
Politecnico di Milano

Scuola di Ingegneria Industriale e dell'Informazione

Corso di Laurea Magistrale in Ingegneria Informatica

Dipartimento di Elettronica, Informazione e Bioingegneria

ENGINEERING A RUNTIME

SYSTEM FOR AQL

Relatore: Prof. Matteo PRADELLA

Tesi di laurea di:

Andrea Morciano Matr. 837115

Anno Accademico 2016�2017

1

To Attilio and Magda.

2

Acknowledgments

I am very grateful to my advisor prof. Stijn Vansummeren, for his constant attention to my

work, his willingness and his valuable comments and inputs. I am equally grateful to my

supervisor Martin Ugarte, that helped me considerably throughout my e�orts by following

my progress closely, reasoning with me on every issue that I met and always providing

useful suggestions, validating my results and scrupulously reviewing this document. I also

thank prof. Matteo Pradella, who reviewed this thesis for its presentation in Italy, pointed

out issues that would have gone unnoticed otherwise and shared interesting ideas on how

to expand the work.

Finally, I would like to thank Attilio, Magda, Andrea, Sara, Isabella, Cecilia, Nicolas

and Thu Minh for their precious support. Without you this thesis would not be possible.

3

�Your task is not to foresee the future, but to enable it.�

Antoine de Saint Exupéry

4

Abstract

Information Extraction addresses the task of extracting information from unstructured

text automatically. Traditionally, IE systems focus on the accuracy of extraction tasks.

However, the problem of the scalability of these tasks has recently began to receive

attention. SystemT is an IE system that successfully addresses this concern. This success

stimulated many studies related to SystemT. One of the most prominent introduces a

formal model that delineates a new approach to extraction tasks, considerably di�erent

from that of SystemT. According to the formal model of SystemT, an extraction task

is executed by �rst obtaining basic elements from the input text, and then combining

these elements by means of algebraic operators to obtain the desired results. In this

dissertation, I embark on the task of de�ning and implementing a new runtime system

that allows for e�ciently obtaining the desired results without the necessity to apply

algebraic operators over basic elements. To this end, I �rst introduce a computational

model (namely eVset-automata), that is based on a previous model (vset-automata), used

for extracting basic elements from text, and I show that the two models are equivalent in

expressive power. Moreover, I prove that under the proposed model there are polynomial

time constructions that allow for directly evaluating the algebraic operators, without

the need for obtaining the basic elements �rst. This represents an improvement over

the previous approach (vset-automata), under which constructions for the same purpose

existed but resulted in exponentially larger computations. Then, I discuss the results

of a series of experiments executed on a corpus of real-life blog posts, that compare the

performance of the runtime system with that of a subsystem that uses the same approach

of SystemT. The experiments show that the runtime system is better than the subsystem

in many cases. However, the subsystem is naturally capable of reusing partial results to

reduce its workload, which can sometimes be advantageous. Finally, I lay the foundations

for further improvements of the runtime system.

5

Sommario

L'Estrazione dell'Informazione (Information Extraction, IE) a�ronta il compito di estrarre

automaticamente informazioni da testi non strutturati. Tradizionalmente, i sistemi di IE

si concentrano sulla precisione delle attività di estrazione. Tuttavia, il problema della

scalabilità di questi compiti ha recentemente cominciato a ricevere attenzione. SystemT è

un sistema di IE che a�ronta con successo questo problema. Questo successo ha stimolato

molti studi relativi a SystemT. Uno dei più prominenti introduce un modello formale

che delinea un nuovo approccio alle attività di estrazione, notevolmente diverso da quello

di SystemT. Secondo il modello formale di SystemT, un compito di estrazione viene

eseguito prima ottenendo elementi di base dal testo di input e quindi combinando questi

elementi tramite operatori algebrici per ottenere i risultati desiderati. In questa tesi mi

impegno a de�nire ed implementare un nuovo sistema di runtime che consente di ottenere

in modo e�ciente i risultati desiderati senza la necessità di applicare operatori algebrici

sugli elementi di base. A tal �ne, introduco innanzitutto un modello computazionale

(gli eVset-automata), basato su un modello precedente (i vset-automata), utilizzato per

estrarre elementi di base dal testo, e mostro che i due modelli sono equivalenti nel potere

espressivo. Inoltre, dimostro che per il modello proposto esistono costruzioni di complessità

temporale polinomiale che consentono di valutare direttamente gli operatori algebrici, senza

necessità di ottenere prima gli elementi di base. Questo rappresenta un miglioramento

rispetto all'approccio precedente (vset-automata), per il quale esistevano costruzioni per

lo stesso scopo, tuttavia queste spesso portavano a computazioni esponenzialmente più

grandi. Successivamente, discuto i risultati di una serie di esperimenti eseguiti su un

corpus di post di blog di vita reale, che confrontano le prestazioni del sistema di runtime

con quello di un sottosistema che utilizza lo stesso approccio di SystemT. Gli esperimenti

mostrano che in molti casi il sistema di runtime è migliore del sottosistema. Tuttavia, il

sottosistema è naturalmente in grado di riutilizzare risultati parziali per ridurre il carico di

lavoro, il che risulta a volte vantaggioso. In�ne, metto le basi per ulteriori miglioramenti

del sistema di runtime.

6

Contents

Acknowledgments 2

Abstract 4

Sommario 5

1 Introduction 1

1.1 Contributions . 2

1.2 Outline . 3

2 Information Extraction 4

2.1 De�nition . 4

2.2 Example Applications . 5

2.3 Issues . 6

2.4 Entity Extraction . 8

2.5 Relationship Extraction . 12

3 The Algebraic Approach and AQL 14

3.1 The Algebraic Approach . 15

3.2 AQL . 21

3.3 A Model for the Core of AQL . 22

4 A Runtime System for the Core of AQL 38

4.1 Extended Vset-automata . 38

4.2 Well-Behaved Extended Vset-Automata . 42

5 Implementation 54

5.1 A Method for NFA Execution: The Thompson Approach 54

5.2 Implementation . 57

7

6 Experiments 66

6.1 Setup . 66

6.2 Experimental Results . 71

7 Summary and Conclusions 79

7.1 Summary . 79

7.2 Conclusions . 80

7.3 Future Work . 80

Bibliography 82

8

List of Figures

2.1 Extraction of structured addresses from �at strings (with deduplication). . . 5

2.2 Decomposition of a sentence into a sequence of tokens. 10

2.3 Segmentation of a sentence. 11

3.1 A string s and a (V, s)-relation R. 16

3.2 Extraction of informal movie reviews. 20

3.3 Parts of the annotator from Figure 3.2 expressed in AQL. 22

3.4 A string s and the span relation obtained by applying spanner P to s. 24

3.5 A γ-parse p for string s (see Figure 3.4). 27

3.6 A vstk-automaton A with JAK = JγK, where γ is the regex formula 3.4 (see

Example 3.5). 29

3.7 A vset-automaton B with JBK = ΥY , for Y = {y1, . . . , ym} (Figure 2b , [Fagin
et al., 2015]). 32

4.1 An eVset-automaton A. 40

4.2 A well-behaved eVset-automaton B. 46

4.3 An operation-closed well-behaved eVset-automaton A′, with JA′K = JAK,
where A is the automaton from Figure 4.1. 47

5.1 Example of the Thompson algorithm. 55

5.2 Example programs. 56

5.3 A program for the automaton A of Figure 5.1. 57

5.4 Overview of the system. 58

5.5 A sample AQL query, written in the syntax used by the system. 59

5.6 A well-behaved eVset-automaton representing Sx,y,z
followedBy(min,max). 60

5.7 The join of two automata A and B based on the predicate followedBy (1, 8). . 61

5.8 The results of the execution of the automata A, B and C from Figure 5.7 on

a string s. 62

6.1 An automaton A, that simulates a dictionary matcher. 67

6.2 The operator tree of query Q6. 68

9

6.3 The operator tree of query Q13. 70

6.4 Running times of the span extractors. 71

6.5 The running times of queries Q1 to Q4. 72

6.6 The sizes of the outputs resulting from the execution of the span extractors,

compared to the size of the corpus. 73

6.7 The running times of queries Q5 to Q9. 73

6.8 Running times of queries Q10 to Q12. 75

6.9 Running times of queries Q13 to Q16. 76

6.10 The sizes of the outputs of queries Q5 to Q9 and Q13 to Q16. 77

6.11 Average speedup of the runtime system w.r.t. the algebraic subsystem for the

groups of queries in the benchmark. 77

1

Chapter 1

Introduction

In recent years, companies and people have witnessed a huge increase in the amount of

available data. This growth is not likely to stop; instead, it is probably going to proceed

at an ever-accelerating pace. Companies are trying to use the datasets that they possess,

aided by computer software, to obtain useful insights on their business, on their reference

market, etc. Moreover, in many cases, data constitute a fundamental component of the

core business of an enterprise, making it even more important to exploit them to the fullest.

A considerable part of the total amount of the available data comes in the form of

documents, containing text written (entirely or partially) in natural language. For instance,

web pages are a category of such documents. While computer generated data usually have

a �xed structure, that is not the case for text documents. In order for the information in

a document to be used by a software agent, a way to make its semantic structure explicit

must be provided. This is the goal of Information Extraction. It is the discipline that deals

with the task of obtaining structured information from unstructured or semi-structured

documents algorithmically.

Information Extraction (IE) began in the 1970s inside the early Natural Language

Processing (NLP) community [Cowie and Wilks, 1996]. Ever since, it has received

contributions from a number of other research areas, such as Information Retrieval (IR)

and Machine Learning (ML) [Sarawagi, 2008]. Over the years, two prominent approaches

to IE were identi�ed: rule-based and statistical. The main focus of IE systems has

historically been the accuracy of the extraction, neglecting aspects such as throughput,

scalability, �exibility, etc. On the contrary, enterprises, which are nowadays interested in

IE as a mean of increasing the added value of their datasets, are concerned with these

aspects. To bridge the gap between the traditional systems and the modern requirements,

companies have been pursuing a series of research initiatives. At IBM, this e�ort led to the

development of SystemT, a system for rule-based Information Extraction. Its �rst version

appeared in 2008 [Reiss et al., 2008]. The main innovation of SystemT lies in its approach

2

to the speci�cation and execution of extraction tasks: a set of basic extractors are set up,

using regular expressions or dictionaries, then they are combined by means of algebraic

operators, thus de�ning two distinct execution phases. The creators of SystemT call

this method the algebraic approach. The execution of an extraction task is considerably

faster with SystemT than with traditional systems, which usually rely on cascaded formal

grammars, that are very expensive to evaluate [Reiss et al., 2008, Krishnamurthy et al.,

2009]. We can say that SystemT tackles the issue of the scalability of extraction tasks

with success. Moreover, it supports an iterative and modular development process, thus

providing �exibility to its users.

The great results of SystemT drew the attention of the research community on it,

and a series of related studies were conducted. One of the most prominent describes

a formal model for the core fragment of the language used to express extraction tasks

in SystemT, called Annotation Query Language (AQL) [Fagin et al., 2015]. The model

introduces the concept of document spanner. A document spanner is an entity that extracts

a set of tuples containing spans of text from a document, and it generalizes the concept of

extractor. The ability of AQL to combine extractors is modeled with the concept of algebra

of spanners, which is a set of operators that combine the outputs of their input spanners.

The most important operators described in [Fagin et al., 2015] are the standard relational

operators: projection, union and natural join. These operators are traditionally used for

querying a relational database. The authors propose three classes of formal models to

represent document spanners: regex formulas, variable stack automata (or vstk-automata)

and variable set automata (or vset-automata). Regex formulas model regular expressions

with capture variables, also used in AQL, while vstk-automata and vset-automata are

Nondeterministic Finite State Automata (NFAs) opportunely modi�ed to retain spans of

the input strings. A particularly interesting result of the study is that we can simulate

the projection, the union and the natural join of spanners represented by vset-automata

with another vset-automaton. This fact discloses the opportunity to evaluate AQL queries,

at least in part, by using NFA execution engines (modi�ed as needed), whose properties

and performances have been extensively studied (see, e.g., [Cox, 2007, Yang et al., 2012,

Grathwohl et al., 2016]).

1.1 Contributions

With this thesis, I make the following contributions:

• I introduce a new class of spanner representations: extended vset-automata (or

eVset-automata). EVset-automata are a modi�ed version of vset-automata. I show

that the two types of representations are equivalent. Moreover, I de�ne well-behaved

3

eVset-automata, a special kind of eVset-automata that has good execution properties;

• I prove the existence of polynomial-time constructions to simulate projection, union

and natural join of well-behaved eVset-automata. These constructions represent an

improvement over the analogous constructions described in [Fagin et al., 2015] for

vset-automata, whose space complexity is, in general, exponential. Moreover, the

new constructions preserve well-behavedness;

• I have designed and implemented a runtime system for the core of AQL. It is based

on the model presented in [Fagin et al., 2015]. It works exclusively with well-behaved

eVset-automata, which I show to guarantee the full applicability of the system. The

latter has a compilation module that exploits the mentioned constructions to compile

an AQL query into a well-behaved eVset-automaton;

• I implemented a subsystem that executes AQL queries with the algebraic approach,

in order to perform a comparison between it and the approach delineated in [Fagin

et al., 2015];

• I performed some experiments with the system. I developed a set of queries aiming to

�nd informal movie reviews in a text, to be run on a corpus of blog posts. The queries

were executed both with the runtime system and the subsystem taking the algebraic

approach, allowing to compare the two. I also experimented certain transformations

of some of the test queries that improved the performance of the runtime system;

In general, I believe that this work could serve as a basis for further research on the

performance advantages and issues of the approach presented in [Fagin et al., 2015], and

stimulate the development of optimization techniques speci�c to it.

1.2 Outline

The outline of this dissertation is as follows. Chapter 2 is an overview of Information

Extraction. Chapter 3 describes the algebraic approach and the query language AQL, and

it discusses the model for the core of AQL proposed in [Fagin et al., 2015]. In Chapter

4, I formally describe the elements of the runtime system, in particular well-behaved

eVset-automata. I discuss their expressive power and I introduce the mentioned

constructions for simulating projection, union and natural join. Chapter 5 is a description

of the implementation of the runtime system. Chapter 6 contains a detailed description

of the experiments and a discussion of the results. Finally, in Chapter 7, I summarize the

work done, I make some closing considerations and I suggest some interesting research

perspectives for the future.

4

Chapter 2

Information Extraction

In this chapter, I give a generic introduction to Information Extraction. This chapter is a

re-elaboration of [Sarawagi, 2008]. Refer to the original source for a more comprehensive

and detailed overview. The �gures and examples appearing in this chapter are original.

The chapter is structured as follows: Section 2.1 contains a general de�nition of Information

Extraction; in Section 2.2, a series of application domains where Information Extraction

can be applied are reviewed; Section 2.3 is a discussion of the main challenges that are

met in extraction tasks; �nally, Section 2.4 and Section 2.5 contain high-level descriptions

of the two main subtasks of Information Extraction: Entity Extraction and Relationship

Extraction, respectively.

2.1 De�nition

Information Extraction (IE) is the discipline that addresses the task of extracting

structured information from unstructured sources automatically. Sources usually take

the form of text documents. The most explored aspect of IE is the extraction of named

entities. Another main topic, that has become object of research only in recent years,

is the extraction of relationships between entities. IE is a �eld with contributions from

many di�erent communities: Machine Learning, Information Retrieval, Database, Web,

Document Analysis. The interest towards it is motivated by the constantly increasing

amount of data that is generated by our society. IE promises to bring value to many

application domains, most notably the enterprise world and the Web.

There are two prominent approaches to IE:

rule-based which de�nes a set of rules that the output has to respect. The rules can be

manually coded or learned from examples;

statistical which seeks to identify a decomposition of unstructured text and to label its

5

Stationsstraat, 336, 5032, Isnes

Street: Herentalsebaan, Nr: 219, ZIP: 3800, City: Brustem

Street: Stationsstraat, Nr: 336, ZIP: 5032, City: Isnes

Street Nr ZIP City
Stationsstraat 336 5032 Isnes

Herentalsebaan 219 3800 Brustem

Stationsstraat 336 5032 Isnes

Street Nr ZIP City
Stationsstraat 336 5032 Isnes

Herentalsebaan 219 3800 Brustem

↓

↓

Figure 2.1 � Extraction of structured addresses from �at strings (with deduplication).

components.

2.2 Example Applications

IE can serve for a large variety of tasks. What follows is a review of some of the most

common ones.

News Tracking The activity of tracking events in news articles. It can result in a lot of

useful services, like automatic creation of multimedia news, linking articles to information

pages on the entities found, etc.

Example 2.1: Google Alerts1 lets the user specify a subject of interest and it o�ers a

series of news articles related to that subject.

Data Cleaning Extracting structured forms from �at data strings (containing, e.g.,

addresses). It allows more e�ective deduplication of information, among the other things.

1https://www.google.com/alerts

6

Example 2.2: Figure 2.1 illustrates an example data cleaning task. A structured table

of addresses is obtained from a set of �at address strings. Subsequently, duplicates are

removed from the table.

Citation Databases Articles, conference sites, individual research sites and similar are

explored to obtain formatted citations of publications, later stored in publicly accessible

databases. The latter are capable to forward references and may provide aggregate

statistics and scoring information.

Example 2.3: The citation database Google Scholar2 automatically maintains, for each

paper registered, a list of papers that refer to it. The user can, in turn, consult the citations

of these papers too, and so on.

Relationship Web Search Relationship extraction would be a very useful feature to

integrate into web search engines, as the keyword search that they o�er at present time is

only good for entity identi�cation.

As the reader can see, IE can be used for a variety of diversi�ed data analysis tasks.

Nonetheless, the criteria that we use to measure the quality of an IE system are always

the same. The next section is a review of the most important issues that a developer of

an IE system has take care of, in order to obtain satisfactory results.

2.3 Issues

The main issues that have to be dealt with when performing IE can be divided in two

categories: accuracy and running time.

2.3.1 Accuracy

Only the main metrics for entity extraction are reported here. Those for relationship

extraction are similar. We measure the accuracy of an entity extraction task with two

quantities:

• precision: the percentage of correctly extracted entities among the extracted entities;

• recall : the percentage of entities extracted among all the existing entities in the input

source.

The main di�culties to achieving a good level of accuracy are:

2https://scholar.google.com/

7

• the availability of a great set of clues that might be very di�erent in nature (e.

g., orthographic properties, part of speech, typical words, etc.) and that might be

di�cult to combine;

• the di�culty of identifying missed extractions;

• the fact that with the advancement of research the extracted data structures keep

increasing in complexity (for instance, it is becoming more di�cult to identify the

boundaries of an entity in a text).

While it is possible to reach a very good level of accuracy for entity extraction (90%),

relationship extraction is still quite unreliable (50 − 70% accuracy), mainly due to its

intrinsic complexity.

2.3.2 Running Time

Nowadays companies need to process enormous amounts of data on a regular basis. Hence,

they have an increasing interest in IE. Since their datasets keep growing in size, scalability

has become a central issue in the �eld of IE.

This trend has appeared only in recent years, while, historically, this discipline has

always been con�ned to the domain of theoretical research. As a consequence many IE

systems don't address the problem of e�ciently carrying out extraction tasks with su�cient

attention.

The overall e�ciency of an extraction task is in�uenced most notably by the e�ciency

of the following tasks:

• �ltering documents in order to actually examine only the ones that have good chances

to contain the desired information;

• focusing on the parts of a document that contain relevant information;

• processing steps, like database querying, that are typically very expensive and that

might have to be performed on the selected pieces of input.

Recently, many solutions have been proposed to target the scalability issue; one of these is

SystemT. It is a system for rule-based Information Extraction developed at IBM research

laboratories, that is based on an innovative approach to de�ning and executing extraction

task: the so-called �algebraic approach�. This new approach is promising, since it has

been shown that it can achieve great performance improvements over classical systems

(see [Reiss et al., 2008, Krishnamurthy et al., 2009]). It will be discussed in detail in the

next chapter.

8

2.4 Entity Extraction

Named entities are elements of interest in a text. Example of entities are person names,

street addresses, institutions, countries, and so on. In this section and in the next one, I

assume that the output of an extraction task is a series of labels inserted into an input text

document (that becomes annotated), although there are other possible output formats.

2.4.1 Rule-based Methods

Rule-based methods employ sets of predicates that are ��red� independently. When a

portion of input text satis�es a predicate, the action associated with the predicate is

executed. A predicate can be represented in the following generic form:

"Contextual Pattern −→ Action" (2.1)

Contextual patterns are a way to identify entities by exploiting their properties or the

context in which they are usually met. The most common way to express them is the

speci�cation of regular expressions over tokens of the input. Actions mark the entities that

have been identi�ed, and might consist in storing them in a database or adding delimiters

directly in the text.

Most systems in this category present a cascaded structure: an input document goes

through a series of processing phases, and the output of a phase is the input of the next

one. A famous example is that of cascading grammars: formal grammars are evaluated in

sequence on the input.

As mentioned before, a contextual pattern seeks for (groups of) tokens that have

certain features. In the case of entity extraction, features can be classi�ed in the following

categories:

• string representation;

• orthography (e.g., small case, mixed case, number, etc.);

• part of speech;

• list of dictionaries they're contained into;

• annotations obtained in previous phases.

Rules can be hand-coded by experts or learned through learning algorithms. In the second

case the goal is to cover each of the entities of interest in the training set with at least one

rule. The obtained rules should have good recall and precision on new input. Moreover,

when learning a set of rules, we would like to achieve a good level of generalizability, that

9

is: we would like to �nd the minimum set of rules accounting for the maximum portion

of training data, with high precision. There are two main strategies for rule learning:

bottom-up (start from very speci�c rules and make them more and more general) and

top-down (start with rules covering all existing instances, then specialize them).

2.4.1.1 Example Rules

For these examples, I use an abstract syntax, which is the same used in [Sarawagi, 2008].

Example 2.4: Consider the task of identifying all mentions of ISO standards in a text.

A rule for this purpose could be:

({String = "ISO"} {String = "/IEC"} {?} {String = "/ASTM"} {?}

{Orthography type = number} {{String = ":"} {Orthography type = number}} {?})

−→ ISO Standards (2.2)

This rule matches all strings starting with a substring equal to �ISO�, followed by an

optional (because of the {?} modi�er) substring equal to �/IEC�, another optional substring
equal to �/ASTM�, then a number identifying the particular standard and �nally an optional

number, separated by a colon from the previous one. A matched string is added to a set of

matches with name �ISO Standards�.

Example 2.5: Multiple entities can be matched at once. Imagine we need to �nd mentions

of (simple) street addresses in a text consisting of a street name and a street number. A

rule that matches the name and number separately could be:

({Orthography type = mixed case word} {*}) : Name ({String = ","})

({Orthography type = number}) : Number

−→ Street Name =: Name, Street Number =: Number (2.3)

2.4.2 Statistical Methods

Statistical methods aim to decompose the source, assigning a label to each element in the

decomposition. We distinguish between three types of statistical models:

• Token-level models: they assign a label to each token of the source. Since entities

are usually comprised of multiple adjacent tokens, the tags used are of the forms

�entity_begin�, �entity_continue�, �entity_end�;

10

Yesterday I watched a movie called �The Matrix�
i 1 2 3 4 5 6 7 8 9 10

x Yesterday I watched a movie called � The Matrix �

y y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

Figure 2.2 � Decomposition of a sentence into a sequence of tokens.

• Segment-level models: they try to �nd the best segmentation of the source text;

• Grammar-based models: they use formal grammars, outputting parse trees. All the

valid parses are considered for an input document, assigning a score to each. The

parse with the highest score is retained.

I now give a brief description of Token-level Models and Segment-level Models. In the

following the term 'clue' is used as a synonym of 'feature'.

2.4.2.1 Token-Level Models

Features The features that these models exploit are of the form

f : (x, y, i)→ R (2.4)

where x is a sequence of tokens, i is a position in x and y is a candidate label for the token

at i. We distinguish between these types of features:

• word features;

• orthographic features;

• dictionary lookup features.

Example 2.6: Consider the sentence shown in Figure 2.2 and its corresponding

decomposition. An example of word feature at position 9 is

f1 (y,x, i) = ϕ (xi equals "Matrix") · ϕ (y = Movie)

where ϕ (P) = 1 if predicate P is true, and 0 otherwise. An orthographic feature might be

f2 (y,x, i) = ϕ (xixi+1 matches INITIAL_QUOTE CapsWord) · ϕ (y = Movie) .

Finally, an example of dictionary lookup feature is

f3 (y,x, i) = ϕ (xi in Movie_dictionary) · ϕ (y = Movie) .

11

�The Matrix� by The Wachowski Brothers
i 1 2 3 4 5 6 7 8

x �The Matrix� by The Wachowski Sisters

(lj , uj , yi) 1, 4,M 5, 5, O 6, 8, D

Figure 2.3 � Segmentation of a sentence.

Models for Labeling Tokens The best models are the ones that take into account

dependencies between tokens, among which we may �nd:

• ordered classi�ers;

• Hidden Markov models;

• Maximum Entropy Taggers;

• Conditional Markov Models;

• Conditional Random Fields (the state of the art).

2.4.2.2 Segment-Level Models

Features In these models the label for a segment depends on the properties of its tokens

and on the previous segment. We can describe a segment sj as:

sj = (yj , lj , uj) (2.5)

where yj is the proposed label for sj and lj , uj are the start and end positions of sj .

Therefore, a feature is of the form:

f (yj , yj−1,x, lj , uj) (2.6)

where x is the input sequence of tokens, yj−1 is the proposed label for the previous segment

and the other symbols are de�ned as for Equation 2.5. Besides token-level features (see

Subsection 2.4.2.1), we can exploit the following feature types:

• Similarity to an entity in a database;

• Length of the segment.

Example 2.7: Consider the sentence in Figure 2.3 and its corresponding segmentation,

which identi�es a movie and a director. A basic similarity feature for the director could be:

f (yj , yj−1,x, 6, 8) = ϕ (x6x7x8 appears in a list of movie directors) · ϕ (yj = Director) .

12

A more realistic feature would make use of some similarity function, rather than

requiring an exact match. An example of length feature is

f (yi, yi−1,x, l, u) = ϕ (u− l = 3) · ϕ (yi = Director) .

There exist also global segmentation models, that try to �nd the best segmentation of

a token sequence by maximizing a target function.

2.5 Relationship Extraction

When extracting relationships between entities, we might face three types of speci�c tasks:

1. given a pair of entities, �nd the relationship between them;

2. given an entity e and a relationship r, �nd all the other entities e′ such that (e, e′) ∈ r;

3. given a big and open-ended input and a relationship r �nd all pairs of entities e′, e′′

such that (e′, e′′) ∈ r.

2.5.1 Predicting the Relationship Between a Pair of Entities

For the �rst task, we can exploit the following resources:

• surface tokens: tokens that are usually placed between entities, which are strong

clues;

• part of speech tags (the most important being verbs);

• syntactic parse tree: allows grouping words in phrase types, e.g., noun phrases,

propositional phrases, and so on;

• dependency graph: it is a less expensive structure to compute than the parse tree

and it links a word to those that depend on it.

The main methods available to carry out the task are:

• Feature-based methods, that simply transform the clues mentioned above for usage

by conventional classi�er models;

• Kernel-based methods, that use kernel functions to encode the similarity between two

graphs;

• Rule-based methods, creating rules over structures around pairs of entities.

The second task is a special case of the third, and will not be treated here.

13

2.5.2 Finding All Possible Entity Pairs Belonging to a Relationship

The third task can be met especially when dealing with the Web. Usually we can exploit

the following resources to ful�ll it:

• the types of arguments of r (that might need speci�c recognition patterns);

• a seed database of pairs of entities belonging to r;

• manually coded patterns.

The generic procedure that is used in this case can be described with these steps:

1. Use the seed database to learn the relevant extraction patterns;

2. Use the obtained patterns to de�ne candidate triples of the form (e′, e′′, r);

3. Retain a subset of the candidate triples, using a statistical test.

There exist also rule-based methods for the task.

In this chapter, a high-level introduction to Information Extraction was given.

Examples of applicability were mentioned, the main challenges were highlighted, and the

two prominent approaches to extraction tasks were described.

The next chapter focuses on the aforementioned algebraic approach to Information

Extraction.

14

Chapter 3

The Algebraic Approach and AQL

This chapter contains a description of the algebraic approach and the extraction rule

language AQL (Annotation Query Language), followed by a description of a new formal

model capable of capturing the core of AQL. The model is focused on the concept of

document spanner. A document spanner provides a basis for a mathematical description

of an AQL query. Spanners can be associated with formal representations, for which

execution models can be de�ned easily. This new model is the foundation for the runtime

system for the core of AQL developed in this thesis. This chapter is a re-elaboration

from [Reiss et al., 2008, Krishnamurthy et al., 2009, Fagin et al., 2015]. In particular,

the mathematical statements from 3.1 to 3.8 are taken or adapted from [Fagin et al.,

2015], except for Remarks 3.1 to 3.3, that come from [Reiss et al., 2008]. Refer to the

original sources for more details on the topics that I treat in this chapter. The �gures and

examples appearing in this chapter are original, except when I explicitly state otherwise.

The outline of the chapter is as follows. Section 3.1 is a general description of the algebraic

approach: the data model, execution model, query operators and possible optimization

techniques are presented. Section 3.2 contains a brief overview of AQL. Section 3.3 is

an extensive description of the new model: the concept of document spanner is de�ned,

then three primitive spanner representations, originally de�ned in [Fagin et al., 2015], are

presented. These representations are regex formulas, variable stack automata, and variable

set automata. Subsequently, a series of operators for composing spanners is introduced.

Finally, some interesting classes of spanners are described. These classes are based on the

aforementioned primitive spanner representations. The spanner class that models the core

of AQL is identi�ed, along with some convenient classes of spanner representations that

can model it.

15

3.1 The Algebraic Approach

As mentioned in the previous chapter, scalability is now a main concern in IE. Companies

rely on IE for many tasks; a prominent example is Business Intelligence. Unfortunately,

many systems developed in the past don't address this issue correctly. Traditionally,

most rule-based systems rely on cascading grammars: formal grammars are executed in

sequence on the input, each grammar representing a stage that takes as input the output

of the previous one. Rules in such grammars are matched using regular expressions: if a

part of the input text satis�es the regular expression associated with a rule, that rule is

activated (i.e., ��res�) and the corresponding action is executed. Evaluating a grammar

on a document tends to be costly, because simply evaluating a single rule might require

scanning the whole document. On large datasets, the running time becomes enormous

(see, for instance, [Reiss et al., 2008]). Moreover, these kind of systems are not able to

ful�ll the expressivity requirements of complex extraction tasks.

SystemT was developed at IBM to address these issues. It is based on a new approach to

extraction rules: the algebraic approach. According to this approach, data manipulations

are viewed as operations in a (relational) algebra. Extraction tasks are de�ned using

annotators (see Section 2.4) whose rules are conceived as queries on input documents,

that act as virtual databases. Complex annotators are obtained by combining simpler

ones, using relational operators. By doing so, all the optimization techniques that are

typical of relational databases become available, but new techniques are possible too, due

to the characteristics of text documents.

I now describe the algebraic approach in detail, by presenting the data model, execution

model and algebra. For more information refer to [Reiss et al., 2008, Krishnamurthy et al.,

2009].

3.1.1 Data Model

The algebraic approach uses an object-relational data model for annotations on a text

document, that allows applying logical operators over it. Operators can be composed.

There is an important assumption to mention before continuing: an extraction task over

a set of documents is performed on one document at a time. This means that any

relationships between entities in di�erent documents are disregarded. This assumption is

crucial to some optimization techniques available. While there exist tasks where considering

these relationships would be useful (think of the Web), still a large number of relevant tasks

can be carried out this way. In the following, I report the de�nitions of the basic data types

in the data model of the algebraic approach.

Let Σ be a �nite alphabet of symbols (characters). Σ∗ denotes the set of all strings of

16

String s
I _ l i k e _ a c t i o n _ m o v i e s _ b u t _ I _

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

h a t e _ h o r r o r _ f l i c k s

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

R
x y z

µ1 [3, 7〉 [15, 21〉 [3, 21〉
µ2 [28, 32〉 [40, 46〉 [28, 46〉

Figure 3.1 � A string s and a (V, s)-relation R.

�nite length over Σ. A document is modeled as one such string.

De�nition 3.1: A document is a string s ∈ Σ∗.

The most basic data type is the span.

De�nition 3.2: Given a string s = σ1...σn, with length |s| = n and whose characters are

indexed in the natural way, a span of s is an interval [i, j〉, where i, j are indices of s

satisfying 1 ≤ i ≤ j ≤ n + 1. The substring of s beginning at i and ending at j − 1 is

denoted as s[i,j〉.

Spans can be aggregated in tuples, which are �nite sequences of spans. To formally de�ne

a tuple, we need to introduce some additional concepts and notation. The �rst concept

is that of span variable. A span variable is simply a variable which can be assigned a

span. Now, let us denote by SVars an in�nite set of span variables. A tuple is always

parametrized by a string s and a �nite subset V of SVars. We stress this fact by calling

a tuple a (V, s)-tuple. Let Spans (s) be the set of all possible spans of a string s. A

(V, s)-tuple is de�ned as follows:

De�nition 3.3: Given a �nite set V ⊆ SVars, and a string s ∈ Σ∗, a (V, s)-tuple is a

mapping µ : V → Spans (s). When V is clear from the context, we might call µ simply a

s-tuple.

In general, a set of tuples is called a relation. Here, we focus on span relations, which are

formally de�ned as (V, s)-relations.

De�nition 3.4: A (V, s)-relation is a set of (V, s)-tuples. As before, we can speak of

s-relation when V is clear.

Example 3.1: Consider the string s, over the alphabet Σ = {A, . . . ,Z, a, . . . , z,_}, shown
in Figure 3.1. The character '_' can be thought as a white-space. Consider as well the set

V = {x, y, z}, with V ⊆ SVars. The table shown below s represents the (V, s)-relation R,

containing the (V, s)-tuples µ1 and µ2.

17

Algorithm 3.1 Annotating all local databases in a global database (taken from [Reiss
et al., 2008]).

E ←− {algebra expression}
for localDB in globalDB do
begin

1. {Read localDB into main memory}

2. R←− E (localDB)

3. {Add R to localDB}

4. {Write modi�ed localDB to disk}

Each operator in the algebra takes one or more span relations as input and outputs a single

span relation.

3.1.2 Execution Model

A single document is conceived as a local annotation database, to which annotators are

applied in order to build views. In general, a local database �ts into main memory.

Local databases are contained in a global annotation database. The runtime takes a global

database and it annotates its local databases. The procedure is described by Algorithm

3.1.

3.1.3 Algebra of Operators

The operators of the algebra can be classi�ed in three groups:

• relational operators;

• span extraction operators;

• span aggregation operators.

In addition, there exist some span selection predicates that are used for span selection.

3.1.3.1 Relational Operators

Relational operators are the usual operators of relational algebra that appear in classical

database query plans. Important examples are:

• selection (σ);

• projection (π);

18

• Cartesian product (×);

• Join (./);

• Union (∪);

• Intersection (∩).

Span Extraction Operators

Loosely speaking, span extraction operators take a pattern and a document as input and

output a maximal set of spans that match that pattern. There are two main span extraction

operators:

• standard regular expression matcher (εre): this operator takes a regular expression

r as input and it identi�es all non-overlapping matchings of r in the current

document, from left to right;

• dictionary matcher (εd): this operator outputs all the spans that match some entry

in a given dictionary.

Although the dictionary matcher might seem useless since there is a regular expression

matcher, it has some advantages over the latter, as the fact that it can �nd overlapping

matchings or that it enforces the semantics of word boundaries.

Span Aggregation Operators

Span aggregation operators are used to aggregate spans in a meaningful way. They are of

two types:

• Consolidation: they are used to coalesce overlapping spans that were matched using

patterns for the same concept. They are:

containment consolidation (Ωc): discards a span fully contained into another one.

overlap consolidation (Ωo): merges any sequence of overlapping spans into a single

span.

• Block (β): it matches a series of spans, each at a distance from its neighbor span(s)

that is not superior to a threshold. It is thought to identify regularity, and it is tuned

by two parameters: a distance constraint to control regularity and a count constraint

that establishes the minimum number of spans in a block.

19

3.1.3.2 Span Selection Predicates

Consider two spans s1, s2. The main span predicates that may be used for selection are

the following:

s1 �d s2 when s1, s2 do not overlap, s1 precedes s2 and there are less than d characters

between them;

s1 ' s2 when the two spans overlap;

s1 ⊂ s2 when s1 is strictly contained in s2;

s1 ⊆ s2 when s1 is contained in or equals s2;

s1 = s2 when s1 equals s2.

Example 3.2: Consider the task of extracting informal movie reviews from blog posts.

A possible annotator to perform the task is shown in Figure 3.2. Figure 3.2a shows the

high-level structure of the annotator. There are two main components: the ReviewPart

module, which extracts the text snippets that are identi�ed as parts of a movie review,

and the ReviewInstance module that aggregates adjacent snippets into single blocks of

text. Figure 3.2b shows the operator tree of the annotator. Review parts are extracted by a

series of join operators that combine elements of basic relations, extracted by running span

extractors on the text. Subsequently, the block operator aggregates the parts, and review

instances that are contained into others are discarded.

3.1.4 Optimization Techniques

As mentioned in the introduction of this chapter, the algebraic approach can make use

of the optimization techniques from traditional database systems, but there exist some

peculiar aspects of the approach and span extraction tasks that enable new optimization

methods.

Remark 3.1: The e�ect of document-at-a-time processing is that the span relations

produced and consumed for a single document by operators are very small in size and often

empty.

Remark 3.2: Evaluating an annotator on a large set of documents is a CPU-intensive

process. This is because the running time is by far dominated by the execution of the

operators εre and εd, that are applied to each document in an input set.

Remark 3.3: Spans are nothing but integer intervals, so we can exploit interval algebra.

20

�Yesterday I watched 'Annie Hall'. It is about the relationship between a TV writer and his girlfriend, who wants to become an
actress. I really loved this movie. Although the acting wasn't very good sometimes, the dialogues were smart. I'd recommend
it to anyone.�

ReviewInstance
Aggregator

ReviewPart
Extractor

"watched 'Annie Hall'"
"loved this movie"
"acting wasn't very good"
"dialogues were smart"

"watched 'Annie Hall'.
It is about... loved this
movie. Altough the acting
wasn't very good...
dialogues were smart"

(a) High-level structure.

Ωc

β

∪

./�10

εd

Action

εre

Title

ReviewPart

./�30

εd

Aspect

εd

Attribute

ReviewPart

./�30

εd

Sentiment

εd

MovieKeyword

ReviewPart

ReviewPart

ReviewInstance

(b) Operator tree.

Figure 3.2 � Extraction of informal movie reviews.

21

With Remark 3.1 and Remark 3.3 in mind, running time can be reduced in a number of

ways. Let us look at them brie�y.

Regular Expression Strength Reduction Some classes of regular expressions, as

de�ned in the POSIX standard, can be executed by using specialized engines, that

are able to improve performance. For example, an expression that looks for a �nite

number of strings in a text is evaluated more e�ciently by a string-matching engine.

Shared Dictionary Matching (SDM) Dictionary lookups are usually very expensive,

as we need to consult the dictionary thousand of times in a typical setting. Instead

of evaluating each εd operator in an extraction task independently for each input

document, it is evaluated once and for all at the beginning of the process, and the

obtained matches are shared among the single documents.

Conditional Evaluation (CE) As we know, an annotator is evaluated independently

on each input document. Thus, by employing some heuristic, it can be guessed if a

(sub)query will give any matches in a document without loss of generality, and in

case it does not, it is not evaluated on it.

Restricted Span Extraction (RSE) It consists in executing expensive operations on

selected regions of a document. It is used for join operators involving a dictionary

matching operator in their arguments. One input operator is evaluated on the whole

document, while the others are modi�ed to consider only some neighborhood of the

results from the �rst one. These neighborhoods are established by some ad hoc

heuristic.

The techniques described allow the use of a cost-based plan optimizer : in a query plan, the

subgraphs suitable for optimization are identi�ed, and all the possible optimized plans for

them are formulated. In the end, the best ones are retained. Results of sample experiments

on a large dataset are described in [Reiss et al., 2008, Krishnamurthy et al., 2009].

3.2 AQL

AQL is the concrete language used by SystemT to express annotators, designed to support

the algebraic approach. It is a declarative language with a syntax very similar to that

of SQL. It supports all the operators presented in Subsection 3.1.3. When coding an

extraction task in AQL, we can build a series of views of a document, of progressively

higher abstraction level. Higher-level views are typically based on lower-level views. The

content of a view corresponds with annotations in the text. An input document is modeled

as a view too, which is provided by default. The main advantages of AQL are:

22

�De�ne a dictionary of actions
create dictionary Action as ('saw', 'watched', ...);

�Use a regular expression to �nd movie titles
create view Title as
extract regex /["'][A-Z]\w+(s+\w+){0,3}["']/
on D.text
as title

from Document D;

�A single ReviewPart rule. It looks for instances
�of Action followed within 10 characters by a title
create view ReviewPart as
select CombineSpans(A.act, T.title) as part
from
(extract dictionary 'Action' on D.text as act
from Document D) A, Title T

where
Follows(A.act, T.title, 0, 10)

consolidate on CombineSpans(A.act, T.title);

Figure 3.3 � Parts of the annotator from Figure 3.2 expressed in AQL.

• it allows formulating complex low-level patterns in a declarative fashion;

• it enables modularization and reuse of the queries, making development and

maintenance of complex high-level structures easier.

Example 3.3: The AQL code in Figure 3.3 realizes a join combining an instance of an

action related to movies with an instance of movie title, which follows the action within 10

characters. It is the �rst join from the left in Figure 3.2b.

3.3 A Model for the Core of AQL

In [Fagin et al., 2015], a formal model capturing the core functionality of AQL is described.

The authors show a way to represent annotators expressed in AQL by means of modi�ed

�nite state automata, namely variable stack automata and variable set automata. In this

section, I present this model and look at the relative expressive power of its main elements.

3.3.1 Basic De�nitions

Let us start with the de�nition of a language.

23

De�nition 3.5: A language L is a subset of Σ∗.

An important concept is that of regular expressions, which can be de�ned by describing

their language.

De�nition 3.6: Regular expressions over Σ are the strings that belong to the language γ,

de�ned by the following grammar:

γ := Ø | ε | σ | γ ∨ γ | γ · γ | γ∗ (3.1)

where:

• /O is the expression matching the empty language;

• ε is the empty string;

• σ ∈ Σ;

• ∨ is the ordinary disjunction operator;

• · is the concatenation operator;

• ∗ is the Kleene Star operator.

Additionally, we might use γ+ as a shortcut for γ·γ∗, and Σ as an abbreviation of σ1∨...∨σn.
The language L (γ) of a regular expression γ is the set of strings s over Σ that are matched

by that expression. A language L is regular if L = L (γ) for some regular expression γ.

We also need the de�nition of a string relation.

De�nition 3.7: A n-ary string relation is a subset of (Σ∗)n.

An interesting class of string relations is that of recognizable relations, denoted as REC.

De�nition 3.8: Given a k-ary string relation R, R is recognizable if it is representable by

a �nite union the form: ⋃
L1 × ...× Lk (3.2)

where each Li is a regular language.

I have already mentioned span relations (De�nition 3.4). They allow giving a precise

de�nition of annotators, by introducing the concept of document spanner.

De�nition 3.9: Given a string s, a document spanner P is a function that maps s to a

(V, s)-relation r, where V := SVars (P). We say P is n-ary if |V | = n.

24

String s
I _ w a t c h e d _ � T h e _ M a t r i x � _ t h e n

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

_ w e _ s a w _ � A n n i e _ H a l l �

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

P (s)
x y z

µ1 [3, 10〉 [11, 23〉 [3, 23〉
µ2 [32, 35〉 [36, 48〉 [32, 48〉
µ3 [3, 10〉 [36, 48〉 [3, 48〉

Figure 3.4 � A string s and the span relation obtained by applying spanner P to s.

Example 3.4: Consider the string s, over the alphabet Σ = {A, . . . , Z, a, . . . , z, _, "},
shown in Figure 3.4. The character '_' can be thought as a space. The table shown below

s represents the span relation P (s), which is the result of applying the ternary spanner P

to s.

I now present two special types of spanners, which were originally de�ned in [Fagin et al.,

2015] (see Subsection 2.2, ibid.), and that will be useful later on, when we will reason

on the relative power of various classes of spanners of interest. The �rst one is that of

hierarchical spanners. In order to formulate their de�nition, we need to say when a s-tuple

is hierarchical.

De�nition 3.10: Given a string s, a document spanner P and a s-tuple µ ∈ P (s), µ is

hierarchical if, for every x, y ∈ SVars (P), one of the following conditions holds:

• µ (x) ⊇ µ (y) ;

• µ (x) ⊆ µ (y);

• µ (x) is disjoint from µ (y).

The de�nition of hierarchical spanner follows.

De�nition 3.11: Given a document spanner P , P is hierarchical if ∀s ∈ Σ∗, ∀µ ∈ P (s),

µ is hierarchical.

The class of hierarchical spanners is denoted by HS. The second type of spanners

considered is that of universal spanners. Some accessory de�nitions are needed.

De�nition 3.12: Given a string s and a document spanner P , P is total on s if P (s)

consists of all the possible s-tuples on SVars (P).

25

De�nition 3.13: Given a string s and a document spanner P , P is hierarchically total

on s if P (s) consists of all the possible hierarchical s-tuples on SVars (P).

There are two kinds of universal spanners: the universal spanner and the universal

hierarchical spanners.

De�nition 3.14: Given a �nite set of span variables Y⊆ SVars, the universal spanner

ΥY over Y is the unique document spanner P such that SVars (P) = Y and P is total on

every string s ∈ Σ∗.

De�nition 3.15: Given a �nite set of span variables Y⊆ SVars, the universal hierarchical

spanner ΥH
Y over Y is the unique document spanner P such that SVars (P) = Y and P is

hierarchically total on every string s ∈ Σ∗.

The next subsection introduces the basic ways of representing spanners, as described in

[Fagin et al., 2015].

3.3.2 Spanner Representations

We saw that the operations used by AQL to extract spans relations from text are regular

expression matching and dictionary matching. In the remainder of this dissertation I

focus on regular expressions. The regular expressions of AQL can be seen as usual

regular expressions enriched with capture variables, that are precisely the span variables

constituting the span relations of De�nition 3.4. In [Fagin et al., 2015], three types

of representations are described, that are able to model this kind of modi�ed regular

expressions. They are:

• regex formulas;

• variable stack automata;

• variable set automata.

These models are also called primitive spanner representations. As we will see in Subsection

3.3.4, not all of them are equivalent. In particular, while regex formulas and variable stack

automata have the same expressive power, there exist tuples, that can be spanned by a

spanner represented by a variable set automaton, which cannot be spanned by a spanner

represented by any of the other two representations.

3.3.2.1 Regex Formulas

In order to de�ne a regex formula, let us introduce the concept of variable regex.

26

De�nition 3.16: A variable regex is a regular expression with capture variables that

extends usual regular expressions in the following way:

γ := Ø | ε | σ | γ ∨ γ | γ · γ | γ∗ | x {γ} (3.3)

where:

• x ∈ SVars;

• x {γ} means that we assign to x the span de�ned by the string matched by the

evaluation of γ .

The set of span variables appearing in a variable regex γ is called SVars (γ). Evaluating a

variable regex on a string produces a parse tree over the alphabet Λ = Σ∪SVars∪{ε,∨, ·, ∗}.
A valid parse tree for a variable regex γ is called a γ-parse. We accept a variable regex

expression only if its parses have exactly one occurrence of each of the variables appearing in

it, otherwise the variable assignment would remain unclear. Such an expression is referred

to as functional.

De�nition 3.17: A variable regex γ is functional if ∀s ∈ Σ∗, ∀γ-parse t for s, ∀x ∈
SVars (γ), x occurs exactly once in t.

De�nition 3.18: A regex formula is a functional variable regex.

The spanner represented by a regex formula γ is denoted as JγK. We have that SVars (JγK) =

SVars (γ), and the span relation JγK (s) is the set {µp | p is a γ-parse for s}, where µp is a
tuple de�ned by a γ-parse p. The class of regex formulas is referred to as RGX.

Example 3.5: Consider the variable regex γ de�ned by:

Σ∗ · z
{
x {γaction} · Σ+ · y {γtitle}

}
· Σ∗ (3.4)

where γaction = (w · a · t · c · h · e · d) ∨ (s · a · w) and γtitle = " · (A ∨ . . . ∨ Z) ·
(a ∨ . . . ∨ z)∗ · (_ · (A ∨ . . . ∨ Z) · (a ∨ . . . ∨ z)∗)∗ · ". Notice that SVars (γ) = {x, y, z}.
Figure 3.5 shows a γ-parse p for string s of Figure 3.4. In this parse, each variable

contained in SVars (γ) occurs exactly once. It is easy to verify that this holds for every

γ-parse. Hence, γ is functional. We have that µp (x) = [3, 10〉, µp (y) = [11, 23〉 and
µp (z) = [3, 23〉, thus µp is the s-tuple µ1 from Figure 3.4. Finally, considering the span

relation P (s) (Figure 3.4), we have that JγK (s) = P (s).

We can be more precise on the characterization of a regex formula. In order to do this,

let us introduce the notion of syntactically Y -functional variable regex, Y being a �nite

subset of SVars.

27

·

∗

∨

I
1

∨
_
2

z

·

x

∨

·

w
3

a
4

t
5

c
6

h
7

e
8

d
9

+

∨
_
10

y

·

"
11 ·

∨

T
12

∗

∨

h
13

∨

e
14

∗

·

_
15 ·

∨

M
16 ∗

∨

a
17

∨

t
18

∨

r
19

∨

i
20

∨

x
21

"
22

∗

∨
_
23

. . . ∨

"
47

Figure 3.5 � A γ-parse p for string s (see Figure 3.4).

28

De�nition 3.19: Given a variable regex γ, γ is syntactically Y -functional if at least one

of following hold:

• γ = ∅;

• γ = ε or γ = σ with σ ∈ Σ and Y = ∅;

• γ = γ1 ∨ γ2, where γ1, γ2 are syntactically Y -functional variable regexes;

• γ = γ1 · γ2, where γ1, γ2 are variable regexes, and there exists a subset Y1 of Y

such that γ1 is syntactically Y1-functional and γ2 is syntactically Y2-functional, for

Y2 = Y \ Y1;

• γ = (γ1)
∗, where γ1 is a variable regex with no variable assignments, and Y = ∅;

• γ = x {γ1}, where x ∈ Y and γ1 is a syntactically (Y \ {x})-functional variable regex.

It is easy to prove, for a variable regex γ, the next proposition (by induction on the

structure of γ).

Proposition 3.1: Given a variable regex γ, γ is functional if and only if it is syntactically

SVars (γ)-functional. Moreover, whether γ is syntactically SVars (γ)-functional can be

tested in polynomial time.

This characterization of regex formulas will be useful in Chapter 4, where I will present

a formal model of a runtime system for the core of AQL, and I will show its applicability.

3.3.2.2 Variable Stack Automata

Variable stack automata (vstk-automata for short) are representations of document

spanners by means of modi�ed NFAs. Basically, a NFA is augmented with a stack of span

variables. A variable is pushed on the stack when its corresponding span is opened, and

popped when it is closed. The formal de�nition of a vstk-automaton follows.

De�nition 3.20: A Variable Stack Automaton is a tuple (Q, q0, qf , δ), where:

• Q is a �nite set of states;

• q0 ∈ Q is the initial state;

• qf ∈ Q is the accepting state;

• δ is a �nite transition relation, containing triples of the forms (q, σ, q′), (q, ε, q′),

(q, x `, q′), (q,a, q′), where:

29

start
z `

Σ

x `

w

s

a t c h e

d

a w

a

Σy `

Σ

"A,...,Z

_

A,...,Z

"

a,..,z

ε

ε

aΣ a,..,z

ε

Figure 3.6 � A vstk-automaton A with JAK = JγK, where γ is the regex formula 3.4 (see
Example 3.5).

� q, q′ ∈ Q;

� σ ∈ Σ;

� x ∈ SVars;

� ` is the push symbol;

� a is the pop symbol.

Notice that we don't need to specify which variable we want to pop, as it is naturally the

last that was pushed onto the stack. Given a vstk-automaton A, the set of variables that

appear in its transitions is denoted as SVars (A).

Example 3.6: Figure 3.6 shows a vstk-automaton A. Each circle represents a state. The

double circle is the accepting state. A label a on an edge from state q to state q
′
represents

the transition
(
q, a, q

′
)
. A sequence σ1, . . . , σk on an edge from q to q

′
is a shorthand

for the k transitions
(
q, σ1, q

′
)
, . . . ,

(
q, σk, q

′
)
. Assuming Σ = {σ1, . . . , σl}, the label Σ is

used in place of σ1, . . . , σl.

Next, I report the de�nitions of a con�guration and of a run of a vstk-automaton, which

de�ne its semantics.

De�nition 3.21: Given a string s with length |s| = n and a vstk-automaton A, a

con�guration of A is a tuple c = (q,−→v , Y, i), where:

• q ∈ Q is the current state;

• −→v is the current variable stack;

30

• Y ⊆ SVars (A) is the set of available variables (those not already pushed on the stack);

• i ∈ {1, ..., n+ 1} is the position of the next character to be read in s.

Here, as for regex formulas, we want the variable assignment to be clear, so once a variable

is pushed on the stack, it is removed from the set of available variables, thus it can be

pushed only once. For the rest, a run of a vstk-automaton is similar to those of ordinary

NFAs.

De�nition 3.22: Given a string s and a vstk-automaton A, a run ρ of A on s is a sequence

of con�gurations c0, ..., cm such that:

• c0 = (q0, ε, SVars (A) , 1);

• ∀j ∈ {0, ...,m− 1}, for cj=(qj ,
−→vj , Yj , ij), cj+1=(qj+1,

−−→vj+1, Yj+1, ij+1) one of the

following holds:

� −−→vj+1 = −→vj , Yj+1 = Yj and either:

∗ ij+1 = ij + 1,
(
qj , sij , qj+1

)
∈ δ;

∗ ij+1 = ij, (qj , ε, qj+1) ∈ δ.

� ij+1 = ij and for some x ∈ SVars (A) either:

∗ −−→vj+1 = −→vj · x, x ∈ Yj, Yj+1 = Yj \ {x}, (qj , x `, qj+1) ∈ δ (x is pushed on

the stack);

∗ −→vj = −−→vj+1 · x, Yj+1 = Yj, (qj ,a, qj+1) ∈ δ (the variable on top of the stack

is popped).

De�nition 3.23: Given a string s with length |s| = n and a vstk-automaton A, a run

ρ = c0, ..., cm of A on s is accepting if cm = (qf , ε, ∅, n+ 1).

The set of all possible accepting runs of a vstk-automaton A on a string s is denoted as

ARuns (A, s). The spanner represented by A may be referred to as JAK. We have that

SVars (JAK) = SVars (A), and the span relation JAK (s) is the set {µρ | ρ ∈ ARuns (A, s)},
where µρ is a tuple de�ned by a run ρ. In particular, for every variable x ∈ SVars (A),

µρ (x) is the span [ib, ie〉, where:

• cb=(qb,
−→vb , Yb, ib) is the unique con�guration of ρ where x appears in the stack for

the �rst time;

• ce=(qe,
−→ve , Ye, ie) is the unique con�guration of ρ where x appears in the stack for

the last time.

31

The class of variable stack automata is called VAstk.

Example 3.7: Consider the regex formula γ from Example 3.5 and the vstk-automaton A

from Figure 3.6. We have that SVars (A) = {x, y, z}. The reader can verify that JγK = JAK.

3.3.2.3 Variable Set Automata

Variable Set Automata (vset-automata for short) are another model for representing

document spanners that is based on NFAs. Vset-automata are de�ned in a very similar

way to that of vstk-automata. The main di�erences are:

• the stack of span variables is replaced by a set;

• no order is de�ned on the variables in the set, so when we want to remove a variable

from it, we need to specify which one.

The following is the formal de�nition of a vset-automaton.

De�nition 3.24: A variable set automaton is a tuple (Q, q0, qf , δ), where:

• Q, q0 and qf are de�ned as in De�nition 3.20;

• δ is the same as in De�nition 3.20, except that it has triples of the form (q,a x, q′),
with x ∈ SVars, instead of those of the form (q,a, q′).

We also need to slightly modify the de�nitions of con�guration and run with respect to

those of a vstk-automaton.

De�nition 3.25: Given a string s with length |s| = n and a vset-automaton A, a

con�guration of A is a tuple c = (q, V, Y, i), where:

• q, i are de�ned as in De�nition 3.21;

• V ⊆ SVars (A) is the active variable set;

• Y ⊆ SVars (A) is the set of available variables (those not already inserted in the set).

De�nition 3.26: Given a string s and a vset-automaton A, a run ρ of A on s is a sequence

of con�gurations c0, ..., cm such that:

• c0 = (q0, ∅, SVars (A) , 1);

• ∀j ∈ {0, ...,m− 1}, for cj=(qj , Vj , Yj , ij), cj+1=(qj+1, Vj+1, Yj+1, ij+1) one of the

following holds:

32

start

Σ

y1 `, . . . ym `,
a y1, . . . a ym

Figure 3.7 � A vset-automaton B with JBK = ΥY , for Y = {y1, . . . , ym} (Figure 2b , [Fagin
et al., 2015]).

� Vj+1 = Vj, Yj+1 = Yj and either:

∗ ij+1 = ij + 1,
(
qj , sij , qj+1

)
∈ δ;

∗ ij+1 = ij, (qj , ε, qj+1) ∈ δ.

� ij+1 = ij and for some x ∈ SVars (A) either:

∗ x ∈ Yj, Vj+1 = Vj ∪ {x}, Yj+1 = Yj \ {x}, (qj , x `, qj+1) ∈ δ (x is inserted

into the active set);

∗ x ∈ Vj, Vj+1 = Vj \ {x}, Yj+1 = Yj, (qj ,a x, qj+1) ∈ δ (x is removed from

the active set).

De�nition 3.27: Given a string with length |s| = n and a vset-automaton A, a run ρ =

c0, ..., cm of A on s is accepting if cm = (qf , ∅, ∅, n+ 1).

Given a string s and a vset-automaton A, ARuns (A, s) and JAK are de�ned as for

vstk-automata. The class of variable set automata is called VAset.

Example 3.8: Figure 3.7 shows a vset-automaton B, with SVars (B) = Y , where Y =

{y1, . . . , ym}. We have that JBK = ΥY . This example shows that vset-automata can express

spanners that regex formulas and vstk-automata cannot. (Example 3.12, [Fagin et al.,

2015]).

The next subsection describes a series of operators with can be used to combine

spanners.

3.3.3 Algebras of Spanners

Besides mere span extraction, AQL o�ers the capability to combine, transform and �lter

extracted tuples by using a series of operators. Here, I list the algebraic operators for

spanners, described in [Fagin et al., 2015], that are considered to capture the core algebraic

operations of AQL. They are:

33

• Union (∪);

• Projection (π);

• Natural Join (./);

• String Selection (ς).

A �nite set of spanner operators forms a spanner algebra. In the following, I look at the

de�nitions of the listed spanner operators.

3.3.3.1 Union

Before giving the de�nition of the union operator, we need to introduce the concept of

union-compatible spanners.

De�nition 3.28: Given two document spanners P1 and P2, they are union-compatible if

and only if SVars (P1) = SVars (P2).

The de�nition of union of two spanners is as follows.

De�nition 3.29: Given two union-compatible document spanners P1 and P2, their union

is the spanner denoted as P1 ∪ P2, for which we have that:

• SVars (P1 ∪ P2) = SVars (P1);

• given a string s, (P1 ∪ P2) (s) = P1 (s) ∪ P2 (s).

3.3.3.2 Projection

De�nition 3.30: Given a document spanner P and a set of span variables Y ⊆ SVars (P),

the projection of P over Y is the spanner denoted as πY P , satisfying SVars (πY P) =

Y , where, for every string s, πY P (s) is obtained by reducing the domain of each s-tuple

belonging to P (s) to Y .

3.3.3.3 Natural Join

De�nition 3.31: Given two document spanners P1 and P2, their natural join is the

spanner denoted as P1 ./ P2, for which we have that:

• SVars (P1 ./ P2) = SVars (P1) ∪ SVars (P2);

• given a string s, (P1 ./ P2) (s) consists of every s-tuple µ for which there exists a

pair of tuples µ1 ∈ P1 (s),µ2 ∈ P2 (s), such that µ1 and µ2 assign the same spans to

the span variables they have in common. Note that this implies that µ1, µ2 agree on

variables that are common to P1, P2: ∀x ∈ SVars (P1) ∩ SVars (P2), µ1 (x) = µ2 (x).

34

Example 3.9: Consider again the regex formula γ from Example 3.5. The reader can

verify that γ can be expressed as:

(Σ∗ · x {γaction} · Σ∗) ./ (Σ∗ · y {γtitle} · Σ∗) ./
(
Σ∗ · z

{
x
{

Σ+
}
· Σ+ · y

{
Σ+
}}
· Σ∗

)
(3.5)

3.3.3.4 String Selection

De�nition 3.32: Given a document spanner P and a k-ary string relation R, the string

selection operation according to R is denoted as ςR, and is parametrized by x1, ..., xk ∈
SVars (P). We have that, given a string s and a spanner P ′ := ςRx1,...,xkP , P

′ (s) consists

of all the s-tuples µ ∈ P (s) such that
(
sµ(x1), ..., sµ(xk)

)
∈ R.

In the remainder of this dissertation, the only string selection operator considered is ς=x,y
which, given a spanner P , restricts P (s) to those s-tuples that satisfy sµ(x) = sµ(y).

At this point, we have de�ned three models to represent spanners and a series of

operators to combine spanners. The question we might want to ask now is: what is the

most convenient way to represent an AQL query containing only core operations? As

we will see, this question is not trivial, because if we try and combine the elements we

have seen in di�erent ways, we might obtain di�erent classes of spanners. To answer our

question, we will formally de�ne the class of spanners that captures the core of AQL, i.e.

the core spanners, and we will identify those classes of spanner representations that can

model it, by reasoning on the relative expressive power of some relevant spanner classes.

Before beginning, let us introduce some additional notation. Given a generic class of

spanner representations SR, the set of all the spanners that can be represented by SR is

denoted as JSRK. Formally, we have that JSRK = {JrK | r ∈ SR}. Let O be a spanner

algebra. Let us denote by SRO the closure of SR under O, that is: the class of spanner

representations obtained by applying (compositions of) operators contained in O to the

representations in SR. The corresponding set of spanners is referred to as
q
SRO

y
. We

can now start looking for an answer to our current question. In the following, many

mathematical statements will be formulated, without proving them. The reader can refer

to [Fagin et al., 2015] for the missing proofs, in particular to Chapter 4.

Proposition 3.2: The following hold:

1. every document spanner represented in the classes RGX and VAstk is hierarchical,

that is: JRGXK , JVAstkK ⊆ HS;

2. there exist some spanners represented in VAset that are not hierarchical: JVAsetK *
HS (see, e.g., Example 3.8);

35

3. the operators ∪, π, ςR preserve the property of being hierarchical, while ./ does not,

thus we have that:

(a) given a class of spanner representations SR, JSRK ⊆ HS ⇒
r
SR{∪,π,ςR}

z
⊆

HS;

(b) there exist two hierarchical spanners P1, P2 such that P1 ./ P2 /∈ HS.

In the next Subsection, I discuss the class of regular spanners, which plays a central role

in the construction of the class of core spanners.

3.3.4 Regular Spanners

A regular spanner is de�ned as follows.

De�nition 3.33: A spanner is regular if it can be de�ned by a vset-automaton.

Let us see how regular spanners are related to the other basic spanner classes. A preliminary

result is that regex formulas and vstk-automata have the same expressive power.

Theorem 3.1: JRGXK = JVAstkK.

It turns out that the spanners expressed by representations in VAstk (RGX) are exactly

those that are both regular and hierarchical.

Theorem 3.2: JVAstkK = JVAsetK ∩HS.

For what concerns the algebraic operators presented in Subsection 3.3.3, it can be shown

that union, projection and natural join don't increase the expressive power of regular

spanners.

Theorem 3.3:
r
VAset

{∪,π,./}
z

= JVAsetK.

On the other hand, applying the same operators to the spanner representations in VAstk

results in a class equivalent to regular spanners.

Theorem 3.4:
r
VAstk

{∪,π,./}
z

= JVAsetK.

Let us now look at which string relations can be simulated by regular spanners, starting

with the concept of selectable string relation.

De�nition 3.34: Given a string relation R and a class of spanners C, R is selectable by

C if for every document spanner P ∈ C and for every −→x = x1, ..., xk, xi ∈ SVars (P), we

have that ςR−→x P ∈ C.

36

Let us introduce the concept of restricted universal spanner.

De�nition 3.35: Given a string relation R and a sequence of variables−→x = x1, ..., xk

with their corresponding set X = {x1, ..., xk}, the R-restricted universal spanner over −→x is

ΥR−→x := ςR−→x ΥX .

Selectability of a string relation R by a class of spanners C corresponds to the presence in

C of all the possible R-restricted universal spanners, under some conditions.

Proposition 3.3: Given a string relation R and a class of spanners C containing all the

possible universal spanners and closed under natural join, R is selectable by C if and only

if, for every −→x = x1, ..., xk ∈ SVarsk, ΥR−→x ∈ C.

In the case of regular spanners, the class of string relations that they can select is exactly

REC.

Theorem 3.5: The class of string relations selectable by JVAsetK is REC.

The relation �=� is not in REC, thus it is not selectable by regular spanners, nonetheless it

is important for selection predicates in AQL. Therefore, regular spanners are incapable of

modeling its core. In the following subsection, I describe the class of core spanners, that,

as shown in [Fagin et al., 2015], models the core of AQL.

3.3.5 Core Spanners

An expression in the core of AQL belongs to RGX{∪,π,./,ς
=}. Consequently, a core spanner

is de�ned as follows.

De�nition 3.36: A core spanner is a document spanner belonging to
r
RGX{∪,π,./,ς

=}
z
.

Thanks to Theorems 3.1, 3.3 and 3.4 we can easily state the next theorem.

Theorem 3.6:
r
RGX{∪,π,./,ς

=}
z

=
r
VAstk

{∪,π,./,ς=}
z

=
r
VAset

{∪,π,./,ς=}
z
.

This shows that core spanners can be reduced to regular spanners extended with the algebra

{∪, π, ./, ς=}. But the following lemma tells us that an algebra with fewer operators is also

su�cient.

Lemma 3.1:
r
VAset

{∪,π,./,ς=}
z

=
r
VAset

{π,ς=}
z
.

Another lemma, known as the core simpli�cation lemma, gives an even simpler way of

representing core spanners.

37

Lemma 3.2: (Core Simplification Lemma) Every core spanner can be de�ned by an

expression of the form

πV SA (3.6)

where:

• A is a vset-automaton;

• V ⊆ SVars (A);

• S is a sequence of string selections ς=x,y, for x, y ∈ SVars (A).

For what concerns which string relations can be simulated by core spanners, the next

de�nition presents three string relations of relevance.

De�nition 3.37: Given two strings s, t ∈ Σ∗:

• s v t if s is a (consecutive) substring of t (i.e. s = t[i,j〉);

• s vprf t if s is a pre�x of t (i.e. s = t[1,j〉);

• s vsfx tif s is a su�x of t (i.e. s = t[i,|t|+1〉).

Proposition 3.4: All the string relations in REC, v, vprf and vsfx are selectable by the

core spanners.

3.3.6 Di�erence

Besides the operators introduced so far, AQL also supports di�erence, which is de�ned as

follows.

De�nition 3.38: Given two union compatible document spanners P1 and P2, their

di�erence is the spanner P1 \ P2, for which we have:

• SVars (P1 \ P2) = SVars (P1);

• given a string s, (P1 \ P2) (s) = (P1) (s) \ (P2) (s).

It can be shown that regular spanners are closed under di�erence.

Theorem 3.7:
r
VAset

{\}
z

= JVAsetK.

Despite the result of of Theorem 3.7, core spanners are not closed under di�erence. This

is why this operator has not been considered in this discussion.

Theorem 3.8:
r
RGX{∪,π,./,ς

=}
z
(

r
RGX{∪,π,./,ς

=,\}
z
.

38

Chapter 4

A Runtime System for the Core of

AQL

In this chapter I describe the model of a new runtime system for the core fragment of

AQL. It is based on a modi�ed version of vset-automata, the extended vset-automata (or

eVset-automata). In particular, the system works with a special kind of eVset-automata:

well-behaved eVset-automata. The structure of the chapter is as follows. In Section 4.1

I de�ne eVset-automata. Then, in Section 4.2, I describe well-behaved eVset-automata

and their properties, with particular attention to their ability to support the operators

presented in Subsection 3.3.3: I show construction methods to simulate projection,

union and natural join with well-behaved eVset-automata. [Fagin et al., 2015] contains

descriptions of construction methods for the same purpose, but for vset-automata.

However, those methods have exponential space complexity, while the methods presented

in this chapter have polynomial time complexity. Finally, I show how well-behaved

eVset-automata can be used in a class of spanner representations that models the class of

core spanners, with some simpli�cations, that are similar to those obtained in Subsection

3.3.5 of the previous chapter.

4.1 Extended Vset-automata

Before I de�ne extended vset-automata formally, I introduce some basic concepts.

De�nition 4.1: Given a set X ⊆ SVars, we de�ne:

• SVOps` (X) = {x `| x ∈ X};

• SVOpsa (X) = {a x | x ∈ X};

• SVOps (X) = SVOps` (X) ∪ SVOpsa (X).

39

With this de�nition in mind, we are ready to describe an extended vset-automaton.

De�nition 4.2: An extended vset-automaton (or eVset-automaton) is a tuple

(Q, q0, qf , δ), where:

• Q is a �nite set of states;

• q0 ∈ Q is the initial state;

• qf ∈ Q is the accepting state;

• δ = δchar ∪ δop is a �nite transition relation consisting of triples, where:

� δchar = {(q, σ, q′) | q, q′ ∈ Q, σ ∈ Σ}, whose elements are called character

transitions;

� δop = {(q, S, q′) | q, q′ ∈ Q,S ⊆ SVOps (SVars) , S �nite}, whose elements are

called operation transitions .

In a transition (q, a, q′) with label a from state q to state q′, q is called the source state,

while q′ is called the destination state. With a slight abuse of notation, I denote by

SVOps (A) the set of variable operations appearing in the transitions of an eVset-automaton

A. SVars (A) is de�ned as for a usual vset-automaton. In order to make the semantics

of an eVset-automaton clear, we need the de�nitions of a con�guration and a run of an

eVset-automaton.

De�nition 4.3: Given a string s, |s| = n, and an eVset-automaton A = (Q, q0, qf , δ), a

con�guration of A is a tuple c = (q, V, Y, i), where:

• q ∈ Q is the current state;

• V ⊆ SVars (A) is the active variable set;

• Y ⊆ SVars (A) is the set of available variables;

• i is an index belonging to {1, . . . , n+ 1}.

De�nition 4.4: Given a string s = s1, . . . , sn and an eVset-automaton A = (Q, q0, qf , δ),

a run ρ of A on s is a sequence c0, . . . , cm of con�gurations, where:

• c0 = (q0, ∅, SVars (A) , 1);

• for j = 0, . . . ,m − 1 one of the following holds for cj = (qj , Vj , Yj , ij) and cj+1 =

(qj+1, Vj+1, Yj+1, ij+1):

40

start
{x `}

Σ

{y `}

a

{a x,a y}

b Σ

Figure 4.1 � An eVset-automaton A.

� Vj+1 = Vj, Yj+1 = Yj, ij+1 = ij + 1 and (qj , sj , qj+1) ∈ δchar;

� ij+1 = ij, and for some S ⊆ SVOps (A) we have :

∗ for each x ∈ SVars (A):

· x `∈ S ⇒ x ∈ Yj;
· a x ∈ S ⇒ (x `∈ S ∨ x ∈ Vj);

∗ Vj+1 = (Vj ∪ {x | x `∈ S}) \ {x |a x ∈ S};
∗ Yj+1 = Yj \ {x | x `∈ S};
∗ (qj , S, qj+1) ∈ δop.

ρ is accepting if cm = (qf , ∅, ∅, n+ 1).

Consider an eVset-automaton A. Notice that, given a span variable x ∈ SVars (A),

De�nition 4.4 allows to perform the operations x ` and a x in a single operation transition.
This has no practical use, as the span assigned to x would correspond to the empty string,

but avoids complicating the de�nition of eVset-automaton too much. Given a string s,

ARuns (A, s) and JAK are de�ned in similar ways to those of usual vset-automata. This

new kind of vset-automata allows to perform an arbitrary number of variable operations

in one transition. The operations in a transition are to be performed in a given order. The

exact order is not very important, except for the fact that, in a valid run, the insertion of

a variable in the active variable set needs to happen before its removal from it.

Example 4.1: The automaton A, shown in Figure 4.1, is an extended vset-automaton.

The operation transitions are those with a label of the form {o1, . . . , on}, with

oi ∈ SVOps(SVars).

To understand the motivation for using eVset-automata instead of plain vset-automata

we need to introduce some additional useful concepts.

De�nition 4.5: Given a transition t ∈ δ in an eVset-automaton A, and an ordering ϕ on

the elements of SVOps (A), we de�ne

• Ops (t) as either:

41

� if t = (q, S, q′) ∈ δop, the set S;

� if t ∈ δchar, the empty set.

• LOpsϕ (t) as either:

� if t = (q, S, q′) ∈ δop, the list o1, . . . , o|S| of the operations belonging to S, ordered
according to ϕ;

� if t ∈ δchar, the empty list.

De�nition 4.6: Given an extended vset-automaton A = (Q, q0, qf , δ) and a pair of states

q, q′ ∈ Q, a path p between q and q′ in A is a sequence of transitions t1,. . . , tn ∈ δ, such
that:

• the source state of t1 is q;

• the destination state of tn is q′;

• for every pair ti, ti+1, the destination state of ti equals the source state of ti+1.

We also write pq
′
q . We refer to the set of paths in A as Paths (A).

A path in an eVset-automaton is closely related to a run, as formalized by the next

de�nition.

De�nition 4.7: Given a string s, an eVset-automaton A = (Q, q0, qf , δ), a run ρ =

c0,. . . , cm of A on s and a path p = t0, . . . , tm−1 in A, we say that p supports ρ if, for

every pair ci, ci+1 of con�gurations, ci+1 is obtained from ci by applying ti, using the rules

given in De�nition 4.4.

De�nition 4.8: Given a path p = t1, . . . , tn in an eVset-automaton A, and considering

an ordering ϕ on the elements of SVOps (A), we de�ne

• the set Ops (p) as
n⋃
i=1

Ops (ti)

• the list LOpsϕ (p) as
n⊕
i=1

LOpsϕ (ti)

where
⊕

is the list concatenation operator.

If every transition in p belongs to δop, we say that p is an operation-only path.

42

From now on, without loss of generality, let us consider a �xed order ϕ, in which

insertions of variables (e.g., x `) into the active set come before deletions (e.g., a x).

As shown in the previous chapter, the class of vset-automata does not get more

expressive power when extended with the algebra O = {∪, π, ./}. Hence, this class is

a good candidate to be the base for a class of representations of the core spanners, as

the Core Simpli�cation Lemma suggests. Nonetheless, the constructions presented in

[Fagin et al., 2015] to simulate the operators of O with vset-automata are ine�cient, as in

general they result in vset-automata that are exponential in the size of the input. In the

following, I introduce a subclass of extended vset-automata, well-behaved eVset-automata,

and I describe polynomial-time constructions to simulate the operators of O for this

subclass. Moreover, we will see that an AQL query belonging to the core fragment of

the language, as de�ned in [Fagin et al., 2015], can be converted into a well-behaved

eVset-automaton extended with string equality selection (and an external �nal projection,

if necessary), making it possible for the runtime to be based almost entirely on well-behaved

eVset-automata.

4.2 Well-Behaved Extended Vset-Automata

In order to be well-behaved, an eVset-automaton has to respect some constraints on its

paths that are between its initial and accepting state. I call this kind of paths complete

paths.

De�nition 4.9: Given an eVset-automaton A = (Q, q0, qf , δ), a path p = t1, . . . , tn in A

is complete if it is between q0 and qf , that is p = p
qf
q0 .

I now formally de�ne a well-behaved eVset-automaton.

De�nition 4.10: An eVset-automaton A is well-behaved if, for every complete path p in

A we have:

1. for every o ∈ SVOps (A), o appears exactly once in LOps (p);

2. for every pair of operations x `,a x∈ SVOps (A), x ` appears before a x in LOps (p).

According to the de�nition, well-behaved eVset-automata guarantee that any of their

complete paths will support a valid accepting run. This property is desirable, because it

allows to execute a well-behaved eVset-automaton A with an engine that does not need to

check, for each run ρ on a given string s, that all the operations in SVOps (A) are performed

correctly. This is an advantage over generic eVset-automata (or vset-automata).

43

Example 4.2: Consider again the eVset-automaton A from Figure 4.1. It is easy to verify

that A is well-behaved.

Since states that cannot reach the accepting state, or that cannot be reached from the

initial state, are not used in complete paths, we might want to consider only well-behaved

eVset-automata where these states do not exist.

De�nition 4.11: Given an eVset-automaton A, A is pruned if for every state q in A,

there is a path between q0 and q, and a path between q and qf in A.

Example 4.3: The eVset-automaton A from Figure 4.1 is pruned.

The next proposition tells us that the we can always prune a well-behaved

eVset-automaton, obtaining a new eVset-automaton equivalent to the original.

Proposition 4.1: Given a well-behaved eVset-automaton A, there exists a pruned

well-behaved eVset-automaton A′ such that JA′K = JAK. Moreover, A′ can be produced in

polynomial time.

Proof: To obtain A′, it is su�cient to remove from A those states from which we can't

reach the �nal state, those states that are unreachable from the initial state, and all the

transitions that have them as source or destination states. To test each state for removal

we can use, e.g., Dijkstra's shortest path algorithm, which ensures A′ can be found in

polynomial time. Because of our construction, A′ is well-behaved, as all its complete paths

are also in A. We now show that, for every string s, we have JA′K (s) = JAK (s). To see

that JA′K (s) ⊆ JAK (s), we can notice that each run ρ′ of A′ on s that is accepting can be

supported only by a complete path p′, which is also in A by construction. JAK (s) ⊆ JA′K (s)

is true as well because we include in A′ all the complete paths existing in A so every run

p of A on s is also a run of A′. �

If a well-behaved eVset-automaton is pruned, it automatically gets two other properties.

Corollary 4.1: Given a pruned well-behaved eVset-automaton A, for every path p in A

LOps (p) contains no duplicates.

Proof: Since A is pruned, p is part of a complete path p′. But A is also well-behaved, so

LOps (p′) contains no duplicates, which implies that LOps (p) has no duplicates either. �

Corollary 4.2: Given a pruned well-behaved eVset-automaton A, and two states q, q′ in

A, for every pair of paths p, p′ between q and q′ in A, Ops (p) = Ops (p′).

44

Proof: Since A is pruned, there exists a path p0 between q0 and q. For the same reason,

there exists a path pf between q′ and qf . So q and q′ appear in two complete paths,

which we may call p0ppf and p0p′pf , that di�er only in the subpaths between q and q′. If

Ops (p) 6= Ops (p′), then one of p0ppf and p0p′pf would not satisfy the requirement 1 of

De�nition 4.10, making A not well-behaved, a contradiction. �

In the following, I describe the constructions used by the runtime system to simulate

algebraic operations with well-behaved eVset-automata. The main advantage of these

constructions is that their time complexity is polynomial in the size of the input

automaton/a. Before we start, a formal de�nition of the size of an eVset-automaton is

necessary, along with some assumptions.

De�nition 4.12: Given an eVset-automaton A = (Q, q0, qf , δ), the size of A is de�ned as

|A| = |Q|+ |δ|, where:

• |Q| is the cardinality of Q;

• |δ| is de�ned by the following sum: ∑
t∈δ
|t| (4.1)

where, for every transition t ∈ δ:

� if t ∈ δop, |t| = 2 + |Ops (t)|, |Ops (t)| being the cardinality of Ops (t);

� |t| = 3 otherwise.

This de�nition takes into account the number of states of an eVset-automaton, as well

as the number of transitions it contains. Each transition is weighted by the number of

elements that de�ne it. In case it is a character transition, we count two states and a

character. If it is an operation transition instead, we count the two states and the number

of operations it performs. Although this de�nition is abstract, it is closely related to the

sizes of real eVset-automata representations, that are indeed determined by the elements

considered, up to a multiplicative constant. Moreover, in the proofs that will follow, I

assume that the operations of adding a state to/deleting a state from the state set of

an eVset-automaton, or adding a transition to/deleting a transition from its transition

function, take constant time. These assumptions are reasonable, because the state set and

the transition function are implemented as Scala hashsets in the runtime system, and the

hashset data structure indeed guarantees this complexity1. Another important assumption

1See http://docs.scala-lang.org/overviews/collections/performance-characteristics.html.

45

is that, given an eVset-automaton A, creating a new transition requires O (|SVars (A)|)
time. This complexity is justi�ed by the fact that, given an operation transition t in A, we

create Ops (t) by adding O (|SVars (A)|) operations to it, and Ops (t) is implemented as a

hashset as well. Moreover, the time required to instantiate a character transition can be

considered constant, so it is dominated by O (|SVars (A)|).
We are ready to discuss the announced constructions, starting with the one for

projection.

Theorem 4.1: Given a well-behaved eVset-automaton A, the set X = SVars (A) and a

set Y ⊆ X, a well behaved eVset-automaton A′ can be produced in linear time such that

JA′K = πY JAK.

Proof: Let us consider A = (Q, q0, qf , δ). We can take A′ =
(
Q′, q′0, q

′
f , δ
′
)
, where:

• Q′ = Q;

• q′0 = q0;

• q′f = qf ;

• δ′ =
(
δ \ δunprojected

)
∪ δprojected, where:

� δunprojected = {(q, S, q′) ∈ δ | S ∩ SVOps (X \ Y) 6= Ø};

� δprojected =
{

(q, S′, q′) | ∃ (q, S, q′) ∈ δunprojected : S′ = S \ SVOps (X \ Y)
}
.

This construction removes all the occurrences of variable operations concerning variables

excluded from the projection. A′ is still well-behaved, since we maintain the occurrences of

operations concerning the variables on which we project, that continue to appear exactly

once on each complete path, and in the right order. To obtain this construction, we

can examine all transitions in δ and, for each operation transition t, remove it from δ if

it contains variable operations involving variables we need to exclude, then add a new

transition t′ that is identical to t, except for the fact that it does not contain the unwanted

operations. In this procedure, we scan O (|δ|) transitions and we replace a transition t in

O (|t|) time. Hence, the total running time is O
(∑

t∈δ O (|t|)
)

= O (|δ|) = O (|A|). Next,
let us show that JA′K = πY JAK. Notice that given a string s, for each accepting run ρ

of A on s producing an s-tuple µ, there is an accepting run ρ′ of A′ that produces an

s-tuple µ′, which assigns the same spans as µ to the variables in common with µ′, which

by construction belong to Y . The path p′ supporting ρ′ is exactly the path obtained by

modifying the path p, that supports ρ, by eliminating the operations on non-projected

variables. This shows that πY JAK ⊆ JA′K. It must also be that JA′K ⊆ πY JAK, because no
additional complete paths were added to A′. �

46

start
{y `}

Σ

{x `}

a

{a x,a y}

b Σ

Figure 4.2 � A well-behaved eVset-automaton B.

A similar result holds for the union operation.

Theorem 4.2: Given two well-behaved eVset-automata A and B that are union-compatible

(i.e., SVars (A) = SVars (B)), a third well-behaved eVset-automaton C can be produced in

linear time such that JCK = JAK ∪ JBK.

Proof: Let us consider A =
(
QA, qA0 , q

A
f , δ

A
)
and B =

(
QB, qB0 , q

B
f , δ

B
)
. We can take

C =
(
QC , qC0 , q

C
f , δ

C
)
, where:

• QC = QA ∪QB ∪
{
qC0 , q

C
f

}
;

• δC = δA ∪ δB ∪
{(
qC0 , ∅, qB0

)
,
(
qBf , ∅, qCf

)
,
(
qC0 , ∅, qA0

)
,
(
qAf , ∅, qCf

)}
.

In this construction, we allow to go from the initial state of C to the initial state of

either A or B, and to go from the accepting state of A or that of B to the one of C,

without any new variable operations. Thus, given a string s, C can span exactly the

s-tuples contained in JAK (s) ∪ JBK (s). Regarding the complexity of the construction, the

operations that we perform here are the union of the state sets and transition functions,

and the addition of a �xed number of new transitions and states. Let us consider the size

of the input as n = |A| + |B|. With the assumptions we made, the time complexity is

O
(∣∣QB∣∣)+O

(∣∣δB∣∣) = O (n). It is trivial to verify that C is well-behaved, thus the details

are omitted. �

In order to show that we can obtain the natural join of two spanners, represented

by well-behaved eVset-automata, in polynomial time, we need a few more steps than

in the previous cases. The construction that I present is conceptually very similar to

that described in [Fagin et al., 2015] for the natural join of plain vset-automata. That

construction simulates running the input automata in parallel, making sure that operations

on common variables are performed simultaneously. Unfortunately this does not work in

general, as the next example shows.

Example 4.4: Consider the well-behaved eVset-automata A from Figure 4.1, and B from

Figure 4.2 and the string s ='b'. JAK (s) contains the s-tuple µ such that µ (x) = [0, 1〉 and

47

start
{x `}

{x `, y `}

{x `,a x, y `,a y}

Σ

{y `}

{a x, y `,a y}

a

{a x,a y}

b Σ

Figure 4.3 � An operation-closed well-behaved eVset-automaton A′, with JA′K = JAK, where
A is the automaton from Figure 4.1.

µ (y) = [0, 1〉. We also have that µ ∈ JBK (s). If we attempt to run A and B in parallel

on s, we will not be able to span µ, because the two automata disagree on the order of the

operations x ` and y `. Thus, we don't get JAK ./ JBK (s) as a result of the execution.

For the construction to work, the input automata must be modi�ed in some way.

In my system, I convert them into a particular form of eVset-automata, that I call

operation-closed. The de�nition of an operation-closed eVset-automaton follows.

De�nition 4.13: Given an eVset-automaton A, A is operation-closed if, for every pair of

states q, q′ in A, whenever there exists an operation-only path p=t1, . . . , tn between q and

q′, then there exists a transition t = (q,
⋃n
i=1Ops (ti) , q

′) in A.

Example 4.5: Consider the well-behaved eVset-automaton A′ from Figure 4.3. A′ is

operation-closed. The reader can verify that JA′K = JAK, where A is the eVset-automaton

from Figure 4.1.

As the next proposition states, given a well-behaved eVset-automaton, we can always

�nd an equivalent operation-closed well-behaved eVset-automaton. This manipulation of

a well-behaved eVset-automaton, along with the fact that it is always possible, ensures the

applicability of the join construction.

Proposition 4.2: Given a well-behaved eVset-automaton A, there exists an operation-closed

well-behaved eVset-automaton A′ such that JA′K = JAK. Moreover, the size of A′ is cubic

in the size of A.

Proof: Let us consider A = (Q, q0, qf , δ). Without loss of generality, we can assume that

A is pruned. Then we can take A′ =
(
Q′, q′0, q

′
f , δ
′
)
, where:

48

• Q′ = Q;

• q′0 = q0;

• q′f = qf ;

•
δ′ =δ ∪

{(
q,

n⋃
i=1

Ops (ti) , q
′

)
| ∃p = t1, . . . , tn ∈ Paths (A) : p = pq

′
q ,

p is operation-only} .

This construction does nothing but including in A′ the transitions that are missing in A to

be operation-closed. A′ is well-behaved because for each new operation transition t between

q, q′ ∈ Q and each operation-only path p = pq
′
q in A we have that Ops (t) = Ops (p) (see

Corollary 4.2). Let us show that, for every string s ∈ Σ∗, JA′K (s) = JAK (s). To see that

JA′K (s) ⊆ JAK (s), consider an accepting run ρ′ of A′ on s, that returns an s-tuple µ. This

run is supported by a complete path p′ in A′. We can always �nd a complete path p in

A that supports a run ρ of A on s, which returns µ as well. To obtain p, we substitute

every operation transition t in p′ that does not belong to δ with an operation-only path

p′′ in A such that Ops (p′′) = Ops (t) and p′′ is between the source and destination states

of t. This is always possible by construction of A′. It is easy to verify that the run ρ of A

on s, supported by p, returns indeed µ, thus the details are omitted. JAK (s) ⊆ JA′K (s) is

also true, because we include all the transitions belonging to δ in δ′. Because of Corollary

4.2, in the worst case we add a new operation transition of size O (|SVars (A)|) = O (|A|)
between each pair of states q, q′ ∈ Q. Hence, the size of A′ is cubic in the size of A. �

The construction described in the last proposition is the reason why extended

vset-automata were used for the runtime system instead of plain vset-automata. When

we construct an operation-closed automaton, starting from an automaton that does not

have this property, the size of the resulting transition function might explode (although it

will stay polynomial in the size of the original automaton). The ability to include multiple

variable operations in a single transition allows for a more compact representation, that

is also easier to manipulate. Now that we have seen how to transform a well-behaved

eVset-automaton for the use of the join construction, we can look at its formal de�nition.

De�nition 4.14: Given two operation-closed well-behaved eVset-automata A =
(
QA, q

0
A,

qfA, δA

)
and B =

(
QB, q

0
B, q

f
B, δB

)
, their product is an eVset-automaton C =

(
Q, q0, qf , δ

)
,

where:

• Q = QA ×QB;

• q0 =
〈
q0A, q

0
B

〉
;

49

• qf =
〈
qfA, q

f
B

〉
;

• δ has the following transitions:

� (〈qA, qB〉 , σ, 〈q′A, q′B〉) whenever σ ∈ Σ, (qA, σ, q
′
A) ∈ δA and (qB, σ, q

′
B) ∈ δB;

� (〈qA, qB〉 , SA ∪ SB, 〈q′A, q′B〉) whenever (qA, SA, q
′
A) ∈ δA, (qB, SB, q

′
B) ∈ δB and

SVOps (B) ∩ SA = SVOps (A) ∩ SB;

� (〈qA, qB〉 , SA, 〈q′A, qB〉) whenever (qA, SA, q
′
A) ∈ δA and SVOps (B) ∩ SA = ∅;

� (〈qA, qB〉 , SB, 〈qA, q′B〉) whenever (qB, SB, q
′
B) ∈ δB and SVOps (A) ∩ SB = ∅.

We write C = A⊗B.

We can now state the following theorem.

Theorem 4.3: Given two operation-closed well-behaved eVset-automata A and B, and

given an eVset-automaton C such that C = A ⊗ B, then JCK = JAK ./ JBK. Moreover, C

is well-behaved, and can be obtained in quadratic time.

Proof: This proof is similar to the proof for the analogous construction for plain

vset-automata described in [Fagin et al., 2015]. To show that JCK ⊆ JAK ./ JBK, we can
decompose a run of C on a string s into two consistent runs of ρA of A and ρB of B. Two

runs ρ, ρ′, with supporting paths p and p′ respectively, are consistent with each other if,

for every pair of operations o, o′ both belonging to Ops (p) and Ops (p′), o appears before

o′ in LOps (p) if and only if the same holds for LOps (p′). Since a run of C represents

two parallel runs of A and B by construction, the decomposition aims to isolate the

two individual runs of A and B. The details of this decomposition are not di�cult to

�gure out, and are omitted. To show that JAK ./ JBK ⊆ JCK, let us consider a string s,

a s-tuple µA ∈ JAK (s) and a s-tuple µB ∈ JBK (s) that assigns the same spans as µA to

the variables they have in common. Given the s-tuple µ that contains all the variable

assignments of µA and µB, we need to �nd a run ρ of C on s that returns µ. Let us call

ρA ∈ ARuns (A, s) and ρB ∈ ARuns (B, s) the runs that return µA and µB, respectively.

We can obtain ρ by combining ρA and ρB. For this construction to work, ρA and ρB need

to be consistent on the order of the variable operations they perform. Since A and B are

well-behaved and operation-closed, ρA and ρB can always be selected so that they are

consistent. Again the details of this construction are straightforward and are not reported.

Moreover, it is easy to see that C is well-behaved by construction. To obtain C = A⊗ B
algorithmically, the simplest approach is to compare all the possible pairs of transitions

tA ∈ δA, tb ∈ δB, and to generate, for each pair, a new transition, according to the rules

provided by De�nition 4.14. The cost of generating a new transition from tA and tB is

50

O (|tA|+ |tB|), the most costly case being the one involving two operation-transitions. Let
us consider the size of the input as n = |A|+ |B|. The running time for obtaining C is then

equal to
∑

tA∈δA,tB∈δB O (|tA|+ |tB|) =
∑

tA∈δA,tB∈δB O (|tA|) +
∑

tA∈δA,tB∈δB O (|tB|) =∑
tB∈δB

∑
tA∈δA O (|tA|) +

∑
tA∈δA

∑
tB∈δB O (|tB|) = O (|δB| · |δA|) +O (|δA| · |δB|) =

O
(
n2
)
. �

In the previous chapter, we saw that the Core Simpli�cation Lemma allows us to

represent core spanners in a convenient way, based on vset-automata. What about

well-behaved eVset-automata? Does a similar statement hold? The answer is a�rmative,

and in the following we will prove this claim. First of all, let us reason on the relative

expressive power of eVset-automata with respect to plain vset-automata.

Lemma 4.1: Given an eVset-automaton A = (Q, q0, qf , δ), A can be converted in linear

time into a vset-automaton A′ such that JA′K = JAK, in a well-behavedness preserving

manner2.

Proof: Without loss of generality, we consider an ordering of the symbols in SVOps (A)

of the following form:

x `, . . . , y `,a x, . . . ,a y

In this ordering, all insertion operations come before the deletion operations. Let us de�ne

o ≺ o′, with o, o′ ∈ SVOps (A), if o comes before o′ (not if they are equal) in the chosen

ordering. Consider A′ =
(
Q′, q′0, q

′
f , δ
′
)
, with SVars (A′) = SVars (A), whose components

are de�ned as follows:

• Q′ = Q ∪Qops ∪Q∅, where:

� Qops =
{
qq′,o,q′′ | ∃ (q′, S, q′′) ∈ δ : o ∈ S

}
;

� Q∅ =
{
qq′,∅,q′′ | ∃ (q′, ∅, q′′) ∈ δ

}
;

• q′0 = q0;

• q′f = qf ;

• δ′ =
(
δ \ δS

)
∪ δops ∪ δ∅ ∪ δε, where:

� δS = {(q, S, q′) ∈ δ} ;

2Notice that I didn't de�ne well-behavedness in the case of a plain vset-automaton. Nonetheless, the
idea underlying the de�nition for extended vset-automata remains unchanged and the actual de�nition for
a standard vset-automaton is not di�cult to �gure out.

51

�

δops =
{(
qq′,o,q′′ , o, qq′,o′,q′′

)
| ∃
(
q′, S, q′′

)
∈ δ :

(
o, o′ ∈ S ∧ o ≺ o′∧

∀o′′ ∈ S : o ⊀ o′′ ⊀ o′
)}
∪
{(
qq′,o,q′′ , o, q

′′) | ∃ (q′, S, q′′) ∈ δ :(
o ∈ S ∧ ∀o′ ∈ S : o ⊀ o′

)}
;

� δ∅ =
{(
qq′,∅,q′′ , ε, q

′′) | ∃ (q′, ∅, q′′) ∈ δ
}

;

�
δε =

{(
q, ε, q′

)
|
((
∃
(
q′, o, q′′

)
∈ δops : ∀

(
q′, o′, q′′

)
∈ δops : o′ ⊀ o

)
∨(

∃
(
q′, ε, q′′

)
∈ δ∅

))
∧
(
∃
(
q, S, q′′′

)
∈ δ
)}

.

This construction expands the transitions of A that are labeled with a set of variable

operations into a sequence of transitions performing one operation at a time, taking care

of putting the insertion operations before the deletion ones. This construction clearly

preserves well-behavedness, because each complete path p′ in A′ is obtained from a path p

in A, preserving the original operations of p and ensuring a correct order of their appearance

(if A is well-behaved). Each sequence starts with an ε-transition. This is not necessary

in principle, but it allows to reduce the complexity of the formulation. The construction

also substitutes transitions labeled with the empty set with ordinary ε-transitions. To

prove the equivalence between A and A′ it is su�cient to notice that for every string s,

every run belonging to ARuns (A, s) can be put in correspondence with a run belonging to

ARuns (A′, s), and vice versa. Indeed, if we start from ρ ∈ ARuns (A, s) we can obtain a

run ρ'∈ARuns (A′, s) that spans the same s-tuple µ. It is su�cient to expand con�guration

pairs in ρ whose current states are linked in A by a transition t, which we expand in A′,

with a series of con�gurations that let us perform the set of variable operations in t one at

a time. This is always possible by construction of A′. If we start from ρ'∈ARuns (A′, s),

we can obtain an equivalent run ρ ∈ ARuns (A, s) in the opposite way, by compressing

consecutive con�gurations. The details are omitted.

It remains to show that the construction of A′ can be carried in linear time. Let us refer to

the size of A as n. With the usual assumptions, expanding a single transition t of A takes

O (|t|) time. Expanding every transition that is needed will then take O
(∑

t∈δ O (|t|)
)

=

O (n) time. �

The opposite direction is also true.

Lemma 4.2: Given a vset-automaton A = (Q, q0, qf , δ), an eVset-automaton A′ can be

found in linear time such that JA′K = JAK, in a well-behavedness preserving manner.

Proof: In this case it is su�cient to replace every transition t performing a variable

operation o in A with an operation transition t′ in A′ such that Ops (t′) = {o} and

LOps (t′) = o. ε-transitions can be replaced by operation transitions with an empty set.

We need to show that this construction can be carried out in linear time. We do not

52

have a de�nition of the size of a vset-automaton, but we can easily adapt De�nition 4.12:

the only di�erence is that every transition in the transition function weights 3. With this

assumption, this construction can be obtained in linear time, as its time complexity has a

similar expression to that of the construction discussed in the previous lemma. It is easy to

verify equivalence, and that well-behavedness is preserved, thus the details are omitted. �

These results are interesting. In particular, Lemma 4.1 ensures that any well-behaved

eVset-automaton, opportunely extended with the needed algebraic operators, represents

a query belonging to the core fragment of AQL. Is also the inverse true? As mentioned,

the runtime system works only with well-behaved eVset-automata. Then, for the system

to have full applicability, it must hold that an AQL core query can be represented by a

well-behaved eVset-automaton (extended with the needed operators). This is indeed the

case, as we are going to see. According to De�nition 3.36, an AQL core query is a set

of regex formulas combined by using the operators described in Subsection 3.3.3. The

�rst step is to prove that a regex formula can always be converted into a well-behaved

eVset-automaton.

Theorem 4.4: Given a regex formula γ, a well-behaved eVset-automaton A can be found

in polynomial time such that JAK = JγK.

Proof: It is well known that there exists a polynomial-time method to generate an NFA

corresponding to a regular expression r. This method generates the NFA inductively while

parsing r. A description of the method is available in, e.g., [Cox, 2007]. This procedure

does not deal with submatch extraction, thus we need to describe how to handle the x {·}
operator, x ∈ SVars (γ). We can add the following fragment to A:

e
{x `} {a x}

where the rectangle with label e is the part of A representing the subexpression of γ

contained in x {·}. The fact that the arrow pointing to the leftmost state comes from

nowhere means that the fragment is connected to whichever state came before it, and,

similarly, the arrow coming out of the rectangle is going nowhere because we connect it to

the state that comes after. We could also merge consecutive operation transitions in A, to

fully exploit the fact that it is an eVset-automaton, without altering the runtime complexity.

Correctness follows from the correctness of the single fragments generated, which is easy

to verify. Finally, A is well-behaved, because of the construction we used, along with the

fact that the new fragment for span capturing cannot appear in a loop and that every path

in A spans the same variables (because γ is syntactically SVars (γ)-functional). �

53

Let us call the class of well-behaved eVset-automata VAWESet. By combining Theorems

4.4, 4.2 and 4.3 and Lemma 4.1, we can state the following theorem.

Theorem 4.5:
r
RGX{∪,π,./,ς

=}
z

=
r
VA
{∪,π,./,ς=}
WESet

z
=

r
VA
{π,ς=}
WESet

z
.

Proof: Theorem 4.4 tells us that JRGXK ⊆ JVAWESetK. Thus we can state that

r
RGX{∪,π,./,ς

=}
z
⊆

r
VA
{∪,π,./,ς=}
WESet

z
(4.2)

Moreover, Lemma 4.1 and Theorem 3.6 imply that

r
VA
{∪,π,./,ς=}
WESet

z
⊆

r
VA
{∪,π,./,ς=}
set

z
=

r
RGX{∪,π,./,ς

=}
z

(4.3)

Finally, Theorems 4.2 and 4.3 justify the right-hand equality in the statement of this

theorem. �

We can also formulate a modi�ed version of the Core Simpli�cation Lemma (Lemma

3.2). The proof is very similar to that of the original lemma, which can be found in [Fagin

et al., 2015], and is omitted here.

Lemma 4.3: Every core spanner can be de�ned by an expression of the form

πV SA (4.4)

where:

• A is a well-behaved eVset-automaton;

• V ⊆ SVars (A);

• S is a sequence of string selections ς=x,y, for x, y ∈ SVars (A).

In this chapter, eVset-automata were introduced. Then, a particular kind of

eVset-automata, well-behaved eVset-automata, that I use in the runtime system, was

discussed: we saw that an execution engine for these automata is less complex than one for

generic eVset-automata. Then, I proved that we can simulate the operators in the algebra

{π,∪, ./} by combining the input automata with polynomial-time procedures, that return

well-behaved eVset-automata. Finally, I have shown that well-behaved eVset-automata

can be used to conveniently represent core spanners. The next chapter is a discussion of

the actual implementation of the runtime system.

54

Chapter 5

Implementation

This chapter describes the implementation of the runtime system. The outline of the

chapter is the following. Section 5.1 describes an idealized engine for the evaluation of an

NFA on a string, originally proposed by Ken Thompson. A modi�ed version of this engine

is used in the runtime system for evaluating core spanners, by means of representations

based on well-behaved eVset-automata. In Section 5.2, I discuss the actual implementation

of the runtime system.

5.1 A Method for NFA Execution: The Thompson Approach

Given a regular expression r, its corresponding NFA A and a string s, the Thompson

algorithm will try all the feasible runs of A on s at the same time. More precisely,

the method iterates over the characters of s and, for each iteration, there is a set of

current states, each representing the advancement in a feasible run. The following steps are

performed in an iteration of the algorithm: the set of outgoing transitions, for each current

state, is examined, all ε-transitions are �red iteratively and, subsequently, any transition

labeled with the character corresponding to the current one is �red. This produces a new

set of states and the execution continues as described. s is matched by A if, at the end

of the execution, all the symbols of s have been consumed and at least one state in the

current state set is an accepting state. It can be shown that the time complexity of this

approach is O (mn), where m is the size of r and n is the size of s.

Usually, we accept partial matching : we don't require that a regular expression reaches

the end of the input string to produce a match. In terms of the corresponding automaton,

we consider as accepting a run that ends in the �nal state even if it didn't scan the whole

string. This is useful for implementing unanchored matching, where we want to obtain

not only the matches starting from the beginning of a string, but also those starting

from its su�xes. The regular expressions in AQL queries perform unanchored matching

55

q0start

q1

q2

q3

a

ε

a

b

a

c

a

a

(a) An ε-NFA A.

aaab
{q0, q2}

aaab
{q1, q2}

aaab
{q1, q2, q3}

aaab
{q1, q2, q3}

aaab
{q3}

(b) The execution of A on 'aaab' according to the Thompson approach.

Figure 5.1 � Example of the Thompson algorithm.

transparently to the user: they automatically scan the input document for matches. Thus,

this kind of matching is implicitly adopted by the runtime system too. The regular

expressions of AQL retain all the matches they can �nd. Instead, the traditional Thompson

algorithm produces a single match. Thus, for the original procedure, partial matching

poses the problem of ambiguous matches. This is why concrete algorithms implement a

policy to discriminate among multiple possible matches (e.g., greedy leftmost). For more

information on the Thompson approach, see [Cox, 2007].

Example 5.1: The automaton A of Figure 5.1 accepts the string s ='aaab'. Figure 5.1

also illustrates the execution of A on s. Notice that the current state set is not a multiset.

Hence, runs that end up in the same state are naturally merged. For instance, if we are in

q1 and we read an 'a' we can go to q3, but we can also read an 'a' while in q3, remaining in

that state. Nonetheless, in the cases where both q1 and q3 are in the current state set and

an 'a' is read, q3 appears only once in the next. This is because the two originally distinct

runs are now equivalent. This lets the algorithm keep a reduced list of current states, and

justi�es the runtime complexity presented.

One interesting implementation of the Thompson algorithm views an NFA as a program

that can be executed by a virtual machine on a string. This method is described in [Cox,

56

0 CHAR a

1 SPLIT 0, 2

2 SPLIT 3, 5

3 CHAR b

4 JUMP 2

5 MATCH

(a) A program for
the regex a+b∗.

0 SAVE 0

1 CHAR a

2 SPLIT 1, 3

3 SAVE 1

4 SAVE 2

5 SPLIT 6, 8

6 CHAR b

7 JUMP 5

8 SAVE 3

9 MATCH

(b) A program for
the regex

(
a+

)
(b∗).

Figure 5.2 � Example programs.

2009].

5.1.0.1 The Virtual Machine Implementation

In this implementation, an NFA (or a regex) is converted into a program, written in a

simple assembly language with few instructions. The basic instructions are character match

(CHAR), string match (MATCH), and control �ow instructions (SPLIT and JUMP). A

virtual machine is provided, which treats each concurrent run on a string s as a conceptual

thread. The virtual machine advances all the threads in lockstep, in the spirit of the

Thompson approach. Di�erent threads that reach the same instruction in a program are

merged.

The main advantage of this method is that it is easy to enrich the assembly language

with new instructions, in order to support new features. To execute new instructions,

modifying the virtual machine is required. For instance, capturing groups can be

implemented by equipping each thread with an array of saved pointers that are grouped

by two: the �rst element would point to the beginning of a span of text and the second

one would point to its end. Then, a SAVE instruction could be added, that would make

the virtual machine record the current position in the input into the pointer speci�ed by

the instruction.

Example 5.2: The program (a) in Figure 5.2 can be used to match the regular expression

a+b∗. SPLIT instructions explicitly divide a thread into two, telling each of the generated

threads which position in the program to reach. The program (b) in Figure 5.2 matches the

same expression as program (a), but it retains the substrings matching the subexpressions

between parentheses too.

57

0 SPLIT 1, 8

1 CHAR a

2 SPLIT 1, 3

3 SPLIT 4, 6

4 CHAR a

5 JUMP 7

6 CHAR b

7 JUMP 12

8 SPLIT 9, 11

9 CHAR a

10 JUMP 8

11 CHAR c

12 SPLIT 13, 15

13 CHAR a

14 JUMP 12

15 MATCH

Figure 5.3 � A program for the automaton A of Figure 5.1.

Example 5.3: The program shown in Figure 5.3 corresponds to the automaton A of Figure

5.1. Notice how the ε-transition between q0 and q2 is automatically omitted from the

program. Blocks of SPLIT instructions correspond to multiple outgoing transitions from a

state. JUMP instructions are used to merge execution branches.

5.2 Implementation

In the system, core spanners are represented by well-behaved eVset-automata, for which

a set of string equality constraints can be speci�ed on pairs of their span variables. A

�nal projection, if present, is handled separately. Moreover, the implementation �xes

SVars = N. Hence, span variables are identi�ed by nonnegative integers. The execution

approach used by the system is radically di�erent from the one of the algebraic approach,

because instead of realizing algebraic operators as operations to apply to the outputs of

their arguments, they are simulated with the constructions presented in Section 4.2. The

system can be used in two modes:

compilation mode: reads an AQL core query and produces an equivalent core spanner

representation, using the constructions of Section 4.2;

58

AQL Core
Query

Spanner
Repr. 1

COMPILATION

Output
Spanner
Repr.

(a) Compilation mode.

EVALUATION

R1

.

.

.

Rn

D1

.

.

.

Dn

Spanner
Repr.

(b) Evaluation mode.

Figure 5.4 � Overview of the system.

evaluation mode: evaluates a core spanner representation on a series of text documents,

returning, for each of them, a (V, s)-relation as output.

The system is single-threaded.

5.2.1 Compilation Mode

The compilation mode allows to easily compose spanner representations to obtain more

complex ones. A high-level description of the composition process is shown in Figure

5.4a. It is performed according to an input AQL query, written in an ad-hoc syntax that

linearizes its operator tree. A query speci�cation consists of two parts: an initial part where

a set of input spanners is speci�ed and another part containing a series of operations to

be performed on spanners from the input set. As mentioned, input spanners are encoded

by spanner representations belonging to VA
{ς=}
WSet. Any potential �nal projection involving

59

S1 = <path/to/�le>
S2 = <path/to/�le>
S3 = <path/to/�le>
S4 = <path/to/�le>
-
R1 = S1 ./ S2
R2 = S3 ./ S4
R3 = R1 ∪ R2

Figure 5.5 � A sample AQL query, written in the syntax used by the system.

variables that are used in one or more string equality selections is handled separately. The

next example discusses a sample AQL query, formulated in the syntax expected by the

system.

Example 5.4: Consider the query representation shown in Figure 5.5. In this

representation, four spanners, with identi�ers S1, S2, S3 and S4, are included by

initializing the corresponding variables with the paths of the �les containing their

representations. Then the separating character �-� is inserted to mark the beginning of the

series of operations to be performed on the input spanners. Here we have the following

operations: natural join between S1 and S2 (result assigned to variable R1), natural join

between S3 and S4 (result assigned to R2), and union between R1 and R2 (result assigned

to R3). The operations are compiled in order of appearance. In general, the spanner

representation resulting from the last operation is returned as output, while intermediate

results are discarded.

The compilation mode supports all the operators described in Section 3.3.3. For

projection, union and natural join, the constructions described in Theorems 4.1, 4.2 and

4.3 are respectively used (keep in mind that input spanners are represented by well-behaved

eVset-automata). String equality selection operations are simply reported in the resulting

representation, for use of the evaluation engine.

In addition to the operators that we saw so far, a specialized join operator was

implemented. It is based on a predicate which may be referred to as �followedBy(min,

max)�: according to it, two spans from two di�erent input relations are combined if

and only if they are distant from each other at least min characters and at most max

characters. This kind of join is often used in AQL queries (see [Reiss et al., 2008]). Given

two unary core spanners A and B, with SVars (A) = {x}, SVars (B) = {y} and x 6= y, we

can express the described join construction, with A and B as arguments, by the following

core spanner:

60

start

.

.

.

. . .

{x `, z `}

Σ

{a x}

Σ

Σ

Σ

{y `}

Σ

{y `}

ΣΣ

Σ

{a y,a z}

Σ

min times

max−min times

Figure 5.6 � A well-behaved eVset-automaton representing Sx,y,z
followedBy(min,max).

C = π{z}

(
A ./ Sx,y,z

followedBy(min,max) ./ B
)

(5.1)

where:

• for a given string s and any two s-tuples µA ∈ A (s) , µB ∈ B (s) such that µA (x) =

[ib, ie〉, µB (y) = [jb, je〉 andmin≤ jb− ie ≤max, C (s) contains a tuple µC such that

µC (z) = [ib, je〉, and no additional tuples;

• Sx,y,z
followedBy(min,max) is the contextual core spanner that realizes the join, parametrized

by the input variables x and y, the output variable z, min and max.

Sx,y,z
followedBy(min,max) can be represented by the well-behaved eVset-automaton shown in

Figure 5.6. In the system, the join operation that we are discussing is compiled exactly by

following formula 5.1. More precisely, we have that:

• A and B are encoded by members of VAWSet (no string equality selections are possible

since they are unary);

• Sx,y,z
followedBy(min,max) is represented by the automaton of Figure 5.6;

• the operators π and ./ are simulated with the constructions described in Section 4.2

of the previous chapter.

Notice that this construction only works if A and B support unanchored matching, i.e., the

corresponding eVset-automata have universal loop transitions on their initial and accepting

states. A concrete example of the described join follows.

61

start
{x `}

Σ l

i k

e

h

a t

e

{a x}

Σ

(a) A well-behaved eVset-automaton A, accepting the words 'like' and 'hate'.

start
{y `}

Σ a

c t i o

n

h

o r r o

r

{a y}

Σ

(b) A well-behaved eVset-automaton B, accepting the words 'action' and 'horror'.

start

.

.

.

{z `}

Σ l

i k

e

h

a t

e

{}

Σ

Σ

{}

Σ
a

ctio

n

h

orro

r

{a z}

Σ

7 times

(c) A well-behaved eVset-automaton C, with JCK = π{z}

(
JAK ./ Sx,y,z

followedBy(1,8) ./ JBK
)
.

Figure 5.7 � The join of two automata A and B based on the predicate followedBy (1, 8).

62

String s
I _ l i k e _ m a n y _ a c t i o n _ m o v i e s , _ b u t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

_ I _ h a t e _ a l l _ h o r r o r _ f l i c k s .

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

JAK (s)
x

µ1 [3, 7〉
µ2 [34, 38〉

JBK (s)
y

µ3 [13, 19〉
µ4 [43, 49〉

JCK (s)
z

µ5 [3, 19〉
µ6 [34, 49〉

Figure 5.8 � The results of the execution of the automata A, B and C from Figure 5.7 on
a string s.

Example 5.5: Consider the well-behaved eVset-automata A from Figure 5.7a and B from

Figure 5.7b. A accepts the words 'like' and 'hate', while B accepts 'action' and 'horror'.

Notice that they both support unanchored matching. The well-behaved eVset-automaton

C from Figure 5.7c simulates the join of the spanners represented by A and B, based on

the predicate followedBy (1, 8). We have that JCK = π{z}

(
JAK ./ Sx,y,z

followedBy(1,8) ./ JBK
)
.

Figure 5.8 shows the results of the execution of the mentioned automata on a string s. A

spans the tuples µ1 and µ2. We have that µ1 (x) = [3, 7〉, corresponding to the snippet 'like' and

µ2 (x) = [34, 38〉, corresponding to 'hate'. Similarly, the tuples µ3 and µ4, spanned by B,

contain the spans corresponding to 'action' and 'horror', respectively. C spans µ5 and µ6,

that correspond, respectively, to the snippets 'like_many_action' and 'hate_all_horror'. Thus, we

have that JCK (s) = π{z}

(
JAK (s) ./ Sx,y,z

followedBy(1,8) (s) ./ JBK (s)
)
. Notice how the distance

constraint in the join of A and B allows to join only the spans that are semantically

correlated, avoiding to include in JCK (s) the tuple µ with µ (z) = [3, 49〉, corresponding to

the snippet 'like_many... all_horror', which would have been present if the join had been

realized as in Example 3.9 from Subsection 3.3.3, where the followedBy (min,max)predicate

is not used.

5.2.2 Evaluation Mode

The evaluation mode requires as input a core spanner representation and the path of

the directory containing the text documents to span. For each of these documents, an

output span relation, resulting from the evaluation of the input spanner, is returned. The

process is illustrated in Figure 5.4b. The execution algorithm, represented by Algorithm

5.1, is similar to that of the algebraic approach (see Algorithm 3.1 in Subsection 3.1.2). In

particular, Algorithm 5.1 conforms to document-at-a-time processing as well.

The engine that evaluates a spanner representation on a document draws inspiration

63

Algorithm 5.1 The execution algorithm of a core spanner representation on a set of input
documents.
E ←− {core spanner representation}
for document in inputDirectory do
begin

1. {Read document into main memory}

2. R←− E (document)

3. {Write R to disk}

end

from the Thompson approach, described in Subsection 5.1. The procedure de�ned by this

approach cannot be used as is. The reason is that, when evaluating an eVset-automaton

A on a string s, we are interested in all the s-tuples de�ned by the runs belonging to

ARuns (A, s), instead of a single one. Therefore, the implementation of the engine does

not discard any of the feasible runs in ARuns (A, s).

Initially, the implementation followed the Virtual Machine method: a core spanner

representation was converted into an NFA program and executed by a modi�ed

implementation of the virtual machine. However this implementation revealed itself to

be slow. Thus, the engine was changed to use input eVset-automata directly: in this

implementation, a set of current runs is maintained, and each run is advanced by following

the outgoing transitions of its current state. All the runs are advanced in lockstep. There's

another di�erence with the original Thompson approach: operation transitions, which

may be considered as a special kind of ε-transitions, are not followed iteratively, thus

di�erent runs may point to di�erent positions of the input string at the same moment.

The main motivation for developing this system was to look for evidence of performance

bene�ts over the algebraic approach. Thus, after the system was �nished, I developed a set

of AQL queries to be executed on a speci�c text corpus. The details will be given in the

next chapter. I wanted to compare the performance of the evaluation approach described

in this dissertation with the algebraic approach. Therefore, I developed a subsystem that

takes the second approach. The subsystem uses the same evaluation engine of the runtime

system to execute basic span extractors in a query. Moreover, it does not include the

optimization techniques described in Subsection 3.1.4. I describe the subsystem in the

next subsection.

64

5.2.2.1 A Subsystem for the Algebraic Approach

The subsystem works by following Algorithm 5.1 as well, but it executes AQL query

representations directly, instead of spanner representations. The execution of an AQL

query representation is as follows: the input spanners it points to are evaluated with

the engine I have just described, then the operations contained in the query are

performed. Each supported algebraic operator has an implementation that takes one

or more (V, s)-relations as input and returns a new (V, s)-relation. The details of the

implementations are not very interesting, except for two cases: natural join and the

special join combining spans based on their relative distance. In the �rst case, I used a

hash-join algorithm, with the hash function assigning values to the tuples of the input

(V, s)-relations based on the values of the common variables. This choice was made for two

reasons: it was particularly easy to realize and hash-join algorithms generally have better

performance than more generic join algorithms, as, e.g., nested-loop join algorithms. For

the second case, another quite suitable implementation was chosen, inspired by sort-merge

join algorithms. Again, this family of algorithms is in general preferable to nested-loop

joins. In order to describe the concrete algorithm, let us consider two input unary relations

R1 and R2, assigning spans to variables x and y, respectively. Let us assume that R1 is

the left argument to the join and R2 is the right one. Then the operation is performed

according to Algorithm 5.2.

This chapter described the details of the implementation of the runtime system. The

next chapter describes the experiments that were made with it and the results that were

obtained.

65

Algorithm 5.2 Algorithm to join R1 and R2 according to the followedBy(min, max)
predicate.

L1 ←a list containing the elements of R1 sorted by second index of the spans assigned
to x
L2 ←a list containing the elements of R2 sorted by �rst index of the spans assigned to y
R3 ← ∅
while |L1| > 0 and |L2| > 0 do
while |L2| > 0 do

[ib, ie〉 ← L1.head
[jb, je〉 ← L2.head
if min ≤ jb − ie ≤ max then
R3 ← R3 ∪ {[ib, je〉}
L2 ← L2.tail

else
break

end if
end while
if |L1| > 0 and |L2| > 0 then

[ib, ie〉 ← L1.head
[jb, je〉 ← L2.head
if jb − ie < min then
L2 ← L2.tail

else
L1 ← L1.tail

end if
end if

end while
return R3

66

Chapter 6

Experiments

After the development of the system, an experimental validation phase followed. The

experiments were designed to test whether the evaluation approach described in this paper

brings performance bene�ts over the algebraic approach. As mentioned, a subsystem that

takes the second approach, but evaluates basic span extractors with the same engine of

the runtime system, was developed. The subsystem does not support the optimization

techniques described in [Reiss et al., 2008, Krishnamurthy et al., 2009]. The outline of the

chapter follows. Section 6.1 contains a detailed discussion of the experimental setup. In

Section 6.2, I discuss the results of the execution of the experiments.

6.1 Setup

I performed the experiments on a document corpus consisting of blog entries, organized

in 19230 �les, each containing posts from the same author. The corpus was originally

proposed in [Schler et al., 2006]1. Its total size is 806,2 MB. All the queries were run on a

machine with a 2,7 GHz Intel i7-2620M processor and 4 GB of RAM. The next subsection

describes the queries in detail.

6.1.1 Queries

The queries are about �nding informal movie reviews in a text. They are built by combining

these basic span extractors:

Action extracts verbs usually associated with movies (e.g., �watch�, �rent�);

Aspect extracts mentions of aspects of a movie (e.g., �cast�, �plot�);

Attribute extracts attributes (e.g., �funny�, �boring�);

1The corpus is available at http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm

67

start
{x `}

Σ

m i

d

s

d

w

l

e

{a x}a y

f i r

e

Σ

Figure 6.1 � An automaton A, that simulates a dictionary matcher.

Genre extracts mentions of the most common movie genres (e.g., �action�, �comedy�);

Movie extracts synonyms of the word �movie� (e.g., ��ick�, but also �movie� itself), and

also related words like �dvd�;

Name extracts digrams that potentially represent full names (e.g., �Brad Pitt�);

PlotClue extracts words that hint to a synopsis (e.g., �story�, �begins�, �ending�);

Role extracts mentions of roles both in the plot of a movie (e.g., �protagonist�) and in its

realization (e.g., �director�);

RoleClue extracts words hinting to a description of a role (e.g., �role�, �play�);

Sentiment extracts verbs expressing feelings (e.g., �loved�, �liked�);

Title extracts titles (e.g., �The Matrix�, �Annie Hall�).

A well-behaved eVset-automaton representing each of these extractors was developed. Each

automaton assigns the spans it matches to a single span variable, di�erent from those of the

others. The automata for Name and Title encode regular expressions that try to identify

entities of interest by exploiting their usual structure, while all the other automata look

for sets of �xed words, thus they simulate dictionary matchers. They are implemented as

pre�x trees2. As an example, given an eVset-automaton A, with SVars (A) = {x}, that
extracts the words 'middle', 'midway' and 'mis�re', the structure of A is shown in Figure

6.1.

I now describe the queries, using the syntax from Subsection 3.1.3. The queries are

divided in groups. The �rst group contains only binary joins, that can be described with

the following formulas:

2See, e.g., https://en.wikipedia.org/wiki/Trie.

68

∪

./�10

εAction εTitle

./�60

εGenre εMovie

./�60

εSentiment εMovie

./�40

εRole εName

./�40

εAspect εAttribute

Figure 6.2 � The operator tree of query Q6.

Q1 = εAction ./�10 εTitle

Q2 = εAttribute ./�60 εMovie

Q3 = εGenre ./�60 εMovie

Q4 = εMovie ./�40 εTitle

where the ε operators were implemented by the corresponding automata and the ./�d

operator was realized by the join specialized on the predicate �followedBy(min,max)�,

with min= 0 and max= d.

The queries of the second group are unions of binary joins:

Q5 = Q1 ∪Q2 ∪ (εRole ./�40 εName)

Q6 = Q1 ∪Q3 ∪ (εSentiment ./�60 εMovie) ∪ (εRole ./�40 εName) ∪

(εAspect ./�40 εAttribute)

Q7 = Q6 ∪ (εTitle ./�60 εPlotClue)

Q8 = Q7 ∪ (εSentiment ./�60 εAspect) ∪ (εName ./�40 εAttribute)

Q9 = β (Ωo (Q1 ∪Q2 ∪Q3 ∪ (εSentiment ./�60 εMovie) ∪ (εRole ./�40 εName)∪

(εMovie ./�60 εAction) ∪ (εTitle ./�40 εRoleClue) ∪ (εTitle ./�60 εMovie) ∪

(εTitle ./�60 εAttribute) ∪ (εName ./�40 εRole) ∪ (εAttribute ./�50 εName) ∪

(εSentiment ./40 εName) ∪ (εName ./40 εAttribute) ∪ (εAction ./10 εName) ∪

(εAction ./�40 εMovie) ∪ (εMovie ./�60 εPlotClue) ∪ (εTitle ./�60 εPlotClue) ∪

(εRole ./�60 εAttribute) ∪ (εMovie ./�60 εName) ∪ (εName ./�60 εMovie) ∪

(εAttribute ./�60 εRole) ∪ (εMovie ./�60 εTitle)))

The operator tree of query Q6 is represented in Figure 6.2. As the reader can

69

see, queries from Q5 to Q9 are ordered by increasing size. Many individual joins are

reused among di�erent queries. Query Q9 has so many joins because it was meant as

a real-life query, which tries to maximize the output entities. For the same reason, the

Ωo operator, which consolidates overlapping spans, and the β operator, which identi�es

groups of contiguous spans, were used in the query. The β operator had the following

parameters: a maximum distance between two spans of 170 characters, and a minimum

number of spans per extracted group of 2. Confronted to query Q9, all the other queries

might seem incomplete, as they don't use any operators to aggregate parts of reviews.

Nonetheless, such aggregation operators are not covered by the runtime system, because

their relationship with core spanners was not analyzed. In fact, the runtime system

borrows the implementations for these operators from the subsystem, so including them

in the queries is not interesting for the purpose of comparing the two di�erent approaches.

Another thing worth noticing in the last group of queries is that they contain

progressively more duplicate instances of span extractors. We will see, in the discussion of

the experimental results in the next section, that this fact a�ects the relative performance

of the two approaches in a very important way. Let us quantify the amount of repeated

span extractor instances in a query with a parameter, which we may call the redundancy

of a query. Given a query Q, we de�ne its redundancy by the following formula:

r (Q) =
#span extractor instances in Q

#individual span extractors in Q
− 1 (6.1)

The higher the value of this parameter, the more a query is redundant. As the reader can

verify, for any query Q that is non-redundant, we have that r (Q) = 0. For queries from

Q5 to Q9, r takes these values:

• r (Q5) = 0

• r (Q6) = 1
9 ≈ 0.11

• r (Q7) = 2
10 = 0.2

• r (Q8) = 5
10 = 0.5

• r (Q9) = 34
10 = 3.4

The next set of queries is made of ternary joins. The reader can assume the ./�d operator

to be left-associative.

70

∪

./�40

./�10

εAction εTitle

εAttribute

./�60

./�60

εSentiment εGenre

εMovie

Figure 6.3 � The operator tree of query Q13.

Q10 = εAction ./�10 εTitle ./�40 εAttribute

Q11 = εName ./�40 εRoleClue ./�40 εRole

Q12 = εSentiment ./�60 εGenre ./�60 εMovie

The last group of queries contains unions of ternary joins, ordered by increasing size and

redundancy.

Q13 = Q10 ∪Q12

Q14 = Q13 ∪Q11

Q15 = Q14 ∪ (εMovie ./�40 εAttribute ./�40 εAspect)

Q16 = Q15 ∪ (εName ./�30 εAttribute ./�30 εRole)

The operator tree of query Q13 is represented in Figure 6.3. The values of the r parameter

for queries Q13 to Q16 are the following:

• r (Q13) = 0

• r (Q14) = 0

• r (Q15) = 0.2

• r (Q16) = 0.5

In the next section, I discuss the results of the execution of the presented queries both with

the runtime system and with the subsystem for the algebraic approach.

71

A
ct
io
n

A
sp
ec
t

A
tt
rib
ut
e

G
en
re

M
ov
ie

N
am
e

Pl
ot
C
lu
e

R
ol
e

R
ol
eC
lu
e

Se
nt
im
en
t

T
itl
e

0

5

10

15

20

25
R
u
n
n
in
g
T
im
e
(m

in
.)

Figure 6.4 � Running times of the span extractors.

6.2 Experimental Results

The running times reported in this sections are not average values. Instead, they result

from individual runs of each query. Nonetheless, I reran the queries for which there was

a sensible di�erence between the approach described in this dissertation and the algebraic

approach, with a re�nement: the time needed to get the text contained in the �les of the

corpus was excluded. Rerunning the queries con�rmed the results appearing in this section,

up to the excluded I/O time and small variations due to the machine. To put the results

of the experiments in the right perspective, keep in mind that the corpus that was used is

composed of 19230 text �les, for a total size of 806,2 MB. Before starting with the queries,

let us have a look at the running times of the individual span extractors, shown in Figure

6.4. The average running time is about 15 minutes. In the case of the extractors that

imitate dictionary matchers, the runtime seems to be related to the number of words they

can match. As an example, the three most expensive extractors, Aspect, Attribute and

Genre, can match respectively 12, 18, and 23 words, while two of the less expensive ones,

Action and RoleClue, match 3 and 2 words, respectively. More generally, the running

time of an extractor seems to be proportional to the number of runs that the corresponding

eVset-automaton tries during execution.

Let us now discuss the running times of queries Q1 to Q4, shown in Figure 6.5. There

are some useful observations we can make. First of all, the running time of a join evaluated

with the algebraic subsystem roughly corresponds to the sum of the running times of the

individual span extractors. This tells us that the time spent combining spans is negligible,

72

Q1 Q2 Q3 Q4

0

10

20

30

R
u
n
n
in
g
T
im
e
(m

in
.)

Algebra EVset-automaton

Figure 6.5 � The running times of queries Q1 to Q4.

compared to the time needed to evaluate span extractors. This observation is consistent

with Remarks 3.1 and 3.2 from Subsection 3.1.4, and with the fact that the sizes of the

�les containing the snippets resulting from the evaluation of the single span extractors are

very small compared to the size of the corpus, as shown in Figure 6.6. Evaluating a single

join with an eVset-automaton seems to be always more e�cient than using the algebraic

approach. Hence, it must be that an eVset-automaton implementing the join tries less runs

than the total runs of two eVset-automata corresponding to the span extractors in the join.

Consider, for instance, query Q1. During evaluation, the eVset-automaton corresponding

to Q1 will �rst look for an instance of an action and only if it �nds one it will look for

a movie title. Moreover, all the title instances that are not preceded by an action are

naturally ignored. Although the �nding of an action will cause the generation of 10 new

runs, in order to try to match a title between 0 and 10 characters away (see Figure 5.6),

this seems to be still less costly than evaluating Action and Title independently.

Figure 6.7 reports the running times of queries Q5 to Q9. Remember that these queries

are ordered by increasing size and redundancy. In particular, redundancy plays a central

role here. There seems to be a clear trend: the more a query is redundant, the less e�cient

will be the evaluation of the corresponding eVset-automaton. In the worst case (Q9), this

ine�ciency is very marked. The explanation of this phenomenon is two-folded. On the one

hand, the cost of evaluating a query with the algebraic subsystem is mostly determined

by the cost of the single span extractors. This means that modifying a query with an

additional join, without introducing new span extractors, is almost e�ortless.

73

A
ct
io
n

A
sp
ec
t

A
tt
rib
ut
e

G
en
re

M
ov
ie

N
am
e

Pl
ot
C
lu
e

R
ol
e

R
ol
eC
lu
e

Se
nt
im
en
t

T
itl
e

C
or
pu
s

0

200

400

600

800

S
iz
e
(M

B
)

Figure 6.6 � The sizes of the outputs resulting from the execution of the span extractors,
compared to the size of the corpus.

Q5 Q6 Q7 Q8 Q9

0

50

100

150

200

250

300

350

400

R
u
n
n
in
g
T
im
e
(m

in
.)

Algebra EVset-automaton EVset-automaton (factorized)

Figure 6.7 � The running times of queries Q5 to Q9.

74

Indeed, Figure 6.7 shows that the running times obtained with the algebraic subsystem

bene�t from redundancy, and it is not surprising that query Q9 is not more expensive

than the others. On the other hand, an eVset-automaton corresponding to any of these

queries does not have the possibility to reuse the results of individual span extractors,

because it matches entire join patterns independently from each other. Thus, the running

time of an eVset-automaton is proportional to the number of joins it contains, as we can

see from Figure 6.7. In general, from the point of view of the string evaluation engine,

the total number of runs that are performed on an input document seems to be crucial

in determining the runtime of a query. As the number of joins in the query increases,

the total runs tried by the corresponding automaton increase too. These considerations

suggest that one of the key strengths of the algebraic approach is its natural ability to

extract basic span relations once and use them in di�erent parts of a query. This feature

is unfortunately missing from the runtime system. Nonetheless, in general it is possible

to transform a query in such a way that its redundancy is reduced, without altering its

semantics. Consider the following modi�cations of queries Q6 to Q9:

Q′6 = Q1 ∪ ((εGenre ∪ εSentiment) ./�60 εMovie) ∪ (εRole ./�40 εName) ∪

(εAspect ./�40 εAttribute)

Q′7 = Q′6 ∪ (εTitle ./�60 εPlotClue)

Q′8 = Q1 ∪ ((εGenre ∪ εSentiment) ./�60 εMovie) ∪ (εRole ./�40 εName) ∪

((εAspect ∪ εName) ./�40 εAttribute) ∪ (εTitle ./�60 εPlotClue) ∪

(εSentiment ./�60 εAspect)

Q′9 = β (Ωo ((εMovie ./�60 (εAction ∪ εName ∪ εPlotClue ∪ εTitle))∪

(εAction ./�10 (εName ∪ εTitle)) ∪

((εAttribute ∪ εGenre ∪ εName ∪ εSentiment ∪ εTitle) ./�60 εMovie) ∪

((εRole ∪ εTitle) ./�60 εAttribute) ∪ (εName ./�40 (εAttribute ∪ εRole)) ∪

((εRole ∪ εSentiment) ./�40 εName) ∪ (εTitle ./�40 εRoleClue) ∪

(εAttribute ./�50 εName) ∪ (εAction ./�40 εMovie) ∪ (εTitle ./�60 εPlotClue) ∪

(εAttribute ./�60 εRole)))

These modi�ed versions are equivalent to the original queries, but they are less

redundant:

• r (Q′6) = 0 < 0.11 ≈ r (Q6)

• r (Q′7) = 0.1 < 0.2 = r (Q7)

75

Q10 Q11 Q12

0

20

40

60
R
u
n
n
in
g
T
im
e
(m

in
.)

Algebra EVset-automaton

Figure 6.8 � Running times of queries Q10 to Q12.

• r (Q′8) = 0.4 < 0.5 = r (Q8)

• r (Q′9) = 2.3 < 3.4 = r (Q9)

As we can see from Figure 6.7, the transformations have a positive e�ect on the running

times. All they do is factorize the common arguments to di�erent joins in a query, with

the constraints that the distance parameter of the joins is the same, and that the factorized

arguments are in the same position in the joins. Figure 6.7 suggests that this technique can

bring modest to huge bene�ts to the performance of the runtime system, depending on the

amount of redundancy that is eliminated. Nonetheless, in a generic query, it probably will

not be able to eliminate all the redundancy. It is the case for query Q9, where the running

time of the runtime system becomes comparable with that of the algebraic subsystem,

although it is still worse. On average, the speedup does not seem to change signi�cantly

when we apply factorization (see Figure 6.11), but the reason might be that the set of

queries used to calculate the average are, in general, not very redundant. The introduction

of more redundant queries could probably increase the speedup signi�cantly.

The results for queries Q10 to Q12 are shown in Figure 6.8. Non-redundant ternary

joins seem to be faster with the runtime system, and, on average, the speedup with respect

to the algebraic subsystem is greater than that obtained for binary joins (see Figure 6.11).

This is explained with the observation that a ternary join pattern is more restrictive than a

binary one. Hence, on average, an eVset-automaton that implements a ternary join will try

a smaller percentage of the total amount of runs tried by the individual span extractors.

76

Q13 Q14 Q15 Q16

0

50

100

150
R
u
n
n
in
g
T
im
e
(m

in
.)

Algebra EVset-automaton

Figure 6.9 � Running times of queries Q13 to Q16.

Finally, Figure 6.9 shows the running times Q13 to Q16 (that are ordered by increasing

size and redundancy). Although a query with a great redundancy is missing in this case,

the examples reported suggest that the runtime system is less sensitive to redundancy,

when the input queries are unions of ternary joins. For instance, queries Q8 and Q16 have

approximately the same size: they employ the same amount of span extractors, they contain

an almost equal number of ./�d operators (Q16 has two more) and r (Q8) = r (Q16) = 0.5,

but the speedup with respect to the algebraic approach is greater for Q16.

This situation suggests a trend: the longer the chain of joins, the greater performance

gain over the algebraic approach. In spite of this consideration, longer join chains were

not tried, because they hardly seem useful in the context of this benchmark: they would

probably be e�ective when the entities we want to �nd have a complex and, above all,

repetitive structure, but this is not the case for informal movie reviews contained in blog

posts, whose structure might be complex, but is in general very variable. Already for

queries Q13 to Q16, the sizes of the results are considerably smaller than, for instance,

those of queries Q5 to Q9 (see Figure 6.10).

This benchmark highlights the key strengths of the two approaches for running AQL

queries belonging to its core fragment, namely the one originally proposed in [Fagin

et al., 2015] and the algebraic one ([Reiss et al., 2008, Krishnamurthy et al., 2009]).

The results suggest that a runtime system based on well-behaved eVset-automata can

e�ciently evaluate a join pattern, and its e�ciency increases as longer chains of joins are

used. Nonetheless, it cannot naturally exploit the redundancy of a query, although we saw

77

Q5 Q6 Q7 Q8 Q9 Q13 Q14 Q15 Q16

0

2

4

6

8

S
iz
e
(M

B
)

Figure 6.10 � The sizes of the outputs of queries Q5 to Q9 and Q13 to Q16.

Q1-Q4 Q5-Q9 Q6-Q9 (fact.) Q10-Q12 Q13-Q16

0

1

2

3

A
ve
ra
ge

S
p
ee
d
u
p

Figure 6.11 � Average speedup of the runtime system w.r.t. the algebraic subsystem for
the groups of queries in the benchmark.

78

that there exist ways to reduce it. On the other hand, the ability to avoid redundant work

is a core aspect of the algebraic approach, and it can make a signi�cant di�erence in large

queries. In general, the runtime of a query seems to be determined by the amount of runs

tried by the corresponding automaton, in the case of the runtime system, and by the total

runs tried by the automata contained in the query, for the algebraic subsystem.

79

Chapter 7

Summary and Conclusions

7.1 Summary

Drawing upon the formal model for the core fragment of AQL introduced in [Fagin et al.,

2015], I have de�ned and developed a runtime system for AQL queries that belong to

this fragment. The system is based on the concept of document spanner. It supports

the execution of any core spanner. Spanners are represented into the system by means

of well-behaved eVset-automata, a modi�ed version of vset-automata (that were originally

proposed in [Fagin et al., 2015]). The di�erence with vset-automata is that they can do

more than one span capturing operation in one transition. The system actually works

with a subclass of eVset-automata, which I have shown it can be used as a base for core

spanner representations: well-behaved eVset-automata. We saw that this subclass has very

useful properties. First of all, it exempts the evaluation engine from any runtime check on

the validity of the feasible runs of an automaton. Then, it is closed under the operations

of projection, union and natural join, and there exist polynomial-time constructions that

allow to simulate the latter with well-behaved eVset-automata. This is an improvement

over the constructions proposed in [Fagin et al., 2015], that generate exponentially larger

automata. The system has a compilation module that allows to combine well-behaved

eVset-automata by exploiting the constructions described in this dissertation.

After the development of the runtime system, a series of experiments were conducted

with it. I developed a set of queries and I have run them on a sample text corpus. Moreover,

I realized a subsystem that supports the algebraic approach described in [Reiss et al.,

2008, Krishnamurthy et al., 2009]. All the queries were run with this subsystem too in order

to compare the performances of the two approaches. The results show that the redundancy

of a query plays a central role in determining the di�erence of performance of the two

systems. Non redundant queries are more e�ciently executed with the runtime system.

However, the subsystem loses performance as the redundancy of the queries increases,

80

while the algebraic subsystem naturally exploits it to reduce its workload. More generally,

in both cases the running time depends on the amount of runs tried by the automata

evaluated on the input. Another consideration is that the speedup with respect to the

algebraic subsystem increases as the matching patterns become more restrictive, as, e.g.,

in ternary joins.

7.2 Conclusions

One of main objectives of this thesis was to investigate the bene�ts of the point of view

provided in [Fagin et al., 2015] over the one currently adopted by SystemT. The results

highlight that the runtime system has its own advantages, although its convenience seems

to depend on the context. In fact, the impact of the redundancy of a query on performance

was discovered during the experimental phase, and I didn't expect it to be so relevant. A

concrete system for the execution of AQL queries would probably need to mix both the

execution approaches that were compared in this thesis, opportunely choosing the best

one for a given (sub)query. It seems clear that one of main choice criteria would be the

redundancy of a query. Another one could be the variability in the structure of the entities

targeted by an extraction task. Nonetheless, I invite the reader to interpret these results

as preliminary. Indeed, there is a lot of work to be performed on the system yet.

7.3 Future Work

The development of a module that transforms input queries for a more e�cient execution

with eVset-automata seems promising. Moreover, other benchmarks than the one presented

in this paper could be conceived, in order to gain an even better understanding of the

system.

Then, I believe that some of the constructions described in Section 4.2 and the

specialized join with distance constraint could be further improved. For instance, a

BFS (Breadth First Search) algorithm could be used for natural join, instead of a plain

conditional product.

Further work could be dedicated to the evaluation engine. The execution algorithm

could be optimized. Moreover, other evaluation methods exist, based on approaches

that are di�erent from the Thompson one. In particular, two of them were identi�ed as

interesting. One is based on Ordered Binary Decision Diagrams (OBDDs). In [Yang et al.,

2012], it is shown how to encode NFAs as OBDDs, with support for submatch extraction.

Then, a procedure for evaluating a string by using an OBDD representation of a NFA is

described. Given a regular expression r of size m and a string of size n, the runtime cost

81

of this approach is shown to be between O (m) and O (mn). Another interesting engine

is called Kleenex [Grathwohl et al., 2016]. It is based on the concept of transducer. Its

creators show that it has linear-time performance in the worst case, with high throughput.

The focus of this thesis was on the comparative experimental validation, and the speci�c

implementation of the evaluation engine is likely to be orthogonal to this task, because

both the approaches that were compared would bene�t from a performance increase due

to it. Nonetheless, trying to adapt the mentioned engines for the system could be a

useful improvement. Another possible amelioration of the engine, which was ultimately

not pursued for similar reasons, would be the usage of the Scala library LMS (Lightweight

Modular Staging), extensively described in [Rompf, 2012], that uses the principles of

generative programming to optimize Scala source code. In particular, it would allow to

produce a specialized engine for each input query, ideally boosting performance.

82

Bibliography

[Cowie and Wilks, 1996] Cowie, J. and Wilks, Y. (1996). Information extraction.

[Cox, 2007] Cox, R. (2007). Regular expression matching can be simple and fast (but is

slow in java, perl, php, python, ruby, ...).

[Cox, 2009] Cox, R. (2009). Regular Expression Matching: the Virtual Machine Approach.

[Cox, 2010] Cox, R. (2010). Regular expression matching in the wild.

[Fagin et al., 2015] Fagin, R., Kimelfeld, B., Reiss, F., and Vansummeren, S. (2015).

Document spanners: A formal approach to information extraction. J. ACM,

62(2):12:1�12:51.

[Grathwohl et al., 2016] Grathwohl, B. B., Henglein, F., Rasmussen, U. T., Søholm,

K. A., and Tørholm, S. P. (2016). Kleenex: Compiling nondeterministic transducers

to deterministic streaming transducers. SIGPLAN Not., 51(1):284�297.

[Krishnamurthy et al., 2009] Krishnamurthy, R., Li, Y., Raghavan, S., Reiss, F.,

Vaithyanathan, S., and Zhu, H. (2009). Systemt: A system for declarative information

extraction. SIGMOD Rec., 37(4):7�13.

[Reiss et al., 2008] Reiss, F., Raghavan, S., Krishnamurthy, R., Zhu, H., and

Vaithyanathan, S. (2008). An algebraic approach to rule-based information extraction.

In 2008 IEEE 24th International Conference on Data Engineering, pages 933�942.

[Rompf, 2012] Rompf, T. (2012). Lightweight Modular Staging and Embedded Compilers.

PhD thesis, IC, Lausanne.

[Sarawagi, 2008] Sarawagi, S. (2008). Information extraction. Found. Trends databases,

1(3):261�377.

[Schler et al., 2006] Schler, J., Koppel, M., Argamon, S., and Pennebaker, J. (2006).

E�ects of age and gender on blogging, volume SS-06-03, pages 191�197.

83

[Shen et al., 2007] Shen, W., Doan, A., Naughton, J. F., and Ramakrishnan, R. (2007).

Declarative information extraction using datalog with embedded extraction predicates.

In Proceedings of the 33rd International Conference on Very Large Data Bases, VLDB

'07, pages 1033�1044. VLDB Endowment.

[Yang et al., 2012] Yang, L., Manadhata, P., Horne, W., Rao, P., and Ganapathy, V.

(2012). Fast submatch extraction using obdds. In Proceedings of the Eighth ACM/IEEE

Symposium on Architectures for Networking and Communications Systems, ANCS '12,

pages 163�174, New York, NY, USA. ACM.

