i = 1, . . . , nx (4.25)

f ′ui
=
∂ f
∂ui

=



∂ f 1,1

∂u1,i
. . .

∂ f 1,nx

∂u1,i
...

. . .
...

∂ f Nn,1

∂uNn,i
. . .

∂ f Nn,nx

∂uNn,i


, i = 1, . . . , nu (4.26)

f ′pi
=
∂ f
∂pi

=



∂ f 1,1

∂pi
. . .

∂ f 1,nx

∂pi
...

. . .
...

∂ f Nn,1

∂pi
. . .

∂ f Nn,nx

∂pi


, i = 1, . . . , np (4.27)

The above differential matrix can be obtained with nx, nu and np times of matrix
operations respectively, subsequently, the following derivatives of ζ can be obtained:

∂ζ

∂xai

= −Z(i) + hTa f ′xi
, i = 1, . . . , nx (4.28)

∂ζ

∂xbi

= Z(i) + hTb f ′xi
, i = 1, . . . , nx (4.29)

∂ζ

∂uai

= hTa f ′ui
, i = 1, . . . , nu (4.30)

∂ζ

∂ubi

= hTb f ′ui
, i = 1, . . . , nu (4.31)

∂ζ

∂pi
= hTs2

∂ f
∂pi

, i = 1, . . . , np (4.32)

∂ζ

∂t f
=

1
Nn − 1

Ts2 f (x, u, p) (4.33)

where Z(i) ∈ R(Nn−1)×nx is a zero matrix with the ith column a one vector, Ta and Tb are
transformation matrix given as:

Ta =



−
1
2

0 0 · · · 0 0

0 −
1
2

0 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −
1
2

0


, Ta ∈ R

(Nn−1)×Nn (4.34)
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Tb =



0 −
1
2

0 · · · 0 0

0 0 −
1
2
· · · 0 0

...
...

...
...

...
...

0 0 0 · · · 0
1
2


, Tb ∈ R

(Nn−1)×Nn (4.35)

With the obtained derivative matrix, the entire Jacobian matrix of the defect
constraints presented in Equation (4.23) can be constructed.

2) Jacobians of the path and boundary constraints

The Jacobian matrix of the path constraints can be obtained with nx + nu + nt f + np

times of matrix differential operations.

The derivatives to the state variables
∂g
∂x
∈ RNn×ng×nx are:

∂g
∂xi

=



∂g1,1

∂x1,i
. . .

∂g1,ng

∂x1,i
...

. . .
...

∂gNn,1

∂xNn,i
. . .

∂gNn,ng

∂xNn,i


, i = 1, . . . , nx (4.36)

The derivatives of the path constraints to the control variables
∂g
∂u
∈ RNn×ng×nu are:

∂g
∂ui

=



∂g1,1

∂u1,i
. . .

∂g1,ng

∂u1,i
...

. . .
...

∂gNn,1

∂uNn,i
. . .

∂gNn,ng

∂uNn,i


, i = 1, . . . , nu (4.37)

The derivatives of the path constraints to the design variables
∂g
∂p
∈ RNn×ng×np are:

∂g
∂pi

=



∂g1,1

∂pi
. . .

∂ f 1,ng

∂pi
...

. . .
...

∂gNn,1

∂pi
. . .

∂gNn,ng

∂pi


, i = 1, . . . , np (4.38)
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The derivatives of the path constraints to the terminal time
∂g
∂t f
∈ RNn×ng are:

∂g
∂t f

=



∂g1,1

∂t f
. . .

∂g1,ng

∂t f
...

. . .
...

∂gNn,1

∂t f
. . .

∂gNn,ng

∂t f


(4.39)

The derivatives of the boundary constraints to the initial state variables
∂b
∂x0

∈

R1×nb×nx are given as:

∂b
∂x0,i

=

[
∂b1,1

∂x0,i
. . .

∂b1,nb

∂x0,i

]
, i = 1, . . . , nx (4.40)

The derivatives of the boundary constraints to the final state variables
∂b
∂x f
∈ R1×nb×nx

are given as:
∂b
∂x f ,i

=

[
∂b1,1

∂x f ,i
. . .

∂b1,ng

∂x f ,i

]
, i = 1, . . . , nx (4.41)

The derivatives of the boundary constraints to the design variables
∂b
∂p
∈ R1×nb×np are

given as:
∂b
∂pi

=

[
∂b1,1

∂pi
. . .

∂b1,nb

∂pi

]
, i = 1, . . . , np (4.42)

The derivatives of the boundary constraints to the terminal time
∂b
∂t f
∈ R1×nb×1 are

given as:
∂b
∂t f

=

[
∂b1,1

∂t f
. . .

∂b1,nb

∂t f

]
(4.43)

Moreover, we can also introduce the parallel computing by using parfor loops
and GPU computing support in MATLAB to accelerate the calculation of the above
derivatives. The obtained Jacobian matrices of the defect constraints, path constraints
and boundary constraints are reconstructed into the sparse patterns demonstrated in
Figure 4.2.

4.3.4 Cost function

The user defined cost function J ∈ R is composed by two parts which are the
Meyer term M ∈ R and the Lagrangian term L ∈ RNn×1, and it can be denoted as
Equation (4.44), where the trapezoidal integration method is employed to deal with the
Lagrangian term.

J =M +
h
2

Ts1L (4.44)

where Ts1 is the transformation matrix introduced in Equation (4.15).
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4.3.5 Gradients

The user defined cost function J ∈ R is a function of the input variables [x,u, t f , p], the
gradient of the state and control variables gradJxu can be denoted as:

gradJxu =

[
∂J
∂x1

, . . . ,
∂J
∂xnx

,
∂J
∂u1

, . . . ,
∂J
∂unu

]
, gradJxu ∈ R

Nn×(nx+nu) (4.45)

After the calculation of the cost function gradient to the terminal time and design
variables, the final NLP gradients should be constructed in following format:

gradJ =

[
∂J
∂x1,1

, . . . ,
∂J
∂x1,nx

,
∂J
∂u1,1

, . . . ,
∂J
∂u1,nu

, . . . ,
∂J

∂xNn,1
, . . . ,

∂J
∂uNn,nu

,
∂J
∂x1,1

, . . . ,
∂J

∂uNn,nu

,

∂J
∂t f

,
∂J
∂b1,1

, . . . ,
∂J
∂b1,nb

]T

, gradJ ∈ R(Nn(nx+nu)+nt f +np)×1

(4.46)

4.4 Global collocation approach

4.4.1 Multi-phase optimal control

For some complicated optimal control problems with features of non-smooth and
highly nonlinear, it might be inaccurate to approximate the solution with only one
polynomial [35]. In this case, a multiple phase approximation with more than one
polynomials may be beneficial. A general Np phases optimal control problem can be
formulated as:

J =

Np∑
k=1

[
M(k)(x(k)(t(k)

0 ), t(k)
0 , x

(k)(t(k)
f ), t(k)

f , p(k)) +

∫ t(k)
f

t(k)
0

L(k)(x(k)(t),u(k)(t), t, p(k)))dt
]

(4.47)
s.t.: the first order dynamic constraints:

ẋ(k)(t) = f (k)[x(k)(t),u(k)(t), t, p(k)] (4.48)

the algebraic path constraints:

g(k)
min 6 g(k)[x(k)(t),u(k)(t), t, p(k)] 6 g(k)

max (4.49)

the linkage constraints :

ψmin 6 ψ


x(1)(t(1)

0 ),u(1)(t(1)
0 ), t(1)

0 , x(1)(t(1)
f ),u(1)(t(1)

f ), t(1)
f , p(1)

x(2)(t(2)
0 ),u(2)(t(2)

0 ), t(2)
0 , x(2)(t(2)

f ),u(2)(t(2)
f ), t(2)

f , p(2)

...

x(Np)(t(Np)
0 ),u(Np)(t(Np)

0 ), t(Np)
0 , x(Np)(t(Np)

f ),u(Np)(t(Np)
f ), t(Np)

f , p(Np)


6 ψmax

(4.50)
and the boundary constraints:

bmin 6 b(x1
0, t

1
0, x

Np

0 , tNp

0 , p) 6 bmax (4.51)
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4.4.2 NLP variables

In a multi-phase optimal control problem, the time domain is discretized into Np

subintervals:

t0 = t(1)
0 < t(1)

f = t(2)
0 < t(2)

f = . . . = t(Np)
0 < t(Np)

f = t f (4.52)

The NLP variables are given as:

y =

[
x(1)

0 ,u(1)
0 , . . . , x(1)

N(1)
n
,u(1)

N(1)
n
, t(1)

0 , t(1)
f , . . . , x

(Np)
0 ,u(Np)

0 , . . . , x(Np)

N
(Np)
n

,u(Np)

N
(Np)
n

, t(Np)
0 , t(Np)

f , p
]T

(4.53)
where N(p)

n with p = 1, . . . ,Np denotes the number of collocation nodes at phase p. x(p)
i

with p = 1, . . . ,Np, i = 1, . . . ,N(p)
n means the ith state node at phase p, and u(p)

i with
p = 1, . . . ,Np, i = 1, . . . ,N(p)

n means the ith control node at phase p.
The continuous time samples are denoted as a function of t(p)

0 , t(p)
f and τ ∈ [−1, 1]:

t =
(t(p)

f − t(p)
0 )

2
τ +

(t(p)
f + t(p)

0 )

2
(4.54)

The polynomial that approximating the state and control variables at phase p are
denoted as Equation (4.55) and Equation (4.56) respectively:

x(p)(τ) ≈ P(p)
x (τ) =

N(p)
n∑

i=0

L(p)
i (τ)x(p)

i , p = 1, . . . ,Np (4.55)

u(p)(τ) ≈ P(p)
u (τ) =

N(p)
n∑

i=0

L(p)
i (τ)u(p)

i , p = 1, . . . ,Np (4.56)

where L(p)
i is the Lagrange basis polynomial at phase p, given as:

L(p)
i (τ) =

N∏
j=0, j,i

τ − τ
(p)
j

τ
(p)
i − τ

(p)
j

(4.57)

The details of the calculation of the collocation nodes have been presented in
Chapter 2.

4.4.3 Constraints

1) Defect constraints
The derivative of the state variable at sample position τ(p)

k in phase p is given as:

ẋ(p)(τ(p)
k ) ≈ Ṗ(p)

x (τ(p)
k ) =

N(p)
n∑

i=0

L̇(p)
i (τ(p)

k )x(p)
i =

N(p)
n∑

i=0

D(p)
ki x(p)

i (4.58)

where D(p)
ki is the differential matrix in phase p. For the Legendre-Gauss-Lobatto (LGL)
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collocation method [54] D(p)
ki is denoted as:

D(p)
ki =



P(p)

N(p)
n

(τ(p)
k )

PN(p)
n

(τ(p)
i )(τ(p)

k − τ
(p)
i )

, i , k

−N(p)
n (N(p)

n + 1)/4, i = k = 0

N(p)
n (N(p)

n + 1/4), i = k = N(p)
n

0, otherwise

(4.59)

The details of the differential matrix of other pseudospectral methods are given in
Chapter 2.

The defect constraints ζ(p)
i ∈ R

(N(p)
n +1)×nx of LGL collocation method in phase p can

be denoted as:

ζ(p)
i =

N(p)
n∑

i=0

D(p)
ki x(p)

i −
t(p)

f − t(p)
0

2
f
(
x(p)

k , u(p)
k , τ

(p)
k

)
, (4.60)

2) Linkage constraints

The linkage constraint ψ ∈ RNp×(nx+nu+1) is denoted as:

ψ(p) =

[
x(p)

N(p)
n
− x(p+1)

0 ,u(p)

N(p)
n
− u(p+1)

0 , t(p)
f − t(p+1)

0

]
, p = 1, . . . ,Np − 1 (4.61)

The path constraints are the same as the ones presented in Section 4.3.4, while the
boundary constraints are incorporated into the path constraints.

The final constraints are

c(y) = [ζ0,1, . . . , ζ0,nx
, . . . , ζ(

∑Np
p=1 N(p)

n −1),1, . . . , ζ(
∑Np

p=1 N(p)
n −1),nx

,

g1,1, . . . , g1,ng
, . . . , gNn,1, . . . , gNn,ng

,

ψ1,1, . . . ,ψ1,nx+nu+1, . . . ,ψNp,1, . . . ,ψNp,nx+nu+1

b1,1, . . . , b1,nb]
T , c(y) ∈ R((Nn−1)nx+Nnng+nb)×1

(4.62)

4.4.4 Jacobians

The sparse patterns of the Jacobian matrix with pseudospectral methods are demon-
strated in Figure 4.3.
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Figure 4.3: The Jacobian patterns of the multi-phase optimal control problem
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4.4.5 Cost function

The objective function of the multi-phase optimal control problem with LGL colloca-
tion method is given as:

J =M(x(1)
0 , t(1)

0 , x(Np)

N
(Np)
n

, t(Np)
f , p) +

Np∑
p=1

 t(p)
f − t(p)

0

2

N(p)
n∑

i=0

w(p)
i L

(
x(p)

i , u(p)
i , τ

(p)
i , p

) (4.63)

w(p)
i =

∫ 1

−1
L(p)

i (τ)dτ =
2

N(p)
n

(
N(p)

n + 1
)

L2
N(p)

n

(
τ

(p)
i

) (4.64)

4.4.6 Gradients

The gradients of the cost function J ∈ R to the state and control variables can be
calculated with the matrix operation:

gradJxu =

[
∂J
∂x1

, . . . ,
∂J
∂xnx

,
∂J
∂u1

, . . . ,
∂J
∂unu

]
, gradJxu ∈ R

Nn×(nx+nu) (4.65)

After the calculation of the cost function gradient to the initial time, terminal time
of each phase and the gradient to the design variables, the final NLP gradients should
be constructed in following format:

gradJ =

 ∂J

∂x(1)
0

,
∂J

∂u(1)
0

, . . . ,
∂J

∂x(1)
N(1)

n

,
∂J

∂u(1)
N(1)

n

, . . . ,
∂J

∂t(1)
0

,
∂J

∂t(1)
f

, . . . ,

∂J

∂x(Np)
0

,
∂J

∂u(Np)
0

, . . . ,
∂J

∂x(Np)

N
(Np)
n

,
∂J

∂u(Np)

N
(Np)
n

,
∂J

∂t(Np)
0

,
∂J

∂t(Np)
f

,
∂J
∂p


T (4.66)

4.5 Differential methods

The first order derivatives of the constraints c(y) are required by most of the NLP
solvers, and precise calculation of the derivatives will assist to obtain a faster
convergence. The differential methods implemented in GDYNOPT are the forward,
central, complex step and analytical methods.

The forward finite difference approximation is denoted as:

∂ f
∂xi

=
f (x + hi) − f (x)

hi
+ O(h) (4.67)

where hi is the perturbation vector of the ith column state variables xi, O(h) is the
truncation error. The forward finite difference approximation benefits from this reduced
number of calling the dynamic equations, however, it has a first-order precision. Of
course we can reduce the perturbation h to have a more precise approximation, however,
in this case, the round-off error might be introduced.
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The central finite difference approximation denoted as
∂ f
∂xi

=
f (x + hi) − f (x − hi)

2hi
+ O(h2) (4.68)

has the second-order precision, however it will introduce doubled numbers of calling
the dynamic function. In some cases, the benefit of the central finite difference
approximation might not be so significant.

The complex-step derivative approximation methods can compute the first deriva-
tives in relatively easy way, which has been verified to be very powerful to provide
accuracy closed to the analytical one [104] [105].

The complex-step derivative approximation is based on the Taylor’s series expansion
of an analytic function [104]:

f (x + ih) = f (x) + ih f ′(x) − h2 f ′′(x)
2!
− ih3 f ′′′(x)

3!
+ h4 f (4)(x)

4!
+ ... (4.69)

Taking the imaginary parts of both sides of Equation (4.69) and divide by h, we can
obtain:

f ′(x) = Im[ f (x + ih)]/h + h2 f ′′′(x)
3!

+ ... (4.70)

Neglecting the terms with order h2 or higher, the first-order the complex-step
derivative approximation with approximation error O(h2) can be denoted as:

f ′(x) = Im[ f (x + ih)]/h (4.71)

The complex-step derivative approximation method can reduce the computation
time significantly with the in-built image function in MATLAB. Besides, when the
perturbation is very small, i.e., h = 1e − 20 it can work quite well in nearly all cases
with very small round-off errors. However, sometimes, it need some tricks to handle
some special functions.

Another option of the derivative approximation method implemented in GDYNOPT
is the analytical method which derives the symbolic equations of the derivatives directly
and calls it as a function. This approach can give the exact values of derivatives,
however, it might be difficult or impossible to obtain the analytical expressions of the
derivative for some complicated problems.

4.6 Scaling

In many cases, the variables of the formulated optimal design and control problem
are of significantly different orders of magnitude. The transcribed NLP without any
scaling are often badly scaled and may cost a long time for convergence or even
fail to achieve a solution. To overcome this problem, the manual scaling method by
normalizing the basic physical units of length, mass, and time is an optional approach
[35, 38, 91, 106–108], however, this approach is usually time consuming. Another
solution is the automatic scaling method [38, 53, 109], where the state, control, and
static variables of the optimal control problem are normalized to a specific range with
the user supplied lower and upper bounds of there variables. The defect constraints are
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scaled using the same scaling factors used to scale the state variables. While the path
constraints, linkage constraints and cost function are scaled with their average norm
of the gradients respectively. The followed subsections will give a detail description
of the proposed scaling approach in this work, taking the local collocation method for
instance.

4.6.1 Scaling of the variables

In this work, a linear scaling method is used to scale the state, control, final time and
design variables to let them lie in [0, 1], the scaled x̂, û, t̂ f , and p̂ are,

x̂ = axx + bx (4.72)

û = auu + bu (4.73)

t̂ f = at f t f + bt f (4.74)

p̂ = ap p + bp (4.75)

where the scaling factors are given as followings:

ax =
1

xmax − xmin

bx = −
xmin

xmax − xmin

au =
1

umax − umin

bu = −
umin

umax − umin

at f =
1

t f ,max − t f ,min

bt f = −
t f ,min

t f ,max − t f ,min

ap =
1

pmax − pmin

bp = −
pmin

pmax − pmin

(4.76)

4.6.2 Scaling of the constraints

The constraints should also be scaled to a uniform scale for a faster convergence. In this
work, an average norm of gradient based method is proposed to scale the constraints and
cost functions. The final scale of the constraints and cost functions are approximately
within [0, 1].

The scaled defects constraints ζ̂ i ∈ R
(Nn−1) can be denoted as:

ζ̂ i = k̂ζ,iζ i, i = 1, 2, ...nx, ζ i ∈ R
(Nn−1) (4.77)
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The scaling factor k̂ζ,i ∈ R is predefined in the optimization iterations without
scaling. The scaling factor k(k)

ζ,i of the defect constraint ζ i at iteration k is defined as:

k(k)
ζ,i =

1
Nn − 1

Nn−1∑
j=1

(
1

‖ ∇ζ j,i ‖
2

)
=

1
Nn − 1

Nn−1∑
j=1

 1√
Jζ,temp

 (4.78)

Jζ,temp = (
∂ζ j,i

∂xa j,1
)2 + ... + (

∂ζ j,i

∂xa j,nx

)2 + (
∂ζ j,i

∂ua j,1
)2 + ... + (

∂ζ j,i

∂ua j,nu

)2

+(
∂ζ j,i

∂xb j,1
)2 + ... + (

∂ζ j,i

∂xb j,nx

)2 + (
∂ζ j,i

∂ub j,1
)2 + ... + (

∂ζ j,i

∂ub j,nu

)2

+(
∂ζ j,i

∂t f
)2 + (

∂ζ j,i

∂pj,1
)2 + ... + (

∂ζ j,i

∂pj,np

)2

(4.79)

The final scaling factor k̂ζ,i ∈ R is the average value of k(k)
ζ,i in the optimization

iterations without scaling:

k̂ζ,i =
1

Nscal

Nscal∑
k=1

k(k)
ζ,i (4.80)

where i = 1, . . . , nx, Nscal is the user defined maximum iterations to obtain the scaling
factor.

Similarly, the scaled path constraints is given as:

ĝi = k̂g,i gi, i = 1, 2, ...ng, gi ∈ R
Nn (4.81)

k(k)
g,i =

1
Nn

Nn∑
j=1

(
1

‖ ∇g j,i ‖
2

)
=

1
Nn

Nn∑
j=1

 1√
Jg,temp

 (4.82)

Jg,temp = (
∂g j,i

∂xa j,1
)2 + ... + (

∂g j,i

∂xa j,nx

)2 + (
∂g j,i

∂ua j,1
)2 + ... + (

∂g j,i

∂ua j,nu

)2

+(
∂g j,i

∂xb j,1
)2 + ... + (

∂g j,i

∂xb j,nx

)2 + (
∂g j,i

∂ub j,1
)2 + ... + (

∂g j,i

∂ub j,nu

)2

+(
∂g j,i

∂t f
)2 + (

∂g j,i

∂pj,1
)2 + ... + (

∂g j,i

∂pj,np

)2

(4.83)

The final scaling factor of the path constraints k̂g,i ∈ R is the average value of k(k)
g,i in

the optimization iterations without scaling:

k̂g,i =
1

Nscal

Nscal∑
k=1

k(k)
g,i (4.84)

In this work, the same approach is implemented to scale the boundary constraints
and cost function.
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4.6.3 Scaling of the Jacobians

The Scaling of the Jacobians takes into account the relationship between the scaled
variables and the scaled constraints. The scaled defect constraint is defined as:

Ĵζ,i = [k f ] ◦ Jζ,iξ−1
i , i = 1, . . . ,Nv (4.85)

where ◦means the Hadamard product [110], ξ = [ax, au, ax, au, at f , ap] is a combination
of the variable scaling factors defined in Section 4.6.1 with length Nv = 2(nx + nu) +

nt f + np, [ k̂ f ] is the scaling matrix defined in Equation (4.86).

[k f ] =


k̂ f ,1 . . . k̂ f ,nx

...
. . .

...

k̂ f ,1 . . . k̂ f ,nx

 , [k f ] ∈ R(Nn−1)×nx (4.86)

The scaled path constraint is defined as:

Ĵg,i = [kg] ◦ Jg,iξ
−1
i , i = 1, . . . ,Nv (4.87)

where [k̂g] is the scaling matrix defined in Equation (4.88).

[kg] =


k̂g,1 . . . k̂g,ng

...
. . .

...

k̂g,1 . . . k̂g,ng

 , [kg] ∈ RNn×ng (4.88)

The scaling of the Jacobians of the boundary constraints and gradient of the cost
function can be obtained with the same manner.

4.7 Algorithm flowchart of GDYNOPT

The algorithm flowchart of GDYNOPT is presented in Figure 4.4. GDYNOPT will
reshape the user provided initial guess, bounds of variables and constraints into the
required format of the NLP solver first. If the user set the scaling parameter to 1,
GDYNOPT will call the main body of the optimization function and iterate without
any scaling, during which, the scaling factors of the defect, path, boundary constraints
and the cost function will be calculated and saved for each iteration. When the user
set maximum number of iterations is reached, the first round of optimization will be
terminated. Subsequently, the mean values of the saved scaling factors in the first
round of iterations are calculated. The bounds of the variables and constraints will
be modified with the obtained scaling factors in the second round of iterations. In
the second round of iteration, there will be scale and unscale operations of the state,
control, and static variables, in addition, the constraints, Jacobians, cost functions and
gradients will be scaled with the scaling factors with the approach proposed in last
section. In particular, there are plot functions implemented in the constraints function
which can draw the curves of the user set variables, this feature can help the user to
monitor the optimization process and it is specially useful during the debugging stage
of the implementation.
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Figure 4.4: The algorithm flowchart of GDYNOPT
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CHAPTER5
Optimal Powertrain Design and Control

5.1 Introduction

This Chapter is dedicated to formulate and solve the optimal powertrain design and
control problem of the electric rave car with the developed 14-DOF vehicle model in
Chapter 3 and the software package GDYNOPT developed in Chapter 4. In particular,
the Trapezoidal collocation approach is employed in this work for its robustness and
low cost of computation time. The objective is to minimize the lap time:

J = min t f (5.1)

subject to:
• the first order dynamic constraints:

ẋ(t) = f [x(t),u(t), t, p] (5.2)

• the boundaries of the state, control and design variables:

xmin 6 x(t) 6 xmax

umin 6 u(t) 6 umax

pmin 6 p 6 pmax

(5.3)

• the algebraic path constraints:

gmin 6 g[x(t),u(t), t, p] 6 gmax (5.4)

• and the boundary conditions:

bmin 6 b[x(t0), t0, x(t f ), t f , p] 6 bmax, (5.5)
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where ẋ is the first order derivative of the state variables, f is the dynamic model
developed in Chapter 3, x, u, p are respectively the state, control and design vector
with their lower and upper bounds: xmin, umin, pmin and xmax, umax, pmax. While g and
b are the path and boundary equations respectively with their lower and upper bounds
gmin, bmin and gmax, bmax. The dimensions of the input and output variables in Equations
(5.2), (5.4) and (5.5) are separately given as:

f :Rnx × Rnu × R × Rnp → Rnx

g :Rnx × Rnu × R × Rnp → Rng

b :Rnx × R × Rnx × R × Rnp → Rnb

The state variables x in this work are represented in Equation (5.6), the details of
which are given in Section 3.6.

x =
[
ẊA,b, ẎA,b, ż, ϕ̇, φ̇, ψ̇, żu f r, żu f l, żurr, żurl, θ̇u f r, θ̇u f l, θ̇urr, θ̇url,

XA,b,YA,b, z, ϕ, φ, ψ, zu f r, zu f l, zurr, zurl, θu f r, θu f l, θurr, θurl, s, n, χ
] (5.6)

The control variables u, design parameters p and the path constraints g vary with
the powertrain layouts and will be presented in the following sections.

The initial guess and bounds of the variables and constraints of the formulated
problems are obtained via the path following control of the race car on the Nuburgring
circuit described in Section 3.7.

5.2 Variables and constraints

5.2.1 Design variables

The base speed nb and the constant power speed ratio (CPSR) β are selected as
the design parameters of the motor, the sensitivity of the motor mass to these two
parameters are presented in Section 3.5.1. The envelope curve of the torque-speed
characteristics of the motor can be obtained as Figure 5.1 with the two design
parameters and the maximum power of the motor Pmax, which is normally given by the
racing event. In this work, the single-speed transmission is investigated for different
topologies, and the gear speed ratio ig is selected as the design variable of the gearbox.

For the 1-motor and 2-motor driving topologies, a static braking force distribution
factor λ is introduced as a design parameter to allocate the braking forces between the
front and rear wheels. The design vector of the electric powertrain is finally given as:

p = [nb, β, ig, λ], np = 4 (5.7)

The design vector of a 4-motor driving electric powertrain is given as:

p = [nb, β, ig], np = 3 (5.8)

The powertrain mass will change with different design parameters and will affect
the dynamic response of the race car, and the detail relationship between them have
been investigated in detail in Section 3.5. Besides, the available torque and rotational
speed should be limited within the working zone of the electric powertrain, whereas,
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both parameters vary with the design parameters. Section 5.2.3 will introduce the path
constraints to enforce the powertrain operating in the appropriate working zone.
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m
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x
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n
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Nmax = βnbnb

Constant power zone

Figure 5.1: Design parameters of the motor

5.2.2 Control variables

In order to evaluate the lap time performance of the electric race car, the angle of the
steering wheel and the torques applied on different wheels should be controlled.

In this study, for the 1-motor and 2-motor driving topologies, the race car is assumed
to be controlled using front steering and two rear wheel driving. Neglecting the
dynamic response of the steering system and the motors, the control variables of the
1-motor driving electric race car are given as:

u = [δ,Tb,Tm], nu = 3 (5.9)

The 1-motor driving electric powertrain investigated in this work is assumed to be
implemented with the central drive with a differential, thus, the torques acted on the
four wheels are denoted as:

T =

[
λTb

2
,
λTb

2
,

(1 − λ)Tb + Tmig

2
,

(1 − λ)Tb + Tmig

2

]
(5.10)

where δ is the steering angle on the steering wheel, Tb is the total braking torque, Tm

are the driving torques output by the motor, respectively.
For this topology, the braking and accelerating operations are not allowed to be

activated at the same time, and this is realized by introducing a penalty function Jp ≥ 0.
The ideal relationship between the negative braking torque Tb and the positive driving
torque Tm should be:

Jp = −TbTm = 0 (5.11)
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which means that when the braking torque Tb is applied, the driving torque should be
zero, in the contrary, when the driving torque is acted, the braking torque should be
zero.

Since the penalty function Jp > 0, the objective function in Equation (5.1) can be
rewritten as:

J = min(t f + wJp) (5.12)

where w is the weight of Jp, the analytical approach is employed to derive the relevant
derivative of the objective function.

For the 2-motor driving topology, the two rear independent wheel driving propulsion
layout is adopted in this work, the corresponding control variables and torque acted on
each wheel are respectively:

u = [δ,Tb,Tm1,Tm2], nu = 4 (5.13)

where Tm1 and Tm2 denote the motor driving torque acted on the two rear wheel
respectively.

T =

[
λTb

2
,
λTb

2
,

(1 − λ)Tb

2
+ Tm1ig,

(1 − λ)Tb

2
+ Tm2ig

]
(5.14)

Similar with the 1-motor driving topology, the braking and accelerating torque are
forbidden to be applied at the same time by introducing the penalty function:

Jp = −Tb(Tm1 + Tm2) = 0 (5.15)

For the 4-motor driving topology, the four independent wheel driving propulsion
solution is adopted, the corresponding control variables and torque acted on each wheel
are respectively:

u = [δ,Tm1,Tm2,Tm3,Tm4], nu = 4 (5.16)

T =

[
Tm1ig,Tm2ig,Tm3ig,Tm4ig

]
(5.17)

where Tm1,Tm2,Tm3 and Tm4 are respectively the torques acted on the four wheels.

5.2.3 Path constraints

The algebraic path constraints are a set of functions of the state, control, final time and
design parameters. For the motor design, the maximum rotational speed Nmax,i should
be constrained to a user set range [clNmax , cuNmax]:

clNmax ≤ Nmax = Nbβ ≤ cuNmax (5.18)

In order to let the motors work within their available operation zone, the motor
speed Nm,i and output torque Tm,i should be constrained within the user set ranges
[clNcm , cuNcm] and [clTcm , cuTcm] respectively:

clNcm ≤ Ncm = Nm − Nmax ≤ cuNcm (5.19)

clTcm ≤ Tcm = Tm − Tmax ≤ cuTcm (5.20)
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where Nm is the motor speed which can be denoted as a function of the angular velocity
of rear right wheel ωrr, the angular velocity of rear left wheel ωrl and the gear speed
ratio ig,

Nm =
30
π

ωrl + ωrr

2
ig (5.21)

When the units of torque, rotation speed, power are respectively Nm, rpm and kW,
the available maximum torque of the motor is given as:

Tmax =



9550Pmax

Nb
, Nm ≤ Nb

9550Pmax

Nm
, Nm > Nb

(5.22)

The normal load Fz also should be constrained within a reasonable range.

clFz ≤ Fz ≤ cuFz (5.23)

where cli and cui means the minimum and maximum value of the mentioned variables,
respectively. The final path constraints vector are given as g = [Tcm, Ncm, Nmax, Fz],
the dimension of which varies with the powertrain layouts. The detail values of there
bounds of the constraints are provided based on the simulation results of the closed
loop path following control in Section 3.7.

5.3 Simulation parameters

The optimal design and control of the electric race car is based on the chassis of a
Formula 3 race car, the simulation parameters of the which are presented in Table 5.1.
In order to compare different topologies, the sprung mass mv of the three topologies are
assumed to be the same which is 490 kg, while the powertrain mass (in this work, the
powertrain means the motor and the transmission) of all the topologies are controlled
within 80kg with one more path constraint.

The bounds of the variables and constraints, problem dimensions will elaborated in
the following subsections.

5.3.1 1-Motor driving topology

In order to let the race car operate at the reasonable conditions and reduce the
optimization time, the bounds of the variables and constraints should be provided. The
detail values of these bounds are obtained based on engineering experiences and the
closed loop path following control in Section 3.7. For the 1-motor driving race car, the
bounds are illustrated as Table 5.2.

The problem dimensions depend on the number of collocation node Nn, the
corresponding number of the variables, constraints and non-zero Jacobians are given
as Table 5.3.
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Table 5.1: Simulation parameters of the powertrain optimization

Prameters Values

Mass factor of the motor ρm 0.2845
Gear volume fill factor ψ 0.7
Mass density of the gear ρg 78550 kg/m3

Sprung mass with powertrain mv 490 kg
Wheelbase l 2.73 m
CoG to front axle distance l f 1.595 m
CoG to rear axle distance l f 1.135 m
Front wheel track w f 1.585 m
Rear wheel track wr 1.535 m
Maximum power Pmax 165 kW
Aerodynamic drag force location hg 0.18 m
Surface durability factor K 8920000 N/mm2

Mass factor of the gearbox ρgc 3.1136

Table 5.2: Bounds of the optimal powertrain design and control for the 1-motor driving topology

Prameters Values

Lower bound of the design vector pmin [500, 1.2, 1, 0.1]
Upper bound of the design vector pmax [15000, 6.5, 30, 0.9]
Lower bound of the control vector umin [−180,−8000, 0]
Upper bound of the control vector umax [180, 1e−6, 7600]
Lower bound of the path constraints gmin [−7600,−2e4, 500, 0, 120, 120, 120, 120]
Upper bound of the path constraints gmax [0, 0, 2e4, 80, 3000, 3000, 3000, 3000]

Table 5.3: Problem dimensions of the 1-motor driving topology

Nn 500 1000 1500 2000 2500 3000 3500 4000 4500

State variables Nx 15500 31000 46500 62000 77500 93000 108500 124000 139500
Control variables Nu 1500 3000 4500 6000 7500 9000 10500 12000 13500
Total NLP variables NNLP 17005 34005 51005 68005 85005 12005 119005 136005 153005
Defects constraints Ncd 15469 30969 46469 61969 162469 92969 108469 123969 139469
Path constraints Ncp 3500 7000 10500 14000 17500 21000 24500 28000 31500
Non-zero Jacobians Nde f 1265737 2533737 3801737 5069737 6337737 7605737 8873737 10141737 11409737

5.3.2 2-Motor driving topology

For the 2-motor driving race car, the bounds of the variables and constraints are
elaborated as Table 5.4.

The investigated number of the collocation nodes of the 2-motor driving powertrain
are also 1000, 2000 and 4500, the relevant number of the variables, constraints and
non-zero Jacobians are given as Table 5.5.

5.3.3 4-Motor driving topology

For the 4-motor driving race car, the bounds of the variables and constraints are listed
as Table 5.6. The studied number of the collocation nodes of 4-motor driving race car
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Table 5.4: Bounds of the optimal powertrain design and control for the 2-motor driving topology

Prameters Values

Lower bound of the design vector pmin [500, 1.2, 1, 0.1]
Upper bound of the design vector pmax [15000, 6.5, 30, 0.9]
Lower bound of the control vector umin [−180,−8000, 0, 0]
Upper bound of the control vector umax [180, 1e−6, 3600, 3600]
Lower bound of the path constraints gmin [−3600,−3600,−2e4, 500, 0, 120, 120, 120, 120]
Upper bound of the path constraints gmax [0, 0, 0, 2e4, 80, 3000, 3000, 3000, 3000]

Table 5.5: Problem dimensions of the 2-motor driving topology

Nn 500 1000 1500 2000 2500 3000 3500 4000 4500

State variables Nx 15500 31000 46500 62000 77500 93000 108500 124000 139500
Control variables Nu 2000 4000 6000 8000 10000 12000 14000 16000 22500
Total NLP variables NNLP 17505 35005 52005 70005 87505 12005 122505 140005 162005
Defects constraints Ncd 15469 30969 46469 61969 162469 92969 108469 123969 139469
Path constraints Ncp 4500 9000 13500 18000 22500 27000 31500 36000 49500
Non-zero Jacobians Nde f 1340175 2682675 4025175 5367675 6710175 8052675 9395175 10737675 12080175

Table 5.6: Bounds of the optimal powertrain design and control for the 4-motor driving topology

Prameters Values

Lower bound of the design vector pmin [500, 1.2, 1]
Upper bound of the design vector pmax [15000, 6.5, 30]
Lower bound of the control vector umin [−180,−5500,−5500,−5500,−5500]
Upper bound of the control vector umax [180, 5500, 5500, 5500, 5500]
Lower bound of the path constraints gmin [−5500,−5500,−5500,−5500,−5e4,−5e4,−5e4,−5e4, 500, 0, 120, 120, 120, 120]
Upper bound of the path constraints gmax [0, 0, 0, 0, 0, 0, 0, 0, 2e4, 80, 3000, 3000, 3000, 3000]

are still 1000, 2000 and 4500, the corresponding number of the variables, constraints
and non-zero Jacobians are given as Table 5.7.

Table 5.7: Problem dimensions of the 4-motor driving topology

Nn 500 1000 1500 2000 2500 3000 3500 4000 4500

State variables Nx 15500 31000 46500 62000 77500 93000 108500 124000 139500
Control variables Nu 2500 5000 7500 10000 12500 15000 17500 20000 22500
Total NLP variables NNLP 18004 36004 54004 72004 90004 108004 126004 144004 162004
Defects constraints Ncd 15469 30969 46469 61969 162469 92969 108469 123969 139469
Path constraints Ncp 6500 13000 19500 26000 32500 39000 45500 52000 58500
Non-zero Jacobians Nde f 1435644 2873644 4311644 5749644 7187644 8625644 10063644 11501644 12939644

5.3.4 Optimization settings

As for the NLP solver, the constraints violation is set as 1e−7 which is acceptable
for all the constraints, the desired converge tolerance of the formulated problem is
set as 1e−3. The Jacobians of the defect and path constraints are evaluated with
the central differential method, while the Hessian matrices are approximated with the
inbuilt limited-memory BFGS approach of the NLP solver [103].
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5.4 Smooth the control

The control variables might be extremely non-smooth when only bounds of the control
variables are provided, for instance, the obtained steering wheel angles without any
smooth operations are demonstrated as Figure 5.2.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

-200

-100

0

100

200

Figure 5.2: Steering wheel angle without smooth operations

In real case, it might be impossible for a driver to handle the steering wheel in
such high frequency. In this work, a control smooth approach is proposed to obtain a
reasonably smooth solution. The fundamental idea is to introduce a penalty function
into the objective function which is denoted as:

Ju,i =

Nn−1∑
j=1

(u j+1 − u j)2, i = 1, . . . , nu (5.24)

The analytical gradient of the control smooth function is derived as:

∂Ju,i

∂u j
=


2(u j − u j+1) j = 1

2(2u j − u j+1 − u j−1) j = 2, . . . ,Nn − 1

2(u j − u j−1) j = Nn

(5.25)

The final augmented objective function is denoted as:

J = min(t f + wJp +

nu∑
i=1

wu,iJu,i) (5.26)

where w is the penalty weight of Jp, wu,i is the penalty weight of the ith control smooth
function. The improvements of the proposed control smooth approach are demonstrated
in Appendix B.

5.5 Results

The computation of the optimal design and control problem was performed with
MATLAB 2015a on a Linux OS based cluster with the Intel Xeon CPU X5355
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@2.66GHz. The computation efficiency is approximately improved by 3 times with
parallel computation using 8 CPUs on each node.

5.5.1 1-Motor driving topology

The obtained optimal design parameters [β, nb, λ, ig], the maximum torque of the motor
Tmax, the mass of the motor md and transmission mg, the total mass of the powertrain mp,
the minimum lap time t f , the number of iterations converging to the optimal solutions
Niter, the CPU time in IPOPT tIP and the total CPU time tc of the 1-motor driving
topology with different collocation nodes Nn are presented in Table 5.8.

Table 5.8: Parameters of the optimized one-motor powertrain

Nn β nb(Rpm) Tmax(Nm) λ ig md(kg) mg(kg) mp(kg) t f (s) Niter tIP(h) tc(h)

500 6.43 1810 871 0.47 2.20 45.61 8.59 54.20 90.603 2250 0.22 1.86

1000 6.46 1790 880 0.47 2.10 45.96 8.16 54.13 90.459 2044 0.42 2.93

1500 6.48 1790 880 0.47 2.14 45.98 8.37 54.36 90.377 1721 0.48 3.31

2000 6.48 1786 882 0.47 2.12 46.06 8.29 54.35 90.324 1921 0.74 4.84

2500 6.49 1787 881 0.47 2.14 46.03 8.36 54.39 90.312 1265 0.61 3.88

3000 6.49 1786 882 0.47 2.14 46.05 8.36 54.41 90.293 1535 0.92 5.65

3500 6.49 1786 882 0.47 2.14 46.06 8.38 54.44 90.285 1382 0.99 5.96

4000 6.49 1785 882 0.47 2.14 46.07 8.38 54.45 90.281 1082 0.89 5.24

4500 6.49 1785 882 0.47 2.14 46.07 8.38 54.45 90.273 1350 1.25 7.31

4500NS 6.49 1784 883 0.46 2.11 46.10 8.29 54.39 90.282 3502 3.27 19.06

When the number of collocation nodes is more than 2000, it can be observed from
Table 5.8 that the design parameters [β, nb, λ, ig] stabilize around [6.49, 1785, 0.47, 2.14],
while the mass of the motor and transmission shift slightly around 46 kg and 8.38 kg
respectively. The minimum lap time of each simulation can accurate to 0.1s which is
around 90.28s. The CPU time increases approximately linearly with the increasing of
the number of collocation nodes.

In addition, the simulation results without any scaling when Nn = 4500 are listed
at the last row of Table 5.8, we can see that the saved computation time is about 12
hours compared with the simulation implemented with the proposed automatic scaling
method. In fact, the simulations even failed to converge to a solution when there was
no scaling method employed in some cases.

The optimal racing line of the case when Nn = 4500 is demonstrated in Figure
5.3, we can see that the electric race car entries in a corner the longitudinal velocity
decreases and increases when it runs out the corner, and the minimum velocity at
each corner increases with turning radius. From Figure 5.3, it is observed that
the normal distance of the race car to the center line approaches to the supplied
maximum/minimum bound at each corner in order to achieve a larger turning radius.
The basic conclusions above are consistent with the real case.
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Figure 5.3: The optimal racing line of 1-motor driving topology
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Figure 5.4: The normal distance of the race car to the center line of the 1-motor driving topology

The longitudinal velocity profile of the 1-motor driving electric race car is presented
in Figure 5.5.
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Figure 5.5: The longitudinal velocity profile 1-motor driving topology

For the 1-motor driving electric race car, the zoomed out trajectory at each corner,



i
i

“thesis” — 2017/6/27 — 19:58 — page 99 — #109 i
i

i
i

i
i

5.5. RESULTS 99

the steering wheel angle, braking torque, propulsion torque, orientation angle, tire
forces are also demonstrated separately in detail, the interested reader can refer to the
figures in Appendix B, Section B.1.

5.5.2 2-Motor driving topology

The obtained optimal design parameters [β, nb, λ, ig], the maximum torque of the motor
Tmax, the mass of the motor md and transmission mg, the total mass of the powertrain mp,
the minimum lap time t f , the number of iterations converging to the optimal solutions
Niter, the CPU time in IPOPT tIP and the total CPU time tc of the 2-motor driving
topology with different collocation nodes Nn are presented in Table 5.9.

Table 5.9: Parameters of the optimized 2-motor powertrain

Nn β nb(Rpm) Tmax(Nm) λ ig md(kg) mg(kg) mp(kg) t f (s) Niter tIP(h) tc(h)

500 6.47 2002 394 0.46 2.82 25.14 5.56 61.41 90.431 1771 0.17 1.46

1000 6.48 1895 415 0.47 2.31 26.20 4.39 61.18 90.348 2196 0.43 3.10

1500 6.48 1790 880 0.47 2.14 45.98 8.37 54.36 90.377 1721 0.48 3.31

2000 6.49 1883 418 0.46 2.27 26.32 4.30 61.24 90.255 1928 0.79 5.03

2500 6.49 1888 417 0.47 2.29 26.27 4.34 61.21 90.238 1832 0.93 5.94

3000 6.49 1889 417 0.46 2.30 26.26 4.36 61.24 90.225 2343 1.43 8.83

3500 6.49 1887 418 0.46 2.30 26.28 4.37 61.28 90.219 2124 1.57 9.31

4000 6.49 1887 418 0.47 2.30 26.28 4.35 61.27 90.216 1282 1.06 6.32

4500 6.49 1888 417 0.47 2.30 26.26 4.40 61.32 90.208 1788 1.71 10.13

When the number of collocation nodes is more than 2000, the design parameters
[β, nb, λ, ig] of the 2-motor driving topology stabilize around [6.49, 1888, 0.47, 2.30].
The mass of the motor, transmission and the race car are about 26.26 kg, 4.36 kg and
551.2 kg respectively. The minimum lap time of each simulation can accurate to 0.1s
and shifts slightly around 90.21s.

The optimal racing line of the case when Nn = 4500 is demonstrated in Figure 5.6,
while Figure 5.7 presents the longitudinal velocity profile.
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Figure 5.6: The optimal racing line of 2-motor driving topology
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Figure 5.7: The longitudinal velocity profile 2-motor driving topology

The zoomed out trajectory at each corner, the steering wheel angles, braking torque,
propulsion torque, normal distance to the center line, orientation angle, tire forces of the
2-motor driving electric race car are demonstrated separately in Appendix B, Section
B.2.

5.5.3 4-Motor driving topology

The obtained optimal design parameters [β, nb, ig], the maximum torque of each motor
Tmax, the mass of each motor md and transmission mg, the total mass of the race car mt,
the minimum lap time t f , the number of iterations converging to the optimal solutions
Niter, the CPU time in IPOPT tIP and the total CPU time tc of the 4-motor driving
topology are presented in Table 5.10. The optimal racing line of the case when Nn =

Table 5.10: Parameters of the optimized 4-motor powertrain

Nn β nb(Rpm) Tmax(Nm) ig md(kg) mg(kg) mt(kg) t f (s) Niter tIP(h) tc(h)

500 6.49 2767 142 5.00 11.73 5.16 67.54 90.570 727 0.076 0.61

1000 6.50 2920 134 6.54 11.26 7.91 76.07 90.404 2768 0.59 4.11

1500 6.50 2783 142 5.05 11.68 5.21 67.55 90.383 1150 0.38 2.38

2000 6.50 2793 141 5.17 11.65 5.42 68.24 90.307 2118 0.94 5.73

2500 6.50 2782 142 5.03 11.68 5.19 67.47 90.288 1952 1.11 6.59

3000 6.50 2775 142 5.08 11.70 5.29 67.97 90.266 1625 1.12 6.44

3500 6.50 2774 142 5.06 11.70 5.20 67.60 90.256 1576 1.30 7.36

4000 6.50 2777 142 5.02 11.70 5.18 67.49 90.246 1834 1.71 9.63

4500 6.50 2777 142 5.01 11.70 5.15 67.39 90.241 1945 2.07 11.65

4500 is demonstrated in Figure 5.8, while Figure 5.9 presents the longitudinal velocity
profile.

The zoomed out trajectory at each corner, the steering wheel angles, braking torque,
propulsion torque, normal distance to the center line, orientation angle, tire forces of the
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Figure 5.8: The optimal racing line of 4-motor driving topology
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Figure 5.9: The longitudinal velocity profile 4-motor driving topology

4-motor driving electric race car are demonstrated separately in Appendix B, Section
B.3.

5.6 Comparison of different propulsion systems

The obtained optimal design parameters of the electric powertrain are respectively sum-
marized as [β, nb, λ, ig] = [6.49, 1785, 0.47, 2.14], [β, nb, λ, ig] = [6.49, 1888, 0.47, 2.30]
and [β, nb, ig] = [6.50, 2777, 5.02], the lap time are respectively 90.28s, 90.21s and
90.24s for the 1-motor, 2-motor and 4-motor driving topologies. As we can see, the
4-motor independent driving topology dose not achieve the best lap time performance
as expected. One possible reason is that the mass center of the chassis is fixed and the
average normal loads on the front wheels are smaller than the ones acted on the rear
wheels. Thus, the distance from the mass center to front axle of the chassis l f is then
added into the design parameters, the design parameters of the 4-motor driving electric
race car become into [β, nb, ig, l f ]. The newly obtained optimal design parameters are
[6.5, 3137, 8.33, 1.343], compared with the data in Table 5.1, the mass center of the
race car is move forward by 0.252 m. Figure 5.10 demonstrates that the normal loads
of the race car with the optimized mass center distribute more reasonably, the normal
loads acted on the front tires increases while ones acted on the rear wheels decreases.
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Before optimizing the location of the mass center, the average normal load acted on the
front axles is 2443 N, while the one on the rear axle is 4574 N. The average positive
longitudinal tire forces of the front axle and rear axle are respectively 1026 N and 1284
N.
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Figure 5.10: The normal loads acted on the four tires

After optimization of the mass center location, the average normal loads acted on the
front and rear axles become into 2912 N and 4207 N. The average positive longitudinal
tire forces of the front axle and rear axle are respectively 1016 N and 1295 N. The
obtained lap time is t f = 87.623, which is improved about 2.6s compared with the
obtained results in Table 5.10.

As we can see, the average normal loads distributed on the front and rear tires are
not equal in the test maneuver. In fact, in almost all the maneuvers the normal loads
do not distribute equally on the four wheels. However, currently, in almost all the
developed four wheel driving electric race cars, the four motors and transmissions are
implemented with the same physical parameters, which is also the assumption of this
work. In this case, considering that the maximum power of the race car is limited by
the race event, the power of the motors mounted on the front axle is a kind of surplus
while the one of the rear axle is deficit.

Figure 5.11 presents the comparison of the propulsion power of the 4-motor driving
topologies, we can see that the total propulsion power output by the motors of the
two solutions are actually very similar. The only possible reason for the lap time
improvement is that the dissipated friction power of the tires is reduced and the
propulsion power for accelerating the race car is thus increased after optimizing the
position of the mass center.
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Figure 5.11: The propulsion power of the 4-motor driving topology

Based on the above analysis, a possible 4-motor driving topology can have two pairs
of motors and transmissions mounted on the front and rear axles respectively. Each pair
has two same motors and transmissions but different with the other pair. The updated
design parameters of the 4-motor driving electric powertrain are given as:

p = [β f , nb f , ig f , βr, nbr, igr, Pr, l f ] (5.27)

where β f , nb f , ig f and βr, nbr, igr are respectively the CPSR ratio, base speed of the
motors and the speed ratio of the transmissions mounted on the front and rear axles,
Pr is the maximum power of the rear motors.

The final obtained design parameters of the 4-motor driving electric powertrain
when Nn = 3000 are demonstrated in Table 5.11. The mass of each motor, transmission
on the front and rear axles are respectively 7.47 kg, 1.94 kg, 17.33 kg and 4.95kg. The
total mass of the powertrain is 63.6 kg.

Table 5.11: Parameters of the optimized 4-motor driving electric powertrain with two different pairs of
motors

Paramters β f nb f ig f βr nbr igr Pr (kW) l f (m) t f (s) Niter tIP(h) tc(h)

Values 6.5 2501 4.02 6.5 2473 3.59 125 1.343 87.278 1759 1.35 9.06

We can see that the lap time is further improved compared with the previous
design by 0.34s. The optimal powertrain of the 4-motor driving topology is with two
small power motors (20 kW) driving the front wheels and two bigger motors (62.5
kW) driving the rear wheels. The distance from the mass center to the front axle is
1.343m. The average positive longitudinal tire forces of the front axle and rear axle are
respectively 502 N and 1881 N.

The normal loads acted on each wheel are constrained within [120 N, 3000 N], when
it is enlarged into [120 N, 5000 N], the obtained lap time of the 1-motor, 2-motor, 4-
motor driving topologies are respectively 87.24s, 87.11s and 87.18s. The lap time of
the 4-motor driving topology is 85.47s after the optimization of the location of the mass
center, using two different pairs of motors and transmissions the lap time can be further
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reduced to 85.13s. The conclusion is consistent with the one obtained with normal
loads constraint [120 N, 3000 N].
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CHAPTER6
Conclusions and future work

The preceding chapters developed a 14-DOF vehicle model including the suspension
model, tire model and path following model, then formulated and solved the com-
plicated highly non-linear optimal design and control problems for different electric
powertrain topologies with the self-developed software package GDYNOPT. At last,
the obtained results are demonstrated, compared and analyzed. In this chapter, the
main findings, strengths and weaknesses will be reviewed. The recommendations for
future work and developments in vehicle design and control and the developed software
package GDYNOPT will also be presented respectively.

6.1 Conclusions

6.1.1 The optimal design and control of the race car

By analyzing the data obtained in last section, we can conclude that when the mass
center of the race car is fixed, the achieved minimum lap time of the three topologies
are similar, and the 4-motor driving topology does not guarantee the best lap time
performance. When two different pairs of motors and transmissions are implemented
on the front and rear axles, the lap time performance of the 4-motor driving topology
can be significantly improved with also the location of the mass center as design
parameters.

The obtained design parameters can serve as the reference for the motor and
transmission design of the electric race car, while the optimal control results can be
used as the benchmark to develop and to evaluate the closed loop control strategies.
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Moreover, the obtained racing line and steering wheel angle can be used to train the
race car driver in a car simulator.

In addition, the methodology proposed in this work can also be applied in the design
and control of the common type ICE vehicles, EVs and HEVs with different driving
profiles and objective functions.

6.1.2 The developed GDYNOPT

The most important features of a optimal control software are the robustness and
converging time. The robustness of the developed GDYNOPT is validated by
using different number of collocation nodes for different powertrain topologies. The
converging performance of GDYNOPT is significantly improved by introducing the
proposed automatic scaling method.

6.2 Future work

6.2.1 The optimal design and control of the race car

The computation time of the optimal design and control of the race car is still relatively
long. The main reason is that the for loops are introduced to calculate the derivatives
(Equation (3.29)) in the vehicle dynamic model since MATLAB does not support
inverse operation for 3-D matrices. There are two approaches for further improvements,
the first is to take advantage GPU computing while the other is to derive the expressions
of each derivative with the symbolic toolbox of MATLAB directly, however, both
approaches are limited by the graphics card or memory of the accessible computers
currently.

This work is focused on the powertrain design and control to improve the lap time
performance of the electric race car. In fact, the lap time of a race car is influenced
by also other parameters, such as the parameters of the anti-roll bar, the spring and
damper of the suspension, the location of the mass center, the mounted positions of the
motors, the location of aerodynamic downforce and drag force, the toe angles and the
camber angles. The future work can introduce these parameters as design parameters
for further improvement.

6.2.2 The developed GDYNOPT

In this work, the local collocation method is implemented with automatic scaling
approach to solve the formulated optimal design and control problem. Future work
may explore possible improvement in the converging time and accuracy with the global
collocation methods. More case studies will be implemented to test the robustness and
convergence performance of GDYNOPT.

Moreover, the parallel computing currently is only accessible to the CPUs on one
node of the cluster currently, further improvement maybe achieved by using of more
CPUs across different nodes in the future work.
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APPENDIXA
Tire model

A.1 Longitudinal tire force

The longitudinal tire force in the contact point is:

Fx,i = (Dx,i sin(Cx,i arctan(Bx,iκi − Ex,i(Bx,iκxi − arctan(Bx,iκx,i)))) + S Vx,i)Gxα,i (A.1)

with the following coefficients:



Dx,i = µx,iFz,i

µx,i = (PDx1,i + PDx2,id fz,i)(1 − PDx3,iγ
2
i )λµx,i

Cx,i = Pcx1,iλcx,i

Bx,i =
Kxκ,i

Cx,iDx,i

Kxκ,i = (PKx1,i + PKx2,id fz,i)exp(PKx3,id fz,i)λKx,iFz,i

κx,i = κi + S Hx,i

Ex,i = (PEx1,i + PEx2,id fz,i + PEx3,id f 2
z,i)(1 − PEx4,isgn(κx,i))λEx,i

S Hx,i = (PHx1,i + PHx2,id fz,i)λHx,i

S Vx,i = (PV x1,i + PV x2,id fz,i)λV x,iλµx,iFz,i

(A.2)

where the meaning of all the symbols can be found in Ref. [100].
When the tire is used in pure slip mode Gxα,i = 1, while in the combined slip mode,

it is denoted as:
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Gxα,i =
cos[Cxα,i arctan{Bxα,iαs,i − Exα,i(Bxα,iαs,i − arctan(Bxα,iαs,i))}]

cos[Cxα,i arctan{Bxα,iS Hxα,i − Exα,i(BxαS Hxα,i − arctan(Bxα,iS Hxα,i))}]
(A.3)

with: 

Bxα,i = (rBx1,i + rBx3,iγ
2
i )cos[arctan{rBx2,i}]λxα,i

Cxα,i = rCx1,i

αs,i = αF,i + S Hxα,i

Exα,i = rEx1,i + rEx2,id fz,i

S Hxα,i = rHx1,i.

(A.4)

where the meaning of all the symbols can be found in Ref. [100].

A.2 Lateral tire force

The lateral force in the contact point is:

Fy,i = (Dy,i sin(Cy,i arctan(By,iαi−Ey,i(By,iαi−arctan(By,iαi))))+S Vy,i)Gyκ,i+S Vyκ,i (A.5)

with the following coefficients:

Dy,i = µy,iFz,i

µy,i = (PDy1,i + PDy2,id fz,i)(1 − PDy3,iγ
2
i )λµy,i

Cy,i = Pcy1,iλcy,i

By,i =
Kyα,i

Cy,iDy,i

Kyα,i = PKy1,iFz0,i sin
[
PKy4,i arctan

{
Fz,i

(PKy2,i+PKy5,iγ
2
i )Fz0,i

}]
(1 − PKy3,i |γi|)λKyα,i

αy,i = αi + S Hy,i

S Hy,i = S Hy0,i + S Hyγ,i

S Hy0,i = (PHy1,i + PHy2,id fz,i)λHy,i

S Hyγ,i =
Kyγ,iγi−S Vyγ,i

Kyα,i

Kyγ,i = (PVy3,i + PVy4,id fz,i)Fz,i

Ey,i = (PEy1,i + PEy2,id fz,i)(1 + PEy5,iγ
2
i − (PEy3,i + PEy4,iγi)sgn(αy,i))λEy,i

S Vy,i = S Vy0,i + S Vyγ,i

S Vy0,i = (PVy1,i + PVy2,id fz,i)λVy,iλµy,iFz,i

S Vyγ,i = (PVy3,i + PVy4,id fz,i)λKyγ,iλµy,iFz,iγi.
(A.6)

where the meaning of all the symbols can be found in Ref. [100].

When there is pure slip between the road and tires, S Vyκ,i = 0, Gyκ,i = 0, while there
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is combined slip, these parameters are:

S Vyκ,i = DVyκ,i sin
(
rVy5,i arctan(rVy6,iκx,i)

)
λVyκ,i

DVyκ,i = µy,i(rVy1,i + rVy2,id fz,i + rVy3,iγi) cos
(
arctan(rVy4,i, αy,i)

)
Gyκ,i =

cos[Cyκ,i arctan{Byκ,iαs,i − Eyκ,i(Byκ,iαs,i − arctan(Byκ,iαs,i))}]
cos[Cyκ,i arctan{Byκ,iS Hyκ,i − Eyκ,i(ByκS Hxα,i − arctan(Byκ,iS Hxα,i))}]

Byκ,i = (rBy1,i + rBy4,iγ
2
i ) cos[arctan{rBy2,i(αi − rBy3,i)}]λyκ,i

Cyκ,i = rCy1,i

Eyκ,i = rEy1,i + rEy2,id fz,i

S Hyκ,i = rHy1,i + rHy2,id fz,i
(A.7)

where the meaning of all the symbols can be found in Ref. [100].

A.3 Vertical tire force

The vertical tire force Fzt,i between the ground and the tire is calculated with the tire
vertical stiffness Kt,i and damping ratio Ct,i,

Fzt,i = Kt,i∆R,i + Ct,i∆Ṙi (A.8)

where ∆Ri is the vertical deformation of each tire and can be calculated with the original
radius of the tire and vertical position of the wheel center.

∆Ri = R0,i − zu,i (A.9)

A.4 Overturning moment

The overturing moment Mx is denoted as

Mx = −R0FZλMx(QS x1λMx − QS x2γ +
QS x3Fy

Fz0
) (A.10)

where the meaning of all the symbols can be found in Ref. [100].

A.5 Rolling resistance moment

For tire data where FITTYP is equal to 5, the rolling resistance My is denoted as

My = R0(S V x + KxS Hx) (A.11)

Otherwise:

My = −R0FZλMy{Qsy1 + Qsy2
Fx

Fz0
+ Qsy3|

Vx

Vre f
| + Qsy4(

Vx

Vre f
)4}. (A.12)

where the meaning of all the symbols can be found in Ref. [100].
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A.6 Self aligning moment

The self aligning momeent Mz is denoted as

Mz0 = −tFy0 + Mzr (A.13)

with

S Ht = QHz1 + QHz2d fz + (QHz3 + QHz4d fz)λz

αt = α + S Ht

t = Dtcos[Ctarctan{Btαt − Et(Btαt − arctan(Btαt))}]cos(α)

Mzr = Drcos[Crarctan(Brαr)]cos(α)

αr = α + S H f

Bt = (QBz1 + QBz2d fz + QBz3d f 2
z )(1 + QBz4γ

2 + QBz5|γz|)λKy/λµy

γz = γλγz

Ct = QCz1

Dt = Fz(QDz1 + QDz2d fz)(1 + QDz3γ
2
z + QDz4γ

2
z ) R0

Fz0
λt

Et = (QEz1 + QEz2d fz + QEz3d fz){1 + (QEz4 + QEz5γz)((
2
π

arctan(BtCtαt))

Br = (QBz9
λKy

λµz
+ QBz10Bycy)

Cr = 1

Dr = Fz[(QDz6 + QDz7d fz)λr + (QDz8 + QDz9d fz)λz]R0λµy
(A.14)

where the meaning of all the symbols can be found in Ref. [100].
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APPENDIXB
Simulation results

B.1 1-Motor driving topology

For the 1-motor driving electric race car, the zoomed out trajectory at each corner of
Figure 5.3 is respectively demonstrated in Figure B.1-Figure B.5.
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Figure B.1: The optimal racing line of 1-motor driving topology: corner 1,2
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Figure B.2: The optimal racing line of 1-motor driving topology: corner 3-7

200 300 400 500 600 700

200

250

300

350

400

50

100

150

200

V
x
 (

K
m

/h
)

Road boundary

Road center line

Optimal

8

9

Figure B.3: The optimal racing line of 1-motor driving topology: corner 8,9
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Figure B.4: The optimal racing line of 1-motor driving topology: corner 10,11
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Figure B.5: The optimal racing line of 1-motor driving topology: corner 12

The steering wheel angle,orientation angle, braking torque and propulsion torque
are demonstrated separately as Figure B.6, Figure B.7, Figure B.8 and Figure B.9.
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Figure B.6: Steering wheel angle of the 1-motor driving topology
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Figure B.7: The orientation angle of the 1-motor driving topology
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Figure B.8: Braking torque of the 1-motor driving topology
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Figure B.9: Propulsion torque of the 1-motor driving topology

Longitudinal tire forces and lateral tire forces of the 1-motor driving topology are
demonstrated as Figure B.10 and Figure B.11 respectively.
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Figure B.10: Longitudinal tire forces of the 1-motor driving topology
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Figure B.11: Lateral tire forces of the 1-motor driving topology
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B.2 2-Motor driving topology

For the 2-motor driving electric race car, the zoomed out trajectory at each corner of
Figure 5.6 are demonstrated in Figure B.12-Figure B.16.
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Figure B.12: The optimal racing line of 2-motor driving topology: corner 1,2
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Figure B.13: The optimal racing line of 2-motor driving topology: corner 3:7
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Figure B.14: The optimal racing line of 2-motor driving topology: corner 8,9
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Figure B.15: The optimal racing line of 2-motor driving topology: corner 10,11
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Figure B.16: The optimal racing line of 2-motor driving topology: corner 12

The steering wheel angle, orientation angle, braking torque and propulsion torque
are demonstrated separately as Figure B.17, Figure B.18, Figure B.19 and Figure B.20.
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Figure B.17: Steering wheel angle of the 2-motor driving topology
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Figure B.18: The orientation angle of the 1-motor driving topology
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Figure B.19: Braking torque of the 2-motor driving topology
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Figure B.20: Propulsion torque on the rear right wheel of the 2-motor driving topology
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Figure B.21: Propulsion torque on the rear left wheel of the 2-motor driving topology

The longitudinal tire forces and lateral tire forces of the 2-motor driving topology
are demonstrated as Figure B.22 and B.22 respectively.
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Figure B.22: Longitudinal tire forces of the 2-motor driving topology
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Figure B.23: Lateral tire forces of the 2-motor driving topology

B.3 4-Motor driving topology

For the 4-motor driving electric race car, the zoomed out trajectory at each corner of
Figure 5.8 are demonstrated in Figure B.24-Figure B.28.
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Figure B.24: The optimal racing line of 4-motor driving topology: corner 1,2
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Figure B.25: The optimal racing line of 4-motor driving topology: corner 3-7
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Figure B.26: The optimal racing line of 4-motor driving topology: corner 8,9

-250 -200 -150 -100 -50 0

120

140

160

180

200

50

100

150

200

V
x
 (

K
m

/h
)

Road boundary

Road center line

Optimal

10

11

Figure B.27: The optimal racing line of 4-motor driving topology: corner 10,11
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Figure B.28: The optimal racing line of 4-motor driving topology: corner 12

The steering wheel angle, orientation angle, braking torque and driving torque are
demonstrated separately as Figure B.29, Figure B.30, Figure B.31.
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Figure B.29: Steering wheel angle of the 4-motor driving topology
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Figure B.30: The orientation angle of the 4-motor driving topology



i
i

“thesis” — 2017/6/27 — 19:58 — page 123 — #133 i
i

i
i

i
i

B.3. 4-MOTOR DRIVING TOPOLOGY 123

0 1000 2000 3000 4000

-600

-400

-200

0

200

0 1000 2000 3000 4000

-1000

-500

0

0 1000 2000 3000 4000

-500

0

500

0 1000 2000 3000 4000

-200

0

200

400

600

Figure B.31: Torque on each wheel of the 4-motor driving topology

The longitudinal tire forces and lateral tire forces of the 4-motor driving topology
are given as Figure B.32 and Figure B.33 respectively.
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Figure B.32: Longitudinal tire forces of the 4-motor driving topology
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Figure B.33: Lateral tire forces of the 4-motor driving topology
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