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Abstract

The use of theoretical methodologies in systems design is highly endorsed in

many fields of engineering due to simplicity, flexibility, and uniformity of the

solutions as well as the possibility to assess the results even in unpredictable

run-time situations. The latter is probably the strongest incentive for ex-

ploiting such approaches also in the design of operating system components.

This thesis is a part of the aforementioned research trend, as it is devoted to

enhance robustness and responsiveness of an existing task scheduler named

I+PI which is designed in the light of control theory. This scheduler works

by partitioning a run-time modifiable amount of time, called the round time,

among all the active tasks, and correcting on-line for any observed discrep-

ancy. The fraction of the round time allotted to each task is also configurable

on a per-task basis to best suit the tasks needs. The original scheduler was

shown to have a performance closely chasing the EDF scheduler for schedu-

lable task pools, and outperforming it for pools that may become transiently

unschedulable. However, a weakness was found in I+PI with pools of peri-

odic tasks having highly asymmetric periods. Scheduling such task pools with

I+PI calls for short round times, which increases the scheduling overhead.

The contribution of this thesis is to improve I+PI’s responsiveness-overhead

trade-off by redesigning the control scheme and exploiting the concept of

tickless kernels. In such kernels, the time system is designed in an aperi-

odic fashion that provides other subsystems with dynamic ticks rather than

having a periodic interrupt from the system timer. The performance of em-

ploying a control theory based task scheduler on top of a tickless kernel is
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demonstrated in this work through suitable experiments showing that it out-

performs the original I+PI scheduler in all the evaluated cases, and tends

to be strictly better than EDF in many situations. We will show that the

new approach is a highly qualified candidate in real-time applications with

or without deadlines and without imposing any particular symmetry on the

arrival pattern of tasks.
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Italian abstract

L’uso di metodologie teoriche nella progettazione dei sistemi è una strada

seguita in molti campi dell’ingegneria per via della sua semplicità, flessibilità

e uniformità delle soluzioni nonchè per la possibilità di valutare i risultati

anche in situazioni imprevedibili di esercizio. Quest’ultimo è probabilmente

il più forte incentivo per sfruttare tali approcci anche nella progettazione di

componenti di un sistema operativo. Questa tesi è parte di questa linea di

ricerca, in quanto è dedicata a migliorare la robustezza e la reattività di uno

scheduler esistente denominato I + PI, progettato usando la teoria del con-

trollo. Questo scheduler partiziona un tempo modificabile a run-time, detto

tempo di round, tra i task attivi nel sistema, correggendo on-line eventu-

ali discrepanze osservate nel loro comportamento. La frazione del tempo di

round assegnata a ogni task è anch’essa configurabile, e può essere diversa

per ogni task in modo da meglio adattarsi alle necessità specifiche dei task.

Lo scheduler originale ha dimostrato delle prestazioni che si avvicnano allo

scheduler EDF nel caso in cui il task pool sia schedulabile, e prestazioni

migliori di EDF nel caso in cui il task pool diventi temporanemaente non

schedulabile. Tuttavia, lo studio dello scheduler I+PI ha evidenziato un

problema nel caso di pool di task periodici con periodi molto diversi tra loro.

In queste condizioni è necessario scegliere tempi di round molto bassi, cosa

che causa un impatto sull’overhead di scheduling. Il contributo di questa tesi

è quello di migliorare le performance di I+PI in queste condizioni, riproget-

tando lo schema di controllo e traendo vantaggio dalle caratteristiche di un

kernel tickless. In questi kernel, il sottosistema temporale è progettato in
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modo aperiodico, generando interrupt solo quando richiesto invece di avere

interrupt ad un periodo fisso. Le performance del nuovo scheduler e del

kernel tickless sono state verificate tramite un’opportuna campagna speri-

mentale. I risultati mostrano come le performance del nuovo scheduler siano

strettamente superiori allo scheduler I+PI originale, e migliori di EDF in

alcuni casi. Mostreremo che il nuovo approccio è un ottimo candidato in

applicazioni real-time con o senza deadline e senza imporre una particolare

simmetria sul modello di arrivo dei task.
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Chapter 1

Introduction

Apart from design choices imposed by hardware architectures, operating sys-

tem components have been heavily depending on heuristic designs and algo-

rithms and thus, maintenance and evolution of system software have become

increasingly difficult with the ongoing advances in hardware. For instance,

in [14] it is evident that the Linux CFS (Completely Fair Scheduler)[6], al-

beit being operational, has a serious inefficient processor utilization problem

that have been just revealed after a long time. Or, there are some other

efforts such as [17] and [24] to redesign kernels from scratch to become in-

line with and better utilize the newest hardware capabilities. As far as this

work is concerned, some of the problems are still dealt with to a significant

extent through the use of heuristics that are not rooted in formal and strong

mathematical models that allow better uniformity in design and assessment

methods. Various parts of kernel such as task scheduler, load balancer, USB

bandwidth scheduler and etc., can be viewed as closed-loop time-varying sys-

tems to be controlled, hence, a right tool for modeling these problems would

be Control Theory.

An interesting research work in this direction is the I+PI scheduler[16]

which proposes a model for single-core scheduling problem ensuring respon-

siveness and fairness through two control loops in which an outer loop makes

sure that all the active tasks will receive processor’s control within a user-
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defined window of time - i.e. round duration - and an inner loop that ensures

each task consumes a prescribed portion of the round duration, hence, guar-

anteeing fairness. For instance, if the round duration is 5 milliseconds, all

active tasks will be processed at least once every 5 milliseconds. I+PI eas-

ily outperforms MFQ (Multilevel Feedback Queue) and closely follows EDF

scheduler in the Hartstone[28] benchmark in terms of the first deadline miss

but, outperforms both in the number of deadlines missed over a specific du-

ration in which the processor utilization exceeds one hundred percent which

means it does not suffer from the domino effect 1 of EDF and proves to be a

good substitute in real-time applications 2.

The purpose of this work was to improve the performance of I+PI sched-

uler through the use of high-resolution timers and the tickless kernel de-

sign pattern which is relevant since the equations of dynamic systems do

not usually match perfectly with periodic time steps unless endowed with a

high enough resolution. Naturally, the higher the system timer’s resolution,

the more frequent the kernel invocation will be and thus the unnecessary

overhead. However, during the investigations into I+PI, another potential

responsiveness improvement regarding the tasks that yield the control vol-

untarily was discovered in which they would not gain the processor back in

the same and next round in the case that their inactivity time is less than

the end of the next round. For instance, consider a thread that sleeps after

consuming half of its prescribed CPU time. If it wakes up during the current

round, it just misses the remaining half of the CPU time allotted to it but, if

it wakes up after the end of the round, not only the thread will lose its share

from the current round, it is also not scheduled during the next round which

would be problematic in the case that the round duration is long. This issue

1In the scheduling of tasks with deadlines, the domino effect is referred to the situation

where all the deadlines are missed. This can happen with EDF scheduler when utilization

is over hundred percent.
2Applications wherein the correctness of a computation relies not only on the logical

outcomes of the computation but also on the time at which the results are produced are

referred to as real-time[4]
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was not revealed before[16] since the round duration was set to a very small

value that prevented the gap from being large enough to miss the deadlines.

In fact, the inner loop was designed to account for fairness, based on its

classic definition [12] that essentially is about assigning a prescribed amount

of a shared resource (Processor’s time in this case) to each task, however,

a task may not need the whole share assigned to it and yields on purpose -

for instance, consider a periodic task sending a signal from a wireless sensor

node which has been assigned a larger window of time necessary to prepare

and transmit the packet. The fact that tasks are not always striving for the

resource impacts the responsiveness and this has led to a modeling error in

I+PI that tries to force threads to consume as their prescribed CPU share

for them which is not always possible.

In conclusion, this work provides a new control scheme along with proper

actuation layer to solve the responsiveness problem of I+PI while dealing

fairness nominally.

1.1 Brief literature review

The classical time-invariance assumption is often not met in real-life appli-

cations. Considering the OS kernel as an arbiter of shared resources, the

assumption hardly fits the setting where tasks’ demand of those resources

does not remain constant during their lifetime. Therefore, it is inevitable

to provide the kernel components with adaptation capabilities in such un-

predictable environment. This fact is even more relevant when focusing on

real-time or embedded systems with limited resources, power and (soft or

hard) deadlines.

A common practice for the introduction of adaptive abilities in systems

design is to extract and exploit feedback signals from the system at runtime

that is equivalent to the closed-loop system design in control theory jargon.

A classic example would be the MFQ scheduler which provides the system

with different task queues and selects the next task to run from the first non-

13



empty queue with the highest priority. The priority would change during the

runtime as the result of using feedbacks (For instance, the last time a task

has been scheduled is used as a feedback to possibly increase its priority if it

is considerably far in the past) and consequently, the CPU time allotted to

the tasks are adapted. Therefore, it is not a new concept to use feedbacks

as knobs for online adjustment of the system, however, especially during

the last decade, research communities have shed light to the importance

of utilizing control models besides choosing the right feedback signals. For

instance, [29] proposes a perspective shift from traditional open-loop schedul-

ing of network resources to a closed-loop one in order to mitigate the impact

of limited bandwidth and variable workload on the QoC(quality-of-control)

of networked control systems. The aim of this work was to maximize the

overall QoC by dynamically allocating available network bandwidth through

a codesign of control and scheduling and an integrated feedback scheduler

that enables flexible QoC management in dynamic environments (under both

underloaded and overloaded network conditions). The paper [2] is another

research work utilizing feedback signals - and control theory more explicitly

- to control CPU usage and memory consumption of a virtual database ma-

chine in a data center under a time-varying heavy workload through a design

of multiple SISO (single input - single output) feedback controllers. One of

the most recent works in this direction and pertaining to real-time systems

is [1] which targets both energy consumption and processor utilization where

the processor is provided with DVFS (Dynamic Voltage/Frequency Scaling).

The paper [1] proposes a feedback scheduler maximizing battery life while

minimizing deadline miss ratio by adjusting the processor speed in propor-

tion to the available energy in the batteries and the processor utilization.

All the aforementioned works follow the ARTIST2 project which was aimed

at defining a roadmap on control of real-time computing systems[3]. In the

vast majority of cases, the controlled item is the allocation of computing and

communication resources.

Limiting the scope of the topic to the scheduling problem, the same tech-
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nique is applicable through viewing the task pool as a system with measurable

outputs that are used as feedback signals to adjust the policy of the scheduler.

In this regard, in the article [15], Lu et al. propose a conceptual framework

for introducing Feedback Control in real-time operating system scheduling.

A remarkable contribution of their work is the introduction of the distinc-

tion between open- and closed-loop policies in which the latter corresponds in

system-theoretical terms to feedback. In their work, the authors proposed to

use the estimated future utilization as a control signal and to derive from the

desired utilization and miss ratio an admission controller that allows tasks to

enter the system. Notice that admission control, in general, is very popular

in the context of web servers, where the tasks could be rejected to preserve

utilization. Thus the application domain is the main difference between the

referenced paper and I+PI (and therefore this thesis) i.e. in one case it being

a server and in the other an embedded device. Consequently, the amount of

control and the place where this control is introduced is different.

As the target environment for the proposed scheduler in this thesis is em-

bedded devices that are limited in power and resources, it is worthwhile to

highlight another remarkable trend in operating systems i.e. the ”Tickless”

kernels. Provided that such a kernel eliminates unnecessary system calls,

advantages in terms of performance and power usage are delineated by var-

ious research works and many operating systems including Linux[18, 8, 9]

have been switched in this manner for the same reasons. For instance, in

[13] authors have characterized power consumption of the POWER6 system

in different layers including the OS and, have successfully demonstrated the

remarkable effect of tickless Linux kernel.

1.2 Contributions

This thesis is a contribution to the research trend trying to incorporate con-

trol theory into the design of operating system components with the focus

on single processor scheduling and in fact, pursues the thesis ”Control based
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design of OS components”[26]. This section delineates briefly the additional

work performed through this thesis with respect to [26] that encompasses

the design and implementation of I+PI which is the ground for the new

scheduling mechanism (Multiburst scheduler) introduced in this thesis. Both

I+PI and Multiburst schedulers are implemented in C++ and on top of the

Miosix kernel[7] which is an open source OS kernel running on 32-bit mi-

crocontrollers. It provides a platform for the multi-threaded programming

model where applications are statically linked with the kernel. Figure 1.1

depicts architecture of Miosix in which blocks shaded in gray correspond to

amendments made as the contribution of this work.

Figure 1.1: Miosix kernel architecture

As it is mentioned earlier, the work can be categorized into two main

groups i.e. transforming Miosix into a tickless kernel, and design and imple-

mentation of the new scheduler.

• Since Miosix kernel is targeting multiple architectures which in turn

provide different hardware capabilities for timing and synchronization,

the first task was to design an abstract uniform interface for the kernel
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to provide the required base for both periodic and continual system

timer. The interface enables the kernel or scheduler to set the next

interrupt in nanoseconds (and regardless of the resolution) while pro-

cessing the current one.

• Modification of the startup flow to make the kernel inline with the new

timer interface. This involves bypassing of the usual periodic systick

timer 3 , setting up the selected timer peripheral and configuring the

desired resolution through the instantiation of the proper implementa-

tion of the interface.

• Implementation of timer/counter drivers according to the new inter-

face for the various architectures and embedded boards supported by

Miosix.

• Principally, the kernel was using the systick for two reasons: task pre-

emption and management of sleep/wake-up of threads. Thus, the next

modification to the kernel was pertaining to the system calls in charge

of initiating preemptions and a subset of Miosix’s native thread API.

Moreover, since Miosix is transformed to a tickless kernel, all the time-

dependent routines have been amended to operate in terms of nanosec-

onds rather than ”kernel ticks” which can vary from a configuration to

the other.

• With the new interface in place, an additional task of setting the next

context switch point is implemented for Miosix schedulers as there are

no automatic periodic interrupts anymore. This enables the scheduler

to avoid prescribing fixed CPU allocation time and behave in an adap-

tive fashion. Whether the scheduler is exploiting this feature or not,

3Systick is the default timer/counter peripheral circuit found in every computing system

which supports multi-tasking and is used to fire an interrupt according to a configurable

period of time. OS kernels use this peripheral to gain the control back from the running

task and perform a context switch.
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all the existing schedulers should set the next context switch point in

order to fully integrate with the new tickless kernel.

• A comprehensive review of the I+PI scheduler has been done and the

root cause of its weakness regarding responsiveness is detected. One

of the major contributions of the thesis is the design of a new control

scheme to establish a better trade-off between response time and the

number of context switches.

• The new control scheduler (Multiburst) is implemented according to

the generic interface provided by Miosix and on top of the new tickless

kernel. After performing a number of profiling tests to verify the func-

tionality, some standard benchmarks have been used to evaluate the

performance and cost of the Multiburst scheduler with respect to that

of EDF, MFQ, and I+PI.

1.3 Thesis organization

The thesis is structured as follows.

Chapter 2 illustrates the key concept of tickless kernels and presents the

recent practice in existing operating systems. Then it provides a detailed

description of the previous time system of Miosix kernel and integration of

the new method along with a general view of timer/counter drivers imple-

mented to provide the required hardware support. In chapter 3 the scheduler

subsystem of Miosix and implementation of I+PI is described along with the

transition steps to derive the new scheduler. Chapter 4 is dedicated to the

extensive benchmarks used to evaluate the correctness and performance of

the new approach and the results are compared to that of Round Robin,

EDF and I+PI schedulers with/without presence of dynamic ticks provided

by the tickless kernel. Finally, the last chapter draws conclusions regard-

ing the work presented in this thesis and outlines the future directions and

possible extensions to the work.
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Chapter 2

Tickless kernel

The system timer is one of the most crucial requirements of a multi-tasking

operating system from hardware support point of view. It is used in order

to fire an interrupt request every once in a while so that the kernel can

regain the control by preempting running tasks mainly in order to switch the

context to the next task to run according to a scheduling policy. A common

methodology that has been practiced in the design of virtually all types of

kernels was to utilize a periodic timer/counter to generate the aforementioned

interrupt request at regular intervals, gave birth to the concept of the tick of

the kernel.

However, since the kernel tick is not only used for context switches, but

also for timekeeping and waking up tasks that sleep, the kernel tick imposes

a tradeoff between the resolution of the sleep primitive (and the one to

return the current time, at least in kernels that use the tick for both) and

the overhead of the ticks themselves. In theory, one could have a ticked kernel

with wakeups at microsecond resolution, but it would require one million tick

interrupts per second, effectively overloading the CPU with interrupts.

Fortunately, the availability of timer/counter circuits with large registers

for timekeeping (counter and capture registers) has endowed system software

with the possibility to have the processor interrupted whenever it is necessary

rather than relying on the periodic IRQ for kernel intervention and hence,
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one could design a tickless kernel. A tickless kernel refers to an OS kernel

that employs an aperiodic time scheme wherein timer interrupts are only

delivered as required by the kernel space code. Moreover, avoiding unnec-

essary ticks allows the kernel to put idle processor cores in the deep-sleep

state as much as possible in order to decrease power consumption. Although

the advantages of this fundamental change may be more tangible in real-time

and/or embedded kernels which are run on lower performance hardware plat-

forms with limited power supplies, general purpose operating systems such

as Linux, Minix1, Solaris, Windows and OSX have also undertaken the same

path of transforming their kernels to a tickless one. The Linux kernel on s390

from 2.6.6[27] and on i386 from release 2.6.21 can be configured to turn the

timer tick off (tickless or dynamic tick) for idle CPUs using CONFIG NO HZ,

and from 3.10 with CONFIG NO HZ IDLE extended for non-idle processors

with CONFIG NO HZ FULL. The XNU kernel2 in OSX 10.4 on, and the

NT kernel in Windows 8 kernel 3 are also reported to be tickless. The Solaris

8 kernel introduced the cyclic subsystem which allows arbitrary resolution

timers and tickless operation4.

2.1 Time subsystem in Miosix

This section provides essential information about the time subsystem of

Miosix kernel necessary to understand the transition into a tickless coun-

terpart that is exploited to design a highly responsive task scheduler later,

hence, the description provided here pertains to the state of the Miosix kernel

before the fulfillment of this thesis.

Before stepping into implementation of the kernel it is worthwhile to point

out an important naming convension in Miosix that hints the state in which

1http://wiki.minix3.org/doku.php?id=tickless
2See e.g.: https://github.com/darwin-on-arm/xnu/blob/master/osfmk/arm/rtclock.c
3Bright, Peter. ”Better on the inside: under the hood of Windows 8”, October 2012
4Bryan Cantrill (former Solaris kernel engineer) comment at

https://news.ycombinator.com/item?id=13091162 (Retrieved 2017-01-07)
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a routine should be called. The names prefiexed by IRQ should be called if

and only if interrupt requests are disabled and those that start with PK can

be invoked securely only when the kernel is paused, hence, there would be

no preemption or context switch.

Limiting the scope of the discussion to task management and scheduling,

Miosix kernel provides a native definition and implementation for thread-

/process, a pointer to the current running thread and its context informa-

tion and a linked list sorted by wake-up times of the threads (a.k.a sleeping

list) and some routines to manage the list. On the other hand, the sched-

uler provides a function IRQfindNextThread which is responsible for setting

the next thread to run by changing the current thread pointer, saving and,

switching the context defined in the kernel. This function is called whenever

a thread yields the execution 5 or upon a preemption call invoked by the

Systick interrupt (fired by the system timer). This workflow is distributed

throughout the following parts of the kernel.

• Portability Interface which abstracts the hardware layer and endows

the kernel with an architecture independent interface which contains:

– Architecture dependent startup code (function IRQportableStartKernel).

– Sequence of instructions required to perform a context switch and

enable/disable interrupts.

– Interrupt handlers for performing preemption (function Systick Handler)

and yielding (function ISR Yield). Systick Handler will call an-

other function (IRQtickInterrupt) which accounts for a single

tick of the kernel and leads to a context switch.

• The basic kernel interface that defines and implements the fol-

lowing independently of the hardware which is encapsulated by the

portability interface:

5upon calling sleep primitives, calling peripheral services that lead to an I/O waiting

status or, the will to terminate.
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– Hardware independent startup routine which creates the main

thread6 and the Idle thread 7 and calls the function IRQportableStartKernel

to configure and setup the interrupt controller device and finally

the system timer to enable kernel’s ticks.

– Functions and RAII classes8 for toggling the interrupts

– Functions and RAII classes to pause/resume the kernel, hence, en-

abling/disabling preemption which should be respected by sched-

uler.

– A native definition and implementation of threads which partic-

ularly includes front-end functions for a thread to yield or sleep.

The sleep functions are fed with number of ticks of the kernel

which in turn correspond to ticks of the system timer.

– Information about the current thread and context which is used

by the scheduler’s code to perform context switches

– A linked list sorted by the kernel’s tick in the order which threads

desire to become ready again and the two functions IRQaddToSleepingList

and IRQwakeThreads. The former is called by threads whenever

a thread desires to sleep for a particular amount of ticks while,

the latter is called upon every tick (by IRQtickInterrupt) to

check whether it is time to activate some sleeping threads or not.

This check being done on a fixed time step, implies imprecision

when dealing with time-critical tasks or unnecessary kernel code

execution when the first thread activation point is far in future.

Therefore, for Miosix to be transferred into a tickless kernel, two major work-

flows should change i.e. whenever a tick occurs and upon current thread’s

6In Miosix, the user’s application is compiled with the kernel through a function named

main() which is executed by the main thread. This thread can spawn other threads later

on.
7The Idle thread will be selected when there is no active task to run e.g. when all the

threads are in a waiting/sleeping state
8Resource acquisition is initialization
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will to sleep. Figure 2.1 represents the call graph for the tick processing in

the kernel.

Figure 2.1: Miosix - Kernel tick call graph

The IRQtickInterrupt can be called whenever a preemption should take

place or just a thread should be woken which does not necessarily lead to a

context switch. Thus, in tickless setting, this flow should change in particular

in a way to distinguish between these two cases so as to eliminate the depen-

dency of the time domain resolution of sleep primitives with that of scheduler

interventions. Moreover, since there would be no periodic timer interrupts,

the scheduler should set the next preemption point in IRQfindNextThread

function.

As for the second workflow pertaining to the sleep primitive routines

which is depicted in figure 2.2, it is clear that sleep functions should not

depend on kernel tick any longer and instead rely on a universal concept i.e.

the time unit (e.g. nanoseconds). In this regard, the sleeping list should be

ordered by the actual time unit and IRQaddToSleepingList should function

aligned with the scheduler to keep the next interrupt to the minimum of the

first wake-up time (head of the sleeping list) or the next preemption point

set by the scheduler during the previous preemption.
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Figure 2.2: Miosix - Sleep primitive call graph

2.2 Transformation of Miosix into a tickless

kernel

In addition to the benefits enumerated about tickless kernels and the trend of

other operating systems towards this design, having Miosix kernel operate in

tickless mode is a crucial requirement for the purpose of this thesis. As it will

be explained deeper in the next chapter, the CPU time alloted to the tasks

may significantly vary due to some tuning parameters and the control scheme

behind the new scheduler proposed by this work. Therefore, the following

steps have been taken in order to provide the scheduler with an aperiodic

timing system - hence the ticklessness - while keeping the changes so few that

do not disrupt the operation of other modules relying on the previous time

system of the kernel.

• Defining a new interface for the kernel as the unified model of timer

drivers used to manage preemptions in different architectures

• Modification of kernel startup routines to switch from systick to the

new interface
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• Integration of task sleep/wake-up management in the kernel and thread

interface with the new time subsystem

• Decoupling kernel’s time unit from the underlying hardware from user

perspective by introducing an internal tick-to-nanosecond conversion

• Implementation of new high resolution timer drivers for Miosix sup-

ported architectures according to the new interface

• Integration of existing schedulers with the new interface, making them

able to cause preemptions.

2.2.1 Context Switch Timer interface

The simple scheme of having an interrupt handler being invoked periodically

by the systick timer which in turn calls the preemption routine, is replaced

by the interface shown in the figure 2.3 that is defined to support aperiodic

configuration of next preemption point and automatic conversion of timer

ticks to/from nanoseconds so as to separate timing logic of other components

and user applications from the speed configured for the hardware timer.

Figure 2.3: Context Switch Timer interface
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Depending on the architecture the kernel is compiled for, there should

be a proper implementation of the ContextSwitchTimer as a singleton class

which is instantiated by the hardware dependent kernel startup routine i.e.

IRQportableStartKernel. It is expected that the implementation provides

an apparently infinite time horizon which always moves forward through

the use of large enough hardware or hardware/software counter registers.

For instance, a high resolution timer operating at 1 GHz (one tick every

nanosecond) with a 64-bits counter register, the system can keep track of

the time without any rollovers for 584 years which is large enough to be

considered an infinite upperbound for any system’s uptime.

However, most of the timer/counter circuits usually support 16/32-bit

registers that would easily overflow in a very short time - 65 microseconds

and 4.3 seconds respectively - and therefore they must be expanded through

software controlled memory by the driver.

2.2.2 Implementation

The ContextSwitchTimer interface illustrated in the previous section has

been implemented and tested on the architectures reported by the table 2.1

for which none of the target architectures provides 64-bits registers and thus,

the counter is extended by the driver through additional variable. Of course

the expansion is achieved at the cost of additional interrupt requests due to

overflow of the hardware register and therefore it is really important to limit

the overflow interrupt handler to few instructions and decrease the timer’s

frequency as low as possible.

Architecture - SoC Peripheral Timer Used Register Capacity

1 CortexM3 - STM32 [23] TIM2 16 bits

2 CortexM3 - EFM32GG [20] TIM3 32 bits

3 CortexM3 - STM32F2 [21] TIM2 32 bits

4 CortexM4 - STM32F4 [22] TIM2 32 bits

Table 2.1: Architectures for which tickless Miosix has been ported into
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The listings below present the implementation of functions defined by

ContextSwitchTimer in pseudocodes equivalent to the C++ implementa-

tion of drivers for the target archtectures.

The timers provide two registers keeping track of current tick count and a

checkpoint set by the software. When the value of the former becomes equal

to the latter a ”Capture” IRQ will be fired that is the usual capacity found

in virtually all the timer/counter peripherals and is exploited to notify the

kernel about the next time event. Therefore, the driver need two variables

as the most significant 32 bits of the total value.

Algorithm 1: ContextSwitchTimer driver - Initialization

Set timerBits = 32 or 16 according to target timer peripheral ;

Set overflowInc = 1 shifted left by timerBits;

Set lowerMask = overflowInc - 1;

Set upperMask = 0xFFFFFFFFFFFFFFFFLL-lowerMask;

Set ms32time = 0; //most significant 32 bits of counter

Set ms32chkp = 0; //most significant 32 bits of checkpoint

Clear lateIrq; // Boolean variable indicating a checkpoint in the past

Enable the peripheral timer clock;

Set timer’s mode to up-counter ;

Enable interrupt flags for Compare/Capture channel of choice;

Enable the interrupt controller to pass IRQ of the timer;

Set the timer’s prescalar to tune the tick frequency according to lowest

desirable time resolution ;

Instantiate an instance of TimeConversion class;

// Reset Compare/Capture register and start the timer

Set timer.CCR = 0;

Enable the timer;

In order to set the next timer intervension, a time value in nanoseconds

should be taken as the input and its equivalent in timer’s tick should be

stored in the checkpoint upper part variable ms32chkp concatenated with
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the register. The driver should also react promptly if the point is in the past

as the time is not periodic and always increasing and thus the event could be

missed eventually. Therefore, after setting the next checkpoint on the timer,

the driver should check and raise an interrupt if the point is in the past.

The order matters since otherwise, it is possible to have a checkpoint close

enough to the current time that would be passed before the timer register is

set.

Algorithm 2: ContextSwitchTimer driver - Setting the next event

Input: ns: Desired time point in nanoseconds

Precondition: Interrupts should be disabled

tick = ns2tick(ns);

ms32chkp = tick BIT AND upperMask;

timer.CCR = tick BIT AND lowerMask;

if checkpoint is in the past then

Set lateIrq;

Set timer’s interrupt PENDING through interrupt controller unit;

end

Reading the next event set by the software is as simple as a bitwise OR

between the variable ms32chkp and the checkpoint register.

Algorithm 3: ContextSwitchTimer driver - Reading the next event

Precondition: Interrupts should be disabled

nextEvent = ms32chkp BIT OR timer.CCR;

return tick2ns(nextEvent);

Reading the current time may appear to be feasible by just performing a

bitwise OR between the software variable ms32time and the hardware counter

register, but it involves more delicacy since

• The user code may have disabled interrupts, spent some time with

interrupts disabled and then have called this function.

• If a timer overflow occurs while interrupts are disabled, the upper bits

that are stored in ms32time are not updated

and thus, the routine may return a wrong value. To prevent this issue,
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the overflow pending bit of the timer should be checked and current time

value be adjusted accordingly. Reading the overflow pending bit is not an

atomic operation and the counter may roll over exactly at that point in the

time. Thus, the timer’s value should be read a second time to examine if

the counter has rolled over. This algorithm imposes a limit on the maximum

time interrupts can be disabled which is equal to one hardware timer period

minus the time between the two timer reads in this algorithm.

Algorithm 4: ContextSwitchTimer driver - Reading the current time

value

if Interrupts are not disable then

Disable interrupts;

end

Store timer.CNT in counter;

if timer.Overflow bit is pending AND timer.CNT ≥ counter then

Store (ms32time BIT OR counter) + overflowIncrement in result;

else
Store (ms32time BIT OR counter) in result;

end

if Interrupts were not disabled at the beginning then

Enable interrupts again;

end

Return result;

Last but not least, the order in which the overflow bit and timer’s value

are read matters and may introduce a race condition if applied otherwise.

Were the driver to read the timer’s value prior to the overflow flag, the

counter may roll over right after the second time the code reads timer’s value

and therefore the result would be off by one epoch in future.

Finally, the driver should properly handle overflows of hardware counter

and matches of capture/compare channel designated to keep track of check-

points set by kernel or user code. In the first case, the expected response

would be an increment in the higher 32 bits of the counter variable ms32time

while for the latter event a call to IRQtimerInterrupt (equivalent to IRQtickInterrupt
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in the tick-based Miosix) should happen in the case that both software and

hardware parts of the checkpoint are matched to the current time. The

following listing represents a typical timer interrupt handler just mentioned.

Algorithm 5: ContextSwitchTimer driver - Interrupt handler

Precondition: Interrupts should be disabled

if There’s a match on Capture/Compare Channel OR lateIrq is set

then

Clear Capture/Compare match flag in the hardware;

if ms32time==ms32chkp OR lateIrq is set then

Clear lateIrq;

call IRQtimeInterrupt;

end

end

if Timer’s overflow flag is set then

Clear overflow flag in hardware;

ms32time += overflowIncrement;

end

As the final remark on the interrupt handler, one may consider the sit-

uation where the checkpoint is set a few ticks after an overflow event and

conclude that the checkpoint would be missed as the code first checks the

equivalence of higher 32 bits of the checkpoint to the higher 32 bits of the

current time in which the latter is not updated yet. The race condition does

not occur as the algorithm clears individual flags for each event that is pro-

cessed and others will remain pending. Thus, in the aforementioned scenario,

the interrupt handler is called twice wherein the first time the overflow would

be applied and the second time the checkpoint is reported.

Considering the modifications to the kernel introduced in this chapter,

it is evident that the impact would be significant enough to easily lead to

malfunction of the kernel, schedulers, device drivers and other components

relying on the time subsystem. Thus, as an effort to prove the reliability and

correctness of the new time subsystem, various tests have been executed to
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inspect potential inconsistencies between different components of Miosix and

the new tickless implementation. In this regards, the official test suite that

is provided by the Miosix kernel 9 has been used.

9The test suit can be found under: https://github.com/fedetft/miosix-

kernel/tree/master/miosix/ tools/testsuite
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Chapter 3

The control based tickless

scheduler

Regardless of the policy conducted by any scheduler, the problem corresponds

to a simple phenomenon that is present in every description provided for task

scheduling which can be modeled perfectly via control theory as described

below:

The scheduler interrupts the execution flow every once in a while and

assigns to a subset of tasks some particular processor’s time to run - which is

called CPU burst throughout this document and is also known as ”scheduling

bandwidth” or ”reservation period” - until the next scheduler’s intervention.

Tasks will consume a certain amount of CPU time in this time span which

is not necessarily equal to the time designated for them.

3.1 Scheduling as a control problem

In control terms, a pool of tasks running on a processor core can be viewed

as a physical plant and a regulator in which the former accounts for the phe-

nomenon constituting the essence of the problem and the latter corresponds

to the scheduler. For each task, the plant model can be translated into the

difference equation
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τt(k) = b(k − 1) + δb(k − 1) (3.1)

where k is the index of scheduler interventions, τt is the CPU time task

t has consumed between time span from k − 1 to k and, b the burst allotted

to t by the scheduler. The term δb is the disturbance that accounts for any

action on the phenomenon other than that of allotting b, such as for example

anticipated CPU yields, delays in returning the CPU whatever the cause is,

and so forth. Considering the entire pool, one can obtain the model
τt(k) = b(k − 1) + δb(k − 1)

t(k) = t(k − 1) +
∑
b(k − 1) +

∑
δb(k − 1)

τr(k) =
∑
τt(k)

(3.2)

where summations are over the pool, t accounts for the system time and,

τr is the time between two subsequent scheduler interventions regardless of

the number of tasks that were allotted a nonzero burst and the order.

Model 3.2 respects the rules, in that it is entirely physical, accounts for

all the entities acting on the phenomenon, and exposes both the actually

used CPU times and the time between two subsequent instants when the

scheduler regains control. Figure 3.1 better illustrates the meaning of the

quantities involved in this model along with an example of their behavior in

time, scheduler operations (i.e. burst allocation and context switches).

τt values being the effectively elapsed times while a tasks were in exe-

cution and bt values the desired bursts set by the scheduler, three cases are

anticipated

• The first task exhibits the perfect situation where the execution time

τt1 is equal to the burst b1 which is alotted to it during the first burst

allocation time in the figure.

• It may happen that the task consumes less than what was designated

for it due to for example waiting on a mutex or I/O operation or going
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Figure 3.1: Task pool model and behavior

to sleep. The second task represents such a situation in which τt2 is

less than b2 and thus, the disturbance term δb2 is negative.

• If the task is not preempted in time, the actual CPU time consumed

by the task would be greater than its burst and therefore, the error

will be positive. An example would be a task that performs a critical

section which entails disabling interrupts or pausing the kernel right at

the end of its burst.

Typical metrics used to evaulate behavior of schedulers such as fairness,

responsiveness and etc. can be suitably reformulated based on the quantities
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introduced by 3.2. In fact the I+PI and the Multiburst schedulers are built

on top of this model and provide a controller plus an actuation layer which

is an algorithm that wraps around the controller to fully integrate it with

kernel interface.

3.1.1 The I+PI scheduler

This section is devoted to establish the necessary background needed to bet-

ter understand the motivation and the design flow upon which the Multiburst

control scheduler is based, through an in-depth examination of its predeces-

sor i.e. the I+PI scheduler. The overal I+PI scheduling scheme consist of

the model 3.2 plus regulators introduced by the I+PI that are completely

represented as a block diagram in figure 3.2. The scheme is used to synthe-

size the I+PI controller, assess the policy, perform of verification-oriented

simulations prior to implementation and integration of I+PI to the kernel.

Figure 3.2: Control block diagram of I+PI scheduler

In this scheme, the transfer function P together with the summation node

on the pool corresponds to the ”controlled plant”, that is, the first equation

in 3.2 with the inputs b and δb - that account for bursts alotted to tasks

and disturbances respectively - and the output τt. The third equation in 3.2

which produces the round duration τr is realized through the block denoted

by Σ. All the other blocks compose the controller - hence the I+PI scheduler

- which its aim is to guarantee responsiveness through maintaining round

duration to the desired set point and to assure fairness by keeping track of

processor usage of tasks againts the fraction of round duration configured

for them. As for each objective, the designers have considered a loop and
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a regulator resulting to a cascade type control scheme where the loops are

nested.

Inner Loop: The inner loop is composed of the task pool and a diagonal

integral (I) regulator, realized by block Rt, whence the first part of ”I+PI”.

Since also model 3.2 is diagonal as for the b 7→ τt relationship, the result is a

diagonal (or ”decoupled”) closed-loop system that can be studied by simply

considering one of its scalar elements. Also, the choice of the (diagonal) I

structure stems from the pure delay nature of said elements-evidenced by

the first equation in 3.2-as a typical control design procedure; see Franklin et

al[10]. In view of this, if for each burst bi an integral discrete-time controller

with gain KI is adopted, that is,

bi(k) = bi(k − 1) +KI(τ
◦
t,i(k − 1)− τt,i(k − 1)) (3.3)

where τ ◦t,i is the set point (the control-theoretical term for ”desired value”

a.k.a reference signal) for the ith component τt,i of τt. The inner closed loop

is thus represented in state space form by[
τt,i(k)

bi(k)

]
=

[
0 1

−KI 1

][
τt,i(k − 1)

bi(k − 1)

]
+

[
0

KI

]
τ ◦t,i(k−1) +

[
1

0

]
δbi(k−1) (3.4)

Observing system 3.4 with inputs τ ◦t,i, δbi and output τt,i, it can be con-

cluded that the disturbance is asymptotically rejected and the set point fol-

lowed with a response time (in rounds) dictated by KI provided that the

eigenvalue magnitude is less than the unity, that is, |1 ±
√

1− 4k1| < 2.

A good default choice is to have two coincident eigenvalues in 0.5, hence

KI = 0.25. Higher values of kI make the controller respond ”more strongly”

to the difference between the desired and achieved τti , thus making the sys-

tem faster at rejecting disturbances (owing to a prompt action) but easily

producing oscillatory responses to set point variations (owing to a possibly

transiently excessive action); lower values of KI , intuitively, cause the re-

verse to happen. Figure 3 illustrates the matter, and shows why 0.25 could

be used as default for a scheduler with no real-time requirements, and 0.5

could be used for a soft real-time one.

36



Outer Loop: Once the inner loop is closed, the convergence of the

actual CPU times to the required ones is ensured since choosing eigenvalues

with magnitude lower than the unity ensures asymptotic stability, and the

regulator contains an integral action[10]. To determine the set point τ ◦t , an

outer loop is used that provides an additive correction (bc in figure 3.2) so as

to maintain the round duration τt to a prescribed value τ ◦t ; the computation of

bc is accomplished by block Rr. It can be verified that choosing a single KI for

the inner loop results in a bc 7→ τr relationship independent of α. A suitable

controller structure for the outer loop, along considerations analogous to

those that led to the I one for the inner loop, is then the Proportional plus

Integral one (PI), whence the rest of ”I+PI”. Reasoning in the same way

as for 3.4 this leads to determine the closed outer loop’s behavior in time as

ruled by



τr(k) = 2τt(k − 1)− (1 +KIKR)τr(k − 2) +KIKRZRτr(k − 3)

+KIKRτ
◦
r (k − 2)−KIKRZRτ

◦
r (k − 3)

XR(k) = XR(k − 1) +KR(1− ZR)(τ ◦r (k − 1)− τr(k − 1))

bc(k) = XR(k) +KR(τ ◦r (k)− τr(k))

(3.5)

,

where again, the second and third equations provide the control algorithm

for Rr (XR is the PI state variable), while the role of block α should now be

self-evident. The PI parameters KR and ZR can be set in various ways and

are both connected to the response speed. Stability is ensured if the roots of

the characteristic equation

z3 − 2z2 + (1 +KIKR)z −KIKRZR = 0 (3.6)

in the unknown z, have magnitude less than the unity, which provides

easy parameter bounds, while disturbance rejection is still guaranteed by

the contained closed inner loop. As a result of the synthesis process just

sketched, the I+PI algorithm is unambiguously defined as follows.
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Algorithm 6: I+PI controller algorithm

Initialize the I and the PI state variables;

for each scheduling round k do
Read the measured τt(k − 1) i.e. the CPU times used by the Nt

tasks in the previous round;

Compute τr(k − 1) =
∑Nt

i=1 τt,i(k − 1) i.e. the duration of the

previous round;

Read τ ◦r (k − 1) i.e. the required (set point) duration of the

previous round;

if cardinality of the task pool or parameters have changed then

Reinitialize bi(k) to αiτ
◦
r ;

Apply saturations to bi(k);

else
Apply the PI regulator to obtain the burst correction: bc(k) =

bc(k−1)+krr(τ
◦
r (k−1)−τr(k−1))−krrzrr(τ ◦r (k−2)−τr(k−2));

Apply saturations to bc(k);

Re-compute the vector α(k) for tasks;

for each task i do
// Apply the I regulator to obtain the burst vector

τ ◦t,i = αi(k)τ ◦r (k);

bi(k) = bi(k − 1) + kti(τt,i(k)− τt,i(k − 1));

Apply saturations to bi(k);

end

end

Activate the Nt tasks in sequence, preempting each of them when

its burst is elapsed;

end

To fully implement I+PI scheduling algorithm, ”set point generation”

which can be further divided into ”overload detection and rescaling” and

”reinitialization and feedforward” should be integrated to the I+PI controller

algorithm. Set point generation needs running only when changes occur in
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the task pool, the required CPU distribution, the required round duration or

any combination thereof.

• Overload Detection and Rescaling refers to the recomputation of

the CPU shares (for all nonblocked tasks) to have unity sum. For

instance, when a task is blocked its share becomes zero and thus others

can benefit a temporarily increased CPU usage. On the other hand,

if an overload is detected, the shares should be rescaled with relative

importance to unity.

• Reinitialization and feedforward policy is introduced to enhance

the scheduling performance dynamically in the presence of task block-

ing events such as a task sleeping or waiting on a Mutex. Reinitial-

ization refers to resetting internal state of I+PI to its default value

whenever the task pool parameters change. This includes resetting the

saturated integral regulator of a blocked task, therefore improving the

dynamic response to task blockings. The feedforward policy is instead

grounded on the fact that task blocking is a measurable disturbance

which the scheduler is informed about through kernel API. This al-

lows to further improve the dynamic response by changing the I+PI

set points, namely by setting to zero the α elements corresponding to

blocked tasks and distributing the round time among nonblocked tasks

only.

3.1.2 Motivations for a new control scheduler

Albeit I+PI’s performing near EDF in Hartstone benchmark as reported in

[16] and also in this thesis, there are some drawbacks regarding this scheduler

which gave birth to the Multiburst control scheduler. As it is mentioned

before, the PI and I control loops in I+PI are designed and tuned to assure

responsiveness and fairness respectively, by keeping the round duration and

distribution of processor shares to some desirable set points.

One of the problems with this algorithm is that whenever a thread sleeps
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(or waits for I/O) before the new round is begun - which is the point that the

corresponding bursts are computed for the threads - since the thread is in a

waiting state, it does not gain CPU time even if it wakes up again during the

current or even the next round. This imposes a maximum length for round

time duration if there are periodic tasks with deadlines in the sense that τr

should be less than half of the smallest period among the tasks. This issue

is better illustrated in the figure below.

Figure 3.3: Reponsiveness problem of I+PI with tasks that give the CPU up

early

Figure 3.3 exemplifies the problem with three threads equally sharing the

CPU in which the first task goes to sleep earlier than the set point and thus

can be delayed more than a full round duration1 for it will be absent from

the next round and that would lead to deadline misses. It is noteworthy that

higher number of tasks in the pool leads to longer round duration according

to the I+PI algorithm. Support of multiple bursts for each task inside a

single round in the case that the thread has still reasonable amount of re-

maining time to run is our solution for this problem and thus, it will relax

the constraint on the maximum value for τr. In other words, while the round

duration is still depending on the pool size, the delay demonstrated by the

example would not be affected by the round duration anymore. Regarding

the inner loop and its impact on fairness, consider following remarks:

1The best case would be being delayed equal to minimum burst alloted to other threads

and the worst case would be a delay of twice the sum of all other bursts
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• The consumed CPU time being less than the allocated burst is com-

pensated by the inner loop via increasing thread’s burst in next rounds

which may lead to saturation and this is in fact anticipated in the algo-

rithm by applying an upper bound to bt. This strategy is proper when

the thread gives the control up deliberately for example by calling sleep

primitives which may be interpreted as the task does not need the pro-

cessor share assigned to it. Moreover, it is counter-intuitive to force a

task to consume more than its demand and is also in contradiction with

responsiveness which matters the most in real-time applications. So, ei-

ther the scheduler should differentiate between mandatory/voluntarily

yields or deal with fairness nominally.

• The actuation layer around I+PI forces the controllers to be re-initialized

frequently and in the case that the cardinality of the pool changes too

often the control scheme becomes useless and is reset every round and

falls back to a blind round-robin like scheduling.

The problem with the inner loop stems from the premise that the threads

are always striving for the processor and if an early scheduler intervention

happens, the remainder burst should be given back to the thread in future.

In the case of this thesis, since real-time applications are the primary focus,

the problematic inner loop has been eliminated and fairness is being dealt

nominally in the sense that the task may only use its remaining burst from

the current round which is practical since the support of multiple bursts

allows longer round durations.

Figure 3.4 represents the expected task execution sequence for the exam-

ple provided by figure 3.3 when applying the Multiburst scheduling on the

pool.

It is noticable that the new strategy, while improving the responsiveness

of the first task, does not affect other threads from responsiveness/fairness

point of view.
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Figure 3.4: Expected behavior of the Multiburst scheduler in the case of

I+PI’s problem

3.2 The Multiburst scheduler

3.2.1 Design

The figure 3.5 depicts the control model associated with the new scheduler

in which there is only a single regulator C(Z) in charge of keeping the round

time τr to the prescribed value τ ◦r . The same reasoning of the outer loop

being Proportional-Integral in I + PI also applies to C(Z) in this scheme.

Figure 3.5: Control block diagram of PI-Multiburst scheduler

Given that the parameters w1 and w2 are chosen properly, it is desired to

gaurantee the disturbance rejection by through the burst-correction term bc

it generates as the output. Therefore the relation for C(Z) would be of the

form below.

42



bc(k) = bc(k − 1) + w1εr(k − 1) + w2εr(k − 2)

εr(k) = τ ◦r (k)− τr(k)
(3.7)

To derive suitable values for w1 and w2, one can consider transfer function

Q(Z) with bc as input and τr as output to account for the task pool plus code

responsible for measuring the burst times (the node α) and the total round

duration (i.e. the summation node). This is all that is needed to have

C(Z) tuned so that εr will be asymptotically zero. Since the disturbance is

embedded in the transfer function Q(Z), it is necessary to understand the

role of δb first. Consider the figure 3.6 which depicts the transfer function

Q(Z).

Figure 3.6: Expanded model of the task pool together with disturbances and

CPU shares

Assuming a ficticious cut between the summation node and the output

that is equivalent to considering the system in the open-loop situation, the

closed-loop system would be as shown in figure 3.7 and is derived as following

N∑
i=1

1

Z
(αi(bc + τr) + δb) = τr
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given

N∑
i=1

αi = 1, therefore,

1

Z
bc +

1

Z
τr +

1

Z

N∑
i=1

δbi = τr

in which the last term is the sum of disturbances (d). Hence

τr =
1

Z − 1
(bc + d)

Figure 3.7: Simplifed model for tuning Multiburst scheduler’s regulator

Requiring τr(Z)/B(Z) = (Z − 1)/Z2, thus τr/τ
◦
r = (2Z − 1)/Z2 and

so the regulator’s transfer function would be C(Z) = 2Z − 1/Z2. Hence

for disturbance rejection, w1 = 2 and w2 = −1. Given the aforementioned

reasoning, the scheduling algorithm is explanable by the two listings below.
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Algorithm 7: The Multiburst scheduling algorithm - Control model

Initialize the PI state variables;

for each scheduling round k do
Read the measured τt(k − 1) i.e. the CPU times used by the Nt

tasks in the previous round;

Compute τr(k − 1) =
∑Nt

i=1 τt,i(k − 1) i.e. the duration of the

previous round;

Read τ ◦r (k − 1) i.e. the required (set point) duration of the

previous round;

if cardinality of the task pool or parameters have changed then

Reinitialize bi(k) to αiτ
◦
r ;

else
Apply the PI regulator to obtain the burst correction:

if A thread has woken up during the round then

bc(k) =
∑Nt

t=1 τt(k−1)∑
i∈ActiveThreads αi

− τr;

else
bc(k) =

bc(k− 1) + 2(τ ◦r (k− 1)− τr(k− 1))− (τ ◦r (k− 2)− τr(k− 2));

end

for each thread i do

if t is active then

bi(k) = αt(bc(k) + τr(k − 1));

else

bi(k) = 0;

end

end

end

Activate the Nt tasks in sequence, preempting each of them when

its burst is elapsed;

end
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Algorithm 8: The multiburst scheduling algorithm - Multiburst actu-

ation

if task i is ready and was blocked when the round started then

Compute remainder of the round duration as τrem = τ ◦r − τr;
Assign a burst to i from the remainder: bi = αi τrem;

// Normalize bursts allocated to active tasks

τtot = τrem + bi;

for each thread i s.t. Ti ∈ activeThreads do

bi = (τrem/τtot)(bi − Ti) + Ti;

end

end

In contrast to I+PI which does not impose any particular order on execu-

tion of the tasks during each round, Multiburst applies three specific policies

for task preemption and selection in the case of the wake-up events in order

to balance responsiveness and number of context switches. As it is mentioned

in section 3.1.2, the absence of multiple execution slots per thread in each

round will inflict an upper bound for the round time so as not miss deadlines.

Although the introduction of multiple bursts relieves this constraint, it may

unleash the scheduler and result in much a higher number of context switches

that is counter-productive. In this regards, an additional property (Multi-

burst priority) has been considered for the tasks in order to better realize

the trade-off between responsiveness and context switches. This property

determines what should happen upon re-activation of a thread as below.

• Immediate preemption: A preemption will occur as soon as the task

wakes up and the control is transferred to the newly woken task. The

next task to run would be the preempted one.

• Preemption after current burst: When a task of this priority wakes

up, it will be marked for execution right after the end of the current

running task.

• Preemption at the of current round: The newly woken task will
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gain the CPU at the end of the round.

Overall the first policy provides a task with the highest degree of respon-

siveness at the cost of disturbing others and is more prone to rise context

switch rate, thus, it should be considered only for tasks with tight dead-

lines. It also should be noted that since the inner loop has been removed

and the newly woken task can not consume more than the burst allocated

to it, the number of context switches will be limitted. The last two policies

are less prompt to wake-up events but restrict the scheduler’s intervention

more than the immediate preemption case. Although this ordering method

is very simple (by the use of a double-linked list with a pointer to the current

running thread, the cost of re-ordering upon a wake-up event would be of

order O(1)), it is effective enough to gain better performance with even fewer

context switches than I+PI as it will be shown in the next chapter. Table

3.1 reports the worst case delay for tasks after they wake up according to the

policy assigned to them.

Policy Worst case delay

Immediate preemption One preemption interrupt

Preemption after current burst Maximum burst time

Preemption at end of the round Round time

Table 3.1: Worst case delay after wake-up for Multiburst policies

Please note that in the case of multiple wakeups the newly running thread

can be preempted again. To better understand the impact of these levels of

Multiburst priority, we can consider a problematic case with I+PI in which

Multiburst would outperform it with even fewer interventions. Consider a

pool of four tasks equally sharing the CPU in which the third one executes

a few instructions and sleeps for a specific time. It should acquire the CPU

at most 1ms after it wakes up or it will miss the deadline. Figure 3.8 depicts

the scenario and the way I+PI schedules the pool.

Given the 1ms timeout for the third task to regain the processor and

the fact that there are five execution bursts in between, I+PI should be
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Figure 3.8: Problematic example - I+PI scheduling

configured with τ ◦r = 200 microseconds to meet the deadline. Therefore,

on average it would perform 5000 context switches per second. Instead, a

Multiburst scheduling scheme adopting the ”Preemption after current burst”

policy for the third thread would execute the tasks in the order depicted by

figure 3.9.

Figure 3.9: Problematic example - Multiburst scheduling

In this case, the deadline is met with τ ◦r = 1 millisecond, hence, through

1000 context switches per second.
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3.2.2 Scheduling in Miosix

Unlike many operating systems developed for both embedded devices and

larger machines in which the scheduler is tightly coupled with the rest of the

kernel, Miosix provides a well-designed uniform interface to support multiple

schedulers that limits to a significant extent the implementation of our new

scheduler to a single source file. It is worth mentioning that schedulers in

Miosix can not coexist at run-time, hence, only one can be active at the

same time. This, in fact, endows the developer with a consistent platform

to implement and evaluate different scheduling algorithms isolated from one

another and in an impartial manner. The multiplexing between available

schedulers in Miosix is only possible at compile time by defining - in the global

configuration header file - the C macro corresponding to the include-guard of

the source file of the target scheduler which implements the interface. This

is also desirable for the purpose of this work as it would not impose virtually

any performance penalty on the scheduler.

A scheduler in Miosix is a C++ class that implements a specific interface,

represented in figure 3.10. To allow each scheduler to use its own customized

data structure the list of currently running threads is part of the scheduler

and not of the kernel, therefore the scheduler API includes functions to add

and remove threads2 , as well as to query existing threads3. Also, it includes

functions to pass “hints” from applications to the scheduler. The generic

term hints is here used to underline the scheduler-specific nature of this

data, that for example can be the (CPU%,relative importance) tuple for the

I+PI scheduler, deadlines for an EDF scheduler or priorities for a priority

based scheduler. This in Miosix takes the form of a generic class that each

scheduler has to redefine and that, for backwards-compatibility reasons is

still called ”Priority”.

There is then the IRQfindNextThread function that low level interrupt

handling code calls to ask the scheduler to perform a context switch. It is in

2PKaddThread() and PKremoveDeadThreads()
3PKexists()
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Figure 3.10: The scheduler interface in Miosix

general called from within a timer interrupt service routine. This function

selects the next thread that will run, the main task a scheduler is designed

to solve.

Lastly, there is the IRQwaitStatusHook function that the kernel calls to

inform the scheduler of certain events it may be interested into, like a thread

blocking or unblocking which is particularly useful in the implementation of

Multiburst scheduler as it is the main point where the activeThreads list

that is required in algorithm 8 can be managed.

3.2.3 Implementation and integration into Miosix

Integration of the Multiburst scheduler with the Miosix kernel consists of im-

plementing the algorithms7 and 8 contained in a C++ class according to the

interface depicted in figure 3.10. Among the various functions introduced by

the interface, the source code of IRQfindNextThread and IRQwaitStatusHook

are presented here since as for others the content is quite the same as that

of I+PI[19].

There are essentially two groups of variables required by the scheduler

among which the relevant ones are represented by listing below. The first

group consists of external variables defined in the kernel that helps the sched-
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uler to co-operate with the kernel and the second group contains internal

variables needed to implement the Multiburst algorithm.

Listing 3.1: Multiburst scheduler implementation - Data members

// 1) Externa l − These are de f ined in k e rne l . cpp

// Pointer to curren t running thread

extern volat i le Thread ∗ cur ;

// Kernel Lock Flag

extern unsigned char ke rne l runn ing ;

// A doub le l i n k e d l i s t o f s l e e p i n g threads

extern I n t r u s i v e L i s t <SleepData> ∗ s l e e p i n g L i s t ;

// 2) In t e rna l

// The t i c k l e s s system timer

stat ic ContextSwitchTimer& timer = ContextSwitchTimer : : i n s t anc e

( ) ;

// L i s t o f a c t i v e threads

stat ic I n t r u s i v e L i s t <ThreadsListItem> act iveThreads ;

// Pointer to the curren t running a c t i v e thread

stat ic I n t r u s i v e L i s t <ThreadsListItem > : : i t e r a t o r curInRound =

act iveThreads . end ( ) ;

// Flags f o r IRQfindNextThread

stat ic bool dontAdvanceCurInRound = fa l se ;

stat ic bool threadWokenInBurst = fa l se ;

// Flag f o r r e g u l a t o r ’ s code

stat ic bool threadWokenInRound = fa l se ;

// L i s t o f a l l the th reads

Thread ∗Contro lScheduler : : th r eadL i s t =0;

unsigned int Contro lScheduler : : t h r e a d L i s t S i z e =0;

// A po in t e r to the IDLE thread

Thread ∗Contro lScheduler : : i d l e =0;

// Mu l t i bu r s t c o n t r o l l e r ’ s v a r i a b l e s /measurements

long long nextPreemption = LONG LONG MAX;

long long bur s tS ta r t = 0 ;

int Contro lScheduler : : SP Tr=0;

int Contro lScheduler : : Tr=bNominal ;

int Contro lScheduler : : bco=0;

int Contro lScheduler : : eTro=0;
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bool Contro lScheduler : : r e i n i t R e g u l a t o r=fa l se ;

The next listing shows the C++ code for finding the next thread to run.

IRQfindNextThread first performs the algorithm 8 by re-assigning the re-

maining time of the current round to the thread that has just woken up

during the round (and was not assigned a burst before) and normalizing

the bursts and then looks for the next thread to run by selecting form the

activeThreads list which contains only the threads that are ready for exe-

cution during the current round. Note that this function also executes the

Multiburst controller (algorithm 7) when it detects the end of the round

which is equivalent to reaching the end of the activeThreads list. Functions

IRQsetNextPreemption* rely on the new tickless time interface to set the

next preemption point while taking care of the next wake up time for sleeping

threads.

Listing 3.2: Multiburst scheduler implementation - IRQfindNextThread

void IRQsetNextPreemptionForIdle ( ) ;

void IRQsetNextPreemption ( ) ;

unsigned int Contro lScheduler : : IRQfindNextThread ( )

{
// I f k e rne l i s paused , do noth ing

i f ( ke rne l runn ing !=0) return 0 ;

i f ( cur != i d l e )

{
//Not preempting from the i d l e thread , compute a c t ua l

// bu r s t time used by the preempted thread

int Tp = static cast<int>( t imer . IRQgetCurrentTime ( ) −
bur s tS ta r t ) ;

cur−>schedData .Tp+=Tp;

// Update the a c t ua l round−t ime

Tr+=Tp;

i f ( threadWokenInBurst )

{
threadWokenInBurst = fa l se ;
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// Burst Correct ion − re−as s i gn the remainder

// o f round−t ime to a l l ready threads i n c l u d i n g

// the one t ha t has j u s t woke up ( t )

int remTr = SP Tr − Tr ;

int to t = remTr ;

// Assign bu r s t to woken threads from remainder

// o f the round

for ( Thread ∗ i t=threadL i s t ; i t !=0; i t=i t−>schedData .

next )

{
i f ( i t−>schedData . wokenDuringBurst )

{
i t−>schedData . wokenDuringBurst = fa l se ;

i t−>schedData . bo = i t−>schedData . a l f a ∗
remTr ;

to t += i t−>schedData . bo ;

}
}
// Normalize b u r s t s

f loat nrmFact = ( f loat ) remTr / to t ;

for ( Thread ∗ i t=threadL i s t ; i t !=0; i t=i t−>schedData .

next )

{
i t−>schedData . bo =

( i t−>schedData . bo − i t−>schedData .Tp) ∗
nrmFact + i t−>schedData .Tp ;

}
}

}

//Find next thread to run

for ( ; ; )

{
i f ( curInRound!= act iveThreads . end ( ) ) {

i f ( dontAdvanceCurInRound )

dontAdvanceCurInRound = fa l se ;

else

curInRound++;
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}
i f ( curInRound==act iveThreads . end ( ) )

{
i f ( act iveThreads . empty ( ) )

{
//No thread i s ready , run the i d l e thread

curInRound=act iveThreads . end ( ) ;

cur=i d l e ;

c txsave=cur−>ctxsave ;

IRQsetNextPreemptionForIdle ( ) ;

return 0 ;

}

//End o f round reached , run s chedu l i n g a l gor i thm

curInRound = act iveThreads . f r o n t ( ) ;

IRQrunRegulator ( ) ;

}

i f ( (∗ curInRound )−>t−>f l a g s . isReady ( ) && (∗ curInRound )−>t

−>schedData . bo>0)

{
//Found a READY thread , so run t h i s one

cur=(∗curInRound )−>t ;

c txsave=cur−>ctxsave ;

IRQsetNextPreemption ( cur−>schedData . bo ) ;

return 0 ;

} else {
//The thread has no remaining bu r s t time

// so j u s t i gnore i t

curInRound++;

}
}

}
// Should be c a l l e d when the current thread i s the i d l e thread

stat ic inl ine void IRQsetNextPreemptionForIdle ( )

{
i f ( s l e e p i n g L i s t−>empty ( ) )

54



// normal ly shou ld not happen un l e s s an IRQ i s

// a l r eady s e t and ab l e to preempt i d l e thread

nextPreemption = LONG LONG MAX;

else

nextPreemption = s l e e p i n g L i s t−>f r o n t ( )−>wakeup time ;

t imer . IRQsetNextInterrupt ( nextPreemption ) ;

}

// Should be c a l l e d f o r threads o ther than i d l e thread

stat ic inl ine void IRQsetNextPreemption ( long long burst )

{
long long f i r s tWakeupInLi s t ;

i f ( s l e e p i n g L i s t−>empty ( ) )

f i r s tWakeupInLi s t = LONG LONG MAX;

else

f i r s tWakeupInLi s t = s l e e p i n g L i s t−>f r o n t ( )−>wakeup time ;

bur s tS ta r t = timer . IRQgetCurrentTime ( ) ;

nextPreemption = min ( f i r s tWakeupInList , bu r s tS ta r t + burst ) ;

t imer . IRQsetNextInterrupt ( nextPreemption ) ;

}

The following C++ code is equivalent to Multiburst’s controller which

computes the burst correction term and assigns CPU time to the threads for

the next round.

Listing 3.3: Multiburst scheduler implementation - Controller’s code

void Contro lScheduler : : IRQrunRegulator ( )

{
i f ( r e i n i t R e g u l a t o r )

{
r e i n i t R e g u l a t o r=fa l se ;

//Reset s t a t e o f the e x t e r na l r e g u l a t o r

eTro=0;

bco=0;

// Reca l cu l a t e per thread s e t po in t

for ( Thread ∗ i t=threadL i s t ; i t !=0; i t=i t−>schedData . next )

{
i t−>schedData . SP Tp=static cast<int>( i t−>schedData .
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a l f a ∗SP Tr ) ;

// Apply Sa tura t i ons

i t−>schedData . bo=min (max( i t−>schedData . SP Tp , bMin) ,

bMax) ;

// Reset bu r s t consumption measurements

i t−>schedData .Tp = 0 ;

}
} else {

int eTr=SP Tr−Tr ;

i f ( threadWokenInRound ) {
int sTp = 0 ;

f loat sA l fa = 0 ;

for ( Thread ∗ i t=threadL i s t ; i t !=0; i t=i t−>schedData .

next )

{
sTp += it−>schedData .Tp ;

i f ( i t−>f l a g s . isReady ( ) )

sA l fa += i t−>schedData . a l f a ;

}
bco = sTp/ sAl fa − Tr ;

} else
bco = bco + 2 ∗ eTr − eTro ;

bco=min<int>(max( bco ,−Tr) ,bMax∗ t h r e a d L i s t S i z e ) ;

eTro=eTr ;

f loat nextRoundTime=static cast<f loat>(Tr+bco ) ;

// Reca l cu l a t e per thread bu r s t s

for ( Thread ∗ i t=threadL i s t ; i t !=0; i t=i t−>schedData . next )

{
i f ( i t−>f l a g s . isReady ( ) )

{
i t−>schedData . SP Tp=static cast<int>( i t−>

schedData . a l f a ∗nextRoundTime ) ;

// sa t u ra t i on

i t−>schedData . bo=min (max( i t−>schedData . SP Tp ,

bMin) ,bMax) ;

} else {
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i t−>schedData . SP Tp = 0 ;

i t−>schedData . bo = 0 ;

}
// Reset bu r s t consumption measurements

i t−>schedData .Tp = 0 ;

}
}
// Reset measurements

threadWokenInRound = fa l se ;

Tr=0;//Reset round time

}

The last listing shows the implementation of the IRQwaitStatusHook

function which keeps the activeThreads list updated and ordered accord-

ing to the three policies mentioned in section 3.2.1. Principally if a thread

sleeps, it should be removed, while if a thread wakes up, it should be added

back to the list according to the policy specified for the thread. It is worth

mentioning that since the pointer to the current item in this list may be

altered both by IRQwaitStatusHook and IRQfindNextThread, the variable

dontAdvanceCurInRound has been used to synchronize to the two. Finally,

this function should also signal the controller if there is a thread newly woken

up thread in the round since the so that the burst correction term can be

computed correctly.

Listing 3.4: Multiburst scheduler implementation - IRQwaitStatusHook

void Contro lScheduler : : IRQwaitStatusHook ( Thread∗ t )

{
// Managing ac t i veThreads l i s t

i f ( t−>f l a g s . isReady ( ) ) {
// The thread has became a c t i v e −> put i t in the l i s t

addThreadToActiveList(&t−>schedData . at lEntry ) ;

t−>schedData . wokenDuringBurst = true ;

threadWokenInBurst = true ; // S i gna l f o r

IRQfindNextThread

threadWokenInRound = true ; // S i gna l f o r IRQrunRegulator

} else {
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// The thread i s no longer a c t i v e −> remove i t from the

l i s t

remThreadfromActiveList(&t−>schedData . at lEntry ) ;

}
}

stat ic inl ine void addThreadToActiveList ( ThreadsListItem ∗
at lEntry )

{
switch ( at lEntry−>t−>g e t P r i o r i t y ( ) . getRealt ime ( ) ) {

case REALTIME PRIORITY IMMEDIATE:

{
// In t h i s case we shou ld i n s e r t the woken thread

// be f o r e the curren t item and put the po in t e r

// to the item behind i t so t ha t IRQfindNextThread

// execu t e s the woken thread and then come back

// to t h i s thread which i s about to be preempted

auto tmp = curInRound ; tmp−−;

i f (tmp==act iveThreads . end ( ) ) {
//curInRound i s the f i r s t Item and doing

//curInRound−− tw ice r a i s e s an e x c e p t i ona l

// behav ior in which puts the po in t e r in the

//end o f the l i s t and IRQfindNextThread

// d e t e c t s anmEndOfRound s i t u a t i o n by mistake

act iveThreads . i n s e r t ( curInRound , at lEntry ) ;

curInRound−−;

dontAdvanceCurInRound = true ;

} else {
act iveThreads . i n s e r t ( curInRound , at lEntry ) ;

curInRound−−;curInRound−−;

}
//A preemption would occur r i g h t a f t e r t h i s f unc t i on

break ;

}
case REALTIME PRIORITY NEXT BURST:

{
auto temp=curInRound ;

act iveThreads . i n s e r t (++temp , at lEntry ) ;
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//No preemption shou ld occur a f t e r t h i s f unc t i on

break ;

}
default : //REALTIME PRIORITY END OF ROUND

{
act iveThreads . push back ( at lEntry ) ;

//No preemption shou ld occur a f t e r t h i s f unc t i on

}
}

}

stat ic inl ine void remThreadfromActiveList ( ThreadsListItem ∗
at lEntry )

{
// I f the curren t thread in run has y i e l d e d and

// caused a c a l l to t h i s f unc t i on the curInRound

// po in t e r must advance in the l i s t so as not to

// l o s e the t rack o f the l i s t and then we can

// d e l e t e the item

i f (∗ curInRound==at lEntry ) {
curInRound++;

// Since we are sure t ha t IRQfindNextThread

// w i l l be c a l l e d a f terwards , i t shou ld be

// prevented to advance curInRound po in t e r

// again , o the rw i s e i t w i l l s k i p 1 thread ’ s bu r s t

dontAdvanceCurInRound = true ;

}
act iveThreads . e r a s e ( I n t r u s i v e L i s t <ThreadsListItem > : : i t e r a t o r

( at lEntry ) ) ;

}
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Chapter 4

Evaluation and Benchmarking

It should be noted that comparing scheduler performance is a difficult matter.

Many of the scheduler design criteria, such as fairness and responsiveness are

often expressed qualitatively and have an unclear quantitative definition,

which is required to set up a benchmark. Other attempts at comparing

schedulers that are based on algorithmic complexity (such as [5]), albeit

being appreciable, conflicts with the aims of this thesis as it focuses on the

data structures and algorithms of the scheduler, rather than reasoning at

a higher abstraction level. Also, as the work by Maggio et al. [16] shows,

lower computational complexity of a scheduling algorithm with respect to

another one does not necessary imply that it is able to schedule a given task

pool better even when considering the impact of scheduling overhead. Only

in specific areas, such as real-time systems, there are quantitative measures

that allow to characterize a scheduler, like the ability to meet deadlines. This

chapter is divided into three section in which the first presents the behaviour

of proposed algorithm through simulations so as to demonstrate its conduct

of scheduling is as expected. The two last parts shows how it performs

with respect to other schedulers on some benchmarks relevant to real-time

systems.
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4.1 Simulation results

It is a common practice to verify a control scheme through a simulation

process that provides the required signals and monitors the behavior of the

designed control system. Thus, in order to demonstrate fulfillment of the

goals set for the Multiburst scheduler discussed in the previous chapter and

in particular its responsiveness regarding periodic tasks, it has been simulated

over a pool of three threads and the results are reported in this section. The

pool consists of two batch tasks (threads no. 1 and 2) and one periodic task

(thread no. 3) in which the latter is active for 10ms and then sleeps for 20ms

and so forth. The simulation lasts for 100 rounds with a nominal burst of

1ms for each thread, hence, ideally, each round should take 3ms. All the

threads equally share the processor up to the 50th round. Afterward, the

shares would change to 20%, 40%, and 40% respectively for threads 1, 2, and

3.

As reported by figure 4.1, once the periodic thread sleeps, a burst correc-

tion term is computed by the regulator to compensate for the absence of the

sleeping thread, hence, others will start to consume more CPU time and the

round time will follow the set point of 3ms.
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Figure 4.1: Simulation - Round duration and burst correction

Therefore, as desired, the round duration is the main knob to ensure

responsiveness. But, in order to better understand what happens if the

periodic task wakes up, one should take closer look to the burst usage and

set points of the tasks individually. Figure 4.2 reports both quantities for all

the three threads.
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Figure 4.2: Simulation - Tasks’ actual and desired bursts

Considering the third task, it is evident that it starts to get CPU as soon

as it is activated again and others which has been using extra CPU with

respect to their specified share, release the CPU immediately and will follow

their own designated burst. For example, the periodic thread wakes up in

the middle of 18th round and takes its share from remaining time of the

round and as soon as the 19th round begins, it will have 1/3 of the round

as expected. On the other hand, at the end of the 50th round in which

CPU shares change, the first two threads that are active will immediately

experience the change in the following round as well as the last thread that

gains according to its new share as soon as it wakes up.

4.2 Hartstone benchmark

The Hartstone benchmark [28] is here used to evaluate the performance of

Multiburst, I+PI, EDF and RR (round robin) schedulers developed and in-
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tegrated to Miosix tickless kernel. All tests are carried out on a STM32f407vg

discovery embedded system which is endowed with STM32F4 (CortexM4)

system-on-chip configured in the same way for all the schedulers.

Hartstone is a benchmark suite with many tests all designed in the same

way. The tests start with a baseline workload which is increased till an asser-

tion fails, usually the miss of a deadline. The amount of workload a system

can withstand is used as a measure of its performance. From the various tests

Hartstone is composed, the PH series is here used, which stresses the system

using periodic tasks having harmonic frequencies. Hartstone measures the

workload assigned to tasks in KiloWhet per second (KWIPS), where a Kilo

Whetstone is another benchmark related to floating point operations. Given

that the purpose of the benchmark is in this case to compare the relative

performance of the scheduler, rather than assessing the performance of a

CPU architecture and compiler (which was the original goal of the Hartstone

benchmark), the KiloWhet code has simply been implemented as a busy wait

delay that keeps the CPU occupied for 1.25ms. The baseline system of the

PH test series is composed of five periodic tasks with a specified workload

reported in Table 4.1.

Task Frequency Workload Workload Rate (workload/period)

1 2 Hertz 32 Kilo-Whets 64 KWIPS

2 4 Hertz 16 Kilo-Whets 64 KWIPS

3 8 Hertz 8 Kilo-Whets 64 KWIPS

4 16 Hertz 4 Kilo-Whets 64 KWIPS

5 32 Hertz 2 Kilo-Whets 64 KWIPS

Table 4.1: The Hartstone [28] baseline task pool

The task period coincides with the deadline meaning that a task should

complete a period’s workload before the next one begins. Tasks that complete

their workload before the end of the period sleep till the beginning of the next

period. The PH test series is composed of four tests that start from the same

baseline load but increase the workload in different which will be described
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along with the results of various schedulers. In each benchmark, the number

of iterations 1 till the first deadline is missed for the four schedulers, as well

as the number of context switches per second. Obviously, a good scheduler

should score high results for the number of iterations, while minimizing the

number of context switches.

4.2.1 Benchmark one - asymmetric pool

In the first benchmark the frequency of the fifth task is increased by 8Hz at

each iteration till a deadline miss occurs. This test allows to measure the

ability of a scheduler to switch rapidly between tasks and also the extent to

which the scheduler can handle asymmetric task pools. As it is reported by
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Figure 4.3: Hartstone Benchmark - Test 1

figure 4.3, the Multiburst and EDF exhibit the most stress resistance and

they are followed by I+PI and RR respectively. Note that this test is the

most extreme case, where the period of one tasks differs so much with respect

to the other and that is one of the motivations supporting the introduction

of Multiburst scheduler in this thesis. In fact, Multiburst is designed with

the aim of introducing a configurable trade-off between being responsive and

performing fewer context switches which is properly demonstrated by this

1In this context, an iteration is referred to a window of time in which the character-

istics of the task pool (i.e. number of the tasks, their frequencies and workloads) remain

constant.
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test in the sense that it also outperforms EDF. Although I+PI reached the

same number of iterations as EDF, but as it will be demonstrated in section

4.3, it can not tolerate the situation dictated by this pool very long and will

miss many deadlines as soon as the first one is missed.

4.2.2 Benchmark two - balanced workloads

The second benchmark uniformly scales the frequencies of all tasks by 1.1,

1.2, and so forth till the first miss, and has the property of maintaining a

balanced workload between the tasks. In this case, the RR scheduler handles
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Figure 4.4: Hartstone Benchmark - Test 2

the tasks significantly better than that of the first test in the sense that

the number of iterations without a deadline miss is closer to the other three

that perform similarly. This is due to the fact that the pool is balanced in

workloads and thus, matches better the fixed quantum applied by the RR

Scheduler. Multiburst spends fewer context switches compared to that of

I+PI but achieves the same performance of EDF. See figure 4.4.

4.2.3 Benchmark three - unbalanced workload growth

In addition to the first benchmark which evaluates the performance on that

is unbalanced in the first place, it is in general important and also relevant to

the purpose of this work that the scheduler be capable of properly managing
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asymmetric workload growth leading to a totally unbalanced set of workloads.

The third benchmark increases the workload of all tasks by 1 KiloWhet at a

time resulting in an unbalanced workload increase. Again, EDF reaches the
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Figure 4.5: Hartstone Benchmark - Test 3

best performance while having the minimum number of context switches.

The Multiburst and I+PI schedulers are very close to EDF through their

variable burst sizes and more considerably more context switches. Using

looser round duration, Multiburst spends fewer context switches than I+PI

to reach the same performance.

4.2.4 Benchmark four - task pool growth

The fourth benchmark increases the workload by adding tasks with a work-

load and period equal to the third task of the baseline, measuring the abil-

ity of the scheduler to handle a large number of tasks. In this case, only

Multiburst reaches EDF with fewer context switches compared to two other

schedulers.

In conclusion, the RR scheduler shows the worst performance due to

adopting fixed-size quantum (i.e. burst) and having the same amount of

context switches regardless of characteristics of the pool at runtime in all the

cases. This is a good example that demonstrates scheduling algorithms with

lower complexity orders and thus with cheaper context switches does not

necessarily produce better results in practice. The two control schedulers,
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Figure 4.6: Hartstone Benchmark - Test 4

on the contrary, support adaptive bursts and amount of context switches by

design which is completely evident from the experiments.

4.3 Extended Hartstone benchmark

As the literature shows and the results of Hartstone benchmark suggest,

the EDF scheduler is the optimal solution when considering hard real-time

problems, however, it suffers from domino effect as discussed in chapter 1.

To show the ability of control-based approaches (I+PI and Multiburst) to

handle the scenario where EDF is not the best candidate - i.e. real-time

systems where deadline misses are not totally fatal but fewer failures are

better appreciated - Hartstone has been extended to address the situation

where the required processor utilization transiently exceeds unity. This is a

typical situation that can happen in soft real-time systems where, for cost

reasons, the CPU is not scaled to handle the maximum predicted workload,

but rather it is dimensioned in between the average and maximum workload.

This extended Hartstone benchmark consists of running the system for a

total duration of 120s as follows:

• In the first 30 seconds the workload is kept constant at 48% CPU

utilization.

• During t = [30, 45] the workload is increased to 120% and kept constant.
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• After t = 45 seconds, the workload is decreased again to 48% until the

end of the 120s.

This gives a period of schedulable workload to stabilize the system, fol-

lowed by a transient unschedulable period, and a long period in which the

workload is again feasible to allow the schedulers to recover normal operation.

The way of increasing the workload is what differentiates the four bench-

marks, and is the same as the one used in the four benchmarks of the classic

Hartstone. Performance is measured in number of deadline misses (lower is

better) along with the number of context switches per second to appreciate

the ability of the schedulers to avoid unnecessary context switches.

Figure 4.7 displays the number of deadlines missed and figure 4.8 reports

the number of context switches performed per second by each scheduler.
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Figure 4.7: Extended Hartstone - Deadline miss

The RR scheduler, as in the classic Hartstone, despite making signifi-

cantly more context switches than the other two schedulers, performs worse

in all four benchmarks. I+PI outperforms EDF in all four tests except the

first one with the asymmetric pool, at the price of a minimal increase in

the number of context switches with respect to that of EDF. While on the

other hand, Multiburst spends slightly more number of context switches than

I+PI, it misses the least number of deadlines compared to all the other sched-
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ulers and for all the tests. In fact, Multiburst is configured with the same

round duration and task priorities (CPU shares) as I+PI but, as it reacts

properly on periodic tasks with allowing them to have their burst partitioned

into multiple ones during each round, it is better adjusting itself with the

variations in the task pool parameters.

Moreover, it is noteworthy to remark that both control-based schedulers

thanks to the relative importance parameter, allows to predict the CPU

share that will be given to each task even in the case of CPU overutilization

allowing hard real-time tasks to coexist with soft real-time ones. This is in

contrast with EDF where no guarantee can be given regarding which tasks

will miss deadlines in case of overload, and to priority based schedulers, where

no guarantee at all can be given on the received CPU share of tasks, except

maybe the ones with the highest priority.

In conclusion, the results from both Hartstone and its extended version

demonstrate that both control-based schedulers can perform truely close to

the optimal solution and even better in some cases which makes them suitable

candidates for both soft and hard real-time applications. Endowed with the

amendments discussed so far, Multiburst allows better response times and

adaptivity than its predecessor especially in the case of asymmetric pools.
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Chapter 5

Conclusions

As a pursuit of the research trend wherein models rooted in control theory

are exploited to enrich the design phase in the development of operating

system components, this thesis provided a robust solution to the scheduling

problem for both soft and hard real-time applications. The concept of tickless

kernels and their advantages, particularly with respect to embedded and

real-time systems, was introduced in this thesis. Then, an effective and

simple mechanism for having a kernel operate in the tickless mode while being

loosely coupled with the target hardware was designed and implemented on

a real embedded kernel named Miosix.

Moreover, a control-based scheduler which relies on a tickless kernel was

designed to improve the responsiveness of an existing scheduler named I+PI

through redesigning with a different view of fairness in the whole problem.

The responsiveness deficiency of I+PI was dealt in the new scheduler by

reconsidering the actual definition of fairness used in I+PI and changing the

way the control model is augmented with heuristic algorithms around it and

consequently the results demonstrated better performance. In this regard

one can deduct that

• Although one may argue that the use of theoretical approaches are

there to avoid using heuristic algorithms which are highly error prone

and difficult to analyze formally, having good heuristics alongside with
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the models which confine them is effective and thus there should be a

trade-off between these two elements when designing a system.

• When resorting to model a problem with control theory, one should

make sure that there is a precise definition of elements (objectives,

constraints and etc.) involved in the problem.

In fact, the inner loop of I+PI is there to guarantee fairness based on the

false assumption that the tasks are always thirsty to get the CPU and did

not distinguish between voluntarily and forced relinquishing of CPU. Then

to alleviate the impact of the inner loop on responsiveness, the heuristic

part of I+PI is fighting the inner loop back. Therfore, although the research

work that introduced I+PI was a great and peculiar leap towards a new

perspective in system design, this work completed it by considering these

two major points and resulted in a more efficient algorithm.

5.1 Future works

The design pattern introduced in this work and related ones exploiting con-

trol theory to enhance OS design can be further expanded into many more

problems in this field such as load balancing in multi/many-cores and princi-

pally anywhere that some shared resources have to be distributed according

to particular criteria.

The new perspective of formally modeling and assessing the problems in

operating systems may have opened the door to reconsider the qualitative

definitions (such as that of fairness) and transform them into more precise

and careful quantitative definitions. Thus, it is worthwhile trying to model

different problems and performing examinations about how the current defi-

nitions will affect the performance of models in well-endorsed benchmarks.
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